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Abstract

This thesis involves the modelling and control of separated shear flows.

The emphasis is on the development of low-dimensional mean-field

models that capture essential flow physics and are suitable for non-

linear control design in simulation and experiment.

The concept of the mean-field model by Noack et al. (2003) has been

generalized to include actuation mechanisms, which are incommensu-

rable with the dominant frequency of the natural flow. This model

describes how actuation-induced oscillations can interact with (and

suppress) the instability at the natural frequency, only by indirect

interaction via the varying mean flow.

The framework of mean-field modelling has been applied to three dif-

ferent configurations: the flow around a 2-D circular cylinder, the flow

around a 2-D high-lift configuration, and the flow around a D-shaped

body. The first two configurations are investigated in numerical sim-

ulations, whereas the latter is a windtunnel experiment.

For the circular cylinder, a parameterized proper orthogonal decom-

position approach (POD) is used to extend the dynamic range of the

standard POD. This parameterized model is used to optimize sensor

locations. The model is demonstrated in a closed-loop control that

targets wake suppression.

High frequency open-loop actuation can significantly reduce the sep-

aration that is caused by large flap angles of a high-lift configuration.

The essence of this mechanism is captured by the generalized mean-

field model. This model is used for a set-point control of the lift

coefficient.



Finally, the generalized mean-field model is adapted for design of a

nonlinear controller for set-point tracking of the base pressure coef-

ficient of a bluff body. This illustrates the usefulness of mean-field

models in experiment.
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F., Jensch, M., Hüttmann, F., Brede, M. & Leder, A.

(2008). Joint numerical and experimental investigation of the

flow around a finite wall-mounted cylinder at a Reynolds num-

ber of 200,000. In Proceedings of the ERCOFTAC International

Symposium on Engineering Turbulence Modelling and Measure-

ments (ETMM7), 517–52.

• Lacarelle, A., Luchtenburg, D.M., Bothien, M.R.,

Paschereit, C.O. & Noack, B.R. (2008). A combination

of image post-processing tools to identify coherent structures of

premixed flames. In Proceedings of the 2nd International Confer-

ence on Jets, Wakes and Separated Flows (ICJWSF), (submitted

to AIAA Journal).



• Luchtenburg, D.M., Vitrac, B. & Zengl, M. (2008).

Model reduction methods for flow control. In ERCOFTAC Bul-

letin 77, selected report of the 2nd Young ERCOFTAC Work-

shop, 21–25.

• Frederich, O., Luchtenburg, D.M., Wassen, E. &

Thiele, F. (2007). Analysis of the unsteady flow around a

wall-mounted finite cylinder at Re=200,000. In J.M.L.M. Palma

& A.S. Lopes, eds., Advances in Turbulence XI , vol. 117 of Pro-

ceedings in Physics , 85–87, Springer.

• Frederich, O., Scouten, J., Luchtenburg, D.M. &

Thiele, F. (2007). Database variation and structure identi-

fication via POD of the flow around a wall-mounted finite cylin-

der. In Proceedings of 5th Conference on Bluff Body Wakes and

Vortex Induced Vibrations (BBVIV5), 185–188.

• Lehmann, O., Luchtenburg, D.M. & Losse, N. (2007).

Calibration of model coefficients using the adjoint formulation.

Tech. rep., 1st Young Ercoftac Workshop, Montestigliano, Italy,

March 26–30.

• Tadmor, G., Centuori, M.D., Luchtenburg, D.M.,

Lehmann, O., Noack, B.R. & Morzyński, M. (2007). Low
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Chapter 1

Introduction

1.1 Motivation

Active flow control (AFC) is a fast growing multidisciplinary science and tech-

nology aimed at altering a natural flow state into a more desired state. Flow

control is influencing all major areas of engineering: external aerodynamic per-

formance, internal flows in propulsion systems, acoustic emission, combustion

instabilities, transition and management of turbulence (King, 2007; Lu, 2009). In

the last century, vast progress has been made in the aerodynamic design at the

main operating condition, e.g. by shaping an airfoil for low drag cruise. Small

passive devices, like turbulators or riblets, may improve flow performance further

or stretch the operating regime. These techniques are predominantly based on

a quasi-steady consideration. In contrast, active flow control devices, like zero-

net-mass-flux actuators, synthetic jets, provide the designer with more freedom:

the temporal dynamics can be directly controlled. This freedom can be exploited

to: (i) extend the operating envelope, and (ii) to specifically target favourable

instability mechanisms in the flow. In addition, if observations of the flow system

are used for feedback, closed-loop control adds to these possibilities: (iii) modifi-

cation of the system dynamics (e.g. stabilization), and (iv) reduction of the flow

sensitivity (to external disturbances or parameter variations).

For the purpose of active closed-loop flow control a model of the flow is nec-

essary for systematic feedback control design. To be useful for feedback design,

the model must be sufficiently simple for feasible, real-time implementation, and

1



1.2 Active flow control

robustly represent the natural and actuated dynamics. Therefore, the first step

in model development is to identify the key physical phenomena in the flow field.

These key mechanisms are then absorbed in a so-called low-dimensional model of

the flow field, typically in the form of a system of ordinary differential equations.

The goal is not to describe every detail of the flow, but rather to eliminate all

unimportant details, and obtain the simplest possible mathematical model (least-

order), while retaining just enough of the details to describe the flow features of

interest. In the specific case of separated flows, it is often desirable to suppress

the main flow instability and thus change the mean-flow to improve aerodynamic

performance. This implies that the base-flow change is an important physical

phenomena that is to be included in the model. The term mean-field model1 has

been attributed to flow models that include this behaviour (Noack et al., 2003).

In this study, the focus is on the development of (generalized) mean-field models

for flow control. The usefulness of the model approach is illustrated by nonlinear

separation control.

1.2 Active flow control

In this section, some active flow control concepts are reviewed which are relevant

for the current work. For a detailed overview of flow control in general, the

following books are recommended: Gad-el-Hak (2000); Lu (2009). Surveys of

passive methods can be found in Choi et al. (2008); Hucho (2002).

Active flow control changes a natural flow field by active means to achieve a

desired state. Typically the flow is influenced by a blowing and/or suction device

or acoustic actuation. In Fiedler & Fernholz (1990); Greenblatt & Wygnanski

(2000) it is shown that periodic excitation is more effective and efficient in sup-

pressing separated flows than steady actuation. This is a benefit common to most

modern flow control techniques: they are able to achieve large-scale effects with

small control inputs. It is however, to date, an art to design the right frequency

and amplitude range of an actuator that triggers the instabilities which bring

about the desired changes to the flow field. In particular, periodic actuation

1This definition is different from the one used in physics, which is used to describe a lumping

procedure to simplify a problem.
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1.3 Model reduction

can be used to delay separation of the flow over airfoils at high angles of attack

(Amitay & Glezer, 2002; Becker et al., 2007; Collis et al., 2004; Seifert et al.,

1996).

Most studies in the area of active flow control focus on open-loop control. As

discussed above, closed-loop control can significantly improve the performance

of a flow control system. Moreover, in certain applications, closed-loop control

is indispensable. As an example, the wake of a bluff body is considered. The

adverse effects of flow separation, such as large pressure drag, oscillations, can be

reduced by direct opposition control of the vortices in the wake (Gerhard et al.,

2003; Siegel et al., 2003; Tadmor et al., 2004). Indeed, this type of control only

works if the actuator provides a force that directly counteracts the movement

of the vortices. Another type of control that targets suppression of the wake

instability is phase control, see Pastoor et al. (2008). This control uses a pressure

sensor at the upper or lower edge at the stern of the body to detect a vortex.

An actuator at the opposite edge provides an actuation signal that is exactly out

of phase with the pressure measurement, thus yielding a simultaneous shedding

of vortices. This leads to a decoupling of the alternating vortex formation in

the shear layers and the wake by synchronizing the roll-up of upper and lower

shear layers. The same effect can be achieved with open-loop control, where the

actuators at both opposite edges are operated in phase, albeit at an increased

actuation cost.

1.3 Model reduction

The main motivation for model reduction is to obtain models which are tractable

for control design and real-time flow control. To obtain low-dimensional models,

we will use the proper orthogonal decomposition (POD) in conjunction with the

Galerkin projection. The Galerkin projection is a method for obtaining approx-

imations to a high-dimensional dynamical system by projecting the dynamics

onto a low-dimensional subspace. In the present case, the low-dimensional basis

is spanned by POD modes.

Proper orthogonal decomposition is a method which extracts a low-dimensional

basis from simulation or experimental data, which is optimal in a certain sense.
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The POD method was initially only used to identify so-called coherent struc-

tures in turbulent flows (Holmes et al., 1998). Along similar lines, the dynamic

mode decomposition (DMD) will be used in this thesis to find the structures

corresponding to dominant frequencies in the velocity field from snapshots of the

flow.

More recently, the POD method has been used to construct low-dimensional

models by Galerkin projection of the dynamic system onto the dominant POD

modes. Examples include: boundary layer flow (Aubry et al., 1988), turbulent

channel flow (Lee et al., 2001), flow past a cylinder (Noack et al., 2003), cavity

flow (Rowley & Juttijudata, 2005), transitional channel flow (Ilak & Rowley,

2008) and flow past a high-lift configuration (Luchtenburg et al., 2009a).

The standard POD-Galerkin model often fails to capture important aspects

of the dynamics of the original system. In the present work, this deficiency

is addressed by the introduction of shift modes (Noack et al., 2003). These

shift modes incorporate the change of the base-flow during transients. Other

techniques for improvement of the performance of POD models are discussed by

Gordeyev & Thomas (2010); Siegel et al. (2008). A detailed discussion of the

described methods is provided in the next chapter.

1.4 Outline

The main contributions of this work are: the application of a parameterized

mean-field model for the optimization of sensor locations, and the implemen-

tation of a single-input single-output (SISO) opposition control for suppression

of the wake instability of a circular cylinder; the development of a generalized

mean-field model, and the application of this model to describe the flow around

a high-lift configuration in a 2-D simulation; and a simplified mean-field model,

which is tuned to describe the flow around a D-shaped bluff body in experiment.

The usefulness of these models is demonstrated by implementation of a set-point

controller in both simulation and experiment.

The contributions of each chapter are outlined below:
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1.4 Outline

Chapter 2. The main methods, which are used in this thesis, are described in

this chapter. It starts with a short introduction to reduced-order modelling

and control. The fluid flow model, the derived Reynolds-averaged Navier-

Stokes equations and their implications for modelling are discussed in § 2.1.

In § 2.2 techniques for obtaining low-dimensional models are outlined. In

particular we describe: the POD method in § 2.2.1, the DMD method in

§ 2.2.2, and the Galerkin method (GM) in § 2.2.3. The mean-field model

approach is described in § 2.3. First the model approach is introduced with

a simple example in § 2.3.1. Subsequently, a mean-field model for a single

frequency (§ 2.3.2) and a generalized mean-field model for two frequencies

(§ 2.3.3) are derived. The chapter concludes with a description of control

design using a sliding mode controller (SMC) in § 2.4. This controller is used

for set-point tracking based on the derived generalized mean-field model

Chapter 3. A mean-field POD-GM model (for a single frequency) is employed

for the flow around a circular cylinder, describing natural vortex shedding

and changes of the mean flow. The POD-GM model is parameterized for

multiple operating conditions. This parameterized representation is used to

optimize sensor locations. An observer which tracks the state of the system

(the actual operating condition) is utilized in a single-input single-output

(SISO) opposition control to suppress the wake instability.

Chapter 4. A mean-field POD-GM model (for two frequencies) is employed for

the flow around a high-lift configuration. The model describes natural vor-

tex shedding, the high-frequency actuated flow with increased lift, and tran-

sients between both states. The form of the dynamical system is highlighted

from a phenomenological perspective in § 4.4. The mean-field model results

are compared with the simulation results in § 4.6. Set-point tracking of the

lift coefficient, based on the mean-field model, is described in § 4.7.

Chapter 5. A (simplified) mean-field model is employed to describe flow around

a D-shaped bluff body in an experiment. The model describes natural

vortex shedding, the low-frequency actuated flow with reduced drag and

transients between both states. A DMD analysis of the flow field reveals
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1.4 Outline

the dominant coherent structures in the natural and actuated flow (§ 5.4).

Experimental data are used to identify the model parameters. The model

is used for set-point tracking of the base pressure coefficient in § 5.6.2.

Chapter 6. The conclusions of this work and possible directions for future work

are outlined in the final chapter.

END
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Chapter 2

Reduced-order models and

control

Feedback flow control strategies in experiment require models which are suffi-

ciently simple for feasible, real-time implementation, and robust enough to cope

with uncertainties. In this chapter, reduced-order models are outlined that cap-

ture key physical phenomena of the flow. These models are used as a base for

nonlinear control design.

A common method for obtaining a low-dimensional basis of a system is the

proper orthogonal decomposition (POD). By Galerkin projection onto the low-

dimensional POD subspace, a reduced-order description of the system is obtained

(Holmes et al., 1998). This standard Galerkin system is over-optimized for one

particular reference condition. Hence, transient behaviour is not (adequately)

captured. In mean-field theory (Noack et al., 2003) a so-called shift-mode is

added to the basis. This shift-mode represents the effect of a changing base flow

and significantly improves the resolution of the transient dynamics.

The mean-field theory was originally motivated by extending the concept of

linear stability theory (Stuart, 1958). A flow cannot grow without bound and

hence there must be a nonlinear saturation mechanism. The Reynolds-averaged

Navier-Stokes equation hints at the most important correction. The mean-flow is

quadratically dependent on the fluctuation velocities (Reynolds stresses). There-

fore, a shift-mode, which describes the mean-field correction, is added to the basis

of linear stability modes. In the case of one dominant frequency, this approach
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2.1 Fluid flow model

leads to the single frequency mean-field model by Noack et al. (2003). Shift-modes

can be included for each dominant frequency of the system under consideration.

In this chapter, the mean-field model is generalized to multiple frequencies.

The mean-field models are used for nonlinear controller design. One particular

control, namely sliding mode control (SMC), is summarized in this chapter.

2.1 Fluid flow model

The flow equations governing the motion of a fluid follow from physical conser-

vation laws (Batchelor, 1967). In this work, incompressible Newtonian fluids are

considered. The flow is described in a Cartesian coordinate system x = (x, y, z),

with the x-axis parallel to the streamwise direction, the y-axis in lateral direc-

tion, and the z-axis in spanwise direction. The unit vectors in positive x-, y- and

z-direction are denoted by ex, ey and ez. In the following, the standard sym-

bols are used for denotation of velocity (u = (u, v, w)T ), pressure (p) and time

(t). All physical variables are assumed to be nondimensionalized with respect

to a characteristic length L, a velocity U and a constant density ρ. In § 2.1.1

the basic equations of fluid dynamics are recapitulated. The Reynolds-averaged

Navier-Stokes (RANS) equation is recapitulated in § 2.1.2. Transient behaviour

and implied mean-field deformation is discussed in § 2.1.3.

2.1.1 Basic equations of fluid dynamics

The continuity equation represents the conservation of mass

∇ · u = 0, (2.1)

and the Navier-Stokes equation the conservation of momentum

∂u

∂t
+ ∇ · (u⊗ u) = ga −∇p+

1

Re
△u, (2.2)

where ⊗ defines the dyadic product between two vectors, i.e. the components

Qij of the dyadic product Q = u ⊗ v are defined by Qij = uivj , ga is a volume

force and Re = UL/ν the Reynolds number. The Navier-Stokes (NS) equation is

only a function of the velocity field, since the pressure field p is a function of the
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2.1 Fluid flow model

velocity field — modulo a constant. Together with suitable initial and boundary

conditions, (2.1) and (2.2) govern the motion of an incompressible Newtonian

fluid. Practically, these equations can only be solved for moderate Reynolds

numbers. This model free computation of turbulence is called direct numerical

simulation (DNS).

2.1.2 Reynolds-averaged Navier-Stokes equation

In engineering practice, turbulent flows are generally modelled by the (unsteady)

Reynolds-averaged Navier-Stokes equation (RANS), in order to achieve computer

time and memory requirements that are feasible for (industrial) applications

(Wesseling, 2000). Before presenting the RANS equations, the prerequisites are

discussed.

Following the original idea of Reynolds (1895), a quantity f(x, t) is decom-

posed into a mean value f and a fluctuation f ′ as follows:

f = f + f ′, (2.3)

where the bar indicates an averaging operator. This operator is required to fulfill

the Reynolds conditions (Monin & Yaglom, 2007)

f + g = f + g (2.4a)

af = af, a ∈ R (2.4b)

a = a, a ∈ R (2.4c)

∂f

∂s
=
∂f

∂s
(2.4d)

fg = fg. (2.4e)

Properties (2.4a)–(2.4c) imply the linearity of the operator. In addition, the

following consequences can be derived

f = f, f ′ = 0, fg = fg, fg′ = 0. (2.5)

In order to interpret the Reynolds assumptions, the averaging operator must

be explictly defined. The three most pertinent forms in turbulence model research
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2.1 Fluid flow model

are the time average, the spatial average and the ensemble average. The running

time average

f(x, t) =
1

T

∫ T
2

−T
2

f(x, t+ τ)dτ (2.6)

satisfies the linearity condition and commutes with the derivative. However,

equation (2.4e) will in general not be satisfied exactly for any finite choice of T

1

T

∫ T
2

−T
2

{( 1

T

∫ T
2

−T
2

f(x, t+ τ)dτ
)

g(x, t+ τ̃ )
}

dτ̃ 6=

( 1

T

∫ T
2

−T
2

f(x, t+ τ)dτ
)( 1

T

∫ T
2

−T
2

g(x, t+ τ)dτ
)

.

Condition (2.4e) is usually relaxed to the spectral gap requirement, which implies

that T is large compared to the time scale of turbulent fluctuations T1, but small

compared to the time scale of other time-dependent features of the flow T2, i.e.

T1 ≪ T ≪ T2. The averaging window may be chosen in such a way that (2.4e) is

satisfied approximately. Reynolds confined himself to this type of argument. In

the case of stationary turbulence, T → ∞, all conditions are met.

More general space time averaging operators can be defined (Monin & Yaglom,

2007) that also fulfill conditions (2.4a)–(2.4d). The more complex condition (2.4e)

is, as above, not satisfied. Difficulties that can arise are described in Galmarini

& Thunis (1999).

A third and more universal possibility is to define the averaging operator as

an average over a statistical ensemble

f(x, t) = lim
N→∞

1

N

N∑

i=1

f(x, ti). (2.7)

This definition fulfills all Reynolds conditions since it does not involve space nor

time. The probability approach to the theory of turbulence is pursued in modern

books.

The continuity equation for the mean flow follows from averaging of (2.1)

∇ · u = 0. (2.8)
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2.1 Fluid flow model

Taking the mean of (2.2) gives the Reynolds-averaged Navier-Stokes equation

∂u

∂t
+ ∇ · (u⊗ u) = ga −∇p+

1

Re
△u−∇ · (u′ ⊗ u′). (2.9)

The last term on the right hand side comprises the so-called Reynolds stresses.

These have to be related to the mean motion itself before the equations (2.8) and

(2.9) can be solved, since the number of unknowns and number of equations must

be equal. The absence of these additional equations is often referred to as the

closure problem.

In practice semi empirical relations are introduced leading to eddy viscosity

models or Reynolds stress models. The eddy viscosity depends on certain quan-

tities that obey partial differential equations. In Chapter 4, a k-ω eddy viscosity

model will be used. This model includes two transport equations to represent

the turbulent kinetic energy k and the dissipation per unit turbulence kinetic

energy ω of the flow. The eddy viscosity is determined from these two quantities

(Wilcox, 1994).

2.1.3 Transient behaviour and mean flow distortion

The coupling between fluctuations and base flow velocities is communicated by

the RANS equation (2.9). During transients the mean flow u is distorted by finite

disturbances u′. In practice, usually only snapshots from a converged trajectory

of the attractor dynamics are available. These snapshots contain the equilibrium

solution u = u(x). Consider as a special case the steady solution for ga = 0,

where u = us is obtained by setting the time derivative in the RANS equation

equal to zero

∇ · (us ⊗ us) = −∇ps +
1

Re
△us. (2.10)

There is no corresponding equation for the fluctuations, since they equal zero.

In linear stability theory, infinitesimal disturbances with respect to the steady

solution are considered. The Navier-Stokes equation is linearized around a steady

solution (us, ps) with perturbation (us+u′, ps+p′), yielding the following distur-
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2.1 Fluid flow model

bance equations

∇ · u′ = 0, (2.11)

∂u′

∂t
+ ∇ · (u′ ⊗ us) + ∇ · (us ⊗ u′) = −∇p′ + 1

Re
△u′. (2.12)

These equations can be solved with a normal mode ansatz, i.e. u′ = u(x) exp (λt),

p′ = p(x) exp (λt). Substitution of this ansatz leads to an eigenproblem. The

growth rate of mode i is given by σi = ℜ(λi) and its frequency by ωi = ℑ(λi).

This basis is similar to the ensemble snapshots of a converged attractor in the

sense that only a very local part of the solution is described.

Initially an unstable disturbance to the steady solution (σi > 0) grows expo-

nentially with time, but eventually it reaches such a size that the transport of

momentum by the finite fluctuations is appreciable. This causes the Reynolds

stress ∇ · (u′ ⊗ u′) in (2.9) to change the mean flow. Vice versa, the mean flow

distortion modifies the rate of transfer of energy from the mean flow to the distur-

bance. In this case, the flow interactions are strongly nonlinear and can no longer

be described by linear equations. A first order approximation of the base-flow

change or mean-field correction can be obtained by subtracting the steady state

solution from the mean-flow at the attractor:

δu = u− us

Setting ga = 0, substituting u = us + δu, p = ps + δp, into the RANS equation

(2.9), and subtracting (2.10) yields

∂δu

∂t
+∇ · (us ⊗ δu) +∇ · (δu ⊗ us) = −∇δp+

1

Re
△δu−∇ · (u′ ⊗ u′) +O(δu2),

(2.13)

which shows that the mean-field correction δu quadratically depends on the fluc-

tuation amplitude (Noack, 2006). This form is the starting point for mean-field

theory. The basis for the local solution is not necessarily given by linear stabil-

ity modes. In fact, we will be using the POD as a local basis. This expansion

is enriched by adding mean-field corrections, leading to a mean-field model (see

§ 2.3).
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2.2 Model reduction for fluid flows

2.2 Model reduction for fluid flows

In this section, techniques for obtaining reduced-order models of fluid flows are

described. An overview of the basic tools, the proper orthogonal decomposition

(§ 2.2.1), the dynamic mode decomposition (§ 2.2.2) and the Galerkin method

(§ 2.2.3) is provided. The implementation of actuation in Galerkin models is

described in § 2.2.4.

2.2.1 Proper orthogonal decomposition

The main objective in proper orthogonal decomposition (POD) is to obtain an

optimal low-dimensional basis for representing an ensemble of high-dimensional

experimental or simulation data. This low-dimensional basis can in turn be used

to formulate reduced-order models of complex flows. POD decomposes a given

(fluctuating) flow field u′(x, t)1 into an orthonormal system of spatial modes ui(x)

and corresponding (orthogonal) temporal coefficients or mode amplitudes ai(t)

u′(x, t) =
M∑

i=1

ai(t)ui(x). (2.14)

This basis is optimal in the sense that a truncated series expansion of the data

in this basis has a smaller mean square truncation error than a representation by

any other basis. The POD provides a natural ordering of the spatial modes by

measure of their mean square temporal coefficients (i.e. their kinetic energy). In

conjunction with the Galerkin method a system of ordinary differential equations,

called the Galerkin system (GS), can be derived for the temporal evolution of the

mode amplitudes.

The term proper orthogonal decomposition was introduced by Lumley (1998)

as an objective definition of coherent structures. The POD is also known as the

Karhunen-Loève expansion. Its discrete relatives are called principal component

analysis (PCA) and singular value decomposition (SVD). The reader is referred to

Wu et al. (2003) for the relations. Tutorials on the discrete and continuous formu-

lations of POD have been presented by Chatterjee (2000); Cordier & Bergmann

1The prime is suppressed in the following.
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2.2 Model reduction for fluid flows

(1999); Luchtenburg et al. (2009b). For a thorough treatment of the continuous

version of POD see Astrid (2004); Holmes et al. (1998); Rowley (2002).

POD basis problem

First some definitions are introduced. The velocity field on the spatial domain

Ω is formally embedded in a mathematical space. Let H be a suitable Hilbert

space with the following inner product1 between two vector fields f , g,

(f , g)Ω =

∫

Ω

f · g dx, (2.15)

and the induced norm

‖f‖ =
√

(f , f). (2.16)

The time averaging operator is defined as

a =
1

T

∫ T

0

a(t) dt. (2.17)

Premise for the POD is spatial correlation (coherence) of the velocity flow

field. The optimal modes ui are defined as the eigenfunctions of the Fredholm

equation (see Appendix A.1 for the derivation)
∫

Ω

R(x,y)ui(y) dy = λiui(x). (2.18)

Here, R(x,y) is the two-point autocorrelation tensor for the flow field, defined

by

R(x,y) = u(x, t) ⊗ u(y, t), (2.19)

or in index notation

Rij = ui(x, t)uj(y, t), (2.20)

where the indices ij refer to the velocity components, i.e. in three dimensions

u = (u1, u2, u3). The modes are ordered with respect to the decreasing real

1This definition of the inner product constrains the Hilbert space to the L2(Ω) space of

square-integrable functions, with the standard inner product. More generally the notion of a

Hilbert space with a suitable inner product suffices.
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positive eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . > 0. The kinetic energy contained

in mode i is measured by the eigenvalue λi, and the sum of the eigenvalues is

equal to the total energy in the snapshots. Note that zero eigenvalues are not

considered since they do not contribute to the energy. Using the orthonormality

of the modes, the time-dependent amplitudes follow from the projection

ai(t) = (u(x, t),ui(x))Ω. (2.21)

In practice, data is available at discrete points and the integral problem is

approximated using a suitable quadrature rule for the time average. Let an en-

semble of M snapshots be given {u(xi, tj)}, where i = 1, . . . , K and j = 1, . . . ,M .

The approximation of the auto-correlation function (2.19) is given by

Rij =

M∑

k=1

wk u(xi, tk) · u(xj , tk), (2.22)

where wk are the quadrature weights such that
∑M

k=1wk = 1 and ‘·’ denotes

the standard Euclidean inner product. To simplify notation the snapshots are

collected in a matrix

X =








u(1)(x1) u(2)(x1) . . . u(M)(x1)
u(1)(x2) u(2)(x2) . . . u(M)(x2)

...
...

...
u(1)(xK) u(2)(xK) . . . u(M)(xK)








=
[

u(1) u(2) . . . u(M)
]
,

(2.23)

where u(i)(xj) = u(xi, tj). The row-direction of X corresponds with the discrete

spatial domain and the columns contain the snapshots. In complete analogy

to (2.18), the (discrete) POD modes are computed as the eigenvectors of the

eigenvalue problem

XWXT = UΛ, (2.24)

where W = diag(w1, . . . , wM). The POD modes are the columns of U. This

method is known as the direct method (or computation in the spatial domain). If

time-averaging is approximated by the ensemble average, wk = 1/M , the eigen-

problem simplifies to
1

M
XXT = UΛ. (2.25)
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This shows that the POD modes correspond to the left singular vectors of the

matrix X. Thus, there is a direct connection between the POD and the singular

value decomposition (SVD) of the snapshot matrix

X = UΣVT . (2.26)

The matrices U, V are orthonormal and Σ is a diagonal matrix (padded with

zeros) that contains the singular values. Using the SVD, it is straightforward to

show that the POD modes can also be computed by

U = XV, (2.27)

where the weights V are the scaled temporal coefficients that are calculated from

the eigenproblem
1

M

(
XTX

)
V = VΣ. (2.28)

This method of computing the POD is called the method of snapshots (Sirovich,

1987) or discretization in the temporal domain. The method of snapshots can

also be directly derived from the continuous formulation of the POD method (see

Appendix A.2 for the derivation). In this case the results are slightly different,

since the quadrature weights are based on an approximation of a spatial integral.

Note that the method of snapshots yields a correlation matrix with sizeM×M ,

whereas discretization in the three dimensional spatial domain yields a matrix

with size 3K × 3K. The method of snapshots makes it possible to compute

POD modes for high-dimensional systems, where the number of snapshots is

significantly lower than the number of grid points. The direct method can be

advantageous for long time samples of few experimental sensor measurements,

i.e. M ≫ 3K.

Discussion

The POD method extracts modes from an ensemble of snapshots that are sorted

with respect to energy content. In this sense the method often provides clues

about the physics of a flow field. The optimality property also implies that

important dynamic information characterized by low energy may not be included

in a low-dimensional POD approximation of the system. Secondly, since the
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POD approach is data driven, information may simply not be captured by the

snapshots. This lack of information can lead to problems if one uses this basis in

conjunction with the Galerkin method to derive a dynamic system (see § 2.2.3).

The POD/Galerkin model is often quite fragile: the models depend unpredictably

on the number of modes kept and often a large number of modes is required to

capture qualitatively reasonable dynamics (Rowley & Batten, 2009). Several

suggestions have been proposed to address these problems:

(i) The inclusion of multiple operating conditions in one snapshot ensemble

(Khibnik et al., 2000; Taylor & Glauser, 2004). An example is the flow

around an airfoil. The velocity flow field is recorded for different angles of

attack. All snapshots are included in one ensemble and the POD modes are

computed. Another example is the chirp excitation of a cylinder wake by

rotation of the cylinder (Bergmann et al., 2004). This approach is known

as global or ‘basket’-POD. This ansatz always includes bias towards certain

flow conditions.

(ii) A more refined variant of the above approach is Split POD (Camphouse

et al., 2008) where the POD of a baseline ensemble is expanded with POD

modes from another ensemble (e.g. an open-loop forced flow). The infor-

mation of the POD modes of the baseline ensemble is subtracted from the

second ensemble. The added POD modes are obtained from the corrected

snapshot ensemble. This approach guarantees orthonormality of the modes.

(iii) A recursive or sequential POD procedure (Annaswamy et al., 2002; Jørgensen

et al., 2003). The POD is recursively updated for new flow states.

(iv) The inclusion of additional modes to the POD modes. In this manner, the

accuracy of the POD modes for the reference condition is conserved and

the additional modes extend the range of applicability and robustness of

the POD-Galerkin model. An example is the mean-field model by Noack

et al. (2003).

(v) Parameterization of multiple operating conditions. Each operating condi-

tion is described by its own POD. This procedure is sometimes referred
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to as conditional POD (Taylor & Glauser, 2004) or parameterized POD

(Lehmann et al., 2005).

(vi) Similarly to the previous approach, multiple operating conditions are de-

scribed, each by its own POD. If there is a smooth transition from one to

another operating condition, the (qualitative) topology of the POD modes

remains the same. Each topologically similar POD mode is described as

a function of the operating condition. This ensemble can be expanded by

POD as well. Hence, this approach is coined Double POD (DPOD, Siegel

et al., 2008).

(vii) Inclusion of dynamic states of the system by computation of an approximate

balanced truncation. This balanced truncation may be viewed as POD of

a particular dataset, using the observability Gramian as an inner product

(Rowley, 2005). This method is known as Balanced POD (BPOD). Note

that this approach is limited to a linear (or adequately linearized) system.

2.2.2 Dynamic mode decomposition

The dynamic mode decomposition (DMD) provides, like POD, a basis for a snap-

shot ensemble. It provides an alternative to POD if an ensemble of time-resolved

snapshots is available. The evolution of the snapshots is assumed to be governed

by a linear dynamic system. As in linear stability analysis, the eigenvalues of

the state matrix characterize the frequencies and the growth rates of the system.

Hence, DMD can be viewed as a Laplace analysis of the snapshots.

The following description of the dynamic mode decomposition is adapted from

Rowley et al. (2009). As above, see (2.23), let an ensemble of M snapshots be

given and stack the first M−1 snapshots in a matrix X = [u(1), . . . ,u(M−1)]. The

basic premise of the method is that the snapshots are assumed to be generated

by a linear dynamical system:

u(k+1) = Au(k). (2.29)

The eigenvalues and eigenvectors of the matrix A completely characterize the

behaviour of the dynamical system. The DMD is a method to compute the
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2.2 Model reduction for fluid flows

approximate eigenvectors or Ritz vectors of the system matrix. The Ritz vectors

are called the Koopman or dynamic modes. Assume that the last snapshot in the

ensemble can be expressed as a linear combination of the previous snapshots, i.e.

u(M) = Au(M−1) = c1u
(1) + . . .+ cM−1u

(M−1) = Xc, (2.30)

where c = (c1, . . . , cM−1). In general, this equality is not satisfied and instead c

is computed as the least square approximation. The snapshots are related by the

following matrix equation

AX = XC, (2.31)

where C is a companion matrix

C =










0 0 . . . 0 c1
1 0 0 c2
0 1 0 c3
...

. . .
...

0 . . . 0 1 cM−1










. (2.32)

The eigenvalues and eigenvectors of C, given by Ca = λa, directly lead to (a

subset of) the eigenvalues and eigenvectors of A, since

A (Xa) = XCa = λ (Xa) . (2.33)

Thus, eigenvalues of C are eigenvalues of A and v = Xa is an eigenvector of A.

The spectral decomposition of C can be written as

C = T−1ΛT, (2.34)

where the eigenvectors are columns of T−1 and Λ = diag(λ1, . . . , λM−1). Using

this notation, the Koopman modes are given by the columns of the following

matrix

V = XT−1. (2.35)

This leads to the connection between the snapshot matrix and the modal decom-

position: X = VT, where T contains the mode amplitudes.

In contrast to POD, the mode amplitudes are usually normalized and the

norm of a mode is considered as an indicator of an important flow feature. The
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2.2 Model reduction for fluid flows

growth or decay rate of a mode can also be used as a selector to extract unstable

or stable modes. Oscillatory modes and their amplitudes are found as complex

conjugate pairs. The frequency ωj and growth rate σj of mode j are computed

from the eigenvalues of C:

ωj = Im{log(λj)}/∆t, (2.36a)

σj = Re{log(λj)}/∆t, (2.36b)

where ∆t is the time step between two consecutive snapshots.

Discussion

Unlike POD, the DMD requires a set of ordered (time resolved) snapshots, oth-

erwise the mapping defined by (2.29) is not meaningful. The dynamic modes, by

definition, have mode amplitudes with well defined frequencies. (If the snapshot

matrix X is transposed, the method can also be applied to reveal spatial wave-

like structures). These modes can be ordered with respect to their norm, their

frequency or growth rate.

On the contrary, the POD procedure can be interpreted as a purely statistical

procedure. It involves a time-averaging (spatial-averaging) step and the modes

are obtained from maximization of the variance over the ensemble of snapshots.

The obtained modes are by definition statistically decorrelated, because of the

bi-orthogonality of the modes and the mode amplitudes (see (2.26), (A.20) and

(A.22)). This property does not hold for the DMD, i.e. the extracted basis is in

general not orthogonal.

2.2.3 Galerkin method

In the previous sections, the procedure for obtaining a basis from an ensemble

of snapshots was discussed. In the case of a low-dimensional approximation of

the velocity flow field, this necessarily implies that the governing Navier-Stokes

equation is not satisfied exactly. Here, the Galerkin method, see e.g. Fletcher

(1984), is used to derive evolution equations for the approximate basis.
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2.2 Model reduction for fluid flows

Starting point of the Galerkin method is the Galerkin approximation:

u(x, t) =

N∑

i=0

ai(t) ui(x), (2.37)

where u0(x) is a steady base flow (e.g., the attractor mean or the steady solution

of the Navier-Stokes equation) and {ui}Ni=1 ⊂ L2(Ω) is an orthonormal (here:

POD) basis. Time dependency is described by the mode amplitudes ai. Following

a notation of Rempfer & Fasel (1994), a0 ≡ 1 by definition. The incompressible

Navier-Stokes equation (2.2) is rewritten in operator form

N [u] = ∂tu + ∇ · (u⊗ u) + ∇p− ν △u− ga = 0, (2.38)

where ν = 1/Re is the reciprocal of the Reynolds number. An ordinary differential

equation governing the evolution of the temporal coefficients ai(t) is obtained by

substituting (2.37) into the Navier-Stokes equation (2.38) 1, and projecting onto

the subspace spanned by the expansion modes:

(N [u(x, t)] ,ui(x))Ω = 0 for i = 1, . . . , N. (2.39)

This is the so-called Galerkin projection. The resulting Galerkin system is quadrat-

ically nonlinear

dai
dt

= ν
N∑

j=0

lij aj +
N∑

j,k=0

qijk aj ak for i = 1, . . . , N. (2.40)

Table 2.1 provides the definition of the coefficients lij and qijk = qcijk + qpijk. The

contribution of the pressure term to the Galerkin system (last row in table 2.1)

is neglected, since for absolutely unstable wake flows this term is relatively small

(see e.g. Noack et al., 2005). Alternatively, since the pressure term does not

change the model structure, it can be lumped in the other coefficients.

In vector notation, the system reads

da

dt
= c + L(a) + Q(a, a), (2.41)

where the vector notations denote a = [a1, . . . , aN ]T , c = [c1, . . . , cN ]T , and

c|i = νli0 + qi00, L(a)|i =

N∑

j=1

(νlij + qi0j + qij0) aj, Q(a, a)|i =

N∑

j,k=1

qijk ajak.
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NSE NSE with Galerkin Galerkin Simplified

u = u0 + u′ projection system nomenclature

∂tu = ∂tu
′ = (ui, ∂tu

′)Ω = d
dt
ai = d

dt
ai =

−∇ · [u⊗ u] −∇ · [u0 ⊗ u0] − (ui,∇ · [u0 ⊗ u0])Ω qci00

−∇ · [u′ ⊗ u0] − (ui,∇ · [u′ ⊗ u0])Ω +
N∑

j=1

qcij0aj

−∇ · [u0 ⊗ u′] − (ui,∇ · [u0 ⊗ u′])Ω +
N∑

j=1

qci0jaj

−∇ · [u′ ⊗ u′] − (ui,∇ · [u′ ⊗ u′])Ω +
N∑

j,k=1

qcijkajak
N∑

j,k=0

qcijkajak

+ν△u +ν△u0 +ν (ui,△u0)Ω +νli0

+ν△u′ +ν (ui,△u′)Ω +ν
N∑

j=1

lijaj +ν
N∑

j=0

lijaj

−∇p −∇p0 − (ui,∇p0)Ω +qpi00

−∇p′ − (ui,∇p′)Ω +
N∑

j,k=0

j+k>0

qpijkajak +
N∑

j,k=0

qpijkajak

Table 2.1: Derivation of the Galerkin system (GS). In each column terms or corresponding terms of the Navier-Stokes

equation (NSE) are enlisted. The rows show the local acceleration, convective acceleration, viscous and pressure

term. From left to right, the NSE is transformed into the GS in five steps: (1) NSE in its original form, (2) NSE after

Reynolds decomposition, (3) Galerkin projection, (4) GS, and (5) a simplified nomenclature of the GS employing

a0 ≡ 1. The Galerkin projection of the pressure term is derived in Noack et al. (2005). This table is adapted from

Noack (2006)
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2.2 Model reduction for fluid flows

As discussed in § 2.2.1, truncation effects and numerical issues may result

in substantial deviations of the predicted dynamics. Such distortions may be

resolved by calibration methods (Galletti et al., 2004; Tadmor et al., 2004).

2.2.4 Implementation of actuation

For active flow control applications, the standard Galerkin model needs to be

generalized to include the effects of actuation. For control purposes it is necessary

to design a free control input to the model. If the actuation can be modelled as

a volume force with finite support, a force term, say B(t)g(x), is simply added

to the NS-equation. This leads to the following additional term in the Galerkin

system

B(t)(g(x),ui(x))Ω = B(t)gi. (2.42)

For (very) local periodic actuation, e.g. a zero-net-mass-flux actuator, the ef-

fect of actuation can be represented by an equivalent volume force term. The

fluctuation part of the velocity field is decomposed into a boundary-imposed un-

steadiness uinhom satisfying an inhomogeneous boundary condition and a flow

response uhom satisfying a homogeneous boundary condition. The imposed un-

steadiness uinhom is modelled by an actuation mode u−1(x) with amplitude a−1(t)

(Graham et al., 1999) and the flow response, with homogeneous boundary con-

ditions, by a linear combination of expansion modes (e.g., POD modes). This

results in the Galerkin approximation

u(x, t) =

N∑

i=−1

ai(t) ui(x). (2.43)

The choice of the actuation mode is a free design parameter, for which the lit-

erature offers many variants, see Kasnakoglu (2007) and the references therein.

Here, a volume force term is considered that is consistent with an actuation mode

ansatz under (nearly) periodic forcing. The actuation mode has two particular-

ities: firstly, it is not necessarily orthogonal to the POD modes, and secondly,

its amplitude is a control input. Substitution of (2.43) into the Navier-Stokes

1implementation of actuation is discussed below
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2.2 Model reduction for fluid flows

equation and Galerkin projection onto the expansion modes yields (Noack et al.,

2004)

ȧi = −mi,−1 ȧ−1 + ν
N∑

j=−1

lij aj +
N∑

j,k=−1

qijk aj ak for i = 1, . . . , N.

or, equivalently,

ȧi = ν
N∑

j=0

lij aj +
N∑

j,k=0

qijk aj ak

+

[

ν li,−1 + (qi,0,−1 + qi,−1,0) +
N∑

j=1

(qi,j,−1 + qi,−1,j) aj

]

a−1

−mi,−1 ȧ−1.

(2.44)

Under non-actuated conditions, a−1 = ȧ−1 ≡ 0, the natural system is obtained.

For future reference, assume that a periodic actuator signal is given, where

the velocity b = B cos(β) satisfies dβ/dt = Ωa, with a slowly varying amplitude

B and phase shift β = Ωa t. The acceleration then reads db/dt = −Ωa B sin(β).

The actuator command and its derivative are comprised in a vector

b =

[
b1
b2

]

=

[
b

−db/dt
Ωa

]

= B

[
cos(β)
sin(β)

]

. (2.45)

The effect of the periodic actuation is modelled by an actuation mode u−1(x)

with amplitude a−1(t), which yields an input matrix B (see (2.44))

Bi,1 = ν li,−1 + (qi,0,−1 + qi,−1,0) +
N∑

j=1

(qi,j,−1 + qi,−1,j) aj, (2.46a)

Bi,2 = mi,−1 Ωa. (2.46b)

Comparing (2.45) and (2.46) with (2.44) it follows that b1 = a−1 and b2 =

−ȧ−1/Ω
a.

Discussion

The design of actuation mode(s) generally is not without substantial difficulties.

Firstly, in a POD of a forced flow field the effect of the actuation is hardwired
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2.3 Mean-field modelling

to the POD modes and hence cannot be freely chosen as input. Secondly, in the

case of a very local actuation, the interaction between the local actuation and

the globally dominant coherent structures is mediated by a succession of small

structures and convective effects that the POD Galerkin framework is expressly

designed to ignore (low energy events). The above approach addresses these

problems by identifying the periodic actuation not with its immediate, local effect,

but with locked-in forcing effects on globally synchronized coherent structures

associated with dynamics at the actuation frequency (Tadmor et al., 2004).

2.3 Mean-field modelling

Once a snapshot ensemble is available from a reference Navier-Stokes solution,

the POD-Galerkin method can be applied to obtain a low-dimensional model of

the flow field. Here, the standard POD basis is extended with so-called shift

modes or mean-field corrections, that describe the change of the base flow (see

§ 2.1.3). This enriched basis is used to derive a Galerkin system governing the

evolution of the temporal coefficients. The low-dimensional model that results is

called the mean-field model.

The underlying ideas of mean-field theory trace back to Stuart (1958), and

more recently, to Maurel et al. (1995); Sipp & Lebedev (2007) where the critical

role of the time-varying base flow in nonlinear saturating instabilities is elabo-

rated. For instance, when the Reynolds number is increased for the flow around a

circular cylinder, the initially stable steady flow transitions to a von Kármán vor-

tex street at Re ≈ 47. This phenomenon can be mathematically described by a

stable steady solution that becomes unstable and saturates in a stable limit cycle,

see § 2.3.2. This transition is accompanied by a changed base flow and increased

drag. Active flow control can be exploited to modify the base flow for the purpose

of drag reduction or lift increasement (Luchtenburg et al., 2009a; Pastoor et al.,

2008).

The mean-field model is derived by (1) considering an enriched Galerkin ap-

proximation (basis) that includes the mean-field correction, and (2) simplification

of the Galerkin system to a weakly nonlinear form. The mechanics of the deriva-

tion of the latter are introduced by considering a weakly nonlinear oscillator in
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2.3 Mean-field modelling

§ 2.3.1. In § 2.3.2 a Galerkin mean-field model is derived for a system with

one pronounced frequency, e.g. vortex shedding. The generalization to multiple

frequencies is described in § 2.3.3.

2.3.1 Weakly nonlinear oscillator

Consider a weakly nonlinear oscillator of the following form (see e.g. Strogatz,

1994)

ẍ+ x+ ǫh(x, ẋ, t) = 0, (2.47)

where ˙( ) = d/dt( ), 0 < ǫ≪ 1 and h(x, ẋ, t) is an arbitrary smooth function. Let

y = −ẋ, then (2.47) can be rewritten as

ẋ = −y, (2.48a)

ẏ = x+ ǫh. (2.48b)

When ǫ = 0, the solution of (2.48) is

x(t) = A cos(t+ ψ), (2.49a)

y(t) = A sin(t+ ψ). (2.49b)

When 0 < ǫ ≪ 1, the solution can still be expressed in the form (2.49) provided

that A and ψ are slowly varying functions of t. Let

x(t) = A(t) cos(t+ ψ(t)), (2.50a)

y(t) = A(t) sin(t+ ψ(t)), (2.50b)

which requires the constraint

Ȧ cos(t+ ψ) −Aψ̇ sin(t+ ψ) = 0, (2.51)

determined by differentiation of (2.50a) and comparison of the result with (2.48a)

and (2.50b). Differentiation of (2.50b) yields

ẏ = A[1 + ψ̇] cos(t+ ψ) + Ȧ sin(t+ ψ). (2.52)
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2.3 Mean-field modelling

Substituting (2.52) and (2.50a) into (2.48b) and repeating constraint (2.51) gives

the system
[

sin(t+ ψ) cos(t+ ψ)
cos(t+ ψ) − sin(t+ ψ)

] [
Ȧ

Aψ̇

]

=

[
ǫh
0

]

. (2.53)

Solving for Ȧ and Aψ̇ yields

Ȧ = ǫh sin(t+ ψ), (2.54a)

Aψ̇ = ǫh cos(t+ ψ). (2.54b)

Hence A and ψ are slowly varying for 0 < ǫ ≪ 1. Let the running average (see

also (2.6)) be defined by

r(t) =
1

T

∫ t+T/2

t−T/2

r(τ) dτ, (2.55)

where T is the period of one sinusoidal oscillation. Time averaging commutes

with differentiation, i.e. Reynolds condition (2.4d) is satisfied

dr

dt
=
dr

dt
. (2.56)

Since A and ψ are slowly varying functions of the time, the system (2.54) is

time-averaged

Ȧ = ǫh(A cos(t+ ψ),−A sin(t+ ψ), t) sin(t+ ψ), (2.57a)

A ψ̇ = ǫh(A cos(t+ ψ),−A sin(t+ ψ), t) cos(t+ ψ). (2.57b)

Note that this result is exact, but not very helpful for solution of the problem.

Therefore, the amplitude and phase are approximated by their time-averaged

values. First, the amplitude is expanded in a Maclaurin series of ǫ

A(t, ǫ) = A0(t) + A1(t)ǫ+ A2(t)ǫ
2 + . . . . (2.58)

Here A0(t) = A(t, ǫ = 0), which means that A0 = A0 = const. (compare with

(2.54a)). Thus,

A(t) − A(t) = [A0 − A0] + [A1(t) − A1(t)]ǫ+ [A2(t) − A2(t)]ǫ
2 + . . .

= 0 +O(ǫ). (2.59)
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2.3 Mean-field modelling

Summarizing, we obtain the following approximation for A and ψ

A(t) = A(t) +O(ǫ), (2.60)

ψ(t) = ψ(t) +O(ǫ). (2.61)

Now A and ψ are replaced by their time-averaged values

Ȧ = ǫh(A cos(t+ ψ),−A sin(t+ ψ), t) sin(t+ ψ) +O(ǫ2), (2.62a)

A ψ̇ = ǫh(A cos(t+ ψ),−A sin(t+ ψ), t) cos(t+ ψ) +O(ǫ2), (2.62b)

where the barred quantities are to be treated as constants inside the averages. It

is customary to drop the overbars, since no distinction is normally made between

slowly varying quantities and their averages. Equations (2.62) are the so-called

averaged equations. The method is due to Kryloff & Bogoliuboff (1943) and is

referred to as the method of averaging. The approximation can be improved by

taking into account higher orders of ǫ, which is done in the generalized method

of averaging (Nayfeh, 1973).

Van der Pol equation

As an example, the method of averaging is applied to the van der Pol equation

(see e.g. Strogatz, 1994). This equation has for instance been used for vortex

shedding modelling. The van der Pol equation is given by

ẍ+ x+ ǫ(x2 − 1)ẋ = 0. (2.63)

Comparison with (2.47) shows that h = (x2 − 1)ẋ = (A2 cos2 θ − 1)(−A sin θ),

where θ = t+ ψ. Hence (2.62) becomes

Ȧ = ǫh sin θ = ǫ[A

∫ 2π

0

sin2 θ dθ −A3

∫ 2π

0

cos2 θ sin2 θ dθ] = ǫ[
1

2
A− 1

8
A3],

(2.64a)

Aψ̇ = ǫh cos θ = ǫ[A

∫ 2π

0

sin θ cos θ dθ − A3

∫ 2π

0

sin θ cos3 θ dθ] = 0. (2.64b)

Two numerical examples are now investigated. In figure 2.1(a) the exact

solution (numerically obtained) for ǫ = 0.1 and initial conditions x(0) = 0.5,
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Figure 2.1: Comparison of the exact solution of the van der Pol equation (2.63)

(–) with the approximate solution and the amplitude envelope (- -) obtained by

the method of averaging for different values of ǫ.

ẋ(0) = 0 is compared with the result of the averaged equation (2.64a). The

two curves are virtually indistinguishable and for comparison also the amplitude

envelope predicted by (2.64a) is shown. In figure 2.1(b) the same result is shown,

but now for ǫ = 1. This case cannot be considered weakly-nonlinear and the

rapid change in frequency is not described by (2.64b), although the amplitude

envelope is reasonably described.

2.3.2 Mean-field model for single frequency

Using the same mechanics as in the previous section, the Galerkin mean-field

model for a single frequency is derived from the Navier-Stokes equation. The

reader is also referred to Noack et al. (2003) for an alternative derivation. The

basis includes the steady solution us, two modes that describe an oscillatory

motion {u1,2} and a shift-mode u3, which represents the changing base flow.

Thus, the Galerkin approximation is given by

u(x, t) = us(x) + a1(t)u1(x) + a2(t)u2(x) + a3(t)u3(x), (2.65)

where {a1,2} are the mode amplitudes of the oscillatory fluctuation and a3 is

the amplitude of the shift mode. Substitution of expansion (2.65) in (2.38) and
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2.3 Mean-field modelling

application of the Galerkin projection (see § 2.2.3) yields the following form of

the dynamic system for the amplitudes

ȧi = ν

3∑

j=1

lijaj +

3∑

j=0

3∑

k=1

qijkajak, i = 1, 2, 3, (2.66)

where:

lij = (ui,△uj)Ω , qijk = − (ui,∇ · (uj ⊗ uk)) , i = 1, 2, 3, j = 0, 1, 2, 3,

and u0 = us. The system is split up in a linear and a nonlinear part

ȧ1 = σ1a1 − ω1a2 + δ1a3 + h1(a1, a2, a3), (2.67a)

ȧ2 = ω2a1 + σ2a2 + δ2a3 + h2(a1, a2, a3), (2.67b)

ȧ3 = ρ1a1 + ρ2a2 + σ3a3 + h3(a1, a2, a3), (2.67c)

where the coefficients of the linear part are defined as

σi = νlii + qi0i + qii0, i = 1, 2, 3, (2.68a)

ω1 = νl12 + q102 + q120, ω2 = νl21 + q201 + q210, (2.68b)

δi = νli3 + qi03 + qi30, i = 1, 2, (2.68c)

ρi = νl3i + q3i0 + q30i, i = 1, 2, (2.68d)

and the weakly nonlinear functions hi are defined as

hi =

3∑

j=1

3∑

k=1

qijkajak. (2.69)

Similarly to the weakly nonlinear oscillator in § 2.3.1, the solution is assumed to

be given by

a1 = A(t) cos(θ(t)), (2.70a)

a2 = A(t) sin(θ(t)), (2.70b)

a3 = D(t), (2.70c)
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2.3 Mean-field modelling

where the amplitudes A, D and the phase θ = ωt + ψ(t) are slowly varying

quantities. The time derivatives are

ȧ1 = −A(ω + ψ̇) sin(θ) + Ȧ cos(θ), (2.71a)

ȧ2 = A(ω + ψ̇) cos(θ) + Ȧ sin(θ), (2.71b)

ȧ3 = Ḋ. (2.71c)

Substitution of (2.70) and (2.71) in (2.67a) and (2.67b) yields

sin(θ)[−Aω − Aψ̇ − Aω1] + cos(θ)[Ȧ− σ1A] = δ1D + h1, (2.72a)

sin(θ)[Ȧ− σ2A] + cos(θ)[Aω + Aψ̇ − Aω2] = δ2D + h2. (2.72b)

Equations (2.72a) and (2.72b) need to be consistent with each other. First con-

sider the linear case without mean-field deformation, i.e. h1 = h2 ≡ 0 and D ≡ 0.

This implies that the frequency is constant ψ̇ ≡ 0 and that the amplitude has a

constant growth rate σ. Thus, for reasons of consistency

−ω1 = ω2 = ω, (2.73a)

σ1 = σ2 = σ. (2.73b)

Note that these equations describe the phase invariance of a linear harmonic

oscillator. Phase invariance requires that the system coefficients do not change

under a rotation of the coordinate system.1 Rewriting, (2.72) becomes

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
Ȧ− σA

Aψ̇

]

=

[
δ1D + h1

δ2D + h2

]

. (2.74)

Note that the matrix on the left-hand side is a rotation matrix. Solving (2.74)

for Ȧ− σA and Aψ̇ yields

Ȧ− σA = [δ1D + h1] cos(θ) + [δ2D + h2] sin(θ) (2.75a)

Aψ̇ = −[δ1D + h1] sin(θ) + [δ2D + h2] cos(θ). (2.75b)

1Rewrite the system in operator notation: L(a) = 0, where a = [a1, a2]
T . Then phase

invariance implies that L(Ra) = 0, where R is a rotation matrix with property R
T
R = I.
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2.3 Mean-field modelling

Time-averaging of (2.75) yields

Ȧ = σA+ [δ1D + h1] cos(θ) + [δ2D + h2] sin(θ), (2.76a)

Aψ̇ = −[δ1D + h1] sin(θ) + [δ2D + h2] cos(θ). (2.76b)

As above, A, D and ψ are replaced by their time-averaged values. Substitution

of (2.69) and (2.70) into (2.76) yields the simplified equations. As an example,

the second term on the right hand side of (2.76a) is calculated:

[δ1D + h1] cos(θ) = δ1D cos(θ) + q111A
2
cos3(θ) + q122A

2
sin2(θ) cos(θ)

+ q133D
2
cos(θ) + (q112 + q121)A

2
cos2(θ) sin(θ)

+ (q113 + q131)AD cos2(θ) + (q123 + q132)AD sin(θ) cos(θ)

=
1

2
(q113 + q131).

In summary, the simplified system (neglecting the bar for slowly varying quanti-

ties) reads as follows

Ȧ = σA− βAD, (2.77a)

ψ̇ = γD, (2.77b)

where the coefficients are given by

β = −1

2
(q113 + q131 + q223 + q232) , (2.78a)

γ =
1

2
(−q123 − q132 + q213 + q231) . (2.78b)

Similarly, substitution of (2.70) and (2.71) in (2.67c) and averaging yields

Ḋ = σ3D + αA2 + κD2, (2.79)

where the coefficients are given by

α =
1

2
(q311 + q322) , (2.80a)

κ =
1

2
q333. (2.80b)

The term of order D2 is neglected in the following (linearized Reynolds equation).
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2.3 Mean-field modelling

Summarizing, the time-averaged dynamic system in polar form reads

Ȧ = σA− βAD, (2.81a)

ψ̇ = γD, (2.81b)

Ḋ = −µD + αA2, (2.81c)

where µ = −σ3. The corresponding Galerkin form of the model is given by

ȧ1 = (σ − βa3)a1 − (ω + γa3)a2, (2.82a)

ȧ2 = (ω + γa3)a1 + (σ − βa3)a2, (2.82b)

ȧ3 = −µa3 + α(a2
1 + a2

2), (2.82c)

where the system coefficients are defined by

σ =
1

2
(νl11 + q101 + q110) +

1

2
(νl22 + q202 + q220) , (2.83a)

ω = −1

2
(νl12 + q102 + q120) +

1

2
(νl21 + q201 + q210) , (2.83b)

β = −1

2
(q113 + q131) −

1

2
(q223 + q232) , (2.83c)

γ = −1

2
(q123 + q132) +

1

2
(q213 + q231) , (2.83d)

µ = − (νl33 + q330 + q303) , (2.83e)

α =
1

2
(q311 + q322) . (2.83f)

For the nonlinear part of the system, phase invariance is also required. This

results in the following conditions on the coefficients

q113 + q131 = q223 + q232, (2.84a)

−q123 − q132 = q213 + q231. (2.84b)

Alternatively, the structure of the dynamic system (2.82) could have been

derived from the polar formulation. Note that for this specific case the complete

structure of the dynamical system (2.82) also solely follows from the requirement

of phase invariance.

When the decay rate µ in (2.81c) is about an order of magnitude greater than

the growth rate σ in (2.81a), equation (2.81c) can be slaved to the latter (see e.g.
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2.3 Mean-field modelling

Haken, 1983), i.e. set Ḋ = 0, solve for D and then substitute the result in (2.81a).

This procedure yields the Landau (amplitude) equation

Ȧ = σA− β̃A3, (2.85)

where β̃ = βα/µ. The corresponding evolution equation for the phase is given by

ψ̇ = γ̃A2, (2.86)

where γ̃ = γα/µ. Similarly, the slaved Galerkin model is of the form

ȧ1 = (σ − β̃(a2
1 + a2

2))a1 − (ω + γ̃(a2
1 + a2

2))a2, (2.87a)

ȧ2 = (ω + γ̃(a2
1 + a2

2))a1 + (σ − β̃(a2
1 + a2

2))a2. (2.87b)

In figure 2.2, a typical result obtained by integration of equations (2.81) and

(2.82) is shown. The model coefficients are taken from Tadmor et al. (2004). This

mean-field Galerkin model represents a least-order approximation of a natural

transient leading to vortex shedding behind a circular cylinder. In the top plot of

subfigure (a) the amplitude obtained by integration of the Landau equation (2.85)

is shown for comparison (dashed line). The slaving principle yields a reasonable

approximation. The bottom plot of subfigure (a) shows a change in frequency of

about 30%.

Discussion

The addition of the mean field correction to the standard basis, leads to a nonlin-

ear coupling with the base flow in the averaged Galerkin system. These nonlinear

terms effectuate a nonlinear saturation of the amplitude, which is clearly demon-

strated by the example above. There are two steady solutions for this model:

(1) an unstable fixed point at the origin and (2) a stable limit cycle given by

A =
√

σρ/αβ and D = σ/β. This shows that the system (eventually) goes into

oscillation of fixed amplitude and frequency, irrespective of the initial state. In

contrast, if the mean-field correction is neglected, the oscillation amplitude is

dependent on the initial conditions and small perturbations cause the system to

depart.

34



2.3 Mean-field modelling

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
0

1

2

3

0 10 20 30 40 50 60
−1.2

−1

−0.8

t

A
D

ψ̇

(a)

−3
−2

−1
0

1
2

3

−4
−2

0
2

4
0

0.5

1

1.5

2

2.5

a1
a2

a
3

(b)

Figure 2.2: Integration of a mean-field model, see (2.81) and (2.82): the system

in polar representation (a) and the phase space of the system in Galerkin form

(b). The model coefficients are taken from Tadmor et al. (2004).

2.3.3 Mean-field model for two frequencies

In this section, a mean-field model for two frequencies is derived in an axiomatic

fashion, starting from the Navier-Stokes equation. Here, we specifically target

active flow control applications. It is assumed that a dominant periodic phe-

nomenon associated with large coherent structures, like vortex shedding, can be

suppressed or diminished by flow control. The actuator introduces new coherent

structures that lock-in on the actuation frequency. The presence of a natural and

(different) actuation frequency leads to a six state mean-field model with two

shift modes. The axiomatic approach lends itself readily to the application of

similar flow systems with multiple frequencies.

As a first element of mean-field theory, the ensemble average is introduced, see

(2.3) and (2.4). As discussed above, an approximation of this Reynolds average

may be the running average over a time period T ,

u(t) =
1

T

∫ T
2

−T
2

u(t+ τ) dτ. (2.88)

A discussion of this computation is provided in Appendix B.1.
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2.3 Mean-field modelling

It is assumed that the flow in its natural state is characterized by one domi-

nant frequency. This frequency is associated with large coherent structures that

typically correspond to vortex shedding in the wake of a body. By means of

oscillatory actuation the flow is perturbed and after a (short) transient the flow

locks in onto the actuation frequency and the coherent structures of the natural

state diminish, i.e. flow control is effective in suppressing the natural instability.

New structures appear that result from the periodic forcing and are accompanied

by a modification of the mean flow. Hence, the following simplifying assumption

is made.

Assumption NSE 1 (A generalized Krylov-Bogoliubov ansatz) The ve-

locity field is dominated by the sum of a slowly varying base flow and two oscilla-

tory components which are nearly pure harmonics at the natural and the actuation

frequency. Other temporal harmonics are negligible. Thus,

u(x, t) = uB(x, t) + un(x, t) + ua(x, t), (2.89)

where the superscripts B, n and a are respectively used to denote terms related

to the slowly varying base flow component, to oscillations at the natural shedding

frequency, and to oscillations at the actuation frequency. Here, uB satisfies the

steady, inhomogeneous boundary conditions, un the homogenized version, and ua

accounts for the residual to the unsteady boundary conditions, in particular, those

associated with the actuation.

This ansatz implies — in analogy to the Reynolds decomposition — that the

fluctuations have vanishing ensemble averages (compare with (2.3) and (2.4))

uB = uB, un = 0, ua = 0. (2.90)

Following Dus̆ek et al. (1994), the assumed slow variation of the mean flow

and the oscillation amplitudes, frequencies and phase shifts can be formalized by

introducing a small parameter ǫ≪ 1 and slowly varying amplitude functions uB0 ,

un1,2, ua1,2, such that

uB(x, t) = uB0 (x, ǫt), (2.91a)

un(x, t) = un1 (x, ǫt) cos (Ωn t) + un2 (x, ǫt) sin (Ωn t) , (2.91b)

ua(x, t) = ua1(x, ǫt) cos (Ωa t) + ua2(x, ǫt) sin (Ωa t) , (2.91c)
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2.3 Mean-field modelling

where the angular frequency is defined as Ω = 2π St with applicable superscripts

‘n’ and ‘a’ and the normalized frequency as Strouhal number St = f L/U∞,

where f is the frequency, L a characteristic length and U∞ the incoming flow

velocity. The reciprocal of the small parameter, i.e. 1/ǫ, is assumed to be the

characteristic time scale on which the amplitude functions change. This ansatz

implies, for instance, that time derivatives of the amplitude functions are of order

O(ǫ), which shall be neglected in the present discussion.

A second simplifying assumption is

Assumption NSE 2 (A non-commensurability ansatz) There is no direct

interaction between un and ua via the quadratic Navier-Stokes term ∇ · (u⊗ u) .

This assumption is based on the fact that the natural and actuated oscillations

are not harmonically related by integral or half-integral ratios, i.e. they are not

harmonics or subharmonics of each other. Also, on each of the two respective

attractors, fluctuations in the other frequency are negligible.

The Krylov-Bogoliubov ansatz NSE 1 is substituted into the Navier-Stokes

equation and the terms are sorted by the 0-th harmonic and the first harmonics

at frequency Stn and Sta. Employing the above approximations yields

0 = ∇ ·
(
uB ⊗ uB

)
+ ∇ · (un ⊗ un) + ∇ · (ua ⊗ ua) + ∇pB − ν △uB,

(2.92a)

∂tu
n = −∇ ·

(
un ⊗ uB

)
−∇ ·

(
uB ⊗ un

)
−∇pn + ν △un, (2.92b)

∂tu
a = −∇ ·

(
ua ⊗ uB

)
−∇ ·

(
uB ⊗ ua

)
−∇pa + ν △ua + ga. (2.92c)

Note that mixed quadratic terms such as ∇ · (ua ⊗ un) are eliminated in all

equations. In equation (2.92a), that elimination does not require assumption NSE

2 and can be obtained for Stn 6= Sta by the projection (B.1a), as explained in

the Appendix.

In equations (2.92b, 2.92c), the simplifying assumption NSE 2 is invoked.

The temporal behaviours of the quadratic terms ∇ ·
(
uB ⊗ uB

)
, ∇ · (un ⊗ un)

and ∇ · (ua ⊗ ua) are characterized by the zero and respective second harmonics

of the two frequencies. These terms are filtered out by the Krylov-Bogoliubov

ansatz or can be filtered out by the windowed projections (B.1b) and (B.1c) in

the Appendix. This explains the absence of these terms from (2.92b) and (2.92c).
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2.3 Mean-field modelling

The terms (un⊗uB), (uB⊗un), (ua⊗uB) and (uB⊗ua) are associated with time

oscillations at the natural and actuated frequencies, and are therefore invariant

under the respective projections.

Together, the three coupled equations (2.92) constitute mean-field equations

at the Navier-Stokes equation level. Contrary to the original mean-field theory

of Stuart (1958), weakly-nonlinear instability and closeness to the steady Navier-

Stokes solution is not assumed.

The next two assumptions are made in preparation for the presentation of the

reduced-order Galerkin model.

Assumption NSE 3 (Phase invariance) The decomposition (2.89) is phase

invariant. This means that the simplified dynamics (2.92) remains valid when

un(x, t), ua(x, t) and the actuation command b(t) are substituted by un(x, t+ τn),

ua(x, t + τa) and b(t + τa) for arbitrary time shifts τn and τa. The actuation

command may be the amplitude of the volume force ga or the employed boundary

actuator.

Note that only relative time shifts between the three components are significant.

Hence, there is no added generality if time shift also is allowed in the base flow

(i.e. such a time shift can be factored out by shifting the entire time axis). This

hypothesis is called phase invariance since time shifts are immediately trans-

lated to independent phase shifts of oscillations in the respective two frequencies.

Arbitrary phase shifts between the actuation b and ua are not assumed, since

ua is interacting with, and eventually locked in, onto the actuation. The phase

invariance hypothesis is feasible due to the lack of direct, phase-dependent in-

teractions between the two oscillatory flow components. It is often a reasonable

approximation in POD models for vortex shedding phenomena. Phase-invariance

assures that the averaging procedure implied in the simplified dynamics (2.92)

yields meaningful results. Counter examples of non-phase-invariant systems are

provided in Noack & Copeland (2000).

Assumption NSE 4 (Linearized Reynolds equation) It is assumed that the

Reynolds equation (2.92a) can be linearized around the steady solution us. Let

uB = us + u∆. The linearized Reynolds equation for the mean-field correction
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2.3 Mean-field modelling

u∆ is obtained by substitution into (2.92a), subtracting the steady Navier-Stokes

equation and neglecting quadratic terms in u∆:

0 = ∇·
(
us ⊗ u∆

)
+∇·

(
u∆ ⊗ us

)
+∇· (un ⊗ un)+∇· (ua ⊗ ua)+∇p∆−ν△u∆.

(2.93)

This assumption implies that there is a linear relationship between the Reynolds

stresses and the mean-field correction. The mere purpose of this assumption is

to simplify expressions in the Galerkin model that is presented in § 2.3.4. It

is stressed that the results readily extend to the more general case, where the

nonlinear Reynolds equation in its original form is considered. The price paid

for that generality is the inclusion of higher-order terms in the expression for the

mean-field correction.

Discussion

Some significant observations associated with the mean-field equations (2.92) are

highlighted in the following.

(i) The dynamic base flow is effected by two independent Reynolds stresses

(hence vector field orientations) yielding the volume forces ∇ · (un ⊗ un)

and ∇ · (ua ⊗ ua).

(ii) In the un-actuated, natural flow, ua is negligible. In that case, the mean-

field model highlights the dynamic interactions and energy exchange be-

tween the base flow uB and the periodic fluctuation u′ = un. The latter

induces a mean-field change u∆ via the respective Reynolds stress term,

whereas the former acts as either a stabilizing agent for high-level fluc-

tuations or a destabilizing agent for a nearly steady flow, via the terms

∇ ·
(
un ⊗ uB + uB ⊗ un

)
. Over the attractor, the flow balances this two-

way energy exchange with dissipation. This is the essence of the tradi-

tional mean-field model and the basis for the development of the mean-field

Galerkin model by Noack et al. (2003).

(iii) The mechanism by which ua interacts with the mean-field is structured in

complete analogy to the natural instability. However, the fact that ua is

39
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negligible without actuation suggests that the total power related to ua

from production, dissipation, and convection alone acts as a sink and that

actuation power is required to maintain the lock-in oscillation. In particular,

the Reynolds stress due to ua gives rise to base flow changes that do not

change this stabilizing, energy absorbing effect on ua.

(iv) Of the three equations (2.92a), (2.92b) and (2.92c), the actuated unsteady

boundary condition as well as volume force actuator effects directly only

(2.92c). The actuation-induced oscillations in ua can interact with (and

suppress) the instability at the natural frequency, only by using the varying

base flow uB as a mediating agent. The Reynolds stress due to the excited

ua changes uB, and the change in uB has a stabilizing effect on un, despite

the counter-acting effect of un on uB, via its own Reynolds-stress contri-

bution. This key observation therefore provides the sought mechanism for

cross-frequency actuation. In particular, it explains the phase-independence

of this stabilizing effect, hence the ability to suppress shedding with open-

loop actuation.

(v) It is straightforward to include more frequencies if the assumptions in § 2.3.3

hold correspondingly. From figure 2.3, this can be conceptualized by in-

cluding a row that describes an additional ‘flow operating condition’ with

corresponding oscillatory and shift-modes.

(vi) The generalized mean-field model is a corollary of a more general framework

predicting the first and second moments for a reduced-order model. This

closure utilizes a finite-time thermodynamics formalism (Noack et al., 2008)

explaining a long-searched link to statistical physics.

The decomposition of the flow field into a base flow and two non-commensurable

frequency contributions is formally very similar to the triple decomposition in

Reynolds & Hussain (1972) into the base flow, the coherent-structure contribu-

tion and the stochastic contribution. Not surprisingly, the balance equations for

the triple decomposition are equivalent at steady state condition.
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2.3 Mean-field modelling

Figure 2.3: Principle sketch of the generalized mean-field model. The consid-

ered equilibrium flow states include the steady solution, natural and actuated

flow (rectangles). The transitions are denoted by double arrows. The required

Galerkin modes for each state are indicated by the circles. The hatched rect-

angles connect the modes employed for the transients between the natural and

actuated flow. The amplitudes for slowly varying transition between both states

are depicted in the right diagram.
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2.3 Mean-field modelling

2.3.4 Mean-field Galerkin model for two frequencies

In this section, the corresponding Galerkin model for the two-frequency mean-

field model in § 2.3.3 is described. In accordance to the previous section, the

flow is partitioned in a steady solution us, 2 modes {u1,u2} resolving natural

shedding at frequency Ωn, 2 modes {u3,u4} for the actuated state at frequency

Ωa, and 2 shift modes {u5,u6} describing mean-field deformations due to both

frequencies. The effect of actuation is modelled by a single actuation mode u−1

(see § 2.2.4), which only directly influences modes 3 and 4. Thus, the Galerkin

approximation reads

u(x, t) = a−1(t)u−1(x) +
2∑

i=1

ai(t)ui(x)

︸ ︷︷ ︸

un(u,t)

+
4∑

i=3

ai(t)ui(x)

︸ ︷︷ ︸

ua(u,t)

+
6∑

i=5

ai(t)ui(x) + us(x)

︸ ︷︷ ︸

uB(u,t)

.

(2.94)

The least-order Galerkin system is obtained by substitution of this approximation

into the mean-field Navier-Stokes equations (2.92b), (2.92c), (2.93), followed by

a Galerkin projection of these equations onto the expansion modes. Table 2.2

illustrates the derivation of the Galerkin system. In particular, the Galerkin

system corresponding to the mean-field equation (2.92b) is presented in table

2.2. The remaining four equations are derived in a similar fashion.

The complete Galerkin system can be summarized in vector notation,

d

dt
an = L (an) + Q

(
aB, an

)
+ Q

(
an, aB

)
, (2.95a)

d

dt
aa = L (aa) + Q

(
aB, aa

)
+ Q

(
aa, aB

)
+ B b, (2.95b)

0 = L(aB) + Q(an, an) + Q(aa, aa), (2.95c)

where an = [a1, a2]
T , aa = [a3, a4]

T , aB = [a5, a6]
T , B is a 2×2 matrix defined by

(2.46) and b a vector containing the actuator signal and its derivative, see (2.45).

In Appendix B.2 it is shown that under the current assumptions and the

assumption of phase invariance (NSE 3) the mean-field Galerkin system has the
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2.3 Mean-field modelling

NSE (2.92b) GS

∂tu
n = d

dt
ai = i ∈ I

−∇ ·
[
un ⊗ uB

] ∑

j∈I

∑

k∈K

qijkajak

−∇ ·
[
uB ⊗ un

]
+

∑

j∈K

∑

k∈I

qijkajak

+ν△un +ν
2∑

j=1

lijaj

−∇pn + 0

Table 2.2: Projection of the mean-field Navier-Stokes equation (2.92b) (NSE)

to form the Galerkin system (GS) using the least-order approximation (2.94).

In the first column the terms of the NSE are provided and in the second one

the corresponding GS counterparts. The employed index sets are I = {1, 2} and

K = {5, 6}.

following structure:

d

dt







a1

a2

a3

a4







=







σ̃n −ω̃n 0 0
ω̃n σ̃n 0 0
0 0 σ̃a −ω̃a
0 0 ω̃a σ̃a













a1

a2

a3

a4







+







0 0
0 0
κ −λ
λ κ







b, (2.96)

where the state dependent coefficients are of the form

σ̃n = σn − σn,n (An)2 − σn,a (Aa)2 ,

ω̃n = ωn + ωn,n (An)2 + ωn,a (Aa)2 ,

σ̃a = σa − σa,n (An)2 − σa,a (Aa)2 ,

ω̃a = ωa + ωa,n (An)2 + ωa,a (Aa)2 ,

(2.97)

and An = ‖an‖ and Aa = ‖aa‖ are the respective oscillation amplitudes. Without

the linearization assumption NSE 4, the parameters are represented by a Taylor

series in (An)2 and (Aa)2.

Alternatively, the mean-field model (2.96) can be formulated in polar coordi-

nates. The natural fluctuation an is characterized by the amplitude An and phase

αn. Similarly, polar coordinates of the forced fluctuation aa are the amplitude

Aa and phase αa. Thus,

an = An [cos(αn) e1 + sin(αn) e2] ,
aa = Aa [cos(αa) e3 + sin(αa) e4] ,

(2.98)
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where ei
def
= [δi,1, . . . , δi,N ]T is a unit vector in the i-th direction. The control

command b acts in the evolution equation (2.95b) only on the forced fluctuation,

hence

b = B [cos(β) e3 + sin(β) e4] .

Finally, by Observation B.2.3 in the Appendix, the matrix B can be written in

the form

B = g

[
cos (θ) − sin (θ)
sin (θ) cos (θ)

]

. (2.99)

Using these notations, the polar form of (2.96) is given by

dAn

dt
= σ̃nAn, (2.100a)

dαn

dt
= ω̃n, (2.100b)

dAa

dt
= σ̃aAa + gB cos(β + θ − αa), (2.100c)

dαa

dt
= ω̃a +

gB

Aa
sin(β + θ − αa), (2.100d)

where the state dependencies of σ̃n, σ̃a, ω̃n and ω̃a are defined in (2.97).

2.4 Control design

Targeting active flow control, the generalized mean-field model for two frequencies

(2.100) is used to design a controller. The control goal in the current work is set-

point tracking of a scalar, like drag or lift. The form of the goal functional is

based on (2.93) and (2.95c) and provides an approximation for the time-averaged

force:

y = y0 + c1(A
n)2 + c2(A

a)2. (2.101)

The control problem is to design a controller B = B(t), such that y tracks a

reference signal yref . In the following section, the sliding mode control approach

is described that can be used to this end.
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2.4.1 Sliding mode control

Sliding mode control (SMC) is a nonlinear control method and a special case of

variable structure control. This control method is an appropriate robust method

for systems, in which model inaccuracies, parameter variations and disturbances

are present. The idea is to force the trajectory of the states toward a designed

attractor, the so-called sliding surface, and once reached, the states are forced

to remain on that surface and approach the steady state. The reader is referred

to Slotine & Li (1991) for more detailled information on SMC. Below, a simplified

version of SMC is considered.

The control goal in the current study is set-point tracking of a scalar. There-

fore, the sliding surface s = 0 is chosen such that the deviation from the set-point

equals zero, i.e.

s = y − yref . (2.102)

Suppose that the sliding surface is reached, then the trajectories are forced to

slide along this surface, which implies that ds/dt = 0. From this requirement the

equivalent control law is derived. Using (2.101), with yref = const., the dynamic

system (2.100), and setting ds/dt = 0 yields

0 = c1A
ndA

n

dt
+c2A

adA
a

dt
= c1σ̃

n(An)2+c2A
a(σ̃aAa+gB cos(β+θ−αa)). (2.103)

Thus, the equivalent control law that holds the trajectory at the manifold s = 0

is

Beq =
−1

g cos(β + θ − αa)

(
c1σ̃

n(An)2

c2Aa
+ σ̃aAa

)

. (2.104)

To guarantee stability of the sliding surface, a corrective control must be added

that will bring the system back to s = 0 whenever s 6= 0. Consider the Lyapunov

function V = (1/2)s2. For stability it is required that dV/dt = sṡ < 0. This

stability can be achieved by adding a switch term to the equivalent control law.

Hence, the complete control law is given by

Bsm = Beq −K sign(s), (2.105)

where K > 0 and sign is the sign function

sign(s) =







1 if s > 0
0 if s = 0

−1 if s < 0.
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2.4 Control design

Because of imperfections in switching devices and delays, SMC may exhibit high

frequency oscillations due to the sign function. This is called chattering. There-

fore, in practice, the sign function is replaced by a saturation function with bound-

ary layer width ψ

sat

(
s

ψ

)

=







1 if s > ψ
s
ψ

if |s| ≤ ψ

−1 if s < ψ.

In this case the control law changes to

Bsm = Beq −K sat

(
s

ψ

)

. (2.106)

This amounts to a reduction of the control gain inside the boundary layer and

results in a smoother control signal.

END
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Chapter 3

Stabilization of the circular

cylinder wake

3.1 Abstract

Low-dimensional models are crucial enablers for practical flow control. The

proper orthogonal decomposition (POD) is commonly used for this purpose.

Traditionally, POD modes are obtained at one operating condition. While the

kinematics of the reference simulation are resolved by this model, the dynamic

envelope is limited. Parameterized POD (pPOD) extends the POD procedure

by employing PODs at several operating conditions. The result is a collection

of mode sets. The flow is described in dependence of a parameter that relates

the current flow state to an indexed (or interpolated) mode set. Knowledge of

the flow state is crucial for control. The parameterized POD is also used to op-

timize the sensor positions such that an even performance throughout the entire

dynamic range is assured. These concepts are demonstrated in the benchmark of

stabilization of the wake flow behind a circular cylinder.

Published in: Lehmann et al. (2005); Luchtenburg et al. (2006).
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3.2 Introduction

POD-Galerkin models (Holmes et al., 1998) provide efficient approximations of

flow data, but are typically fragile away from the reference attractor or orbit (see

also the discussion in § 2.2.1). This is particularly detrimental for control design,

where representation of transients is essential

A key challenge for the representation of transient dynamics, away from a

single reference orbit, is that dominant flow structures tend to change significantly

as the system traverses such trajectories. Referring to the driving example of

this study, the 2D laminar cylinder wake, characteristics of such changes include

a substantial shortening of the recirculation bubble of the mean flow, shorter

vortex shedding periods and spatial wave length of the von Kármán vortices,

as the system transitions from the unstable steady flow to the natural vortex

shedding limit cycle (Noack et al., 2003). A second challenge is posed by the

generation of flow structures that are not present in the natural flow, which are

introduced by actuation, especially under higher gains. This is reflected by the

need to include up to 40 modes in a Galerkin model used for optimal control

of this system (Bergmann et al., 2004), whereas only three modes suffice for a

least-order representation of natural transients (Noack et al., 2003).

Here, the goal is to retain low dimension in flow models without losing the

necessary dynamic range. Under (low gain) actuation the wake flow changes

continuously, while the POD model at intermediate attractors often maintains

both the same small number of leading modes, their main topological features

and key dynamic properties of the local Galerkin system. Therefore, the idea

of parameterized or interpolating models is employed. The flow is described

in dependence of a (tuning) parameter that relates the current flow state to

an indexed mode set. The interpretation of the dynamic state of the Galerkin

system as a vector of temporal coefficients of a fixed set of expansion modes is

thus adjusted as the system traverses transient trajectories and moves from the

domain of one local model to the next. This framework maintains high model

fidelity along transients by allowing the Galerkin system to benefit from a large

number (ideally, a continuum) of expansion modes, while preserving a local low

order. Following previous work (Noack et al., 2003; Tadmor et al., 2004), the flow
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3.3 Numerical simulation

is described by a three state mean-field model. The model resolves changes in the

mean flow and von Kármán vortex shedding. This mean-field model is described

in more detail in § 2.3.2.

The advantage of the interpolated model over the standard POD model is

demonstrated with respect to closed-loop flow control. The parameterized model

is also used to assure an even performance of the sensors throughout the transient

range, rather than in a narrow neighbourhood of the natural attractor.

3.3 Numerical simulation

In this section, the benchmark simulation of the flow around a circular cylinder

is outlined, including the configuration (§ 3.3.1) and the simulation (§ 3.3.2).

3.3.1 Configuration

We study the laminar two-dimensional flow in the circular cylinder wake. The

wake is characterized by a laminar instability at Re ≈ 47 (based on the cylinder

diameter D). At this Reynolds number the recirculation bubble, formed by a

symmetric pair of vortices, cannot longer be sustained and the vortices break

away, leading to the so-called von Kármán vortex street. Here, the flow is consid-

ered at Re = 100 . A common design objective (Detemple-Laake & Eckelmann,

1989; Roussopoulos, 1993; Strykowski & Sreenivasan, 1990; Unal & Rockwell,

1987) is to suppress the wake instability which causes mechanical vibrations and

increased drag. Figure 3.1 provides a schematic of the configuration. The stream-

lines represent the natural flow.

Actuation is implemented by a vertical volume-force in the wake. The support

of this volume force is defined by

S = {x ∈ Ω : ‖x − xvf‖2 ≤ D2}, (3.1)

where xvf = (2D, 0) is at the center of the supporting disk and Ω ⊂ R
2 denotes

the computational domain defined in § 3.3.2. The volume force is given by

Fvf (x, t) = B(t)g(x), (3.2)
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3.3 Numerical simulation

sensor

x

y

Figure 3.1: Principal sketch of the actuated cylinder wake. The cylinder is rep-

resented by the black disk. The location of the volume-force actuator is indicated

by a grey circle. Streamlines represent the natural flow. The figure includes a

vertical velocity sensor at (x, y) = (6.8D, 0).

where B(t) is the time-dependent amplitude and

g(x) =

[
0
1

]

, x ∈ S. (3.3)

The sketch also includes a vertical velocity sensor at (x, y) = (6.8D, 0).

3.3.2 Simulation

The two-dimensional laminar flow around the circular cylinder is computed by

direct numerical simulation (DNS) of the Navier-Stokes equation. The finite-

element Navier-Stokes solver is third-order accurate in space and time and is

based on a pseudo-pressure formulation. The numerical data used here have been

obtained with the numerical code UNS3 developed by Prof. M. Morzyński at the

Poznan University of Technology (Morzyński, 1987). The computational domain

Ω for the flow is the exterior of the cylinder x2 + y2 ≥ (D/2)2 in the rectangle

−5D ≤ x ≤ 15D, −5D ≤ y ≤ 5D. The flow is discretized as finite elements

on a triangular mesh (8712 points). The average lengths of the triangular mesh

elements are 0.058D near the cylinder, 0.066D on the wake centerline x > 0.5D,

y = 0D, and 0.104D in the whole domain. Each mesh element is subdivided in

four similar subtriangles the vertices of which serve as nodes for the flow variables.

For more details, see Noack et al. (2003) and the references therein.
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3.4 Actuation strategy

3.4 Actuation strategy

The objective in the current study is suppression of the wake instability. The

design problem is how to adjust the amplitude B(t) of the volume force B(t)g(x)

such that the wake is stabilized (as good as possible). The controller is physically

motivated in § 3.4.1 and derived from a mean-field model in § 3.4.2.

3.4.1 Physically motivated control

A simple, physically motivated control policy is to apply actuation as a dissipative

deceleration force. This strategy amounts to minimization of the kinetic energy

of the fluctuations. The kinetic energy rate due to the volume force is given by

Evf (t) = B(t)

∫

Ω

g(x) · u′(x, t) dV = B(t) (g,u′)Ω (t). (3.4)

The controller always extracts energy if

B(t) = −k (g,u′)Ω (t), (3.5)

with k > 0. The actuation force then reads

Fvf (x, t) = −k (g,u′)Ω (t) g(x). (3.6)

This form directly shows the nature of the force: it acts as an opposition control.

The weighted vertical velocity on the support of the volume force is counteracted

by the volume force.

The projection (g,u′)Ω (t) is approximately proportional to vvf (t), where vvf

is the velocity at the center of the volume-force (§ 3.3.1). Thus a sensor in the

center of the volume force can be used as a surrogate quantity to approximate

the projection. In this case, the control amplitude is given by

B(t) = −k̃ vvf (t), (3.7)

where k̃ > 0.
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3.4 Actuation strategy

3.4.2 Control design with a mean-field model

The actuation strategy can also be deduced from the mean-field Galerkin model

of the natural flow. This model is described in § 2.3.2. It is a three state model

that describes the periodic vortex shedding and changes in the mean flow. For

the sake of convenience, the Galerkin approximation is repeated:

u(x, t) = us(x) + a1(t)u1(x) + a2(t)u2(x) + a3(t)u3(x), (3.8)

where us is the steady solution, {u1,2} are two POD modes that describe the

oscillatory motion, and u3 is a shift-mode, which represents the changing mean

flow. The shift mode is defined as

u3 = (u0 − us)/‖u0 − us‖Ω, (3.9)

where u0 is the time-averaged velocity field of the natural flow. Time dependency

of the periodic oscillation is described by the pair of amplitudes (a1, a2) and of the

mean field by a3. Incorporation of the volume B(t)g(x) into the Navier-Stokes

equation leads to additional terms of the form B(t)gi in the Galerkin system (see

(2.42)). Hence, the Galerkin system is given by

ȧ1 = (σ − βa3)a1 − (ω + γa3)a2 +Bg1, (3.10a)

ȧ2 = (ω + γa3)a1 + (σ − βa3)a2 +Bg2, (3.10b)

ȧ3 = −ρa3 + α(a2
1 + a2

2) +Bg3, (3.10c)

where gi = (g,ui)Ω and g3 = 0 because of the symmetry of the shift mode. In

polar coordinates, the system is given by
[
Ȧ
ȧ3

]

=

[
σ −βA
αA −ρ

] [
A
a3

]

+ b

[
cos(θ − φ)

0

]

B, (3.11a)

φ̇ = ω + γa3 +
b

A
sin(θ − φ)B, (3.11b)

where φ = arg(a1 + ı a2), θ = arg(g1 + ı g2) and b =
√

g2
1 + g2

2. The actuation

effect on the radius A and phase φ is most easily inferred by considering the

average effect over one period T of the system:

b

T

∫ T

0

cos(θ − φ)B(t) dt,
b

AT

∫ T

0

sin(θ − φ)B(t) dt.
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3.5 Parameterized POD

This reveals that the actuation force that reduces the amplitude of the oscilla-

tion and has negligible effect on the oscillation frequency must be in phase with

− cos(θ − φ) (Tadmor et al., 2003). Thus, the actuation amplitude is

B(t) = −k cos(θ − φ), (3.12)

where k > 0. Using the Galerkin approximation for the fluctuating velocity field

u′(x, t) = a1(t)u1(x) + a2(t)u2(x), (3.13)

it follows that the energy extraction rate of the actuator can be approximated as

B(t) (g,u′)Ω (t) ≈ B(t) (a1g1 + a2g2) = B(t) bA cos(θ − φ). (3.14)

Indeed, this expression is of the same form as in (3.11a). This result together

with (3.12) imply that any admissible control policy is bound to (roughly) imitate

the simple physics based, dissipative policy suggested in § 3.4.1.

3.5 Parameterized POD

In this section, the parameterized POD procedure is outlined. The approach is

motivated in § 3.5.1. The collection of POD mode sets is discussed in § 3.5.2. Full

information control based on a parameterized POD model is shown in § 3.5.3.

3.5.1 Motivation

To understand the limitation on the effectiveness of the POD based control, it

is useful to consider figure 3.2. The plots in that figure are based on results

of three simulations, represented by the three rows. The top row displays the

natural flow and the middle and bottom row show the result of two controlled

flows that are obtained by the dissipative control discussed in § 3.4.1, with a

moderate and a more aggressive feedback gain, respectively. For each simulation

the figure includes, from left to right, the mean flow field and the first oscillatory

POD mode. While the topological characteristics of all three flow conditions are

similar, they exhibit significant mutual deformations: the recirculation bubble is

gradually elongated and the vortical structures are pushed downstream as the
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3.5 Parameterized POD

Figure 3.2: Comparison of the streamlines of a natural (top row), moderately

forced (middle row) and aggressively forced (bottom row) flow field. Left: time-

averaged flow and right: first POD mode.

flow is stabilized. In the context of opposition control, the changes in the values

of gi = (g,ui)Ω, hence of the angle θ = arg(g1 + ı g2) are critical. This change

reflects the dynamic impact of the volume force. In addition, the definition of

the flow phase φ(t) = arg(a1(t) + ı a2(t)) in terms of the leading POD modes

changes. When only the POD modes of the natural attractor are employed, both

the value of θ and the definition of φ(t) that are used to determine the actuation

signal become increasingly wrong as vortex shedding is attenuated. Eventually,

these errors reach a level at which the actuation B ∝ cos(θ − φ) is so out of

phase that it loses its effectiveness. A model providing an effective solution to

this problem must therefore account for the change in dominant modes along

transients (Lehmann et al., 2005).

3.5.2 Collection of mode sets

As discussed above, there is topological similarity between the natural flow and

forced flow fields (see figure 3.2). This observation suggests that the similarity can

be exploited for a parameterized representation of the flow field. First, velocity

snapshots of the natural flow are computed. These snapshots are used to calculate

the decomposition (3.8) for the natural flow. Second, velocity snapshots are
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3.5 Parameterized POD

computed using feedback control. The feedback control law is defined by (3.7):

B(tk+1) = −kvvf (tk), i.e. the control input at time tk+1 is proportional to the

vertical velocity at the center of the volume force at the previous time step tk.

For several escalated values of the gain k, snapshot ensembles are calculated.

Once the actuated flow is locked-in, the snapshots are post-processed to extract

the first two POD modes. This procedure yields two (local) POD modes for each

separate reference simulation. These POD mode sets can be parameterized by an

index parameter p (parameterized POD). In the following, we will use the index

p = 1 for the natural flow and higher indices p = 2, . . . for mode sets obtained

from feedback controlled flows, where a higher index indicates a higher value of

the gain k in the control law.

The phase portraits corresponding to the parameterized POD (pPOD) mode

sets are shown in figure 3.3 by lightly dotted circles. Controlled transients, with

slow changes in the perturbation level, progress along the manifold connecting

these cycles. The dynamics near each of the cycles is dominated by the shift mode

u3 and two locally extracted oscillatory modes {u1,u2}. The Galerkin systems

obtained by projecting the NSE (2.2) onto these local modes are each of the form

(3.11), albeit with different coefficients. The local values of the Galerkin system

coefficients are functions of the characteristic value of a parameter representing

the instantaneous flow condition. Examples of this parameter include the domi-

nant frequency of the flow or the oscillation amplitude measured by a sensor (see

§ 3.6.1). The Galerkin model retains the form (3.11), with parameterized coeffi-

cients, and the expansion (3.8) is interpreted with respect to the local expansion

modes, associated with the present parameter value. This model is valid for slow

vertical transitions along the dynamic manifold in figure 3.3 (which prevents the

need to include the dynamics of mode deformation).

The key relevant fact for control design is that the local model provides the

appropriate value for the orientation of the volume force θ and appropriate local

concepts of the instantaneous phase φ and amplitude A of the flow. Indeed, these

are the three key quantities needed for effective (opposition) control. In figure

3.4 it is shown how the orientation of the volume force θ = arg(g1 + ı g2) changes

as the flow traverses from its natural state (operating condition 1) towards the

stabilized state (increasing operating condition index p).
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Figure 3.3: Phase space of the first three temporal amplitudes a1, a2 and a3,

obtained by projection of the snapshots onto the respective POD modes. The

top limit cycle (—) corresponds to the natural flow. The lightly dotted circles

(· · · ) correspond to the phase portraits of the pPOD mode sets (see § 3.5.2). The

remaining limit cycles are described in § 3.5.3 and highlight control results with

feedback amplitude G = −0.3vvf obtained with standard POD (− × −), pPOD

(− · −) and direct flow measurement (—).
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Figure 3.4: Orientation of the volume force θ in dependence of the operating

condition p.
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3.5 Parameterized POD

3.5.3 Full information control

A Galerkin model-based version of the dissipative feedback B = −k̃vvf (see (3.7))

is used for stabilization of the cylinder wake. The vertical velocity in the center

of the volume force is approximated by the vertical component of the Galerkin

expansion (2.65)

vvf (t) ≈ a1(t)v1(xvf ) + a2(t)v2(xvf ), (3.15)

where v1,2(xvf ) are the vertical components of POD modes 1 and 2 at the center of

the volume force. At each time step the temporal coefficients ai can be obtained

by the projection (2.21)

ai(t) = (u(x, t),ui(x))Ω.

Equations (3.7), (3.15) and (2.21) establish a full information control based on

the POD or Galerkin approximation of the flow field.

For feedback flow control based on parameterized POD, the reconstruction

of vvf in (3.15) depends on the employed mode set. A given snapshot can be

reconstructed with (3.8) for all parameterized mode sets. The optimal index

p = p̃ is determined from the requirement that the error between the given and

reconstructed snapshot is minimal:

p̃ = arg min
p
‖u(x, t) − (us(x) + a1(t)u1(x, p) + a2(t)u2(x, p) + a3(t)u3(x))‖.

In this section, the employed mode set p̃ is computed for each snapshot using the

above criterium. Subsequently, the vertical velocity in the center of the volume

force is computed with (3.15) using the index p̃.

Figure 3.3 compares the natural attractor with limit cycles obtained by feed-

back control with a POD model extracted from the natural flow, control using

the parameterized POD (pPOD) model and, as a benchmark, control with direct

flow measurement. In all cases, the feedback gain is identical: k = 0.3. It should

be noted that with this gain complete attenuation cannot be achieved. As can

be seen, the attenuation achieved with the standard POD model is much inferior

to what is attained with the interpolated model, which, in turn is close to the

response with direct flow measurement. The POD model of the natural flow is

only valid in a narrow neighbourhood of the natural flow. This implies that the
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3.6 SISO control with parameterized POD

Natural Standard Parameterized Complete

Flow POD POD Information

vvf max 0.520 0.312 0.189 0.137

xrec 2.35 2.89 3.56 3.73

TKE 2.43 2.24 1.86 1.75

Table 3.1: Quantities that highlight the differences between standard and in-

terpolated models. The following quantities are tabulated: (i) the oscillation

amplitude of the vertical velocity vvf at the center of the volume force, denoted

vvf max, (ii) the average length of the recirculation bubble xrec, and (iii) the per-

turbation (= turbulent kinetic) energy (TKE) in each limit cycle.

controller does not provide the actuator with an optimal signal as the flow de-

viates more and more from its natural state. Hence the volume force does not

directly counteract the vortices, and the flow settles close to the natural attrac-

tor. The result of the pPOD model is close to the direct-measurement, since the

parameterization of the flow is fine enough, and the vortices are almost optimally

opposed.

In table 3.1 several quantities are tabulated that show the performance of

the standard model and the interpolated model. As in figure 3.3, results for the

natural flow, feedback control with a POD model extracted from the natural flow,

control using the parameterized POD and control with direct flow measurement

are summarized.

3.6 SISO control with parameterized POD

In contrast to the previous section, where full information control was considered,

the focus is now on a single-input single-output type controller. A dynamic

observer (§ 3.6.1) estimates the state of the flow by appropriate processing of the

sensor signal. Using the state estimation, a pPOD based look-up table (§ 3.6.2)

provides the optimal actuation signal (the single output) to oppose the vortex

street. The sensor location (the single output) is optimized in § 3.6.3. The

success of the SISO controller is demonstrated in § 3.6.4.
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3.6 SISO control with parameterized POD

3.6.1 Observer design

In this section, an observer is designed in order to provide an estimate of the flow

state. This observer is a crucial part of the SISO controller which is described

in § 3.6.4. A full state observer, based on the Galerkin system (3.10) in a fixed

(no tuning) empirical GM is discussed in Gerhard et al. (2003). Here, a sim-

pler alternative is employed that, among other advantages, bypasses the need to

address the parameter and time dependence of the expansion modes. Like the

parameterized model, the observer exploits the timescale separation between the

periodic oscillations and the transition between operating points. This separa-

tion is represented schematically by motion in the horizontal cross sections of the

manifold in figure 3.3, and by the vertical component of motion respectively. The

latter, i.e. the mean flow change, is responsible for slow changes in the oscillation

frequency and amplitude. It is stipulated that the controller may not violate the

assumption of a slowly changing system.

For simplicity, the case of a single (vertical) velocity sensor at a point xs

is considered, although the ideas are extendable to the utilization of multiple

sensors. The ideal sensor signal is of the form

s = v0(xs) + a1v1(xs) + a2v2(xs) = A0 + A1 cos(θ), (3.16a)

θ̇ = ω, (3.16b)

where vi are the vertical components of the POD modes ui and parameter de-

pendence notations (p) are suppressed, and ω is interpreted as the instantaneous

vortex shedding frequency (i.e., the quantity ω+γa3 in (3.11b)), and where both

the unknown A0, A1 and the frequency ω are slowly varying. Time variation is

due to actuation which suppresses vortex shedding, and hence changes the asso-

ciated dominant velocity fields. The formulation (3.16) is used to dynamically

track slow changes in the coefficients A0, A1 and the frequency ω and the nearly

linear growth in θ as explained below. The estimated A0, A1 and ω can be used to

parameterize the operating conditions (and their associated indexed mode sets).

As an example, the operating condition is parameterized by the frequency or the

amplitude of a vertical velocity sensor at (x, y) = (6.8D, 0), see figure 3.5.
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Figure 3.5: Parameterization of the operating condition p. Left: frequency as

parameter. Right: amplitude of a vertical velocity sensor at (x, y) = (6.8D, 0) as

parameter.

The assumption that the quantities A0, A1, ω are subject to slow changes

leads to a nominal discrete time dynamic model





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


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

(tk), (3.17a)

s(tk) = A0(tk) + A1(tk) cos(θ(tk)), (3.17b)

where △t is the time step. This framework is, in fact, a simpler variant of the

dynamic phasor approximation used in Tadmor (2004), and readily lends itself

to state estimation by an extended Kalman filter (EKF), where the emphasis is

on conservative, hence slow tracking.

Model (3.17) forms a (slow) narrow banded low-pass filter for reconstruction of

the sensor signal. The plots in figure 3.6 demonstrate the dynamic reconstruction

of a sensor signal at (x, y) = (6.8D, 0). The zoom on the right side in figure 3.6

shows that the observer can track the sensor signal well during relatively slow

transients. The corresponding estimated frequency and amplitude of the sensor

signal are shown in figure 3.7. The initialization time of the EKF is about 16 time

units. The measurement noise covariance R and the process noise covariance Q

matrices are respectively set to: R = 1 and Q = diag(1.0×10−4, 1.0×10−3, 8.0×
10−4, 1.0 × 10−5).
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Figure 3.6: The sensed velocity trajectory (−) of a vertical velocity sensor at

(x, y) = (6.8D, 0) and its dynamic estimate (− −). Both the entire trajectory

(left) and a zoom on the changing transient (right) are displayed.
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Figure 3.7: The estimated frequency (left) and amplitude (right) of a vertical

velocity sensor at (x, y) = (6.8D, 0).
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3.6 SISO control with parameterized POD

3.6.2 A parameterized POD based look-up table

As noted before the only admissible control policy is the physics based, dissipative

policy described in § 3.3.1. The goal here is to relate the ideal actuation signal

(3.5) to the dynamically estimated signal (3.17b). Therefore (3.5) is written as

follows:

−k(t)
∫

Ω

g(x) · u′(x, t) dV = −k̂(t) cos(θs(t) − ∆φ(t)) (3.18)

where k̂ is the amplitude of the actuation signal, θs the phase of the sensor signal

and ∆φ the phase difference between the sensor signal and the ideal actuation

signal, (i.e. the phase of the signal on the left hand side of the equation). These

phase relationships can be conveniently approximated by the parameterized POD.

Decomposition of the left hand side of (3.18) yields

−k(t) (a1g1 + a2g2) = −k(t)Ab cos(θ − φ), (3.19)

where θ = arg(g1 + ı g2) and φ = arg(a1 + ı a2). For other notations, see § 3.4.2.

Decomposition of the fluctuating part of the sensor signal yields

s−A0 = A1 cos(θs) = a1v1(xs) + a2v2(xs) = Avs cos(θ̃s − φ), (3.20)

where v1,2(xs) are the vertical components of POD modes 1 and 2 at the sen-

sor location, and vs =
√

v1(xs)
2 + v2(xs)

2. The angle θ̃s is defined by θ̃s =

arg(v1(xs) + ı v2(xs)). Comparing (3.18), (3.19) and (3.20), the (approximate)

phase difference between the ideal actuation signal and a sensor at xs is given by

∆φ = θ̃s − θ. (3.21)

This phase difference can be stored in a look-up table in dependence of the op-

erating condition. For a sensor at (x, y) = (6.8D, 0), the phase difference ∆φ as

function of the frequency is shown in figure 3.10. Note that for this sensor the

changes in phase difference are significant over the simulated trajectories (about

50◦).
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3.6.3 Sensor optimization

In this section, the parameterized POD mode sets are used to find efficient loca-

tions of sensors. For the optimization of the sensor location, it is assumed that

the dynamics around each local operating condition is governed by a linear dy-

namic system. This assumption allows us to borrow the concept of observability

Gramian, which determines whether a system is observable. The inverted ob-

servability Gramian of a linear (time varying) system defines a measure of the

sensitivity of an output signal to state changes. The smallest singular value of

the Gramian therefore provides a systematic quantification of the dynamic effec-

tiveness of the sensor (Lim, 1992) and yields a meaningful cost index for model

based optimization. In a nonlinear system, Gramians defined by linearizations

along representative trajectories are the natural substitute. When the system

is nearly periodic, the Gramians associated with a single period and normalized

by the period length are natural candidates. As may well be expected and as is

illustrated in the cylinder wake flow, below, changes in dominant modes as the

system transitions between operating points are reflected by changes in the sen-

sitivity of sensors to state dynamics. A meaningful optimization criterion would

therefore be to maximize the worst sensor performance over the entire transient

range.

Consider now the cylinder wake flow with one sensor. For notational sim-

plicity it is assumed that this sensor measures the vertical velocity (i.e., the ‘v’

component of the velocity field) at point x1. The focus is on the short term

sensitivity of the sensor to the phase and amplitude of the mode amplitudes a1

and a2. In a simplified continuous time model one can thus assume a fixed fre-

quency. Invoking the appropriately adjusted notations of (3.16) and denoting the

model tuning parameter by ‘p’ (e.g., p = ω), the sensing problem is defined by

the state-space system

d

dt

[
a1

a2

]

= A(p)

[
a1

a2

]

, (3.22a)

s′ = s−A0 = C(x, p)

[
a1

a2

]

, (3.22b)
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3.6 SISO control with parameterized POD

where x = {xk, k = 1 : . . . , K}, and where

A(p) =

[
0 −ω(p)

ω(p) 0

]

and C(x, p) =
[
v1(x, p) v2(x, p)

]
. (3.23)

The state matrix A describes the periodic oscillation. The output matrix C

follows from the Galerkin approximation: u′(x, t) = a1(t)u1(x, t) + a2(t)u2(x, t)

at the sensor location. The normalized single period observability Gramian of

the system is given by

Go =
1

T

∫ T

0

eA(p)′tC(x̄, p)′C(x̄, p)eA(p)tdt = 0.5‖C(x̄, p)‖2
F I2, (3.24)

where the explicit form of the matrix exponential is used,

eAt =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]

,

the subscript F indicates the Frobenius norm, and I2 is the 2 × 2 identity ma-

trix. The optimal sensor location is therefore determined as the solution of the

optimization problem

max
x̄

min
p

‖C(x̄, p)‖F . (3.25)

The optimum is computed over all grid points x̄. For one sensor, the squared

Frobenius norm of the output matrix is given by

‖C(x̄, p)‖2
F = v1(x̄1, p)

2 + v2(x̄1, p)
2, (3.26)

which simply is proportional to the averaged kinetic energy resolved by the ver-

tical velocity component. Addition of a sensor, which measures the horizontal

component at the same location, yields the measure of kinetic energy in that

point. By definition of the Frobenius norm (the square root of the sum of all

squared elements of a matrix), this observation extends to multiple sensors.

In figure 3.8 plots are shown of ‖C(x̄, p)‖F as a function of the operating

condition p, where the sensor location x̄∗ was optimized with respect to the first

1, 5, and 13 operating conditions out of 13. In the left plot, the result is shown

for a single u-velocity sensor and in the right for a single v-velocity sensor. As

is clearly observed, the predicted performance of a sensor that is optimized for

a single parameter value (i.e., only for the natural attractor) is higher close to
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Figure 3.8: Performance of an optimal sensor by measure of the Frobenius norm

‖C(x̄∗, p)‖F as a function of the operating condition p. Left: performance for a

single u-velocity sensor, right: performance for a single v-velocity sensor. The

sensor location x̄∗ (see figure 3.9) is optimized for the first 1 (◦), 5 (2), and 13

(×) out of 13 equally spaced operating points.

the natural state (p = 1) but deteriorates rapidly with the change of p, while

those optimized over a wider range maintain an increasingly even performance

during transitions. The corresponding locations of the sensor are shown in figure

3.9. As the wake is more stabilized, the vortex street is pushed downstream and

the associated maximum fluctuations as well. This implies that favourable sensor

locations also move downstream during the stabilization of the wake. As can be

inferred from the right plot in figure 3.9 the best vertical velocity sensors lay on

the equator. The best horizontal velocity sensors lay on a slightly angled line that

starts at about (x, y) = (0.5D, 2.5D) and ends at (x, y) = (5.3D, 0.75D) (left plot

of figure 3.9). By symmetry of the first two POD modes, the mirrored locations

along the equator yield equally good locations. Finally, it is noted that adding

more sensors can improve both the relative flatness (peak-to-peak ratio) of the

performance measure and increase the minimal value. One can for instance add

more sensors along the lines in figure 3.9.

3.6.4 Results

The SISO control that is employed here, uses a measurement of the vertical

velocity component at (x, y) = (6.8D, 0). This location is obtained as solution
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Figure 3.9: Optimized sensor location x̄∗ for the first 1 (◦), 5 (2), and 13 (×)

out of 13 equally spaced operating points. The direction of the arrow indicates

that the optimal sensor location moves downstream as more operating points are

taken into account. Left: u-velocity sensor (locations are mirrored around the

horizontal symmetry axis), right: v-velocity sensor.

of (3.25) for optimization over the first 10 operating conditions (compare with

figure 3.8, right plot). The dynamic observer, discussed in § 3.6.1, estimates the

amplitude, frequency and phase of this sensor signal. The frequency is used as an

indicator for the flow state and provides via the look-up table the desired phase

difference ∆φ for the actuation signal, see (3.18).

An example of SISO control is shown in figure 3.11. Here the scaled projection

of the velocity field onto volume force, 0.2 (u, g)Ω, and the actuation signal G are

plotted. The controller starts at t = 22.8. Ideally these two signals should be

180◦ out of phase all the time, which is (approximately) the case. The goal in

this simulation was to stabilize the flow at a fluctuation level that corresponds to

an amplitude of (u, g)Ω which equals 0.45 (t ≈ 110). As can be clearly observed,

the fluctuation level is decreased to the desired level and settles there. The

corresponding elongation of the recirculation bubble length, that is where the u-

velocity changes sign on the equator, is shown in the left plot of figure 3.12. The

estimated frequency and amplitude obtained by the observer are shown in figure

3.7. The frequency settles at ω ≈ 0.98. Comparing this value with figure 3.10,

the maximum phase difference ∆φ is about 10◦. The result of another simulation,

where a recirculation length of about xrec ≈ 3.8 is achieved is shown in the right

plot of 3.12. This plot clearly demonstrates an overshoot effect, which is closely

connected to the physics of the system: the required actuator input to stabilize

the wake beyond a recirculation length xrec = 3.6 suddenly decreases and because

of the sensor lag (the sensor is relatively far downstream) the recirculation length
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overshoots. The wake is in a suppressed state already and only a small amount

of energy is needed to stabilize it further.

With the current setup of sensor, observer and look-up table, the unstable

wake can hardly be further stabilized. Again, this is mainly due to the relatively

large distance between the center of the volume force actuator and the sensor

(l = 4.3D). This results in time delays of about two shedding cycles. In the

regime where the frequency has decreased to less than 0.95, see figure 3.10, the

time lag becomes detrimental for the prediction of the phase difference ∆φ. This

situation might be resolved by sophisticated gain control, where the actuation

amplitude is very slowly adapted. Still this approach will be difficult, since close

to the fully stabilized wake the required gain to maintain the fluctuation level

suddenly drops, see figure 3.13, which is not anticipated by the current controller.

Time lag of the observer and phenomena not described by the look-up table

cause the typical ringing behaviour of the recirculation length shown in figure

3.14. Physically speaking, the wake is relatively quickly suppressed, but since the

response of the controller is too slow, the actuation signal is so out of phase that

the volume force actually strengthens the vortex street till the controller catches

it again. As shown in Tadmor et al. (2004) for a similar configuration where the

wake is suppressed using a translating cylinder instead of a volume force, there

are stable and unstable limit cycles under closed-loop control. It is assumed that

this is also the case here. The fluctuation level is brought down to the desired

level, but since this level corresponds to an unstable limit cycle it is not possible

to maintain the flow there (at least under the control policy used here).

3.7 Conclusions

A framework of interpolated Galerkin models for fluid flow systems strikes a

balance between the need for higher number of modes to represent actuation and

transients and the desire to maintain model simplicity. This in turn minimizes

the number of dynamic variables that need to be estimated in real time feedback

implementation. Advantages over standard POD models have been illustrated

in the context of vortex shedding suppression behind a circular cylinder, and

are manifest by improved ability to suppress vortex shedding and an improved
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Figure 3.10: The phase difference ∆φ between the sensor signal of a vertical

velocity sensor at (x, y) = (6.8D, 0) and the ideal actuation signal as function of

the frequency.
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Figure 3.11: Actuation signal B (−) of a successful controller and the scaled

projection of the velocity field onto the volume force: 0.2(u, g)Ω (− −) versus

time. The controller starts at t = 22.8.
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Figure 3.12: The elongation of the recirculation length as a function of time

for two successful simulations. Left: a monotonous increase corresponding to the

actuation signal in figure 3.11. Right: an illustration of overshoot.
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Figure 3.13: Illustration of the gain / phase problem. Left: a plot of the actuation

signal B (−) and the scaled projection of the velocity field onto the volume force:

0.25(u, g)Ω (− −) versus time, right: a zoom that illustrates the problem around

the desired state. The controller starts at t = 22.8.
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Figure 3.14: A ‘ringing’ recirculation length as a function of time, corresponding

to the actuation signal in figure 3.13

sensor performance over a wider transients range. Due to intrinsic instabilities it

is difficult to fully stabilize the wake using SISO control with interpolated models.

END
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Chapter 4

Separation control of the flow

around a high-lift configuration

4.1 Abstract

A mean-field Galerkin model is employed for the flow around a high-lift con-

figuration, describing natural vortex shedding, the high-frequency actuated flow

with increased lift, and transients between both states. The form of the dynami-

cal system follows from a generalized mean-field consideration. Steady state and

transient URANS simulation data are used to derive the expansion modes and

to calibrate the system parameters. The model identifies the mean field as the

mediator between the high-frequency actuation and the low-frequency natural

shedding instability. A sliding mode controller, based on the mean-field model,

is implemented for set-point tracking of the lift coefficient.

4.2 Introduction

Periodic excitation is one of the fundamental tools of active flow control, see for

example Gad-el-Hak (2000). In particular, separation of the flow over airfoils at

high angles of attack can be delayed using periodic actuation (Amitay & Glezer,

2002; Becker et al., 2007; Collis et al., 2004; Raju & Mittal, 2002; Seifert et al.,

Published in: Luchtenburg et al. (2009a, 2010).
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1996). Effective options include high-frequency forcing using synthetic jets and

plasma actuators. A flow model of the actuated system is desirable as a test-

bed for physical understanding and is necessary for systematic feedback control

design. To be useful for feedback design, the model must be both sufficiently sim-

ple for feasible, real-time implementation, and yet robustly represent the natural

and actuated dynamics. In particular, models must be capable of representing the

cross-frequency interaction between high-frequency actuation and low-frequency

instabilities, and do so with the least feasible number of modes. The current

chapter proposes a framework for such models. Separation control of the flow

around a high-lift configuration with high-frequency actuation serves as a bench-

mark for the development of a least-order design model using proper orthogonal

decomposition (POD) and shift-modes (Noack et al., 2003).

The high-lift configuration plays an essential role in the takeoff and land-

ing performance of large commercial aircrafts, allowing lower landing and takeoff

speeds and thus shorter runways. Conventionally, such a configuration consists of

complex, heavy and expensive multi-element high-lift devices. Active separation

control is currently studied as a means for more compact and less heavy configu-

rations or alternatively, shorter takeoff and landing runs. In Günther et al. (2007)

the authors present an experimental and numerical investigation, showing that

the mean aerodynamic lift of a traditional three element high-lift configuration

can be significantly enhanced by means of open-loop periodic excitation. As re-

cently shown by Pastoor et al. (2006, 2008), the efficiency and efficacy of periodic

actuation can be significantly improved by closing the loop in flow control using

sensor measurements. Building on these results, the modelling framework sug-

gested here is intended as an enabler for subsequent model-based optimization

and closed-loop design.

Typically, the actuation frequency is not harmonically related to the shear-

layer frequency, and is higher than the vortex-shedding frequency (Günther et al.,

2007; Raju & Mittal, 2002). A low-dimensional model representing each of the

leading harmonics by a mode pair naturally accommodates amplitude and phase

manipulations. Quadratic nonlinearity allows to enrich this repertoire with fre-

quency doubling and time variations. Yet, very low order models, based, e.g. on

POD analysis of natural and actuated attractors, are incapable of capturing the
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energy transfer between mode pairs that represent unrelated frequencies. Even

more so, the phase-independent open-loop stabilizing effect of high-frequency

actuation cannot be explained by direct mode interactions — even when the ac-

tuation and the instability frequencies are harmonically related. This difficulty is

sharpened in the fairly common case, encountered in the current discussion, where

dominant coherent structures associated with different frequencies do not have

significant spatial overlap. The mean-field model, described in § 2.3.3, § 2.3.4,

accommodates these multi-frequency fluctuations.

The mean-field model with two mean-field modes captures energy exchanges

between mean flow structures and the fluctuations at the natural and the actuated

frequencies. The fact that fluctuations at the actuated frequency are naturally

stable reflects, in this context, a higher stabilizing effect of the mean-field changes

induced at that frequency, than those due to the natural instability. Consequently,

the forced amplification of the fluctuations at the actuated frequency, and of

entailed base flow changes, lead to the desired and observed attenuation of the

natural instability. The mean-field modes are therefore proposed as the missing

component, mediating between the high-frequency actuation and the natural,

lower frequency instability. The model is validated and calibrated, using flow data

of unsteady Reynolds-averaged Navier-Stokes (URANS) simulations. As will be

seen, the mean-field POD model is capable to predict the effect of actuation on

both the velocity field and on the associated lift coefficient.

4.3 Numerical simulation

In this section, the benchmark simulation of the flow around the high-lift config-

uration is outlined, including the configuration (§ 4.3.1), the simulation (§ 4.3.2),

and the flow properties (§ 4.3.3).

4.3.1 Configuration

We study the incompressible two-dimensional flow over the Swept Constant

Chord Half (SCCH) high-lift configuration (see figure 4.1). This configuration

is employed in several experimental and numerical studies targeting passive and
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Figure 4.1: A sketch of the three element high-lift configuration and the obser-

vation region for the model. Periodic excitation (↔) is implemented at the upper

part of the trailing edge flap.

active flow control (Günther et al., 2007; Schatz et al., 2006). The control goal in

these studies includes lift enhancement as well as noise suppression. The chord

length of the configuration, with retracted high-lift devices, is denoted by c. The

three-component setup consists of a main airfoil equipped with a leading edge

slat and a trailing edge flap with relative chord lengths of csl = 0.158 c and

cfl = 0.254 c, respectively. Henceforth, all physical variables are assumed non-

dimensionalized with respect to the chord length c, the incoming flow velocity

U∞, and the constant density ρ. The flow is considered at the Reynolds number

of Re = U∞ c/ν = 106 (ν: kinematic viscosity of the fluid). The slat deflection

angle is set to 26.5◦, the flap deflection angle to 37◦ and the angle of attack of

the main wing section is 6◦. At these conditions, the flow remains attached over

the slat and the main wing section, but is fully separated over the flap. Then,

the wake is characterized by the periodic generation and alternate shedding of

leading and trailing edge vortices.

Periodic actuation is introduced via a zero-net-mass-flux actuator on a small

wall section at the upper side of the trailing edge flap. The imposed flow velocity

is orthogonal to the wall and is located at 0.04 c behind the leading edge of the

flap (see figure 4.1). The actuation velocity is prescribed by

b(t) = B cos (Ωat) , (4.1)
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where Ωa is the angular actuation frequency and B the amplitude of actuation.

This frequency is given by

Ωa = 2π Sta ,

where Sta = fa c/U∞ represents the Strouhal number with the actuation fre-

quency fa. The Strouhal number for natural (un-actuated) vortex-shedding fre-

quency fn is analogously defined, Stn = fn c/U∞. Experimental and compu-

tational studies of flows around high-lift configurations often non-dimensionalize

the frequencies with the flap length cfl as opposed to the cord length c. Hence,

the following notation is introduced Stfl = fcfl/U∞ = (cfl/c) St with applicable

superscripts ‘n’ and ‘a’ for later reference.

The actuation intensity is characterized by the non-dimensional momentum

coefficient

Cµ =
H

c

(
B

U∞

)2

,

where H is the slot width (H = 0.001238 cfl).

4.3.2 Unsteady Reynolds-averaged Navier-Stokes simula-

tion

The two-dimensional coherent structure dynamics are resolved by the unsteady

Reynolds-averaged Navier-Stokes (URANS) equation. Small-scale turbulent fluc-

tuations are incorporated by the LLR k-ω model (Rung & Thiele, 1996). The

URANS equation is discretized by an incompressible finite-volume scheme of sec-

ond order accuracy in space and time. The numerical data used here have been

obtained with the numerical code ELAN developed at the Computational Fluid

Dynamics and Aeroacoustics Group (Prof. F. Thiele) at the Berlin Institute of

Technology. The computational domain extends 15 c upstream, above and below

the airfoil and 25 c downstream. This domain is discretized on a multi-block

structured mesh into 90, 000 cells. The non-dimensional wall distance of the first

cell center is kept below y+ = 1 over the entire surface.

75



4.4 Phenomenological modelling

4.3.3 Natural and periodically forced flow

The unactuated flow field around the trailing edge flap is characterized by massive

separation. The left side of figure 4.2 shows a characteristic snapshot and its

Reynolds decomposition. The dead-water zone is associated with periodic vortex

shedding above the upper surface of the flap. The spectrum of the lift coefficient

reveals a dominant Strouhal number of Stnfl = fncfl/U∞ = 0.32 corresponding to

that vortex shedding.

Actuation is switched on starting from natural flow conditions. A parameter

study shows that, under periodic actuation, lift is maximized at a momentum

coefficient of Cµ = 400 × 10−5 and an excitation frequency of Stafl = 0.6. In

this case, the lift coefficient is increased by 19%. For the modelling task, the

actuation frequency is set Stafl = 0.6 and Cµ = 114 × 10−5. This results in a lift

increase of about 15% at an actuation frequency that is 1.88 times larger than

the natural shedding frequency, i.e. Stafl/St
n
fl = 1.88. The effect on the flow field

is the near complete attenuation of fluctuations at the natural frequency, and the

emergence of a new attractor, locked-in on the actuation frequency. The right

side of figure 4.2 shows a characteristic snapshot of the actuated flow. Spatially,

the natural oscillations are most pronounced in the wake, actuated fluctuations

are concentrated above and near the trailing edge flap.

4.4 Phenomenological modelling

In this section, the lift-increasing effect of high-frequency forcing is phenomeno-

logically modelled. Simple arguments will lead us to the same form of the dy-

namical systems as a more elaborate derivation from the Navier-Stokes equation

in subsequent sections.

The dynamical system shall describe four aspects of the URANS simulations:

(i) vortex shedding without actuation;

(ii) lock-in shear-layer shedding under high-frequency forcing;

(iii) the transient from state (i) to state (ii) under forcing; and
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4.4 Phenomenological modelling

(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Comparison of a natural (a,c,e) and an actuated snapshot (b,d,f).

The top row (a,b) shows a characteristic snapshot that is Reynolds decomposed

into the respective attractor mean (c,d) and instantaneous fluctuation (e,f). The

flow field is visualized by streamlines.
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4.4 Phenomenological modelling

(iv) the transient from (ii) to (i) when forcing is turned off.

Oscillatory flows are characterized by an amplitude A and phase α. These

quantities can be considered as polar coordinates of the phase space (a1, a2) =

A [cosα, sinα]. Superscripts ‘n’ and ‘a’ refer to the natural and actuated state,

respectively.

The self-amplified, amplitude-limited behaviour of vortex shedding may be

described by the Landau equation (see (2.87))

ȧn1 = σ̃n an1 − ωn an2 , (4.2a)

ȧn2 = ωn an1 + σ̃n an2 , (4.2b)

σ̃n = σn − σn,n (An)2 , (4.2c)

where σn denotes the positive growth rate, σn,n the positive Landau constant and

as noted above, An =
√

(an1 )2 + (an2 )2 the amplitude. For reasons of simplicity,

the frequency ωn is assumed as constant.

The shear-layer dynamics is excited by high-frequency forcing with amplitude

B, phase β and frequency β̇ = Ωa = ωa. The phase difference of the actuation

signal with respect to the oscillation of the flow is given by θ. This behaviour is

most easily represented by a linear damped oscillator with a periodic forcing at

the eigenfrequency:

ȧa1 = σa aa1 − ωa aa2 + g B cos(θ + β), (4.3a)

ȧa2 = ωa aa1 + σa aa2 + g B sin(θ + β). (4.3b)

Here, σa denotes a negative growth-rate and g the gain of actuation.

Both oscillations are comprised in a four-dimensional phase space:

[a1, a2, a3, a4] = [an1 , a
n
2 , a

a
1, a

a
2]

with equations (4.2) and (4.3) governing the joint evolution of these variables. If

B ≡ 0, then a3 = a4 ≡ 0, and the resulting system describes the natural flow,

according to (i). By (ii), the oscillation at the natural frequency is suppressed

when forcing B > 0 is employed. This can be achieved by decreasing the growth

rate of the natural amplitude, eventually leading to damping, with the growth
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4.4 Phenomenological modelling

of the high-frequency amplitude Aa =
√

(aa1)
2 + (aa2)

2. In complete analogy to

the damping term of Landau’s model, the coefficients −σn,a (Aa)2 are added to

(4.2c) following similar reasoning (see § 2.3.3). The coefficient is chosen to be

σn,a > σn/(Aa,a)2, where Aa,a is the constant value of the amplitude Aa at the

forced state. This choice guarantees σ̃n < 0 for all An > 0 at Aa = Aa,a. Thus,

the limit values a1 = a2 ≡ 0 are reached at the forced state, according to (ii). In

summary, the following system of two coupled oscillators describes the observed

behaviour of the natural and actuated states as well as the transients between

them, described by properties (i)-(iv).

ȧ1 = σ̃na1 − ωna2, (4.4a)

ȧ2 = ωna1 + σ̃na2, (4.4b)

ȧ3 = σaa3 − ωaa4 + g B cos(θ + β), (4.4c)

ȧ4 = ωaa3 + σaa4 + g B sin(θ + β), (4.4d)

σ̃n = σn − σn,n (An)2 − σn,a (Aa)2 . (4.4e)

The reader is reminded that these equations are analytically justified and de-

rived from the Navier-Stokes equation in § 2.3.3. For a qualitative discussion,

the identified parameters of table 4.1 on page 90 are adopted. Figure 4.3 shows

a solution of (4.4) for an actuated transient from natural to actuated state with

periodic forcing starting at time t = 0. The qualitative behaviour is as expected,

exhibiting a decaying natural oscillation and an excited forced one. The competi-

tion between natural and actuated oscillators can be inferred from (4.4e). During

a slow transient, the time derivatives of the amplitudes An and Aa are arbitrarily

small and can be neglected, including σ̃n = 0. Thus, the dependency between

both amplitudes is described by

σn = σn,n (An)2 + σn,a (Aa)2 . (4.5)

The associated energies are linearly related. One energy can only increase at the

expense of the other. The lift coefficient can be considered as a function of either

amplitude, see § 2.4 and in particular (2.101). From URANS data, it is observed

to increase with the amplitude of actuation.
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Figure 4.3: Solution of the model problem (4.4) starting from the initial condition

[a1, a2, a3, a4] = [0.187, 0, 0, 0] with actuation. The left subfigure (a) displays the

phase portrait of the natural oscillator (a1, a2). Likewise, the right subfigure (b)

displays the phase portrait (a3, a4) of the actuated oscillator.

Figure 4.4 shows the increase of Aa under forcing (subfigure a), corroborates

approximately (4.5) (see the quarter ellipse in subfigure b) — even for a fast

transient — and shows the increase of the lift during the transient (subfigure c).

4.5 Mean-field Galerkin model

In this section, the Galerkin mean-field model for two frequencies (see § 2.3.4) is

adopted to describe the URANS simulation data.

The Galerkin approximation builds on the assumption NSE 1 in § 2.3.3. Thus,

expansion modes are needed which resolve the three flow contributions uB, un,

and ua in (2.94). Optimal resolution of un and ua over the natural and the

actuated attractors, where these fluctuations are respectively most prominent, is

achieved by POD expansions. Let uni and uai , i = 1, 2, be the dominant POD

modes of these two attractors. These four modes are comprised in an orthonormal

basis {ui}4
i=1 via Gram-Schmidt normalization, so that ui = uni , ui+2 = uai ,

i = 1, 2. As seen in figure 4.6, the modes uai reach peek fluctuation over and near

the airfoil whereas the fluctuations represented by uni are concentrated further

downstream. This fact, along with the differences in the respective wavelengths

imply that the two mode pairs are nearly orthogonal, to begin with, and Gram-
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Figure 4.4: Amplitude and lift dynamics for the transient displayed in figure

4.3. Note that (a) Aa increases with time, (b) An decreases with increasing Aa

and (c) cl increases with increasing Aa. The non-monotonous behaviour of cl(A
a)

is an overshoot phenomenon related to the fast transient.

Schmidt orthogonalization hardly changes the POD modes. Therefore, as in

(2.98), the association of the respective temporal amplitude pairs with the natural

and the actuated frequencies is maintained:

an = a1 e1 + a2 e2, aa = a3 e3 + a4 e4,

and the following approximations are used

un(x, t) =
2∑

i=1

ai(t) ui(x), ua(x, t) =
4∑

i=3

ai(t) ui(x).

The mean of the natural and actuated attractor are denoted by un0 and ua0

respectively. The time-varying base flow is approximated by two shift-modes

corresponding to the two attractors of interest,

uB(x, t) = us(x) + u∆(x, t) = us(x) + a5(t) u5(x) + a6(t) u6(x), (4.6)

where {ui}6
i=5 are derived by a Gram-Schmidt orthogonalization from un∆ ∝ un0 −

us and ua∆ ∝ ua0 − us, removing also any projection over {ui}4
i=1. The mode

amplitudes of the two shift-modes are also collected in a column vector,

aB = a5 e5 + a6 e6.

The two mean flows un0 and ua0 are approximated by time-averaging the velocity

field of the natural and actuated attractor, respectively. Thus, the relevant linear
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4.5 Mean-field Galerkin model

Figure 4.5: The relation between the steady solution and mean flows correspond-

ing to the natural and actuated attractor. The steady solution us, the mean of

the natural flow un0 and actuated pendant ua0 are depicted as solid circles. The

shift-modes un∆, ua∆ are the vectors pointing from the steady solution to the natu-

ral and actuated mean flow, respectively. The normalized difference between the

actuated and natural mean flows, denoted by u∆, corresponds to the shift-mode

in figure 4.6 (b).

approximation of the base flow is

uB(x, t) = un0 (x) + a∆(t) u∆(x), (4.7)

where u∆ = (ua0 − un0 )/‖ua0 − un0‖Ω. Figure 4.5 provides a schematic depiction

of the relation between the steady solution and the mean flows corresponding to

the natural and actuated attractor.

The actual computation of {ui}6
i=5 necessitates the difficult extraction of an

unstable steady solution. In fact, these modes were not explicitly computed.

Invoking (4.7) instead of (4.6), the velocity field of the URANS data is approxi-

mated by the expression

u(x, t) = un0 (x) + a∆(t) u∆(x) +

4∑

i=1

ai(t) ui(x). (4.8)

Although this approximation differs from the formal ansatz (4.6) with both shift

modes, the Galerkin approximation (2.94) and corresponding Galerkin system

(2.96) are used to describe the URANS data. Since the Galerkin system coeffi-

cients will be obtained by a calibration method using empirical data, the main

purpose of (2.94) is to understand the implications on simplifying special aspects
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4.5 Mean-field Galerkin model

of the structure of the Galerkin system, that will be utilized to facilitate system

parameter estimation.

The decomposition (4.8) of the velocity field is schematically illustrated in

figure 4.6. On the left, the mean of the natural and actuated flow, un0 and ua0

respectively, along with the connecting (normalized) shift-mode u∆ ∝ un0 − ua0

are shown. Modes representing the fluctuations are depicted on the right. Those

include the first two POD modes of the natural and actuated attractor, u1,2 and

u3,4 respectively. The phase portrait of the temporal amplitudes ai is shown in

the middle. A model based on this approximation accommodates the key physical

phenomena of interest, including the natural and actuated limit cycles with their

respective base flows, and transients between them. During an actuated transient,

the coefficients representing the natural oscillator decay from their natural values

to (near) zero at the actuated attractor, whereas the coefficients corresponding to

the actuated oscillator grow from zero to their values on the actuated attractor.

The periodic actuation on the upper side of the trailing edge flap can be

modelled by an actuation mode, as described in § 2.2.4, that is included in the

Galerkin approximation (2.94). For the current case, it is assumed that the

equivalent volume force is contained in the POD modes 3 and 4 which resolve

the locked-in actuator. The control command of the actuator is oscillatory with

slowly varying periodic characteristics. In this case, the effect of forcing on the

flow is often modelled by a forcing term B b with actuation command b, as

e.g. in Rowley & Juttijudata (2005); Samimy et al. (2007); Siegel et al. (2003).

This example is followed and a constant matrix B is introduced (see (2.46)).

The periodic actuator in (4.1) with velocity b = B cos(β) satisfies dβ/dt = Ωa

with a slowly varying amplitude B and phase shift β = Ωa t. The acceleration

reads db/dt = −Ωa B sin(β). As in (2.45), the command and its derivative are

comprised in a vector

b
def
=

[
b

−db/dt
Ωa

]

= B

[
cos(β)
sin(β)

]

.

This convention allows to identify time and phase shifts in the control vector.

Following the literature, it is assumed that the same form of the mean-field

model which was derived for the Navier-Stokes equation in § 2.3.3 and § 2.3.4 can
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Figure 4.6: Principal sketch of the dynamics of the natural and actuated flow around a high-lift configuration.

The flow is visualized by contour lines of the vertical velocity component, where continuous (dashed) lines indicate

positive (negative) values. The depicted domain is the observation region indicated in figure 4.1. On the left, the

mean fields of the natural (a) and actuated flow (c) are depicted. The shift-mode u∆ (b) is the normalized difference

between them. On the right, the POD modes u1, u2 of the natural- (d) and of the actuated flow u3, u4 (e) are

visualized. The middle column shows the phase portrait of the model, where the natural (actuated) attractor is

depicted as the limit cycle spanned by a1, a2 (a3, a4). The actuated transient is from top to bottom and the natural

transient vice versa.
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4.5 Mean-field Galerkin model

also be employed for the URANS equations, i.e. repeating (2.100) and (2.97), we

have

dAn

dt
= σ̃nAn, (4.9a)

dαn

dt
= ω̃n, (4.9b)

dAa

dt
= σ̃aAa + gB cos(β + θ − αa), (4.9c)

dαa

dt
= ω̃a +

gB

Aa
sin(β + θ − αa), (4.9d)

where
σ̃n = σn − σn,n (An)2 − σn,a (Aa)2 ,

ω̃n = ωn + ωn,n (An)2 + ωn,a (Aa)2 ,

σ̃a = σa − σa,n (An)2 − σa,a (Aa)2 ,

ω̃a = ωa + ωa,n (An)2 + ωa,a (Aa)2 .

(4.10)

Indeed, most POD models follow the URANS turbulence modelling philosophy

by incorporating fine-scale fluctuations via one additional eddy viscosity (Aubry

et al., 1988; Ukeiley et al., 2001), or via a modal eddy viscosity distribution

(Couplet et al., 2003; Rempfer & Fasel, 1994). Some authors, e.g. Galletti et al.

(2004), add a calibrated linear term. All these auxiliary models affect only the

coefficients of the linear term, not the very form of the Galerkin system. The

issue of turbulence modelling is re-visited in § 4.8.1.

4.5.1 Simplification of the dynamical system

In this section, the dynamical system (4.9) is analyzed in more detail. The as-

sumed phase invariance and lock-in of the actuation response enable a notational

simplification of the system. The discussion leads to algebraic constraints of the

system parameters.

On the two attractors, the time derivatives of the amplitudes in (4.9a) and

(4.9c) must vanish, and the right-hand side terms of (4.9b) and (4.9d) must be

equal to the respective steady state shedding frequency and the actuation fre-

quency. The steady state value of An on the natural (respectively actuated)

attractor are denoted by An,n (respectively Aa,a) According to assumption NSE
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4.5 Mean-field Galerkin model

1 in § 2.3.3, the natural harmonic vanishes under forcing and the actuation har-

monic vanishes without forcing. Hence, the values of An on the actuated attractor

and of Aa on the natural attractor are set to zero.

The converged amplitudes on the natural and the actuated attractor, i.e.

dAn/dt = 0 and dAa/dt = 0, respectively, lead to the following equations

0 = σn − σn,n (An,n)2 , (4.11a)

0 = (σa − σa,a(Aa,a)2)Aa,a + gB cos(β + θ − αa). (4.11b)

The lock-in property implies dαa/dt = dβ/dt = Ωa on the actuated attractor.

Thus, β + θ − αa is constant in (4.11b) and in (4.12b), below.

The constant frequency conditions yield

Ωn = ω̃n,n, (4.12a)

Ωa = ω̃a,a +
gB

Aa,a
sin(β + θ − αa), (4.12b)

where again, the notation ω̃n,n stands for the steady state value of ω̃n on the

natural attractor and ω̃a,a for the actuated attractor value of ω̃a.

Equation (4.12b) is simplified by assuming that the oscillation frequencies

are independent of Aa and An and that the flow locks in with the actuation

frequency ωa. In other words, the coefficients describing amplitude dependent

frequency changes vanish:

ωn,n = ωn,a = ωa,a = ωa,n = 0. (4.13)

The approximation ωn,n = ωn,a = 0 appears admissible for the vortex-shedding

frequency from dead-water zones with well defined transverse extent. Typically,

frequency changes are at most of the order of 10%. The equation ωa,n = ωa,a = 0

is implied by the assumed lock-in. Thus,

ω̃n = ωn = Ωn, (4.14a)

ω̃a = ωa = Ωa, (4.14b)

θ = αa − β. (4.14c)

In particular, cos(β + θ − αa) = 1 on the actuated attractor, hence in (4.11b).
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4.5.2 Parameter identification

The parameters of the least-order model are identified by calibration with simu-

lation data. For that purpose a data trajectory is used that involves step changes

in the actuation, as described in § 4.6, below. That reference was selected as a

generic example of open-loop actuation. It is noted that abrupt transients present

an inherent challenge for low-order models, due to the fact that they tend to in-

volve far richer dynamics than what can ideally be represented, say, by a mere

single mode pair per frequency. In particular, transient data has limited value to

the calibration procedure, necessitating some added simplification in the model,

as discussed in the previous section (equation (4.13)). In view of this, the suc-

cess demonstrated in § 4.6 illustrates the robustness of the proposed modelling

concept, corroborating its fundamental underpinning in the physics of the system.

The system (4.9), with state dependent coefficients given by (4.10), contains

14 unknown parameters: σn, σn,n, σn,a, ωn, ωn,n, ωn,a, σa, σa,n, σa,a, ωa, ωa,n, ωa,a,

g, and θ. Using the results of the previous section, equations (4.11), (4.13) and

(4.14), this number reduces to seven. These remaining degrees of freedom (σn,

σn,n, σn,a, σa, σa,n, σa,a, g) are estimated from (4.9), using transient amplitude

data. Specifically, the parameters are selected as the solutions of the following

least square problems

min

∫ t1

t0

[
dAn

dt
− σ̃n An

]2

dt, (4.15a)

min

∫ t1

t0

[
dAa

dt
− σ̃a Aa − g B cos (β + θ − αa)

]2

dt, (4.15b)

subject to the algebraic constraints (4.11).

In summary, the algorithm for determining the parameters of the least-order

Galerkin system is as follows:

(i) Natural frequency (ωn, ωn,n, ωn,a): The parameters are algebraically deter-

mined by (4.13) and (4.14a).

(ii) Actuated frequency (ωa, ωa,n, ωa,a): These parameters are determined by

(4.13) and (4.14b).
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(iii) Growth-rate of the fluctuation at natural frequency (σn, σn,n, σn,a): The

coefficients determining the growth rate σ̃n are constrained by (4.11a). This

constraint is used to express σ̃n in terms of σn and σn,a, i.e. σ̃n(σn, σn,a). A

transient part of the trajectory is used to determine σn and σn,a by a least

square fit (4.15a).

(iv) Growth-rate of the fluctuation at the actuated frequency (σa, σa,n, σa,a)

and actuation gain (g): The coefficients determining the growth rate σ̃a

and the gain g are constrained by (4.11b). The expression for the rate is

simplified to σ̃a = σa, i.e. σa,n = σa,a = 0. Note that the lock-in assumption

implies a fixed phase difference θ = αa− β. Hence, the control term is zero

without actuation and g B under actuation. This means that constraint

(4.11b) simplifies to 0 = σaAa,a + g B. This constraint is used to express

σ̃n in terms of σa. A transient part of the trajectory is used to determine

σa by a least square fit (4.15b).

4.6 Comparison of the Galerkin model with the

URANS simulation

The Galerkin model derived in § 2.3.4 is compared with the empirical data from

a transient URANS simulation. This comparison includes the Galerkin approxi-

mation of the flow field (§ 4.6.1), the Galerkin system for the dynamics (§ 4.6.2),

and the lift coefficient (§ 4.6.3).

4.6.1 Galerkin approximation of the transient simulation

Here, the transient URANS data are analyzed. The snapshots of the velocity field

are Galerkin approximated as in (4.7). The shift-mode amplitude a∆ is shown in

figure 4.7. The amplitude indicates how the mean flow changes from the value

at the natural attractor. As actuation is turned on, the mean flow changes,

and settles at the actuated attractor. At the same time the mode amplitudes

(a1, a2), corresponding to the first oscillator, decrease to near-zero at the actuated

attractor, see figure 4.8(a). The coefficients of the second oscillator (a3, a4), are
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Figure 4.7: The shift-mode amplitude a∆ as obtained from projection of the

velocity snapshots onto the modes. Actuation is switched on at t = 0 and is

switched off at t = 12.5.

excited by the periodic actuation, see figures 4.8(a) and 4.8(b). If actuation is

turned off, the roles of both coefficient pairs are reversed. This behaviour is also

elucidated in the principal sketch in figure 4.6.

4.6.2 Least-order Galerkin model of the transient data

In this section, the URANS data are compared with the least-order Galerkin

model prediction (4.9). The mode amplitudes that result from projection onto

the Galerkin expansion are used as a database for the calibration. The values of

the model parameters are given in table 4.1. These parameters yield growth and

decay rates in (4.9) that are bounded at |σ̃n| < 10 and |σ̃a| < 1. An order of

magnitude estimation using equation (4.9a), which has an exponential solution

at a fixed instant in time, shows that the decay rate must be large to describe

the steep descent, thus explaining the high values in table 4.1. These values of

the rate coefficients in the table are due the fast convection of the structures in

the observation region (see figure 4.1) and the short transients.

The phase portraits as predicted by time integration of the least-order Galerkin

model are shown in figures 4.8(c) and 4.8(d) and can be compared with the pro-

jected values from the URANS simulation in the first row of figure 4.8. A compar-
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Figure 4.8: Phase portraits of the URANS simulation (a,b) and the least-order

Galerkin model (c,d). The left column (a,c) shows the trajectory (a1, a2), the

right (b,d) shows the trajectory (a3, a4) associated with the natural and actuated

flow.
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4.6 Comparison of the Galerkin model with the URANS simulation

parameter value

linear dynamics

ωn 7.92

ωa 14.85

σn 10.00

σa -0.80

mean-field effects

σn,n 286.0

σn,a 8243.0

ωn,n 0.0

ωn,a 0.0

σa,n 0.0

σa,a 0.0

ωa,n 0.0

ωa,a 0.0

actuation
g 2.06 ·10−2

θ -3.69

Table 4.1: Identified parameters for the generalized mean-field model (see (4.9)).

The actuation amplitude B = 1.91 is determined by the URANS configuration.
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Figure 4.9: The amplitudes An and Aa of the URANS data (continuous lines) and

the predictions by the least-order Galerkin model (dashed lines) in dependency

of the time. Actuation is switched on at t = 0 and is switched off at t = 12.5.

The URANS values are low-pass filtered.

ison of the behaviour of the low-pass filtered amplitudes An and Aa from URANS

data and integration of (2.100) are shown in figure 4.9. A good agreement is

achieved. However, the natural attractor of the URANS simulation has a small

residual level in Aa relative to An. According to assumption NSE 1, the actuation

harmonic vanishes without forcing. Hence, this level vanishes in the model.

From figure 4.6, it can be seen that the dominant natural harmonic is mainly

present after the flap in a large separation zone, whereas the actuated mode is

active in a smaller region starting at the leading edge of the flap. The modes

thus act as rivals, where only one can be fully alive in its own space.

Particularly important for flow control is the phase prediction by the model.

The approximate lock-in on the actuated attractor is shown for mode amplitude

a3 in figure 4.10.

4.6.3 Estimation of the lift coefficient

The model predictions can be related to quantities of engineering interest. As

an example, the prediction of the lift coefficient by the model is shown. The lift

coefficient will be inferred from the reduced order model in two ways. Following
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Figure 4.10: A phase portrait of the forced dynamics. Temporal amplitude a3

versus the actuation command b = B cos(β). The URANS data is shown by a

continuous line and the least-order Galerkin model prediction by a dashed line.

The approximate lock-in of URANS to the forcing frequency is clearly visible.

the overall pattern of this section, a calibrated polynomial expression based on

the least-order Galerkin model is provided.

It is assumed that the lift coefficient is a function of the mode amplitudes

cl(a1, . . . , a4). The oscillatory behaviour of the lift coefficient is modelled by a

linear combination of a1, a2, a3 and a4. The influence of the mean-field deforma-

tion during transients is taken into account by a Taylor series of second order in

(An)2 and (Aa)2 (see equation (2.95c)).

Thus, the measurement equation for the lift coefficient is assumed to be of

the following form

cl(t) = cl0 +

4∑

i=1

ki ai(t) + k5(A
n)2 + k6(A

a)2 + k7(A
n)4 + k8(A

a)4. (4.16)

The first part of the functional form, up to the quadratic terms, follows directly

from the Navier-Stokes equation. The two remaining fourth order terms are

conjectured to account for unmodelled mode deformations. The parameters k1,

. . ., k8 obtained from a least squares fit from natural and actuated transients are

listed in table 4.2.
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4.6 Comparison of the Galerkin model with the URANS simulation

parameter value

linear dynamics

cL0 2.05

k1 0.15

k2 -0.55

k3 -0.47

k4 0.70

mean-field effects

k5 15.19

k6 212.31

k7 -436.00

k8 -3.75·104

Table 4.2: Identified parameters of the measurement equation for the lift coeffi-

cient (see (4.16)).

The result is shown in figure 4.11, where the original lift coefficient is com-

pared with the prediction of the model. The least-order Galerkin model performs

surprisingly well. Prediction during fast transients (particularly, the second one)

requires a more accurate dynamical model. In the following section, the lift for-

mula is derived from first principles and compared with the identified formula.

4.6.4 Lift formula

The lift coefficient comprises a pressure and viscous contribution:

cl =
1

1/2ρ(U∞)2c

(

−
∫

Γ

pn dS + ν

∫

Γ

∇u · n dS
)

· ey, (4.17)

where Γ is the contour of the high-lift configuration, n the outward normal vector

and ey defines the direction of the lift.

The viscous contribution can easily be expressed in terms of the mode ampli-

tudes by substituting the Galerkin approximation (2.37) in (4.17). The pressure

field p is expanded into N modes pi which are obtained from the M pressure

snapshots pm in complete analogy to the corresponding velocity snapshots um at

the same times. More specifically, let ui =
M∑

m=1

Tmi um be the formula of the POD

snapshot method with the transformation matrix Tmi of the observation region
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Figure 4.11: The original lift coefficient (continuous line) compared with the re-

constructed lift coefficient (dashed line) based on the least-order Galerkin model.

Actuation is switched on at t = 0 and is switched off at t = 12.5.

in figure 4.1. Then the pressure mode is given by pi =
M∑

m=1

Tmi p
m. Physically,

this corresponds exactly to the empirical pressure model of Noack et al. (2005),

which is found to be a good approximation for all considered free shear flows,

including shear-layers and wakes (Noack, 2006). The resulting expansions of the

flow variables read

u(x, t) =
N∑

i=0

ai(t) ui(x), (4.18a)

p(x, t) =

N∑

i=0

api (t) pi(x), (4.18b)

where a0 ≡ 1 and ap0 ≡ 1 by definition. Moving the mean pressure to the left side

of (4.18b) and taking the spatial inner product on both sides, we have

(pi(x), p(x, t) − p0(x, t))Ω =

N∑

j=1

(pi(x), pj(x))Ω a
p
j (t), (4.19)

which is a matrix equation. This equation can be solved for the modal pressure

amplitudes api (t) by inversion of the mass matrix (pi(x), pj(x))Ω. Thus, the lift
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Figure 4.12: Comparison of the actual (URANS), modal (equation (4.20)) and

identified lift coefficient (compare figure 4.11 and (4.16)) at the natural attractor:

(a) actual (continuous line) and modal lift coefficient (dashed line), (b) modal

(continuous line) and identified lift coefficient (dashed line).

coefficient can be written as

cl(t) =
1

1/2ρ(U∞)2c

N∑

i=0

{

−
(∫

Γ

pi(x)n dS

)

api (t) + ν

(∫

Γ

∇ui(x) · n dS
)

ai(t)

}

·ey.

(4.20)

The modal lift coefficient is computed for N = 2 at the natural attractor.

The comparison of the actual (URANS) and modally decomposed lift coefficient

is shown in figure 4.12(a). A good agreement is achieved with only two modes.

Figure 4.12(b) shows the comparison of the modal and identified lift coefficient

(see also figure 4.11). It can be seen that the identified lift coefficient is smoother

than the modal one. This observation directly correlates with the temporal am-

plitudes of the velocity field, which are much smoother than the amplitudes of

the pressure modes. The latter correlate better with the lift coefficient. The

identified lift coefficient is in this sense the best approximation given the mode

amplitudes of the velocity field. Most important for the purpose of the present

discussion, the postulated linear dependence of the lift on the temporal ampli-

tudes of the oscillatory fluctuations is now connected to an analytic derivation

from the Navier-Stokes equation.
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4.7 Set-point tracking of the lift coefficient

4.7 Set-point tracking of the lift coefficient

The sliding mode controller, described in § 2.4.1, is implemented for set-point

tracking of the time-averaged lift coefficient cl (see figure 4.13). Here, the time-

averaged lift coefficient is written as a linear combination of the energy levels of

the natural and actuated oscillators:

cl = cl0 + c1(A
n)2 + c2(A

a)2. (4.21)

The simplified dynamic system follows from the simplifications in § 4.5.1 and is

slightly different from the one used in § 2.4.1:

dAn

dt
= (σn − βn a5 − δn a6)A

n, (4.22a)

dAa

dt
= σaAa + gB, (4.22b)

da5

dt
= ρ

(
(An)2 − a5

)
, (4.22c)

da6

dt
= η

(
(Aa)2 − a6

)
, (4.22d)

where g is the coefficient corresponding to the time-varying actuation input B.

Note from comparison with (4.9) that the last two equations for the base flow

are not slaved to the fluctuation amplitudes. The coefficients ρ and η are chosen

large compared to the growth rates σn and σa. In essence this amounts to slaving

the the last two equations to the first two (i.e. set ȧ5 = ȧ6 ≡ 0 and solve for

a5 and a6). Hence the evolution equations (5.2c) and (5.2d) are merely dummy

equations. The reason for this decoupling is convenient controller design based

on the standard quadratic form of a Galerkin system. The corresponding sliding

mode controller (compare with (2.106) and (2.104)) is given by

Bsm = Beq −K sat

(
s

ψ

)

, (4.23)

with the equivalent control law

Beq = −c1 (σn + βn a5 + δn a6) (An)2

c2Aag
− σaAa

g
. (4.24)

The work presented in § 4.7 was performed in close collaboration with Katarina Aleksić.
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Figure 4.13: Evolution of the time-averaged lift coefficient under temporary

high-frequency actuation. The open-loop controller is activated from t = 0 to

12.5. Compare with figure 4.11.

Note that both amplitudes, An and Aa, are needed for computation of the control

law Bsm. Here, it is assumed that only the lift coefficient can be directly measured.

An extended Kalman filter (EKF) is used for state estimation.

As above, the flow is simulated using the unsteady Reynolds-averaged Navier-

Stokes (URANS) equation. In contrast to the previous simulation, turbulence is

now resolved by the k − ω model by Wilcox (Wilcox, 1994). In addition, the

flow is considered at a higher Reynolds number, namely Re = 1.75 × 106. All

other simulation parameters remain equal. The coefficients of the measurement

equation (4.21) and dynamic system (4.22) are calibrated using URANS data

from the new simulation. The coefficients are identified in an analogous manner

as above in § 4.5.2 and § 4.6.3. The coefficients in equations (5.2c) and (5.2d)

are respectively set to ρ = 10 σn and η = −10 σa. The identified parameters are

listed in table 4.3. Figure 4.14 shows the closed-loop command tracking perfor-

mance of the proposed sliding mode controller. The controlled system output cl

closely follows the step input reference command clref
= 2.23. The desired lift

coefficient is reached after approximately a half convective time unit. Note that

the actuation input to the model B is simply a scaled version of the momentum

coefficient cµ (compare the top and middle row of Fig. 4.14). The clipped control

input is due to saturation of the lift coefficient at cµ = 2.0 · 10−3.

The expected robustness of the sliding mode controller for different angles of
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parameter value

dynamic system

σn 100.00

βn 3086.40

δn 1519.10

σa -0.80

g 0.064.00

ρ 1000.00

η 8.00

measurement equation

cl0 0.6623

c1 40.3605

c2 241.5870

Table 4.3: Identified parameters for the dynamic system (4.22) and the mea-

surement equation (4.21).

attack and for Reynolds number variations will be investigated in a future study.

4.8 Discussion

In this section, Galerkin modelling aspects are related to the pursued structure

and parameter identification for turbulent flows represented by URANS data. In

principle, the model should be derivable from the Navier-Stokes equation or from

accurate DNS data. In practice, only URANS or PIV data may be available for

turbulent flows and the mean-field considerations as well as the parameter iden-

tification require a more rigorous explanation. These modelling aspects include

effects of turbulence (§ 4.8.1) and of non-equilibrium (§ 4.8.2).

4.8.1 Turbulence effects

The rational of URANS simulations is that large-scale coherent structures are

resolved in space and time while turbulent fluctuations at all scales are modelled

via an eddy viscosity ansatz. This implies that the generalized Krylov-Bogoliubov
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Figure 4.14: Reference tracking test of the lift coefficient using a sliding mode

controller. The controller starts at t = 97.65. The lift coefficient (bottom), the

control input to the model B (middle), and the excitation momentum coefficient

cµ (top) are shown.
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approximation (2.89) should be augmented with a term ut representing the con-

tribution of small-scale dynamics:

u(x, t) = uB(x, t) + un(x, t) + ua(x, t) + ut(x, t). (4.25)

Small scale fluctuations are characterized by high-frequency behaviour which can

be expected to be uncorrelated with the large-scale coherent structures. Assuming

that to be the case, ut and products with it vanish under ensemble averaging and

low-pass filtering. In particular, the filtered Navier-Stokes equations (2.92) and

its derivations, are not effected by ut. This small-scale fluctuation is the difference

between an accurate DNS and ideal URANS simulation.

However, ut acts as an energy sink in the evolution equations. In URANS

and LES an eddy viscosity accounts for these losses. In POD Galerkin models,

Rempfer & Fasel (1994) proposed modal eddy viscosities νT,i to account for that

effect — in analogy to spectral pendants:

ȧi = (ν + νT,i)

N∑

j=0

lijaj +

N∑

j,k=0

qijk aj ak. (4.26)

The modal eddy viscosity has a negligible effect on frequencies since lij is a

diagonal matrix in good approximation.

A comparison of the Galerkin projected system and the identified system

shows that the frequencies of both systems are similar at both the natural and

actuated attractor. In contrast, the growth rates are not predicted correctly by

the Galerkin projection. This is due to the neglected effect of turbulence, as

described above.

In summary, neglecting the small-scale fluctuation is standard in reduced or-

der models. This is expected neither to change the mean-field equations nor the

derived structure of the least-order Galerkin system. The effect of this simpli-

fication is mostly restricted to growth rates, which can be corrected by careful

calibration. This seems to be an acceptable price for the level of simplicity and

physical insight associated with the reduced order model. In particular, a mini-

mum number of free parameters makes this approach particularly suited for the

evaluation of experimental PIV data.
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4.8.2 Non-equilibrium effects

The steady solution is critical for the derivation of the standard and the presented

generalized mean-field model. More specifically, the two shift modes that govern

the nonlinear fluctuation growth rates are defined as the unit vectors pointing

from the steady solution to the respective mean flows of the natural and the

actuated attractors.

Thus, the knowledge of the steady solution is necessary for the derivation of

the dynamical model from the Navier-Stokes equation. However, this unstable

solution cannot be obtained from the URANS solver. Fortunately, the parameters

governing the dynamical model can be estimated from URANS transient data (see

§ 4.5.2), and the steady solution as well as the shift modes are not needed. In

a similar spirit, experimentalists have determined the constants of the Landau

equation for the onset of vortex shedding without inquiring the Navier-Stokes

equation.

Equation (4.7) serves as an auxiliary model to the mean-field system (2.96),

where a∆ could be obtained as a fitted polynomial of the oscillation amplitudes An

and Aa. Similarly, the lift coefficient (4.16) is embedded in the model by a fitted

polynomial of the mode amplitudes a1, . . . , a4 and the oscillation amplitudes.

4.9 Conclusions

A least-order Galerkin model has been applied to the flow around a high-lift

configuration. This model provides a least-order representation of periodic fluc-

tuations using a single pair of POD modes per frequency. The novelty in this

model lies in the inclusion of modes representing mean-field variations due to

natural and actuated fluctuations. These modes are the key enabler for captur-

ing the attenuating effect of high-frequency actuation on the natural instability.

Thus, the mean-field model explains the mediation between the fluctuations at

the natural and the actuated frequencies.

Dynamics covered by the model include natural vortex shedding, the effect of

high-frequency forcing, as well as actuated and un-actuated transients based on

URANS data. The model captures the original URANS simulation surprisingly
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well considering the very low order. The phase relation of flow and actuation

of the URANS and least-order Galerkin model data is in good agreement. This

agreement is important for flow control design. Model predictions include the

lift coefficient which is also in good agreement with the original data. As can

be expected, predictions by this least-order model erode during fast transients,

and more accurate representation requires higher-order models. This applies, in

particular, to prediction of the lift coefficient during fast transients.

A main advantage of the analytical model is the possibility of a simple and

robust calibration of a given data set. Thus, the low-dimensional model can be

used as a quick test-bed for explanatory studies in simulation and experiment. It

was shown how a sliding mode controller can be used for improvement of open-

loop control by closely tracking a prescribed lift coefficient.

END
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Chapter 5

Stabilization of a bluff body wake

5.1 Abstract

The wake of a bluff body can be significantly influenced by open-loop periodic

actuation at about 65% of the dominant natural vortex shedding frequency. The

purpose of the current effort is to model these effects with a (simplified) mean-

field Galerkin model for two frequencies. Subsequently, this model is employed

for feedback control of the flow around a D-shaped body in a wind tunnel. The

form of the model follows from the generalized mean-field consideration in § 2.3.3.

Pressure measurements are used to identify the model parameters. The model is

then used for design of a nonlinear controller. In particular, set-point tracking of

the base pressure coefficient is illustrated using a sliding mode controller.

5.2 Introduction

The flow around a D-shaped body can serve as a benchmark problem for more

complicated geometries like automobiles, ships etc. This flow is dominated by

a geometry induced separation and can be characterized as a ‘wake flow’. The

separated flow is accompanied by a large pressure loss at the stern of the body.

The negative effect of the pressure induced drag can be alleviated by several

means. Examples include passive devices like: turbulators, riblets, splitter plates,

The work presented in this chapter was performed in close collaboration with Katarina Aleksić.
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5.2 Introduction

but also active flow control solutions: base bleed, rotary oscillations, synthetic jets

etc. (Choi et al., 2008). A detailed study of the effectiveness of small size tabs for

drag reduction is provided by Park et al. (2006). Modern flow control solutions

typically include feedback, i.e. observations are used to provide feedback about the

‘success’ of the control and update the controller output accordingly. An example

is the phase control described in Pastoor et al. (2008), which desynchronizes the

opposite shear-layer dynamics, leading to postponed vortex formation and hence

a drag reduction.

The objective of the current study is to explore the possibility of using a

(simplified) mean-field model as a base for controller design for the flow around

a D-shaped body in an experiment. This configuration is the same as the one

studied by Pastoor et al. (2008). The wake of the bluff body exhibits a dominant

frequency associated with large scale von Kármán-like vortices. In-phase open-

loop forcing at the trailing edges at about 65% of the natural frequency can

significantly increase the base pressure and, hence, reduce drag. The modified

pressure distribution on the stern is accompanied by a notable change of the

flow field. In particular, the mean flow is changed by active flow control. The

recirculation region of the mean flow is elongated and the streamlines which curve

around the time-averaged recirculation region suggest that the mean effective

body which the flow ‘sees’ is more streamlined. The importance of base flow

modification for drag reduction is supported by passive flow control methods. A

popular method for bluff bodies is the so-called boat-tailed or conical afterbody

concept, which is very effective in reducing base drag (Viswanath, 1996).

Based on the phenomenology of the natural and the periodically forced flow

behind the D-shaped bluff body, it is assumed that a least-order model should

at minimum include the oscillatory fluctuations at the natural and actuation fre-

quency, and the effected base flow changes. In the spirit of the Reynolds-averaged

Navier-Stokes equation, these observations lead to a model where the oscillations

are nonlinearly coupled with the mean-flow through the Reynolds stresses. Along

similar lines, a two-frequency mean-field model was proposed in the previous

chapter and in Luchtenburg et al. (2009a) for a high-lift configuration, which is

also expected to work for the present configuration. Dynamics covered by the

model include natural vortex shedding, the effect of forcing, as well as actuated
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5.3 Experimental setup
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Figure 5.1: A sketch of the experimental setup with the D-shaped body. For

details, see text. This figure is taken from Pastoor et al. (2008).

and un-actuated transients. Here, this model is used for a systematic feedback

control design. It is sufficiently simple for feasible real-time implementation, and

yet robustly represents the natural and actuated dynamics.

5.3 Experimental setup

We study the incompressible flow over a D-shaped bluff body (see figure 5.1). This

configuration is employed in several experimental targetting active flow control

(Henning et al., 2007; Pastoor et al., 2008). The control goal in these studies is to

decrease and stabilize drag. A detailed description of the experimental setup and

the measurement equipment can be found in Henning (2008). All experiments

are conducted in an Eiffel-type wind tunnel. The dimensions of the closed test

section are Lts = 2500 mm, Hts = 555 mm and Wts = 550 mm in the streamwise,

transverse and spanwise directions, respectively. The D-shaped body has the

following dimensions: length L = 262 mm, body height H = 72 mm and span-

wise width W = 550 mm. Trip tapes are placed 30 mm downstream of the nose

in order to trigger the laminar-turbulent boundary layer transition. The body

is mounted on two aluminium rods and is vertically centered in the wind tun-

nel. The geometric blockage with the model in the wind tunnel is comparatively

large at approximately 13%. Therefore, the free stream velocity U∞ is adjusted
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5.3 Experimental setup

to U∞,c = U∞

√
Bc, according to the blockage correction method proposed by

Mercker (1980). The Reynolds number and Strouhal number are defined as

Re =
U∞,cH

ν
and St =

fH

U∞,c
,

respectively. The maximum free stream velocity is approximately 20 m/s with

a turbulence level of less than 0.5%. This allows Reynolds numbers that range

from 23 000 to 70 000.

Flow control is achieved by actuators at the upper and lower trailing edges of

the body. The actuators provide a sinusoidal zero-net-mass-flux through spanwise

slots, that is effected by loudspeakers. The slot width is S = 1 mm and the slots

extend over a half spanwise length of 250 mm. The actuators are operated such

that a periodic suction and blowing is achieved. The voltage signal to the loud-

speakers is: u(t) = û cos(2π fa t), with the actuation amplitude û and actuation

frequency fa. The actuation intensity is characterized by the nondimensional

momentum coefficient

cµ =
2S

H

(qa)2

U2
∞,c

,

where qa is the RMS value of the velocity signal that is effectuated at the exit of

a slot.

The base pressure is monitored by 3×3 difference pressure gauges mounted in

three parallel rows on the stern at y = {−32, 0, 32} mm and z = {−82.5, 0, 82.5}
mm. In this study, only values of the three gauges in the vertical symmetry plane

at z = 0 mm are reported. The pressure gauges are calibrated and temperature

compensated. The free-stream dynamic pressure is monitored by a Prandtl probe

upstream of the body. The drag of the body is measured by means of four strain

gauges, which are attached to the aluminium rods. The base pressure and drag

are described by the non-dimensional coefficients

cp(y, z, t) =
∆p

ρU2
∞,c/2

,

cD(t) =
Fx

ρU2
∞,cHW/2

,

where ∆p is the instantaneous pressure difference between a stern-mounted pres-

sure gauge and the reference pressure, ρ denotes the density, and Fx is the drag

107



5.4 Characterization of the flow field

force. Time-averaged base pressure and drag are denoted by cp(y, z) and cd,

respectively. The spatially averaged base pressure over the stern is defined by

〈cp(t)〉.
Time resolved PIV measurements1 are conducted in the vertical symmetry

plane (x ∈ [0, 144] mm, y ∈ [−58, 58] mm and z = 0 mm) at ReH = 46 000 with a

spatial resolution of dx = dy = 1.8 mm. The sample rate of the measurements is

1 kHz. The PIV-system consists of a Nd:YLF laser, a Photron APX-RS Camera

and a synchronization unit. The VidPiv software of ILA corp. is used for the

computation of velocity fields. Data acquisition and the implementation of the

controllers is realized by rapid prototyping hardware. The sampling time is ∆t =

1/1000 s.

5.4 Characterization of the flow field

In this section, properties of the natural (§ 5.4.1) and periodically forced wake

(§ 5.4.2) of the D-shaped body are highlighted. The flow is considered at a

Reynolds number of Re = 46 000.

5.4.1 Natural flow

The near wake of a two-dimensional bluff body is characterized by an absolute

instability (see e.g. Huerre & Monketwitz, 1990). This instability is associated

with the development of a von Kármán-like vortex street with alternating vortices

at well defined frequencies. In the current setup, spanwise velocity variations,

particularly the phase differences are small (Pastoor et al., 2008). This indicates

that the coherent structures in the flow field are primarily two-dimensional: the

wake is dominated by an almost parallel vortex street.

Vortices leave typical footprints in pressure sensors: their centers are namely

characterized by pressure minima. Therefore, shedding vortices can be clearly

observed in pressure sensors at the upper- and lower edge of the bluff body, see

figure 5.2. Since the vortices alternate periodically from both edges, the upper

1We thank Prof. W. Nitsche and M. Hecklau for making this data available and carrying

out the measurements.
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Figure 5.2: Left: fluctuation pressure coefficients of a sensor at the upper- (−−)

and lower edge (−) of the body; natural flow, Re = 46 000. The spectrum of the

lower sensor is shown in the right plot.

and lower pressure signal are 180◦ out of phase. The spectrum of the pressure

signal at the lower edge reveals a distinct Strouhal number of St = 0.23 (figure

5.2, right plot). This frequency is also predominant in the velocity field as is

confirmed by a DMD analysis of the PIV snapshots. In figure 5.3 (top, left)

the magnitudes of the DMD modes at each frequency are shown. The real and

imaginary parts of the DMD mode that corresponds to St = 0.23, and their mode

amplitudes are also plotted in figure 5.3. This mode is clearly associated with

vortex shedding; the real and imaginary part of the mode are spatially shifted

by about a quarter wave length. Together with the mode amplitudes, which are

out of phase by a quarter period, they describe the oscillatory fluctuation of the

velocity field at the vortex shedding frequency1.

The drag on the body is mainly due to the pressure loss associated with the

wake and results in a relatively high average drag coefficient of cD = 0.90. The

recirculation length of the mean flow is approximately one body height (figure

5.4). The reported values are in good agreement with literature, see e.g. Hucho

(2002); Park et al. (2006).

1To illustrate this point: consider a traveling wave cos(x−t). This wave can be decomposed

as: cos(x − t) = cos(t) cos(x) + cos(t − π/2) cos(x − π/2).
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Figure 5.3: A spectral analysis of the natural velocity field at Re = 46 000. Top,

left: the magnitudes of the DMD modes as a function of their nondimensional

frequency; right: the temporal amplitudes of the first DMD mode corresponding

to St = 0.23. The bottom row shows the DMD mode. Left: the real part of the

first mode, and right the imaginary part.
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Figure 5.4: The time-averaged natural (left) and in phase actuated (right) flow

at Re = 46 000; Sta = 0.15.

5.4.2 Periodically forced flow

In order to suppress the wake instability open-loop flow control is applied. The

upper and lower actuators are operated in phase to desynchronize the shear-

layer and wake dynamics. This leads to postponed vortex formation and hence

reduces drag (Pastoor et al., 2008). The optimal actuation Strouhal number is

about Sta ≈ 0.15 for the range of Reynolds numbers: Re = 23 000− 46 000. The

maximum drag reduction that can be achieved is almost 15%. In figure 5.5, the

pressure signals of an actuated flow with Sta ≈ 0.15 are shown. The voltage

input to the actuator equals 5 V, which results in a mean drag reduction of about

9%. The actuation almost synchronizes the shedding of vortices at the upper and

lower edge as can be inferred from the nearly in phase pressure readings. The

spectrum of the pressure sensor at the lower edge reveals the nondimensional

actuation frequency Sta = 0.15, the second harmonic, and a suppressed peak

at the natural Strouhal number Stn = 0.23. As above, a spectral analysis is

conducted for the PIV snapshots of the flow field. The result is summarized in

figure 5.6. The structure of the DMD modes at the actuation frequency indicates

that the actuator introduces two new coherent structures in the flow. These

structures approximately scale with the half body height, since they are (nearly)

shed in phase. It can also be observed that the upper actuator has a stronger

effect on the flow than the lower one, which leads to a slightly asymmetric time-
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Figure 5.5: Left: fluctuation pressure coefficients of a sensor at the upper- (−−)

and lower edge (−) of the body; actuated flow at Sta = 0.15, Re = 46 000. The

actuator amplitude of the loudspeaker is set to 5 V. The spectrum of the lower

sensor is shown in the right plot.

averaged flow around the centerline, see the right plot of figure 5.4. Nonetheless,

because of the in phase actuation, the wake ‘opens up’ since the shear layers roll

up more downstream, and pressure drag is decreased. The recirculation length is

changed by about 10% through actuation (Henning, 2008).

5.5 A mean-field Galerkin model

In this section, a least-order model for the flow field is reviewed. The form of the

dynamic system and simplifying assumptions are discussed in § 5.5.1. The iden-

tification of the model coefficients is explained in § 5.5.2 and the implementation

of actuation –for the current configuration– in § 5.5.3.

5.5.1 Amplitude model

Based on the phenomenology of the natural and the periodically forced flow be-

hind the D-shaped bluff body, see § 5.4, a least-order model of the flow field should

at minimum include the oscillatory fluctuations at the natural and actuation fre-

quency, and the effected base flow changes. Therefore, the flow is partitioned in a

steady base flow u0, two oscillatory modes {u1,u2} resolving natural shedding at
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Figure 5.6: A spectral analysis of an actuated velocity field with Sta = 0.15

at Re = 46 000. The actuator amplitude of the loudspeaker is set to 5 V. Top,

left: the magnitudes of the DMD modes as a function of their nondimensional

frequency; right: the temporal amplitudes of the first DMD mode corresponding

to St = 0.15. The bottom row shows the DMD mode. Left: the real part of the

first mode, and right the imaginary part.
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frequency ω̃n, two oscillatory modes {u3,u4} for the actuated state at frequency

ω̃a and two shift modes {u5,u6} describing mean-field deformations due to both

frequencies:

u(x, t) = u0(x) +
2∑

i=1

ai(t)ui(x)

︸ ︷︷ ︸

frequency ω̃n

+
4∑

i=3

ai(t)ui(x)

︸ ︷︷ ︸

frequency ω̃a

+
6∑

i=5

ai(t)ui(x)

︸ ︷︷ ︸

base-flow changes

. (5.1)

The oscillatory motion of the flow at its natural and actuated frequency can for

instance be described by DMD modes, as shown in figures 5.3 and 5.6. The two

shift modes describing base flow changes cannot be computed from experimental

data. A surrogate quantity can be defined as the difference of the natural and

actuated time-averaged flow. Here, the focus is not on finding the velocity field

decomposition, but on simplifying assumptions for the dynamic system that gov-

erns the evolution of the temporal amplitudes ai. In particular, we are interested

in the amplitudes of the natural and actuated fluctuation: An =
√
a1

2 + a2
2 and

Aa =
√
a3

2 + a4
2.

Based on the described phenomenology, we use the generalized mean-field

model in polar form (2.100), although in a slightly different form (compare with

the simplifications in § 4.5.1):

dAn

dt
= (σn − βn a5 − δn a6)A

n, (5.2a)

dAa

dt
= σaAa + gB, (5.2b)

da5

dt
= ρ

(
(An)2 − a5

)
, (5.2c)

da6

dt
= η

(
(Aa)2 − a6

)
. (5.2d)

Here g is the coefficient corresponding to the time-varying actuation input B.

Note from comparison with (4.9) that the last two equations for the base flow

are not slaved to the fluctuation amplitudes. The coefficients ρ and η are chosen

large compared to the growth rates σn and σa. In essence this amounts to slaving

the the last two equations to the first two (i.e. set ȧ5 = ȧ6 ≡ 0 and solve for

a5 and a6). Hence the evolution equations (5.2c) and (5.2d) are merely dummy

equations. The reason for this decoupling is convenient controller design based

on the standard quadratic form of a Galerkin system.
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5.5.2 Conditions for the model coefficients

The parameters of the amplitude model (5.2) are identified by calibration with

experimental data. The amplitudes of the fluctuations at the natural and actu-

ated attractors can be identified by spectral analysis of the PIV snapshots or the

pressure readings. The absolute values of An and Aa are not considered important

here, but their relative values with respect to each other.

Consider three reference trajectories: a natural attractor and an actuated

attractor, and also the transient that connects the two. The following conditions

must be satisfied on the natural attractor (unforced flow): the amplitudes are

constant, i.e. An = An,n, Aa = Aa,n = 0, a5 = an5 , a6 = an6 . Consequently, their

time derivatives vanish identically:

0 = σn + βn an5 + δn an6 , (5.3a)

0 = (An,n)2 − an5 , (5.3b)

0 = (Aa,n)2 − an6 . (5.3c)

Similarly, on the actuated attractor (forced locked-in flow); An = An,a, Aa = Aa,a,

a5 = aa5, a6 = aa6 and:

0 = σn + βn aa5 + δn aa6, (5.4a)

0 = σaAa,a + gB, (5.4b)

0 = (An,a)2 − aa5, (5.4c)

0 = (Aa,a)2 − aa6. (5.4d)

The coefficient σa is negative, since the second oscillator only exists under actu-

ation. The growth rates σn and σa are determined by the transient times of the

system:
1

T1
= σn,

1

T2
= −σa. (5.5)

The first transient time T1 is inferred from the transient of a locked-in actuated

flow to a natural flow, i.e. actuation is turned off. The second time constant

is determined from the transient of the natural to a locked-in actuated flow,

i.e. actuation is turned on.

The parameters ρ and η are arbitrarily set to:

ρ = 10 σn, η = −10 σa. (5.6)
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5.5.3 Implementation of actuation

The conditions for the model coefficients in the previous section are appropriate

for a trajectory that describes the natural flow, a locked-in actuated flow and

transients between both states. It is, however, not clear how the actuation input

B = B(t) of the model is related to the physical actuator amplitude, i.e. the

voltage input to the loudspeaker u or the effectuated momentum coefficient cµ.

Here, an empirical relationship is established by connecting B to the spatially

averaged pressure coefficient 〈cp(t)〉.
If the flow is periodically forced at its optimal frequency of Sta ≈ 0.15, the

base pressure coefficient steadily increases with actuation power until it saturates

at a loudspeaker voltage of about 3.5 V or an effectuated cµ ≈ 0.006 (Re =

46 000). The relation between the nondimensional excitation coefficient cµ and

the amplitude voltage input û to the loudspeaker-actuator is shown in figure 5.7.

In the left plot of figure 5.8 a typical example is shown of a stepwise increment

of the actuation amplitude. The corresponding response of the base pressure

coefficient 〈cp〉 is shown in the right plot of the same figure, where the white

lines indicate the time-averaged attractor values. These attractor averages define

a static relationship between û and 〈cp〉, see figure 5.9. The mapping from the

actuation amplitude û to the time-averaged attractor values of the base pressure

coefficient is approximated by a tanh function

〈cp〉 = a tanh(b(û− c)) + d, (5.7)

where {a, b, c, d} are constants that follow from fitting the measurements. Alter-

natively, the static map can be stored as a look-up table. The static relationship

between û and 〈cp〉 can be related to the amplitude model once the measure-

ment equation is defined. Let the measurement equation be defined as a linear

combination of the energy levels of both oscillators

y = 〈cp〉 = c0 + c1 (An)2 + c2 (Aa)2. (5.8)

The relation (5.8) together with (5.4) yields an expression for the actuation input

B to the model (5.2):

B = c̃
√

〈cp〉 − 〈cp0〉, (5.9)
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Figure 5.7: The relation between the loudspeaker voltage û and the momentum

coefficient cµ; St
a = 0.15.
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Left: loudspeaker voltage û, right: base pressure coefficient 〈cp(t)〉 and its time-

averaged attractor values (white lines).
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Figure 5.9: Left: the static mapping of the loudspeaker amplitude û to 〈cp(t)〉,
Re = 46 000, Sta = 0.15; right: the implied static relationship between between

û and the actuation amplitude to the model B (see (5.7) and (5.10)).

where 〈cp0〉 is the value of 〈cp〉 when Aa = 0 and c̃ is an arbitrary scaling constant.

Combining this with (5.7), the input signal to the model B is related to input-

voltage of the actuator û as follows

B = B̂
√

a tanh (b(û− c)) + d− 〈cp0〉, (5.10)

where B̂ is a scaling constant, such that for û → ∞, B = 1. This relationship is

shown in the right plot of figure 5.9.

5.6 Experimental results

The amplitude model, derived from the Galerkin mean-field model (see § 5.5), is

used to describe the bluff body wake. The parameter identification of the model

is described in § 5.6.1. In § 5.6.2 the calibrated model is employed for set-point

tracking of the base pressure coefficient .

5.6.1 Model parameter identification

An open-loop reference experiment at Re = 46 000 is used to identify the param-

eters of the amplitude model (5.2), the static relationship (5.7) and the measure-

ment equation (5.8). The model is calibrated using the base pressure data from
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Figure 5.10: Left: the amplitudes An and Aa of the calibrated model; Re =

46 000, Sta = 0.15, right: the measured time-averaged base pressure coefficient

(—) and the mean base pressure coefficients as predicted by the model (− −).

the sensors. The actuation amplitude is increased stepwise as shown in figure

5.8. The constraints: (5.3), (5.4) and (5.5) are applied to determine the model

constants. The conditions at the actuated attractor are applied for the locked-in

flow field, where the voltage of the actuator equals 5 V. It is assumed that B = 1

when û = 5 V (compare with (5.10) and figure 5.9). After the calibration of

the coefficients of the amplitude model, the coefficients for the static relationship

(5.7) and the measurement equation (5.8) are determined.

The amplitudes An and Aa corresponding to the oscillatory fluctuations, ob-

tained by integration of the amplitude model (5.2), are shown in the left plot of

figure 5.10. The identified base pressure coefficient follows from the linear com-

bination of the squared amplitudes as defined by (5.8). The comparison of the

identified base pressure coefficient with the experimental data is shown in the

right plot of figure 5.10.

5.6.2 Set-point tracking of base-pressure coefficient

The sliding mode controller, described in § 2.4.1, is implemented for set-point

tracking of the time-averaged base pressure coefficient 〈cp〉. The dynamic system

is given by (5.2) and the measurement equation by (5.8). The control goal is the
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same as the measured quantity y and is repeated for sake of convenience:

〈cp〉 = c0 + c1 (An)2 + c2 (Aa)2. (5.11)

The corresponding control law for the model amplitude B is (compare with

(2.106) and (2.104))

Bsm = Beq −K sat

(
s

ψ

)

, (5.12)

with the equivalent control law

Beq = −c1 (σn + βn a5 + δn a6) (An)2

c2Aag
− σaAa

g
. (5.13)

An extended Kalman filter (EKF) is used to estimate the oscillation amplitudes

An and Aa from the base pressure coefficient.

The model coefficients are calibrated for a (fixed) Reynolds number of Re =

46 000 as described in the previous section. Figure 5.11 shows the tracking re-

sponse of the closed-loop system after stepwise changes of the reference command

〈cp,ref〉 (the white line in the top right plot). The controlled system output 〈cp〉
follows the prescribed reference command, although there appears to be a bias,

particularly during the second step that starts at t ≈ 30 s. There is, however, no

severe bias in the signal: it is only a plotting related issue related to the amount

of information.1 The center right plot shows a comparison of the reference com-

mand and the time-averaged base pressure coefficient, where the time-average

is taken over the part of the trajectory where the reference command is con-

stant. This figure indeed shows that the controlled system output is in good

agreement with the reference command. There is a only a slight offset during

the first control phase (t = 8.3 − 28.3 s). The corresponding reduction of the

(low-pass filtered) drag coefficient cD is shown in the bottom right figure. The

control input to the model Bsm and the excitation momentum coefficient cµ are

shown in the left plots. The clipped control input is due to saturation of the base

pressure coefficient at cµ = 0.009. The robustness of the sliding mode controller

with respect to changing operating conditions is verified by varying the Reynolds

1Ten seconds of measurement time, with a sample rate of 1000 [Hz], implies 10 000 mea-

surements contaminated with high-frequency noise.
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Figure 5.11: Reference tracking test of the sliding mode controller; Re = 46 800,

Sta = 0.15. The controller starts at t = 8.3 s. The reference and experimental

base pressure coefficient (top right), the reference and time-averaged experimental

base pressure coefficient (center right), the (low-pass filtered) drag coefficient

(bottom right), the control input to the model B (top left), and the excitation

momentum coefficient cµ (bottom left) are shown.
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5.7 Conclusions

number from approximately 42 000 to 46 000 as shown in the bottom panel of fig-

ure 5.12, without changing the system derived controller parameters. Note that

the model is calibrated for Re = 46 000, which explains the offset for the natural

flow during the first 8.3 seconds. After the change in Reynolds number at about

t ≈ 25 s the controller requires more actuation power to keep the base pressure

coefficient at the desired level (see the cµ plot). Again, there is a slight bias in the

pressure coefficient (see center right plot), which is consistent with the previous

reference tracking test in figure 5.11. The drag coefficient remains at about the

same level throughout the Reynolds number variation and an acceptable tracking

performance is obtained.

5.7 Conclusions

The present investigation focuses on drag reduction of the flow around a D-shaped

bluff body in a wind tunnel experiment, where the Reynolds number is in the

range: 42 000 to 46 000. Analysis of the velocity flow field shows that the natural

wake is dominated by a vortex street at a dominant nondimensional frequency of

about Stn ≈ 0.15. The goal of active flow control is to reduce the adverse effect

of this vortex street by introducing in phase vortices at about 65% of the natural

frequency. This actuation mechanism introduces smaller synchronized vortices in

the wake, which desynchronize the shear layer dynamics. The effectuated mean

flow change leads to a drag reduction.

A generalized mean-field model with two dominant frequencies is postulated

for this flow. This model describes coherent structures at the natural frequency,

smaller structures that correspond to the actuated frequency, their mutual in-

teraction and the mean-field component. The mean-field model is reduced to

evolution equations for the amplitudes, since the control goal, the base pressure

coefficient, solely is a function of the amplitudes (see also § 2.4). The amplitude

model is used for design of a nonlinear sliding mode controller, with the purpose

of set-point tracking of the base pressure coefficient. Reference tracking tests

show that the sliding mode controller performs reasonably well and is also robust

against slight changes in the Reynolds number.
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Figure 5.12: Reference tracking test of the sliding mode controller under chang-

ing operating conditions. The controller starts at t = 8.3 s and is switched off

at t = 48.3 s. The Reynolds number varies from 42 000 to 46 000, while the base

pressure coefficient is held constant at cp,ref = −0.55.
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5.7 Conclusions

The model approach described above allows the application of several non-

linear control and state estimation methods and the reader is referred to Aleksić

et al. (2010) for more control examples for a different type of bluff body. END
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Chapter 6

Conclusions

This thesis presented a mean-field based modelling framework for the purpose

of understanding of key physical phenomena of separated fluid flows and subse-

quently for the development of nonlinear controllers based on these models. A

(low-dimensional) POD basis of a natural flow does not include any transient

information. The mean-field correction (change in mean flow) is added to this

basis to make the model more robust, thus a mean-field model (see § 2.3.2) is

obtained. The RANS equation hints at this correction (see § 2.1.3). Aerodynamic

applications also exemplify the importance of the mean-field: the characteristics

of the mean flow, e.g. the time-averaged shape of a wake, determine to a large

extent the lift and drag.

In its simplest form the mean-field basis is given by a steady solution, two

(dominant) oscillatory POD modes of the natural flow, and a shift mode which

describes the mean-field correction. For this case, the shift mode is defined as

the difference of the natural mean flow and the steady solution. These modes

are used in an expansion for the velocity field. Substitution in the governing

equations and Galerkin projection yields a dynamic system for the evolution

of the temporal coefficients. This forms the complete reduced-order or mean-

field model (see § 2.3.2). This very model forms a least-order representation

for the laminar flow around a circular cylinder. In chapter 3 a parameterized

POD approach is described for the cylinder wake flow to extend the dynamic

range of the least-order mean-field model. The model structure is retained, and

a collection of models is obtained for multiple operating conditions. Advantages
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over standard POD models are manifest by improved ability to suppress vortex

shedding. The parameterized POD model is also used to optimize sensor locations

over the entire range (of available models). A SISO controller is implemented that

uses an optimal sensor position, a dynamic observer and a pPOD based look-up

table for suppression of the cylinder wake. Due to intrinsic instabilities it is

difficult to fully stabilize the wake using SISO control with interpolated models.

The generalized mean-field model (see § 2.3.3) contains three additional modes

in its basis compared to the mean-field model above. It is assumed that periodic

actuation leads to a second oscillator in the flow field, that reduces the dominant

instability at the natural frequency. This ‘actuated’ oscillator is also accompanied

by a shift mode, representing mean-field variations due to the actuated fluctu-

ations. As a consequence, the low-dimensional basis now contains: two shift

modes, two mode pairs, corresponding to a ‘natural’ and ‘actuated’ oscillator

and the steady solution. This model indeed provides a least order representation

for the flow around a high-lift configuration in chapter 4. The high-frequency

forcing effectuates changes in the flow by indirect interaction with the natural

oscillator via the varying mean flow. The mechanism is phase-independent and

hence explains why open-loop forcing can work. The proposed model captures

URANS simulation data of the high-lift configuration surprisingly well consider-

ing the very low order. Model predictions include the lift coefficient which is in

good agreement with the original data. As can be expected, predictions by this

least-order model erode during fast transients, and a more accurate representa-

tion requires higher-order models. A main advantage of the analytical model is

the possibility of a simple and robust calibration of a given data set. It was shown

how a sliding mode controller can be used for improvement of open-loop control

by closely tracking a prescribed lift coefficient.

The flow around the D-shaped bluff body in chapter 5 is characterized by

large vortices in the wake, which lead to a relatively high (pressure) drag. These

adverse effects of large coherent structures can be successfully reduced by periodic

actuation at about 65% of the natural shedding frequency. This phenomenology

motivates the application of a (simplified) mean-field Galerkin model for flow

control. The goal in this experimental study is set-point tracking of the base

pressure coefficient. The model is tuned in a configuration-specific manner and
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the model coefficients are identified by calibration from pressure measurements.

Subsequently, the tuned model is used for design of a nonlinear sliding mode con-

troller. Reference tracking tests show that the sliding mode controller performs

reasonably well and is also robust against slight changes in the Reynolds number.

END
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Appendix A

Proper Orthogonal

Decomposition

A.1 POD in the spatial domain

In this section, the derivation of the POD is summarized. First the definitions

introduced in §2.2.1 are recapitulated. The velocity field on the spatial domain

Ω is formally embedded in a mathematical space. Let H be a Hilbert space with

the following inner product between two vector fields f , g,

(f , g)Ω =

∫

Ω

f · g dx, (A.1)

and the induced norm

‖f‖ =
√

(f , f). (A.2)

Let v = {vj ∈ H| j = 1, . . . , N} be an orthonormal basis for a subspace S ⊂ H .

Then the orthogonal projection of f ∈ H onto S is given by

PSf =

N∑

i=1

(f ,vi)Ω vi. (A.3)
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A.1 POD in the spatial domain

The time-averaging operator of a quantity a = a(t) is denoted by a and can be

approximated by a suitable quadrature rule:

a =

M∑

i=1

wka(tk), (A.4)

where wk are the quadrature weights such that
∑M

k=1wk = 1.

The optimality condition for the POD is: given an ensemble of M snapshots1

u = {u(x, tj) ∈ H| j = 1, . . . ,M}, find a subspace S of fixed dimension N < M

that minimizes the total error

arg min
{vi}∈S

‖u − PSu‖. (A.5)

Using the Pythagorean theorem, it follows that ‖u − PSu‖2 = ‖u‖2 − ‖PSu‖2,

since PS is an orthogonal projection. Thus the optimality condition can also be

formulated as

arg max
{vi}∈S

N∑

i=1

(u,vi)2
Ω. (A.6)

The first POD mode (or function) v1 is the argument for which (A.6) is maximized

when N = 1

v1 = arg max
v1∈S

(u,v1)2
Ω, (A.7)

or with the constraint that ‖v1‖ = 1,

v1 = arg max
v1∈S

(u,v1)2
Ω

‖v1‖2
. (A.8)

This problem can be solved by means of a calculus of variations. To this end, the

Lagrangian J(λ1,v1) with Lagrange multiplier λ1 is introduced

J(λ1,v1) = |(u,v1)Ω|2 − λ1(‖v1‖2 − 1). (A.9)

Now define an operator C : H → H

C(v) = (u,v)Ω u. (A.10)

1The prime indicating a fluctuating field, as in (2.14), is suppressed in the following.
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A.1 POD in the spatial domain

Then the extremum of (A.9) is given by (Astrid, 2004)

C(v1) = λ1v1. (A.11)

The second POD basis function must be orthogonal to the first one, hence the

second Lagrangian is

J(µ, λ2,v2) = (v2, C(v2))Ω − λ2 [(v2,v2)Ω − 1] − µ(v1,v2)Ω. (A.12)

Since the operator C is self-adjoint it follows that all its eigenfunctions are or-

thogonal and the eigenvalues nonnegative, λi ≥ 0. The orthogonality implies that

the last term of the Lagrangian equals zero, i.e. (v1,v2)Ω = 0. Thus all POD

modes ui(x) = vi(x) are defined as solutions of the eigenproblem

(u,ui)Ω u = λiui. (A.13)

Note that u = u(x, t) denotes the snapshot ensemble and ui = ui(x) the (spatially

dependent) POD basis function on the domain Ω. The eigenproblem can be

rewritten as

(u(y, t),ui(y))Ω u(x, t) = λiui(x) (A.14)

Using the specific definition of the inner product given by (A.1), the POD modes

are defined as the eigenfunctions of the Fredholm equation
∫

Ω

R(x,y)ui(y)dy = λiui(x). (A.15)

Here, R(x,y) is the two-point autocorrelation tensor for the flow field, defined

by

R(x,y) = u(x, t) ⊗ u(y, t), (A.16)

or in index notation

Rαβ = uα(x, t)uβ(y, t), (A.17)

where the greek symbols refer to the velocity components, i.e. in three dimensions

u = [u1, u2, u3]. The modes are ordered with respect to the decreasing real non-

negative eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0. Note that zero eigenvalues are not
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A.1 POD in the spatial domain

considered since they do not contribute to the velocity. Using the orthonormality

of the modes, the time-dependent amplitudes follow from the projection

ai(t) = (u(x, t),ui(x))Ω. (A.18)

In summary, the velocity field is decomposed as

u(x, t) =

M∑

i=1

ai(t) ui(x), (A.19)

where {ui}Mi=1 ⊂ L2(Ω) is the POD basis and time dependency is described by

the amplitudes ai.

Important properties of the POD are highlighted in the following:

(i) The POD modes are orthonormal

(ui,uj)Ω = δij , (A.20)

(ii) The autocorrelation function can be expanded using the POD modes

R (x,y) =
M∑

i=1

λi ui(x) ⊗ ui(y). (A.21)

This is the so called dyadic expansion. Note that the Reynolds stress is a

special case of the autocorrelation tensor when x = y. The trace of the

Reynolds tensor is twice the turbulent kinetic energy (compare (2.19))

q(x) :=
1

2
u′(x, t) · u′(x, t) =

1

2

3∑

α=1

Rαα(x,x).

(iii) The first and second statistical moments of the temporal coefficients are

ai = 0, (A.22a)

aiaj = λi δij. (A.22b)

The second statistical moment shows that the modal amplitudes are or-

thogonal in time (no summation implied).
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A.2 POD in the temporal domain

(iv) The eigenvalue λi in (A.15) represents the average kinetic energy captured

by POD mode ui. The turbulent kinetic energy in the complete domain is

KΩ =
1

2
(u′,u′)Ω =

1

2

M∑

i=1

λi. (A.23)

This equation follows from the bi-orthogonality property of the POD, i.e. (A.20)

and (A.22b).

(v) Finally, it is stipulated that (A.13) is the general definition of a POD mode,

where the inner product and the temporal average operator can be freely

chosen (see e.g. Rowley et al., 2003; Schlegel et al., 2010).

A.2 POD in the temporal domain

The decomposition (A.19) can be read as an expansion with spatial modes ui and

temporal coefficients ai or alternatively as an expansion with temporal modes ai

and spatial coefficients ui. This symmetry implies that time and space can be

interchanged. Integration over space is replaced by integration over the time

domain by the quadrature rule (A.4). Thus the orthonormality in space and

time, respectively expressed by (A.20) and (A.22b) is analogue.

Similarly the spatial correlation (A.17) is exchanged for the temporal corre-

lation function

C (ti, tj) = (u(x, ti),u(x, tj))Ω . (A.24)

The eigenproblem for the eigenfunction ak with eigenvalue µk is

M∑

j=1

wj C (ti, tj) ak(tj) = µk ak(ti). (A.25)

As in Appendix A.1, the modes are ordered with respect to the decreasing real

nonnegative eigenvalues µ1 ≥ µ2 ≥ µ3 ≥ . . . > 0. These eigenvalues are identical

to the ones obtained from the decomposition in the spatial domain, i.e. µi = λi.

The self-adjointness of the temporal autocorrelation function implies the or-

thogonality of the temporal coefficients. The coefficients are scaled such that

132



A.3 POD and its connection to SVD

aiaj = λi δij . (A.26)

Now the exact same scaling as before is obtained (compare with (A.22b)). Using

this scaling, the POD modes are calculated by the projection

ui(x) =
1

λi
ai(t) u(x, t). (A.27)

The autocorrelation function can be expanded, in complete analogy to (A.21), as

follows

C(ti, tj) =
M∑

k=1

ak(ti) ak(tj). (A.28)

In summary, the same information can be obtained in the time domain as in

the spatial domain. Note that the POD modes computed from (A.25), (A.24)

and (A.27) are in general different from the ones obtained by application of (2.28)

and (2.27). The latter are obtained from an equivalent formulation in the spatial

domain, whereas the former are directly derived from the formulation in the

temporal domain.

A.3 POD and its connection to SVD

In §2.2.1 the connection of the SVD to the POD was shown. This connection

can also be shown by direct application of the general definition (A.13) as is done

here.

Assume that a continuous vector field u = u(x, t) on a domain Ω is spatially

discretized onto K gridpoints. Let an ensemble of M snapshots be given of the

discretized field. The data is collected in a snapshot matrix

X =








u(1)(x1) u(2)(x1) . . . u(M)(x1)
u(1)(x2) u(2)(x2) . . . u(M)(x2)

...
...

...
u(1)(xK) u(2)(xK) . . . u(M)(xK)








=
[

u(1) u(2) . . . u(M)
]
,

(A.29)

where u(i)(xj) is the value of the vector field at gridpoint x = xj and time t = ti.

The row-direction of X corresponds with the discrete spatial domain and the
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A.3 POD and its connection to SVD

columns contain the snapshots. The spatial correlation matrix can be build by

after-multiplying with the transposed snapshot matrix, i.e.

C = XXT . (A.30)

This result is now connected to the definition of a POD mode. Recall the defini-

tion given by (A.13)

(u,ui)Ω u = λiui.

The time average is defined as the ensemble average and the spatial inner product

is simply the Euclidean product (column × row vector). Using these definitions,

(u,ui)Ω u =

M∑

j=1

1

M

(

u(j)
[
u(j)

]T
)

ui =
1

M

(
XXT

)
ui =

1

M
Cui.

The POD modes are found as solutions of the eigenproblem

1

M

(
XXT

)
ui = λui. (A.31)

The singular value decomposition (Strang, 1988) of a matrix A ∈ R
K×M with

rank(A) = r is a decomposition1

A =
1√
M

UΣVT , (A.32)

with unitary U ∈ R
K×K, unitary V ∈ R

M×M

UUT = IK , UTU = IK , (A.33)

VVT = IN , VTV = IN , (A.34)

and diagonal matrix Σ with r positive diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σr > 0

Σ =












σ1 0 0 0 . . . 0

0
. . . 0 0 . . . 0

0 . . . σr 0 . . . 0
0 . . . 0 0 . . . 0
...

...
...

...
0 . . . 0 0 . . . 0












. (A.35)

1The factor 1/
√

M is introduced for notational consistency.
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A.3 POD and its connection to SVD

The diagonal entries are called singular values. The connection to POD follows

simply by decoupling AAT

1

M

(
AAT

)
U =

1

M
UΣ2. (A.36)

Consider the case with A = X, comparing (A.31) with (A.36), it is clear that the

columns of U contain the POD modes. The eigenvalues of the POD problem are

equal to the scaled squared singular values of the snapshot matrix, i.e. λi = σ2
i /M .

If the snapshot matrix is transposed, similar reasoning applies; in this case not

the spatial POD modes are found, but the temporal coefficients. This is the

discrete equivalent of the method of snapshots (see § 2.2.1)

1

M

(
ATA

)
V =

1

M
VΣ2. (A.37)

Again, let A = X. Then, the columns of V contain the temporal coefficients for

the POD modes. As before, the scaled squared singular values correspond to the

eigenvalues in (A.31).
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Appendix B

Window filters and structure of

the Galerkin system

B.1 Window filters

Here, a general approach to split up the Navier-Stokes equations into separate

equations for each flow contribution in partition (2.89) is described. In the fol-

lowing observation, the standard notation of L2 is used. Specifically, given (an

implicitly known) Hilbert space H , the space L2 is the linear space of measur-

able functions f : ℜ 7→ H with the property that f
∣
∣
[a,b] ∈ L2[a, b] for all finite

intervals, −∞ < a < b < ∞. For example, in the context of the incompressible

Navier-Stokes solutions, H = L2(Ω) is the divergence free, sufficiently smooth

space of velocity fields with appropriate boundary conditions.

Observation B.1.1 Let f(t) ∈ L2 satisfy assumption NSE 1:

f(t) = fB(t) + fn(t) + fa(t)

where fB, fn and fa satisfy the counterparts of (2.91). Let T > 0 be a set length

of a time window. Then there exist kernels KB(τ), Kn(τ), Ka(τ) ∈ L2

(
[−T

2
, T

2
]
)
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B.1 Window filters

such that the following approximation is satisfied to an order O(ǫ):

fB(t) =

∫ T
2

−T
2

KB(τ) f(t+ τ)dτ, (B.1a)

fn(t) =

∫ T
2

−T
2

Kn(τ) f(t+ τ)dτ, (B.1b)

fa(t) =

∫ T
2

−T
2

Ka(τ) f(t+ τ)dτ. (B.1c)

The significance of Observation B.1.1 in the present discussion is that the

window filters in (B.1) commute with time differentiation; when applied to the

velocity field u(x, t), the same holds for spatial derivatives. Hence, this filter has

one important property of the Reynolds average, see (2.4d).

Proof B.1.1 Denote Φ = {Φi(τ)}5
i=1 = {1, cos(ωnτ), sin(ωnτ), cos(ωaτ), sin(ωaτ)},

and let A : ℜ5 7→ span (Φ) ⊂ L2

{
[−T

2
, T

2
]
}

be defined as

Ad =
5∑

i=1

diΦi(τ). (B.2)

Then, the adjoint A∗ : span (Φ) 7→ ℜ5 is an integral operator and the orthogonal

projection of L2

{
[−T

2
, T

2
]
}

onto span (Φ) is Π = A (A∗ A)−1 A∗. In particular,

the linear combination coefficients of the projection Π ζ are given by integral

functionals:

d = (A∗ A)−1 A∗ ζ ⇔ di =

∫ T
2

−T
2

Ki(τ) ζ(τ)dτ, (B.3)

where the kernels Ki are linear combinations of the base functions Φi. In the

simple case where T = Tn is the natural period and the two frequencies are har-

monically related, this formulation reduces to a partial Fourier expansion and Ki

are the standard normalized versions of the trigonometric functions.
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B.1 Window filters

Now let f(t) be a time function satisfying NSE 1. This means that over a

window [t − T
2
, t + T

2
] the three components of the function ζ(τ) = f(t + τ) can

be approximated to an order O(ǫ) in the form

fB(t+ τ) = fB(t),

fn(t+ τ) = ηn cos(ωnτ + θn)

= ηn [cos(θn) cos(ωnτ) − sin(θn) sin(ωnτ)] ,

fa(t+ τ) = ηa cos(ωaτ + θa)

= ηa [cos(θa) cos(ωaτ) − sin(θa) sin(ωaτ)] .

(B.4)

Each of the functions on the right hand side of (B.4), as well as their sum, is

a member of span (Φ). Thus, ζ(τ) = f(t + τ) = A d can be approximated as

in (B.2). The approximation is accurate up to an order O(ǫ) (say, relative to

the L2

[
−T

2
, T

2

]
norm). The coefficients di are computed by integral filters, as in

(B.3).

Since the three approximate expressions for fB(t+ τ), fn(t+ τ) and fa(t+ τ)

in (B.4) are all continuously differentiable in τ , they can be evaluated at τ = 0,

leading to evaluation of the coefficients di, i = 1, 2, 4 as fB(t) = d1, f
n(t) =

ηn cos(θn) = d2 and fa(t) = ηa cos(θa) = d4. The proof is completed by comparing

these expressions with the expressions from (B.3). Notice that the values of di,

i = 3, 5, are not needed to evaluate fn(t+ τ) and fa(t+ τ) at τ = 0.

It is observed that the proof remains valid when the spanning set Φ is enlarged

to include a predetermined number of higher and mixed harmonics of the two base

frequencies, that are deemed non-negligible in the flow under consideration. This

is valid because while Φ is implicitly assumed linearly independent, orthogonality

of the base functions is not assumed. The significance of this observation is that

the projection formulas in (B.1) can be made to filter out additional harmonics
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due quadratic terms in the Navier-Stokes equations, as computed in the next

section.

B.2 Structure of the mean-field Galerkin model

Here, the structure of the Galerkin system is derived from equation (2.95), and

the hypotheses made heretofore. These assumptions include NSE 1 – NSE 4,

in the Navier-Stokes framework and their effect on the Galerkin system through

Galerkin projection. Inaccuracies that result from the linearization (2.95c) are

partially compensated for by the calibration of system parameters. This lineariza-

tion leads to the linear dependence of aB on (An)2 = ‖an‖2 and (Aa)2 = ‖aa‖2,

as stated in Observation B.2.1, below. The expression for aB without that as-

sumption includes higher-order terms in (An)2 and (Aa)2.

Equations (2.96) and (2.97) can be derived from (2.95a), (2.95b) and (2.95c) in

a straight-forward manner by a lengthy calculation exploiting the phase-invariance

assumption. Here, a more compact and insightful Hilbert-space consideration is

chosen.

Observation B.2.1 Under the assumptions above, there exists a 2 × 2 matrix

AB such that

aB = AB






(An)2

(Aa)2




 (B.5)

Note that aB = 0 at Aa = An = 0 since the steady Navier-Stokes solution serves

as base flow.

Proof B.2.1 By NSE 1 the base flow satisfies time-independent boundary con-

ditions, whence the mean-flow deformation u∆ = uB − us satisfies homogeneous

boundary conditions. The linear mean-field deformation term in (2.93) reads

∇ ·
(
us ⊗ u∆ + u∆ ⊗ us

)
− ν △u∆. (B.6)
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This linear operator with homogeneous boundary conditions has the counterpart

linear term L(aB) in (2.95c). It is conjectured that the operator (B.6) and cor-

responding matrix L are non-singular. Inverting that matrix, a linear expression

for aB in terms of Q(an, an) + Q(aa, aa) is obtained.

The phase invariance hypothesis implies that the two quadratic terms Q(an, an)

and Q(aa, aa) are both phase independent. They are therefore linearly determined

by (An)2 and (Aa)2, respectively.

Observation B.2.2 Equation (2.95a) can be written in the form

d

dt
an =






σ̃n −ω̃n

ω̃n σ̃n




 an (B.7)

where the state dependent coefficients are of the form

σ̃n = σn − σn,n (An)2 − σn,a (Aa)2

ω̃n = ωn + ωn,n (An)2 + ωn,a (Aa)2
(B.8)

Proof B.2.2 Clearly, the right-hand side of (2.95a) is linear in an. It can there-

fore be re-written in the form

d

dt
an = F (aB) an (B.9)

where the matrix F (aB) depends on aB in an affine manner. Invoking Observation

B.2.1, the dependence on aB may be substituted by dependence on (An)2 and

(Aa)2. The fact that (B.9) is phase invariant means that the matrix F must

commute with any rotation matrix. As such, it must be a scaled rotation matrix.

That is, F must be of the form specified in (B.7). The affine dependence on the

parameters implies (B.8).
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Observation B.2.3 Equation (2.95b) can be written in the form

d

dt
aa =






σ̃a −ω̃a

ω̃a σ̃a




 aa +






κ −λ

λ κ




b (B.10)

where the state dependent coefficients are of the form

σ̃a = σa − σa,n(An)2 − σa,a(Aa)2

ω̃a = ωa + ωa,n(An)2 + ωa,a(Aa)2
(B.11)

The proof of this observation is completely analogous to the proof of Observation

B.2.2 and is left out. This completes the derivation of (2.96) - (2.97) from the

three equations (2.95a), (2.95b), and (2.95c).
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vortex streets in oscillatory flow. Exps. Fluids , 7, 217–227.
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