ANALYSIS OF COEXISTING GRAPHICAL AND TEXTUAL
REPRESENTATIONS OF REQUIREMENTS BASED ON ACTIVITY
DIAGRAMS AND STRUCTURED TEXT

vorgelegt von
Master of Science
Martin Beckmann

geb. in Berlin

von der Fakultit IV - Elektrotechnik und Informatik
der Technischen Universitiat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. habil. Odej Kao
Gutachter: Prof. Dr. Andreas Vogelsang
Gutachter: Prof. Dr. Jan Mendling
Gutachter: Prof. Dr. Yasmina Bock

Tag der wissenschaftlichen Aussprache: 22. Januar 2019

Berlin 2019

Martin Beckmann: Analysis of Coexisting Graphical and Textual Represen-
tations of Requirements based on Activity Diagrams and Structured Text,
Dissertation, © 2019

ABSTRACT

Due to increasing complexity and the tendency towards more cus-
tomized products, the development of modern technical systems de-
mands more and more effort. In an attempt to reduce the effort re-
quired, engineering models are being adopted to a greater extent in
all phases of development. Among the affected development phases
is requirements engineering. As a result, engineering models, which
almost always take the form of graphical notation, have become more
common in a setting where text-based requirements specifications
have been historically predominant. These graphical models are not
a replacement for text-based specifications, but supplement them in-
stead. While these two forms of representation may be complemen-
tary, oftentimes they are strongly related or even express the same
content. Hence, the graphical and textual representations coexist.

The use of coexisting graphical and textual representations for spec-
ification purposes has shown promising results. However, these re-
sults have been obtained in a research context and are at best evalu-
ated in practice. In practice however, such approaches are tailored to
domain- or even project-specific needs. It is unclear whether compara-
ble approaches implemented by practitioners independently achieve
the same promising results as those obtained in research contexts.

In this thesis, we address this gap by examining a case where an
approach using coexisting graphical and textual representations is
realized and productively used by practitioners. The specific realiza-
tion of this approach employs UML2 Activity Diagrams as graphical
representation and hierarchically structured text as textual represen-
tation to describe the functions of a system. From the results of this
examination, we conclude that, for the most part, the practitioners
perceive the benefits of this approach as predicted by research. Still,
the application of such an approach in practice results in a number
of pitfalls. Inconsistencies between the two representations, as well
as other quality issues, constitute the biggest impact on the practical
usability of this approach. Over 70% of the functions are affected by
deficiencies that are considered major issues by users. As these de-
ficiencies represent a sizable negative impact on the applicability of
the approach, a method is developed in this thesis that prevents the
occurrences of inconsistencies and other quality issues.

Overall, this thesis contributes to the body of knowledge of ap-
proaches that use an additional textual representation with graphical
models. This knowledge may be employed to design new approaches
or improve existing ones in order to increase acceptance among prac-
titioners.

ZUSAMMENFASSUNG

Aufgrund steigender Komplexitidt und der zunehmenden Tendenz zu
individuell angepassten Produkten, erfordert die Entwicklung mo-
derner technischer Systeme immer mehr Aufwand. Um diesen Her-
ausforderungen beizukommen, werden zunehmend Modelle in allen
Phasen der Entwicklung eingesetzt. Damit einhergehend ist auch das
Anforderungsmanagement betroffen. Als Folge dessen findet der Ein-
satz von Modellen, welche meist in grafischer Notation vorliegen, zur
Entwicklung mehr Verbreitung. Dies geschieht in einem Umfeld, in
welchem aus historischer Sicht vor allem textbasierte Spezifikationen
vorherrschend sind. Nichtsdestotrotz ersetzen die grafischen Modelle
nicht die textuellen Spezifikationen, sondern erweitern diese. Dabei
konnen diese verschiendenen Formen der Reprasentation einander er-
ganzen, oft sind diese jedoch eng miteinander verzahnt oder driicken
sogar den gleichen Inhalt aus. Entsprechend liegt eine Koexistenz bei-
der Représentationen vor.

Die Verwendung von koexistierenden grafischen und textuellen
Reprasentation zum Zwecke der Spezifikation hat dabei vielverspre-
chende Ergebnisse gezeigt. Jedoch stammen diese Ergebnisse ledig-
lich aus einem wissenschaftlichen Umfeld und sind im besten Fall in
einem industriellen Umfeld evaluiert worden. In der Praxis werden
derartige Ansétze allerdings an die Doméne oder gar an projektspe-
zifische Anforderungen individuell angepasst. Es bleibt daher ein of-
fener Punkt, ob vergleichbare Ansétze, welche von Anwendern selbst
implementiert werden, die gleichen Ergebnisse erzielen.

Solch eine Gegebenheit wird in dieser Arbeit untersucht. Das heifst,
es wird ein Fall eines solchen Spezifikationsansatzes betrachtet, wel-
cher koexistierende grafische und textuelle Reprasentation verwendet
und von den Anwendern selbst umgesetzt wurde und produktiv ge-
nutzt wird. Konkret wird ein Ansatz betrachtet, welcher UML2 Aktivi-
titsdiagramme als die grafischen Modelle und hierarchisch strukturier-
ten Text als die textuelle Reprédsentation zur Beschreibung von Funk-
tionen eines Systems verwendet. Aus den Ergebnissen der Betrach-
tung ergibt sich, dass die Anwender zum GrofSteil den von der Wis-
senschaft prognostizierten Nutzen ebenfalls wahrnehmen. Trotz die-
ser positiven Wahrnehmung, ergeben sich in der industriellen Anwen-
dung eines solchen Ansatzes eine Reihe von Schwierigkeiten. Den
grofiten Einfluss auf die praktische Verwendung stellen Inkonsisten-
zen zwischen den Représentation und andere Qualitiatseinschrankun-
gen dar. In dem untersuchten System sind 70% aller Funktionen von
Defekten betroffen, welche die Anwender als grofie Probleme wahr-
nehmen. Da diese Defekte folglich eine betrdchliche negative Beein-
trachtigung fiir die Anwendbarkeit des Ansatzes darstellen, wird in

dieser Arbeit eine Methode entwickelt, welche das Auftreten der In-
konsistenzen und anderen Qualitdtseinschrankungen verhindert.

Insgesamt trdgt diese Arbeit dazu bei, das Wissen zu Ansétzen, wel-
che eine zusitzliche textuelle Reprdsentation zu grafischen Modellen
verwenden, zu konkretisieren und zu erweitern. Dies kann wieder-
um genutzt werden, um neue Ansédtze zu kreieren oder existierende
zu verbessern und somit die Akzeptanz von Nutzern zu steigern.

PUBLICATIONS

The following publications are part of this thesis:

[1]

Martin Beckmann, Thomas Karbe, and Andreas Vogelsang.
“Information Extraction from High-Level Activity Diagrams
to Support Development Tasks.” In: International Conference on
Model-Driven Engineering and Software Development (2018).

Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang,
and Aaron Schlutter. “Removal of Redundant Elements within
UML Activity Diagrams.” In: International Conference on Model
Driven Engineering Languages and Systems (2017).

Martin Beckmann, Christian Reuter, and Andreas Vogelsang.
“Coexisting Graphical and Structured-Textual Representations
of Requirements: Insights and Suggestions.” In: International
Working Conference on Requirements Engineering: Foundation for
Software Quality (2018).

Martin Beckmann, Andreas Vogelsang, and Christian Reuter.
“A Case Study on a Specification Approach using Activity Di-
agrams in Requirements Documents.” In: International Require-
ments Engineering Conference (2017).

Further ideas and figures have appeared previously in the follow-
ing publications:

[1]

[2]

Martin Beckmann and Aaron Schlutter. “Automatische Dup-
likateliminierung in Aktivitdtsdiagrammen von Fahrzeugfunk-
tionen.” In: Workshop Automotive Software Engineering (2016).

Martin Beckmann and Andreas Vogelsang. “Evaluation of a
Specification Approach for Vehicle Functions using Activity
Diagrams in Requirements Documents.” In: Workshop Automo-
tive Software Engineering (2017).

Martin Beckmann and Andreas Vogelsang. “What is a Good
Textual Representation of Activity Diagrams in Requirements
Documents?” In: International Model-Driven Requirements Engi-
neering Workshop (2017).

CONTENTS

I REQUIREMENTS SPECIFICATION WITH GRAPHICAL MOD-
ELS AND TEXT

1 INTRODUCTION 3
1.1 Motivation o oo o oo 3
1.2 Context: Requirements Engineering in the Develop-

ment of Automotive Systems 5
1.3 Problem Statement 6
1.4 Contributions of this Thesis 7
1.5 Methodological Background 11
1.6 Outline 12

2 STATE OF THE ART 15
2.1 Requirements Engineering 15
2.2 Model-Driven Development 18
2.3 Coexisting Graphical and Textual Representations . . . 23
2.4 Model-Driven Development in Requirements Engineer-

INg 26
2.5 ScopeofthisThesis 34

II ANALYSIS OF A SPECIFICATION APPROACH BASED ON
COEXISTING ACTIVITY DIAGRAMS AND TEXTUAL REPRE-
SENTATIONS

3 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS
OF REQUIREMENTS 39

4 A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 57

IIT AUTOMATIC GENERATION OF TEXTUAL REPRESENTATIONS
FROM ACTIVITY DIAGRAMS

5 REMOVAL OF REDUNDANT ELEMENTS WITHIN UML AC-

TIVITY DIAGRAMS 71
6 INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIV-

ITY DIAGRAMS 83
7 CONCLUDING DISCUSSION 93

7.1 SUMMArYo 93

7.2 Discussion 95

8 OUTLOOK 103

X

CONTENTS

IV APPENDIX
A FORMALIZATION OF INCONSISTENCIES AND QUALITY IS-
SUES
A.1 Formal Semantics of the Examined UML2 Activities . .
A.2 Formal Definition of the Textual Representation
A.3 Connections between the Activity Diagram and the Tex-
tual Representation
A.4 Categories of Inconsistencies and Other Quality Issues
B ALTERNATIVE TEXTUAL REPRESENTATIONS OF ACTIVITY
DIAGRAMS
B.1 Group Representation
B.2 Normal Form Representation
B.3 Tree Representation
B.4 Exact Equivalent Representation
B.5 Evaluation of the Textual Representations
C TOOL PROTOTYPE
C1 Structure Lo o
c2 Overview

BIBLIOGRAPHY

107
108
109

111
112

121
121
122
124
125
126
129
129
130

131

LIST OF FIGURES

Note that in addition to the figures below, this thesis also contains
figures from the original publications.

Figure 1.1
Figure 2.1
Figure A.1

Figure B.1
Figure B.2
Figure B.3
Figure B.4
Figure C.1

Figure C.2

Outline of the main part of this thesis 12
ExcerptofanRS 16
Document tree of Requirements Specification

(Rs)inFigure2.1. 109
Group Representation 122
Normal Form Representation 123
Tree Representation 124
Exact Equivalent Representation 125
Procedure of the text generation from activity

diagrams, ... 129
Dialogs of the tool prototype 130

LIST OF TABLES

Note that in addition to the tables below, this thesis also contains ta-
bles from the original publications.

Table 2.1
Table 2.2
Table 2.3
Table B.1

Table B.2

Relevant activity elements in the examined method-

ology 22
Works on model-to-requirements approaches . 29
Works on requirements-to-model approaches . 32
Ranking of textual representations for each par-

ticipant in descending order 127

Aggregated ranking of textual representations
for all participants 127

ACRONYMS

BPMN Business Process Model and Notation
MBE Model-Based Engineering

MDD Model-Driven Development

NL Natural Language

NLP Natural Language Processing

OEM Original Equipment Manufacturer

RE Requirements Engineering

RS Requirements Specification

SysML Systems Modeling Language

UML Unified Modeling Language

Part I

REQUIREMENTS SPECIFICATION WITH
GRAPHICAL MODELS AND TEXT

INTRODUCTION

In this thesis, we investigate an approach that uses graphical models
and textual descriptions side by side for specifying systems and soft-
ware in an industrial environment. For this purpose, a case of such a
specification approach that uses activity diagrams® as graphical mod-
els and hierarchically structured text as textual representation is ex-
amined. The approach is analyzed in detail and challenges identified
in the process are addressed. In this chapter, the reasons and motiva-
tion for such an approach are presented in Section 1.1. Section 1.2 pro-
vides insights into the context of the examined specification approach
applied to describe functions of a vehicle system. Section 1.3 states the
problems that are addressed in this work. Section 1.4 summarizes the
contributions. Section 1.5 provides an overview of the methodologi-
cal background of this thesis. Finally, Section 1.6 presents the outline
of the remainder of this thesis.

1.1 MOTIVATION

For embedded and distributed systems the tendency of increasing
complexity and further individualization continues to persist [41, 195].
As a result, the development of systems and software requires more
and more effort. Requirements Engineering (RE) has been impacted by
this tendency because it represents the beginning of the development
of a product. This impact on RE is essential for product development,
as RE is still considered one of the most crucial phases during devel-
opment because all subsequent development phases depend on its
outputs [105, 237]. A fundamental purpose of RE is the elicitation and
management of requirements, typically in the form of requirements
specification (RS) documents [65].

These RS documents most commonly consist of textual Natural Lan-
guage (NL) requirements [164]. Despite the wide adoption of NL to
specify requirements, its use has a number of drawbacks (e.g., ambi-
guity) and limitations that have repeatedly been emphasized [30, 199,
203]. Still, NL text remains the predominant form of documentation
for RS documents [126]. In order to mitigate the identified weaknesses
of NL text, the use of Natural Language Processing (NLP) techniques
has been identified as a possible solution [158]. These techniques at-
tempt to improve the degree of automation of RE tasks in order to

Unless indicated otherwise, in this thesis the term activity diagram refers to Activ-
ity Diagrams of the OMG Unified Modeling Language (UML) Specification Version
2.5 [172].

INTRODUCTION

reduce the required effort and facilitate work that is otherwise often
error prone. There are a number of approaches in RE that make use
of NLP [163]. Nevertheless, these methods are not perfect and under
some circumstance yield worse results than manual approaches [29]
(i.e., in safety-critical contexts where each requirement must be man-
ually reviewed anyway). Thus, even considering the recent and on-
going progress in NLP, it can be assumed that NLP does not offer
a permanent solution for managing the increasing complexity of RE
tasks.

In addition to NLP, it has been suggested that (semi-)structured NL
be applied to specify requirements [139, 148]. While this mitigates
the problem of ill-structured and badly written requirements, it nei-
ther resolves the problem of ambiguity nor eases the handling of the
increasing number of requirements. In addition, Weber et al. found
that modern systems have reached a degree of complexity such that
RE tools that focus on textual requirements alone, are not sufficient
for coping with the resulting RS documents [235].

Moreover, Mavin et al. state that NL text used as the only means to
express requirements is not sufficient and should be complemented
by other notations (e.g., truth tables, mathematical formulas) [150].
Graphical models are another possible notation that could support
RE tasks in software and systems engineering [113, 168]. The graphi-
cal modeling languages UML [172] and Systems Modeling Language
(SysML) [175] have won recognition in practice for use with such RE
tasks [187]. Besides their ability to visualize a system’s characteris-
tics, graphical models usually provide a well-defined vocabulary of
usable elements with (oftentimes) more precisely defined semantics
than NL [34]. As a result, models are less affected by the problems
inherent to NL, such as ambiguity, and also offer additional poten-
tial for automation [86]. Moreover, it has been confirmed that using
graphical models for specification improves reusability and analytical
capabilities [234].

Despite these advantages, the exclusive use of graphical models is
not advisable. As with text, graphical models suffer from a lack of
clarity if they contain too much information [14].

Furthermore, it is not possible to go without any text in RE [81].
Understanding NL does not require knowledge of specialized nota-
tions. Thus, NL text is recognized as a means that can be easily ap-
plied in RE [185]. As a result, NL text enables involving a wide range
of stakeholders with various backgrounds and different knowledge,
who may otherwise not be capable of understanding the notations
of graphical models [14]. Legal considerations are another essential
reason for textual representations of requirements [141, 215]. Further-
more, tool support for industrial applications and the exchange of
graphical models is not adequately standardized, with the result that

1.2 CONTEXT: REQUIREMENTS ENGINEERING IN THE DEVELOPMENT OF AUTOMOTIVE SYSTEMS

handovers between manufacturers and suppliers are still realized by
exchanging textual documents [59, 72].

Ultimately, it can be assumed that graphical models do not replace
textual requirements, but rather supplement them [215]. This supple-
ment may take different forms regarding which representation con-
tains what information. Both textual documents and graphical mod-
els may represent the same information but display it in a different
manner. However, they may also contain different information and
complement one another. Finally, a combination of these cases is also
possible. In this situation, the representations contain overlapping
information and one or multiple representations contain their own
unique information.

The argument for the application of coexisting graphical and tex-
tual representations is supported by the fact that this approach is
perceived as beneficial even outside of RE. In Business Process Mod-
eling, Carnaghan reports that the combination of visual and textual
representations is superior to the exclusive use of one method [48].
Moreover, Burton-Jones and Meso generally recommend including a
textual narrative in addition to visual representations to improve un-
derstandability [44].

1.2 CONTEXT: REQUIREMENTS ENGINEERING IN THE DEVELOP-
MENT OF AUTOMOTIVE SYSTEMS

In this thesis, the application of a specification approach that uses
coexisting graphical models and textual representations is analyzed
in the context of the development of automotive systems. In order to
give the reader an understanding of this context, this section provides
a short overview of the role of RE in the automotive industry.

In the automotive industry, the trend of innovation being increas-
ingly driven by functions that rely primarily on software persists [97,
103]. Consequently, the importance of software in the development of
vehicle systems and components continues to grow as well [186]. As
development activities in the automotive industry today take place
across various domains (e.g., infotainment and control engineering
of mechanical and electronic components), software has become em-
ployed in a wide range of applications [204]. Unsurprisingly, different
domains require different approaches and methods for development.
Because of its significance for software development, this trend also
affects RE [109]. As a result, the activities in RE have a substantial
impact on the development of automotive systems [40].

At the same time, the automotive industry is characterized by the
tendency of subsystems and components being developed by suppli-
ers in order to reduce costs, improve quality, and save time [190]. This
distribution of development tasks has lead to a situation in which the
Original Equipment Manufacturer (OEM) merely specifies the systems

INTRODUCTION

and components that are to be developed. The development itself is
then executed by suppliers based on the RS that results from the RE
activities of the OEM [183]. The development outcomes of the sup-
pliers then need to be integrated into the vehicle by the OEM [39].
Consequently, the RS serve as the main means of communication be-
tween OEMs and different suppliers. Thus the RS must ensure that the
developed systems und components of distinct suppliers are compat-
ible with one another. For these reasons, the RS are important for the
success of a development project in the automotive industry [123].

This procedure, combined with aforementioned trends in the au-
tomotive industry has stretched the established tools and processes
in RE to their limits [37]. In order to create high-quality RS, the appli-
cation of Model-Driven Development (MDD) approaches has become
more popular, and MDD is considered as a solution for the future [42,
103]. Nevertheless, for the reasons mentioned in the previous section
the use of models alone is not sufficient (e.g., textual RS serve as the
contractual basis between OEM and suppliers). Hence, it appears that
the application of graphical models in combination with the estab-
lished use of textual representations is a suitable method for meeting
challenges in the automotive industry [235].

1.3 PROBLEM STATEMENT

With the issues associated with the RS in mind, the research commu-
nity has developed a number of approaches that use a combination
of graphical models and textual representations [165].

In terms of modeling, these approaches differ regarding the dia-
gram types used or even the modeling languages employed [200,
230], while the text-based representations exhibit differences in the
form [86, 199]. Furthermore, there are also differences in the ways
in which both representations originate from one another and subse-
quently, which representation contains what information. It is possi-
ble to generate the textual parts of the RS from the graphical mod-
els [165] as well as to generate the graphical models from the textual
parts [7]. In addition, both representations may be manually created
independent of one another [14].

As the number of different approaches for combining graphical
models and textual representations suggests, there is no standard so-
lution that is suitable for all possible situations. This argument is
supported by Bajec et al. [20], who state that in practice it is even
necessary to adapt development methods to the specifics of each in-
dividual project. In the context of this thesis, this means that it is
possible to encounter comparable specification approaches in indus-
try that have never been examined from a research perspective. How-
ever, these approaches have been implemented by practitioners with
their own problems and organizational- and domain-specific realities

1.4 CONTRIBUTIONS OF THIS THESIS

in mind. In order to evaluate the possible applicability of these spec-
ification approaches in practice, it is necessary to gain insights into
a similar approach that reflects these circumstances, i.e., an approach
implemented independently in industry and productively used by
practitioners [10]. If these insights are neglected, it cannot be assured
that comparable specification approaches will be adopted in practice,
let alone used effectively in day-to-day business.

Problem Statement 1:

We need an understanding of how a specification approach
that uses coexisting graphical and textual representation
of requirements is realized and used in practice.

To address this problem, a specification approach is analyzed that
employs UML2 Activity Diagrams as graphical models and hierarchi-
cally structured text as textual representation to describe the behavior
of vehicle functions. In the examined case, the textual representation
contains all the information that exists in the activity diagram and
sometimes additional, more detailed information (e.g., descriptive in-
formation of surrounding context). As part of the analysis, we find
that the application in practice implies its own difficulties and prob-
lems. Concretly, we find that the main difficulties are tied to inconsis-
tencies between representations and to other quality issues with the
individual representations.

Problem Statement 2:
We need to ensure synchronicity between representations
and avoid quality issues in each representation.

This problem statement is addressed by a set of suggestions that,
if adhered to, prevent both the occurrence of inconsistencies between
the representations and a number of other quality issues. To support
the implementation of these suggestions, we develop an approach for
the examined use case that automates the generation of the textual
representations from UML2 Activity Diagrams.

1.4 CONTRIBUTIONS OF THIS THESIS

The contributions of this thesis address the problem statements for-
mulated in the previous section. This section is structured as follows.
First, an overview of the contributions of the thesis and how they are
connected is presented. This is followed by a short introduction of
each contribution. At the end of the section additional contributions
are mentioned that do not directly address the problem statements
and can thus be seen as byproducts of the developed concepts.

7

8

INTRODUCTION

1.4.1 Qverview

This thesis features the following contributions:

I. Analysis of a Specification Approach using Coexisting Graphi-
cal and Textual Representations of Requirements in Practice

II. Categorization and Assessment of Inconsistencies and Other
Quality Issues

III. Suggestions for how to Implement a Specification Approach Us-
ing Graphical and Textual Representations

IV. Removal of Redundant Elements within UML Activity Diagrams

V. Automatic Generation of Textual Representations from UML
Activity Diagrams

Contribution I and II constitute the analytical portion of this thesis.
These contributions are dedicated to the analysis of a specification
approach that employs coexisting representations in practice. While
contribution I aims at eliciting general insights about the application
of the specification approach and its implications in practice, contri-
bution II elaborates the problem of inconsistencies between the repre-
sentations and other quality issues.

The results from the analytical portion of this thesis represent the
basis for the constructive portion. Based on the insights obtained in
the analytical portion, suggestions are formulated in an attempt to
facilitate the application of the approach in a way that realizes its full
potential (Contribution III). Among these suggestions is a generative
approach for the textual representation that uses the activity diagram
and prevents inconsistencies between the representations from occur-
ring. Contribution IV and V address this topic. All of the contribu-
tions are discussed in more detail in the following subsections.

1.4.2 Analysis of a Specification Approach using Coexisting Graphical and
Textual Representations of Requirements in Practice (1)

In the first study of this thesis we systematically analyze the specifi-
cation approach. This analysis is designed to address Problem State-
ment 1 and hence tries to improve the understanding of comparable
specification approaches when they are applied in practice. The study
builds on a number of interviews conducted with stakeholders of a
system of an industry partner. We use the results to identify advan-
tages and disadvantages from the point of view of users. We find that
the models are perceived as beneficial and are used in an informal
manner. The majority of participants employ the representations for
different purposes but see the textual representations as the primary

1.4 CONTRIBUTIONS OF THIS THESIS

specification artifact. These insights are integrated into a model that
assigns which development tasks are best performed using the dis-
tinct representations or a combination of the two. In addition, the
information obtained in this analysis serves as the basis for formulat-
ing suggestions regarding how to improve the way the specification
approach of the industry partner or similar approaches are imple-
mented in practice.

1.4.3 Categorization and Assessment of Inconsistencies and Other Quality
Issues (II)

The first study also reveals that inconsistencies between the repre-
sentations and other quality issues related to the representations are
perceived negatively by the users of the approach. To gain a better
understanding of the impact of these inconsistencies and certain qual-
ity issues on development, a further study is presented that analyzes
this finding in greater depth. This study also relates to Problem State-
ment 1. For this study, we wanted to obtain knowledge about severity
of the inconsistencies and other quality issues that may arise during
the application of the examined approach in practice. To achieve this
goal, we define nine categories of possible inconsistencies and other
quality issues. These categories are partly based on findings from
the activity diagrams and their corresponding textual representations,
found in the RS document of the examined system. Further cate-
gories are inspired by demands of industry development standards
(such as Automotive SPICE [232], CMMI-Dev [51], ISO/IEC/IEEE
29148 [226]). These categories are used to determine how often these
deficiencies actually appear in a productively used RS document. The
categories are then assessed by the stakeholders of the system regard-
ing their severity and the possible impact on users” work. A combi-
nation of the number of occurrences and the assessment of the cat-
egories is used to determine which category of inconsistencies and
other quality issues has the most sizable impact on the quality of the
specification artifacts and therefore on their use. The results reveal
that over 70% of the functions are affected by deficiencies that are
seen as major issues by the participants. Thus, we provide empirical
evidence that inconsistencies and other quality issues have a serious
negative impact on the application of the specification approach in
practice. From these results we conclude that a concept is needed to
prevent the occurrences of inconsistencies and other quality issues.

10

INTRODUCTION

1.4.4 Suggestions for how to Implement a Specification Approach Using
Graphical and Textual Representations (11I)

Based on the knowledge obtained through contributions I and II, we
develop a set of suggestions that recommend changes in the imple-
mentation of the specification approach in order for it to reach its full
potential. These suggestions primarily relate to Problem Statement 2.
The suggestions attempt to ameliorate the problem of inconsistencies
and other quality issues that is investigated as a part of contribution
II. We argue that the generation of the textual representations based
on the activity diagrams is an appropriate measure for preventing
these issues. This should be implemented in an automatic manner
to avoid mistakes occurring from human action. Moreover, the sug-
gestions also address other weaknesses mentioned by practitioners,
including how the artifacts should be designed and at what time and
for what tasks the artifacts are suitable.

1.4.5 Removal of Redundant Elements within UML Activity Diagrams
1v)

In order to enable automatic generation of textual representations
as mandated by contribution III, it is necessary that the activity di-
agrams contain only unique elements (in particular ExecutableNodes).
This is required, as the redundant elements would impede the unam-
biguous identification of execution paths and of propositional logic
relations of the elements in the activity diagram. This contribution
represents a prerequisite for addressing Problem Statement 2. To en-
sure this prerequisite is met, a transformation is developed that re-
moves multiple ExecutableNodes from UML activities. This is achieved
by merging redundant elements into a single element and adding
additional ControlNodes and edges.

1.4.6 Automatic Generation of Textual Representations from UML Activity
Diagrams (V)

By using the redundancy-free activity diagrams as inputs from con-
tribution 1V, it is possible to automate the generation of the textual
representations from the activity diagrams as suggested by contribu-
tion III. The activity diagrams are employed as the basis for extracting
the information for the textual representation in an automatic manner.
The extracted information can then be used to create different textual
representations for the RS document. This procedure guarantees that
both representations are consistent and prevents a number of other
quality issues.

1.5 METHODOLOGICAL BACKGROUND

1.4.7 Contributions beyond the Problem Statements (V1)

The contributions IV and V offer concepts that are applicable beyond
the problem statements formulated in Section 1.3. Contribution IV
presents an algorithm that creates reachability graphs for the exam-
ined activity diagrams. While this algorithm does not address any
of the problem statements, it is needed to demonstrate that the be-
havior of the UML activity remains unchanged by the redundancy
removal for the assumed semantics. The comparison of these reach-
ability graphs (which in itself also represents another contribution)
is used to demonstrate that the behavior of the activities is in fact
preserved.

Contribution V relates to the extraction of information from the
activity diagrams in order to generate textual representations auto-
matically. This information can also be used to create test cases or to
support other development tasks.

1.5 METHODOLOGICAL BACKGROUND

In information systems research there are two prevalent paradigms,
behavioral science and design science [108]. This thesis utilizes meth-
ods from both paradigms but places a strong focus on design science,
as this is mainly seen as a problem-solving paradigm and this is also
the main theme of this thesis.

Hevner et al. propose seven guidelines on how to conduct, evaluate,
and present design science contributions [108]. These guidelines pro-
vide a framework that helps researchers carry out their efforts in an
effective and efficient manner. The following list presents these seven
guidelines and describes how they are met by the contributions of
this thesis.

1. Design as an Artifact. A set of suggestions and a tool proto-
type are the created artifacts of this thesis. The suggestions offer
rules for how to realize a specification approach using coexist-
ing graphical and textual representations in practice. Further-
more, the application of the suggestions in combination with
the tool prototype, prevents problems of inconsistent represen-
tations that might occur in practice.

2. Problem Relevance. The contributions address problems voiced
by practitioners and fill gaps identified by the research commu-
nity. The relevance of the main problems addressed in this thesis
is assessed in a systematic way.

3. Design Evaluation. The functioning and applicability of the so-
lutions are demonstrated using the specification artifacts of a
real-world system specification.

11

12

INTRODUCTION

4. Research Contributions. The contributions of this thesis are in-
troduced in Section 1.4. They include an analysis of an indus-
trial realization of a specification approach as well as a method
for generating textual representations from activity diagrams.

5. Research Rigor. This thesis is based on previous work in the
areas of RE and MDD (see also Chapter 2). Existing knowledge
is continuously referred to throughout this thesis.

6. Design as a Search Process. This thesis begins with the explo-
ration of implications of an industrial application of a certain
type of specification approach. The issues identified are subse-
quently elaborated on and addressed.

7. Communication of Research. The results of this thesis have
lead to a number of peer-reviewed publications that are pub-
licly available (see p. vii).

Meeting these seven guidelines demonstrates that this thesis ad-
heres to research standards and contributes to the field of information
systems.

1.6 OUTLINE

This thesis is structured in the following manner. This chapter (Chap-
ter 1) is followed by Chapter 2 State of the Art. Chapter 2 presents
the foundations of topics relevant to this thesis and explanations of
the terminology used (Section 2.1 and 2.2). It also features an over-
view of work related to the topic of coexisting graphical and textual
representations.

Chapter Name/Publication Problem Contribution
Statement

Coexisting Graphical and Structured Textual
Chp. 3 Representations of Requirements: Insights and 1&2 I&II
Suggestions

A Case Study on a Specification Approach using Activity 182

Chp. 4 Diagrams in Requirements Documents T&m

Chp. 5 Removal of Redundant.EIements within UML Activity 2 V& VI
Diagrams

Chp. 6 Information Extraction from High-Level Activity 2 V & VI

Diagrams to Support Development Tasks

I Analytical Contribution || Constructive Contribution |

Figure 1.1: Outline of the main part of this thesis

1.6 OUTLINE

Chapters 3, 4, 5, and 6 constitute the main part of this thesis. Fig-
ure 1.1 illustrates the order of the chapters and their respective titles.
In the third column in the figure describes which problem statements
are addressed in each chapter. The last column clarifies which contri-
bution stems from which chapter.

The main part of this thesis consists of four chapters. Each chapter
represents one publication by the author of this thesis. Chapters 3
and 4 contain the analytical contributions as well as some construc-
tive contributions. Such contributions are also present in Chapters 5
and 6, which solely contain constructive contributions. The beginning
of each chapter provides information about the publications followed
by an explanation of how the publication relates to the context of this
thesis, followed by the publication itself.

After the main part, the contributions of this thesis are summarized
and discussed in their entirety in a Concluding Discussion presented in
Chapter 7. The last chapter, Chapter 8, provides an Outlook regarding
possible future work.

13

STATE OF THE ART

This thesis examines the practical application of graphical models and
textual representations for specifying requirements. Consequently, this
thesis touches aspects of requirements engineering (RE) and model-
driven development (MDD). This chapter provides an overview of
these topics and explains the terms and concepts that are needed to
understand the contributions of this work. In addition, related work
on the use of coexisting graphical and textual representations is sum-
marized. Using this summary, open points are emphasized that will
be addressed in this thesis.

First, Section 2.1 provides an overview of the concepts in RE that
are relevant for this thesis. Section 2.2 offers insights into the topic
of MDD and describes how this thesis relates to the topic. Section 2.3
presents an overview of work that uses coexisting graphical and tex-
tual notations, and Section 2.4 places these coexisting graphical and
textual notations into the context of RE and MDD. Finally, Section 2.5
explains how this thesis relates to these topics and how the contribu-
tions address gaps in research.

2.1 REQUIREMENTS ENGINEERING

Requirements Engineering (RE) is defined by the International Re-
quirements Engineering Board as [32]:

A systematic and disciplined approach to the specifica-
tion and management of requirements with the following
goals:

1. Knowing the relevant requirements, achieving a con-
sensus among the stakeholders about these require-
ments, documenting them according to given stan-
dards, and managing them systematically,

2. Understanding and documenting the stakeholders’ de-
sires and needs,

3. Specifying and managing requirements to minimize
the risk of delivering a system that does not meet the
stakeholders” desires and needs.

The importance of RE stems from the fact that it is the basis for
all downstream development phases [79]. Hence, RE is considered to
have an important impact on the outcome of development projects
and at the same time is one of the biggest challenges [15].

16

STATE OF THE ART

Consequently, the quality of requirements is of high importance
for RE. A requirement is a ”statement which translates or expresses a need
and its associated constraints and conditions” [226]. A common method
for capturing these statements is in the form of written NL text [126].
While NL presents an easy way to capture requirements that requires
little initial effort [185], it is not without difficulties [30] and is there-
fore often considered not satisfying for RE [215].

To address these difficulties, an effort has been made by the re-
search community to ensure a uniform structure of the requirements
in order to improve their overall quality. For this purpose syntax pat-
terns have been proposed [64]. A well-known representative of a syn-
tax pattern is EARS [148]. When both the usable syntax (sentence
structure) and also the vocabulary (words) that can be used are re-
stricted, the result is a controlled natural language [240]. If there is
no longer a recognizable sentence structure, however, the controlled
language is not even considered to be a NL. The case studies in this
thesis feature a textual representation that uses a restricted vocabu-
lary in combination with a hierarchical structure to arrange the text.
This type of representation is referred to as structured text.

Despite the efforts towards adopting artificial languages, require-
ments are still predominantly supplied as documents containing NL
text [72, 215]. These documents are known as (software/system) Re-
quirements Specifications (RS) and represent a ”structured collection of
the requirements (functions, performance, design constraints, and attributes)
of the software/system and its operational environments and external inter-
faces” [226]. An excerpt of an RS is depicted in Figure 2.1. The figure
displays characteristics that are relevant in the context of this thesis.

ID Text Level Type
1234 |Chapter 1 Heading
1235 | Section

1236 Requirement 1

Heading

Requirement

1237 Requirement 1.1
1238 Requirement 1.2
1356 Requirement 2

Requirement

Requirement

Requirement

Alw|bh|[Dlw(N

Information

1357 Information Requirement 2

Figure 2.1: Excerpt of an RS

An RS consists of distinct entries that have a number of attributes.
As such, an RS takes on a table-like appearance where the rows rep-
resent an entry and the columns represent the attributes of an entry.
Each attribute has a specific data type (e.g., string, enumeration, nu-
merical value). These attributes are, among other functions, used to

2.1 REQUIREMENTS ENGINEERING

provide other mandatory characteristics necessary for RE tasks. The
ID attribute in Figure 2.1 ensures that each entry is uniquely identifi-
able. The Text attribute contains the text of the requirements or addi-
tional text to either structure the document (ID 1234 & ID 1235) or to
provide further information (ID 1357). The Level attribute is needed
to create a hierarchical document structure. Because of their impor-
tance these attributes are called inherent attributes, as they must al-
ways exist. In addition, there are further mandatory characteristics
of RS (e.g., the possibility to create baselines). However, these are not
relevant for this thesis and are therefore not depicted in Figure 2.1.
All the aforementioned properties are required by standards such as
the ISO/IEC/IEEE 29148:2011 [226] (see also [233]). Additionally, Fig-
ure 2.1 displays the attribute Type. This attribute illustrates that there
may be other attributes that can be freely defined to meet specific
needs. Here, the Type attribute is used to define what kind of entry is
in the RS.

Due to these highly specialized characteristics of RS and the sin-
gle requirements therein, there is a need for tools to support RE re-
lated tasks [214]. This has lead to the development of a plethora
of available products (see [59] for an extensive survey on RE tools).
Consequently, while these characteristics must be implemented by
RE tools [119], they might be realized in different ways. For instance,
some tools force all entries in an RS to have the same attributes (e.g.,
IBM DOORS [115]), while others allow entries with different attributes
to exist within an RS (e.g., ProR [70]). The case studies in this thesis
encompass RS managed by the tool IBM DOORS. However, the con-
clusions of this thesis are not restricted to the data model of IBM
DOORS and can be applied so long as it is possible to recreate the
properties mentioned (which is the case for all established RE tools).

Another relevant concept related to RE in this thesis is traceability.
Traceability is defined by Gotel and Finkelstein as “the ability to de-
scribe and follow the life of a requirement, in both a forwards and backwards
direction, i.e. from its origins, through its development and specification, to
its subsequent deployment and use, and through periods of on-going refine-
ment and iteration in any of these phases” [96]. Traceability has been
considered an important factor in the design of complex software
systems for quite some time [194]. Nevertheless, it is still insuffi-
ciently implemented [13, 102] because it requires significant effort for
even moderately sized systems [193]. Hence, it is sometime debatable
whether the effort invested into traceability yields a benefit [13].

Despite benefit considerations, there is an obligation in safety-criti-
cal development projects to provide evidence regarding safety issues
in the form of traces [95]. In some domains, traceability is mandated
by regulations (such as in the automotive industry [220], aeronau-
tics [6], and in medical devices [152]) and software process improve-
ment standards (e.g., Automotive SPICE [232], CMMI-Dev [51]). Un-

17

18

STATE OF THE ART

surprisingly, each domain has its own unique challenges regarding
traceability [146].

Although research on traceability has been largely driven by the
RE community [50], it is also a relevant topic in other research areas.
Model-Driven Development (MDD), for example, has been identified
as a further area of application for traceability [49]. Because of the
tendency to incorporate models for RE purposes, traceability is an
issue that not only affects RE and MDD, but can also help bridge the
gaps between them [238].

2.2 MODEL-DRIVEN DEVELOPMENT

Model-driven development (MDD) denotes "the systematic use of models
as primary artifacts during a software engineering process” [113]* where
”a model is an abstraction of some aspect of a systems” [88]. Although
these definitions relate to the application of models in software en-
gineering, models have been in use in other domains for quite some
time. In physics and chemistry different types of particle models are
used to describe matter, while in electronics engineering circuit di-
agrams are commonly used. Multiple domains visualize their sys-
tems through technical/engineering drawings. All of these models
are used to make predictions about circumstances in the real world
and serve different purposes. Hence, they reflect real-world proper-
ties at different levels of detail.

While models are often rendered in graphical form (such as the
aforementioned engineering diagrams), these graphical forms are mere-
ly the representation that is easier to grasp [17]. The underlying con-
cepts and their relationships can always be captured in textual form.
Moreover, in cases where the models are created and managed with
the help of computers, textual forms must exist to enable the process-
ing [188] — even for models that are primarily represented in graph-
ical form. In addition, there are models that do not have graphical
representations at all, such as controlled languages [240]. Also, the
underlying structure of RE tools represents a data model [59] (see Sec-
tion 2.1). Therefore, modeling languages (e.g., UML) often distinguish
between the models themselves and their representation, which may
be graphical or textual.

In MDD, models are employed in an engineering process in order
to develop a product. At the same time, this engineering process in-
volves numerous engineering domains. These domains involve vari-
ous tasks during different development steps. Consequently, there is
a wide range of modeling languages and model types that have dif-

Closely related research areas such as Model-Based Engineering (MBE) rely on mod-
els to a lesser extent than MDD. In MDD models are the primary artifacts while in
MBE they may simply support engineering tasks [225].

2.2 MODEL-DRIVEN DEVELOPMENT

ferent aims and possible areas of application. As a result the created
engineering models can be classified according to different criteria.

Eigner et al. suggest a classification that distinguishes three ”levels
of models that differ in their purposes and level of abstraction [72].
Their first level, denoted as specification models, includes models that
are solely descriptive and are used to specify behavior or logical struc-
ture. The second level features models used for simulation and valida-
tion that involve multiple disciplines. The third level, discipline-specific
models, addresses models that, as their name suggests, focus on mod-
eling aspects of certain disciplines (e.g., the aforementioned engineer-
ing drawings such as circuit diagrams in electronics engineering [118]
or CAD models [210] and thereof derived drawings for geometric di-
mensioning and tolerancing of mechanical parts [120]). Because of
the many domains, there is a plethora of discipline-specific models
that support a wide range of tasks. For instance, in mechanical engi-
neering they can act as the basis for deriving bills of materials or in
electronics engineering they can be used to layout circuit boards.

While the classification of Eigner et al. considers multiple engi-
neering disciplines, this thesis focuses on the software engineering
process. A classification of software models created by France and
Rumpe [88] classifies models into development models and runtime mod-
els. Here, the distinction lies in the level of abstraction of the model.
While development models are “above code level”, runtime models repre-
sent “aspects of an executing system”. A further classification made by
Storrle follows Fowler’s distinction for different types of UML mod-
els [87] and distinguishes software models with respect towards their
degree of formality into informal, semi-formal, and fully formal mod-
els [222]. Informal models "support communication and cognition”. Semi-
formal models ”support design and documentation activities” and formal
models, among other functions, “allow simulation and generation of code
and test cases”. In practice it has been shown repeatedly that the ma-
jority of users employ informal and semi-formal models [68, 222].

Although these classifications use different aspects for distinction,
they do exhibit commonalities. In particular, the idea of Storrle’s for-
mal models used for simulation and generating source code can be
found in the other two classifications (Eigner et al. — second level,
France and Rumpe — runetime models). It can be seen that the tasks
a model is used for are connected to the model’s formality to a cer-
tain degree. For this reason, modeling languages support a varying
degree of formality. As a result, it is not possible to undisputedly map
modeling languages to single classes of models.

Nevertheless, Eigner et al. map modeling languages to the levels
within their own classification. Their specification models consist of
models on behavior and logical structure. The modeling languages
mentioned for these types of models are UML and SysML. Aside from
engineering models, modeling languages for business processes (e.g.,

7

19

20

STATE OF THE ART

Business Process Model and Notation (BPMN) [171]) may also fall into
this category of models as they also specify behavior and logical
structure. For the models on their second level, Eigner et al. men-
tion Matlab/Simulink [227] or Modelica [160]. This is logical, as Mat-
lab/Simulink’s and Modelica’s primary purpose is the simulation of
potentially interdisciplinary models. Still, depending on the degree
of formality, simulation is also achievable with UML and SysML mod-
els (see also Foundational UML [169]). At the same time, it cannot be
denied that models created with Matlab/Simulink or Modelica also
constitute models on behavior and logical structure. As a result, it is
possible to conclude that the lines separating classes of models are
inherently blurred, since classification is dependent on the intentions
with which the model is created. Accordingly, the tasks performed
with software engineering models also cannot be clearly mapped to
certain degrees of formality.

Among other functions, software engineering models can be em-
ployed for pure visualization purposes [107], to conduct Failure Mode
and Effects Analysis (FMEA) [217], to generate source code [231], and
to create test cases [38]. Pure visualization is possible with all models
that have graphical representations regardless of their degree of for-
mality. The creation of test cases requires at least semi-formal models
although the degree of possible automation increases with the de-
gree of formality. Since source code is a formal language, it is not
surprising that its automated generation relies on fully-fledged for-
mal models.

UML supports all of these specificities of software models and hence
has become widespread in software engineering [68]. It is often even
considered the de facto industry standard for software modeling [167].
At the same time, there are various adaptations and subsets of UML
that are designed with different kinds of systems and levels of detail
in mind [106]. The methodology examined in the following studies
of this thesis employs a subset of UML2 activities with a predefined
structure to describe the activation of functions of a system.

UML2 Activities

According to the OMG Unified Modeling Language Specification, Ver-
sion 2.5, activities are one of the model types used to describe behav-
ior [172, p. 283]. As such, the specification defines activities as control
and data flow models. For RE, the use of activities (and their graphical
representation activity diagrams) has been assumed to be helpful for
a long time [14]. Hence, it comes as no surprise that by now they are
intensively used for the specification of software requirements [99,
196]. In addition to facilitating software engineering, activities offer
concepts and constructs that enable modeling for a wide variety of
domains [33]. This makes activities also suitable for application in

2.2 MODEL-DRIVEN DEVELOPMENT

Business Process Modeling [202] as well as for specifying hardware
design [209], although UML and, therefore activities were originally
intended to model software systems.

At the same time, the versatility of activities is not without conse-
quences. Bock notes in the companion series [33] to the UML2 Speci-
fication that "UML2 activity and action models are defined independently
of application, some features are more appropriate to some domain styles
than others”. Consequently, "redundancy is unavoidable when creating
an abstraction over user groups that do not overlap”. As a result, most
approaches in practice limit the set of used model elements and in-
troduce other restrictions or rules for their UML activities depending
on the application [208]. In this thesis, a methodology of an industry
partner is examined that uses UML2 activities to specify the activation
of functions of an automotive system. These functions are modeled by
using a subset of the available elements of activities and by imposing
a predefined pattern. This pattern resembles a pattern used to model
textual requirements [141]. In particular, the activities describe the
activation of functions by a combination of triggers, conditions, and
their connections (for more detailed information, please see Chapter 3
and Chapter 4). The elements relevant for this thesis are shown in Ta-
ble 2.1 - all of these are among the most commonly used constructs
of activities [197]. Only the first seven elements are part of the UML ac-
tivities of the studied methodology. The last two elements (below the
horizontal line) are needed for the concept presented in Chapter 5.

The first column shows the graphical symbols of the elements. Note
that JoinNodes/MergeNodes are depicted using the same symbols as
ForkNodes / DecisionNodes. Both (JoinNodes and ForkNodes as well as
MergeNodes and DecisionNodes) are distinguished by the number of
incoming and outgoing edges. JoinNodes and MergeNodes have multi-
ple incoming edges and one outgoing edge while the opposite is the
case for ForkNodes and DecisionNodes.> The second column provides
the class names of the elements according to the UML2 specification.
These class names can be used as further reference for detailed de-
scriptions of the elements. The third column describes how these ele-
ments are employed in the context of the examined methodology.

The first three elements are used in a specific way. The AcceptEvent-
Action is first labeled with the prefix Trigger: followed by the string
that specifies the event that executes the element. Only two kinds
of OpaqueActions exist in the examined activities. The first is used
to check whether certain conditions are fulfilled. These checks are

Single incoming and outgoing edges lead to a construct that is equivalent to a single
edge. In case of multiple incoming and outgoing edges, implicit ForkNodes and Join-
Nodes exist. The use of implicit ForkNodes and JoinNodes in combination with Merge-
Nodes and DecisionNodes may lead to a situation in which it is no longer possible to
distinguish between a MergeNode with an implicit ForkNode and a DecisionNode with
an implicit JoinNode on a purely visual level. See the UML2 specification for more
details on implicit ForkNodes and JoinNodes [172, p. 373, p. 387].

21

22 STATE OF THE ART

Table 2.1: Relevant activity elements in the examined methodology

Symbol

UML Class

Use

> Trigger: Event

Check: Condition

Function:
Function

i

Accept Event Action

Opaque Action

Opaque Action

Join Node

Merge Node

Flow Final

Activity Final

Starts the execution of
an activity if the speci-
fied event occurs

Checks whether the
specified condition is
fulfilled

Represents the func-
tion to be activated

Propositional logic
AND connection of
incoming flow

Propositional logic OR
connection of incom-
ing flow

Ends the
flow

incoming

Ends the execution of
the whole activity

Fork Node

Decision Node

Splits a flow into mul-
tiple concurrent flows

Chooses between out-
going flows

denoted by a label starting with the prefix Check: followed by the con-
dition checked. The second use of OpaqueActions is the function to
be activated. Its label consists of the prefix Function: followed by the
name of the function. These three elements are used only in this spe-
cific way in the context of the methodology examined in this thesis.
Thus, one can say that this use of elements and the pattern constitute
a domain-specific language designed to describe the activation of a
function. Aside from these notational peculiarities, the behavior of
the elements is the same as intended by the UML2 specification. The
same applies for the remaining elements. The ControlNodes are used
as defined by the UML2 specification and are not subject to restrictions
regarding the notation.

2.3 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS

Despite their suitability for many applications, activities exhibit a
number of problems [208]. One important issue is that the UML2 spec-
ification does not provide a formal definition of its semantics [221]

and, merely describes activities semi-formally as ”Petri net-like graphs”.

Thus the data flow in activities may be intuitively interpreted as it is
in Petri nets [180]. However, there are cases that require modifica-
tions or do not allow mapping from UML2 activities to Petri nets in
any way [223]. The semi-formal definition allows for these ”semantic
variations”, which can be considered an advantage since it enables al-
ternative behavior during runtime without explicitly recording these
choices in the model itself [33]. These "semantic variations” cause "a
model in one implementation to execute differently than the same model
in another implementation, with no standard way to tell what the differ-
ences are” [33, p. 46]. At the same time, this results in ambiguity prob-
lems that aggravate automation in the development process [58]. In
response to this, there have been many approaches that formally de-
fine semantics for UML2 activities (i.e. [98, 219]) — not all of which
use Petri nets as their semantic domain. Nevertheless, there is still
no approach that addresses all aspects of activities [9o]. Thus, it is
considered useful to reduce activities into simpler constructs depend-
ing on their application [132]. The methodology examined in this
thesis makes use of the “requirements-level semantics” of Eshuis and
Wieringa [76].3 In these semantics, "The system reacts immediately and
infinitely fast to the reception of events. Since the system is infinitely fast,
no other event can occur while a system is reacting to an event” [76, p.
440]. Hence, these semantics dismiss aspects that may occur if the
execution of actions takes time. As a result, the semantics focus on
propositional logic and execution sequences while neglecting aspects
of runtime behavior such as concurrency and asynchronous events. In
terms of the classification of models, the examined activities can be
placed among informal or semi-formal models as they are above code
level. More details on the semantics of activities are provided in the
relevant Chapters 5 and 6.

2.3 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS

Although modeling languages might offer a more precise way to de-
scribe systems, NL is more accessible since virtually everyone is able
to understand it. For this reason, it is commonly used despite its po-
tential drawbacks (see Section 2.1). Moreover, models abstract from
real-world circumstances and are often designed for certain purposes,
which means that they are less versatile than NL. With these consider-

It must be noted that different variations of these semantics are used for the con-
tributions in this thesis. This is due to the fact that the contributions have different
scopes (e.g., applicability (Chapter 5) vs. ease of use (Chapter 6)). As a result, there
is no uniform formal definition of activities that applies across the entire thesis.

23

24

STATE OF THE ART

ations in mind, the idea arose to use more formal notations (such as
models) and NL text side by side in a coexisting manner. Furthermore,
one is not limited to pure NL text. As shown regarding RE in Sec-
tion 2.1, there are applications that benefit from restricted vocabulary
and predefined sentence patterns, such as those seen in controlled
languages, which may still resemble NL text, or even structured text
which does not resemble NL.

The first appearance of systematically using text in combination
with a more formal representation is Knuth’s proposal of Literate Pro-
gramming [127]. Literate Programming attempts to facilitate the under-
standability of source code by “explaining to human beings what we
want a computer to do”. As part of Literate Programming, the author
of a source code is supposed to describe comprehensibly what the
program does. The proposal uses NL and moreover gives the author
of the source code a high degree of freedom. As a consequence, it
is not possible to determine exactly in what way the complementary
text and the source code relate to one another. The descriptive text
may solely paraphrase the source code and therefore contribute no
new knowledge to the existing information. However, it may also be
possible that additional (e.g., contextual) information is provided in
the descriptive text. Also, because of the high degree of freedom the
descriptive text may omit information included in the source code.

Overall, a variety of possibilities are imaginable for how different
representations might relate to one another.

1. The representations overlap in the content they describe, but
one or multiple representations contain content that is unique
to one single representation.

2. The representations express the same content.

3. The representations express content that does not exist in the
other representations.

The choice of how the representations are combined as well as the
types of representations selected depends on the actual application.
This thesis focuses on coexisting graphical and textual representa-
tions as the studied methodology uses coexisting UML2 activity di-
agrams and structured text. Thus, in the following sections, related
work on coexisting graphical and textual representations is discussed
with an emphasis on models that are primarily used in a graphical
form in combination with some form of text.

One of the first instances of using text as an addition to graphi-
cal models is Literate Modelling, presented by Arlow et al. [14] and
inspired by Knuth’s proposal of Literate Programming [127]. Literate
Modelling can be understood as the application of Knuth’s idea to
MDD, using models instead of programming code as the main soft-
ware development artifact. Both Literate Modelling and Literate Pro-

2.3 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS

gramming claim to improve the comprehensiveness of the main arti-
fact by adding explanatory text, but unlike Literate Programming, the
main intention of Literate Modelling is to provide additional detailed
contextual information. This is meant to enhance business models
and in the examined case of Arlow et al. aims to facilitate require-
ments review. Thus, the focus lies on employing a textual description
to complement the models. Literate Modelling as intended by Arlow et
al. can be attributed to approaches where the content overlaps, but in
which the text and the models also contain their own unique content
(see enumeration item 1). Another representative of the approaches
adding explanatory text is Eriksson’s proposal, which aims to com-
bine text with ontologies [75]. Eriksson’s intentions are the same — to
provide additional detailed contextual information.

Approaches that use multiple representations that express the same
content try primarily to improve levels of understanding (enumera-
tion item 2). Using various forms of information representation at the
same time in order to improve levels of understanding is known in
cognitive theory as multimedia learning [151]. Gemino investigates
the use of models in combination with narrations and animations in
this context [91]. He finds no considerable advantage for either the
animations or textual narrations. Nonetheless, he concludes that sup-
plementing models with one of them may be advantageous to sup-
port the use of models. Burton-Jones and Meso confirm this conclu-
sion and recommend including complementary forms of information
(such as a textual narrative) in addition to models [44]. In contrast
to these findings, at least with regard to the understandability of pro-
cess models, Rodrigues et al. have found evidence that by themselves,
graphical models only marginally improve understandability in com-
parison to text presented alone [201].

There are a number of works that make use of exact represen-
tations of the same content. For instance, Object-role modeling is
a method for conceptual data modeling that is represented in dia-
grams, but also offers an equivalent representation of NL text [104].
Closer to the topic of this thesis, Bolloju and Sun [35] propose us-
ing activity diagrams to visualize textual use case narratives. Fockel
and Holtmann [86] suggest a methodology using various SysML di-
agram types and controlled NL. Representations derived in an auto-
matic manner from another representation also fall into the category
of representations expressing the same content. For instance, Hakan
and Heldal propose a technique to automatically generate textual de-
scriptions for UML class diagrams [43] and Rabiser et al. use variabil-
ity models to derive product documents in a software product line
context [189]. Generation of models from text is also addressed by
numerous studies. Epure et al. propose generating process models
from NL text [74], Meziane and Vadera present a method for obtain-
ing entity-relationship diagrams from NL [156], and Raj et al. derive

25

26

STATE OF THE ART

UML diagrams from structured NL [192]. Such generative techniques
in the context of RE are presented in more detail in the next sections.
Although an automatically generated representation can at best only
contain as much information as the representation it is derived from,
these techniques may be embedded in more sophisticated approaches.
These approaches intent to add further information to the derived
representation manually after it is created, which would lead to a
form of coexistence as described by enumeration item 1.

Situations in which representations only express content that does
not exist in the other corresponding representations is more theoret-
ical in nature. At the very least there are references that connect the
representations to one another to a certain degree, which then leads
to circumstances already reflected by enumeration item 1. Moreover,
one might even argue that the term “representation” does not encom-
pass the display of disjunctive content.

Regardless of how different representations relate to one another,
graphical and textual representations may fulfill different purposes
(see [198] for a study and an overview of this issue). Graphical models
are often described as a more appropriate form of representation for
managing complexity [8, 67], but text is a form of representation that
can be understood by almost everyone — a reason for its use that is
also mentioned in the RE context [19]. Still, storing even equivalent
information in multiple forms presents a number of drawbacks and
may lead to serious problems such as inconsistencies [1].

Van der Aa et al. dedicated a number of studies to this issue (i.e., [2,
3]). They analyze this problem in the domain of process models and
provide a method for detecting inconsistencies between coexisting
process models and their textual descriptions. Also relating to pro-
cess models and textual descriptions, Sanchez-Ferreres et al. use NLP
techniques to extract textual elements contained in both representa-
tions and align model and textual description by using an optimiza-
tion [205].

2.4 MODEL-DRIVEN DEVELOPMENT IN REQUIREMENTS ENGINEER-

ING

Because of the potential for employing models [41], RE is shifting
more and more from text-based specifications to model-based specifi-
cations [77, 138]. This model-based representation of requirements is
also known as Requirements Viewpoint by the SPES Modeling Frame-
work [56]. This concept also appears in other related work on MDD [72,
111]. Despite the many advantages of expressing requirements in this
model-based (and accordingly, often graphical) manner, the software
engineering industry faces many challenges in the adoption of MDD
practices in general [162] and thus also for RE [161].

2.4 MODEL-DRIVEN DEVELOPMENT IN REQUIREMENTS ENGINEERING

For instance, representatives of the MDD community (e.g., Eigner
et al. [72], France and Rumpe [88], Hutchinson et al. [113]) promote
the idea of relying on models as the primary artifacts of a software
engineering process. However, in industry it is often not possible to
start development projects anew with a clean slate. In fact, the issue
has already been recognized at the beginning of MDD and a step-
by-step integration with legacy environments and systems has been
advised [211]. Many years later, the integration with legacy environ-
ments is still considered a success factor for adopting MDD practices
in industry [114, 239]. Aside from considering legacy artifacts, text
is considered an essential form to represent requirements (see also
Chapter 1). Based on these considerations, the combination of text-
based requirements and graphical models is seen as a feasible solu-
tion for RE [215].

A number of approaches have been proposed that attempt to fa-
cilitate the combination of textual and graphical representations of
requirements. In a literature review Nicolds and Toval proposed a
distinction for approaches that generate textual requirements from
models that consists of two groups [165]:

* Generative approaches
* Integrative approaches

Generative approaches include algorithms, rules, or patterns used
to generate textual requirements from models. Integrative approaches
encompass suggestions and guidelines on how to relate models and
textual requirements to one another and are used for the capture
of requirements or the generation of RS documents without speci-
fied rules. Nevertheless, both types of approaches aim to capture re-
quirements by utilizing models. Thus, the distinction between gen-
erative and integrative approaches is not entirely clear. Generative
approaches might have an underlying idea of how models and tex-
tual requirements relate to one another aside from mere generation,
while integrative approaches may employ generative approaches to
avoid inconsistencies or to benefit from automation.

Moreover, in cases of coexisting textual and graphical representa-
tions of requirements, the generation of models from textual require-
ments cannot be neglected. Aside from RE in a more general con-
text, Czarnecki and Helsen [54] make a distinction between text-to-
model transformations and model-to-text transformations. Model-to-
text transformations use the model as the origin for generating the
text, while text-to-model transformations use the text as the origin.
In the categorization of Czarnecki and Helsen, text is perceived as
a concatenation of strings. In this thesis, however, text may exist in
more sophisticated forms (e.g., as structured text — see Section 2.1).
These sophisticated forms can be regarded as a model of their own.
This in turn means that all these approaches are ultimately model

27

28

STATE OF THE ART

transformations [154]. Nevertheless, for better differentiation, text is
considered as such even if there is an underlying model. This means
that text encompasses NL as well as formal textual notations with or
without a hierarchical structure and all combinations thereof. How-
ever, although every kind of model has a textual data structure, these
are not considered to be text. In cases where a visual representation
is primarily used by stakeholders, this representation is considered
to be a graphical model. In simple terms, following common sense,
in this thesis everything that is mainly perceived as a series of text
in a wider context is regarded as text, while everything represented
primarily in a graphic form with symbols (such as arrows and boxes)
is considered to be a model. Although substantial parts of this thesis
focus on the visual aspects of models, the following review on related
work in next subsections also takes into account transformations that
generate textual requirements or a structure for textual requirements
from non-visual models (or vice versa).

As the related works in this field do not only encompass pure
model transformations, but also ideas for how to use the artifacts, the
works are henceforth referred to as approaches. In the following sec-
tions, approaches that somehow aim to capture textual requirements
by employing models are presented together and approaches that
address the generation of models from textual requirements are pre-
sented separately. First, studies on model-to-requirements approaches
are presented followed by requirements-to-model approaches.

2.4.1 Model-to-Requirements Approaches

Model-to-requirements approaches use models as a basis to system-
atically capture requirements. Their application is seen as a method
for reducing the effort required when writing requirements and for
improving completeness [52, 165]. They also aim to improve the un-
derstandability of models by combining graphical models and textual
requirements, which in turn aims to facilitate RE tasks [133].

An extensive, systematic literature review on comparable approach-
es was conducted by Nicolds and Toval. This review dates back to
2009 [165]. The authors provide a comprehensive review of the works
addressing model-to-requirements approaches at the time. In their
conclusion, Nicolds and Toval argue that the supplement of models
with text for RE purposes is an excellent idea. However, they also
observe that the topic appears to lack relevance in practice and hence
is often not validated in practice.

A more current collection of the research on these approaches is
presented in Table 2.2. The first column lists five different groups of
origin models. The second column lists the author(s) of the works.
The third column provides information on how the approach has
been validated (no validation/academic/industrial/in practice). Note

2.4 MODEL-DRIVEN DEVELOPMENT IN REQUIREMENTS ENGINEERING 29

Table 2.2: Works on model-to-requirements approaches
(NR (Not Reported), ACS (Academic Case Study), ICS (Industrial
Case Study), IP (Industrial Practice))

Origin Model Author Validation Gen.
Business Models Tiiretken et al. [230] ICS v
Cox et al. [53] ICS -
Gonzélez and Diaz [60] NR v
Cardoso et al. [47] ICS v
Coskungay et al. [52] ICS v
Lietal. [137] ICS -
Malik and Bajwa [144] ACS v
Leopold et al. [133] ICS v/
Aysolmaz et al. [18] NR -
Aysolmaz et al. [19] ICS v
Goal Models Yu et al. [241] ACS -
Antén and Potts [12] ICS -
Jungmayr and ACS 4
Stumpe [124]
Letier and van Lam- ACS v
sweerde [135]
De Landtsheer et al. [61] ACS v
van Lamsweerde [130] 1P v
Maiden et al. [141] ICS v
Alrajeh et al. [9] ACS v
UML/SysML Models
UML Diagrams Arlow et al. [14] ICS -
Use Case Diagram Berenbach [26, 27] ICS v
Class Diagram Meziane et al. [155] ACS v
UML1 Activity/Mes- Drusinsky [69] NR v
sage Sequence Charts
Statecharts/Block Dia- Robinson-Mallett [200] ICS/1P v
gram
UML2 Activity This work ICS v
Stories, Scenarios, Maiden et al. [142] ICS v
and Use Cases van Lamsweerde and ACS v
Willemet [131]
Mavin and Maiden [147] ICS v
Daniels and Bahill [55] ACS -
Firesmith [83] ACS v
Maiden and Robert- ICS v
son [143]

Cabral and Sampaio [45] ICS

Unspecified Firesmith [82] NR

30

STATE OF THE ART

that in some cases, a combination of validations has been performed.
In those cases only the validation that is closest to practice is men-
tioned (e.g., between academic and industrial, only industrial is listed).
The fourth column states whether the approach encompasses genera-
tive techniques to derive requirements in a textual form. A v indicates
that such capabilities exist while a — indicates that they do not. This
refers to whether algorithms, rules, or patterns are provided to de-
rive textual requirements. The presented works all consider human
beings to be the users of the results. As a consequence, generative
transformations such as MOFM2T [170] (a template-based approach
for Meta Object Facility (MOF) models), that intend to derive source
code or other highly formalized texts are out of scope of this thesis.

From the multitude of works on different types of models, it can
be seen that there is no approach that encompasses all features or
diagram types of a modeling language. Moreover, approaches that
offer generative techniques to derive textual requirements often only
use a subset of the capabilities available. As this work examines a
specification approach that uses a UML diagram type, the group for
UML diagram types is broken down to the level of diagram types.
Aside from the proposal, Literate Modelling, of Arlow et al. [14], all
other approaches focus on one, or at a maximum two diagram types.
Literate Modelling aims to complement UML diagrams with explana-
tory text in general, and as such is a concept that can be applied to
all UML diagrams. At the same time, addressing all UML diagrams is
only possible, since it does not suggest rules for how to construct the
explanatory text, which makes it independent of diagram types. As
a consequence, Literate Modelling is not a generative technique and as
such does not offer the possibility of automation. The focus of gen-
erative techniques on certain capabilities of a modeling language is
logical, as this reflects the realities in practice [132] and represents a
research challenge on its own [153]. Because of project- and domain-
specific needs, it does not appear to be worth the effort (or perhaps
even be possible) to create an approach that encompasses everything,
and it is for this reason that a plethora of generative techniques exists.
In order to address project- and domain-specific needs, it is neces-
sary to adjust to conditions in practice. The novelty of the generative
technique presented in this work (see Chapter 6) is based on such cir-
cumstances. This technique fills a gap by addressing UML2 activities
- something that has not been done as yet.

In contrast to the findings of Nicolds and Toval, the manner in
which research works are validated has shifted in favor of indus-
trial case studies. Of the works listed in Table 2.2, 16 were validated
at least in part through industrial case studies. Despite the (often
promising) validation in an industrial context, the application of these
approaches in practice still remains an exception. The gap in indus-
trial practice is tied to the aforementioned domain, project and or-

2.4 MODEL-DRIVEN DEVELOPMENT IN REQUIREMENTS ENGINEERING

ganizational specifics. Of all the works in Table 2.2 only two claim
productive use in industry: that of van Lamsweerde [130] and of
Robinson-Mallett [200]. The work of van Lamsweerde features Ob-
jectiver, which is a commercially available tool. This tool supports an
entire goal-oriented methodology that also allows for the generation
of textual requirements from models. However, it requires that the
ideas of goal-oriented RE be followed — a practice that has recently
been shown to have limited impact within real-world settings [149].
Robinson-Mallett claims that his approach was applied in more than
ten specification projects in industry, but gives no details on the con-
textual circumstances or results. Aside from the manner in which the
proposals are validated, all works justify or at least motivate their ne-
cessity by emphasizing the importance of the examined modeling lan-
guage/diagram type in industrial practice. The generative technique
that is part of this work follows this idea, but it derives its relevance
from the fact that the need for such a technique has been voiced by
practitioners and from the lack of a general-purpose solution to ad-
dress this need.

2.4.2 Requirements-to-Model Approaches

Requirements-to-model approaches use requirements or some form
of specification in a textual form to extract various types of mod-
els from a wide variety of modeling languages. In literature, two
main purposes of requirements-to-model approaches are mentioned.
On one hand, they aim to facilitate requirements analysis by pro-
viding a graphical representation and aid requirements validation
by converting textual requirements into what is assumed to be a
more formal representation than the original text [199, 207]. On the
other hand, requirements-to-model approaches are recognized from
an MDD point of view [228]. As such, a development effort consists of
a sequence of model transformations where the result is deployable
source code [243]. In that sense, requirements-to-model approaches
are the first transformation of the sequence. At the same time, these
approaches differ from classic model transformations, which are es-
sentially transformations of directed graphs [154]. Requirements-to-
model approaches usually make use of NLP [178] or techniques that
fall within the realm of artificial intelligence [5]. Although the gen-
eration of models from requirements represents a valid form of co-
existence between requirements and models, this aspect is only of
marginal importance in this thesis. The methodology studied in this
thesis does not follow the aforementioned aims of requirements-to-
model approaches and these approaches are therefore merely pre-
sented for the sake of completeness.

An overview of requirements-to-model approaches is shown in Ta-
ble 2.3. Note that only works that explicitly mention requirements or

31

STATE OF THE ART

Table 2.3: Works on requirements-to-model approaches
(NL (Unstructured NL), UC (Use Cases), US (User Stories))

Target Model Origin Author
Activity Diagram NL Ilieva and Ormandjieva [116],
Fliedl et al. [85]
ucC Smiatek et al. [216], Tiwari et al. [228]
BPMN NL Friedrich et al. [89], Honkisz et al. [112]
Class Diagram NL Capuchino et al. [46],
Overmyer et al. [179],
Insfrén et al. [117],
Ambriola and Gervasi [11],
Fliedl et al. [85], Debnath et al. [63],
Letsholo et al. [136], Ahmed et al. [7]
ucC Subramaniam et al. [224],
Yue et al. [244]
Conceptual Models Us Robeer et al. [199], Lucassen et al. [140]
Feature Models NL Niu and Easterbrook [166],
Ferrari et al. [80],
Itzik and Reinhartz-Berger [122]
Message Sequence NL Kof [128]
Charts uC Feijs [78]
Sequence Diagram NL Insfran et al. [117]
ucC Diaz [121], Smiatek et al. [216],
Yue et al. [244], De Souza et al. [62]
State Machines NL Kof [129]
ucC Somé [218], Yue et al. [242],
Scandurra et al. [207]
Use Case Diagrams NL Illieva and Ormandjieva [116],
Ambriola and Gervasi [11],
Santos et al. [206]
uUS Elallaoui et al. [73]
Other
Data Types NL Abbot [4]
Object Diagrams NL Mich [157]
Architecture Concepts NL Griinbacher et al. [101]
Entity-Relationship NL Ambriola and Gervasi [11]
Live Sequence Charts NL Gordon and Harel [93]

2.4 MODEL-DRIVEN DEVELOPMENT IN REQUIREMENTS ENGINEERING

requirements documents as a possible source of text are considered.
In the first column, the table lists which model types are created from
the requirements. The second column lists the type of text that is used
to derive the model from. There is a distinction made between NL text
without an underlying structure and text with an underlying struc-
ture, such as use cases and in more recent works, user stories. The
third column lists the author(s) for each combination of target model
and the type of text source. Some works appear multiple times in the
table. These approaches encompass techniques from requirements to
multiple different model types and are accordingly listed for each
target model.

Most works generate class diagrams, which is not surprising as
this is one of the most widely used diagram types [138]. Neverthe-
less, this result might have been different if text sources other than re-
quirements or requirements documents had also been included [145].
Regarding the origin, most works attempt to use unstructured NL
as a source text. This is an ambitious endeavor because of the high
level of freedom unstructured NL text provides as well as its inher-
ent ambiguity (see Chapter 1). However, since most text comes in
this form [31], it can be considered the most relevant. Use cases also
play an important role in RE and are therefore a widely used form of
specification [228]. The same is true for user stories, which have be-
come increasingly important as a result of the wide adoption of agile
development methods in practice [125, 139].

Although, there are many requirements-to-model approaches, they
lack relevance in practice [5, 243], because they exhibit poor accuracy.
These approaches thus require human involvement in post-editing
even though they are supposed to be fully automated [140]. Yet, full
automation does not seem to be within reach in the near future [29,

203].

2.4.3 Bridging the Gap between Graphical Models and Textual Require-
ments

Employing models in the development of software systems makes it
necessary to establish a comprehensible connection between model
elements and requirements [16]. This necessity arises independently
of how the models are used and relate to the requirements [245].

As described in Section 2.1, this connection is realized through a
capability called traceability. As with “pure” requirements traceabil-
ity, it is necessary to relate corresponding representations (graphical
models and text) with one another to avoid omissions and prevent in-
consistencies [2, 238], which might otherwise complicate the use of a
specification approach that uses coexisting software artifacts. Accord-
ingly, traceability between the elements of a graphical model and the
coexisting textual objects must be ensured.

33

34

STATE OF THE ART

Traceability between requirements and all types of models has been
a focus for the research community for quite some time [238]. One
challenge associated with traceability between heterogeneous artifacts
is the use of different tools to manage these artifacts. As a wide va-
riety of tools exist for both RE and MDD tasks, not all combinations
are predictable. Nevertheless, to ensure bidirectional traceability (i.d.,
traceability both forwards and backwards) the tools on the RE as well
as the MDD side must accommodate traceability information.

A practical solution to realize trace links between different tools is
Open Services for Lifecycle Collaboration (OSLC) [176]. OSLC defines
a set of specifications for integrating different software development
tools with each other. While OSLC offers capabilities beyond simply
realizing trace links, it is nonetheless still suitable for this purpose.
However, OSLC requires that each tool vendor implements an OSLC
interface in its tool. This implementation might not exist for tools
that are not designed for the purposes of RE and MDD (e.g., Microsoft
Word /PowerPoint). This practice, of using tools not designed for spe-
cialized purposes, is not uncommon in industry [57, 222]. In addition,
the data might not be managed in tools, but rather in interchange for-
mats, such as ReqlF for requirements [173]. As a result, to support a
wide range of possibilities the state of the art is to associate the enti-
ties of one representation with some type of evidence of the relating
entity (e.g., an ID) [159].

2.5 SCOPE OF THIS THESIS

With regard to MDD, there have been a number of efforts to determine
whether MDD fulfills its promises of facilitating software development
in practice [222]. It has been found that the challenges of adopting
MDD in an industrial environment are not only related to technical
issues but are often more social in nature [236]. This gap between re-
search efforts (in-vitro) and realization in industry (in-vivo) not only
affects MDD, but also almost all newly introduced and sophisticated
ideas — an issue that has been noted with regard to approaches in
RE [149] as well. As a result, the application of MDD practices for
RE purposes must also be considered in a real-world environment
to assess the impact of such applications. In more general terms Or-
likowski notes [177]:

"Technology per se can’t increase or decrease the produc-
tivity of workers’ performance, only use of it can.”

Hence, every approach developed in research has to prove its appli-
cability in practice. Considering the related work in this chapter, out
of the numerous approaches validated with the help of practition-
ers, only van Lamsweerde [130] and Robinson-Mallett [200] actually
claim a productive use for their approaches in industry. However, it

2.5 SCOPE OF THIS THESIS

cannot be assumed that their ideas are applicable in every situation.
Thus, it is necessary to assess methodologies created and used by the
practitioners themselves.

The scope of this thesis includes just such an industrial implementa-
tion of a specification approach. An approach that is not only applied
in an industrial setting, but that is also developed by practitioners to
fit their own needs with consideration of their day-to-day work and
organizational environment — circumstances that still have received
only little attention from the RE community [10]. Unlike other ap-
proaches, the stakeholders involved in the examined approach are
not merely subjects in a research effort but the main (and sole) actors.
From Problem Statement 1, one of the questions this thesis aims to
answer is:

What are the implications (benefits, pitfalls, drawbacks) of
a specification approach using coexisting graphical mod-
els and a textual representation implemented by practi-
tioners independently?

Answering this question aims to provide insights into the examined
specification approach, which uses coexisting UML2 activity diagrams
and structured text for representations of requirements. Since practi-
cal application causes a number of issues itself, solutions to these
issues are also developed. As the contributions in Section 1.4 and
Problem Statement 2 have already implied, inconsistencies between
artifacts present significant risks in practice. Considering this, we aim
to answer the question:

How can inconsistencies between the activity diagrams
and the textual representation be addressed?

The answer to this question should guarantee the alignment of the
coexisting activity diagrams and the textual representation. As a re-
sult, the quality of the artifacts should be improved, which positively
affects user acceptance.

35

Part II

ANALYSIS OF A SPECIFICATION APPROACH
BASED ON COEXISTING ACTIVITY DIAGRAMS
AND TEXTUAL REPRESENTATIONS

COEXISTING GRAPHICAL AND STRUCTURED
TEXTUAL REPRESENTATIONS OF REQUIREMENTS:
INSIGHTS AND SUGGESTIONS

Published in Requirements Engineering Foundation for Software Quality.
- LNCS (10753) (p. 265 - 280) [23].

TERMS OF USE

The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-77243-1_16

BROADER CONTEXT WITHIN THE THESIS

The application of a specification approach that uses graphical and
textual representations of requirements and is implemented by prac-
titioners independently has not yet been examined in an industrial
context (see Chapter 2). In this chapter, a study is presented in which
we analyze an approach that uses activity diagrams as graphical rep-
resentation and hierarchically structured text as textual representa-
tion. How users work with the content generated by the approach
and what challenges they face, is analyzed. This analytical portion of
the study addresses Problem Statement 1 and represents contribu-
tion I of the thesis.

In order to address the identified challenges, suggestions are made
regarding how to improve the application of the approach. These sug-
gestions help address Problem Statement 2 and represent contribu-
tion III of this thesis.

AUTHOR CONTRIBUTIONS

The author list includes Martin Beckmann, Christian Reuter, and An-
dreas Vogelsang. The author of this thesis was the lead author of
the publication. He wrote the majority of the article and designed,
conducted, and evaluated the interviews. Christian Reuter managed
organizational issues at the industry partner and independently re-
peated the evaluation to confirm the results. Christian Reuter and
Andreas Vogelsang both provided advice regarding the study design
and contributed to the writing of the paper.

https://doi.org/10.1007/978-3-319-77243-1_16

40 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

Coexisting Graphical and Structured Textual
Representations of Requirements: Insights and
Suggestions

Martin Beckmann!, Christian Reuter?, and Andreas Vogelsang?

! Technische Universitéit Berlin, Germany
2 Daimler AG, Germany

Abstract. [Context & motivation] Many requirements documents
contain graphical and textual representations of requirements side-by-
side. These representations may be complementary but oftentimes they
are strongly related or even express the same content. [Question/prob-
lem] Since both representation may be used on their own, we want
to find out why and how a combination of them is used in practice.
In consequence, we want to know what advantages such an approach
provides and whether challenges arise from the coexistence. [Principal
ideas/results] To get more insights into how graphical and textual re-
presentations are used in requirements documents, we conducted eight
interviews with stakeholders at Daimler. These stakeholders work on a
system that is specified by tabular textual descriptions and UML activ-
ity diagrams. The results indicate that the different representations are
associated with different activities. [Contribution] Our study provides
insights into a possible implementation of a specification approach using
mixed representations of requirements. We use these insights to make
suggestions on how to apply the approach in a way that profits from
its advantages and mitigates potential weaknesses. While we draw our
conclusions from a single use case, some aspects might be applicable in
general.

Keywords: Model-Driven Software Specification; Graphical Models; Re-
quirements Documents; UML Activity Diagram

1 Introduction

Eliciting and specifying requirements by means of models is becoming more and
more popular in the development of complex embedded systems [1]. However,
these models usually accompany and complement textual requirements and do
not replace them. Therefore, many requirements documents contain graphical
and textual representations of requirements side-by-side. This combined use of
graphical diagrams and textual descriptions is considered beneficial for the re-
quirements management process [2, 3].

In practice, there are more substantial reasons why the same information
may be expressed in a graphical model and also in an accompanying text. For

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

example, industrial applications, tool support, and model exchange for graphi-
cal models are still not standardized [4] and, as a result, manufacturer/supplier
handover is still performed by textual documents. This is especially important,
since these textual documents often serve as the basis for legal considerations
between the contractors [3,5]. Also, due to different backgrounds of the stake-
holders, not everyone is capable of understanding the graphical models [6].

Maintaining and updating information in graphical and textual representa-
tions is often performed manually. In previous work, we have shown that this
is a potential source for inconsistencies and quality issues in the requirements
specifications [7]. Moreover, best practices and guidelines for when and how to
use graphical or textual representations are missing. This leads to discussions
about the validity of the representations, when deviating representations exist.

Without a deeper understanding of how the different representations are
used and why they coexist, it is hard to come up with measures for ensuring
consistency or to decide how content should be represented. Therefore, we are in-
terested in how coexisting graphical and textual representations of requirements
are used by stakeholders of the system. For this purpose we considered one par-
ticular instance of this case in practice, where a team at Daimler uses UML
Activity Diagrams to provide a high-level overview of the activation conditions
for a vehicle function. The information contained in this model is afterwards
transferred into a tabular textual representation that is then further detailed.

We conducted eight interviews with practitioners at Daimler. Three intervie-
wees have developed the specification approach described above. Five intervie-
wees work with the resulting requirements document. From these interviews, we
derive a model that describes for which activities stakeholders use graphical or
textual representations. Also, we use the acquired data to provide suggestions
on how graphical and textual representations should be used to leverage their
potential and avoid pitfalls which would lead to quality issues.

Trigger: Vehicle is in Trigger: State of Trigger: State of Trigger: State of
"p connector “pl 1"

"vehicle_plugged" "vehicle_plugged"

T
Trigger: State of Trigger: State of ‘ Trigger:"Stalte of N Trigger: S:ate nf"
connector “plugged” connector "unknown" MergeNode) defect
[FALSE]
JoinNode RUE \L MergeNode

[FALSE] [FALSE] [TRUE] [FALSE]

Check: V < 5 km/h Check: Engine Cranking inactive} [Check: Gearshift is in "P* bﬁ@)

RUE]
‘ [TRUE] [TRUE] [TRUE]

MergeNode

[Function: Drive Inhibit

Fig. 1: Activity diagram of the function Drive Inhibit

41

42 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

2 Background

A team at Daimler employs UML activity diagrams [8] to specify functions of a
system. The diagrams are used to get an early overview of the desired function
behavior with a special focus on the activation of the function, execution condi-
tions, functional paths, and deactivation. Fig. 1 depicts a diagram of the system.
The actual behavior of the activated function is described in the Action node la-
beled with Drive Inhibit (bottom of the diagram). The activation of the function
is described by a combination of triggers and checks for conditions. This pattern
to describe functions is also known for building textual requirements [9]. Ac-
tivity diagrams are interpreted according to the requirements-level semantics of
activities as defined by Eshuis and Wieringa [10]. As such, we assume that each
node executes as soon as a token is placed on that node (by a transition or by
occurrence of events). We also assume that the time required to execute a node
is infinitely short. Control nodes have the usual semantics: MergeNodes (dia-
monds) and JoinNodes (bars) represent OR connections and AND connections,
respectively. All the activity diagrams of the system are modeled in a similar
way in regard to the used pattern, structure and layout.

The activity diagrams are then embedded in a textual requirements specifica-
tion in two representations: (a) graphically as an image, (b) in a tabular, textual
form which is supposed to reflect the same behavior as the activity diagram. The
tabular representations may be refined and extended later.

Fig. 2 shows the textual representation of the activity diagram in Fig. 1 as
we found it in the specification document of our industry partner. The basic
idea of the textual representation is to represent the triggers and checking con-
ditions which govern the execution of a function as a kind of AND-OR table
with postfix boolean operators. As such, the textual representation emphasizes
the propositional logic aspect of the behavior. Each row represents an object,
which is described by a set of attributes (columns). These attributes are needed
to display the relevant information of the activity diagram in the requirements
document. The ID attribute contains a unique identifier of the object. The Text
attribute is a textual description of the object and is supposed to be equal to
the text of the corresponding element in the activity diagram. It also contains
the boolean operators which connect multiple elements within a cell or connect
one row to the next row on the same Level. The Level is an attribute to struc-
ture the objects hierarchically. It is derived from the structure of the activity
diagram. The Type attribute denotes whether an object is a function, a trigger
or a condition to be checked. The object types in the table are derived from the
types of the corresponding elements in the activity diagram.

Note that the activity diagram and the textual representation exhibit a num-
ber of differences with respect to both placement of elements and the specified
behavior. E.g., the element Check: Engine Cranking inactive has the predecessor
Check: V < 5 km/h in the activity diagram, while in the textual representation
the element Vehicle Gear selector is in position ”P” is the predecessor. Besides,
some rows in the textual representation mistakenly have a connector at their
end (ID 1113, 1233), although there are no further rows on the same Level.

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

These issues may originate from the manual generation of the textual represen-
tation and changes over time. We have addressed these problems in a previous
paper [7].

ID Text Level Type
1000 1.1.1.1.1.1 Drive Inhibit 6 Function
1236 State of connector "unknown" OR 7 Trigger

State of connector "defect” OR
1237 Vehicle Gear selector is in position "P" AND 8 Check
1113 Engine Cranking inactive OR 8 Check
1111 State of connector “plugged on vehicle side" ("VEH_PLUGGED") OR 7 Trigger
“plugged on vehicle and EVSE side” ("PLUGGED") OR
1112 Vehicle velocity is below 5 km/h 8 Check
1114 Vehicle Gear selector is in position "P" OR 7 Trigger
1232 Vehicle velocity is below 5 km/h 8 Check
1233 State of connector "plugged on vehicle side" OR 7 Trigger

State of connector "plugged on vehicle and EVSE side" OR
State of connector "unknown" AND

1238 Vehicle velocity is below 5 km/h 8 Check

Fig. 2: Textual representation of the function Drive Inhibit

The sample in Fig. 2 only depicts the contents derived from the activity.
Besides the mentioned attributes, the document may contain other attributes
used for further development. Also, the textual document may contain more
detailed information in the form of further requirements and descriptions. These
entries may be both formal (e.g., parameter values) and in freely-written natural
language.

3 Related Work

Graphical notations as a means to ease the understanding of complex systems
have been used in different contexts [11,12]. Nevertheless, despite showing se-
veral advantages there are drawbacks such as end users’ unfamiliarity with
graphical notations and limits on the displayable details in visualizations. Mo-
reover in requirements engineering, research has identified the need for different
representations of requirements [13]. A possibility to tackle these issues is to use
accompanying text for graphical models. Arlow et. al. introduced an approach
called Literate Modelling that works with this idea and employs UML models as
the graphical models [6]. This concept of coexisting graphical models and tex-
tual descriptions was picked up and discussed for future tools in requirements
engineering [14]. In addition the approach is supported by ideas using a graphi-

43

44 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

cal model as a basis to generate a structure for requirements documents and
requirements itself [15].

However, to the best of our knowledge, there is only a small number of
works on the topic of how to apply the approach and on its impact. Aside from
computer science, it has been shown that the combined use of words (written
and spoken) and pictures has a beneficial effect on a person’s perception [16].
Still, it is also known that readers focus on the representation that takes the
least effort to understand, in case they contain the same information [17].

A study of Burton-Jones et. al. with student participants investigates whet-
her a combination of representations is beneficial [18]. They report a positive
impact for understanding a new system by using conceptual graphical models
and a textual narrative, but do not give details on how to implement such an
approach in practice. Our intent is to improve the understanding in this area by
interviewing practitioners and to make suggestions on how to implement such a
mixed representation approach in the best way possible.

4 Study Design

To gain a better understanding of how the approach is used and how the involved
parties work with the activity diagrams and the textual parts, we conducted an
interview study with stakeholders of one particular system. We designed the
study along the recommendations of Runeson and Host [19].

Research Objective: We want to know how the different stakeholders use
the graphical models and the textual descriptions, how and where they make
changes, and how they ensure consistency of the specification. Additionally, we
are interested in the stakeholder’s perception of advantages, challenges, and best
practices of the application of the approach.

To reach this objective, we pursue three research questions (RQ):

RQ1: For which activities do the stakeholders use which represen-
tation? With this research question, we aim at getting insights about the use
of different representations in order to be able to derive suggestions for working
in a setting with coexisting representations.

RQ2: What are the reasons why stakeholders use one or the other
representation for specific tasks? We want to find out why stakeholders use
one of the representations for certain tasks. This is meant to provide insights on
the benefits the graphical models offer and how the coexisting artifacts are used
in the work of the involved persons.

RQ3: What challenges arise in the combined use of graphical mod-
els and text and how should they be addressed? We want to know what
problems the stakeholders face. This gives us an idea on potentials for impro-
vement. Also, this RQ is used to derive suggestions for the use of graphical
models in combination with text for specifying functions.

Study Object: We conducted this study in the context of the development
of one particular system. The system contains functions involved with charging
the batteries of Plug-in Hybrid Electric Vehicles and Battery Electric Vehicles.

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS 45

As such, the system contains requirements that are relevant for safety as well as
for usability. Overall, there are 14 functions in the system which are described
by the approach mentioned in section 2. These functions contain a total of 22
activity diagrams and almost 2,000 objects (including requirements, descriptions
and headings). The additional activity diagrams result from the fact that some
subfunctions of the functions are also described by activity diagrams and text.

Data Collection: We conducted interviews with eight stakeholders of one
particular system. The majority of the interviewed stakeholders (five) either
depend on the contents of the requirements document directly or on content
which is derived thereof automatically or manually. The rest of the stakeholders
(three) are concerned with the methods that are applied to specify systems
and components at Daimler. We group the participants into three groups: those
involved with the testing of the functions (in the following referred to by: 77,
T3), those who use the specified functions to specify components (Cy, Ca, Cs),
and those developing the applied methods (M, Ma, Ms3).

The interviews were performed by following an interview guideline. The inter-
view guideline was created in multiple iterations. In each iteration the structure
and questions were refined by discussions with other researchers and practitio-
ners of our industry partner to ensure that the research questions are properly
addressed. However, the interviews were conducted as open interviews. In case
the participants mentioned issues aside from the questions of the guideline, we
did not interrupt and followed up on these issues in some cases. Also, insights
gained during the interviews were considered in the following interviews.

The first part of each interview concerned the background of the interviewee.
We asked questions on how long they have been working with the contents of
the system, what their current role is, whether there was prior knowledge in
dealing with graphical models, and what their general attitude is towards the
use of graphical models.

The second part aimed at eliciting facts about their work. This question
covered what the participants actually use the activity or text for as well as in
what way the two artifacts provide different information for their tasks. Further-
more, we asked what purposes the activity diagram and the textual description
respectively fulfill. As the participants M7, M and M3 do not directly work on
the contents we engaged them in a discussion about their idea how the artifacts
are supposed to be used. In addition, we asked the participants for their general
impression on the quality of the activity diagrams and the accompanying text.

The third part aimed at initiating a discussion with the participants. We
wanted to know where they see advantages in the current approach, what chal-
lenges they face in applying it in their own work and how to possibly deal with
them. We also wanted to find out how they perceive the influence of the approach
on the contents they are provided with. Hence, we encouraged the participants
to give their opinion on the way the system’s functions are specified and what
consequences they expect for their tasks. Furthermore, we wanted to find out
whether they can imagine a different process for the specification of functions
and how that would differ from the current approach.

46 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

The majority of the interviews (five) was conducted on site. The rest of the
interviews (three) was conducted by telephone. We ensured that the statements
of the participants were handled in an anonymous way to guarantee honest
answers. The interviews were scheduled to last about an hour. In the end the
shortest interview lasted 32 minutes, while the longest took almost 90 minutes.
The interviews were recorded.

Data Analysis: The first author created transcripts of the interviews. These
transcripts summarize the whole interview and contain the essential statements
of the participants. Due to the open nature of the interviews the number of sta-
tements differ from participant to participant. We analyzed the transcripts by
applying qualitative coding [20]. The analysis was performed by the first and the
second author. Our first step was to read the interview transcripts to get an over-
all impression. This impression was used to extract a first set of concepts. These
concepts were then discussed in regard to their relevance towards the research
questions. The discussion resulted in a common set of concepts. We then checked
the transcripts for information, which fit the identified concepts. This task was
performed independently and afterwards the coding was compared. In case of
deviations the results were discussed until we reached a mutual agreement. This
mutual agreement led to the omission of a number of statements, since they did
not directly address the research questions. It turned out that some of these
omitted statements covered interesting aspects nonetheless. Hence, it was deci-
ded to repeat the process in the same manner with additional concepts in order
to include these aspects. We deduced the relevance of these aspects by the fact
that they were mentioned by multiple participants.

5 Study Results

5.1 Demographics & Background

The interviewed participants have been working for our industry partner for
a time period between 2 and 28 years. All of the participants stated to have
prior experience in working with graphical models. This encompassed state-
ments between some familiarity with UML and similar graphical notations to
expert knowledge in the application of graphical models in the development of
systems. Also, all participants stated to have a positive attitude towards the
use of graphical models. Those statements ranged between seeing minor benefits
to the impression that graphical models are nowadays necessary to be able to
comply with standards and to create high-quality requirements.

5.2 Benefits & Use of the Approach

To address RQ1 and RQ2, we considered the answers to the questions that
concerned the activities the participants perform during their work as well as
parts of the discussion revolving around the advantages they perceive.

The tasks the participants perform are shown in Fig. 3. Boxes denote acti-
vities, while ovals represent artifacts. The lines show the associations that the

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS 47

participants mentioned in the interviews. The arrow between the two artifacts
indicates that the graphical model is the initial artifact which is used to derive
the textual descriptions.

Deriving
Requirements
for Components

Deriving Test

Planning Cases

Textual
Description

Graphical

Model

Documentation

Means of
Communication

Developing a
General
Understanding

of Non-
functional
Requirements

Refinement of
Requirements

Fig. 3: Tasks associated with the artifacts

To use the graphical models as a means of communication and to develop a
general understanding was identified as a task by almost all participants. Addi-
tionally, two participants (M7, M3) mentioned to use the graphical model during
release planning. They use the relations between the elements of the diagram to
gain insights into dependencies between underlying components, which in turn
facilitates the planning. The only task associated with both representations is
deriving test cases. In this matter, participant T5 explicitly mentioned that the
activity diagrams are the actual basis to create some of the test cases and not
just a supporting alternative view of the text.

Nevertheless, the groups involved in testing and those responsible for com-
ponents of the system both stated to rely mostly or even solely on the textual
description to derive their own artifacts (test cases and components require-
ments). Furthermore the textual description was mentioned to be used to refine
requirements and to provide more details on contexts and surrounding circum-
stances by all of the participants.

Aside from the performed activities, there seems to be confusion about the
use of the approach itself. There was no common understanding between the
participants on whether the textual or the graphical representation should be
created first, which one is used in case of inconsistencies, and where changes are
incorporated. Different statements were made on this topic. Some participants
mentioned that they are unaware of how the artifacts are created and where to
incorporate changes.

Moreover, the answers of the participants offered insights on what they think
the artifacts are used for and what benefits the approach offers. Table 1 and
Table 2 show an overview of all statements the participants made about graphical

48 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

models and textual descriptions, respectively. A v/ denotes that the participant
made that statement while a — denotes that the participants did not make
mention of that fact.

Since all participants mentioned to have a positive attitude towards the use of
graphical models, it is not surprising that their use is considered beneficial. Many
even mentioned that they consider the use of graphical models as a necessity.
As the associated tasks have shown, there is a lot of agreement that activity
diagrams are used as a means of communication and a basis for discussion. Also,
it was mentioned explicitly by almost all participants that the diagram improves
the general understanding of a function.

For the textual descriptions, most participants mentioned that they see the
text as the reference and it is used to provide details. The fact that the text
is necessary because of legal considerations was only mentioned explicitly by
participant T5. The necessity to support stakeholders who are unfamiliar with
the use of graphical models was stated by C7, Ty and Ms.

5.3 Challenges & Possible Improvements

To answer RQ3, we asked how they perceive the quality of the activity diagrams
and their textual representation. More specifically, we wanted to know how they
like the way the artifacts are structured and whether they face challenges by
maintaining coexisting artifacts.

All participants emphasized that consistency is a major problem in the way
the approach is currently applied. As a consequence, all participants would ap-
preciate automatic support for deriving the textual description from the activity
diagrams. They assume that this would have a positive impact on their work.

The textual representation was criticized with regard to its interpretation.
Some participants said that they would prefer a different structure as the current
one is not intuitively understandable. However, further inquiries on this issue
revealed that the boolean operators without following rows on the same level
(described in section 2) are not perceived as a problem.

Many issues with the activity diagrams were mentioned. For instance, critique
was expressed on the depiction of the activity diagrams. This critique focused
most often on the fact that the diagrams are not uniformly designed using the
same tool. Also, the pattern depicted in Fig. 1 is not strictly enforced. Furt-
hermore, the contained information was criticized in regard to both the amount
and level of detail. This point encompassed different opinions of the participants.
Some of them stated that required information, such as signal names and values,
are missing in the diagrams. Others stated that there are too many elements and
details in some diagrams to understand a function properly. Yet, others said that
the activity diagrams contain information (e.g., of other components) that is not
relevant for them.

As the layout of a graphical model has a major impact on its understand-
ability [21], we also wanted an opinion on the quality of the layout. All of the
participants mentioned to be satisfied with the quality in that regard. Still, the
way the activity diagrams are embedded in the tool was criticized. The diagram

49

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

Table 1: Statements about the use of graphical models by participants

Participant considered considered means of improves under- should be display represents used for
beneficial necessary communication / standability basis for text architecture relations planning
discussion
C1 v - v v v v v -
Ca v - v v v - v -
Cs v - v v v v v -
Ty v - v v v - v -
T - v - - v - - -
M,y - v - 4 - v v v
Mo - v v v v v v -
Ms - v v 4 - - v v
Table 2: Statements about textual descriptions by participants
Participant acts as legal consid- contains handover for used for support stakeholders
reference erations details supplier non-functional unfamiliar
requirements with models

Ci v - v - - v

Cs v - v - - -

Cs v - v 4 - -

Ti v - - - - -

Ty - v v 4 - v

My - - v 4 - -

Mo - - v 4 v v

Ms - - v - - v

50 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

is included as a picture in a cell in the requirements document. Since the default
size of such a cell does not allow for the display of the complete diagram, it is
necessary to adjust its size manually in order to see the full diagram.

5.4 Beyond the Research Questions

Since we designed the study as an open interview, many things were mentio-
ned that did not directly address our research questions. Still, some of these
statements are within the scope of our research objective.

Regarding the question what the graphical model is used for, the answer
that appeared most often was an improved understandability. Further questions
in that matter revealed that the understanding concerns mostly relations be-
tween the elements in the graphical representation. Aspects of activities such
as independent executability of actions and asynchronous behavior were never
mentioned. When we specifically asked for that, it was stated, that this is of no
importance on that level of description.

As the automated generation of the textual description from the graphical
models was mentioned, we wanted to know whether the capability of synchro-
nization of the graphical and textual representation is needed. The participants
answered that this capability would be nice-to-have, but all agreed that changes
are best incorporated in the graphical model. M, C5 and T5 said, it should not
be possible to change aspects of the graphical model in its textual description
and hence a synchronization in the backwards direction should not be allowed.

Towards the end of the interviews, we challenged the approach as a whole
and asked whether they could work without the textual representation. Because
of the already mentioned uses of the text, about half the participants instantly
stated that it does not seem possible. The rest was open to the idea, but had
doubts, because of organizational considerations (e.g., handover to suppliers,
legal issues) and also stated the necessary models would mitigate their main
advantage — the capability of offering a clear overview. Participant 75 said this
would require major modifications in the company structure. It would be possible
if all development tasks from suppliers are reintegrated to one place.

6 Discussion

6.1 Findings from our Study

All in all, there seems to be a common understanding between the different
stakeholders on why they use this approach and on what to use each artifact for.
We derive this conclusion from the fact that all of the stakeholders consider the
two coexisting artifacts to be at least beneficial. This is also reflected by the fact
that there is a high-level of agreement towards the way the respective artifacts
are used. Furthermore, the association of specific tasks with certain artifacts
indicates that both the graphical representation and the textual representation
are necessary to manage the complexity of today’s systems and hence create
high-quality requirements specifications.

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS 51

The graphical representation is mainly seen as a means of communication
and discussion and for improved understandability by almost all participants.
Communication and discussions are necessary to make sure the behavior is as
originally intended. A proper understanding of the function is mandatory for the
stakeholders. These two purposes facilitate subsequent tasks such as deriving
requirements for components and the manual generation of test cases. Thus, we
see the diagram in a rather supportive role. These results also indicate that the
graphic models are primarily used for the purpose of visualization and not for
expressing precise semantics. In consequence it serves a wallpaper use [22].

The only aspect that was commented conflictingly about the graphical mod-
els regarded their depiction. Participant 77 mentioned, that she would rather
prefer more elements in a diagram than scrolling to a different diagram to get
more information. Participant 75 mentioned that the maximum number of ele-
ments in a diagram should be restricted to about seven elements and, if further
elements are required, they should be nested into a linked diagram. In addition,
some participants complained about information in the diagrams that is not
relevant to them. This conflict cannot be resolved by using a single graphical
representation of a function for all stakeholders (cf. [13]).

As for the textual representation, the results strongly suggest that it is in
fact the preferable medium to accommodate refinements and details. Half of the
participants mentioned the need to support stakeholders unfamiliar with graphic
models. This is an issue that constantly appears in contexts where models are
used. The coexistence of textual descriptions and graphical models appears to
be a possible solution to this issue [23]. Nevertheless, there might be more fitting
possibilities to arrange the textual representation than the one currently used
(see [24] for a study on different textual representations of activity diagrams).

Although the graphical representation is created as a first step for the speci-
fication, its use is not restricted to the specification phase. As our participants
perform a variety of tasks, we found out that the graphical model fulfills more
purposes than just being a starting point for further specification. Amongst oth-
ers it is used to derive test cases and to support understanding of the intended
behavior. Hence, it proved to have been a good idea to consider participants
outside the group of people who create the graphical models and textual de-
scriptions. This selection of participants, on the other hand, also explains the
lack of understanding which artifact is created at which step in the process,
where changes are incorporated, and which artifact has to be used in case of
inconsistencies. In hindsight, it turned out that the lack of a definition which
artifact is used as the lead is also linked to the study object. Although half
of the participants mentioned that the text is used as a handover and for le-
gal considerations, this mainly applies to the derived component specifications.
System specifications are mainly used internally and hence using the textual
representation as the reference is not strictly enforced.

With regard to these insights we conclude that in our case using a textual

and graphical representation on the same level of abstraction is an appropriate
means in the development of systems since the artifacts serve different purposes.

52 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

To make the most of the approach, we make suggestions that aim at mitigating
the found weaknesses and taking advantages of the identified strengths.

6.2 Suggestions

Based on the insights we make suggestions on how to implement a mixed repre-
sentations approach in order to leverage the potentials of the respective represen-
tations. From the high level of agreement concerning that the activity diagram
should be used as a basis for the text, we conclude that the activity diagram is
indeed an adequate starting point for the specification process of our industry
partner. This finding is largely in line with research on the use of graphical mod-
els that emphasizes its use during the early stages of development [25]. Hence,
this section starts with suggestions on the use of the activity diagrams and pro-
ceeds with suggestions on the textual representation of our industry partner.

Use of the Activity Diagrams. One of the major factors to the success of
graphical models is that it needs to be understood by as many stakeholders as
possible. To achieve this, it is paramount to design the models according to a
defined pattern. Also, we recommend to use a common tool for the modeling in
order to ensure a uniform look, although this might be hard to enforce. Never-
theless, access to the tool should be granted to all who make use of the activity
diagram. This is required to address the problem with the handling of the di-
agram. From the different opinions on the contained information, we conclude
that a mechanism is needed to tailor the models according to each individual’s
needs. This suggestion has been stated before [13] and is in line with established
solutions on using textual requirements [26].

Use of the Text. Deriving the text from the activity diagram avoids incon-
sistencies and hence ensures that the same behavior is described by both repre-
sentations. Aside from the situation of our industry partner, there are already a
number of approaches dealing with the generation of requirements specifications
(or parts thereof) from models [15]. Following our participants the text can be
used to incorporate refinements and details. As the complementary information
may also be freely written in natural language, this representation may in fact
be better suited for stakeholders unfamiliar with the notations of activities. De-
tailed information should only appear in the text to avoid further consistency
issues and to guarantee the main purpose of the activity diagram is not impaired
— to maintain a high-level overview.

Incorporation of Changes. As the appearance of changes is inevitable in the
course of development, their incorporation in the artifacts must be considered.
Changes to the relations of entities are easier to implement in the diagram.
For textual changes it does not make much difference which representation is
used. Nevertheless, to avoid inconsistencies only a single artifact should be used.

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS 53

Hence, the activity diagram should accommodate changes which affect both
representations, although this might be hard to realize considering the fact that
multiple persons work with the specification artifacts. The changes in the activity
diagram are then propagated to the textual representation. It has to be noted
that the additional textual content is not deleted or modified in the process.

Alternatively, changes could be automatically incorporated by using tools
such as Projectional Editors, which automatically edit different projections of
a common underlying model, in this case the activity diagram and its textual
representation. However, this approach requires substantial efforts and accor-
dingly trained developers [27]. Hence, a custom-made and lightweight solution
to generate and update the textual representation might be better suited for the
situation of our industry partner.

Further Related Tasks. As for the tasks of the respective artifacts, the situ-
ation displayed in Fig. 3 is already a good way of applying the strengths of the
model and the text. The main concern of the graphical model is human-based
analysis and the exchange of ideas between stakeholders. As such, the tasks of
planning, improving understanding, and facilitating communication are prone to
involve a visualization. Still, since the graphical representation provides a high-
level overview, these tasks are restricted to early stages of development, when
the required descriptions do not need to be detailed. Nonetheless, the defined
syntax and semantics of a graphical model can also be used to automatically
derive test cases [28].

6.3 Threats to Validity

The participating stakeholders were selected by the second author who is also
actively participating in the development of the examined system. We did not
follow specific selection criteria, except that participants must work actively on
the examined system. However, the group of study participants only represent
a subset of all people working actively with the requirements documents.

Furthermore we only had access to internal participants within one company.
However, the activity diagrams and their textual descriptions must also be read
and understood outside the company, such as legal authorities and suppliers.
Their opinion is critical since inquiries on unclear issues require more effort
between multiple organizations than inside a single company.

Also, our study examined the present situation of an approach using activ-
ity diagrams. The use of other graphical models might influence the proposed
suggestions as well as the benefits and weaknesses we identified.

To answer our research questions, we only had access to a limited number
of participants who actively work with this approach or are responsible for the
applied methods. Also, we only gained insights into a single implementation of a
mixed representation approach which uses activity diagrams and a very specific
kind of textual representation. In conclusion, although our findings turned out to
be consistent, our results can only be seen as a first step. Hence, further research
is required to generalize our findings.

54 COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

7 Conclusion and Future Work

In this paper, we present the results of a number of interviews we conducted
to gain a better understanding of a specification approach that uses coexisting
activity diagrams and tabular textual descriptions. The results incorporate an
assessment of our participants on which artifact is suitable for which task as well
as their opinion on the benefits of the respective artifacts. The use of graphical
models for themselves as well as their use in coexistence with textual description
on the same level of abstraction is perceived as beneficial. We use the insights
gained by these results to derive suggestions. The suggestions serve the purpose
of providing a guideline on how to implement such an approach in order to avoid
inconsistencies and leverage its full potential.

Although we think that our results can be generally applied to approaches
using coexisting graphical and textual artifacts, the results should be further
validated by repeating the study with differing implementations of the appro-
ach. The differences might concern the type of graphical model and the pattern
for textual description. Also, the extent to which practitioners benefit from our
suggestions needs to be further examined. Moreover, the graphical and textual
representations described in this paper are not the only artifacts. To handle
the complexity of today’s systems, further diagrams and associated documents
might be needed. Ensuring the propagation of necessary changes to these arti-
facts is still not implemented in an acceptable manner and hence needs further
investigation.

References

1. Broy, M.: Challenges in automotive software engineering. In: International Confe-
rence on Software Engineering. (2006)

2. Davis, A.M.: Just Enough Requirements Management: Where Software Develop-
ment Meets Marketing. Dorset House Publishing Co., Inc. (2005)

3. Sikora, E., Tenbergen, B., Pohl, K.: Industry needs and research directions in
requirements engineering for embedded systems. Requirements Engineering 17(1)
(Mar 2012)

4. Reuter, C.: Variant Management as a Cross-Sectional Approach for a Continuous
Systems Engineering Environment. In: Grazer Symposium Virtual Vehicle. (2015)

5. Maiden, N.A.M., Manning, S., Jones, S., Greenwood, J.: Generating requirements
from systems models using patterns: a case study. Requirements Engineering 10(4)
(Nov 2005)

6. Arlow, J., Emmerich, W., Quinn, J.: Literate Modelling Capturing Business
Knowledge with the UML. In: International Conference on the Unified Modeling
Language. (1998)

7. Beckmann, M., Vogelsang, A., Reuter, C.: A Case Study on a Specification Ap-
proach using Activity Diagrams in Requirements Documents. In: International
Requirements Engineering Conference. (2017)

8. Object Management Group (OMG): OMG Unified Modeling Language (OMG
UML), Version 2.5. http://www.omg.org/spec/UML/2.5/ (2015)

COEXISTING GRAPHICAL AND TEXTUAL REPRESENTATIONS OF REQUIREMENTS

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Firesmith, D.: Generating Complete, Unambiguous, and Verifiable Requirements
from Stories, Scenarios, and Use Cases. Journal of Object Technology 3 (11 2004)
Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams.
IEEE Transactions on Software Engineering 30(7) (2004)

Huff, A.S.: Mapping Strategic Thought. John Wiley & Sons Ltd (1990)

Pidd, M.: Tools for Thinking: Modelling in Management Science. 3rd edn. John
Wiley & Sons Ltd (2009)

Gross, A., Doerr, J.: What You Need Is What You Get!: The Vision of View-
Based Requirements Specifications. In: International Requirements Engineering
Conference. (2012)

Finkelstein, A., Emmerich, W.: The future of requirements management tools. In:
Information Systems in Public Administration and Law., Osterreichische Computer
Gesellschaft (2000)

Nicolés, J., Toval, A.: On the generation of requirements specifications from soft-
ware engineering models: A systematic literature review. Information and Software
Technology 51 (09 2009)

Mayer, R.E.: The Cambridge Handbook of Multimedia Learning. Cambridge
University Press (2005)

Payne, J.W., Bettman, J.R., Johnson, E.J.: The Adaptive Decision Maker. Cam-
bridge University Press (1993)

Burton-Jones, A., Meso, P.N.: The Effects of Decomposition Quality and Multiple
Forms of Information on Novices’ Understanding of a Domain from a Conceptual
Model. Journal of the Association for Information Systems 9(12) (2008)
Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2) (2009)

Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience
of software development. Empirical Software Engineering 16(4) (Aug 2011)
Mendling, J., Reijers, H.A., Cardoso, J.: What makes process models understanda-
ble? In: Alonso G., Dadam P., Rosemann M. (eds) Business Process Management.
BPM 2007. Lecture Notes in Computer Science, vol 4714 (2007)

Drusinsky, D.: From UML activity diagrams to specification requirements. In:
International Conference on System of Systems Engineering. (2008)

van Qosterom, P., Lemmen, C., Ingvarsson, T., van der Molen, P., Ploeger, H.,
Quak, W., Stoter, J., Zevenbergen, J.: The core cadastral domain model. Compu-
ters, Environment and Urban Systems 30(5) (2006)

Beckmann, M., Vogelsang, A.: What is a Good Textual Representation of Activity
Diagrams in Requirements Documents? In: International Model-Driven Require-
ments Engineering Workshop. (2017)

Lindland, O.I., Sindre, G., Sglvberg, A.: Understanding quality in conceptual
modeling. IEEE Software 11(2) (March 1994)

Weber, M., Weisbrod, J.: Requirements Engineering in Automotive Development
- Experiences and Challenges. In: Joint International Conference on Requirements
Engineering. (2002)

Berger, T., Vélter, M., Jensen, H.P., Dangprasert, T., Siegmund, J.: Efficiency
of projectional editing: A controlled experiment. In: International Symposium on
Foundations of Software Engineering (FSE). (2016)

Beckmann, M., Karbe, T., Vogelsang, A.: Information Extraction from High-Level
Activity Diagrams to Support Development Tasks. In: International Conference
on Model-Driven Engineering and Software Development. (2018)

55

A CASE STUDY ON A SPECIFICATION APPROACH
USING ACTIVITY DIAGRAMS IN REQUIREMENTS
DOCUMENTS

Published in 2017 IEEE 25th International Requirements Engineering Con-
ference (RE) (p. 245 - 254) [25].

TERMS OF USE

© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, in-
cluding reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

BROADER CONTEXT WITHIN THE THESIS

The study presented in Chapter 3 revealed that inconsistencies be-
tween the graphical and textual representation of requirements and
other quality issues with representations have a negative impact on
the users” work. The study in this chapter aims to improve the under-
standing of these deficiencies. This chapter presents this thesis” sec-
ond analytical contribution, contribution II, and addresses Problem
Statement 1. Since the analysis of the results also suggests possible
solutions (contribution IIT), Problem Statement 2 is also addressed.

As a part of the study, we define different categories of inconsisten-
cies and other quality issues in an informal manner (see Appendix A
for a formal definition of the categories and the constructs necessary
(textual representation and the activities) to formally express the cat-
egories). The number of occurrences for each of the categories is col-
lected for the examined system. Also, a certain number of stakehold-
ers determine the severity of the categories by assessing samples of
the categories from their system.

Although the system in this study is the same as in the previous
chapter, the stated key figures (i.e., number of functions of the system)
differ. This is due to the fact that the studies were not performed at
the same time and the system was subject to changes as it is con-
stantly under development.

58

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

AUTHOR CONTRIBUTIONS

The author list includes Martin Beckmann, Andreas Vogelsang, and
Christian Reuter. The author of this thesis was the lead author of the
publication. He wrote the majority of the article and conceived, de-
signed, conducted, and evaluated the studies and surveys. The count-
ing of deficiencies was independently repeated by Andreas Vogelsang
to confirm the results. Christian Reuter distributed the surveys to the
participants from the industry partner. Christian Reuter and Andreas
Vogelsang both provided advice on the study design and contributed
to the writing of the paper.

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 59

A Case Study on a Specification Approach using
Activity Diagrams in Requirements Documents

Martin Beckmann
Technische Universitit Berlin, Germany
martin.beckmann @tu-berlin.de

Abstract—Rising complexity of systems has long been a major
challenge in requirements engineering. This manifests in more
extensive and harder to understand requirements documents.
At the Daimler AG, an approach is applied that combines the
use of activity diagrams with natural language specifications to
specify system functions. The approach starts with an activity
diagram that is created to get an early overview. The contai-
ned information is then transferred to a textual requirements
document, where details are added and the behavior is refined.
While the approach aims to reduce efforts needed to understand
a system’s behavior, the application of the approach itself causes
new challenges on its own. By examining existing specifications
at Daimler, we identified nine categories of inconsistencies and
deviations between activity diagrams and their textual represen-
tations. In a case study, we examined one system in detail to
assess how often these occur. In a follow-up survey, we presented
instances of the categories to different stakeholders of the system
and let them asses the categories regarding their severity. Our
analysis indicates that a coexistence of textual and graphical
representations of models without proper tool support results in
inconsistencies and deviations that may cause severe maintenance
costs or even provoke faults in subsequent development steps.

I. INTRODUCTION

Complex software systems, which e.g. can be found in
distributed embedded systems in automotive electronics, require
model-based and system-oriented development approaches [1].
Using graphical models for specification manages complexity
and improves reusability and analytical capabilities [2], [3].
Although graphical models provide a suitable means to specify
and understand dependencies and procedural behavior of
a system, in industry they are usually accompanied by a
textual representation. Previous work has shown the need
for a continuous systems engineering environment, where
referring or constitutive documents are essential to work
on complex software systems [4]. Also the combined use
of graphical diagrams and textual descriptions is considered
beneficial for the requirements management process [5], [6].
In addition, for industrial applications, tool support and model
exchange for graphical models is still not standardised and,
as a result, manufacturer/supplier handover is still performed
by textual documents. This is especially important, since
these textual documents often serve as the basis for legal
considerations between the contractors [6], [7]. Also, due to
different backgrounds of the stakeholders, not everyone is
capable of understanding the graphical models [8]. Thus, the

Andreas Vogelsang
Technische Universitit Berlin, Germany
andreas.vogelsang @tu-berlin.de

Christian Reuter
Daimler AG, Germany
christian.c.reuter @daimler.com

information contained in a model needs to be written in words
to be appropriately reviewable [9].

Daimler applies an approach, where, as a first step, a UML
activity diagram [10] is created for each function to describe
the function’s activation and deactivation by triggers and
conditions. This kind of description is also known in literature
to formulate textual natural language requirements [11]. Textual
representations of the activity diagrams along with the diagrams
themselves are then transferred into a requirements document
for everyone to understand and for ongoing development. The
transfer of the model into the requirements document is done
manually. This is a an error-prone task. Besides, the ongoing
development using the requirements document might also cause
inconsistencies between the activity diagrams and the document,
in case the activity diagrams are not kept up-to-date.

We are interested in understanding what types of inconsis-
tencies and quality issues are introduced by using activities and
a textual specification alongside one another and how severe
these issues are. If the approach itself introduces more severe
issues than expected benefits, this is a strong argument for
automated consistency checks and quality assurance.

For this purpose, we examined 36 vehicle functions of
one system at Daimler that was specified by the introduced
approach. As a result, a number of inconsistencies between the
requirements document and the activity diagram were found.

All of these findings resulted in nine different categories of
quality issues. We found occurrences of these categories in all
of the examined functions. The categories are introduced in
detail as well as the amount of findings in the examined system.
Also we presented the quality issues to different stakeholders
of the system, who assessed their severity. The occurrences,
that are perceived as major quality issues, are present in 78%
of the vehicle functions.

The paper’s structure is given in the following manner.
The next section details the approach, that is used to specify
the system’s functions. The third section introduces the nine
categories, that were found examining the activity diagrams
and their respective textual representation in a requirements
document. In the fourth section the study design is explained.
Section five presents the results of the study and the conducted
survey. The sixth section discusses the results and possible
means to avoid the discovered quality issues. The last section
concludes this work.

60 A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

Trigger: Vehicle is in Trigger: State of

Trigger: State of

Trigger: State of

P connector connector connector "plugged”
"vehicle__plugged" "vehicle_plugged"
Trigger: State of Trigger: State of Trigger: Stalt(e of Trigger: St:ti of
u " " “ connector "unknown” connector "defect”
connector “plugged connector "unknown MergeNode’
| I[FALSE]
MergeNode ®(—[Check: V < 5 km/h } "
%Joinmx’e TRUE J[MergeNode
[FALSE] [FALSE] [TRUE] [FALSE]
[Check: V < 5 km/h Check: Engine Cranking inactive} [Check: Gearshift is in ‘P’]%@)
[TRUE] [TRUE] [TRUE]
MergeNode
[Function: Drive Inhibit
(a) Activity diagram of the Function Drive Inhibit
ID Text Level Type
1000 1.1.1.1.1.1 Drive Inhibit 6 Function
1236 State of connector "unknown" OR 7 Trigger
State of connector "defect” OR
1237 Vehicle Gear selector is in position "P" AND 8 Check
1113 Engine Cranking inactive OR 8 Check
1111 State of connector “"plugged on vehicle side” ("VEH_PLUGGED") OR 7 Trigger
"plugged on vehicle and EVSE side" ("PLUGGED"), OR
1112 Vehicle velocity is below 5 km/h 8 Check
1114 Vehicle Gear selector is in position "P" OR 7 Trigger
1232 Vehicle velocity is below 5 km/h 8 Check
1233 State of connector "plugged on vehicle side” OR 7 Trigger
State of connector "plugged on vehicle and EVSE side” OR
State of connector “unknown” AND
1238 Vehicle velocity is below 5 km/h 8 Check

(b) Textual specification of the Function Drive Inhibit

Fig. 1: Activity diagram and the specification text of a function

II. BACKGROUND

The Daimler approach used to specify functions of a system
employs UML activity diagrams. These activity diagrams are
the first step of specifying a new function. They are used to
get an early overview of the desired function behavior with a
special focus on the functions activation, execution conditions,
functional paths, and deactivation. The information contained in
the activity diagram as well as the activity diagram itself is then
transferred to a textual requirements document. This transfer
is necessary, since this textual requirements document is the
central artefact for further development. Besides, the textual
document contains additional and more detailed information as
well as statements about its context, which relates this approach
to Literate Modelling [8].

Fig. 1 shows an exemplar specification as we have found it
at Daimler. The example consists of an activity diagram and

its textual representation in the requirements document. In the
following, we will explain the example and also the contained
quality issues. In the remainder of this work, an element refers
to an entity contained in an activity diagram, whereas an object
in the text refers to an entity contained in the requirements
document.

Fig. la displays the activity diagram of the function Drive
Inhibit. The actual behavior of the activated function is
described in the Action node labeled with Drive Inhibit (bottom
of the diagram). The function’s activation is described by
a combination of triggers and checks for conditions. For
triggers, the AcceptEventAction element is used. The checks
are modeled as Action elements. If the condition of a check
is not fulfilled, the flow ends (FlowFinal). The triggers and
checks are connected by ControlNodes such as JoinNodes and
MergeNodes. JoinNodes act as synchronisation points and can

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 61

be interpreted as AND operators in terms of propositional
logic. MergeNodes represent OR operators. Once the actual
functionality of the function is executed, ActivityFinal elements
designate the end of an activity.

The corresponding chapter in the textual requirements
document is displayed in Fig. 1b. Each row in the document
represents an object, which is described by a set of attributes
(columns). The ID attribute contains a unique identifier of the
object. The Text attribute is a textual description of the object
and is supposed to be equal to the text of the corresponding
element in the activity diagram. The Level is an attribute
to structure the document hierarchically. It is derived from
the structure of the activity diagram. The Type attribute of
each text object is supposed to be equal to the type of its
corresponding element in the diagram. These attributes are
needed to display the relevant information of the activity
diagram in the requirements document. Besides the given
attributes, the document contains additional attributes used
for further development.

There are many possibilities to display different aspects of
an activity diagram as text. An exact textual representation as
presented in [12] is not desirable, since it lacks proper reada-
bility and comprehensibility for those, unfamiliar with activity
diagrams. Instead, the used textual representation focuses on
the propositional logic, readability, and the recognition value
of the structure of the activity diagram. This is implemented
by copying the text of the elements of the diagram into distinct
objects. Propositional logic operators such as OR and AND are
used as strings in the Text attributes of the objects to realise
the logic statements of the activity diagram. The operators
at the end of an object’s text connect the object with the
following object on the same level of the document hierarchy.
For instance, in Fig. 1b, the object with ID 1236 is connected
via an OR with the object with ID 1111 because it is the next
object on the same hierarchical level. Besides the propositional
logic purposes, the different levels of the documents are used
to display the belonging of the elements within the activity
diagram. For example, the check Vehicle Gear selector is in
position "P" (ID 1237) is executed after one of the triggers
contained in the object with the ID 1236 occurred. Hence, it
appears one level below. This is important, since there might
be more than one check associated with a set of triggers, as
can be seen in the object in the text with ID 1113.

The transfer of information from the activity diagram to
the requirements document is a manual process. This might
lead to inconsistencies between the activity diagram and the
requirements document and other quality issues as can be seen
in Fig. 1. Amongst others, these inconsistencies and quality
issues are presented in the next chapter.

III. IDENTIFIED QUALITY ISSUES

A preliminary examination of a set of requirements docu-
ments at Daimler revealed a number of quality issues. The
quality issues are inspired by standards such as ISO/IEC/IEEE
29148 [13], CMMI-Dev [14] and Automotive SPICE [15]. We
grouped these quality issues into nine different categories. The

TABLE I: Categories of indentified quality issues

Category name Description

There is no information to trace an ele-
ment to its corresponding object in the
text or vice versa.

Missing Tracing

Missing Element/Object Either the activity diagram or the require-
ments document contains entities, which

the other does not contain.

Incorrect Logic The propositional logic of the activity
diagram deviates from the requirements
document or the logic connections are not

clear.

Textual Differences Elements and their corresponding objects

in the text exhibit textual differences.

Redundant Element The activity diagram contains multiple
elements, which have the same type and

the same text.

Non Atomic Element/Object Either an element or an object contains
multiple statements. This might appear in
both the requirements document or the
activity diagram.

Wrong Placement The placement of an element in the act-
ivity diagram does not match with the
placement of the corresponding object in
the requirements document.

Unnecessary Repetition There are multiple objects in the require-
ments document, which are derived from

one single element.
Wrong Type The type of the element does not match

the type of the corresponding object.

categories and their descriptions are listed in Table I. The
categories cover the relation between the activity diagrams
and the requirements document. Some of them only appear
either in the diagram or the text, but still have an influence
on the respective other artefact. We will explain some of the
categories by examining the example in Fig. 1.

The category Incorrect Logic is present in the objects in
the document with the ID 7113 and ID 1233. Both objects
end with an operator, for which it is not clear which object
they refer to. Neither of them has a successor on the same
level below their respective parent object. The object with the
ID 1236 is the parent object of two objects (ID 1237, 1113)
containing checks.

Textual Differences can be found (amongst others) between
the triggers in the objects with the ID 1171, 1233 and their
corresponding elements of the diagram.

There are multiple Redundant Elements in the diagram
such as the checks V < 5 km/h and the triggers State
of connector "plugged”. In this example, the appearance
of redundant elements in the diagram can be avoided by
inserting additional ControlNodes and restructuring the activity
diagram [16].

While all elements of the diagram are atomic, the require-
ments document contains several Non Atomic Objects (/1D
1236, 1111, 1233). These objects incorporate multiple assertions
that are connected by propositional logical operators. This
is both an issue in the requirements document as well as a

62 A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

deviation between the activity diagram and the requirements
document.

The elements in the diagram, corresponding to the object
with the ID 1236, are followed by the diagram element Check:
Gearshift is in "P’. In the document the corresponding object
(ID 1236) is the parent object of an additional check (ID
1113). The additional check in the document is elsewhere in
the activity diagram. This situation is denoted as the category
Wrong Placement.

The requirements document contains Check: V < 5 km/h
three times (ID 1112, 1232, 1238). But there are only two
elements in the activity diagram. Hence, two of the objects
in the document refer to one single element in the diagram.
This is an instance of the Unnecessary Repetition category
and can be avoided by grouping the objects accordingly.

We used these categories to find out how many quality
issues occur in the vehicle functions of a system at Daimler
and how much these occurrences influence the quality of the
requirements document.

IV. STUDY DESIGN

To find out how often instances of the identified categories
appear in a system and to understand how this system is
impacted by these occurrences, we conducted a case study.
We designed the study along the recommendations of Runeson
and Host [17]. Our research objective is:

Research Objective: We want to find out which problems
the coexistence of textual and graphical representations of
models implicate and how severe these problems are.

To reach this aim, we pursue four research questions (RQ):

RQ1: How many occurrences of the categories can be
found in a system? To assess the influence of the occurrences
of the categories, we need to know how many instances of each
category occur. The number of occurrences of each category
is one of the major contributing factors for the impact on the
quality.

RQ2: Are the stakeholders of the system aware of these
occurrences? We want to find out whether the stakeholders
know about occurrences of existing quality issues. This gives
us an idea on whether these occurrences have already been
noticed. This is a first indication on how severe the occurrences
are perceived.

RQ3: Do the stakeholders agree that these occurrences
are quality issues? After we found out whether the stake-
holders are aware of deviations and inconsistencies between
activity diagrams and their textual representation, we want to
know whether they agree with our assessment that a certain
situation is in fact a quality issue. This is of interest since
different backgrounds and responsibilities of the stakeholders
might result in different opinions on what quality issues are.

RQ4: How do the stakeholders assess the severity of
these occurrences? Besides the number of occurrences, the
severity of an occurrence is the second major contributing
factor of its impact on quality. Hence, the answer to this
question is needed to evaluate the severity of each category.

Study Object: We examined a specific subsystem of a car
developed at Daimler. The examined subsystem is responsible
for charging the high-voltage batteries of Plug-in Hybrid
Electric Vehicles and Battery Electric Vehicles. As such the
system contains requirements that are relevant for safety as well
as for usability. The system’s requirements are documented
in specification artefacts (activity diagrams and their textual
representations) resulting from the approach described in
Section II. The requirements document of the system contains a
total number of 46 functions. In our study, we only considered
36 of these functions, since some functions were not specified
using the approach and hence did not contain activity diagrams.
Other functions were discarded because the corresponding text
did not adhere to the pattern for the textual representation.

Data Collection: To answer RQ1, we manually searched
for instances of the quality issue categories in all activity
diagrams and their respective textual representation. To increase
reliability and to avoid that occurrences are overseen, two
researchers conducted this examination independently. The
results were then compared and missing occurrences were
complemented.

To answer RQ2 — RQ4, we conducted a survey amongst
the stakeholders of the system that relates to the results of our
manual document inspection. A total of seven stakeholders
participated in the survey. Of the seven participants, three
are authors of requirements documents for specific system
components, two are responsible for testing, and one is an
author of the requirements document of the system’s functions.
The last remaining participant is involved in developing the
methodology that is used for the specification process.

As part of the survey, we presented two occurrences of each
quality issue category as samples to the participants. The sam-
ples originated from specifications of several vehicle functions
of the system. We selected actual samples of the system rather
than abstract examples to improve the comprehensibility of
each category and to give a better impression on the actual
effect of the involved activity diagram and its corresponding
textual representation. Each sample contains both of them. The
issues in the activity diagram and the textual representation are
highlighted by using colored frames. Besides, each sample is
accompanied by a text explaining why the presented situation
might have a negative effect on the quality. However, the
concrete name of the category is not shown. This prevents
the stakeholders from assessing the category rather than the
concrete example. The rationale is to find out, whether the
severity of different instances of one category is perceived
differently. Most of the examined vehicle functions contain
instances of multiple categories. Hence, some of the presented
samples show the same vehicle function highlighting a different
category each time. There was no specific order in which the
samples were presented. However, the two samples of each
category were never presented consecutively. The reason for
this is to mitigate the influence of previous decisions.

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 63

The stakeholders were asked to answer the following survey
questions (SQ) for each sample:

SQ1: Were you aware of the existence of this finding?
We first needed to know, whether the stakeholder had already
recognised the presented situation of the sample. The partici-
pants could answer this by selecting yes or no. This aims at
answering RQ2.

SQ2: Do you think this sample is in fact a quality issue?
This question is used to find out whether the stakeholder
actually recognises the presented situation as a quality issue,
now that is has been presented as such. The participants could
answer this by selecting yes or no. The question aims at
answering RQ3.

SQ3: When would you fix this quality issue? This was
asked to assess the severity of the quality issue. We presented
four options to answer this question to the stakeholders:
immediately (during the same project iteration), soon (next
time the function is edited), in the long term (when there is
time to clean up the document), or never. The question aims
at answering RQ4.

V. STUDY RESULTS
A. RQI: Occurrences of Quality Issues

Table II shows the total number of occurrences we found for
each category. The third column shows in how many functions
we found quality issues of each category and the last column
shows the average number of findings per function. The results
show that we found at least 10 occurrences of each category
in the 36 examined functions. Moreover, the Missing Tracing
occurred in all elements of all functions, which means that we
found no trace links to diagram elements at all. Secondly, we
found missing elements or objects in the text or the diagram
in 78% of the functions. In total, 126 elements and objects
were missing, which accounts for 3.5 missing elements and
objects per function on average. We found Incorrect Logic and
Textual Differences in more than half of the examined functions.
Textual Differences accounted for 43 findings in total. Wrong
Type, Unnecessary Repetition, and Wrong Placement were the
categories that appeared the least, although we still found them
in about a quarter of all functions.

Discussion: The reported numbers show that a manual
transition process between graphical activity diagrams and
textual requirements documents bears a high risk of introducing
deviations and inconsistencies, which we characterised as
quality issues. Our analysis shows that this process is especially
prone to missing out elements or objects, introducing incorrect
logic, and textual differences. Whether these quality issues are
really perceived as such by the stakeholders is examined in
RQ2-RQ4.

B. RQ2: Awareness of Quality Issues

The distribution of answers to SQ1 is displayed in Fig. 2.
There are two bars for each category. Each bar represents the
answers for one sample. In general, the presented samples were
mostly unknown to the participants. There are five samples,
where all participants mentioned that they were unaware of

TABLE II: Occurrences of quality issues per category ordered
by frequency of occurrences in functions.

Category name Findings Number and ratio Average num-
of functions with ber of findings
findings per function

Missing Tracing all! 36 (100 %) -

Missing Element/ 126 28 (78 %) 35

Object

Incorrect Logic 29 22 (61 %) 0.8

Textual 43 20 (56 %) 1.2

Differences

Redundant 24 15 (42 %) 0.66

Element

Non Atomic Ele- 18 14 (39 %) 0.5

ment/Object

Wrong Placement 18 10 (28 %) 0.5

Unnecessary Repe- 15 9 (25 %) 0.42

tition

Wrong Type 10 8 (22 %) 0.28

their existence. For 12 samples, six out of seven participants
stated that they were not aware of the existence. One sample
belonging to the category Non Atomic Element/Object was
known by two of the participants. It is worth noting that every
time a situation was answered with yes at least once, a certain
participant was always amongst those. This participant is the
one involved in the development of the methodology.

Discussion: The answers to this question show that the
stakeholders are mostly unaware of the presented occurrences.
This fact explains, why we found these issues in the first
place. Nevertheless we were quite surprised by these results.
One possible explanation is that the selected participants were
not involved in the development of functions from which we
selected the samples. Since we selected the samples from a
number of functions and a participant usually contributes to
more than one function, this explanation is not very likely. An
alternative explanation is that the selected samples belong to
vehicle functions that are not frequently examined. Hence,
their existence might have not been noticed. We had no
information about the frequency of changes for functions.
Another possibility is that the presented situations are not
perceived as quality issues. Whether the samples are not
perceived as quality issues so far or not at all is the subject of
RQ3.

C. RQ3: Agreement on Quality Issues

The answers to SQ2 are displayed in Fig. 3. The diagram is
composed the same way as the diagram in Fig. 2. 14 out of the
18 samples were assessed to be quality issues by the majority of
the participants. For three samples, all participants decided that
these samples actually are quality issues. This applies to both
samples of the category Wrong Placement. The other sample
that all participants classified as a quality issue belongs to

!In the examined specifications, no tracing links between diagram elements
and textual objects were defined.

64 A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

Were you aware of the existence of this finding?

T T T
Missing (1) [T17] 6 |
Tracing (2) [T17] 6 l
Missing (1) [717] 6 |
Element / Object (2) [T 6 |
Incorrect (1) |1 | 6 l |
Logic (2) 7 l
Textual (1) 1] 6 |
Differences (2) [T] 6 |
Redundant (1) | 7 |
Element (2) 7 |
Non Atomic (1) [Z17] 6 |
Element / Object (2) 2] 5 |
Wrong (1) |1 | 6 | i
Placement (2) [T] 6 |
Unnecessary (1) | 7 |
Repetition (2) [T1] 6 |
Wrong (1) |1 [6 | i
Type (2) 7 |
| | |
0 2 4 6

Count of answers

@ YesONo

Fig. 2: Answers to SQ1

the category Wrong Type. Those two categories in addition to
Missing Element/Object show the highest agreement amongst
the participants to actually be quality issues. The samples
with the lowest number of participants seeing them as quality
issues are in the categories Redundant Element, Non Atomic
Element/Object, and Unnecessary Repetition. Whereas most
samples of one category were assessed similarly, the samples of
category Unnecessary Repetition showed a large deviation. Its
first sample is amongst those with the highest approval (six yes
to one no), while the other is amongst the lowest (three yes to
four no). We have no explanation for this result, since the two
samples are very similar. Hence, further investigation is needed
to assess, whether the stakeholders did not fully understand
the presented situation or whether some of the stakeholders
had a specific reason to assess the second sample differently.

Discussion: The answers to this question show that there is
a high level of agreement that the samples of the categories
Missing Element/Object, Wrong Placement, and Wrong Type in
fact constitute quality issues. For the categories Redundant
Element and Non Atomic Element/Object, many participants

Do you think this sample is in fact a quality issue?
T T T

Missing (1) 5 [2]
Tracing (2) [1]

Missing (1)
Element / Object (2)

T
(=2} S| |o (=2

Incorrect (1)
Logic (2) 5 [9 |

Textual (1) 5
Differences (2) 6

Redundant (1) 2] 5 |
Element (2) 3 [4 |

Non Atomic (1) [4 I 3 l
Element / Object (2) 3 [4 |

Wrong (1) 7 |
Placement (2) 7 |

Unnecessary (1) 6
Repetition (2) 3 [4 |

Wrong (1) 6
Type (2) 7 |

Count of answers

[Yes[[ONo

Fig. 3: Answers to SQ2

assessed the identified samples as not being quality issues. This
shows that the participants may have a different understanding
of quality in these cases. Overall, there are only small
differences between the samples within one category. This
indicates that the perception might be the same for all other
occurrences as well. How stakeholders assess the severity and
whether the severity of the samples of one category are also
similar is the subject of RQ4.

D. RQA4: Severity of Quality Issues

The answers to SQ3 are displayed in Fig. 4. As in the
diagrams in Fig. 2 and Fig. 3 the answers for both samples of
each category are displayed. The category, where the samples
were perceived as most severe is Wrong Placement. At least
five participants answered that they would fix these situations
immediately. The remaining participants mentioned that they
would fix them soon. For the categories Missing Element/
Object, Textual Differences, and Wrong Placement no one
answered with the option never. This means that all participants
identified a need for improvement, which is in line with the

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 65

result of SQ2 where most participants assessed the samples of
these categories as quality issues. The sample with the lowest
severity is in the category Redundant Element (one immediately,
two soon, one long term, three never). This is also in line
with the results of SQ2. Some samples were assessed quite
diverse. For example, the first sample of the category Non
Atomic Element/Object would be fixed immediately by four
participants, while two participants would never fix them. This
sample consists of three propositional logic statements, that are
all connected via an OR. In the requirements document all of
the statements are contained in one single entry, while in the
activity diagram, there are three distinct elements connected
by a MergeNode. For the category Incorrect Logic, the severity
of the two samples were assessed quite differently. While
most participants agreed that they would fix the first sample
immediately, two participants stated that they would never fix
the second sample.

Discussion: The fact that, aside from one sample, the
majority of the participants answered at least with soon,
suggests that the identified categories are not only quality
issues, but have to be considered for future development of
the requirements document. However, some samples were
rated with the option never. Especially for the samples of the
categories Incorrect Logic it is interesting that some participants
answered to never or only in the long term fix a quality issue,
even for samples that reflect obvious deviations between the
diagrams and the corresponding text (i.e., diagram and text
describe different behavior). A possible explanation for this
might be that these participants have a different understanding
of the diagram’s and text’s semantics compared with us or that
they just use them differently (e.g., they do not use the text to
understand the function’s behavior but only to look up some
details). More than half of the participants answered to both
samples of the categories Missing Element/Object and Wrong
Placement with immediately. On top, no one answered with
the option never. Therefore, we consider occurrences in the
categories Missing Element/Object and Wrong Placement as
major quality issues. Hence, 78% of the functions contain at
least one major quality issue. This is also ratio of occurrences of
the category Missing Element/Object. There was no occurrence
of Wrong Placement without an occurrence of the category
Missing Element/Object in the same function.

VI. DISCUSSION

We conclude from our results that in this case a specification
approach based on coexisting graphical and textual representa-
tion of specification models bears a high risk of introducing
quality issues. More specifically, in our investigation of
quality issues between activity diagrams and their textual
representation, we assessed that Missing Tracing, Missing
Element/Object, Textual Differences and Incorrect Logic are
the most frequent quality issues.

Although most stakeholders were unaware of the occurrences
that we presented to them, they agreed that those occurrences
are in fact negatively impacting the quality of the requirements
document. Since the samples of each category were always

When would you fix this quality issue?

Missing (1)
Tracing (2)

Missing (1)
Element / Object (2)

Incorrect (1)
Logic (2)

Textual (1)
Differences (2)

Redundant (1)
Element (2)

Non Atomic (1)
Element / Object (2)

Wrong (1)
Placement (2)

Unnecessary (1)
Repetition (2)

Wrong (1)
Type (2)

Count of answers

B immediately B soon [long term [never

Fig. 4: Answers to SQ3

rated similarly by the participants, we may generalise this
assessment to an assessment of the category itself. By this, we
conclude that our defined categories Wrong Placement, Missing
Element/Object, and Wrong Type definitively constitute quality
issues. For the categories Redundant Element, Non Atomic
Element/Object, and Unnecessary Repetition, the participant’s
opinions diverged. This challenges our initial hypothesis that
findings of these categories are indeed quality issues.

The findings of RQ3 are consistent with the findings of
RQ4. Categories Redundant Element and Non Atomic Element/
Object are perceived as the least severe quality issues. In
retrospect, this could also explain why participants were not
aware of these quality issues since they did not perceive them
as such so far. Also, the findings consistently suggest, that the
categories Missing Element/Object and Wrong Placement are
the most severe. This is especially important, since Missing
Element/Object occurs the most often after Missing Tracing.
Since Missing Tracing is a category appearing in every object
of the document, it is hard to understand why it was rated as

66 A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

a quality issue by so many. The findings of RQ4 also indicate,
that there is a need for complete tracing between the artefacts
of the two representations. The reason for the missing tracing
is a consequence of the manual transition from the modeling
tool to the RE management tool. This leads to the question why
this approach was implemented without proper tool support
in the first place. Possible solutions to this problem and the
quality issues in general are presented in Section VI-A.

Initially, we also expected different perceptions of quality
issues between participants of the different stakeholder groups.
However, this was not confirmed in the study. The results were
almost identical for participants with different stakeholder roles.
There was only one exception. The expert on methodology
was the only participant that was aware of most of the quality
issues. At the same time that stakeholder only disagreed with
us on three different samples originating from three different
categories. Also that person only answered with immediately
three times and is the person, who answered with never most
often (four times).

Although it was not the scope of our research, comparing
the timestamps of the activity diagrams with the dates of
the baselines of the requirements document suggests that
the activity diagrams are primarily used at the beginning.
This might be caused by the specification process and is in
accordance with other research findings [18].

A. Possible solutions

A possibility to reduce the number of quality issues, that
arise by the manual transferal, might be the application of
reviews as reported by Terzakis [19]. In order to avoid quality
issues resulting from deviations between graphical and textual
representations altogether, automatic approaches can be used
to keep the diagram and the requirements document in sync.
The generation of requirements documents from graphical
models is an established approach [20]. Different approaches
were suggested for specific graphical models. For instance,
Maiden et al. [7] use i* models to derive requirements and
De Landtsheer et al. [21] propose a similar approach for the
KAOS goal-oriented method. Fockel and Holtmann [22] present
a model-driven RE approach with tool support that provides
synchronisation capabilities for the applied RE models and their
textual representations. Still, these approaches are specialised
to specific techniques during requirements elicitation and
management.

Other than that, there are also approaches, that derive textual
requirements or a structure for parts of requirements documents
from different types of UML/SysML diagrams. Robinson-
Mallett [23] shows how Statecharts and Block Diagrams can
be used to create a structure for a requirements document.
Berenbach [24] introduces an algorithm that derives a structure
for a requirements document from use case diagrams. In
an additional work [25], the possibility of synchronisation
is mentioned, although it is limited to textual changes. In
addition, the approach is restricted to diagrams that adhere to
certain guidelines. Since all these approaches do not use activity
diagrams, they are not applicable to the presented specification

approach. The approach presented by Drusinsky [26] supports
activity diagrams, however, only for UML-1. Additionally, only
the generation of actual requirements is addressed but not the
creation of a requirements document structure.

Both the improvement of the manual transferal as well
as automated approaches might benefit from an adjusted
representation of the activities in the requirements document. A
more sophisticated structure might mitigate some of the quality
issues, while maintaining proper readability.

Another possibility is the use of Projectional Editors, which
automatically edit different projections of a common underlying
model, in this case the activity diagram and its textual
representation. However, this possibility may require substantial
efforts and experienced developers [27]. Hence, a custom-made
and lightweight synchronisation solution might be well suited to
prevent the mentioned quality issues for the used specification
approach.

A more rigorous solution to the problem of inconsistent
textual and graphical representations is to understand the
development process as a stepwise refinement of natural
language requirements to models that detail and formalise
the original requirements [28]. In these processes, changes
must be followed by a pipeline of updates along the chain of
refinement models.

B. Threats to validity

The identification of quality issue candidates was perfor-
med manually. Manual processes are error-prone and also
subjective to some degree. In order to mitigate this threat,
two authors analysed the documents independently. To reduce
the subjectivity, we developed a precise description of the
quality issue candidates. We did not compute an inter-rater
agreement, however, after the independent classification, we
only had to discuss six occurrences for which the classification
was different. Also, we cannot claim, that the quality issues
we found cover all aspects of deviations between an activity
and its textual representation.

We did not have any information about the development
of the models and the documents over time. Including these
information might lead to different classifications in some cases.
For instance, certain findings that we classified as Missing
Element/Object might actually be elements that were strongly
altered over time so that we were not able to identify the relation
between the elements any more. In this case, the finding would
actually fall into the category Textual Differences.

Besides, the analysis was done without any explicit domain
knowledge of the used system. This might have led to
misinterpretations regarding the categories. This also affects the
categories Missing Element/Object and Textual Differences as
we might not have recognised mere textual changes as such.
Instead these occurrences ended up in the category Missing
Element/Object.

Due to the large number of findings, we only presented two
representative findings of each category to the stakeholders. We
used the assessment of these findings as proxy for an evaluation
of the whole category. Our results show that the two samples

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES 67

of each category, in general, were assessed similarly. Still, it is
possible that the selected samples were perceived as more or
less severe than other samples of the same category would have
been. The participating stakeholders were selected by the third
author who is also actively participating in the development
of the examined system. We did not follow specific selection
criteria, except that participants must work actively on the
examined systems. However, the group of study participants
only represent a subset of all people working actively with
the requirements documents. Furthermore, not all of those we
contacted, reported back to us in time. We originally contacted
twelve participants of which seven answered our survey.

Our results indicate that quality issues arise from the
presented specification approach that is used in some projects
at Daimler. To answer our research questions, we only had
access to one system developed with this approach. Hence,
the generalisability of our findings are limited. Discussing the
results with the stakeholders at least left the impression that
the results are not surprising to them and that they would
expect similar findings also in other systems developed with
this approach.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented possible quality issues, that
may arise when using a certain specification approach, that
we encountered at Daimler. The approach incorporates UML
activity diagrams in requirements documents. Those activity
diagrams are accompanied by a textual representation of the
diagrams. The textual representation is edited and further
refined during ongoing development.

We conducted a case study on a real system. The purpose
of this study was twofold. First we assessed the total number
of occurrences of possible quality issues in the requirements
document of the system. The second part is a survey amongst
the stakeholders. The aim was to find out, whether they agree,
that the quality issues we identified are in fact quality issues
and how they rate the severity of preselected samples.

All of the examined functions were affected, since there was
no tracing present between the activity diagram elements and
the objects of the text. Other than that we found between 10
and 126 occurrences of each identified quality issue. The survey
showed, that the stakeholders were unaware of the existing
quality issues. Nevertheless, the majority of them agreed, that
seven out of nine identified quality issues are in fact issues
impacting the quality of the requirements document.

For all but one sample, the majority of the stakeholders saw
the need to fix the quality issues at latest during the next time
the function is edited. However, there are eight samples, where
at least one stakeholder saw no need in fixing the issue.

Since there was only one system available, the generalisa-
bility is limited. The findings require additional validation by
repeating the case study with a different system and more
participants.

An aspect, that was out of scope of this work, is the influence
of the identified quality issues on following development stages.
The case study assessed the number of occurrences in a certain

requirements document and the severity of the quality issues,
but not the resultant consequences. Hence, it needs to be
addressed how these quality issues effect the development of
the final product and future products, that reuse the existing
requirements document.

REFERENCES

[1] M. Broy, “Challenges in automotive software engineering,” in Procee-
dings of the 28th international conference on Software engineering. New
York, NY, USA: ACM, 2006.

[2] L. Apfelbaum and J. Doyle, “Model Based Testing,” in Software Quality
Week Conference, 1997.

[3] A. Vogelsang, S. Eder, G. Hackenberg, M. Junker, and S. Teufl,

“Supporting concurrent development of requirements and architecture:

A model-based approach,” in Proceedings of the 2nd International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD’14), 2014.

C. Reuter, “Variant Management as a Cross-Sectional Approach for a

Continuous Systems Engineering Environment,” in Proceedings of the

8th Grazer Symposium Virtual Vehicle, 2015.

[5]1 A. M. Davis, Just Enough Requirements Management: Where Software

Development Meets Marketing. New York, NY, USA: Dorset House

Publishing Co., Inc., 2005.

E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research

directions in requirements engineering for embedded systems,” Require-

ments Engineering, vol. 17, no. 1, 2012.

[71 N. A. Maiden, S. Manning, S. Jones, and J. Greenwood, “Generating

requirements from systems models using patterns: a case study,” Requi-

rements Engineering, vol. 10, no. 4, 2005.

J. Arlow, W. Emmerich, and J. Quinn, “Literate Modelling — Capturing

Business Knowledge with the UML,” in International Conference on the

Unified Modeling Language. Springer, 1998.

[91 R. F. Goldsmith, Discovering Real Business Requirements for Software

Project Success. Artech House, 2004.

Object Management Group (OMG), “OMG Unified Modeling Language

(OMG UML), Version 2.5,” OMG Document Number formal/2015-03-01

(http://www.omg.org/spec/UML/2.5/), 2015.

D. Firesmith, “Generating complete, unambiguous, and verifiable re-

quirements from stories, scenarios, and use cases.” Journal of Object

Technology, vol. 3, no. 10, 2004.

D. Flater, P. Martin, and M. Crane, “Rendering UML Activity Diagrams

as Human-Readable Text.” Tech. Rep., 2009.

The Institute of Electrical and Electronics Engineers, Inc., “ISO/IEC/IEEE

29148:2011, Systems and Software Engineering — Life cycle processes

—Requirements Engineering,” 2011.

CMMI Product Team, “CMMI for Development, Version 1.3, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.

Rep., 2010. [Online]. Available: http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=9661

VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE

Process Assessment / Reference Model,” 2015.

M. Beckmann and A. Schlutter, “Automatische Duplikateliminierung in

Aktivititsdiagrammen von Fahrzeugfunktionen,” in INFORMATIK 2016,

Lecture Notes in Informatics (LNI), 2016.

P. Runeson and M. Host, “Guidelines for conducting and reporting case

study research in software engineering,” Empirical software engineering,

vol. 14, no. 2, 2009.

R. Hebig, T. Ho-Quang, G. Robles, M. Fernandez, and M. Chaudron,

“The Quest for Open Source Projects that Use UML,” in 19th International

Conference on Model Driven Engineering Languages and Systems, 2016.

J. Terzakis, “The Impact of Requirements on Software Quality across

Three Product Generations,” in 2/st IEEE International Requirements

Engineering Conference (RE). 1EEE, 2013.

J. Nicolds and A. Toval, “On the generation of requirements specifications

from software engineering models: A systematic literature review,”

Information and Software Technology, vol. 51, no. 9, 2009.

R. De Landtsheer, E. Letier, and A. Van Lamsweerde, “Deriving tabular

event-based specifications from goal-oriented requirements models,”

Requirements Engineering, vol. 9, no. 2, 2004.

[4

[6

[8

[10

[11

[12

[13

[14

[15

[16]

[17]

[18

[19

[20

[21]

[22]

(23]

(24]

(25]

68

M. Fockel and J. Holtmann, “A requirements engineering methodology
combining models and controlled natural language,” in 4th International
Model-Driven Requirements Engineering Workshop (MoDRE). 1EEE,
2014.

C. L. Robinson-Mallett, “An approach on integrating models and
textual specifications,” in 2nd International Model-Driven Requirements
Engineering Workshop (MoDRE). 1EEE, 2012.

B. Berenbach, “The Automated Extraction of Requirements from
UML Models,” in 11th IEEE International Requirements Engineering
Conference (RE). 1EEE, 2003.

B. Berenbach, “Comparison of UML and Text based Requirements
Engineering,” in Companion to the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and

[26]

[27]

[28]

A CASE STUDY ON QUALITY ISSUES AND INCONSISTENCIES

Applications, ser. OOPSLA ’04. New York, NY, USA: ACM, 2004.

D. Drusinsky, “From UML activity diagrams to specification requi-
rements,” in [EEE International Conference on System of Systems
Engineering (SoSE), 2008.

T. Berger, M. Volter, H. P. Jensen, T. Dangprasert, and J. Siegmund,
“Efficiency of projectional editing: A controlled experiment,” in 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), 2016.

W. Bohm, M. Junker, A. Vogelsang, S. Teufl, R. Pinger, and K. Rahn, “A
formal systems engineering approach in practice: An experience report,”

in Ist International Workshop on Software Engineering Research and
Industrial Practices (SER&IPs’14), 2014.

Part III

AUTOMATIC GENERATION OF TEXTUAL
REPRESENTATIONS FROM ACTIVITY
DIAGRAMS

REMOVAL OF REDUNDANT ELEMENTS WITHIN
UML ACTIVITY DIAGRAMS

Published in 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS) (p. 334 - 343)
[22].

TERMS OF USE

© 2017 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media, in-
cluding reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

BROADER CONTEXT WITHIN THE THESIS

In Chapter 3 it became apparent that inconsistencies between the rep-
resentations and other quality issues affect the work of users. Chap-
ter 4 confirmed these findings, as the amount and severity of appear-
ing inconsistencies and other quality issues presents a major difficulty
for the applicability of the approach in practice. The results in Chap-
ter 3 and Chapter 4 suggest that the textual representation should
be automatically generated from the activity diagrams. Through this
method the occurrence of inconsistencies and other quality issues can
be avoided. At the same time, such a model-to-requirements approach
(see Subsection 2.4.1) also ensures the existence of trace links between
representations.

To allow for automation, activity diagrams without redundant el-
ements (in particular ExecutableNodes) are required as input. This is
necessary, as such redundant elements impede the unambiguous iden-
tification of execution paths and of propositional logic relations be-
tween the elements in the activity. Hence, in this chapter a transfor-
mation is presented that ensures this condition.

As a prerequisite for addressing Problem Statement 2, this chap-
ter contributes to the constructive portion of this thesis. While its
main contribution is the removal of redundant elements in order
to generate textual representations (contribution IV), this method is
constructed in the most generalizable way possible. As a result the
method is more generally applicable. Consequently, the method ex-

72

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS

tends beyond the formulated problem statements of this thesis (con-
tribution VI).

AUTHOR CONTRIBUTIONS

The author list includes Martin Beckmann, Vanessa N. Michalke, An-
dreas Vogelsang, and Aaron Schlutter. The author of this thesis was
the lead author of the publication. He wrote the majority of the article
and conceived the method and developed it with support of Aaron
Schlutter. Vanessa N. Michalke programmatically implemented the
method and collected the data for the evaluation. Andreas Vogelsang
provided advice on the research design. Vanessa N. Michalke, An-
dreas Vogelsang, and Aaron Schlutter all contributed to the writing
of the paper.

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS 73

Removal of Redundant Elements
within UML Activity Diagrams

Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang, Aaron Schlutter
Technische Universitit Berlin, Germany
{martin.beckmann, vanessa.michalke, andreas.vogelsang, aaron.schlutter } @tu-berlin.de

Abstract—As the complexity of systems continues to rise,
the use of model-driven development approaches becomes more
widely applied. Still, many created models are mainly used
for documentation. As such, they are not designed to be used
in following stages of development, but merely as a means of
improved overview and communication. In an effort to use
existing UML2 activity diagrams of an industry partner (Daimler
AG) as a source for automatic generation of software artifacts,
we discovered, that the diagrams often contain multiple instances
of the same element. These redundant instances might improve
the readability of a diagram. However, they complicate further
approaches such as automated model analysis or traceability
to other artifacts because mostly redundant instances must be
handled as one distinctive element. In this paper, we present an
approach to automatically remove redundant ExecutableNodes
within activity diagrams as they are used by our industry partner.
The removal is implemented by merging the redundant instances
to a single element and adding additional elements to maintain
the original behavior of the activity. We use reachability graphs
to argue that our approach preserves the behavior of the activity.
Additionally, we applied the approach to a real system described
by 36 activity diagrams. As a result 25 redundant instances were
removed from 15 affected diagrams.

I. INTRODUCTION

Due to its many advantages [1], model-driven engineering
has become a widely applied approach in the development
of systems [2]. One of our industry partners (Daimler AG)
uses UML2 activity diagrams [3] to specify the functions
of systems. Activity diagrams are behavioral diagrams used
to create graphical models of stepwise workflows. They are
among the types of models, which are regarded beneficial in
requirements engineering [4]. A widely applied use of activity
diagrams and graphical models in general is to utilize them
for communication purposes [5], [6]. Hence, the diagrams
are created with a focus on readability and understandability.
This is achieved by prioritizing layout aspects of the diagram,
since a proper layout is an important factor for understanding
the diagrams [7]. As a result, the created diagrams are not
catered to be processed by automatic approaches in following
stages of development. One of the phenomenons that impede
automation are multiple instances of the same element within
the activity diagrams. Some of these redundant elements
are created intentionally [8] to improve certain aspects of
a diagram such as the structure and hence the readability.
Other redundant elements arise unintentionally since multiple
persons are involved in creating the diagrams. Nonetheless,
existing redundant elements complicate possible approaches

of automation. For instance, in requirements engineering acti-
vities need to be accompanied by textual representations [9].
As a result, a well-structured requirements document should
reflect, which executions are possible and necessary in an
activity. This relies on the propositional assertions modeled
in the activity. To apply simplifications on propositional logic
relations (e.g., extract a propositional logic normal form),
it is necessary to know, which elements are actually the
same. This is guaranteed by a redundancy-free version. Also,
for an effective derivation of test cases from activities, path
coverage has to be considered. If there are redundant elements,
there may be unnecessary paths and hence more test cases
are required [10]. In general, checking for path coverage is
easier without redundant elements since only unique paths are
considered. Other than that, redundancy makes traceability and
keeping derived artifacts consistent more difficult.

This paper presents a transformation to remove redundant
ExecutableNode elements contained within an activity. The
removal is achieved by merging all instances of a redundant
element into a single instance. In order to preserve the original
behavior, new ControlNodes are added in the activity. These
new ControlNodes are connected to the merged element as
well as its predecessors and successors. We show that these
model transformations preserve the behavior of the original ac-
tivity by comparing their reachability graphs. We furthermore
report on the application of this approach to a set of activity
diagrams used to specify a real system from our industry
partner. This evaluation shows that redundant elements are
common in real activity diagrams and that our approach is
able to remove them without blowing up the complexity of
the diagrams.

The paper’s structure is given in the following. The next
section provides details on the situation we encountered at
our industry partner. The third section discusses related work
on the subject of behavior preserving transformations and of
dealing with redundancy in graphical models. In the fourth
section, we present the behavior-preserving transformation that
removes redundant elements. Section V shows why the trans-
formation preserves the behavior of the activity. Section VI
introduces special situations, where less ControlNodes are
needed for the transformation. In Section VII we analyze
activities supplied by our industry partner and present results
on applying the transformation on them. Section VIII presents
the limits of the approach. The last section concludes this work
and gives an outlook on future work.

74

LEMENTS WITHIN UML ACTIVITY DIAGRAMS

Trigger: State of
connector “plugged”

Trigger: State of
connector "unknown”

)

Trigger: State of
connector "defect”

Trigger: State of
connector "unknown"

))

REMOVAL OF REDUNDANT E
Trigger: Vehicle is in

)

))

| !

b

[FALSE] [

Check: V < 5 km/h

Trigger: State of

[TRUE]],

[FALSE]

[} [FALSE]

1

Check: Ignition Off

connector “plugged”
Check: Gearshift is in 'P']ﬁ®

Check: Ignition Off
FALSE

FA

[FALSE]

[TRUE] | [FALSE]

J [TRUE] : :

1

Check: V < 5 km/h

Check:

Engine Cranking inactive

| [TRUE]

[TRUE]

[TRU E%\

{ Function: Drive Inhibit]ﬁ@

Fig. 1: Exemplar activity diagram containing redundant elements

II. BACKGROUND

In this section we use an activity diagram provided by our
industry partner to show how their diagrams are used and
interpreted. In addition, we present our notion of redundancy
in activity diagrams.

A. Activity Diagrams Syntax

Our industry partner uses UML activity diagrams as a first
step of specifying a new function of a system. An exemplar
activity diagram' is displayed in Fig. 1. It describes the
function’s activation and deactivation.

As such, the activity diagram contains a combination of
triggers and checks for conditions that must be fulfilled to
activate the function. This type of description is similar to
Firesmith’s proposal for formulating textual natural language
requirements [11]. For triggers, the AcceptEventAction element
is used. Checks are modeled as Action elements. If the condi-
tion of a check is not fulfilled, the flow ends (FlowFinal). The
triggers and checks are connected by ControlNodes such as
JoinNodes and MergeNodes. JoinNodes act as synchronization
points and can be interpreted as AND operators in terms
of propositional logic. MergeNodes represent OR operators.
Once the actual functionality of the function is executed,
ActivityFinal elements designate the end of an activity.

B. Activity Diagram Semantics

We interpret the semantics of activities as Petri net like
graphs as suggested by the original UML specification version
2.5 [3, p. 283]. As such, we assume that each ExecutableNode
executes as soon as a token is placed on that node (by
transition or by occurrences of events). Also, we assume that
the execution time of the nodes is infinitely fast. This interpre-
tation is related to requirements-level semantics for the activity
diagram defined by Eshuis and Wieringa [12] and is also used
by our industry partner. Furthermore, ControlNodes forward

IThe displayed activity diagram was slightly modified to incorporate more
sophisticated situations.

tokens instantly if possible. Hence, tokens can be forwarded
by multiple ControlNodes in one step. Events that execute
AcceptEventActions of the activity, produce new tokens within
the executing activity (i.e., the property isSingleExecution is
true). Also, we assume that two tokens at an ExecutableNode
cause two concurrent executions of the ExecutableNode within
the same step (i.e., the property isLocallyReentrant is true).

C. Redundant Elements in Activity Diagrams

In this paper, we are only interested in redundant elements
within one diagram and not across different diagrams. The
activity diagram, shown in Fig. 1, contains four redundant
elements, each having two instances in the diagram. The
triggers State of connector “plugged” and State of connector
“unknown” both appear two times. Similar, the two checks
V < 5 km/h and Ignition Off also appear twice in the diagram.
Elements are considered as redundant elements if they have the
same name and the same type (e.g. AcceptEventAction). Thus,
the considered elements are exact copies of each other apart
from their placement within the diagram and their connection
to other elements, which makes these elements Type A Clones
according to Storrle’s classification [13].

While this duplication of the same element increases the
number of elements in the diagram, it may also increase the
comprehensibility of the diagram. For instance, the duplicated
elements in Fig. 1 allow the visual separation of three distinct
possibilities, that lead to the function’s activation.

In a previous work, we defined and analyzed different types
of quality issues that arise when activity diagrams are used in
requirements documents for the specification of functions [14].
One of the quality issues, we identified, are redundant ele-
ments. In that study, we found redundant elements in more
than 40% of the examined diagrams, which shows that this is
a common phenomenon. On the other hand, developers rated
the appearance of redundant elements as one of the least severe
quality issues. However, this work solely focuses on enabling
the use of the diagrams for automation rather than creating an
alternative view for existing diagrams.

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS 75

III. RELATED WORK

Since our approach transforms models in a behavior pre-
serving way, it is related to refactoring [15]. In contrast to
classical refactoring, our aim is not to improve the design but
to facilitate the processing by automated techniques.

Refactoring of UML models has been covered by a number
of publications [16]. Focal point of their research is the UML
class diagram as it is the most used UML diagram [17].
Among others, examples for refactorings of class diagrams
are presented in [18], [19], [20], [21]. Another type of di-
agram that has received attention in relation to refactoring
are statecharts [18], [21]. For activity diagrams, two refac-
toring operations are described in [21], namely Make Actions
Concurrent and Sequentialize Concurrent Actions. As these
names of the operations indicate, they are not suitable to
deal with redundant elements. A more extensive review on
refactoring UML models can be found in [22]. An approach
of detecting semantically equivalent modeling concepts for
structurally different models is described in [23].

Besides the transformation of models, redundancy in UML
models has also been a topic in research, although the focus
is mainly placed on the detection of redundancy (see [24] for
a list of approaches). For Petri nets, as a basis for activity
diagrams, the elimination of redundant control places while
keeping a Petri net live is described by Uzam et al. [25].
In addition to presenting an approach to detect clones in
models, Storrle gives an example of a transformation that
removes recurring fragments of activities by factoring them
into independent activities [13]. The main rationale behind
these refactoring proposals is to increase the maintainability
of models and reduce the risk of inconsistent changes. Our
work, in contrast, deals with the removal of redundant ele-
ments within a single activity for the purpose of facilitating
their processing by automatic approaches. This also includes
elements that UML defines as “integral parts of a diagram”
(such as DataFlowNodes), which Storrle calls loophole clones
and for which his refactoring approach does not work. It is
also mentioned, that there are tools distinguishing between
internal representation (the activity itself) and an external
visual representation (the activity diagram). Most contem-
porary tools enforce a one-to-one correspondence between
these two representation types. This simplifies, the handling
of copy/paste operations [13]. As a consequence, using an
element of the internal representation multiple times in the
external representation is not possible. A tool, that does not
enforce one-to-one correspondence would allow for proper
readability while still allowing for automatic approaches. No-
netheless, even if such a tool is used, the modeler must still
be aware of this capability and is required to consider this fact
during model creation. Hence, a tool-independent approach is
needed, that takes into account the modeling-process and its
challenges.

Activities can be the source for a number of possible
applications. Among others they are used to automatically

generate textual specification documents [26], source code [27]
and test cases [28].

IV. ELIMINATION OF REDUNDANT ELEMENTS
A. Transformation

To remove redundant ExecutableNode elements from an
activity, we propose a transformation that consists of three
steps. All steps have to be performed for every redundant
element in an activity. The first step adds a new element, that
represents all instances of the redundant element. The second
step adds ControlNodes to the activity. The predecessors
and successors of the instances and the added element are
connected with the ControlNodes by ControlFlows. Lastly, all
instances of the considered redundant element are removed
from the activity. As a result the element added in the first
step remains as a single instance of the redundant element.

The necessary ControlNodes are ForkNodes, JoinNodes,
MergeNodes and DecisionNodes. A single MergeNode is ad-
ded as a predecessor to the remaining element. A single De-
cisionNode is added as a successor to the remaining element.
For each instance of the redundant element one ForkNode and
one JoinNode is added. The ForkNodes are predecessors to
the added MergeNode. The predecessor of each ForkNode are
the predecessors of the original instances. The JoinNodes are
successors of the added DecisionNode. The successors of each
JoinNode are the successors of the original instances. Each
of the added ForkNodes has an outgoing edge to an added
JoinNode. Thereby, the ForkNode, which is added as the pre-
decessor to one instance is connected to the JoinNode, which
is added as the successor to the same instance. Since there
are no guards on the outgoing edges of the DecisionNode,
an incoming token is forwarded to a JoinNode with a token
present [3, p. 373, p. 387].

(w] [

(a) Original activity (b) Transformed activity

Fig. 2: Example of the transformation

Fig. 2 shows an activity diagram fragment before (Fig. 2a)
and after (Fig. 2b) the transformation. The depicted activity
has the redundant element A3 with the two redundant instances
A3; and A3,. The instances are denoted with indices for
distinction. The Actions Al, A2, A4 and A5 can be any Exe-
cutableNode (e.g. Actions, AcceptEventActions) or multiple
ExecutableNodes or ControlNodes. In case Al executes, an
execution of A3 follows. Because of the execution of Al,
there is a token present at the JoinNode before A4. The token
produced by A3 is forwarded to this JoinNode. Thus A4
executes. In case both A1 and A2 are executed, A3 is executed

76 REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS

two times and hence produces two tokens, which lead to the
execution of A4 and A5. In both cases, it is the same behavior
as before.

B. Normal Form

The transformation is applicable if all instances of the
redundant elements have a single predecessor and a single
successor. For this purpose, we denote an activity with re-
dundant elements, where each of its instances has exactly one
predecessor and one successor, to be in a normal form. If this
is not the case, further ControlNodes are added to make sure
this requisite is fulfilled.

An activity is not in the normal form if one of its instances
is missing a predecessor or a successor. If the predecessor is
missing, an InitialNode is added as a predecessor [3, p. 376]. If
the successor is missing, a FlowFinal is added as a successor
since the flow of tokens ends after the ExecutableNode. In
Fig. 3a a situation is displayed, where one element does
not have a predecessor and one element does not have a
successor. Fig. 4a shows the corresponding situation with an
added InitialNode and FlowFinal.

(a) No predeces-
sor / successor

(b) Multiple predecessors /

SUCCESSors (c) Cycle

Fig. 3: Situations without normal form

|
H

®

(a) No predeces-
sor / successor

(b) Multiple predecessors /

Successors (c) Cycle

Fig. 4: Situations of Fig. 3 in normal form

In addition to missing predecessors or successors, there
might be instances with more than one predecessor or succes-
sor. If there are multiple predecessors, a JoinNode is added to
make the implicit Join to an explicit Join [3, p. 401]. After
the transformation, this results in a JoinNode with an outgoing
edge to the respectively added ForkNode before the remaining
element. If there are multiple successors, a ForkNode is added
to make the implicit Fork to an explicit Fork [3, p. 401]. After
the transformation, this results in a ForkNode with an incoming
edge from the respectively added JoinNode after the remaining
element. An example of the described situation is displayed in
Fig. 3b. The corresponding, for Action Al resolved situation
is shown in Fig. 4b.

An instance of a redundant element can also be a part of a
cycle. In case the instance is its own predecessor and succes-
sor, it is necessary to add ControlNodes as new predecessors
and successors. As a predecessor a ForkNode is added and as
a successor a JoinNode is added. In Fig. 3c such a situation
is displayed. Fig. 4c shows the corresponding situation with
an added JoinNode and ForkNode. 1t is also possible to add a
DecisionNode and a MergeNode or any other combination of
ControlNodes, as these ControlNodes only have one incoming
and one outgoing edge. However a ForkNode and a JoinNode
can be merged, with the respective JoinNode and ForkNode,
that are added by the transformation.

By using ControlNodes with one incoming and outgoing
edge, ultimately every combination of predecessors and
successors of the redundant elements can be converted to the
normal form.

C. Number of additional elements

The number of necessary additional ControlNodes and Con-
trolFlow edges depends on the number of redundant elements
and on how many instances are part of each redundant element.
There is a new ForkNode and a new JoinNode for each
instance. Also, there is one additional MergeNode and one
additional DecisionNode for each redundant element. Besides,
there might be ControlNodes necessary to ensure, that each
instance has a single predecessor and successor. Thus, the
number of new ControlNodes in an activity results in:

m
#NewControlNodes = 2(2 xn; +2)+c¢ (1)
i=1
The variable m denotes the number of redundant elements,
n; denotes the number of instances in each redundant element
and ¢ denotes the number of ControlNodes needed for the
normal form. Since, there is a maximum of two ControlNodes
needed for every instance to create the normal form, there is
a linear relation between the number of redundant elements
and the additionally needed ControlNodes.
Using the same notation and, additionally, the variable d as
the number of needed edges, the number of new ControlFlow
edges in an activity results in:

m
#NewControlFlowEdges = 2(3 xn; +2)+d (2

i=1
For every instance of a redundant element, there need
to be three additional edges (two outgoing edges of the
added ForkNode, one incoming edge of the added JoinNode).
For every redundant element two edges are needed as the
outgoing edge of the MergeNode and the incoming edge of the
DecisionNode. Additionally, there is a maximum of two edges
needed for each instance of an redundant element, to create
the normal form. Hence, there is also a linear relation between
the number of redundant elements and the additionally needed
ControlFlow edges. The linear relations for the number of
nodes and edges are important, since an automated processing

might be impaired otherwise.

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS 77

D. Resulting Structure

The usage of a single predecessor and a single successor
results in a single-entry single-exit structure for the trans-
formed part. As a consequence everything before and after
the remaining element stays unchanged. The principle of
compositionality applies. This means, that the behavior of
the activity remains the same, if the behavior of the changed
part remains the same. Hence, to show the preservation of
the behavior, it is sufficient to show, that the behavior of the
transformed part stays the same.

V. PRESERVATION OF BEHAVIOR

To show that the transformation preserves the behavior
expressed in an activity diagram, we compare the flow of
tokens in the underlying semantic model (see Section II).
Reachability graphs (RG) [29] represent this flow of tokens
in a network depending on the executed actions. Hence, we
use reachability graphs as a means to show, that the behavior
of the activity, before and after applying the transformation, is
still the same. In this chapter, we briefly introduce reachability
graphs. Additionally, we argue why the comparison of the RGs
of the activities is suitable to show the preservation of the
behavior. Subsequently, we propose a way to derive RG from
activities. In the subsection after that, we show how to compare
two activities by using RGs.

A. Reachability Graphs
We construct the reachability graph RG for an activity A

as:

RG(A) = (M(V), E) 3)

V is the set of ActivityNodes contained in the activity A.
M (V') is the set of distributions of tokens to the ActiviryNodes.
Thus, every node m € M(V) in the RG represents a
distribution of tokens within the activity A. Every element of
M (V) is a |V|-tuple, where each entry represents the number
of tokens at every ActivityNode after a sequence of executions.
E is the set of directed edges of the RG. The edges represent
the execution of an ExecutableNode, which leads to a new
distribution of tokens.

The initial distribution moy € M (V') represents the dis-
tribution of tokens at the beginning of execution. Its node
in the RG has no incoming edges. The initial distribution
depends on the events that might occur at the beginning
and on existing InitialNodes. There may be multiple different
initial distributions, which each result in different RGs. The
final distribution m,, € M (V') represents the distribution of
tokens in the activity, where no more nodes are left to be
executed. This is also the case as soon as one token reaches
an ActivityFinal. Its node in the RG has no outgoing edges.
Each RG has only one final distribution.

A sequence of executions is a sequence of edges (e, ..., ey,)
in the reachability graph RG, which starts at the initial distri-
bution and ends at the final distribution. Hence, a sequence of
executions represents a possible order of executed Actions in

the activity that lead from the initial distribution to the final
distribution.

Fig. 5a shows the RG of the activity presented in Fig. 2a.
The RG of the transformed activity from Fig. 2b is displayed
in Fig. 5b. In both cases, it is assumed that the initial
distribution results from the events executing Al and A2
simultaneously. Also, the distributions in both figures only
incorporate ExecutableNodes.

(1,1,0,0,0,0)

(0,1,0,0,1,0)

(0,0,1,1,0,0) (1,0,0,0,0,1)

(0,0,0,0,1,1)

(a) RG (A1, A2, A31, A32, A4, A5) for the original activity

(b) RG (A1, A2, A3, A4, A5) for the transformed activity

Fig. 5: RGs for the activities in Fig. 2

While the distribution of tokens in Fig. 5a is represented by
a 6-tuple, the distribution in Fig. 5b is represented by a 5-tuple.
This results from the different number of ExecutableNodes in
the two activities, since the two redundant Actions A3; and
A3s were replaced by A3.

An RG contains all possible sequences of executions of an
activity for a given initial distribution. As a consequence,
we conclude that if the same sequences lead to the same
distribution of tokens in an activity, then the behaviors of the
activities are same. As a result, the comparison of two RGs of
the respective activities shows the preservation of the behavior
for a given initial distribution.

B. Generating Reachability Graphs from Activity Diagrams

RGs are generated for a chosen initial distribution. Hence,
the first step is to decide how many tokens are initially placed
on each ActivityNode. The resulting distribution of tokens is
the first node (the initial distribution) of the RG.

From the initial distribution, the RG is constructed step
by step. The underlying algorithm is basically the same as
for a Petri net. For every entry in the current distribution,
which has at least one token, the token is transferred from
the corresponding ActivityNode to its successor in the activity.
This results in a new distribution in the RG, which is connected
by an incoming edge to the previous distribution in the RG.
Although the ControlNodes do not hold tokens, they are
included as entries in the distributions. This is necessary, since
they may change the number of tokens. As a result the number

78 REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS

of tokens of a new distribution depends on the type of the
executed ActivityNode. If the current ActivityNode is an Exe-
cutableNode, every token is forwarded to the successor after
the ExecutableNode is executed (assuming that there are no
implicit ControlNodes). The different types of ControlNodes
on the other hand all show a different behavior towards the
number of tokens in the activity. Hence, every ControlNode
needs to be considered differently. In the following, t(v)
denotes the number of tokens at a certain ActivityNode v € V.

MergeNode. MergeNodes forward tokens from multiple
incoming ActivityEdges. As such, they act as OR-connections
between the predecessors. As a consequence, for a given
distribution (..., t(v),...,t(v"),...), where v € V is the Mer-
geNode and v' € V is a successor, the distribution (..., t(v) —
1,...,t(v") +1,...) is added as a node in the RG.

ForkNode. ForkNodes pass a single token to each outgoing
ActivityEdge for each token on the incoming ActivityEdge.
For a given distribution (..., ¢(v), ..., t(v1), ..., t(vy), ...), Wwhere
v € V is the ForkNode and vy, ...,v, € V are the following
nodes on the outgoing ActivityEdge of the ForkNode, results
the distribution (...,¢(v) — 1,...,¢(v1) + 1, ..., t(vn) + 1, ...).

JoinNode. JoinNodes act as AND-connections as they only
forward a single token on their outgoing ActivityEdge, if there
is one token present at each incoming ActivityEdge. For a given
distribution (..., t(v), ..., t(v'),....), where v € V is the Join-
Node and v’ € V is the successor, if there are n € N incoming
ActivityEdges, where each incoming ActivityEdge has a single
token present, the distribution (...,¢t(v) —n, ..., t(v")+1,...) is
created.

DecisionNode. DecisionNodes forward a single token to an
applicable outgoing ActivityEdge if there is a token on the
incoming ActivityEdge. If there is more than one ActivityEdge
applicable, the token only traverses one of the ActivityEd-
ges [3, p. 388]. Since there are different RGs depending on
the decisions, there has to be a new RG for every possible
decision and not just a new distribution. For a given distribu-
tion (...,t(v),...,t(v1), ..., t(v;), ..., t(vp),), where v € V
is the DecisionNode, v, ...,v, € V are successors of the
DecisionNode and wv; is the node, that accepts the token
offered by the DecisionNode, follows the new distribution
(cnt(v) = 1,y t(v1), o t(vg) + 1, oy t(n), ...

C. Comparison of Activity Diagrams

For a complete comparison of the behavior of two activities,
one would need to compare all possible RGs of both activi-
ties. Different RGs arise from different initial distributions
and non-deterministic DecisionNodes [3, p. 387]. Due to the
unlimited number of tokens that may be placed in the initial
distribution, there is an infinite number of possible RGs.
Therefore, in general, it is not possible to compare all RGs.
We argue that it is sufficient to compare just the RGs with
all possible combinations of initial distributions, where each
suitable ActivityNode has either no token at all or just one
token. The reason is that all combinations of zero or one
token represent all possible flows in the activity. This rationale
ignores the fact that there might be structures in an activity that

require a certain number of tokens. Suitable ActivityNodes are
those that might have a token at the start of the execution of an
activity (InitialNodes and AcceptEvenActions). For n suitable
ActivityNodes, this results in 2™ — 1 different RGs for different
initial distributions. The distribution of no tokens at all does
not yield any information regarding the behavior.

These RGs are needed for the comparison of the behavior
of two activities. The actual comparison of two RGs is done
with two RGs representing the same situation, i.e., the same
initial distribution and the same decisions made. One criterion
for two RGs to be equivalent is that their sequences of
execution are equivalent. This means, that every sequence of
execution in the RG of the original activity has an equivalent
sequence of execution in the RG of the transformed activity.
As the ControlNodes do not hold tokens and do not execute
operations other than manipulating the flow of tokens, they
must not be considered during the comparison of two RGs.
Note that there are redundant sequences of executed Actions
in the RGs because of the redundant elements.

Besides the sequences of execution, the equality of the
individual distributions is the second criterion that must be
fulfilled. Otherwise, the behavior is not the same if the
same sequences lead to different distributions. The trans-
formed activity contains less entries in the distributions of
the RG than the original activity (see subsection V-A) be-
cause of the removed redundant elements. Thus, the sum
of tokens of the redundant elements equals the number
of tokens of the remaining elements. For the distribution
(Yis s Ym—(n—s)) Of the transformed activity an equivalent
distribution (21, ..., Zsy .oy T, ..., Ty) Of the original activity,
given redundant instances x; to x,, can be identified by:

T if k=[1,i—1]
ye=3Ym if k=i @)
l=1i

Tt (n—1) if k= [Z +1,m— (TL - Z)]

Because of the single-entry single-exit structure of the
transformation (see subsection IV-A), it is only necessary to
compare the changed part of the activity before and after the
transformation. Since the transformation introduces pairs of
ForkNodes and JoinNodes for the respective predecessors and
successors of the original instances, the forwarding of tokens
by the introduced DecisionNodes are deterministic and hence
do not require additional RGs. The deterministic behavior
results from the fact that it is always clear to which JoinNode
a token is forwarded in each step. In the example Fig. 2a, there
are two suitable ActivityNodes for the initial distribution. Thus,
three pairs of RGs need to be compared.

The sequences of executions of the RG in Fig. 5a are the
following:

1) Al, A3,, A2, A3,
2) Al, A2, A3,, A3,
3) Al, A2, A34, A3,

4) A2, Al, A3, A3,
S) A2, Al, A3, A3,
6) A2, A34, Al, A3,

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS 79

The sequences of executions of the RG in Fig. 5b are:

1) Al, A3, A2, A3
2) Al, A2, A3, A3
3) Al, A2, A3, A3

4) A2, A1, A3, A3
5) A2, Al, A3, A3
6) A2, A3, Al, A3

Since Action A3; and A3, in the original activity in Fig. 2a
are redundant instances of the same redundant element, the
sequences of executions 2) and 3) as well as 4) and 5) are
the same. By removing the redundant sequences of executions
and comparing the remaining ones, it follows that both RGs
contain the same sequences of executions.

Considering the criteria defined in Equation 4 for the
equality of the distributions, the distributions are equal as
well. As a result, the RGs in Fig. 5 are isomorphic. The same
holds for the RGs generated by using the other two initial
distributions. Hence, for the assumed semantics, the transfor-
mation preserves the behavior if it is applied to an activity
containing one redundant element consisting of two instances.
The transformation can also be applied to activities with more
than one redundant element and with more than two instances.
This is based on the fact that the transformation can be applied
in any order. From this follows that the removal of multiple
instances can be conducted by applying the transformation
to only two instances each time until there is one instance
left. Additional ControlNodes resulting from the consecutive
application of the transformation can be merged.

CRED0D

(b) Applied Trans-
formation

(c) Merged Control-

(a) Initial Situation Nodes

Fig. 6: Transformation of a redundant element with three
instances

The consecutive application of the transformation is shown
in Fig. 6. In the initial situation in Fig. 6a, there is a redundant
element with two instances. The structure of the instance on
the right hand side, results from a previous application of
the transformation on two instances. If the transformation is
applied in this situation the ExecutableNode A6 and the added
MergeNode are used as the predecessors and the Executable-
Node A7 and the added DecisionNode are used as successors.
This results in the activity displayed in Fig. 6b. This structure
can be simplified to the structure displayed in Fig. 6¢ without
changing the flow of tokens. Since the added MergeNode and
DecisionNode are now the new predecessor and successor, this
procedure can be repeated if there are further instances.

V1. SPECIAL SITUATIONS

Besides the presented transformation, there are special situ-
ations where the removal of the redundant elements is possible

using less additional ControlNodes. Three examples are shown
in Fig. 7.

(c) Situation 3

(b) Situation 2

(a) Situation 1

Fig. 7: Three special situations with redundant elements

The activity in Fig. 7a contains two redundant elements.
Both elements do not have a predecessor. The activity in
Fig. 7b contains two redundant elements, which have a
common predecessor and distinct successors. The activity in
Fig. 7c contains two redundant elements, which have distinct
predecessors and a common successor.

Their respective activities without redundant elements are
depicted in Fig. 8.

(] ==
- A3 A3

() (w)(ae] [a]

(a) Situation 1 (b) Situation 2 (c) Situation 3

Fig. 8: Three special situations without redundant elements

In all of these situations there is only one of the two redun-
dant instances left. Compared with the generic transformation
introduced in subsection IV-A, less additional ControlNodes
and ControlFlow edges are needed. Hence, the resulting num-
ber of ControlNodes and of ControlFlow edges in Equation 1
and in Equation 2 respectively are upper limits.

The preservation of behavior for these activities results from
the fact that the missing predecessors and successors lead
to structures that do not change the flow of the tokens. For
instance, there are ControlNodes without incoming edges or
ControlNodes with a single incoming and a single outgoing
edge. We additionally verified the preservation of behavior by
constructing the RGs for these activities. The resulting RGs
are equivalent for the necessary distributions.

A. Introductory Example Revisited

If the presented approach is applied to the introductory
example in Fig. 1, this results in the activity diagram displayed
in Fig. 9. As the activity is meant as a source for further
automated approaches, the activity diagram is displayed to
illustrate the applied transformations. To increase the reada-
bility, we left out the FlowFinal elements and not all of the
implicit connections are depicted explicitly. As there are four
redundant elements with two instances each, four elements are

8o REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS

removed. For the redundant triggers, the transformation for si-
tuation 1, presented in Section VI is applied. For the redundant
checks the generic transformation is applied. In contrast to the
original activity, the number of ControlNodes increases and
intersecting edges appear. This results in decreased readability,
which makes the activity harder to understand. Since the aim
of the transformation is to improve applicability of automated
approaches, the decreased readability is not an issue within the
scope of this work. Hence, we propose to use the redundancy-
free activity as a parallel artifact.

VII. EVALUATION

To evaluate the applicability of our approach in activity
diagrams created in practice, we applied the approach to the
activity diagrams of a system of an industry partner. The
system’s functions were specified by a total of 36 activity
diagrams (containing between 9 to 28 ExecutableNodes). Each
activity describes a function of a system, which is responsible
for charging the high-voltage batteries of Plug-in Hybrid
Electric Vehicles and Battery Electric Vehicles. As such the
system contains functions that are relevant for safety as well
as for usability. The aim of the evaluation is to answer the
following questions:

« RQ1: How many redundant elements appear in activities
of a real system?

o RQ2: Is our transformation approach applicable to every
situation in the activities of a real system?

e« RQ3: How many additional elements are introduced
when applying the transformations?

+ RQ4: How many of the special situations occur in the
activities of a real system?

A. Implementation

The original data of our industry partner was supplied as
an Enterprise Architect project file. To apply the transforma-
tion, two steps were required to prepare the data. The first
step is to convert the project file (.eap) to a .uml file. The
conversion was done automatically by a self-written converter.
Our implementation of the transformation approach is realized
using .uml files because, in contrast to, e.g., the .eap format,
the .uml data format is aligned with the UML specification.
Hence, it is only necessary to adjust the converter if a
different data source is used in future. In the second step, the
resulting .uml file is edited manually. This is necessary if our
converter encountered situations that it could not handle. Such
situations may result from deviations between the Enterprise
Architecture data model and the .uml data model. Another
reason for the manual adjustments was to correct the use of a
number of ControlNodes originating from developer mistakes
and misunderstandings (e.g. MergeNodes and DecisionNodes
as well as JoinNodes and ForkNodes were sometimes mixed
up because they look the same). The transformation itself was
implemented to work on the resulting .uml files.

TABLE I: Extent of redundant elements in the analyzed
system.

Finding #Diagrams Ratio
Total activity diagrams 36 100%
Containing redundant elements 15 42%
Containing 1 redundant element 19%
Containing 2 redundant elements 5 17%
Containing 3 redundant elements 2 6%
Finding #Red. Elements Ratio
Total redundant elements 24 100%
Containing 2 instances 23 96%
Containing 3 instances 1 4%

TABLE II: Results of applying the transformation

Finding Number
Removed ExecutableNodes 25
Added ControlNodes max. 146
Added ControlNodes min. 111
Generic Transformation 18
Situation 1 4
Situation 2

Situation 3 3

B. Study Results

To answer the first question, we analyzed the activities
towards the number of occurrences of redundant elements. The
detailed results are displayed in Table I.

Out of the 36 diagrams, we found 15 diagrams containing
redundant elements. The 15 diagrams contain 24 elements that
appear multiple times in each activity diagram. Of these 15
diagrams, there are 2 diagrams each containing 3 redundant
elements with two instances. Another 5 diagrams contain 2
redundant elements. Out of these 5 diagrams 4 diagrams have
redundant elements with two instances each. The fifth diagram
contains a redundant element with three instances as well as
one with two instances. The remaining 8 diagrams contain
only one redundant element with two instances each.

The transformation was applicable to all provided activities.
There is no constellation, where the transformation would not
preserve the behavior. An analysis of the results of the applied
transformations is shown in Table II.

The removal of the 23 redundant elements with two instan-
ces and the one redundant element with three instances results
in an overall of 25 removed ExecutableNodes. When only
applying the generic transformation, a total of 146 ControlNo-
des were added (Added ControlNodes max.) to the activities.
However, when also using the smaller transformations for
the special situations explained in section VI, the generic
transformation only had to be applied 18 times. Situation 1
was applicable four times and situation 3 was applicable three
times. The special situation 2 did not occur. By utilizing the

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS 81

Trigger: Vehicle is in Trigger: State of
“p" connector "plugged”

Trigger: State of
connector "unknown"

Trigger: State of
connector "defect”

,Q
¢

[Check: Ignition Off }

Check: V < 5 km/h }

[Check: Gearshift is in ‘P’]

|

[Check: Engine Cranking inactiveJ

[Function: Drive Inhibit Je@

Fig. 9: Introductory example without redundant elements

transformations of the special situations, only 111 additional
ControlNodes had to be added.

It has to be noted, that we only examined one system of
one single industry partner. As a result, the generalizability
of our findings is limited in regard to whether the approach
is always applicable and whether the resulting numbers are
representative.

VIII. LIMITATIONS OF THE APPROACH

The presented approach is restricted to our interpretation of
the semantics of an activity. If different semantics are used,
the transformation might no longer preserve all aspects of the
behavior. Assuming a semantic where every ExecutableNode
has its own individual execution time and events can occur
at any time, this might lead to tokens overtaking one another.
Hence, the order in which the actions are executed is no longer
the same. Still, the same Actions are executed the same number
of times. A possible sequence of executions of the activity
in Fig. 2a is shown in 1). A possible deviating sequence of
executions of the redundancy-free activity in Fig. 2b is shown
in 2).

1) A1, A2, A3,, A3y, Ad, A5 2) Al, A2, A3, A3, A5, A4

For instance, while A1l is executing, A2 starts executing.
As soon as Al finishes, A3 starts execution. If A2 finishes
execution while A3 is still running, then both JoinNodes
have one token present. As a result of the non-deterministic
behavior of the DecisionNode, both A4 and A5 are able to
accept the token produced by the first execution of A3. Hence,
instead of executing A4 as in the original activity, A5 might
be executed. In this case, the second execution of A3 results
in the execution of A4.

Besides, the presented approach is limited to a subset of
available elements in activities. The behavior might not be

TaIlEs

(a) Original activity (b) Transformed activity

Fig. 10: Redundant element in an InferruptibleRegion

preserved in case other elements of activities are used (e.g.,
guards). In Fig. 10a, an activity is displayed where one
instance of the redundant element is part of an InterruptibleRe-
gion. As soon as the execution of A3 ends, the execution of A6
(A6 is a substitution for multiple elements in the Interrupti-
bleRegion) is also ended. If the transformation is applied and
the remaining element stays part of the InterruptibleRegion,
A6 is always terminated no matter, which predecessor was
executed before A3. If the remaining element is no longer
part of the InterruptibleRegion, A6 is no longer terminated
by the execution of A3 as a successor of Al. A possible
way to resolve this, is shown in Fig. 10b. By introducing a
dummy ExecutableNode D as a successor to A3 before A4
and putting the dummy node in the InterruptibleRegion, it
is still possible to maintain the original behavior. Since this
transformation involves an additional ExecutableNode, we do
not consider this a part of our proposed transformation. Aside
from InterruptibleRegions, there might be other constellations
of elements in activities, where the approach does not preserve
the behavior either.

82

IX. CONCLUSION AND FUTURE WORK

By investigating a set of UML2 activity diagrams from
an industry partner, we showed, that there are activities in
practical use, that contain a number of redundant elements. To
improve the use of these activities for automated approaches,
we proposed a transformation that removes redundant elements
while preserving their behavior. The transformation and its
property of behavior preservation are based on the assumption
of Petri net based semantics. The transformation merges the
redundant elements to a single element, adds ControlNodes,
and connects them to existing elements to assure the preser-
vation of behavior. The number of added ControlNodes is in a
linear relation to the number of redundant elements. There are
special cases that need less ControlNodes for the preservation.
In order to show the preservation of behavior after transfor-
ming the activities, we presented how to derive reachability
graphs from an activity and how to compare reachability
graphs of different activities. The comparison showed that the
transformation preserves the behavior of an activity containing
multiple redundant elements with multiple instances. Since the
transformation creates a single-entry single-exit structure, we
argue that the preservation is valid in general.

Although we argue for the preservation of the behavior, a
formal proof for correctness is still needed. There are a number
of other formal semantics proposed for UML2 activities.
Whether or not all aspects of the preservation hold for these
semantics is worth investigating as well as considering all
possible constellations of elements in activities.

REFERENCES

[1] L. Apfelbaum and J. Doyle, “Model Based Testing,” in Software Quality
Week Conference, 1997.

[2] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-Driven Engineer-
ing Practices in Industry,” in 33rd International Conference on Software
Engineering (ICSE), 2011.

[3] Object Management Group (OMG), “OMG Unified Modeling Language
(OMG UML), Version 2.5, OMG Document Number formal/2015-03-
01 (http://www.omg.org/spec/UML/2.5/), 2015.

[4] E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research
directions in requirements engineering for embedded systems,” Requi-
rements Engineering, vol. 17, no. 1, 2012.

[5] M. Brambilla, J. Cabot, and M. Wimmer, “Model-Driven Software
Engineering in Practice,” Synthesis Lectures on Software Engineering,
2012.

[6] D. Drusinsky, “From UML activity diagrams to specification requi-
rements,” in [IEEE International Conference on System of Systems
Engineering (SoSE), 2008.

[71 H. Storrle, “On the Impact of Layout Quality to Understanding
UML Diagrams,” in Visual Languages and Human-Centric Computing
(VL/HCC), 2011 IEEE Symposium on. 1EEE, 2011.

[8] W. Liu, S. Easterbrook, and J. Mylopoulos, “Rule-Based Detection of

Inconsistency in UML Models,” in Workshop on Consistency Problems

in UML-Based Software Development, vol. 5, 2002.

D. Firesmith, “Generating Complete, Unambiguous, and Verifiable Re-

quirements from Stories, Scenarios, and Use Cases.” Journal of Object

Technology, vol. 3, no. 10, 2004.

(11]

[9]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

REMOVAL OF REDUNDANT ELEMENTS WITHIN UML ACTIVITY DIAGRAMS

M. Beckmann and A. Vogelsang, “What is a Good Textual Representa-
tion of Activity Diagrams in Requirements Documents?” in 7th Inter-
national Model-Driven Requirements Engineering Workshop (MoDRE),
2017.

H. Kim, S. Kang, J. Baik, and I. Ko, “Test Cases Generation from
UML Activity Diagrams,” in 8th ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD), vol. 3, 2007.

R. Eshuis and R. Wieringa, “Tool Support for Verifying UML Activity
Diagrams,” IEEE Transactions on Software Engineering, vol. 30, no. 7,
2004.

H. Storrle, “Towards clone detection in UML domain models,” Software
& Systems Modeling, vol. 12, no. 2, 2013.

M. Beckmann, A. Vogelsang, and C. Reuter, “A Case Study on a Specifi-
cation Approach using Activity Diagrams in Requirements Documents,”
in 25th IEEE International Requirements Engineering Conference, 2017.
M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

T. Mens, “On the Use of Graph Transformations for Model Refactoring,”
in Generative and transformational techniques in software engineering.
Springer, 2006.

T. Mens, G. Taentzer, and D. Miiller, “Model-Driven Software Re-
factoring,” Model-Driven Software Development: Integrating Quality
Assurance, 2008.

G. Sunyé, D. Pollet, Y. Le Traon, and J.-M. Jézéquel, “Refactoring
UML Models,” in International Conference on the Unified Modeling
Language. Springer, 2001.

A. Correa and C. Werner, “Applying Refactoring Techniques to
UML/OCL Models,” in International Conference on the Unified Mo-
deling Language. Springer, 2004.

M. Van Kempen, M. Chaudron, D. Kourie, and A. Boake, “Towards
Proving Preservation of Behaviour of Refactoring of UML Models,” in
Research conference of the South African institute of computer scientists
and information technologists on IT research in developing countries.
South African Institute for Computer Scientists and Information Techno-
logists, 2005.

M. Boger, T. Sturm, and P. Fragemann, “Refactoring Browser for
UML,” in International Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications for a Networked World.
Springer, 2002.

M. Misbhauddin and M. Alshayeb, “UML model refactoring: a syste-
matic literature review,” Empirical Software Engineering, vol. 20, no. 1,
2015.

K. Altmanninger, “Models in Conflict-Towards a Semantically Enhan-
ced Version Control System for Models,” in International Conference
on Model Driven Engineering Languages and Systems. Springer, 2007.
B. Kaur and E. H. Kaur, “Clone Detection in UML Sequence Diagrams
Using Token Based Approach,” International Journal of Advanced
Research in Computer Science and Software Engineering, vol. 5, no. 5,
2015.

M. Uzam, Z. Li, and M. Zhou, “Identification and elimination of
redundant control places in Petri net based liveness enforcing super-
visors of FMS,” The International Journal of Advanced Manufacturing
Technology, vol. 35, no. 1, 2007.

J. Nicolds and A. Toval, “On the Generation of Requirements Speci-
fications from Software Engineering Models: A Systematic Literature
Review,” Information and Software Technology, vol. 51, no. 9, 2009.
M. Usman and A. Nadeem, “Automatic Generation of Java Code from
UML Diagrams using UJECTOR,” International Journal of Software
Engineering and Its Applications, vol. 3, no. 2, 2009.

D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases
from UML Activity Diagrams.” Journal of Object Technology, vol. 8,
no. 3, 2009.

T. Murata, “Petri nets: Properties, analysis and applications,” Procee-
dings of the IEEE, vol. 77, no. 4, 1989.

INFORMATION EXTRACTION FROM HIGH-LEVEL
ACTIVITY DIAGRAMS TO SUPPORT
DEVELOPMENT TASKS

Published in Proceedings of the 6th International Conference on Model-
Driven Engineering and Software Development - Volume 1 (p. 438 - 445)
[21].

TERMS OF USE

German copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for personal, non-
commercial use.

BROADER CONTEXT WITHIN THE THESIS

Chapter 3 and Chapter 4 identified the need to automatically gen-
erate textual representations from an activity diagram. This chapter
presents a technique that automatically extracts the information nec-
essary to create the textual representation (for possible textual rep-
resentations and an evaluation of them, please see Appendix B). An
activity diagram without redundant elements is assumed as input,
which is rendered by the transformation presented in Chapter 5. In
the context of this thesis this chapter contributes to the constructive
portion and addresses Problem Statement 2. This chapter represents
contribution V of this thesis. An overview of a prototypical imple-
mentation of the presented technique in this chapter can be found
in Appendix C. As explained in Subsection 1.4.7, the technique de-
veloped in this chapter can also be used beyond the context of the
problem statements of this thesis (contribution VI). In order to keep
the technique as simple as possible, formal semantics of activities
with fewer capabilities than the semantics in Chapter 5 are assumed.

AUTHOR CONTRIBUTIONS

The author list includes Martin Beckmann, Thomas Karbe, and An-
dreas Vogelsang. The author of this thesis was the lead author of the
publication. He wrote the majority of the article and conceived and
developed the technique. Thomas Karbe provided support regarding
the formalizations of the concepts and Andreas Vogelsang provided

84 INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS

advice on the research design. Andreas Vogelsang and Thomas Karbe
both contributed to the writing of the paper.

INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS 85

Information Extraction from High-Level Activity Diagrams to Support

Keywords:

Abstract:

Development Tasks

Martin Beckmann!, Thomas Karbe and Andreas Vogelsang'

VTechnische Universitdt Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany
{martin.beckmann, andreas.vogelsang} @tu-berlin.de, ThomasKarbe @ gmx.de

UML2 Activity Diagrams, Information Extraction, Activity Semantics

As the complexity of systems continues to increase, the use of model-driven development approaches becomes
more widely applied. One of our industry partners (Daimler AG) uses UML activity diagrams as the first step
in the development of vehicle functions, mainly for the purpose of communication and overview. However, the
contained information is also valuable for further development tasks. In this paper, we present an automated
approach to extract information from these high-level activities. We put a focus on aspects of activities such as
propositional logic relations, sequences of actions, and differentiability of execution paths. The extracted parts
are needed for the compilation of requirements and the creation of test cases. Also, this approach supports
stakeholders unfamiliar with the notations of activities as implicit information is made explicit and hence
more accessible. For this purpose, we provide a formalism for the kind of activities our industry partner
uses. Based on that formalism, we define properties that express the contained sequences and execution paths.
Furthermore, the formalism is used to derive the underlying propositional logic relations. We show how the

approach is applied to eliminate hundreds of existing quality issues in an existing requirements document.

1 INTRODUCTION

Complex software systems, which, for example, can
be found in distributed embedded systems, require
model-based and system-oriented development ap-
proaches (Broy, 2006). Also, using graphical mod-
els for specification manages complexity and im-
proves reusability and analytical capabilities (Vogel-
sang et al., 2014). One of our industry partners
(Daimler AG) uses UML activity diagrams as a first
step for developing a new function of a vehicle sys-
tem. The activities describe the function’s activation
and deactivation in terms of triggers and conditions
that need to be checked and fulfilled before a function
is activated. By this, the activity diagrams provide an
early overview of the desired function behavior.
Although the main purpose of the diagrams is to
be a means of communication and to ease the over-
all understanding, the contained information is also a
valuable input for following development tasks such
as the elaboration and documentation of detailed re-
quirements (Drusinsky, 2008) or the derivation of test
cases (Kundu and Samanta, 2009). Yet, different
tasks have different information needs and may ben-
efit from making explicit specific information con-
tained in the activity diagrams. We aim at support-

ing downstream development tasks by extracting and
preparing the relevant information from the activity
diagrams. This extraction is additionally helpful for
stakeholders unfamiliar with the notations of acti-
vity diagrams (Arlow and Neustadt, 2004) because it
makes information contained in the activity diagrams
more accessible (Maiden et al., 2005).

In this paper, we focus (1) on the transformation of
activity diagrams to textual specifications by exploit-
ing information on logical activation expressions and
(2) on supporting the derivation of test cases by ex-
ploiting information on minimal execution sequences.
This paper makes the following contributions:

e We define a simplified representation of UML ac-
tivities based on graphs. For this simplified rep-
resentation, we define an algorithm that computes
minimal execution sequences within the activity
and a second algorithm that computes an activa-
tion expression for a function.

e We use the information about minimal execution
sequences to derive test cases from the activities.

e We show how we use the activation expressions
to derive textual requirements specifications from
the activities.

e For both applications, we report on our experi-
ences gained at our industrial partner.

86

INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS

> Trigger: Vehicle is in
upo

Trigger: State of
connector

“vehicle_plugged"

)

Trigger: State of
connector
“vehicle_plugged”

)

Trigger: State of
connector "plugged”

Trigger: State of

Trigger: State of
connector "defect”

Trigger: State of Trigger: State of
connector "plugged” connector “unknown”

connector “unknown”
MergeNode|

' I[FALSE]
MergeNode %[

Check: V < 5 km/h]

% JoinNode
[FALSE] [FALSE]

,IMergeNode
[FALSE]

[TRUE]l

[Check: V < 5 km/h

W[Check: Engine Cranking inactive] { Check: Gearshift is in ‘P’]ﬁ@)

[TRUE]

[TRUE]

[TRUE]

MergeNode

[Function: Drive Inhibit

Figure 1: Activity diagram of the function Drive Inhibit

2 BACKGROUND

Our industry partner uses UML2 activity diagrams
to specify functions of a system. These activity di-
agrams are the first step of the development of a
new system function. They are used to get an early
overview of the desired function behavior. Although
the main focus of the activity is to be a means of com-
munication and to make the understanding easier, it
already contains a number of information that can be
used in the following development phases such as the
elicitation and documentation of requirements and the
derivation of test cases.

Figure 1 shows the activity diagram of the func-
tion Drive Inhibit. The actual behavior of the ac-
tivated function is described in the Action node la-
beled with Drive Inhibit (bottom of the diagram). The
function’s activation is described by a combination
of triggers and checks for conditions. For triggers,
the AcceptEventAction element is used. The checks
are modeled as Action elements. If the condition of
a check is not fulfilled, the flow ends (FlowFinal).
As a consequence, a check acts as an implicit AND.
The triggers and checks are connected by Control-
Nodes such as JoinNodes and MergeNodes. Join-
Nodes act as synchronization points and can be in-
terpreted as AND operators in terms of propositional
logic. MergeNodes represent OR operators. Once the
actual functionality of the function is executed, Acti-
vityFinal elements designate the end of an activity.

Relevant information for our industry partner con-
cerns (amongst others): (minimal) execution paths,
propositional logic relations and sequential or inde-
pendent executability of actions.

Execution paths are of interest for testing and to
facilitate the planning of the system. They are the
basis to derive test cases that ensure that the function

is in fact activated, when certain action are executed.
The execution paths also provide information about
the sequences of execution of actions. This can be
combined with the mapping of the involved actions
to the components of the system (this mapping is not
part of the activity). As a result, it is possible to make
statements on the dependencies between the involved
components. This knowledge is applied during the
planning of the development of the system.

Propositional logic relations are needed to derive
requirements that describe the correct behavior of the
system as well as the test cases that validate these re-
quirements.

3 RELATED WORK

As this paper introduces a formalism for a certain kind
of activities, it is related to work about formal seman-
tics of UML2 activities. The UML2 Specification
describes Activities as Petri net like graphs (Object
Management Group (OMG), 2015, p. 283), but does
not provide formal semantics. Therefore a number
of formal semantics have been proposed, i.a. (Storrle,
2004). While most approaches try to cover the ca-
pabilities to a full extent, it is considered useful to
express activities in simpler constructs (Lano, 2009).
We use this idea and present a formalism solely de-
voted to derive information about certain aspects in
activities.

Graphical models are the basis for a number of
approaches that derive different software engineer-
ing artifacts from the models. Amongst others, they
are used to automatically generate source code (Us-
man and Nadeem, 2009) and test cases (Kundu and
Samanta, 2009). Using graphical models and espe-

INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS 87

cially UML to generate textual requirements or parts
of requirements documents has already been covered
by a number of research papers (Nicolas and To-
val, 2009). Specifically activities as a source for re-
quirements have already been addressed by Drusin-
sky (Drusinsky, 2008), however, only for UML-1.
Additionally, we take into account propositional logic
relations, execution paths, and allow for queries on
actions about independent executions.

In contrast to the mentioned approaches, our ap-
proach focuses on extracting certain aspects of activi-
ties and does not restrict itself on a single application.

4 EXTRACTING INFORMATION
FROM ACTIVITIES

For the purpose of this paper, we aim at extracting
specific information from activities to facilitate down-
stream development tasks. More specifically, we want
to extract the following information:

Independent Actions. Independent actions within
an activity can be executed without any interrela-
tions. This information is useful for the planning
of the development. Actions are executed by com-
ponents of the system. From the independence of
actions follows that there is no flow of information
between the components and hence development
can progress without considering the component
executing an independent action.

Minimal Execution Paths. A minimal execution
path for a node within an activity is a set of
actions that need to be executed before the node
can be executed. These paths contain all actions
that are logically required for a token to reach an
action. Superfluous actions occurring in parallel
are not part of the minimal execution path. This
information is useful for the creation of test cases.
The test cases verify that a function is executed
due to or in spite of certain conditions. Using
minimal paths ensures that only conditions are
tested that influence the examined executed path.
This leads to a minimal set of tests, which are
necessary to confirm the behavior of a function.

Activation Expressions. An activation expression
for a node within an activity is a propositional ex-
pression that reflects the logical relations between
the preceding actions of the node. The activation
expression abstracts from any order of execution
and can be used to derive textual specifications
corresponding to the activities.

In the following, we present how these informa-
tion can be extracted from the activities.

4.1 Activity Graphs

To extract the information on independent actions and
minimal execution paths, we introduce activity graphs
as a simplified representation of the activities. Acti-
vity graphs focus on expressing whether certain ac-
tions are independent of one another or whether they
have to be executed sequentially. We transform an
activity to an activity graph by mapping the actions
of an activity to nodes of a graph. We assume that
implicit connections in the activity are made explicit
and that ExecutableNodes only appear once in the ac-
tivity. Beckmann et al. have proposed an approach
that we use to remove redundant occurrences of Ex-
ecutableNodes within an activity (Beckmann et al.,
2017a). There may be cycles in the activity.

Each node in the activity graph has a label contain-
ing the text of the corresponding Action of the activity.
They also have one of the following types: Trigger,
Check, Function, Merge, Decision, Join, Fork. More-
over, each node has a set of successors.

Definition 1. Activity Graph
Given a non-empty set of nodes V, an activity graph
T is defined as

7 (V,sucr,typey,labelr)
where

1. sucy :' V. — P(V) is the successor function for
T, where suct (v) denotes the set of all successor
nodes of vevV,

2. typer : V — {Trigger,Check, Function,Merge,
Decision,Join, Fork,End} assigns a type to every
node, and

3. labelr : V — X* assigns a label to every node.

Definition 2. Direct Predecessors
Given an activity graph T, the set of direct predeces-
sors of a node v €'V is defined as

dpredr(v) def {w|v € sucr(w)}

In the activity the direct predecessor is the source
node of any incoming edge. There might be more than
one direct predecessor to one node. Since we assume
that all connections were made explicit and there are
no redundant elements, multiple direct predecessors
occur only for JoinNodes and MergeNodes.

Definition 3. Execution Sequence

Given an activity graph T,

1. Alist of nodes s = (vi,...,v,) withvi,...,v, €V
is called an execution sequence, and v; is called
the i-th execution step of s.

2. An execution step v; is a sequence-predecessor of
another execution step v; (denoted by v; <, v;) if
i<j.

88 INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS

3. The set of all execution sequences of T is denoted
by S.
Considering Figure 1 one possible execution se-
quence might be Trigger: State of connector “un-

known”, Check: Gearshift is in 'P’, Function: Drive
Inhibit.

Definition 4. Prefix
Given an activity graph T and an execution sequence
§={(Vi,...,v). For any k with 1 <k < n the k-prefix
(or just prefix) of s is defined by

S(k) déf <V1 geee ,vk).
Definition 5. Node Count
Given an activity graph T and an execution sequence
s ={vi,...,vn). For any node v € V, the node count
of vin s is a function #,(s) : S — N and describes the
number of appearances of v in s.
Example:

e #,({a,b,c,a,d,e,a,d)) =3,

e #.,({a,b,c,a,d,e,a,d)) =1,

o #,({(a,b,c,a,d,e,a,d)) =0.

Definition 6. Valid Execution Sequence
Given an activity graph T and an execution sequence
s= V1, ,m),

1. An execution step v; of a sequence s is valid (de-
noted by s -1 v;) if and only if one of the following
cases is true:

(a) dpredy(v;) =0,

(b) dpredy(v;) # 0 Atype(v;) # Merge A
Yw € dpre‘iT(Vi)-#w(S(v,—)) > #Vi (S(v,-))
Explanation: A join node is valid when each of
its predecessors appears at least as often as the
Jjoin node itself in the prefix before it. Check,
Function, Fork, Decision, and End nodes are
similar, but have only one predecessor. The for-
mula is the same for them.

(c) dpredr(vi) # 0 Atype(v;) = Merge A
#Vi (s(vi)) <= Zwedpredr(v,-) H (S(vi))
Explanation: A merge node is valid when all its
predecessors together appear at least as often
as the merge node itself in the prefix before it.

2. An execution sequence s is valid (denoted by -t
s), when all its execution steps are valid.

3. The set of all valid execution sequences for T is
denoted by St.

Definition 7. Predecessor

Given an activity graph T, a node v; € V is a prede-
cessor of another node vj € V (denoted by v; <t v;)
if vi is a sequence predecessor of v; in every valid se-
quence of T.

Vi <1 Vj S Vs e St < Vj

This definition is used to find dependencies be-
tween actions. In case a node is predecessor of an-
other node, the predecessor has to be executed first.
This also tells us that there is an interaction between
nodes.

Definition 8. Independent Nodes / Parallel Exe-
cutable

Given an activity graph T, two nodes v;,v; € V are
independent (denoted by v; ||7 v;) if they are not pre-
decessors of each other:

villrvievidrviAv; £rvi

In contrast to the predecessor relation, two inde-
pendent nodes can be executed without any interre-
lations between the involved actions. An example in
Figure 1 are the checks V < 5 km/h and Gearshift is
in’P’.

Definition 9. Minimal Execution

Given an activity graph T and a node v € V. A
minimal execution sequence Syin,r(v) = (Vi,...,Vs)
is a valid execution sequence that ends in v and
for which no i exists for which 1 < i < n and
(V1yeeesVie1yVigly -« -5 Vn) is valid.

Note, that v, = v because the sequence ends in v.
Explanation: An execution sequence is minimal when
no step can be cut out of the sequence.

Every path to the specified node that does not con-
tain unnecessary actions for the activation, is a mini-
mal execution. Since MergeNodes might have multi-
ple predecessors, there can be more than one minimal
execution. The action Check: V < 5 km/h after the
JoinNode in Figure 1 has three minimal executions.
Each path consists of one of the three triggers con-
nected by the MergeNode, the MergeNode itself, the
JoinNode and the action Trigger: Vehicle is in 'P’.

Definition 10. Concatenation of Execution Se-
quences

Given two execution sequences of disjoint nodes
s1=(Vi,...,vn) and s = (wy,...,wp). The concate-
nated execution sequence s o 5; is defined as

def
51082 = (Viyeeey Vi, Wl,nnn s Win)

The algorithm to compute a minimal execution is
shown in Algorithm 1. The algorithm works recur-
sively through the graph. In a each step the necess-
ary minimal executions are concatenated to the cur-
rent node. Which executions are necessary depends
on the type of the node. In case a node is neither a
JoinNode nor a MergeNode, the minimal execution
is the concatenation of the minimal execution of its
direct predecessor and itself. For a JoinNode, all pre-
vious minimal executions are needed. For a Merge-
Node, any of the predecessor can be used. Hence,

INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS 89

Algorithm 1 Recursively computing a minimal exe-
cution

Algorithm 2 Recursively computing an expression
tree

Input: Activity Graph T, Node v € V
function MINEX(v)
if dpredy (v) = 0 then
return {v}
else if rype(v;) & {Merge,Join} and
dpredr(v) = {w} then
return MINEX (w) o (v)
else if typer (v) = Join and
dpredr(v) = {wi,...,w,} then
return MINEX (w1) o --- o MINEX(w,,) o (v)
Note, this step is not deterministic, since depend-
ing on the order of concatenation there are multiple
options. Only one choice is needed.
else if ryper (v) = Merge and
w € dpredy(v) (any predecessor) then
return MINEX(w) o {v)
Note that this step is not deterministic, since mul-
tiple predecessors can exist. Any choice would be
correct.
end if
end function

there are multiple minimal executions. The algorithm
terminates, if there are no predecessors or if a cycle is
detected. Executions containing cycles are discarded,
because they cannot be minimal executions.

4.2 Activation Expressions

Actions that are predecessors of other actions in an ac-
tivity diagram can also be interpreted as logical facts
that need to be fulfilled before an action can be ex-
ecuted. Activation expressions focus on these logi-
cal relations between actions. These relations can be
represented by a propositional logic expression tree.
The algorithm to construct the activation expression
for a node in an activity graph is displayed in Algo-
rithm 2.

The algorithm requires the node for which the ac-
tivation expression shall be computed as input. In our
case, we are especially interested in action nodes that
represent function executions. Some of the activities
of our industry partner contain more than one func-
tion. In that case, multiple trees have to be created
since each function has different triggers and checks,
and thus, the activation expression is also different.
As a second input, the algorithm requires a node of
the tree that is to be created. The input is required
since the algorithm works recursively. When the al-

Input: Node vaes € Vaer, Node viyee € Vrree

function CREATEEXPTREE(Vacr, VTree)

if dpred ., (vacr) = 0 then
SUCTree (VTree) = SUCTree (VTree) Uvacr

else if dpred ., (vacr) # 0 and type, ., (Vaer) €

{Trigger,Check, Function} then

VTreenext &l reateN ode(AND)
SUCTree (VTree) = SUCTree (VTree) U VTreenext
SUCTree (VTreenexz) = SUCTree (VTreenext) UVvaer

def
Vac = v € dpred o (Vact)
def
VTree = VTreenext

createExpTree(Vacr, VTree)
else if dpred ., (vact) # 0 and
typese (Vaer) = Join then
VTreeand &t reateN ode(AND)
SUCTree (VTree) = SUCTree (VTree) UVTreeand

for all va.;, of dpred s, (vac) do
def
VAct = VActin
def
VTree = VTreeand
createExpTree(Vacr, Vree)
end for
else if dpred,,(vae) # 0 and

types(Vaa) = Merge then
VTreeor &f createN. ode(OR)
SUCTree (VTree) = SUCTree (VTree) UVTreeor
for all v4;, of dpred,.,(vae) do
def
VAct = VActin
def
VTree = VTreeor
createExpTree(Vacr, Vree)
end for
else if dpred,, (vae) # 0 and
types (Vae) € {Fork,Decision} then
Vaer e dpred ., (vac)
createExpTree(Vacr, VTree)
end if
end function

gorithm is called for the first time, a start node is used
as the root node of the tree. What the algorithm basi-
cally does, is to traverse the activity graph backwards.
It starts from the node that represents the function that
has to be activated. From there the predecessors are
analyzed until the triggers of the function or nodes
without any predecessors are reached. As a conse-
quence, the algorithm terminates as long as there is

90 INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS

START

|AND | [Check'V<5km/h) |AND | (Check: Engine] | OR | [Check: Gearshiﬂis]
) in"P"

Cranking inactive

| OR [Trigg_er_:\{ehicle]
isin"P

TN

Trigger: State of Trigger: State of
| OR | [Check: V< Skmlhj connector cohnector

"unknown” "defect”

.

Trigger: State of Trigger: State of Trigger: State of Trigger: State of Trigger: State of
connector connector connector connector connector
"plugged” "vehicle_plugged" "unknown" "vehicle_plugged" "plugged"”

Figure 2: Expression Tree of the function Drive Inhibit

no cycle in any of the execution sequences. This can
be automatically ensured beforehand by checking for
cycles. Also, for the activities our industry partner
uses, a detected cycle can be ignored. This is possi-
ble, since the repeated execution of actions does not
have any influence on the function activation. If the
actions in the cycle were executed once, the flow of
tokens also continues outside the cycle. Further repe-
titions do not effect that flow.

In each step of the traversal, the type of the current
activity node is examined. Depending on the type, the
nodes that are appended to the tree, differ. In case the
examined node is an Action (e.g., a check), it means
it has to be executed successfully for the flow to con-
tinue. This is depicted in Figure 3a. The traversal
of the activity starts from the function. Before the
function can be executed, a check must be fulfilled.
Besides, there might be other nodes before the check.
As this represents an AND connection, an AND node
is added to the tree, and the found check is added to
that new AND node. The resulting tree is shown in Fi-
gure 4a. The following recursive call uses the added
AND node as the tree node input. The following ac-
tivity nodes are then added to the AND. If a Join-
Node or MergeNode is found in the activity, an AND
or OR node is appended to the tree respectively. In
contrast to a single action, these ControlNodes might
have more than one predecessor. Exemplar activities
for the JoinNode and the MergeNode are shown in Fi-
gure 3b and Figure 3c respectively. All predecessors
are added to these tree nodes. The corresponding ex-
pression trees to the activities in Figure 3b and Fi-
gure 3c are shown in Figure 4b and Figure 4c. There
is no negation operator, since there are no actions that
undo events and hence stop the flow of tokens.

The corresponding expression tree to the activity
in Figure 1 is displayed in Figure 2. The tree nodes

(a) Checks connected sequentually

[Check 1 } [Check 2] [Check 3 }

[I
JoinNode

Function

(b) Checks connected by a JoinNode

[Check 1 } [Check 2] [Check 3 }

MergeNode

(c) Checks connected by a MergeNode
Figure 3: Different situations in activities

that represent the operators (START, AND, OR) are
displayed in square boxes, while the actual ActivityN-
odes are displayed as oval boxes. As a result of the
algorithm, the ExecutableNodes of the original acti-
vity are the leaves of the tree.

S APPLICATIONS AND
LIMITATIONS

5.1 Applications

We used the introduced algorithms and definitions to
support different development tasks in practice.

INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS 91

(c) Corresponding expression tree to situation in Figure 3¢
Figure 4: Resulting expression trees

5.1.1 Transformation of Activity Diagrams to
Textual Specifications

In industry, graphical models such as activity dia-
grams cannot be used as the sole means of speci-
fication. Textual requirements complementing the
activities are needed because of legal considera-
tions (Sikora et al., 2012; Maiden et al., 2005) and
to provide a systematic display of derived informa-
tion (Weber and Weisbrod, 2002). Recent studies
have found that practitioners prefer textual require-
ments specifications that are structured according to
the different logical cases that may lead to a spe-
cific event (Beckmann and Vogelsang, 2017). There-
fore, we used the structure of the activation expression
tree to generate complementing textual requirements
specifications for 36 activity diagrams of our industry
partner. That way, we eliminated hundreds of differ-
ent existing quality issues of a previous version.

Figure 5 shows the textual requirements derived
from the activity of Figure 1. The excerpt shows
explicitly the propositional logic relations by using
the operators AND and OR. All elements connected
by the same operator were placed one level below.
This kind of structure equals the structure of the ac-
tivation expression tree. Hence, we could directly
map the result of the underlying propositional logic
to the document structure. Prior studies have shown
that manual creation and maintenance of textual re-
quirements from diagrams is error-prone and labor-
intensive (Beckmann et al., 2017b). An automatic
model-to-text transformation based on our algorithm
prevents quality issues and may save time.

Text Level Type
Drive Inhibit 2 | Function
OR 3
AND 4 |-
Vehicle is in "P" 5 | Trigger
OR B =
State of connector "plugged" 6 | Trigger
State of connector "vehicle_plugged" 6 |Trigger
State of connector "unknown" 6 | Trigger
V <5 km/h 5 | Check
AND 4 |-
OR B =
State of connector "plugged” 6 | Trigger
State of connector "vehicle_plugged" 6 |Trigger
V < 5 km/h 5 | Check
Engine Cranking inactive 5 [Check
AND 4 |-
OR B =
State of connector "defect” 6 | Trigger
State of connector "unknown" 6 | Trigger
Gearshift is in "P" 5 [Check

Figure 5: Derived Textual Requirements

5.1.2 Derivation of Test Cases

The approach was applied to recreate parts of already
existing test cases for the displayed function Drive In-
hibit in an automatic manner as a proof-of-concept.
These parts encompass the name of the test case as
well as templates for the test steps that must be per-
formed to conduct the test case. The test steps must
be added manually as they are not part of the activity
diagram. The test cases ensure that the function is
activated due to certain occurring events and fulfilled
conditions. The necessary states and circumstances
were directly derived from the identified minimal ex-
ecutions. The minimal executions of an action in the
activity contain all necessary actions (i.e., events) that
must appear and conditions that must be fulfilled to
start an execution. As a result, test cases that describe
in which states a function is activated can be directly
derived since a minimal execution only contains these
necessary conditions. Consequently every minimal
execution is used to derive one test case. The cre-
ated test cases can therefore assure that the function
is in fact executed under the intended circumstances.
Hence, using this approach ensures that all necessary
conditions for executions are tested. For example in
Figure 1 this leads to the creation of seven test cases.
Three test cases originate from the three triggers con-
nected to the trigger Vehicle is in ”P” by a JoinNode.
Two test cases are created for each pair of the two
triggers connected by the MergeNodes.

In addition, non-minimal sequences can also be
useful. The execution of superfluous actions makes
sure the function is still activated when the necess-
ary actions were executed. Also, it can be checked
whether the function is activated, although necessary
conditions are not met. In that case necessary actions
are not executed.

92 INFORMATION EXTRACTION FROM HIGH-LEVEL ACTIVITY DIAGRAMS

5.2 Limitations

We focused on the capability of activities to describe
sequences, parallelism, execution paths and proposi-
tional logic relations. Still, activities can be used in
other ways to describe other aspects of behavior. Con-
sequently, it is not possible to foresee every applica-
tion. Thus, it is necessary to restrict oneself to cer-
tain aspects. While the extracted information can be
used for multiple purposes, there are use cases that
require different aspects our approach does not yet
cover. One of these aspects are asynchronous events
that are potentially used to abort the execution of an
activity. These were not part of our work, since our
industry partner does not use them.

Also, this work focuses on the activity diagrams
of our industry partner. These activities only incor-
porate a subset of elements in activities. Still, this
kind of description is quite common to describe func-
tions (Firesmith, 2004). As a result, the approach is
not generally applicable but we think that it provides
a benefit for that kind of graphical descriptions.

6 CONCLUSION AND OUTLOOK

In this paper we presented an approach to extract im-
plicitly contained information from high-level activ-
ities to support downstream development tasks. For
this purpose we introduce activity graphs as a simpli-
fied, yet formal, representation of activity diagrams,
which can be used to make statements about se-
quences and execution paths of activities. We show
in detail how this can be used to derive textual re-
quirements, which both improves the quality of the
resulting requirements document and saves effort in
its creation. Also, the creation of test cases was per-
formed as a proof-of-concept for one function.

Furthermore, it is planned to use the extracted in-
formation for impact analysis. By combining the ac-
tivities with the mapping of the actions to the com-
ponents, dependencies between components are made
more easily accessible. This knowledge will be used
to derive visual architectural views of the whole sys-
tem, which in turn shall facilitate release planning.

As the approach is restricted to a subset of ele-
ments, the approach is not generally applicable to all
activities. Incorporating all elements (such as guards)
of activities into the approach is an open issue. Also,
there are further aspects of activities that are needed
during the development of systems we did not yet
consider. Which aspects need to be included and what
artifacts they might be used for is also worth investi-
gating.

REFERENCES

Arlow, J. and Neustadt, . (2004). Enterprise patterns and
MDA: Building better software with archetype pat-
terns and UML. Addison-Wesley Professional.

Beckmann, M., Michalke, V., Vogelsang, A., and Schlutter,
A. (2017a). Removal of Redundant Elements within
UML Activity Diagrams. In Conference on Model
Driven Engineering Languages and Systems.

Beckmann, M. and Vogelsang, A. (2017). What is a Good
Textual Representation of Activity Diagrams in Re-
quirements Documents? In Model-Driven Require-
ments Engineering Workshop.

Beckmann, M., Vogelsang, A., and Reuter, C. (2017b). A
Case Study on a Specification Approach using Acti-
vity Diagrams in Requirements Documents. In Inter-
national Requirements Engineering Conference.

Broy, M. (2006). Challenges in automotive software en-
gineering. In Proceedings of the 28th international
conference on Software engineering.

Drusinsky, D. (2008). From UML activity diagrams to
specification requirements. In International Confer-
ence on System of Systems Engineering.

Firesmith, D. (2004). Generating Complete, Unambiguous,
and Verifiable Requirements from Stories, Scenarios,
and Use Cases. Journal of Object Technology.

Kundu, D. and Samanta, D. (2009). A Novel Approach to
Generate Test Cases from UML Activity Diagrams.
Journal of Object Technology.

Lano, K. (2009). UML 2 Semantics and Applications. John
Wiley & Sons.

Maiden, N. A., Manning, S., Jones, S., and Greenwood, J.
(2005). Generating requirements from systems mod-
els using patterns: a case study. Requirements Engi-
neering.

Nicolds, J. and Toval, A. (2009). On the generation of re-
quirements specifications from software engineering
models: A systematic literature review. Information
and Software Technology.

Object Management Group (OMG) (2015). OMG Unified
Modeling Language (OMG UML), Version 2.5.
Sikora, E., Tenbergen, B., and Pohl, K. (2012). Industry
needs and research directions in requirements engi-
neering for embedded systems. Requirements Engi-

neering.

Storrle, H. (2004). Semantics of UML 2.0 Activities. In
Symposium on Visual Languages and Human-Centric
Computing.

Usman, M. and Nadeem, A. (2009). Automatic Generation
of Java Code from UML Diagrams using UIECTOR.
Journal of Software Engineering and Its Applications.

Vogelsang, A., Eder, S., Hackenberg, G., Junker, M., and
Teufl, S. (2014). Supporting concurrent development
of requirements and architecture: A model-based ap-
proach. In Conference on Model-Driven Engineering
and Software Development.

Weber, M. and Weisbrod, J. (2002). Requirements En-
gineering in Automotive Development - Experiences
and Challenges. In International Conference on Re-
quirements Engineering.

CONCLUDING DISCUSSION

In this chapter, a summary of the contributions of this thesis is first
given (Section 7.1). Next, Section 7.2 discusses how the contributions
relate to one another, how the contributions might be applied outside
of the examined use case, and further aspects of the contributions
from Chapters 3, 4, and 6 that have not yet been discussed in the
publications.

7.1 SUMMARY

This thesis examines the use of a specification approach that employs
coexisting graphical and textual representations of requirements in
practice. For this purpose, a specification approach was examined
that uses UML2 activity diagrams in combination with hierarchically
structured text. Its unique property and focal point of the thesis is the
fact that this approach is designed, implemented, and productively
used by practitioners themselves. These circumstances are important
to consider, since in practice, specification approaches are influenced
by organizational and domain specific peculiarities that cannot be
fully predicted from a research perspective. This thesis consists of
two portions: an analytical portion and a constructive portion. In the
analytical portion, we contribute to the knowledge on comparable
specification approaches and identify a practical problem and assess
its relevance. In the constructive portion, we offer contributions that
can be applied to the examined case to address the previously identi-
fied problem. Hence, both portions constitute a holistic contribution
to the improvement of comparable existing specification approaches
or considerations for new ones.

Analytical Portion. This portion of the thesis was mainly concerned
with gathering information on the examined approach and therefore
addresses Problem Statement 1. In an attempt to gain deeper insight
into the specification approach, we examined how practitioners deal
with the specification approach itself as well as with its outcomes in
a first study (Chapter 3). As a result, the answer to the first question
in Section 2.5, regarding the implications of such a specification ap-
proach in practice, has many elements. Generally, the current imple-
mentation of the approach is perceived as beneficial. A major advan-
tage is the visual representation of the activity diagrams. This is seen
as helpful, especially during the initial steps of development. How-
ever, the textual representations are still considered the main spec-
ification artifacts. As such, the textual representation serves its own

94

CONCLUDING DISCUSSION

purposes, i.e., as a vehicle for more detailed information and, because
of its legally binding nature as the preferred medium to communicate
with suppliers.

Nonetheless, a number of issues complicate the use of such a spec-
ification approach. First, the form of the representation is not nec-
essarily catered to every person that uses the content. Also, differ-
ent tools for different representations complicate the handling of the
available information, which leads to inconsistencies, among other
issues. These inconsistencies are the focal point of a further study
(see Chapter 4). This study confirms that there are numerous types of
inconsistencies between the representations, as well as other quality
issues. For the purpose of assessing the different types of inconsisten-
cies and other quality issues, categories were defined that represent
groups of mutual properties within the deficiencies found. For the ex-
amined system, how often the categories appear was counted. In ad-
dition, the categories were assessed by the practitioners. The number
of appearances in combination with the assessment of the categories
demonstrated the negative impact each category has on the work of
users. Ultimately, the study yielded conclusive results as the practi-
tioners agreed that especially the inconsistencies have a significant
impact on the applicability of the specification approach.

Constructive Portion. In the first study of this thesis, we found that
inconsistencies between the coexisting representations impair the use
of the specification approach. In the second study, we elaborated on
this issue and found that the inconsistencies go so far as to consti-
tute a significant impact and hence present a problem of decisive
relevance for the approach’s applicability in practice. Following the
conclusions of the studies, we presume that the circumvention of in-
consistencies from the outset is a valid answer to the second question
in Section 2.5. As a result, the constructive portion of this thesis is
dedicated to addressing the problem defined by Problem Statement
2.

More specifically, we developed an approach that generates textual
representations from the activity diagrams with the purpose of pre-
venting inconsistencies and other quality issues. Chapter 5 presents
an automatable transformation that creates the foundation for the
generation by ensuring that each activity only contains unique Exe-
cutableNodes. This transformation was shown to preserve the behav-
ior of the activity such that the generated textual representation is not
affected. A technique is presented that extracts information from the
activities built on the outcome of the transformation. This informa-
tion can be utilized to construct textual representations that can be
tailored to the needs of different readers.

7.2 DISCUSSION

7.2 DISCUSSION

First, this section discusses how the individual contributions of this
thesis are connected to one another. Then, the applicability of the
findings are addressed. Finally, further aspects that have thus far re-
mained unmentioned in this thesis are discussed.

7.2.1 Interrelations of the Contributions

The main theme of this thesis is the examination of a specification
approach in practice. In this context, we have set out to determine
whether work in this research area meets expectations when applied
in an industrial context. We have also engaged in the development
of a solution for a problem that arises in a specific instance of the
specification approach analyzed in this thesis. These two elements of
this thesis differ in their intentions and scopes. Nevertheless, in order
to conduct a systematic research effort, the development of a solution
must be preceded by an analysis and an assessment of the problem
identified by practitioners. As a result, not only are the contributions
of the individual parts of this thesis interwoven, but the analytical
portion forms the basis for the actual problem solution. Thus, each
contribution influences every subsequent contribution in some way.

Contribution I represents the foundation of all other contributions.
Its insights lead to a closer examination of the inconsistencies between
the coexisting specification artifacts in contribution II. Contribution II
confirms our initial impression of the negative impact of inconsisten-
cies. In terms of design science, both contributions are required as
they are part of the scientific search process and because they define
the relevance of the problem.

The contributions of the constructive portion build upon these re-
sults, as they prove that the problem is worth to be considered. Con-
tribution III is the first step in preventing inconsistencies and other
quality issues, as well as other shortcomings that arise from the ap-
plication of comparable specification approaches. Unfortunately, con-
tribution III does not solve the identified problem. Even if the sug-
gestions are followed, without the support of an automatic approach
to ensure consistency, manual task execution makes the appearance
of inconsistencies unavoidable. Hence, it is imperative to automate
the derivation of the textual representation from the UML2 activities.
In this sense, contributions IV & V realize one of the propositions of
contribution III. Contribution IV is necessary for enabling the infor-
mation extraction, which represents contribution V and hence must
be considered its prerequisite.

95

96

CONCLUDING DISCUSSION

7.2.2 Applicability of the Contributions

As discussed in Section 2.5, making academic research relevant to
practitioners remains an ongoing problem for the academic commu-
nity [110]. In the context of RE, Gorschek et al. describe their experi-
ence of translating their academic work into practice and propose a
model to enable technology transfer from research to practice [94].

While we did not follow their model exactly, many of their sug-
gested seven steps were performed as part of our research effort.
Their first step demands basing research on industry needs. As our
research effort arose from the needs of practitioners, this step was in-
herently fulfilled. Their second step, which calls for a research agenda,
was also addressed, since we conducted the research in a systematic
manner (following the guidelines for design science from Hevner et
al. [108]). Regarding the research agenda, Gorschek et al. emphasize
the importance of researchers acting as a link to the state of the art (re-
search rigor). In Chapter 2, we examined existing related work, mean-
ing this thesis meets the criteria for scientific work. Next, Gorschek
et al. suggest creating a candidate solution (step 3) and then validat-
ing it in multiple iterations (step 4 - step 6). These iterations increase
the involvement of practitioners each time — moving from lab condi-
tions to a real-world pilot. At this point we deviated from their model.
The candidate solution was refined in multiple iterations but this was
based on feedback from the industry partner throughout the entire
process. Their final step relates to the release of the solution. Similar
to Bajec et al. [20], Gorschek et al. note that in practice, the individ-
ual conditions of different organizations make it necessary to tailor
the solution to each organization’s needs. As this work was created
to meet the needs of a specific industry partner, this requirement for
applicability in practice was inherently fulfilled. However, it is open
to discussion to what extent the findings can be applied elsewhere. In
fact, the applicability in other contexts varies widely for each contri-
bution.

Contribution I is considered the most widely applicable of all the
contributions. In comparison to contribution II, contribution I is less
focused on the actual use of activity diagrams and the examined tex-
tual representation. Nevertheless, the categories of the inconsistencies
and other quality issues identified and assessed in contribution II are
likely to occur similarly in other implementations of such a specifica-
tion approach (see also: Subsection 7.2.3).

The situation for contribution III is similar to the situation of con-
tributions II. Contribution III builds upon the results of the preceding
contributions (contributions I and II). But since contribution I is more
widely applicable than contribution II and inconsistencies are likely
to be an issue for comparable specification approaches that use differ-
ent models and textual representations, it is not unrealistic to assume

7.2 DISCUSSION 97

that the suggestions offered by this contribution could be applied to
different implementations of these types of approaches.

Contribution IV is solely focused on UML2 activities and therefore
its use is restricted to a certain model type and is less widely appli-
cable in the context of specification approaches that use coexisting
artifacts. Nonetheless, it may be used for UML2 activities utilized in
other contexts. Still, its applicability in other contexts is restricted by
the semantics of the UML2 activities assumed in this thesis. Beyond
this restriction, it seems to be reasonable that the underlying trans-
formation could be applicable to other data flow diagram types (e.g.,
BPMN).

The scope of contribution V is the most focused of all the contribu-
tions of this thesis. It essentially represents a continuation of contribu-
tion III and specifically addresses the circumstances of the examined
case in this thesis. Similar to contribution III, it builds on the findings
of all the preceding contributions. However, contribution V dismisses
the abstractions of the prior contributions and focuses on the imple-
mentation of a specification approach using the coexisting represen-
tations of requirements of this thesis. Considering these conditions,
contribution V provides an automatic technique for extracting infor-
mation from UML2 activity diagrams that follow a predefined pattern.
Nevertheless, the technique is not restricted to this specific use case,
as it is possible that applications may reach beyond the generation
of textual representations of requirements. However, this technique is
still limited to a certain type of UML2 activity diagrams.

7.2.3 Further Aspects

In this subsection, we discuss additional points related to Chapters 3, 4,
and 6. These were not mentioned in the respective articles due to their
limited scope, but nonetheless these points are of importance within
the overall context of this thesis.

7.2.3.1 Coexisting Graphical and Textual Representations of Requirements

The main intention of Chapter 3 was to determine how coexisting
representations of requirements are perceived in practice. Related to
the specific context of this thesis, similar research efforts have already
been undertaken by the MDD community [222]. As one of the exam-
ined representations in this thesis is a model in graphical form, it
can be assumed that the findings are strongly related — especially
regarding aspects that refer to the model. The results show that the
aims MDD pursues have "the potential to greatly reduce development time”
and "will help us develop better software systems faster” [36], and are per-
ceived in a similar fashion by the practitioners of the examined case
in this thesis. Beyond this, the findings also confirm the argument of
works that find the use of models to be primarily more informal. Fol-

98

CONCLUDING DISCUSSION

lowing Storrle’s classification of different types of models, the activity
diagrams in this thesis can be considered informal models or perhaps
semi-formal models. Thus, the examined case confirms Storrle’s find-
ings about the use of models in industrial practice as being informal
models or semi-formal models most of the time [222]. Hence, the models
are largely used in the sense of MBE in a supportive role rather than
as primary artifacts, as MDD intends.

In another related research effort, Petre observed that models are
useful for requirements elicitation where "stakeholders tend to be highly
technical” and “then discard the UML diagrams” [181]. These circum-
stances reflect the situation examined in this thesis well, as most
stakeholders undertake development tasks (”highly technical”) and the
timestamps of the models indicate a comparable procedure (“then dis-
card the UML diagrams”, see also Chapter 4). However, using models
in this manner has been considered to provide only ”limited value” by
Selic [211]. For this reason, it seems advantageous to move towards
"fully formal models” to allow for simulation or generation of source
code and test cases, although the latter is possible to a certain degree
even now (discussed in Chapter 6). However, this may reach far be-
yond what is originally intended by the examined approach and it
must be carefully considered if this is worth the effort.

Such formal models might be within reach considering the pre-
existing information in the RS. One of the insights in Chapter 3 sug-
gests that the textual representation is, among other things, used to
accommodate details or further information. While this data might
be better presented in a textual manner, it remains open to discussion
why it is not also integrated into graphical models (i.d., the activity
diagram). Some of these details might be suitable for enriching the
activities in a way that enables simulation or the generation of source
code and test cases.

Unfortunately, such enrichment of activity diagrams cannot be fully
automated unless the textual information exists in a well-defined
form (as such the text would constitute a model of its own). On the
contrary, it should be expected that extensive manual work will be
required to ensure a proper outcome [212]. This is due to the fact
that in the case examined in this thesis, the additional text also con-
tains elements in NL text. Thus, a proper integration of content in
this form requires manual work which might be facilitated by so-
phisticated approaches (e.g., model-to-requirements approaches, see
Subsection 2.4.2). This propagation of information back to the model
can be regarded as round trip engineering which represents another
area of interest in MDD research [213]. Nevertheless, doubt remains as
to whether practitioners see this as desirable and whether they can
make this work in a way that justifies the additional costs associated
with such a procedure. According to the findings of Petre, this seems
unrealizable in an industrial setting [182]. Also, further challenges

7.2 DISCUSSION

lie in the identification of “suitable” textual information itself. Signal
names might be appropriate candidates for integration into the model
while descriptive information might not be applicable.

At the same time, in what way this additional information should
be incorporated into the activity diagram remains an open issue. More
formal models require notations that are more formal than NL text
(e.g., for the examined case Action Language for Foundational UML
(ALF) might be appropriate [174]). However, these more formal nota-
tions are not even remotely as accessible to different audiences as NL
text. An additional benefit of the integration of unique textual infor-
mation into the activity diagram is the prevention of fragmentation
(scattering of information across multiple sources). Fragmentation it-
self may complicate usability and lead to inconsistencies.

7.2.3.2 A Case Study on Quality Issues and Inconsistencies

Petre identified consistency issues as one of the most frequently men-
tioned reasons why UML is not adopted in practice [182]. While this
thesis finds that inconsistencies have a significant impact on the use
of models for specification purposes, the assumption that consistency
issues all together prevent the adoption of MDD practices or UML is
not confirmed in the context of this thesis. Moreover, the defined cat-
egories of inconsistencies and other quality issues indicate that the
different characteristics of the categories have a varying impact on
the quality of the specification artifacts. This is of importance, as
the use of multiple representations is inherently prone to inconsis-
tencies — especially if maintained independently by different stake-
holders [191]. In cases where the models are only used at one stage
and never updated, inconsistencies are inevitable. Hence, it comes as
no surprise that comparable specification approaches can be expected
to suffer from inconsistencies as well. Although different implemen-
tations may use other kinds of diagram types, similar categories of
inconsistencies are likely to appear.

For example, in their research, van der Aa et al. examine an in-
stance of such an approach, which uses BPMN as the graphical repre-
sentation with a textual description to model processes [2]. In their
work, the authors attempt to detect inconsistencies between these rep-
resentations. They identify two kinds of inconsistencies: missing ac-
tivities in either of the representations and conflicting order of pro-
cess steps. These inconsistencies describe the same properties as the
categories Missing Element/Object and Wrong Placement in this the-
sis. Still, the inconsistencies Incorrect Logic and Textual Differences
could also be applicable to van der Aa et al.’s examined approach.
Only the category Wrong Type is not applicable, since their textual
description does not include attributes, meaning there is no explicit
type existent in the textual descriptions.

99

100

CONCLUDING DISCUSSION

The applicability of many of the inconsistency categories stems
from the fact that activity diagrams and BPMN both describe behavior
using some kind of object or information flow. Nevertheless, the cate-
gories can also be mapped to other behavioral notations such as state
charts. In that case Missing Element/Object and Textual Differences
are applicable. Whether Incorrect Logic and Wrong Placement are ap-
plicable is open to interpretation to a certain degree. For state charts,
Incorrect Logic could represent differences in the propositional logic
expressions of the transitions between the states. Also, assuming a
different notion of logic, the category Incorrect Logic could imply
differences concerning which states are connected to one another, al-
though this could also be interpreted as a kind of Wrong Placement
in a broader sense (i.d., conflicting order of predecessors in a graph
like interpretation). For the category Wrong Type, its applicability
for state charts again depends on whether the textual representation
features attributes and includes a concept of types.

Aside from behavioral notations, similar categories may appear in
other model types as well. For instance, block definition diagrams of
SysML and a textual representation may exhibit the categories Miss-
ing Element/Object and Textual Differences. For Incorrect Logic
and Wrong Placement, the situation is similar to what is described
for state charts. Differing connections can be seen as a difference in
the underlying logic of the diagram or as a type of conflicting or-
der. Again, Wrong Type is at the very least connected to the kind of
textual representation used and hence may or may not be applicable.

7.2.3.3 Information Extraction from High-Level Activity Diagrams

In his paper “Modern Requirements Specification” from 2003, Fire-
smith notes the importance of automatic specification generation for
improving requirements specification tasks [82]. Because of the wide
use of models in RE, this has lead to a number of works employing
models for the generation of requirements artifacts (see also: Subsec-
tion 2.4.1). Nicolds and Toval review the works on the generation
of requirements artifacts from models [165]. They conclude by recom-
mending five properties that such generative techniques must exhibit:

1. Automatable technique

2. Resembling structure between representations
3. Enable multiple textual views

4. Modifiable output

5. Synchronization

7.2 DISCUSSION

First, Nicolds and Toval state that the technique should “enable the
automatic or closely monitored generation”. This need is met in this thesis
by the technique presented in Chapter 6, as it is implementable in a
fully automatic manner (see Appendix C).

Second, they advise that the model and the aligned textual repre-
sentation should follow the same structure. This property primarily
aims at the alignment of models with the entire document structure.
The presented technique in this thesis, however, produces a textual
representation for functions and not entire RS documents and hence
this recommendation is only partially applicable. But even if one de-
mands that the property should also hold for distinct functions, it
contradicts the next (third) property to a certain degree.

The third property relates to the ability of tailoring the textual rep-
resentation to different target readerships. This is logical, as different
stakeholders have different preferences. This may mean that some
stakeholders only need certain information and may not be interested
in all the aspects of the model. For instance, stakeholders interested
in signal names do not necessarily need information about execution
sequences. This is in violation of the second property, since a sim-
ple list does no longer resemble the structure of a behavioral model.
Therefore, the second property should be directed at the form of gen-
erated text rather than the generative technique itself so long as it is
possible to generate multiple forms of text. The presented technique
in this thesis extracts information from activity diagrams. As a result,
it is not restricted to a pre-defined form and can be used flexibly to
generate any form of text required — some of which may resemble
the structure of the original model. Hence, both the second and third
properties can be considered fulfilled by the technique presented in
this thesis.

Fourth, Nicolds and Toval emphasize that the generated format
should be modifiable. The technique presented in this thesis merely
reflects a possibility that can ultimately be used to produce any form
of output. Its prototypical implementation (presented in Appendix C)
generates the textual representation in IBM DOORS. This format is
modifiable and thus fulfills this requirement.

Finally, they argue that once the documentation is generated it
should be possible to enable synchronization. At first glance, this
property appears to enable the modification of requirements artifacts
by multiple stakeholders while still maintaining consistency across
the artifacts. However, our findings from Chapter 3 show that stake-
holders consider this functionality harmful and prefer that changes
be incorporated at a single point. Moreover, synchronization between
multiple views might not be possible in any direction. Due to the fact
that not all forms of text necessarily contain all information (see also
Nicolds and Toval’s third recommendation). Hence, it is not always
possible to correctly propagate changes beyond textual modifications

101

102 CONCLUDING DISCUSSION

back to the activity diagram correctly (e.g., changes in propositional
logic) — a capability that is included by the prototypical implementa-
tion.

Thus, the presented technique in this thesis meets the five recom-
mendations made by Nicolds and Toval for generative techniques.

OUTLOOK

There are several issues that have not been examined in this thesis.
The main goal of this thesis was to investigate an implementation of
a specification approach in practice and address its issues and chal-
lenges. However, the investigation and the solutions proposed are
limited in scope. The limitations of each contribution have already
been discussed as part of the publications in the respective chapters
and already highlight a number of research topics whose further ex-
amination may yield an improvement in understanding or efficiency.

ANALYSIS OF OTHER IMPLEMENTATIONS

As a whole, this thesis is focused on the analysis and the problems of
a single case. To improve validity as well as the generalizability of the
findings, future work should engage in the analysis of different im-
plementations of such specification approaches in industry. As every
development project is different and organizational conditions have
a significant impact, it is to be expected that these implementations
will differ from the specific case in this thesis.

Technical considerations may lead to the application of other types
of models or even modeling languages and a different form of textual
representation. This may affect the overall perception of such an ap-
proach, but could also lead to new types of inconsistencies and other
quality issues, since these are bound more to the types of represen-
tations used than the underlying idea of coexisting development arti-
facts. At the very least, other types of models require new techniques
to enable automatic generation of textual representation. However,
unless these combinations are in fact required in practice, it seems
unnecessary to add to the already existing assortment of techniques
(see Subsection 2.4.1). Nevertheless, such work may reveal new chal-
lenges specific to certain model types that must be addressed first
(analogous to the redundancy removal in Chapter 5). This could pro-
vide insights and applications for these model types beyond simply
enabling the generation of textual representations.

Aside from the technical considerations, different social circum-
stances also impact the adoption and use of comparable specification
approaches. Gaining further insights into the surrounding conditions
may allow for the identification of general success factors that influ-
ence possible benefits and drawbacks.

104

OUTLOOK

ENTITY MATCHING

For the case analyzed in this thesis, it is recommended to begin the
requirements specification with the activity diagrams and generate
the textual representations from these diagrams (i.a., see Chapter 3).
While this addresses a number of problems of the approach examined
(e.g., inconsistencies), it does not guarantee that the representations
will remain consistent. In the course of day-to-day business, it is possi-
ble that the representations will become inconsistent and traceability
maintenance will be neglected. Also, the informal adoption of MDD
practices may lead to a situation in which graphical and textual rep-
resentations coexist, but are not properly integrated. In this situation,
both representations may still be consistent but no traceability is es-
tablished. To support continued consistency and improve traceability,
matching approaches could be applied. Matching has received atten-
tion for a number of applications (i.a. to relate elements of different
models to one another [66]). For process models and their textual
descriptions this has already been demonstrated by van der Aa et
al. [2], who aim to detect inconsistencies in this manner. While they
mainly rely on linguistic approaches, structural peculiarities of repre-
sentations could also be utilized. For the case examined in this thesis,
structural properties that express the execution order or propositional
logic relations appear to be a promising point for improving the re-
sults of a matching. This way, the additional inconsistencies defined
in this thesis and those not considered by van der Aa et al. could also
be automatically detected.

FURTHER REPRESENTATIONS

Gross and Doerr have already argued for multiple views of require-
ments [100]. On the textual level this thesis addresses this need for
tailored views by offering multiple possible textual representations
for the activity diagrams (see Appendix B). However, there might be
alternatives to textual descriptions. For instance, Petre reports that in
practice, it is common to integrate UML diagrams with other graphical
notations such as entity-relationship diagrams or BPMN [181]. Such
coexistence between multiple graphical notations faces similar chal-
lenges (e.g., inconsistencies), and might also need to contend with
yet undiscovered problems. As such, it is an area of interest for fur-
ther investigation.

Aside from the coexistence aspect, it may prove fruitful to experi-
ment with existing models in a more sophisticated way. For instance,
Gemino compared graphical models and animated models [91]. While
he found no measurable benefit for animation, he admits that a very
crude form of animation was used and hence more work is required
to further investigate this type of model use.

Part IV

APPENDIX

The following three appendices contain further informa-
tion on the topics within this thesis.

Appendix A provides formal definitions for the activ-
ity diagrams and textual representations of this the-
sis and uses these to formally define the categories of
inconsistencies and other quality issues in Chapter 4.

Appendix B presents alternative textual representa-
tions of the activity diagrams of the examined use
case and an evaluation thereof.

Appendix C presents a tool prototype that implements
the concepts presented in Chapter 5 and Chapter 6

in order to automatically generate textual representa-

tions of activity diagrams.

FORMALIZATION OF INCONSISTENCIES AND
QUALITY ISSUES

This appendix presents the formalized criteria of the categories pre-
sented and assessed in Chapter 4. For these definitions, the main
challenge lies in the mismatch between the different underlying struc-
tures of models and RS documents [28]. At first, a construct for UML2
activities (directed graph) is presented that is used for the definition
of the categories. Then follows a formal definition for the textual rep-
resentations (tree structure) used by the industry partner (for a sam-
ple see Chapter 3 and Chapter 4). These definitions are employed to
formally define the categories. The following terminology is used in
this appendix.

TERMINOLOGY

Activity: The model as defined by the OMG UML2 Specification Ver-
sion 2.5 [172, p. 371].

Element: An ExectuableNode or a ControlNode in the Activity.

Activity Graph: The construct that is used for Activities in the follow-
ing to define the categories of inconsistencies and other quality issues.

Element Vertex: Counterpart of an ActivityNode in an Activity in the
Activity Graph.

Element Constituent: Individual propositional logic statement within
an Element Vertex.

Textual Representation: The corresponding text of an Activity in an
RS.

Object: A row in a Textual Representation.
Textual Structure: The construct used for a Textual Representation
in the following to define the categories of inconsistencies and other

quality issues.

Object Vertex: Counterpart of a row in a Textual Representation in
the Textual Structure.

108

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

Object Constituent: Individual propositional logic statement within
an Object Vertex.

A.1 FORMAL SEMANTICS OF THE EXAMINED UML2 ACTIVITIES

The assumed semantics of UML2 activities in this section deviate from
those presented in Chapter 6. The reason for this is, that in Chap-
ter 6, it is assumed that the inputs are Activities with unique atomic
elements. This assumption is guaranteed by the method presented in
Chapter 5. However, this assumption does not hold for the Activities
encountered at the industry partner. As a result, it is necessary to ex-
tend the definition of Activity Graphs in Chapter 6 in order to include
all aspects of the inconsistencies and other quality issues. For this
purpose, an UML2 activity is seen as a construct named Activity Graph.
The ActivityNodes of an Activity are vertices in the Activity Graph.

Definition 1 Activity Graph
An Activity Graph A is defined as

AL (Va, Vintra,, Suca, type 4, label 4, content 4, logic ,) (A.1)

where

1. V4 is a non-empty set of element vertices that represents the Activi-
tyNodes of the Activity,

2. Vintra, is a set of element constituents that represents propositional
logic statements of an ActivityNode,

3. sucy : Vg — P(Va) is the successor function that assigns v, € Vy
its set of SUCCessors,

4. type 4 : Va — {Trigger, Check, Function, Merge, Decision, Join,
Fork, End} is the function that assigns each element vertex a type,

5. labely : Vo — X% is a function that assigns each element vertex the
label of its ActivityNode (X is an arbitrary labeling alphabet),

6. contentp : Vo — P(Vingra,) is the function that assigns each element
vertex the set of its element constituents, and

7. logic . : V4 — {AND, OR} is the function that assigns each element
vertex the propositional logic operator of its element constituents.

The Activity Graph is a graph that corresponds to the Activity. The
elements of the Activity match the element vertices of the graph. These
element vertices in turn consist of element constituents. Element con-
stituents are individual propositional logic statements within an ele-
ment vertex. The element constituents are assigned to each element

A.2 FORMAL DEFINITION OF THE TEXTUAL REPRESENTATION

vertex by the function content 4. ControlNodes (e.g., MergeNodes, Join-
Nodes) do not have element constituents (content 4 assigns the empty
set). In case an element vertex consists of more than one element con-
stituent, they are connected by an AND or OR-operator. Which oper-
ator it is, is determined by the function logic4. Each element vertex
may have a set of successors. In the Activity Graph the element ver-
tices are successors that correspond to the Target of outgoing edges in
the Activity. Every element vertex has one of the following types: Trig-
ger, Check, Function, Merge, Decision, Join, Fork, End. For the element
vertices that correspond to ControlNodes, the type equals the kind of
ControlNode. The ExecutableNodes may either be Trigger, Check, or Func-
tion. Finally, each element vertex has a label which corresponds to the
text of the element in the activity. These labels consist of propositional
logic statements as well as their operators. ControlNodes do not have
labels (i.d., label 4 assigns the empty word €).

A.2 FORMAL DEFINITION OF THE TEXTUAL REPRESENTATION

RS documents are hierarchically structured documents [119]. This
structure can be represented by an ordered tree [28, 229]. The docu-
ment tree of the excerpt shown in Figure 2.1 is depicted in Figure A.1.

Figure A.1: Document tree of RS in Figure 2.1

The vertex on the top of the tree (root vertex) represents the doc-
ument. The other vertices are referenced by their ID in the excerpt.
The Level in the document represents the number of edges of a ver-
tex from its position to the vertex that embodies the document (root
vertex). Since the RS document comprises a number of other character-
istics, a pure ordered tree does not cover all the properties. Therefore
a construct for the textual representation is used that looks as follows:

109

110

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

Definition 2 Textual Structure
A Textual Structure T is defined as an ordered tree

where

1.

10.

117.

12.

13.

T d:EEf(VT, Vintrap» Oout, O, parent, <, typer, labelr, contentr,

| ’ (A.2)
logic o, logicy,, Mout, [1n)

Vr is a non-empty set that represents the rows of a textual representa-
tion,

. Vintray 15 a set of object constituents that represents the individual

propositional logic statements of an object in a textual representation,

. Oout is a set of propositional logic operators that represent the connec-

tions between object vertices,

Ory is a set of propositional logic operators that represent the connec-
tions within an object vertex between object constituents,

<: Vr x Vr is a partial order relation,

parent; : Vr — V is a function that assigns each object vertex its
parent vertex,

typer : Vi — {Trigger, Check, Function} is a function that assigns
each object vertex a type,

labelt : V — X* is a function that assigns each object vertex the label
of its object (X is an arbitrary labeling alphabet),

. contenty : Vr — P(Vintra,) is a function that assigns each object

vertex the set of its object constituents,

logicy,; : VT — Oout is a function that assigns each object vertex its
outer propositional logic operator oo,r € Oout,

logic,, : Vr — Oy is a function that assigns each object vertex its
inner propositional logic operator oy, € Ojy,

Mout : Oour — {AND,OR, _} is a function that assigns an outer
propositional logic operator its semantics, and

[: Om — {AND,OR,_} is a function that assigns an inner
propositional logic operator its semantics.

The Textual Structure consists of object vertices Vr. These in turn

may

consist of multiple object constituents. Same as in the Activ-

ity Graph the object constituents represent individual propositional

logic

statements. The structure of the tree is realized by the function

parentT and its order by the partial order relation < (complete order
relation for sibling vertices). The object constituents are connected via

A3 CONNECTIONS BETWEEN THE ACTIVITY DIAGRAM AND THE TEXTUAL REPRESENTATION 111

the inner operators Op,. The object vertices may be connected to fol-
lowing object vertices on the same level by the outer operators Ogy;.
The function logico,: assigns the outer operator to an object vertex.
The function logicy, does the same for the inner operators. In both
cases these operators can be AND or OR-operators. In case there
is no following object vertex on the same level or there is only one
object constituent, the respective operators are denoted with _. The
meaning of the operators is determined by the function []ou: or []1x,
respectively. Finally, each object vertex has a type which equals the
value in the type attribute of the RS and is derived from the Activity.

A.3 CONNECTIONS BETWEEN THE ACTIVITY DIAGRAM AND THE
TEXTUAL REPRESENTATION

A number of relations can be found between the activity diagrams
and their corresponding textual representations. As can be seen in
the sample in Chapter 3 and Chapter 4, elements in the activity dia-
gram and objects in the textual representation relate to one another.
These relations also apply to the ControlNodes in the activity diagram
which can be followed to the operators in the textual representation.
To express these relations the construct correspondent is used which
connects the entities of the Activity Graph with those of the Textual
Structure.

Definition 3 correspondent

correspondent C (Viptra, X Vintray) U (Va X (Oour UOjy)) (A.3)

The relation correspondent contains pairs of:
1. element constituents and object constituents, and
2. element vertices and outer or inner operators.

Item 1. represents the relation of a propositional logic statement
within an ExecutableNode to a propositional logic statement within an
object. Item 2. represents the relation of a ControlNode to an AND or
OR-Operator in the text attribute of an object.

In case there are correspondences between the specification arti-
facts, it is desirable to link them to one another (see Section 2.1). The
existence of such a link is expressed by the relation trace.

Definition 4 trace

trace C Vy x Vr (A.g)

112

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

The relation trace contains pairs of element vertices and object ver-
tices for which an information exists to assign them to one another.
The trace links are realized for single elements and objects, as they
are the smallest entities within the respective tools that are uniquely
identifiable.

In summary, trace represents the connections between uniquely
identifiable entities, while correspondent represents connections on
a even more fine-grained level (e.g., between corresponding informa-
tion within the entities).

A.4 CATEGORIES OF INCONSISTENCIES AND OTHER QUALITY IS-
SUES

This section contains the definitions of the identified inconsistencies
and other quality issues of Chapter 4. For each, an informal defini-
tion is provided as well as a formal definition that is also expressed
as a formula. Each formula describes the set of all instances of the
category.

Missing Tracing

Informal Definition

In an activity diagram with corresponding textual representation ex-
ist elements which possess corresponding objects in the textual rep-
resentation. In case there is no information or possibility available to
relate them to one another correctly, the category Missing Tracing is
existent.

Formal Definition

For an Activity Graph A and a Textual Structure T, whose constituents
are connected by the relation correspondent, there is no information
available on this connection in the relation trace. Expressed as a for-
mula:

Definition 5 Missing Tracing
Missing Tracing := {(va,vr) € Vo X Vr:

(va,vr) & trace N 3 (Vrntray, Vlntray) € correspondent : (A.5)

Ulntra, € contenta(Va) A Utntray € contentr(Vr)}

A4 CATEGORIES OF INCONSISTENCIES AND OTHER QUALITY ISSUES

Missing Element/Object

Informal Definition

In case a textual representation contains an object for which there
is no corresponding element in the corresponding activity diagram,
the category Missing Element is existent. In case an activity diagram
contains an element for which there is no corresponding object in
the corresponding textual representation, the category Missing Object
is existent. Both categories together result in the category Missing
Element/Object.

Formal Definition

There is an element constituent within an element in Activity Graph
A that does not have a counterpart object constituent in the Textual
Structure T. Expressed as a formula:

Definition 6 Missing Object

Missing Object := {vs € V4 :
3 (VIntran, Vlntray) € correspondent : (A.6)

Ulntra, € contenta(va)}

There is an object constituent within an object in Textual Structure
T that does not have a counterpart element constituent in the Activity
Graph A. Expressed as a formula:

Definition 7 Missing Element

Missing Element := {vr € Vr:
3 (VIntra,, Vlntray) € cOrrespondent : (A7)
Ulntra; € contentr(Vr)}

The category Missing Element/Object results from Missing Element
and Missing Object combined.

Definition 8 Missing Element/Object

Missing Element /Object := Missing Element U (A8)
Missing Object '

Wrong Placement

Informal Definition

In case an element in the activity diagram has a corresponding object
in the textual representation, but their placement in the respective

113

114

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

representations deviate, then the category Wrong Placement is existent.
A deviation in placement is existent if the successors of the element
and the object differ.

Formal Definition

The category Wrong Placement may appear for an element vertex in
an Activity Graph A and its corresponding object vertex in the Textual
Structure T and encompasses three different cases. Those three cases
result from the different ways successors in the Activity Graph can be
represented in the Textual Structure.

First case: the successor of an element vertex in ActivityGraph A
is of type Join or Merge and is not represented by the correct inner
operator. Expressed as a formula:

Definition 9 Case 1

Case 1:= {(va,vr,01n) € Va X Vp x Oy :

Jva,, €suca(va):typea(va,,) € {Merge, Join} A

3 Vtntra, € contents(va), Vintra; € contentr(vr) : (A.9)
(VIntra,, Vtntray) € correspondent N\

(va,,., 0in) € correspondent A o;, # logicy, (vr)}

Second case: the successor of an element vertex in Activity Graph
A is of type Join or Merge and is not represented by the correct outer
operator. The outer operator may belong to the object vertex of the
corresponding element or to the predecessor of the object vertex in
the Textual Structure T. Expressed as a formula:

Definition 10 Case 2

Case 2 := {(va, 0T, 00ut) € Va X VI X Opyt

Jva,, €suca(va) : typea(va,,.) € {Merge, Join} A
3 Ulntra, € contents(va), Vintra, € contentr(vr) :
(VIntras, VIntray) € correspondent N

(A.10)
(vA,,., Oout) € correspondent N\

- (0011t = logicout(vr) V

(3 UTy € V1101, S OT A Out = logicout(vad)))}

Third case: the successor of an element vertex in Activity Graph A
is of type Check. In this case the successor in the Textual Structure T
must be placed one level below. Otherwise it is a wrong placement of
the element/object. Expressed as a formula:

A4 CATEGORIES OF INCONSISTENCIES AND OTHER QUALITY ISSUES

Definition 11 Case 3

Case 3 := {(va,vr) € Vo X Vp:
Jva,, €suca(va) : Va1, € contenta(va,,) N

0T € parent(vr) : Vintrar, € contentr(vr,,,,) A (A11)
a1
3 Ulntran, € contenta(va), Vintraz, € contentr(vr) :

(VIntra2,4, Vlntraly) € correspondent N

(VIntral 4r Vlntrazy) & correspondent}

The combination of these cases constitutes the category Wrong Place-
ment.

Definition 12 Wrong Placement

Wrong Placement := Case 1 U Case 2 U Case 3 (A.12)

The three cases do not cover all possibilities of successor relations in
Activities. The presented cases are merely those that in fact appeared
in the RS documents of the industry partner. Other cases would be
more fictional in nature. These other cases include situations that are
syntactically correct in the sense of the UML2 specification, but do not
adhere to the pattern of the activity diagrams of the industry partner
(see Chapter 3 and Chapter 4). As there are various possibilities to
construct the activities in a way that do not fit the pattern, not all
possibilities are predictable. At the same time, these definitions would
provide no benefit as the representations are inherently inconsistent
if the pattern is not used. Thus a formal definition would be futile.

Incorrect Logic

Informal Definition

Basically the category Incorrect Logic refers to situations in which the
underlying propositional logic expression of the activity diagram and
the textual representation differ. As this might be the case if the cat-
egories Missing Element/Object and Wrong Placement appear, Incorrect
Logic does not include their criteria. This ensures a unique definition
of the category Incorrect Logic. Hence, the category Incorrect Logic is
existent in these cases:

1. Ambiguous Syntax: it is not possible to unambiguously derive
a propositional logic expression because of syntax errors in the
textual representation (i.e. the textual representation does not
adhere to the pattern presented in Chapter 3).

2. Wrong Operator: the ControlNodes in the activity diagram do
not match the operator in the textual representation.

115

116

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

There may be further constellations that lead to different underly-
ing propositional logic statements between the representations. Nev-
ertheless, the completeness of the category is not demonstrated, as
the listed properties can be considered the important ones, since they
encompass all situations that occurred in the examined system.

Formal Definition

Ambiguous syntax exists if there are object vertices that have a fol-
lowing object vertex on the same level, but do not possess an outer
operator. This criterion also includes object vertices that do not have
a following object on the same level and whose outer operator is not
_. Multiple object vertices all without child vertices also belong to this
criterion. As their contents should be grouped into a single object ver-
tex — following the pattern presented in Chapter 3. Also, it would be
possible to connect multiple vertices of the same level by different op-
erators. Without knowledge which operators binds stronger, it is not
possible to derive a propositional logic expression unambiguously.

Definition 13 Ambiguous Syntax

Ambiguous Syntax := {(vr,00ut) € V1 X Oous :

0out = logicout(vr) A

(3o, € Vrior <ovr, A [oou]ou =_) V

(39 vr,,. € Vr:ior <vr,. A [ooutlour € {AND,OR}) V
(o € Vrior <o A

(A.13)

parent;' (vr1) = @ A parenty!(vr) = @))}
parent:! is the inverse function of parentr and defined as:
parent;*(vp) := {vc : parent(ve) = vy} with v, v, € Vr

A Wrong Operator exists, in case an element vertex in Activity Graph
A of type Join corresponds to an outer or inner operator in the Textual
Structure T that possesses the meaning OR. The criterion also includes
the opposite case: an element vertex in Activity Graph A of type Merge
corresponds to an outer or inner operator in the Textual Structure T
that possesses the meaning AND.

A4 CATEGORIES OF INCONSISTENCIES AND OTHER QUALITY ISSUES

Definition 14 Wrong Operator

Wrong Operator := {va € V4 : (typeA(vA) = Merge N\
((3 00out € Oout : (va,00ut) € correspondent N
[[OOut]]Out = AND) V

(For, € Oy i (va,01,) € correspondent N\

[[O]n]][n = AND))) V
(A.14)
(tyPeA(vA) = Join A

((EI 00ut € Oout : (Va,00ut) € correspondent A

[[OOut]]Out = OR) \
(3 o1y € Opy = (va,01) € correspondent N

lom]m = OR))) }

The two criteria Ambiguous Syntax and Wrong Operator combined
represent the category Incorrect Logic.

Definition 15 Incorrect Logic

Incorrect Logic := Ambiguous Syntax U Wrong Operator (A.15)

Textual Differences

Informal Definition

The label of an element in the activity diagram differs from the label
of the corresponding object in the corresponding textual representa-
tion.

Formal Definition

An element vertex in the Activity Graph A and its corresponding ob-
ject vertex in the Textual Representation T do not have the same label.
Expressed as a formula:

Definition 16 Textual Differences

Textual Dif ferences := {(va,vr) € Va X Vr:

3 (Vtntray, Vlntray) € correspondent : (A.16)
Ulntra, € contents(va) A Opray € contentr(Vr) A

labelp(va) # labely(vr)}

117

118

FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

Wrong Type

Informal Definition

In case the type of an element in the activity diagram does not match
the type of the object in the textual representation, the category Wrong
Type is existent. In a broader sense this category resembles the non-
canonicity pattern Implicit Action as defined by Leopold et al. [134].
In contrast to their understanding, it is not an inconsistency between
a model element and a describing text (in their case its label), but
an inconsistency between a model element and an explicitly modeled
property of the textual description.

Formal Definition

There is an element vertex in the Activity Graph A whose type is Trig-
ger, Check, or Function and whose corresponding object in the Textual
Representation T does not have the same type. Expressed as a formula:

Definition 17 Wrong Type

Wrong Type := {(va,vr) € Vo X Vr:
typea(va) € {Trigger, Check, Function} A
3 (Vrntray, VIntray) € correspondent : (A.17)

Ulntra, € contenta(va) A Uttray € contentr(Vr) A

typea(va) # typer(vr)}
Unnecessary Repetition

Informal Definition

In case there are two strings in the textual representation that are
derived from one element in the activity diagram, the category Un-
necessary Repetition is existent.

Formal Definition

In an Activity Graph A there is an element constituent that is part of
two pairs in the relation correspondent. Expressed as a formula:

Definition 18 Unnecessary Repetition
Unnecessary Repetition := {v, € Vu :

3 Ulntray € VlntraA/ Olntrar € VlntmT :

(A.18)
Ulntra, € contents(va) A

|(Vtntra s Vtntray) € correspondent| > 1}

A4 CATEGORIES OF INCONSISTENCIES AND OTHER QUALITY ISSUES

Redundant Elements

Informal Definition

In the activity diagram exists more than one element with the same
label.

Formal Definition

In an Activity Graph A exists more than one element vertex with the
same label. Expressed as a formula:

Definition 19 Redundant Elements

Redundant Elements := {va1,042 € Va :

(A.19)
A1 7& Vax N labelA(vAl) = labelA(vAz)}

Non Atomic Element/Object

Informal Definition

The category Non Atomic Element/Object is existent, in case there is an
element in the activity diagram (Non Atomic Element) or an object in
the textual representation (Non Atomic Object) that contains multiple
propositional logic statements. Non Atomic Element follows the defini-
tion of atomicity in models by Pittke which states that the modeling
language is used for separation instead of natural language [184, p.
9o]. Hence, Non Atomic Object addresses the characteristic of a require-
ment being singular [226].

Formal Definition

In an Activity Graph A exists an element that consists of more than
one element constituent.

Definition 20 Non Atomic Element

Non Atomic Element :={vs € V4 : [contents(va)| > 1} (A.20)

In a Textual Structure T exists an object vertex that consists of more
than one object constituent.

Definition 21 Non Atomic Object

Non Atomic Object :={vr € Vr : |contentr(vr)| > 1} (A.21)

Both criteria combined represent the category Non Atomic Element/Ob-
ject.

119

120 FORMALIZATION OF INCONSISTENCIES AND QUALITY ISSUES

Definition 22 Non Atomic Element/Object

Non Atomic Element/Object :=Non Atomic Element U

, _ (A.22)
Non Atomic Object

ALTERNATIVE TEXTUAL REPRESENTATIONS OF
ACTIVITY DIAGRAMS

This appendix presents alternatives to the textual representation used
by the industry partner (see Chapter 3 and Chapter 4) as well as
an assessment of users. The textual representation in Chapter 3 and
Chapter 4 is referred to as the Original Representation and is part of
the user assessment. The contents of this appendix are partly based
on a previous publication [24].

B.1 GROUP REPRESENTATION

This textual representation is displayed in Figure B.1. This textual
representation is denoted as Group Representation, because it intro-
duces additional GROUP elements in the text. These elements are
used to group elements that are connected by the same logic connec-
tor. The elements belonging to one group are placed one level below
the GROUP element. The curly brackets are used to make it easier
to perceive, which elements belong together. Since the relations be-
tween the elements are already achieved by using different levels in
the document, the brackets are optional. The groups themselves can
be connected to other groups or elements via logical operators. In
contrast to the Original Representation, the grouping avoids the repe-
tition of elements and ensures that the propositional logic of the ac-
tivity is correctly reproduced in the RS document. Another advantage
is that the representation still resembles the structure of the activity
diagram as the paths are still recognizable. Besides, its structure is
closely related to the Original Representation and thus it is easy for the
stakeholders to adapt to this new textual representation.

Additionally, a THEN operator is introduced that describes that Ac-
tions are executed consecutively. This means, that every Action only
starts executing, when its predecessors have successfully finished their
executions. This way, it is also possible to represent the order of ex-
ecutions of actions in the paths of the activity. An AND operator
on the other hand represents a JoinNode and thus indicates that all
connected elements can be independently executed. A drawback of
this representation is that it needs additional grouping elements to
correctly describe the activity diagrams’ structure. As these elements
are not requirements per se, the description becomes longer and also
needs additional levels. This may impede the understandability of the
function execution.

122 ALTERNATIVE TEXTUAL REPRESENTATIONS OF ACTIVITY DIAGRAMS

Text Level Type
Drive Inhibit 2 | Function
GROUP { 3 |-
GROUP { 4 |-
Vehicle is in "P" AND 5 | Trigger
GROUP { 5 |-
State of connector "plugged" OR 6 | Trigger
State of connector "vehicle_plugged" OR 6 |Trigger
State of connector "unknown" 6 |Trigger
} 5 |-

} THEN 4 -

V < 5km/h 4 Check
} OR 3 |-
GROUP { 3 |-

GROUP { 4 |-

State of connector "plugged" OR 5 | Trigger
State of connector "vehicle_plugged" 5 | Trigger

} THEN 4 |-

V < 5 km/h THEN 4 Check

Engine Cranking inactive 4 | Check
} OR 3 |-
GROUP { 3 |-

GROUP { 4 |-

State of connector "defect" OR 5 |Trigger
State of connector "unknown" 5 | Trigger

} THEN 4 |-

Gearshift is in "P" 4 | Check
} 3 |-

Figure B.1: Group Representation

B.2 NORMAL FORM REPRESENTATION

In Figure B.2 another alternative textual representation is displayed.
This textual representation is called Normal Form Representation be-
cause it represents a disjunctive normal form of the propositional
logic statement underlying the activity diagram. Therefore, this rep-
resentation solely describes the aspect of propositional logic in activ-
ities and refrains from describing the execution order or parallel pro-
cessing. In contrast to the Original Representation, this ensures that the
propositional logic of the activity is correctly reproduced. Addition-
ally, the conversion into a normal form simplifies the representation
of the underlying propositional formula if possible.

Similar to the Group Representation, elements are structured into
groups by inserting an object in the text, denoted with the string
GROUP. All elements of a group are placed one level below that
GROUP element. The elements of a group are logically connected
by an AND operator (omitted in the example), while all the groups
are connected by an OR operator.

B.2 NORMAL FORM REPRESENTATION

Text Level Type
Drive Inhibit 2 | Function
GROUP OR 3 |-
State of connector "plugged" 4 | Trigger
Vehicle is in "P" 4 | Trigger
V < 5km/h 4 Check
GROUP OR 3 |-
State of connector "vehicle_plugged" 4 | Trigger
Vehicle is in "P" 4 | Trigger
V < 5 km/h 4 [Check
GROUP OR 3 |-
State of connector "unknown" 4 | Trigger
Vehicle is in "P" 4 | Trigger
V < 5km/h 4 Check
GROUP OR 3 |-
State of connector "vehicle_plugged" 4 | Trigger
V<5km/h 4 Check
Engine Cranking inactive 4 | Check
GROUP OR 3 |-
State of connector "plugged" 4 | Trigger
V < 5 km/h 4 | Check
Engine Cranking inactive 4 | Check
GROUP OR 3 |-
State of connector "unknown" 4 | Trigger
Gearshift is in "P" 4 | Check
GROUP 3 |-
State of connector "defect" 4 | Trigger
Gearshift is in "P" 4 | Check

Figure B.2: Normal Form Representation

Due to the OR connections between groups, an execution of all ele-
ments in any group results in the activation of the function. Therefore,
this representation emphasizes distinct combinations of elements that
cause a function’s activation. In the normal form, only two hierarchi-
cal levels are needed to display the representation in the RS document.

One of the disadvantages of this representation is that its structure
does not resemble the structure of the activity diagram. Additionally,
the generation of the normal form suppresses the order of execution
of the elements. Hence, the sequence in which the elements need to
be executed, is not part of the representation. This drawback may
be mitigated by using the order of appearance beneath a grouping
element as an indicator for execution sequences. However, a group
might also contain elements that are independently executable — an
information that gets lost if order of appearance is interpreted as exe-
cution order. Additional structural elements would then be necessary
to express the independence of certain elements.

123

124

ALTERNATIVE TEXTUAL REPRESENTATIONS OF ACTIVITY DIAGRAMS

B.3 TREE REPRESENTATION

In Figure B.3 a third textual representation is displayed. This textual
representation is denoted Tree Representation because it uses the hier-
archical document structure to display the expression tree [92] of the
propositional logic statements in the diagram. In this representation,
the logic operators AND and OR are distinct objects in the RS docu-
ment. All elements that are one level below an operator are logically
connected by that operator. An operator element might have further
operators one level below as elements. This ensures that logic rela-
tions between the elements of the diagram are correctly reproduced
in the textual representation. The Tree Representation reflects the logi-
cal statement as it appears in the diagram (i.e., without simplifications
or transformations).

Text Level Type
Drive Inhibit 2 | Function
OR 3 |-

AND 4 =
Vehicle is in "P" 5 | Trigger
OR 5 |-

State of connector "plugged" 6 | Trigger
State of connector "vehicle_plugged" 6 |[Trigger
State of connector "unknown" 6 | Trigger
V < 5km/h 5 |Check
AND 4 -
OR 5 -
State of connector "plugged" 6 | Trigger
State of connector "vehicle_plugged" 6 | Trigger
V < 5km/h 5 |Check
Engine Cranking inactive 5 | Check
AND 4 -
OR 5 |-
State of connector "defect" 6 |Trigger
State of connector "unknown" 6 | Trigger
Gearshift is in "P" 5 Check

Figure B.3: Tree Representation

This representation has the drawback that its structure does not
resemble the structure of the original activity diagram, which makes
it harder to recognize the relations between the two artifacts. Also,
a basic understanding of expression trees may be necessary to com-
prehend the connections between the elements. As tree structures are
suitable to express all types of formulas, it is also possible to add
more operators aside from the propositional logic operators (e.g., in-
cluding a THEN operator for expressing sequences of actions).

B4 EXACT EQUIVALENT REPRESENTATION

B.4 EXACT EQUIVALENT REPRESENTATION

This textual representation of activity diagrams was suggested by
Flater et al. [84]. Their idea is to convert the complete activity diagram
into human-readable text. We call this Exact Equivalent Representation
because it maps each visual element to a textual string. Thus the re-
sulting text includes every aspect of the original activity diagram and
is therefore applicable to all sorts of activity diagrams. Elements of
activity diagrams are represented by symbols such as parenthesis (as
actions nodes) and square brackets (as object nodes). ActivityEdges
are depicted by ASCII arrows (<- and ->). Elements used multiple
times contain the name of the elements followed by an asterisk and a
variable name, which is used as reference. Since the referenced work
did not include AcceptEventActions, we use a greater-than sign and a
square bracket (> ElementText]) for these elements.

Text Level Type
Drive Inhibit 2 Function
>Trigger: Vehicle is in "P"] -> <JoinNode *jn1> -> 3 -

(Check: V < 5 km/h) -> <MergeNode *mn1> ->
(Function: Drive Inhibit) -> <ActivityFinal>

>Trigger: State of connector "vehicle_plugged"] ->
<MergeNode *mn2> -> <*jn1>

>Trigger: State of connector "plugged"] -> <*mn2>
>Trigger: State of connector "unknown"] -> <*mn2>

>Trigger: State of connector "vehicle_plugged"] ->
<MergeNode *mn3> -> (Check: V < 5 km/h) ->
(Check: Engine Cranking inactive) -> <*mn1>
>Trigger: State of connector "plugged"] ->
<MergeNode *mn3>

>Trigger: State of connector "defect"] ->
<MergeNode *mn4> -> (Check: Gearshift is in "P") ->
<*mni1>

>Trigger: State of connector "unknown"] ->
<MergeNode *mn4>

Figure B.4: Exact Equivalent Representation

The resulting textual representation is shown in Figure B.4. Since
the textual notation is a serialization of the activity, the multiple lev-
els of a hierarchically structured document are not necessary and the
transformation is placed in a single entry. This representation has no
loss of information besides the layout of the activity diagram. The au-
thors mention that using this textual representation instead of graphi-
cal representations does not require special tooling and reduces effort
when implementing prototypes [84]. However, not using special tool-
ing allows for the construction of invalid expressions.

A major drawback of this representation is that it is difficult to get a
quick overview of the function and to grasp the relations between el-
ements. In addition, stakeholders not familiar with activity diagrams
have no advantage in understanding this type of text better than an
activity diagram itself.

125

126

ALTERNATIVE TEXTUAL REPRESENTATIONS OF ACTIVITY DIAGRAMS

B.5 EVALUATION OF THE TEXTUAL REPRESENTATIONS

To assess how practitioners perceive the usefulness of the presented
representations and to learn more about their preferences, a survey is
carried out in which the stakeholders of the examined system in this
thesis are asked to create a ranking of the representations.

The survey consists of three parts. First, the survey presents an
original activity diagram of a function of the system the participants
are involved in. The function is the same as the sample in Chapter 3
and Chapter 4. However, the presented activity diagram looks as in
the tool (Enterprise Architect) used by the participants. The one in
their tool and the one displayed in this thesis differ slightly in terms
of color and layout.

Then, the activity diagram and its different textual representations
are presented. Again, the textual representations are presented as
they would look in the tool (IBM DOORS) used by the participants.
Each textual representation is accompanied by an explanatory text
and a listing of its advantages and disadvantages.

Finally, the survey document contains a pairwise comparison of
the textual representations. Since we examine five different textual
representations, the pairwise comparison consists of ten comparisons
to include all combinations. For each comparison, the participants
had to provide which representation they perceive as more useful or
whether both are equally useful. Each time a representation surpasses
another, it is accredited with 1 point, while the other representation is
accredited with -1 point. In case of a tie, both representations receive
o points. For the ranking the points are added together. Besides, the
participants had the chance to leave comments as a freely written text.
Six stakeholders participated in the survey.

B.5.1 Results

The rankings of the individual participants are shown in Table B.1.
Its entries are sorted by descending order of the participant’s prefer-
ences. If two representations are not separated by a horizontal line,
the representations were ranked equally. Next to the name of the rep-
resentation, in the brackets, are the decisions the participants made
for the representation. The first number stands for how often it was
preferred, the second number for the number of ties and the last num-
ber for how often it was considered less useful.

Table B.2 shows the aggregated results for all participants. The first
column shows the aggregated ranking by combining all the decisions
taken by the participants. The number in the brackets next to the
representation is the result of the computation mentioned for the in-
dividual participants (1 point - better, o points - tie, -1 point - worse),
applied to all decisions. The second column shows an aggregation
based on an assignment of points for the individual ranks: A textual

127

B5 EVALUATION OF THE TEXTUAL REPRESENTATIONS

(5°2) yuareamby joexy
(5°S1) w10 [PWLION]

(61-) yuareamby joexy

(&-) w0 TewIoN

(&°g1) TeuI8Q
(€2) 9a1y,
(§°G2) dnoin

(0) TeUISLO
(6) 9217,
(1) dnoin

sjurog

paurquio) uey

syuedonred [re 103 suonpejussardar fenyxa) jo Sunjuer payeda133y T°g S[qeL

(Y:0:0) Teurdp

(¥:0:0) u9p

-eambyg jexyg

(€:1:0) JU9[

-eambyg jexy

(€:0:1) w10 TEWLION

(€:1:0) U9

-eambyg pexg

(€:1:0) W10 TEWLION

(€:1:0) U9 (€:1:0) JU9 (¥:0:0) Ju9p
-eambyg jexq | -eambg jexq | -eambg Jexg
(€:0:1) w0 TewwIoN | (2:2:0) W0 [eWION (2:1:1) 291L,

(2:0:2) W10 TeWION

(z:0:2) dnoiny

(z:0:2) TRUISLIO

(z:1:1) 99317,

(z:1:1) TRUI3LIO

(z:1:1) TRUISLIO

(0:1:€) dnoiny

(1:0:€) 9917,

(0:0:%) 9317,

(0:0:t) Teurdrip

(0:1:€) a1,
(0:1:€) dnoxny

(1:0:€) TRUISLIO

(1:0:€) 9317,

(1:0:€) dnoioy

(0:0:¥) dnoiny

(0:0:) dnoiny

(0:0:t) w0 [ewION

9 juedpnieg

S juedpnreg

¥ yuedpnaeg

¢ yuednreg

z yuedpnreg

1 juedpnreg

I9p10 Surpusdsap ur juedonied yoes 103 suonejuasaidar Tenixe) Jo Sunyuey I'g S[qel,

128

ALTERNATIVE TEXTUAL REPRESENTATIONS OF ACTIVITY DIAGRAMS

representation on the first rank receives five points, while the one on
the last rank receives one. In case both have the same rank, the points
of the respective ranks are added together and divided by the number
of representations of the same rank. For example, for Participant 1, the
representation on the third rank receives three points, on the fourth
rank it receives two points. As there are two representations on the
same rank both receive 2.5 points (the average). The resulting points
are shown in the brackets next to the name of the representation.

The resulting rankings for both aggregations are the same. Nonethe-
less, the separations of the representations differ between the aggre-
gations. While the ranking by points is close together, the representa-
tions in the combined ranking are farther apart. Especially, the Group
Representation is far ahead in the combined aggregation because it was
preferred in most pairwise decisions.

Besides the pairwise comparisons, one participant used the oppor-
tunity to leave a comment. Participant 2 stated the Group Representa-
tion improves readability since confusing repetitions of elements are
avoided.

B.5.2 Discussion

Based on the ranking the Group Representation achieved in both the
individual and the aggregated rankings, it can be considered as the
most appropriate representation for the participants. The high accep-
tance of this representation may have resulted from the fact that it
resembles the structure of the currently used (original) representa-
tion and is thus familiar to the participants. Furthermore, it mitigates
some of the weaknesses of the Original Representation such as non-
atomic entries and unclear logic relations between the entries. Due
to the similarity with the Original Representation, it is easy for partic-
ipants to comprehend the Group Representation. As such, the Group
Representation was most likely perceived as an improved version of
the representation currently used.

The Exact Equivalent Representation was ranked the least preferable.
Hence, a mere transformation of an activity diagram into text is not
considered adequate by the participants. This is probably caused by
the reduced readability, which makes the function harder to under-
stand. This is also in accordance with the fact that graphical models
are used to improve understandability in the first place.

Both the Normal Form Representation as well as the Tree Represen-
tation achieved good rankings for individual participants. As a con-
sequence, as long as all representations are kept consistent with each
other, the representations could exist side by side as views of the same
function. This approach also has the advantage that implicit informa-
tion in the models can be made explicit depending on the individual
needs and the background of each stakeholder.

TOOL PROTOTYPE: AUTOMATIC GENERATION OF
TEXTUAL REPRESENTATIONS FROM UML2
ACTIVITY DIAGRAMS

One of the suggestions in Chapter 3 is to automatically generate the
textual representations from the activity diagrams in order to avoid
inconsistencies between the coexisting representations and other qual-
ity issues. This is made possible by the contributions presented in
Chapter 5 and Chapter 6. In the following a tool prototype is pre-
sented that implements these concepts and automates the process.
First, the structure of the tool is demonstrated followed by an over-
view of its functionality.

C.1 STRUCTURE

Although the industry partner uses IBM DOORS and Enterprise Ar-
chitect as its tools for requirements engineering and for modeling
tasks, the prototype is designed to account for possible changes of
the employed tools. The resulting (automatic) procedure is shown
in Figure C.1.

Transformation

@ENTERPRISE :> umﬂmo |:> I:>
MODELING I

LANGUAGE

Figure C.1: Procedure of the text generation from activity diagrams

To enable the support of different requirements engineering and
modeling tools, the tools are integrated by the prototype with adapters.
These adapters ensure that the transformation from the activity dia-
gram to the textual representation is realized in a tool-independent
manner. The adapters transform the tool-dependent formats into the
internally used tool-independent formats. Concretely, for the activ-
ity diagram an EMF format [71] is used that represents the activity
diagrams precisely as defined by the UML2 specification.

The procedure is similar for the textual representation. As a tool-
independent solution ReqlIF [173] is used. Since most RE tools already
support the import of ReqlF files, the transformation to a tool-specific
meta-model might not be necessary. However, to improve usability, an

130

TOOL PROTOTYPE

adapter to IBM DOORS is implemented nonetheless, to facilitate the
placement of the textual parts within an RS document.

Overall, this concept enables a tool-independent generation of the
textual representation from the UML2 activity diagrams. In case one
of the tools is replaced by another, only the corresponding adapter
needs to be replaced.

C.2 OVERVIEW

The basic functionality of the tool prototype is depicted in the screen-
shots in Figure C.2.

= | set Properties ol B # | ModelDoors =5 fc]
Properties Help
Properties
Create Doors Objects | Create and Link Doors Objects | Compare Doors and Act
Select path to UML- or EAP-File:
Select Mode and Type. Mark Doors Object under which it will be inserted
\Users\ \ \ \
C\Users\beckmm\AppData\Local\Temp\\models\CreatedUMLModel.um Browse R | chicicrunction. ~ Type: | TYPE_TREE
Choose diagram:
Act_Original =
Insert Doors path to link module*:
/DOORS/linkmodule
Save
* Ignore field for the compare functionality.
I cone stated

Figure C.2: Dialogs of the tool prototype

The dialog on the left hand side is used to specify the Enterprise
Architect project, to select an activity diagram, and to choose the Link
Module of IBM DOORS. The latter is needed to establish the traceabil-
ity links between the model elements and the objects in IBM DOORS.
It is necessary to have traceability information available in both rep-
resentations to ensure bidirectional traceability. Because this, in turn,
is demanded by development process standards.

The dialog on the right hand side is used to select the type of tex-
tual representation that will be generated (see Appendix B for the
possibilities). The textual representation will be generated below the
marked object (one level below in the hierarchy level) in IBM DOORS.
The tool prototype also features additional functionality like updat-
ing existing textual representations (that have been automatically gen-
erated before) and indicating differences between the representations.

BIBLIOGRAPHY

[1]

[2]

[10]

Han van der Aa, Henrik Leopold, Felix Mannhardt, and Hajo
A. Reijers. “On the Fragmentation of Process Information: Chal-
lenges, Solutions, and Outlook.” In: International Conference
on Enterprise, Business-Process and Information Systems Modeling

(2015).

Han van der Aa, Henrik Leopold, and Hajo A. Reijers. “Com-
paring textual descriptions to process models — The automatic
detection of inconsistencies.” In: Information Systems 64 (2017).

Han van der Aa, Henrik Leopold, Inge van de Weerd, and
Hajo A. Reijers. “Causes and Consequences of Fragmented
Process Information: Insights from a Case Study.” In: Ameri-
cas Conference on Information Systems (2017).

Russell J. Abbott. “Program Design by Informal English De-
scriptions.” In: Communications of the ACM 26.11 (1983).

Mariem Abdouli, Wahiba Ben Abdessalem Karaa, and Henda
Ben Ghezala. “Survey of Works that Transform Requirements
into UML Diagrams.” In: International Conference on Software
Engineering Research, Management and Applications (2016).

Radio Technical Commission for Aeronautics Inc. (RTCA). DO-
178B: Software Considerations in Airborne Systems and Equipment
Certification. 1992.

Mudassar Adeel Ahmed, Wasi Haider Butt, Imran Ahsan, Mu-
hammad Waseem Anwar, Muhammad Latif, and Farooque
Azam. “A Novel Natural Language Processing (NLP) Approach
to Automatically Generate Conceptual Class Model from Ini-
tial Software Requirements.” In: International Conference on In-
formation Science and Applications (2017).

Thomas Allweyer. BPMN 2.0: Introduction to the Standard for
Business Process Modeling. BoD-Books on Demand, 2016.

Dalal Alrajeh, Alessandra Russo, and Sebastian Uchitel. “In-
ferring Operational Requirements from Scenarios and Goal
Models Using Inductive Learning.” In: International Workshop
on Scenarios and State machines: Models, Algorithms, and Tools
(2006).

Talat Ambreen, Naveed Ikram, Muhammad Usman, and Mah-
mood Niazi. “Empirical research in requirements engineering:
trends and opportunities.” In: Requirements Engineering 23.1
(2018).

132 BIBLIOGRAPHY

[11] Vincenzo Ambriola and Vincenzo Gervasi. “On the Systematic
Analysis of Natural Language Requirements with CIRCE.” In:
Automated Software Engineering 13.1 (2006).

[12] Annie I. Antén and Colin Potts. “The Use of Goals to sSurface
Requirements for Evolving Systems.” In: International Confer-
ence on Software Engineering (1998).

[13] Paul Arkley and Steve Riddle. “Overcoming the Traceability
Benefit Problem.” In: International Conference on Requirements
Engineering (2005).

[14] Jim Arlow, Wolfgang Emmerich, and John Quinn. “Literate
Modelling — Capturing Business Knowledge with the UML.”
In: International Conference on the Unified Modeling Language (1998).

[15] Bruno M. Arnaut, Denise B. Ferrari, and Marcelo Lopes de
Oliveira e Souza. “A Requirements Engineering and Manage-
ment Process in Concept Phase of Complex Systems.” In: In-
ternational Symposium on Systems Engineering (2016).

[16] Said Assar. “Model Driven Requirements Engineering: Map-
ping the Field and Beyond.” In: International Model-Driven Re-
quirements Engineering Workshop (2014).

[17] Colin Atkinson and Thomas Kuhne. “Model-Driven Develop-
ment: a Metamodeling Foundation.” In: IEEE Software 20.5
(2003).

[18] Banu Aysolmaz, Mehmet Giirsul, Kathrin Kirchner, Ralf Laue,
Robert Mertens, Felix Reher, Irene M Schonreiter, Bernhard M.
Turban, and Riidiger Weifibach. “A Reflection on the Interre-
lations Between Business Process Management and Require-
ments Engineering with an Agility Perspective.” In: Interna-
tional Conference on Business Process Management (2017).

[19] Banu Aysolmaz, Henrik Leopold, Hajo A. Reijers, and Onur
Demirors. “A semi-automated approach for generating natu-
ral language requirements documents based on business pro-
cess models.” In: Information and Software Technology 93 (2018).

[20] Marko Bajec, Damjan Vavpoti¢, and Marjan Krisper. “Practice-
driven approach for creating project-specific software devel-
opment methods.” In: Information and Software technology 49.4
(2007).

[21] Martin Beckmann, Thomas Karbe, and Andreas Vogelsang.
“Information Extraction from High-Level Activity Diagrams
to Support Development Tasks.” In: International Conference on
Model-Driven Engineering and Software Development (2018).

[22] Martin Beckmann, Vanessa N. Michalke, Andreas Vogelsang,
and Aaron Schlutter. “Removal of Redundant Elements within
UML Activity Diagrams.” In: International Conference on Model
Driven Engineering Languages and Systems (2017).

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

BIBLIOGRAPHY

Martin Beckmann, Christian Reuter, and Andreas Vogelsang.
“Coexisting Graphical and Structured-Textual Representations
of Requirements: Insights and Suggestions.” In: International
Working Conference on Requirements Engineering: Foundation for
Software Quality (2018).

Martin Beckmann and Andreas Vogelsang. “What is a Good
Textual Representation of Activity Diagrams in Requirements
Documents?” In: International Model-Driven Requirements Engi-
neering Workshop (2017).

Martin Beckmann, Andreas Vogelsang, and Christian Reuter.
“A Case Study on a Specification Approach using Activity Di-
agrams in Requirements Documents.” In: International Require-
ments Engineering Conference (2017).

Brian Berenbach. “The Automated Extraction of Requirements
from UML Models.” In: International Requirements Engineering
Conference (2003).

Brian Berenbach. “Comparison of UML and Text based Re-
quirements Engineering.” In: Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications (2004).

Brian Berenbach. “A 25 Year Retrospective on Model-Driven
Requirements Engineering.” In: Model-Driven Requirements En-
gineering Workshop (2012).

Daniel M. Berry, Ricardo Gacitua, Pete Sawyer, and Sri Fa-
timah Tjong. “The Case for Dumb Requirements Engineering
Tools.” In: International Working Conference on Requirements En-
gineering: Foundation for Software Quality (2012).

Daniel M. Berry, Erik Kamsties, and Michael M. Krieger. From
contract drafting to software specification: linguistic sources of am-
biguity. Tech. rep. University of Waterloo, 2003.

Robert Blumberg and Shaku Atre. “The Problem with Unstruc-
tured Data.” In: DM Review 13 (2003).

International Requirements Engineering Board. “A Glossary
of Requirements Engineering Terminology.” In: Standard Glos-

sary of the Certified Professional for Requirements Engineering (CPRE)

Studies and Exam (2014).

Conrad Bock. “UML 2 Activity and Action Models.” In: Jour-
nal of Object Technology 2.5 (2003).

Conrad Bock. “UML without Pictures.” In: IEEE Software 20.5
(2003).

Narasimha Bolloju and Sherry X. Y. Sun. “Benefits of supple-

menting use case narratives with activity diagrams — An ex-
ploratory study.” In: Journal of Systems and Software 85.9 (2012).

133

134

BIBLIOGRAPHY

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Grady Booch, Alan W. Brown, Sridhar Iyengar, James Rum-
baugh, and Bran Selic. “An MDA Manifesto.” In: MDA Journal

5.2 (2004).

Peter Braun, Manfred Broy, Frank Houdek, Matthias Kirch-
mayr, Mark Miiller, Birgit Penzenstadler, Klaus Pohl, and Thorsten
Weyer. “Guiding requirements engineering for software-intensive
embedded systems in the automotive industry.” In: Computer
Science-Research and Development 29.1 (2014).

Lionel Briand and Yvan Labiche. “A UML-Based Approach to
System Testing.” In: Software and Systems Modeling 1.1 (2002).

Manfred Broy. “Automotive Software and Systems Engineer-
ing.” In: International Conference on Formal Methods and Models
for Co-Design (2005).

Manfred Broy. “Challenges in Automotive Software Engineer-
ing.” In: International Conference on Software Engineering (2006).

Manfred Broy, Werner Damm, Stefan Henkler, Klaus Pohl, An-
dreas Vogelsang, and Thorsten Weyer. “Introduction to the
SPES modeling framework.” In: Model-Based Engineering of Em-
bedded Systems. Springer, 2012.

Manfred Broy, Ingolf H. Kruger, Alexander Pretschner, and
Christian Salzmann. “Engineering Automotive Software.” In:
Proceedings of the IEEE 95.2 (2007).

Hékan Burden and Rogardt Heldal. “Natural Language Gen-
eration from Class Diagrams.” In: International Workshop on
Model-Driven Engineering, Verification and Validation (2011).

Andrew Burton-Jones and Peter N. Meso. “The Effects of De-
composition Quality and Multiple Forms of Information on
Novices” Understanding of a Domain from a Conceptual Model.”
In: Journal of the Association for Information Systems 9.12 (2008).

Gustavo Cabral and Augusto Sampaio. “Formal Specification
Generation from Requirement Documents.” In: Electronic Notes
in Theoretical Computer Science 195 (2008).

A. Moreno Capuchino, Natalia Juristo, and Reind P. Van de
Riet. “Formal justification in object-oriented modelling: A lin-
guistic approach.” In: Data & Knowledge Engineering 33.1 (2000).

Evellin Cristine Souza Cardoso, Jodo Paulo A. Almeida, and
Giancarlo Guizzardi. “Requirements Engineering Based on Busi-
ness Process Models A Case Study.” In: Enterprise Distributed
Object Computing Conference Workshops (2009).

Carla Carnaghan. “Business process modeling approaches in
the context of process level audit risk assessment: An analysis
and comparison.” In: International Journal of Accounting Infor-
mation Systems 7.2 (2006).

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

BIBLIOGRAPHY 135

Jane Cleland-Huang, Orlena Gotel, Jane Huffman Hayes, Patrick
Madder, and Andrea Zisman. “Software Traceability: Trends
and Future Directions.” In: Future of Software Engineering (2014).

Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman. Soft-
ware and Systems Traceability. Vol. 2. 3. Springer, 2012.

CMMI Product Team. CMMI for Development, Version 1.3. Pitts-
burgh, PA, 2010. URL: http:// resources . sei. cmu . edu/
library/asset-view.cfm?AssetID=9661.

Ahmet Coskungay, Banu Aysolmaz, Onur Demirdrs, Omer
Bilen, and Idris Dogani. “Bridging the Gap between Business
Process Modeling and Software Requirements Analysis: A Case
Study.” In: Mediterranean Conference on Information Systems (2010).

Karl Cox, Keith T. Phalp, Steven]. Bleistein, and June M. Verner.
“Deriving requirements from process models via the problem
frames approach.” In: Information and Software Technology 47.5

(2005).

Krzysztof Czarnecki and Simon Helsen. “Feature-based sur-
vey of model transformation approaches.” In: IBM Systems
Journal 45.3 (2006).

Jesse Daniels and Terry Bahill. “The Hybrid Process That Com-
bines Traditional Requirements and Use Cases.” In: Systems
Engineering 7.4 (2004).

Marian Daun, Bastian Tenbergen, and Thorsten Weyer. “Re-
quirements viewpoint.” In: Model-Based Engineering of Embed-
ded Systems. Springer, 2012.

Islay Davies, Peter Green, Michael Rosemann, Marta Indulska,
and Stan Gallo. “How do practitioners use conceptual model-
ing in practice?” In: Data & Knowledge Engineering 58.3 (2006).

Zamira Daw and Rance Cleaveland. “Comparing model check-
ers for timed UML activity diagrams.” In: Science of Computer
Programming 111 (2015).

Juan M. Carrillo De Gea, Joaquin Nicolds, José L. Ferndndez
Aleman, Ambrosio Toval, Christof Ebert, and Aurora Vizcaino.
“Requirements engineering tools: Capabilities, survey and as-
sessment.” In: Information and Software Technology 54.10 (2012).

Jose Luis De la Vara Gonzélez and]. Sanchez Diaz. “Busi-
ness process-driven requirements engineering: A goal-based
approach.” In: Workshop on Business Process Modeling (2007).

Renaud De Landtsheer, Emmanuel Letier, and Axel van Lam-
sweerde. “Deriving tabular event-based specifications from goal-
oriented requirements models.” In: Requirements Engineering

9.2 (2004).

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=9661

136 BIBLIOGRAPHY

[62] Fabio Cardoso De Souza and Fernando Antonio de Castro
Giorno. “Automatic Generation of Sequence Diagrams and
Updating Domain Model from Use Cases.” In: International
Conference on Advances and Trends in Software Engineering (2015).

[63] Narayan Debnath, Marfa Carmen Leonardi, Maria Virginia
Mauco, Germdn Montejano, and Daniel Riesco. “Improving
Model Driven Architecture with Requirements Models.” In:
International Conference on Information Technology: New Genera-
tions (2008).

[64] Christian Denger, Daniel M. Berry, and Erik Kamsties. “Higher
Quality Requirements Specifications through Natural Language
Patterns.” In: International Conference on Software: Science, Tech-
nology and Engineering (2003).

[65] Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements
Engineering. Vol. 3. Springer, 2017.

[66] Remco Dijkman, Marlon Dumas, Boudewijn Van Dongen, Reina
Kaarik, and Jan Mendling. “Similarity of business process mod-
els: Metrics and evaluation.” In: Information Systems 36.2 (2011).

[67] Ahmet Dikici, Oktay Tiiretken, and Onur Demirors. “Factors
influencing the understandability of process models: A sys-
tematic literature review.” In: Information and Software Technol-
ogy (2017).

[68] Brian Dobing and Jeffrey Parsons. “How UML is used.” In:
Communications of the ACM 49.5 (2006).

[69] Doron Drusinsky. “From UML Activity Diagrams to Specifi-
cation Requirements.” In: International Conference on System of
Systems Engineering (2008).

[70] Eclipse Foundation, Inc. ProR Requirements Engineering Plat-
form. (https://www.eclipse.org/rmf/pror/). Accessed: 2018-
03-30.

[71] Eclipse Modeling Framework (EMF). (http://www.eclipse.
org/modeling/emf/). Accessed: 2018-06-05.

[72] Martin Eigner, Walter Koch, and Christian Muggeo. Modell-
basierter Entwicklungsprozess cybertronischer Systeme. Vol. 1. Springer,
2017.

[73] Meryem Elallaoui, Khalid Nafil, and Raja Touahni. “Automatic
Transformation of User Stories into UML Use Case Diagrams
using NLP Techniques.” In: International Conference on Ambient
Systems, Networks and Technologies 130 (2018).

[74] Elena Viorica Epure, Patricia Martin-Rodilla, Charlotte Hug,
Rebecca Deneckere, and Camille Salinesi. “Automatic Process
Model Discovery from Textual Methodologies.” In: International
Conference on Research Challenges in Information Science (2015).

https://www.eclipse.org/rmf/pror/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

BIBLIOGRAPHY

Henrik Eriksson. “The semantic-document approach to com-
bining documents and ontologies.” In: International Journal of
Human-Computer Studies 65.7 (2007).

Rik Eshuis and Roel Wieringa. “Tool Support for Verifying
UML Activity Diagrams.” In: Transactions on Software Engineer-

ing 30.7 (2004).

John Favaro, Silvia Mazzini, Rudolf Schreiner, Hans-Peter Kon-
ing, and Xavier Olive. “Next Generation Requirements Engi-
neering.” In: INCOSE International Symposium 22.1 (2014).

Loe M. G. Feijs. “Natural language and message sequence
chart representation of use cases.” In: Information and Software
Technology 42.9 (2000).

Henning Femmer and Andreas Vogelsang. “Requirements Qual-
ity is Quality in Use.” In: IEEE Software (2018).

Alessio Ferrari, Giorgio O. Spagnolo, and Felice Dell’Orletta.
“Mining Commonalities and Variabilities from Natural Lan-
guage Documents.” In: International Software Product Line Con-
ference (2013).

Anthony Finkelstein and Wolfgang Emmerich. “The Future of
Requirements Management Tools.” In: Information Systems in
Public Administration and Law. (2000).

Donald Firesmith. “Modern Requirements Specification.” In:
Journal of Object Technology 2.2 (2003).

Donald Firesmith. “Generating Complete, Unambiguous, and
Verifiable Requirements from Stories, Scenarios, and Use Cases.”
In: Journal of Object Technology 3 (Nov. 2004).

David Flater, Philippe Martin, and Michelle Crane. Rendering
UML Activity Diagrams as Human-Readable Text. Tech. rep. NI-
STIR 7469, National Institute of Standards and Technology,
2009.

Giinther Fliedl, Christian Kop, Heinrich C. Mayr, Alexander
Salbrechter, Jiirgen Vohringer, Georg Weber, and Christian Win-
kler. “Deriving static and dynamic concepts from software re-
quirements using sophisticated tagging.” In: Data & Knowledge
Engineering 61.3 (2007).

Markus Fockel and Jorg Holtmann. “A Requirements Engi-
neering Methodology Combining Models and Controlled Nat-

ural Language.” In: International Model-Driven Requirements En-
gineering Workshop (2014).

Martin Fowler. UML distilled. 3rd ed. Addison-Wesley, 2003.

Robert France and Bernhard Rumpe. “Model-Driven Develop-
ment of Complex Software: A Research Roadmap.” In: 2007
Future of Software Engineering (2007).

137

138

BIBLIOGRAPHY

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

Fabian Friedrich, Jan Mendling, and Frank Puhlmann. “Pro-
cess Model Generation from Natural Language Text.” In: Inter-
national Conference on Advanced Information Systems Engineering
(2011).

Dariusz Gall and Anita Walkowiak. “An Approach to Seman-
tics for UML Activities.” In: International Conference on Informa-
tion Systems Architecture and Technology (2017).

Andrew Gemino. “Empirical comparisons of animation and
narration in requirements validation.” In: Requirements Engi-
neering 9.3 (2004).

Richard Gilberg and Behrouz Forouzan. Data Structures: A pseu-
docode approach with C. Nelson Education, 2004.

Michal Gordon and David Harel. “Steps Towards Scenario-
Based Programming with a Natural Language Interface.” In:
Joint European Conferences on Theory and Practice of Software (2014).

Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. “A
Model for Technology Transfer in Practice.” In: IEEE software
23.6 (2006).

Orlena Gotel, Jane Cleland-Huang, Jane H. Hayes, Andrea Zis-
man, Alexander Egyed, Paul Griinbacher, and Giuliano Anto-
niol. “The Quest for Ubiquity: A Roadmap for Software and
Systems Traceability Research.” In: International Requirements
Engineering Conference (2012).

Orlena Gotel and C.W. Finkelstein. “An Analysis of the Re-
quirements Traceability Problem.” In: International Conference
on Requirements Engineering (1994).

Klaus Grimm. “Software Technology in an Automotive Com-
pany: Major Challenges.” In: International Conference on Soft-
ware Engineering (2003).

Hans Gronniger, Dirk Reifs, and Bernhard Rumpe. “Towards a

Semantics of Activity Diagrams with Semantic Variation Points.
In: International Conference on Model Driven Engineering Lan-
guages and Systems (2010).

4

Anne Gross and Joerg Doerr. “EPC vs. UML Activity Diagram
- Two Experiments Examining their Usefulness for Require-
ments Engineering.” In: International Requirements Engineering
Conference (2009).

Anne Gross and Joerg Doerr. “What You Need Is What You
Get!: The Vision of View-Based Requirements Specifications.”
In: International Requirements Engineering Conference (2012).

Paul Griinbacher, Alexander Egyed, and Nenad Medvidovic.
“Reconciling software requirements and architectures with in-
termediate models.” In: Software & Systems Modeling 3.3 (2004).

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

BIBLIOGRAPHY

Jin Guo, Jinghui Cheng, and Jane Cleland-Huang. “Seman-
tically Enhanced Software Traceability Using Deep Learning
Techniques.” In: International Conference on Software Engineer-
ing (2017).

Alireza Haghighatkhah, Ahmad Banijamali, Olli-Pekka Paka-
nen, Markku Oivo, and Pasi Kuvaja. “Automotive software en-
gineering: A systematic mapping study.” In: Journal of Systems
and Software 128 (2017).

Terry Halpin. “Object-Role Modeling (ORM/NIAM).” In: Hand-
book on Architectures of Information Systems (1998).

Sean Hansen, Nicholas Berente, and Kalle Lyytinen. “Require-
ments in the 21st Century: Current Practice and Emerging
Trends.” In: Design requirements engineering: A ten-year perspec-
tive (2009).

David Harel and Bernhard Rumpe. Modeling Languages Syntax,
Semantics and all that Stuff (or, What's the Semantics of ”Seman-
tics”). Tech. rep. 2004.

Jeffrey Heer and Maneesh Agrawala. “Software Design Pat-
terns for Information Visualization.” In: IEEE Transactions on
Visualization and Computer Graphics 12.5 (2006).

Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. “Design Science in Information Systems Research.” In:
MIS quarterly 28.1 (2004).

Hubert F. Hofmann and Franz Lehner. “Requirements Engi-
neering as a Success Factor in Software Projects.” In: IEEE
Software 18.4 (2001).

Jan Holmstrom, Mikko Ketokivi, and Ari-Pekka Hameri. “Bridg-
ing Practice and Theory: A Design Science Approach.” In: De-
cision Sciences 40.1 (2009).

Jon Holt and Simon Perry. Sysml for Systems Engineering-a Model-
based Approach. 2nd ed. Institution of Engineering and Technol-
ogy, 2013.

Krzysztof Honkisz, Krzysztof Kluza, and Piotr Wisniewski. “A
Concept for Generating Business Process Models from Natural
Language Description.” In: International Conference on Knowl-
edge Science, Engineering and Management (2018).

John Hutchinson, Mark Rouncefield, and Jon Whittle. “Model-
driven Engineering Practices in Industry.” In: International Con-
ference on Software Engineering (2011).

John Hutchinson, Jon Whittle, and Mark Rouncefield. “Model-
driven engineering practices in industry: Social, organizational
and managerial factors that lead to success or failure.” In: Sci-
ence of Computer Programming 89 (2014).

139

140 BIBLIOGRAPHY

[115] IBM Corporation. Rational DOORS. (https://www.ibm.com/
us-en/marketplace/rational-doors). Accessed: 2018-03-13.

[116] M.G. Ilieva and Olga Ormandjieva. “Models Derived from Au-
tomatically Analyzed Textual User Requirements.” In: Interna-
tional Conference on Software Engineering Research, Management
and Applications (2006).

[117] Emilio Insfran, Oscar Pastor, and Roel Wieringa. “Require-
ments Engineering-Based Conceptual Modelling.” In: Require-
ments Engineering 7.2 (2002).

[118] International Electrotechnical Commission. IEC 60617 - Graph-
ical Symbols for Diagrams. 1996.

[119] International Electrotechnical Commission. ISO /IEC TR 24766:
2009, Information technology — Systems and software engineering —
Guide for requirements engineering tool capabilites. 2009.

[120] International Organization for Standardization. ISO 128 Tech-
nical Drawings. 2014.

[121] Diaz Isabel, Oscar Pastor, and Alfredo Matteo. “Modeling in-
teractions using role-driven patterns.” In: International Confer-
ence on Requirements Engineering (2005).

[122] Nili Itzik and Iris Reinhartz-Berger. “Generating Feature Mod-
els from Requirements: Structural vs. Functional Perspectives.”
In: nternational Software Product Line Conference (2014).

[123] Martin Ivarsson, Fredrik Pettersson, and Peter Ohman. “Im-
proved Control of Automotive Software Suppliers.” In: Inter-
national Conference on Product Focused Software Process Improve-
ment (2005).

[124] Stefan Jungmayr and Jens Stumpe. “Another Motivation for
Usage Models: Generation of User Documentation.” In: CON-
QUEST 98 (1998).

[125] Mohamad Kassab. “The Changing Landscape of Requirements
Engineering Practices over the Past Decade.” In: International
Workshop on Empirical Requirements Engineering (2015).

[126] Mohamad Kassab, Colin Neill, and Phillip Laplante. “State of
practice in requirements engineering: contemporary data.” In:
Innovations in Systems and Software Engineering 10.4 (2014).

[127] Donald Ervin Knuth. “Literate programming.” In: The Com-
puter Journal 27.2 (1984).

[128] Leonid Kof. “From Textual Scenarios to Message Sequence
Charts Inclusion of Condition Generation and Actor Extrac-
tion.” In: International Requirements Engineering Conference (2008).

https://www.ibm.com/us-en/marketplace/rational-doors
https://www.ibm.com/us-en/marketplace/rational-doors

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHY

Leonid Kof. “Translation of Textual Specifications to Automata
by Means of Discourse Context Modeling.” In: International
Working Conference on Requirements Engineering: Foundation for
Software Quality (2009).

Axel van Lamsweerde. “Goal-Oriented Requirements Engineer-
ing: A Roundtrip from Research to Practice.” In: International
Requirements Engineering Conference (2004).

Axel van Lamsweerde and Laurent Willemet. “Inferring Declar-
ative Requirements Specifications from Operational Scenarios.”
In: Software Engineering 24.12 (1998).

Kevin Lano. UML 2 Semantics and Applications. John Wiley &
Sons, 2009.

Henrik Leopold, Jan Mendling, and Artem Polyvyanyy. “Sup-
porting Process Model Validation through Natural Language
Generation.” In: Transactions on Software Engineering 40.8 (2014).

Henrik Leopold, Fabian Pittke, and Jan Mendling. “Ensuring
the canonicity of process models.” In: Data & Knowledge Engi-
neering 111 (2017).

Emmanuel Letier and Axel van Lamsweerde. “Deriving Oper-
ational Software Specifications from System Goals.” In: ACM
SIGSOFT Software Engineering Notes 27.6 (2002).

Keletso J. Letsholo, Liping Zhao, and Erol-Valeriu Chioasca.
“TRAM: A Tool for Transforming Textual Requirements into
Analysis Models.” In: International Conference on Automated Soft-
ware Engineering (2013).

Juan Li, Ross Jeffery, Kam Hay Fung, Liming Zhu, Qing Wang,
He Zhang, and Xiwei Xu. “A Business Process-Driven Ap-
proach for Requirements Dependency Analysis.” In: Interna-
tional Conference on Business Process Management (2012).

Grzegorz Loniewski, Emilio Insfran, and Silvia Abrahdo. “A
Systematic Review of the Use of Requirements Engineering
Techniques in Model-Driven Development.” In: International
Conference on Model Driven Engineering Languages and Systems
(2010).

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der
Werf, and Sjaak Brinkkemper. “The Use and Effectiveness of
User Stories in Practice.” In: International Working Conference on
Requirements Engineering: Foundation for Software Quality (2016).

Garm Lucassen, Marcel Robeer, Fabiano Dalpiaz, Jan Martijn
EM. van der Werf, and Sjaak Brinkkemper. “Extracting con-
ceptual models from user stories with Visual Narrator.” In:
Requirements Engineering 22.3 (2017).

141

142

BIBLIOGRAPHY

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Neil A. M. Maiden, Sharon Manning, Sara Jones, and John
Greenwood. “Generating requirements from systems models
using patterns: a case study.” In: Requirements Engineering 10.4
(2005).

Neil A.M. Maiden, Shailey Minocha, Keith Manning, and Michele
Ryan. “CREWS-SAVRE: Systematic Scenario Generation and
Use.” In: International Conference on Requirements Engineering
(1998).

Neil Maiden and Suzanne Robertson. “Developing Use Cases
and Scenarios in the Requirements Process.” In: International
Conference on Software Engineering (2005).

Saleem Malik and Imran Sarwar Bajwa. “Back to Origin: Trans-
formation of Business Process Models to Business Rules.” In:
International Conference on Business Process Management (2012).

Bilal Magbool, Farooque Azam, Muhammad Waseem Anwar,

Wasi Haider Butt, Jahan Zeb, Iqra Zafar, Aiman Khan Nazir,

and Zuneera Umair. “A Comprehensive Investigation of BPMN
Models Generation from Textual Requirements—Techniques,

Tools and Trends.” In: International Conference on Information

Science and Applications (2018).

Salome Maro, Jan-Philipp Steghofer, and Miroslaw Staron. “Soft-
ware traceability in the automotive domain: Challenges and
solutions.” In: Journal of Systems and Software 141 (2018).

Alistair Mavin and Neil Maiden. “Determining Socio-Technical
Systems Requirements: Experiences with Generating and Walk-
ing Through Scenarios.” In: International Requirements Engineer-
ing Conference (2003).

Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark
Novak. “EARS (Easy Approach to Requirements Syntax).” In:
International Requirements Engineering Conference (2009).

Alistair Mavin, Philip Wilkinson, Sabine Teufl, Henning Fem-
mer, Jonas Eckhardt, and Jakob Mund. “Does Goal-Oriented
Requirements Engineering Achieve Its Goal?” In: International
Requirements Engineering Conference (2017).

Alistair Mavin, Philip Wilksinson, Sarah Gregory, and Eero
Uusitalo. “Listens learned (8 lessons learned applying EARS).”
In: International Requirements Engineering Conference (2016).

Richard E. Mayer. “Multimedia learning.” In: Psychology of
learning and motivation 41 (2002).

Fergal Mc Caffery, John Burton, Valentine Casey, and Alec
Dorling. “Software Process Improvement in the Medical De-
vice Industry.” In: Encyclopedia of Software Engineering 1 (2010).

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

BIBLIOGRAPHY

Jan Mendling, Henrik Leopold, and Fabian Pittke. “25 Chal-
lenges of Semantic Process Modeling.” In: International Journal
of Information Systems and Software Engineering for Big Compa-
nies 1.1 (2014).

Tom Mens and Pieter Van Gorp. “A Taxonomy of Model Trans-
formation.” In: Electronic Notes in Theoretical Computer Science
152 (2006).

Farid Meziane, Nikos Athanasakis, and Sophia Ananiadou.
“Generating Natural Language specifications from UML class
diagrams.” In: Requirements Engineering 13.1 (2008).

Farid Meziane and Sunil Vadera. “Obtaining E-R Diagrams
Semi-Automatically from Natural Language Specification.” In:
International Conference on Enterprise Information Systems (2004).

Luisa Mich. “NL-OOPS: from natural language to object ori-
ented requirements using the natural language processing sys-
tem LOLITA.” In: Natural Language Engineering 2.2 (1996).

Luisa Mich, Mariangela Franch, and Pierluigi Novi Inverardi.
“Market research for requirements analysis using linguistic
tools.” In: Requirements Engineering 9.2 (2004).

Hyun-Seok Min. “Traceability Guideline for Software Require-
ments and UML Design.” In: International Journal of Software
Engineering and Knowledge Engineering 26.01 (2016).

Modelica Association. Modelica. (https://www.modelica.org/).
Accessed: 2018-05-14.

Yaniv Mordecai and Dov Dori. “Model-Based Requirements
Engineering: Architecting for System Requirements with Stake-
holders in Mind.” In: International Systems Engineering Sympo-
sium (2017).

Gunter Mussbacher et al. “The Relevance of Model-Driven En-
gineering Thirty Years from Now.” In: International Conference
on Model Driven Engineering Languages and Systems (2014).

Farhana Nazir, Wasi Haider Butt, Muhammad Waseem An-
war, and Muazzam A. Khan Khattak. “The applications of
natural language processing (NLP) for software requirement
engineering-a systematic literature review.” In: International
Conference on Information Science and Applications (2017).

Colin J. Neill and Phillip A. Laplante. “Requirements Engi-
neering: The State of the Practice.” In: IEEE Software 20.6 (2003).

Joaquin Nicolds and Ambrosio Toval. “On the generation of
requirements specifications from software engineering mod-
els: A systematic literature review.” In: Information and Software
Technology 51.9 (2009).

143

https://www.modelica.org/

144

BIBLIOGRAPHY

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Nan Niu and Steve Easterbrook. “Extracting and Modeling
Product Line Functional Requirements.” In: International Re-
quirements Engineering Conference (2008).

Ariadi Nugroho and Michel R.V. Chaudron. “A Survey into
the Rigor of UML Use and its Perceived Impact on Quality and
Productivity.” In: International Symposium on Empirical Software
Engineering and Measurement (2008).

Bashar Nuseibeh and Steve Easterbrook. “Requirements engi-
neering: a roadmap.” In: Conference on the Future of Software
Engineering (2000).

Object Management Group (OMG). Foundational UML Subset.
(https://www.omg.org/spec/FUML/About - FUML/). Accessed:
2018-05-15.

Object Management Group (OMG). MOF Model to Text Trans-
formation Language (MOFM2T), Version 1.0. OMG Document
Number formal / 2008-01-16 (https://issues.omg.org/
issues/spec/MOFM2T/1.0/). 2008.

Object Management Group (OMG). Business Process Model And
Notation, Version 2.0. OMG Document Number formal / 2011-
01-03 (https://www.omg.org/spec/BPMN/2.0/About - BPMN/).
2011.

Object Management Group (OMG). OMG Unified Modeling Lan-
guage (OMG UML), Version 2.5. OMG Document Number for-
mal / 2015-03-01 (https://www.omg.org/spec/UML/2.5/).
2015.

Object Management Group (OMG). Requirements Interchange
Format (ReglF), Version 1.2. OMG Document Number formal /
2016-07-01 (https://www.omg.org/spec/ReqlF/1.2/). 2016.

Object Management Group (OMG). Action Language for Foun-
dational UML (ALF), Version 1.1. OMG Document Number for-
mal / 2017-07-04 (https://www.omg.org/spec/ALF/1.1/).
2017.

Object Management Group (OMG). OMG Systems Modeling
Language (OMG SysML), Version 1.5. OMG Document Number
formal / 2017-05-01 (https://www.omg.org/spec/SysML/1.
5/). 2017.

Open Services for Lifecycle Collaboration. (https: //open -
services.net/). Accessed: 2018-05-29.

W.]J. Orlikowski. “Using technology and constituting struc-
tures: A practice lens for studying technology in organiza-
tions.” In: Organisation Science 11.4 (2000).

https://www.omg.org/spec/FUML/About-FUML/
https://issues.omg.org/issues/spec/MOFM2T/1.0/
https://issues.omg.org/issues/spec/MOFM2T/1.0/
https://www.omg.org/spec/BPMN/2.0/About-BPMN/
https://www.omg.org/spec/UML/2.5/
https://www.omg.org/spec/ReqIF/1.2/
https://www.omg.org/spec/ALF/1.1/
https://www.omg.org/spec/SysML/1.5/
https://www.omg.org/spec/SysML/1.5/
https://open-services.net/
https://open-services.net/

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

BIBLIOGRAPHY 145

Cristina-Claudia Osman and Paula-Georgiana Zalhan. “From
Natural Language Text to Visual Models: A survey of Issues
and Approaches.” In: Informatica Economica 20.4 (2016).

Scott P. Overmyer, Benoit Lavoie, and Owen Rambow. “Con-
ceptual Modeling through Linguistic Analysis Using LIDA.”
In: International conference on Software engineering (2001).

James L. Peterson. Petri Net Theory and the Modeling of Systems.
Prentice Hall PTR, 1981.

Marian Petre. “UML in Practice.” In: International Conference
on Software Engineering (2013).

Marian Petre. ““No shit” or “Oh, shit!”: responses to observa-
tions on the use of UML in professional practice.” In: Software
& Systems Modeling 13.4 (2014).

Fredrik Pettersson, Martin Ivarsson, and Peter Ohman. “Au-
tomotive use case standard for embedded systems.” In: ACM
SIGSOFT Software Engineering Notes 30.4 (2005).

Fabian Pittke. Linguistic Refactoring of Business Process Models.
Dissertation. Logos Verlag Berlin GmbH, 2016.

Klaus Pohl. Requirements engineering: fundamentals, principles,
and techniques. Springer, 2010.

Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and
Thomas Stauner. “Software Engineering for Automotive Sys-
tems: A Roadmap.” In: Future of Software Engineering (2007).

Nils Przigoda, Christoph Hilken, Robert Wille, Jan Peleska,
and Rolf Drechsler. “Checking Concurrent Behavior in UML
/ OCL Models.” In: International Conference on Model Driven
Engineering Languages and Systems (2015).

Virgilio Quintana, Louis Rivest, Robert Pellerin, Frédérick Venne,
and Fawzi Kheddouci. “Will Model-based Definition replace
engineering drawings throughout the product lifecycle? A global
perspective from aerospace industry.” In: Computers in Indus-
try 61.5 (2010).

Rick Rabiser, Wolfgang Heider, Christoph Elsner, Martin Lehofer,
Paul Griinbacher, and Christa Schwanninger. “A Flexible Ap-
proach for Generating Product-Specific Documents in Prod-
uct Lines.” In: International Conference on Software Product Lines
(2010).

Gary L. Ragatz, Robert B. Handfield, and Thomas V. Scannell.
“Success Factors for Integrating Suppliers into New Product
Development.” In: Journal of Product Innovation Management

14.3 (1997).

146

BIBLIOGRAPHY

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Erhard Rahm and Philip A. Bernstein. “A survey of approaches
to automatic schema matching.” In: The VLDB Journal 10.4
(2001).

Amit Raj, T.V. Prabhakar, and Stan Hendryx. “Transformation
of SBVR Business Design to UML Models.” In: India Software
Engineering Conference (2008).

Bala Ramesh, Curtis Stubbs, and Michael Edwards. “Lessons
learned from implementing requirements traceability.” In: Jour-
nal of Defense Software Engineering 8.4 (1995).

Balasubramaniam Ramesh and Matthias Jarke. “Toward Refer-
ence Models for Requirements Traceability.” In: IEEE transac-
tions on software engineering 277.1 (2001).

Anand Ranganathan and Roy H. Campbell. “What is the Com-
plexity of a Distributed Computing System?” In: Complexity
12.6 (2007).

Gianna Reggio, Maurizio Leotta, and Filippo Ricca. “Who Knows
/ Uses What of the UML: A Personal Opinion Survey.” In:
International Conference on Model Driven Engineering Languages
and Systems (2014).

Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Diego Clerissi.
“What are the used Activity Diagram Constructs? A survey.”

In: International Conference on Model-Driven Engineering and Soft-
ware Development (2014).

Hamzah Ritchi, Mieke Jans, Jan Mendling, and Hajo Reijers.
“The influence of business process representation on perfor-
mance of different task types.” In: Journal of Information Sys-
tems 9.3 (201x).

Marcel Robeer, Garm Lucassen, Jan Martijn E.M. van der Werf,
Fabiano Dalpiaz, and Sjaak Brinkkemper. “Automated Extrac-
tion of Conceptual Models from User Stories via NLP.” In:
International Requirements Engineering Conference (2016).

Christopher L. Robinson-Mallett. “An Approach on Integrat-
ing Models and Textual Specifications.” In: International Model-
Driven Requirements Engineering Workshop (2012).

Raphael De A. Rodrigues, Marcio De O. Barros, Kate Revoredo,
Leonardo G. Azevedo, and Henrik Leopold. “An Experiment
on Process Model Understandability Using Textual Work In-
structions and BPMN Models.” In: Brazilian Symposium on Soft-
ware Engineering (2015).

Nick Russell, Wil M.P. van der Aalst, Arthur H.M. Ter Hofst-
ede, and Petia Wohed. “On the Suitability of UML 2.0 Activ-
ity Diagrams for Business Process Modelling.” In: Asia-Pacific
Conference on Conceptual Modelling (2006).

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

BIBLIOGRAPHY

Kevin Ryan. “The Role of Natural Language in Requirements
Engineering.” In: International Symposium on Requirements En-
gineering (1993).

Christian Salzmann and Thomas Stauner. “Automotive Soft-
ware Engineering An emerging application domain for soft-
ware engineering.” In: Languages for System Specification: Se-
lected Contributions on UML (2004).

Josep Sanchez-Ferreres, Josep Carmona, and Lluis Padré. “Align-
ing Textual and Graphical Descriptions of Processes Through
ILP Techniques.” In: International Conference on Advanced Infor-
mation Systems Engineering (2017).

Jodo Santos, Ana Moreira, Vasco Amaral, and Uira Kulesza.
“Generating Requirements Analysis Models from Textual Re-
quirements.” In: International Workshop on Managing Require-
ments Knowledge (2008).

Patrizia Scandurra, Andrea Arnoldi, Tao Yue, and Marco Dolci.
“Functional Requirements Validation by transforming Use Case
Models into Abstract State Machines.” In: Proceedings of the

27th Annual ACM Symposium on Applied Computing (2012).

Tim Schattkowsky and Alexander Forster. “On the Pitfalls of
UML 2 Activity Modeling.” In: International Workshop on Mod-
eling in Software Engineering (2007).

Tim Schattkowsky, Wolfgang Miiller, and Achim Rettberg. “A
Generic Model Execution Platform for the Design of Hardware
and Software.” In: UML for SoC design (2005).

Robert Scheffler, Sergej Koch, Gregor Wrobel, Matthias PlefSow,
Christian Buse, and Bernd-Arno Behrens. “Modelling CAD
Models: Method for the Model Driven Design of CAD Models
for Deep Drawing Tools.” In: International Conference on Model-
Driven Engineering and Software Development (2016).

Bran Selic. “The Pragmatics of Model-Driven Development.”
In: IEEE Software 20.5 (2003).

Matt Selway, Georg Grossmann, Wolfgang Mayer, and Markus
Stumptner. “Formalising natural language specifications using
a cognitive linguistic/configuration based approach.” In: Infor-
mation Systems 54 (2015).

Shane Sendall and Jochen Kiister. “Taming Model Round-Trip
Engineering.” In: Workshop on Best Practices for Model-Driven
Software Development (2004).

Atif Shah, Mohamed Ali Alasow, Faisal Sajjad, and Jawad Javed
Akbar Baig. “An Evaluation of Software Requirements Tools.”
In: International Conference on Intelligent Computing and Informa-
tion Systems (2017).

147

148

BIBLIOGRAPHY

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

Ernst Sikora, Bastian Tenbergen, and Klaus Pohl. “Industry
needs and research directions in requirements engineering for
embedded systems.” In: Requirements Engineering 17.1 (2012).

Michat Smiaiek, Jacek Bojarski, Wiktor Nowakowski, Albert
Ambroziewicz, and Tomasz Straszak. “Complementary Use
Case Scenario Representations Based on Domain Vocabular-
ies.” In: International Conference on Model Driven Engineering
Languages and Systems (2007).

Neal Snooke and Chris Price. “Model-driven Automated Soft-
ware FMEA.” In: Reliability and Maintainability Symposium (2011).

Stéphane S. Somé. “Supporting use case based requirements
engineering.” In: Information and Software Technology 48.1 (2006).

Tony Spiteri Staines. “Intuitive Mapping of UML 2 Activity
Diagrams into Fundamental Modeling Concept Petri Net Dia-
grams and Colored Petri Nets.” In: International Conference and
Workshop on the Engineering of Computer Based Systems (2008).

International Organization for Standardization. ISO/DIS 26262
- Road vehicles — Functional safety. 2009.

Harald Storrle. “Semantics and Verification of Data Flow in
UML 2.0 Activities.” In: Electronic Notes in Theoretical Computer
Science 127.4 (2005).

Harald Storrle. “How are Conceptual Models used in Indus-
trial Software Development?: A Descriptive Survey.” In: Inter-
national Conference on Evaluation and Assessment in Software En-
gineering (2017).

Harald Storrle and Jan Hendrik Hausmann. “Towards a For-
mal Semantics of UML 2.0 Activities.” In: Software Engineering
(2005).

Kalaivani Subramaniam, Dong Liu, Behrouz Homayoun Far,
and Armin Eberlein. “UCDA Use Case Driven Development
Assistant Tool for Class Model Generation.” In: Conference on
Software Engineering and Knowledge Engineering (2004).

The International Council on Systems Engineering (INCOSE).
“INCOSE SE Vision 2020.” In: INCOSE 2007 Symposium (2007).

The Institute of Electrical and Electronics Engineers, Inc. ISO
/IEC /IEEE 29148:2011, Systems and Software Engineering — Life
cycle processes — Requirements Engineering. 2011.

The MathWorks, Inc. Matlab/Simulink. (https://www.mathworks.
com/products/simulink.html). Accessed: 2018-05-14.

Saurabh Tiwari, Santosh Singh Rathore, Abhijeet Singh, Abhi-
nav Singh, and Atul Gupta. “An Approach to Generate Actor-
Oriented Activity Charts from Use Case Requirements.” In:
Asia-Pacific Software Engineering Conference (2012).

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html

BIBLIOGRAPHY 149

[229] Suichi Tsujimoto and Haruo Asada. “Understanding Multi-
articled Documents.” In: International Conference on Pattern Recog-
nition (1990).

[230] Oktay Tiiretken, Onur Su, and Onur Demirdrs. “Automating
Software Requirements Generation from Business Process Mod-
els.” In: Conference on the Principles of Software Engineering (2004).

[231] Muhammad Usman and Aamer Nadeem. “Automatic Gener-
ation of Java Code from UML Diagrams using UJECTOR.” In:
International Journal of Software Engineering and Its Applications
3.2 (2009).

[232] VDA QMC Working Group 13 / Automotive SIG. Automotive
SPICE Process Assessment / Reference Model. 2015.

[233] Verein Deutscher Ingenieure. VDI/VDE 3694 Lastenheft/Pflicht-
enheft fiir den Einsatz von Automatisierungssystemen. 2014.

[234] Andreas Vogelsang, Sebastian Eder, Georg Hackenberg, Max-
imilian Junker, and Sabine Teufl. “Supporting concurrent de-
velopment of requirements and architecture: A model-based
approach.” In: International Conference on Model-Driven Engi-
neering and Software Development (2014).

[235] Matthias Weber and Joachim Weisbrod. “Requirements Engi-
neering in Automotive Development - Experiences and Chal-
lenges.” In: Joint International Conference on Requirements Engi-
neering (2002).

[236] Jon Whittle, John Hutchinson, Mark Rouncefield, Hakan Bur-
den, and Rogardt Heldal. “Industrial Adoption of Model-Driven
Engineering: Are the Tools Really the Problem?” In: Interna-
tional Conference on Model Driven Engineering Languages and Sys-
tems (2013).

[237] Stefan Wiesner, Margherita Peruzzini, Jannicke Baalsrud Hauge,
and Klaus-Dieter Thoben. “Requirements engineering.” In: Con-
current Engineering in the 21st Century (2015).

[238] Stefan Winkler and Jens von Pilgrim. “A survey of traceability
in requirements engineering and model-driven development.”
In: Software & Systems Modeling 9.4 (2010).

[239] Rebekka Wohlrab, Patrizio Pelliccione, Eric Knauss, and Sarah
C. Gregory. “The Problem of Consolidating RE Practices at
Scale: An Ethnographic Study.” In: International Working Con-
ference on Requirements Engineering: Foundation for Software Qual-
ity (2018).

[240] Adam Wyner, Krasimir Angelov, Guntis Barzdins, Danica Daml-
janovic, Brian Davis, Norbert Fuchs, Stefan Hoefler, Ken Jones,
Kaarel Kaljurand, Tobias Kuhn, et al. “On Controlled Natural
Languages: Properties and Prospects.” In: International Work-
shop on Controlled Natural Language (2009).

150

BIBLIOGRAPHY

[241]

[242]

[243]

[244]

[245]

Eric Yu, Eric Dubois, and John Mylopoulos. “From Organiza-
tion Models to System Requirements A Cooperating Agents
Approach.” In: Conference on Cooperative Information Systems
(1995)-

Tao Yue, Shaukat Ali, and Lionel Briand. “Automated Transi-
tion from Use Cases to UML State Machines to Support State-
Based Testing.” In: European Conference on Modelling Founda-
tions and Applications (2011).

Tao Yue, Lionel C. Briand, and Yvan Labiche. “A systematic
review of transformation approaches between user require-
ments and analysis models.” In: Requirements Engineering 16.2
(2011).

Tao Yue, Lionel C. Briand, and Yvan Labiche. “Facilitating the
transition from use case models to analysis models: Approach
and experiments.” In: ACM Transactions on Software Engineer-
ing and Methodology 22.1 (2013).

Iyad Zikra, Janis Stirna, and Jelena Zdravkovic. “Analyzing
the Integration between Requirements and Models in Model
Driven Development.” In: Enterprise, Business-Process and Infor-
mation Systems Modeling (2011).

	Title Page
	Abstract
	Zusammenfassung
	Publications
	Contents
	List of Figures
	List of Tables
	Acronyms
	 Requirements Specification with Graphical Models and Text
	1 Introduction
	1.1 Motivation
	1.2 Context: Requirements Engineering in the Development of Automotive Systems
	1.3 Problem Statement
	1.4 Contributions of this Thesis
	1.5 Methodological Background
	1.6 Outline

	2 State of the Art
	2.1 Requirements Engineering
	2.2 Model-Driven Development
	2.3 Coexisting Graphical and Textual Representations
	2.4 Model-Driven Development in Requirements Engineering
	2.5 Scope of this Thesis

	 Analysis of a Specification Approach based on Coexisting Activity Diagrams and Textual Representations
	3 Coexisting Graphical and Textual Representations of Requirements
	4 A Case Study on Quality Issues and Inconsistencies

	 Automatic Generation of Textual Representations from Activity Diagrams
	5 Removal of Redundant Elements within UML Activity Diagrams
	6 Information Extraction from High-Level Activity Diagrams
	7 Concluding Discussion
	7.1 Summary
	7.2 Discussion

	8 Outlook

	 Appendix
	A Formalization of Inconsistencies and Quality Issues
	A.1 Formal Semantics of the Examined UML2 Activities
	A.2 Formal Definition of the Textual Representation
	A.3 Connections between the Activity Diagram and the Textual Representation
	A.4 Categories of Inconsistencies and Other Quality Issues

	B Alternative Textual Representations of Activity Diagrams
	B.1 Group Representation
	B.2 Normal Form Representation
	B.3 Tree Representation
	B.4 Exact Equivalent Representation
	B.5 Evaluation of the Textual Representations

	C Tool Prototype
	C.1 Structure
	C.2 Overview

	 Bibliography

