Security Trade-Offs in Cloud
Storage Systems

vorgelegt von

Dipl.-Wirt.-Inf.

Steffen Muller
geb. in Bielefeld

von der Fakultat IV - Elektrotechnik und Informatik
der Technischen Universitat Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Florian Tschorsch
Gutachter: Prof. Dr. Stefan Tai

Gutachter: Prof. Dr. Alexander Pretschner
Gutachter: Prof. Dr. Hannes Hartenstein

Tag der wissenschaftlichen Aussprache: 07.07.2017

Berlin 2017

Abstract

Securing software systems, is of paramount importance today. This is especi-
ally true for cloud systems, as they can be attacked nearly anytime from every-
where over the Internet. Ensuring security in general, however, typically has a
negative impact on performance, usability, and increases the system’s complex-
ity. For cloud systems, which are built for high performance and availability as
well as elastic scalability, security, therefore, may annihilate many of these ori-
ginal quality properties. Consequently, security, especially for cloud systems,
can be understood as a trade-off problem where security mechanisms, applied
to protect the system from specific threats and to achieve specific security goals,
trade in security for other quality properties.

For Cloud Storage Systems (CSS)—i.e., distributed storage systems that repli-
cate data over a cluster of nodes in order to manage huge data amounts, highly
volatile query load (elastic scalability), and extraordinary needs for availability
and fault-tolerance—this trade-off problem is particularly prominent. Already,
the different original quality properties of CSS cannot be provided at the same
time and, thus, lead to fundamental trade-offs such as the trade-off between
consistency, availability, and partition tolerance (see, e.g.: [53]). The piggy-
backed trade-offs coming from considering security as an additionally wanted
quality property of such systems lead to further trade-offs that must be decided
and managed.

In this thesis, we focus on the trade-offs between security and performance in
CSS. In order to not contradict the original design goals of CSS, a sensible mana-
gement of these trade-offs in CSS requires a high degree of understanding of the
relationships between security and performance in the security mechanisms of
a specific CSS. Otherwise, this can lead to a badly configured CSS which is a se-
curity risk or consumes a lot of resources unnecessarily. This thesis, hence, aims
at enhancing the understanding of the trade-offs between security and perfor-
mance in CSS as well as at improving the management of these trade-offs in
such systems.

For this, we present three independent contributions in this thesis. The first
contribution intends to improve the overall understanding of security in and
security requirements for CSS. We present two reference usage models that sup-
port a security engineer in understanding the general usage of cloud storage

services (e.g., Amazon Web Services (AWS) Simple Storage Service (53) or Goo-
gle Cloud Storage) and Not only SQL (NoSQL) systems (e.g., Apache Cassan-
dra (Cassandra) or Project Voldemort (Voldemort)) as well as abstract generic
components of these CSS. Based on this, we introduce two reference threat mo-
dels that specifically take into account essential architectural components of
the CSS, abstract the components, and, thus, allow for detailed threat analyses
of CSS. The gained insights into the security of CSS are essential to better un-
derstand and manage security trade-offs between security and performance in
CSS.

The second contribution is the quantification of the trade-offs between secu-
rity and performance for Secure Sockets Layer (SSL)/Transport Layer Security
(TLS) in CSS. SSL/TLS is a popular security mechanism used, amongst other
things, for securing the communication with and within CSS. For the quan-
tification of the performance impact of SSL/TLS, we provide a novel bench-
marking concept and corresponding benchmarking tool. Based on extensive
experiments, we identify selected relevant configuration options of SSL/TLS
on the trade-offs between security and performance in the NoSQL system Cas-
sandra. Furthermore, we demonstrate that diverse former optimization rules
of thumb for SSL/TLS in the context of CSS are no longer valid and various
configurations may lead to very different performance results.

As the third contribution, we introduce a new adaptive middleware to cope
with the trade-offs between security and performance in secure communicat-
ion via SSL/TLS of CSS at runtime automatically. In the Cloud, assumptions
made for finding a good a-priori security mechanism configuration during the
deployment of the system may change rapidly. This, in turn, may imbalance
and contradict the security and performance of a system build on top of the
CSS. With our Adaptive Transport Layer Security (ATLaS) middleware, we pro-
vide a way to build different specific adaptations for SSL/TLS to reconfigure a
CSS in such cases and, thus, to rebalance security and performance at runtime
automatically.

ii

Zusammenfassung

Das Absichern von Softwaresystemen ist heutzutage enorm wichtig. Dies gilt
insbesondere fiir Cloud-Systeme, da sie nahezu jederzeit von tiberall tiber das
Internet angegriffen werden konnen. Jedoch hat Sicherheit im Allgemeinen ei-
nen negativen Einfluss auf Performanz, Benutzbarkeit und erh6ht typischerweise
die Komplexitit eines Systems. Bei Cloud-Systemen, die fiir hohe Performanz
und Verfiigbarkeit sowie elastische Skalierbarkeit erstellt werden, kann Sicher-
heit entsprechend viele origindre Qualitditsmerkmale eines Systems zunichte
machen. Konsequenterweise kann Sicherheit, insbesondere fiir Cloud-Systeme,
als ein Trade-off-Problem verstanden werden, bei dem Sicherheit in Form von
Sicherheitsmechanismen, die ein System vor bestimmten Bedrohungen schiitzen
und bestimmte Sicherheitsziele durchsetzen, gegen andere Qualitdtsmerkmale
eines Systems eingetauscht wird.

Bei Cloud-Speichersystemen (CSS) — d. h. verteilten Speichersystemen, die Da-
ten in einem Cluster von Speicherknoten replizieren und fiir das Management
von groflen Datenmengen, von hoch volatilen Anfragelasten (Elastizitdt und
Skalierbarkeit) und fiir Hochverfiigbarkeitslosungen eingesetzt werden — ist
dieses Trade-Off-Problem sehr hervorstechend. Bereits die Erfiillung der ori-
gindren Qualitdtsmerkmale in CSS fordert Trade-Offs zutage, wie z. B. den Trade-
Off zwischen Konsistenz, Verfiigbarkeit und Partitionstoleranz (siehe z. B.: [53]).
Die zusétzlichen Trade-Offs, die sich durch die Hinzunahme von Sicherheit als
gewlinschtes Qualitdtsmerkmal solcher Systeme ergeben, fithren zu weiteren
Trade-Offs, die entschieden und gemanagt werden miissen.

In dieser Dissertation werden die Trade-Offs zwischen Sicherheit und Perfor-
manz in CSS ndher untersucht. Um die origindren Designziele von CSS nicht zu
konterkarieren, erfordert ein sinnvolles Management dieser Trade-Offs in CSS
ein hohes Maf an Verstandnis der Zusammenhénge zwischen Sicherheit und
Performanz in den Sicherheitsmechanismen eines CSS. Andernfalls kann ein
schlecht konfiguriertes CSS die Folge sein, was ein Sicherheitsrisiko darstellt
oder unnétig viele Ressourcen verwendet. Diese Dissertation zielt deshalb da-
rauf ab, den Leser zu einem solch hoheren Maf3 an Verstindnis der Trade-Offs
zwischen Sicherheit und Performanz in CSS zu verhelfen und ein besseres Ma-
nagement dieser Trade-Offs in diesen Systemen zu ermoglichen.

ii

Dazu werden drei unabhingige wissenschaftliche Beitrdge in dieser Disserta-
tion vorgestellt. Der erste Beitrag zielt auf die Verbesserung des Verstdndnisses
der sicherheitskritischen Punkte in CSS. Dazu werden zuerst zwei Referenz-
Nutzungsmodelle prasentiert, die einen Security Engineer beim Verstehen der
generellen Nutzung von cloud storage services — wie z. B. Amazon Web Ser-
vices (AWS) Simple Storage Service (S3) oder Google Cloud Storage — und Not
only SQL-Systemen (NoSQL-Systemen) — wie z. B. Apache Cassandra (Cassan-
dra) oder Project Voldemort (Voldemort) — unterstiitzen und generelle Kom-
ponenten dieser CSS abstrahieren sowie vereinheitlichen. Aufbauend auf den
Referenz-Nutzungsmodellen werden zwei Referenz-Bedrohungsmodelle erstellt,
die architekturelle Komponenten von CSS berticksichtigen und eine tiefgehende
Bedrohungsanalyse erlauben. Die gewonnenen Erkenntnisse konnen dann fiir
ein besseres Management der Trade-Offs zwischen Sicherheit und Performanz
in CSS verwendet werden.

Der zweite Beitrag ist die Quantifizierung der Trade-Offs zwischen Sicherheit
und Performanz von Secure Sockets Layer (S5SL)/Transport Layer Security (TLS)
in CSS, einem Sicherheitsmechanismus der verstarkt zur Absicherung von Kom-
munikation in CSS zum Einsatz kommt. Fiir die Quantifizierung des Perfor-
manzeinflusses von SSL/TLS in CSS wird zuerst ein neuartiges Benchmarking-
Konzept entwickelt und ein entsprechendes Benchmarking-Tool vorgestellt. Auf
Basis von ausgiebigen Experimenten werden dann verschiedene relevante Kon-
figurationsoptionen von SSL/TLS fiir die Trade-Offs zwischen Sicherheit und
Performanz in dem NoSQL-System Cassandra identifiziert. Weiterhin wird de-
monstriert, dass einige frither geltende Optimierungsregeln fiir SSL/TLS im
Kontext von CSS nicht mehr gelten und verschiedene Konfigurationen zu ganz
unterschiedlichen Ergebnissen fiithren konnen.

Als dritter Beitrag wird eine neuartige adaptive Middleware prisentiert, die
die automatische Behandlung von Trade-Offs zwischen Sicherheit und Perfor-
manz beim Einsatz von SSL/TLS in CSS zur Laufzeit ermoglicht. In der Cloud
konnen sich Annahmen, die wihrend des Deployments von CSS zu bestimm-
ten Konfigurationen gefiihrt haben, sehr schnell d&ndern. Dies kann dann wie-
derum zu unausgewogenen oder sich widersprechenden Sicherheitskonfigu-
rationen fithren. Die adaptive Middleware, Adaptive Transport Layer Security
(ATLaS), ermoglicht das Erstellen von verschiedenen Adaptionen fiir SSL/TLS,
die automatische Rekonfigurierungen und eine erneute Balancierung von Si-
cherheit und Performanz in CSS zur Laufzeit erlauben.

iv

Acknowledgments

Foremost, I would like to thank my supervisor, Prof. Stefan Tai, for his support
of my research work and for providing an enjoyable and motivating working
environment in Karlsruhe. I very much appreciate the opportunities that I was
given as well as the time and effort that Stefan has invested in me. Stefan’s
passion for Cloud Computing and new technologies was a perfect match to
my own continuous curiosity and learning-by-doing approach to new deve-
lopments in the IT industry. Besides my supervisor, I would like to thank Prof.
Alexander Pretschner and Prof. Hannes Hartenstein for their valuable feedback
on my thesis as well as Prof. Hartmut Schmeck who hosted me for one and a
half year at the Institute for Applied Informatics and Formal Description Met-
hods (AIFB) at the Karlsruhe Institute of Technology (KIT), since Stefan moved
to the TU Berlin in June 2014.

I thank my colleagues and friends for the work that we accomplished toget-
her and for the great times that we spent in Karlsruhe at the KIT and in Ber-
lin during my short trips to the TU Berlin since 2014: Alexander Lenk, André
Wiesner, Bugra Derre, Christian Gitte, Christian Hirsch, Christian Janiesch, Da-
vid Bermbach, Dominic Ernst, Erik Wittern, Fabian Rigoll, Frank Pallas, Gre-
gory Katsaros, Ingo Mauser, Jacob Eberhardt, Joern Kuhlenkamp, Kaibin Bao,
Marco Peise, Markus Klems, Marlon Braun, Max Ulbricht, Michael Menzel,
Nelly Schuster, Robin Fischer, Sebastian Kochanneck, Ulrich Scholten, as well
as my numerous former colleagues from the Center of Excellence for Applied
Security Technology (KASTEL). Especially, I want to express my gratitude to
the co-authors of the papers that this thesis is based on: David Bermbach, Frank
Pallas, Jacob Eberhardt, Robin Fischer, Silvia Balaban, Tobias Wuechner, and
Prof. Stefan Tai. I would like to furthermore thank Rita Schmidt, Elisabeth Lie-
der, and Anita Hummel for their great administrative support in Karlsruhe and
Berlin.

Additionally, I would like to thank my friends and family for their great sup-
port over the years, in particular: my mother, Hannelore; my sister, Kristin, and
her husband, Carsten; as well as my friend, Benjamin Mascheck who proofread
many parts of this thesis.

Finally, I would like to thank anyone who in some way or another helped me

with finishing this thesis—conference and workshop participants I met, anony-
mous reviewers, or someone I have forgotten to mention.

Duesseldorf, July, 2017 Steffen Mueller

Vi

Contents

Abstract

Zusammenfassung

Acknowledgments

Contents

Introduction

. Problem Statement and Approach

Contributions

2.1. Reference Usage and Threat Models of Cloud Storage Systems . .
2.2. Experimental Trade-Off Analyses of Transport Layer Security in
Cloud Storage Systems
2.3. Adaptive Middleware for Transport Layer Security

Fundamentals
3.1. Cloud StorageSystems

3.2

3.1.1.
3.1.2.
3.1.3.

DataModels
DistributionModels
Example Cloud Storage Systems
3.1.3.1. Cloud Storage Services
3.132. NoSQLSystems

Security Engineering for Cloud Storage Systems

3.2.1.
3.2.2.
3.2.3.

Processes, Approaches, and Activities
General Threats to Cloud Storage Systems
Security Trade-Offs in Cloud Storage Systems
3.2.3.1. Identification of Security Trade-Offs on the Ex-
ample of Security Patterns
3.2.3.2. Typical Security Patterns and Mechanisms

Vii

O ©

10
11

13
13
15
17
19
19
21
24
27
28
30

32
35

vii

Contents

viii

Reference Usage and Threat Models of Cloud Storage
Systems

Background and Related Work
4.1. Threat Analyses in the Context of Security Engineering
42, ThreatModeling
4.3. ReferenceModeling
44. RelatedWork
4.4.1. Reference (Usage) Models of Cloud Storage Systems
4.42. Threat Models/Analyses of Cloud Storage Systems

Usage Models

5.1. Cloud Storage Services
52. NoSQLSystems
53. Summary

Threat Models

6.1. Cloud Storage Services

6.2. NoSQLSystems
6.2.1. Voldemort
6.22. Cassandra e
6.2.3. Generalization,

63. Summary

Exemplary Threat Analyses

7.1. UseCasebased on DynamoDB
72. UseCasebasedonCassandra
73, 5ummary

Conclusion and Discussion

Experimental Trade-Off Analyses

Background and Related Work

9.1. Communication in Cloud Storage Systems

9.2. Performance Impact and Optimizations of Transport Layer Se-
curity e

9.3. Cipher Suite Configuration

9.4. Java-based Transport Layer Security Implementations

95. RelatedWork

45

49
49
50
53
54
54
55

57
60
62
64

65
65
68
68
70
72
73

75
77
78
80

81

Contents

10. Comparing different Transport Layer Security Implementations 101
10.1. Transport Layer Security Implementation Comparison Frame-

workforJava 101
10.2. Comparison of Selected Transport Layer Security Implementati-
onsforfava 105
103.Summary 109
11.Measuring the Transport Layer Security Overhead in Cloud Storage
Systems 113
11.1. Benchmarking Approach 113
112. TLSBench. 117
11.3.5ummary 119
12.Experimental Trade-Off Analyses of Transport Layer Security in
Cloud Storage Systems 121
12.1. Analyses of Select Cloud Storage Systems 121
121.1. DynamoDBo oo oo 121
1212 . Cassandra o 123
12.1.2.1. Experiment AR 125
12.1.2.2. ExperimentRR 126
12.1.2.3. Experiment AR-RR 130
12.1.2.4. ExperimentRR-HL 132
121.3. Summary 133
12.2. Analyses of Cipher Suite Configurations 134
12.2.1. Experiment DHEvs. ECDHE 135
12.2.2. Experiment CBCvs. GCM 138
12.2.3. ExperimentR3-CQ L. 141
1224, Summary 144
12.3. Analyses of Different Transport Layer Security Implementations . 146
12.3.1. Experiment AES-NI 146
12.3.2. Experiment Netty/OpenSSL 148
12.3.3. Experiment WolfSSL 151
12.34. Summary 153
13.Conclusion and Discussion 155

IV. Adaptive Middleware for Transport Layer Security 159

14.Background 163
14.1. (Self-)Adaptivityo 163
14.2. Adaptation Strategies, Tactics, and Actions 164
14.3. Monitoring L 166

iX

Contents

15. Architecture
15.1. Customized Java Secure Sockets Extension
15.2. Event Registry and General TLS Statistics
15.3. Adaptation Engine, Adaptation Strategies, and Reconfiguration
154.Summary

16.Instantiation

16.1. Cipher Suite Adaptation
16.1.1. Permanent Cipher Suite Reconfiguration in Cassandra .
16.1.2. Cipher Suite Reconfiguration of Single RR Connections
in Cassandra at the Connection Initiation

16.1.3. Renegotiation of Cipher Suites of Established RR Con-
nectionsinCassandra
16.2. Adaptation of Maximum Transport Layer Security Record Size .
16.3.Summary

17.Evaluation
17.1. Threat Analysis,
17.2. Performance

18.Related Work
18.1. Transport Layer Security Adaptations
18.2. Quality of Service and General Adaptation Frameworks and Ar-
chitectures

19.Conclusion and Discussion

V. Finale
20.Conclusions

21.0utlook

Appendix

A. Detailed Experiment Results of Analyses of Cipher Suite Confi-
gurations
A.l. Experiment DHEvs. ECDHE
A2. ExperimentCBCvs.GCM
A3. ExperimentR3-CQ,

169
170
171

. 172

174

175
176

. 176

178

180

. 182

183
185
185
186

189
189

190

191

193
195

199

201

Contents

B. Detailed Experiment Results of Analyses of Different Transport

Layer Security Implementations 219
B.1. Experiment AES-NI. 219
B.2. Experiment Netty/OpenSSL 224
B.3. Experiment WolfSSL 225
C. Experiment Results of the Performance Evaluation of ATLaS 229
Bibliography and Lists 233
Bibliography 233
List of Figures 263
List of Tables 265

Glossary 267

Xi

Part I.

Introduction

Securing software systems and applications running in the Cloud, is an enor-
mous and broad challenge, because such systems may experience various at-
tacks nearly everywhere over the Internet at any given time. In consequence,
different security mechanisms have to be employed to these systems in order
to secure them [66, 174, 230, 240, 307].

However, security generally tends to impact other qualitative system proper-
ties. Security typically has a negative impact on performance and usability
while increasing the system’s complexity. Also, it may even render cloud ser-
vices economically inefficient (see, e.g.: [64, 193, 277]). Therefore, security can
be understood as a trade-off problem where security mechanisms, applied to
protect a system from specific threats and to achieve specific security goals, are
traded in for other quality properties of a system [246].

Particularly in the Cloud, where many systems are designed for performance,
availability, and elastic scalability, security can offset the benefits gained by
using these systems. Cloud Storage Systems (CSS)—e.g., Amazon Web Ser-
vices (AWS) Simple Storage Service (S3), Google Cloud Storage, Project Volde-
mort (Voldemort), Apache Cassandra (Cassandra), Apache HBase (HBase), and
AWS DynamoDB—are such systems. CSS are used for building systems on top
of them and are distributed storage systems that replicate data over a cluster
of nodes (i.e., cloud storage services offered by public cloud storage providers,
or Not only SQL (NoSQL) systems run by the own organization in the private
or public Cloud). They are designed for the management of huge amounts
of data, highly volatile query load (elasticity and scalability), or extraordinary
needs for availability and fault-tolerance [61, 85].

The different quality properties of CSS, such as performance, scalability, and
availability can, however, not be provided at the same time and lead to fun-
damental direct and indirect trade-offs. In order to optimize a CSS for perfor-
mance, availability, and elastic scalability, other quality properties are relaxed
inevitably. For instance, there is the trade-off between consistency, availabi-
lity, and partition tolerance in CSS where consistency guarantees are traded in
for a higher availability, resulting in rather weak eventual consistency guaran-
tees [2, 39, 53]. Adding security as a desired quality property of CSS, yields to
further trade-offs in CSS that have to be decided and managed.

In this thesis, we focus on the trade-offs between security and performance in
CSS. For a sensible management of these trade-offs in CSS, a high degree of
understanding of the relationships between security and performance in the
applied security mechanisms of a CSS is required. Otherwise, a badly confi-
gured CSS may, in the best case, consume a lot of resources unnecessarily or
may, in the worst case, be an easy target for attackers. This thesis, hence, aims
at enhancing the understanding of the trade-offs between security and perfor-
mance in CSS as well as at improving the management of these trade-offs in

such systems. After reading this thesis, a reader should, at least, be able to
make decisions regarding these trade-offs in CSS in a more informed way.

1. Problem Statement and
Approach

When securing CSS and systems in general, a security engineer applies reaso-
nable security mechanisms to a system in order to protect the system from spe-
cific threats and to achieve security goals. For securing CSS in particular, there
are diverse security mechanisms available that prevent these systems from spe-
cific threats (see, e.g.: [108]). Encryption of stored data (data-at-rest), for exam-
ple, should protect the system against the threat information disclosure. Anot-
her security mechanism of CSS is Secure Sockets Layer (SSL)/Transport Layer
Security (TLS) which should prevent the communication of a CSS from being
eavesdropped (information disclosure) or modified (tampering) (see also: Sec-
tion 3.2.3.2). SSL and TLS are two versions of a secure communication protocol
for which we use TLS collectively, herein.!

But, as described, every applied security mechanism also impacts various other
system qualities. The resulting diverse direct and indirect trade-offs between
security and other quality properties of a CSS have to be balanced against each
other properly. However, such balancing is not as simple or as straightforward
as it might appear. Such a balancing sometimes resembles the legendary ride
on a razor blade.

Most security mechanisms provide various configuration options. TLS, for
example, provides diverse cipher suites [170, 190]; for data encryption, vari-
ous ciphers with different key lengths and operation modes [138, 148] can be
chosen. On the one hand, these configuration options allow for reusing and
adapting the security mechanisms to different situations and use cases by choo-
sing between different implementations, algorithms, ciphers, etc. On the other
hand, one configuration of a security mechanism can have a completely diffe-
rent behavior compared to another configuration [138, 170, 181, 190]. For in-
stance, TLS cipher suites using the cipher Rivest Cipher 4 (RC4), typically have
a better performance (i.e., maximum throughput) than cipher suites based on
the Advanced Encryption Standard (AES) cipher [181, 190, 252]. From a perfor-
mance perspective, using RC4 may seem like a feasible option. Unfortunately,

n later chapters, we differentiate both protocols, again, when we clarify the differences of both
protocols (see, e.g.: Section 3.2.3.2).

1. Problem Statement and Approach

RC4, in contrast to AES, is deemed to be completely insecure (see, e.g.: [8]) and,
thus, using RC4 as a cipher endangers the entire system. This example should
briefly illustrate how the security mechanism configuration has a major impact
on the security of a system.

But also the performance impact of a security mechanism configuration in a
complex system like a CSS often differs from considered expectations or is even
completely unknown. For example, the concrete performance impact of TLS in
Cassandra depends massively on other system settings such as the chosen re-
plication factor and the consistency level (see also: Part III and [190, 217]). In
contrast to the performance impact of TLS in Cassandra, the performance im-
pact of secure communication in HBase depends on the cluster size and may be
way beyond acceptable ranges of up to 47% for large cluster sizes [217]. There
are many other configuration options for TLS as well as diverse configuration
options for other security mechanisms such as data encryption that may impact
the performance of the entire system.

A security engineer has to consider how all of this will impact on a security
mechanism and on the entire system—i.e., the security perspective as well as
the performance perspective—in order to balance the trade-offs between secu-
rity and performance properly. The security of the entire system should be as
high as possible. In turn, the performance overhead of the employed security
mechanisms in the CSS, which may be bigger for one configuration and smaller
for another, should be as small as possible to not waste resources unnecessarily.
In consequence, the security engineer has to decide which security mechanisms
need to be employed and on the concrete configurations, while the configura-
tion options of the mechanisms can be used as parameters for balancing the
security and performance.

For an adequate balancing of security and performance in a CSS, we need to
better understand the consequences of security mechanism configurations. We
need to know: what are the consequences of the different configuration options
in terms of security and performance. But the knowledge regarding such con-
sequences in a system, and in CSS especially, are not available currently, since
security engineering for CSS is a brand new field and research challenges yet
to be faced. Even for “standard” security mechanisms in CSS such as TLS, we
often do not know the consequences in CSS, because, as we will lay out in this
thesis, CSS often behave differently to other systems like web servers secured
via TLS (see, e.g.: Part III).

In this thesis, we, therefore, intend to enhance the understanding of the trade-
offs between security and performance in CSS as well as improve the manage-
ment of these trade-offs in such systems, using the example of TLS. For this,
we rely on selected security engineering methods and approaches—for the se-
curity perspective on the trade-offs—as well as on other approaches, such as

for performance benchmarking—for the performance perspective on the trade-
offs. We will describe three standalone contributions in order to make security
trade-off decision making more rational and to show how a balancing of the
trade-offs between security and performance in CSS can be supported by our
contributions. Thereby, the standalone contributions, can be used in security
engineering processes or in security trade-off management approaches such as
the one sketched by Koehler in [154] or by Pallas et al. in [217].

In the next chapter, the three standalone contributions are described in more
detail.

2. Contributions

We propose three standalone and independent contributions which can be used
in security engineering processes or in other approaches dealing with security
trade-offs in CSS:

o We provide reference usage and reference threat models for cloud storage
services as well as for NoSQL systems run by the own organization that
help security engineers to better understand CSS, their generic usage,
their flaws, and their security (mechanisms) (Section 2.1).

o We delineate how to quantify the performance impact of select security
mechanism (TLS) in CSS based on experiments and describe an extended
trade-off analysis of a select CSS (Section 2.2).

e We introduce a new adaptive middleware to cope automatically with the
trade-offs between security and performance in secure communication of
CSS at runtime (Section 2.3).

These contributions are delineated in more detail in the next sections.

2.1. Reference Usage and Threat Models of Cloud
Storage Systems

For a better understanding of the security mechanisms and management of the
trade-offs between security and performance, we have to scrutinize the secu-
rity of a system and the threats to specific parts of a system. In many security
engineering processes and approaches, therefore, a threat analysis is designa-
ted (see also: Section 3.2). As CSS are meanwhile like standard components in
large Cloud-based systems, a threat analysis is mandatory for many enterpri-
ses which run systems based on CSS and, thus, have to assess threats to these
systems.

In recent years, either only vague descriptions of the threats to CSS have been
proposed, for example in [96] or in [106] or narrowly scoped threat analyses
for very specific prototypes or security mechanisms have been made (see also:

2. Contributions

Section 4.2). Neither these vague descriptions of threats to CSS nor the specific
threat analyses can be used to achieve a deeper understanding of the security
in a concrete system, because important details of the architecture are not con-
sidered.

This leads to our first research question:

Research Question 1. How can we analyze the threats to different CSS with diverse
security mechanisms in diverse concrete systems to better understand the security of
the system and the impact of specific security mechanisms?

In this thesis, we propose two reference usage models that abstract the general
usage of CSS from a user’s perspective. During our research on CSS and after
performing multiple threat analyses of different CSS, we were able to figure out
commonalities among different CSS which we refined into these usage models.
We describe a generic usage model of cloud storage services and of NoSQL sys-
tems deployed on compute clouds like AWS Elastic Compute Cloud (EC2), the
Google Compute Cloud, Microsoft Azure Virtual Machines (VM), OpenStack,
or Eucalyptus.

Based on these usage models, threat models can be derived easily. Thus, we de-
lineate two reference threat models of CSS based on these usage models using
the threat modeling and analysis approach based on Microsoft’s Security Deve-
lopment Lifecycle (SDL): a threat model of cloud storage services and a threat
model of NoSQL systems deployed on compute clouds. Using these reference
threat models, security engineers are able to model and analyze threats to their
own systems and applications using CSS. Our reference threat models, there-
fore, can serve as a starting point for a detailed threat analysis. Hence, the first
contribution of this thesis are the usage and threat models of CSS (Part II).

2.2. Experimental Trade-Off Analyses of Transport
Layer Security in Cloud Storage Systems

In order to quantify the performance impact of a security mechanism and dif-
ferent security mechanism configurations, we need to benchmark the perfor-
mance impact of security mechanisms and their configurations. At a first glance,
benchmarking the performance impact of security mechanisms in CSS looks
similar to a standard performance benchmarking approach [190]. However,
various security mechanisms require different approaches for measuring their
performance impact, since the performance of a CSS and the performance im-
pact of security mechanisms within the CSS depend on various factors. Some

10

2.3. Adaptive Middleware for Transport Layer Security

security mechanisms can be benchmarked easily, other security mechanisms
cannot be benchmarked, for example audit trails.

In this thesis, we focus on TLS in CSS as one example security mechanism in
CSS. So, the second research question is:

Research Question 2. How can we quantify the performance impact of TLS confi-
gurations in various CSS and what are relevant configuration options of TLS for the
trade-offs between security and performance in CSS?

In Part III, we show a benchmarking approach for TLS in CSS, a tool for bench-
marking TLS configurations in CSS, and an experimental trade-off analysis of
different configuration options influencing the trade-offs between security and
performance focusing on the example of TLS as the second contribution of this
thesis. We conduct a detailed experimental trade-off analysis of TLS in Cassan-
dra to find relevant configuration options of TLS in CSS. Therefore, we analyze
the impact of different cipher suites as well as different replication and consis-
tency settings in Section 12.2. The cipher suites are the most important configu-
ration option of TLS in a CSS, because a cipher suite condenses the entire com-
plexity of the TLS protocol as well as security and performance properties to a
specific string (see also: Section 9.3). The cipher suites as well as different repli-
cation and consistency settings result in different security and performance and
can be used for balancing the trade-offs between security and performance.

Furthermore, an often ignored configuration option of TLS in research is the
TLS implementation itself. As more and more TLS implementations are avai-
lable, the TLS implementation used in a CSS can be seen as a configuration
option in itself. The TLS implementation used contributes to or even undermi-
nes the security—for example, if the TLS implementation does not support any
secure cipher suite or the latest TLS protocol version—as well as the perfor-
mance. We, thus, also analyze different TLS implementations that can be used
in Java from a security features and performance perspective (Section 12.3). In
doing so, we provide a conceptual comparison framework for Java-based TLS
implementations for selecting an appropriate TLS implementation for a CSS
and benchmark different TLS implementations in Cassandra as another part of
this second contribution.

2.3. Adaptive Middleware for Transport Layer
Security

After having understood the consequences of a security mechanism and its dif-
ferent configurations in a CSS, we can deploy a CSS with a “good” security

11

2. Contributions

mechanism configuration. For this, we can benchmark the different security
mechanism configurations in order to find a promising a-priori configuration.
But, in the Cloud, the deployment environment and the assumptions made
for finding a proper a-priori security mechanism configuration may change ra-
pidly (see, e.g.: [151, 173, 183]), whereas CSS are typically running for a long
time and can often not be reconfigured easily during operations, because this
requires the CSS to be shut down or restarted and, thus, may contradict the pri-
macy of availability and performance of the entire system. As a consequence,
the trade-offs between security and performance may be imbalanced in a spe-
cific situation or after running the CSS for a while. Hence, the question is:

Research Question 3. How can we support required reconfiguration of TLS in the
dynamic deployment environment of CSS in order to rebalance the trade-offs between
security and performance at runtime automatically?

An adaptive middleware is a way of coping with the dynamic deployment en-
vironment of CSS in the Cloud. Adaptive security concepts have won great
popularity in recent years [165, 310]. An adaptive middleware may (re-)config-
ure the applied security mechanisms like TLS in a CSS at runtime automatically.
In specific situations, the middleware may adapt the security mechanism in the
CSS. Such specific situation may arise if, for instance, we have to change the
enabled cipher suite in a CSS at runtime as a reaction to a changed security
policy.

We have built such an adaptive middleware for TLS as the third contribution:
Adaptive Transport Layer Security (ATLaS) (Part IV). ATLaS, therefore, provi-
des an adaptive middleware environment that aims at (re-)balancing the trade-

offs between security and performance of TLS via specific adaptations at run-
time automatically.

12

3. Fundamentals

In this chapter, we will discuss the fundamentals of this thesis and introduce a
common terminology for the following chapters. We start by describing se-
lected details of CSS (Section 3.1). As security “[...] 1is a terribly overloa-
ded word, which often means quite incompatible things to different people
[...]17 [22, p. 15], we, then, have to clarify our understanding of security, secu-
rity engineering, and security trade-offs respectively (Section 3.2).

Thereby, the sections of this chapter are partially based on material previously
published as the evaluation report and the final report of Center of Excellence
for Applied Security Technology (KASTEL) [71, 72].

3.1. Cloud Storage Systems

Cloud storage promises to provide virtually unlimited storage capacity to users
on-demand over broad network access while the capacity is usually paid per
use [191]. In this thesis, we concentrate on CSS like S3, Google Cloud Storage,
Voldemort, Cassandra, HBase, or DynamoDB that can be used for building
own applications and services on top of them. This means that we refer to
cloud storage that is provided following the Infrastructure-as-a-Service (IaaS)
service model [198].

While application data has usually been stored in relational database systems
in the past, ongoing developments like Web 2.0, Cloud Computing, and Big
Data led to a broader variety of database systems with different specifics such
as different data models and different distribution models. For instance, the re-
quirements in the context of web applications have over the past years shifted
towards storage solutions having to cope with huge amounts of data, highly
volatile (elasticity and scalability) query load, or extraordinary needs for avai-
lability and fault-tolerance [61, 73, 161, 167]. These different quality proper-
ties like performance, scalability, and availability can, however, usually not be
provided at the same time which, thus, leads to fundamental inherent trade-
offs. In order to optimize a CSS for a certain quality property, other quality
properties are then usually relaxed to a certain extent. For example, many CSS

13

3. Fundamentals

weaken the traditional consistency of relational database systems and only pro-
vide eventual consistency [3, 39, 42, 53, 299] or confine the possible data query
functionality to a comparably simple set of queries in exchange for higher per-
formance [41, 241]. In CSS, additionally, the monolithic architectures of the
formerly dominant relational database systems are consequently broken down
to more flexible architectures that allow the systems to be better scaled out on
clusters of nodes running on lower-price hardware [157, 161] (see also: Secti-
ons 3.1.1 and 3.1.2).

As a result of these changes and developments, a plethora of new CSS arose
[161]. Due to their focus on specific quality properties and reduced query
functionality, many of these new CSS, however, are designed for specific use
cases instead of being one-size-fits-all solutions like relational database systems
have been in prior times [241]. Hence, CSS are often used for state management
in specific use cases. For example, LinkedIn? uses the CSS Voldemort (Sec-
tion 3.1.3) for their “Who's Viewed My Profile” functionality [164]. Other exam-
ples are Netflix® that uses Cassandra for their data management [70] or Amazon
that initially built S3 and the underlying Dynamo architecture for their shop-
ping cart purposes [85].

For CSS, we distinguish between cloud storage services and NoSQL systems
deployed on compute clouds like AWS EC2, Google Compute Cloud, Micro-
soft Azure VM, OpenStack, or Eucalyptus. CSS like S3, Google Cloud Data-
store, DynamoDB, etc. are cloud storage services managed by cloud storage
providers. CSS such as Voldemort, HBase and Cassandra are systems that are
typically self-maintained by the users and installed on compute cloud services.
Thereby, cloud storage services are typically NoSQL systems provided as a ser-
vice by a cloud storage provider.

Whether the respective CSS is a cloud storage service or a NoSQL system de-
ployed on a compute cloud, CSS are distributed storage systems which are
spread over a cluster of nodes and replicate their states within the cluster. The
cluster may run in the public, private, or hybrid Cloud [198] in different data
centers distributed all over the world [241]. In the case of cloud storage ser-
vices, only the cloud storage provider has full access to the CSS. NoSQL sys-
tems deployed on a compute cloud, in turn, have to be completely configured
and managed by the user or the own organization. Both types of CSS allow,
similar to traditional relational database systems, to define different users with
specific access privileges (multiuser) to the CSS and the stored data such as ad-
ministrators and other users (see also: [46, 47, 48]). As cloud storage services,
in contrast to NoSQL systems, are typically offered to a broader set of users
which may belong to different organizations, cloud storage services typically

’http://www.linkedin.com
Shttp://www.netflix.com

14

http://www.linkedin.com
http://www.netflix.com

3.1. Cloud Storage Systems

support multitenancy which isolates user accounts belonging to different orga-
nizations using the same CSS (see, e.g.: [66] or [123]). Multitenancy requires
multiuser access privileges and an additional separation and isolation of the
different tenants [66, 123, 276].

Summarizing, we define CSS for the purpose of this thesis as:

Definition 1. CSS are systems providing cloud storage that can be used for building
own cloud applications and services on top of them. They are typically running in clus-
ters of nodes, are amongst others designed for performance, scalability, and availability,
and are often only considered for specific use cases, due to their specific characteris-
tics, for example, regarding their provided data models and query functionality. For
CSS, we distinguish between cloud storage services and NoSQL systems deployed on
compute cloud services.

3.1.1. Data Models

The rise of CSS led to a broader variety of data models. In this section, we in-
troduce different data models of CSS and their data query functionality. For the
data models, we differentiate—based on the categorization of NoSQL systems
used in [40, 60, 88, 241, 242]—between four data models of both, cloud storage
services and NoSQL systems:

o CSS with a key-value data model (key-value stores) can be seen as simple dis-
tributed maps or hash tables. Such stores allow the user to store, retrieve,
update, and delete data items—key-value pairs—by specifying a key. The
key is required nearly for any operation on a key-value store. Whereas,
the value of the key-value pair is opaque to the key-value store. This
means that we can store whatever we like as the value. This also means
that we usually cannot search within the values of a key-value store. Ho-
wever, there are specific solutions that support searching in these values
that are, though, out of scope of this thesis. In many key-value stores,
key-value pairs can be arranged in so-called buckets (see, e.g.: S3 in Sec-
tion 3.1.3.1) or in stores (see, e.g.: Voldemort in Section 3.1.3.2). Buckets
and stores are similar to tables in relational databases [241]. In conse-
quence, key-value stores have a very simple data model, but this sim-
ple data model eases scaling out key-value stores. Due to their limited
query functionality, key-value stores are often used for storing session
information, user profiles and preferences, or shopping cart data [241].
Example key-value stores are S3 (see also: Section 3.1.3.1), Google Cloud
Storage (see also: Section 3.1.3.1), and Voldemort (see also: Section 3.1.3.2).

15

3. Fundamentals

16

o CSS with a document-oriented data model (document stores) are similar to

key-value stores. In contrast to key-value stores, the stored values are
not opaque to the CSS. The values of a document store are so-called docu-
ments. Such documents have a structure and data types. For example, a
purchase order may be stored in a document store via the key orderId
which is an integer. In addition to this, the purchase order may contain
a customerName that is a string value, a prize that is a double value,
and multiple orderItems that are complex elements referencing other
documents within the document store. The given data structure allows a
user to search for specific values not only by the key thanks to more com-
plex queries than in key-value stores. In various document stores, the do-
cuments are stored in Extensible Markup Language (XML) or JavaScript
Object Notation (JSON). Document stores are often used for content ma-
nagement systems, blogging platforms, or e-commerce applications [241].
Microsoft Azure DocumentDB (Azure DocumentDB), MongoDB, or Apa-
che CouchDB (CouchDB) are instances of document stores.

CSS with a column-oriented data model (column stores) are arguably the most
popular type of CSS, which can be seen in their widespread adoption.
There is a large number of column stores available as open source, like,
for example, Cassandra (see also: Section 3.1.3.2), HBase (see also: Sec-
tion 3.1.3.2), etc. Additionally, there are various cloud storage services
with a column-oriented data model such as DynamoDB (see also: Sec-
tion 3.1.3.1) or Google Cloud Datastore (see also: Section 3.1.3.1). All
these column stores are more or less based on the original design propo-
sed for Bigtable by Chang et al. in [61] who define a specific data format.
This data format of a “[...] Bigtable is a sparse, distributed, persistent
multidimensional sorted map. The map is indexed by a row key, column
key, and a timestamp; each value in the map is an uninterpreted array
of bytes.” [61] This design extends the distributed map of a key-value
store so “[...] that the value of the map becomes another map which may
have separate entries for any keys of the outer map. When all inner maps
use the same set of keys, i.e., there is a fixed database schema, then the
column store can be represented as a kind of table where the key of the
outer map defines the row and the key set of the inner map(s) defines
column names.” [41] Although the table-like structure may look similar
to tables in relational database systems, there are several key differen-
ces. For example, the key set of the inner map—often called column fa-
mily (see, e.g.: Cassandra in Section 3.1.3.2) or table (see, e.g.: DynamoDB
in Section 3.1.3.1)—is not fixed unless enforced by and in an application.
Furthermore, often only the row key is indexed or, in some column stores,
additionally, there is a secondary index. As a consequence, queries which
retrieve rows based on other columns have to scan the entire cluster (see

3.1. Cloud Storage Systems

also: Section 3.1.2). Since scanning the entire cluster may be very ineffi-
cient, such queries are not recommended and some column stores do not
permit them at all. Due to the same reason, column stores usually do not
support JOIN operations. Hence, column stores come with a reduced set
of queries in favor of performance and elastic scalability [41]. Use cases
for column stores are, for instance, event logging, content management
systems, blogging platforms, etc. [241].

o Furthermore, there are some other data models provided by CSS such as
graph databases or relational databases provided as a service (e.g., AWS
Relational Database Service or Google Cloud SQL—sometimes referred
to as Database-as-a-Service). However, we focus on the previously men-
tioned data models in this thesis.

3.1.2. Distribution Models

As explained, CSS are typically distributed over a cluster of nodes for a better
performance, elastic scalability, and availability (Section 3.1). To spread and
replicate data over a cluster of nodes, CSS use different distribution models
with various combinations of mechanisms like partitioning, replication, and ca-
ching (see, e.g.: [157, 161, 241]). In the following, we concentrate on partitioning
and replication.

If large amounts of data are stored, we cannot store the data completely onto a
single node and we have to partition the data. Partitioning is the logical divi-
sion of data into distinct independent parts. We distinguish vertical and hori-
zontal partitioning (see, e.g.: [157]). Vertical partitioning means to divide, for
example, a single table into multiple tables by columns. Horizontal partitioning—
often also called sharding—is the more frequently used variant in CSS which
aims at distributing, for instance, a single table by rows, i.e. datasets, onto dif-
ferent shards. Besides storing large amounts of data, sharding is used to scale
out a CSS in order to increase the performance of the entire CSS. If a specific
dataset is queried more often than another dataset, we then could balance the
load to the CSS by distributing the datasets onto different shards in a way that
leads to a better performance. However, sharding results in various problems
such as moving the right dataset to the right shard, since moving the wrong
dataset and the wrong shard may in turn compromise the performance. Furt-
hermore, pure sharding reduces the availability, as the data of a failed shard
is unavailable. To solve the first problem, many CSS provide auto-sharding
where the system takes on the responsibility of moving the right data to the
different shards and ensuring that the right dataset goes to the right shard. To
solve the second problem, CSS replicate the data within the cluster [241].

17

3. Fundamentals

Replication means that a CSS holds multiple copies of a data item at different
nodes—also called replica. The number of replica held in the cluster is deno-
minated as the replication factor. Replication aims at increasing the availability
in the case of outages of single nodes as well as at increasing the read per-
formance of a CSS, since a client can access different replica for reads [241].
Replication comes in two general models: Master-Slave replication and Peer-to-
Peer (P2P) replication. When using master-slave replication, we differentiate two
roles of nodes, master/primary replica and slaves/secondary replica. The mas-
ter/primary replica are the authoritative source of the data and usually handle
any updates to the managed data. The slaves/secondary replica synchronize
with the master/primary replica and serve read requests to the managed data.
In contrast to master-slave replication in P2P replicated CSS, all replica have the
same role and responsibilities within the cluster [43]. All replica are responsible
for read as well as write requests. This way, the load to the CSS can be balanced
equally between the nodes within the cluster under optimal request conditions.
Through adding more nodes to the cluster, the performance of the CSS can be
increased.

However, one of the main problems for replicated systems is to guarantee con-
sistency, as conflicts may arise, if multiple nodes handle requests to the same
data item that have to be managed [2, 3, 39, 53, 241, 299].4 Depending on
the chosen replication model, the various CSS solve this issue differently. For
example, in Amazon’s Dynamo architecture—a common P2P replicated key-
value store architecture guaranteeing only eventual consistency, which is des-
cribed by DeCandia et al. in [85]—updates are propagated asynchronously
to all replica for, amongst other things, a better latency from the user’s per-
spective. This means that updating a data item is finished for the client, before
the update of the data item is applied at all other replica. Thus, a subsequent
retrieval of the same data item may return the old version of the data item, if
not yet updated replica is used to retrieve the data item. Thereby, Dynamo tre-
ats each modification of a data item as a new and immutable version of a data
item and allows for multiple versions to be present at the same time. Dynamo
synchronizes the versions based on a quorum-based gossip protocol [85]. So,
if no new updates are made to the data item, eventually, all clients see the last
version of the data item [299]. In the case of consistency conflicts that cannot
be resolved by Dynamo internally, multiple versions are returned to the client,
which has to resolve the conflicts manually. Here, Bermbach in [39] and Berm-
bach and Tai in [44] show impressively that the inconsistency window—this is
the time between the commit of the update and the latest possible read of the
previous version; and, thus, the window in which consistency conflicts may
occur—is massively influenced by the latency between the replica [39, 44]. In
contrast to Dynamo, Google’s Bigtable architecture, a master-slave replicated

4For a more detailed view on consistency in CSS, we refer, for example, to [2, 3, 39, 53, 299].

18

3.1. Cloud Storage Systems

column store described by Chang et al. in [61], circumvents most of such si-
tuations, because there is only the master replica that is allowed to propagate
updates to a specific data item. Here, updates are executed only by the master
replica that can preserve the consistency of the data item and, hence, provide a
much stronger consistency guarantee [61].

Thus, the distribution model influences different aspects of a CSS, for example,
the consistency. We will discuss further selected details on specific examples
of CSS in later sections (Section 3.1.3). However, we can subsume here that
the way of managing partitioning and replication within a CSS as well as the
way of handling the related problems influence the architectures of CSS which
then result in different performance, scalability, availability, and other charac-
teristics [39, 157, 161, 241]. And as a consequence, the application of security
mechanisms to enforce security properties in CSS will affect these quality pro-
perties in later chapters of this thesis.

3.1.3. Example Cloud Storage Systems

In this section, we describe example CSS. Therefore, we start by describing se-
lected cloud storage services (Section 3.1.3.1). Afterwards, we give some exam-
ples of NoSQL systems (Section 3.1.3.2).

3.1.3.1. Cloud Storage Services

In the following, we describe example cloud storage services. Firstly, we deli-
neate the two key-value stores AWS S3 and Google Cloud Storage. Secondly,
we outline some details of the two column stores Google Cloud Datastore and
DynamoDB.

AWS Simple Storage Service (S3): S3is a key-value store provided by AWS
as a cloud storage service. S3 is based on the Amazon’s Dynamo architec-
ture [85, 298]. Thus, it is a quorum-based P2P replicated CSS (Section 3.1.2).

Currently, in S3 the user can choose between different replication settings [16]:
a standard redundancy, a reduced redundancy, and a setting for archiving ob-
jects as well as cross-region-replication that copies data items automatically be-
tween different AWS regions. Regions are world-wide distributed locations
of AWS data centers such as in Europe the data center in EU(Frankfurt) or
in EU(Ireland) or the data center in the United States of America (USA) US
West(Oregon). The key-value items stored in S3 are replicated to multiple Avai-
lability Zones (AZ) within the selected data center. However, there is currently

19

3. Fundamentals

no information how the replication factor and other related settings are cho-
sen in S3. As 53 is based on Dynamo, S3 guarantees only eventual consis-
tency [16, 39, 298] (Section 3.1.2). But S3 handles consistency conflicts to a data
item, in contrast to the behavior outlined in Section 3.1.2, so that “the request
with the latest time stamp wins” [16].

AWS recommends S3 for storing key-value items up to 5 Terabyte (TB) as well
as for the following use cases: backup and archiving, content storage and dis-
tribution, big data analytics, static website hosting, cloud-native application
data, and disaster recovery [16]. In S3, files are stored in buckets (Section 3.1.1)
for which we have to choose a region. S3 provides an Application Program-
ming Interface (API) that can be accessed via SOAP and Representational State
Transfer (REST)ful web services (see, e.g.: Chapter 5). Besides building own
web service clients to access the web services, AWS delivers pre-built client
libraries, the AWS Software Development Kits (SDK), that access the web ser-
vices via a more abstracted API. The AWS SDK are available in different pro-
gramming languages like Java or C# (see also: Chapter 5). The communication
between the client libraries and the API endpoints is secured via HTTP over
SSL/TLS (HTTPS) by default. A user can disable HTTPS manually. A user can
initialize the usage of, administer, and use S3 also via the AWS Management
Console (see also: Chapter 5).

AWS DynamoDB: DynamoDB is another cloud storage service provided by
AWS. In contrast to 53, DynamoDB is a column store. Similar to S3, Dyna-
moDB is based on Amazon’s Dynamo architecture [300] (see also: [85]). Hence,
DynamoDB also uses a P2P replication with auto-sharding.

In DynamoDB, data items are stored in tables. As it is a column store, a table
does not have a fixed schema, and each item stored in a table may have a dif-
ferent number of attributes (Section 3.1.1). To guarantee performance predicta-
bility for every user of DynamoDB, a user has to define a throughput target for
each table which is provisioned [300]. This means that the read and write capa-
city in number of requests per second have to be specified when provisioning
a table via the already mentioned AWS Management Console.

DynamoDB also accesses its API via the AWS web services and can, thus, also
be used with the AWS SDK like described for S3.

Google Cloud Storage: Google Cloud Storage is a cloud storage service
of Google’s Cloud Platform which is comparable to S3. Thus, Google Cloud
Storage is a key-value store, and objects are also stored in buckets [116]. Rams-
dale describes in [231] that Google’s cloud storage services are based on Goo-
gle’s infrastructure and is, hence, based on Bigtable as well as other services

20

3.1. Cloud Storage Systems

like Megastore [35], which is layered on Bigtable [231]. This means that Google
Cloud Storage is a master-slave replicated CSS. In contrast to S3, Google Cloud
Storage provides strong consistency for single data items [116]. Besides this,
the features of Google Cloud Storage are akin to S3.

To access and manage Google Cloud Storage, there are XML- and a JSON-based
API which are provided over SOAP and RESTful web services. Similar to AWS,
Google provides specific client libraries for their cloud storage services which
wrap the web service clients as a more abstracted API. The communication
between the client libraries and the API endpoints, is secured via HTTPS by
default. The management of Google Cloud Storage is be done via the Google
Developers Console which is the management web application of the Google
Cloud Platform [116].

Google Cloud Datastore: Google Cloud Datastore is a column store provi-
ded by the Google Cloud Platform [115]. Just like the Google Cloud Storage,
the Google Cloud Datastore is also accessible via the described XML- and a
JSON-based API as well as the Google Developers Console. As mentioned for
Google Cloud Storage, the Google Cloud Datastore is based on Bigtable etc.,
too [231].

3.1.3.2. NoSQL Systems

In the following, we describe three selected NoSQL systems: the key-value
store Voldemort, the column store Cassandra, and the column store HBase.

Project Voldemort (Voldemort): Voldemort—we refer to standalone Volde-
mort in version 1.10.0-cutoff—is a key-value store which bases, similar to AWS
S3 and DynamoDB, on Amazon’s Dynamo architecture [226, 227, 273, 274].
Hence, Voldemort is a quorum-based P2P replicated system that shares many
other features with Dynamo and other Dynamo-related systems. The main
contributor of Voldemort is LinkedIn which uses Voldemort for specific use
cases [164, 273, 274] (Section 3.1).

A cluster of Voldemort nodes typically consists of multiple nodes in which
every node has a unique identifier. The nodes in the cluster have the same
number of so-called stores which match to tables in other CSS. A store of a Vol-
demort node disposes of diverse configuration parameters which are typical

Shttps://github.com/voldemort/voldemort

21

https://github.com/voldemort/voldemort

3. Fundamentals

for Dynamo-based systems—the so-called N, R, and W parameters. N descri-
bes the number of nodes in the cluster to which each key-value pair is repli-
cated (replication factor). R and W delineate the minimum number of nodes
which are required for a successful read or write (consistency factors) [273] (see
also: [85]).

A store partitions, as known from Dynamo (see also: [85]), the key-value items
automatically by the key as a ring structure (key-ranges) via consistent hashing.
Such key-ranges are then distributed and replicated over the stores [273].

Moreover, a store is comprised of multiple layers which can also be configured.
This results in a pluggable overall architecture of Voldemort. Such layers may
be layers for an alternative storage backend, additional (de-)compression of
key-value pairs, or for a specific routing of requests.

In Voldemort, two different routing modes are distinguished: the routing layer
may reside on either the client side (client-side routing) or the server side (server-
side routing). This is configurable depending on the environment’s needs due
to the pluggable architecture of Voldemort [273].

Voldemort allows a client to use various protocols for the communication bet-
ween a client and the Voldemort cluster. For example, a client can use Protocol
Buffers, Apache Thrift (Thrift), Apache Avro (Avro), and a Remote Procedure
Call (RPC) interface based on Java serialization and sockets, as Voldemort is
written in Java [226, 227]. The functionality of the AP is typical for a key-value
store: we can create, read, update, and delete key-value items. The cluster
internal communication—the protocol is closely related to Dynamo’s quorum-
based gossip protocol—is built upon Java serialization using either blocking
Java Transport Control Protocol (TCP) sockets or non-blocking TCP sockets ba-
sed on Netty (see also: [55]).

The data held by a store is persisted within one of the pluggable storage bac-
kends (storage engine) of Voldemort. For the persistence of data, Voldemort
uses other sub-systems such as Berkeley DB (BDB) or MySQL [226, 273]. For a
more detailed description of Voldemort’s architecture, we refer to the website
of Voldemort [226] or to Sumbaly et al. [273].

Apache Cassandra (Cassandra): Cassandra in version 2.1.10 is a column
store which has been originally developed at Facebook® and is now a popular
NoSQL system maintained as an Apache open source project. “Cassandra aims
to run on top of an infrastructure of hundreds of nodes (possibly spread across
different data centers).” [167] It was supposed “[...] to run on cheap com-
modity hardware and handle high write throughput while not sacrificing read

®http://www.facebook.com

22

http://www.facebook.com

3.1. Cloud Storage Systems

efficiency.” [167] Therefore, Cassandra is based on Amazon’s Dynamo architec-
ture and, thus, is a quorum-based P2P replicated system. Every node replicates
its state to other nodes depending on the N, R, and W parameters [167] that we
already described for Voldemort (Section 3.1.3.2).

Clients can access one or more Cassandra nodes—depending on the load ba-
lancing strategy of the client—randomly. The clients can connect to two API:
clients can either connect to the so-called native interface or to the so-called RPC
interface of Cassandra which can be enabled and configured independently in
Cassandra’s configuration files. The native interface utilizes a proprietary bi-
nary RPC protocol based on Netty and provides a Java-based API which is
used in different Java client libraries such as the Datastax client library’. The
RPC interface, on the other side, uses Thrift that can be used in various other
programming languages. Both interfaces, the native and the RPC interface, use
TCP sockets.

When a client request hits a node, the client request is validated—for exam-
ple, access control is enforced—and transformed by Cassandra to internal data
structures. After the transformation of the incoming requests, the current node
checks if it is able to process the client request. Since Cassandra is a P2P re-
plicated system, data affected by a client request may be placed on the current
node or on other nodes of the cluster. If the client request can be answered
by the current node, the client request is responded to. Otherwise, the node is
the coordinator node for the client request and forwards the request to other
nodes in the cluster. In this case, the node waits—considering the consistency
parameters—for the responses of the other nodes and then answers the client
request, if this is possible [188]. This cluster internal communication is, simi-
lar to the cluster internal communication of Voldemort, based on the Dynamo
quorum-based gossip protocol implemented via Java TCP sockets [58, 167, 188].
The TCP connections between different nodes are established, reused, and kept
open as long as possible to minimize overhead for connection initialization (see
also: Section 12.2.1).

In the Cassandra nodes, the data held by a node resides typically in in-memory
data structures for performance reasons. Cassandra, therefore, uses a two-level
Log-Structured Merge-Tree (LSM Tree) [89, 188, 200]. If the in-memory capacity
of the LSM Tree exceeds a threshold—calculated based on size and number of
stored items—, the in-memory data is dumped to disk [167]. As accessing the
disk is usually slower than accessing the memory of a server, the LSM Tree
shifts data between the disk and the memory [188].

"https://github.com/datastax/java-driver

23

https://github.com/datastax/java-driver

3. Fundamentals

Apache HBase (HBase): HBase® is a column store. HBase is also available
as an Apache open source project. Thereby, HBase is modeled after Google’s
Bigtable architecture and, thus, can be seen as a master-slave replicated sy-
stem [26].

Like Google’s Bigtable architecture, HBase is layered on different other sub-
systems and services. For example, HBase runs on top of Hadoop Distributed
Filesystem (HDFS) which is an open source implementation of Google File Sy-
stem (GFS). Here, HDFS is used for the replication of data, while HBase shards
the data. In HBase, we distinguish master server and multiple region servers
which are the replica. Within a region, a range of rows of a table is held—this is
the data sharded by the row key. The master is responsible for mapping regions
of a table to these region servers [26].

HBase clients can connect to HBase using diverse protocols and interfaces such
as RESTful web services, Thrift, and a Java-based RPC protocol and APIL. Due
to the architecture of HBase, the client’s communication behavior differs from
the communication behavior of Cassandra and Voldemort clients. For example,
when querying data from HBase, a client first has to get the responsible region
server from the master, before the client can retrieve the actual data from the
region server [26].

For more details on HBase, we refer to the HBase reference guide in [26].

3.2. Security Engineering for Cloud Storage
Systems

Like terms that have been subject to scientific discourse, there are many diffe-
rent definitions of (information) security—or, as for the purposes of this the-
sis abbreviated just to security—spawned a wide variety of available defini-
tions. The almost universally prevalent one has been published by the Inter-
national Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) which will be used in the context of this work:

Definition 2. Security is the “preservation of confidentiality, integrity, and availabi-
lity of information [. ..] In addition, other properties, such as authenticity, accountabi-
lity, non-repudiation, and reliability can also be involved.” [141]

The quality properties of a system featured in this definition, typically denomi-
nated as security goals/objectives, are themselves defined as follows:

8We refer to HBase in version 1.1.2.

24

3.2. Security Engineering for Cloud Storage Systems

Confidentiality is the “property [of a system] that information is not made
available or disclosed to unauthorized individuals, entities, or processes”
[141].

Integrity encompasses guarding the system against “[...] improper infor-
mation modification or destruction [...] A loss of integrity is the unaut-
horized modification or destruction of information.” [267, p. 35]

Availability is the property that the system or application is accessible and
usable upon demand by an authorized entity [141].

Authenticity is the “property that an entity is whatit[...] claims to be” [141].

Accountability desires that actions of an entity can be traced uniquely to
that entity. This facilitates non-repudiation, fault isolation, intrusion de-
tection and prevention, or legal consequences. Accountability requires
traces of security breaches to a responsible party for forensic analyses [267].

Non-Repudiation is the “ability to prove the occurrence of a claimed event
or action and its originating entities” [141].

Reliability is the property of a system or an application to remain depen-
dable in the face of malice, error, etc. [141].

Furthermore, there are some other basic security terms we have to clarify:’

An asset is a resource which is of value to an organization. This resource
can be data in an application, a specific service, or a complete system [126].

A security policy is a succinct statement of a system’s security strategy. An
example security policy is: all monetary transactions over $1,000 must be
authorized by two managers [22, 24].

A security requirement “is a quality requirement that specifies a required
amount of security [...] in terms of a system-specific criterion and a mi-
nimum level of an associated quality measure that is necessary to meet
one or more security policies.” [105]

A threat is a potential cause of an attack which may result in harm to a
system or the organization [141]. A threat can be internal and external to
the organization.

An attack is an attacker’s—this may be malicious code or a hacker trying
to hack an organization’s information system—unauthorized attempt to
cause harm to an asset. For an attack, an attacker typically exploits a
vulnerability [105].

9The security terminology of this thesis is mainly based on the terminology provided by Firesmith
in [105].

25

3. Fundamentals

o Security risk is the likelihood that an attack or a security incident/breach
will happen and cause harm to an asset [22]. Risk is an effect of uncer-
tainty on goals [141].

o A security mechanism implements security requirements—respectively one
or more security policies/security goals. Security mechanisms can be di-
vided into procedural, environmental/physical, and technical security
mechanisms [254]. Here, we concentrate on technical security mecha-
nisms like TLS, Access Control Lists (ACL), encryption, firewalls, etc.10

However, implementing security and preserving security goals in actual sys-
tems is not as simple as it might appear at first glance. Enforcing a security
goal through security mechanisms seems to be straightforward. But the se-
curity mechanisms used to meet the security requirements typically are hard
to understand. Predicting the effects of a specific security mechanism on the
security goals of a complex system requires a good and oftentimes hard-to-
acquire knowledge of the system and the security mechanisms itself. Additi-
onally, using a specific mechanism introduces other requirements and, often,
other threats which the implementer must not ignore. Another aspect of the
complexity of security mechanisms are the aforementioned configuration opti-
ons of security mechanisms which have a not negligible influence on the secu-
rity of the security mechanisms. As a result of the manifold challenges when
securing systems, we have to conclude that there is no absolutely secure sy-
stem [21, 22, 23, 177, 223, 267] (see also: Section 3.2.3).

Bearing in mind the notion that building secure systems is challenging and that
there is no absolutely secure system, the field of security engineering becomes
increasingly relevant. Security engineering focuses on the security aspects du-
ring the process of building systems that need to remain dependable in the face
of malice, error, or mischance. The goal is to get the right protection for a sy-
stem by using systematic approaches, best practices, and methods. Therefore,

10Tn literature, often security mechanisms and security services are distinguished, e.g., in [135, 254,
260, 267]. Whereas, security services are defined as a “[...] processing or communication service
that is provided by a system to give a specific kind of protection to system resources. [...] Secu-
rity services implement security policies, and are implemented by security mechanisms.” [260]
In this context, security mechanisms are, then, defined as a “[...] method or process (or a device
incorporating it) that can be used in a system to implement a security service that is provided
by or within the system.” [260] For instance, there are security services like the authentication
service Kerberos [196]. Kerberos is thereby compound of multiple security mechanisms, e.g.,
encryption, authentication exchange, and data integrity. Since this delimitation of security me-
chanisms and security services comes from the networking discipline and is often difficult to
be applied in security engineering, we use a broader definition of the term security mechanism.
Thus, we only use the term security mechanism in this thesis which means both, security me-
chanisms (e.g., encryption) and security services (e.g. authentication services). Such a broader
use is, for instance, also applied by Anderson in [22] which is a common textbook in security
engineering.

26

3.2. Security Engineering for Cloud Storage Systems

security engineering—comparable to other engineering disciplines—is a cross-
disciplinary approach that involves aspects of security, cryptography, (safety)
engineering, social science, psychology, economics, (software) architecture, and
other disciplines. An important point, thereby, is to understand motives and
consequences of security as well as motives and consequences not to comply
with security [22].

We define security engineering in this thesis as follows:

Definition 3. security engineering is an evolving discipline of engineering that fo-
cuses on the security aspects in the design of systems. It is similar to other systems
engineering disciplines in that its primary motivation is to support the delivery of en-
gineering solutions that satisfy pre-defined functional and user requirements, but with
the added dimension of security [304].

3.2.1. Processes, Approaches, and Activities

For security engineering, there are different approaches and “processes” such
as the IT security management standard series ISO 27xxx of the ISO [139, 141],
Microsoft’s SDL [129, 185], Touchpoints [178], the Comprehensive, Lightweight
Application Security Process (CLASP) of the Open Web Application Security
Project (OWASP) [290, 294], or the KASTEL method [71, 72] (see also: [84, 295,
296]). But there is, so far, no widely accepted best approach or process.

The approaches and processes typically consist, comparable to software engi-
neering approaches and processes, of different activities which are the outcome
of different phases of these approaches and processes and should lead the secu-
rity engineer to build secure systems. These activities are, for example, misuse
cases which are an approach to figure out security requirements of a system ba-
sed on use cases [264], threat modeling /analysis which aims at finding security
flaws in a system’s design [129, 261, 262, 263], risk management, penetration
tests, or code reviews.

One of the most important activities in most security engineering approaches
and processes is a reasonable risk management (see, e.g.: [66, 71, 72, 129, 139,
141, 177, 178, 185]). Here, security risks have to be identified, analyzed, and
assessed with regard to achieving the desired security goals. Based on the as-
sessment, these security risks have to be managed. This might be done by igno-
ring, avoiding, accepting, transferring, or addressing the security risks [178].

Addressing the security risks, thereby, means to define appropriate security
requirements and to reduce the risks using select security mechanisms. So,
on a technical level, risk management requires understanding the threats to a
system. As a consequence, understanding the threats to a system is an essential

27

3. Fundamentals

part of security engineering and, thus, the security of a system [178] (see also:
Part II).

3.2.2. General Threats to Cloud Storage Systems

For understanding the security of CSS, it is important to understand the threats
to CSS (Section 3.2.1). In the following, we exemplarily describe the threats to
CSS mentioned by the Federal Office for Information Security (BSI) in [96] and
by the Cloud Security Alliance (CSA) in [68].

The BSI in [96] mentions the following threats to cloud storage services:!!

o If data is stored in the CSS, data loss may occur. Such a data loss may be
a major problem for the user, when the user, for instance, cannot comply
with the mandatory retention periods.

e As CSS are provided via the Internet, cloud storage services may expe-
rience unavailability. Here, the BSI differentiates between the unavaila-
bility of the CSS due to, for example, an attack or technical issues and
between the unavailability of the CSS due to, for instance, bankruptcy of
the cloud storage or compute cloud provider.

e Data stored in the CSS may have been subject to a data breach or may have
been tampered (tampering of data).

e Storing data with personally identifiable information is only permitted
under constraints that may be harmed by using CSS. So, storing data with
personally identifiable information in a CSS may be an infringement of data
protection laws.

o After termination of the contract, the data stored in a CSS at the cloud
storage or compute cloud provider’s data center may not be deleted se-
curely. This may lead to the situation that someone else can get access to
the data and to the information. Thus, the threat of insecure deletion of data
exists.

HThe BSI focuses in the study [96] primarily on cloud storage services like Dropbox, Microsoft
OneDrive, Google Drive, etc. These cloud storage services are, as introduced before, not inten-
ded to be used for building applications and systems on top of them (Section 3.1). However,
the threats are formulated so generically that we can use them for the purposes of this section.
Additionally, most papers, studies, and publications describing threats to cloud storages do not
focus explicitly on IaaS-based CSS like we do in this thesis (see also: Section 4.4), and the study
by the BSI in [96] is one of the few studies dealing directly with cloud storage. In the study, the
BSI originally delineates eight generic threats to cloud storage services. We reduced these eight
generic threats to six for reasons of simplicity.

28

3.2. Security Engineering for Cloud Storage Systems

o Cloud services provide API which can contain bugs, vulnerabilities, de-
sign failures, etc. Therefore, there is the threat of having insecure interfaces
and API when using a CSS’ client library and API.

The CSA in [68] describes twelve threats to cloud services in general. As cloud
storage is a specific cloud service, we can apply these threats directly to CSS.
The threats delineated by the CSA are akin to the threats mentioned in [96] by
the BSI. Therefore, we only describe eight of the twelve threats, which are as
follows [68]:

e Data breaches and enabling of attacks may occur due to a lack of scala-
ble Identity and Access Management (IAM) systems, the failure to not
use multifactor authentication, the inexcusableness of using weak pass-
words, and a lack of ongoing automated rotation of cryptographic keys,
passwords and certificates. As an appropriate identity and access ma-
nagement is typically the first line of defense against data breaches and
other attacks, there is the threat that a cloud service does not provide a
suitable identity and access management (insufficient identity, credential,
and access management).

o In the operating system or in other components of the cloud service or
the services of the user on top of the cloud service, system vulnerabilities
may exist that are exploitable (remotely). Attackers may use these vulne-
rabilities to infiltrate the cloud service or the services of the user for the
purpose of stealing data, taking over the control of the system, or disrup-
ting service operations. In particular, in the context of multitenancy and
multiuser, such system vulnerabilities may be an issue, since multiple cu-
stomers of a cloud service can become a victim.

e Accounts of cloud services can be hijacked and misused by attackers (Ac-
count Hijacking) such as done by the attackers who hijacked the Code Spa-
ces’” AWS account and then forced Code Spaces to go out of business in
2014.

o Malicious Insiders—i.e., current or former employees, contractors, or other
business partners—may intentionally exceed or misuse access to cloud
services in order to harm the user of the cloud service.

o Advanced persistent threats are long-term, stealthy, and continuous compu-
ter hacking processes with the goal to maintain a presence in the hacked
systems [278].

e Having a good roadmap and checklist for due diligence, when evalu-
ating cloud technologies and services, is essential for a successful adop-
tion of cloud technologies and services. Otherwise, commercial, financial,

29

3. Fundamentals

technical, legal, and compliance risks endanger the success. Hence, there
is the threat of insufficient due diligence.

o Poorly secured cloud services deployments, free cloud service trials, and
fraudulent cloud service account sign-ups may be used by attackers to
leverage cloud services for further attacks like sending spam mails or at-
tacking other services with a distributed denial of service attack (abuse
and nefarious use of cloud services).

e As mentioned, cloud services typically use resource pooling and have
multiuser and multitenancy environments. The technologies used, such
as Central Processing Unit (CPU) or network virtualization, may have
shared technology issues.

So, there are various threats to CSS and cloud services in general. Besides these
threats, there are various other papers, studies, and publications dealing with
threats that also may be relevant to CSS such as the Internet Threat Model men-
tioned in [233], the Network Threat Model described in [267], the European
Union Agency for Network and Information Security (ENISA) Threat Lands-
cape in [90], the threats and risks described in [92, 94, 97], and so forth.

But, if we want to build secure systems on top of CSS, we have to transfer these
threats to specific components of a CSS in order to mitigate the threats by spe-
cific security mechanisms. This may be hard, because the mentioned threats
are very abstract, neglect concrete CSS as well as their components, and con-
centrate more on early system development phases like security requirements
engineering in order to illustrate general security requirements to CSS. For un-
derstanding trade-offs in CSS, we, however, have to look at more concrete CSS,
their architectures, and the threats to the specific components. Hence, we have
to use a more structured as well as a more system-centric approach in order
to have a valuable threat analysis to CSS for balancing the trade-offs between
security and performance (see also: Part II).

3.2.3. Security Trade-Offs in Cloud Storage Systems

A trade-off, in general, is a situation where increasing a quality property re-
sults in decreasing, at least, another quality property. As already introduced,
there are many trade-offs between security and other quality properties like
performance, complexity, usability, etc. Furthermore, there are also trade-offs
between security and costs which is, particularly for CSS, an essential trade-
off, because typically the main reason to go into the Cloud are lower expected
costs (see, e.g.: [64, 193, 277]). In this thesis, we concentrate on the trade-offs
between security and performance (Chapter 1).

30

3.2. Security Engineering for Cloud Storage Systems

Generally speaking, the trade-offs between security and performance stem from
the fact that security mechanisms typically achieve security by performing ad-
ditional computation (e.g., encryption or hashing), appending additional data
(e.g., hashes, padding, or salts), doing extra communication roundtrips (e.g.,
handshakes in secure communication protocols in order to agree on a speci-
fic secure protocol or challenge/response in authentication and authorization
protocols), etc. (see also: Section 3.2.3.2). In consequence, when security mecha-
nisms are applied to a system, security introduces an overhead that decreases
the performance of a system in several ways. Depending on the security me-
chanism, the performance of a system (performance efficiency, see also: [140])
suffers, for example, from increasing the system’s CPU utilization (resource uti-
lization, see also: [140]), adding latency to the system (time behavior, see also:
[140]), and reducing the throughput (capacity, see also: [140]) due to the higher
CPU utilization and higher data amount.

However, most security mechanisms provide, as already described, different
configuration options (Chapter 1). These configuration options can be used to
adapt the security mechanisms to different security requirements, but also to
tune the performance and, thus, to balance security and performance. Thereby,
only small changes to a security mechanism configuration can sometimes in-
crease or decrease the performance impact of a security mechanism massively.
Remembering the example from Chapter 1: using a TLS cipher suite based on
the cipher RC4 is typically faster than using an AES-based cipher suite. As a
result, we are able to decide on specific parts of the trade-offs between security
and performance via the configuration options of security mechanisms.

Nevertheless, these small changes to a security mechanism configuration can,
in turn, also endanger the entire system. To continue the TLS cipher suite ex-
ample, using a TLS cipher suite based on RC4 is not only typically faster than
using an AES-based cipher suite, but also introduces insecurities to the entire
system because RC4 is broken [8]. By changing the right configuration option
of a security mechanism in the right way, we can increase the performance or
the security of a system massively, but changing the wrong configuration op-
tion can have horrible consequences for the security of the system. So, making
trade-offs between security and performance means to find a good-enough se-
curity mechanism configuration from a security’s point of view with an appro-
priate performance (Chapter 1; see also: [246]). And there is often only a small
degree between a secure configuration and a totally insecure configuration.

Finding these good-enough security mechanism configurations, requires un-
derstanding the consequences of security mechanism configurations. Howe-
ver, understanding the interdependencies of trade-offs between security and
performance for a security mechanism in a complex system like a CSS is not an
easy task. Besides the trade-offs between security and performance, there are

31

3. Fundamentals

also, oftentimes indirect, trade-offs between security and complexity as well as
security and usability [178, 246]. Security mechanisms are, as mentioned, often
complex (Section 3.2). Understanding their effects on the security and other
quality properties of a system requires a good and oftentimes hard-to-acquire
knowledge of the entire system and the security mechanisms itself. The, often
manifold, configuration options of security mechanisms increase the complex-
ity even more and lead to further interdependencies.

Moreover, not only security behaves the way that changing a small configu-
ration option can change everything, but also changing performance-related
configuration options can lead to massive performance degradations of the sy-
stem [119, 151, 183, 186]. In the CSS Cassandra, for instance, the performance
degrades enormously, when swapping is enabled in the operating system and
the system starts to swap data from memory to disk and back. In Cassandra,
then, the latency of requests increases enormously, which also interferes with
the throughput and other performance metrics.

In order to understand and manage the trade-offs between security and per-
formance, we, therefore, have to understand the consequences of security me-
chanism configurations in CSS from both the security and performance per-
spective. As security is typically even harder to be understood, measured, and
specified, the typical way is to concentrate on the security perspective at first.
Here, an important point is to understand motives and consequences of se-
curity as well as motives and consequences concerning non-compliance with
security [22] (see also: Part II). Afterwards, relevant configuration options of
security mechanisms and the relevant trade-offs have to be found out. Next,
the tuning of the security mechanisms starts [217] (see also: [154]).

3.2.3.1. Identification of Security Trade-Offs on the Example of Security
Patterns

As described, security mechanisms are complex (Section 3.2.3). Creating new
security mechanisms poses a major engineering challenge, because even small
changes to these mechanisms could render the whole system susceptible to
errors [267]. Thus, we should reuse existing security mechanisms for imple-
menting security requirements wherever possible [100, 254, 267].

In security engineering, the approach of security (design) patterns has evolved
in recent years that helps the security engineer to reuse security mechanisms
in different systems and gives important information about the solved security
problem, the solution, and the consequences of using the security mechanism
described in the pattern. “A security pattern describes a particular recurring
security problem that arises in specific contexts, and presents a well-proven

32

3.2. Security Engineering for Cloud Storage Systems

generic solution for it.” [254, p. 31] In doing so, security patterns “codify basic
security knowledge in a structured and understandable way.” [254, p. 34]

Therefore, security patterns are documented in a common pattern template that
helps humans to understand the problem, the solution, and their influencing
forces [254]. This template typically includes, for example, the name of the pat-
tern, the context in which the pattern may be applied, the problem or threat(s)
that the pattern addresses, the solution principle of the pattern, known uses of
the pattern in the wild, and the consequences of applying the pattern in a sy-
stem [51, 100, 253, 254] (see also: Figure 3.1). Thus, security patterns are then
applied to a system by mapping the threats which the system may experience
to the threats addressed in the security patterns’ problem description [100].

Since the rise of security patterns, many security patterns, security pattern re-
positories, etc. with different scopes for various goals, such as design patterns,
misuse patterns, analysis patterns, or even whole security pattern-based secu-
rity engineering methods, have been proposed [100]. In Figure 3.1, an exam-
ple security pattern, the secure communication pattern, is depicted. The secure
communication pattern could be applied to a system by using TLS (see also:
Section 3.2.3.2).12

The secure communication pattern can be used, if two communication parties—
a protected system and another protected system or a subject—want to establish
a communication over a communication channel that may be subject to various
security threats such as information disclosure or tampering (Figure 3.1). This
may be the case, if a customer communicates securely with the web application
server or the web application server with the CSS.

The secure communication pattern uses a communication protection proxy [51] (Fi-
gure 3.1). This can be implemented in two structural variants: as an inline
proxy or as an out-of-band service. In the first variant, a communication pro-
tection proxy is interposed between the sending communication party and the
communication channel as well as between the communication channel and
the receiving communication party. This variant is, for instance, implemen-
ted by TLS or Internet Protocol Security (IPSec). In the second variant, the
data or message that should be sent over an insecure communication channel
is sent to a sender-side communication protection proxy where the data is so-
mehow processed—for example, the data may be encrypted. Afterwards, the
sender transmits the processed data or message over the insecure communi-
cation channel to the receiver. When the receiver gets the data or message,
the receiver, then, puts the data to the receiver-side communication protection

125chumacher et al. denominate the secure communication pattern in [254] secure channel. Whereas,
Fernandez in [100] uses another abstraction level and describes TLS itself as a pattern.

33

3. Fundamentals

Secure Communication

Problem

A communication channel between two Protected Systems or between a subject and a Protected System may be subject to various security
threats like information disclosure or tampering. The security provided by the sending Protected System will not be effective if it can be
subverted by attacks on the communication channel. Therefore, it may be desirable or imperative to protect the channel.

Subject or
Protected System

Communication
Protected System H Channel

Threats against the communications channel may include:

® Unauthorized disclosure of traffic

. Impersonation of a party to the communication

. Unauthorized modification of traffic

e Diversion orinterdiction of traffic

The Secure Communication pattern protects against threats by employing security mechanisms to protect traffic in the communications

channel.
[]
Solution
The Secure Communication pattem has two structuralvariants. The generalstructure is:
Communication party — P Communication Channel
deliver(Message):void send(Message):void

Communication
Protection Proxy

submit(Message):void
deliver(Message):void
Protect(Message):void

verify(Mes sage d

In the first variant, a Communication Protection Proxy is an inline proxy between the sender /receiver and the communication channel.

Communicating Party
Communication Protection
Proxy

The first variant is, for example, used within SSL/TLS and IPSec.

Communicating Party

| Communication Channel

Communication Protection
Proxy

In the second variant, a Communication Protection Proxy is an out-of-band service which is used by senders and receivers to protect traffic
which they submit to or receive from the Communication Channel. (Note that this variant is more appropriate for use with non-session-

oriented or store-and-forward communication protocols.)
Communications Channel |—P| Communicating Party |

Communicating Party
Communication Protection
Proxy

Communication Protection
Proxy

[-]

Consequences

Use of the Secure Communication pattern:

e Ensuresthat datacommunicated over a potentially insecure communication channel is protected against a known set of threats.

. May reduce communication‘s throughput or increase communication‘s latency.

. May require the use of cryptography (and therefore may require consideration of international deployment issues related to
cryptography).

e May interfere with the use of other services (for example, content scanners, proxies, filtering routers) which depend on access to
message content between communications endpoints.

Figure 3.1.: Security Pattern Example Secure Communication (adapted from [51])

34

3.2. Security Engineering for Cloud Storage Systems

proxy and extracts the original data. This variant is, for example, implemented
by the Secure/Multipurpose Internet Mail Extensions [51].

Finally, the application of the secure communication pattern has various conse-
quences [51] (Figure 3.1). For example, the secure communication pattern may
use strong cryptography—e.g., the AES with a key length above 128 bit—which
may have been or still is restricted in various countries like in China or in the
USA until the year 2000. Such information is summarized in the consequen-
ces section of security patterns. Additionally, the security patterns mention
the trade-offs which the patterns address [254]. For example, using the secure
communication pattern in systems may reduce the throughput or increase la-
tency of the communication (Figure 3.1). This information about the addressed
trade-offs, then, can be used for further trade-off analyses (see also: Part III).

3.2.3.2. Typical Security Patterns and Mechanisms

In security engineering for CSS, the focus lies on securing the CSS itself as well
as on securing the data stored in the CSS (see also: [108]). Thereby, CSS have
many common characteristics with traditional database management systems,
since they have arisen from different issues with these systems (Section 3.1).
From a security engineering perspective, the newly developed systems, ho-
wever, share various techniques and approaches with the database manage-
ment systems. Thus, similar to the classical database management systems,
security challenges for CSS are, for example, authentication and access con-
trol, data encryption (encryption of data-at-rest), secure communication (see,
e.g.: [46,47, 48, 82,108, 113]).

In this section, we describe selected typical security patterns and mechanisms
for CSS. These security patterns and security mechanisms are often already
known from or, at least, related to patterns and mechanisms of database secu-
rity (engineering) and other security engineering sub-disciplines such as cloud
security (engineering). In CSS, we—like in database management systems—
typically need to employ authentication and access control mechanisms [46,
47, 48, 82, 108, 113]. Additionally, we should employ secure communication,
since the communication of CSS may, as already described, cross AZ and even
data centers (Section 3.1). Furthermore, encryption of data-at-rest is recommen-
ded; as data is outsourced to a cloud storage provider, data breaches may occur,
and encrypting the stored data may mitigate the results of a data breach (Sec-
tion 3.2.2).

In NoSQL systems deployed on compute clouds, we, moreover, have to care
about security of the VM running the CSS, since we are responsible for the
security of the VM in compute clouds [174, 230, 236, 240, 275, 276, 297, 307].

35

3. Fundamentals

Thus, we need to consider firewalls and so forth. Moreover, there are various
other security patterns and mechanisms that may be available, recommended,
or mandatory.

Client- and Server-Side Encryption

Problem: For securing a CSS and the data stored in a CSS, it is necessary to
know what should be secured against whom or what. For CSS, the question of-
ten seems to be answered quickly: we want to secure the CSS and the data—or
better the information—stored within a CSS against attackers that may possibly
access the data. However, when we have to be more specific on the question,
the hard part of security engineering for CSS starts.

In order to be more specific on this question, we first have to look at the data
stored within the CSS and at the information that we can gain from the data.
For example, we use a column store like DynamoDB or Cassandra for the appli-
cation’s state management of an online shop. For payment purposes, we store
security-relevant data like customer’s credit card data in the column store in
different tables or keyspaces. If we now consider various attackers, we will see
that attackers may be interested in different things like getting access to the in-
formation (threat: information disclosure). An obvious goal of an attacker may
be to acquire the credit card data for purchasing things via these credit cards.
Another goal of an attacker may be to get information about a particular user.
For example, this may be information about the personal lifestyle and his/her
purchases.

Solution: In all sketched cases, one possible and sensible way to secure the
information may be to encrypt the stored data (encryption of data-at-rest). This
may prevent an attacker from acquiring the desired information. In security
engineering for CSS, we distinguish between encryption of data at the client
library—so-called Client-Side Encryption (CSE)—and encryption of data at the
CSS-side—Server-Side Encryption (SSE) [16, 191] (see also: [16, 116]). CSE, on
the one hand, means that the data is encrypted before the data is transmitted
to the cloud storage provider’s data center and the CSS (Figure 3.2a). SSE, on
the other hand, means that the data is encrypted after transmitting the data to
the CSS, but before the data is stored in the CSS (Figure 3.2a). These two types
of encryption of data are often available in cloud storage services and, thus,
are typical security patterns in security engineering for CSS. For example, S3
offers both types of encryption [16], and Google claims that all cloud storage
services of Google’s Cloud Platform apply SSE by default (see, e.g.: [115, 116]).

36

3.2. Security Engineering for Cloud Storage Systems

For both types of encryption, we furthermore distinguish two patterns of en-
cryption: asymmetric and symmetric encryption [100]. In symmetric encryp-
tion, the same secret key is employed for encryption and decryption. Whereas,
different keys are used for encryption and decryption in asymmetric encryp-
tion [100, 148] (Figure 3.2b).

However, in security research and practice, the benefit of SSE is often doubted,
because the cloud storage provider possesses the key and, thus, SSE does not
work for any threats raised by curious or completely untrusted cloud storage
providers. In order to solve this problem, in S3 different types of SSE are avai-
lable. In some SSE schemes, the user can provide the key but still has to upload
the key to the CSS. In consequence, if an attacker accesses the data secured by
SSE normally via the API of the CSS, the attacker still has full access to the
data. So, SSE does not mitigate any threat related to data outsourcing in secu-
rity engineering for CSS. But SSE (probably) mitigates the threat information
disclosure in cases where the hard disk is accessed directly. CSE, in turn, is, as
already described, a good way to mitigate the threat information disclosure but
may be very complex to be applied in the right way.

Q6,6 R E=]) == b 1)

14

Plaintext Key Ciphertext S Plaintext Key Ciphertext
User Provider User Cloud Storage Provider
Client-Side Encryption Server-Side Encryption

(a) Client- vs. Server-Side Encryption Pattern

Encryptlon Encr ption
l Key (Bcrypt) §
Plaintext) Ciphertext Plamtext Clphertext
Shared Ke
Y Kev(rypt) A
Decryptlon Dec ptlon
Symmetric Encryption Asymmetric Encryption

(b) Symmetric vs. Asymmetric Encryption Pattern

Figure 3.2.: Security Patterns for Encryption of Data-at-Rest

Consequences: If we want to apply encryption of data-at-rest at the client-
side, we should do this with a well-considered attacker model, because encryp-
ting all data in a CSS without a motive may not lead to the desired security.
But, in turn, encrypting not enough data or encrypting data with an inappro-
priate encryption scheme may lead to insecurities [154]. For example, if the
encryption scheme is not chosen properly depending on the attacker’s abili-
ties, an attacker may acquire the wanted information in other ways like using
background information, inferring confidential column values of a small set

37

3. Fundamentals

of rows, or narrowing down the set of possible confidential values of specific
rows. Hence, we have to consider the attacker which means to define the ca-
pabilities of the assumed attackers—the attacker model [154]. In security engi-
neering for CSS, we, at least, have to consider, if we trust the cloud storage pro-
vider. Thereby, administrators of cloud storage providers are often assumed as
honest-but-curious. However, the assumption that cloud storage providers are
always fully untrusted is, considering different security issues from the near
past, not completely absurd [265]. As a consequence, the assumed capabilities
of attackers are essential for the security guarantees we can give [154, 265].

Furthermore, encryption of data-at-rest introduces different trade-offs between
security and performance. Encryption and decryption of the data are additio-
nal tasks that have to be performed and may lead to a higher latency and lower
throughput of the overall system. Hence, the more we encrypt, the higher the
latency and the lower the overall throughput.

Another trade-off exists between security and query efficiency—i.e., the requi-
red query functionality to acquire relevant data from the CSS. Encryption of
data reduces the query functionality of a CSS, since encrypted data cannot be
queried directly from a client which may lead to inefficient queries and a lo-
wer performance. But, on the other hand, encrypting data except specific row
keys and columns we want to query from a client, may lead to insecurities. We,
therefore, have to think about the required query functionality to acquire the
relevant data from the CSS [83, 142, 154, 245, 265].

Due to this trade-off between security and query functionality, there are va-
rious encryption schemes and secure cloud storage prototypes that combine
different encryption schemes to secure the stored data against various attac-
ker types. Koehler, for example, enumerates in [154] nine different encryption
schemes such as searchable encryption (see, e.g.: [37, 62, 146, 266]) and homomor-
phic encryption (see, e.g.: [112, 192, 216]) which have been proposed for solving
the trade-off between query functionality and security. Furthermore, there are
various prototypes that combine encryption schemes to new encryption sche-
mes and secure CSS which should provide efficient queries and a good security
like the Cryptographic Cloud Storage [145], CryptDB [224], SecCSIE [255], Mi-
moSecco [5], Securus Framework [72, 154, 155], or [7, 125, 301, 309, 312], and
many more.

In order to better specify the trade-off between query functionality and security
comprised of the attacker’s capabilities and the wanted security guarantees,
for example, Koehler developed in [154] an approach to balance and optimize
these points for outsourced relational databases within a taxonomy, the Confi-
dentiality Preserving Indexing Taxonomy [154]. Using this taxonomy, the Securus
Framework provides a way of securing data outsourced to a relational data-
base management system at a cloud storage provider using different encryp-

38

3.2. Security Engineering for Cloud Storage Systems

tion schemes with different security guarantees solving the trade-off between
security and query functionality. This approach of Koehler can, in our opinion,
also be used for CSS.

However, we have to respect the specifics of CSS such as the different query
functionality of CSS (Section 3.1.1). If we consider a key-value store which
should be secured via CSE, we always have to query data by the key to get a
key-value item out of the CSS. There is typically no other alternative, except
we use addons or specific solutions to query values. So, in S3, the CSE only
encrypts the values and not the keys of a key value item. If we want to secure
the information contained in the keys, we have to consider sophisticated en-
cryption schemes which allows the user to query the encrypted keys (see, e.g.:
[145, 192, 265]). In column stores, there is also the problem that we only are
able to query via the row key. Additionally, there are the multiuser and multi-
tenancy aspects that also have to be considered in CSS [66]. For more informa-
tion on handling this trade-off between query functionality and performance,
we refer, for instance, to Smith et al. [265] and Koehler [154].

Secure Communication: Transport Layer Security

Problem: As described before, the secure communication pattern describes
the establishment of a secure communication between two (protected) systems,
since the data transmitted over the communication channel between the two
systems may be subject to the threats information disclosure, tampering, and
spoofing (Figure 3.1, Section 3.2.3.1). For secure communication, TLS is, as
mentioned, one alternative (Section 3.2.3.1). Here, we talk, particularly, about
secure communication via TLS in CSS.

Solution: The adoption of TLS in CSS is fitful. On the one hand, TLS is used
prominently in all cloud storage services for securing the communication be-
tween a client and the CSS. On the other hand, many NoSQL systems do not
support TLS for any communication. For example, Voldemort does currently
not support TLS at all by default. There is only an experimental Voldemort ver-
sion with partial TLS support.’> Whereas, in Cassandra, all communication can
be secured via TLS (Section 3.1.3.2). From a security engineering perspective,
this overall situation is unsatisfactory, since securing the communication of CSS
is, as described, mandatory and the other alternative for applying secure com-
munication, i.e., IPSec (Section 3.2.3.1), typically has a lower performance than
TLS (see, e.g.: [10]).

Bhttps://github.com/steffenmuellerd/voldemort

39

https://github.com/steffenmueller4/voldemort

3. Fundamentals

Application data [|

\
/]

Fragment

Add MAC

Encrypt

Append TLS record header []

Figure 3.3.: Construction of TLS records (TLS record protocol) in TLS 1.2

With TLS, we subsume the SSL and the TLS protocols herein. The SSL and
the TLS protocols are different versions of a communication protocol that have
three main building blocks: preservation of data packet confidentiality by en-
cryption of the data packets, assurance of data packet integrity by building
Message Authentication Codes (MACs) over the data packets, and the authen-
tication of the communication between two endpoints by exchanging X.509 cer-
tificates [87]. The current version of the communication protocol is TLS 1.2, the
previous versions are SSL 1.0 (never publicly released), 2.0, and 3.0 as well as
TLS 1.0 and 1.1. Currently, a new version of TLS, TLS 1.3, is available as a
draft [234].

The TLS protocol, we refer to TLS 1.2 specified in [87], has two main phases: a
handshake phase and a bulk data transfer phase. During the handshake phase, the
server authenticates itself with its X.509 certificate. Client and server agree on a
combination of a authentication algorithm (RSA or Digital Signature Algorithm
(DSA)), key agreement protocol (RSA or Diffie-Hellman key exchange (DH)),
cipher for the symmetric encryption (e.g., AES or Camellia), and a MAC for
preserving confidentiality and integrity of the data packets. This combination
is the TLS cipher suite (see also: Figure 9.2). Besides the cipher suite, further TLS
session parameters like a symmetric encryption key, the session key, and some
other parameters are negotiated. Optionally, the server can request the client
to authenticate himself with his X.509 certificate. This phase is driven by key
exchange protocols and asymmetric encryption.

In the end of the handshake phase, client and server signal to change to the bulk
data transfer phase. During the bulk data transfer phase for each data packet
a MAC is calculated and the data packet is encrypted using the session key.
Finally, a header is added and the entire message, the TLS record, is sent to the
recipient who can then decrypt and verify the TLS record as well as reassemble
the application data. This entire process of TLS record construction is defined
within the TLS record protocol [87]. In Figure 3.3, the process of the TLS record
construction in TLS 1.2 is summarized.

Furthermore, the TLS protocols have optional features. For example, one opti-
onal feature is the support for starting a TLS renegotiation at any time after the

40

3.2. Security Engineering for Cloud Storage Systems

initial handshake phase. Such a renegotiation can be used to change the session
parameters such as the negotiated cipher suite.

Other types of optional features are TLS extensions. TLS extensions are incor-
porated within the main TLS protocol in version 1.2 protocol specification to
add or modify functionality and behavior of TLS without modifying the proto-
col specification itself [237]. For example, the secure renegotiation indication (RFC
5746) is such a TLS extension that fixes a TLS renegotiation weakness found
in 2009 [235]. Other examples are the TLS Fallback Signaling Cipher Suite Va-
lue (SCSV) (RFC 7507), the Application-Layer Protocol Negotiation (ALPN) (RFC
7301), or the Encrypt-then-MAC (RFC 7366) TLS record construction behavior.
Thereby, the SCSV extension prevents protocol downgrade attacks [187], the
ALPN allows a system to negotiate the application protocol within the TLS
handshake phase to reduce communication roundtrips [107], and the Encrypt-
then-MAC extension changes the described record construction order of TLS 1.0-
1.2 (MAC-then-Encrypt) [87] so that data packets are first encrypted and then
the encrypted packets are hashed with the MAC [124], as the default MAC-
then-Encrypt behavior of TLS 1.0-1.2 is considered to be insecure [38, 162].

For using TLS in a system, typically three general steps have to be performed:
Firstly, we have to create private and public X.509 keys and certificates that
have to be distributed to respectively stored at the system components securely.
These key management activities have many challenges and pitfalls which are
only selectively described in this thesis. Secondly, we have to enable the use
of TLS which includes configuring the usage of the X.509 keys and certificates
for the handshake phase. After this second step, we can basically use TLS. The-
reby, typically default parameters of the TLS implementation are used. This
means, for example, that all supported cipher suites of the TLS implementation
used are allowed for negotiation. Thirdly, we have to configure and tune the
actual use of TLS like the allowed TLS versions, cipher suites, etc. For example,
these configuration steps for an Apache HTTPD (HTTPD) are described in de-
tail in [27], and a description for Cassandra can be found in [78]. In this thesis,
we focus on the third step.

Consequences: As you can see allusively, TLS offers configuration options
which may affect the security and other qualitative system properties such as
the performance. For example, we can, as already mentioned, configure the
TLS implementation used to negotiate only selected cipher suites (Chapter 1).
In [136], the Internet Assigned Numbers Authority lists more than 300 suppor-
ted cipher suites for TLS. Some cipher suites are considered to be more secure
and other cipher suites promise to be faster. Cipher suites, therefore, can be
used to balance between the security and performance of a system.

41

3. Fundamentals

For example, Menasce in [181] has shown how to utilize the cipher suite confi-
guration of TLS to tweak the performance of web servers. In this context, RC4-
based cipher suite show a good performance [181]. But the RC4-based cipher
suites should not be used anymore from a security’s perspective, because RC4
is deemed to be broken [8]. Another example is the message-digest algorithm
MD5 (MD5) which is often used as a MAC in cipher suites. MD?5 is also con-
sidered to be insecure [303]. When configuring TLS, we hence should not use
cipher suites using RC4 or MD5 at all.

Moreover, the selected cipher suites should support Perfect Forward Secrecy
(PFS) [163], as PFS increases the overall security considerably. PFS means that
a client and a server negotiate an ephemeral session key within the handshake
phase confining the static and durable X.509 private keys and certificates of
the client and the server. If such an ephemeral session key is no longer used,
the session key is erased from memory, and there is no way for an attacker to
decrypt an eavesdropped communication subsequently [163]. Not using cip-
her suites with PFS support, is meanwhile considered to be unjustifiable from
a security point of view, but is sometimes inevitable, since not every TLS im-
plementation supports PFS (see also: Section 12.2). In particular, older TLS
implementations often do not support PFS. Such an unsupported or miscon-
figured feature results in various specific threats pertinent to the use of TLS.
Currently, there are two different key exchange protocols used in cipher suites
providing PFS: Diffie-Hellman key exchange in ephemeral mode (DHE) and
Elliptic Curve Diffie-Hellman key exchange in ephemeral mode (ECDHE) (see
also: Section 12.2).

For the symmetric encryption in the bulk data transfer phase, there are two dif-
ferent types of ciphers [148]. Firstly, there are stream ciphers like RC4 or Cha-
Cha20. Secondly, there are block ciphers like AES or Camellia. While stream
ciphers can be used directly for cipher suites to encrypt data streams, a block
cipher requires a mode of operation to be used in a cipher suite, as they otherwise
only can encrypt fixed blocks of plain text. “A mode of operation is essentially
a way of encrypting arbitrary-length messages using a block cipher [...]” [148,
p- 96]. In cipher suites, three different modes of operation are used: Cipher
Block Chaining (CBC) mode, Galois/Counter Mode (GCM), or Counter with
CBC-MAC (CCM) mode. The mode of operation influences the security as well
as the performance of the cipher suite. For example, the BEAST attack uses a
CBC vulnerability in TLS version 1.0 [281]. In contrast, the GCM and CCM mo-
des provide so-called Authenticated Encryption with Associated Data (AEAD)
and are state-of-the-art [120, 148, 237] (see, e.g.: Section 12.2).

In consequence, the problem is that “TLS can be configured to operate as secu-
rely as possible or in some horrifically broken way.” [293] Additionally, there
are specific threats like implementation errors—the Heartbleed bug (see, e.g.: [282])

42

3.2. Security Engineering for Cloud Storage Systems

or Apple’s Goto Fail bug (see, e.g.: [283])—or design errors—the BEAST attack (see,
e.g.: [281]) to TLS or the POODLE issue (see, e.g.: [284]). The selected cipher
suite influences massively the overall performance of TLS and the system’s
communication. Hence, there is a trade-off between security and performance.
This trade-off is investigated further in later chapters of this thesis.

Other Security Patterns and Mechanisms Authentication mitigates the threat
spoofing (see also: Section 4.2). As spoofing is often a starting point for attac-
kers to perform other subsequent attacks against a system and as authentication
is the basis for many other functionalities such as access control mechanisms or
accounting purposes for cloud storage services, authentication is also immen-
sely important to mitigate other threats. For authentication, various security
patterns and mechanisms exist (see, e.g.: [100, 254]). This results, therefore, in
a plethora of different authentication mechanisms applied in CSS and in other
system components. In particular for cloud storage services, authentication is
often connected to questions of Identity Management, IAM, and Single Sign-
On (see, e.g.: AWS IAM for S3 [16] and DynamoDB [15], which is used for all
AWS services).

Access control prevents resources from unauthorized access and improper mo-
dification and, thus, mitigates threats like tampering, information disclosure,
and elevation of privileges (Section 3.2.2 and Section 4.2). For access cont-
rol in CSS, typically known mechanisms from database security (engineering)
like role-based access control [100, 247, 254], ACL [100], or multilevel secu-
rity [100, 254] are used (see, e.g.: [15, 16, 26, 79, 115, 116]). Thereby, the user
often can choose between different access control mechanisms. S3, for instance,
allows to define bucket and user policies as well as ACL for access control [16].
Bucket policies and ACL are resource-based access control mechanisms. The-
refore, policies are attached to S3 resources like buckets and data items [191].

Google Cloud Storage provides three mechanisms: ACL, signed uniform re-
source locators, and signed policy documents [116]. These ACL allow the user
to grant access to other user accounts and groups. Signed uniform resource lo-
cators allow a user to grant time-limited read or write access to anyone in pos-
session of the URL. Signed Policy Documents provide a way to specify what
can be uploaded to a bucket. Signed Policy Documents, are an enhancement
of signed uniform resource locators that allow to specify parameters like size,
content type, and other upload characteristics which are checked when visitors
upload files to Google Cloud Storage [191].

In Cassandra, access control is enforced via the typical grant and revoke mecha-
nisms on keyspaces and tables known from traditional databases [79] (see also:

43

3. Fundamentals

[47,48]). Furthermore, there are new ways of doing access control in CSS as pre-
sented by Yu et al. in [309]. In a prototypical implementation, Yu et al. merged
encryption and access control via the new data encryption scheme key-policy
attribute-based encryption [117] that allows fine-grained access control and con-
temporaneously proof of data confidentiality [309]. But key-policy attribute-
based encryption impacts the performance heavily, so that it is typically not
used for productive CSS. In consequence, there is, similar to authentication, a
wide field of access control mechanisms for CSS.

In addition to the mentioned security patterns and mechanisms, there are di-
verse other security patterns and mechanisms that may be useful for securing
CSS (see, e.g.:[30,91, 98,99, 100, 102, 103, 108, 199, 270, 271, 296]). Furthermore,
there are often various ways of combining different security mechanisms to ad-
dress specific security goals and to mitigate specific threats via security mecha-
nisms. As a consequence, a big challenge in security engineering for CSS is to
secure the CSS in the right way. This, in particular, also means to decide on
trade-offs in order to provide good-enough security (Section 3.2.3).

44

Part Il.

Reference Usage and Threat
Models of Cloud Storage
Systems

45

In this part, we concentrate on the security of CSS (Section 2.1). The leading
research question of this part is: how can we analyze the threats to different
CSS with diverse security mechanisms in diverse concrete systems to better
understand the security of the system and the impact of specific security me-
chanisms (Research Question 1)?

To tackle this question, typically a threat analysis is performed in security en-
gineering (Section 3.2.1). In this thesis, we provide reference usage and threat
models of cloud storage services and NoSQL systems on an architectural level.
These reference usage and threat models can be used to carry out threat analy-
ses in order to better understand the security (requirements) of CSS (Chapter 1,
see also: Section 4.1).

We propose two reference usage models, a reference usage model of cloud
storage services and a reference usage model of NoSQL systems deployed on
compute clouds, which abstract the general usage of CSS (Chapter 5). Next, we
build reference threat models of CSS based on these usage models (Chapter 6).
Afterwards, we carry out exemplary threat analyses for the cloud storage ser-
vice DynamoDB (Section 7.1) and the NoSQL system Cassandra deployed on
AWS EC2 (Section 7.2).

For the reference usage models, we figure out various commonalities among
different CSS and abstract the general usage of CSS from a user’s perspective.
In the usage models, we generalize components and refine a minimal set of ro-
les involved in the usage of CSS. Thus, these models help security and software
engineers to better understand CSS and its flaws (see also: Section 4.3).

Based on the usage models, we build two reference threat models that can be
used for a detailed threat analysis of CSS in security engineering approaches
and processes (see also: Section 3.2.1). Again, we differentiate between a refe-
rence threat model of cloud storage services (Section 6.1) and NoSQL systems
deployed on compute clouds (Section 6.2). However, the different threat mo-
dels are built upon common architectural components and roles.

Using the reference threat models, we validate the general applicability of the
threat models and perform exemplary threat analyses. In doing so, we carry
out a threat analysis of DynamoDB (Section 7.1) and Cassandra deployed on
EC2 as two instances of CSS (Section 7.2).

In Chapter 8, we conclude and discuss the results of the security perspective
on CSS. We start by describing the background and the related work of this
contribution (Chapter 4).

The Sections 5.1 and 6.1 (the models of cloud storage services) were previously
published at the Future Security Conference (Future Security) 2015 [191]. In this
thesis, we left out distinct parts of the usage model of cloud storage services

47

describing the legal and economic perspectives on cloud storage services (see
also: [191]). Moreover, we performed the whole approach of developing a refe-
rence usage and threat model of NoSQL systems deployed on compute clouds
as another part of the thesis’ contribution (Sections 5.2 and 6.2). Furthermore,
we used another part of the threat models for the threat analyses (Chapter 7)
than in the [191].

48

4. Background and Related Work

Here, we delineate the background and the related work. In a first step, we
describe briefly the main goal of threat analyses in the context of security engi-
neering approaches and processes (Section 4.1). In a second step, we introduce
the system-centric threat modeling and analysis approach of Microsoft’s SDL
to find threats to a system (Section 4.2). In a third step, we sketch the goal of
reference modeling (Section 4.3). In a fourth step, we discuss the work related
to this contribution (Section 4.4).

4.1. Threat Analyses in the Context of Security
Engineering

As outlined before, one of the most important activities in security engineering
is a reasonable risk management (Section 3.2.1). In risk management, a first ma-
jor step is to identify the security risks in a risk analysis. After the identification,
the risks are addressed appropriately.

The term security risk—often also referred to as loss event frequency x probable
loss magnitude [288]—embraces an economic perspective (see also: Section 3.2).
Essentially, we have to estimate a probability and the monetary impact of a
security incident, i.e., an attack or error, which is often impossible [288]. So, risk
management is a field of research in itself. Here, we focus on the pure technical
identification of threats to a system (architectural/system design level) and,
thus, use the terms threats and threat analyses herein.!

For threat analyses, Shostack in [263, pp. 34] discriminates asset-, attacker-, and
software/system-centric approaches. While the asset-centric approach concen-
trates on assets in a system which may be of value for an attacker (Section 3.2),
the attacker-centric approach centers on the attackers, their motives, and their

14See also: McGraw in [178] describes that the term risk analysis and threat analysis are typically
used interchangeably. Particularly, Microsoft coined, as he states, the term threat analysis and
uses the term incorrectly, because the steps prescribed by Microsoft are risk analysis steps [178,
pp. 140-147]. However, a differentiation between threat and risk analysis based on the SDL
threat modeling approach makes sense in our opinion, as also McGraw distinguishes between
an identification of business risks and of technical risks [178, p. 141].

49

4. Background and Related Work

abilities to intrude into a system. Both approaches try to identify ways how
attackers can achieve their respective goals. The system-centric approach, in
contrast, focuses on the system which should be analyzed. Here, the system
is typically modeled on the architectural level and, afterward, the threats are
analyzed for the architecture components.

Thereby, every approach has its strengths and weaknesses. For instance, the
three different ways have been used to perform a threat analysis of a smart
home in the project KASTEL [128] (see also: [71, 72]). In the project we recog-
nized, that the asset- and attacker-centric approaches unfold their strengths for
evaluating security mechanisms and base technologies such as communication
protocols in network security. But both approaches are not suitable to perform a
threat analysis of an entire system like the smart home software. Shostack, for
example, summarizes in [263] the problems of the asset- and attacker-centric
approaches as the problem to empathize with the attackers. This is typically
not possible. In contrast, the system-centric approach is not suitable to perform
an in-depth threat analysis of specific security mechanisms, because the appro-
ach is performed on an architectural level and requires many steps to get to
the required low-level preciseness of specific attacks to a security mechanism.
Using the system-centric approach, a security engineer is, however, able to get
an overview of the threats to a system.

Since we aim at understanding the security of a system and at managing the
trade-offs between security and performance in CSS in the end that requires
trade-off decisions on a system design/architectural level, we favor system-
centric approaches. An example of such a system-centric threat analysis appro-
ach is the threat modeling and analysis approach of Microsoft’s SDL [263]. This
approach is described in more detail in the next section (Section 4.2).

4.2. Threat Modeling

After a system has been developed or during the later development stages, a
detailed threat analysis may be useful in order to find and fix security issues
with the system as early as possible. One approach for such a threat analysis
which is widely adopted in practice is the threat modeling and analysis appro-
ach of Microsoft’s SDL [86, 129, 134, 185, 225, 248, 263].1°

For this system-centric threat analysis approach, the system components and
all their interactions are modeled using Data Flow Diagrams (DFD) (threat mo-

15In contrast to some other publications, Microsoft puts the SDL threat modeling and analysis
approach to the design phase of their security engineering process [185].

50

4.2. Threat Modeling

deling). Then, threats are annotated to all system components, a deeper threat
analysis is carried out, and a further risk analysis is performed [263].

A DFD consists of the following elements [86, 262, 263]:

o (System) Processes are, for example, applications—written in Java, C#, or
another programming language—, web services, components that per-
form user authentications, shared libraries, API, etc. In DFD, processes
are depicted as circles or as two concentric circles, if the processes are
complex processes to a degree that it seems appropriate to refine them
into sub-diagrams.

o External Entities are users, components, or entire systems which are un-
trusted or outside of control. For instance, web browsers of customers
accessing a web application or application servers accessing an applica-
tion’s web services may be external entities. However, it heavily depends
on the taken perspective, whether a component is external. In DFD, ex-
ternal entities are depicted as rectangles.

o Data Sources/Sinks are “things” which store data and from which you can
retrieve data (e.g., log files, databases, or shared memory). In DFD, data
sources/sinks are depicted as two parallel lines with a label in between.

o Data Flows are a type of communication between processes or between
processes and data stores. Each data flow represents an entry or exit point
where attacks may occur. In DFD, data flows are depicted as arrows be-
tween processes, between a process and an external entity, or between a
process and a data source/sink.

o Trust Boundaries mark points where different principals come together,
i.e.,, where “[...] entities with different privileges interact” [263, p. 50]. In
DEFD, trust boundaries are dashed lines crossing data flows.

Moreover, reports from practice recommend to model systems within DFD in
multiple layers. Dhillon, for instance, suggests in [86] to model the system’s
context in a level 0 DFD and more detailed diagrams as level 1 DFD, level 2
DEFD, etc. That way, the threat modeling may occur in every phase of a system’s
life cycle, i.e., we may carry out the modeling in the design phase or in the
maintenance phase to reevaluate the threats to a running system [86].

The threat analysis based on the threat model, utilizes the STRIDE approach
that was initially developed by Kohnfelder and Garg in [156]. “STRIDE is an
acronym that stands for Spoofing, Tampering, Repudiation, Information Dis-
closure, Denial of Service, and Elevation of Privilege.” [263, p. 61] Each STRIDE
item represents a generic threat—like a class or type of attacks—that a system
tends to experience [156, 263]. The generic STRIDE threats are defined as:

51

4. Background and Related Work

52

Spoofing means pretending to be something or someone else. There are
three basic types of spoofing: spoofing a process, file, etc. on the same
machine, spoofing another machine, and spoofing a person or role. For
example, (password) phishing is spoofing a person, an organization, or an
e-mail address. Moreover, Man-in-the-Middle (MITM) attacks are based
on spoofing a machine. The generic threat of spoofing affects the secu-
rity goal authenticity (Section 3.2). Within a DFD, processes and external
entities can be affected by spoofing.

Tampering is the modification of something on disk, on a network, or in
memory. For instance, changing or injecting data packets of a CSS by an
attacker, while data is sent over a network. Such an attack usually re-
quires a precedent spoofing of a communication partner. However, tam-
pering may happen unintended by an erroneous application. Tampering
influences the security goal integrity (Section 3.2). Thereby, data stores,
data flows, and processes in DFD can be affected by tampering.

Repudiation is claiming that someone did not do something or were not
responsible for something. This may be honest or false. Examples of
attacks are the undetected attempts to break into a user account or the
ability of an attacker to deny sending a message. The threat repudiation
involves the security goal non-repudiation (Section 3.2). Typically, the
generic threat repudiation has its effect only on processes within a DFD.

Information Disclosure means to provide information to someone who is
not authorized to access a file, an e-mail, or a database. However, infor-
mation disclosure can also involve information that may be gained from
file names, column names, etc. Another example is eavesdropping net-
work traffic. Information disclosure affects the security goal confidentia-
lity (Section 3.2). The DFD elements processes, data stores, and data flows
can suffer from information disclosure.

Denial of Service means to utilize system resources which are needed to
provide the service. Moreover, such a utilization of the system’s resour-
ces is often unauthorized. The generic threat denial of service affects the
security goal availability (Section 3.2). In a DFD, processes, data stores,
and data flows are typically involved in denial of service.

Elevation of Privilege is allowing someone to do something, although not
being authorized to do it. Exploiting buffer overruns, for example, is an
attack that instantiates the generic threat elevation of privileges. In doing
s0, elevation of privilege has an effect on various security goals like confi-
dentiality, integrity, and authenticity, though it primarily undermines the
access control of systems (Section 3.2). Typically, processes in a DFD are
affected by the elevation of privileges.

4.3. Reference Modeling

After mapping the generic threats to the modeled system components (STRIDE-
per-element or STRIDE-per-interaction approach [263]), these generic threats to
a system are, then, instantiated by specific attacks in the threat analysis. For ex-
ample, the BEAST attack to a TLS-secured communication link between the
client library and the system of a CSS instantiates the generic threat informa-
tion disclosure (Section 3.2.3.2; see also: Sections 3.1.3 and 3.2.2). Here, specific
attacks from an attack library or an attack tree (see, e.g.: [251]) have to be taken
into consideration to secure the system [263]. Furthermore, security mecha-
nisms that should mitigate these identified threats are mapped to the modeled
elements [86, 129, 134, 262, 263].

Although the SDL threat modeling and analysis approach may have some flaws
(see, e.g.: [84, 104, 180]) compared to other security engineering approaches, it
can help the security engineer to better understand the security of a system.
Particularly, the fact that the SDL threat modeling and analysis approach may
occur in every phase of the system’s life cycle is key advantage. Another be-
nefit of this approach is that there are various tools which support the threat
modeling and analysis like, such as Microsoft’s Threat Modeling Tool 2016°.

4.3. Reference Modeling

“A reference model is an abstract framework for understanding significant re-
lationships among the entities of some environment [...]” [215]. It is like a
blueprint to build more specific models and is based on a small number of uni-
fying concepts [215]. For building specific models, the reference model serves
as a template to start the modeling. Due to its abstract and generic nature, a
reference model, for example, may be used as a basis for education and expla-
nation to specialists and non-specialists.

To build a reference model, there are, like other modeling approaches, two dif-
ferent ways: a reference model can be created top-down or bottom-up. When
building a reference model top-down, the model is constructed deductively,
whereas the bottom-up approach starts with specific observations and, then,
the environment and entities are generalized.

Often reference models are part of a standardization process. For example,
the Reference Model for Service Oriented Architecture of the Organization for
the Advancement of Structured Information Standards provides a standardi-
zed model for defining service oriented architectures (see, e.g.: [214]). Another

https://www.microsoft.com/en-us/download/details.aspx?id=49168

53

https://www.microsoft.com/en-us/download/details.aspx?id=49168

4. Background and Related Work

example is the Cloud Storage Reference Model (CSRM) of the Cloud Data Ma-
nagement Interface (CDMI) specification in which the Storage Networking In-
dustry Association (SNIA) abstracts components of cloud storage [269]. Based
on the CSRM, a standardized interfaces for cloud storage are defined which are
intended for application developers implementing or using cloud storage.

In this thesis, we propose a reference (usage) model which abstracts the general
usage of CSS via the involved security-relevant architectural components and
roles from a user’s perspective. With our model, we aim to support security
and software engineers to better understand the security perspective on CSS.
Here, we unify various components and roles of cloud storage services and
NoSQL systems deployed on compute clouds. The reference usage model is,
thereby, being built up in a bottom-up process where we generalize the archi-
tectural components and roles of CSS from concrete models of specific CSS (see
also: Chapter 5).

4.4. Related Work

In this section, we discuss the work related to the reference usage and threat
models of CSS. Firstly, we deliberate about work related to reference (usage)
models of CSS (Section 4.4.1). Secondly, we discuss the related work to threat
models and analyses of CSS (Section 4.4.2).

4.4.1. Reference (Usage) Models of Cloud Storage Systems

Related work to the reference usage model stem from two research directions:
reference models of cloud storages or cloud services in general (see, e.g.: [30,91,
132, 172, 269]) and security (reference) architectures of cloud storages or cloud
services in general (see, e.g.: [33, 101, 132, 201]).

In [33, 101, 132, 172, 201], different authors define reference (security) models
and architectures. For instance, the Open Security Architecture (OSA) descri-
bes in [201] security patterns for using and providing cloud services in a visual
illustration (Cloud Computing Pattern) which are embedded in a general secu-
rity architecture for enterprises. Although all these reference (security) models
and architectures are worthwhile approaches, they are much more high-level,
rarely consider architectural components, and focus on cloud services in gene-
ral. They do not have the required level of detail for our purposes. But these
models—and particularly the Cloud Computing Pattern of the OSA—may give
us inspirations for our models (see also: Chapter 6).

54

4.4. Related Work

Erl et al. in [91] and Arcitura Education Inc. in [30] describe general cloud
computing design patterns which are, as stated by the authors, proven design
solutions to problems in cloud services. They, for example, describe the already
mentioned management web applications for cloud storage services (AWS ma-
nagement console and the Google Developers Console) as a design pattern (see,
e.g.: the patterns Cloud Storage Data Management or Centralized Remote Adminis-
tration in [30, 91]). Unfortunately, they only delineate partial problem solutions
to cloud services. They do not describe a CSS entirely. However, these partial
design solutions can be used as blueprints in our reference usage models (see
also: Chapter 5).

As mentioned above, there is another reference model of the SNIA in [269] (Sec-
tion 4.3). This model is probably the most relevant related work to our refe-
rence usage model. Here, the SNIA describes the CSRM within the CDMI. The
CDMI specifies a protocol for self-provisioning, administering, and accessing
cloud storage intended for application developers who are implementing or
using cloud storage. The CSRM abstracts components of cloud storage which
are relevant for interface specifications.

However, CDMI and the CSRM aim primarily at publicly available cloud storage
services. In doing so, they do not respect both types of CSS and their commo-
nalities like, such as common architectural components and roles. However,
the CSRM is a good starting point to build our reference usage models, as di-
verse proposed concepts may, slightly adopted, fit to our purposes (see also:
Chapter 5).

In sum, most related work do not focus on CSS with their architectural com-
ponents and roles at the required detail level which is necessary for the threat
modeling and threat analyses of CSS in later chapters of this thesis (see also:
Section 4.2). Other related work does not consider the commonalities of cloud
storage services and NoSQL systems which is also one advantage of our refe-
rence usage model (see also: Chapter 5).

4.4.2. Threat Models/Analyses of Cloud Storage Systems

To our knowledge, there is no other paper, study, or publication performing a
threat analysis of CSS using a generic system-centric threat analysis approach.
Furthermore, there are no other papers, studies, or publications generalizing
architectural components of CSS and, then, building reference usage and threat
models that can be used in security engineering for CSS.

However, there are several papers, studies, and publications on security of and
threats to CSS. Also there are several papers, studies, and publications on secu-
rity of and threats to cloud computing in general. As outlined in Section 3.2.2,

55

4. Background and Related Work

there are studies by the BSI in [96, 97], by Borgmann et al. in [106], or papers
like [83, 142, 245, 272] dealing with security of and threats to cloud storage in a
broader understanding than ours. Furthermore, there are various other papers
and studies on cloud (computing) security, such as the publications of the CSA
in [66, 67, 68] which tackle threats to cloud services in general. Other papers,
studies, and publications are [11, 19, 75, 90, 92, 94, 122, 131, 137, 149, 197, 201,
239, 256, 279, 297, 311].

Unfortunately, most papers, studies, and publications do not focus on IaaS-
based CSS like we do in this thesis (see also: Section 3.1). The papers, studies,
and publications which focus on IaaS-based CSS in a broader understanding
are threat analyses that often use asset- or attacker-centric threat analyses ap-
proaches or do not consider specific components of CSS which may be at risk
and have to be secured. Moreover, these papers, studies, and publications of-
ten only list the typical threats to a system, which complicates an architecture-
based threat analysis. For example, the threats to cloud storage described by
the BSI in [96] are only a vague list of descriptions of the threats which a cloud
storage may experience. However, these “lists of threats” can be used in an
system-centric threat analysis that we perform in this thesis, but they do not
supersede a detailed system-centric threat analysis (see also: Section 4.1).

For creating threat analyses, diverse security engineering approaches and met-
hods exist, such as the threat risk modeling approach of CLASP [290, 294], the
KASTEL method [71, 72], Touchpoints [177, 178], or Microsoft’s SDL [129, 185,
263] (Section 3.2.1). In this thesis, we use the threat modeling and analysis ap-
proach of Microsoft’s SDL (Section 4.2, Chapter 6, and Chapter 7). This appro-
ach may have its flaws, but the approach is widely adopted in practice; there
are many tools to support a detailed threat analysis, and the outcome is, at least,
good [84, 104, 180] (see also: Section 4.1).

Additionally, by modeling various CSS using the threat modeling and analysis
approach based on Microsoft’s SDL, we found, as already mentioned, common
components of CSS. CSS, i.e., cloud storage services and NoSQL systems de-
ployed on a compute cloud, have specific properties and potential to be mo-
deled in more detail in a reference usage model containing typical compo-
nents and roles involved in using these systems in (cloud) applications and
services (Chapter 5). All models also can be used for security engineering for
CSS in general. Based on the usage models, more sound threat models of CSS
respectively reference threat models of CSS can be derived. These reference
threat models then allow security engineers to perform more detailed and ex-
tensive threat analyses of diverse CSS. Such an approach and unification of
components and roles as well as the derivation of the reference threat models
of cloud storage services and NoSQL systems deployed on compute clouds has,
to our knowledge, not been done before.

56

5. Usage Models

In security engineering, we have to understand the motives and consequences
of security as well as the motives and consequences not to comply with secu-
rity (see also: Section 3.2). For this, we have to understand how systems are
used in order to secure the system properly.

To better understand the general usage of CSS, we build reference usage mo-
dels of CSS in this chapter. These usage models abstract the general usage of
CSS in the context of building applications on top of them. Moreover, they help
security and software engineers to better understand CSS, their flaws, and con-
sequences of security as well as the consequences, if security lacks. The generic
usage models, therefore, abstract and specify relevant components and a mini-
mal set of roles involved in the typical usage of CSS in cloud applications and
services based on CSS. In doing so, they provide a not negligible contribution
to security engineering for CSS.

We have modeled diverse CSS using the SDL’s threat modeling and analysis
approach in recent years (Section 4.4.2). Based on this experience which we
gained in the project KASTEL, we were able to extract the reference usage mo-
dels of CSS. For the bottom-up generalization process, we used diverse other
reference models as well as design patterns. For example, we used, as already
mentioned, the CSRM of the CDMI specification published by the SNIA in [269]
as a start for cloud storage services. We also used the Cloud Computing Pat-
tern of the OSA published at [201], the Cloud Design Patterns described in [91]
and [30], and various documentations of CSS like [15, 16, 26, 58, 79, 115, 116,
226] (Chapter 4; see also: Section 3.1.3). From these models, we extracted the
minimum essentials required for our purposes and generalized the architectu-
ral components and roles for our reference usage model. In turn, if a reader
requires more information about the abstractions or needs to extend the given
reference usage models—for example, with a more fine-grained role set—, we
refer to these sources for further information.

For the usage models, we distinguish between a usage model of cloud storage
services and a model of NoSQL systems, because both types of CSS differ in
some points. For example, cloud storage services do not have to be installed but
have to be enabled, initialized, and administered, before they can be used (Sec-
tion 3.1). They are partially managed by a cloud storage provider. NoSQL

57

5. Usage Models

systems, in contrast, have to be installed, configured, and administered, before
we can use them. Additionally, we have more insights into the specific archi-
tectures of NoSQL systems (Section 3.1.3). However, the usage of both types of
CSS have their commonalities.

In the following, we assume that the CSS is used for state management purpo-
ses of applications on top of them. For instance, we may build a smart mete-
ring data visualization platform provided to customers as a multi-tenant web
application over the Internet on top of a CSS like DynamoDB or Cassandra.
Customers can upload, store, and visualize their power meter data and power
consumption profiles using the application. In doing so, the customers have
to register and log-in to the application. For payment purposes, the customers
may provide their credit card data which is a typical security-relevant use case
in the Web, because this use case involves legal regulations such as the Pay-
ment Card Industry Data Security Standard (PCI-DSS) [222] or Sarbanes Oxley
Act (SOX) [1]. The data is stored in the respective CSS.

The usage models are built from a “user’s” perspective on the specific CSS. The
“user”, thereby, is the organization building the application on top of the CSS.
Concretely, this means that we are bound by the external view on the respective
CSS: in the case of a cloud storage service, we do not have an insight into the
CSS; and in the case of a NoSQL system, we have more control over the CSS,
but we are still looking at the CSS from an external perspective—not from the
cloud storage provider’s perspective.

For the reference usage models, we distinguish the following components:

o A management web application such as the AWS Management Console or
the Google Developers Console (Section 3.1.3.1). A management web ap-
plication is used for the management of a CSS and, thus, can change the
configuration of the CSS (see also: Sections 5.1 and 5.2). Management
web applications for cloud storage services and for NoSQL systems dif-
fer considerably. For cloud storage services, a management web applica-
tion is always available, as it is used for activation and initialization of a
cloud storage service from a user’s perspective.l” There are distinguis-
hed parts of these management web applications for managing the di-
verse cloud (storage) services of the platforms. For instance, in the AWS
Management Console there are distinguished parts for the management
of S3, DynamoDB, and the other AWS services. Here, we concentrate on
the parts of these applications for managing cloud storage services. Ad-
ditionally, we consider the parts of these management web applications

171n [32], this management web application is, for example, at least a combination of the Cloud
Storage Data Management, Cloud Storage Management Portal, Resource Management System,
and Remote Administration System.

58

for managing compute cloud services that are required for deploying No-
SQL systems on the compute clouds in the following. For both, we focus
on the minimum essential details. For NoSQL systems, there are, addi-
tionally, often optional web applications available which provide speci-
fic management functionality like monitoring the cluster’s state, etc. (see
also: Section 5.2).

o A management API for accessing (selected) management functionality via
web services, system specific drivers, or communication middleware in-
terfaces (see also: Sections 5.1 and 5.2). The management API may in-
clude functionality for creating and managing databases or keyspaces,
buckets, stores, or tables, as well as users. In traditional database mana-
gement systems providing access via Structured Query Language (SQL),
this part of SQL is, for example, described as Data Definition Language (see,
e.g.: [109]). As this specific management functionality is typically security-
relevant, this functionality must be separated from pure data manage-
ment functionality required for applications on top of CSS.

o An access API for accessing and managing data stored within a CSS, for
instance, via web services or system specific drivers from an applica-
tion (see also: Sections 5.1 and 5.2). In SQL, this part of the SQL functiona-
lity is often denominated as Data Query Language and Data Manipulation
Language (see, e.g.: [109]). This functionality includes creating, reading,
updating, and deleting data items. Thereby, the management and access
API are usually combined in one single API. The API—from a security
perspective and, particularly, for access control—have, however, to be
distinguished (see also: Sections 5.1 and 5.2).

o A cloud application/service like the smart metering data visualization ap-
plication.

o A client library which uses the access and management AP], i.e., com-
municates with the access API endpoint and management API endpoint, of
the CSS and can be integrated into an application (see also: Section 9.1).
The functionality of the API, and in particular of the access AP, is dri-
ven by the data model (see also: Section 3.1.1). Example client libraries
are the AWS Java or C# SDK [15, 16] (see also: S3 in Section 3.1.3.1 or
DynamoDB Section 3.1.3.1), the Google XML/JSON API [115, 116] (see
also: Google Cloud Storage in Section 3.1.3.1 or Google Cloud Datastore
in Section 3.1.3.1), the Cassandra native driver (see also: Cassandra in
Section 3.1.3.2), or the Voldemort Avro driver (see also: Voldemort in Sec-
tion 3.1.3.2).

Additionally, we differentiate the following minimal role set:

59

5. Usage Models

o A tenant administrator who manages the tenant—similar to a root account
in Linux operating systems—for managing the cloud storage service or
compute cloud service (see also: Sections 5.1 and 5.2).

o A cloud storage (system) administrator who manages a specific CSS, such
as the cloud storage service DynamoDB at AWS or the NoSQL system
Cassandra deployed on the Google Compute Cloud. Here, we mean the
administration of the specific CSS from a user’s perspective, and, thus,
we do not mean the administrator at the cloud storage provider.

e Various other roles like application/service administrators or developers ma-
naging the cloud application/service on top of the CSS.

o End users accessing and using the cloud application/service.

The generic usage models are depicted in Figure 5.1. Both models are described
in more detail in the next sections.

5.1. Cloud Storage Services

Cloud storage services are hosted and (partially) managed by a cloud storage
provider (Section 3.1). They offer a management and an access API (Chap-
ter 5; see also: [269]). Using the management AP, a (cloud storage) user can
initialize and manage the cloud storage service, i.e.,, manage data, metadata,
user accounts, and access restrictions. In cloud storage services, the manage-
ment API is, therefore, usually accessible over a SOAP- and/or REST-based
web service. Additionally, the management AP is also accessible via the mana-
gement web application. Such management web applications are, for example,
the AWS Management Console (see, e.g.: [15, 16]) or the Google Developers
Console (see, e.g.: [31, 32, 115, 116]). The access AP]I, on the other hand, is usu-
ally only realized as a web service. Through the access API a user can use the
cloud storage service, i.e., manage the data, from his/her own application.

A user employing a cloud storage service, has to initialize the cloud storage
service over the management web application. If not done before, this requires
creating a tenant at the cloud storage provider—as mentioned, this is similar
to a root account in Linux operating systems. For creating such a tenant, a
user, for example, has to provide credit card information for accounting purpo-
ses. The initialization and initial administration of the cloud storage service is
typically done by a specific role: the tenant administrator. After creating the te-
nant, the tenant administrator can enable and initialize a specific cloud storage
service like S3 or DynamoDB at AWS. Therefore, a tenant administrator can

60

=

®
&®

“—>

Application/
Service boundary

Component

Role

Tenant Administrator
% \/

Cloud Storage Administrator ¢——m |

Accesses usually

&

End user

Application / Service Administrator, Developer,

Business Manager, ...
A

5.1.

Cloud Storage Services

Cloud Storage Service

Y ¥

Managment Web Application

&

Cloud Applic#ion / Service

e

@ Client
Cloud Application /| Library

Service

L1 web
[] Service

Management

API Endpoint

Access API

Endpoint

)

(a) Cloud Storage Services

(Compute Cloud Service

€3

Tenant Administrator Managment

Web Application

/' (Compute Cloud)

Cloud Storage Administrator 4———
SSH |

‘\\>

Application / Service Administrator, Developer,
Business Manager, ...

Access API
(Comp. Cl.)

Management API
(Comp. Cl.)

B

~N

NoSQL System running on VMs

Command-
Line Tool

L1 :
Service ..
-

ent

plication

L1 .
Service {
— CJ

Cloud Applic#ion / Service
C] ient

Libra
P . J

(b) NoSQL Systems

Management
API Endpoint

&

End user Cloud Application /'

Service

Access API
Endpoint

4

-

Figure 5.1.: Reference Usage Models of CSS

create sub-accounts for administrators and users of specific cloud (storage) ser-
vices such as a cloud storage administrator who then can administer a specific
cloud storage service. After the initialization, the further administration of a
cloud storage service may also be done via the management API, because many
functionalities of the management web applications are also available directly
via the management API (see, e.g.: [15, 16]).

To use the cloud storage service within an application, users have to utilize
the access APL In cloud storage services, the access API is typically realized
as a web service. Many cloud storage providers, furthermore, offer additional
downloadable and ready-to-use client libraries, SDK, or command line tools.
These client libraries forward the requests of the application to the web service
endpoints implementing the access and management API of the cloud storage

61

5. Usage Models

service (see also: Section 9.1). Cloud storage providers may protect these end-
points by firewalls and proxy servers. Additionally, the load to the endpoints
may be distributed via load balancers. However, this is usually opaque to cloud
storage users, as there is not enough information about the system architectures
of cloud storage providers for more speculations.

A user implements an application or a service like the smart metering data visu-
alization application (Chapter 5) on top of the cloud storage service by using the
client library. For this, different roles can be provided. For example, adminis-
trators, developers, and business managers may be such roles. This sometimes
requires creating user accounts with specific access rights to the cloud storage
service. The application/service, then, is used by the end user. In addition, the
application may provide different further application roles. For instance, if the
application is a human resource management application, there may be roles
like application manager, case officer, case handler, etc. This is, however, out
of scope of our generic usage model. Furthermore, the OSA provides in [201]
further hints for roles that can be used for structuring a cloud computing usage
scenario. But the cloud computing usage scenario of the OSA has a much bro-
ader scope than we have in this thesis.

5.2. NoSQL Systems

If NoSQL systems are deployed on a compute cloud for—more or less—private
use (Section 3.1), VM are created, started, and, finally, a NoSQL system is instal-
led on the VM. After that, the VM and the NoSQL system have to be managed.
So, we are confronted with a more complex situation for NoSQL systems in con-
trast to cloud storage services, as we have to manage VM in a compute cloud
as well as the CSS. Furthermore, users have full control over the entire NoSQL
system (Section 3.1), and we have to respect a wide range of functionality and
diverse architectures of NoSQL systems. As a consequence, we have to extend
and modify the previously described usage model for NoSQL systems in this
section.

In order to handle this complexity, we restrict the generic usage model of No-
SQL systems to the most essential details that we require for the purpose of this
model. Thus, we assume that only the required NoSQL system with its neces-
sary sub-services is installed and running on the VM. Particularly, this means
that we do not dive into many compute cloud and VM details herein. Hence,
our model is limited to the use of VM for deploying a NoSQL system. In addi-
tion, we try to reuse the components and roles already defined in Chapter 5. In
the following, we describe the generic usage model of NoSQL systems.

62

5.2. NoSQL Systems

If we want to deploy a NoSQL system on a compute cloud and if not already
done before, we, similar to the situation for cloud storage services, have to cre-
ate a tenant at the cloud provider. Therefore, we have to access the management
web application of the compute cloud service in order to do this (Figure 5.1b). Here,
we typically can create, start, stop, and delete VM. After creating the tenant,
the further management of the compute cloud service may also be done via
management and access API of the compute cloud service, as is possible for AWS
EC2 via the AWS SDK [14] (Figure 5.1b). Furthermore, a tenant administrator
can create new users like a cloud storage administrator which is responsible
for installing and managing the NoSQL system at the VM. As a tenant admi-
nistrator, they have full control over all VM started by any sub-account of the
tenant. After a VM is started in a compute cloud, the VM can be accessed via
Secure Shell (SSH). Using SSH, the cloud storage administrator can then install
and manage the NoSQL system on the VM. The cloud storage administrator
may also be authorized to create, start, stop, and delete VM, because scaling
the NoSQL system out or in may require to start or stop VM.

Comparable to cloud storage services, we distinguish management and access
API in NoSQL systems. Like in cloud storage services, NoSQL systems pro-
vide API that are intended to be used for managing the data, the tables, and the
system as well as for accessing the data (Chapter 5; see also: Section 5.1). Ho-
wever, NoSQL systems use, in contrast to cloud storage services, diverse proto-
cols and communication middleware systems like Hypertext Transfer Protocol
(HTTP), Thrift, Avro, or Protocol Buffers (Section 3.1.3; see also: Section 9.1)
that are provided via multiple endpoints or interfaces. Via these interfaces,
clients can create, read, update, and delete data as well as manipulate data
structures like tables or change system settings like user authorizations. For
example, Cassandra provides two interfaces: a Thrift and a Java RPC interface
based on Netty (Section 3.1.3.2). Additionally, most NoSQL systems provide
command-line tools that also can be used for management purposes.

Contrary to cloud storage services, most NoSQL systems do not have a mana-
gement web application by default. But such applications are often optionally
available and have to be installed manually, such as the Datastax OpsCenter!®
for Cassandra or MongoDB Compass!® for MongoDB. However, HBase, for
example, provides basic management web applications by default for master
and so-called region nodes. These web applications are used to manage spe-
cific aspects of the data distribution [26]. In contrast to the management web
applications of cloud storage services, most management web application of
NoSQL systems are usually not required for the use of these systems, as they
often only provide specific management functionality that is also available via

Bhttp://www.datastax.com/products/datastax—enterprise-visual-admin
Bhttps://www.mongodb.com/products/compass

63

http://www.datastax.com/products/datastax-enterprise-visual-admin
https://www.mongodb.com/products/compass

5. Usage Models

command-line tools. But these management web applications also have to be
secured from a security point of view.

In consequence, we have a different reference usage model of NoSQL systems
compared to the reference usage model of cloud storage services, as we have
additional components for managing the compute cloud services (Figure 5.1b).
However, most aspects of the usage models are comparable for both the refe-
rence usage model of cloud storage services and of NoSQL systems.

5.3. Summary

In this section, we described reference usage models of CSS. These reference
usage models are unified and abstracted models of the general usage of CSS
which target at improving the understanding of CSS and guiding the identifi-
cation of security-critical components in CSS.

In these reference usage models, we defined components and a minimal set of
roles for the usage of CSS (Chapter 5). For the components, we distinguished,
for example, a client library that is used to connect to access and management
API of a CSS as well as endpoints for these API. Furthermore, we differentiate
various roles such as tenant administrators, cloud storage (system) administra-
tors, and users. Thereby, there are differences between cloud storage services
and NoSQL systems deployed on compute clouds. This led to two different
reference usage models (Figure 5.1a and Figure 5.1b). For the reference usage
model of NoSQL systems deployed on compute clouds, we have to respect ad-
ditional components stemming from the VM management layer, such as the
management web application for the compute cloud service (Figure 5.1b). In
contrast, the users of a cloud storage service do not have any insight into the
system itself.

In the next section, we build reference threat models of CSS based on the two
usage models (Chapter 6).

64

6. Threat Models

In this section, we build the reference threat models of cloud storage services
and NoSQL systems using the SDL’s threat modeling and analysis approach.
The reference threat models should provide a starting point for security engi-
neers, when analyzing threats to own systems on top of CSS. Therefore, our
threat models can be refined and used in a detailed threat analysis (Chap-
ter 1).

The threat models are based on the reference usage models of CSS (Chapter 5)
as well as on the detailed descriptions and models of CSS from Section 3.1. For
the threat modeling, we use the SDL'’s threat modeling and analysis approach.
This approach has the benefits that it is widely adopted in practice and there
are various tools available which may support the threat modeling and analy-
sis (Section 4.2). Since we build threat models that can be extended for specific
use cases, we concentrate on higher detail levels, i.e., we build a threat model
of layer 0 herein. The DFD are derived from the reference usage models.

We start by describing the reference threat model of cloud storage services (Sec-
tion 6.1), before we delineate a threat model of NoSQL systems deployed on
compute clouds (Section 6.2).

6.1. Cloud Storage Services

The resulting reference threat model of cloud storage services is depicted in Fi-
gure 6.1. We start by describing the threat model elements at the provider side.
These elements are the components access API, management API, and manage-
ment web application (Figure 5.1a). The management web application can be
directly transferred from the usage to the threat model (Figure 6.1). As a cloud
storage service provides only a combined API and API endpoint, we combine
the access API and management API to a single element web service (Figure 6.1).
The two components—i.e., the web service endpoint and the web application—
are two process elements within the DFD. Since these components are usually
comprised of various other components that may be modeled in more detail in
deeper layers of a specific threat model, the process elements in Figure 6.1 are
depicted as complex processes. However, a more detailed modeling of the two

65

6. Threat Models

Trust boundary
[External Entity T,R,
(@] (System-)Process R ’ anagerl"(E
© Complex (System-)Process Tenant Web
R . Administrator L
__ Data source/sink Qpplicatiop
~~ Data flow
7
Cloud Storage S {
g Administrator Y R’)D
End user bata
\U,D —
s 1R, R, A
S Spoofing
T Tampering Application,
R Repudiation Service
| Information Disclosure
D Denial of Service
E Elevation of Privileges

Figure 6.1.: Reference Threat Model of Cloud Storage Services

components at our abstraction level is hard, because we typically do not have
enough insights into the systems running behind the API of cloud storage ser-
vices (see also: Section 3.1 and Chapter 5). Furthermore, the two components
create, read, update, and delete user data and other metadata in a provider’s
background storage that is depicted as a data source/sink (Section 5.1).

The process elements web service and management web application as well as
the data source/sink are within the control sphere of the cloud storage provi-
der (see also: Figure 5.1a). Hence, we surround these elements with a trust
boundary.

The client library and the cloud application/service are other process elements
on the cloud storage user’s side. The client library is a separate process ele-
ment, since it is a standalone programming library typically maintained by the
cloud storage provider. As the cloud application/service may consist of mul-
tiple other processes, programming libraries, etc., the element is shown as a
complex process and may also be modeled in more detail in deeper layers of a
specific threat model. Thereby, the cloud application/service invokes the client
library which then forwards the requests to the web service endpoint of the
cloud storage service at the cloud storage provider’s data center. So, there are
data flows between the cloud application/service and the client library as well
as between the client library and the web service endpoint. In particular, the
data flow between the client library and the web service endpoint is relevant
for later threat analyses, because the data flow crosses a trust boundary—i.e.,
this communication has to be secured via TLS (see also: Section 7.2).

All roles we defined in the usage models are external entities within the DFD
such as the end user and the cloud storage user with all the sub-roles (see also:
Chapter 5). The end user usually accesses the cloud application/service via the

66

6.1. Cloud Storage Services

considered user interface. Whereas, the cloud storage user typically may have
access to the cloud application/service as well as the management web appli-
cation and the web service endpoint. However, for the purpose of the threat
model, we only include the roles tenant administrator and cloud storage admi-
nistrator of the cloud storage user in the model (Figure 6.1), as we only respect
normal operations scenarios (Chapter 5). Both roles typically access the mana-
gement web application but may potentially have access to the other compo-
nents which is however, again, not considered in the threat model. In a specific
threat model based on this reference threat model, further roles which are part
of the application use cases should be considered imperatively. Furthermore,
there is another trust boundary which separates the cloud application/service
and the end user.

As mentioned, every element in the DFD of the threat model can have a spe-
cific set of the STRIDE threats (Section 4.2). For example, spoofing may occur
in processes and external entities, i.e., in the processes management web ap-
plication, web service, client library, and cloud application/service as well as
in the external entities tenant administrator, cloud storage administrator, and
end user. Another example, is the data flow between the client library and the
web service endpoint. Here, the threats of tampering, information disclosure,
and denial of service may occur which, for instance, may result from a MITM
attack performed by an attacker (Section 4.2). In Figure 6.1 we already depicted
the STRIDE threats to the model elements. These STRIDE threats are examined
further in later sections (Section 7.1).

As already mentioned, this generic threat model of cloud storage services can
be extended for specific threat models of individual use cases. To apply this
generic threat model to specific use cases—this may be, for example, buil-
ding a multi-tenant smart metering data visualization web application based
on DynamoDB (Chapter 5)—, we then have to adopt the threat model. Furt-
hermore, we have to consider the specific threats for this use case and the
specific cloud storage service. In doing so, we may extend the process cloud
application/service as well as the external entity end user with further pro-
cesses and external entities representing different components of the cloud ap-
plication/service and sub-roles of the end user role. Additionally, we have to
consider the security mechanisms of the cloud storage service. Many generic
STRIDE threats can be mitigated by standard security mechanisms. For ex-
ample, the threats of information disclosure and tampering at the data flow
between the client library and the web service can be mitigated by TLS as a se-
curity mechanism (see also: Section 3.2.3.2). For validating the reference threat
model, we carry out a more detailed threat analysis in later sections (Chap-
ter 7).

67

6. Threat Models

6.2. NoSQL Systems

For NoSQL systems, there are considerable differences between the various sy-
stems that have to be respected in the threat models and analyses (Section 3.1).
We have to respect a wide range of functionality and diverse architectures
of NoSQL systems. Therefore, we build two specific exemplary threat mo-
dels of the two NoSQL systems Voldemort (Section 6.2.1) and Cassandra (Sec-
tion 6.2.2). Afterwards, we generalize both specific threat models (Section 6.2.3).

With the selected NoSQL systems, we, thus, concentrate on quorum-based P2P
replicated NoSQL systems (Section 3.1.2). A master-slave replicated NoSQL
system like HBase is different, as HBase has different (software) architecture
components. Particularly, HBase’s layered approach and the dependency on
different subsystems differs considerably from the system architecture of the
quorum-based P2P replicated NoSQL systems. In consequence, the proposed
generalized threat model can only be used for quorum-based P2P replicated
NoSQL systems like Voldemort, Cassandra, Riak, etc., but is not applicable for
master-slave replicated NoSQL systems.

In the next section, we describe the SDL-based threat model of Voldemort. Af-
terwards, we delineate the threat model of Cassandra (Section 6.2.2). In Sec-
tion 6.2.3, we generalize both models.

6.2.1. Voldemort

The threat model of Voldemort is shown in Figure 6.2. Generally, a user who in-
stalls and runs a NoSQL system like Voldemort on a compute cloud has much
more configuration options than a user who uses a cloud storage service (Chap-
ter 5). The user has control over the entire system, the VM as well as the CSS.
For the CSS, there are various configuration options. In consequence, the threat
model to be described depends on the specific configuration of the CSS.

We mentioned previously that Voldemort?® supports various protocols for the

communication between the client library and the Voldemort cluster via dif-
ferent communication middleware (Sections 3.1.3.2 and 5.2). Amongst these,
there are RPC interfaces using Java serialization, Thrift, Protocol Buffers, and
Avro. In Voldemort, a user can configure the available interfaces (Section 3.1.3.2).
For the threat model, we assume that the user enabled all these interfaces. So,
there is a process element for every available interface in the threat model: a
RPC service, a Thrift service, a Protocol Buffers service, and an Avro service.

20 Again, we refer to Voldemort in version 1.10.0-cutoff started as a standalone server via the com-
mand line.

68

6.2. NoSQL Systems

SR
Cloud Storage
Administrator

Trust boundary

External Entity
(System-)Process

Multiple (System-)Processes
Data source/sink

yl1eef

Data flow

S.R

[a]
End User [e==
ik
1 Y
3
Spoofing . ,, "
.)
Tampering Gossip
Repudiation Service
Information Disclosure 7 4

Denial of Service

SR
Another
AR, Voldemort
Node

mO—>X-HWw

Avro Service

Elevation of Privileges

Figure 6.2.: Threat Model of Voldemort Deployed on a Compute Cloud

The services are started by the Voldemort core which can be understood as the
Voldemort binary. Thereby, the Voldemort core consists of various program-
ming libraries and internal services. The Voldemort core, moreover, parses
and writes configuration files like, for example, the store configuration (Sec-
tion 3.1.3.2) and writes log files. In addition, the Voldemort core starts the gos-
sip service that handles the cluster internal communication of Voldemort and,
thus, communicates with other nodes of the cluster. Since the Voldemort core
consists of various other parts and services which may sometimes be security-
relevant, we modeled the Cassandra core as a complex process element and
may be refined in a more detailed diagram layer.

As also described, Voldemort uses sub-systems for managing the held data
such as BDB (Section 3.1.3.2). We assume that BDB is configured to be used.
Hence, there is a complex process element for the BDB engine that is provi-
ded as an in-process API to the Voldemort core and stores the held data in a
sink/source which typically is a directory at the disk. If MySQL is used as
the storage engine in Voldemort, the threat model needs to be extended, as
MySQL also consists of a client and a server component which, additionally,
may be running at a different machine and thus have to communicate over a
network.

The different interfaces provided by Voldemort are accessed via specific client

69

6. Threat Models

libraries from the cloud application/service. The cloud application/service is,
similar to the threat model of cloud storage services (Figure 6.1), modeled as a
complex process which is connected to the specific client library. In Figure 6.2,
we consider that the Thrift client is being used, but the other interfaces are still
available for clients. Furthermore, end users, modeled as an external entity,
access the cloud application/service (Figure 6.2; see also: Figure 6.1).

Following our usage model, the cloud storage administrator usually manages
the NoSQL systems—in this case Voldemort—via SSH (Section 5.2). Thus, the
cloud storage administrator installs, configures, and starts Voldemort via SSH.
This means that the cloud storage administrator may change the configuration
files, read the log files, or start or stop the Voldemort node via SSH. SSH is,
hence, depicted as a complex process element that is connected to the configu-
ration and log files as well as the Voldemort core, since an attacker who spoofs
the cloud storage administrator and accesses the node via SSH may reconfigure
the node or sabotage the whole cluster via SSH.

Additionally, there are four trust boundaries that cross the data flows where
we have remote access to an element in the model. This is the case between the
external entity cloud storage administrator and the SSH process element, bet-
ween the external entity representing another Voldemort node and the process
element gossip service, between the process elements Thrift service and Thrift
client, and between the external entity end user and the complex process cloud
application/service.

In Figure 6.2, we already annotated the threat model elements with the generic
STRIDE threats for each element. Again, we have to mention that the threat
model depends on the configuration. In some versions of Voldemort, further-
more, some Java Servlets are deployed and accessible via the browser which
have to be respected in a threat model. These Java Servlets running in an em-
bedded web server started by the Voldemort core are security relevant, too. So,
a detailed analysis of the configuration of the NoSQL system that is running is
imperative, because configurations may also change over versions of a NoSQL
system.

In the next section, we delineate, following our approach, the specific threat
model of Cassandra.

6.2.2. Cassandra

The threat model of Cassandra is depicted in Figure 6.3. As already described
for the threat model of Voldemort, the threat model of Cassandra also depends
on the configuration of Cassandra (Section 6.2.1).

70

6.2. NoSQL Systems

SR

Cloud Storage
Administrator

Trust boundary

External Entity
(System-)Process
Multiple (System-)Processes

Data source/sink

Ylee(

Data flow

[
Cassandra
Core

L%
N
End User }-—E Application,
H Service

TR,

Spoofing 1,D\E,

Tampering JMX MBeans

Repudiation

Information Disclosure

Denial of Service

mO— > 4w

Elevation of Privileges

Figure 6.3.: Threat Model of Cassandra Deployed on a Compute Cloud

We already mentioned before that Cassandra supports two different protocols
for the communication between the client library and the Cassandra cluster: the
native interface (Java-based RPC interface) and the Thrift-based interface (Sec-
tion 3.1.3.2). The interfaces are configured via the configuration files. In the
default configuration, both interfaces are enabled. The Cassandra core reads
and writes the configuration files. The services are, depending on the configu-
ration, started by the Cassandra core which—like also described for the Vol-
demort core (Figure 6.2)—can be understood as the binary. In Figure 6.3, we
assume that both interfaces are enabled. Besides these interfaces, the Cassan-
dra core also starts the gossip service which handles the internal cluster com-
munication realized as a Java-based gossip protocol via direct access to TCP
sockets (Figure 6.3; see also: Section 3.1.3.2).

Additionally, Cassandra starts Java Management Extensions (JMX) MBeans [208]
by default which are accessible via external JMX clients. Via this JMX MBeans,
an administrator can manage the node’s configuration. So, also an attacker may
manipulate many things in a running Cassandra node and Cassandra cluster
like the node and cluster configuration. For example, an attacker can stop a
node or the entire cluster via the JMX MBeans.

The Cassandra core, also similar to Voldemort, writes log files (Figure 6.3; see

also: Section 6.2.1). In contrast to Voldemort, Cassandra however reads data
directly from memory and disk as well as writes data directly to memory and

71

6. Threat Models

Trust boundary

[External Entity Administrator
o (System-)Process
© Multiple (System-)Processes
_— Data source/sink
~~ Data flow

S Spoofing T,L(R,)D

T Tampering

R Repudiation

| Information Disclosure

D Denial of Service

E Elevation of Privileges

1,0}
AR Service
Client

A
"4
End User }e_ Application,
H Service

Figure 6.4.: Reference Threat Model of Dynamo-based NoSQL Systems De-
ployed on a Compute Cloud

disk via the LSM Tree (Section 3.1.3.2). Thus, we have a source/sink for the
held data of the Cassandra node that is connected directly to the Cassandra
core.

Following our usage model in Section 5.2, the cloud storage administrator usu-
ally manages Cassandra via SSH. So, the Cassandra core as well as the sources/
sinks (data, log files, and configuration files) are connected to the SSH process
element via data flows.

The model elements on the cloud application/service side equal the other threat
models of cloud storage services and Voldemort. So, we have the end user who
accesses the cloud application/service which, in turn, uses the client library (Fi-
gure 6.3; see also: Figure 6.1 and Figure 6.2). Here, we assume that the cloud

application/service uses the client library for the native interface of Cassan-
dra.

6.2.3. Generalization

In this section, we generalize the two specific threat models of Voldemort and
Cassandra. The generalized threat model is shown in Figure 6.4.

As visible in Figure 6.2 and Figure 6.3, we typically start a NoSQL system via
a core (binary). This core writes and reads configuration files as well as wri-
tes log files. The core, furthermore, starts the various other services of which
the whole system is comprised. This includes, for example, the storage engine
that manages the held data of the node. In the case of Voldemort, the storage

72

6.3. Summary

engine is a pluggable storage engine which uses, for instance, a programming
library like BDB or an external system like MySQL (Figure 6.2, Section 6.2.1,
and Section 3.1.3.2). In the case of Cassandra, the storage engine is realized by
an LSM Tree (Figure 6.3, Section 6.2.2, and Section 3.1.3.2). In both cases, the
storage engine shifts data between memory and disk. As the written and read
data may be compromised, this is a neuralgic and security-relevant point for
NoSQL systems and, in general, for all database systems. Data, here, may be
read (information disclosure) or changed (tampering) by an attacker. This also
applies for log and configuration files. So, the storage engine and data as well
as the log and configuration files must be considered in a threat analysis, and,
thus, are respected explicitly in the generalized threat model.

Furthermore, the core starts the services for the entire communication of the
systems that can be accessed remotely such as the Avro service in Voldemort
or the Java-based gossip protocol in Cassandra (Sections 6.2.1 and 6.2.2). The-
reby, we have to distinguish between services unused and used. The services
used are accessed by a client library, whereas the services unused should be
disabled or blocked by the node’s firewall in order to minimize the attack sur-
face of the system. The cluster internal communication service, in contrast, only
communicates with other nodes in the cluster. Furthermore, there may be other
accessible services such as the JMX service of Cassandra as well as embedded
management web applications (Section 6.2.2; see also: Chapter 5). These other
services, hence, have to be examined in a threat analysis.

As described above, the cloud storage administrator can access the core, the
data, and the log as well as the configuration files via SSH, as is specified
in our usage model of NoSQL systems deployed on compute clouds (Secti-
ons 6.2.1 and 6.2.2). This part of the threat model does not differ from the speci-
fic threat models of Voldemort and Cassandra. Moreover, the part at the cloud
application/service-side of the model is also known from the specific models.

In result, we have generalized the specific threat models to a reference threat
model of quorum-based P2P replicated NoSQL systems deployed on a com-
pute cloud.

6.3. Summary

In this section, we built reference threat models of CSS. Firstly, we created a
threat model of cloud storage services (Section 6.1). Secondly, we constructed
a reference threat model of quorum-based P2P replicated NoSQL system based
on two specific threat models of Voldemort (Sections 6.2.3, 6.2.1, and 6.2.2).

73

6. Threat Models

These threat models can be used as threat analysis of individual systems based
on CSS. Therefore, these models can be refined in specific SDL threat modeling
tools like the Microsoft Threat Modeling Tool 2016 (see also: Section 4.2).

In the next sections, we carry out two concrete threat analyses for an exemplary
use case based on DynamoDB and Cassandra.

74

7. Exemplary Threat Analyses

In this section, we perform exemplary threat analyses for a simple use case
based on DynamoDB and on Cassandra using the threat models from the pre-
vious section. As the use case, let us assume that a start-up wants to build the
mentioned smart metering data visualization platform (Chapter 5) based on
either DynamoDB or Cassandra deployed on a compute cloud—we fully trust
the cloud (storage) provider in the following.

To use the smart metering data visualization platform, users have to register
with their name and credit card data and log in (Chapter 5). In the following,
we focus, using this small example of registration and log in, on the communi-
cation between the client library and web service of DynamoDB (the process
elements client library and web service as well as the data flow between these
elements in Figure 7.1a; see also: Figure 6.1) and on the communication of the
native RPC client and RPC Service in Cassandra (the process elements Native
RPC Client and Native RPC Service as well as the data flow between these ele-
ments in Figure 7.1b; see also: Figure 6.3).

When a customer registers at the platform, a new customer account is crea-
ted. Translated to the more generic threat models, a new customer is created
at the cloud application/service. Via the client library, the data containing, for
instance, sensitive credit card information, a password, or diverse other infor-
mation that should be kept secret, the data is then transferred to the CSS, either
DynamoDB or Cassandra. For DynamoDB, hence, the data arrives at the web
service via a web service invocation (data flow between the two process ele-
ments client library and web service in Figure 6.1) For Cassandra, the data is
sent by an RPC call to the native RPC service (data flow between the two pro-
cess elements native RPC client and native RPC service in Figure 6.3).

From this point, we have to differentiate between the implementation based on
DynamoDB and Cassandra. For the implementation based on DynamoDB, we
just can say that the data is somehow stored and replicated in Amazon’s data
centers behind the API (Figure 6.1; see also: Section 5.1 and Section 6.1). In the
case of the implementation based on Cassandra, the native RPC client acces-
ses the native RPC service at a “random” Cassandra node depending on the
load balancer strategy selected in the native RPC client (Section 3.1.3.2). If the
Cassandra node is responsible for the key-range into which the key of the new

75

7. Exemplary Threat Analyses

1,D)
Native RPC
Client

1,D
Native RPC
Service

(a) Focus on Communication be- (b) Focus on Communi-
tween AWS Java SDK and cation between Native
Web Service Endpoint in Dy- RPC Client and Na-
namoDB tive RPC Service in

Cassandra

Figure 7.1.: Focus for Threat Analyses

customer account falls, the data is stored at this node, which involves the pro-
cess elements Cassandra core and LSM Tree as well as the data flows between
these elements and the source/sink data. Furthermore, the new customer ac-
count data is, depending on the replication factor, replicated within the cluster
via the process elements Cassandra core and gossip service to the other Cassandra
nodes via the cluster internal communication (Section 3.1.3.2). If the node that
is contacted by the client library is not responsible for the key-range of the new
customer account, the data is forwarded via the cluster internal communicat-
ion to a responsible node which then serves the request (Section 3.1.3.2). Here,
the first contacted node serves as a proxy for the client library. Afterwards,
the response is then sent back to the native RPC client by the node that was
contacted (Section 3.1.3.2).

When the data is stored in the respective CSS, the data can be accessed by the
client library and other CSS clients connecting to the CSS may use the data to
log in a customer at the smart metering data visualization platform. There-
fore, the data—i.e., the customer account information—may be queried parti-
ally from the CSS. Following this sub use case description, we can derive—for
example, by modeling the DFD in Microsoft’s Threat Modeling Tool 2016—the
following typical four more specific threats affecting the generic threat infor-
mation disclosure for the involved threat model elements:

1. An attacker may passively eavesdrop the communication between the
client library and the API endpoint—either the web service in DynamoDB
or the native RPC services in Cassandra. For instance, an attacker may
passively eavesdrop the data. Hence, data may be leaked to the attacker
(Threat I1).

2. An attacker may actively eavesdrop the communication initiated by the
client library, for example, by spoofing the service endpoint via an MITM

76

7.1. Use Case based on DynamoDB

attack. As a consequence, the data may be leaked to the attacker (Threat
2).

3. An attacker may access the stored data as an authorized user. Therefore,
the attacker may, for instance, spoof a legitimized user (Threat I3).

4. An attacker may access the stored data as an unauthorized user bypassing
the API (Threat 14).

7.1. Use Case based on DynamoDB

In order to mitigate the Threat I1 and 12, the communication between the AWS
SDK and DynamoDB or the AWS web services is secured by TLS by default [15].
The cipher suites are configured by AWS, as AWS controls the server-side end-
points. Thereby, the DynamoDB endpoints in the AWS regions seem to be con-
figured differently and the TLS configuration seems to change over time. For
example, the AWS region located in Ireland did not support the recommen-
ded TLS version 1.2 but only the version 1.0 during tests in February 2016 and
April 2016. In contrast, the AWS region placed in Germany supported TLS in
versions 1.0-1.2 at the same time. Furthermore, the region Ireland only allowed
clients to use three cipher suites which all did not support PFS, while the region
in Germany supported eight cipher suites including four state-of-the-art cipher
suites with PFS and/or AES using GCM. In tests in May 2016, both AWS regi-
ons supported TLS version 1.2. However, the DynamoDB endpoints in Ireland
still did not support cipher suites with PFS.

As the AWS web services are authenticated by their public key that may be
pinned in Java or .NET cloud applications/services (certificate pinning; see,
e.g.: [289]), a MITM attack (Threat 12) can be alleviated.?!

Additionally, every request sent to the AWS web services must be authentica-
ted. Therefore, AWS web services use a specific way to sign every request: the
Signature Version 4 [17]. In Signature Version 4, the requests are signed with
a secret access key ID, a secret access key, and some other parameters like a
timestamp [17]. The secret access key ID and the secret access key are managed
via the AWS-wide IAM system where the users are managed for a tenant. Sig-
nature version 4 prevents replaying and tampering requests of authenticated
users. To authorize users to access data in DynamoDB, a cloud storage admi-
nistrator can grant permissions to different tables and some other resources like

2lEor some SDK, developers report that it is, however, hard to implement public key/certificate
pinning, such as, for example, for the Android SDK [12]. As we do not focus on mobile de-
velopment on top of CSS (see also: Chapter 5), we did not check the current status of public
key/certificate pinning in the AWS Android SDK.

77

7. Exemplary Threat Analyses

indexes [15]. After that, permission policies can be defined that describe who
has access to which resource, such as a table. For each resource, a set of query
statements/actions like create table, get, or batch get statements can be granted
to a user in a policy. In combination, these mechanisms mitigate the threats
Threat I3 and 14.

In order to protect the stored data in DynamoDB against unauthorized users
(Threat I4), DynamoDB currently does not provide any security mechanisms as
a configuration option. However, an appropriate data-at-rest encryption may
be built by the user utilizing the already mentioned Securus Framework by
Koehler in [154] or, at least, by only obfuscating specific columns if this is ade-
quate against the intended attacker (see also: Section 3.2.3.2).

In sum, DynamoDB supports TLS, authentication and authorization mecha-
nisms, and thus typical security mechanisms of a traditional database manage-
ment system. The Signature Version 4 request signing is a little bit beyond the
security mechanisms of some traditional database management system, which
do not provide such replaying and tampering protection. In turn, DynamoDB
is accessible every time from nearly everywhere over the Internet by multiple
tenants that requires such a mechanism. Using these security mechanisms in
an appropriate way and, additionally, a well-considered data-at-rest encryp-
tion for (sensitive) data, may provide an acceptable level of security against
“typical” attackers in a typical use case. However, due to the general threats
to outsourced data, DynamoDB should, in our opinion, not be used for highly
confidential data, as there are various other ways to experience harm in the
context of cloud storage services. Additionally, the overhead for securing out-
sourced highly confidential data via an appropriate encryption of data-at-rest
may be cost-unfeasible [64].

7.2. Use Case based on Cassandra

To mitigate the Threat I1 and 12, the communication between the native RPC
client library and the native RPC service can be secured by TLS in Cassan-
dra (Section 3.2.3.2). Thereby, the cloud storage administrator is, following our
usage model of NoSQL systems, able to change the TLS configuration of Cas-
sandra. As mentioned, a “good and secure” TLS configuration is immensely
important to mitigate any threats related to TLS and to achieve a high overall
security with TLS (Section 3.2.3.2). For a high overall security of TLS, the TLS
protocol versions, cipher suites, certificates, key lengths of cipher algorithms,
and certification authorities used must all be secure, and the implementations
must all be patched and kept up to date [34].

78

7.2. Use Case based on Cassandra

In Cassandra, the usage of TLS is configured in the main configuration file (cas-
sandra.yaml). The main configuration file contains all important TLS confi-
guration options (see also: the configuration files in the threat model of Cas-
sandra in Section 6.2.2). We can define the enabled TLS protocol versions,
cipher suites, as well as key and trust stores which store the certificates and
certification authorities to validate the certification paths. The configuration
file has a separate TLS configuration for the communication between the client
library and the Cassandra cluster as well as for the cluster internal communi-
cation solely. The ability to define trust and key stores for each communication
type independently as well as independently from the general Java Runtime
Environment (JRE)’s TLS configuration allows a user to pin the certificates of
clients (certificate pinning) which can mitigate MITM attacks even more (see,
e.g.: [78, 289]). Additionally, the cloud storage administrator may configure
Cassandra to use the TLS peer authentication [78] (see also: Section 3.2.3.2).
For achieving a secure TLS configuration in Cassandra, a cloud storage admi-
nistrator should only permit the latest TLS version and state-of-the-art cipher
suites—we will look at the cipher suite configuration in more detail in later
chapters (see, e.g.: Section 12.2).

If everything so far is configured securely, the overall security of TLS relies on
the concrete TLS API usage in Cassandra and on the TLS implementation itself.
When the given TLS APl is not used in the correct way or if the TLS implemen-
tation has a vulnerability, the overall security of TLS and the entire system may
be compromised. In recent years, many bugs regarding the incorrect use of
TLS API have occurred. For example, the OpenSSL API have frequently been
used in a wrong way due to misleading documentation (see, e.g.: [118]), or
the certificate validation in applications have been an issue many times (see,
e.g.: [18, 95]). In Cassandra, the TLS API usage seems to be free of bugs and
the TLS implementation used—the Java Secure Sockets Extension (JSSE) of the
JRE used (see also: Section 12.3)—seems also to be secure and free of bugs and
vulnerabilities. In later chapters, we will discuss the influence of the TLS im-
plementation on the security and performance of a system in more detail (see,
e.g.: Section 12.3).

In order to mitigate Threat 13, Cassandra provides an authentication and aut-
horization mechanism based on usernames and passwords out-of-the box [80].
Thereby, the usernames and passwords are stored in the main configuration
file—like Cassandra’s TLS configuration above. A cloud storage administrator
may grant or revoke permissions for keyspaces, columns, and some other re-
sources to users [80] (see also: Section 3.1.1). An additional option is to use the
TLS peer authentication based on X.509 certificates for authentication. Sum-
marizing, the authentication and authorization mechanisms are similar to the
mechanisms of traditional database management systems. The mechanisms
may protect, as far as they are used appropriately, the system in a proper way.

79

7. Exemplary Threat Analyses

Hence, Threat I3 can be mitigated by the provided security mechanisms. Ho-
wever, for mitigating Threat 14, Cassandra, comparable to DynamoDB, does
not provide any security mechanism (see also: Section 7.1).

To recapitulate, Cassandra supports TLS and a built-in authentication and aut-
horization mechanism. Since Cassandra is a NoSQL system, the cloud storage
administrator has to configure the Cassandra cluster securely. Particularly, the
TLS configuration of Cassandra may be an issue (see also: Part III). For mitiga-
ting the Threat 14, a well-considered data-at-rest encryption for (sensitive) data
has to be implemented. However, using the provided security mechanisms
in an appropriate way, may provide an acceptable level of security against
“typical” attackers in a typical use case. Comparable to the situation with
DynamoDB (Section 7.1), we do not think that a NoSQL system like Cassan-
dra deployed on a public compute cloud should be used for storing highly
confidential data, as the general threats of cloud computing still exist (see,
e.g.: [66, 68]).

7.3. Summary

In this section, we performed exemplary threat analyses for a small use case
based on DynamoDB and Cassandra. Therefore, we used the reference threat
models of the previous section and derived specific threats for focused parts
of the threat models. These focused parts of the threat models are involved in
the communication between the client libraries and the service endpoints used.
Moreover, we concentrated on the generic threat information disclosure as the
derived specific threats.

DynamoDB and Cassandra provide different security mechanisms to mitigate
the specific threats. Both CSS support TLS for the communication between the
client libraries and the service endpoints used. The certificates for TLS may
be pinned to the public key of the server to mitigate MITM attacks. They also
both provide authentication and authorization mechanisms. However, Dyna-
moDB as well as Cassandra do not provide data-at-rest encryption by default
to mitigate threats stemming from attackers that bypass the authorization me-
chanisms of the APIL. Additionally, the TLS configurations of both systems may
be an issue. In DynamoDB, the TLS configuration depends on the used AWS
region and changes over time. For example, the region Ireland did not allow
to use the recommended TLS version 1.2 intermediately in tests we performed.
For the TLS configuration of Cassandra, the cloud storage administrator is in
charge and should choose a secure TLS configuration, which is discussed in
more detail in later chapters of this thesis (see, e.g.: Part III).

80

8. Conclusion and Discussion

In this part, we examined the security of CSS. For this, we built two refe-
rence usage models of CSS which unify and abstract the general usage of cloud
storage services and NoSQL systems deployed on a compute cloud. These
usage models of CSS support the understanding of consequences of security
in CSS. In the usage models, we defined components and a set of roles typi-
cally involved in the usage of CSS.

After building the reference usage models of CSS, we created two reference
threat models of cloud storage services and NoSQL systems deployed on com-
pute clouds based on the usage models. The reference threat models allow for
analyzing the threats to CSS as shown in Chapter 7. The threat models are
based on threat modeling and analysis approach of Microsoft’s SDL. The SDL
threat model of cloud storage services is directly derived from the generic usage
model of cloud storage services. For building the SDL threat model of NoSQL
systems, we modeled two specific threat models of two NoSQL systems (i.e.,
Voldemort and Cassandra) which we generalized to a reference threat model
of Dynamo-based NoSQL systems deployed on compute clouds.

Moreover, we performed exemplary threat analyses of a small use case in order
to show the practical applicability of the threat models. We used the reference
threat models and derived specific threats for focused parts of the CSS. We
focused on parts that are involved in the communication between the client li-
braries and the service endpoints used in the respective systems. Out of the
generic STRIDE threats, we concentrated on the threat information disclosure
in the small parts of the threat models. For mitigating information disclosure at
the client libraries and service endpoints, DynamoDB and Cassandra provide
different security mechanisms such as TLS as well as authentication and autho-
rization mechanisms. However, both systems do not provide data encryption
by default to mitigate threats stemming from attackers that bypass the typical
access paths using the API and service endpoints.

Furthermore, the TLS configurations of DynamoDB and Cassandra may be cri-

ticized, because the TLS configuration of DynamoDB differs from AWS region
to region. The TLS configuration of Cassandra is in the responsibility of the

81

8. Conclusion and Discussion

cloud storage administrator and may be subject to configuration-based secu-
rity issues. The cloud storage administrator must well-consider the TLS confi-
guration of Cassandra, as TLS can be configured to operate securely or even in
a broken way. As shown in later chapters of this thesis, using state-of-the-art
TLS cipher suites promises to be secure, but may also introduce a not negligible
overall performance impact (see, e.g.: Section 12.2). Also the TLS implementat-
ion itself may be an issue (see, e.g.: Section 12.3).

In sum, the reference usage models and threat models of CSS support the over-
all understanding of the security in CSS. Using the reference usage and threat
models helps to assess the security-relevant components of a CSS in a more
structured way. So, we can clearly state that we can analyze the threats to dif-
ferent CSS with diverse security mechanisms in diverse concrete systems using
the reference usage and threat models (Research Question 1). The usage mo-
dels improve the overall understanding of components and roles involved in
using a CSS. The threat models allow for building own specific threat models
based on the reference threat models of CSS and for analyzing the threats to
CSS. The approach—Ilike any modeling scheme—foster structuredness, com-
pleteness, and explicitness as well as provide a basis for communication among
different stakeholders across different roles and disciplines in cloud storage se-
curity engineering. Furthermore, it may heighten the quality of security as-
sessments as well as of respective security engineering activities for settings
involving cloud storage services and NoSQL systems deployed on compute
clouds.

However, our approach also has some weaknesses. The weaknesses are con-
nected with the approaches themselves. For example, the reference usage mo-
dels assume a specific scenario. If this usage scenario has a flaw, the entire
usage model with all other assumptions may be broken. However, we believe
that the assumptions hold for many other specific usage scenarios where web
applications or services are built on top of a CSS. Moreover, there are various
qualms regarding the SDL-based threat modeling and analysis approach which
we cannot wipe off. De Win et al., for example, criticize the overhead for mo-
deling the system itself and often large threat models [84]. But all in all, the
benefits of our overall approach are prevailing. In our opinion, the reference
usage models and threat models improve the understanding of the security of
CSS that is required for security engineering for CSS and for the understanding
of the trade-offs between security and performance in CSS.

82

Part Illl.

Experimental Trade-Off
Analyses

83

In this part, we focus on quantifying the trade-offs between security and per-
formance on the example of TLS in CSS. From a security perspective, TLS can
mitigate the threats information disclosure, tampering, and spoofing to the
communication of a system, if it is configured securely (Section 7.2). From a
performance perspective, TLS impacts typically the throughput and latency of
a CSS (Part I; see also: Section 9.2). As we will see in this part, the security as
well as the performance depend massively on the specific configuration. This
begs the question: how can we quantify the performance impact of TLS con-
figurations in various CSS and what are relevant configuration options of TLS
for the trade-offs between security and performance in CSS (Research Ques-
tion 2)?

In this part, we, therefore, present extensive experimental trade-off analyses
of different influence factors and relevant configuration options of the trade-
offs between security and performance using the example of TLS in CSS. These
influence factors and relevant configuration options include different CSS (Sec-
tion 12.1), diverse cipher suite configuration (Section 12.2), and various TLS
implementations (Section 12.3) which, as we will see, influences the trade-offs,
and particularly the security of a system, massively.

In general, there are many different TLS implementations available. TLS imple-
mentations typically have different security features such as different cipher
suites and, hence, may provide different security and performance (see also:
Sections 9.3 and 9.4). In particular, Java-based TLS implementations—we focus
on Java-based TLS implementations—have the reputation to be slow in com-
parison to C- or C++-based TLS implementations. However, we are, due to a
common API for TLS, the JSSE, able to replace a TLS implementation in Java-
based system by a—maybe—faster TLS implementation or a TLS implemen-
tation with different security features that results in another overall security.
Since recent security bugs in TLS implementations such as OpenSSL’s Heart-
bleed bug or Apple’s Goto Fail bug (Section 3.2.3.2), that is an non-negligible
option for the configuration of a CSS.

However, how do we compare different Java-based TLS implementations for
the further experimental trade-off analyses in the context of CSS? Therefore,
we provide a comprehensive conceptual comparison framework for Java-based
TLS implementations for selecting an appropriate TLS implementation for a
CSS (Chapter 10), before we benchmark the impact of these implementation in
a CSS in later chapters.

Next, we propose a benchmarking approach for TLS in CSS and introduce a
tool that allows for measuring the performance impact of TLS and different
TLS configurations in CSS (Chapter 11). At first glance, benchmarking the
performance impact of TLS in CSS looks similar to a standard performance

85

benchmarking approach. However, the benchmarking of TLS in CSS has some
pitfalls, as we will see.

Afterwards, we analyze the trade-offs between security and performance of
TLS in CSS from a performance perspective in more detail (Chapter 12). In
a first step, we benchmark the performance impact of TLS in two select CSS,
DynamoDB and Cassandra, using the benchmarking approach and the bench-
marking tool (Section 12.1).

In a second step, we study the influence of the cipher suite configuration, be-
cause the cipher suite configuration is probably the most important configu-
ration option of TLS in the context of the trade-offs between security and per-
formance (Section 12.2; see also: Section 9.3). The cipher suite condenses the
entire complexity of the TLS protocol as well as security and performance pro-
perties to a specific string. Thereby, a user can often manipulate the cipher suite
configuration of a CSS easily via configuration files (Section 3.2.3.2). Moreover,
there are more secure and less secure cipher suites which all have different per-
formance characteristics.

In a third step, we inspect aspects of the impact of the TLS implementation
itself on the trade-offs, because there are, as mentioned, non negligible dif-
ferences between different Java-based TLS implementations (Section 12.3; see
also: Sections 9.4 and 10). Finally, we conclude and discuss the findings of this
part (Chapter 13).

The entire part is based on material previously published at the IEEE Inter-
national Conference on Cloud Engineering (IC2E) 2014 [190] as well as in the
project reports of KASTEL [71, 72]. Particularly, this applies to the benchmark-
ing approach and the tool. The tool, TLSBench, is also already published at
SourceForge as an open source project.”? The benchmarking results, however,
are extended massively in this thesis. Thereby, select benchmarking results of
Cassandra in this thesis are also published in [217].

2nttp://www.sf.net/p/tlsbench

86

http://www.sf.net/p/tlsbench

9. Background and Related Work

In this chapter, we introduce the background and related work of benchmark-
ing the performance impact of TLS as well as different TLS configurations in
CSS. At first, we delineate how the communication in CSS works and describe
an abstracted communication model of CSS (Section 9.1). Next, we describe
how TLS usually impacts the performance of systems (Section 9.2). This also
includes background information about cipher suite selection (Section 9.3) and
background information about the performance impact of different Java-based
TLS implementations (Section 9.4). Finally, we discuss the related work (Sec-
tion 9.5).

9.1. Communication in Cloud Storage Systems

As mentioned in Section 3.1.2, CSS distribute data over the cluster to replicas.
Distribution of data within a cluster of nodes of a CSS requires communication
between the replica. Moreover, clients have to communicate with the CSS. So,
in this section, we will deal with a communication model of CSS.

Client
Library

— Application-Replica Communication

Se

Replica

Load Balancer

Replica-Replica Communication

Figure 9.1.: Schematic Overview of Communication Types in CSS

Communication in CSS is built around three main components (Figure 9.1):

o A client library used in the application to connect to the CSS.

o Aload balancer component which routes the client’s requests to a replica
that can handle the request (see also: Sharding and Replication in Sec-
tion 3.1.2).

87

9. Background and Related Work

e Multiple replica within the CSS which actually store the data.

An application typically directs its requests to the CSS via a client library which
sends them to the load balancer. Based on, for example, the current system
load, the load balancer then routes the request to one or more replica in the CSS
which then respond to the client—again via the client library. Depending on
the system, the load balancer may be a separate system entity or collapsed into
either each of the replica or the client library. This is, for instance, typical in
P2P replicated systems like Cassandra (see also: Cassandra in Section 3.1.3.2)
or Voldemort (see also: Voldemort in Section 3.1.3.2). In cloud storage services,
this component is also invisible, as the component is typically hidden behind
an API that is accessed via the client library (see also: Chapter 5). In any case,
the load balancer is only an intermediary which forwards requests. Further-
more, CSS like HBase or the GFS [114] have additional machines for further
management purposes which can be treated as replica here. This leads to two
basic types of communication (Figure 9.1):

o Application-replica (AR) communication comprises the data flow between
the application, i.e., the client library, and the first replica (solid lines
in Figure 9.1). In systems with an extra load balancer, this extra hop is
included. AR communication sometimes spans multiple data centers and
typically uses interoperable communication middleware like Thrift, Pro-
tocol Buffers, Avro, or even web services—based on SOAP and/or REST.

o Replica-replica (RR) communication—often also referred to as background,
cluster internal, or intranode communication—occurs between nodes of
a CSS (dashed line in Figure 9.1). Using the RR communication, a CSS re-
plicates and shifts data to and between replica. RR communication often
crosses AZ—i.e., multiple isolated parts of a data center—and may leave
a data center for reasons of availability or geo-replication. In most ca-
ses, RR communication uses proprietary binary communication protocols
as both parties of the communication belong to the same closed system.
This communication is typically started during the node bootstrapping
process and will only be closed and reopened if forced to do so by failu-
res (see, e.g.: Cassandra in Section 3.1.3.2). Sometimes RR communication
is built upon existing sub-systems such as in Bigtable and HBase. In both
CSS, the RR communication is built on top of GFS respectively the HDFS.

In Table 9.1, several popular CSS and their communication middleware used
for AR and RR communication are referenced. Note, that in the case of NoSQL
systems, the user controls both types of communication. For cloud storage ser-
vices, in contrast, the user cannot influence RR communication at all, because
that is controlled by the cloud storage provider (Section 3.1). The load balancer

88

9.2. Performance Impact and Optimizations of Transport Layer Security

Cloud Storage System Application-replica Replica-replica com-
communication munication

DynamoDB Web services (HTTP) unknown

S3 Web services (HTTP) unknown

Google Cloud Storage Web services (HTTP) unknown

Google Cloud Datastore Web services (HTTP) unknown

Cassandra Prop. Binary RPC, Thrift | Prop. Binary RPC

HBase Prop. Binary RPC, | Prop. Binary RPC (Zook-
HTTP, , etc. eeper, HDFS)

MongoDB RESTful web services | Prop. Binary RPC
(HTTP)

Voldemort HTTP, Avro, etc. Prop. Binary RPC

Table 9.1.: Communication Middleware in CSS

component is typically located in the cloud storage provider’s data center. In
Section 3.1.3, the communication of selected CSS is described in more detail.

9.2. Performance Impact and Optimizations of
Transport Layer Security

Security mechanisms generally introduce a performance overhead due to per-
forming additional computation, appending additional data, doing extra com-
munication roundtrips, etc. (Section 3.2.3). This also applies to TLS. This typi-
cally leads to an increased latency and reduced throughput, when employing
TLS in a system (Sections 3.2.3.1 and 3.2.3.2). In this section, we delineate the
root sources of this performance impact of as well as various performance op-
timizations for TLS in more detail.

The overall performance overhead of TLS in a system can be significant. For
example, Coarfa et al. have quantified in [69] the performance overhead of a
HTTPS web server compared to a non-secured web server which ranges from
a factor of 3.4 to a factor of 9 [69]. They used a typical web server setting where
a web client communicates with a web server via HTTPS.? Moreover, they fi-
gured out—like other papers before (see, e.g.: [29, 147, 181, 233, 313])—that the
expensive part of HTTPS is the handshake, as a handshake involves asymme-
tric encryption as well as a number of further message exchanges that delay
the actual data transmission. The reason for this is, amongst others, that HTTP

B As the most related work is originated before the specification of Hypertext Transfer Protocol
Version 2 (HTTP/2)/HTTP/2 over SSL/TLS (HTTPS/2), we refer to HTTP Version 1.1 and
HTTPS, if not mentioned explicitly (see also: Section 9.5).

89

9. Background and Related Work

is a stateless protocol and a client browsing a web site at a web server using
HTTPS connects and reconnects multiple times to the server over time which
also results in multiple handshakes [69].

As a consequence, many performance optimizations for the handshake phase
of TLS have been proposed in recent years. For instance, there are hardware
accelerators which offload the CPU-intensive public-key encryption involved
in the handshake phase [69].

Another optimization of the handshake phase is session resumption [69]. Ses-
sion resumption allows the client and server to reuse already negotiated TLS
parameters from previously established connections such as the master secret
that presupposes an expensive creation of a pre-master secret. Therefore, TLS
distinguishes between connections which are specific communication chan-
nels (e.g., a TCP socket connection) and sessions that are virtual constructs sto-
ring negotiated TLS parameters. A session is created, when a full TLS hands-
hake occurs. A session can be resumed (see also: session resumption), if a
session already exists and is not expired for the client that (re-) connects to
a server [233]. In the context of HTTPS, session resumption reduces the per-
formance overhead of TLS enormously, as the handshake is abbreviated and
reduces the overall latency and computational performance overhead due to a
reduced number of exchanged handshake messages [69, 120, 233].

Also, there are recommendations for prioritizing specific handshake protocols
due to performance reasons (see, e.g.: [45, 176, 233, 237]). For example, ECDHE
is typically prioritized over DHE, since ECDHE based on elliptic curves is ty-
pically faster and supported by more clients than DHE using discrete loga-
rithms [45, 176, 237]. As the choice of the handshake protocol is specified via
the cipher suite, we discuss this in more detail in the next section (Section 9.3).

In contrast to the performance impact of TLS in the handshake phase, the per-
formance impact in the bulk data transfer phase is often described as negligible
for web server settings. One reason is that the percentage of the bulk data
phase is relatively low for such a communication between a web server and a
browsing client using HTTPS. But if the bulk data percentage increases in such
a setting—for example, when downloading large bulk data—the percentage
overhead of the symmetric encryption increases and can become significant.
However, the general overhead of symmetric encryption is typically conside-
red to be less than the overhead of asymmetric encryption. Consequently, an
established TLS connection should be reused as long as possible for multiple
requests in order to minimize the number of required handshakes and to decre-
ase performance overhead of TLS to only the overhead of the bulk data transfer
phase [120, 237].

90

9.2. Performance Impact and Optimizations of Transport Layer Security

The performance overhead of the bulk data transfer phase varies, as descri-
bed before, for different cipher suites. The performance of a cipher suite in the
bulk data transfer phase, depends massively on various influence factors, for
instance, the employed cipher as well as the CPU utilization and the overall
resource saturation which is, in turn, influenced by the cipher suite (see also:
Chapter 11). In order to minimize the resource saturation, there are various
other optimizations like the AES Instruction Set (AES-NI) hardware support
which accelerates AES encryption and decryption in the CPU and can, thus,
increase the throughput of AES-based cipher suites. We discuss the influence
of the cipher suite in more detail in the next section (Section 9.3; see also: Secti-
ons 12.2 and 12.3.1).

Although the performance overhead of the bulk data transfer phase is mainly
driven by the selected cipher suite, a specific amount of the overhead is insen-
sitive to the transmitted data. This insensitive amount of the overhead inclu-
des the performance overhead for creating and adding the TLS record header
for each TLS record [69, 120, 233, 237] (see also: Figure 3.3). Each record re-
sults in 5 Bytes (B) additional data for the TLS header and a variable amount
of Bs for MAC and other metadata.** Moreover, there are interdependencies
with the underlying TCP segments and Internet Protocol (IP) packets which
result in a potential overall overhead of about 60 B and more per TLS record
due to framing [120]: “The smaller the record, the higher [is] the framing over-
head.” [120, p. 68] On the other hand, simply using the maximum TLS record
size of 16 Kilobyte (kB) regardless of the use case does not solve the problem,
because TLS records spanning multiple TCP segments cannot be decrypted
before all segments have arrived. This may result in higher latencies, if TCP
segments get lost (retransmission), reordered (head-of-line blocking), or thrott-
led (TCP congestion control; see also: Sections 14.1 and 16.2) [120]. Summari-
zing, small TLS “[...] records incur overhead, large records incur latency, and
there is no one answer for the ‘right’ record size.” [120, p. 68] In a nutshell, we
encounter another trade-off here.

In order to make this trade-off and to optimize the throughput of their servers,
Google, for instance, implemented a dynamic adaptation of the maximum TLS
record size for the TLS implementations running on Google’s servers. This
TLS implementation uses small TLS records that fit into a single TCP segment
for the first 1 Megabyte of data, increases the record size to 16 kB after that to
optimize the throughput, and then resets the record size back to fit into a single
TCP segment after 1 sec of inactivity of the client [121]. Another description of
such a behavior of a TLS record size adaptation can be found at the HAProxy
project—a well-known TCP /HTTP load balancer—in [127] or in [237] (see also:

2Gee, e.g.: [237, p. 274] for a comparative table of additional data overhead for various cipher
suites.

91

9. Background and Related Work

Sections 14.1 and 16.2).

However, these mentioned insights into the performance impact of TLS and the
different optimizations cannot be simply applied upon CSS. We can only trans-
fer this knowledge about the performance impact of HTTPS directly onto CSS
using HTTPS. But, as already mentioned, CSS and NoSQL systems in parti-
cular use various other communication protocols and often proprietary binary
protocols (Section 9.1). These binary protocols differ from HTTP and HTTPS
in many ways.” For example, Cassandra’s gossip protocol (RR communicat-
ion) is a proprietary binary RPC protocol that allows, in contrast to HTTP, to
send multiple requests and responses over a single established connection to
other Cassandra nodes. Therefore, the TCP connection to another node typi-
cally stays open as long as possible and sometimes for the entire up-time of
the nodes.?® For the AR communication of CSS, other protocols may also be
used (Section 9.1).

In consequence, the communication behavior of CSS is different from web ser-
vers and the findings of related work on HTTPS cannot be applied to CSS.
Even more unsatisfactory, we do not have sufficient information regarding the
rough performance impact of TLS on the most current protocols used in the
different CSS. There is a broad variety of communication protocols and vari-
ous communication middleware systems available that may lead to a different
performance impact of TLS. And due to the different communication behavi-
ors of CSS, also the different performance recommendations and optimizati-
ons of TLS often do not work in the context of a specific CSS (see, e.g.: Sec-
tion 12.2.1).

9.3. Cipher Suite Configuration

The cipher suite configuration is the most important configuration option of
TLS for balancing the trade-offs between security and performance. The cip-
her suite condenses the entire complexity of the TLS protocol as well as the
trade-offs between security and performance to a specific string. Choosing an
unsuitable cipher suite may lead to security issues or to a considerable per-
formance degradation. Typically, we can choose between a plethora of diffe-
rent cipher suites that provide different security in combination with different

25Again, we refer to HTTP as well as HTTPS and not to HTTP/2 as well as HTTPS/2. In our
opinion, HTTPS/2 will also show a different performance impact than HTTPS, because HTTP /2
is a binary protocol and supports multiplexing as well as pipelining of multiple requests over a
single TCP connection.

26For a more detailed description of Cassandra’s gossip protocol, we refer, for instance, to [57].

92

9.3. Cipher Suite Configuration

Key
Agreement Cipher Mode of
Protocol Algorithm Operation

— — —
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA

- J . - .
SSL/TLS Authenti- Cipher MAC
Protocol cation Strength

L J L J
Handshake Phase Bulk Data Transfer Phase

Figure 9.2.: Cipher Suite Naming Pattern

performance. Some cipher suites are considered to be more secure and others
promise to be faster.

What such a cipher suite string contains and how it is built is depicted in Fi-
gure 9.2 (see also: Section 3.2.3.2). The first part of a cipher suite distinguis-
hes between SSL (SSL 3.0) and the newer TLS protocols (TLS 1.0, 1.1, and
1.2). The next part contains the settings for the handshake phase. This also
includes the key agreement protocol (RSA/DH) and the authentication algo-
rithm (DSA/RSA). Furthermore, there are settings for the bulk data transfer
phase. This includes the cipher for the symmetric encryption (e.g., AES or Ca-
mellia), the cipher strength (e.g., 128 or 256 bit), the mode of operation (e.g.,
CBC, GCM, or CCM), and the MAC (e.g., Secure Hash Algorithm (SHA)).

Thereby, every part of the cipher suite has its influence on the trade-offs bet-
ween security and performance. A major problem in this context is, as menti-
oned, that there is no objective measure of security, while the performance can
be measured (Section 3.2.3; see also: Chapter 12). Nevertheless, there are many
recommendations which try to rationalize the cipher suite configuration and
show how to use and configure TLS securely.

For instance, there are recommendations of the Mozilla Project in [189], of the
Internet Engineering Task Force in [257], of the Qualys Inc.—respectively of
Risti¢ who is a TLS expert with a good reputation—in [238], or of the ENISA
in [93]. In order to suggest cipher suites and TLS configurations, the recom-
mendations use security features of cipher suites, algorithms, and modes of
operations such as PFS and AEAD (see also: Section 3.2.3.2) as well as security
evaluations, known issues, and known attacks in order to give configuration
advice and to categorize or rank various cipher suites roughly into “security
levels”.

Although such categorizations and rankings of cipher suites into security levels
are often of questionable value due to a lack of objective security measures, a
security engineer must decide on specific cipher suites when configuring the
list of enabled cipher suites of a TLS implementation. A configuration of the

93

9. Background and Related Work

enabled cipher suites is crucially important, as the omission of a configuration
may turn out to be all the more dangerous. For example, the full supported
cipher suite list of various TLS implementations like OpenSSL contain insecure
cipher suites such as the so-called NULL cipher suites which do not encrypt
anything. Additionally, there may be “export grade” cipher suites enlisted that
are vulnerable to downgrade attacks like the FREAK [285] or Logjam [286] is-
sues [189, 238]. In short, such recommendations help security engineers to find
better TLS configurations, in spite of simplified cipher suit rankings and dis-
putable categorizations. The rankings facilitate decisions on cipher suites for
specific TLS configurations based upon a straight-forward and functional ra-
tionale. In the following, we use the mentioned recommendations for cate-
gorizing cipher suites used in this thesis into four rough security levels high,
medium, low, and insecure in order to better understand the trade-offs between
security and performance for the cipher suite configuration.

All mentioned recommendations for the configuration of TLS prefer cipher sui-
tes providing PFS, because PFS prevents attackers from decrypting an eaves-
dropped communication subsequently, even with known private keys [93, 189,
238] (see also: Section 3.2.3.2). For the key agreement protocol, ECDHE is often
prioritized over DHE, since ECDHE based on elliptic curves is typically faster
and is supported by more clients than DHE using discrete logarithms. One
reason for the better performance of ECDHE is that private keys based on el-
liptic curves are smaller than private keys for DHE. This reduces the amount
of data exchanged by the client and server during the handshake phase. In
Section 12.2.1, we show that this does not matter for TLS in Cassandra. Ot-
her possible protocols for the key agreement such as RSA should not be used,
because they may be insecure [93]. For the authentication algorithm, typically
RSA is preferred over DSA. Furthermore, cipher suites should provide AEAD
for the symmetric ciphers such as AES- or Camellia-based cipher suites using
GCM or CCM as the mode of operation [93, 189, 238].

Based on the recommendations, we have highly secure cipher suites such as
the cipher suite based on ECDHE and RSA in the handshake phase as well as
AES with a key length of 256 bit in GCM with SHA in the bulk data transfer
phase (cipher suite: TLS_.ECDHE_RSA_WITH_AES_256_GCM_SHA384). Mo-
reover, there are cipher suites with a medium security level such as the cip-
her suite that uses the DHE and RSA in the handshake phase as well as AES
with a key length of 256 bit in CBC mode with SHA in the bulk data transfer
phase (cipher suite: TLS_.DHE_RSA_WITH_AES_256_CBC_SHA256). This cip-
her suite is a medium secure cipher suite, because the CBC mode of operation
is vulnerable to various attacks such as POODLE [284], BEAST [281], or Lucky
Thirteen [287]. Besides, there are cipher suites with low security as well as com-
pletely insecure cipher suites. Cipher suites providing no PFS fall in the cate-
gory low security. Insecure cipher suites are, for example, all RC4-based cipher

94

9.4. Java-based Transport Layer Security Implementations

Cipher Suite Security
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 High
TLS_-DHE_RSA_WITH_AES_256_GCM_SHA384 High
TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 High
TLS_DHE_RSA _WITH_AES_256_CBC_SHA256 Medium
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA Medium
TLS_DHE_RSA _WITH_AES 256_CBC_SHA Medium
TLS_DHE_RSA WITH_CAMELLIA_128_CBC_SHA256 Medium
TLS_RSA_WITH_AES_256_CBC_SHA Low
TLS_RSA _WITH_AES_128 CBC_SHA Low
SSL_RSA _WITH_RC4_128 MD5 Insecure

Table 9.2.: Security Levels of Cipher Suites Used in this Thesis

suites as well as cipher suites beginning with “SSL_"—cipher suites of the old
SSL protocol 2.0 and 3.0 (see, e.g.: the cipher suite used in the first experiment
with DynamoDB in 2013 in Section 12.1.1). They do not provide any security at
all. In Table 9.2, we summarize the security levels of the cipher suites used in
experiments and mentioned in this thesis.

9.4. Java-based Transport Layer Security
Implementations

As described before, we focus on Java-based TLS implementations in our ex-
perimental trade-off analysis of TLS implementations in CSS (Section 2.2). To
understand why a TLS implementation can be seen as a configuration option
in Java itself, we have to understand how TLS is used in Java.

Java defines a set of API for security-relevant areas which include symmetric
encryption, asymmetric encryption, and secure communication like TLS [211].
These API allow developers to integrate security into Java applications follo-
wing the principles of implementation independence, implementation intero-
perability, and algorithm extensibility.

For TLS, Java provides a central API, the JSSE API. In specific JRE like the Ora-
cle JRE or the OpenJDK JRE, the JSSE often denominates both an API as well as
an implementation. The JSSE API provides classes such as the TLS context ob-
ject (Javax.net.ssl.SSLContext) which is a central class in the JSSE [133,
211]. Another central class is the TLS TCP socket (SSLSocket).” These clas-

27Here, we exclusively refer to TCP sockets, despite there are also User Datagram Protocol sockets
available in Java (see, e.g.: [55]). However, the CSS considered in this thesis only use communi-
cation based on TCP sockets.

95

9. Background and Related Work

ses are, then, inherited by concrete implementations for the different JRE. For
example, the Oracle JRE and the Open]DK provide the SunJSSE [207, 210], the
IBM JRE has the IBMJSSE2 [133]. In addition, the JSSE API can be used to custo-
mize TLS implementations, to load external TLS implementations into the JRE,
or to replace the standard TLS implementation of the JRE by another, maybe a
faster or more secure, TLS implementation [133, 210].

Accordingly, TLS implementations typically have different features and may
provide different security and performance. In particular, Java TLS implemen-
tations—again, we concentrate on Java-based TLS implementations—have a
reputation for being slow in comparison to C- or C++-based TLS implementa-
tions. For instance, Rescorla in [233] has compared the performance of a Java
TLS implementation with OpenSSL in 2003. He stated that “Java code in gene-
ral is slow, and crypto code is especially CPU intensive and therefore especially
slow.” [233, p. 199] Since then the JRE and, particularly, Java TLS implementa-
tions have been subject to several performance improvements in recent years.
For this reason, Risti¢ in [237] describes the performance of Java to be “[...] not
inherently slow, but in practice Java might not be the fastest platform” [237,
p. 411] in 2014. Other indications of Java’s, at least, questionable TLS perfor-
mance are that the Java-based Tomcat web server® as well as Netty are able to
use OpenSSL in the background instead of the Java’s TLS implementations for
performance and compatibility reasons [28, 195] (see also: Section 12.3).

The JSSE APl is used within Java wherever possible. For example, if a user cre-
ates a HTTPS connection in Java based on the java.net .HttpURLConnec—
tion, the JSSE APl is used to create a TLS context object. Via the context object
a socket factory (SSLSocketFactory) is instantiated, and, then, a TLS soc-
ket (sSLSocket)is created and used for connecting to the server using HTTPS.
A typical code fragment for using TLS sockets in Java is (see, e.g.: [210]):

// Get the TLS context object

SSLContext ctx = SSLContext.getDefault();

// Create a TLS factory

SSLSocketFactory factory = (SSLSocketFactory) ctx.
getSocketFactory () ;

// Create a TLS socket out of the factory

// and connect to a HTTPS server

SSLSocket socket = (SSLSocket) factory.
createSocket ("https://www.ise.tu-berlin.de", 443);

OutputStream streamToTheServer = socket.
getOutputStream() ;

// Send a "hello server!’ to the server

28https ://tomcat .apache.org

96

https://tomcat.apache.org

9.4. Java-based Transport Layer Security Implementations

streamToTheServer.write ("Hello server!".getBytes());

In this code fragment, a SSLSocket is used to connect to a HTTPS server. After
the connection is established, an OutputStream to the server is opened and
a 'hello server!” is sent to the server. Similarly, also Cassandra uses the JSSE
API to create TLS sockets and to write messages securely to other nodes in a
Cassandra cluster over the RR connection (see also: Section 3.1.3.2). However,
this code fragment requires the full integration of the TLS implementation into
the entire Java security architecture. As we will see in later sections, not every
Java-based TLS implementation features such a full integration and rather pro-
vides its own API to create TLS sockets. One reason for this is that such a full
integration of a TLS implementation into the JSSE API requires a full adaption
of the JSSE programming model and so forth.

Besides the described way of communicating via sockets, a new way of hand-
ling Input/Output (I/O) operations and communication have been raised in
Java in recent years: the Non-blocking I/0O (NIO) channels—or non-blocking
sockets.” NIO, amongst others, provides an API which abstracts I/O opera-
tions using channels and buffers instead of sockets and streams for building
scalable servers and clients that have to deal with many connections simulta-
neously [55]. In doing so, NIO solves various concurrency issues with sockets
and streams in scalable servers and clients such as synchronization of multiple
threads on resources used concurrently (see also: Section 16.1.3). While sockets
block until the write or read to a stream is finished (blocking sockets; see also:
the Java code fragment above. The write to the OutputStream in this code
fragment blocks until the write is completed), non-blocking sockets write to or
read from a buffer and can decouple the real communication via asynchronous
I/0 processing. As this provides benefits in terms of scalability, many CSS and
CSS client libraries use non-blocking sockets. For instance, Cassandra’s client
library for the native interface that we use in the experiments in Section 12.2
utilizes non-blocking sockets for scalability reasons (see also: Section 3.1.3.2).
Also, Voldemort can use non-blocking sockets (Section 3.1.3.2). For more in-
formation about the difference between blocking and non-blocking sockets, we
refer to Calvert and Donahoo [55].

So, a Java-based TLS implementation can be seen as a configuration option,
when balancing the trade-offs between security and performance. Moreover, a
TLS implementation can provide multiple configuration options such as diffe-
rent socket types, blocking and non-blocking sockets. Also, the different TLS
features such as the TLS renegotiation, different TLS extensions, the support of

2We refer to both types as sockets in this thesis, despite in NIO, originally, the abstraction of the
communication is called channels.

97

9. Background and Related Work

various cipher suites, or the AES-NI hardware support are made available by
the TLS implementation (Sections 3.2.3.2 and 9.2).

9.5. Related Work

In this part, we propose a benchmarking approach and tool for measuring the
performance overhead of TLS and the differences between various TLS confi-
gurations in CSS as well as experimental trade-off analyses of TLS in CSS (Chap-
ter 1). Benchmarking the performance impact and analyzing the performance
overhead of TLS in the context of web server scenarios have been studied well
in recent years. For example, Apostolopoulos et al. in [29], Kant et al. in [147],
Menasce in [181], Zhao et al. in [313], and Coarfa et al. in [69] examined the per-
formance overhead of TLS in the context of HITPS where a client interacts with
a web server. However, as mentioned above, CSS have a more complex com-
munication behavior than web servers (Sections 9.1 and 9.2). Whenever the
overhead of TLS is experimentally examined in greater depth, they typically
used traffic of users browsing web pages on the web servers for their overhead
analyses. This type of communication differs massively from the communicat-
ion behavior of CSS. Moreover, CSS often do not use HTTPS, but direct TCP
sockets and other communication middleware.

Contrary to the previously mentioned related work, Shirasuna et al. in [259]
analyze the performance overhead of TLS in the case of SOAP-based web ser-
vices. They use an echo web service scenario secured by HTTPS for the analysis
of the performance overhead of TLS in this scenario. The communication beha-
vior concluded from these experiments is barely transferable to most CSS. This
analysis of Shirasuna et al. might be interesting only in the context of CSS using
SOAP-based web services like most cloud storage services. Unfortunately, the
workload to the CSS plays a non negligible role in the benchmarking of CSS,
as we will see in later chapters (see, e.g.: [74, 190]; see also: Chapter 11 and
Chapter 12). In consequence, the scenario which Shirasuna et al. used for their
evaluation does not reflect the general communication behavior of CSS.

Furthermore, there are other approaches described in [144, 232, 258] that study
the TLS performance overhead in combination with protocols not used for CSS
such as the Session Initiation Protocol for Voice over IP or based directly on IP
which is even further down within the ISO/OSI stack.

Besides benchmarking and analyzing TLS, there are also approaches and tools
for general performance benchmarking and trade-off analyses as well as bench-
marking and analyzing other quality properties of CSS. Here, we have to men-
tion Cooper et al. and the tool Yahoo! Cloud Serving Benchmark (YCSB) [74],

98

9.5. Related Work

since our tool TLSBench (Section 11.2) is based on YCSB. Additionally, there
are many other papers and publications dealing with benchmarking like [20,
42, 43,50, 151,152, 153, 166, 183, 221, 228, 229, 243, 268, 314]. Moreover, there is
an approach for benchmarking the performance impact of data-at-rest encryp-
tion by Waage and Wiese in [302] and by Waage et al. in [301] that is similar to
our approach, as it is also based on YCSB. However, the general benchmarking
of CSS and benchmarking data-at-rest encryption requires controlling different
configuration options than benchmarking TLS (see, e.g.: Section 11.1 and Chap-
ter 12).

For the experimental trade-off analysis of different Java-based TLS implemen-
tations and the provided comparison framework as well as the benchmarks
in Section 12.3, there is, to our knowledge, no directly related work. There
are only a few comparisons of TLS implementations of various other langua-
ges in [49, 77, 305]. In these comparisons of TLS implementations, only a very
limited variety of TLS implementations can be used in Java at all. Most imple-
mentations they compared are available for other programming languages like

C.

Furthermore, there are some comparisons of Java TLS implementations versus
C-based implementations in web server environments such as those by Res-
corla in [233] or Risti¢ in [237]. We, in contrast, focus on different Java-based
TLS implementations and their performance in the context of CSS. As we will
see in later chapters, the application context makes an immense difference for
the performance impact (see, e.g.: Section 12.3.2).

99

10. Comparing different Transport
Layer Security
Implementations

In this section, we describe our comprehensive conceptual framework for com-
paring different TLS implementations for Java in the context of the trade-offs
between security and performance in CSS. This framework allows us to com-
pare different security features of different Java-based TLS implementations
that are relevant for CSS in the context of our experimental trade-off analy-
ses (Section 10.1). Moreover, we compare selected Java-based TLS implemen-
tations (Section 10.2) that we use in our analysis in later chapters of this the-
sis (Section 12.3).

10.1. Transport Layer Security Implementation
Comparison Framework for Java

If a system uses the JSSE API, the TLS implementation can be replaced easily
by another JSSE TLS implementation without modifying the source code of the
system (Section 9.4). As Cassandra uses the JSSE API, we can consider the TLS
implementation as another configuration option which may be relevant for the
trade-offs between security and performance. Besides this, the source code of
Cassandra and many other NoSQL systems can also be adopted to use another
TLS implementation, as they are published as open source projects (see also:
Section 3.1.3.2).

In this section, we provide a comprehensive framework for comparing different
Java-based TLS implementations. Thereby, we focus on using these TLS imple-
mentations in the context of the trade-offs between security and performance
in NoSQL systems.

The comparison framework for Java-based TLS implementations, depicted in
Figure 10.1, assembles different TLS and Java-specific dimensions. In doing
so, we use diverse related work—for example, [49, 77, 305]—as a basis for our

101

10. Comparing different Transport Layer Security Implementations

Supported SSL/TLS

versions SSL3.0 | TLS 1.0 | TLS1.1 | TLS1.2
TLS Renegotiation Yes | No
® Secure ALPN Certificate Encrypt- TLS Fallback
S| TLS Extensions | Renegotiation Status Request [then-MAC SCsvV
'é (RFC 5746) (RFC7301) (RFC 6066) (RFC 7366) | (RFC 7507)
= | Hardware Su pport AES-NI PKCS #11 Device VIA PadLock

ChaCha20-
Poly1305
cipher suites

Camellia-CBC
cipher suites

Supported Cipher AES-CBC AES-GCM AES-CCM
Suites ciphers suites | cipher suites | cipher suites

2 1/0 Programming

E E Model Blocking Non-Blocking
£s

[-T)

&9 Java Integration JSSE API OpenSSL(-related) API Other API

Commercial
license

Apache
License 2.0

Software license | MIT License | GNU GPLv2 Proprietary

Software
License

Figure 10.1.: Transport Layer Security Implementation Comparison Frame-
work for Java

comparison framework. Particularly, the first dimension which is described in
the next paragraph is based on [305].

Features The first dimension of the comparison framework considers the
question: what features does the TLS implementation provide? As we have seen
in previous sections, TLS provides diverse optional features (see also: Sec-
tion 3.2.3.2). The different TLS implementations may or may not provide these
optional features.

The SSL/TLS protocols are different versions of a communication protocol (Sec-
tion 3.2.3.2). In practice, relevant protocol versions are SSL 3.0 and TLS 1.0-
TLS 1.2. Consequently, Java-based TLS implementations should provide, at le-
ast, TLS in version 1.2. For connecting aged applications to a CSS, the support
of SSL 3.0 or of an older TLS version may be important, although this usually
means to be susceptible to security weaknesses of these old SSL/TLS versions.
Hence, the first comparison criterion has to be the supported SSL/TLS versi-
ons.%

Furthermore, the different TLS implementations may or may not provide the
optional feature TLS renegotiation (Section 3.2.3.2). If a socket connection is
held for a long time, the renegotiation may be required to change the cipher

30See also: The comparison of TLS implementations in [304].

102

10.1. Transport Layer Security Implementation Comparison Framework for Java

suite used (see also: Section 16.1.3). Thus, the second comparison criterion is
the optional TLS renegotiation support (Figure 10.1).

The next criterion for comparison is the supported TLS extensions (Figure 10.1).
There are several TLS extensions available (Section 3.2.3.2). TLS implementati-
ons typically implement only a subset of these TLS extensions. For the usage
within NoSQL systems, some extensions may be meaningful and some may be
not. For example, the ALPN extension may be meaningful in NoSQL systems,
because NoSQL systems often use (proprietary) binary protocols to communi-
cate that may benefit from ALPN (see also: Section 3.1.3.2). Other extensions,
in turn, must be provided for reasons of security. If, for instance, the optio-
nal feature renegotiation is supported by the TLS implementation, the secure
renegotiation indication extension and also the SCSV extension should be sup-
ported by the TLS implementation as well in order to mitigate renegotiation
issues (Section 3.2.3.2). The omission of these extensions would be a critical
point from a security perspective.

There is different hardware support for increasing the performance of TLS,
which also may be supported by the TLS implementation (Section 9.2). For in-
stance, there is AES-NI, which promises to boost the performance of AES-based
cipher suites enormously. Since AES-based cipher suites are popular and bene-
fit from AES-NI, various TLS implementations provide AES-NI support. Many
compute cloud services provide VM which have AES-NI support, for example,
many AWS EC2 instance types (see, e.g.: [13]). Additionally, there is some ot-
her hardware support such as ViaPadlock which provides a hardware random
number generator. Hence, the hardware support is the next comparison crite-
rion (Figure 10.1).

The last comparison criterion of this dimension is the supported cipher suites
(Figure 10.1). Cipher suites have a major impact on both the security and the
performance of a TLS implementation (see also: Section 9.3). So, the supported
cipher suites has to be another comparison criterion for our framework.

In addition to these described criteria, there are several other criteria that can be
taken into account such as Federal Information Processing Standards support
or the supported key exchange algorithms. For more such criteria, the menti-
oned related work may be a good starting point (see, e.g.: [49, 77, 305]). We
concentrate on the described criteria, because these criteria are selective criteria
for the purpose of comparing different Java-based TLS implementations in the
context of NoSQL systems and demonstrate the way of comparing the (secu-
rity) features of them sufficiently.

Programming Model The second dimension of the comparison framework
considers the programming model—the API—of the TLS implementations. As

103

10. Comparing different Transport Layer Security Implementations

we introduced in Section 9.4, there are two different /O programming models
for sockets: blocking and non-blocking sockets. While the blocking sockets
wait for completion of the I/O operations and, thus, communicate synchro-
nously, non-blocking sockets provide an asynchronous way of performing the
communication. In NoSQL systems, both types of sockets are used extensi-
vely (Section 9.4). As the different TLS implementations sometimes provide
both I/O programming models (see, e.g.: WolfSSL in Section 10.2) or some-
times only one (see, e.g.: JSSE in Section 10.2), the I/O programming model is
another selective criterion for the comparison framework (Figure 10.1).

In Java, the JSSE API provides a set of interfaces that can be used for integrating
a TLS implementation seamlessly into all Java API and libraries (Section 9.4).
There are different JSSE TLS implementations available in different JRE. Ho-
wever, integrating into the JSSE API requires agreeing with the given API and
realizing the integration can be complex. Moreover, the JSSE API differs con-
siderably from other common TLS API like the widely used OpenSSL API. As
a consequence, many TLS implementations do not provide an integration into
the JSSE API and rather provide their own API. For example, the Bouncy Cas-
tle TLS implementation does not integrate into the JSSE API and provides a
specific API which is often referred to as “lightweight” [280] (see also: Sec-
tion 10.2). Furthermore, the OpenSSL APl itself or, at least, an OpenSSL-related
API is often provided by libraries. This may be by directly integrating Open-
SSL via Java Native Interface (JNI) into Java—as described above, the Tomcat
web server and Netty, for example, use OpenSSL via JNI for performance re-
asons [28, 195]—or by providing similar concepts and classes like OpenSSL in
Java.3!

Software License The last dimension of the comparison framework is a con-
sideration of the issue “which software license does the TLS implementation
use?” The various TLS implementations are shipped with different software
licenses. For example, the Bouncy Castle TLS implementation uses the Mas-
sachusetts Institute of Technology (MIT) license, while other implementations
may be shipped with a GNU General Public License in version 2 (GPLv2) li-
cense or even with two licenses like WolfSSL (see also: Section 10.2).

The software license, particularly, is a crucial factor for the software license of
the NoSQL system itself. For instance, employing a TLS implementation ship-
ped with the GPLv2 license in a NoSQL system that uses another license, such
as a commercial license, may incur legal issues. Besides legal and economic
questions, the software license may have, for example, an effect on the com-
munity using the TLS implementation. This may result in another quality of

31For more information, we refer to the concrete sections in Section 10.2.

104

10.2. Comparison of Selected Transport Layer Security Implementations for Java

support for the applied TLS implementation in cases of problems and so on.
In consequence, the software license is a dimension of its own regarding the
comparison framework (Figure 10.1).

10.2. Comparison of Selected Transport Layer
Security Implementations for Java

After having described the comparison framework for Java-based TLS imple-
mentations, we instantiate the comparison framework with selected TLS imple-
mentations in this section. Therefore, we compare the four following TLS im-
plementations: the JSSE (Section 10.2), the Bouncy Castle implementation (Sec-
tion 10.2), Netty (Section 10.2), and WolfSSL (Section 10.2).

Java Secure Sockets Extension The JSSE denotes two things in a JRE: the
JSSE API as well as a JRE-specific TLS implementation of the JSSE API. The JSSE
API hides many low level details of SSL/TLS from the user, and the JRE-specific
TLS implementations are integrated seamlessly into the JSSE APL The usage of
TLS in Java via the JSSE API can be, as seen in the code fragment in Section 9.4,
fairly easy and requires only to invoke some methods via a couple of classes
in order to create and use a SSLSocket. However, the TLS implementation
“behind the scenes” is complex and has some pitfalls we want to address in the
following.

The JSSE implementations of the different JRE are typically pure Java-based im-
plementations of the SSL./TLS protocols that support SSL 3.0 and TLS 1.0-1.2.
For our comparison of different Java-based TLS implementations, we, particu-
larly, refer to the Oracle JRE in version 8u92 which uses the SunJSSE [207, 210].
The SunJSSE supports SSL 3.0 and TLS 1.0-1.2, TLS renegotiation, and the se-
cure renegotiation indication extension [210]. The ALPN extension, for exam-
ple, will be available in Java version 9.

The SunJSSE supports AES-NI and PKCS#11 hardware devices [207, 210]. Ad-
ditionally, the SunJSSE allows for AES-based state-of-the-art cipher suites using
GCM (see also: Section 9.3). Other state-of-the-art cipher suites are currently
not supported. The SunJSSE supports, in comparison to the other TLS imple-
mentations in later sections, the smallest number of cipher suites. The complete
list of supported cipher suites can be found in [207].

The JSSE API provides two ways of using SSL/TLS: the socket- and stream-
based blocking SSLSocket as well as the so-called SSLEngine which is a

105

10. Comparing different Transport Layer Security Implementations

Supported SSL/TLS

. SSL3.0 | TLS 1.0 | TLS1.1 | TLS1.2
versions
TLS Renegotiation Yes | No
Secure ALPN Certificate Encrypt- TLS Fallback
TLS Extensions [Renegotiation (REC 7301) Status Request [then-MAC SCsV
(RFC 5746) (RFC 6066) (RFC 7366) (RFC 7507)
Hardware Support AES-NI PKCS #11 Device VIA PadLock
Supported Cipher | AES-CBC AES-GCM | AES-CCM szcrl‘;ég’ Camellia-CBC
Suites ciphers suites | cipher suites | cipher suites | . Y . cipher suites
cipher suites

1/0 Programming
Model

Blocking Non-Blocking

Java Integration JSSE API OpenSSL(-related) API Other API

Apache Commercial
License 2.0 license
Legend:

|:| Supported B
|:| Partially supported
|:| Not supported or no information

Software license | MIT License | GNU GPLv2 Proprietary

Figure 10.2.: Characteristics of the JSSE implementation

transport-independent implementation of the SSL/TLS protocols. The SSLEn-
gine is an abstract TLS state machine [210]. It can be used, for example, within
non-blocking communication implemented via NIO channels and buffers. Ho-
wever, using the SSLEngine is not a straightforward process. A developer
who wants to use the SSLEngine for non-blocking communication has to im-
plement many things manually. An example, of how a developer may imple-
ment non-blocking communication using the SSLEngine is shown in [212].

The SunJSSE in the Oracle JRE version 8u92 is shipped with a commercial li-
cense. But the Oracle JRE and other contributors develop many parts of the
JRE together for the Open]DK under the GPLv2 license, such as major parts of
the SunJSSE.3?

The characteristics of the SunJSSE are summarized in Figure 10.2.

Legion of the Bouncy Castle The TLS implementation of the Legion of the
Bouncy Castle is a “lightweight” TLS implementation [280]. This implementat-
ion in particular does not use the JSSE API and provides its own API. As the

32nttp://openjdk. java.net

106

http://openjdk.java.net

10.2. Comparison of Selected Transport Layer Security Implementations for Java

Supported SSL/TLS

. SSL3.0 | TLS 1.0 | TLS1.1 | TLS 1.2
versions
TLS Renegotiation Yes | No
Secure ALPN Certificate Encrypt- TLS Fallback
TLS Extensions Renegotiation (RFC 7301) Status Request | then-MAC SCSV
(RFC 5746) (RFC 6066) (RFC 7366) | (RFC 7507)
Hardware Support AES-NI PKCS #11 Device VIA PadLock
Supported Cipher | AES-CBC AES-GCM | AES-CCM Cpflcz‘;gg' Camellia-CBC
Suites ciphers suites | cipher suites | cipher suites [. i/ § cipher suites
cipher suites

1/0 Programming
Model

Blocking Non-Blocking

Java Integration JSSE API OpenSSL(-related) API Other API

Apache Commercial

Software license | MIT License | GNU GPLv2 . .
License 2.0 license

Proprietary

Figure 10.3.: Characteristics of the TLS implementation of the Legion of the
Bouncy Castle

Bouncy Castle implementation does not have further dependencies and provi-
des full support of diverse ciphers and cipher suites. It is often used in mobile
contexts. For our comparison, we refer to the release version 1.53.

The Bouncy Castle implementation supports all SSL/TLS protocol versions,
whereas it neglects additional TLS features like renegotiation as well as other
TLS extensions [280]. During our research, we did not find hints of any har-
dware support of the Bouncy Castle implementation.

The TLS implementation supports various state-of-the-art cipher suites such
as the AES-based cipher suites using GCM and also the ChaCha20 cipher sui-
tes (See also: Section 9.3).

Also, it seems to focus on providing blocking sockets. As far as our analysis is
concerned, there is no evidence for the support of non-blocking sockets.

Condensed schematics of the Bouncy Castle implementation are addressed in
Figure 10.3, and further documentation of its independent API can be found
in [280].

Netty Netty is a framework which tries to simplify the development of net-
work applications [194]. That is why Netty has built-in support for SSL/TLS.
The focus of Netty is on building applications based on non-blocking sockets.

107

10. Comparing different Transport Layer Security Implementations

The framework also allows the developer to use the sockets in a blocking way.
For our purposes, we refer to the version 4.0.33 of Netty.

To use TLS in Netty, a user invokes the io.netty.handler.ssl.SslContext
object, which is similar to the JSSE API object SSLContext. However, Netty
does not use the JSSE API and has its own APIL. TLS in Netty version 4.0.16 or
higher can be implemented in two ways: the first way is to use the SSLEngine
from the JRE’s JSSE implementation in the background. The second way is to
use OpenSSL in the background. Netty, therefore, uses JNI to invoke Open-
SSL. A user can choose between these two ways after installing the required
packages that is, amongst others, the netty-native package [195]. This means
that Netty’s TLS support either shares many characteristics of the JSSE without
providing the JSSE API to the user or features the characteristics of OpenSSL.
As we have already explained the characteristics of JSSE in Section 10.2, here
we describe the characteristics of Netty using OpenSSL.

If we use the OpenSSL-based TLS implementation of Netty, it supports all avai-
lable SSL/TLS versions. OpenSSL allows to renegotiate TLS connections. The
library implements, amongst others, the TLS extensions secure renegotiation
indication, ALPN, certificate status request, and SCSV [237]. As the TLS soc-
ket is created and managed within OpenSSL code, the TLS extensions should
be available to applications using the OpenSSL-based TLS implementation of
Netty. OpenSSL, furthermore, supports for AES-NI, PCKS#11 devices, VIA-
PadLock, etc.

Also, Netty is used in diverse CSS such as the native interface client of Cas-
sandra (Section 3.1.3.2). The Cassandra client library uses the SSLEngine by
default.

In Figure 10.4, the characteristics of Netty are summed up.

WOoIfSSL WolfSSL (formerly CyaSSL) is a native C TLS implementation that
provides a JNI library and, thus, can be used in Java [308]. The developers of
WOolfSSL claim that WolfSSL is a fast and small TLS implementation. Hence,
WOoIfSSL is suitable for using TLS in embedded systems.

WolfSSL—we used version 3.6.9 and the JNI library in version 1.2.0, which is
necessary to use WolfSSL in Java—provides SSL 3.0 and all TLS protocol ver-
sions as well as the optional TLS renegotiation [308]. However, the version of
the WolfSSL JNI library we used does not provide a method for invoking the
renegotiation from Java. TLS renegotiation, thus, is not available in Java. The
TLS extensions secure renegotiation indication and certificate status request are

108

10.3. Summary

Supported SSL/TLS

. SSL3.0 | TLS 1.0 | TLS1.1 | TLS 1.2
versions
TLS Renegotiation Yes | No
Secure ALPN Certificate Encrypt- TLS Fallback
TLS Extensions [Renegotiation (REC 7301) Status Request| then-MAC SCSV
(RFC 5746) (RFC 6066) (RFC 7366) | (RFC7507)
Hardware Support AES-NI PKCS #11 Device VIA PadLock
Supported Cipher AES-CBC AES-GCM AES-CCM CPT|C2§S? Camellia-CBC
Suites ciphers suites | cipher suites | ciphersuites | v - ciphersuites
cipher suites

1/0 Programming
Model

Blocking Non-Blocking

Java Integration JSSE API OpenSSL(-related) API Other API

Apache Commercial

Software license | MIT License | GNU GPLv2 . .
License 2.0 license

Proprietary

Figure 10.4.: Characteristics of Netty’s built-in TLS support

supported. WolfSSL provides AES-NI hardware support for accelerating AES-
based cipher suites. Also, the TLS implementation supports many cipher sui-
tes, including the most state-of-the-art cipher suites. WolfSSL is shipped with
a GNU GPLv2 and a commercial license depending on the requested support
model.

WOolfSSL officially supports blocking and non-blocking sockets [308]. The TLS
implementation provides a proprietary APIL. The API of WolfSSL provided by
the JNI Java library does not differ from the C implementation, since the JNI
classes only port the C API to Java.

In addition to these API, we also implemented a JSSE integration for WolfSSL.*
We use this JSSE integration for WolfSSL in later sections for experiments with
Cassandra (see also: Section 12.3.3).

The characteristics of WolfSSL are sumnmarized in Figure 10.5.

10.3. Summary

In this chapter, we introduced a conceptual framework for comparing different
Java-based TLS implementations in the context of CSS comprehensively. As

Bhttps://github.com/steffenmuellerd/wolfssl-jsse-integration

109

https://github.com/steffenmueller4/wolfssl-jsse-integration

10. Comparing different Transport Layer Security Implementations

Supported SSL/TLS

. SSL3.0 | TLS 1.0 | TLS1.1 | TLS1.2
versions
TLS Renegotiation Yes | No
Secure ALPN Certificate Encrypt- TLS Fallback
TLS Extensions [Renegotiation (REC 7301) Status Request [then-MAC SCSV
(RFC 5746) (RFC 6066) (RFC 7366) (RFC 7507)
Hardware Support AES-NI PKCS #11 Device VIA PadLock
Supported Cipher | AES-CBC AES-GCM | AES-CCM Cpﬁcrl’;ég' Camellia-CBC
Suites ciphers suites | cipher suites | cipher suites | . y § cipher suites
cipher suites

1/0 Programming
Model

Blocking Non-Blocking

Java Integration JSSE API OpenSSL(-related) API Other API

Apache Commercial

Software license | MIT License | GNU GPLv2 . .
License 2.0 license

Proprietary

Figure 10.5.: Characteristics of WolfSSL

different TLS implementations can have different (security) features like sup-
ported cipher suites, supported TLS protocol versions, supported TLS extensi-
ons, etc. the TLS implementation plays a major role for the trade-offs between
security and performance.

The framework is comprised of three dimensions:

110

e Firstly, the supported TLS features. As described, the diverse TLS imple-

mentations usually have different features. Besides the previously given
example features like the supported cipher suites, there are also features
such as the AES-NI support. We introduced some TLS features which are
selective and may be of interest for CSS.

Secondly, the supported programming model. The JSSE API is, as men-
tioned, the typical way of using TLS in Java. However, the JSSE API
has some advantages and some disadvantages. An advantage is the ab-
straction and the possibility to replace the JSSE implementation of the JRE
used in the background easily. A major disadvantage is that the JSSE API
integration requires a lot of additional classes and indirections. So, not
every TLS implementation provides such a JSSE APl integration, but pro-
vides its own API to the user. Moreover, there are two ways of handling
I/0 operations and communication in Java: the classical blocking sockets
and streams and the “new” non-blocking NIO buffers and channels. Both
API may be provided by a TLS implementation.

10.3. Summary

o Thirdly, the software license. The various TLS implementations are ship-
ped with different software licenses. The software license may incur di-
verse legal and economic issues. Therefore, the software license is another
comparison dimension of the framework.

Moreover, we instantiated the comparison framework and compared four se-
lected TLS implementations that can be used in Java: the JSSE, the Bouncy
Castle implementation, Netty, and WolfSSL.

In the next chapter, we present a benchmarking approach for TLS in CSS.

111

11. Measuring the Transport Layer
Security Overhead in Cloud
Storage Systems

In this chapter, we delineate a benchmarking approach for TLS in CSS (Sec-
tion 11.1) and propose a tool that allows for measuring the performance impact
of TLS and different TLS configurations in CSS (Section 11.2).

11.1. Benchmarking Approach

With benchmarking and performing experiments, we want to quantify a spe-
cific quality property in a System Under Test (SUT). This may help to better
understand the quality properties of a SUT and may reveal system-specific
trade-offs that may be relevant to applications built on top of a CSS. However,
experimentation with CSS is not an easy task, as CSS are distributed systems,
consist of multiple components, and various configuration options of a CSS
may affect diverse other quality properties at the same time [39, 151, 166, 183,
190, 249, 302].

Particularly, quantifying the performance impact of TLS as well as different
TLS configurations in a CSS, can be very challenging. There are several in-
fluencing factors which come into play. These influencing factors start at the
chosen handshake algorithms and cipher suites for the handshake and bulk
data transfer phase of TLS and can reach to the consistency settings of the spe-
cific CSS [190] (see also: [39, 151, 166, 183, 249, 302]). In the end, the effects of
TLS and different TLS configurations in CSS are non-transparent or completely
unknown a-priori.

The general approach of quantifying the performance impact of TLS in CSS
is to measure the performance of a specific deployed SUT with TLS disabled.
Next, we benchmark the SUT with TLS enabled as well as with different TLS
configurations. Afterwards, we may be able to see the delta between the me-
asurements. This looks similar to a standard performance benchmarking with
different security settings at first glance. Quantifying the performance impact

113

11. Measuring the Transport Layer Security Overhead in Cloud Storage Systems

of TLS in CSS, however, requires controlling various settings and the TLS con-
figuration in particular. Thus, we show a benchmarking approach and tool in
this section which allows for quantifying the performance impact of TLS and
different TLS configurations in CSS.

For CSS, we have to differentiate between cloud storage services and NoSQL
systems deployed on compute clouds. Furthermore, we distinguish between
two communication types (Section 9.1), AR and RR communication. In cloud
storage services, we are only able to benchmark the performance impact of
TLS of the AR communication. Unfortunately, the cloud provider controls the
supported cipher suites on the server side, since he configures the cloud storage
service. So, for benchmarking different TLS configurations, we depend on the
cloud storage provider’s TLS configuration (see also: Chapter 5). If the cloud
provider enabled only one cipher suite for the cloud storage service, we can
only benchmark this single cipher suite.

In NoSQL systems deployed on compute clouds, in turn, usually the AR as well
as the RR communication can be controlled (Section 9.1; see also: Chapter 5).
Considering the different types of CSS and communication types, we have to
distinguish between the general benchmarking settings in CSS (Figure 11.1):

1. Benchmarking a CSS, while neither the AR nor the RR communication is
secured by TLS. This benchmarking setting is typically used as a baseline
to determine the performance impact of TLS.

2. Benchmarking a CSS, while only the AR communication is known to be
secured by TLS. This is the typical setting for benchmarking cloud storage
services where we do not know the TLS configuration of the RR com-
munication and, furthermore, cannot change the TLS configuration.

3. Benchmarking a CSS, with only the RR communication secured by TLS.

4. Benchmarking a CSS, while the AR as well as the RR communication are
secured by TLS.

Thereby, we have to consider the following challenges:

e In TLS, diverse session parameters, such as the protocol version and the
cipher suite used, are, as mentioned, negotiated at runtime during the
handshake phase. For example, the client sends the supported TLS ver-
sion and a cipher suite preference list to the server. The server then should
choose the highest supported protocol version and the first cipher suite
of the client’s ordered preference list which he supports. In the TLS spe-
cification, this behavior is described as client’s favorite choice first [87]. Ho-
wever, the server does not have to behave like this and may also “rand-
omly” choose another protocol version as well as another cipher suite

114

11.1. Benchmarking Approach

1. Setting: Communication is not secured

. lica
Q
2
Client ° ‘)
(©
)
o
©
o
= Replica
2. Setting: Secured AR Communication
a
2 | .
Client S K ‘ !
-x_’ g L Repllca
Library 3 K ‘
S |0
o
= Replica
3. Setting: Secured RR Communication
E
Q o
Client 8 ' .
© ¥
=
©
© T
o
-
4. Setting: Secured AR and RR communication
5 Replica
Q S
i < K& d
v O Replica
Library 3K
3| z
—— Application-Replica Communication -

Replica-Replica Communication

Figure 11.1.: Benchmarking Settings for Secure Communication

which are supported by the client. In consequence, such a behavior may
cause different TLS configurations for different benchmark runs which is
an undesirable behavior for a direct comparison of configurations. Thus,
a benchmarking of TLS requires the precise repetition of benchmarking
with exactly the same benchmark setup and a fine-grained configurabi-
lity of TLS multiple times (repeatability and comparability) [190].

Additionally, there are many TLS configuration options available. TLS
knows, as already described in Section 3.2.3.2, more than 300 different
cipher suites. Moreover, there are different interdependencies with ot-
her CSS-specific configuration options like, for example, the replication
or consistency factor of a CSS. This sometimes results in a large number of
different configurations which have to be benchmarked. These different
configurations are usually only slightly but not fundamentally different.

115

11. Measuring the Transport Layer Security Overhead in Cloud Storage Systems

As a consequence, benchmarking TLS in CSS should support, at least, a
partial automated benchmarking of different configurations (automation
support) [190].

e Depending on the workload and system configuration, the performance
impact of TLS may vary massively. For instance, a P2P-replicated quorum-
based CSS like Cassandra running at consistency factor one** combined
with a read-heavy workload may not be affected by TLS in RR communi-
cation as long as requests do not have to be redirected. An update-heavy
workload combined with a higher consistency factor, on the other hand,
may be struck by the full overhead of TLS, as every request requires (po-
tentially synchronous) interaction with all replica servers (see also: Sec-
tion 12.2.3). Hence, a benchmarking approach for security mechanisms
in CSS should provide fine-grained control of the workload (fine-grained
control over the workload) [190].

e Another influence factor is the degree of resource saturation of a CSS.
The observable overhead of TLS may vary depending on the degree of
resource saturation. For example, when measuring the performance im-
pact of TLS in CSS running the CSS at low saturation levels, the overall
throughput and latency may not be influenced, as the operational over-
head of the encryption and decryption of data does not really count. For
very high resource saturation levels, on the other hand, we often see a
reduced throughput and much higher latency values [190] (see, e.g.: Sec-
tion 12.1.2.4; see also: Section 9.2). Therefore, a benchmarking approach
and, in particular, a tool for benchmarking TLS in CSS needs to be scala-
ble in order to adapt the resource saturation of a CSS. This may be achie-
ved, for example, by a support for coordinating multiple instances of the
benchmarking tool (distribution, coordination, and scalability of the ben-
chmark/benchmarking tool) [40].

o The measurements obtained during a benchmark should be stored in a
suitable way for further analysis (storage of fine-grained results) [40].

e The benchmark should not make any assumptions about the specific ca-
pabilities of the SUT and should be agnostic of the specific CSS imple-
mentation (provide suitable abstractions) [40].

e The benchmarking tool should provide a basic set of built-in basic wor-
kloads which are ready to be used immediately but are suitable for the
SUT (built-in basic workloads) [40].

34This means that the operation commits after reading or writing only one replica; in the case of
writes, the remaining replicas are updated asynchronously.

116

11.2. TLSBench

Coordjpator | Stats
A
N
]
(]
Workload Client CSS 2
Executor Threads Interface 5
(YCSB) Layer g
A - b
2
Run Con uratlon& | :>;
| Conf|gurat|on |

Figure 11.2.: TLSBench architecture

11.2. TLSBench

For benchmarking the performance of a fully configured and deployed CSS (the
SUT), usually a benchmarking tool generates load to the SUT by sending reque-
sts (workload). Thereby, such workloads can be generated either with a trace-
based approach or with an analytical approach. For the trace-based approach
the workload is mainly recorded by parsing log files. The analytical approach
simulates requests based on a synthetic workload model [151].

For our tool TLSBench, we use an analytical approach, because TLSBench is
based on the commonly known and widely used CSS benchmarking tool YCSB
[74] which uses an analytical workload approach. The analytical approach has
the benefit that a specific workload can be run multiple times and the results
can be compared between different benchmark runs and experiments, as the
workloads can be built-in and exchanged between the benchmarking tools by
defining only a few parameters (see also: repeatability and comparability in
Section 11.1). Additionally, such an analytical approach allows for fine-grained
control over the workload (see also: fine-grained control over the workload in
Section 11.1).

As TLSBench bases on YCSB, the core architecture of TLSBench is comprised
of the core architecture components of YCSB which are described by Cooper et
al. in [74]. However, we extended YCSB'’s architecture to realize the functio-
nality required to measure the performance impact and different configurati-
ons of TLS in CSS as well as to tackle the challenges on benchmarking TLS in
CSS (Section 11.1). The architecture of TLSBench is built out of the following
components (Figure 11.2):

o The Workload Executor, Client Threads, Interface Layer, and Stats compo-
nents are based on the original YCSB components (Figure 11.2; see also: [74]).

117

11. Measuring the Transport Layer Security Overhead in Cloud Storage Systems

The workload executor component drives a specified workload via mul-
tiple client threads. “Each thread executes a sequential series of operati-
ons by making calls to the [...] interface layer [...]” [74]. In the Inter-
face Layer, in turn, the specific client library of a CSS (SUT) is wrapped.
Furthermore, each thread that is driven by the workload executor com-
ponent measures various stats such as the throughput and the latency for
each call to the SUT, and writes the various stats to the stats component
which we also extended compared to YCSB in order to provide further
fine-grained measurements (see also: storage of fine-grained results in
Section 11.1). As known from YCSB, TLSBench, for example, can throttle
the request rate to the SUT, provides a predefined set of built-in basic
workloads such as an update-heavy workload (50% reads and 50% up-
dates; records selected based on a zipfian distribution) or a read-heavy
workload (95% reads and 5% updates; records selected based on a zip-
fian distribution), and eases the extensibility of workloads and clients for
various CSS. For TLSBench, we tried to avoid substantial changes to the
original YCSB components in order to benefit from the further develop-
ments made by the YCSB community®. However, we had to change the
Interface Layer in particular to support switching between relevant TLS
configuration options for the AR communication (Section 11.1). There-
fore, we introduced a specific TLSBench configuration and the so-called
Run Configuration.

e The TLSBench Configuration and Run Configuration are key-components
of TLSBench. As described before, benchmarking TLS typically means to
measure a specific CSS configuration multiple times with slightly chan-
ged configurations in multiple benchmarking runs (Section 11.1). To bet-
ter support this, we introduced the TLSBench Configuration and Run
Configuration. The Configuration is specified by the TLSBench user be-
fore starting TLSBench. In the Configuration, a user, for instance, defines
the workload which should be used, the replication factor, the consis-
tency level, the cipher suite, etc. This overlaps mainly with configuration
options already known from YCSB. But for each benchmarking run that
typically requires small changes in specific configuration options, we de-
rive a benchmarking Run Configuration which is passed to each client
thread and then to the Interface Layer. The Interface Layer uses the Run
Configuration. For the runs, we distinguish four different run types or
phases: load without TLS (load phase in YCSB in order to initially load
the SUT), load with TLS enabled, a benchmarking run with TLS disa-
bled (transaction phase in YCSB), and a run with TLS (see also: [74]). Via
the TLSBench Configuration, we can define different sequences of run

https://github.com/brianfrankcooper/YCSB

118

https://github.com/brianfrankcooper/YCSB

11.3. Summary

types which run partially automated (see also: automation support in
Section 11.1).

o As described before, the resource saturation of a SUT may be a considera-
ble factor for benchmarking the performance impact of TLS in CSS (Sec-
tion 11.1). Especially, benchmarking the performance impact of TLS for
the RR communication requires—as we will show in Sections 12.1.2.2
and 12.1.2.4—increasing the load to the SUT by running multiple instan-
ces of TLSBench. This, however, necessitates to coordinate multiple TLS-
Bench instances. Therefore, the Coordinator component is able to coor-
dinate the benchmarking of multiple TLSBench instances. TLSBench is
able to start in three different modes: in standalone mode, in client mode,
and in server mode. The standalone mode is the normal mode known
from YCSB. Here, a single node acts uncoordinated to benchmark a SUT.
In client mode, the TLSBench instance connects to another TLSBench in-
stance in server mode. Then, the workload of multiple instances is coordi-
nated, while the single instances may be configured solely or collectively
by the instance in server mode which then copies the configurations to
the clients. But, the coordination of the TLSBench instances is limited to
the coordinated start and the collective use of a single configuration.

In sum, we provide a tool for simple measurement of the performance im-
pact and different configurations of TLS in CSS. TLSBench allows a user to
run measurements with different TLS configurations in a partially automated
way. Thereby, TLSBench is based on and extends YCSB and, hence, provides
a fine-grained control of the workload which allows the user to compare dif-
ferent workloads with different (TLS) configurations of the SUT. Additionally,
we improved and extended the various components of YCSB like the stats com-
ponent that provides more fine-grained measurements than YCSB.

11.3. Summary

Summarizing, with our benchmarking approach and the tool TLSBench we are
able to benchmark the performance impact and various configurations of TLS
in CS5—we used TLSBench for the experiments with CSS described in the next
chapter (see, e.g.: Section 12.1.1). In CSS, we can differentiate between four
benchmarking settings which are depicted in Figure 11.1. When benchmarking
TLS configurations, we have to consider various challenges such as the sheer
number of experiments that may require automation support or the influence of
the resource saturation on the performance impact of TLS. TLSBench supports

119

11. Measuring the Transport Layer Security Overhead in Cloud Storage Systems

the user, when benchmarking the performance impact and different configu-
rations of TLS in CSS wherever possible. TLSBench, thereby, is based on and
extends the commonly known and widely used YCSB.

120

12. Experimental Trade-Off
Analyses of Transport Layer
Security in Cloud Storage
Systems

In this chapter, we perform detailed experiments in order to show relevant con-
figuration options of TLS as well as their impact on the trade-offs between secu-
rity and performance in CSS. We start by describing several experiments that
illustrate the different impact of TLS on two different CSS, DynamoDB and
Cassandra (Section 12.1). Afterwards, we analyze the impact of various cip-
her suite configurations on the trade-offs between security and performance in
Cassandra (Section 12.2). Finally, we inspect the impact of different TLS imple-
mentation on the trade-offs (Section 12.3).

12.1. Analyses of Select Cloud Storage Systems

In the following, we benchmark the performance impact of TLS in DynamoDB
(Section 12.1.1) and in Cassandra (Section 12.1.2).

12.1.1. DynamoDB

Here, we evaluate the overhead of TLS for the AR communication of Dyna-
moDB experimentally with TLSBench. DynamoDB is a fully managed cloud
storage service of AWS (Section 3.1.3.1). In DynamoDB, data is stored in a ta-
ble. Each table must be provisioned. A throughput target has to be defined for
each table which is provisioned. DynamoDB can be used with the AWS SDK
which communicate with the AWS web services over HTTP or HTTPS.

We have conducted the TLS experiments with DynamoDB two times during
the last three years. When we conducted the TLS experiments with DynamoDB

121

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

Setting Value

Protocol TLS 1.0

Cipher Suites TLS_RSA _WITH_AES_128 CBC_SHA
Workload Update-heavy not throttled
Handshake Renegotiation | False

Packet Size 900B

Number of Operations 5,000,000

Initial Load ca. 10GB

Consistent Reads False

Table 12.1.: Experiment setup for DynamoDB

for the first time in 2013 in [190], AWS allowed us to choose only a single cip-
her suite [190]: an old SSL cipher suite in version 3 using the insecure cipher
RC4 as well as the insecure MAC MDS5 (cipher suite: SSL_RSA_-WITH_RC4 -
128_MD5). Although using this cipher suite is—and at the time of our experi-
ments in 2013—not recommended anymore from a security’s perspective [8],
we could not choose another cipher suite.

In 2016, we conducted new experiments with DynamoDB for this thesis.*® At
this time, AWS changed the cipher suite configuration in DynamoDB to sup-
port more secure cipher suites. Hence, in our recent experiments, we measured
the performance impact of TLS with a newer AES-based cipher suite (cipher
suite: TLS_RSA_WITH_AES_128_ CBC_SHA) and compared it to using no en-
cryption at all. Unfortunately, this cipher suite is also not a state-of-the-art cip-
her suite (see also: Section 9.3). As we already described, the TLS configuration
in AWS depends on the region used (Section 7.1). For our experiments, we used
the region Ireland which, in contrast to the region Germany, only supports TLS
in version 1.0 even though only version 1.2 is actually recommended.

For the experiments in DynamoDB, we chose a target throughput of 10,000
units read /write capacity for the provisioned DynamoDB table, and deployed
our tool TLSBench on an AWS EC2 m3.large instance. As workload, we decided
on an update-heavy workload (50% updates and reads each) which was not
throttled to measure the maximum available throughput at TLSBench. Thus,
we tested the impact of TLS on the maximum throughput for the AR communi-
cation. Each row in DynamoDB was configured to have ten fields at 90 B each
so that the total packet size during data transfer was 900 B. A comprehensive
overview of the benchmark setup is shown in Table 12.1.

36The experiments are also described in [217].

37We used these settings, since the default workload size of 100B leads to some issues in Dy-
namoDB which are explained at https://www.github.com/brianfrankcooper/YCSB/
tree/master/dynamodb.

122

https://www.github.com/brianfrankcooper/YCSB/tree/master/dynamodb
https://www.github.com/brianfrankcooper/YCSB/tree/master/dynamodb

12.1. Analyses of Select Cloud Storage Systems

No TLS | AES128
Average Throughput (Ops/ sec) 2816.6 2858.5
Standard Deviation Throughput 658.4 529.1
Average Update Latency (ms) 7.5 7.6
Standard Deviation Update Latency 6.0 54
Minimum Update Latency (ms) 5.0 5.3
Maximum Update Latency (ms) 5013.5 510.1
Update Latency 99th Percentile (ms) 19.9 15.4
Average Read Latency (ms) 6.0 6.0
Standard Deviation Read Latency 5.3 3.3
Minimum Read Latency (ms) 3.6 3.8
Maximum Read Latency (ms) 5009.0 246.5
Read Latency 99th Percentile (ms) 11.0 10.6

Table 12.2.: Experiment results for DynamoDB

In our experiments with DynamoDB in 2013 [190] as well as in 2016, we could
not see any performance impact of TLS, since both throughput as well as read
and write latencies showed no statistically significant deviation. In Table 12.2
and Figure 12.1, results of a single example benchmark run are shown.

We believe that this can only be explained by AWS over provisioning resources
so as not to violate their service level agreements: if TLS is used, resource con-
sumption increases for AWS without being visible to the client. We, therefore,
recommend using DynamoDB only with TLS activated, as it does not result in
a performance degradation on the customer’s side.

12.1.2. Cassandra

For Cassandra deployed on AWS EC2, we show the following four experi-
ments:

1. In Experiment AR, we analyze the performance overhead of TLS for the
AR communication (Section 12.1.2.1).

2. In Experiment RR, we study the performance overhead of TLS for the RR
communication (Section 12.1.2.2).

3. In Experiment AR-RR, we benchmark the performance overhead of using
TLS for the AR and RR communication (Section 12.1.2.3)

4. In Experiment RR.HL, we studied how increasing the load compared to
ExperimentRR affects the performance impact of TLS for the RR com-
munication. For this purpose, we used exactly the same setup as we did

123

12.

Avg. Throughput

Avg. Update Latency

Avg. Read Latency

124

Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

==NoTLS ——TLSRSA AES128 CBC
3300
. 3100
9
2 2900
él 2700
2500
0 500 1000 1500
Time (Sec)
(a) Throughput
==NoTLS ——TLSRSA AES128 CBC

m
£
0 500 1000 1500
Time (Sec)
(b) Update Latency
==NoTLS ——TLS RSA AES128 CBC
10
8
é 6 W'WM’V@
4
0 500 1000 1500
Time (Sec)
(c) Read Latency

Figure 12.1.: Performance Impact of TLS on DynamoDB

12.1. Analyses of Select Cloud Storage Systems

in Experiment RR, but we deployed a second TLSBench instance in order
to effectively double the load to the Cassandra cluster (Section 12.1.2.4)

Cassandra is a quorum-based P2P replicated system which provides a column-
oriented data model (Section 3.1.3.2). In the experiments, we deployed Cas-
sandra on a cluster of three AWS EC2 m1.large instances within the same AZ
of the region North Virginia (USA). We used the Thrift interface for the AR
communication between TLSBench and Cassandra.

We chose a replication factor and consistency level of one. This means that
there is just one replica for every data item stored in the cluster.

In the two Experiments AR and RR, we compared the performance of Cas-
sandra without TLS to the performance of Cassandra with TLS. We enabled
TLS in version 1.0.® Furthermore, we used an AES-based cipher suite suppor-
ting DHE (cipher suites: TLS_.DHE_RSA_WITH_AES_128 CBC_SHA and TLS -
DHE_RSA_WITH_AES_256_CBC_SHA). We chose these cipher suites, as they
were and still are widely used cipher suites.

For all experiments, we ran a not throttled, update-heavy workload (50% up-
dates and reads each) against an initial data set of about 30 Gigabyte (GB).
A full TLS handshake happened only once per Cassandra node and client in
each experiment. This means that we had three full handshakes for the experi-
ments AR and RR. If there were other handshakes, session resumption would
shorten these handshakes (see also: Section 12.2.1). All connections were re-
set before and after the switch between different experiments and experiment
runs. Table 12.3 gives an overview of the setup for the experiments.

12.1.2.1. Experiment AR

In Experiment AR, we activated TLS for the AR communication of Cassandra.
Our results show a significant performance impact of enabling TLS for the AR
communication of Cassandra, while the key length in AES seems to have no in-
fluence on the performance (see also: Experiment RR in Section 12.1.2.2). Inte-
restingly, update latencies seem unaffected (difference: < 1ms), whereas read
latencies increase (difference: 1 ms) and the average throughput of AES 256 is
about 18.9% (difference: 368 operations per sec) lower compared to AR com-
munication without TLS.

38 As we have run the experiments in the end of 2013, we used TLS in version 1.0 which has been
default in the Oracle’s JRE in version 6u45 being the newest version of the JRE at this time [76,
209].

125

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

Setting Value

Cluster 3 AWS EC2 m1 .large instances, 1 (2) m3.large TLS-
Bench instance

Protocol TLS 1.0

Cipher Suites TLS_.DHE_RSA_WITH_AES_128 CBC_SHA, TLS._-
DHE_RSA_WITH_AES_256_CBC_SHA

Workload Update-heavy not throttled

Handshake Renegotiation | False

Packet Size 1000B

Number of Operations 3,000,000

Initial Load ca. 28 GB

Consistency Level ONE

Replication Factor 1

Cassandra Version 1.2.9

Java Version 6u45

Cassandra Interface Used | Thrift

Table 12.3.: Experiment Setup for Cassandra

In Figure 12.2 and Table 12.4, the results of a single example benchmark run
are shown. When repeating this experiment, “anomalies” where secured com-
munication suddenly outperforms AR communication without TLS (e.g., the
throughput of “AES128” in Figure 12.2a after about 1,000 sec) kept reoccurring.
Since there was no clear tendency whether AES 128 or 256 bits or insecure com-
munication showed this anomaly more frequently, we believe that this can only
be explained by the general performance variance of public compute cloud re-
sources (see, e.g.: [36, 171, 249]) or by background tasks of Cassandra such as
Compaction and Memtable Flushwriter which run from time to time in Cas-
sandra and may have a serious performance impact (see, e.g.: [89]). In the
results which we show here, the anomaly has an impact on the average values
in Table 12.4.

12.1.2.2. Experiment RR

In Experiment RR where all RR communication in Cassandra have been secu-
red by TLS, we could not see a statistically significant impact of using TLS-
secured RR communication on the performance of Cassandra. Neither throug-
hput nor update and read latencies show any effect (Figure 12.3 and Table 12.5).
We believe that the impact of TLS on the performance of the RR communication
itself is, in this experiment, too low to be measurable with TLSBench. As we
will see in later sections, this may be different at a higher resource saturation
level of the Cassandra cluster (see also: Section 12.1.2.4).

126

12.1. Analyses of Select Cloud Storage Systems

No TLS ——AES128 —— AES256

Avg. Throughput
(Ops/sec)

0 500 1000 1500
Time (Sec)
(a) Throughput
NoTLS ——AES128 —— AES256
> 11
c
.
3 _ 6
L @
EE
S 1
@ 0 500 1000 1500
<)
Time (Sec)
(b) Update Latency
NoTLS ——AES128 —— AES256
z 70
S
§ _ 50
® E30
&
) 10
< 0 500 1000 1500
Time (Sec)
(c) Read Latency

Figure 12.2.: Performance Impact of TLS on Cassandra (Experiment AR)

127

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

No TLS ——AES128 —— AES256
. 2800
8 _ 2300
T
S 9 1800
%
£ & 1300
:>: 800
0 500 1000 1500
Time (Sec)
(a) Throughput
No TLS ——AES128 —— AES256
)
c
(]
®
-
[}
®
©
[=N
=)
)
>
<)
Time (Sec)
(b) Update Latency
NoTLS ——AES128 —— AES256
o) 55
C
[}
E @ 35
wv
T E
[
o
gb 15
<
Time (Sec)
(c) Read Latency

Figure 12.3.: Performance Impact of TLS on Cassandra (Experiment RR)

128

12.1. Analyses of Select Cloud Storage Systems

No TLS | AES128 | AES256
Avg. Tp. (Ops/ sec) 1945.3 1760.4 1576.9
Std. Dev. Tp. 264.6 493.4 416.5
Avg. U. Lat. (ms) 33 3.5 39
Std. Dev. U. Lat. 0.7 1.3 1.1
Min. U. Lat. (ms) 0.4 0.5 0.5
Max. U. Lat. (ms) 686.9 2986.5 1411.3
U. Lat. 99th Perc. (ms) 36.0 35.0 39.0
Avg. R. Lat. (ms) 26.7 30.0 33.8
Std. Dev. R. Lat. 4.6 11.3 12.1
Min. R. Lat. (ms) 0.6 0.8 0.8
Max. R. Lat. (ms) 1391.7 3201.6 1932.7
R. Lat. 99th Perc. (ms) 255.0 312.0 373.0

Table 12.4.: Experiment Results for Cassandra (Experiment AR)

No TLS | AES128 | AES256
Avg. Tp. (Ops/sec) 19453 | 18162 | 187638
Std. Dev. Tp. 264.6 2863 263.6
Avg. U. Lat. (ms) 33 34 34
Std. Dev. U. Lat. 0.7 0.8 0.9
Min. U. Lat. (ms) 04 04 04
Max. U. Lat. (ms) 686.9 4629 855.9
U. Lat. 99th Perc. (ms) 36.0 36.0 36.0
Avg. R. Lat. (ms) 267 29.0 282
Std. Dev. R. Lat. 46 6.6 7.0
Min. R. Lat. (ms) 0.6 0.6 06
Max. R. Lat. (ms) 1391.7 | 15002 | 1799.3
R. Lat. 99th Perc. (ms) 255.0 271.0 281.0

Table 12.5.: Experiment Results for Cassandra (Experiment RR)

One might argue that with a replication factor of one (Table 12.3), there is no RR
communication. This is not true, as Cassandra routes requests arriving over the
AR connection at node A (coordinator node) requiring data from node B over
the RR connection to node B (Section 3.1.3.2). When B answers the request
to node A, node A then forwards B’s response to the client again via the AR
connection. This means that there is no separation of data and control flow as
the data from B will be funneled through A instead of sending a redirect for
node B to the client. Therefore, as long as not every request directly reaches
the correct node in the Cassandra cluster—this may be the case with a three
node cluster, a replication factor of three, and a consistency level of one—there
is RR communication even with a replication factor of one. In later sections, we
analyze the performance impact of TLS on the RR communication of Cassandra

129

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

No TLS | AES128 | AES256
Avg. Tp. (Ops/sec) 19453 | 18162 | 1876.8
Std. Dev. Tp. 264.6 286.3 263.6
Avg. U. Lat. (ms) 33 34 34
Std. Dev. U. Lat. 0.7 0.8 0.9
Min. U. Lat. (ms) 0.4 0.4 0.4
Max. U. Lat. (ms) 686.9 462.9 855.9
U. Lat. 99th Derc. (ms) 36.0 36.0 36.0
Avg. R. Lat. (ms) 26.7 29.0 282
Std. Dev. Avg. R. Lat. 4,6 6.6 7.0
Min. R. Lat. (ms) 0.6 0.6 0.6
Max. R. Lat. (ms) 1391.7 1500.2 1799.3
R. Lat. 99th Perc. (ms) 255.0 271.0 281.0

Table 12.6.: Experiment Results for Cassandra (Experiment AR-RR)

in more detail (see, e.g.: Section 12.2.3).

12.1.2.3. Experiment AR-RR

In Experiment AR-RR, we activated TLS for both AR and RR communication.
After having seen the results of Experiment AR and ExperimentRR, the re-
sults were not surprising: there is an overhead which is visible in both throug-
hput (Figure 12.4a) and latency values (Figure 12.4b and Figure 12.4c). Also, we
could, again, observe the anomaly already discussed previously (Section 12.1.2.1).
We expected this behavior, because adding no overhead (Experiment RR) and
some overhead plus an anomaly (Experiment AR) is likely to show the exact
combination—an overhead with an anomaly. Again, we could reproduce this
anomaly in either direction.

In this experiment, in Experiment AR, and in Experiment RR as well as in many
other experiments with Cassandra and various AES-based cipher suites, we
have not been able to see any influence of the key length of AES on the perfor-
mance of Cassandra. Hence, we show only the TLS-secured throughput and la-
tencies of the AES-based cipher suite with a key length of 128 bit in Figure 12.4.
In all following experiments, we describe only the results of AES-based cipher
suites with a key length of 256 bit, because this should be preferred over cipher
suites having a 128 bit key length.

130

12.1. Analyses of Select Cloud Storage Systems

=—=No TLS ——AES128
2 2500
o —_
EX:
3 2 1500
£8
27 s00
0 500 1000 1500
Time (Sec)
(a) Throughput
=—=No TLS ——AES128
> 11
c
o)
3_ 6
L
© £
3 E
S 1
@ 0 500 1000 1500
< .
Time (Sec)
(b) Update Latency
==No T TLS ——AES128
z 70
G
E _ 50
® E30
&
‘;b 10
< 0 500 1000 1500
Time (Sec)
(c) Read Latency

Figure 12.4.: Performance Impact of TLS on Cassandra (Experiment AR-RR)

131

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

==No TLS ——AES256
5 5000
= —_
EX
3 2 3000
£8
2 1000
0 500 1000 1500
Time (Sec)
(a) Throughput
==No TLS ——AES256
7
3
=
g 5
5
Uy
sE°
5 1
@ 0 500 1000 1500
< .
Time (Sec)
(b) Update Latency
==No TLS ——AES256

v
o O

- %W’X%&a
0 500 1000 1500

Time (Sec)

=
o

Avg. Read Latency
m
w
o

(c) Read Latency

Figure 12.5.: Performance Impact of TLS on Cassandra (Experiment RR-HL)

12.1.2.4. Experiment RR-HL

After not being able to observe a performance impact when using TLS in RR
communication with only one TLSBench instance in Experiment RR (Section 12.1.2.2),
we doubled the load on our three node Cassandra cluster by running a second
TLSBench instance simultaneously.

With the increased number of parallel requests to Cassandra, we managed to
increase the CPU load of the cluster’s machines from around 40% to 60%. The

132

12.1. Analyses of Select Cloud Storage Systems

No TLS AES256

TLSBench1l T...2 | TLSBenchl T...2
Avg. Tp. (Ops/sec) 1898.4 | 1903.8 1587.5 | 1586.5
Std. Dev. Tp. 366.4 341.4 250.1 249.0
Avg. U. Lat. (ms) 2.0 2.0 3.1 3.3
Std. Dev. U. Lat. 0.5 0.5 0.5 0.5
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 574.7 612.8 1,017.3 | 1,018.0
U. Lat. 99th Perc. (ms) 8.0 8.0 15.0 16.0
Avg. R. Lat. (ms) 18.8 18.7 21.5 215
Std. Dev. R. Lat. 8.4 7.0 8.5 6.7
Min. R. Lat. (ms) 0.7 0.7 0.7 0.7
Max. R. Lat. (ms) 2,056.9 | 2,012.5 3,644.5 | 3,598.9
R. Lat. 99th Perc. (ms) 314.0 313.0 313.0 314.0

Table 12.7.: Experiment Results for Cassandra (Experiment RR-HL)

resource saturation of the CSS has a large influence on whether secure RR com-
munication has a performance impact that is visible to the client. The throug-
hput decreased by about 300 operations per sec and the average latencies of
updates and reads increased by about 1ms and 3 ms respectively. It is, hence,
safe to say that a higher degree of resource saturation increases the severity
of TLS performance impacts in Cassandra. We expect even higher impacts for
higher resource saturation levels so that the decision on using or not using TLS
should also be based on the expected utilization level of the cluster.

12.1.3. Summary

In this section, we demonstrated that the performance impact of TLS in diffe-
rent CSS varies. While the impact is not measurable for DynamoDB, the impact
varies for the different communication types in Cassandra. As the experiments
show, the use of TLS for AR communication has a measurable impact on the
performance, whereas the impact on the RR communication is only significant
in cases with higher resource saturation. When we activate TLS for both AR
and RR communication, there is a considerable performance impact of TLS in
Cassandra.

At this point of this thesis, these first results lead to some preliminary impli-
cations as well as to a couple of open questions. There can be a significant
performance impact of TLS in CSS. This impact can be measured experimen-
tally and should be accounted for, when we balance security and performance.
Even if the impact strongly depends on the specific setup and workload, it can
be measured using our approach and tool.

133

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

As the impact of TLS on Cassandra’s RR communication could only be obser-
ved in scenarios with a high load, i.e., a high resource saturation, one might
conclude that this is less relevant due to the general recommendation not to
operate CSS at their performance limits. But depending on the use case, ope-
ration at the performance limits might make sense from a cost perspective (see
also: [63, 64]). At least for these cases, the activation of TLS for RR communi-
cation should be based on deliberations considering figures as provided by our
approach and tool. For all other cases, the activation of TLS for the RR com-
munication should at least be considered as an additional factor in determining
the available overall performance and possibly calling for increased resources
to prevent performance limits from being reached.

Furthermore, there are many more configuration options for TLS, DynamoDB,
and Cassandra which have to be evaluated in more detail. The concrete impact
of using TLS varies across different CSS. Due to the different protocols and com-
munication middleware systems in different CSS, the shown results will rarely
be transferable directly to other systems than those considered in this analy-
sis. Comparable experiments should, therefore, be conducted for other CSS
like Voldemort or HBase in order to allow for a more comprehensive view on
the performance impact of TLS in CSS. For example, Pallas and al. experimen-
ted in [218] and [217] with a TLS-like secure communication in HBase. They
also showed that the performance impact on HBase can be enormous. Even
Cassandra deployed on a private cloud or on VM of the German cloud provi-
der ProfitBricks will have another performance than the performance we have
shown in this thesis (see also: [190]). Also, other workloads have a different
impact on the performance (see also: [190]).

12.2. Analyses of Cipher Suite Configurations

The cipher suite configuration is, as mentioned, the most important configu-
ration option for balancing security and performance in TLS. Choosing the
“wrong” cipher suite may not only lead to security issues, but also to a con-
siderable performance impact. Typically, we can choose between a plethora of
different cipher suites that provide different security in combination with dif-
ferent performance. Some cipher suites are considered to be more secure and
others promise to be faster. So, we benchmark the performance of different cip-
her suites and different aspects of cipher suites in order to find out more about
the performance of TLS in CSS in this section.

134

12.2. Analyses of Cipher Suite Configurations

Setting Value

Cluster 3 AWS EC2 ma3.large instances, 1 m3.large TLS-
Bench instance

Protocol TLS 1.2

Cipher Suites TLS_.DHE_RSA _WITH_AES_256_CBC_SHA, TLS_-
ECDHE_RSA _WITH_AES_256_CBC_SHA

Workload Update-heavy not throttled

Handshake Renegotiation | False

Packet Size 1000B

Number of Operations 15,000,000

Initial Load ca. 14GB

Consistency Level ONE

Replication Factor 1

Cassandra Version 2.1.10

Java Version 8u92

Cassandra Interface Used | Native

Table 12.8.: Experiment setup of Experiment DHE vs. ECDHE

12.2.1. Experiment DHE vs. ECDHE

In this section, we examine the influence of handshake phase performance op-
timizations of TLS on the overall performance of a CSS such as Cassandra. In
doing so, we inspect, whether preferring ECDHE over DHE influences the per-
formance of Cassandra. As described, ECDHE outperforms DHE in typical
web server settings [45, 176] (Section 9.3). However, many CSS do not use
HTTPS and even have a completely different communication behavior. Cassan-
dra, for example, keeps already established connections alive as long as possi-
ble for sending multiple requests via a single connection and, thus, has a com-
pletely different communication behavior than web servers over HTTPS (Sec-
tion 9.2). As a consequence, Cassandra performs only a small number of hands-
hakes and, thus, should not benefit from performance optimizations in the
handshake phase such as choosing ECDHE over DHE in favor of performance.
In order to verify this, we benchmarked Cassandra with the two different key
agreement protocols (Experiment DHE vs. ECDHE) in this section.

Table 12.8 summarizes the entire experiment setup. In contrast to the experi-
ments in Section 12.1.2, we used Cassandra’s native interface for the AR com-
munication. Generally speaking, the native interface has a better performance
than Cassandra’s Thrift interface which explains the higher overall throughput
in this experiment compared to the experiment in Section 12.1.2.1. Also, we
used TLS in version 1.2.

As we have already seen in Section 12.1.2.1, there is a significant performance

135

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

No TLS DHE ECDHE
Avg. Tp. (Ops/ sec) 10,327.3 | 8,370.9 | -19% 8,338.3 | -19%
Std. Dev. Avg. Tp. 767.7 755.2 872,0
Min. Avg. Tp. (Ops/sec) 9,365.8 | 7,372.4 7,189.3
Max. Avg. Tp. (Ops/sec) | 11,169.5 | 9,035.5 9,080.6
Avg. U. Lat. (ms) 3.0 34 | 15% 37 | 23%
Std. Dev. Avg. U. Lat. 0.3 0.3 0.6
Min. Avg. U. Lat. (ms) 2.6 3.1 3.2
Max. Avg. U. Lat. (ms) 34 3.8 4.5
Avg. R. Lat. (ms) 3.0 3.6 | 23% 3.7 | 24%
Std. Dev. Avg. R. Lat. 04 0.5 0.7
Min. Avg. R. Lat. (ms) 2.5 3.2 3.1
Max. Avg. R. Lat. (ms) 34 43 4.6

Table 12.9.: Experiment Results of Experiment DHE vs. ECDHE

impact of enabling TLS in Cassandra (Figure 12.6a). However, there is no sig-
nificant difference in the throughput between the cipher suites using either
DHE or ECDHE. If we secure the AR communication, the throughput collapses
by about 19% for both cipher suites in comparison to the not secured throug-
hput (Figure 12.6a; see also: Section A.1).

Thereby, Cassandra typically performs only a small number of handshakes (Fi-
gure 12.6b and 12.6¢; see also: Section A.1). In comparison to typical web server
settings using HT'TPS, this small number of handshakes do not impact the per-
formance of the cluster at all, because the percentage of the handshake phases
compared to the percentage of the bulk data transfer phases is marginal. So,
it is irrelevant from a performance point of view, if we use ECDHE or DHE in
Cassandra.® Moreover, we argue that, in contrast to web server settings, any
other performance optimization of the handshake is of no consequence due
to the small percentage of the handshake phase in Cassandra with its speci-
fic communication behavior. Performance optimizations are rather sensible for
the bulk data transfer phase.

The percentage of the handshake and the bulk data transfer phase, is, thus, a
massively relevant factor for the trade-offs between security and performance
of TLS in CSS. This percentage influences the relevance of the performance im-
pact of the handshake phase in a CSS as well as optimizations for the hands-
hake phase such as preferring ECDHE over DHE, session resumption, etc. Furt-

39The performance difference between ECDHE and DHE might, however, be a factor, if a Cassan-
dra cluster is forced to perform additional handshakes such as a MITM attack. But, in such a
situation, we typically have further problems with the entire cluster so that the performance
impact here is negligible. Furthermore, such situations should be recognized and mitigated by
other security mechanisms like an intrusion detection and prevention system.

136

12.2. Analyses of Cipher Suite Configurations

ENoTLS mDHE ECDHE

10000

Avg. Throughput
(Ops/sec)

5000
0
(a) Average Throughput
mDHE 1 ECDHE mDHE 1 ECDHE
15 0,0000010
“E . ‘g_ 0,0000008
é ﬁ} 10 g ‘g 0,0000006
© £ T
TZE § 5 é & 0,0000004
° T 0,0000002
0 0,0000000
(b) Total Number of Handshakes (c) Handshakes per Request

Figure 12.6.: Performance Impact of DHE and ECDHE on Cassandra’s AR
Communication

hermore, the percentage influences the relevance of the bulk data transfer phase,
e.g., the performance of the symmetric cipher. In consequence, the percentage
of the handshake and bulk data transfer phase is a crucial part of the overall
communication behavior of a CSS that influences the trade-offs between secu-
rity and performance massively.

For other CSS, communication protocols, and communication middleware, this
percentage may be different and should be benchmarked using TLSBench in-
dividually. However, we believe that this finding can also be applied to other
CSS which have a similar communication behavior to Cassandra. This is, for
example, the case for Voldemort’s RR communication and most AR interfaces
of Voldemort like the Thrift or RPC interfaces (see also: Section 3.1.3.2).

The results of Experiment DHE vs. ECDHE are described in more detail in Sec-
tion A.1.

137

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

Setting Value

Cluster 3 AWS EC2 m3.]arge instances, 1 (2) m3.large TLS-
Bench instance

Protocol TLS 1.2

Cipher Suites TLS_.DHE_RSA_WITH_AES_256_CBC_SHA, TLS._-
DHE_RSA_WITH_AES_256_GCM_SHA384

Workload Update-heavy not throttled

Handshake Renegotiation | False

Packet Size 1000B

Number of Operations 3,000,000

Initial Load ca. 27 GB

Consistency Level ONE

Replication Factor 1

Cassandra Version 2.1.10

Java Version 8u92

Cassandra Interface Used | Native

Table 12.10.: Experiment setup of Experiments CBC vs. GCM

12.2.2. Experiment CBC vs. GCM

In this section, we focus on the bulk data transfer phase of TLS. We inspect the
performance impact of two selected cipher suites on the performance of Cas-
sandra (Experiment CBC vs. GCM). For this, we employ a highly secure AES-
based cipher suite using GCM (cipher suite: TLS_.DHE_RSA_WITH_AES_256_-
GCM_SHA384) and the medium secure AES-based cipher suite using the CBC
mode (cipher suite: TLS_.DHE_RSA_WITH_AES_256_CBC_SHA). We chose these
cipher suites, because the CBC-based cipher suite is, despite its relatively low
security level, one of the cipher suites most commonly used in practice. The
GCM-based cipher suite, in turn, is one of the few highly secure cipher suites
available in Java version 8 and 7 (see also: Section 10.2).

The general experiment setup of Experiment CBC vs. GCM is summarized in
Table 12.10. The results are summarized in the Tables 12.11, 12.12, and 12.13.
The experiment is described in more detail in Section A.2.

For the AR communication of Cassandra, there is a considerable performance
impact of the two cipher suites. If we use one of the two cipher suites with
such an experiment setup, the reduction of the throughput is at least 20% (Fi-
gure 12.7a; see also: Section A.2). Furthermore, the update latencies are at least
13% higher in average, while the read latencies can be up to 40% higher (Figu-
res 12.7b and 12.7c). As a consequence, activating TLS as well as choosing the
enabled cipher suites is, in contrast to many web server settings, still an issue

138

Avg. Throughput

Update Latency (ms)

Read Latency (ms)

(Ops/sec)

0

[<)]

N

0

12.2. Analyses of Cipher Suite Configurations

ENoTLS MAES256 CBC AES256 GCM
15000

10000
- - - -
0
AR RR

AR-RR

(a) Average Throughput

B NoTLS ™ AES256 CBC AES256 GCM

AR RR

AR-RR

(b) Average Update Latency

ENoTLS MAES256 CBC AES256 GCM

AR RR

AR-RR

(c) Average Read Latency

Figure 12.7.: Performance Impact of CBC and GCM on Cassandra

139

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

No TLS CBC GCM
Avg. Tp. (Ops/sec) 10,327.3 | 8,260.2 | -20% | 7,857.3 | -24%
Std. Dev. Avg. Tp. 767.7 709.1 808.7
Min. Avg. Tp. (Ops/ sec) 9,365.8 | 7,388.2 6,968.2
Max. Avg. Tp. (Ops/sec) | 11,169.5 | 9,035.5 8,857.0
Avg. U. Lat. (ms) 3.0 34 | 13% 38 | 25%
Std. Dev. Avg. U. Lat. 0.3 0.2 0.3
Min. Avg. U. Lat. (ms) 2.6 3.1 33
Max. Avg. U. Lat. (ms) 34 3.6 4.0
Avg. R. Lat. (ms) 3.0 38 | 30% 42 | 40%
Std. Dev. Avg. R. Lat. 0.4 04 04
Min. Avg. R. Lat. (ms) 2.5 32 3.7
Max. Avg. R. Lat. (ms) 34 4.2 47

Table 12.11.: Experiment Results of Experiment CBC vs. GCM AR

No TLS CBC GCM
Avg. Tp. (Ops/sec) / 49048 | 45949 | 6% | 42027 | -14%
TLSBench
Std. Dev. Avg. Tp. / TLSB. 503.3 436.4 354.0
Min. Avg. Tp. (Ops/sec) / TLSB. 4,387.8 | 4,094.5 3,696.9
Max. Avg. Tp. (Ops/sec) / TLSB. 5421.2 | 5,015.1 4,629.8
Avg. U. Lat. (ms) / TLSB. 37 i1 | 11% 18 | 30%
Std. Dev. Avg. U. Lat. / TLSB. 0.2 04 0.3
Min. Avg. U. Lat. (ms) / TLSB. 34 35 44
Max. Avg. U. Lat. (ms) / TLSB. 4.0 4.7 5.3
Avg. R. Lat (ms) / TLSB. 4.0 4.6 | 15% 5.0 27%
Std. Dev. Avg. R. Lat. / TLSB. 0.3 0.8 0.3
Min. Avg. R. Lat. (ms) / TLSB. 3.7 35 4.6
Max. Avg. R. Lat. (ms) / TLSB. 43 5.8 5.5

Table 12.12.: Experiment Results of Experiment CBC vs. GCM RR

that requires a thorough consideration as to which degree of security is neces-
sary and how much performance impact is justifiable facing this necessity.

The overall performance impact of TLS for the RR communication is, as ex-
pected, smaller than for the AR communication (Table 12.12). In the RR com-
munication, comparable to the situation of the AR communication, the more
secure GCM-based cipher suite has a higher overall performance impact than
the less secure CBC-based cipher suite (e.g., 14% vs. 6% for the average throug-
hput). Thereby, the performance impact of enabling TLS for the RR communi-
cation in Cassandra is mainly determined by an additional influence factor
in comparison to the performance impact of the AR communication. In Sec-

140

12.2. Analyses of Cipher Suite Configurations

No TLS CBC GCM
Avg. Tp. (Ops/ sec) 10,327.3 | 7,286.8 | -29% | 6,982.0 | -32%
Std. Dev. Avg. Tp. 767.7 | 1,313.9 1,114.6
Min. Avg. Tp. (Ops/sec) 9,365.8 | 6,022.0 5,940.4
Max. Avg. Tp. (Ops/sec) | 11,169.5 | 8,797.1 8,646.0
Avg. U. Lat. (ms) 3.0 32 6% 3.1 4%
Std. Dev. Avg. U. Lat. 0.3 0.6 0.5
Min. Avg. U. Lat. (ms) 2.6 2.5 2.7
Max. Avg. U. Lat. (ms) 34 3.8 3.7
Avg. R. Lat. (ms) 3.0 3.6 | 23% 36 | 23%
Std. Dev. Avg. R. Lat. 0.4 0.5 0.5
Min. Avg. R. Lat. (ms) 2.5 3.1 3.1
Max. Avg. R. Lat. (ms) 34 44 42

Table 12.13.: Experiment Results of Experiment CBC vs. GCM AR-RR

tion 12.3.1, we will get back to the question of what this bounded factor of the
RR communication is.

Securing both communication types, the AR and RR communication, introdu-
ces a massive performance impact in Cassandra (Table 12.13). The reduction
of the throughput amounts to approximately 30% for the selected experiment
setup. Additionally, we detected about 4-6% higher update latencies and about
23% higher read latencies.

Allin all, the less secure cipher suite shows better performance values than the
more secure cipher suite. Both cipher suites differ only their mode of operation
for the symmetric AES cipher. Thus, the symmetric cipher of a cipher suite is
another massively relevant influence factor for the trade-offs between security
and performance of TLS in CSS.

12.2.3. Experiment R3-CQ

In this experiment (Experiment R3-CQ), we enlarge the Cassandra cluster to a
six-node cluster and compare the results to the Experiment CBC vs. GCM. Furt-
hermore, we increase the replication factor to three and the consistency level to
quorum. A higher replication factor as well as a stronger consistency level incre-
ases the amount of communication within the cluster, changes the communi-
cation behavior of Cassandra, and, hence, should influence the performance
impact of TLS in Cassandra.

The experiment setup is shown in Table 12.14. For it, we only describe the
performance impact of TLS enabled for the AR and RR communication, since
we expect the highest performance impact of TLS. Moreover, we describe only

141

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

Setting Value

Cluster 6 AWS EC2 m3.]large instances, 2 m3.large TLS-
Bench instances

Protocol TLS 1.2

Cipher Suites TLS_DHE_RSA WITH_AES_256_CBC_SHA

Workload Update-heavy not throttled

Handshake Renegotiation | False

Packet Size 1000 B

Number of Operations 15,000,000 per TLSBench instance

Initial Load ca. 14GB

Consistency Level QUORUM

Replication Factor 3

Cassandra Version 2.1.10

Java Version 8u92

Cassandra Interface Used | Native

Table 12.14.: Experiment setup of Experiment R3-CQ

the experiment using the AES-based cipher suite in CBC mode. The experiment
results are shown in Table 12.15, and more detailed description is available in
Section A.3.

Using the higher replication factor and consistency level leads to a lower over-
all performance of the cluster, because all requests need more time to be com-
pleted which can be clearly seen in the reduced throughput and increased la-
tencies for the measurement without TLS compared to the previous experi-
ments (Figure 12.8 and Table 12.13). In Cassandra, client requests are handled
by the node which is contacted first by the client—the coordinator node (Sec-
tion 3.1.3.2). This results in two ways of request handling: if the requested
data item is not stored on the coordinator node, the client request is forwarded
to the other nodes in the cluster by the coordinator node, the coordinator node
waits for, at least, responses of two other nodes to fulfill the consistency level of
quorum, and then finally answers the client request. If the requested data item
is stored on the coordinator node, the coordinator node has to query, at least,
another node to answer the client request. In sum, this communication beha-
vior lowers the overall performance of the cluster, because the communication
overhead for each request increases.

As a consequence of the increased overall latencies, the performance impact
of enabling TLS is not as visible as in Experiment CBC vs. GCM AR-RR. The
impact of enabling the CBC-based cipher suite is about 9% for the throughput,
which is less than in the Experiment CBC vs. GCM AR-RR. The overhead for
the latencies is also moderate at 7% for the update latencies and only 2% for the
read latencies compared to latencies without TLS. Thus, the replication factor

142

Update Latency (ms)

Avg. Throughput
(Ops/sec)

12.2. Analyses of Cipher Suite Configurations

B NoTLS mAES256 CBC

3000

N
o
o
o

=
o
o
o

(a) Average Throughput

ENoTLS mAES256 CBC

a

N

N

o

(b) Update Latency

= =
o v

[0}

Read Latency (ms)

ENoTLS mAES256 CBC

(c) Read Latency

Figure 12.8.: Performance Impact of a Higher Replication Factor and Consis-
tency Level (Experiment R3-CQ)

No TLS | AES256 CBC
Avg. Tp. (Ops/sec) / TLSB. 2,840.7 2,583.2 | -9%
Std. Dev. Avg. Tp. / TLSB. 290.3 256.7
Min. Avg. Tp. (Ops/sec) / TLSB. 2,490.5 2,324.8
Max. Avg. Tp. (Ops/sec) / TLSB. 3,252.9 2,929.4
Avg. U. Lat. (ms) / TLSB. 5.7 61| 7%
Std. Dev. Avg. U. Lat. / TLSB. 0.6 04
Min. Avg. U. Lat. (ms) / TLSB. 5.0 5.6
Max. Avg. U. Lat. (ms) / TLSB. 6.6 6.7
Avg. R. Lat. (ms) / TLSB. 14.2 145 | 2%
Std. Dev. Avg. R. Lat. / TLSB. 1.7 1.7
Min. Avg. R. Lat. (ms) / TLSB. 12.3 12.3
Max. Avg. R. Lat. (ms) / TLSB. 16.8 18.0

Table 12.15.: Experiment Results of Experiment R3-CQ

143

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

and consistency level settings clearly influence the performance impact of TLS
in Cassandra, because these settings influence the communication behavior of
Cassandra enormously.

The replication factor and consistency level settings offset the pure performance
impact of a cipher suite. They change the communication behavior in that the
performance impact of a cipher suite is reduced. The replication factor and
consistency level, hence, are massively relevant configuration options for the
trade-offs between security and performance of TLS in CSS.

To broaden our findings regarding the influence of the replication factor and
consistency level on the performance impact of TLS in Dynamo-based CSS,
we also conducted initial experiments with an experimental Voldemort version
that has partial support for TLS (see also: Section 3.1.3.2). The results indicate
that the behavior of Voldemort is comparable to Cassandra’s behavior. We,
therefore, conclude that our findings are transferable to Dynamo-based CSS in
general.

12.2.4. Summary

Analogue to our findings in Section 12.1, there is a performance impact of ena-
bling TLS on Cassandra. The concrete percentage of the performance impact,
however, depends massively on the given configuration of Cassandra. This in-
cludes the workload, the resource saturation, and the communication type for
which TLS is activated. Furthermore, the cipher suite configuration has a sig-
nificant impact on the performance which we demonstrated in this section.

Thereby, the performance impact of the cipher suite configuration is determi-
ned by the communication behavior of the CSS. The communication behavior
embraces the communication protocol, the percentage of the handshake and
bulk data transfer phase in TLS, the replication and consistency settings, etc.
In Cassandra, the low percentage of the handshake phase in comparison to
the bulk data transfer phase leads to a different performance impact of TLS
than in HTTPS-based web server environments. As shown in Experiment DHE
vs. ECDHE, the choice of the key agreement protocol is, in contrast to HTTPS-
based web server environments, irrelevant for the performance of TLS in Cas-
sandra (Section 12.2.1). In the experiment, both handshake protocols, DHE and
ECDHE, show the same performance in a Cassandra cluster, although ECDHE
is considered to be faster in web server settings. In turn, the choice of the sym-
metric cipher of the bulk data transfer phase is of much more importance in
Cassandra.

Additionally, the replication factor and consistency level influence the com-
munication behavior of Cassandra massively. Increasing the replication factor

144

12.2. Analyses of Cipher Suite Configurations

and consistency level to three and quorum respectively, can lead to a smaller
performance impact of TLS in Cassandra compared to the behavior of a repli-
cation factor and consistency level of one as demonstrated in Experiment R3-
CQ (Section 12.2.3). Moreover, there are diverse other communication settings
like asynchronous replication in a geo-replicated cluster that may influence
Cassandra’s communication behavior and, thus, the performance impact of
TLS.

For the symmetric cipher, we experimented with two AES-based cipher suites
and determined the performance impact of them. Firstly, we used a highly
secure GCM-based cipher suite that has the security features PFS and AEAD
and, secondly, a medium secure CBC-based cipher suite which only has PFS.
In our measurements in Experiment CBC vs. GCM, the less secure CBC-based
cipher suite usually has a better performance than the more secure GCM-based
cipher suite (Section 12.2.2). For example, the throughput of the GCM-based
cipher suite enabled for the RR communication of Cassandra is ca. 6% lower
than the CBC-based cipher suite in this communication type and 15% lower
than the throughput with TLS disabled. However, our results do not mean that
one of these cipher suites is the best cipher suite for Cassandra. The choice of
the cipher suite should remain a decision considering the trade-offs between
security and performance.

Again, a particular configuration of Cassandra has to be benchmarked indivi-
dually, since the performance impact of TLS in a CSS depends, as shown by the
diverse experiments, on many influence factors (Section 12.1). Important influ-
ence factors of the cipher suite configuration on the performance of Cassandra
are the communication behavior (e.g., the low percentage of handshake phase
in comparison to the bulk data transfer phase, replication factor, and consis-
tency level in Cassandra) and the symmetric cipher of the chosen cipher suite.
The protocols of the handshake phase, however, do not influence the perfor-
mance of Cassandra in our settings.

We believe that our findings for Cassandra are, at least partially, transferable to
other Dynamo-based CSS like Voldemort oz, at least, similar CSS with a com-
parable communication behavior. For example, the influence of the replica-
tion factor and consistency level seem be transferable to Dynamo-based CSS,
since Voldemort has many things in common with Cassandra (see also: Secti-
ons 3.1.3.2 and 3.1.3.2). The first experiments with Voldemort indicate this.
Other systems, such as HBase, have different communication behavior than
Cassandra and Voldemort and, thus, behave differently (Section 3.1.3.2).

145

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

12.3. Analyses of Different Transport Layer
Security Implementations

In this section, we analyze the performance impact of three aspects of different
TLS implementations on Cassandra:

o The support of AES-NI is a promising performance optimization for the
bulk data transfer phase, because any performance optimization of the
handshake phase is not worthwhile for TLS in Cassandra (see also: Sec-
tion 12.2.4). In Experiment AES-NI, we benchmark the performance im-
pact of AES-NI in the SunJSSE (Oracle JRE version 8u92) in Cassandra (Sec-
tion 12.3.1).

o As mentioned above, Cassandra uses Netty for the native AR interface
(Section 3.1.3.2). Cassandra in version 2.1.10 uses the JRE’s JSSE imple-
mentation in Netty by default. As Netty supports OpenSSL which typi-
cally shows a better performance and supports more TLS features than
the JSSE TLS implementation, we modified Cassandra to use OpenSSL
in Netty with the expectation of a better performance of Cassandra (Sec-
tion 10.2). In Experiment Netty/OpenSSL, we analyze the performance im-
pact of using OpenSSL instead of JSSE for Cassandra’s AR communicat-
ion (Section 12.3.2).

e WOoIfSSL is a small and fast C-based TLS implementation (Section 10.2).
With the expectation of a much better RR communication performance,
we manipulated Cassandra to use the mentioned JSSE API integration
of WolfSSL instead of JSSE for the RR communication. In Experiment
WoIfSSL, we analyze the performance impact of using WolfSSL for Cas-
sandra’s RR communication (Section 12.3.3).

We start by analyzing the performance impact of AES-NI on Cassandra’s per-
formance in the next section.

12.3.1. Experiment AES-NI

In this section, we analyze the performance impact of AES-NI in the SunJSSE (Ex-
periment AES-NI).*> AES-NI accelerates AES encryption and decryption in the
CPU (Section 9.2).

40Again, we use the SunJSSE of Oracle’s JRE in version 8u92 (see also: Section 10.2). The Sun]JSSE
supports AES-NI since version 7u40 [202, 203]. In Java version 7 and 8, especially, the CBC
mode benefits from AES-NI [202, 203]. For GCM, the advances of AES-NI will be used more
extensively in Java version 9 (see, e.g.: [204]). AES-NI is enabled by default in the SunJSSE
version 8. So, if the CPU supports AES-NI, the SunJSSE utilizes AES-NI for accelerating AES.

146

Avg. Throughput

Update Latency (ms)

Read Latency (ms)

(Ops/sec)

N Y [<)]

o

12.3. Analyses of Different Transport Layer Security Implementations

B CBC i CBCAES-NIdis. BGCM GCM AES-NI dis.

10000
8000
6000
4000
2000

(a) Average Throughput

B CBC i CBCAES-NIdis. ®GCM GCM AES-NI dis.

(b) Average Update Latency

B CBC #GCM HCBCAES-NIdis. GCM AES-NI dis.

(c) Average Read Latency

Figure 12.9.: Performance Impact of AES-NI on Cassandra

147

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

For the experiment, we benchmarked Cassandra with disabled AES-NI in the
SunJSSE and compare the results with the results of Experiment CBC vs. GCM
in order to analyze the performance impact of AES-NI. We tested the same cip-
her suites with the same experiment setup as we used in the Experiment CBC
vs. GCM (Section 12.2.2). The results are shown in Table 12.16 for a secured
AR communication, in Table 12.17 for a secured RR communication, and in
Table 12.18 for a secured AR-RR communication (see also: Section B.1).

All in all, AES-NI is a worthwhile performance optimization for the bulk data
transfer phase of TLS as long as the cipher suite can benefit from AES-NI (Fi-
gure 12.9). The CBC- and the GCM-based cipher suites are, at least partially,
accelerated by AES-NI in Cassandra using Java version 8. Thereby, the CBC-
based cipher suite benefits more from AES-NI in our experiment setup than the
GCM-based cipher suite. The throughput and the latencies are, in most cases,
slightly better with the CBC-based than with the GCM-based cipher suite.

The impact of AES-NI varies for the different communication types of Cassan-
dra. While the AR communication profits from AES-NI up to 14% (Table 12.16),
the RR communication benefits less from AES-NI (Table 12.17). If both com-
munication types are secured, the performance impact of disabling AES-NI is
not as high as expected (Table 12.18). The performance of the Cassandra cluster
does not collapse as much as in the Experiment CBC vs. GCM AR-RR.

One reason for the different impact of AES-NI on the communication types
is that the AR and RR communication of Cassandra are bounded differently.
The AR communication is massively CPU bound, whereas the RR communi-
cation has another bounded factor. In the latter case, the general overhead of
TLS which increases the latencies either way seems to be more essential for the
performance impact of the RR communication. This leads to a lower benefit of
AES-NI. Also, the secured AR-RR also seems to have a different bounded factor
than the CPU.

12.3.2. Experiment Netty/OpenSSL

Cassandra’s native AR interface is implemented based on Netty (see, e.g.: Sec-
tion 10.2). Thereby, Netty is implemented to use the JRE’s JSSE TLS implemen-
tation.

As Netty supports using OpenSSL for performance reasons (Section 10.2), we
modified Cassandra to use Netty with OpenSSL instead of the JRE’s JSSE im-

148

12.3. Analyses of Different Transport Layer Security Implementations

CBC GCM

AES-NI dis. AES-NI dis.
Avg. Tp. (Ops/ sec) 8,260.2 | 7,124.2 | -14% | 7,857.3 | 7,156.7 | -9%
Std. Dev. Avg. Tp. 709.1 587.4 808.7 600.1
Min. Avg. Tp. (Ops/sec) | 7,388.2 | 6,550.5 6,968.2 | 6,643.5
Max. Avg. Tp. (Ops/sec) | 9,035.5 | 8,036.1 8,857.0 | 8,103.5
Avg. U. Lat. (ms) 3.4 38 | 13% 3.8 3.6 | -5%
Std. Dev. Avg. U. Lat. 0.2 0.4 0.3 0.5
Min. Avg. U. Lat. (ms) 3.1 32 3.3 3.0
Max. Avg. U. Lat. (ms) 3.6 45 4.0 4.2
Avg. R. Lat. (ms) 3.8 43 | 11% 42 42 | 1%
Std. Dev. Avg. R. Lat. 0.4 0.5 0.4 0.7
Min. Avg. R. Lat. (ms) 3.2 37 3.7 34
Max. Avg. R. Lat. (ms) 4.2 5.2 4.7 5.1

Table 12.16.: Experiment Results of Experiment AES-NI AR

CBC GCM
AES-NI dis. AES-NI dis.
Avg. Tp. / TLSB. 45949 | 45777 | 0% | 4,202.7 | 3,805.9 -9%
Std. Dev. Avg. Tp./TLSB. 436.4 389.8 354.0 330.7
Min. Avg. Tp. / TLSB. 4,094.5 | 4,132.7 3,6969 | 3,345.4
Max. Avg. Tp. / TLSB. 5,015.1 | 4,968.8 4,629.8 | 4,100.9
Avg. U. Lat. / TLSB. 4.1 42 | 2% 4.8 43 | -12%
Std. Dev. Avg. U. Lat./TLSB. 0.4 0.4 0.3 0.3
Min. Avg. U. Lat. / TLSB. 35 3.8 44 3.8
Max. Avg. U. Lat. / TLSB. 4.7 5.0 5.3 4.6
Avg. R. Lat. / TLSB. 4.6 44 | 2% 5.0 4.8 -5%
Std. Dev. Avg. R. Lat./TLSB. 0.8 0.4 0.3 0.9
Min. Avg. R. Lat. / TLSB. 3.5 3.9 4.6 3.8
Max. Avg. R. Lat. / TLSB. 5.8 5.2 5.5 6.5

Table 12.17.: Experiment Results of Experiment AES-NI RR

149

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

CBC GCM

AES-NI dis. AES-NI dis.
Avg. Tp. (Ops/sec) 7,286.8 | 6,889.6 | -5% | 6,982.0 | 6,957.6 | 0%
Std. Dev. Avg. Tp. 1,313.9 937.1 1,114.6 914.7
Min. Avg. Tp. (Ops/sec) | 6,022.0 | 5955.6 59404 | 59262
Max. Avg. Tp. (Ops/sec) | 8,797.1 | 8,279.5 8,646.0 | 8,286.9
Avg. U. Lat. (ms) 3.2 34| 6% 3.1 33 | 7%
Std. Dev. Avg. U. Lat. 0.6 0.4 0.5 0.5
Min. Avg. U. Lat. (ms) 2.5 3.0 2.7 2.8
Max. Avg. U. Lat. (ms) 3.8 3.8 37 4.0
Avg. R. Lat. (ms) 3.6 38 | 4% 3.6 39 | 6%
Std. Dev. Avg. R. Lat. 0.5 0.4 0.5 0.5
Min. Avg. R. Lat. (ms) 3.1 3.3 3.1 3.2
Max. Avg. R. Lat. (ms) 44 4.3 4.2 44

Table 12.18.: Experiment Results of Experiment AES-NI AR-RR

plementation for the AR communication of Cassandra.*! In several reports, the
usage of OpenSSL in Netty led to a considerable performance improvement (see,
e.g.: [175]).2

For Experiment Netty/OpenSSL, we, hence, tested the performance of Cas-
sandra with Netty using the original JSSE implementation versus Cassandra
with Netty using OpenSSL. In doing so, we used the experiment setup that
we already used in Experiment CBC vs. GCM AR in order to have comparable
results (Table 12.10). The results of Experiment Netty /OpenSSL are shown in
Table 12.19 (see also: Section B.2). The results of the unmodified Cassandra are
taken from Table 12.11 as well as Table A.4 and Table A.5 respectively.

Unfortunately, the usage of OpenSSL instead of the SunJSSE implementation
in Netty does not show the expected performance improvement. Netty with
OpenSSL is rather outperformed by the SunJSSE. The throughput of the mo-
dified Cassandra collapses by 74% for the CBC-based cipher suite and 69% for
the GCM-based cipher suite. The latencies are far beyond acceptable values.

The reason for the bad performance of Netty with OpenSSL in Cassandra’s AR
communication seems to be an unsuitable communication behavior of Cassan-
dra for the usage of Netty with OpenSSL. We figured out that the high latencies
arise in Cassandra itself. They result from the high overhead of JNI invocations
to OpenSSL (see also: Section B.2). In contrast to typical web server settings,

“'We upgraded Cassandra version 2.1.10 to use Netty in version 4.0.33 for this experiment which
provides a more stable OpenSSL support than the original version 4.0.22 in Cassandra version
2.1.10.

4 A short description of the changes which have to be made for using OpenSSL in Netty can be
found, for instance, in [195].

150

12.3. Analyses of Different Transport Layer Security Implementations

CBC GCM
JSSE OpenSSL JSSE OpenSSL
Mean Avg. Tp. (Ops/sec) 8,260.2 | 2,136.8 | -74% | 7,857.3 | 2,463.8 | -69%
Std. Dev. Avg. Tp. 709.1 653.3 808.7 875.8
Min. Avg. Tp. (Ops/ sec) 7,388.2 | 1,621.8 6,968.2 | 1,800.7
Max. Avg. Tp. (Ops/sec) 9,035.5 | 2,871.6 8,857.0 | 3,456.5
Mean Avg. U. Lat. (ms) 3.4 15.9 | 372% 3.8 13.8 | 268%
Std. Dev. Avg. U. Lat. 0.2 4.3 0.3 5.5
Min. Avg. U. Lat. (ms) 3.1 11.1 3.3 7.8
Max. Avg. U. Lat. (ms) 3.6 19.2 4.0 18.6
Mean Avg. R. Lat. (ms) 3.8 149 | 287% 4.2 12.2 | 194%
Std. Dev. Avg. R. Lat. 0.4 42 0.4 3.8
Min. Avg. R. Lat. (ms) 3.2 10.0 3.7 8.1
Max. Avg. R. Lat. (ms) 4.2 17.7 4.7 15.7

Table 12.19.: Experiment Results of Experiment Netty /OpenSSL

Cassandra’s communication behavior with many small requests that are only
a few B as well as the high number of requests seems to lead to an adverse
interaction between the JRE, NI, and OpenSSL. This results in the low perfor-
mance. In sum, the usage of Netty with OpenSSL for the native AR interface of
Cassandra is, currently, not recommended. Maybe a later version of Cassandra
or Netty can change the situation.

12.3.3. Experiment WolfSSL

For testing the performance impact of replacing the SunJSSE by WolfSSL for the
RR communication of Cassandra, we built a JSSE APl integration for WolfSSL (Sec-
tion 10.2). This JSSE API integration allows us to easily replace the SunJSSE by
WOolfSSL in Cassandra.

In Experiment WolfSSL, we benchmarked the performance of original Cassan-
dra versus Cassandra using WolfSSL for the RR communication. The expe-
riment setup is, again, analogue to the experiment setup of Experiment CBC
vs. GCM RR (Table 12.10). The experiment results are summarized in Table 12.20
(see also: Section B.3). In the table, we compare the experiment results of Cas-
sandra using WolfSSL with the experiment results of Experiment CBC vs. GCM
RR (Table 12.12 and Section A.2).

Replacing the SunJSSE by WolfSSL led, similarly to the Experiment Netty /OpenSSL,
to a lower throughput than Cassandra in the original configuration. In this case,
the performance collapse is not as high as in Experiment Netty/OpenSSL. The
throughput of the CBC- and GCM-based cipher suites are 10% and 6% lower

151

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

CBC GCM
JSSE WolfSSL JSSE WolfSSL
Mean Avg. Tp./TLSB. 45949 | 4,153.0 | -10% | 4,202.7 | 3,940.3 -6%
Std. Dev. Avg. Tp./TLSB. 436.4 324.5 354.0 274.1
Min. Avg. Tp./TLSB. 4,094.5 | 3,805.7 3,696.9 | 3,625.2
Max. Avg. Tp./TLSB. 5,015.1 | 4,481.1 4,629.8 | 4,337.4
Mean Avg. U. Lat./TLSB. 41 70 | 69% 4.8 72 | 50%
Std. Dev. Avg. U. Lat./T. 0.4 1.0 0.3 0.7
Min. Avg. U. Lat./TLSB. 3.5 6.1 44 6.4
Max. Avg. U. Lat./TLSB. 4.7 8.7 5.3 8.2
Mean Avg. R. Lat/TLSB. 4.6 4.4 -3% 5.0 42 | -16%
Std. Dev. Avg. R. Lat./T. 0.8 0.6 0.3 0.6
Min. Avg. R. Lat./TLSB. 3.5 3.8 4.6 3.6
Max. Avg. R. Lat./TLSB. 5.8 55 55 52

Table 12.20.: Experiment Results of Experiment WolfSSL

with WolfSSL. Also, the average latencies with WolfSSL in Cassandra are hig-
her. As a result, we do not recommend replacing the SunJSSE with WolfSSL in
Cassandra from a performance perspective.

Although the overall performance of Cassandra with WolfSSL is lower than
with the SunJSSE and the replacement of the SunJSSE with WolfSSL seems to
be rather inefficient, Experiment WolfSSL has two further debatable aspects:
the first point is that the JSSE API integration for WolfSSL, the WolfSSL JNI li-
brary, and the C-based WolfSSL library do not integrate very well with each
other in their current state. The JSSE API integration accesses the Java classes
of the WolfSSL NI library and, then, accesses the C-based WolfSSL library indi-
rectly. Removing this indirect invocation of the C-based WolfSSL may lead to a
much better performance which is future work and not within the scope of this
thesis. The second point is that the TLS features of WolfSSL in comparison to
the SunJSSE are interesting from a security perspective (see also: Figure 10.5).
In contrast to the SunJSSE version 8u92, WolfSSL provides more state-of-the-art
cipher suites. For example, WolfSSL provides the promising ChaCha20-based
stream cipher suites. Solely the extended cipher suite support compared to the
JSSE TLS implementation may be a benefit from a security and, additionally,
from a compatibility point of view, when we have to integrate the CSS with
another system. Moreover, the WolfSSL community seems to be very active in
developing further features of WolfSSL, which may increase these benefits.

152

12.3. Analyses of Different Transport Layer Security Implementations
12.3.4. Summary

In this section, we experimented with different TLS implementations and their
impact on the trade-offs between security and performance. As different TLS
implementations can have different features like supported cipher suites, sup-
ported TLS protocol versions, supported TLS extensions, etc. (see also: Chap-
ter 10), the TLS implementation plays a significant role for the trade-offs bet-
ween security and performance. They can provide different security features
and also different performances.

In this section, we benchmarked three aspects of three different TLS implemen-
tations in Cassandra:

e We benchmarked the impact of enabling /disabling AES-NI on the perfor-
mance of Cassandra with the SunJSSE. We used the CBC- and the GCM-
based cipher suite that we already used in Section 12.2.2. Both cipher
suites are, at least partially, accelerated by AES-NI in the SunJSSE, but the
CBC-based cipher suite, currently, benefits more from AES-NI than the
GCM-based cipher suite. However, the different communication types in
Cassandra benefit differently from AES-NI, as the CPU that is discharged
by AES-NI is not the bounded factor for all communication types in Cas-
sandra. The impact of AES-NI on a CSS depends on the bounded factor,
but is generally positive for the throughput.

o We tested the impact of using OpenSSL instead of the SunJSSE in Cassan-
dra’s AR communication. Cassandra uses Netty for the AR communi-
cation. In Netty, a developer can choose if the JRE’s JSSE implementat-
ion or if OpenSSL should be used for TLS communication in the back-
ground of Netty. Unfortunately, exchanging the SunJSSE by OpenSSL in
Netty does not show the expected performance improvement. Cassandra
with OpenSSL is rather outperformed by Cassandra with the SunJSSE.
The communication behavior of Cassandra is not suitable for the usage
of Netty with OpenSSL. This fact also strengthens our claim that the com-
munication behavior of a CSS is an enormously relevant factor for the
trade-offs between security and performance.

o We experimented with WolfSSL for the RR communication of Cassandra.
Via the JSSE API integration for WolfSSL, we can replace the SunJSSE
in Cassandra with WolfSSL easily. But, the throughput of the CBC- and
GCM-based cipher suites are 6-10% lower with WolfSSL than with the
SunJSSE in Cassandra’s RR communication.

In this chapter, we illustrated that the entire hardware-software-stack on which
a CSSis deployed can play a significant role for the trade-offs between security

153

12. Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems

and performance. Every part of the system configuration and the TLS configu-
ration must be secure for a secure overall usage of TLS in a system (Section 7.2;
see also: [34]). But also from a performance perspective, every part of the sy-
stem, such as the specific TLS implementation and the underlying hardware,
can influence the performance of TLS in a CSS considerably (see also: [217]).

154

13. Conclusion and Discussion

In this part, we focused on analyzing and quantifying the trade-offs between
security and performance on the example of TLS in CSS in more detail. There-
fore, we presented extensive experimental trade-off analyses of different influ-
ence factors and relevant configuration options for TLS in CSS. These influence
factors and relevant configuration options embrace influence factors and con-
figuration options of the CSS itself as the full unit of deliberations, the cipher
suite configuration as the most important configuration option of TLS, and the
TLS implementation as an immensely important influence factor on the trade-
offs which effects both previously described influence factors and configuration
options.

But, before we performed the experimental trade-off analyses, we introduced
a conceptual framework for comparing different Java-based TLS implementa-
tions in the context of CSS comprehensively. As different TLS implementations
provide different security features, this framework allows for focusing on im-
portant dimensions of TLS implementations in the context of CSS and, parti-
cularly, Java-based NoSQL systems. Instantiating the framework, we, further-
more, compared four selected Java-based TLS implementations.

We also described an approach and a tool for conducting fine-grained experi-
ments with different TLS configurations in CSS. It features different communi-
cation types that can be benchmarked. This leads to four different benchmark-
ing settings for CSS. For benchmarking different TLS configurations, we have
to consider different quality aspects such as the repeatability and comparabi-
lity of the benchmarks, the workload and system configuration, or the resource
saturation of the CSS. The tool TLSBench facilitates this in the benchmarking
processes and has proven to be a reliable data source throughout our experi-
ments.

TLSBench was used to conduct several experiments with DynamoDB and Cas-
sandra in order to reveal relevant configuration options which influence the
trade-offs between security and performance of TLS in CSS. While DynamoDB
showed no impact of enabling or disabling TLS, Cassandra demonstrated a nu-
anced behavior in the experiments with TLS enabled. Also, initial experiments

155

13. Conclusion and Discussion

with Voldemort and HBase emphasize the importance of considering the trade-
offs between security and performance as well as their relevant influence fac-
tors and configuration options of TLS.

In Figure 13.1, we summarized the influence factors and relevant configuration
options of TLS in CSS which we inspected in this thesis. On the level of the
CSS itself, the most important influence factors on the trade-offs between se-
curity and performance are the resource saturation and the specific workload
and system configuration of a CSS (Figure 13.1a). The resource saturation is
influenced massively by TLS—this includes the specific TLS implementation
and the cipher suite configuration—and vice versa. In Experiment RR-HL, we
demonstrated that an impact of TLS in Cassandra is only visible at a high re-
source saturation. Moreover, the results of Experiment AES-NI indicate that the
CPU utilization and boundedness is a relevant influence factor for the benefit
of AES-NI and the resulting performance of AES-based cipher suites, too (see
also: Figure 13.1b). Besides that, the workload and the remaining system con-
figuration, of course, also show effects on the resource saturation.

The workload and system configuration, on the other hand, feature the TLS
implementation and the cipher suite configuration as relevant configuration
options which influence the trade-offs between security and performance (Fi-
gure 13.1a). Additionally, the different communication types for which TLS is
enabled impact the performance differently. This was shown in various experi-
ments like in the Experiments AR, RR, AR-RR, Experiment CBC vs.GCM, and
Experiment AES-NL

The cipher suite configuration depends on the communication behavior of the
CSS and the cipher suite (Figure 13.1b). The communication behavior includes
the communication protocol and communication middleware, which we did
not examine further in this thesis (Section 12.2.4). In addition to this, the com-
munication behavior embraces the percentage of the handshake and bulk data
transfer phase of TLS as well as the replication and consistency settings of the
CSS. Experiment R3-CQ shows that the increased replication factor and consis-
tency level of Cassandra changed the communication behavior to the extent
that the performance impact of TLS is reduced, because the overall latencies of
the requests raised.

The percentage of the handshake and bulk data transfer phase influences the
performance impact of the handshake protocol and symmetric cipher in a CSS
massively (Figure 13.1b). In Cassandra, the percentage of the performed hands-
hakes is so marginal that, in contrast to web server environments, the perfor-
mance impact of the handshake phase does not matter at all (see also: Experi-
ment DHE vs. ECDHE).

156

Workload and
System Config.

Ressource
Saturation

Cipher Suite Communi-
Configuration cation Type

Experiment RR-HL: In Experiment Experiment Experiment R3-CQ: In Cassandra, the Experiment AR, RR,
Cassandra, the AES-NI, DynamoDB: In repl. factor and consistency level AR-RR, RR-HL: In
performance impact Experiment DynamoDB, settings change the performance Cassandra, enabling/
for the RR Netty/ enabling/disabling impact of TLS. We also experimented disabling TLS has,
communication [o] T TLS has no impact with other workloads (e.g., YCSB’s depending on the
appears only fora Experiment on the performance read-heavy workload, etc.) and cloud communication type,
higher degree of WolfSSL of the AR storage providers (e.g., ProfitBricks) a considerable impact
resource saturation communication that change the impact on the performance

(a) Select Cloud Storage Systems

Cipher Suite
Configuration

Communi- I-l Cipher Suite

cation Behavior

N

Repl. Factor Percentage of Symmetric Cipher
and Consis- Handshake vs. Bulk Hs:(;jtiz)ll(e (Mode of AES-NI
tency Level Data Transfer Phase Operation)

V'
Experiment DHE vs. ECDHE: Experiment CBC vs. GCM:
In Cassandra, handshake In Cassandra, the
phase has virtually no symmetric cipher is of high

Experiment AES-NI: AES-NI
influences the CPU
utilization of a CSS and
accelerates operations of

Experiment R3-CQ: In
Cassandra, an increased repl.
factor and consistency level
changes the communication

influence on the importance, due to the
performance of Cassandra, percentage of the bulk
as Cassandra’s data transfer phase. This
communication behavior also includes the mode of
leads to only few handshakes J operation.

AES-based cipher suites.
However, not all
communication types are
CPU bound in Cassandra

behavior so that the
performance impact of TLS is
not that visible due to overall
increased latencies for requests

(b) Cipher Suite Configuration

Figure 13.1.: Examined Relevant Influence Factors and Configuration Options
of Transport Layer Security in Cloud Storage Systems

157

13. Conclusion and Discussion

The symmetric cipher used for the cipher suite, in turn, is of more importance
for Cassandra’s performance, because of the high percentage of the bulk data
transfer compared to the handshake phase (Figure 13.1b). For the symmetric
cipher, we checked the performance of two different AES-based cipher suites
with different modes of operation: the highly secure GCM-based and the me-
dium secure CBC-based cipher suite. In Experiment CBC vs. GCM, we expe-
rienced that the medium secure CBC-based cipher suite is faster than the more
secure GCM-based cipher suite.

All in all, we can benchmark the performance impact of TLS and different con-
figurations of TLS in various CSS with our approach and tool TLSBench (Re-
search Question 2). Furthermore, we revealed relevant configuration options
of TLS in CSS such as the communication behavior of a CSS (Figure 13.1) and
described diverse specifics of TLS in CSS.

Furthermore, we demonstrate that diverse former optimization rules of thumb
for SSL/TLS in the context of CSS are no longer valid and various configurati-
ons may lead to very different performance results.

158

Part IV.

Adaptive Middleware for
Transport Layer Security

159

After having deeper insights into the trade-offs between security and perfor-
mance as well as better understanding of the consequences of a security me-
chanism and its different configurations in a CSS, we are able to deploy a CSS
with a “good” security mechanism configuration. We can benchmark the dif-
ferent TLS configurations in a CSS like Cassandra and may find a good a-
priori configuration. However, the operating conditions or deployment en-
vironment of a CSS and the assumptions made for finding the good a-priori
security mechanism configuration may change rapidly in the Cloud (see, e.g.:
[130, 151, 159, 173, 183]), whereas CSS are typically running for a long time
and can often not be reconfigured easily during operations. This may be, for
example, the case, if the CSS is being scaled out or in, or if we move the CSS
deployment from a single data center deployment to a geo-distributed deploy-
ment, or if we only want to change the enabled cipher suites to react to a new
security risk.

The trade-offs between security and performance which we balanced well in
the a-priori configuration may be imbalanced in a specific situation or after
running the CSS a while. So, we, therefore, consider the research question:
How can we support required reconfiguration of TLS in the dynamic deploy-
ment environment of CSS in order to rebalance the trade-offs between security
and performance at runtime automatically (Research Question 3)?

For tackling the dynamic deployment environment of CSS, an adaptive middle-
ware is one way. An adaptive middleware is able to (re-)configure the applied
security mechanisms like TLS in a CSS at runtime automatically. We, hence,
propose the adaptive middleware ATLaS in this part. ATLaS can adapt TLS
configurations in CSS dynamically at runtime and provides an environment to
build various adaptations for TLS.

The remainder of this part is structured as follows: At first, we delineate the
background (Chapter 14). Next, we introduce the specific design of ATLaS
(Chapter 15), before we instantiate exemplary adaptations which illustrate how
to balance the trade-offs between security and performance of TLS in CSS with
ATLaS at runtime (Chapter 16). Afterwards, we evaluate ATLaS (Chapter 17).
Finally, we discuss the related work (Chapter 18) and conclude this chapter
(Chapter 19).

161

14. Background

In this chapter, we delineate the background of the adaptive TLS middleware
environment. We introduce the concept of adaptivity (Section 14.1). After-
wards, we describe in more detail how adaptations are realized (Section 14.2).
Finally, we sketch why monitoring is so important for (self-)adaptive systems
(Section 14.3).

14.1. (Self-)Adaptivity

For changing the TLS configuration flexibly at runtime, an adaptive middle-
ware may be, as mentioned, an approach to do this.

Definition 4. A (self-)adaptive system is able to modify its behavior or environment
in response to changes in its environment, while the environment includes anything
observable [165].

(Self-)Adaptivity is one of the so called Self-* Properties which were coined in
the organic and autonomic computing community (see, e.g.: [130, 150, 159, 165,
179, 213, 244, 250, 310]). Other self-* properties are self-healing in the presence
of failures, self-protection against threats, self-awareness to adapt to issues in
runtime performance and resource management, self-reflectiveness to be aware
of the own runtime environment, or self-predictability in order to predict the
effects of dynamic changes.

For adaptive systems, particularly, the questions why, when, what, where, and
how adaptations should be realized as well as by whom are relevant [165, 244].
Why and who specify the reason and goals of the adaptations as well as the en-
tities running the adaptations. Considering the when, adaptations can happen
statically at design time or dynamically at runtime, maybe anytime a specific
event occurs. The what specifies the attributes or artifacts of a system which
can be changed by adaptations. Contemplating the where of the adaptations, a
system can adapt at different points in different system layers, such as an al-
gorithm in an application, in a communication middleware, or at the operating
system level. The adaptations can be realized, for example, by changing the
configuration options of components (parametrization) [179] or (ex-)changing

163

14. Background

architectural components (structural adaptation) (see, e.g.: [110]) (how). More-
over, there are further aspects of (self-)adaptive systems that may be described
and modeled in more detail (see, e.g.: [25, 65]).

In adaptive systems, the notion of a control or feedback loop steers the adap-
tations [65, 150]. The loop typically consists of four distinct phases, whereas
the names of these phases are discerned in different communities. While the
software engineering community names the phases Collect, Analyze, Decide,
and Act, the autonomic computing community specifies the Monitor, Analyze,
Plan, Execute, and Knowledge (MAPE-K) control loop. Another model of buil-
ding the feedback loops is the so-called Observer/Controller Architecture pro-
posed by the organic computing community, for example, by Schmeck et al.
in [291]. In the following, we focus on the MAPE-K control loop.

Within the phases, data is collected from the managed system (monitor) [244].
Next, the collected data is analyzed to see if an adaptation should be perfor-
med in order to fulfill the operational goals (analyze). This step can be realized
on a basis of rules or triggers [130]. Currently, more and more (self-)adaptive
systems use models of the managed system in order to control and predict the
adaptations. After analyzing, the adaptations are planned (plan), before they
are executed (execute). The element Knowledge in MAPE-K, thereby, “[...] can
be considered as the mind of the system.” [130]

A simple example of an adaptation at runtime is the TLS record size adapta-
tion of Google’s servers and of the HAProxy project which we described in
Section 9.2. In the case of the Google servers, the TLS record size is adapted au-
tomatically and without human interaction (who) to optimize the throughput
of systems secured by TLS (why). This adaptation is a closed-loop and focused
adaptation which is based on a simple rule-based parametrization of the TLS
record size. Based on the sent data, the TLS implementation uses small TLS
records that fit into a single TCP segment, i.e., payload size of a TLS record of
about 1,400 B and a TLS record size of 1,937 B, for the first 1 Megabyte of data,
increases the size to 16 kB after that, and resets the record size back to fit into a
single TCP segment after 1 sec of inactivity of the client (how, what, and when).
In doing so, the adaptation takes place in the TLS implementation which is
located between the TCP stack and the application (where).

14.2. Adaptation Strategies, Tactics, and Actions

In particular, the question how self-* and particularly self-adaptive systems are
engineered is a question that provokes controversial discussion. There are

164

14.2. Adaptation Strategies, Tactics, and Actions

many different approaches, such as model-, architecture-, control-theory-, or
agent-based approaches [165].

The well-known architecture-based Rainbow Framework [110], which is desig-
ned as an external system, distinguishes, for example, an architecture layer as
well as an actual system layer with system components managed by the archi-
tecture layer. In the architecture layer, the framework differentiates between
Adaptation Strategies and Tactics as well as Operators that plan and control
the adaptations. “Adaptation Strategies specify the adaptations that can be ap-
plied to move a system away from an undesirable condition.” [110] Operators
define a set of adaptation actions that can be performed on a managed system
to change its configuration by reconfiguring system components (parametriza-
tion) or adding and removing system components (structural adaptation). To
plan and reason about these changes, the architecture layer abstracts the system
in an architectural model. A Translation Infrastructure translates and controls
the adaptation plans in the actual system where so-called Effectors apply the
changes in the system.

Kramer and Magee abstracted in [160] the architecture of the Rainbow Fra-
mework in a three-layered “reference architecture” for self-managed systems
where the first layer pertains to goal management, the second to change mana-
gement, and the third to component control. The goal management layer pro-
duces change management plans in response to requests from the component
control layer and in response to the introduction of new goals. The change ma-
nagement layer is responsible for executing change plans initiated by the goal
management layer or updated by state changes from the component control
layer. The purpose of the change management layer is to achieve an interme-
diate goal. And the component control layer carries out the actual adaptation
actions of the system components.

Other approaches, such as the model-based approach for building self-aware
systems for online performance prediction and resource management using
the Descartes Modeling Language (DML) (see, e.g.: [130, 158, 159]), also have
a similar separation of concerns of adaptations. The DML defines a model re-
flecting the adaptation capabilities and the current state of a system. In the
DML, Adaptation Strategies, Tactics, and Actions as well as Adaptation Points
are distinguished. The Adaptation Points can be understood as the points of
the system which can be adapted. For adapting the system, Actions can be per-
formed, while Tactics compose a set of Actions. Adaptation Strategies define a
goal of adaptations and plan the achievement of this goal using Tactics. Based
on this model, the concrete adaptations in a system are planned and perfor-
med.

In sum, there are, at least, three layers for a reasonable separation of concerns in
adaptive systems: adaptation strategies, a tactics layer, and actual adaptations

165

14. Background

in the system. To translate this to the simple TLS record size example (Sec-
tion 14.1), the goal of the adaptation strategy may be to optimize the throug-
hput of the system which is secured by TLS. The tactic, therefore, may be to
reduce the TLS record for the first 1 Megabyte and to increase it, then, until
the client is inactive for 1 sec, as described for Google’s servers. Another tactic
may be to change the cipher suite; if the CPU utilization through TLS is too
high to perform other throughput-relevant operations, the CPU is the bounded
factor, and there is a cipher suite known to put less utilization to the CPU—
maybe we can change to an AES-based cipher suite which utilizes AES-NI in
the CPU (Chapter 12). Such cipher suite adaptations are, for instance, descri-
bed extensively by Lamprecht and van Moorsel in [168, 169] and by Lamprecht
in [170]. The actual adaptations, then, are either the change of TLS record size
in the TLS implementation or the change of the cipher suite in the CSS.

14.3. Monitoring

A well-known principle is: “You can’t improve what you can’t measure”. Faci-
litating a sufficient monitoring of a (self-)adaptive system, is, thus, immensely
important for building such systems [111, 213, 219, 244]. Salehie and Tahvildari
even state in [244] that monitoring is the first step towards an adaptive sy-
stem. Without a good monitoring, the system is not able to determine whether
a change needs to be made or not.

To monitor a system sufficiently, “sensors” which are processes observing com-
ponents of the system report the current state of the components and the entire
system in order to achieve the goals of the system [111, 213, 219, 244]. Sen-
sors, therefore, generate events for specific exceptional cases or on a regular
basis which can be collected, analyzed, and aggregated. Sensors and moni-
toring in the software can be realized via different techniques, such as via log-
ging and metric frameworks, or via aspect-oriented programming frameworks,
etc. [244].

Thereby, sensors and monitoring need to be flexible and in a way adaptive itself
to be able to react to new situations which the system may face [111] (see also:
[4]). If, for example, an adaptation needs to focus on or to gather different
information in the system, the sensors and monitoring of the system have to
address this issue. The goal must be to provide the right information about
the system at the right time (preciseness and accuracy). So, there should be an
easy way to adapt the sensors and monitoring and to setup new sensors and
monitoring at runtime.

166

14.3. Monitoring

Particularly, monitoring TLS in general, TLS implementations, and TLS soc-
kets as well as their performance is a delicate topic. Since TLS sockets are
typically—and especially in CSS—under heavy load, the monitoring must not
be too intrusive in order to not contradict the performance of the entire system.
For this reason and for diverse other reasons such as reasons of security, TLS
implementations often only provide logs and, furthermore, only log rare infor-
mation about their inner state. Most TLS implementations, such as the SunJSSE
implementation (Section 10.2), only log extensively in debug mode which is the
other extreme, but not any better (see, e.g.: [206]).

Besides logging, other monitoring approaches like performance metrics are ra-
rely available and includable in TLS implementations. Here, the extensibility of
TLS implementations is often limited due to performance and security reasons.
External monitoring approaches such as TLS/SSL proxies or libpcap®® are ty-
pically also not the best solution from a security and performance perspective.
Hence, monitoring is a challenge, when building an adaptive TLS middleware
environment.

Bhttp://www.tcpdump.org

167

http://www.tcpdump.org

15. Architecture

In this chapter, we present an adaptive middleware environment*, ATLaS,
which allows for implementing adaptations for TLS at runtime. Therefore, AT-
LaS provides extensible monitoring features for TLS and an environment to im-
plement adaptations via a typical three-layer approach (see also: Section 14.2):
Adaptation Strategies, Reconfiguration Commands (tactics layer), and Recon-
figuration Effectors (action layer) (see also: Section 15.3 and Figure 15.2).

However, ATLaS is not a self-adaptive system, but only an adaptive middle-
ware environment. Although ATLaS provides an adaptation engine and an
environment to implement sophisticated adaptations for TLS, the focus and
strengths of ATLaS lie more on providing a middleware environment to imple-
ment lower adaptation layers such as the actual modifications of TLS. There-
fore, ATLaS concentrates on facilitating a monitor-able and adaptive TLS imple-
mentation which can be monitored via an event registry (see also: Section 15.2).
In doing so, the self-adaptivity features as well as the adaptation engine and
loop of ATLaS are limited in their power. This is particularly reflected by the
Adaptation Strategies which we can implement. ATLaS centers more on closed
loop and rule-/trigger-based adaptations like the example of the TLS record
size adaptation (see also: Section 14.1). For more sophisticated self-adaptive
system approaches, we refer to self-adaptation frameworks and architectures
like the Rainbow Framework [110], the DML approach [130, 158, 159], or the
Morph Reference Architecture [52]. Despite its closely focused approach, we
believe that ATLaS integrates well into such more sophisticated frameworks
and architectures as well as provides a contribution to the research community.
The adaptation possibilities for TLS offered by ATLaS are sketched in different
instantiations in later chapters of this thesis (see also: Chapter 16).

In order to provide the adaptive middleware environment for implementing
adaptations of TLS at runtime, ATLaS” architecture consists of five main com-
ponents (Figure 15.1):

4Here, we follow the understanding of middleware proposed by Alonso et al. in [9] that middle-
ware has a dual role: firstly, middleware is a set of programming abstractions and provides a
programming model. Secondly, middleware serves as an infrastructure with abstractions of the
underlying layers providing additional functionality making development, maintenance, and
monitoring easier and less costly.

169

15. Architecture

o A customized Java-based JSSE TLS implementation which integrates into
the JSSE API (Section 15.1). ATLaS, thus, can be used easily in systems
which use the JSSE API to communicate via TLS (see also: Section 9.4).

o The ATLaS Event Registry which allows other ATLaS components to regis-
ter for events raised by the TLS implementation and other components of
ATLaS (Section 15.2). The event registry can be used to realize a moni-
toring of TLS based on the raised events. Hence, the event registry is an
easy way to extend ATLaS" monitoring abilities. Furthermore, the event
registry allows for implementing adaptations which are triggered by a
specific event.

e A support for easily extending the monitoring features via own statis-
tics, metrics, etc.# Custom statistics and metrics are exposed as JMX M-
Beans [208] (see, e.g.: Figure 16.2) automatically by ATLaS. By default,
ATLaS provides some general TLS metrics: the ATLaS General TLS Stats
component (Section 15.2). The ATLaS General TLS Stats registers for spe-
cific events at the ATLaS event registry and collects metrics such as the
total number of created instances of TLS sockets, the total number of TLS
records sent and received, or the total time consumed for encryption and
decryption of TLS records. Via JMX these metrics can also be easily mo-
nitored remotely.

o The ATLaS Adaptation Engine is the main component of ATLaS (Section 15.3).
The Adaptation Engine starts and controls the adaptations and the other
ATLaS components.

o The adaptations—Adaptation Strategies, Reconfiguration Commands, and Re-
configuration Effectors—that are implemented for specific use cases (Sec-
tion 15.3).

In the next sections, we describe these five components in more detail.

15.1. Customized Java Secure Sockets Extension

Java provides the JSSE API as a central API for TLS in Java (Section 9.4 and
Section 10.2). The JSSE API hides many low-level details of TLS from the user,
such as encryption and decryption of the payload of a TLS record, the TLS
message flow, and other security-relevant details of the TLS implementation.
Furthermore, the JSSE API allows, as mentioned above, for replacing a TLS
implementation simply. Therefore, we decided to implement ATLaS as a JSSE
TLS implementation.

45Therefore, we use the Dropwizard metrics framework (http://metrics.dropwizard. io).

170

http://metrics.dropwizard.io

15.2. Event Registry and General TLS Statistics

Voldemort Adaptation

Cassanira ‘Adaptation
IMX IMX E A
MBean MBean Eﬁ &

P
ATLaS General
TLS Stats ATLaS

Adaptation Engine

== =

~ ATLa$ Event Registry ~ MBean

Java Secure Sockets Extension
(OpenJDK 8, Update 40) “J

Figure 15.1.: Architecture of ATLaS

Unfortunately, the realization of raising events in the TLS implementation to
provide extension points for statistics, metrics, and specific adaptations requi-
red building a customized TLS implementation (see also: Section 15.2). For the
customized TLS implementation, we use the SunJSSE source code of the Open-
JDK in version 8u92, which is available at [205]. ATLaS, thereby, provides the
same security features as the original SunJSSE (see also: Section 10.2).

A small downside of using the source code of the SunJSSE for ATLaS is that
the SunJSSE is a very complex set of classes with many interdependencies be-
tween different hidden classes of the Open]DK JRE in version 8u92, which we
had to adopt to be usable as a standalone TLS implementation. This, in turn,
makes the TLS implementation to be compatible only with specific JRE versi-
ons. Additionally, the complex adoption of the source code increases the risk of
security-relevant bugs within ATLaS and requires a high adoption effort for fu-
ture SunJSSE releases. Currently, the TLS implementation of ATLaS, however,
performs well in the prototype of ATLaS (see also: Section 17.2).

15.2. Event Registry and General TLS Statistics

As described in Section 14.3, monitoring is important in an adaptive system. In
order to provide an adaptive middleware environment to implement different
adaptations for TLS, ATLaS provides, as mentioned, a simple way to create sta-
tistics and metrics to monitor the system’s state and environment via an event
mechanism (Chapter 15 and Section 15.1).

The central component of the event mechanism in ATLaS is the ATLaS Event
Registry. At the ATLaS Event Registry, event listeners can be registered and

171

15. Architecture

Conceptual Layer

Strategies specify the
adaptations that can be
applied to move a system
away from an undesirable
condition

Reconfiguration Commands
specify a desired state of the
adaptation strategy to
improve the system’s current
state.

Actual System Layer

Reconfiguration Effectors
carry out the actual system
modification. Using the
Reconfiguration Command as
the desired state.

Adaptation Strategy

Reconfiguration Command

Reconfiguration Effector

b
O¥0h ore

Figure 15.2.: Adaptation Strategies and Reconfiguration of TLS in ATLaS

unregistered. Events, for example, can be events raised by the TLS implemen-
tation for opening and closing a TLS socket, for the beginning and the end of
the TLS handshake, or for receiving and sending a TLS record.

Based on these events and custom event listeners, diverse statistics, metrics,
and specific adaptations which are triggered by a concrete event can be reali-
zed. For example, the General TLS Statistics component of ATLaS is implemen-
ted via event listeners that register at the ATLaS Event Registry. The General
TLS Statistics component collects, for instance, the total number of created TLS
sockets, the total number of TLS records sent/received, or the total time consu-
med for the encryption and decryption of the payload in TLS records.

Core configuration settings of the ATLaS Event Registry are manageable via a
JMX MBean. The General TLS Statistics are also exposed as JMX MBeans and
are, thus, queryable from other ATLaS components, other system components,
and JMX clients in general.

15.3. Adaptation Engine, Adaptation Strategies,
and Reconfiguration

The Adaptation Engine is, as introduced before, the main component of AT-
LaS. The Adaptation Engine starts and controls all other components of ATLaS,
holds central information, and manages the adaptations. Therefore, the internal
architecture of the Adaptation Engine follows the main concepts of a MAPE-
K loop as well as a three-layer adaptation approach for a good separation of
concerns and re-usability (Sections 14.1 and 14.2). In ATLaS, we distinguish
between the three following reusable components/layers (Figure 15.2):

172

15.3. Adaptation Engine, Adaptation Strategies, and Reconfiguration

o Adaptation Strategies specify the adaptations that can be applied to move a
system that uses ATLaS away from an undesirable condition (see also: [110]).
The entire adaptation loop follows the MAPE-K approach. An exemplary
Adaptation Strategy may have the goal of optimizing the throughput of
a system. Tactics, therefore, may be, as described, the adaptation of the
TLS record size or changing the cipher suite (see also: Sections 14.1, 16.1,
and 16.2). New Adaptation Strategies can be programmed easily by ex-
tending existing Adaptation Strategies or by implementing an interface
given by ATLaS.

o Reconfiguration Commands specify a desired encapsulated configuration
state of the Adaptation Strategy to improve the system’s current state.
They are the outcome of an Adaptation Strategy. Thereby, an Adaptation
Strategy may return multiple Reconfiguration Commands as an ordered
list. For example, the outcome of the mentioned reconfiguration of the
enabled cipher suites in a CSS at runtime may be a Reconfiguration Com-
mand which sets the enabled cipher suites in the TLS implementation (see
also: Section 16.1). Currently, we implemented three basic Reconfigura-
tion Commands in ATLaS:

1. The reconfiguration of enabled cipher suites in ATLaS TLS imple-
mentation to a concrete set of enabled cipher suites (Enabled Cip-
her Suites Reconfiguration Command; see also: Sections 16.1.1 and
16.1.2).

2. The invocation of a renegotiation (re-handshake) of a concrete con-
nected TLS socket (TLS Renegotiation Reconfiguration Command;
see also: Section 16.1.3).

3. The reconfiguration of the TLS record size (TLS Record Size Recon-
figuration Command; see also: Section 16.2).

These Reconfiguration Commands can be reused in diverse specific adap-
tations implemented as Adaptation Strategies or other adaptations con-
trolled by sophisticated self-adaptation frameworks and architectures. New
Reconfiguration Commands—Ilike Adaptation Strategies—can be imple-
mented easily by extending the three existing basic Reconfiguration Com-
mands, by extending a base class, or by implementing a given interface.

o Reconfiguration Effectors carry out the actual system modification of the
TLS implementation or other system components using the Reconfigura-
tion Command as the desired state (see also: [110]). We provide basic im-
plementations for Reconfiguration Effectors for the three basic described
Reconfiguration Commands in ATLaS. These implementations can also
be reused in several specific adaptations. Reconfiguration Effectors are,
like Adaptation Strategies and Reconfiguration Commands, extensible.

173

15. Architecture

For management purposes, the configuration of the Adaptation Engine is acces-
sible via a J]MX MBean. Via the JMX MBean of the Adaptation Engine, we can
start and stop Adaptation Strategies, Reconfiguration Commands, and Recon-
figuration Effectors at runtime. Furthermore, ATLaS provides a plugin mecha-
nism which allows a user to load custom Adaptation Strategies, Reconfigura-
tion Commands, Reconfiguration Effectors, Statistics, and other ATLaS compo-
nents at runtime. To load new custom Adaptation Strategies, Reconfiguration
Commands, Reconfiguration Effectors, Statistics, etc., these components must
be built as a new library and the library, then, has to be put in the ATLaS plugin
directory.

15.4. Summary

ATLaS provides an adaptive middleware environment which allows for imple-
menting diverse adaptations for TLS dynamically at runtime. Thereby;, it focu-
ses on facilitating a monitor-able and adaptive TLS implementation as well as
providing a middleware environment for implementing closed loop and rule-
/trigger-based adaptations for TLS. ATLaS can be used in diverse Java-based
systems, since ATLaS is built as a JSSE TLS implementation which integrates
seamlessly into the JSSE API.

In ATLaS, adaptations are implemented via the concepts Adaptation Strate-
gies, Reconfiguration Commands, and Reconfiguration Effectors. These con-
cepts are based on the concepts of self-adaptive systems. Adaptation Strate-
gies specify adaptations that can be applied to move a system away from an
undesirable condition via Reconfiguration Commands. Reconfiguration Com-
mands delineate the desired configuration state of the Adaptation Strategy and
are carried out via Reconfiguration Effectors. Reconfiguration Effectors execute
the actual system modification.

ATLaS provides extended monitoring features via the ATLaS Event Registry
and listeners that can be registered in order to realize a sufficient monitoring
for the adaptive system. Custom Adaptation Strategies, Reconfiguration Com-
mands, Reconfiguration Effectors, Statistics, and other ATLaS components can
be loaded via a plugin mechanism.

In the next sections, we instantiate specific adaptations for Cassandra to show
the general applicability of ATLaS in the context of Java-based CSS. Therefore,
we demonstrate four specific adaptations for balancing the trade-offs between
security and performance of TLS by adapting TLS configurations in Cassandra
at runtime.

174

16. Instantiation

To show the general applicability of ATLaS for building various adaptations
for TLS, we describe four different specific TLS adaptations in Cassandra in
this section:

e We introduce cipher suite adaptations (Section 16.1), because the cipher
suite configuration is, as mentioned, the most important configuration
option of TLS in CSS (Part III). We delineate three different cipher suite
adaptations:

— We describe a cipher suite adaptation which reconfigures the ena-
bled cipher suites in Cassandra permanently at runtime. An ex-
ample use case is the necessary reconfiguration or reordering of the
enabled cipher suites after a security policy has been changed or as
a reaction to a changed security risk assessment. The adaptation,
therefore, queries the cipher suite configuration from a central web
server and, then, reconfigures Cassandra. This adaptation is similar
to a configuration management tool like Puppet, Chef, or Ansible,
but ATLaS allows for changing the configuration at runtime without
restarting the reconfigured nodes of Cassandra.

— We create a cipher suite adaptation at the initiation of a RR con-
nection in Cassandra. Consider, for instance, a scenario where Cas-
sandra is deployed in multiple data centers and AZ. As long as the
RR communication of Cassandra does not cross the insecure Inter-
net, we want to use the AES CBC-based cipher suite. But, if a RR
connection crosses the borders of a data center, a GCM-based cipher
suite should be used for security reasons. The specific adaptation,
hence, analyzes the remote host of a RR connection at the initiation
of the connection and adapts the enabled cipher suites, if the remote
host is located in another data center.

— We implemented—inspired by the work of Lamprecht and van Moor-
selin [168, 169] as well as Lamprecht in [170]—a specific cipher suite
adaptation which renegotiates the cipher suite of an established RR
connection. Both already described specific adaptations do not do
this, so far. Thereby, the resulting Reconfiguration Command and

175

16. Instantiation

Reconfiguration Effector can be used within other Adaptation Stra-
tegies as well.

o We describe the adaptation of the maximum TLS record size that we al-
ready sketched in previous chapters (Section 16.2; see also: Sections 14.1
and 14.2). This adaptation is an advanced adaptation which requires a
good understanding of the system’s communication and a specific com-
munication behavior of the system, as we will outline, to be useful at
all. However, this specific adaptation gives a hint of the overall (creative)
possibilities introduced by ATLaS. The maximum TLS record size deline-
ates, as already mentioned, the maximum size (16 kB by default) of the
payload that can be sent in a single TLS record. We realize such an adap-
tation with ATLaS and tried to optimize the throughput and latency of
Cassandra with specific adaptation.

In the next section, we start by describing the cipher suite adaptation.

16.1. Cipher Suite Adaptation

Since CSS in production typically cannot be shut down and reconfigured easily
and the cipher suite configuration influences the security as well as the perfor-
mance (Section 12.2), a cipher suite adaptation respectively reconfiguration of
the enabled cipher suites in CSS at runtime is an important use case of ATLaS.
We differentiate, as mentioned, between three different cipher suite adapta-
tions: Permanent Cipher Suite Reconfiguration in Cassandra (Section 16.1.1),
Cipher Suite Reconfiguration for Single RR Connections in Cassandra at the
Connection Initiation (Section 16.1.2), and Renegotiation of Cipher Suites of
Established RR Connections in Cassandra (Section 16.1.3). These three specific
cipher suite adaptations are delineated in more detail in the next sections.

16.1.1. Permanent Cipher Suite Reconfiguration in
Cassandra

The Permanent Cipher Suite Reconfiguration in Cassandra performs a recon-
figuration of Cassandra’s enabled cipher suite configuration. As introduced
before, an example use case may be the necessary reconfiguration of the ena-
bled cipher suites after a security policy change or as a reaction to a changed
security risk assessment. This means that the adaptation aims at a long-term or
permanent adaptation of the system.

176

16.1. Cipher Suite Adaptation

Adaptation Strategy
Permanent Cipher Suite 1. Query for the Cipher Suite Configuration

Reconfiguration Web Server

current cipher suite
configuration

2. Pass the new cipher suite
configuration to the Reconfiguration
Command and execute the
Reconfiguration Command

Reconfiguration Effector
Enabled Cipher Suites
Reconfiguration Effector

Reconfiguration Command
Enabled Cipher Suites
Reconfiguration Command

3. Invoke the Re-
configuration Effector
and apply the new

4. Apply the new cipher suite

iph it .
clpher sul .e configuration to Cassandra-
configuration to the specific components
ATLaS JSSE P P
components Refined Reconfiguration Effector

Cassandra Enabled Cipher Suites
Reconfiguration Effector

Figure 16.1.: Sequence of the Adaptation Strategy Permanent Cipher Suite Re-
configuration of Cassandra

The Adaptation Strategy performs the adaptation as follows (Figure 16.1): In
the MAPE-K loop, a central web server is queried for the cipher suite configu-
ration. The web server, thereby, serves a web service with the currently ena-
bled cipher suites. If the enabled cipher suites have been changed, the newly
enabled cipher suites are applied to the configuration of the Cassandra node.
ATLaS, therefore, changes the instantiated Cassandra configuration, the confi-
guration file as well as the loaded configuration in memory.

This way, an administrator can control the enabled cipher suites of the entire
cluster by adding, removing, and reordering the enabled cipher suites at the
central web server. This specific adaptation is, as described, similar to a con-
figuration management tool. However, the Permanent Cipher Suite Reconfi-
guration in Cassandra can change the enabled cipher suites in Cassandra at
runtime. So, the Cassandra nodes do not have to be restarted or turned off to
apply the newly enabled cipher suites.

Internally, the Adaptation Strategy queries the cipher suite configuration from
a web server—here, we may also use other configuration sources such as ma-
ture configuration management tools. If the enabled cipher suites have been
changed at the web server, the Adaptation Strategy invokes the Reconfigura-
tion Command Enabled Cipher Suites Reconfiguration Command. The Adapta-
tion Strategy, therefore, passes the enabled cipher suites queried from the web
server as well as some other configuration parameters to the Reconfiguration
Command. The Reconfiguration Command is, as described, a conceptual ab-
straction of the desired configuration state (see also: Section 15.3).

177

16. Instantiation

For applying the desired configuration state to Cassandra, the Reconfiguration
Effector Enabled Cipher Suites Reconfiguration Effector is used. The Reconfigura-
tion Effector reconfigures the SSLContext of the custom ATLaS" TLS imple-
mentation. Notably, the reconfiguration of the enabled cipher suites by the Ena-
bled Cipher Suites Reconfiguration Effector has only an effect on newly created
TLS sockets. TLS sockets with established connections cannot be reconfigured
with this Reconfiguration Effector (see also: Section 16.1.3), because a recon-
figuration of established connections requires a TLS renegotiation. For Cas-
sandra, we extended the Reconfiguration Effector to also reconfigure various
Cassandra-specific components such as Cassandra’s configuration (e.g., cas-
sandra.yaml and its instantiation org.apache.cassandra.config.Da—
tabaseDescriptor). Thus, the generic Enabled Cipher Suites Reconfigura-
tion Effector is refined by the Cassandra Enabled Cipher Suites Reconfiguration
Effector which, besides the general reconfiguration of the enabled cipher suites,
also applies Cassandra-specific configurations. The Cassandra Enabled Cipher
Suites Reconfiguration Effector is—like also the Adaptation Strategy Perma-
nent Cipher Suite Reconfiguration in Cassandra—an ATLaS plugin that is a
standalone library and loaded by ATLaS dynamically, while the Enabled Cip-
her Suites Reconfiguration Effector is part of the ATLaS middleware library.

In consequence, the Permanent Cipher Suite Reconfiguration in Cassandra pro-
vides a simple approach to reconfigure the enabled cipher suites in Cassandra
permanently at runtime. The Adaptation Strategy can be activated and de-
activated at runtime and is, as all components of ATLaS, manageable via JMX
MBeans (Figure 16.2). One of the main benefits of the Permanent Cipher Suite
Reconfiguration of Cassandra is that the Cassandra nodes which are reconfigu-
red do not have to be restarted to apply the reconfiguration. Thus, this first,
intentionally simple, use case of ATLaS illustrates the substantial reconfigura-
tion possibilities of ATLaS.

16.1.2. Cipher Suite Reconfiguration of Single RR
Connections in Cassandra at the Connection
Initiation

The Adaptation Strategy Cipher Suite Reconfiguration of Single RR Connections in
Cassandra at the Connection Initiation aims at another use case and uses different
components and mechanisms of ATLaS than the Adaptation Strategy Perma-
nent Cipher Suite Reconfiguration in Cassandra described in the previous sec-
tion. Consider a scenario where a Cassandra cluster is deployed over different
AZ and multiple data centers. For the RR communication between AZ within
the same data center and between, an AES CBC-based cipher suite should be
used, whereas a more secure GCM-based cipher suite should be used for the

178

16.1. Cipher Suite Adaptation

r
| £ Java Monitoring & Management Console - 192.168.1.249:7199 | o e S

|£| Connection Window Help o & x

| Overview | Memary |Threads I Classes I VM Summarv‘ MBeans | ==

. IMImplementation - || Attribute values

. ch.qos logback. dlassic
| com.sun.management
edu.kit.zifb.eorg.atlas
@@ AtlasAdaptationEngineManagement
@@ CipherSuiteReconfigurationRequestAdaptationManagement
. Events
@@ ManualReconfigurationAdaptationStrategy
| OverallStats
@@ PermanentCassandraCipherSuiteReconfigurationAdaptationStrategy
. edu.kit.aifb.eorg.atlas. sslsocket
. java.lang
. java.nio
. java.util.logging
, org.apache.cassandra.auth
. org.apache.cassandra.db
. org.apache.cassandra.internal

, org.apache.cassandra.metrics

Name Value

CipherSuites java.lang.String[4]

LastQueryTimestamp (1467708919134

QueryInterval 60000

QueryURL http:/f192, 168. 1. 243:8080/atlas-cphersuit. ..

O-E-8-E

- E-E-E-E-

m

E-B-E-E-B-E-E-E

E

S

Figure 16.2.: JMX Management Interface of the Adaptation Strategy Permanent
Cipher Suite Reconfiguration of Cassandra

RR communication between different data centers. Although Cassandra pro-
vides the so-called snitches to decide if a communication is within the same
AZ, between different AZ, or between different data centers (see also: [81]), the
usage of different cipher suites for different RR connections is, currently, not
supported in Cassandra. Other CSS even do not offer such possibilities for con-
figuring the RR communication. The Adaptation Strategy Cipher Suite Recon-
figuration of Single RR Connections in Cassandra at the Connection Initiation,
thus, extends Cassandra’s configuration options by the ability to reconfigure
the enabled cipher suites of specific connections at the connection initiation.
Thus, the Adaptation Strategy allows the use of different cipher suites for dif-
ferent connections.

In order to reconfigure the enabled cipher suites of a specific connection, the
Adaptation Strategy Cipher Suite Reconfiguration of Single RR Connections
in Cassandra at the Connection Initiation does not perform a typical MAPE-K
loop, but only implements and registers an event listener for a specific event at
the ATLaS Event Registry (see also: Section 15.2). This means that the Adapta-
tion Strategy registers itself as an event listener for the event DoneConnect-
Event at the ATLaS event registry. This event is being raised by the custom
TLS implementation of ATLaS, after the TCP connection is established and be-
fore the TLS handshake starts. When the event is raised by a newly created TLS
socket, the event listener checks where the local and remote hosts are located.
If the remote host is located in another data center, the enabled cipher suites of
this specific TLS socket is manipulated using the Enabled Cipher Suites Recon-

179

16. Instantiation

figuration Command and Effector.

The check for the location of the hosts is done by another component of ATLaS:
a Categorizer component. Since TLS sockets in ATLaS often have to be selected
by generic categories for applying specific adaptations, ATLaS provides the Ca-
tegorizers as a generic component to categorize TLS sockets. ATLaS provides
various predefined Categorizers, such as a Categorizer which categorizes TLS
sockets as client and as server sockets. Another predefined Categorizer sorts
the TLS sockets by their connection state as connected and unconnected sockets.
For the location check of the hosts, the Cassandra-specific Categorizer Cassan-
dra Snitch Categorizer is used. The Cassandra Snitch Categorizer employs the
snitches provided by Cassandra for the categorization of the hosts’ locations.

The Cipher Suite Reconfiguration of Single RR Connections in Cassandra at
the Connection Initiation is another instantiation or use case showing the use-
ful reconfiguration possibilities introduced by ATLaS. The Adaptation Strategy,
thereby, uses the event mechanism of ATLaS for applying the reconfiguration.
Furthermore, the Enabled Cipher Suites Reconfiguration Command and Ena-
bled Cipher Suites Reconfiguration Effector are reused.

16.1.3. Renegotiation of Cipher Suites of Established RR
Connections in Cassandra

Both Adaptation Strategies described previously, the Permanent Cipher Suite
Reconfiguration in Cassandra (Section 16.1.1) and the Cipher Suite Reconfigu-
ration of Single RR Connections in Cassandra at the Connection Initiation (Sec-
tion 16.1.2), are not able to reconfigure the enabled cipher suites of TLS sockets
which are already connected. For this, the TLS feature renegotiation is requi-
red (see also: Sections 3.2.3.2 and 10.2 as well as [168, 169, 170]), because chan-
ging the cipher suites of already connected TLS sockets requires the negotiation
of new session parameters.*® Using the renegotiation, a new handshake is per-
formed and new TLS session parameters, such as another cipher suite for the
bulk data transfer phase, can be negotiated between the two communication
parties.

Since ATLaS" TLS implementation provides the renegotiation feature, ATLaS
supports the renegotiation via invoking the pre-implemented Reconfiguration
Command TLS Renegotiation Reconfiguration Command and Reconfiguration Ef-
fect TLS Renegotiation Reconfiguration Effector. The Reconfiguration Command,
therefore, requires the enabled cipher suites for the renegotiation as well as

46 As introduced previously, Lamprecht and van Moorsel in [168, 169] as well as Lamprecht in [170]
already used the renegotiation feature for their adaptive security concept in a HTTPD (see, e.g.:
Chapter 18).

180

16.1. Cipher Suite Adaptation

further parameters such as the socket categories (Categorizer) for which the
renegotiation should be performed. The Reconfiguration Effector which is in-
voked by the Reconfiguration Command, then, starts the renegotiation for the
TLS sockets selected via the socket categories.

But, the usage of the Reconfiguration Command and Effector in Cassandra is
currently causing some problems which could not be solved satisfactorily until
finishing this thesis: The TLS implementation of ATLaS, and also the SunJSSE
in the OpenJDK in version 8u92, does not really cope with the multi-threaded
design of Cassandra and ATLaS. In the SunJSSE, the usage of TLS sockets are
typically recommended for single-threaded applications, as they are not im-
plemented thread-safe. When the renegotiation is started by ATLaS and the
first renegotiation messages are exchanged, Cassandra continues to use the
connection by sending further data via the TLS socket. Normally, a TLS im-
plementation should hold back application data from being sent until the re-
negotiation is finished. This, however, does not really work in the SunJSSE in
a multi-threaded design. Because further TLS records with data are sent by
Cassandra and ATLaS, which signals the cancellation of the renegotiation, the
renegotiation is, then, canceled. We tried to fix this issue. Unfortunately, fixing
this issue requires redesigning the complete threading concept of the JSSE TLS
implementation. In consequence, the usage of the TLS Renegotiation Recon-
figuration Command and TLS Renegotiation Reconfiguration Effector in Cas-
sandra is, currently, not working. In Cassandra, we recommend to use the
Adaptation Strategies Permanent Cipher Suite Reconfiguration of Cassandra
or Cipher Suite Reconfiguration of Single RR Connections of Cassandra at the
Connection Initiation in combination with closing the respective connection.
This has the same effect.

In sum, the instantiation of the Renegotiation of Cipher Suites of Established
RR Connections in Cassandra is even more a description of an extension of the
previous Adaptation Strategies, the Permanent Cipher Suite Reconfiguration in
Cassandra and the Cipher Suite Reconfiguration of Single RR Connections in
Cassandra at the Connection Initiation. The most important things are the TLS
Renegotiation Reconfiguration Command and the TLS Renegotiation Reconfi-
guration Effector. In returning the TLS Renegotiation Reconfiguration Com-
mand as a second Reconfiguration command in addition to the Enabled Cipher
Suites Reconfiguration Command, the Adaptation Strategies can be extended
to also support changing the enabled cipher suites of already connected TLS
sockets.

181

16. Instantiation

16.2. Adaptation of Maximum Transport Layer
Security Record Size

The maximum TLS record size influences the throughput and latency of TLS
connections (Sections 9.2, 14.1, and 14.2). In order to optimize the throughput
and latency of Cassandra’s TLS-secured RR communication, we build an adap-
tation for changing the maximum TLS record size dynamically: the Adaptation
of Maximum TLS Record Size. Essentially, the Adaptation of Maximum TLS Re-
cord Size increases and decreases the available payload size of a TLS record
based on other metrics taken from the ATLaS General TLS Stats and another
custom statistics component.

The concrete behavior of the Adaptation Strategy is based on the following
rules of thumb which were described by Grigorik in [121] for the throughput
optimization of Google’s web servers (Sections 9.2, 14.1, and 14.2):

o If the TLS connection is new or has been idle for some time, one TLS
record should fit into a single TCP segment. This results in an available
payload size of a TLS record of about 1,400 B and a TLS record size of
1,937 B.

o If the TLS connection is used to transfer large data, the size of the TLS re-
cord is increased to span multiple TCP segments—up to the default max-
imum payload size of a TLS record of 16,384 B and a TLS record size of
16,921 B—to reduce framing and CPU overhead on the client and server.

For growing and shrinking the TLS record size, the Adaptation Strategy ob-
serves, as also described by Grigorik in [121], a metric indicating the size of
the dynamically adjusted TCP congestion window. The TCP congestion win-
dow limits the total number of unacknowledged segments being in transit bet-
ween the sender- and receiver-side of a TCP connection and influences, similar
to the TLS record size, the throughput and latency of a TCP connection (see
also: [306]). In newer operating systems, the TCP congestion window is adap-
ted dynamically by the operating system itself depending on the connection’s
Quality of Service (QoS) as well as sophisticated algorithms. Thereby, the TCP
congestion window starts typically with a minimum value and, then, grows.*
If the TCP congestion window grows, the TLS record size can also grow, and the
other way around. So, when the TCP congestion window is at the minimum,
the Adaptation Strategy sets the available payload size to 1,400 B. And when
the TCP congestion window of the connection grows/shrinks, the available
payload size of the TLS record grows/shrinks linearly between the minimum
of 1,400 B and the maximum of 16,384 B.

47This behavior of the TCP congestion control is called slow-start (see also: [120, 121, 306]).

182

16.3. Summary

The Adaptation of Maximum TLS Record Size uses the, already mentioned,
TLS Record Size Reconfiguration Command and the TLS Record Size Recon-
figuration Effector. Both can be reused in other Adaptation Strategies, as they
are part of the ATLaS middleware.

But after implementing and testing the Adaptation Strategy in Cassandra, we
had to recognize that the application of the Adaptation of Maximum TLS Re-
cord Size did not lead to a better throughput or latency. The reason is similar
to prior findings presented in this thesis: The Adaptation Strategy is an ad-
vanced adaptation/optimization which has specific requirements to the com-
munication behavior of a system. However, Cassandra does not fulfill these
requirements. So, the specific adaptation of the TLS record size may be suita-
ble as an optimization for web servers and systems communicating via HTTPS
and, here, may lead to a better throughput and latency (see also: Section 9.2
and [120, 121, 237]). Unfortunately, Cassandra does not use HTTPS. The com-
munication behavior of Cassandra differs considerably from the communicat-
ion behavior of HTTPS-based systems. In sum, Cassandra does not really
make use of the specific adaptation, because Cassandra—except in the boot-
strapping phase of Cassandra where the maximum value occurred—tries to
send only data that fit into a single TCP segment natively and, thus, does
not require such an adaptation of the TLS record size. In our experiments,
the average sent payload size was about 146 B (maximum/minimum 4,332/1 B
with a standard deviation of ca. 99.0) and the average TLS record size was only
ca. 435B (maximum/minimum 4,629/293 B with a standard deviation of ca.
97.6) in ca. 6,182,333 sent TLS records per node in average per experiment.

Summarizing, the Adaptation of Maximum TLS Record Size is an advanced
specific adaptation which requires a good understanding of the system’s com-
munication and specific communication behavior of the system to be useful at
all. While this adaptation may be worthwhile in HTTPS-based systems, the
adaptation in Cassandra is not meaningful. However, the Adaptation Strategy
demonstrates the advanced features of ATLaS for adapting the configuration of
a system. Furthermore, we experimented with this adaptation in a Java-based
HTTPS web server where we uploaded large files. Here, this adaptation could
improve the throughput.

16.3. Summary

ATLaS provides an adaptive middleware environment which allows for imple-
menting diverse adaptations for TLS at runtime. In order to demonstrate the
power of building various adaptations for TLS in ATLaS, we described four
different specific TLS adaptations for Cassandra in this section.

183

16. Instantiation

We showed three different specific cipher suite adaptations in Cassandra: the
Permanent Cipher Suite Reconfiguration in Cassandra (Section 16.1.1), the Cip-
her Suite Reconfiguration of Single RR Connections in Cassandra at the Con-
nection Initiation (Section 16.1.2), and the Renegotiation of Cipher Suites of
Established RR Connections of Cassandra (Section 16.1.3). While the Perma-
nent Cipher Suite Reconfiguration of Cassandra and the Cipher Suite Recon-
figuration of Single RR Connections of Cassandra at the Connection Initiation
manipulate the enabled cipher suites before the TLS connection is established,
the Renegotiation of Cipher Suites of Established RR Connections of Cassan-
dra uses the renegotiation security feature of TLS to change the cipher suite of
already established connections.

Furthermore, we described the adaptation Adaptation of Maximum TLS Re-
cord Size. This Adaptation Strategy is an advanced adaptation giving a hint of
the full power of TLS adaptations introduced by ATLaS, although the Adapta-
tion of Maximum TLS Record Size could not show its superiority in Cassandra,
as Cassandra does not make use of the specific adaptation due to the specific
communication behavior of Cassandra. In a Java-based HTTPS web server, this
adaptation could show its reasonability.

All in all, the adaptations delineated in this section give a hint of the overall
possibilities of ATLaS. These possibilities can be used to manage the trade-offs
between security and performance for TLS via adaptations.

184

17. Evaluation

Since ATLaS replaces another TLS implementation, ATLaS is a security-critical
component, and, additionally, ATLaS provides many possibilities to modify the
behavior of TLS completely. In turn, ATLaS aims at balancing the trade-offs be-
tween security and performance via specific adaptations at runtime. So, we
evaluate the overall security (Section 17.1) and—e.g., the modifications of the
TLS implementation for the event mechanisms may be intrusive and may con-
tradict the performance of the entire system—the general performance impact
of ATLaS (Section 17.2) in this section.

17.1. Threat Analysis

Our major assumption is that ATLaS and the system where ATLaS is running
cannot be tampered directly through, for example, granted SSH access to the
system or through the manipulation of the ATLaS source files. This assump-
tion is crucial, because ATLaS controls the TLS configuration of the system and
the plugin mechanism of ATLaS allows to load diverse Adaptation Strategies,
Reconfiguration Commands and Effectors, etc. that can be used to execute ar-
bitrary code in the system (see, e.g.: Section 15.3). Furthermore, we assume
that the already loaded ATLaS plugins do not behave maliciously and the TLS
(re-)configurations are not insecure itself. This includes that the enabled cip-
her suites are not broken, and there is no design flaw in the supported TLS
versions.

Our attacker model is a typical attacker model for network security (see, e.g.:
[267]). Attackers are system-external and interested in an information disclo-
sure as well as in tampering with the sent and received data. Therefore, the
attackers can use passive and active attacks on the transmitted data at the net-
work level. Additionally, the attacker can attack the system where ATLaS is
running via the network, as a direct manipulation of the system or ATLaS are
ruled out by our assumptions.

Under the given assumptions, one obvious way of attacking ATLaS is eaves-
dropping the communication. Since we do not change the general encryption
and decryption, TLS record composition, and other security-relevant functions

185

17. Evaluation

of the OpenJDK’s TLS implementation, we consider ATLaS to provide the same
security as the original Open]DK version. However, errors in ATLaS may exist
due to the modifications. Nevertheless, ATLaS is only a prototype and should
not be used in production settings.

Another obvious way of attacking ATLaS would be the manipulation of ATLaS
via accessible interfaces such as the JMX MBeans. JMX MBeans are exposed by
ATLaS to be accessed via JMX clients (Chapter 15; see also: Figure 16.2). This
way, an attacker may manipulate the configuration and behavior of ATLaS such
as the configuration and behavior of already loaded plugins. Moreover, the at-
tacker may load malicious ATLaS plugins via the JMX MBeans and so forth.
Thus, the JMX MBeans should be secured via authentication and authorization
as well as by TLS for a secure communication between the ATLaS’” JMX server
and JMX clients. So, securing the JMX management interface is crucial. If the
JMX MBeans are secured appropriately, an attacker can either steal correspon-
ding legitimate user credentials or brute force or disable the respective security
mechanism which we assume not to be feasible.

Securing the JMX MBeans is even more crucial, since an attacker can also gain
required information about the adaptations’ and the system’s state to influence
the adaptations and the system. This is another way of attacking ATLaS. If an
attacker, for example, can influence an adaptation to weaken the TLS configu-
ration, a MITM attack could be possible. In consequence, the adaptations are
the most critical point in ATLaS and in adaptive security concepts in general.
As users can implement arbitrary adaptations such as changing the cipher suite
to a faster but weaker cipher suite in the case of a performance issue instead of
always using a highly secure cipher suite, the user has an enormous respon-
sibility for the overall security of the system, when implementing adaptations.
Adaptations may be attacked via requesting the system so that the performance
suffers. After the adaptation, then, changed the cipher suite to a weaker cipher
suite, a MITM attack can be performed by the attacker. Unfortunately, imple-
menting insecure adaptations cannot be mitigated by any security mechanism
in ATLaS. So, the user has to know exactly what he is doing with the adaptati-
ons.

17.2. Performance

In this section, we investigate the overhead introduced by ATLaS. Since AT-
LaS is realized with diverse additional classes and has diverse hooks in the
TLS implementation which may block other functions in the TLS implemen-
tation, there may be a massive overhead—even if there is no adaptation active
in ATLaS. Thus, we benchmark ATLaS with the same benchmarking settings

186

17.2. Performance

CBC GCM
JSSE ATLaS JSSE ATLaS
Mean Avg. Tp./TLSB. 45949 | 4,292.7 | -7% | 4,202.7 | 4,103.2 | -2%
Std. Dev. Avg. Tp./TLSB. 436.4 362.5 354.0 374.9
Min. Avg. Tp./TLSB. 4,0945 | 3,885.8 3,696.9 | 3,686.5
Max. Avg. Tp./TLSB. 5,015.1 | 4,696.0 4,629.8 | 4,633.4
Mean Avg. U. Lat./TLSB. 4.1 4.1 0% 4.8 44 | 9%
Std. Dev. Avg. U. Lat./T. 0.4 0.5 0.3 0.6
Min. Avg. U. Lat./TLSB. 3.5 3.2 44 3.7
Max. Avg. U. Lat./TLSB. 4.7 4.7 5.3 5.1
Mean Avg. R. Lat/TLSB. 4.6 4.6 0% 5.0 4.7 | -7%
Std. Dev. Avg. R. Lat./T. 0.8 0.4 0.3 0.8
Min. Avg. R. Lat./TLSB. 3.5 4.0 4.6 3.7
Max. Avg. R. Lat./TLSB. 5.8 52 55 6.2

Table 17.1.: Experiment Results of the Performance Evaluation of ATLaS

we used in Experiment CBC vs. GCM RR (Section 12.2.2). Thereby, we deacti-
vate all adaptations, while the General TLS Statistics component remains acti-
vated.

The averaged results of this experiment are shown in Table 17.1 (see also: Ap-
pendix C). In the table, we compare the experiment results of Cassandra using
ATLaS with the experiment results of Experiment CBC vs. GCM RR (Table 12.12
and Section A.2).

For the throughput of Cassandra with the CBC- and the GCM-based cipher
suite, ATLaS introduces an average overhead of 7% respectively 2% in com-
parison to the results of Experiment CBC vs. GCM. The latencies of the CBC-
based cipher suite do not show any overhead, whereas the latencies of the
GCM-based cipher suite have an impact of 9% and 7% for the update and read
latency. This small performance overhead of ATLaS is probably due to the pro-
totype status of ATLaS. We believe that ATLaS” performance can be improved
massively by refactoring some prototypical design flaws as well as by using the
full potential of Java’s concurrency features.

187

18. Related Work

ATLaS aims at providing a middleware environment to implement actual adap-
tations of TLS for closed-loop and rule-/trigger-based adaptations. Therefore,
ATLaS concentrates on monitoring features and a concrete extensible TLS im-
plementation. In doing so, the self-adaptivity features as well as the adaptation
engine and loop of ATLaS are limited in their power compared to state-of-the-
art self-adaptive systems (Chapter 15). To show the possibilities of ATLaS, we
instantiated different cipher suite adaptations and the adaptation of the TLS
record size in Cassandra (Chapter 16). Because ATLaS is realized as a JSSE TLS
implementation, ATLaS can be integrated in any Java application that secures
its connection by SSL/TLS (Chapter 15).

18.1. Transport Layer Security Adaptations

TLS adaptations are not new to the research community. There is different re-
lated work that implemented TLS adaptations that we demonstrated in Chap-
ter 16. The TLS record size adaptation and its usefulness has been proven in
Google” web servers and in the TCP/HTTP load balancer of the HAProxy pro-
ject (Sections 9.2, 14.1, and 16.2). The cipher suite adaptations have been propo-
sed before by Lamprecht and van Moorsel in [168, 169] as well as by Lamprecht
in [170] for HTTP web servers (Section 14.1). They used their approach for dif-
ferent use cases like adapting the cipher suites in order to decrease the load of
the web servers in phases of high load to the web server (see also: [220]).

In contrast to these two adaptations, ATLaS provides a more generic adaptive
middleware environment to implement different adaptations for TLS, while
the the cipher suite adaptations and the TLS record size are only two imple-
mented exemplary adaptations realized with ATLaS (Chapter 16). ATLaS, the-
refore, allows for implementing diverse other closed-loop and rule-/trigger-
based adaptations of TLS. Also, ATLaS is not implemented at the application
layer as a HTTP web server or as a proxy server. ATLaS is placed in the session
and transport layer of the ISO/OSI stack beneath the application layer where
TLS resides typically. Furthermore, the adaptations can be reused in different
systems.

189

18. Related Work

18.2. Quality of Service and General Adaptation
Frameworks and Architectures

Looking at ATLaS in a broader way, ATLaS allows the adaptation of specific
QoS properties of a system. In recent years, various self-adaptive and self-
aware system frameworks, architectures, and middleware systems have been
developed that allow for adapting various QoS properties of systems. For ex-
ample, Cardellini et al. propose in [56] the framework Moses which allows
for applying adaptations at runtime in order to fulfill QoS in service-oriented
systems. Other approaches are QoSMOS by Calinescu et al. [54], Focale by Jen-
nings et al. [143], or Sassy by Menasce et al. [182].

In contrast to ATLaS, all these frameworks, architectures, and middleware sy-
stems concentrate on the runtime adaptation of various QoS properties. The-
refore, they all provide more sophisticated adaptation engines, loops, and fea-
tures than ATLaS. However, ATLaS is the only middleware environment that
is designed specifically for the adaptation of TLS. For this, ATLaS facilitates a
concrete extensible TLS implementation and, additionally, specific metrics and
measures for an extensive monitoring of TLS that the other frameworks, archi-
tectures, and middleware systems do not provide. In consequence, ATLaS is a
more focused and lightweight approach and has its right to exist.

The same applies for the many other adaptation frameworks, architectures, and
middleware systems such as the already mentioned Rainbow framework [110],
the DML approach [130, 158, 159], or the Morph reference architecture [52].
These adaptation frameworks, architectures, and middleware systems allow
for adapting various system parameters and architectural components. We are
sure that similar TLS adaptations can be implemented with these general adap-
tation frameworks, architectures, and middleware systems like in ATLaS. But,
all in all, we state that it is much easier to use ATLaS for the adaptations of
TLS and, then, integrate these ATLaS” adaptations into a more sophisticated
self-adaptive framework, architecture, or middleware system.

190

19. Conclusion and Discussion

ATLaS provides an adaptive middleware environment for implementing adap-
tations of TLS in the form of closed-loop and rule-/trigger-based adaptations.
Therefore, ATLaS offers extensive monitoring features and a concrete extensible
TLS implementation in a focused and lightweight adaptive Java-based midd-
leware. The adaptations can be used to balance the trade-offs between security
and performance of TLS in CSS.

In ATLaS, the adaptations are implemented as Adaptation Strategies, Reconfi-
guration Commands, and Reconfiguration Effectors. These concepts are based
on concepts known from general self-adaptive system architectures and des-
cribe reusable adaptation components. Adaptation Strategies specify adapta-
tions that can be applied to get away from an undesirable system’s state via
Reconfiguration Commands. Reconfiguration Commands are the desired con-
figuration state of the Adaptation Strategy. The actual system modification is
done by Reconfiguration Effectors.

The extensive monitoring features of ATLaS allow for monitoring the system’s
and the environment’s state. Own statistics components and metrics can be re-
alized in ATLaS easily. Such custom statistics as well as custom Adaptation
Strategies, Reconfiguration Commands, Reconfiguration Effectors, Categori-
zers, etc. can be loaded to ATLaS via a plugin mechanism at runtime. The
extensibility of ATLaS via the generic adaptation concepts as well as the plugin
mechanism enables users to implement diverse adaptations that can be run by
the adaptive middleware environment.

Although the self-adaptivity features as well as the adaptation engine and loop
of ATLaS are limited compared to other state-of-the-art self-adaptive systems,
we could demonstrate the powerful and advanced overall possibilities of buil-
ding specific adaptations in ATLaS by instantiating four adaptations in Cassan-
dra: the Permanent Cipher Suite Reconfiguration in Cassandra (Section 16.1.1),
the Cipher Suite Reconfiguration of Single RR Connections in Cassandra at the
Connection Initiation (Section 16.1.2), the Renegotiation of Cipher Suites of Es-
tablished RR Connections in Cassandra (Section 16.1.3), and the Adaptation of
Maximum TLS Record Size (Section 16.2). Although the effectiveness of some
adaptations is limited—for example, the usage of the Adaptation of Maximum

191

19. Conclusion and Discussion

TLS Record Size is not worthwhile in Cassandra—, these four specific adapta-
tions show the potential of ATLaS for balancing the trade-offs between security
and performance of TLS via adapting TLS configurations in Cassandra dyna-
mically at runtime.

Thereby, ATLaS has sufficient security and performance. Even though ATLaS
introduces additional classes and performance-critical points in the TLS im-
plementation, the overall performance of ATLaS does not suffer too much in
comparison to the original TLS implementation we extended.

In sum, ATLaS provides a reasonable way of making the required reconfigura-
tion of TLS in the dynamic environment of CSS in order to balance the trade-offs
between security and performance dynamically at runtime.

192

Part V.

Finale

193

20. Conclusions

Security generally tends to impact other quality properties of a system. Ap-
plying security mechanisms to CSS with their various inherent trade-offs, leads
to further trade-offs that have to be decided and managed. In this thesis, we
focused on the trade-offs between security and performance in CSS. To not con-
tradict the original design goals of CSS, a sensible management of the trade-offs
between security and performance in CSS requires a high degree of understan-
ding of the security mechanisms of a CSS and their impact on the security and
performance, as otherwise security issues may occur (Part I).

In this thesis, we focused on better understanding and managing the trade-offs
between security and performance in CSS using the example of TLS. Therefore,
we provided three standalone and independent contributions which improve
the understanding and management of the trade-offs between security and per-
formance in CSS by answering the following research questions:

e How can we analyze the threats to different CSS with diverse security
mechanisms in diverse concrete systems to better understand the security
of the system and the impact of specific security mechanisms (Research
Question 1)?

e How can we quantify the performance impact of TLS configurations in
various CSS and what are relevant configuration options of TLS for the
trade-offs between security and performance in CSS (Research Question 2)?

o How can we support required reconfiguration of TLS in the dynamic de-
ployment environment of CSS in order to rebalance the trade-offs bet-
ween security and performance at runtime automatically (Research Que-
stion 3)?

Reference Usage and Threat Models of Cloud Storage Systems We built
two reference usage models of CSS which abstract essential architectural com-
ponents and unify the general usage of cloud storage services and NoSQL sy-
stems deployed on a compute cloud. The usage models also embrace a set of
roles typically involved in using these systems. Based on the reference usage
models of CSS, we created two reference threat models of cloud storage services
and NoSQL systems deployed on compute clouds.

195

20. Conclusions

The foremost function of the reference usage and threat models is to evaluate
the security of CSS. For this, the reference usage models help to understand
the usage and components of CSS, and the reference threat models serve as
a basis for detailed threat analyses in a more structured way. Both reference
models improve the overall understanding of CSS and their security. This im-
proved understanding heightens the quality of security assessments as well as
respective security engineering activities of balancing the trade-offs between
security and performance of different security mechanisms in CSS.

Experimental Trade-Off Analyses of Transport Layer Security in Cloud
Storage Systems We quantified the trade-offs between security and perfor-
mance using the example of TLS in CSS in more detail. Therefore, we per-
formed extensive experimental trade-off analyses of different influence factors
and relevant configuration options of TLS in CSS using a novel benchmark-
ing approach and corresponding tool for conducting fine-grained experiments
with different TLS configurations in CSS.

All in all, the performance impact of TLS in CSS depends massively on diverse
influence factors and relevant configuration options in the CSS itself, in the
cipher suite configuration, and in the TLS implementation. In Figures 13.1a
and 13.1b, these influence factors and configuration options are summarized.
The sheer amount of influence factors and configuration options as well as the
variability of the resulting performance lead to the main finding of this thesis:
every security configuration should be benchmarked in detail to have a clear
understanding of the performance impact in a specific CSS, when deciding on
security trade-offs. We demonstrated this in the example of TLS in CSS. Kno-
wledge about the performance impact of TLS stemming from HTTPS and the
field of web server environments typically cannot be transferred to CSS directly.
Former optimization rules of thumb for TLS in the context of CSS are no longer
valid. Every CSS may behave differently and every configuration option may
have an impact on the trade-offs between security and performance in CSS. For
example, choosing a specific cipher suite for TLS in Cassandra may have an per-
formance impact up to -20% for the throughput and 30% for the read latencies,
if the replication factor and the consistency level is set to one. If we change the
settings for the replication factor and consistency level to a higher value like
quorum, the throughput for the same cipher suite is at moderate -9% for the
throughput and 2% for the read latencies (see, e.g.: Sections 12.2.2 and 12.2.3).
HBase, in contrast, behaves very differently with secured communication, as
shown, for instance, by Pallas et al. in [217]. Particularly, former optimization
rules of thumb for TLS in the context of HTTPS like preferring ECDHE over
DHE are not valid generally for CSS, as demonstrated in Section 12.2.1.

196

Moreover, we introduced a conceptual framework for comparing different Java-
based TLS implementations in the context of CSS comprehensively. Different
TLS implementations provide different security features. The framework al-
lows for focusing on important dimensions of TLS implementations in the con-
text of CSS and, particularly, Java-based NoSQL systems to compare TLS im-
plementations.

Adaptive Middleware for Transport Layer Security We propose ATLaS, an
adaptive middleware environment for implementing closed-loop and rule-/trig-
ger-based adaptations of TLS, for supporting required reconfiguration of TLS in
the dynamic deployment environment of CSS and for balancing the trade-offs
between security and performance at runtime automatically. ATLaS provides
extensive monitoring features and an extensible TLS implementation in a focu-
sed and lightweight adaptive Java-based middleware environment.

Using ATLaS, we can reconfigure cipher suites and various other TLS configu-
ration options such as the TLS record size dynamically at runtime. Due to the
focused and lightweight approach, ATLaS has a sufficient security and good
performance for CSS.

In sum, we described three standalone contributions which improve security
trade-off management to make it more rational and allow a better balancing
of the trade-offs between security and performance of TLS in CSS. A reader
should now be able to decide on these trade-offs in CSS in a more informed
way.

197

21. Outlook

In our opinion, the importance of understanding and managing security trade-
offs in CSS will grow, because CSS are an essential part of an increasing number
of software systems. Additionally, security issues become more and more rele-
vant for organizations, since they can determine the future of organizations as
shown by recent security incidents. In turn, nobody wants to waste money by
badly configured systems that consume too many resources. In the following,
we sketch selected points for potential future research directions in the context
of security trade-offs in CSS:

o In security engineering for CSS, there are many further interesting secu-
rity trade-offs which have to be investigated in more detail. For example,
the trade-offs between security and costs are worth a deeper investigation
in future work, because costs are often an impediment to security. Initial
interesting work has been done by Chen and Sion in [63, 64] for the field
of secure database outsourcing. Other work by Naylor et al. in [193] fo-
cuses on the costs of HTTPS in web server environments. Other security
trade-offs that are currently being investigated are the trade-off between
security and usability (usable security) with the example of TLS imple-
mentations. Green and Smith propose in [118] that security-relevant API
of libraries like OpenSSL should be designed to be more user-friendly (see
also: [6, 95]). A more user-friendly design could reduce the security issues
that arise from the wrong usage of such security libraries. Since we also
have seen many poorly written security API during our research such as
of TLS implementations, this research field deserves more attention.

o The research on reference security models like our reference usage and
reference threat models provides many points for improvement. A con-
crete improvement is: we only considered quorum-based P2P replicated
NoSQL systems for the reference threat model of NoSQL systems. Here,
also other CSS like HBase with its master-slave approach should be in-
vestigated and, maybe, generalized in a reference threat model. Additio-
nally, a more general improvement in this point is to have more reference
models that improve the overall understanding of systems and their se-
curity. In our opinion, a better understanding of software systems and
their security can help to increase the overall security in CSS and systems
in general.

199

21. Outlook

200

e The analyses and quantification of the trade-offs between security and

performance with the example of TLS in CSS can be more broadened by
conducting more experiments with other CSS. For example, we already
mentioned experiments with Voldemort. However, there are many more
CSS available which have to be benchmarked. Furthermore, there are
more and more new protocols in production, such as the new TLS ver-
sion 1.3 or HTTPS/2, which may have a different influence on the per-
formance of CSS secured by TLS, again. Maybe, we will have general
optimization rules of thumb for TLS in CSS in future.

The research on adaptations which can be realized with ATLaS can be
broadened. Besides further adaptations, the analysis of the cipher suite
and TLS record adaptations and their use cases can be improved. Also,
the research on adaptive security concepts suggests to provide many in-
teresting ways to solve security challenges and trade-offs dynamically at
runtime.

Moreover, the integration of ATLaS in more sophisticated self-* frame-
works and architectures is worth a further research. For instance, AT-
LaS may be an interesting candidate to be integrated into the online per-
formance prediction and resource management approach of Kounev et
al. (see, e.g.: [130, 158, 159]). As TLS in CSS can have a non negligible
performance impact, more sophisticated adaptations based on the DML
approach may be worthwhile.

Appendix

201

A. Detailed Experiment Results of
Analyses of Cipher Suite
Configurations

A.1. Experiment DHE vs. ECDHE

For the Experiment DHE vs. ECDHE, we used a Cassandra cluster with three
nodes deployed at AWS EC2 m3.]large instances within the same AZ of the
AWS region in Ireland. TLSBench ran on the same instance type in the same
data center and AZ. The replication factor and the consistency level were set to
one.

The workload was a not throttled update-heavy workload. We used the stan-
dard request packet size of 1000 B. The cluster was initialized with ca. 14 GB
data, and we performed 15,000,000 requests. We chose this number of reque-
sts, because we wanted to have a high number of performed requests in the
benchmarking phase in order to have as many handshakes in this phase as
possible.

In contrast to the experiments in Section 12.1.2, we used Cassandra’s native
interface for the AR communication. Generally speaking, the native interface
has a better performance than Cassandra’s Thrift interface which explains the
higher overall throughput in this experiment compared to the experiment in
Section 12.1.2.1. Furthermore, we used TLS in version 1.2 based on the Oracle’s
JRE version 8u92 (SunJSSE) (see also: Section 10.2).

For the cipher suites, we used the cipher suite with either DHE or ECDHE and
RSA in the handshake phase as well as AES with 256 bits key length in CBC
mode and SHA in the bulk data transfer phase (cipher suites: TLS_.DHE_RSA _-
WITH_AES_256_CBC_SHA and TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA).
Thus, both cipher suites provide medium security (Table 9.2). As mentioned in
Section 12.2.1, Table 12.8 summarizes the experiment setup.

In the following, we show the experiment results for Cassandra’s AR communi-
cation. The results in Table 12.9, in the Tables A.1, A.2, and A.3, as well as in

203

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

NoTLS ——DHE ——ECDHE
. 13000
a
2 _ 11000
% 9
3 % 9000
£ & 7000
2 5000
<
0 500 1000
Time (Sec)
(a) Throughput
No TLS (Mean Rate) —— DHE (Mean Rate) —— ECDHE (Mean Rate)
. 13000
a
2 _ 11000
% 9
38 9000 K
£ & 7000 /‘r
2 5000
=3
0 500 1000
Time (Sec)
(b) Throughput (Mean Rate)
NoTLS ——DHE ——ECDHE
__6
Es
g
24
[
§ 3
§ 2
S 0 500 1000
Time (Sec)
(c) Update Latency
NoTLS ——DHE ——ECDHE
é 5
> 4
]
E" 3
S 2
S 0 500 1000
Time (Sec)
(d) Read Latency

Figure A.1.: Performance Impact of DHE and ECDHE on Cassandra’s AR Com-
munication (First Benchmark Run of Experiment DHE vs. ECDHE)

204

A.1. Experiment DHE vs. ECDHE

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 9,680.3 | 10,785.8 | 10,635.1 | 11,169.5 | 9,365.8
Std. Dev. Tp. 804.4 1,249.4 1,168.8 1,195.2 | 1,072.0
Avg. U. Lat. (ms) 3.2 2.6 3.4 2.7 3.0
Std. Dev. U. Lat. 49 2.9 4.9 2.0 2.9
Min. U. Lat. (ms) 0.4 04 0.4 0.4 04
Max. U. Lat. (ms) 129.4 101.5 86.7 156.9 200.5
U. Lat. 99th Perc. (ms) 22.3 9.9 13.0 75 10.1
Avg. R. Lat. (ms) 34 2.5 34 2.6 3.0
Std. Dev. R. Lat. 3.4 2.7 4.6 14 2.7
Min. R. Lat. (ms) 0.6 05 0.4 0.4 0.4
Max. R. Lat. (ms) 98.9 184.2 106.6 3,396.6 123.8
R. Lat. 99th Perc. (ms) 13.1 9.9 12.9 7.6 12.7

Table A.1.: Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE (No TLS)

Measurement 1 2 3 4
Avg. Tp. (Ops/ sec) 9,035.5 | 8,867.1 | 8,208.8 | 7,372.4
Std. Dev. Tp. 897.5 762.1 557.0 377.8
Avg. U. Lat. (ms) 3.1 33 3.6 3.8
Std. Dev. U. Lat. 3.0 2.2 3.3 29
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 74.3 118.6 263.6 122.5
U. Lat. 99th Perc. (ms) 12.6 12.0 11.0 12.9
Avg. R. Lat. (ms) 3.2 3.5 3.6 4.3
Std. Dev. R. Lat. 3.6 2.5 2.7 3.0
Min. R. Lat. (ms) 0.7 0.7 0.7 0.7
Max. R. Lat. (ms) 105.6 136.1 130.2 127.5
R. Lat. 99th Perc. (ms) 15.8 124 10.7 16.2

Table A.2.: Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE (DHE)

Figure A.1 prove that there is a significant performance impact of enabling TLS
for Cassandra’s AR communication (see also: Section 12.1.2.1). The throughput
with activated TLS is about 19% lower than the throughput without TLS. Ho-
wever, there is no significant difference in the throughput between the cipher
suites using either DHE or ECDHE. Only the average update latencies of the
cipher suite using DHE seem to have a lower overhead, but we believe this is
only an experimental variance.

During the experiments, we, furthermore, measured additional metrics of the
Cassandra nodes such as the number of TLS handshakes, the average CPU

205

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

Measurement 1 2 3 4
Avg. Tp. (Ops/ sec) 9,080.6 | 8,946.1 | 8,137.4 | 7,189.3
Std. Dev. Tp. 789.7 588.3 481.9 414.4
Avg. U. Lat. (ms) 32 33 3.6 4.5
Std. Dev. U. Lat. 4.3 3.2 2.3 4.0
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 127.5 143.1 68.0 96.1
U. Lat. 99th Perc. (ms) 11.6 11.8 11.3 17.6
Avg. R. Lat. (ms) 3.2 3.1 3.8 4.6
Std. Dev. R. Lat. 3.1 2.5 2.6 3.5
Min. R. Lat. (ms) 0.7 0.7 0.7 0.7
Max. R. Lat. (ms) 77.5 112.7 67.3 208.9
R. Lat. 99th Perc. (ms) 11.7 8.5 11.1 16.7

Table A.3.: Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE (ECDHE)

utilization of the cluster (see, e.g.: Figure A.2), and various other metrics (see,
e.g.: Figure A.3 and Figure A .4).

Interestingly, the Cassandra cluster performed only eight TLS handshakes in to-
tal during the first experiment run with the cipher suite using DHE and twelve
handshakes in the first experiment run with the cipher suite using ECDHE.
Due to session resumption which is enabled in Java by default, there were only
three full handshakes at the beginning of each experiment run.*® These full
handshakes happened in the load phase of the measurements, when the TLS-
Bench clients connect to the cluster the first time. The other handshakes were
abbreviated handshakes using session resumption, which were performed be-
cause of intermediate connection timeouts. The Cassandra clients close and
reestablish the connection immediately, when a connection timeout happens.
So, in contrast to HTTPS web server environments, the overall percentage of
the handshake phase is negligible compared to the percentage of the bulk data
transfer phase in a Cassandra cluster.

During other experiments, the total number of handshakes was similar. For
example, in another experiment with the same experiment setup shown in Ta-
ble 12.8 and TLS enabled for the AR and RR connection, the entire Cassandra
cluster had 14 TLS handshakes in total for both cipher suites.

Summarizing, there is only a small number of handshakes performed in a Cas-
sandra cluster in comparison to typical web server settings using HTTPS due

48The Cassandra driver used in TLSBench, the Datastax client library (Section 3.1.3.2), opens only
one connection per Cassandra node and uses Non-Blocking TCP sockets (see also: Section 9.4) to
multiplex and pipeline multiple requests over a single connection, while the Thrift client opens
a connection per client thread in TLSBench using Blocking TCP sockets (see also: Section 9.4).

206

A.1. Experiment DHE vs. ECDHE

Avg. CPU Utilization ——Throughput
13000 100%
S S
3 11000 2
% S
§ 9000 50% %
£ 7000 >
Q. o
£ 5000 0% O
3 0 500 1000
= Time (Sec)
(a) Throughput and CPU Utilization (No TLS)

Avg. CPU Utilization = ——Throughput
__ 11000 100%
(3) j
7} i)
<9000 &
=S 50% =
S 7000 5
> o}
Q a
€, 5000 0% O
3 0 500 1000
[= Time (Sec)

(b) Throughput and CPU Utilization (DHE)

Avg. CPU Utilization ——Throughput
__ 11000 100%
(3) c
Q he]
< 9000]
= 50% =
£ 7000 35
> o]
Q. o
£ 5000 0% O
3 0 500 1000
= Time (Sec)

(c) Throughput and CPU Utilization (ECDHE)

Figure A.2.: Impact of the CPU Utilization on the Throughput of Cassandra’s
AR Communication (First Benchmark Run of Experiment DHE vs.
ECDHE)

207

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

——Throughput Active Compactions Act. Memtable Flushwriter
13000 8
= Q
& 11000 6= §
3 =R
8— 9000 4 % =
2 7000 2S5 %
2 58
ED 5000 0 s 5
2 25
<) g 2
= Time (Sec) o
(@]
(a) Throughput and Active Compactions and Memtable Flushwriter Threads (No TLS)
Throughput Active Compactions Act. Memtable Flushwriter
11000 8
= Q
Q 5w
< 9000 6z
<3 4 €2
o g =
= 7000 , 2
5 T3
s A A MK 5 £
-gn 5000 0 g s
o 0 500 1000 85
= £ 32
= Time (Sec) o
o
(b) Throughput and Active Compactions and Memtable Flushwriter Threads (DHE)
——Throughput Active Compactions Act. Memtable Flushwriter
= 11000 6 ©
g el %
~. 9000 4 8 &
a8 E O
£ 7000 25 ¥
> c o
£ soo0 4L A WA 0g%
Q
3 0 500 1000 g5
= Time (Sec) § o

(c) Throughput and Active Compactions and Memtable Flushwriter Threads (ECDHE)

Figure A.3.: Impact of Active Compactions and Memtable Flushwriter Threads
on the Throughput of Cassandra’s AR Communication (First Ben-
chmark Run of Experiment DHE vs. ECDHE)

208

A.1. Experiment DHE vs. ECDHE

——\Upd. Lat. ===-Read Lat. Active Compactions Act. Memtable Flushwriter
6 8 o
< 53¢
>
2 4§ E
2 =
5 %8
g 035 5
[o C
= o v

) g 2
Time (Sec) o v
(&}

(a) Latencies and Active Compactions and Memtable Flushwriter Threads (No TLS)

——Upd. Lat. ===<Read Lat. Active Compactions Act. Memtable Flushwriter
_ 6 8 o
=X 6838
3z 4 €9
< coo o ocese oo P e L b b L ek P U
82 celoomcccsos Seo coco=c =
© 2 S~ =
4 c g
=) A A [N 0 oz
s S 2
s 0 500 1000 3G

. € 2
Time (Sec) o =
(@]
(b) Latencies and Active Compactions and Memtable Flushwriter Threads (DHE)
——Upd. Lat. ===-Read Lat. Active Compactions Act. Memtable Flushwriter

6
: 3
— © O
> YES
c v o
g 2 =2+
3 T
S =
g 035 %
s 0 500 1000 3G
) g 2
Time (Sec) S =

(c) Latencies and Active Compactions and Memtable Flushwriter Threads (ECDHE)

Figure A.4.: Impact of Active Compactions and Memtable Flushwriter Threads
on the Latencies of Cassandra’s AR Communication (First Bench-
mark Run of Experiment DHE vs. ECDHE)

209

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

Avg. CPU Utilization Active Compactions Act. Memtable Flushwriter

8 100%
= 5
8386 9
5S4 50% =
2t 35
c 9 2
% So A A A)/ SR VARY 0% O
3G 0 500 1000
£ 3
S w Time (Sec)

(a) CPU Utilization and Active Compactions and Memtable Flushwriter Threads (No TLS)

Avg. CPU Utilization Act. Memtable Flushwriter

Active Compactions

o 8 100% _
286 2
+ (T (NU
5S4 50% =
=+ 2 >
T g)
k) So A A [AK oo &
o

3% O 500 1000

=)

o = Time (Sec)

(&)

(b) CPU Utilization and Active Compactions and Memtable Flushwriter Threads (DHE)

Act. Memtable Flushwriter

Avg. CPU Utilization Active Compactions

6 100%

() c

238 =

g’ s0%
= =

5 -

250 A A 0% O

3 ‘g: 0 500 1000

g = Time (Sec)

(&)

(c) CPU Utilization and Active Compactions and Memtable Flushwriter Threads (ECDHE)

Figure A.5.: Impact of Active Compactions and Memtable Flushwriter Threads
on the CPU Utilization of Cassandra (First Benchmark Run of Ex-
periment DHE vs. ECDHE)

210

A.2. Experiment CBC vs. GCM

to Cassandra’s communication behavior. This small number of handshakes
do not impact the performance of the entire system, as the percentage of the
handshake phases compared to the percentage of the bulk data transfer phases
is marginal. As a result, it does not matter which key agreement protocol we
use for Cassandra’s communication. Furthermore, we argue that, in contrast
to web server settings, any other performance optimization of the handshake
is also not worthwhile due to the small percentage of the handshake phase for
such a communication behavior. Performance optimizations are rather sensible
for the bulk data transfer phase.

A.2. Experiment CBC vs. GCM

For Experiment CBC vs. GCM, we benchmarked two different cipher suites.
We employed a highly secure cipher suite using AES with GCM (cipher suite:
TLS_.DHE_RSA_WITH_AES_256_GCM_SHA384) as well as a medium secure cip-
her suite using AES with CBC mode (cipher suite: TLS_DHE_RSA_WITH -
AES_256_CBC_SHA) in Cassandra. We chose these cipher suites, because the
CBC-based cipher suite is, despite it is not highly secure, one of the cipher sui-
tes mostly used in practice. The GCM-based cipher suite, in turn, is one of
the few highly secure cipher suites available in Java version 8 and 7 (see also:
Section 10.2).

The general experiment setup of Experiment CBC vs. GCM is summarized in
Table 12.10 (see also: Section 12.2.2). We averaged multiple benchmark runs/
measurements that we conducted in the year 2016. For the performance of
Cassandra without TLS, we use the experiment results of the Experiment DHE
vs. ECDHE (Table 12.9 and Table A.1).

AR Communication For the AR communication of Cassandra (Experiment CBC
vs. GCM AR), the throughput of the CBC-based cipher suite is about 20% and
the GCM-based cipher suite is about 24% lower than the throughput with TLS
disabled (Table 12.11; see also: Table A.4 and Table A.5). Additionally, the
throughput of the GCM-based cipher suite is about 5% lower than the CBC-
based cipher suite. The update and read latencies of the CBC-based cipher suite
are ca. 13% and 30% higher respectively in comparison to the latencies without
TLS. The update and read latencies of the GCM-based cipher suite are about
25% and 40% higher than the update latencies without TLS as well as 12% and
11% higher than the latencies of the CBC-based cipher suite. This shows clearly
that the less secure CBC-based cipher suite is faster than the more secure GCM-
based cipher suite in our setting. Moreover, the GCM-based cipher suite has a
more fluctuating overall performance. The standard deviations of this cipher

211

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 8,655.4 | 9,035.5 | 7,637.1 | 8,584.9 | 7,388.2
Std. Dev. Tp. 700.4 897.5 621.6 740.5 665.8
Avg. U. Lat. (ms) 3.3 3.1 34 3.6 3.5
Std. Dev. U. Lat. 3.6 3.0 3.3 3.9 3.3
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 164.8 74.3 135.8 213.3 208.8
U. Lat. 99th Perc. (ms) 16.9 12.6 11.8 25.2 10.7
Avg. R. Lat. (ms) 4.0 3.2 4.0 3.9 4.2
Std. Dev. R. Lat. 3.9 3.6 34 3.2 43
Min. R. Lat. (ms) 0.7 0.7 0.7 0.7 0.7
Max. R. Lat. (ms) 217.6 105.6 121.7 211.5 121.1
R. Lat. 99th Perc. (ms) 18.8 15.8 15.3 19.9 11.2

Table A.4.: Experiment results of Benchmark Runs of Experiment CBC vs.

GCM AR (CBC)
Measurement 1 2 3 4 5 6
Avg. Tp. (Ops/sec) 8,857.0 | 8577.0 | 7,462.0 | 8,236.0 | 7,043.3 | 6,968.2
Std. Dev. Tp. 786.9 779.0 580.2 760.0 429.1 524.3
Avg. U. Lat. (ms) 3.5 3.3 3.9 3.9 3.8 4.0
Std. Dev. U. Lat. 4.0 24 5.1 3.6 3.0 4.4
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 118.8 204.0 115.6 203.9 210.2 221.0
U. Lat. 99th Perc. (ms) 18.5 11.1 21.7 19.1 14.1 31.5
Avg. R. Lat. (ms) 3.7 4.0 3.9 4.2 4.7 4.5
Std. Dev. R. Lat. 2.7 24 4.8 2.9 6.0 2.9
Min. R. Lat. (ms) 0.7 0.7 0.7 0.7 0.8 0.7
Max. R. Lat. (ms) 138.3 435.5 113.5 202.4 190.1 208.6
R. Lat. 99th Perc. (ms) 11.8 12.7 15.5 16.8 20.7 16.8

Table A.5.: Experiment results of Benchmark Runs of Experiment CBC vs.
GCM AR (GCM)

suite are higher than the standard deviations of the other measurements (Ta-
ble 12.11 and Table A.5).

In sum, there is a considerable performance impact of the two cipher suites for
the AR communication of Cassandra (Table 12.11). This means that there is, at
least, a throughput reduction of 20%. Furthermore, the update latencies are at
least 13% higher in average, while the read latencies can be up to 40% higher.

212

A.2. Experiment CBC vs. GCM

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/sec) 53239 | 5,335.2 | 4479.0 | 44784 | 5414.2 | 5421.2 | 4,387.8 | 4,399.1
Std. Dev. Tp. 534.3 589.1 314.3 309.0 613.1 570.5 304.4 295.1
Avg. U. Lat. (ms) 37 3.9 39 4.0 37 3.5 34 3.7
Std. Dev. U. Lat. 3.6 4.2 3.6 44 3.8 2.5 3.9 3.7
Min. U. Lat. (ms) 04 04 04 0.4 0.4 04 0.4 04
Max. U. Lat. (ms) 200.3 164.8 147.3 136.5 205.6 204.5 171.3 157.2
U. Lat. 99th Perc. (ms) 16.1 15.6 15.4 28.6 13.2 124 14.5 21.1
Avg. R. Lat. (ms) 39 39 4.1 3.7 3.7 4.3 3.7 43
Std. Dev. R. Lat. 4.3 4.3 44 3.5 45 49 37 53
Min. R. Lat. (ms) 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6
Max. R. Lat. (ms) 216.5 235.8 128.6 209.0 164.0 148.1 199.4 128.7
R. Lat. 99th Perc. (ms) 222 20.9 194 219 16.2 28.3 18.9 29.5

Table A.6.: Experiment results of Benchmark Runs of Experiment CBC vs.
GCM RR (No TLS)

RR Communication For benchmarking the performance impact of the CBC-
and GCM-based cipher suites on the RR communication performance of Cas-
sandra (Experiment CBC vs. GCM RR), we, similar to the Experiment RR.HL (Sec-
tion 12.1.2.4), used two instances of TLSBench. The experiment results per node
of Experiment CBC vs. GCM RR are depicted in Table 12.12 (see also: Table A.7
and Table A.8).

In sum, the overall performance impact of TLS for the RR communication is, as
expected, smaller than for the AR communication. In the RR communication,
comparable to the situation for the AR communication, the more secure GCM-
based cipher suite has a higher overall performance impact than the less secure
CBC-based cipher suite (e.g., 14% vs. 6% for the average throughput). As the
reduction of the throughput is so small, the performance impact of enabling
TLS for the RR communication in Cassandra is, in all likelihood, also deter-
mined by another influence factor. In Section 12.3.1, we will get back to the
question of what this bounded factor is.

AR-RR Communication Naturally, the performance impact of enabling TLS
for both communication types in Cassandra (Experiment CBC vs. GCM AR-RR)
is much higher than of enabling TLS for a single communication type (see also:
Section 12.1.2.3). The performance impact of the CBC-based cipher suite on
the throughput is about 29%, while the impact on the throughput of the GCM-
based cipher suite is about 32% (Table 12.13; see also: Table A.9 and Table A.10).
Thus, the throughput of the GCM-based cipher suite is ca. 4% lower on average
than the throughput of the CBC-based cipher suite. For the average update and
read latencies of the CBC-based cipher suite, we had an overhead of about 6%

213

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 5,006.0 | 5,015.1 | 4,098.7 | 4,094.5 | 4,286.8 | 4,290.1 | 4981.0 | 4,987.3
Std. Dev. Tp. 366.2 437.5 305.6 304.5 330.5 337.0 435.4 416.1
Avg. U. Lat. (ms) 4.1 4.3 44 4.1 44 4.7 3.6 35
Std. Dev. U. Lat. 44 5.7 6.0 49 3.6 49 4.0 29
Min. U. Lat. (ms) 04 0.4 0.4 04 04 0.4 0.4 0.4
Max. U. Lat. (ms) 126.9 192.8 205.3 1715 231.8 211.8 354.9 130.2
U. Lat. 99th Perc. (ms) 18.5 445 349 214 18.7 18.9 14.7 14.3
Avg. R. Lat. (ms) 4.2 4.5 4.7 4.6 5.8 5.5 3.7 35
Std. Dev. R. Lat. 49 5.7 6.3 6.5 8.0 6.1 3.8 32
Min. R. Lat. (ms) 0.6 0.6 0.5 0.6 0.6 0.6 0.6 0.6
Max. R. Lat. (ms) 410.6 203.7 274.1 164.1 164.5 249.1 141.2 170.8
R. Lat. 99th Perc. (ms) 30.0 36.4 31.1 38.0 41.0 33.6 17.2 15.1

Table A.7.: Experiment results of Benchmark Runs of Experiment CBC vs.

GCM RR (CBC)

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 4,624.9 | 4,629.8 | 42241 | 42259 | 3,696.9 | 3,699.8 | 42574 | 4,263.2
Std. Dev. Tp. 470.0 461.0 399.2 354.4 285.0 268.4 301.2 275.8
Avg. U. Lat. (ms) 5.0 49 5.0 5.3 4.8 4.7 4.5 4.4
Std. Dev. U. Lat. 5.6 5.2 5.7 6.3 5.1 5.2 5.6 5.2
Min. U. Lat. (ms) 04 04 0.4 04 04 04 0.4 04
Max. U. Lat. (ms) 296.0 90.0 230.8 211.6 223.6 147.8 212.3 204.3
U. Lat. 99th Perc. (ms) 23.2 25.4 28.8 34.8 22.2 30.5 37.4 25.6
Avg. R. Lat. (ms) 4.6 4.8 4.7 4.9 5.0 5.2 5.3 55
Std. Dev. R. Lat. 6.0 5.7 54 55 5.7 6.3 6.8 6.9
Min. R. Lat. (ms) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Max. R. Lat. (ms) 200.9 144.3 233.8 212.0 183.3 204.4 236.4 203.5
R. Lat. 99th Perc. (ms) 23.0 29.1 23.8 26.7 26.5 29.8 40.1 36.2

Table A.8.: Experiment results of Benchmark Runs of Experiment CBC vs.
GCM RR (GCM)

and 23% respectively. The average update and read latency of the GCM-based
cipher suite is about 4% and 23% lower than the latencies without TLS.

Summarizing, securing the AR and RR communication introduces a massive
performance impact in Cassandra. The reduction of the throughput is ca. 30%.
Moreover, we have to accept about 4-6% higher update latencies and about 23%
higher read latencies. So, both cipher suites have, with small deviations, nearly
the same performance impact in this experiment.

214

A.2. Experiment CBC vs. GCM

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 8,506.0 | 8,797.1 | 7,036.6 | 6,072.3 | 6,022.0
Std. Dev. Tp. 769.8 751.3 697.7 523.8 470.0
Avg. U. Lat. (ms) 3.8 3.7 2.6 2.5 3.2
Std. Dev. U. Lat. 3.5 34 1.7 1.3 44
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 295.2 60.1 211.9 209.6 107.1
U. Lat. 99th Perc. (ms) 14.6 13.2 8.0 75 13.5
Avg. R. Lat. (ms) 44 3.5 3.1 3.2 4.0
Std. Dev. R. Lat. 3.9 2.8 24 3.0 3.2
Min. R. Lat. (ms) 0.7 0.7 0.6 0.7 0.7
Max. R. Lat. (ms) 91.1 130.1 122.7 210.5 118.9
R. Lat. 99th Perc. (ms) 222 12.2 10.4 11.3 13.7

Table A.9.: Experiment results of Benchmark Runs of Experiment CBC vs.
GCM AR-RR (CBC)

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 6,894.1 | 59404 | 6,020.3 | 8,646.0 | 7,409.2
Std. Dev. Tp. 775.7 510.8 492.5 620.7 403.9
Avg. U. Lat. (ms) 2.7 2.7 3.1 34 3.7
Std. Dev. U. Lat. 1.5 2.2 2.9 2.8 44
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 377.1 124.0 132.4 415.5 188.5
U. Lat. 99th Perc. (ms) 7.2 7.4 10.3 11.9 14.5
Avg. R. Lat. (ms) 3.1 3.2 3.9 3.8 4.2
Std. Dev. R. Lat. 1.9 19 3.7 2.9 3.7
Min. R. Lat. (ms) 0.7 0.7 0.8 0.7 0.7
Max. R. Lat. (ms) 185.1 115.9 211.2 116.1 133.0
R. Lat. 99th Perc. (ms) 8.2 10.8 15.0 10.0 15.7

Table A.10.: Experiment results of Benchmark Runs of Experiment CBC vs.
GCM AR-RR (GCM)

215

A. Detailed Experiment Results of Analyses of Cipher Suite Configurations

A.3. Experiment R3-CQ

As already mentioned in Section 12.2.3, the experiment setup is shown in Ta-
ble 12.14. In this experiment, we enlarged the Cassandra cluster to a six-node
cluster, and we increase the replication factor to three and the consistency level
to quorum.

We only describe the results for the AR and RR communication. Here, we ex-
pect the highest performance impact of TLS. Also, we present only the results
using the CBC-based cipher suite (cipher suite: TLS_.DHE_RSA_WITH_AES -
256_CBC_SHA).

As can be seen clearly in Table 12.15, the higher replication factor and consis-
tency level result in a lower overall performance of the cluster. Although the
cluster is larger, the throughput of the entire cluster decreases massively com-
pared to the previous experiments such as in Experiment CBC vs. GCM. For
example, the not secured throughput reaches only about 28% of the throug-
hput of the respective experiment results in Experiment CBC vs. GCM (2,840.7
ops/sec vs. 10,327.3 ops/ sec; see also: Tables 12.15 and 12.13).

The reason for the reduced throughput is that all requests need more time for
completion (Tables 12.15 and 12.13). In Cassandra, client requests are handled
by the coordinator node (Section 3.1.3.2). This results in two ways of request
handling: if the requested data item is not stored on the coordinator node, the
client request is forwarded to the other nodes in the cluster by the coordina-
tor node, then the coordinator node waits for, at least, responses of two other
nodes to fulfill the consistency level of quorum, and finally answers the client

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/sec) 2,825.7 | 2,831.9 | 32529 | 3,252.8 | 2,789.8 | 2,790.9 | 2,490.5 | 2,491.0
Std. Dev. Tp. 431.5 454.6 386.2 359.4 218.2 185.9 188.2 168.8
Avg. U. Lat. (ms) 5.1 5.9 5.4 5.0 6.6 6.1 6.3 5.0
Std. Dev. U. Lat. 7.8 9.4 8.3 7.4 9.9 10.5 9.5 8.4
Min. U. Lat. (ms) 0.4 04 0.4 04 04 04 04 04
Max. U. Lat. (ms) 230.5 235.6 293.9 979.4 190.2 177.1 227.1 943.4
U. Lat. 99th Perc. (ms) 38.7 43.7 39.6 38.1 49.3 49.0 46.3 424
Avg. R. Lat. (ms) 12.3 14.8 12.7 13.1 16.8 14.7 159 13.0
Std. Dev. R. Lat. 18.6 21.8 15.5 17.6 20.2 18.3 19.5 17.1
Min. R. Lat. (ms) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max. R. Lat. (ms) 317.6 278.8 277.7 288.6 245.5 419.4 2721 328.1
R. Lat. 99th Perc. (ms) 104.2 1124 79.4 86.5 90.2 90.8 102.1 87.8

Table A.11.: Experiment results of Benchmark Runs of Experiment R3-CQ (no
TLS)

216

A.3. Experiment R3-CQ

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/sec) 2,324.8 | 2,325.1 | 29294 | 29287 | 2,680.6 | 2,683.2 | 2,396.6 | 2,397.5
Std. Dev. Tp. 178.0 181.9 378.2 362.3 179.2 189.6 146.0 148.1
Avg. U. Lat. (ms) 6.5 5.6 5.8 5.7 6.7 5.8 6.1 6.3
Std. Dev. U. Lat. 9.8 8.7 7.9 7.7 9.9 8.6 7.9 9.5
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 5,441.1 174.0 1734 217.7 167.5 227.6 287.4 270.0
U. Lat. 99th Perc. (ms) 427 439 375 39.3 51.7 40.5 39.3 45.7
Avg. R. Lat. (ms) 18.0 15.4 12.3 13.8 15.0 13.2 144 14.1
Std. Dev. R. Lat. 23.8 19.6 15.1 17.0 18.1 16.0 16.1 15.7
Min. R. Lat. (ms) 1.2 1.2 1.2 1.1 1.2 1.2 1.2 1.2
Max. R. Lat. (ms) 3,189.2 259.9 273.6 3323 260.6 291.6 319.3 360.6
R. Lat. 99th Perc. (ms) 120.4 106.5 78.7 79.0 91.1 84.7 80.8 78.5

Table A.12.: Experiment results of Benchmark Runs of Experiment R3-
CQ (AES256 CBC)

request. If the requested data item is stored on the coordinator node, the coor-
dinator node has to query, at least, another node to answer the client request.
In sum, this communication behavior lowers the overall performance of the
cluster, because the communication overhead for each request increases.

As a consequence of the lower throughput and higher latencies, the perfor-
mance overhead of TLS is not that visible in this experiment compared to other
experiments such as Experiment CBC vs. GCM. The throughput of the secured
AR and RR communication is only 9% lower than the not secured throughput
on average. Also the latencies are only slightly higher. The average update la-
tency is 7% and the average read latency is only 2% higher—the average 99th
update/read latency percentiles are nearly equal, too (see also: Tables A.11
and A.12).

217

B. Detailed Experiment Results of
Analyses of Different Transport
Layer Security Implementations

B.1. Experiment AES-NI

For the Experiment AES-NI, we benchmarked Cassandra with disabled AES-
NI in the SunJSSE and compared the results with the results of Experiment CBC
vs. GCM in order to analyze the performance impact of AES-NI. We tested the
same cipher suites with the same experiment setup like in the Experiment CBC
vs.GCM (Section 12.2.2). The results are shown in Table 12.16 for a secured
AR communication, in Table 12.17 for a secured RR communication, and in
Table 12.18 for a secured AR-RR communication (see also: Tables B.1, B.2, B.3,
B.4,B.5, and B.6).

AR Communication The results in Table 12.16 indicate that the CBC-based
cipher suite benefits more from AES-NI than the GCM-based cipher suite. The
measurements with the CBC-based cipher suite suffer more from disabling
AES-NI than the measurements with the GCM-based cipher suite. For the
CBC-based cipher suite, the throughput of the AR communication is reduced
by 14%, while the throughput of the GCM-based cipher suite is only redu-
ced by 9%. Also, the latencies with the CBC-based cipher suite are, at least,
11% higher without AES-NI than with AES-NI, whereas the latencies with the
GCM-based cipher suite fluctuate. The smaller throughput reduction and the
fluctuating values for the latencies of the GCM-based cipher suite suggest that
the full potential of AES-NI is not used for the GCM-based cipher suite in the
SunJSSE version 8u92. We expect a higher performance of the GCM-based cip-
her suite in combination with AES-NI in Java version 9 and later versions (see
also: [204]).

In sum, AES-NI has a positive influence on the throughput and latencies of the
AR communication of Cassandra secured with AES-based cipher suites. The
CPU hardware support seems to be a worthwhile performance optimization

219

B. Detailed Experiment Results of Analyses of Ditferent Transport Layer Security Implementatic

Measurement 1 2 3 4 5 6
Avg. Tp. (Ops/sec) 7,668.6 | 6843.8 | 6,550.5 | 8,036.1 | 6,886.8 | 6,759.7
Std. Dev. Tp. 739.8 433.6 478.0 754.1 437.9 557.1
Avg. U. Lat. (ms) 39 32 36 37 39 15
Std. Dev. U. Lat. 4.2 34 3.3 35 3.1 4.3
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 214.6 215.7 135.8 202.3 165.9 125.4
U. Lat. 99th Perc. (ms) 30.4 13.2 15.3 115 15.1 17.6
Avg. R. Lat. (ms) 4.0 3.7 4.4 4.2 4.1 52
Std. Dev. R. Lat. 35 2.8 2.9 3.3 3.0 49
Min. R. Lat. (ms) 0.7 0.7 0.7 0.8 0.8 0.8
Max. R. Lat. (ms) 109.2 154.5 265.7 216.4 201.4 211.8
R. Lat. 99th Perc. (ms) 20.6 10.3 13.8 12.7 13.1 26.2

Table B.1.: Experiment results of Benchmark Runs of Experiment AES-NI
AR (CBC, AES-NI disabled)

Measurement 1 2 3 4 5 6
Avg. Tp. (Ops/sec) 7,688.8 | 6,662.4 | 6,643.5 | 8,103.5 | 68873 | 6,954.7
Std. Dev. Tp. 675.7 556.3 477.3 738.8 395.2 456.3
Avg. U. Lat. (ms) 3.0 3.0 37 36 42 39
Std. Dev. U. Lat. 3.0 2.3 4.0 29 4.1 29
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 123.2 143.4 102.4 95.8 200.0 128.4
U. Lat. 99th Perc. (ms) 8.5 10.4 15.9 11.3 21.4 11.8
Avg. R. Lat. (ms) 3.6 3.4 4.2 4.2 5.1 4.8
Std. Dev. R. Lat. 3.6 1.6 3.1 29 6.9 3.1
Min. R. Lat. (ms) 0.7 0.7 0.8 0.7 0.7 0.8
Max. R. Lat. (ms) 141.3 123.6 994 148.5 209.7 200.0
R. Lat. 99th Perc. (ms) 18.5 8.8 12.6 12.5 28.9 15.8

Table B.2.: Experiment results of Benchmark Runs of Experiment AES-NI
AR (GCM, AES-NI disabled)

for the bulk data transfer phase of TLS as long as the cipher suite can benefit
from AES-NI. Moreover, the massive negative performance impact of disabling
AES-NI for the CBC-based cipher suite indicates that Cassandra’s AR throug-
hput with activated TLS is CPU bound, because AES-NI accelerates the encryp-
tion and decryption of AES in the CPU. In [69], Coarfa et al. already described
such a CPU boundedness of TLS in web server settings. This finding of Co-
arfa et al. seems to also hold for Cassandra and CSS with a comparable AR
communication.

220

B.1. Experiment AES-NI

RR Communication For the RR communication secured by the CBC-based
cipher suite, disabling AES-NI has, actually, no impact on the performance of
Cassandra (Table 12.17). The average throughput with enabled AES-NI is equal
to the average throughput with disabled AES-NI. Also, the latencies with acti-
vated AES-NI and deactivated AES-NI are nearly equal to each other.

For the GCM-based cipher suite, there, in turn, seems to be a performance im-
pact of about 9% in throughput due to disabling AES-NI. Additionally, the la-
tencies of the GCM-based cipher suites without AES-NI are better than the la-
tencies with enabled AES-NI. For instance, the update latencies are 12% lower—
and, therefore, better—with disabled AES-NI than with enabled AES-NI. Besi-
des the average latencies, the update and read latency 99th percentiles in Ta-
ble B.4 (disabled AES-NI) are also lower in average than the respective values
in Table A.8 (enabled AES-NI). Furthermore, for the GCM-based cipher suite
with enabled AES-NI, the average CPU system utilization of the cluster is only
70% (95% CPU process utilization), whereas it is 87% (97% CPU process utili-
zation) on average for the GCM-based cipher suite without AES-NI. Currently,
we do not have a satisfying explanation for these values. Maybe this is an expe-
rimental deviation. However, we think that the situation in Java version 9 and
later with an improved AES-NI support for the GCM-based cipher suite will
change to a better performance of the GCM-based cipher suite in general.

Enabling TLS for Cassandra’s RR communication seems to be not CPU bound.
This is suggested by the, actually, not existent performance impact of disabling
AES-NI for the CBC-based cipher suite. In contrast to the AR communicat-
ion that is massively CPU bound, the general overhead of TLS which increases
the latencies seems to be more essential for the RR communication. Moreo-
ver, we believe that the major part of the performance impact of TLS in the
Experiment CBC vs. GCM RR is mainly driven by the higher update and read
latencies induced by activating TLS (Table 12.12). This is also supported by the
Experiment R3-CQ where increasing the consistency level of Cassandra heigh-
tens the latencies immensely and, in turn, lowers the throughput of Cassandra
even without activated TLS (Table 12.15).

AR-RR Communication If we secure both communication types AR and RR
communication by TLS and, additionally, disable AES-NI, the performance im-
pact is not as high as expected (Table 12.18). The performance does not collapse
as much as in the Experiment CBC vs. GCM AR-RR (Table 12.13). When disa-
bling AES-NI, the throughput of the CBC-based cipher suite is reduced by only
5%, and the throughput of the GCM-based cipher suite does not show any im-
pact of disabling AES-NI. The update and read latencies of both cipher suites
are between 4% and 7% slower with disabled AES-NI.

221

B. Detailed Experiment Results of Analyses of Ditferent Transport Layer Security Implementatic

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 4,906.7 | 4908.3 | 4296.6 | 4,301.2 | 4,132.7 | 4,142.3 | 4,965.3 | 4,968.8
Std. Dev. Tp. 387.7 375.9 364.9 3409 340.7 383.1 534.9 484.1
Avg. U. Lat. (ms) 4.2 4.0 3.8 4.0 4.5 5.0 4.1 4.2
Std. Dev. U. Lat. 52 47 3.8 4.7 4.6 5.2 44 4.6
Min. U. Lat. (ms) 04 0.4 0.4 04 04 0.4 0.4 0.4
Max. U. Lat. (ms) 370.0 238.2 195.4 181.1 201.6 155.2 140.8 123.5
U. Lat. 99th Perc. (ms) 34.5 18.8 19.2 23.8 21.6 34.8 20.8 23.0
Avg. R. Lat. (ms) 3.9 4.3 4.3 4.3 5.0 5.2 4.3 4.3
Std. Dev. R. Lat. 3.6 4.8 4.7 4.9 6.5 5.5 4.7 6.2
Min. R. Lat. (ms) 0.6 0.6 0.6 0.6 0.7 0.6 0.5 0.6
Max. R. Lat. (ms) 131.5 107.7 234.6 1154 196.6 212.3 164.0 242.3
R. Lat. 99th Perc. (ms) 21.2 24.7 26.8 21.8 28.8 30.8 26.5 341

Table B.3.: Experiment results of Benchmark Runs of Experiment AES-NI
RR (CBC, AES-NI disabled)

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 4,075.6 | 4,082.3 | 3,697.6 | 3,697.6 | 3,345.4 | 3,349.2 | 4,100.9 | 4,098.3
Std. Dev. Tp. 406.8 400.2 280.6 269.9 228.7 228.3 3129 378.7
Avg. U. Lat. (ms) 4.2 4.6 4.5 4.5 3.9 4.6 4.1 3.8
Std. Dev. U. Lat. 4.7 5.0 5.3 5.0 3.8 47 4.8 47
Min. U. Lat. (ms) 0.4 0.4 04 0.4 0.4 0.4 0.4 0.4
Max. U. Lat. (ms) 385.1 228.6 203.6 132.1 211.0 241.1 4334 195.1
U. Lat. 99th Perc. (ms) 25.1 23.2 315 25.6 18.7 21.7 24.1 21.4
Avg. R. Lat. (ms) 3.8 4.2 53 4.8 52 6.5 44 3.9
Std. Dev. R. Lat. 3.6 3.6 5.9 44 5.0 8.9 5.0 4.6
Min. R. Lat. (ms) 0.6 0.6 0.6 0.7 0.7 0.7 0.6 0.6
Max. R. Lat. (ms) 205.5 209.7 219.9 1441 179.5 2275 209.4 198.1
R. Lat. 99th Perc. (ms) 17.8 16.3 28.1 26.0 26.5 57.2 255 21.1

Table B.4.: Experiment results of Benchmark Runs of Experiment AES-NI
RR (GCM, AES-NI disabled)

These values, similar to the measurements with the RR communication, indi-
cate that there is another bounded factor than the CPU which has to be analy-
zed in more detail in future work but is beyond the scope of this thesis. This
hypothesis that there is another bounded factor is also supported by values of
the average CPU system utilization of the Cassandra cluster: for the communi-
cation secured by TLS, the average CPU system utilization of the cluster is be-
low 75% for all cipher suites as well as with and without AES-NI, while the
average CPU system utilization of the cluster without TLS is typically above
80%. Maybe the situation will change in Java version 9 or later versions.

All in all, both cipher suites, the GCM- and the CBC-based cipher suite, are, at
least partially, accelerated by AES-NI in Java version 8. AES-NI has typically
a positive influence on the throughput and latencies of Cassandra using AES-

222

B.1. Experiment AES-NI

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 6,936.1 | 6,099.7 | 5955.6 | 8,279.5 | 7,176.9
Std. Dev. Tp. 576.4 365.9 413.7 675.3 510.6
Avg. U. Lat. (ms) 3.0 3.2 3.1 3.8 3.7
Std. Dev. U. Lat. 2.7 34 3.1 3.0 3.5
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 207.1 139.6 200.7 114.3 215.1
U. Lat. 99th Perc. (ms) 8.3 17.2 9.9 19.6 22.8
Avg. R. Lat. (ms) 3.3 3.6 3.6 41 4.3
Std. Dev. R. Lat. 1.9 2.8 2.8 41 3.5
Min. R. Lat. (ms) 0.7 0.8 0.8 0.7 0.7
Max. R. Lat. (ms) 311.9 132.1 216.6 263.2 123.5
R. Lat. 99th Perc. (ms) 10.0 14.1 12.0 19.9 13.5

Table B.5.: Experiment results of Benchmark Runs of Experiment AES-NI AR-
RR (CBC, AES-NI disabled)

Measurement 1 2 3 4 5
Avg. Tp. (Ops/ sec) 6,905.0 | 6,343.5 | 5926.2 | 8,286.9 | 7,326.6
Std. Dev. Tp. 680.1 522.4 474.3 858.1 533.8
Avg. U. Lat. (ms) 3.3 2.8 3.0 4.0 3.5
Std. Dev. U. Lat. 3.0 2.8 2.3 4.1 3.2
Min. U. Lat. (ms) 0.5 0.5 0.5 0.5 0.5
Max. U. Lat. (ms) 289.7 105.5 202.6 159.4 124.4
U. Lat. 99th Perc. (ms) 114 8.7 7.8 21.3 13.2
Avg. R. Lat. (ms) 3.6 3.2 4.0 4.4 4.0
Std. Dev. R. Lat. 2.3 2.3 3.6 48 2.9
Min. R. Lat. (ms) 0.8 0.8 0.8 0.7 0,7
Max. R. Lat. (ms) 488.6 94.3 221.5 127.9 124.8
R. Lat. 99th Perc. (ms) 12.7 8.7 17.0 20.1 13.7

Table B.6.: Experiment results of Benchmark Runs of Experiment AES-NI AR-
RR (GCM, AES-NI disabled)

based cipher suites. Currently, the CBC-based cipher suite benefits more from
AES-NI. However, AES-NI is not a panacea. In Cassandra, the different com-
munication types benefit differently from AES-NIL. If we, for example, secure
only the RR communication by an AES-based cipher suite, the cipher suites do
not benefit much from AES-NI, because there may be other factors in Cassandra
that limit the performance improvements of AES-NI (Table 12.17).

223

B. Detailed Experiment Results of Analyses of Ditferent Transport Layer Security Implementatic

Measurement 1 2 3
Avg. Tp. (Ops/ sec) 2,871.6 | 1,917.0 | 1,621.8
Std. Dev. Tp. 158.3 105.4 107.6
Avg. U. Lat. (ms) 11.1 17.5 19.2
Std. Dev. U. Lat. 15.7 25.1 26.3
Min. U. Lat. (ms) 0.5 0.5 0.5
Max. U. Lat. (ms) 289.3 855.3 518.1
U. Lat. 99th Perc. (ms) 69.8 118.4 129.9
Avg. R. Lat. (ms) 10.0 16.9 17.7
Std. Dev. R. Lat. 14.9 27.3 26.5
Min. R. Lat. (ms) 0.6 0.7 0.7
Max. R. Lat. (ms) 258.4 351.3 449.2
R. Lat. 99th Perc. (ms) 78.7 115.8 150.6

Table B.7.: Experiment results of Benchmark Runs of Experiment
Netty /OpenSSL (CBC)

B.2. Experiment Netty/OpenSSL

For Experiment Netty /OpenSSL, we tested the performance of Cassandra with
Netty using the original JSSE implementation versus Cassandra with Netty
using OpenSSL (see also: Section 10.2 and Section 12.3.2). In doing so, we used
the experiment setup that we already used in Experiment CBC vs. GCM AR
in order to have comparable results (Table 12.10). The results of Experiment
Netty/OpenSSL are shown in Table 12.19 (see also: Table B.7 and Table B.8).
The results of the unmodified Cassandra are taken from Table 12.11 as well as
Table A.4 and Table A.5 respectively.

In the experiment, the performance of Cassandra experienced a massive perfor-
mance collapse with OpenSSL in comparison to the SunJSSE. The throughput
of the modified Cassandra collapses by 74% for the CBC-based cipher suite and
69% for the GCM-based cipher suite. The update and read latencies increased
by 372% and 287% respectively for the CBC-based cipher suite. The update and
read latencies swell by 268% and 194% for the GCM-based cipher suite.

Thereby, the CPU utilization of the modified Cassandra cluster was much hig-
her compared to the cluster using Netty with the SunJSSE. While the average
CPU utilization of the unmodified cluster was 80% for the CBC-based and 76%
for the GCM-based cipher suite, the average CPU utilization of the modified
cluster was 91% and 92% respectively.

The reason for the bad performance of Netty with OpenSSL seems to be the
high overhead of JNI invocations to OpenSSL (see, e.g.: [175, 184, 292, 315]). In
contrast to typical web server settings where the performance improvements of

224

B.3. Experiment WolfSSL

Measurement 1 2 3
Avg. Tp. (Ops/ sec) 3,456.5 | 2,134.0 | 1,800.7
Std. Dev. Tp. 196.0 116.4 99.0
Avg. U. Lat. (ms) 7.8 15.0 18.6
Std. Dev. U. Lat. 11.1 20.2 27.7
Min. U. Lat. (ms) 04 0.4 0.4
Max. U. Lat. (ms) 158.8 346.7 390.1
U. Lat. 99th Perc. (ms) 55.5 109.1 142.7
Avg. R. Lat. (ms) 8.1 12.8 15.7
Std. Dev. R. Lat. 11.0 20.2 23.1
Min. R. Lat. (ms) 05 0.7 0.7
Max. R. Lat. (ms) 218.5 333.4 389.0
R. Lat. 99th Perc. (ms) 55.6 108.7 124.7

Table B.8.: Experiment results of Benchmark Runs of Experiment
Netty /OpenSSL (GCM)

Netty using OpenSSL were observed in other experiments, Cassandra’s com-
munication behavior with many small requests and the high request ratio per
node in the experiment seems to have led to an adverse interaction between the
JRE, NI, and OpenSSL. For example, a typical request using Cassandra’s native
protocol [59] encompasses only a nine B header and a few hundred B payload,
whereas a HTTP GET request header is often a few hundred B solely. The JNI
invocations seem to be so costly that these invocations offset the performance
improvements of OpenSSL. In sum, the usage of Netty with OpenSSL for the
native AR interface of Cassandra is, currently, not recommended.

B.3. Experiment WolfSSL

In Experiment WolfSSL, we benchmarked the performance of an unmodified
Cassandra cluster versus Cassandra using WolfSSL for the RR communication.
For the experiment setup, we used, again, the same experiment setup like in
Experiment CBC vs. GCM RR (Table 12.10). The experiment results are sum-
marized in Table 12.20 (see also: Table B.9 and Table B.10). In Table 12.20, we
compare the experiment results of Cassandra using WolfSSL with the experi-
ment results of Experiment CBC vs. GCM RR (Table 12.12 and Section A.2).

In the experiment, the average throughput of the Cassandra cluster using WolfSSL
dropped by 10% for the CBC-based and 6% for the GCM-based cipher suite re-
spectively (Table 12.20). The average update latencies increased by 69% for the
CBC- and 50% for the GCM-based cipher suite. In contrast, the average read
latencies decreased by 3% for the CBC- and 16% for the GCM-based cipher

225

B. Detailed Experiment Results of Analyses of Ditferent Transport Layer Security Implementatic

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 4,481.1 | 4476.5 | 3,811.6 | 3,805.7 | 4,428.2 | 4,432.2 | 3,899.0 | 3,889.4
Std. Dev. Tp. 272.4 323.1 283.3 274.9 387.2 408.0 307.7 309.6
Avg. U. Lat. (ms) 7.0 6.3 8.1 6.1 6.7 7.0 8.7 6.1
Std. Dev. U. Lat. 7.2 7.4 8.0 6.6 7.7 7.1 11.0 8.6
Min. U. Lat. (ms) 04 0.4 0.4 04 04 0.4 0.4 0.4
Max. U. Lat. (ms) 308.9 225.6 202.5 150.9 277.6 178.8 192.1 167.3
U. Lat. 99th Perc. (ms) 41.0 43.7 33.8 31.0 38.7 33.6 489 427
Avg. R. Lat. (ms) 4.0 3.8 5.5 45 4.0 42 5.2 4.2
Std. Dev. R. Lat. 33 4.0 6.6 49 4.0 5.3 5.7 6.4
Min. R. Lat. (ms) 0.5 0.5 0.6 0.6 0.5 0.5 0.6 0.6
Max. R. Lat. (ms) 135.3 154.8 118.8 127.2 165.4 158.6 200.5 202.3
R. Lat. 99th Perc. (ms) 17.2 21.8 374 24.5 22.8 379 33.2 25.2

Table B.9.: Experiment results of Benchmark Runs of Experiment
WolfSSL (CBC)

suite. Also, the 99th read percentiles in the single measurements (benchmark
runs) are with 27.5ms (CBC in Table B.9) and 23.6 ms (GCM in Table B.10) lo-
wer on average for the modified Cassandra cluster using WolfSSL than with
30.3ms (CBC in Table A.7) and 28.2ms (GCM in Table A.8) for the unmodi-
fied.

Despite the slightly better read performance of the modified Cassandra clus-
ter, the decrease in throughput and in the update latencies leads to a clear
recommendation: In sum, replacing the SunJSSE by WolfSSL led, similar to
Experiment Netty /OpenSSL (Section 12.3.2), to a lower performance compa-
red to an unmodified Cassandra cluster. However, the performance collapse is
not as high as in Experiment Netty/OpenSSL. As a result, we do not recom-
mend replacing the SunJSSE with WolfSSL in Cassandra from a performance
perspective.

226

B.3. Experiment WolfSSL

Measurement 1 2 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/sec) 39514 | 3,950.0 | 3,632.2 | 36252 | 4,3374 | 43350 | 3,847.8 | 3,8434
Std. Dev. Tp. 2428 | 2318 | 2326 | 2511 | 3320 | 3915 | 2609 | 2668
Avg. U. Lat. (ms) 74 64 82 6.6 75 6.6 82 7.1
Std. Dev. U. Lat. 7.2 6.6 89 7.0 7.0 65 83 84
Min. U. Lat. (ms) 04 04 04 04 04 04 04 04
Max. U. Lat. (ms) 2659 | 207.8 | 2050 | 2150 | 2152 | 1412 | 1723 | 1658
U. Lat. 99th Perc. (ms) 340 | 292 | 444 335 354 | 294 | 426 387
Avg. R.Lat. (ms) 40 3.6 52 47 39 37 46 39
Std. Dev. R. Lat. 40 33 54 45 44 39 53 34
Min. R. Lat. (ms) 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
Max. R. Lat. (ms) 1593 | 1186 | 1474 | 1873 | 2016 | 909 | 1840 | 1504
R. Lat. 99th Perc. (ms) 215 176 | 313 277 | 201 228 | 303 172

Table B.10.: Experiment results of Benchmark Runs of Experiment

WolfSSL (GCM)

227

C. Experiment Results of the
Performance Evaluation of
ATLaS

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/sec) 4,676.2 | 4,696.0 | 4,022.1 | 4,027.6 | 4,553.0 | 4,578.0 | 3,885.8 | 3,902.9
Std. Dev. Tp. 271.8 318.8 201.7 261.4 323.0 353.6 400.1 378.0
Avg. U. Lat. (ms) 3.2 4.1 4.3 4.6 4.0 4.6 3.9 47
Std. Dev. U. Lat. 3.0 4.3 5.8 49 3.7 4.7 4.5 6.1
Min. U. Lat. (ms) 0.4 0.4 04 0.4 04 04 04 0.4
Max. U. Lat. (ms) 203.6 186.1 211.1 138.7 442.6 168.0 195.2 194.7
U. Lat. 99th Perc. (ms) 11.8 234 31.1 28.0 17.7 27.0 241 38.2
Avg. R. Lat. (ms) 4.1 4.6 4.6 4.7 44 5.2 4.0 49
Std. Dev. R. Lat. 4.1 5.9 6.1 5.8 6.3 6.6 4.5 6.0
Min. R. Lat. (ms) 0.6 0.6 0.6 0.6 0.6 0.5 0.6 0.6
Max. R. Lat. (ms) 219.2 137.4 196.6 207.4 139.3 164.5 208.3 209.6
R. Lat. 99th Perc. (ms) 239 39.8 28.6 29.3 35.7 32.6 252 339

Table C.1.: Experiment results of Benchmark Runs of the Performance Evalua-
tion of ATLaS (CBC)

229

C. Experiment Results of the Performance Evaluation of ATLaS

Measurement 1 2 3 4

TLSBench Inst. 1 2 1 2 1 2 1 2
Avg. Tp. (Ops/ sec) 4,189.8 | 4,218.0 | 3,686.5 | 3,700.6 | 4,611.2 | 4,633.4 | 3,888.3 | 3,897.5
Std. Dev. Tp. 390.7 287.2 382.7 369.7 309.7 267.3 262.2 279.8
Avg. U. Lat. (ms) 3.7 5.1 3.8 4.7 3.7 4.3 4.8 5.0
Std. Dev. U. Lat. 4.2 44 3.1 3.9 49 4.0 5.7 5.7
Min. U. Lat. (ms) 0.4 0.4 04 0.4 0.4 0.4 0.4 0.4
Max. U. Lat. (ms) 149.6 199.3 192.9 200.5 320.4 122.2 214.6 217.2
U. Lat. 99th Perc. (ms) 19.5 19.6 16.2 16.7 18.4 20.4 27.6 28.7
Avg. R. Lat. (ms) 37 5.1 3.8 4.2 4.2 4.7 5.4 6.2
Std. Dev. R. Lat. 4.1 5.7 3.5 37 49 54 10.2 9.7
Min. R. Lat. (ms) 0.7 0.6 0.6 0.6 0.6 0.6 0.5 0.6
Max. R. Lat. (ms) 199.0 224.0 204.2 144.6 139.6 148.0 211.9 172.8
R. Lat. 99th Perc. (ms) 15.5 25.6 14.0 15.7 28.6 35.8 427 55.7

Table C.2.: Experiment results of Benchmark Runs of the Performance Evalua-
tion of ATLaS (GCM)

230

Bibliography and Lists

231

Bibliography

[1] Sarbanes-Oxley Act of 2002, 2002.

[2] D.J. Abadi. Query Execution in Column-Oriented Database Systems. PhD
thesis, Department of Electrical Engineering and Computer Science of
the Massachusetts Institute of Technology (MIT), http://cs-www.cs.yale.
edu/homes/dna/papers/abadiphd.pdf, February 2008.

[3] D.J. Abadi. Consistency tradeoffs in modern distributed database system
design — cap is only part of the story. Computer, 45(2):37-42, February
2012.

[4] G. Aceto, A. Botta, W. de Donato, and A. Pescape. Cloud monitoring —a
survey. Computer Networks, 57(9):2093-2115, 2013.

[5] D. Achenbach, M. Gabel, and M. Huber. Mimosecco — a middleware for
secure cloud storage. In D. D. Frey, S. Fukuda, and G. Rock, editors, Im-
proving Complex Systems Today, Advanced Concurrent Engineering, pages
175-181. Springer, 2011.

[6] A. Adams and M. A. Sasse. Users are not the enemy. Communications of
the ACM (CACM), 42(12):40-46, December 1999.

[7] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi,
R. Motwani, U. Srivastava, D. Thomas, and Y. Xu. Two can keep a secret —
a distributed architecture for secure database services. In Proceedings of
the Biennial Conference on Innovative Data Systems Research, 2005 (CIDR’05),
2005.

[8] N. AlFardan, D.]J. Bernstein, K. G. Paterson, B. Poettering, and J. C. N.
Schuldt. On the security of rc4 in tls and wpa. In USENIX Security Sym-
posium, 2013.

[9] G. Alonso, editor. Web services — concepts, architectures and applications.
Data-centric systems and applications. Springer, Berlin, 2004.

[10] A. Alshamsi and T. Saito. A technical comparison of ipsec and ssl. In
Proceedings of the Advanced Information Networking and Applications, 2005
(AINA’05), volume 2, pages 395-398, March 2005.

233

http://cs-www.cs.yale.edu/homes/dna/papers/abadiphd.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadiphd.pdf

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

234

A. M. AlZadjali, A. H. Al-Badi, and S. Ali. An analysis of the security
threats and vulnerabilities of cloud computing in oman. In Proceedings of
the International Conference on Intelligent Networking and Collaborative Sys-
tems 2015 (INCOS'15), pages 423-428, September 2015.

Amazon Web Services Inc. Aws developer forums — ios/android sdk
ssl certificate/public key pinning. https://forums.aws.amazon.com/
thread.jspa?threadlD=157964, 2014. [Online; accessed 2017-02-27].

Amazon Web Services Inc. Amazon ec2 instance types. https://aws.
amazon.com/ec2/instance-types, 2017. [Online; accessed 2017-02-27].

Amazon Web Services Inc. Aws amazon elastic compute cloud documen-
tation. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
concepts.html, 2017. [Online; accessed 2017-02-27].

Amazon Web Services Inc. Aws dynamodb documentation. https://aws.
amazon.com/documentation/dynamodb, 2017. [Online; accessed 2017-
02-27].

Amazon Web Services Inc. Aws simple storage service documenta-
tion. http://aws.amazon.com/documentation/s3, 2017. [Online; acces-
sed 2017-02-27].

Amazon Web Services Inc. Aws web services documentation — signa-
ture version 4 signing process. https://docs.aws.amazon.com/general/
latest/gr/signature-version-4.html, 2017. [Online; accessed 2017-02-27].

L. Amour and W. Petullo. Improving application security through tls-
library redesign. In R. Chakraborty, P. Schwabe, and J. Solworth, editors,
Security, Privacy, and Applied Cryptography Engineering, volume 9354 of
Lecture Notes in Computer Science, pages 75-94. Springer, 2015.

P. Anand, J. Ryoo, H. Kim, and E. Kim. Threat assessment in the cloud
environment — a quantitative approach for security pattern selection. In
Proceedings of the International Conference on Ubiquitous Information Mana-
gement and Communication, 2016 (IMCOM’16), pages 1-8, 2016.

E. Anderson, X. Li, M. Shah, J. Tucek, and J. Wylie. What consistency
does your key-value store actually provide. In Proceedings of the Workshop
on Hot Topics in System Dependability, 2010 (HotDep’10), pages 1-16, 2010.

R. Anderson. Why information security is hard — an economic per-
spective. In Proceedings of the Computer Security Applications Conference,
2001 (ACSAC’01), pages 358-365, December 2001.

https://forums.aws.amazon.com/thread.jspa?threadID=157964
https://forums.aws.amazon.com/thread.jspa?threadID=157964
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/ec2/instance-types
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://aws.amazon.com/documentation/dynamodb
https://aws.amazon.com/documentation/dynamodb
http://aws.amazon.com/documentation/s3
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html

Bibliography

[22] R. Anderson. Security Engineering — A Guide to Building Dependable Distri-
buted Systems. Wiley, 2. edition, 2008.

[23] R. Anderson and T. Moore. The economics of information security.
Science, 314(5799):610-613, 2006.

[24] R. Anderson, F. Stajano, and J.-H. Lee. Security policies. In M. V. Zelko-
witz, editor, Advances in Computers, volume 55 of Advances in Computers,
pages 185-235. Elsevier, 2002.

[25]]J. Andersson, R. de Lemos, S. Malek, and D. Weyns. Modeling dimensi-
ons of self-adaptive software systems. In B. H. C. Cheng, R. de Lemos,
H. Giese, P. Inverardi, and J. Magee, editors, Software Engineering for Self-
Adaptive Systems, pages 27-47. Springer, 2009.

[26] Apache HBase. Apache hbase reference guide. http:/ /hbase.apache.org/
book.html, 2015. [Online; accessed 2017-02-27].

[27] Apache Software Foundation. Apache http server version 2.4. https://
httpd.apache.org/docs/2.4/ssl/ssl_howto.html, November 2015. [On-
line; accessed 2017-02-27].

[28] Apache Software Foundation. Tomcat — apache tomcat native library.
https:/ /tomcat.apache.org/native-doc, 2016. [Online; accessed 2017-02-
27].

[29] G. Apostolopoulos, V. Peris, and D. Saha. Transport layer security — how
much does it really cost? In Proceedings of the Annual Joint Conference of the
IEEE Computer and Communications Societies, 1999 (INFOCOM'99), pages
717-725,1999.

[30] Arcitura Education Inc. Cloudpatterns.org. http://cloudpatterns.org,
2017. [Online; accessed 2017-02-27].

[31] Arcitura Education Inc. Cloudpatterns.org — cloud storage data mana-
gement. http://cloudpatterns.org/design_patterns/cloud_storage_data_
management, 2017. [Online; accessed 2017-02-27].

[32] Arcitura Education Inc. Cloudpatterns.org — cloud storage mana-
gement portal. http://cloudpatterns.org/mechanisms/cloud_storage-
management_portal, 2017. [Online; accessed 2017-02-27].

[33] W. W. Armour, N. Bukhari, W. Butler, A. A. Cardenas, P. Carey, K. Co-
ble, V. Grimaldi, M. F. Islam, J. Kickenson, J. Koilpillai, P. Kumar, N. M.
Landreville, A. L. Lee, C.-Y. Lee, C. Lim, K. Mehta, K. Ruan, A. Roy, M. A.
Salim, and K. E. Stavinoha. NIST-SP 500-299 — Cloud Computing Security
Reference Architecture (Draft), 2011.

235

http://hbase.apache.org/book.html
http://hbase.apache.org/book.html
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://httpd.apache.org/docs/2.4/ssl/ssl_howto.html
https://tomcat.apache.org/native-doc
http://cloudpatterns.org
http://cloudpatterns.org/design_patterns/cloud_storage_data_management
http://cloudpatterns.org/design_patterns/cloud_storage_data_management
http://cloudpatterns.org/mechanisms/cloud_storage_management_portal
http://cloudpatterns.org/mechanisms/cloud_storage_management_portal

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

236

M. Atighetchi, N. Soule, P. Pal, J. Loyall, A. Sinclair, and R. Grant. Safe
configuration of tls connections. In Proceedings of the Conference on Com-
munications and Network Security, 2013 (CNS’13), pages 415-422, October
2013.

J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson, J.-M.
Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore — providing scalable,
highly available storage for interactive services. In Proceedings of the Con-
ference on Innovative Data Systems Research, 2011 (CIDR’11), volume 11,
pages 223-234, 2011.

H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predicta-
ble datacenter networks. In Proceedings of of the ACM Special Interest Group
on Data Communication, 2011 (SIGCOMM’11), pages 242-253, 2011.

M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently
searchable encryption. In A. Menezes, editor, Advances in Cryptology —
CRYPTO 2007, volume 4622 of Lecture Notes in Computer Science, pages
535-552. Springer, 2007.

M. Bellare and C. Namprempre. Authenticated encryption — relations
among notions and analysis of the generic composition paradigm. In
T. Okamoto, editor, Advances in Cryptology (ASIACRYPT) 2000, volume
1976 of Lecture Notes in Computer Science, pages 531-545. Springer, 2000.

D. Bermbach. Benchmarking Eventually Consistent Distributed Storage
Systems. PhD thesis, Department of Economics and Management
of the Karlsruhe Institute of Technology (KIT), http://digbib.ubka.
uni-karlsruhe.de/volltexte/documents /3143625, February 2014.

D. Bermbach, J. Kuhlenkamp, A. Dey, S. Sakr, and R. Nambiar. Towards
an extensible middleware for database benchmarking. In R. Nambiar and
M. Poess, editors, Performance Characterization and Benchmarking. Traditi-
onal to Big Data, volume 8904 of Lecture Notes in Computer Science, pages
82-96. Springer, 2015.

D. Bermbach, S. Mueller, J. Eberhardt, and S. Tai. Informed schema de-
sign for column store-based database services. In Proceedings of the In-
ternational Conference on Service-Oriented Computing and Applications, 2015
(SOCA’15), 2015.

D. Bermbach, S. Sakr, and L. Zhao. Towards comprehensive measure-
ment of consistency guarantees for cloud-hosted data storage services.
In Proceedings of TPC Technology Conference, 2013 (TPCTC’13), 2013.

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3143625
http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/3143625

Bibliography

[43] D. Bermbach and S. Tai. Eventual consistency — how soon is even-
tual? an evaluation of amazon s3’s consistency behavior. In Procee-
dings of the Workshop on Middleware for Service Oriented Computing, 2011
(MW4S0C’11), pages 1-6, 2011.

[44] D. Bermbach and S. Tai. Benchmarking eventual consistency — lessons
learned from long-term experimental studies. In Proceedings of the Inter-
national Conference on Cloud Engineering, 2014 (IC2E’14). IEEE, 2014.

[45] V. Bernat. Ssl/tls & perfect forward secrecy. http://vincent.bernat.im/
en/blog/2011-ssl-perfect-forward-secrecy.html, November 2011. [On-
line; accessed 2017-02-27].

[46] E. Bertino. Data security. Data & Knowledge Engineering, 25(1-2):199-216,
1998.

[47] E. Bertino, S. Jajodia, and P. Samarati. Database security — research and
practice. Information Systems, 20(7):537-556, 1995.

[48] E. Bertino and R. Sandhu. Database security — concepts, approaches, and
challenges. Transactions on Dependable and Secure Computing, 2(1):2-19,
January 2005.

[49] T. Bingmann. Speedtest and comparsion of open-source crypto-
graphy libraries and compiler flags. https://panthema.net/2008/
0714-cryptography-speedtest-comparison/, 2008. [Online; accessed
2017-02-27].

[50] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. How is the weather
tomorrow? — towards a benchmark for the cloud. In Proceedings of Inter-
national Workshop on Testing Database Systems, 2009 (DBTest’09), pages 1-6,
2009.

[51] B. Blakley and C. Heath. Security design patterns. http://pubs.
opengroup.org/onlinepubs /9299969899 /toc.pdf, 2004. [Online; acces-
sed 2017-02-27].

[52] V. Braberman, N. D'Ippolito, J. Kramer, D. Sykes, and S. Uchitel.
Morph - a reference architecture for configuration and behaviour self-
adaptation. In Proceedings of the International Workshop on Control Theory
for Software Engineering, 2015 (CTSE’15), pages 9-16, 2015.

[53] E. A. Brewer. Towards robust distributed systems. In ACM symposium on
Principles of distributed computing, 2000 (PODC’00), 2000.

237

http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html
https://panthema.net/2008/0714-cryptography-speedtest-comparison/
https://panthema.net/2008/0714-cryptography-speedtest-comparison/
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf
http://pubs.opengroup.org/onlinepubs/9299969899/toc.pdf

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

238

R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic qos management and optimization in service-based
systems. Transactions on Software Engineering, 37(3):387-409, May 2011.

K. L. Calvert and M. J. Donahoo. TCP/IP Sockets in Java — Practical Guide

for Programmers. Elsevier, Burlington, 2. edition, 2001.

V. Cardellini, E. Casalicchio, V. Grassi, S. Ilannucci, F. Lo Presti, and R. Mi-
randola. Moses — a framework for qos driven runtime adaptation of
service-oriented systems. Transactions on Software Engineering, 38(5):1138—
1159, September 2012.

Cassandra Project. Cassandra wiki — architecturegossip. https://
wiki.apache.org/cassandra/ ArchitectureGossip, 2013. [Online; accessed
2017-02-27].

Cassandra Project. Cassandra wiki — architectureinternals. http://wiki.
apache.org/cassandra/Architecturelnternals, 2015. [Online; accessed
2017-02-27].

Cassandra Project. Cgql binary protocol v3. https://github.com/
apache/cassandra/blob/trunk/doc/native_protocol v3.spec, 2016. [On-
line; accessed 2017-02-271].

R. Cattell. Scalable sql and nosql data stores. ACM SIGMOD Record,
39(4):12-27, May 2011.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. Bigtable —a distributed storage sy-
stem for structured data. ACM Transactions on Computer Systems (TOCS),
26(2):1-26, June 2008.

Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches
on remote encrypted data. In J. Ioannidis, A. Keromytis, and M. Yung,
editors, Applied Cryptography and Network Security, volume 3531 of Lecture
Notes in Computer Science, pages 442-455. Springer, 2005.

Y. Chen and R. Sion. On securing untrusted clouds with cryptography.
In Proceedings of the ACM workshop on Privacy in the electronic society, 2010
(WPES'10), pages 109-114, 2010.

Y. Chen and R. Sion. Costs and security in clouds. In S. Jajodia, K. Kant,
P. Samarati, A. Singhal, V. Swarup, and C. Wang, editors, Secure Cloud
Computing, pages 31-56. Springer, 2014.

https://wiki.apache.org/cassandra/ArchitectureGossip
https://wiki.apache.org/cassandra/ArchitectureGossip
http://wiki.apache.org/cassandra/ArchitectureInternals
http://wiki.apache.org/cassandra/ArchitectureInternals
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v3.spec
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v3.spec

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Bibliography

B. Cheng, R. de Lemos, H. Giese, P. Inverardi, J]. Magee,]. Anders-
son, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serug-
endo, S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Kar-
sai, H. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. MAiller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Soft-
ware engineering for self-adaptive systems: A research roadmap. In B. H.
Cheng, R. de Lemos, H. Giese, P. Inverardi, and]. Magee, editors, Soft-
ware Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in
Computer Science, pages 1-26. Springer Berlin Heidelberg, 2009.

Cloud Security Alliance. Security guidance for critical areas of focus
in cloud computing v3.0. https://cloudsecurityalliance.org/guidance/
csaguide.v3.0.pdf, 2011. [Online; accessed 2015-12-31].

Cloud Security Alliance. The notorious nine — cloud computing top thre-
ats in 2013. https://downloads.cloudsecurityalliance.org/initiatives/
top_threats/ The_Notorious_Nine_Cloud _Computing_Top_Threats_in_
2013.pdf, 2013. [Online; accessed 2017-02-27].

Cloud Security Alliance. The treacherous 12 — cloud computing top
threats in 2016. https://downloads.cloudsecurityalliance.org/assets/
research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.
pdf, 2016. [Online; accessed 2017-02-27].

C. Coarfa, P. Druschel, and D. S. Wallach. Performance analysis of tls
web servers. ACM Transactions on Computer Systems (TOCS), 24(1):39-69,
February 2006.

A. Cockcroft. Planet cassandra — case study netflix. http://
planetcassandra.org/blog/case-study-netflix, 2013. [Online; accessed
2015-12-31].

Competence Center for Applied Security Technologies (KASTEL). Kas-
tel — evaluation report. Technical report, Competence Center for Ap-
plied Security Technologies (KASTEL), Karlsruhe Institute of Techno-
logy (KIT), Karlsruhe, 2014.

Competence Center for Applied Security Technologies (KASTEL). Kas-
tel — final report. Technical report, Competence Center for Applied Se-
curity Technologies (KASTEL), Karlsruhe Institute of Technology (KIT),
Karlsruhe, 2016.

B. E. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon,
H.-A.Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts — yahoo!’s hos-
ted data serving platform. Proceedings of the VLDB Endowment, 1(2):1277—
1288, August 2008.

239

https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/initiatives/top_threats/The_Notorious_Nine_Cloud_Computing_Top_Threats_in_2013.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
http://planetcassandra.org/blog/case-study-netflix
http://planetcassandra.org/blog/case-study-netflix

Bibliography

[74] B. FE. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In Proceedings of the
ACM symposium on Cloud computing (SoCC’10), pages 143-154, 2010.

[75] L.Coppolino, S. D’ Antonio, G. Mazzeo, and L. Romano. Cloud security —
emerging threats and current solutions. Computers & Electrical Engineer-
ing, 2016.

[76] E. Costlow. Diagnosing tls, ssl, and https. https://blogs.oracle.com/
java-platform-group /entry/diagnosing_tls_ssl_and_https, 2014. [Online;
accessed 2016-03-15].

[77] curl Project. = Compare ssl libraries. http://curl.haxx.se/docs/
ssl-compared.html, 2016. [Online; accessed 2017-02-27].

[78] Datastax. Datastax — apache cassandra 2.1 — ssl encryption.
http://docs.datastax.com/en/cassandra/2.1/cassandra/security /
secureSslEncryptionTOC.html, November 2015. [Online; accessed
2015-12-31].

[79] Datastax. Datastax — apache cassandra 2.1. http://docs.datastax.com/
en/cassandra/2.1/cassandra/gettingStartedCassandralntro.html, 2016.
[Online; accessed 2016-01-06].

[80] Datastax. Datastax — apache cassandra 2.1 - security. http:
//docs.datastax.com/en/cassandra/2.1/cassandra/security /
securityTOC.html, November 2016. [Online; accessed 2016-04-16].

[81] Datastax. Datastax — apache cassandra 2.1 — snitches. http:
/ /docs.datastax.com/en/cassandra/2.1/cassandra/architecture/
architectureSnitchesAbout_c.html, May 2016. [Online; accessed 2016-07-
05].

[82] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, and P. Samarati. Data-
base security and privacy. In H. Topi and A. Tucker, editors, Computing
Handbook — Information Systems and Information Technology, volume 2, pa-
ges 1-19. Taylor & Francis, 3. edition, 2013.

[83] S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Data security
issues in cloud scenarios. In Proceedings of the International Conference on
Information Systems Security, 2015 (ICISS’15), pages 16-20, 2015.

[84] B. De Win, R. Scandariato, K. Buyens, J. Grégoire, and W. Joosen. On
the secure software development process — clasp, {SDL} and touchpoints
compared. Information and Software Technology, 51(7):1152-1171, 2009.
Special Section: Software Engineering for Secure SystemsSoftware En-
gineering for Secure Systems.

240

https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
http://curl.haxx.se/docs/ssl-compared.html
http://curl.haxx.se/docs/ssl-compared.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/secureSslEncryptionTOC.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/gettingStartedCassandraIntro.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/gettingStartedCassandraIntro.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/securityTOC.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/securityTOC.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/security/securityTOC.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html
http://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureSnitchesAbout_c.html

Bibliography

[85] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo —
amazon’s highly available key-value store. In Proceedings of the ACM SI-
GOPS symposium on Operating systems principles, 2007 (SOSP’07), pages
205-220, 2007.

[86] D. Dhillon. Developer-driven threat modeling — lessons learned in the
trenches. Security & Privacy, 9(4):41-47, July 2011.

[87] T. Dierks and E. Rescorla. Rfc5246 — the transport layer security (tls) pro-
tocol version 1.2, 2008. [Online; accessed 2015-12-31].

[88] S. Edlich. Nosgl — your ultimate guide to the non-relational universe
http:/ /www.nosql-database.org/, March 2012. [Online; accessed 2015-
12-31].

[89] J. Ellis. Leveled compaction in apache cassandra. http://www.datastax.
com/dev/blog/leveled-compaction-in-apache-cassandra, October 2011.
[Online; accessed 2015-12-31].

[90] ENISA European Network and Information Security Agency.
Enisa threat landscape 2015. https:/ /www.enisa.europa.
eu/activities/risk-management/evolving-threat-environment/
enisa-threat-landscape/etl2015/etl2015/at_download /fullReport,
January 2016.

[91] T. Erl, R. Cope, and A. Naserpour, editors. Cloud Computing Design Pat-
terns. Prentice Hall, 2015.

[92] European Network and Information Security Agency (ENISA). Cloud
computing — benefits, risks and recommendations for informa-
tion security. http://www.enisa.europa.eu/act/rm/files/deliverables/
cloud-computing-risk-assessment/at_download/fullReport, November
2009. [Online; accessed 2015-12-31].

[93] European Network and Information Security Agency (ENISA).
Algorithms, key sizes and parameters report. http:/ /www.
enisa.europa.eu/activities /identity-and-trust/library/deliverables/
algorithms-key-sizes-and-parameters-report/at_download/fullReport,
October 2013. [Online; accessed 2016-04-21].

[94] European Network and Information Security Agency (ENISA).
Cloud security guide for smes. https:/ /www.enisa.europa.eu/
activities /Resilience-and-CIIP/cloud-computing/security-for-smes/
cloud-security-guide-for-smes/at_download /fullReport, April 2015.
[Online; accessed 2015-12-31].

241

http://www.nosql-database.org/
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
http://www.datastax.com/dev/blog/leveled-compaction-in-apache-cassandra
https://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape/etl2015/etl2015/at_download/fullReport
https://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape/etl2015/etl2015/at_download/fullReport
https://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape/etl2015/etl2015/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/act/rm/files/deliverables/cloud-computing-risk-assessment/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report/at_download/fullReport
http://www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-sizes-and-parameters-report/at_download/fullReport
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/security-for-smes/cloud-security-guide-for-smes/at_download/fullReport
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/security-for-smes/cloud-security-guide-for-smes/at_download/fullReport
https://www.enisa.europa.eu/activities/Resilience-and-CIIP/cloud-computing/security-for-smes/cloud-security-guide-for-smes/at_download/fullReport

Bibliography

[95] S.Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith. Rethinking ssl de-
velopment in an appified world. In Proceedings of the ACM Conference on
Computer and Communications Security, 2013 (CCS’13), pages 49-60, 2013.

[96] Federal Office for Information Security (BSI). Ueberblickspapier online-
speicher. https:/ /www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Grundschutz/Download /Ueberblickspapier_Online-Speicher_pdf.pdf?
_blob=publicationFile, November 2012. [Online; accessed 2016-03-31].

[97] Federal Office for Information Security (BSI). Sichere nutzung der cloud -
schritt fuer schritt von der strategie bis zum vertrag. https://www.bsi.
bund.de/SharedDocs/Downloads/DE/BSI/Mindestanforderungen/
Sichere_ Nutzung_Cloud_Dienste.pdf?__blob=publicationFile, = October
2014. [Online; accessed 2015-12-31].

[98] C. Fehling. Cloud Computing Patterns — Identification, Design, and
Application. PhD thesis, Faculty of Computer Science, Electrical
Engineering and Information Technology of the University Stutt-
gart, http:/ /elib.uni-stuttgart.de/opus/volltexte/2015/10350 /pdf/
dissertation_fehling.pdf, October 2015.

[99] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter. Cloud
Computing Patterns — Fundamentals to Design, Build, and Manage Cloud Ap-
plications. Springer, 2014.

[100] E.B.Fernandez. Security patterns in practice — Designing secutre architectures
using software patterns. Wiley, Chichester, 1. edition, 2013.

[101] E. B. Fernandez, R. Monge, and K. Hashizume. Building a security refe-
rence architecture for cloud systems. Requirements Engineering, 21(2):225-
249, 2016.

[102] E. B. Fernandez, N. Yoshioka, and H. Washizaki. Patterns for cloud fire-
walls. In Proceedings of the AsianPLoP (pattern languages of programs), 2014.

[103] E.B. Fernandez, N. Yoshioka, and H. Washizaki. Patterns for security and
privacy in cloud ecosystems. In Proceedings of the Workshop on Evolving
Security and Privacy Requirements Engineering, 2015 (ESPRE’15), 2015.

[104] M. Ficco, F. Palmieri, and A. Castiglione. Modeling security require-
ments for cloud-based system development. Concurrency and Computa-
tion: Practice and Experience, 27(8):2107-2124, 2015.

[105] D. Firesmith. Specifying reusable security requirements. JOURNAL OF
OBJECT TECHNOLOGY, 3(1):61-75, 2004.

242

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Download/Ueberblickspapier_Online-Speicher_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Download/Ueberblickspapier_Online-Speicher_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Download/Ueberblickspapier_Online-Speicher_pdf.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Mindestanforderungen/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Mindestanforderungen/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Mindestanforderungen/Sichere_Nutzung_Cloud_Dienste.pdf?__blob=publicationFile
http://elib.uni-stuttgart.de/opus/volltexte/2015/10350/pdf/dissertation_fehling.pdf
http://elib.uni-stuttgart.de/opus/volltexte/2015/10350/pdf/dissertation_fehling.pdf

Bibliography

[106] Fraunhofer Institute for Secure Information Technology (SIT). On the se-
curity of cloud storage services. http:/ /www.sit.fraunhofer.de/content/
dam/sit/en/studies/Cloud-Storage-Security_a4.pdf, March 2012. [On-
line; accessed 2016-03-31].

[107] S. Friedl, A. Popov, A. Langley, and E. Stephan. Rfc7301 - transport layer
security (tls) application-layer protocol negotiation extension. https://
tools.ietf.org/html/rfc7507, 2014. [Online; accessed 2015-12-31].

[108] T. Galibus, V. V. Krasnoproshin, R. de Oliveira Albuquerque, and E. P.
de Freitas. Elements of Cloud Storage Security - Concepts, Designs and Opti-
mized Practices. Springer, 2016.

[109] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems — The
complete book. An Alan R. Apt book. Prentice Hall, Upper Saddle River,
2002.

[110] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rain-
bow — architecture-based self-adaptation with reusable infrastructure.
Computer, 37(10):46-54, 2004.

[111] D. Garlan, B. Schmerl, and J. Chang. Using gauges for architecture-based
monitoring and adaptation. 2001.

[112] C. Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the Symposium on Theory of Computing, 2009 (STOC’09), pages
169-178, 2009.

[113] M. Gertz and M. Gandhi. Security re-engineering for databases — con-
cepts and techniques. In Handbook of Database Security, pages 267-296.
Springer, 2008.

[114] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Pro-
ceedings of the Symposium on Operating Systems Principles, 2003 (SOSP’03),
pages 2943, 2003.

[115] Google Inc. What is google cloud datastore? https://cloud.google.com/
datastore/docs/concepts/overview, 2017. [Online; accessed 2017-02-27].

[116] Google Inc. What is google cloud storage? https://cloud.google.com/
storage/docs/overview, 2017. [Online; accessed 2017-02-27].

[117] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In Proceedings of the
ACM Conference on Computer and Communications Security, 2006 (CCS’06),
pages 89-98, 2006.

243

http://www.sit.fraunhofer.de/content/dam/sit/en/studies/Cloud-Storage-Security_a4.pdf
http://www.sit.fraunhofer.de/content/dam/sit/en/studies/Cloud-Storage-Security_a4.pdf
https://tools.ietf.org/html/rfc7507
https://tools.ietf.org/html/rfc7507
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/datastore/docs/concepts/overview
https://cloud.google.com/storage/docs/overview
https://cloud.google.com/storage/docs/overview

Bibliography

[118] M. Green and M. Smith. Developers are users too — designing
crypto and security apis that busy engineers and sysadmins can
use securely (talk at the hotsec’l5). https://www.usenix.org/sites/
default/files/conference/protected-files /hotsec15_slides_green.pdf, Au-
gust 2015. [Online; accessed 2017-02-27].

[119] B. Gregg. Thinking methodically about performance. Queue, 10(12):40-
51, December 2012.

[120] L Grigorik. High-performance browser networking. OReilly, Beijing, 1. edi-
tion, 2013.

[121] I. Grigorik. = High-performance browser networking (online edi-
tion) — tls record size. https://hpbn.co/transport-layer-security-tls/
#optimize-tls-record-size, 2013. [Online; accessed 2016-06-24].

[122] B. Grobauer, T. Walloschek, and E. Stocker. Understanding cloud com-
puting vulnerabilities. Security & Privacy, 9(2):50-57, March 2011.

[123] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. A frame-
work for native multi-tenancy application development and manage-
ment. In International Conference on E-Commerce Technology and the Interna-
tional Conference on Enterprise Computing, E-Commerce, and E-Services, 2007
(CEC/EEE’07), pages 551-558, 2007.

[124] P. Gutmann. Rfc7366 — encrypt-then-mac for transport layer security
(tls) and datagram transport layer security (dtls). https://tools.ietf.org/
html/rfc7366, 2014. [Online; accessed 2015-12-31].

[125] H. Hacigtimiis, B. R. Iyer, C. Li, and S. Mehrotra. Executing sql over
encrypted data in the database-service-provider model. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2002,
pages 216-227, 2002.

[126] C. Haley, R. Laney,]. Moffett, and B. Nuseibeh. Security requirements
engineering — a framework for representation and analysis. Transactions
on Software Engineering, 34(1):133-153, 2008.

[127] HAProxy Project. Haproxy starter guide (version 1.7-dev3 — ssl. hittp:
/ /cbonte.github.io/haproxy-dconv/intro-1.7. html#3.3.2, 2016. [Online;
accessed 2017-02-24].

[128] A.Hergenroeder, C. Haas, R. Bless, D. Dudek, M. Zitterbart, T. Braeuchle,
O. Raabe, S. Greiner, B. Beckert, K. Bao, and H. Schmeck. Bedrohungs-
analyse eines Smart-Home-Szenarios zur Visualisierung von Energiever-
brauchsdaten im Vorfeld einer Steuerentscheidung. http://telematics.

244

https://www.usenix.org/sites/default/files/conference/protected-files/hotsec15_slides_green.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/hotsec15_slides_green.pdf
https://hpbn.co/transport-layer-security-tls/#optimize-tls-record-size
https://hpbn.co/transport-layer-security-tls/#optimize-tls-record-size
https://tools.ietf.org/html/rfc7366
https://tools.ietf.org/html/rfc7366
http://cbonte.github.io/haproxy-dconv/intro-1.7.html#3.3.2
http://cbonte.github.io/haproxy-dconv/intro-1.7.html#3.3.2
http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf
http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf
http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf

Bibliography

tm.kit.edu/publications/Files/562/report_de.pdf, September 2014. [On-
line; accessed 2016-10-27].

[129] M. Howard and S. Lipner. The Security Development Lifecycle SDL — A
Process for Developing Demonstrably More Secure Software. Microsoft Press,
April 2006.

[130] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bihr. Model-based
self-aware performance and resource management using the descartes
modeling language. Transactions on Software Engineering, PP(99), 2017.

[131] S. A. Hussain, M. Fatima, A. Saeed, 1. Raza, and R. K. Shahzad. Multilevel
classification of security concerns in cloud computing. Applied Computing
and Informatics, pages 57-65, 2016.

[132] IBM Corp. IBM cloud computing reference architecture
4.0. https:/ /www.ibm.com/developerworks/community/
groups/service/html/communityoverview?communityUuid=
033c9a82-ce55-4dd5-99e4-£a2b4b939585, 2014. [Online; accessed
2016-10-31].

[133] IBM Corp. Security reference for ibm sdk, java technology edition,
version 8 — ibmjsse2 provider. https://www-01.ibm.com/support/
knowledgecenter /SSYKE2_8.0.0/com.ibm.java.security.component.80.
doc/security-component/jsse2Docs /ibmjsse2.html, 2016. [Online;
accessed 2016-05-31].

[134] J. Ingalsbe, L. Kunimatsu, T. Baeten, and N. Mead. Threat modeling —
diving into the deep end. Software, 25(1):28-34, January 2008.

[135] International Telecommunication Union (ITU). Recommendation x.800 —
security architecture for open systems interconnection for ccitt applica-
tions. http://www.itu.int/rec/T-REC-X.800-199103-1/en, March 1991.
[Online; accessed 2015-12-31].

[136] Internet Assigned Numbers Authority (IANA). Tls cipher suite regi-
stry. http:/ /www.iana.org/assignments/tls-parameters/ tls-parameters.
xhtml, 2015. [Online; accessed 2015-12-31].

[137] M. Irfan, M. Usman, Y. Zhuang, and S. Fong. A critical review of security
threats in cloud computing. In International Symposium on Computational
and Business Intelligence, 2015 (ISCBI'15), pages 105-111, 2015.

[138] C. Irvine and T. Levin. Quality of security service. In Proceedings of the
Workshop on New Security Paradigms, 2000 (NSPW "00), pages 91-99, 2000.

245

http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf
http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf
http://telematics.tm.kit.edu/publications/Files/562/report_de.pdf
https://www.ibm.com/developerworks/community/groups/service/html/communityoverview?communityUuid=033c9a82-ce55-4dd5-99e4-fa2b4b939585
https://www.ibm.com/developerworks/community/groups/service/html/communityoverview?communityUuid=033c9a82-ce55-4dd5-99e4-fa2b4b939585
https://www.ibm.com/developerworks/community/groups/service/html/communityoverview?communityUuid=033c9a82-ce55-4dd5-99e4-fa2b4b939585
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ibmjsse2.html
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ibmjsse2.html
https://www-01.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.security.component.80.doc/security-component/jsse2Docs/ibmjsse2.html
http://www.itu.int/rec/T-REC-X.800-199103-I/en
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Bibliography

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

246

ISO/IEC. Information technology — security techniques — information
security risk management (iso/iec 27005:2011), 2011.

ISO/IEC. Systems and software engineering — systems and software qua-
lity requirements and evaluation (square) — system and software quality
models (iso/iec 25010:2011), 2011.

ISO/IEC. Information technology — security techniques — informa-
tion security management systems — overview and vocabulary (iso/iec
27000:2014), 2014.

S. Jajodia. Security and privacy of data in a cloud. In W. Jonker and
M. Petkovi¢, editors, Secure Data Management — Proceedings of the VLDB
Workshop, SDM 2013, pages 18-22. Springer, 2014.

B. Jennings, S. V. D. Meer, S. Balasubramaniam, D. Botvich, M. O. Foghlu,
W. Donnelly, and J. Strassner. Towards autonomic management of com-
munications networks. IEEE Communications Magazine, 45(10):112-121,
October 2007.

M. B. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko. Com-
parison of performance of web services, ws-security, rmi, and rmi-ssl.
Journal of Systems and Software, 79(5):689-700, 2006.

S. Kamara and K. Lauter. Cryptographic cloud storage. In R. Sion,
R. Curtmola, S. Dietrich, A. Kiayias,]. Miret, K. Sako, and F. Sebé, editors,
Financial Cryptography and Data Security, volume 6054 of Lecture Notes in
Computer Science, pages 136-149. Springer, 2010.

S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable sym-
metric encryption. In Proceedings of the ACM Conference on Computer and
Communications Security, 2012 (CCS512), pages 965-976, 2012.

K. Kant, R. Iyer, and P. Mohapatra. Architectural impact of secure soc-
ket layer on internet servers. In Proceedings of International Conference on
Computer Design, 2000, pages 7-14, 2000.

J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman &
Hall/CRC cryptography and network security. Chapman & Hall/CRC,
Boca Raton, 2008.

L. M. Kaufman. Data security in the world of cloud computing. Security
& Privacy, 7(4):61-64, July 2009.

J. Kephart and D. Chess. The vision of autonomic computing. Computer,
36(1):41-50, January 2003.

Bibliography

[151] M. Klems. Experiment-Driven Evaluation of Cloud-based Distributed Systems.
PhD thesis, Faculty of Electrical Engineering and Computer Science of
the TU Berlin (TUB), May 2016.

[152] M. Klems and H. Anh Lé. Position paper — cloud system deployment and
performance evaluation tools for distributed databases. In Proceedings
of the International Workshop on Hot topics in Cloud Services, 2013 (HotTo-
piCS’13), pages 63-70, 2013.

[153] M. Klems, D. Bermbach, and R. Weinert. A runtime quality measure-
ment framework for cloud database service systems. In Proceedings of
the International Conference on Quality of Information and Communications
Technology, 2012 (QUATIC’12), pages 38-46, 2012.

[154] J. Koehler. Tunable Security for Deployable Data Outsourcing. PhD thesis,
Department of Informatics of the Karlsruhe Institute of Technology (KIT),
June 2015.

[155] J. Koehler and K. Juenemann. Securus — from confidentiality and access
requirements to data outsourcing solutions. In M. Hansen, J.-H. Hoep-
man, R. Leenes, and D. Whitehouse, editors, Privacy and Identity Manage-
ment for Emerging Services and Technologies, volume 421 of IFIP Advances in
Information and Communication Technology, pages 139-149. Springer, 2014.

[156] L. Kohnfelder and P. Garg. The threats to our pro-
ducts. http:/ /blogs.msdn.com/ cfs-filesystemfile.ashx/__key/
communityserver-components-postattachments /00-09-88-74-86/

The-threats-to-our-products.docx, April 1999. [Online; accessed
2015-12-31].

[157] D. Kossmann, T. Kraska, and S. Loesing. An evaluation of alternative
architectures for transaction processing in the cloud. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 2010,
pages 579-590, 2010.

[158] S. Kounev, E Brosig, and N. Huber. The descartes modeling lan-

guage. http:/ /opus.bibliothek.uni-wuerzburg.de/files /10488 /
DML-TechReport-1.0.pdf, October 2014. [Online; accessed 2016-12-
16].

[159] S. Kounev, N. Huber, F. Brosig, and X. Zhu. A model-based approach to
designing self-aware it systems and infrastructures. Computer, 49(7):53—
61, July 2016.

[160] J. Kramer and J. Magee. Self-managed systems — an architectural chal-
lenge. In Future of Software Engineering, 2007 (FOSE’07), pages 259-268,
May 2007.

247

http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-components-postattachments/00-09-88-74-86/The-threats-to-our-products.docx
http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-components-postattachments/00-09-88-74-86/The-threats-to-our-products.docx
http://blogs.msdn.com/cfs-filesystemfile.ashx/__key/communityserver-components-postattachments/00-09-88-74-86/The-threats-to-our-products.docx
http://opus.bibliothek.uni-wuerzburg.de/files/10488/DML-TechReport-1.0.pdf
http://opus.bibliothek.uni-wuerzburg.de/files/10488/DML-TechReport-1.0.pdf

Bibliography

[161] T. Kraska and B. Trushkowsky. The new database architectures. Internet
Computing, 17(3):72-75, 2013.

[162] H. Krawczyk. The order of encryption and authentication for protecting
communications (or — how secure is ssl?). In J. Kilian, editor, Advances
in Cryptology — CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 310-331. Springer, 2001.

[163] H. Krawczyk. Perfect forward secrecy. In H. van Tilborg and S. Jajodia,
editors, Encyclopedia of Cryptography and Security, pages 921-922. Sprin-

ger, 2011.
[164] J. Kreps. Project voldemort - scaling simple storage
at linkedin. http:/ /blog.linkedin.com/2009/03/20/

project-voldemort-scaling-simple-storage-at-linkedin, 2009. [Online;
accessed 2017-02-26].

[165] C.Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker. A survey
on engineering approaches for self-adaptive systems. Pervasive and Mobile
Computing, 17, Part B(0):184-206, 2015.

[166]]J. Kuhlenkamp, M. Klems, and O. Roess. Benchmarking scalability and
elasticity of distributed database systems. Proceedings of the VLDB Endo-
wment, 7(13), 2014.

[167] A. Lakshman and P. Malik. Cassandra — a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2), 2010.

[168] C. Lamprecht and A. van Moorsel. Runtime security adaptation using
adaptive ssl. In Proceedings of the Pacific Rim International Symposium on
Dependable Computing, 2008 (PRDC’08), pages 305-312, 2008.

[169] C.Lamprechtand A.P. A. Van Moorsel. Adaptive ssl: Design, implemen-
tation and overhead analysis. In Proceedings of the International Conference
on Self-Adaptive and Self-Organizing Systems, 2007 (SASO’07), pages 289-
294, 2007.

[170] C. J. Lamprecht. Adaptive Security. PhD thesis, School of Computing
Science of the Newcastle University, https://theses.ncl.ac.uk/dspace/
bitstream /10443 /1435/1/Lamprecht, %20C.].%2012.pdf, April 2012.

[171] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann. What are you
paying for? performance benchmarking for infrastructure-as-a-service
offerings. In Proceedings of the International Conference on Cloud Computing,
2011 (CLOUD’11), pages 484-491, 2011.

248

http://blog.linkedin.com/2009/03/20/project-voldemort-scaling-simple-storage-at-linkedin
http://blog.linkedin.com/2009/03/20/project-voldemort-scaling-simple-storage-at-linkedin
https://theses.ncl.ac.uk/dspace/bitstream/10443/1435/1/Lamprecht,%20C.J.%2012.pdf
https://theses.ncl.ac.uk/dspace/bitstream/10443/1435/1/Lamprecht,%20C.J.%2012.pdf

Bibliography

[172] F. Liu, J. Tong, J. Mao, R. B. Bohn,]. V. Messina, M. L. Badger, and D. M.
Leaf. NIST-SP 500-292 — Cloud Computing Reference Architecture, 2011.

[173] A.K.Maji, S. Mitra, B. Zhou, S. Bagchi, and A. Verma. Mitigating interfe-
rence in cloud services by middleware reconfiguration. In Proceedings of
the International Middleware Conference, 2014 (Middleware’14), pages 277—
288, 2014.

[174] T. Mather, S. Kumaraswamy, and S. Latif. Cloud security and privacy — An
enterprise perspective on risks and compliance. Theory in practice. OReilly,

Beijing, 2009.
[175] N. Maurer. Jni performance - welcome to the dark
side. http:/ /normanmaurer.me/blog/2014/01/07/

JNI-Performance-Welcome-to-the-dark-side/, 2014. [Online; acces-
sed 2016-06-07].

[176] N. Mavrogiannopoulos. The price to pay for perfect-forward secrecy.
http:/ /nmav.gnutls.org/2011/12 /price-to-pay-for-perfect-forward.
html, December 2011. [Online; accessed 2016-04-25].

[177] G.McGraw. Software security. Security & Privacy, 2(2):80-83, March 2004.

[178] G. McGraw. Software Security: Building Security In. Software Security
Series. Addison Wesley, Upper Saddle River, 2006.

[179] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. Cheng. Composing
adaptive software. Computer, 37(7):56-64, 2004.

[180] D.Mellado, C. Blanco, L. E. SAjnchez, and E. FernAjndez-Medina. A sys-
tematic review of security requirements engineering. Computer Standards
& Interfaces, 32(4):153-165, 2010.

[181] D. A. Menasce. Security performance. Internet Computing, 7(3):84-87,
May 2003.

[182] D. A. Menascé, H. Ruan, and H. Gomaa. Qos management in service-
oriented architectures. Performance evaluation, 64(7):646-663, 2007.

[183] M. Menzel. Comparative Assessment of Cloud Compute Services using Run-
Time Meta-Data - A Framework for Performance Measurements and Virtual
Machine Image Introspections. PhD thesis, Faculty of Electrical Engineering
and Computer Science of the TU Berlin (TUB), April 2015.

[184] A.L.Michael Dawson, Graeme Johnson. Best practices for using the java
native interface — techniques and tools for averting the 10 most common
jni programming mistakes. https://www.ibm.com/developerworks/
library/j-jni/, July 2009. [Online; accessed 2016-06-14].

249

http://normanmaurer.me/blog/2014/01/07/JNI-Performance-Welcome-to-the-dark-side/
http://normanmaurer.me/blog/2014/01/07/JNI-Performance-Welcome-to-the-dark-side/
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
https://www.ibm.com/developerworks/library/j-jni/
https://www.ibm.com/developerworks/library/j-jni/

Bibliography

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

250

Microsoft Corp. Security development lifecycle. http://www.microsoft.
com/security/sdl/default.aspx, 2015. [Online; accessed 2015-12-31].

C. Millsap. Thinking clearly about performance. Queue, 8(9):10-20, Sep-
tember 2010.

B. Moeller and A. Langley. Rfc7507 — tls fallback signaling cipher suite
value (scsv) for preventing protocol downgrade attacks. https://tools.
ietf.org/html/rfc7507, 2015. [Online; accessed 2015-12-31].

A. Morton. Talk on ¢* summit 2013 — cassandra internals. http://www.
slideshare.net/aaronmorton/apachecon-nafeb2013 and https://www.
youtube.com/watch?v=W6e8_Icg]M4, 2013. [Online; accessed 2015-12-
31].

Morzilla Project. Mozilla.org wiki — security/server side tls. https://
wiki.mozilla.org/Security /Server_Side_TLS, April 2016. [Online; acces-
sed 2016-04-24].

S. Mueller, D. Bermbach, S. Tai, and F. Pallas. Benchmarking the per-
formance impact of transport layer security in cloud database systems.
In Proceedings of the International Conference on Cloud Engineering, 2014
(IC2E’14), pages 27-36, 2014.

S. Mueller, F. Pallas, and S. Balaban. On the security of public cloud
storage. In J. G. Juergen Beyerer, Andreas Meissner, editor, Proceedings of
the Future Security Conference, 2015 (Future Security’15). Fraunhofer, 2015.

M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic en-
cryption be practical? In Proceedings of the Cloud Computing Security
Workshop, 2011 (CCSW’11), pages 113-124, 2011.

D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, K. Pa-
pagiannaki, and P. Steenkiste. The cost of the s in https. In Proceedings
of the International on Conference on emerging Networking Experiments and
Technologies, 2014 (CoNEXT'14), pages 133-140, 2014.

Netty Project. Netty. http:/ /netty.io, 2016. [Online; accessed 2016-04-20].

Netty Project. Netty — forked tomcat native. https://github.com/netty/
netty /wiki/Forked-Tomcat-Native, 2016. [Online; accessed 2016-04-20].

B. Neuman and T. Ts’o. Kerberos — an authentication service for computer
networks. Communications Magazine, 32(9):33-38, September 1994.

http://www.microsoft.com/security/sdl/default.aspx
http://www.microsoft.com/security/sdl/default.aspx
https://tools.ietf.org/html/rfc7507
https://tools.ietf.org/html/rfc7507
http://www.slideshare.net/aaronmorton/apachecon-nafeb2013
http://www.slideshare.net/aaronmorton/apachecon-nafeb2013
https://www.youtube.com/watch?v=W6e8_IcgJM4
https://www.youtube.com/watch?v=W6e8_IcgJM4
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
http://netty.io
https://github.com/netty/netty/wiki/Forked-Tomcat-Native
https://github.com/netty/netty/wiki/Forked-Tomcat-Native

Bibliography

[197] NIST National Institute of Standards and Technology. Guidelines on
security and privacy in public cloud computing. http://csrc.nist.gov/
publications /nistpubs/800-144 /SP800-144.pdf, December 2011. [Online;
accessed 2015-12-31].

[198] NIST National Institute of Standards and Technology. The nist defini-
tion of cloud computing — recommendations of the national institute of
standards and technology. http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf, September 2011. [Online; accessed 2015-12-31].

[199] T. Okubo, Y. Wataguchi, and N. Kanaya. Threat and countermeasure
patterns for cloud computing. In Proceedings of the International Workshop
on Requirements Patterns, 2014 (RePa’14), pages 43-46, 2014.

[200] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-
tree (Ism-tree). Acta Informatica, 33(4):351-385, 1996.

[201] Open Security Architecture (OSA). Sp-011 - cloud computing
pattern. http:/ /www.opensecurityarchitecture.org/cms/library /
patternlandscape/251-pattern-cloud-computing, October 2015. [Online;
accessed 2017-02-25].

[202] OpenJDK.]Jdk-7184394 — add intrinsics to use aes instructions. https:
/ /bugs.openjdk.java.net/browse/JDK-7184394, 2012. [Online; accessed
2016-05-16].

[203] OpenJDK. Jep 164: Leverage cpu instructions for aes cryptography. http:
/ /openjdk.java.net/jeps/164, 2014. [Online; accessed 2016-05-16].

[204] OpenJDK. Jep 246: Leverage cpu instructions for ghash and rsa. http:
/ /openjdk.java.net/jeps/246, 2016. [Online; accessed 2016-05-16].

[205] OpenJDK. Openjdk/jdk8u/jdk8u/jdk source code (sunjsse).
http:/ /hg.openjdk java.net/jdk8u/jdk8u/jdk/file /4f06a20cdc59/src/
share/classes/sun/security /ssl, 2016. [Online; accessed 2016-06-17].

[206] Oracle Corp. Debugging ssl/tls connections. https://docs.oracle.com/
javase/7/docs/technotes/guides/security /jsse/ReadDebug.html, 2016.
[Online; accessed 2016-12-17].

[207] Oracle Corp. Java cryptography architecture oracle providers docu-
mentation for jdk 8. http://docs.oracle.com/javase/8/docs/technotes/
guides/security /SunProviders.html, 2016. [Online; accessed 2016-06-
03].

251

http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
http://csrc.nist.gov/publications/nistpubs/800-144/SP800-144.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.opensecurityarchitecture.org/cms/library/patternlandscape/251-pattern-cloud-computing
http://www.opensecurityarchitecture.org/cms/library/patternlandscape/251-pattern-cloud-computing
https://bugs.openjdk.java.net/browse/JDK-7184394
https://bugs.openjdk.java.net/browse/JDK-7184394
http://openjdk.java.net/jeps/164
http://openjdk.java.net/jeps/164
http://openjdk.java.net/jeps/246
http://openjdk.java.net/jeps/246
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/4f06a20cdc59/src/share/classes/sun/security/ssl
http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/4f06a20cdc59/src/share/classes/sun/security/ssl
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/ReadDebug.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/ReadDebug.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html

Bibliography

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

252

Oracle Corp. Java management extensions (jmx) techno-
logy. http:/ /www.oracle.com/technetwork/java/javase/tech/
javamanagement-140525.html, 2016. [Online; accessed 2016-07-13].

Oracle Corp. Java secure socket extension (jsse) reference guide — for
java platform standard edition 6. https://docs.oracle.com/javase/6/
docs/technotes/guides/security /jsse/J[SSERefGuide. html, 2016. [On-
line; accessed 2016-05-31].

Oracle Corp. Java secure socket extension (jsse) reference guide — for
java platform standard edition 8. http://docs.oracle.com/javase/8/
docs/technotes/guides/security /jsse/J[SSERefGuide. html, 2016. [On-
line; accessed 2016-03-15].

Oracle Corp. Java security overview. https:/ /docs.oracle.com/javase/8/
docs/technotes/guides/security /overview /jsoverview.html, 2016. [On-
line; accessed 2016-05-31].

Oracle Corp. Sslengine usage example. https://docs.oracle.com/
javase/8/docs/technotes/guides/security/jsse/samples/sslengine/
SSLEngineSimpleDemo java, 2016. [Online; accessed 2016-06-03].

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,
N. Medvidovic, A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software. Intelligent Systems
and their Applications, 14(3):54-62, 1999.

Organization for the Advancement of Structured Information Standards
(OASIS). Reference model for service oriented architecture 1.0. https://
docs.oasis-open.org/soa-rm/v1.0/soa-rm.html, 2006. [Online; accessed
2016-10-31].

Organization for the Advancement of Structured Information Stan-
dards (OASIS). Oasis soa reference model (soa-rm) tc. https://www.
oasis-open.org/committees/soa-rm/faq.php, 2016. [Online; accessed
2016-10-31].

P. Paillier. Public-key cryptosystems based on composite degree residuo-
sity classes. In J. Stern, editor, Advances in Cryptology — EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223-238. Springer,
1999.

F. Pallas, D. Bermbach, S. Mueller, and S. Tai. Evidence-based security
configurations for cloud datastores. In Proceedings of the ACM Symposium
on Applied Computing, 2017 (SAC’17), 2017.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/samples/sslengine/SSLEngineSimpleDemo.java
https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html
https://www.oasis-open.org/committees/soa-rm/faq.php
https://www.oasis-open.org/committees/soa-rm/faq.php

Bibliography

[218] F. Pallas, J. Guenther, and D. Bermbach. Pick your choice in HBase —
security or performance. In Proceedings of the International Conference on
Big Data, 2016 (BigData’16), pages 548-554, 2016.

[219] J. Parekh, G. Kaiser, P. Gross, and G. Valetto. Retrofitting autonomic ca-
pabilities onto legacy systems. Cluster Computing, 9(2):141-159, 2006.

[220] R. K. Pateriya. Web server load management with adaptive ssl and ad-
mission control mechanism. In Proceedings of the International Conference
on Computer Science Education (ICCSE’12), pages 1178-1183, 2012.

[221] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lépez, G. Gibson,
A. Fuchs, and B. Rinaldi. Ycsb++ — benchmarking and performance de-
bugging advanced features in scalable table stores. In Proceedings of the
Symposium on Cloud Computing, 2011 (SOCC’11), pages 1-14, 2011.

[222] PCI Security Standards Council. Payment Card Industry (PCI) Data Secu-
rity Standard - Requirements and Security Assessment Procedures (Ver-
sion 2), 2010.

[223] S.Pfleeger and R. Cunningham. Why measuring security is hard. Security
& Privacy, 8(4):46-54, July 2010.

[224] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
Cryptdb — protecting confidentiality with encrypted query processing.
In Proceedings of the Symposium on Operating Systems Principles, 2011
(SOSP’11), pages 85-100, 2011.

[225] B. Potter. Microsoft SDL threat modelling tool. Network Security,
2009(1):15-18, 2009.

[226] Project Voldemort. Project voldemort — documentation — design. http:
/ /www.project-voldemort.com/voldemort/design.html, 2013. [Online;
accessed 2015-12-31].

[227] Project Voldemort. Project voldemort — github source code reposi-
tory. https://github.com/voldemort/voldemort, 2015. [Online; acces-
sed 2015-12-31].

[228] T. Rabl, M. Frank, M. Danisch, H.-A. Jacobsen, and B. Gowda. The vision
of bigbench 2.0. In Proceedings of the Workshop on Data Analytics in the
Cloud, 2015 (DanaC’15), pages 14, 2015.

[229] T. Rabl, S. Gémez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacob-
sen, and S. Mankovskii. Solving big data challenges for enterprise ap-
plication performance management. Proceedings of the VLDB Endowment,
5(12):1724-1735, August 2012.

253

http://www.project-voldemort.com/voldemort/design.html
http://www.project-voldemort.com/voldemort/design.html
https://github.com/voldemort/voldemort

Bibliography

[230] E. C.-L. Raghu Yeluri. Building the Infrastructure for Cloud Security — A
Solutions view. Springer. Apress, Berkeley, CA, 2014.

[231] C. Ramsdale. Get started with google cloud datastore — a fast, po-
werful, nosql database. http://googledevelopers.blogspot.de/2013/05/
get-started-with-google-cloud-datastore.html, 2013. [Online; accessed
2015-12-31].

[232] S. Rapuano and E. ZFimeo. Measurement of performance impact of ssl
on ip data transmissions. Measurement, 41(5):481-490, 2008.

[233] E. Rescorla. SSL and TLS — designing and building secure systems. Addison-
Wesley, New York, 1. edition, 2003.

[234] E. Rescorla. Internet-draft — the transport layer security (tls) protocol
version 1.3. https:/ /tools.ietf.org /html/draft-ietf-tls-tls13-07, 2015. [On-
line; accessed 2015-12-31].

[235] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Rfc5746 — transport layer
security (tls) renegotiation indication extension. https://tools.ietf.org/
html/rfc5746, 2010. [Online; accessed 2015-12-31].

[236] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of
my cloud - exploring information leakage in third-party compute clouds.
In Proceedings of the ACM Conference on Computer and Communications Se-
curity, 2009 (CCS’09), pages 199-212, 2009.

[237] I Risti¢. Bulletproof SSL and TLS — Understanding and Deploying SSL/TLS
and PKI to Secure Servers and Web Applications. Feisty Duck, London, 2014.

[238] L Risti¢. Qualys — ssl/tls deployment best practices v1.4. https://www.
ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf, De-
cember 2015. [Online; accessed 2016-04-24].

[239] J. C. Roberts, II and W. Al-Hamdani. Who can you trust in the cloud? -
a review of security issues within cloud computing. In Proceedings of
the Information Security Curriculum Development Conference, 2011 (Info-
SecCD’11), pages 15-19, 2011.

[240] D. G. Rosado, editor. Security engineering for cloud computing — approaches
and tools. Information Science Reference IGI, 1. edition, 2013.

[241] P.]. Sadalage and M. Fowler. NoSQL distilled — A brief quide to the emerging
world of polyglot persistence. Addison-Wesley, 2013.

[242] S. Sakr, A. Liu, D. Batista, and M. Alomari. A survey of large scale data
management approaches in cloud environments. Communications Surveys
Tutorials, 13(3):311-336, 2011.

254

http://googledevelopers.blogspot.de/2013/05/get-started-with-google-cloud-datastore.html
http://googledevelopers.blogspot.de/2013/05/get-started-with-google-cloud-datastore.html
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tools.ietf.org/html/rfc5746
https://tools.ietf.org/html/rfc5746
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices.pdf

Bibliography

[243] K. Salah, M. Al-Saba, M. Akhdhor, O. Shaaban, and M. Buhari. Perfor-
mance evaluation of popular cloud iaas providers. In Proceedings of the In-
ternational Conference for Internet Technology and Secured Transactions, 2011
(ICITST’11), pages 345-349, 2011.

[244] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and re-
search challenges. ACM Transactions on Autonomous and Adaptive Systems,
4(2):1-42, May 2009.

[245] P. Samarati and S. De Capitani di Vimercati. Cloud security — issues and
concerns. Encyclopedia on Cloud Computing, 2016.

[246] R. Sandhu. Good-enough security. Internet Computing, 7(1):66—68, Janu-
ary 2003.

[247] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access
control models. Computer, 29(2):38—-47, February 1996.

[248] R. Scandariato, K. Wuyts, and W. Joosen. A descriptive study of micro-
soft’s threat modeling technique. Requirements Engineering, pages 1-18,
2013.

[249] J. Schad,]J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in
the cloud - observing, analyzing, and reducing variance. Proceedings of
the VLDB Endowment, 3(1-2):460-471, 2010.

[250] H. Schmeck, C. Mueller-Schloer, E. Cakar, M. Mnif, and U. Richter. Orga-
nic Computing — A Paradigm Shift for Complex Systems, chapter Adaptivity
and Self-organisation in Organic Computing Systems, pages 5-37. Sprin-
ger, Basel, 2011.

[251] B. Schneier. Attack trees. Dr. Dobb’s journal, 24(12):21-29, 1999.

[252] B. Schneier,]. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson.
Performance comparison of the aes submissions. http://csrc.nist.gov/
archive/aes/round1/conf2/papers/schneierl.pdf, February 1999. [On-
line; accessed 2015-12-31].

[253] M. Schumacher. Security engineering with patterns. PhD thesis, Depart-
ment of Computer Science of the TU Darmstadt, December 2003.

[254] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad. Security Patterns — Integrating Security and Systems
Engineering. Wiley, 2006.

[255] R. Seiger, S. Gross, and A. Schill. Seccsie — a secure cloud storage inte-
grator for enterprises. In Proceedings of the Conference on Commerce and
Enterprise Computing, 2011 (CEC’11), pages 252-255, September 2011.

255

http://csrc.nist.gov/archive/aes/round1/conf2/papers/schneier1.pdf
http://csrc.nist.gov/archive/aes/round1/conf2/papers/schneier1.pdf

Bibliography

[256] F. Shaikh and S. Haider. Security threats in cloud computing. In Pro-
ceedings of the International Conference for Internet Technology and Secured
Transactions, 2011 (ICITST’11), pages 214-219, 2011.

[257] Y. Sheffer, R. Holz, and P. Saint-Andre. Rfc 7525 — recommendations for
secure use of transport layer security (tls) and datagram transport layer
security (dtls). https://tools.ietf.org/html/rfc7525, May 2015. [Online;
accessed 2016-08-02].

[258] C. Shen, E. Nahum, H. Schulzrinne, and C. Wright. The impact of tls
on sip server performance. In Principles, Systems and Applications of IP
Telecommunications, pages 59-70, 2010.

[259] S. Shirasuna, A. Slominski, L. Fang, and D. Gannon. Performance com-
parison of security mechanisms for grid services. In Proceedings of the
International Workshop on Grid Computing, 2004 (GRID’04), pages 360-364,
2004.

[260] R. Shirey. Rfc 4949 — internet security glossary, version 2. https://tools.
ietf.org/html/rfc4949, August 2007. [Online; accessed 2015-12-31].

[261] A. Shostack. Experiences threat modeling at microsoft. In Modeling Secu-
rity Workshop. Dept. of Computing, Lancaster University, UK, 2008.

[262] A. Shostack. Security briefs — getting started with the sdl threat mo-
deling tool. https://msdn.microsoft.com/magazine/dd347831.aspx, Ja-
nuary 2009. [Online; accessed 2015-12-31].

[263] A. Shostack. Threat Modeling — Designing for Security. John Wiley & Sons,
2014.

[264] G. Sindre and A. Opdahl. Eliciting security requirements with misuse
cases. Requirements Engineering, 10(1):34-44, 2005.

[265] K. Smith, D. Allen, H. Lan, and A. Sillers. Making query execution over
encrypted data practical. In S. Jajodia, K. Kant, P. Samarati, A. Singhal,
V. Swarup, and C. Wang, editors, Secure Cloud Computing, pages 171-188.
Springer, 2014.

[266] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches
on encrypted data. In Proceedings of the Symposium on Security and Privacy,
2000 (S&P’00), pages 44-55, 2000.

[267] W. Stallings. Cryptography and Network Security. Pearson, New York, 2011.

256

https://tools.ietf.org/html/rfc7525
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4949
https://msdn.microsoft.com/magazine/dd347831.aspx

Bibliography

[268] V. Stantchev. Performance evaluation of cloud computing offerings. In
Proceedings of the International Conference on Advanced Engineering Com-
puting and Applications in Sciences, 2009 (ADVCOMP’09), pages 187-192,
2009.

[269] Storage Networking Industry Association (SNIA). Cloud data mana-
gement interface (cdmi) — version 1.1.0. http://www.snia.org/sites/
default/files/CDMI_Spec_v1.1.pdf, August 2014.

[270] S. Strauch, V. Andrikopoulos, U. Breitenbticher, S. Gémez Séez, O. Kopp,
and F. Leymann. Using patterns to move the application data layer to the
cloud. In PATTERNS 2013, The Fifth International Conferences on Pervasive
Patterns and Applications, pages 26-33, 2013.

[271] S. Strauch, U. Breitenbuecher, O. Kopp, F. Leymann, and T. Unger. Cloud
data patterns for confidentiality. In Proceedings of the International Con-
ference on Cloud Computing and Service Science, 2012 (CLOSER’12), pages
387-394, 2012.

[272] M. Sugumaran, B. B. Murugan, and D. Kamalraj. An architecture for
data security in cloud computing. In Proceedings of the World Congress
on Computing and Communication Technologies, 2014 (WCCCT), pages 252—
255, 2014.

[273] R.Sumbaly, J. Kreps, L. Gao, A. Feinberg, C. Soman, and S. Shah. Serving
large-scale batch computed data with project voldemort. In Proceedings
of the USENIX Conference on File and Storage Technologies, 2012 (FAST’12),
2012.

[274] R. Sumbaly, J. Kreps, and S. Shah. The big data ecosystem at linkedin. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data, 2013, pages 1125-1134, 2013.

[275] M. P. Surya Nepal. Security, Privacy and Trust in Cloud Systems. Springer,
2014.

[276] H. Takabi, J. Joshi, and G. Ahn. Security and privacy challenges in cloud
computing environments. Security & Privacy, 8(6):24-31, 2010.

[277] D. Talbot. How secure is cloud computing? — cryptography so-
lutions are far-off, but much can be done in the near term, says
whitfield diffie. http://www.technologyreview.com/news/416293/
how-secure-is-cloud-computing, November 2009. [Online; accessed
2015-12-31].

[278] C. Tankard. Advanced persistent threats and how to monitor and deter
them. Network Security, 2011(8):16-19, 2011.

257

http://www.snia.org/sites/default/files/CDMI_Spec_v1.1.pdf
http://www.snia.org/sites/default/files/CDMI_Spec_v1.1.pdf
http://www.technologyreview.com/news/416293/how-secure-is-cloud-computing
http://www.technologyreview.com/news/416293/how-secure-is-cloud-computing

Bibliography

[279] Z. Tari. Security and privacy in cloud computing. Cloud Computing,
1(1):54-57, May 2014.

[280] The Legion of the Bouncy Castle. Legion of the bouncy castle java cryp-
tography apis. https:/ /www.bouncycastle.org/java.html, 2016. [Online;
accessed 2016-06-03].

[281] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2011-3389 (beast attack). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2011-3389, 2015. [Online; accessed 2015-12-31].

[282] The MITRE Corporation. =~ Common vulnerabilities and exposures
(cve) — cve-2014-0160 (heartbleed bug). https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-0160, 2015. [Online; accessed 2015-12-31].

[283] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2014-1266 (apple’s goto fail bug). https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-1266, 2015. [Online; accessed 2015-12-31].

[284] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2014-3566 (poodle issue). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2014-3566, 2015. [Online; accessed 2015-12-31].

[285] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2015-1637 (freak issue). https:/ /cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2015-1637, 2015. [Online; accessed 2016-04-15].

[286] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2015-4000 (logjam issue). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2015-4000, 2015. [Online; accessed 2016-04-15].

[287] The MITRE Corporation. Common vulnerabilities and exposures (cve) —
cve-2013-0169 (lucky thirteen). https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2013-0169, 2016. [Online; accessed 2016-05-01].

[288] The Open Group. Risk taxonomy. http://pubs.opengroup.org/
onlinepubs /9699919899 /toc.pdf, 2009. [Online; accessed 2016-10-27].

[289] The Open Web Application Security Project (OWASP). Certificate and
public key pinning. https://www.owasp.org/index.php/Certificate_
and_Public_Key_Pinning, March 2016. [Online; accessed 2016-04-16].

[290] The Open Web Application Security Project (OWASP). Comprehensive,
lightweight application security process (clasp). https://www.owasp.
org/index.php/Category:OWASP_CLASP _Project, May 2016. [Online;
accessed 2016-05-04].

258

https://www.bouncycastle.org/java.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3389
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3389
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1266
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-3566
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-1637
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4000
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-4000
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0169
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0169
http://pubs.opengroup.org/onlinepubs/9699919899/toc.pdf
http://pubs.opengroup.org/onlinepubs/9699919899/toc.pdf
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project
https://www.owasp.org/index.php/Category:OWASP_CLASP_Project

Bibliography

[291] S. Tomforde, H. Prothmann, J. Branke, J. Haehner, M. Mnif, C. Mueller-
Schloer, U. Richter, , and H. Schmeck. Organic Computing — A Paradigm
Shift for Complex Systems, chapter Observation and Control of Organic
Systems, pages 5-37. Springer, 2011.

[292] A. Turner. Extreme jni performance. https:/ /nerds-central.blogspot.de/
2012/04/extreme-jni-performance.html, April 2012. [Online; accessed
2016-06-14].

[293] S. Turner. Transport layer security. Internet Computing, 18(6):60-63, No-
vember 2014.

[294] United States Computer Emergency Readiness Team (US-
CERT). Introduction to the clasp process. https:/ /www.
us-cert.gov/bsi/articles/best-practices/requirements-engineering /
introduction-to-the-clasp-process, November 2006. [Online; accessed
2016-10-11].

[295] A. V. Uzunov, E. B. Fernandez, and K. Falkner. Engineering security into
distributed systems — a survey of methodologies. Journal of Universal
Computer Science (J.UCS), 18(20):2920-3006, December 2012.

[296] A. V. Uzunov, E. B. Fernandez, and K. Falkner. Securing distributed sys-
tems using patterns — a survey. Computers & Security, 31(5):681-703, 2012.

[297] L. Vaquero, L. Rodero-Merino, and D. MorAjn. Locking the sky — a sur-
vey on iaas cloud security. Computing, 91:93-118, 2011.

[298] W. Vogels. Amazon’s dynamo. http://www.allthingsdistributed.com/
2007/10/amazons_dynamo.html, 2007. [Online; accessed 2015-12-31].

[299] W. Vogels. Eventually consistent. Queue, 6:14-19, October 2008.

[300] W. Vogels. Amazon dynamodb - a fast and scalable nosql data-
base service designed for internet scale applications. http://www.
allthingsdistributed.com/2012/01/amazon-dynamodb.html, 2012. [On-
line; accessed 2015-12-31].

[301] T. Waage, R. S. Jhajj, and L. Wiese. Searchable encryption in apache cas-
sandra. In J. Garcia-Alfaro, E. Kranakis, and G. Bonfante, editors, Foun-
dations and Practice of Security, volume 9482 of Lecture Notes in Computer
Science, pages 286-293. Springer, 2016.

[302] T. Waage and L. Wiese. Benchmarking encrypted data storage in hbase
and cassandra with ycsb. In F. Cuppens, J. Garcia-Alfaro, N. Zincir He-
ywood, and P. W. L. Fong, editors, Foundations and Practice of Security,
volume 8930 of Lecture Notes in Computer Science, pages 311-325. Sprin-
ger, 2015.

259

https://nerds-central.blogspot.de/2012/04/extreme-jni-performance.html
https://nerds-central.blogspot.de/2012/04/extreme-jni-performance.html
https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process
https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process
https://www.us-cert.gov/bsi/articles/best-practices/requirements-engineering/introduction-to-the-clasp-process
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2007/10/amazons_dynamo.html
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html

Bibliography

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

[313]

260

X. Wang and H. Yu. How to break md5 and other hash functions. In
R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 19-35. Springer, 2005.

Wikipedia. Security engineering. https://en.wikipedia.org/w/index.
php?title=Security_engineering&oldid=674779013, August 2015. [On-
line; accessed 2015-12-31].

Wikipedia. Comparison of tls implementations — wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Comparison_
of TLS_implementations&oldid=722590010, May 2016. [Online; accessed
2016-06-02].

Wikipedia. Tcp congestion control. https://en.wikipedia.org/w/index.
php?title=TCP_congestion_control&oldid=728152885, July 2016. [Online;
accessed 2016-07-06].

V. J. Winkler. Securing the cloud — cloud computer security techniques and
tactics. Elsevier, 2011.

wolfSSL Inc. wolfssl — embedded ssl library for applications, devices, iot,
and the cloud. https://www.wolfssl.com/wolfSSL/Home.html, 2016.
[Online; accessed 2016-06-03].

S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and
fine-grained data access control in cloud computing. In Proceedings of the
INFOCOM, 2010, pages 1-9, 2010.

E. Yuan, N. Esfahani, and S. Malek. A systematic survey of self-protecting
software systems. ACM Transactions on Autonomous and Adaptive Systems,
8(4):1-41, January 2014.

Z. M. Yusop and]. Abawajy. Analysis of insiders attack mitigation stra-
tegies. Procedia - Social and Behavioral Sciences, 129:581-591, 2014. Procee-
dings of the International Conference on Innovation, Management and
Technology Research.

S. Zarandioon, D. Yao, and V. Ganapathy. K2c — cryptographic cloud
storage with lazy revocation and anonymous access. In M. Rajarajan,
F. Piper, H. Wang, and G. Kesidis, editors, Security and Privacy in Com-
munication Networks, volume 96 of Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering, pages
59-76. Springer, 2012.

L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan. Anatomy and performance
of ssl processing. In Proceedings of the International Symposium on Perfor-
mance Analysis of Systems and Software, 2005 (ISPASS’05), pages 197-206,
2005.

https://en.wikipedia.org/w/index.php?title=Security_engineering&oldid=674779013
https://en.wikipedia.org/w/index.php?title=Security_engineering&oldid=674779013
https://en.wikipedia.org/w/index.php?title=Comparison_of_TLS_implementations&oldid=722590010
https://en.wikipedia.org/w/index.php?title=Comparison_of_TLS_implementations&oldid=722590010
https://en.wikipedia.org/w/index.php?title=TCP_congestion_control&oldid=728152885
https://en.wikipedia.org/w/index.php?title=TCP_congestion_control&oldid=728152885
https://www.wolfssl.com/wolfSSL/Home.html

Bibliography

[314] L. Zhao, A. Liu, and J. Keung. Evaluating cloud platform architecture
with the care framework. In Proceedings of the Asia Pacific Software Engi-

neering Conference, 2010, pages 60-69, 2010.

[315] M. Zhao. Understand the overhead of jni. https://golangcloud.
blogspot.de/2012/05/understand-overhead-of-jni.html, May 2012. [On-

line; accessed 2016-06-14].

261

https://golangcloud.blogspot.de/2012/05/understand-overhead-of-jni.html
https://golangcloud.blogspot.de/2012/05/understand-overhead-of-jni.html

List of Figures

3.1.
3.2.
3.3.

5.1.

6.1.
6.2.
6.3.
6.4.

7.1.

9.1.
9.2.

10.1.

10.2.
10.3.

10.4.
10.5.

11.1.
11.2.

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.

12.7.

Security Pattern Example Secure Communication (adapted from [51]) 34

Security Patterns for Encryption of Data-at-Rest 37
Construction of TLS records (TLS record protocol) in TLS1.2 . . . 40
Reference Usage Modelsof CSS 61
Reference Threat Model of Cloud Storage Services 66
Threat Model of Voldemort Deployed on a Compute Cloud 69
Threat Model of Cassandra Deployed on a Compute Cloud 71
Reference Threat Model of Dynamo-based NoSQL Systems De-

ployedonaComputeCloud 72
Focus for Threat Analyses 76
Schematic Overview of Communication TypesinCSS 87
Cipher Suite Naming Pattern 93
Transport Layer Security Implementation Comparison Frame-

workforJava 102
Characteristics of the JSSE implementation 106
Characteristics of the TLS implementation of the Legion of the

Bouncy Castle 107
Characteristics of Netty’s built-in TLS support 109
Characteristics of WolfSSL 110
Benchmarking Settings for Secure Communication 115
TLSBench architecture 117
Performance Impact of TLS on DynamoDB 124
Performance Impact of TLS on Cassandra (Experiment AR) 127
Performance Impact of TLS on Cassandra (Experiment RR) 128

Performance Impact of TLS on Cassandra (Experiment AR-RR) . 131
Performance Impact of TLS on Cassandra (Experiment RR-HL) . 132
Performance Impact of DHE and ECDHE on Cassandra’s AR Com-

munication L 137
Performance Impact of CBC and GCM on Cassandra 139

263

List of Figures

12.8.

12.9.

13.1.

15.1.
15.2.

16.1.

16.2.

Al

A2

A3.

A4

Ab.

264

Performance Impact of a Higher Replication Factor and Consis-
tency Level (ExperimentR3-CQ)
Performance Impact of AES-NIon Cassandra

Examined Relevant Influence Factors and Configuration Options
of Transport Layer Security in Cloud Storage Systems

Architectureof ATLaS
Adaptation Strategies and Reconfiguration of TLS in ATLaS . . .

Sequence of the Adaptation Strategy Permanent Cipher Suite Re-
configurationof Cassandra
JMX Management Interface of the Adaptation Strategy Perma-
nent Cipher Suite Reconfiguration of Cassandra

Performance Impact of DHE and ECDHE on Cassandra’s AR
Communication (First Benchmark Run of Experiment DHE vs.
ECDHE)
Impact of the CPU Utilization on the Throughput of Cassandra’s
AR Communication (First Benchmark Run of Experiment DHE
vs. ECDHE)
Impact of Active Compactions and Memtable Flushwriter Thre-
ads on the Throughput of Cassandra’s AR Communication (First
Benchmark Run of Experiment DHE vs. ECDHE)
Impact of Active Compactions and Memtable Flushwriter Thre-
ads on the Latencies of Cassandra’s AR Communication (First
Benchmark Run of Experiment DHE vs. ECDHE)
Impact of Active Compactions and Memtable Flushwriter Thre-
ads on the CPU Utilization of Cassandra (First Benchmark Run
of Experiment DHEvs. ECDHE)

List of Tables

9.1. Communication MiddlewareinCSS 89
9.2. Security Levels of Cipher Suites Used in this Thesis 95
12.1. Experiment setup for DynamoDB 122
12.2. Experiment results for DynamoDB 123
12.3. Experiment Setup for Cassandra 126
12.4. Experiment Results for Cassandra (Experiment AR) 129
12.5. Experiment Results for Cassandra (ExperimentRR) 129
12.6. Experiment Results for Cassandra (Experiment AR-RR) 130
12.7. Experiment Results for Cassandra (Experiment RR-HL) 133
12.8. Experiment setup of Experiment DHE vs. ECDHE 135
12.9. Experiment Results of Experiment DHE vs. ECDHE 136
12.10Experiment setup of Experiments CBCvs. GCM 138
12.11Experiment Results of Experiment CBC vs. GCM AR 140
12.12Experiment Results of Experiment CBC vs. GCMRR 140
12.13Experiment Results of Experiment CBC vs. GCM AR-RR 141
12.14Experiment setup of ExperimentR3-CQ 142
12.15Experiment Results of Experiment R3-CQ 143
12.16 Experiment Results of Experiment AES-NI' AR 149
12.17Experiment Results of Experiment AES-NIRR 149
12.18Experiment Results of Experiment AES-NI AR-RR 150
12.19Experiment Results of Experiment Netty/OpenSSL 151
12.20Experiment Results of Experiment WolfSSL 152
17.1. Experiment Results of the Performance Evaluation of ATLaS . . . 187
A.l. Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE (NoTLS) 205
A.2. Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE(DHE). 205
A.3. Experiment results of Benchmark Runs of Experiment DHE vs.
ECDHE(ECDHE) i 206
A.4. Experiment results of Benchmark Runs of Experiment CBC vs.
GCMAR(CBC) 212

265

List of Tables

A.5. Experiment results of Benchmark Runs of Experiment CBC vs.

GCMAR(GCM). . . .o 212
A.6. Experiment results of Benchmark Runs of Experiment CBC vs.

GCMRR(NoTLS) 213
A.7. Experiment results of Benchmark Runs of Experiment CBC vs.

GCMRR(CBC) 214
A.8. Experiment results of Benchmark Runs of Experiment CBC vs.

GCMRR(GCM)o 214
A9. Experiment results of Benchmark Runs of Experiment CBC vs.

GCMAR-RR (CBC) .« o v oo e 215
A.10.Experiment results of Benchmark Runs of Experiment CBC vs.

GCMAR-RR(GCM) oo 215
A.11.Experiment results of Benchmark Runs of Experiment R3-CQ (no

TLS) . . o 216
A.12 Experiment results of Benchmark Runs of Experiment R3-CQ (AES256

CBC) . .o 217
B.1. Experiment results of Benchmark Runs of Experiment AES-NI

AR (CBC, AES-NIdisabled) 220
B.2. Experiment results of Benchmark Runs of Experiment AES-NI

AR (GCM, AES-NIdisabled) 220
B.3. Experiment results of Benchmark Runs of Experiment AES-NI

RR (CBC, AES-NIdisabled) 222
B.4. Experiment results of Benchmark Runs of Experiment AES-NI

RR (GCM, AES-NIdisabled) 222
B.5. Experiment results of Benchmark Runs of Experiment AES-NI

AR-RR (CBC, AES-NIdisabled) 223
B.6. Experiment results of Benchmark Runs of Experiment AES-NI

AR-RR (GCM, AES-NIdisabled) 223

B.7. Experiment results of Benchmark Runs of Experiment Netty /OpenSSL (CBC)224
B.8. Experiment results of Benchmark Runs of Experiment Netty /OpenSSL (GCM)225
B.9. Experiment results of Benchmark Runs of Experiment WolfSSL (CBC)226

B.10. Experiment results of Benchmark Runs of Experiment WolfSSL (GCM)227

C.1. Experiment results of Benchmark Runs of the Performance Eva-

luation of ATLaS(CBC) i i 229
C.2. Experiment results of Benchmark Runs of the Performance Eva-
luation of ATLaS (GCM) i 230

266

Glossary

ACL Access Control List. 26, 43
AEAD Authenticated Encryption with Associated Data. 42, 93, 94, 145

AES Advanced Encryption Standard. 5, 6, 31, 35, 40, 42, 77, 91, 93-95, 103, 105,
107, 109, 122, 123, 125, 126, 129, 130, 133, 135, 138, 141-143, 145, 146, 156,
158, 166, 175, 178, 203, 211, 216, 219, 220, 222, 223

AES-NI AES Instruction Set. 91, 98, 103, 105, 108-110, 146, 148-150, 153, 156,
166, 219-223

ALPN Application-Layer Protocol Negotiation is a TLS extension (RFC 7301).
41,103, 105, 108

APl Application Programming Interface. 20-24, 29, 37, 51, 59-61, 63-66, 69,
75-77,79-81, 85, 88, 95-97, 101, 103-106, 108-110, 146, 151-153, 170, 174,
199

AR Application-replica communication comprises the communication between
the application or service and the first replica server of a CSS including
the hop via the load balancer. 88, 89, 92, 114, 118, 121-123, 125, 126, 129,
130, 133, 135-138, 140-142, 146, 148, 150, 151, 153, 156, 203, 205, 206, 211-
214, 216, 217, 219-221, 224, 225

ATLaS Adaptive Transport Layer Security. ii, iv, 12, 161, 169-187, 189-192, 197,
200

Avro is a RPC and data serialization framework available at http://avro.
apache.org. 22,59, 63, 68,73, 88, 89

AWS Amazon Web Services. ii, iv, 3, 10, 14, 17, 19-21, 29, 43, 47, 55, 58-60, 63,
77,80, 81, 103, 121-123, 125, 126, 135, 138, 142, 203

AZ Availability Zone. 19, 35, 88, 125, 175, 178, 179, 203

Azure DocumentDB is a cloud storage service (document store) available at
http://couchdb.apache.org. 16

B Bytes. 91, 122, 126, 135, 138, 142, 151, 164, 182, 183, 203, 225

267

http://avro.apache.org
http://avro.apache.org
http://couchdb.apache.org

Glossary

BDB Berkeley DB. 22, 69, 73
BSI Federal Office for Information Security. 28, 29, 56

Camellia is a symmetric block cipher with a block size of 128 bits and key sizes
of 128, 192 and 256 bits proposed by Mitsubishi Electric and NTT. 40, 42,
93,94

Cassandra is a NoSQL system (column store) availableat http: //cassandra.
apache.orgq. ii, iv, 3, 6, 11, 13, 14, 16, 21-24, 32, 36, 39, 41, 43, 47, 58-60,
63, 68-76, 78-82, 86, 88, 89, 92, 94, 97, 101, 108, 109, 116, 121, 123, 125,
126, 129, 130, 132-138, 140-142, 144-146, 148, 150-153, 155, 156, 158, 161,
174-184, 187, 189, 191, 192, 196, 203, 205, 206, 211-214, 216, 219-226

CBC Cipher Block Chaining. 42, 93-95, 122, 125, 126, 135, 138, 140-143, 145,
146, 148-153, 156, 158, 175, 178, 187, 203, 211, 213, 216, 217, 219-226

CCM Counter with CBC-MAC. 42,93, 94
CDMI Cloud Data Management Interface. 54, 55, 57
certificate status request is a TLS extension (RFC 6066). 108

ChaCha20 is a stream cipher promoted by its inventor Daniel J. Bernstein and
Google as a replacement for the insecure RC4 cipher in TLS cipher suites.
42,107,152

CLASP Comprehensive, Lightweight Application Security Process. 27, 56

CouchDB is a NoSQL system (document store) availableathttp://couchdb.
apache.org. 16

CPU Central Processing Unit. 30, 31, 90, 91, 96, 132, 146, 148, 153, 156, 166, 182,
205, 219-222,224

CSA Cloud Security Alliance. 28, 29, 56
CSE Client-Side Encryption. 36, 37, 39
CSRM Cloud Storage Reference Model. 54, 55, 57

CSS Cloud Storage System. i-iv, 3-7, 9-19, 21, 28-33, 35-39, 43, 44, 47, 50,
52-60, 62, 64, 65, 68, 73-77, 80-82, 85-89, 92, 95, 97-99, 101, 102, 108-111,
113-121, 133-137, 141, 144, 145, 152-156, 158, 161, 166, 167, 173-176, 179,
191, 192, 195-197, 199, 200, 220, 267, 272, 273

DFD Data Flow Diagram. 50-52, 65-67, 76
DH is the Diffie-Hellman key exchange protocol. 40, 93

268

http://cassandra.apache.org
http://cassandra.apache.org
http://couchdb.apache.org
http://couchdb.apache.org

Glossary

DHE is the Diffie-Hellman key exchange in ephemeral mode supporting PFS.
42,90, 94, 95, 125, 126, 135-138, 142, 144, 156, 196, 203, 205, 206, 211, 216

DML Descartes Modeling Language. 165, 169, 190, 200
DSA Digital Signature Algorithm. 40, 93, 94

DynamoDB is a cloud storage service (column store) available at http://
aws.amazon.com/dynamodb. 3,13, 14, 16, 19-21, 36, 43, 47, 58-60, 67,
74-78, 80, 81, 86, 89, 95, 121-123, 133, 134, 155

EC2 Elastic Compute Cloud. 10, 14, 47, 63, 103, 122, 123, 125, 126, 135, 138, 142,
203

ECDHE is the Elliptic Curve Diffie-Hellman key exchange in ephemeral mode
supporting PFS. 42, 90, 94, 95, 135-137, 144, 156, 196, 203, 205, 206, 211

Encrypt-then-MAC is a TLS extension (RFC 7366). 41
ENISA European Union Agency for Network and Information Security. 30, 93

Future Security Future Security Conference. 47

GB Gigabyte. 122, 125,126, 135, 138, 142, 203

GCM Galois/Counter Mode. 42, 77, 93-95, 105, 107, 138, 140-142, 145, 146,
148-153, 156, 158, 175, 178, 187, 211, 213, 214, 216, 217, 219, 221, 222, 224—
226

GFS Google File System. 24, 88

Google Cloud Datastore is a cloud storage service (column store) available at
https://cloud.google.com/datastore. 14, 16,19, 21, 59, 89

Google Cloud Storage is a cloud storage service (key-value store) available
at https://cloud.google.com/storage. ii, iv, 3, 13, 15, 19-21, 43,
59, 89

GPLv2 General Public License in version 2. 104, 106, 109

HBase is a NoSQL system (column store) availableathttp://hbase.apache.
org. 3,6,13,14, 16,21, 24, 63, 68, 88, 89, 134, 145, 156, 196, 199

HDFS Hadoop Distributed Filesystem. 24, 88, 89
HTTP Hypertext Transfer Protocol. 63, 89, 91, 92, 121, 189, 225
HTTP/2 Hypertext Transfer Protocol Version 2. 89, 92

269

http://aws.amazon.com/dynamodb
http://aws.amazon.com/dynamodb
https://cloud.google.com/datastore
https://cloud.google.com/storage
http://hbase.apache.org
http://hbase.apache.org

Glossary

HTTPD Apache HTTPD. 41, 180

HTTPS HTTP over SSL/TLS. 20, 21, 89, 90, 92, 96-98, 121, 135, 136, 144, 183,
184, 196, 199, 206

HTTPS/2 HTTP/2 over SSL/TLS. 89, 92, 200

/0 Input/Output. 97, 104, 110

laaS Infrastructure-as-a-Service. 13, 28, 56

IAM Identity and Access Management. 29, 43, 77

IC2E IEEE International Conference on Cloud Engineering. 86
IEC International Electrotechnical Commission. 24

IP Internet Protocol. 91, 98

IPSec Internet Protocol Security. 33, 39

ISO International Organization for Standardization. 24, 27, 98, 189

JMX Java Management Extensions. 71, 73, 170, 172, 174, 178, 186
JNI Java Native Interface. 104, 108, 109, 150-152, 224, 225

JRE Java Runtime Environment. 79, 95, 96, 104-106, 108, 110, 125, 146, 148,
151,153,171, 203, 225

JSON JavaScript Object Notation. 16, 21, 59

JSSE Java Secure Sockets Extension. 79, 85, 95-97, 101, 104-106, 108-111, 146,
148, 150-153, 167,170, 171,174, 181, 187, 189, 203, 219, 224, 226

KASTEL Center of Excellence for Applied Security Technology. 13, 27, 50, 56,
57, 86

kB Kilobyte. 91, 164, 176

LSM Tree is a data structure providing indexed access to files with high insert
volume, e.g., transactional log data, initially described by O’Neil et al.
in [200]. 23,72, 73,76

MAC Message Authentication Code. 40-42, 91, 93, 122

MAPE-K Monitor, Analyze, Plan, Execute, and Knowledge. 164, 172,173,177,
179

270

Glossary

MD5 is a message-digest algorithm that have often been used in TLS in the
past. 42, 95,122

MIT Massachusetts Institute of Technology. 104
MITM Man-in-the-Middle. 52, 67, 76, 77, 79, 80, 136, 186

MongoDB is a NoSQL system (document store) available at https://www.
mongodb.org. 16, 63, 89

MySQL is a relational database management system available at https://
www.mysqgl.com/. 22,69,73

Netty is communication middleware availableathttp://www.netty.io. 22,
23, 63, 96,104, 105, 107, 108, 111, 146, 148, 150, 151, 153, 224-226

NIO Non-blocking I/0. 97, 106, 110

NoSQL Not only SQL. ii, iv, 3, 9, 10, 14, 15, 19, 21, 22, 35, 39, 47, 48, 54-60,
62-65, 68,70,72,73,78,80-82, 88, 92,101, 103, 104, 114, 155, 195, 197, 199,
268, 269, 271,273

OpenSSL is an open source TLS implementation based on C availableat https:
//www.openssl.org. 79,85,94, 96,104, 108, 146, 148, 150, 151, 153, 199,
224-226

OSA Open Security Architecture. 54, 57, 62
OWASP Open Web Application Security Project. 27

P2P Peer-to-Peer. 18-21, 23, 68, 73, 88, 116, 125, 199
PCI-DSS Payment Card Industry Data Security Standard. 58
PFS Perfect Forward Secrecy. 42, 77, 93, 94, 145, 269

Protocol Buffers is a communication middleware availableathttps://developers.
google.com/protocol-buffers. 22,63, 68, 88, 89

QoS Quality of Service. 182, 190

RC4 Rivest Cipher 4 (also known as ARC4 or ARCFOUR) is a stream cipher
that have often been used in TLS in the past. 5, 6, 31, 42, 94, 95, 122, 268

REST Representational State Transfer. 20, 21, 24, 60, 88, 89
RPC Remote Procedure Call. 22-24, 63, 68, 71, 75, 76, 78, 89, 92, 137, 267

271

https://www.mongodb.org
https://www.mongodb.org
https://www.mysql.com/
https://www.mysql.com/
http://www.netty.io
https://www.openssl.org
https://www.openssl.org
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

Glossary

RR Replica-replica communication is communication type that happens bet-
ween replica servers of a CSS (often referred to as intranode communi-
cation). 88, 89, 92, 97, 114, 116, 119, 123, 125, 126, 129, 130, 132-134, 137,
140-142, 145, 146, 148, 151, 153, 156, 175, 176, 178-182, 184, 187, 191, 206,
213,214, 216, 217, 219, 221-223, 225

RSA is a public-key cryptosystem that is made of the initial letters of the sur-
names of the inventors Ron Rivest, Adi Shamir, and Leonard Adleman.
40, 93-95, 122, 125, 126, 135, 138, 142, 203, 211, 216

S3 Simple Storage Service is a cloud storage service (key-value store) available
at http://aws.amazon.com/s3. ii, iv, 3, 13-15, 19-21, 36, 37, 39, 43,
58-60, 89

SCSV TLS Fallback Signaling Cipher Suite Value is a TLS extension (RFC 7507).
41,103, 108

SDK Software Development Kit. 20, 59, 61, 63, 77, 121
SDL Security Development Lifecycle. 10, 27, 49, 50, 53, 56, 57, 65, 68, 74, 81, 82

secure renegotiation indication is a TLS extension (RFC 5746). 41, 103, 105,
108

SHA Secure Hash Algorithm. 93-95, 122, 125, 126, 135, 138, 142, 203, 211, 216
SNIA Storage Networking Industry Association. 54, 55, 57

SOX Sarbanes Oxley Act. 58

SQL Structured Query Language. 59

SSE Server-Side Encryption. 36, 37

SSH Secure Shell. 63, 70, 72, 73, 185

SSL Secure Sockets Layer. i, iv, 5, 40, 93, 95, 102, 105-108, 122, 167, 189

STRIDE is an acronym for Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privileges. 51, 53, 67, 70,
81

SUT System Under Test. 113, 116-119
TB Terabyte. 20

TCP Transport Control Protocol. 22, 23, 71, 90-92, 95, 98, 164, 179, 182, 183,
189, 206

272

http://aws.amazon.com/s3

Glossary

Thrift is communication middleware available at http://thrift.apache.
org. 22-24, 63,68, 70,71, 88, 89, 125, 135, 137, 203, 206

TLS Transport Layer Security. ii, iv, 5, 6, 9, 11, 12, 26, 31, 33, 3943, 53, 66,
67,7782, 85-87,89-99, 101-111, 113123, 125, 126, 129, 130, 132-136, 138,
140-146, 148, 152-156, 158, 161, 163, 164, 166, 167, 169-176, 178-187, 189—
192, 195-197, 199, 200, 203, 205, 206, 211, 213, 214, 216, 217, 220-222, 267-
269, 271-273

TLSBench is a TLS benchmarking tool for CSS available at http: //www.sf.
net/p/tlsbench. 86,99, 117-122, 125, 126, 132, 133, 135, 137, 138, 140,
142,155, 158, 203, 206, 213, 214, 216, 217, 222, 226, 227, 229, 230

USA United States of America. 19, 35, 125

VM Virtual Machine. 10, 14, 35, 62-64, 68, 103, 134

Voldemort is a NoSQL system (key-value store) available at http://www.
project-voldemort.com. ii, iv, 3, 13-15, 21-24, 39, 59, 68-73, 81, 88,
89, 97,134, 137, 144, 145, 156, 200

WoIfSSL is a TLS implementation based on C available at https://www.
wolfssl.com. 104,105,108, 109, 111, 146, 151-153, 225, 226

XML Extensible Markup Language. 16, 21, 59

YCSB Yahoo! Cloud Serving Benchmark is a benchmarking tool for CSS avai-
lableathttps://github.com/brianfrankcooper/YCSB. 98,99,117-
120

273

http://thrift.apache.org
http://thrift.apache.org
http://www.sf.net/p/tlsbench
http://www.sf.net/p/tlsbench
http://www.project-voldemort.com
http://www.project-voldemort.com
https://www.wolfssl.com
https://www.wolfssl.com
https://github.com/brianfrankcooper/YCSB

	Titelblatt
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	I Introduction
	1 Problem Statement and Approach
	2 Contributions
	2.1 Reference Usage and Threat Models of Cloud Storage Systems
	2.2 Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems
	2.3 Adaptive Middleware for Transport Layer Security

	3 Fundamentals
	3.1 Cloud Storage Systems
	3.1.1 Data Models
	3.1.2 Distribution Models
	3.1.3 Example Cloud Storage Systems
	3.1.3.1 Cloud Storage Services
	3.1.3.2 NoSQL Systems

	3.2 Security Engineering for Cloud Storage Systems
	3.2.1 Processes, Approaches, and Activities
	3.2.2 General Threats to Cloud Storage Systems
	3.2.3 Security Trade-Offs in Cloud Storage Systems
	3.2.3.1 Identification of Security Trade-Offs on the Example of Security Patterns
	3.2.3.2 Typical Security Patterns and Mechanisms

	II Reference Usage and Threat Models of Cloud Storage Systems
	4 Background and Related Work
	4.1 Threat Analyses in the Context of Security Engineering
	4.2 Threat Modeling
	4.3 Reference Modeling
	4.4 Related Work
	4.4.1 Reference (Usage) Models of Cloud Storage Systems
	4.4.2 Threat Models/Analyses of Cloud Storage Systems

	5 Usage Models
	5.1 Cloud Storage Services
	5.2 NoSQL Systems
	5.3 Summary

	6 Threat Models
	6.1 Cloud Storage Services
	6.2 NoSQL Systems
	6.2.1 Voldemort
	6.2.2 Cassandra
	6.2.3 Generalization

	6.3 Summary

	7 Exemplary Threat Analyses
	7.1 Use Case based on DynamoDB
	7.2 Use Case based on Cassandra
	7.3 Summary

	8 Conclusion and Discussion

	III Experimental Trade-Off Analyses
	9 Background and Related Work
	9.1 Communication in Cloud Storage Systems
	9.2 Performance Impact and Optimizations of Transport Layer Security
	9.3 Cipher Suite Configuration
	9.4 Java-based Transport Layer Security Implementations
	9.5 Related Work

	10 Comparing different Transport Layer Security Implementations
	10.1 Transport Layer Security Implementation Comparison Framework for Java
	10.2 Comparison of Selected Transport Layer Security Implementations for Java
	10.3 Summary

	11 Measuring the Transport Layer Security Overhead in Cloud Storage Systems
	11.1 Benchmarking Approach
	11.2 TLSBench
	11.3 Summary

	12 Experimental Trade-Off Analyses of Transport Layer Security in Cloud Storage Systems
	12.1 Analyses of Select Cloud Storage Systems
	12.1.1 DynamoDB
	12.1.2 Cassandra
	12.1.2.1 Experiment AR
	12.1.2.2 Experiment RR
	12.1.2.3 Experiment AR-RR
	12.1.2.4 Experiment RR-HL

	12.1.3 Summary

	12.2 Analyses of Cipher Suite Configurations
	12.2.1 Experiment DHE vs. ECDHE
	12.2.2 Experiment CBC vs. GCM
	12.2.3 Experiment R3-CQ
	12.2.4 Summary

	12.3 Analyses of Different Transport Layer Security Implementations
	12.3.1 Experiment AES-NI
	12.3.2 Experiment Netty/OpenSSL
	12.3.3 Experiment WolfSSL
	12.3.4 Summary

	13 Conclusion and Discussion

	IV Adaptive Middleware for Transport Layer Security
	14 Background
	14.1 (Self-)Adaptivity
	14.2 Adaptation Strategies, Tactics, and Actions
	14.3 Monitoring

	15 Architecture
	15.1 Customized Java Secure Sockets Extension
	15.2 Event Registry and General TLS Statistics
	15.3 Adaptation Engine, Adaptation Strategies, and Reconfiguration
	15.4 Summary

	16 Instantiation
	16.1 Cipher Suite Adaptation
	16.1.1 Permanent Cipher Suite Reconfiguration in Cassandra
	16.1.2 Cipher Suite Reconfiguration of Single RR Connections in Cassandra at the Connection Initiation
	16.1.3 Renegotiation of Cipher Suites of Established RR Connections in Cassandra

	16.2 Adaptation of Maximum Transport Layer Security Record Size
	16.3 Summary

	17 Evaluation
	17.1 Threat Analysis
	17.2 Performance

	18 Related Work
	18.1 Transport Layer Security Adaptations
	18.2 Quality of Service and General Adaptation Frameworks and Architectures

	19 Conclusion and Discussion

	V Finale
	20 Conclusions
	21 Outlook

	Appendix
	A Detailed Experiment Results of Analyses of Cipher Suite Configurations
	A.1 Experiment DHE vs. ECDHE
	A.2 Experiment CBC vs. GCM
	A.3 Experiment R3-CQ

	B Detailed Experiment Results of Analyses of Different Transport Layer Security Implementations
	B.1 Experiment AES-NI
	B.2 Experiment Netty/OpenSSL
	B.3 Experiment WolfSSL

	C Experiment Results of the Performance Evaluation of ATLaS

	Bibliography and Lists
	Bibliography
	List of Figures
	List of Tables
	Glossary

