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GMRES CONVERGENCE ANALYSIS FOR A
CONVECTION-DIFFUSION MODEL PROBLEM∗

J. LIESEN† AND Z. STRAKOŠ‡

Abstract. When GMRES [Y. Saad and M. H. Schultz, SIAM J. Sci. Statist. Comput., 7
(1986), pp. 856–869] is applied to streamline upwind Petrov–Galerkin (SUPG) discretized convection-
diffusion problems, it typically exhibits an initial period of slow convergence followed by a faster
decrease of the residual norm. Several approaches were made to understand this behavior. However,
the existing analyses are solely based on the matrix of the discretized system and they do not take
into account any influence of the right-hand side (determined by the boundary conditions and/or
source term in the PDE). Therefore they cannot explain the length of the initial period of slow
convergence which is right-hand side dependent.

We concentrate on a frequently used model problem with Dirichlet boundary conditions and with
a constant velocity field parallel to one of the axes. Instead of the eigendecomposition of the system
matrix, which is ill conditioned, we use its orthogonal transformation into a block-diagonal matrix
with nonsymmetric tridiagonal Toeplitz blocks and offer an explanation of GMRES convergence. We
show how the initial period of slow convergence is related to the boundary conditions and address
the question why the convergence in the second stage accelerates.

Key words. convection-diffusion problem, streamline upwind Petrov–Galerkin discretiza-
tion, GMRES, rate of convergence, ill-conditioned eigenvectors, nonnormality, tridiagonal Toeplitz
matrices
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1. Introduction. Krylov subspace methods such as GMRES [28] are typically
used to solve very large linear algebraic systems. The goal is to find a sufficiently
accurate approximate solution in a number of steps that is significantly less than the
system dimension. Consequently, the convergence analysis of these methods must fo-
cus particularly on the early stages of the iteration, i.e., on the transient rather than
the asymptotic behavior. This makes the methods’ analysis a complicated nonlinear
problem, which must be based not on a single number (such as the so-called asymp-
totic convergence factor) but on correspondingly more complex characteristics of the
problem. If the system matrix is symmetric, then except for some special right-hand
sides corresponding to some particular boundary conditions and/or outer forces, see,
e.g., [3], the matrix eigenvalues answer practical questions about the convergence be-
havior of Krylov subspace methods. If the system matrix is nonsymmetric or, more
generally, nonnormal, then the situation is much less clear.

In this paper we are interested in a particular example of the latter. We study
linear algebraic systems Ax = b arising from discretization of convection-diffusion
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Fig. 1.1. Relative GMRES residual norms for our SUPG discretized convection-diffusion model
problem. Different behavior corresponds to the same discretized operator but to different boundary
conditions.

problems, and their solution with GMRES [28]. Starting from an initial guess x0,
this method computes the initial residual r0 = b − Ax0 and a sequence of iterates
x1, x2, . . . , so that the nth residual rn ≡ b−Axn satisfies

‖rn‖ = ‖pn(A)r0‖ = min
p∈πn

‖p(A)r0‖,(1.1)

where πn denotes the set of polynomials of degree at most n with value one at the
origin.

It was shown in [16, 1] that GMRES can exhibit any nonincreasing convergence
curve (of its residual norms) for a matrix having any eigenvalues. In these results the
constructed matrix A and the right-hand side b are always related in a way which
can hardly be interpreted in terms of any practical problem. Ernst [13] showed,
however, an example of a convection-diffusion problem discretized via the streamline
upwind Petrov–Galerkin (SUPG) method, for which the eigenvalues alone indeed give
misleading information about convergence. He also observed, together with several
other authors, see, e.g., [14], that GMRES applied to discretized convection-diffusion
problems can exhibit an initial period of slow convergence followed by a faster decrease
of the residual norm. Typical examples of such behavior are shown in Figure 1.1. Ernst
conjectured that the duration of the initial phase is governed by the time it takes for
boundary information to pass from the inflow boundary across the domain following
the longest streamline of the velocity field. His conjecture and the example shown in
Figure 1.1 clearly demonstrate the necessity of considering the particular right-hand
side of the linear system (and hence the source term and the boundary conditions of
the PDE) in the convergence analysis of GMRES.

The model problem studied in this paper is a convection-diffusion equation on
the unit square with Dirichlet boundary conditions and with a constant velocity field
parallel to one of the axes. We discretize the problem with the SUPG method based
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GMRES CONVERGENCE FOR CONVECTION-DIFFUSION PROBLEM 1991

on bilinear finite elements, an approach that has been frequently used before; see,
e.g., [8, 9, 10, 13, 14]. Eigenvalues and eigenvectors of the discretized operator are
known analytically. It seems therefore natural to exploit the eigenexpansion of the
initial residual in the convergence analysis; see [14]. The eigenvector basis is, however,
poorly conditioned; i.e., the system matrix is highly nonnormal. In such cases there is
a reasonable doubt about using eigenvalues and eigenvectors in an analysis of conver-
gence. This doubt was clearly formulated by Trefethen in [30, p. 384] (see also [26]).
In fact, Trefethen concludes that if a matrix is far from normal, “there may be no
good scientific reason for attempting to analyze the problem in terms of eigenvalues
and eigenvectors.” Our model problem represents an illuminative illustration of this
viewpoint. Understanding the initial period of convergence is of primary importance,
and the ill-conditioned eigendecomposition is not a proper tool for analyzing it.

Instead of the eigendecomposition we use an orthogonal transformation of the sys-
tem matrix to a block-diagonal form with nonsymmetric tridiagonal Toeplitz blocks,
a structure that was also employed in [5, 6, 8, 9]. Applying results from [19] we
show how the initial period of slow convergence is related to the boundary conditions.
We also address the question why the convergence in the second stage accelerates,
although a quantitative understanding of this phenomenon still remains a subject of
further work.

We have mentioned the necessity of considering the right-hand side b in our anal-
ysis. A careful reader might object that not b but the initial residual r0 = b − Ax0

enters the minimization condition (1.1). In fact, the initial residual, and therefore
also the GMRES behavior, may depend significantly not only on b but also on the
initial guess x0. In order to clarify the practical role of x0, we would like to stress the
following simple, but sometimes overlooked point: Unless a nonzero initial guess x0

is available that contains useful information about the solution x, for example an x0

giving ‖r0‖ ≤ ‖b‖, the choice x0 = 0 should be preferred. Choosing a nonzero x0

containing no useful information about x, e.g., choosing a random x0, might create a
completely “biased” r0 with ‖r0‖ � ‖b‖. Such a choice potentially creates an illusion
of a fast convergence to a high relative accuracy, measured by the relative residual
norm. For examples see [22, relation (2.8), and the discussion of Figures 7.9 and 7.10].
Any such choice of x0 is, however, useless. In this paper we always use x0 = 0.

The paper is organized as follows. Section 2 specifies the model problem. Section 3
contains our analysis of the GMRES convergence behavior. Section 4 discusses the use
of the eigenvalue decomposition for this purpose, and section 5 provides a concluding
discussion.

Throughout the paper we assume exact arithmetic.

2. Specification of the model problem. In this paper we consider the fol-
lowing convection-diffusion model problem with Dirichlet boundary conditions:

−ν Δu + w · ∇u = 0 in Ω = (0, 1) × (0, 1), u = g on ∂Ω .(2.1)

Here the scalar-valued function u(η1, η2) represents the concentration of the trans-
ported quantity, w = [w1, w2]

T the velocity field, and ν the scalar diffusion parameter.
We are interested in the convection-dominated case; i.e., we assume ‖w‖ � ν in (2.1).
For simplicity we use zero as the source term in the convection-diffusion equation. At
the end of section 3.3 we explain how a nonzero source term would affect the findings
of our investigation.

It is well known that in the convection-dominated case, the standard Galerkin
finite element approximation to the solution of (2.1) suffers from nonphysical oscilla-
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1992 J. LIESEN AND Z. STRAKOŠ

tions, see, e.g., [4, Fig. 2.1], [23, Fig. 8.3.1], and [8, Fig. 5.5]. Such oscillations can be
avoided by using a stabilized Petrov–Galerkin finite element discretization instead.

In this paper we consider a particular instance of such discretization, namely, the
SUPG method, introduced by Hughes and Brooks [17, 4]. More recent descriptions
of the SUPG method can be found in [23, Chapter 8.3], [27, Chapter III.3.2], and [21,
Chapter 5.5]. We specifically consider the SUPG method with bilinear finite elements
on a regular grid with square elements of size h× h,

h = (N + 1)−1 ,

where N represents the number of inner nodes along each side. In our case of domi-
nating convection we assume that the mesh Peclet number

Ph ≡ h‖w‖
2ν

(2.2)

is greater than one. The same model problem has been used and studied in many
publications, see in particular [8, 9, 10, 13, 14]. Other finite element discretizations
have also been considered; cf. [2] for a study concerning the piecewise linear case.

The stabilization in the SUPG method can be expressed as an additional diffusion
term with the diffusivity tensor given by δ̂wwT , which acts only in the direction of
the flow. Here δ̂ denotes the stabilization parameter. If Ph > 1, then δ̂ is typically
chosen as

δ̂ =
δh

‖w‖ ,(2.3)

where δ > 0 is a tuning parameter.
In case of piecewise linear finite elements for a one-dimensional constant coefficient

problem, the choice

δ0 ≡ 1

2

(
coth(Ph) − 1

Ph

)
, i.e., δ̂0 ≡ h

2‖w‖

(
coth(Ph) − 1

Ph

)
,(2.4)

yields the exact solution at the node points; see, e.g., [17], [4, Section 2.4], and [27,
Chapter I.2.1.3]. A similar optimal choice of δ for two or more dimensional problems
is unknown; see [27, Remark III.3.34] for an informative discussion. Hence some
authors use δ = δ0 (cf. [13, equation (2.8)]) or δ ≈ δ0 (cf. [14, pp. 186–187]) also for
the two-dimensional problem (2.1). By definition,

coth(Ph) =
ePh + e−Ph

ePh − e−Ph
,

and hence the following simplified value,

δ∗ ≡ 1

2

(
1 − 1

Ph

)
< δ0 ,(2.5)

is close to δ0 even for moderate values of Ph. For example, if Ph = 5, then δ∗ = 0.4
and δ0 ≈ 0.40005. The parameter δ∗ is defined in [14, p. 187], where the authors note
that δ∗ ↗ δ0 as Ph → ∞. Obviously this convergence is very rapid. In [9] the authors
study the effects of the tuning parameter δ on the behavior of the solution with respect
to the nonphysical oscillations. Their analysis gives a theoretical justification for the
choice δ = δ∗.
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GMRES CONVERGENCE FOR CONVECTION-DIFFUSION PROBLEM 1993

Supported by [9] and for the sake of clarity of our exposition, we limit the GMRES
convergence analysis in our paper to the discretized problems with the value δ = δ∗,
giving

δ̂∗ ≡ δ∗ h

‖w‖ .

For different values of δ̂ the problem can be analyzed analogously.

2.1. The discretized operator. The coefficient matrix of the linear algebraic
system resulting from the SUPG discretization of (2.1) described above can be written
in the form

A = νAd + Ac + δ̂As,(2.6)

where Ad = 〈∇φj ,∇φi〉, Ac = 〈w ·∇φj , φi〉, and As = 〈w ·∇φj , w ·∇φi〉 represent the
diffusion, convection, and stabilization term, respectively. Here φ1, . . . , φN2 denote
the piecewise bilinear nodal basis functions, and 〈·, ·〉 denotes the L2 inner product
on Ω.

In the following we consider the special case of the vertical wind

w = [0, 1]T .

Then both Ad and As are symmetric positive definite while Ac is skew-symmetric; see
[14, p. 182]. Writing the coefficient matrix in the form

A = 〈(νI + δ̂wwT )∇φj ,∇φi〉 + 〈w · ∇φj , φi〉 ,(2.7)

the “effective” diffusivity tensor is given by

νI + δ̂wwT =

(
ν 0

0 ν + δ̂

)
, δ̂ = δh .

Moreover, the constituent matrix stencil for A,

m4 m3 m4

↖ ↑ ↗
m2 ← m1 → m2

↙ ↓ ↘
m6 m5 m6

(2.8)

has numerical values

−ν
3 + h

12 (1 − 2δ) −ν
3 + h

3 (1 − 2δ) −ν
3 + h

12 (1 − 2δ)
↖ ↑ ↗

−ν
3 + δh

3 ← 8
3ν + 4

3δh → −ν
3 + δh

3
↙ ↓ ↘

−ν
3 − h

12 (1 + 2δ) −ν
3 − h

3 (1 + 2δ) −ν
3 − h

12 (1 + 2δ)

(2.9)

(see [14, formulas (12)–(14)] for the general form of the matrix stencil for A in case
of a constant wind w = [w1, w2]

T ).
Using the vertical line ordering of the unknowns, i.e., the ordering parallel to the

direction of the wind, the N2 by N2 system matrix AV takes the form

AV = AV (h, ν, δ) = νK ⊗M + M ⊗ ((ν + δh)K + C);(2.10)

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1994 J. LIESEN AND Z. STRAKOŠ

see, e.g., [5, Section 1.1] and [13, pp. 1081 and 1089]. Here

M =
h

6
tridiag(1, 4, 1) ,

K =
1

h
tridiag(−1, 2,−1) ,(2.11)

C =
1

2
tridiag(−1, 0, 1)

are the N by N mass, stiffness, and gradient matrices of the one-dimensional constant
coefficient convection-diffusion equation discretized on a uniform mesh using linear
elements.

Next note that the eigenvalues of an N by N symmetric tridiagonal Toeplitz
matrix tridiag(t2, t1, t2) are given by t1 + t2ωj , where

ωj = 2 cos(jhπ), j = 1, . . . , N .(2.12)

Furthermore, the corresponding normalized eigenvectors are given by

uj = (2h)1/2 [ sin(jhπ), . . . , sin(Njhπ) ]
T
, j = 1, . . . , N ;(2.13)

see, e.g., [29, pp. 113–115]. Consequently, the matrices M and K in (2.11) are si-
multaneously diagonalizable by the symmetric orthonormal matrix U = [u1, . . . , uN ].
The block diagonalization of the matrix AV in (2.10) by the discrete sine transform
then gives

(U ⊗ I)AV (U ⊗ I) = ν(UKU) ⊗M + (UMU) ⊗ ((ν + δh)K + C) ≡ T .(2.14)

Elementary algebra shows that T is a block-diagonal matrix consisting of N nonsym-
metric tridiagonal Toeplitz blocks Tj , each of the size N by N ,

T = diag(T1:N ) ,(2.15)

where

Tj = tridiag(γj , λj , μj) , j = 1, . . . , N ,(2.16)

λj = m1 + m2 ωj , μj = m3 + m4 ωj , γj = m5 + m6 ωj(2.17)

(cf. (2.8)–(2.9) for the definition of m1, . . . ,m6).
For completeness we mention that instead of the vertical line ordering used in

(2.10), some authors have considered the horizontal line ordering; see, e.g., [10, 14].
In this case the resulting coefficient matrix AH takes the form

AH = AH(h, ν, δ) = νM ⊗K + ((ν + δh)K + C) ⊗M .(2.18)

The matrix AH is of the form tridiag(M3,M1,M2), with N by N symmetric tridiag-
onal Toeplitz blocks given by

M1 = tridiag(m2,m1,m2) ,

M2 = tridiag(m4,m3,m4) ,(2.19)

M3 = tridiag(m6,m5,m6) .
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GMRES CONVERGENCE FOR CONVECTION-DIFFUSION PROBLEM 1995

Of course, the two approaches are equivalent. The orthogonal transformation

(I ⊗ U)AH (I ⊗ U) = tridiag(Dγ , Dλ, Dμ) ,

where Dλ = diag(λ1:N ), Dμ = diag(μ1:N ), Dγ = diag(γ1:N ), and a permutation of
the unknowns yields the matrix T in (2.14). Using the symmetric permutation matrix

P ≡ [I ⊗ e1, . . . , I ⊗ eN ] , P 2 = I ,

which transforms the horizontal line ordering into the vertical line ordering and vice
versa, the equivalence of the discretized systems AHxH = bH and AV xV = bV can be
easily seen from the relation

AHxH = bH ⇐⇒ (PAHP )︸ ︷︷ ︸
=AV

(PxH)︸ ︷︷ ︸
= xV

= PbH︸︷︷︸
= bV

.

2.2. Structure of the right-hand sides. We now discuss the structure of the
right-hand side vectors bV in the linear system corresponding to the matrix AV in
(2.10). Due to the zero source term in (2.1) the entries of bV are completely determined
by the Dirichlet boundary condition u = g on ∂Ω.

We partition the vector bV of the length N2 into N blocks of the length N each,

bV = [b(1)T , . . . , b(N)T ]T ,(2.20)

where the jth block corresponds to the jth vertical layer of the mesh. We then form
the N by N matrix BV ≡ [b(1), . . . , b(N)] which has the following general nonzero
structure:

BV =

⎡
⎢⎢⎢⎢⎢⎣

b1,1 b1,2 · · · b1,N−1 b1,N
b2,1 0 · · · 0 b2,N
...

...
...

...
bN−1,1 0 · · · 0 bN−1,N

bN,1 bN,2 · · · bN,N−1 bN,N

⎤
⎥⎥⎥⎥⎥⎦ .(2.21)

The entries of BV can easily be computed using (2.8)–(2.9). In the experiments
presented in this paper we use the following examples.

Example 2.1. Following the set of problems introduced by Raithby [24], the
authors of [9, 10, 14] use boundary conditions that are discontinuous at the inflow
boundary,

u(η1, 0) = u(1, η2) = 1 for 1/2 < η1 ≤ 1 and 0 ≤ η2 < 1,(2.22)

u(η1, η2) = 0 elsewhere on ∂Ω.(2.23)

Hence the first row of BV has nonzero entries given by

b1,�N/2� = −m6 =
ν

3
+

h

12
(1 + 2δ) ,

b1,�N/2�+1 = −(m6 + m5) =
2

3
ν +

5

12
h(1 + 2δ) ,

b1,�N/2�+j = −(2m6 + m5) = ν +
h

2
(1 + 2δ), j = 2, . . . , N − (�N/2� + 1) ,

b1,N = −(2m6 + m5 + m2 + m4) =
5

3
ν +

5

12
h(1 + 2δ) ,
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1996 J. LIESEN AND Z. STRAKOŠ

while

bj,N = −(m6 + m2 + m4) = ν , j = 2, . . . , N − 1,

bN,N = −(m6 + m2) =
2

3
ν +

1

12
h(1 − 2δ)

are the remaining nonzero entries of BV .
Example 2.2. We also consider nonzero boundary conditions only on (a part

of) the right side boundary of the unit square. Specifically, we equally divide the
y-direction of the unit square into N + 1 parts according to the N internal nodes of
the mesh. This gives rise to the following N boundary conditions:

u(1, η2) = 1 for k/(N + 1) ≤ η2 < 1, k = 0, 1, . . . , N − 1,(2.24)

and u(η1, η2) = 0 elsewhere on ∂Ω. The resulting matrices BV have nonzero entries
only in their last columns. For example, in the case k = 7 the nonzero entries of BV

are given by

bj,N = 0, j = 1, . . . , 5,

b6,N =
1

3
ν − 1

12
h(1 − 2δ), bN,7 =

2

3
ν − 1

12
h(1 + 2δ),

bj,N = ν, j = 8, . . . , N − 1,

bN,N =
2

3
ν +

1

12
h(1 − 2δ).

For other values of k the entries of BV can be computed analogously.

3. GMRES convergence analysis. As indicated in the introduction, when
GMRES is applied to linear systems resulting from the SUPG discretization of (2.1), it
typically exhibits an initial period of slow convergence followed by a faster decrease of
the residual norms. This behavior is illustrated in Figure 1.1, which shows the relative
GMRES residual norms, ‖rn‖/‖bV ‖ (here, and elsewhere, x0 = 0), for w = [0, 1]T , the
fixed discretized operator AV = AV (1/16, 0.01, 0.34), cf. (2.10), and the 15 different
right-hand side vectors bV resulting from the boundary conditions (2.24). The kth
boundary condition corresponds to the initial period of slow convergence lasting for
N − 1 − k steps. Our first goal in this section is to quantitatively analyze how
this happens. We then address the question why the convergence speed of GMRES
accelerates after the initial phase. As explained above, we restrict our discussion to
w = [0, 1]T , and to the choice δ = δ∗.

3.1. Derivation of the basic lower bound. Consider a linear system

AV xV = bV(3.1)

that corresponds to the vertical line ordering of the unknowns. An orthogonal trans-
formation by (U ⊗ I), cf. (2.14), yields

(U ⊗ I)AV (U ⊗ I) [(U ⊗ I)xV ] ≡ T [(U ⊗ I)xV ] = (U ⊗ I)bV ≡ b̂ .(3.2)

We partition the vector of unknowns xV similarly as the right-hand side vector bV
in section 2.2, and denote the corresponding N by N matrix by XV . Then the
transformed system (3.2) decomposes into N linear systems of the size N by N ,

Tj [XV uj ] = b̂(j) , b̂(j) ≡ BV uj , j = 1, . . . , N.(3.3)
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GMRES CONVERGENCE FOR CONVECTION-DIFFUSION PROBLEM 1997

Since the transformation of the original system (3.1) into the decomposed block-
diagonal system represented by (3.3) is orthogonal, the GMRES residual norms for
these two systems (and the corresponding initial guess) coincide. In particular, for
x0 = 0 we obtain the following lower bound on the GMRES residual norms when the
algorithm is applied to the system (3.1):

‖rn‖2 = min
p∈πn

‖ p(AV ) bV ‖2(3.4)

= min
p∈πn

‖ p(T ) b̂ ‖2(3.5)

= min
p∈πn

N∑
j=1

‖ p(Tj) b̂
(j) ‖2(3.6)

≥
N∑
j=1

min
p∈πn

‖ p(Tj) b̂
(j) ‖2 .(3.7)

In the step from (3.4) to (3.5) we exploit orthogonality of the transformation from
(3.1) to (3.2). The next step from (3.5) to (3.6) reflects the decomposition (3.3). Note
that the linear systems in (3.3) are for different values of j independent of each other,
and hence can in principle be solved independently. This is not true, however, when
GMRES is applied to (3.1). Then the individual approximations are coupled together
by the global minimization problem (3.4)–(3.6). Finally, (3.7) bounds the squared
GMRES residual norm from below by the sum of the squared GMRES residual norms
when the algorithm is applied independently to each of the systems (3.3). Since each
of these systems is of the order N , the lower bound (3.7) is equal to zero (and hence
useless) for n = N , possibly even earlier. However, when there is at least one system
(3.3) for which GMRES shows an initial period of slow convergence, the lower bound
(3.7) shows that GMRES for the original system (3.1) also initially converges slowly
for at least as many steps. This is, in a nutshell, the tool needed to understand the
initial phase of convergence of GMRES applied to our SUPG discretized convection-
diffusion model problem.

Each of the matrices Tj , j = 1, . . . , N , is a nonsymmetric tridiagonal Toeplitz
matrix. In order to evaluate (3.7) we have to analyze the behavior of GMRES for
this class of matrices. This represents a peculiar problem on its own. Physically it
can be interpreted, e.g., as analyzing the GMRES behavior for the discretized one-
dimensional convection-diffusion problem with a constant wind, cf. [7, 10]. Below we
will use results from our paper [19], which is devoted to this subject. Their application
requires more details about the numerical values of the entries in the matrices Tj .

3.2. The entries of the matrices Tj. Each of the matrices Tj is of the form
tridiag(γj , λj , μj), cf. (2.16)–(2.17). The numerical values of the entries can be found
from the stencils (2.8)–(2.9). For simplicity, we rewrite these entries as

3λj = 2δh
(
2 +

ωj

2

)
+ 2ν

(
4 − ωj

2

)
,

−3μj = δh
(
2 +

ωj

2

)
+ ν(1 + ωj) −

h

2

(
2 +

ωj

2

)
,(3.8)

−3γj = δh
(
2 +

ωj

2

)
+ ν(1 + ωj) +

h

2

(
2 +

ωj

2

)
.

We first analyze their signs.
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1998 J. LIESEN AND Z. STRAKOŠ

Lemma 3.1. Let, as above, w = [0, 1]T ( ‖w‖ = 1). If the mesh Peclet number
(2.2) satisfies Ph > 1, then for all j = 1, . . . , N the values λj and γj defined in (3.8)
satisfy

λj > 0 > γj .(3.9)

Furthermore, for all j = 1, . . . , N the value of μj defined in (3.8) satisfies

sign(μj) = sign(f(j) − δ), where f(j) ≡ δ∗ +
1 − ωj/2

Ph(4 + ωj)
,(3.10)

so that μj is negative, zero, or positive, if δ is larger than, equal to, or smaller than
f(j), respectively. In particular, if δ = δ∗, then μj > 0 for all j = 1, . . . , N .

Proof. Considering the relations (3.8) we first note that since −2 < ωj < 2, see
(2.12), we always have λj > 0. Next, if Ph > 1, then h/2 − ν > 0, so that

−3γj > δh− ν +
h

2
> δh > 0 ⇒ γj < 0.

An elementary computation yields

3μj

h ( 2 + ωj/2 )
= f(j) − δ,

where f(j) is defined as in (3.10). Obviously, the left-hand side of this equality has
the same sign as μj , which proves (3.10). If δ = δ∗, then

sign(μj) = sign

(
1 − ωj/2

Ph(4 + ωj)

)
,

which shows that in this case μj > 0 for all j = 1, . . . , N .
We will next analyze the moduli of the ratios of the values λj , μj , and γj , j =

1, . . . , N . Note that if ‖w‖ = 1, then δ∗ = (h−2ν)/(2h). Thus for δ = δ∗ the relations
(3.8) are equivalent to

3λj = h
(
2 +

ωj

2

)
+ 4ν

(
1 − ωj

2

)
,

3μj = ν
(
1 − ωj

2

)
,(3.11)

−3γj = h
(
2 +

ωj

2

)
− ν

(
1 − ωj

2

)
.

Straightforward manipulations give the following result.
Lemma 3.2. Let, as above, w = [0, 1]T ( ‖w‖ = 1), and δ = δ∗. Then

|λj |
|γj |

= 1 + 5

(
2Ph

4 + ωj

2 − ωj
− 1

)−1

,(3.12)

|μj |
|γj |

=

(
2Ph

4 + ωj

2 − ωj
− 1

)−1

, j = 1, . . . , N .(3.13)

Clearly, when Ph � 1, then for each j = 1, . . . , N ,

|λj |
|γj |

≈ 1 � |μj |
|γj |

.(3.14)
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Fig. 3.1. λj (+), μj ( ∗), and |γj | ( o) for
j = 1, . . . , 15 and h = 1/16, ν = 0.01, δ = δ∗ =
0.34.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

–7

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

Fig. 3.2. λj (+), μj ( ∗), and |γj | ( o) for
j = 1, . . . , 15 and h = 1/16, ν = 0.0001, δ =
δ∗ = 0.4984.

For a moderate Ph the ratios (3.12) and (3.13) depend more significantly on the index
j. When jhπ � 1, the expansion of the cosine function gives

4 + ωj

2 − ωj
=

6

(jhπ)2
− 1 + O( (jhπ)4 ) .

Hence for small indices j, (3.14) holds even for a moderate Ph. Since λj , γj , and μj

depend linearly on δ, these considerations hold not only for δ = δ∗ but apply also
whenever δ ≈ δ∗.

Experiment 3.3. In Figures 3.1 and 3.2 we show typical examples of the magni-
tudes of λj , γj , and μj . For Figure 3.1 we use h = 1/16, ν = 0.01, and δ = δ∗ = 0.34,
which are the same parameters as in [14, p. 186]. These yield a moderate mesh Peclet
number, Ph = 3.125, so that (3.14) holds only for smaller indices j. To show results
for a larger mesh Peclet number we choose h = 1/16, ν = 0.0001, and δ = δ∗ = 0.4984
for Figure 3.2. Here Ph = 312.5 so that (3.14) holds for all j = 1, . . . , 15.

3.3. Analysis of the initial phase. Having analyzed the entries in the matrices
Tj we now come to our explanation of the initial phase of slow convergence. We first
present two numerical experiments illustrating (3.5)–(3.7).

Experiment 3.4. Using the parameter values h = 1/16, ν = 0.01, and δ = δ∗ =
0.34, we set up a linear system of the form (3.2). For the right-hand side we use the
boundary conditions (2.24) with k = 0. GMRES with the initial guess x0 = 0 then
produces the squared residual norms ‖rn‖2 plotted by the solid line in Figure 3.3.
We also apply GMRES independently to each of the N = 15 linear systems (3.3),
and plot the resulting squared residual norms by the dashed lines in Figure 3.3. The
labels on these dashed lines correspond to the indices j = 1, . . . , 15 of the individual
systems (3.3). The plus signs show the sums of the individual dashed curves, i.e.,
the lower bound (3.7). Figure 3.4 shows a three-dimensional plot of the computed
solution.

Experiment 3.5. We use the same parameters as in Experiment 3.4, but for the
computation of the right-hand side we here use (2.24) with k = 7. Figures 3.5 and 3.6
show the results analogous to Figures 3.3 and 3.4.

Our first observation in both experiments is that during the initial phase of slow
convergence the lower bound (3.7) is very tight. Furthermore, as in Figure 1.1, the
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Fig. 3.3. Squared GMRES residual norms
for (3.2) with right-hand side from (2.24) with
k = 0 (solid) and for each system (3.3) individ-
ually (dashed), and the lower bound (3.7) (+).
System parameters are h = 1/16, ν = 0.01,
δ = δ∗ = 0.34.
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Fig. 3.4. The solution corresponding to
Experiment 3.4, i.e., the boundary conditions
(2.24) with k = 0.
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Fig. 3.5. Results analogous to Figure 3.3
but with k = 7 in (2.24).
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Fig. 3.6. The solution corresponding to
Experiment 3.5, i.e., the boundary conditions
(2.24) with k = 7.

initial phase in Figures 3.3 and 3.5 lasts N−k−1 steps (14 steps for k = 0 and 7 steps
for k = 7). The parameters h, ν, and δ chosen in both Experiments 3.4 and 3.5 yield
the matrices Tj , j = 1, . . . , N , with the absolute values of the entries γj , λj , μj shown
in Figure 3.1. Apparently, the slow initial convergence occurs only for the individual
systems (3.3) with a small index j, when (3.14) holds. Using our results in [19], this
observation can be understood and quantified.

Skipping details, our results in [19] about the convergence of GMRES for tridiago-
nal Toeplitz matrices can be summarized in the following way. Suppose that GMRES
with x0 = 0 is applied to a system of the form (3.3), and denote

b̂(j) = BV uj ≡ [ρ
(j)
1 , . . . , ρ

(j)
N ]T , τj ≡ λj

γj
, and ζj ≡ μj

γj
.(3.15)

Now suppose that ρ
(j)
l is the first nonzero component of b̂(j), and that GMRES applied

to Tj and b̂(j) does not terminate in the first N − l steps (we exclude some very

D
ow

nl
oa

de
d 

12
/1

4/
17

 to
 1

30
.1

49
.1

76
.1

72
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



GMRES CONVERGENCE FOR CONVECTION-DIFFUSION PROBLEM 2001

peculiar circumstances under which b̂(j) has less than N − l nonzero components in
the directions of the individual eigenvectors of Tj , and GMRES therefore terminates

sooner). Then for n = 0, 1, . . . , N − l the GMRES residual norms for Tj and b̂(j)

satisfy, see [19, Theorem 3.2],

‖r̂(j)
n ‖ = min

p∈πn

‖p(Tj) b̂
(j) ‖(3.16)

=

∥∥∥∥ [1,−τj , . . . , (−τj)
n ]

[
b̂(j), (ST + ζjS) b̂(j), . . . , (ST + ζjS)n b̂(j)

]+
∥∥∥∥−1

(3.17)

≥
(

n∑
m=0

|τj |2m
)− 1

2

σmin

( [
b̂(j), (ST + ζjS) b̂(j), . . . , (ST + ζjS)n b̂(j)

] )
.(3.18)

Here X+ denotes the Moore–Penrose generalized inverse and σmin(X) the smallest
singular value of the matrix X, and S = [0, e1, . . . , eN−1] denotes the standard upward
shift matrix.

For the iteration step n = N − l, the expression (3.17) can be simplified. Let[
b̂(j), (ST + ζjS) b̂(j), . . . , (ST + ζjS)N−l b̂(j)

]T
≡ [O,Rj ] + ζj Pj ,(3.19)

where O denotes the N − l + 1 by l − 1 zero matrix,

Rj ≡

⎡
⎢⎢⎢⎢⎣

ρ
(j)
l ρ

(j)
l+1 · · · ρ

(j)
N

ρ
(j)
l · · · ρ

(j)
N−1

. . .
...

ρ
(j)
l

⎤
⎥⎥⎥⎥⎦ ,

and the columns of the matrix PT
j are given by

ζ−1
j

{
(ST + ζjS)m − (ST )m

}
b̂(j), m = 0, 1, . . . , N − l .

As shown in [19, Section 3.2], the norm of the mth column of PT
j is bounded by

m ‖b̂(j)‖ ( 1 + O(|ζj |m) ). Since we assume that ρ
(j)
l �= 0, the square matrix Rj is

nonsingular. Furthermore, Rj does not depend on ζj . Consequently, for |ζj | small
enough, |ζj |‖R−1

j Pj‖ < 1 (for details see [19]). Assuming that |ζj |‖R−1
j Pj‖ < 1 holds,

[19, Theorems 3.3 and 2.1] give

‖r̂(j)
N−l‖ = min

p∈πN−l

‖p(Tj) b̂
(j) ‖(3.20)

=
∥∥∥ ([O, I] + ζjR

−1
j Pj

)+
R−1

j

[
1,−τj , . . . , (−τj)

N−l
]T ∥∥∥−1

(3.21)

≥
(
1 − |ζj |‖R−1

j Pj‖
) (

N−l∑
m=0

|τj |2m
)− 1

2

σmin(Rj) .(3.22)

Moreover, independently of the value |ζj |‖R−1
j Pj‖,

‖r̂(j)
N−l‖ ≤

(
1 + |ζj |‖R−1

j Pj‖
)

(N − l + 1)
1
2 ‖b̂(j)‖

(
N−l∑
m=0

|τj |2m
)− 1

2

.(3.23)D
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Table 3.1

Numerical values of the quantities in the bounds (3.22) and (3.23) corresponding to Experi-
ment 3.4. The stars (∗) indicate that |ζj | ‖R−1

j Pj‖ ≥ 1, so that (3.22) is not applicable.

j |τj | |ζj | |ζj | ‖R−1
j Pj‖ 1√∑

|τj |2m
σmin(Rj)

(3.22)

‖b̂(j)‖

∥∥∥r̂(j)N−1

∥∥∥
‖b̂(j)‖

(3.23)

‖b̂(j)‖
1 1.0052 0.0010 0.0247 0.2489 0.0003 0.0318 0.2364 0.9879
2 1.0209 0.0042 0.0981 0.2216 0.0007 0.0262 0.1828 0.9424
3 1.0481 0.0096 0.2180 0.1785 0.0010 0.0182 0.1183 0.8420
4 1.0881 0.0176 0.3812 0.1260 0.0013 0.0102 0.0641 0.6740
5 1.1431 0.0286 0.5846 0.0752 0.0015 0.0041 0.0290 0.4613
6 1.2162 0.0432 0.8312 0.0368 0.0016 0.0008 0.0110 0.2609
7 1.3116 0.0623 1.1505 0.0145 0.0017 ∗ 0.0034 0.1208
8 1.4348 0.0870 1.6373 0.0046 0.0018 ∗ 0.0009 0.0468
9 1.5925 0.1185 2.4596 0.0012 0.0017 ∗ 0.0002 0.0155

10 1.7923 0.1585 3.8905 0.0002 0.0016 ∗ 3.5e-5 0.0045
11 2.0409 0.2082 6.4713 4.0e-5 0.0015 ∗ 5.7e-6 0.0012
12 2.3392 0.2678 11.2601 6.2e-6 0.0013 ∗ 8.5e-7 0.0003
13 2.6735 0.3347 19.9683 9.7e-7 0.0010 ∗ 1.3e-7 7.9e-5
14 3.0033 0.4007 33.8919 1.9e-7 0.0007 ∗ 2.7e-8 2.6e-5
15 3.2564 0.4513 49.8737 6.3e-8 0.0003 ∗ 8.9e-9 1.2e-5

The lower bound (3.22) is our primary concern. For |ζj | ‖R−1
j Pj‖ � 1, and

|τj | ≈ 1, see (3.14), (3.15), the first and the second factor in this bound are typically

not small, and the GMRES residuals for Tj and b̂(j) can substantially decrease within
the first N − l steps only if Rj is highly ill conditioned.

For illustration we turn to Experiments 3.4 and 3.5. Figure 3.7 shows the absolute
values of the entries of the right-hand side vectors in Experiment 3.4. Each solid line,
except for the line representing |b̂(8)|, represents a pair of vectors |b̂(j)|, |b̂(N−j+1)|,
j = 1, . . . , 7. For all j, ρ

(j)
1 is the first nonzero entry in b̂(j). We can therefore apply

(3.22) with l = 1. The corresponding numerical values of the factors in (3.22) are
shown in Table 3.1. The parameters chosen in Experiment 3.4 yield a moderate mesh
Peclet number, Ph = 3.125 (cf. Experiment 3.3). Hence (3.14) with |ζj | sufficiently
small holds only for j = 1, 2, 3, 4, and, to a lesser extend, for j = 5, 6. For these indices
we have |ζj | ‖R−1

j Pj‖ < 1, so that (3.22) is applicable. The column “(3.22)/‖b̂(j)‖”
shows that, in the first N − 1 = 14 steps, GMRES makes little progress for the
individual systems (3.3) corresponding to j = 1, 2, 3, 4. Consequently, the slow initial
convergence of GMRES when applied to the coupled system (3.2), as well as to the
original system (3.1), lasts (at least) for 14 steps. This is clearly visible in Figure 3.3.

The two rightmost columns show the relative GMRES residual norms ‖r̂(j)
N−1‖/‖b̂(j)‖,

and the values of the upper bound (3.23) for the relative residual norms.
We now explain some subtle points illustrated by Experiment 3.5. The compo-

nents of the right-hand side vectors b̂(j) are shown in Figure 3.8. Since ρ
(j)
6 is the first

nonzero entry in each b̂(j), j = 1, . . . , 15, we are tempted to apply (3.22) with l = 6
(N − l = 9). However, note that since

|ρ(j)
6 | ≈ |ρ(j)

7 | � |ρ(j)
8 | ,(3.24)

the matrices Rj are ill conditioned (σmin(Rj) = O(10−7)) for all j = 1, . . . , 15. Con-
sequently, the values of the lower bound (3.22) are very small for all j. This is in

agreement with the actual GMRES residual norms ‖r̂(j)
9 ‖ for the individual systems

(3.3) in Figure 3.5.
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Fig. 3.7. Absolute values of the entries in
the right-hand side vectors b̂(j), j = 1, . . . , 15,
used Experiment 3.4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

–4

10
–3

10
–2

1

2

3

4
5

6 7 8 9 10
11

12

13

14

15

Fig. 3.8. Absolute values of the entries in
the right-hand side vectors b̂(j), j = 1, . . . , 15,
used Experiment 3.5.
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Fig. 3.9. σmin([b̂(j), (ST + ζjS) b̂(j), . . . , (ST + ζjS)n b̂(j)]), cf. (3.18), for j = 1, . . . , 15 and
n = 0, . . . , 9, corresponding to Experiment 3.5.

Since our analysis cannot be based on using (3.22) and the step N − l, we turn
to the lower bound (3.18), which is applicable for all n = 0, 1, . . . , N − l. The values
of |τj | given in Table 3.1 are valid also for Experiment 3.5. Hence for small j the first
factor in (3.18) does not decrease significantly. Moreover, as shown in Figure 3.9, the
second factor in (3.18),

σmin

( [
b̂(j), (ST + ζjS) b̂(j), . . . , (ST + ζjS)n b̂(j)

] )
,

stays for all j = 1, . . . , 15 on the order O(10−3), and thus close to O(‖b̂(j)‖) until

n = N − 8 = 7. This corresponds to the fact that ρ
(j)
8 is the first significant entry
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2004 J. LIESEN AND Z. STRAKOŠ

(in the quantitative sense of (3.24)) in each of the vectors b̂(j), j = 1, . . . , 15. The
bound (3.18) then implies that for small j the GMRES residual norms for Tj and

b̂(j) converge slowly for the first seven steps, which is precisely what we observe in
Figure 3.5. Further numerical illustrations of these subtleties can be found in [18,
Section 7].

In summary, the presence of at least one system (3.3) with a tridiagonal Toeplitz
matrix Tj = tridiag(γj , λj , μj) satisfying (3.14), i.e., with Tj close to the Jordan block
tidiag(1, 1, 0), and with l representing the index of the first significant entry of the
corresponding right-hand side, prevents fast convergence of GMRES for the original
system (3.1) for the initial N − l steps. As shown in section 3.2, the relation (3.14)
holds (whenever δ ≈ δ∗) for small j when Ph is moderate, and for all j when Ph is
large. Therefore the initial phase of slow convergence is typical for matrices arising
from the SUPG discretization of the convection-diffusion model problem used in this
paper. Our considerations also show that in case of a general nonzero source term
in (2.1), we can typically expect that the initial phase lasts N − 1 steps, unless the
source term has a special structure that gives leading zeros (or very small values) in

the right-hand side vectors b̂(j) analogously to the boundary conditions (2.24). We
also point out that a nonzero initial guess x0 that is not related to the problem (e.g., a
“random” x0) most likely leads to an initial phase lasting N − 1 steps, regardless of
the source term and the boundary conditions. Such an x0 clearly represents an unwise
choice in this context (also cf. our general discussion in the introduction). We next
ask why from the step N − l + 1 GMRES converges with an increased rate.

3.4. Acceleration of convergence. As explained in section 3.1, the lower
bound (3.7) is useless for analyzing the convergence behavior after the step N − 1,
possibly even earlier. Hence the above approach cannot be used for quantifying any
possible acceleration of convergence after the initial phase. In fact, any quantification
of that phenomenon appears to be difficult.

In order to illustrate the difficulties we consider, for simplicity, a block-diagonal
matrix consisting of N lower bidiagonal Toeplitz blocks (scaled Jordan blocks) of size
N by N , all corresponding to the same eigenvalue λ. Let the corresponding block
right-hand sides of length N have their first nonzero entries in the lth positions (all
being assumed significant in the quantitative sense above). When for at least one of
the individual Toeplitz blocks the subdiagonal entry is close in magnitude to λ, then
our analysis in section 3 shows that GMRES will for this block, and, consequently,
for the whole system, converge slowly for N − l steps. In step N − l + 1, however,
GMRES will construct the minimal polynomial of the system matrix with respect
to the given particular right-hand side, which is in this case equal to (λ − z)N−l+1

(for details about GMRES and the minimal polynomial of a matrix see [1, Section 3]
and the references given there). Hence in this case the acceleration of convergence
after the initial phase will be maximal—finding the exact solution will only take one
additional step.

In (3.1)–(3.3), however,

• the N diagonal blocks Tj are tridiagonal (not bidiagonal) Toeplitz;
• the minimal polynomial of the diagonal blocks generally differ from each

other.

If the superdiagonal of T could be considered a “perturbation” of its lower bidiagonal
part, i.e., if (3.14) holds for all j, then the first difficulty could (even quantitatively)
be overcome. A possible approach for that could be based on [19, Theorem 3.1], which
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Fig. 3.10. Relative GMRES residual norms
for the systems (3.2) with h = 1/16, ν = 0.01
(solid) and ν = 0.0001 (dashed), the respective
values δ = δ∗ (δ = 0.34 for ν = 0.01 and
δ = 0.4984 for ν = 0.0001), and the boundary
conditions (2.22)–(2.23).
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Fig. 3.11. Eigenvalues σjk, for
j, k = 1, . . . , 15, cf. (4.1), of the matrices
AV (1/16, 0.01, δ∗) ( o) and AV (1/16, 0.0001, δ∗)
(+), which correspond to the values of λj , μj ,
and γj , for j = 1, . . . , 15, shown in Figures 3.1
and 3.2, respectively.

describes the explicit mapping from b̂ to rn, given by pn(T ),

rn = pn(T ) b̂ =
[
(pn(T1) b̂

(1))T , . . . , (pn(TN ) b̂(N))T
]T

.(3.25)

The second difficulty appears to be more challenging to resolve. As suggested by
(3.6), a noticeable acceleration of convergence can only occur if all terms ‖pn(Tj)b̂

(j)‖
of significant value decrease (with some possible little variations) from some step
onwards. This point cannot, to our opinion, be easily quantified. In our model
problem we observe that the acceleration of convergence is slower at higher Peclet
numbers for problems whose parameters are otherwise the same. This is illustrated
by the following experiment.

Experiment 3.6. Consider Experiment 3.3, see Figures 3.1 and 3.2. For the large
mesh Peclet number Ph = 312.5, condition (3.14) is satisfied for all j (cf. Figure 3.2)
and, with our argument above, the system matrices Tj in (3.3) can indeed, with a
small inaccuracy, be considered as N lower bidiagonal matrices. However, the dif-
ferences between the eigenvalues λj , μj , and γj of the individual Toeplitz blocks Tj ,
j = 1, . . . , N , are slightly more pronounced for Ph = 312.5 than for Ph = 3.125. This
is mainly due to the larger differences between the individual λj , which cannot be
compensated for by smaller differences between the individual γj , respectively μj . In
this case we can therefore expect that after the step N − l the acceleration of conver-
gence for the larger mesh Peclet number Ph = 312.5 will be much less pronounced than
for the moderate mesh Peclet number Ph = 3.125. This is illustrated in Figure 3.10
which compares the relative GMRES residual norms ‖rn‖/‖b̂‖ for the two systems cor-
responding to the right-hand sides from the boundary conditions (2.22)–(2.23). Note
that the observed behavior is not at all obvious from the shapes of the corresponding
spectra shown in Figure 3.11.

4. Eigendecomposition and GMRES convergence analysis. In this sec-
tion we refine the analysis based on eigendecomposition of the system matrix AV in
(2.10). It is easy to see from (2.14)–(2.17) that the existence and form of this eigen-
decomposition are determined by the existence and form of the eigendecompositions
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of the matrices Tj , j = 1, . . . , N . If γjμj �= 0, which is for the case Ph > 1 and δ = δ∗
guaranteed by Lemma 3.1, then the N distinct eigenvalues of Tj are given by

σjk = λj + μjζ
−1/2
j ωk , ζj =

μj

γj
, ωk = 2 cos(khπ) , k = 1, . . . , N ,(4.1)

with the corresponding normalized eigenvectors given by

νjk Δj uk , k = 1, . . . , N ,

where Δj ≡ diag(ζ
−1/2
j , . . . , ζ

−N/2
j ) and νjk ≡ ‖Δj uk‖−1; see, e.g., [29, pp. 113–115].

Clearly, when |ζj | = |μj/γj | � 1, the eigenvectors of Tj are ill conditioned.
Obviously, the N2 eigenvalues of AV are the values σjk for j, k = 1, . . . , N . Fur-

thermore, the mixed product property of the Kronecker product shows that a unit
norm eigenvector corresponding to σjk is

yjk = χjk uj ⊗ [Δjuk] , χjk ≡ ‖uj ⊗ [Δjuk]‖−1 , j, k = 1, . . . , N .(4.2)

We denote the resulting eigenvector matrix of AV by

Y ≡ [y11, y12, . . . , y1N , . . . , yN1, yN2, . . . , yNN ] ≡ [Y1, . . . , YN ] .(4.3)

Since AV is diagonalizable we could have based our convergence analysis of
GMRES on its eigendecomposition. In particular, we could have applied the standard
GMRES convergence bound [28, Proposition 4],

‖rn‖ = min
p∈πn

‖p(AV )bV ‖

≤ κ(Y ) min
p∈πn

max
j,k=1,...,N

| p(σjk) | ‖bV ‖ ,(4.4)

where κ(Y ) = σmax(Y )/σmin(Y ) denotes the condition number of Y . However, as
noted in [13, 14], the term κ(Y ) in this bound is typically very large. For example,
when h = 1/16, ν = 0.01, and δ = δ∗ = 0.34, then a Matlab computation using
(4.2) yields κ(Y ) = 2.1207e + 17. The ill-conditioning of Y is not an oddity of our
specific model problem, but corresponds to the general strong nonnormality of dis-
cretized convection-diffusion operators, particularly for mesh Peclet numbers greater
than one; see, e.g., [26]. Such nonnormality makes the direct application of (4.4)
rather complicated for proving well-justified quantitative conclusions about the GM-
RES convergence for discretized convection-diffusion problems. Still, it can be useful
to look at the eigendecomposition in relation to the particular right-hand side and
study the behavior of the individual components in the GMRES computation [11, 12].
It might also be useful to consider worst-case bounds (for a related discussion see [20])
in some cases, in particular bounds based in the polynomial numerical hull and related
techniques, see [15].

We continue with some details of the eigenstructure of AV . Note that

yTjk yil = χjkχil (u
T
j ui) ⊗ (uT

k ΔjΔi ul) = 0 for j �= i ,

which gives the following.
Proposition 4.1. The eigenvectors of AV in the ordering given by (4.3) form

mutually orthogonal blocks, i.e., Y T
j Yi = 0 for j �= i.
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The proposition implies that the conditioning of Y is fully determined by the
conditioning of the eigenvectors yjk, k = 1, . . . , N , within each block Yj , j = 1, . . . , N ,
and that

κ(Y ) = max
j=1,...,N

κ(Yj) .(4.5)

In particular, if the eigenvectors within each block were mutually orthogonal, which
is equivalent to Δj = I for all j = 1, . . . , N , i.e., to AV = AT

V , then κ(Y ) = 1.

It follows from (4.2) that κ(Yj) is large whenever Δj is far from the identity
matrix, meaning that |ζj | must be either very large or very small. In our application
|ζj | < 1, with |ζj | � 1 (at least) for small indices j. For these indices κ(Yj) is very
large, and it is maximal for the minimal |ζj |.

For numerical illustration we use the parameters h = 1/16, ν = 0.01, and δ =
δ∗ = 0.34 and give the resulting values of |ζj | and κ(Yj), j = 1, . . . , N , in the following
table.1

j |ζj | κ(Yj) j |ζj | κ(Yj)
1 0.0010 7.2672e+16 9 0.1185 3.4121e+06
2 0.0042 2.8020e+16 10 0.1585 4.3948e+05
3 0.0096 1.5523e+14 11 0.2082 6.4019e+04
4 0.0176 2.2296e+12 12 0.2678 1.0790e+04
5 0.0286 7.4153e+10 13 0.3347 2.2326e+03
6 0.0432 4.0925e+09 14 0.4007 6.2599e+02
7 0.0623 3.1392e+08 15 0.4513 2.6995e+02
8 0.0870 3.0166e+07

In summary, the most ill-conditioned blocks Yj in our example correspond to the
tridiagonal Toeplitz systems in (3.3) that satisfy (3.14), and that are responsible for
the initial phase of slow GMRES convergence. Thus, the eigendecomposition reveals
which blocks are the most troublesome for the GMRES convergence.

5. Concluding discussion. This paper is devoted to the convergence analysis
of GMRES applied to an SUPG discretized convection-diffusion model problem with
dominating convection. The eigendecomposition of the discretized operator is known
analytically, but the transformation to the eigenvector coordinates is highly ill condi-
tioned. Therefore any analysis based on it, which aims at describing the initial stage
of convergence, must involve a rather complicated pattern of cancellation of poten-
tially huge components of the initial residual in the individual eigenspaces. Instead of
following this technically complicated and physically unnatural approach, we propose
another idea.

Assume that a linear algebraic system can be transformed using a well-conditioned
transformation to a new system with a structure of the matrix, not necessarily di-
agonal, for which the GMRES convergence can be more easily understood. Then
the geometry of the space is not significantly distorted by the transformation, and
using the particular structure of the transformed system we can describe the GMRES
convergence for the original problem.

1Note that excessive ill-conditioning of Yj particularly for small indices j leads to round-off errors
even when we use the analytic formulas (4.2) for the eigenvectors of A. Hence (4.5) does not hold in
our finite precision computation.
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In our application we use an orthonormal similarity transformation, and the trans-
formed system is block diagonal with nonsymmetric tridiagonal Toeplitz blocks. Our
approach clearly describes the relationship between the boundary conditions in the
model problem and the initial phase of slow GMRES convergence for the linear al-
gebraic system. Our results reveal, as a by-product, a possibly very complicated
relationship of the eigeninformation and GMRES convergence.

Our results can be extended to a three-dimensional model problem described
by Ramage [25] as well as to other separable second-order PDEs on rectangular do-
mains. Note that the fact that the tridiagonal blocks of our transformed system were
Toeplitz is not of any particular importance for the character of the GMRES con-
vergence. If we perturbed the nonzero constant diagonals of Toeplitz blocks so that
they were nonconstant but the relation between the magnitudes of the diagonals was
still approximately preserved, then the convergence behavior would not change much.
Application of the idea of using well-conditioned transformations to some easy-to-use
structure in a more general context will be a subject of further work.
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[19] J. Liesen and Z. Strakoš, Convergence of GMRES for tridiagonal Toeplitz matrices, SIAM
J. Matrix Anal. Appl., 26 (2004), pp. 233–251.
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