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Introduction

The construction of“interesting”combinatorial and geometric polyhedral sur-
faces and polytopes is the main subject of this thesis. On the way we develop
some new methods for the study of projection problems of polytopes and for
the analysis of the realization spaces of polytopes as well as polyhedral sur-
faces obtained via projections.

The starting point of our investigation of polyhedral surfaces were the two ar-
ticles by McMullen, Schulz & Wills [36, 37] on equivelar surfaces and polyhe-
dral surfaces of “unusually large genus” from the 1980ies. In their first article
they propose different techniques to realize surfaces via 4-dimensional poly-
topes and give explicit constructions for certain parameters {p, q}, where p
denotes the size of the polygons and q the degree of the vertices. In the
second article they construct three families of equivelar polyhedral surfaces
of types {3, q}, {4, q}, and {p, 4} in R3. These surfaces have an astonishingly
large genus. More precisely, the surfaces have a genus of order O(n log n) on
only n vertices. Further, they are constructed explicitly in R3 with planar
polygon faces and without self-intersection.

From the combinatorial point of view, the maximal genus of a surface on n
vertices is of order O(n2). All the polyhedral surfaces of McMullen, Schulz &
Wills in R3 have either vertex degree or polygon size of less than 5. This
leads to a question of Brehm and Wills [13, Sect. 4.2] whether polyhedral
surfaces of vertex degree and polygon size of at least 5 may be embedded
in R3. Furthermore, little is known about the realization spaces of polyhedral
surfaces. Brehm [10] announced a universality theorem for polyhedral sur-
faces but even for special families of polyhedral surfaces we only have very
näıve approaches.

At that time, McMullen, Schulz & Wills did not know the neighborly cubical
polytopes (NCP) of Joswig & Ziegler [29] or the projected deformed prod-
ucts of polygons (PPP) of Sanyal & Ziegler [44] which we use to construct
polyhedral surfaces. These polytopes have many very interesting properties:

◮ First of all, they are neighborly, that is, the d-dimensional NCP resp.
PPP has the ⌊d−1

2
⌋-skeleton of the corresponding high dimensional cube

resp. product of polygons. Both polytopes are obtained by projections of

1



2 Introduction

particular deformed realizations of the cubes resp. products that retain the
required skeleta. So they are a manifestation of dimensional ambiguity,
which is studied since the 1960ies with the cyclic polytopes as its most
prominent example.

◮ Secondly, the 4-dimensional NCPs and the PPPs both are relevant to the
study of the space of f -vectors of 4-dimensional polytopes. A major open
question in this line of research is whether the fatness of 4-polytopes is
bounded or not, and both the NCPs (2000) and the PPPs (2004) are poly-
topes with large fatness 5− ε resp. 9− ε.

◮ Thirdly, the NCPs and the PPPs both contain interesting families of poly-
hedral surfaces. The surfaces in the 4-dimensional neighborly cubical poly-
topes are the Hamiltonian surfaces described by Coxeter [15] and later by
Ringel [41], as observed in [28]. The polyhedral surfaces contained in the
4-dimensional PPPs are analyzed in Chapter 5.

◮ Finally, the polytopes used in the constructions of both NCPs and PPPs
involve projections of deformed products of intervals to obtain the NCPs
and of polygons to obtain the PPPs. These deformed polytopes are also
worst case examples for linear programming.

After having introduced the basic objects
and methods in Chapter 1 we present two
new methods concerning projections of poly-
topes and their realization spaces. In the
first part of Chapter 2 we build a bridge
between the projection problems and em-
bedding problems via Gale duality. A pro-
jection of a polytope preserving a certain
subcomplex gives rise to a simplicial com-
plex embedded in the boundary of an asso-
ciated polytope. We will use the contraposi-

tion, that is, if the associated subcomplex cannot be embedded into a sphere
of a certain dimension (the boundary of the associated polytope) then there
exists no realization of the polytope such that a projection preserves a given
subcomplex. As a first application of this scheme we use the non-planarity
of the complete bipartite graph on 3 + 3 vertices to show that the product
of two triangles may not be projected to the plane preserving all 9 vertices.
Our main tool to show the non-embeddability of the associated simplicial
complexes into spheres is the Sarkaria coloring/embedding theorem, which
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is a combinatorial criterion based on colorings of Kneser graphs. In view of
the constructions known for dimensionally ambiguous polytopes, projections
preserving entire skeleta are of particular interest. This special case is treated
at the end of Section 2.1 where we derive a combinatorial upper bound on
the target dimension of a projection of the form: If the target dimension is
smaller than the given bound then the projection cannot preserve the de-
sired skeleton. In the second section of Chapter 2 we describe a new way
to parametrize the realization spaces of simple polytopes. Many polytopes
studied in this thesis are projections of high dimensional simple polytopes.
Unfortunately, it is not clear how the usual parametrization of their realiza-
tions via facet normals behaves under projections, since every modification
of a single facet normal changes the coordinates of many vertices. So our
approach is to give a new parametrization of the realization space of a sim-
ple polytope via certain subsets of the vertices. These affine support sets
are affinely independent restricted to every facet in every realization of the
polytope. Thus every small perturbation of the vertices of the affine support
set yields a new realization of the simple polytope. So the coordinates of the
vertices of the affine support set yield parameters of a part of the realization
space of the simple polytope. This parametrization is suited to understand-
ing the dimension of the realization space (moduli) of the projected polytope:
Modifications of the vertices of the affine support set orthogonal to the direc-
tion of projection become modifications of the projected vertices. Further,
this parametrization also yields moduli for arbitrary subcomplexes that are
preserved by a projection. In Section 2.2.3 we apply this new technique to
the surfaces of Ringel, which may be obtained by a projection of a deformed
high-dimensional cube.

As mentioned earlier, the projected defor-
med products of polygons (PPPs) are in-
teresting polytopes with respect to various
problems: dimensional ambiguity, fatness,
polyhedral surfaces, and complexity of lin-
ear programming. One curiosity about the
construction of the PPPs is that it only
works for products of even polygons. In
the first section of Chapter 3 we pro-
vide a systematic approach to non-project-
ability of skeleta of products of polytopes

that leads to a “knapsack-type” integer program. The optimal value of this
integer program serves as a lower bound on the embeddability dimension of
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the skeleton complex, which is a subcomplex of the associated complex intro-
duced in Section 2.1.1. We use this method to prove the non-projectability
of skeleta of products of odd polygons and of products of odd and even
polygons. These results complement the previous projectability results for
products of even polygons of Ziegler [48] and Sanyal & Ziegler [44]. They
also generalize the well known fact that the projection of the product of two
odd polygons to the plane cannot preserve all the vertices. Another general-
ization of the projection of two triangles to the plane preserving all vertices
is the projection of products of simplices preserving entire skeleta. Again us-
ing the methods developed in Section 2.1, we are able to give upper bounds
on the target dimension of the projection to make a projection preserving
the skeleton impossible. This result may also be interpreted as a relative
of the Flores–Van Kampen Theorem which deals with the (topological) em-
beddability of skeleta of simplices. As we will see, we are able to reuse the
projectability results on products of simplices for projections of polyhedral
surfaces in wedge products in Section 4.4.

The starting point of Chapter 4 were the
equivelar polyhedral surfaces of type {p, 4}
of McMullen, Schulz & Wills [37] with p-
gon faces and vertex degree 4. These sur-
faces are contained in a new kind of poly-
tope constructed from two polytopes—the
wedge product. This class of polytopes is
dual to the wreath products of Joswig &
Lutz [27] and may be obtained by iterating

the subdirect sum construction of McMullen [35]. We provide a definition
by an inequality system, which combines the inequality systems of the two
constituents. Later we observe that there is also a purely combinatorial de-
scription, which may serve as a definition as well. The wedge product of
a p-gon and a (q − 1)-simplex contains a family of regular surfaces with p-
gon faces and vertex degree 2q. These surfaces generalize the surfaces of
McMullen, Schulz & Wills of type {p, 4} and the surfaces of type {3, 2q} of
Coxeter [15]. Since they are subcomplexes of the wedge products we are able
to realize the surfaces in R5 by a lemma about projections of 2-dimensional
complexes by Perles. Moreover, we obtain another way of realizing the sur-
faces of type {p, 4} in R3 by projecting a deformed wedge product of a p-gon
and an interval. As a benefit of our construction we are able to give a lower
bound on the number of moduli of the projected surfaces by using the new
methods developed in Section 2.2. In Section 4.3.3 we construct 4-polytopes
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with prisms over the surfaces in their boundary. This allows us to use poly-
tope duality to obtain realizations of the dual surfaces in the boundary of the
dual 4-polytope. Consequently, we may realize the dual surfaces in R3 as well
via Schlegel projection. (Un)fortunately, we are able to use our results about
the projectability of skeleta of products of simplices of Section 3.3 to deduce
the following for the wedge product surfaces: For p ≥ 4 and q ≥ 3 there
exists no realization of the corresponding wedge product such that the sur-
face survives the projection to the boundary of a 4-polytope. For Coxeter’s
surfaces of type {3, 2q} our methods did not yield any new results.

The quadrilateral surfaces constructed by
McMullen, Schulz & Wills [37] (MSW sur-
faces) are equipped with three parameters:
the vertex degree, and two parameters aris-
ing from the torus symmetry. The construc-
tion is performed entirely in R3 using great
geometric intuition and the symmetry of the
standard (m× n)-torus. In Chapter 5 we
identify these surfaces as subcomplexes of

products of polygons. This leads to the generalized MSW surfaces contained
in the 2-skeleton of the product of polygons described in Section 5.1.2. These
surfaces provide a large number of parameters and include the original MSW
surfaces as well as the surfaces described in terms of their symmetry group
by Coxeter [15]. Another family of surfaces containing all “polygon” faces
and some quadrilateral faces of the product is constructed in the subsequent
section. Both families of surfaces may be realized in the boundary of a 4-
polytope and in R3 via an orthogonal projection of a suitable deformed real-
ization of the product of polygons. Hence we are able to apply the methods
of Section 2.2 to obtain a large number of moduli despite the fact that the
surfaces neither have vertices of degree three nor triangle faces. Further, the
surfaces of the second family are the first to achieve an average vertex de-
gree and an average polygon size larger than 5 embedded in R3 with planar
convex faces. This gives an affirmative answer to a variation of the question
of Brehm & Wills [13, Sect. 4.2] asking for the existence of such polyhedral
surfaces with large vertex degree and large polygon size in R3. As for the
surfaces contained in the projected wedge products, we are again able to
construct 4-polytopes with the prisms over the surfaces in their boundaries.
Hence we obtain realizations of the dual surfaces in R3 as well.
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A particularly interesting family of zono-
topes are the “Ukrainian Easter eggs” from
Eppstein’s online“Geometry Junkyard”[18].
These zonotopes have a large 2-dimensional
section: The Ukrainian easter egg generated
by n vectors, that is, with n zones, has a
central 2-dimensional cut with Ω(n2) sides.
This is optimal in dimension 3 since a zono-
tope on n zones has at most O(n2) facets.

Dually, the duals of the Ukrainian Easter eggs have a projection to the plane
that has Ω(n2) vertices. In Chapter 6 we provide two constructions of high-
dimensional dual zonotopes that have 2-dimensional projections with many
vertices: The first construction is based on the projected deformed products
of polygons. It yields a d-dimensional dual zonotope with n zones whose
projection to the plane has Θ(n(d−1)/2) vertices. In Section 6.3 we construct
another d-dimensional zonotope on n zones such that the projection to the
plane has Θ(nd−1) vertices. This is the maximal asymptotic bound for fixed
dimension, since the number of vertices of a dual zonotope is also O(nd−1).
The construction is also relevant to the arrangement method for linear pro-
gramming proposed by Koltun [30]. This method transforms a linear program
into a linear program on an arrangement polytope, that is, a linear program
on a dual zonotope.

Co-authors

The new methods of Chapter 2 were developed together with Raman Sanyal
(Section 2.1) and Günter M. Ziegler (Section 2.2). Chapter 3 on topological
obstructions to projections of polytope skeleta is joint work with Raman
Sanyal. The polyhedral surfaces and wedge products of Chapter 4 have been
worked out together with Günter M. Ziegler. The final Chapter 6 was written
in collaboration with Nikolaus Witte and Günter M. Ziegler and is published
in Discrete & Computational Geometry (Online first) [42].



Chapter 1

Basics

In this chapter we introduce the basic concepts of this thesis and give ref-
erences to the relevant literature for further reading. All the important def-
initions are marked by Definition, whereas other basic concepts are only
emphasized in the text. For n ∈ N we define [n] := {0, 1, · · · , n− 1}. This is
most suitable for calculating modulo n.

1.1 Polytopes

In this section we provide some basic notions about convex polytopes used
throughout this thesis. We will introduce some notation and ways of speak-
ing without giving an exhaustive list of basic definitions. For a thorough
treatment of polytopes we refer the reader to the books of Grünbaum [25]
and Ziegler [47].

There are an interior and an exterior definition of a polytope. They are
equivalent by the Minkowski–Weyl Theorem [47, Thm. 1.1, p. 29]:

Interior/V-description: A polytope P ⊆ Rd is the convex hull of a finite
set of points V = {v0, . . . , vn−1} ⊆ Rd:

P = conv(V ) = conv({v0, . . . , vn−1}).

Exterior/H-description: A polytope P ⊆ Rd is the bounded intersection
of a finite number of halfspaces h+

i = {x ∈ Rd | aix ≤ bi}:

P =
m−1⋂

i=0

h+
i = {x ∈ Rd | aix ≤ bi for i = 0, . . . ,m− 1}.

The dimension of a polytope is the dimension of its affine hull. If not stated
otherwise, we always consider full-dimensional polytopes P ⊂ Rd, that is,
the dimension of the polytope coincides with the dimension of the ambient
space. A d-dimensional polytope is called a d-polytope for short.

7



8 Basics

A face G of a d-polytope P ⊂ Rd is the intersection G = P ∩ hc of the
polytope P with a (valid/admissible) hyperplane hc = {x ∈ Rd | cx = c0}
with cx ≤ c0 for all x ∈ P . The dimension of the face G is the dimension of
its affine hull.

The 0-dimensional faces of P are the vertices denoted by V = vert(P ).
Sometimes we identity the set of vertices V = {v0, . . . , vn−1} with the index
set [n] = {0, . . . , n − 1} or the coordinate matrix V ∈ Rd×n whose columns
contain the coordinates of the corresponding vertices. The facets of P are the
(d− 1)-dimensional faces. A facet F will often be identified with its defining
hyperplane hi = {x ∈ Rd | aix ≤ bi} as given in the exterior H-description
or just with an index i ∈ [m] = {0, . . . ,m − 1} such that F = P ∩ hi. The
empty set ∅ and the entire polytope P are also faces of the polytope. The
number of k-dimensional faces (k-faces) of a polytope is denoted by fk(P ).
The vector f(P ) := (fk(P ))d−1

k=0 ∈ Zd is the f-vector of the polytope.

Each face G of P is uniquely determined by the subset VG := vert(P ) ∩G
of the vertices of P contained in G, such that G = conv(VG). The set of
facets containing a face G is denoted by HG := {F | F facet, G ⊂ F}.
This set also determines the face G uniquely as intersection of facets, that
is, G =

⋂
{F | F ∈ HG}. If we identify the vertices with [n] and the facets

with [m] then VG ⊆ [n] and HG ⊆ [m].

The combinatorial structure of a d-polytope P with n vertices and m facets
is captured in its face lattice L(P ). Its elements are the faces of P partially
ordered by inclusion. We may also construct the face lattice by ordering the
vertex sets of the faces VG ⊆ [n] by inclusion or the sets of facets HG ⊆ [m]
containing a given face by reverse inclusion. A d-polytope is simple if every
vertex is contained in exactly d facets, that is, if |Hv| = d for every vertex v.
A flag of a d-polytope is a sequence of faces (Gk)

d−1
k=0 such that Gk is a k-face

and Gk−1 ⊂ Gk for k = 1, . . . , n− 1.

Two polytopes P and Q are combinatorially isomorphic if their face lat-
tices L(P ) and L(Q) are isomorphic lattices. This leads to our first new
definition.

Definition 1.1 (Combinatorial type/d-type). The combinatorial type or d-
type P of a d-polytope P consists of all polytopes combinatorially equivalent
to P . We call every such polytope P a realization of the combinatorial type
(d-type) P .

We will denote combinatorial types by script letters and their corresponding
realizations by normal letters, e.g. P is a realization of P . All combinato-
rial properties of the realizations will also be assigned to the corresponding
combinatorial types.
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The space of all realizations of a given d-dimensional combinatorial type P
with n vertices in Rd is the realization space R(P) of P . The realization
space R(P) may be interpreted as a subspace of Rnd by identifying the n · d
coordinates of the vertices of a realization P of P with a point in Rnd. It may
easily be described by a set of polynomial equations (vanishing determinants
for vertices on one facet) and strict inequalities for convexity. Such sets
given by polynomial equations and strict polynomial inequalities are called
primary basic semialgebraic sets. The universality theorems of Mnëv [38]
and Richter-Gebert [40] state that every primary basic semialgebraic set is
stably equivalent to the realization space of a d-polytope on d + 4 vertices
(Mnëv) or the realization space of a 4-polytope (Richter-Gebert).

The local dimension of the realization space of a combinatorial type P is the
number of moduli. For example, every realization P of a simple d-type P
has d · fd−1(P) moduli since every small perturbation of the facet normals
yields another realization of the same combinatorial type. So the realization
space of a simple d-type has dimension d · fd−1(P) (everywhere).

1.2 Gale transform

Gale transformation is a simple linear algebra method to transform one se-
quence of vectors into another. (The linear algebra behind Gale transforma-
tion is described in Matoušek [33, Ch. 5.6]. Another introduction to Gale
transforms with a special focus on the link to matroid duality is given in
Ziegler [47, Ch. 6].) In polytope theory it is used to study high dimensional
polytopes with few vertices. We use it to construct vector configurations
needed for our projection problems.

Definition 1.2 (Gale transform). Let V = (v0, . . . , vn−1) be a sequence of
points in Rd forming the columns of a matrix V with rank(

(
1

V

)
) = d+1. The

Gale transform G of V is a sequence of vectors G = (g0, . . . , gn−1) in Rn−d−1

such that the rows of G span the orthogonal complement of the rows of V
and are orthogonal to the vector 1 = (1, . . . , 1), that is,

(
1

V

)
Gt = 0.

Since the choice of basis for the orthogonal complement of the row space of V
is arbitrary, the Gale transform of a sequence of points is only determined
up to linear isomorphism.

Since the sequences of points V and G are linked by orthogonal comple-
ment, the affine values of V correspond to the linear dependencies of G [33,
Lemma 5.6.2, p. 110] and the linear values of G are the affine dependencies
of V . This allows us to read off various properties of the configuration V
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from the configuration G and vice versa. We may, for example, determine
whether the points of V are in convex position.

Proposition 1.3 (Polytopal Gale transform [33]). Let V = (v0, . . . , vn−1) be
a set of points in Rd with rank(

(
1

V

)
) = d + 1 and G = (g0, . . . , gn−1) its Gale

transform. Then the vi are the vertices of a convex d-polytope if and only if
there exists no oriented hyperplane containing at most one of the vectors gi

on its positive side.

The Gale transform of a polytope allows us to recover the entire facial struc-
ture of the polytope via the following dictionary. There are of course more
properties to read off the Gale transform but we only state the ones important
for our further investigations.

Proposition 1.4 (Gale transform dictionary [33]). Let P be a d-polytope
with vertices V = (v0, . . . , vn−1) and G = (g0, . . . , gn−1) its Gale transform
in Rn−d−1. Then there is the following correspondence between the vertices vi

and the corresponding gi:

1. The set of vertices {vi | i ∈ I ⊆ [n]} with |I| = d + 1 is affinely
independent if and only if {gi | i 6∈ I} is linearly independent.

2. F = conv({vi | i ∈ IF ⊆ [n]}) is a face of P if and only if the comple-
ment of the corresponding vectors {gi | i 6∈ IF} is positively dependent.

3. F = conv({vi0 , . . . , vik}) is a simplicial face of P if and only if the
complement of the corresponding vectors G \ {gi0, . . . , gik} is positively
dependent and spanning.

Example 1.5 (Gale transform of a pyramid). Let V = (v1, . . . , vn) be the
vertices of a d-polytope P in Rd and G = (g1, . . . , gn) its Gale transform
in Rn−d−1. Then the vertices (v̂0, v̂1, . . . , v̂n) = (

(
10), ( 0

v1

)
, . . . ,

(
0
vn

)
) are the

vertices of a pyramid pyr(P ). The Gale transform Ĝ = (ĝ0, ĝ1, . . . , ĝn) of the
pyramid consists of n + 1 vectors in Rn+1−(d+1)−1, that is, the same ambient
dimension as the Gale transform of the polytope P . Since the polytope P
itself is a face of the pyramid pyr(P ) we obtain ĝ0 = 0. Further for every
face G of P , G and G∪{v̂0} are faces of pyr(P ) and thus Ĝ = (0, g1, . . . , gn)
is a Gale transform of pyr(P ). A pyramid over a 5-gon and its Gale diagram
are shown in Figure 1.1.

1.3 Polyhedral surfaces

There are many different ways used to describe surfaces, for example poly-
hedral maps, which may be given by a graph on a surface, or cell complexes
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Figure 1.1: A pyramid over a 5-gon and its Gale diagram. The 0-vector in the
Gale diagram is indicated by the point in the center.

with intersection property (see the handbook articles of Brehm & Wills [13]
and Brehm & Schulte [12] for further discussion and references). Since we
are heading for realizations of certain combinatorial types of surfaces we con-
sider the following complexes whose topology is determined by its face poset
as described by Björner in [5]. So a polytopal complex is given by a poset
whose intervals are isomorphic to posets of polytopes. We do not require that
a polytopal complex has any realization as in the definition of a polyhedral
complex given by Ziegler [47, p. 127].

Definition 1.6 (Polyhedral surface). A polyhedral surface S is a 2-dimen-
sional polytopal complex homeomorphic to a connected 2-manifold without
boundary, that is, S is a polytopal complex satisfying the following condi-
tions:

1. S is connected,
2. the star of every vertex is homeomorphic to a 2-ball, and
3. every edge of S is contained in exactly two polygons.

The face lattice L(S) of a polyhedral surface S is obtained by ordering the
faces of the vertices, edges, and polygons by inclusion and attaching a unique
minimal and maximal element. The dual surface S∗ is given by the dual
face lattice, that is, by reversing the order of the face lattice L(S). The
polygons of the surface S correspond to vertex figures of the dual surface S∗,
and vice versa. So the dual of a polyhedral surface is again a polyhedral
surface. If the polygons may be oriented such that each edge of the polyhedral
surface is oriented in different direction in the two adjacent polygons, then
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the polyhedral surface is orientable. The Euler characteristic of a surface
is χ(S) = f0−f1+f2, where (f0, f1, f2) is the f -vector of the surface, that is, S
has f0 vertices, f1 edges, and f2 polygons. The genus g(S) of an orientable
polyhedral surface may easily be calculated from its Euler characteristic:
g(S) = 2− 2χ(S).

Most of the surfaces described in this thesis are of a particular type of poly-
hedral surfaces given by the next definition.

Definition 1.7 (Equivelar surface of type {p, q}). A polyhedral surface is
equivelar of type {p, q} if all its faces are p-gons and every vertex is incident
to exactly q of these p-gons.

We consider equivelar surfaces as abstract surfaces that need not have any
realization. The automorphism group Aut(S) of a polyhedral surface is the
subgroup of the vertex permutations inducing an automorphism on the face
lattice L(S). This leads to the following definition.

Definition 1.8 (Regular polyhedral surfaces). A polyhedral surface S is
regular if its automorphism group acts transitively on the flags of S.

A realization S of a polyhedral surface S is an embedding of the surface in
some Rd with planar convex polygons. The space of all realizations of a poly-
hedral surface S in some Rd is the realization space R(S, d) of the surface.
In contrast to polytopes the polyhedral surfaces do not have a natural ambi-
ent space, so we have to introduce an additional parameter d. Topologically,
every orientable surface may be embedded in R3 and every non-orientable sur-
face in R4. But for orientable polyhedral surfaces the realization space R(S, 3)
may be empty: Bokowski & Guedes de Oliveira [8] proved that one partic-
ular triangulated surface of genus 6 with the complete graph on 12 vertices
cannot be realized in R3. Using a similar approach Schewe [45] was able to
show that none of the triangulations of a surface of genus 6 with 12 vertices
may be realized in R3 with a more sophisticated algorithm in combination
with faster computers. On the other hand, Brehm [10] announced a theorem
on the universality of polyhedral surfaces (see Ziegler [49]), that is, every
primary basic semialgebraic set is stably equivalent to the realization space
of a polyhedral surface. If there exists a realization S ⊂ Rd of a polyhedral
surface S, then we may ask for the local dimension of the realization space
in the vicinity of S. This dimension of the realization space close to a given
realization S is the number of moduli M(S, d) of the realization S.
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1.3.1 Näıve estimate on the number of moduli

The näıve way to estimate the number of moduli for a realization S of a
polyhedral surface S is to count the “degrees of freedom” and subtract the
number of “constraints”. The idea is the following: Every vertex embedded
in some Rd has d degrees of freedom. Now the generic constraints mimic the
behavior of a generic system of linear equations. They are given by generic
equations, that is, the equations define co-dimension 1 hypersurfaces that
are stable under perturbations of the coefficients of the defining equations.
Hence every k generic constraints should intersect in a set of co-dimension k.

We adapt this näıve approach to our problem of embedding surfaces. If the
surface is embedded in Rd then every vertex has d degrees of freedom making
a total of d · f0(S) degrees of freedom. The constraints originate from the
planarity of the faces. These constraints are generic since we start with an
embedding of the surface and consider only small perturbations of the ver-
tices. To guarantee the planarity of the polygons we consider a triangulation
of the surface. This triangulation induces a triangulation on every p-gon
face with p− 3 diagonals (non-polygon edges). If the two triangles adjacent
to each of the diagonals in the triangulation of the p-gon are coplanar then
the entire p-gon is also planar. Since a 2-dimensional subspace of d-space
is the intersection of d − 2 hyperplanes, we need d− 2 constraints to assure
that two neighboring triangles are coplanar. Summing up over all diagonals
of all p-gons we obtain (d − 2)(f02(S) − 3f2(S)) constraints, where f02(S)
counts the number of vertex-polygon incidences. Thus the näıve “degrees of
freedom minus number of constraints” count yields the following estimate for
the number of moduli of a realization S of the polyhedral surface S:

M(S, d) ∼ df0(S)− (d− 2)(f02(S)− 3f2(S))

= df0(S)− 2(d− 2)f1(S) + 3(d− 2)f2(S),

since f02(S) = f12(S) = 2f1(S). For orientable surfaces we can express the
above estimate in terms of the genus:

M(S, d) ∼ 4(d− 2) + (d− 2)f2(S)− (d− 4)f0(S)− 4(d− 2)g(S)

since χ(S) = 2 − 2g(S) = f0(S) − f1(S) + f2(S). For surfaces in R3 this
amounts to:

M(S, 3) ∼ 3f0(S)− 2f1(S) + 3f2(S) (1.1)

= 4 + f2(S) + f0(S)− 4g(S).
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Figure 1.2: The 3× 3-torus.

Thus if the genus of the surface is asymptotically larger than the number
of vertices and facets then we expect the surface to have few moduli or no
moduli at all. The f -vector of an equivelar surface Sp,q of type {p, q} with 2np
vertices is n(2p, pq, 2q). If realized in R3 then the estimate for the number of
moduli of a realization Sp,q is:

M(Sp,q, 3) ∼ n(3 · 2p− 2 · pq + 3 · 2q) = 2n(3p + 3q − pq).

For triangulated surfaces (i.e. equivelar surfaces of type {3, q}) in R3 we know
that the number of moduli is 3 · f0(S3,q)− 15. This coincides with the above
estimate for equivelar surfaces of type {3, q}. We also observe that if p and q
are large then the estimated number of moduli becomes negative. Hence
one could expect that those surfaces do not have any non-trivial moduli (i.e.
moduli which do not come from projective transformations).

Remark 1.9. Every embedded surface always allows for small projective
transformations. As we are interested in asymptotic results for families of
surfaces we omit this additive constant obtained from fixing a projective basis
chosen from the vertices.

As we will see in Chapter 4 and Chapter 5, particular realizations of surfaces
with large polygon size or large vertex degree may nonetheless have many
moduli.

This is captured in a meta-theorem of Crapo [17] saying that the number
of moduli of a configuration is “the number of degrees of freedom of the
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π(P )

F

Figure 1.3: Survival of a face F in the projection π to the first coordinate. The
right vertex of the interval is not strictly preserved.

vertices minus the number of generic constraints plus the number of hidden
(incidence) theorems.” For the (3 × 3)-torus shown in Figure 1.2 we know
that if 8 of the 9 quadrilaterals are planar, then the 9th quadrilateral is also
planar. So one of the planarity conditions is superfluous (see Bokowski &
Sturmfels [9, p. 72] for a proof and references). In the case of the (3 × 3)-
torus the Desargues Theorem is the incidence theorem that implies that the
ninth quadrilateral is planar.

1.4 Projections and linear algebra

A linear projection π may map the k-faces of a polytope P to k-faces of π(P ),
to lower dimensional faces of π(P ), to subsets of faces of π(P ), or into the
interior of π(P ). We restrict ourselves to the nicest case of strictly preserved
faces as defined by Ziegler [48].

Definition 1.10 (Strictly preserved faces). Let P ⊂ Rd be a polytope and
Q = π(P ) be the image of P under the affine projection map π : Rd → Re.
A proper face F of P is strictly preserved by π if

(D1) π(F ) is a face of Q,
(D2) π(F ) is combinatorially equivalent to F , and
(D3) the preimage π−1(π(F )) ∩ P is F .

We also say that a face survives the projection or is retained by a projection,
if it is strictly preserved by the projection. The projection π is generic with
respect to a subcomplex of the polytope, if the faces of the subcomplex are
strictly preserved by the projection. (Note that such projections do not ex-
ist for arbitrary subcomplexes.) A projection is generic if it is generic with
respect to the entire projected polytope, that is, all the proper faces of the
projected polytope are strictly preserved. This is motivated by the fact, that
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Figure 1.4: The lower and the upper hull of a zonotope. Orthogonal projections
of the lower resp. upper hull yield a polytopal complex (without overlap).

preserved faces are stable under perturbation: If a face F of a polytope P
is strictly preserved under projection, then it is also strictly preserved by
any small perturbation of the projection. Moreover, in the case of a sim-
ple polytope P we may consider small perturbations of (the facet-defining
inequalities/hyperplanes of) the polytope P that do not change the combi-
natorial type, and for sufficiently-small such perturbations the corresponding
face F̃ of the slightly perturbed polytope P̃ is also preserved under the same
projection. To be able to apply this definition to our polytopes we use the
following lemma which connects the strictly preserved faces to the inequality
description of a polytope.

Lemma 1.11 (Preserved faces: linear algebra version [48]). Let P ⊂ Rd be
a d-polytope with facets aix ≤ 1 for i ∈ [m], F a non-empty face of P , and
HF the index set of the inequalities that are tight at F . Then F is strictly
preserved by the projection to the first e coordinates if and only if the facet
normals truncated to the last d − e coordinates {a

(d−e)
i : i ∈ HF} positively

span Rd−e.

The previous lemma is illustrated in Figure 1.3. Every affine projection of a
polytope to some e-dimensional subspace may be transformed into a projec-
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tion to the first e-coordinates by a suitable change of coordinates. Thus we
will only consider such projections to the first e coordinates in the following.

The above Lemma 1.11 suffices to obtain realizations of interesting polyhedral
surfaces in the boundaries of 4-polytopes via projections of high-dimensional
polytopes (see Chapters 4 and 5). To get a realizations of these surfaces
in R3 we might construct the Schlegel diagram of the projected polytope via
a central projection. To avoid this central projection we will project the
surface onto the lower or upper hull of the 4-polytope.

Definition 1.12. The lower/upper hull of a polytope with respect to some
coordinate direction xℓ is the polytopal complex consisting of all faces that
have a normal vector with negative/positive xℓ-coordinate (see Figure 1.4).

We will use the following lemma to prove the existence of realizations of some
of the surfaces in the lower resp. upper hull of projected (4-)polytopes.

Lemma 1.13 (Preserved faces on the lower/upper hull). Let P ⊂ Rd be a
polytope given by P = {x ∈ Rd | aix ≤ 1, i ∈ [m]}, G a non-empty face
of P , and HG ⊂ [m] the index set of the inequalities that are tight at G.
Then π(G) is on the lower/upper hull with respect to xe−1 of the projection
to the first e coordinates if and only if

(L1) the facet normals a
(d−e)
i with i ∈ HG truncated to the last d − e coor-

dinates positively span Rd−e, and
(L2) there exist λi ≥ 0 such that ν =

∑
i∈HG

λiai with (νe, . . . , νd−1) = 0
and νe−1 < 0 (lower hull) resp. νe−1 > 0 (upper hull).

Proof. The first part (L1) of this lemma is exactly the Projection Lemma 1.11
and the second part (L2) corresponds to Definition 1.12.





Chapter 2

New methods

In this chapter we introduce two new methods used in the following chap-
ters. The first section describes a new approach to attack problems con-
cerning polytope projections. By Gale duality we are able to associate an
embedding problem to a projection problem. To solve the associated embed-
ding problems we use methods from combinatorial topology. We apply the
method to products of polytopes in Chapter 3 and to polyhedral surfaces
in wedge products in Chapter 4. The second section introduces a new way
to parametrize the realization spaces of simple polytopes via affine support
sets, which are subsets of the vertices. The advantage of this parametrization
is that the moduli of the vertices are preserved by generic projections and
thus yield lower bounds on the moduli of surfaces obtained via projections
of high-dimensional polytopes. With this new method we estimate the di-
mension of the realization spaces for the surfaces in products of polygons in
Chapter 5 and for the surfaces contained in wedge products in Chapter 4.

2.1 Topological obstructions and polytope projections
joint with Raman Sanyal

We devise a criterion for projections of polytopes that allows us to state when
a certain subcomplex may be strictly preserved by a projection. First we
associate an embedding problem to the projection problem in Section 2.1.1.
Then we describe methods from combinatorial topology, which may yield ob-
structions to the associated embeddability problem in Section 2.1.2. Finally,
in Section 2.1.4 we specialize the obstructions to the problem of preserving
certain skeleta of polytopes by projections.

2.1.1 Associated polytope and subcomplex

We build a bridge between projection problems and embeddability problems
as follows: We associate a polytope with certain simplex faces to a projection

19
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of a polytope with certain strictly preserved faces via Gale duality. The
simplex faces of this associated polytope form a simplicial complex. If we
can show that this simplicial complex cannot be embedded into the boundary
of the associated polytope, then there is no realization of the polytope that
allows for a projection preserving the given subcomplex.

Sanyal [43] uses the same approach to analyze the number of vertices of
Minkowski sums of polytopes, since Minkowski sums are projections of prod-
ucts of polytopes. The vertices of a (simple) polytope P give rise to a simpli-
cial complex Σ0. If π : P → π(P ) is a projection preserving the vertices, then
Σ0 is realized in a (simplicial) sphere whose dimension depends on dim π(P ).
So if the simplicial complex Σ0 cannot be embedded into that sphere then
there exists no realization of the polytope such that all vertices survive the
projection.

Theorem 2.4 below is a generalization of this result from vertices to arbitrary
subcomplexes, which should be preserved. The next proposition links strictly
preserved faces to the associated polytope via Gale duality.

Proposition 2.1. Let π : Rd → Re be the projection to the first e coordi-
nates of a d-polytope P given by its facet inequalities (A(e), A(d−e))

(
x
x′

)
≤ 1

with A(e) ∈ Rm×e, A(d−e) ∈ Rm×(d−e), x ∈ Re, and x′ ∈ Rd−e. If for each
facet F of P at least one vertex v 6∈ F survives the projection then the rows
of A(d−e) are the Gale transform of a polytope.

Proof. The rows of the matrix A(d−e) are the Gale transform of a polytope
if for every row a

(d−e)
i (i ∈ [m]) the remaining rows of A(d−e) \ a

(d−e)
i are

positively spanning. But for every facet F there exists a vertex v 6∈ F that
survives the projection. Hence by Lemma 1.11 the truncated normals corres-
ponding to the facets containing this vertex positively span Rd−e. Thus A(d−e)

is the Gale transform of a polytope.

So if we project a d-polytope to Re such that some of the vertices survive
the projection as described in the above proposition we obtain a polytope by
Gale duality.

Definition 2.2 (Associated polytope). Let π be a projection of a d-dimen-
sional polytope P on m facets to Re that preserves one vertex v 6∈ F for
every facet F of P . Then the (m− (d− e)− 1)-dimensional polytope on m
vertices obtained via Gale transformation as described in Proposition 2.1 is
the associated polytope A(P, π).
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Further every face G that is preserved by the projection in the sense of
Lemma 1.11 yields an associated face AG = [m] \HG of the associated poly-
tope A(P, π) since Gale duality transforms positively spanning vectors into
faces of the polytope. By Proposition 1.4 all these associated faces AG are
simplices. This yields the following subcomplex of the associated polytope.

Definition 2.3 (Associated subcomplex). Let π be a projection of a d-dimen-
sional polytope P on m facets to Re that preserves one vertex v 6∈ F for every
facet F of P , and let S be the subcomplex of P that is preserved under pro-
jection in the sense of Lemma 1.11. Then the associated subcomplex K(P, π)
is the simplicial complex:

K(P, π) := {[m] \HG | G ∈ S}.

The subcomplex consists of all the facets and their faces.

Now we obtain the following theorem which links the projection of a polytope
preserving certain faces with the embedding of the associated subcomplex
into the associated polytope.

Theorem 2.4. Let π be a projection of a d-dimensional polytope P on m
facets to Re that preserves one vertex v 6∈ F for every facet F of P . Then the
associated subcomplex K(P, π) is embedded in the boundary of the associated
polytope A(P, π) of dimension m + e− d− 1.

Example 2.5 (Projection of the product of triangles preserving all vertices).
We will use the technique developed in this section to show that there exists
no realization of the product (∆2)

2 ⊂ R4 of two triangles ∆2 such that the
projection π : R4 → R2 to the plane preserves all 9 vertices.

The product of two triangles is a 4-polytope on 6 facets. Since the projection
is to R2, the associated polytope A((∆2)

2, π) is a 3-dimensional polytope.
Let us label the facets of the two triangles by a0, a1, a2 and a′

0, a
′
1, a

′
2. These

are also the labels of the vertices of the associated polytope A((∆2)
2, π).

Each vertex of the product lies on two facets corresponding to two edges of
each of the factors. Thus the associated complex K((∆2)

2, π) has an edge
for every pair (ai, a

′
j) with i, j ∈ [3]. So if there exists a projection of the

product of two triangles to the plane preserving all its vertices, then this
yields an embedding of the complete bipartite graph on 3 + 3 vertices K3,3

into the boundary of a 3-polytope. But since K3,3 is not planar there exists
no 3-polytope with K3,3 in its boundary. This implies that there exists no
realization of (∆2)

2 such that all vertices survive the projection to the plane.
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In the above example we used the non-planarity of the graph K3,3 as a topo-
logical obstruction to show that the projection of a product of two triangles
to the plane cannot preserve all the vertices. More sophisticated obstructions
are subject of the next section.

2.1.2 Embeddability dimension and Sarkaria index

In general it is hard to decide the embeddability of a simplicial complex K into
some sphere Sd. The following notions, taken and adapted from Matoušek’s
book [34], show that in fortunate cases we can determine non trivial lower
bounds on the dimension of a sphere that the complex K can be embedded
into.

Let K ⊆ 2[m] be a (finite) simplicial complex. Simplicial complexes on m
vertices have the nice property that they may always be embedded as a
subcomplex of the (m − 1)-simplex in Rm−1. Topologically, this yields an
embedding of the underlying topological space ‖K‖ of K into Rm−1. In the
following we use K for the simplicial complex and the corresponding topolog-
ical space (usually denoted by ‖K‖). We will look for the smallest dimension
of a sphere in which K can be embedded.

Definition 2.6 (Embeddability dimension). Let K ⊆ 2[m] be a simplicial
complex. The embeddability dimension e-dim(K) is the smallest integer d
such that K may be embedded into the d-sphere, i.e. K is homeomorphic to
a closed subset the d-sphere.

It is a well-known result [25, Ex. 4.8.25, Thm. 11.1.8] that the embeddability
dimension can be bounded in terms of the dimension of K.

Proposition 2.7. Let K be a simplicial complex of dimension dim K = ℓ.
Then

ℓ ≤ e-dim(K) ≤ 2ℓ + 1.

To find lower bounds other then the dimension of the complex is not obvious.
The methods derived in the book of Matoušek [34, Sect. 5] establish a combi-
natorial bound for the embeddability dimension of a simplicial complex. This
approach is summarized in Section 2.1.3. We take a shortcut and rephrase
the relevant theorem in terms of the embeddability dimension.

Before we are able to state the theorem we need some more definitions. For a
simplicial complex K ⊆ 2[m] we denote by F(K) the set of minimal non-faces,
i.e. the inclusion-minimal sets in 2[m] \ K. The Kneser graph KG(F) on a set
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system F ⊆ 2[m] has the elements of F as vertices and two vertices S, S ′ ∈ F
share an edge if and only if S and S ′ are disjoint. Furthermore, for a graph
G we denote by χ(G) the chromatic number of G.

Definition 2.8 (Sarkaria index). Let K be a simplicial complex on m vertices
and F = F(K) the collection of minimal non-faces. The Sarkaria index is

indSK K := m− χ(KG(F))− 1.

Using the methods developed in [34] we are able to state a very compact
criterion for the embeddability dimension of a simplicial complex. (This is
a reformulation of Sarkaria’s Coloring/Embedding Theorem [34, Sect. 5.8]
without deleted joins.)

Theorem 2.9 (Sarkaria’s index theorem). Let K be a simplicial complex.
Then

e-dim(K) ≥ indSK K.

We use the above theorem to show the non-embeddability of a simplicial
complex via the following corollary.

Corollary 2.10 (Non-embeddability and Sarkaria index). Let K be a sim-
plicial complex. If

indSK K > d

then there exists no embedding of the complex K into the d-sphere.

In its original form in [34] the above theorem bounds from below the Z2-index
of the deleted join of the complex K. The relation between the embeddability
dimension of a complex and the Z2-index of the deleted join of the complex K

is given in the next section.

Example 2.11. With the technique described in this section we are able
to show that K3,3 is not planar. The graph K3,3 is the join D3 ∗ D3 of the
simplicial complex with three isolated vertices D3. We label the vertices of
the two“coasts” of K3,3 by 1, 2, 3 and 1′, 2′, 3′ respectively. The minimal non-
faces of K3,3 are the edge 12,23,13 and 1′2′,2′3′,1′3′. Since the edges of the
one side are disjoint from the other side, the Kneser graph on the minimal
non-faces is again a K3,3 but with vertices labeled by the minimal non-faces
as shown in Figure 2.1. This graph has chromatic number 2 and hence the
Sarkaria index of K3,3 is:

indSK K3,3 = 6− 2− 1 = 3.

Thus there exists no embedding of K3,3 into a 2-sphere, i.e. the graph K3,3 is
not planar.



24 New methods

1

2

3

1′

2′

3′

12

13

23

1′2′

1′3′

2′3′

12

23

13

1′2′

2′3′

1′3′

Figure 2.1: The Kneser graph (right) on the minimal non-faces of the graph K3,3

is isomorphic to K3,3. The light edges are the minimal non-faces of the
graph (left).

2.1.3 Z2-maps and non-embeddability

In this section we take a look at the methods developed in Matoušek [34] to
show non-embeddability for certain simplicial complexes. They will lead to
a combinatorial criterion for the embeddability of a simplicial complex into a
sphere called Sarkaria’s Coloring/Embedding Theorem (see Theorem 2.15).

The idea is the following: Every embedding f of a simplicial complex K into a
d-sphere gives rise to a map f∗2 of another space K∗2

∆ to the d-sphere satisfying
certain properties. So if we are able to show, that such a map f∗2 cannot
exist, then this contradicts the embeddability of the original complex K into
the d-sphere via the map f . The tool used to show the non-existence of such
a map is the Z2-index of K∗2

∆ described in the following.

First we need to introduce some basic notions: A pair (X, ν) of a topological
space X and a homeomorphism ν : X → X with ν(x) 6= x for all x ∈ X
and ν2 = idX is called a (free) Z2-space. (Since we will only consider free Z2-
spaces, we will omit the attribute free.) The most prominent example of a Z2-
space is the d-sphere together with the antipodal map x 7→ −x. Continuous
maps f : (X, ν)→ (Y, µ) between two Z2-spaces with f ◦ ν = µ ◦ f are called

equivariant Z2-maps denoted by f : X
Z2−→ Y .

Definition 2.12 (Z2-index). The Z2-index of a Z2-space (X, ν) is

indZ2
X := min{d ∈ N | X Z2−→ Sd},

where Sd is the d-sphere with the usual antipodal action.

The Borsuk–Ulam Theorem tells us that there exists no Z2-map Sd Z2−→ Sd−1.
Hence the Z2-index of the d-sphere is d.
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We will work with combinatorial Z2-actions ν on simplicial complexes K,
i.e. maps that act on the vertex set [n] of the complexes. These actions
are free if no simplex is fixed under the action, that is, ν(F ) 6= F for all
faces F ∈ K. They easily yield Z2-actions on all the faces of the com-
plex as well as on the topological space ‖K‖. The canonical triangulation
of the d-sphere with a free Z2-action is the boundary of the cross poly-
tope crd+1 = conv({±ei | i ∈ [d + 1]}) where ei is the ith unit vector in Rd+1.
The antipodality maps the vertices of the crosspolytope onto their antipodes,
i.e. ei 7→ −ei.

Since the simplicial complexes we would like to embed do not have a natural
free Z2-action we need the following construction.

Definition 2.13 (Deleted join). Let K be a simplicial complex. The deleted
join K∗2

∆ of K is a subcomplex of the join K ∗ K with the following faces:

K∗2
∆ := {F1 ⊎ F2 | F1, F2 ∈ K, F1 ∩ F2 = ∅},

where F1 ⊎ F2 = (F1 × {0}) ∪ (F2 × {1}). The Z2-action on the deleted join
is F1 ⊎ F2 7→ F2 ⊎ F1. This is a free Z2-action since F1 ∩ F2 = ∅.

The Z2-index of the deleted join of the d-sphere is the same as the Z2-index
of the d-sphere. We obtain our first result about non-embeddability of a
simplicial complex.

Theorem 2.14 (Non-embeddability [34, Thm. 5.5.5]). Let K be a simplicial
complex. If

indZ2
K∗2

∆ > d

then for every continuous mapping f : K → Sd, the images of some two
disjoint faces of K intersect.

So the task to show non-embeddability for a complex K amounts to finding
lower bounds on the Z2-index of the deleted join K∗2

∆ . A combinatorial way
to find lower bounds on the Z2-index is via coloring the Kneser graph of the
minimal non-faces of the complex K.

Theorem 2.15 (Sarkaria’s coloring/embedding theorem). Let K be a sim-
plicial complex on n vertices, KG(F) the Kneser graph on the minimal non-
faces F of K. Then

indZ2
K∗2

∆ ≥ indSK K = n− χ(KG(F))− 1.

Consequently, if n − χ(KG(F)) − 1 > d then for every continuous mapping
f : K→ Sd, the images of some two disjoint faces of K intersect.
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Every embedding of a simplicial complex K into a d-sphere gives rise to a Z2-
equivariant map of the deleted join K∗2

∆ to a d-sphere. Thus the embeddability
dimension of K is at least as big as the Z2-index of its deleted join K∗2

∆ , which
yields Theorem 2.9 from Theorem 2.15.

2.1.4 Projections of skeleta and skeleton complexes

We take a closer look at projections of polytopes retaining entire skeleta of
polytopes. If a projection preserves an entire skeleton then this leads to a
subcomplex of the associated subcomplex K(P, π), which is embedded in the
associated polytope. So we need to show that the embeddability dimension
of this subcomplex is large in order to prove the non-projectablity of entire
skeleta. The subcomplex may be defined in a purely combintorial way.

Definition 2.16 (Skeleton complex). Let P be a combinatorial d-type with m
facets. For 0 ≤ k ≤ d, the kth skeleton complex is the simplicial com-
plex Σk(P) ⊆ 2[m] with facets [m] \HG for all k-faces G ⊆ P .

Since every k-face of a d-type P is contained in at least d − k facets, the
dimension of the kth skeleton complex is at most m − d + k − 1. If P is
simple then Σk(P) is a pure simplicial complex of dimension m + k − d− 1.
In [43], Σ0(P) was defined in terms of the complement complex of the bound-
ary complex of the dual to P . Here, we abandon the restriction to simple
polytopes. The connection to K(P, π) is given by the following observation.

Observation. If π : P → π(P ) is a projection retaining the k-skeleton then

Σ0(P ) ⊂ Σ1(P ) ⊂ · · · ⊂ Σk(P ) ⊂ K(P, π)

is an increasing sequence of subcomplexes.

Putting it all together we obtain a criterion for the non-projectability of the
k-skeleton of a combinatorial type of polytope.

Corollary 2.17. Let P be a d-type with m facets and for 0 ≤ k < d let Σk(P)
be the kth skeleton complex of P . If

e < e-dim(Σk(P)) + d−m + 2

then there is no realization of P such that a projection to Re retains the
k-skeleton.
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Proof. We prove the result by contradiction. Assume that P is a realization
of P and π : P → π(P ) is a projection retaining the k-skeleton with

e < e-dim(Σk(P)) + d−m + 2

⇐⇒ m + e− d− 2 < e-dim(Σk(P)).

Since Σk(P) is a subcomplex of K(P, π) it is a subcomplex of the boundary of
the associated polytope A(P, π) by Theorem 2.4. Hence the embeddability
dimension of Σk(P) is:

e-dim(Σk(P)) ≤ m + e− d− 2 < e-dim(Σk(P))

which is a contradiction.

Theorem 2.9 gives a combintorial lower bound on the embeddability dimen-
sion via the Sarkaria index. Hence we are able to state a purely combinatorial
criterion for the projectability of polytope skeleta by rephrasing the above
corollary

Corollary 2.18. Let P be a d-type with m facets and for 0 ≤ k < d let
Σk(P) be the kth skeleton complex of P . If

e < indSK Σk(P) + d−m + 2

then there is no realization of P such that a projection to Re retains the
k-skeleton.

As a plausibility check, consider the statement of Corollary 2.17 with the
bounds given in Proposition 2.7. If e-dim(Σk) attains the lower bound in
Proposition 2.7 then Corollary 2.17 implies that the dimension of the target
space has to be at least e ≥ k + 1. This sounds reasonable as the projection
embeds the k-skeleton into a sphere of dimension e − 1. If e-dim(Σk(P))
attains the upper bound then the k-skeleton is not projectable to e-space
if e < m−d+2k+1. This implies the polyhedral counterpart of the classical
Van Kampen–Flores result:

Theorem 2.19. Let P be a d-type and let 0 ≤ k ≤ ⌊d−2
2
⌋. If

e ≤ 2k + 1

then there is no realization of P such that a projection to e-space retains the
k-skeleton.



28 New methods

Proof. By a result of Grünbaum [24] the boundary complex of a d-polytope
is a refinement of the boundary complex of a d-simplex ∆d. This implies
that the k-skeleton of P contains a refinement of the k-skeleton of ∆d. The
Van Kampen–Flores theorem (see [34]) states that for k ≤ ⌊d−2

2
⌋ the k-

skeleton of a d-simplex is not homeomorphic to a subset of a 2k-sphere.

The embeddability dimensions of the skeleton complexes depend heavily on
the combintorial structure of the polytope. But for certain dimensions of
skeleta we can determine the embeddability dimension and the Sarkaria index
of the skeleton complexes exactly.

Proposition 2.20. Let P be a d-type on m facets. Then Σd(P) = ∆m−1

and Σd−1(P) = ∂∆m−1. In particular,

◮ e-dim(Σd(P)) = indSK Σd(P) = m− 1 and
◮ e-dim(Σd−1(P)) = indSK Σd−1(P) = m− 2.

Proof. The first claim follows from the definition of the skeleton complex.
Thus the embeddability dimensions are m − 1 and m − 2, respectively. For
the Sarkaria index we get in the former case that the Kneser graph of the
minimal nonfaces of Σd(P) has no vertices, whereas in the latter case the
graph has no edges.

2.2 Realization spaces of projected polytopes
joint with Günter M. Ziegler

The usual approach to parametrize the realization space of a simple polytope
via its facet normals is not very useful when we try to understand the space
of realizations of its projections. We define a certain subset of the vertices
that will yield parameters for the realization space of the high-dimensional
polytope as well as for the realization space of its projection. These subsets
are the subject of the next section.

2.2.1 Affine support sets

We will consider the following kind of subsets of the vertices of a combintorial
type of polytope.

Definition 2.21 (Affine support set). A subset A ⊆ V of the vertices V of a
simple d-type P is an affine support set if for every realization P and every
facet F of P the vertices A ∩ F are affinely independent.
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An affine basis of d-space has d + 1 points. Hence there exists an affinely
independent subset of the vertices of cardinality d+1 for each realization P of
a combinatorial d-type. But a set of vertices may be affinely independent for
one realization, but affinely dependent for another, as shown in the following
example.

Example 2.22. The facets of the 4-cube are 3-cubes and every realization of
the 3-cube may occur as a facet of a 4-cube. So let us have a look at different
subsets of the vertices of the 3-cube, some of which are affinely independent
and others that are not affinely independent for all possible realizations of
the 3-cube. The subsets that are affinely independent for all realizations are
candidates for affine support sets of the 4-cubes. We label the vertices of the
3-cube by {±}-vectors of length 3. See Section 2.2.3.

A. B. C. D.

A. The first set of vertices consists of the three neighbors of the (−−−)-
vertex and the vertex (+++). These vertices are affinely independent
for all realizations of the cube: The neighbors of the vertex (−−−) are
affinely independent and form a triangle. The three halfspaces defining
the facets adjacent to the vertex (−−−) form a cone that contains the
vertex (+++) in its interior. So if the neighbors of (−−−) and the
vertex (+++) were affinely dependent then the vertex (+++) would lie
in the simplex spanned by the neighbors of (−−−), which cannot happen
in any realization of a cube.

B. The second set of vertices is affinely independent for a“generic”realization
of the cube, but for the regular cube, the chosen four points are affinely
dependent and lie on a planar quadrilateral. A perturbation of the facets
of the regular cube breaks the affine dependence of the chosen vertices
but does not change the combinatorial type of the polytope.

C. The third set of vertices is also affinely independent for all realizations
by Lemma 2.23 since there exists a flag of faces, such that each k-face
contains exactly k + 1 of the vertices: The vertex subset consists of the
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vertices (−−−), (−−+), (−++), and (+++). So a suitable flag which
assures the affine independence is

(−−−) ⊂ (−−∅) ⊂ (−∅∅) ⊂ (∅∅∅).

D. The fourth set consists of a vertex and its three neighbors. These points
are also affinely independent in every realization of the cube.

As the example shows there are combinatorial criteria for a subset of vertices
to be affinely independent in every realization of a polytope. The following
lemma captures the combinatorial criterion used in Example 2.22/C.

Lemma 2.23. Let {Gk}
d−1
k=0 be a flag of the simple d-type P and let {vk}

d
k=0

be a set of vertices such that v0 = G0, vd ∈ P \ Gd−1 and vk ∈ Gk \ Gk−1

for k = 1, . . . , d−1. Then {vk}
d
k=0 is affinely independent for every realization

of P .

Since every (simple) polytope has a flag we obtain the following immediate
corollary about the existence of an affine support set for a simple polytope.

Corollary 2.24. For every simple d-type P there exists an affine support set
of cardinality at least d + 1.

The size of an affine support set is bounded from above by the following
lemma.

Lemma 2.25. The cardinality of an affine support set A of a d-type P is
bounded from above by the number of facets of P , that is, |A| ≤ fd−1(P).

Proof. Since the dimension of a facet F of a d-polytope is d−1, the maximal
number of affinely independent vertices in A ∩ F is d. But each vertex of A

is contained in at least d facets, so d · |A| ≤ d · fd−1(P ).

In some fortunate cases we find an affine support set of maximal size, but
in other cases, the upper bound becomes arbitrarily bad as shown in the
following example.

Example 2.26. Let us try to construct affine support sets for 3-dimensional
prisms Πp over p-gons. The number of facets of the prism is p + 2. For the
triangular prism Π3 (with 5 facets) there exist only affine support sets of size
at most 4, since every set of 5 points contains an entire quadrilateral and is
hence affinely dependent. For the cube Π4 (the prism over a quadrilateral)
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there exist affine support sets of cardinality 6 which are generalized in Sec-
tion 2.2.3 to higher dimensional cubes. For p ≥ 5 the maximal cardinality of
an affine support set for the prism Πp is 6 because both bottom and top poly-
gon may only contain at most 3 vertices. So the gap between the maximal
size of an affine support set and the upper bound of Lemma 2.25 becomes
arbitrarily bad.

Figure 2.2: Maximal affine support sets for prisms over polygons.

We recall that the vertices of an affine support set must only be affinely inde-
pendent restricted to every facet and not in the entire polytope. (Requiring
the affine independence of the affine support set in the entire polytope would
upper bound the size of the set to the dimension of the polytope plus 1.)

2.2.2 Moduli of projected polytopes

In this section we use the affine support sets of the previous section to find
a lower bound on the number of moduli of projected polytopes and their
subcomplexes. The moduli of simple polytopes are easily obtained from
their facets. But how many of these moduli are preserved under projection is
not clear. With the affine support sets introduced in the previous section the
modifications of the vertices not in direction of the projection are preserved.
So the parametrization of parts of the realization space via an affine support
set provides moduli for the projected polytope as well.

The following lemma shows that small modifications of the vertices in an
affine support set of a simple polytope may be completed to a realization of
the polytope.

Lemma 2.27 (Realizations via affine support sets). Let P be a simple d-
type and A an affine support set. Then every small modification of the
coordinates of the vertices contained in A of an arbitrary realization P yields
a realization P̃ of the same d-type P .
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Proof. Let F1, . . . , Fm be an arbitrary ordering of the facets. For i = 0, . . . ,m
let Ai := A ∩ (

⋃i
j=1 Fi) be the subset of the vertices contained in the first i

facets and let Ṽi be the vertices with modified coordinates in Ai. We start
with an arbitrary realization P = P̃0 of P . Then for i = 1, . . . ,m we construct
a polytope P̃i from P̃i−1 such that all the modified vertices Ṽi are vertices
of P̃i. In the last step we obtain a realization P̃ = P̃m containing all modified
vertices.

For i = 0 the set A0 is empty and P̃0 obviously contains all modified vertices
of A0. So assume that all the modified vertices Ṽi−1 are vertices of P̃i−1. Then
we construct P̃i in the following way depending on the size of Fi ∩ A:

◮ If the facet Fi of P̃i−1 contains d vertices of the affine support set A then
the hyperplane supporting the new facet F̃i is uniquely determined by
these vertices.

◮ If a facet Fi contains k < d vertices of A then we extend the set A∩ Fi

to an affine basis of the facet by vertices of P̃i−1 in Fi \ A. This affine
basis defines the new facet F̃i.

In both cases we replace the facet Fi with the new (perturbed) facet F̃i to
obtain P̃i from P̃i−1. Since P is simple this procedure yields a sequence of
realizations P̃0, . . . , P̃m of the same combinatorial type P . Finally, P̃ = P̃m is
a realization of P that contains all the modified vertices of the affine support
set.

The realizations of the surfaces in Chapters 5 and 4 are obtained from pro-
jections of high dimensional simple polytopes to R4 resp. R3. The following
theorem allows us to establish a lower bound for the dimension of the real-
ization space of a generic projection of a simple polytope.

Theorem 2.28 (Moduli of projected polytopes). Let P be a realization of
the simple d-type P , A an affine support set and π : Rd → Re a generic
projection. Then the dimension of the realization space of the projected
polytope π(P ) is at least e · |A|.

Proof. Let Aπ denote the vertices of the projected polytope π(P ) correspond-
ing to the affine support set A. If we perturb the vertices of Aπ in Re then this
induces small modifications of the vertices of A in the realization P ⊂ Rd.
By Lemma 2.27 small modifications of the vertices in A yield a new realiza-
tion P̃ of the same combinatorial type P . Since the projection is generic,
the projected polytopes π(P ) and π(P̃ ) have the same combinatorial type.
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Hence the e degrees of freedom at each vertex of Aπ in Re imply the lower
bound of e · |A| on the moduli of the projected polytope.

It is very important that we are working with generic projections of sim-
ple polytopes since generic projections are “stable under perturbation” and
vertices of simple polytopes are the intersection of exactly d facets.

Remark 2.29 (Moduli of simplicial polytopes). The realization space of
a simplicial polytope is easily parametrized via its vertices, that is, a d-
dimensional simplicial polytope P on n vertices has dn moduli. This may
also obtained from Theorem 2.28: A simplicial polytope on n vertices is
the generic projection of an (n − 1)-simplex. An affine support set of the
(n− 1)-simplex may obviously contain all n vertices, so by Theorem 2.28 the
projected simplicial polytope P has the required dn moduli.

Another advantage of the parametrization of the realization space of a high
dimensional polytope via affine support sets is that it can easily be restricted
to subcomplexes.

Theorem 2.30 (Moduli of projected subcomplexes). Let S be a subcomplex
of a simple d-type P , A an affine support set of P and π : Rd → Re a generic
projection preserving the subcomplex S. Then the realization space of the
projected subcomplex π(S) has dimension at least e · |A ∩ S|.

This result is the key to show the existence of non-trivial moduli for real-
izations of surfaces that have neither triangle faces, nor vertices of degree
three. The näıve estimate of Section 1.3.1 will suggest that those surfaces
will have a decreasing number of moduli if the vertex degree and polygon
size increase. Finally we would not expect to have any non-trivial moduli for
large vertex degree and large polygon size. But our approach will show that
the realizations of the surfaces obtained in Sections 2.2.3, Section 4.3.1, and
Section 5.2 have and increasing number of moduli even though the vertex
degrees and the polygon sizes increase.

2.2.3 Affine support sets of cubes and Ringel surfaces

In this section we construct two different affine support sets for the d-dimen-
sional cube. These sets are used to derive lower bounds on the number of
moduli of the surfaces studied by Ringel [41]. These surfaces are contained
in the 2-skeleton of the neighborly cubical polytopes of Joswig & Ziegler [29]
as shown in [28]. Since for even dimensions the cube is just the product
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of quadrilaterals, the surfaces contained in the even dimensional cubes are
special cases of the surfaces constructed in Section 5.1.2.

The 2d facets of the d-dimensional cube consists of d pairs of opposite facets
denoted by F±

i for i ∈ [d]. Since the opposing facets F+
i and F−

i do not inter-
sect, we may identify each non-empty face G of the d-cube with a {+,−, ∅}-
vector HG of length d in the following way:

(HG)i =





+ if G ⊂ F+
i ,

− if G ⊂ F−
i ,

∅ otherwise.

The dimension of the face G is exactly the number of ∅-entries in the cor-
responding vector HG. The vertices of the cube are identified with {+,−}-
vectors without ∅-entries.

We consider two different subsets of the vertices of the cube which will be
proved to be affine support sets for the d-cube for d ≥ 3. The first set consists
of the union of the neighbors of the vertex (− · · · −) with the neighbors of
the vertex (+ · · ·+):

Aneigh(d) :=
{

v ∈ {±}d
∣∣∣ #{i : vi = +} = 1 or d− 1

}
(2.1)

The second set zigzags through the cube and has the following combinatorial
description:

Azigzag(d) :=
{

v ∈ {±}d
∣∣∣ v = ±(+ . . . +︸ ︷︷ ︸

k times

− . . .−︸ ︷︷ ︸
d−k times

) for k ∈ [d]
}

(2.2)

Example 2.31. The subsets Aneigh(3) and Azigzag(3) of the vertices of the
3-cube are:

Aneigh(3) =

{
(+−−),(−+−),(−−+),
(−++),(+−+), (++−)

}
,

Azigzag(3) =

{
(−−−),(−−+),(−++),
(+++),(++−), (+−−)

}
.

These two sets are obviously affine support sets, since every facet, i.e. quadri-
lateral face, of the 3-cube contains exactly 3 selected vertices. But they are
equivalent by flipping the sign in the middle which is a combinatorial sym-
metry of the cube. This is illustrated in Figure 2.3.

In the 4-dimensional cube the two sets are no longer equivalent since the
vertices of Azigzag(4) form a cycle of length 8, whereas the vertices of Aneigh(4)
do not share any edge (see Figure 2.4).
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Figure 2.3: The two sets Aneigh(3) (left) and Azigzag(3) (right) are isomorphic by
flipping the vertical coordinate, that is, the second sign in the vector correspond-
ing to a vertex.

Figure 2.4: The subsets Aneigh(4) (left) and Azigzag(4) (right) of the vertices of
the 4-cube are two different affine support sets.

For the vector descriptions this implies that there exist no two vertices
in Aneigh(4) that differ at exactly one position:

Aneigh(4) =

{
(+−−−),(−+−−),(−−+−),(−−−+)
(−+++),(+−++),(++−+),(+++−)

}
,

Azigzag(4) =

{
(−−−−),(−−−+),(−−++),(−+++)
(++++),(+++−),(++−−),(+−−−)

}
.
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Both sets are affine support sets of the 4-cube. The facet F−
0 = (−∅∅∅)

contains the following subsets of the vertices:

Aneigh(4) ∩ F−
0 = {(−+−−), (−−+−), (−−−+), (−+++)},

Azigzag(4) ∩ F−
0 = {(−−−−), (−−−+), (−−++), (−+++)}.

These are exactly the subsets of the vertices considered in Example 2.22/A
(Aneigh(4) ∩ F−

0 ) and Example 2.22/C (Azigzag(4) ∩ F−
0 ) and hence affinely

independent for every realization of the 4-cube. The same is true for all the
other facets by symmetry.

Theorem 2.32 (Maximal affine support sets for cubes). The sets Aneigh(d)
and Azigzag(d) of vertices of the d-cube defined in Equation (2.1) and (2.2)
are affine support sets of size 2d.

Proof. The two subsets Aneigh(d) and Azigzag(d) are invariant under the fol-
lowing automorphisms:

◮ flipping all the sign entries,

(σ0, . . . , σd−1) 7→ −(σ0, . . . , σd−1)

◮ and cyclic rotation of the vectors with a flip in the zigzag case,

(σ0, . . . , σd−1) 7→

{
(σ1, . . . , σd−1, σ0) for Aneigh(d)

(σ1, . . . , σd−1,−σ0) for Azigzag(d).

A suitable sequence of these automorphisms maps an arbitrary facet to the
facet F−

0 = (−∅ . . . ∅) and leaves the chosen vertex subsets invariant. So we
only need to verify that the sets Aneigh(d)∩F−

0 and Azigzag(d)∩F−
0 are affinely

independent for every realization of the cube.

Aneigh(d): The vertices of Aneigh(d)∩F−
0 are the d−1 neighbors of the vertex

(−− . . .−) in F−
0 and the vertex (−+ . . . +). The neighbors of (−− . . .−)

span a (d − 2)-simplex. The line segment connecting the vertex (−− . . .−)
with the vertex (−+ . . . +) intersects this (d− 2)-simplex in its relative inte-
rior. So if (−+ . . . +) would lie in the affine hull of the simplex then it would
be in its relative interior which is impossible. Hence Aneigh(d)∩F−

0 is affinely
independent for every realization of the cube. By combinatorial symmetry
the same holds for all other facets.
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Azigzag(d): Consider the flag {Fk}
d−1
k=0 with Fd−1 = F−

0 and

Fk = (− . . .−︸ ︷︷ ︸
d−k times

∅ . . . ∅︸ ︷︷ ︸
k times

).

Then F0 = (− · · · −) is a vertex and for k = 1, . . . , d − 1 the following
intersection of subsequent elements of the flag with the set Azigzag(d) contains
exactly one vertex:

Azigzag(d) ∩ (Fk \ Fk−1) = {(− · · · −︸ ︷︷ ︸
d−k times

+ · · ·+︸ ︷︷ ︸
k times

)}.

It follows from Lemma 2.23 that Azigzag(d) ∩ F−
0 is affinely independent for

every realization of the cube.

The surfaces studied by Ringel [41] consist of a subset of the 2-faces of the
d-cube given by the following vectors:

Rd :=





∅ ∅ ± ± . . . ± ± ±
± ∅ ∅ ± . . . ± ± ±
. . . . . . . . . .
. . . . . . . . . .
± ± ± ± . . . ± ∅ ∅
∅ ± ± ± . . . ± ± ∅

Each of the rows corresponds to a family of quadrilaterals containing 2d−2

faces. Further the surface contains all vertices and edges of the cube. So
the f -vector of the surface Rd is 2d−2(4, 2d, d). The surfaces for d = 4 and 5
are shown in Figure 2.5. The realizations of these surfaces obtained via
projections of d-cubes inherit the moduli of the affine support sets of the
cubes via Theorem 2.30 since they contain all the vertices of the cube.

Theorem 2.33 (Moduli of Ringel surfaces). The realizations of the Ringel
surfaces Rd obtained via projections of the deformed d-cubes to R3 have at
least 6d moduli.

For d = 3 the surface is just the boundary of the 3-cube. It has 18 moduli
corresponding to the degrees of freedom of the facets or the affine support
set of size 6 shown in Figure 2.3. Starting from d = 4 the surface does not
have any degree 3 vertices any more. So the perturbation of a single normal
of a quadrilateral will immediately destroy the combinatorial structure. A
small modifications of a single vertex will not yield any moduli either, since
all the faces of the surfaces are quadrilaterals. This is captured in the rule of
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Figure 2.5: The Ringel surfaces for d = 4 and 5. The surfaces are embedded
in the Schlegel diagram of a 4-cube and in the neighborly cubical polytope of
dimension 4 with the graph of a 5-cube.

thumb explained in Section 1.3.1. For realizations SRd
of the Ringel surfaces

in R3, Equation (1.1) yields the following estimate for the moduli:

M(SRd
, 3) ∼ 2d−2(12− 4d + 3d) = 2d−2(12− d).

Hence the number of 6d moduli achieved by Theorem 2.33 is quite astonish-
ing, since the näıve count would yield no non-trivial moduli at all for large d.



Chapter 3

Non-projectability of polytope skeleta
joint with Raman Sanyal

In this chapter we prove some non-projectibility results for products of poly-
topes. We first adapt the techniques presented in Section 2.1 to the special
case of products. Then in Section 3.2 we show that certain skeleta of products
of odd and even polygons cannot be preserved by a projection. This comple-
ments the results of Ziegler [48] and Sanyal & Ziegler [44] about projections
of products of even polygons. In Section 3.3 we end this chapter with a result
about projections of products of simplices. The non-projectability of skeleta
of these products will be used in Chapter 4 to show that certain families of
polyhedral surfaces contained in the wedge product cannot be realized in R3

via projection.

3.1 Embeddability dimension of skeleton complexes of
products

In this section we have a closer look at the combinatorial structure of prod-
ucts and derive bounds on the Sarkaria index using a knapsack type integer
program.

The faces of the product of polytopes are products of the faces of its factors
and the dimensions of the product faces are the sums of the dimensions of its
constituents. The following definition distinguishes the faces of the product
by their “type”.

Definition 3.1 (Face type/face complex). For i = 1, . . . , r let Pi be combi-
natorial di-types on mi facets and let P = P1×P2×· · ·×Pr be their product
of dimension d = d1 + · · ·+ dr. For a fixed 0 ≤ k < d the face type Λk(P) of
dimension k is the set of the following vectors:

Λk(P) := {λ = (λ1, λ2, . . . , λr) ∈ Zn : |λ| = k, 0 ≤ λi ≤ di for all i ∈ [r]} .

Further for λ ∈ Λk(P) the face complex Σλ(P) of type λ is

Σλ(P) := Σλ1(P1) ∗ Σλ2(P2) ∗ · · · ∗ Σλr
(Pr).

39
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It is clear from the definition of the product that every face of P belongs to
some face type and the next observation states that this partition yields a
cover of the skeleton complex.

Proposition 3.2. Let P = P1 ×P2 × · · · × Pr and 0 ≤ k < dimP . Then

Σk(P) =
⋃

λ∈Λk(P)

Σλ(P).

Obviously, the embeddability dimension of a complex is bounded from below
by the embeddability dimensions of arbitrary subcomplexes. This mono-
tonicity of the embeddability dimension yields our first bound on the em-
beddability dimension of skeleton complexes of products, since for every face
type λ ∈ Λk(P) of a product P we have

Σλ(P) ⊂ Σk(P) =⇒ e-dim(Σλ(P)) ≤ e-dim(Σk(P)).

This observation yields another simple corollary of Theorem 2.4. It may also
be derived from Corollary 2.17.

Corollary 3.3. Let P be a product and 0 ≤ k < dimP . If there is a face
type λ ∈ Λk(P) such that

e < e-dim(Σλ(P)) + d−m + 2

then there is no realization of P such that a projection to Re retains the
k-skeleton.

Remark 3.4. The definition of the face complex relies on properties of the
product that are shared by other polytope constructions such as joins and
direct sums. Therefore, the methods developed in this section can be suitably
adapted. For lack of interesting applications we refrain from developing the
methods in full generality.

The Sarkaria index will help us determine bounds on the embeddability di-
mension of the skeleton complexes of products. We use the following obser-
vation to simplify the calculation.

Proposition 3.5 (Sanyal [43]). Let K and L be simplicial complexes. Then

indSK K ∗ L = indSK K + indSK L + 1.

Thus the Sarkaria index of a given face type λ ∈ Λk(P) of a product P is
readily calculated from the Sarkaria indices of the factors.
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Corollary 3.6. Let P = P1 ×P2 × · · · × Pr and let λ ∈ Λk(P). Then

indSK Σλ(P) =
r∑

i=1

indSK Σλi
(Pi) + r − 1.

In the special case that we have an r-fold product Pr of a combinatorial
type P , bounds on the embeddability dimension of Σk(P

r) can be obtained
by solving a knapsack-type problem.

Proposition 3.7. Let P be a d-type and let r ≥ 1 and 0 ≤ k ≤ rd − 1.
For i = 0, . . . , d set si = indSK Σi(P) and let s∗ be the optimal value of the
following integer program

max s0 µ0 + s1 µ1 + · · · + sd µd

s.t. 0 µ0 + 1 µ1 + · · · + dµd = k
µ0 + µ1 + · · · + µd = r

µi ≥ 0

with µ0, . . . , µd ∈ Z. Then e-dim(Σk(P
r)) ≥ s∗ + r − 1.

Proof. Let λ = (λ1, . . . , λr) ∈ Λk(P
r) be a face type with |λ| = k. For

i = 0, . . . , d we associate non-negative numbers µi to the face type λ with

µi = #{j ∈ [r] : λj = i}.

So µi counts the number of factors of dimension i composing a k-face of face
type λ of the product Pr. Hence the µi satisfy

0 µ0 + 1 µ1 + · · · + dµd = k
µ0 + µ1 + · · · + µd = r

µi ≥ 0 .

Conversely, every such non-negative collection of numbers µi that satisfies
the conditions of the integer program gives rise to a valid face type. The
Sarkaria index of the face complex Σλ(Pr) is obtained from Corollary 3.6

indSK Σλ(Pr) =
r∑

j=0

sλj
+ r − 1 =

d∑

i=0

si µi + r − 1.

Hence the integer program calculates the distribution of dimensions µi such
that the Sarkaria index of a corresponding face type is maximal. Since every
face complex Σλ(Pr) with |λ| = k is a subcomplex of the respective skeleton
complex Σk(P

r) this yields the stated lower bound for the embeddability
dimension.
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3.2 Products of polygons

Let P = Dm1×Dm2×· · ·×Dmr
be a product of mi-gons Dmi

. In this section
we investigate the embeddability dimension of the skeleton complex Σk(P)
for 0 ≤ k < 2r = dimP . An interesting feature of the results to come is that
(bounds on) the embeddability will only depend on the parity of the mi. For
this reason, we fix the following notation for the product of re even polygons
and ro odd polygons:

P = Dre

even ×D
ro

odd.

Furthermore, we denote by r = re + ro the total number of factors and by m
the total number of facets.

3.2.1 Skeleton complexes of polygons

The embeddability dimension of the skeleton complex Σk(Dm) of an m-gon
for k = 1, 2 is already given by Proposition 2.20. So we are left to determine
the Sarkaria index for the 0th skeleton complex.

Lemma 3.8. Let m ≥ 3 and Dm the combinatorial type of an m-gon. The
Sarkaria bound for the 0th skeleton complex is

indSK Σ0(Dm) =

{
m− 3, if m is even, and
m− 2, if m is odd.

Proof. We show that the Kneser graph of minimal non-faces of Σ0(Dm) has
chromatic number 2 and 1, respectively, depending on the parity of m. For
that let us determine the minimal non-faces of Σ0(Dm): A subset σ ⊆ [m] of
the edges of Dm is a non-face of Σ0(Dm) if and only if every vertex of Dm is
incident to at least one edge Fi of Dm with i ∈ σ.

If a vertex of Dm is covered twice by σ then every other minimal non-face
intersects σ and thus σ is an isolated vertex in the Kneser graph. If σ covers
every vertex exactly once, then [m] \ σ is again a minimal non-face.

It follows that for odd m the Kneser graph consists of isolated vertices alone
while for even m there is exactly one edge. Hence the chromatic number of
the Kneser graph for even m is 2, whereas for odd m it is 1. This yields the
stated result for the Sarkaria index.

Example 3.9. As an illustration, let us consider Σ0(D5) – the 0th skeleton
complex of a pentagon D5. By the above Lemma 3.8 the Sarkaria index of
the 0th skeleton complex of the pentagon is 3. Hence the complex should
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Figure 3.1: The five triangles of the 0th skeleton complex of a pentagon fit
together to form a Möbius strip.

not be embeddable into a 2-sphere. If the facets (edges) of the pentagon are
labeled by 1, 2, 3, 4, 5 in cyclic order then the faces of Σ0(D5) are the triangles
with three cyclically adjacent vertices shown in Figure 3.1. These triangles
fit together to form a Möbius strip which is not embeddable in a 2-sphere.
Thus Σ0(D5) not embeddable in the 2-sphere as stated by the lemma.

The example shows that the 0th skeleton complex of an odd polygon has a
certain twist to it that obstructs the embeddability into m − 2 dimensional
space.

3.2.2 Skeleton complexes of products of polygons

We are now ready to deal with the skeleton complexes of products of polygons
using the knapsack-type integer program introduced in Proposition 3.7.
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Theorem 3.10. Let P = Dm1 × · · · × Dmr
be a product of re even and

ro odd polygons with a total of m facets and r = ro + re factors. Then
the embeddability dimension of the kth skeleton complex for 0 ≤ k ≤ 2r
bounded from below by:

e-dim(Σk(P)) ≥ m− 1− r +

⌊
k

2

⌋
+ min

{
0,

⌈
k

2

⌉
− re

}
.

Proof. The Sarkaria indices of the kth skeleton complexes of even and odd
polygons coincide for k = 1, 2 and differ by one for k = 0. Similar to
Proposition 3.7 we sort the face type by dimension but this time we distin-
guish two different kinds of vertices in the following way: To every face type
λ = (λ1, . . . , λr) ∈ Λk(P) we associate a vector µ = (µodd

0 , µeven
0 , µ1, µ2) with

µ2 := #{i : λi = 2} (polygons)
µ1 := #{i : λi = 1} (edges)
µodd

0 := #{i : λi = 0,mi odd} (odd vertices)
µeven

0 := #{i : λi = 0,mi even} (even vertices)

Using Corollary 3.6 and the fact that µodd
0 +µeven

0 +µ1 +µ2 = r, the Sarkaria
index of a face type λ may be expressed in terms µ in the following way:

indSK Σλ(P) =
r∑

j=0

indSK Σλi
(Dmi

) + r − 1

= m− 3 µeven
0 − 2 µodd

0 − 2 µ1 − µ2 + r − 1

= m− r − 1 + µ2 − µeven
0 .

Now the knapsack-type integer program similar to Proposition 3.7 is

max −µeven
0 + µ2

s.t. µ1 + 2 µ2 = k
µeven

0 + µodd
0 + µ1 + µ2 = r

µeven
0 ≤ re

µodd
0 ≤ ro

µeven
0 , µodd

0 , µ1, µ2 ≥ 0 .

Every face type λ = (λ1, . . . , λr) ∈ Λk(P) gives rise to a feasible solution
and, conversely, every feasible solution yields a face type. We eliminate the
variables µodd

0 and µ1 from the program using the two equalities and obtain
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an integer program in the variables µeven
0 and µ2 only:

max −µeven
0 + µ2

s.t. 0 ≤ r − k − µeven
0 + µ2 ≤ ro

0 ≤ k − 2µ2 ≤ re

µeven
0 , µ2 ≥ 0

The optimal value µ∗ of this program is

µ∗ = min
{⌊k

2

⌋
, k − re

}
=

⌊
k

2

⌋
+ min

{
0,

⌈
k

2

⌉
− re

}
.

The result then follows from the fact that e-dim(Σk(P)) ≥ m−r−1−µ∗.

In order to put the above result in perspective, let us calculate upper bounds
on the embeddability dimension.

Proposition 3.11. Let P = Dre
even × D

ro

odd be a product of re even and ro

odd polygons with a total of r factors and m facets. For 0 ≤ k < 2r the
embeddability dimension of the kth skeleton complex satisfies the following
bounds:

e-dim(Σk(P)) ≤





m− r − re − 1, if k = 0
m− r − 1, if k = 1
m− 2, otherwise.

Proof. Let me and mo be the number of vertices of even and odd polygons,
respectively. The 0th skeleton complex of an even me-gon consists of a subset
of the facets of the cyclic polytope cycme−2(me) of dimension me−2 with me

vertices: Let i, i′ ∈ [me] with i < i′. Then Gale’s Evenness Condition (e.g.
found in [47, Ch. 0]) tells us that the simplex σ with vertices [me] \ {i, i

′} is
a facet of cycme−2(me) if and only if the cardinality of {j ∈ σ | i < j < i′}
is even. Hence the 0th skeleton complex with facets [me] \ {i, i + 1 mod me}
for i ∈ [me] is a subcomplex of the boundary of the cyclic polytope. The 0th
skeleton complex of an odd mo-gon may be embedded in the boundary of an
(mo − 1)-dimensional simplex.

The 0th skeleton complex Σ0(P) of the product P is just the join of the 0th
skeleton complexes of the factors. Hence it embeds into (∂ cycme−2(me))

∗re ∗
(∂ ∆mo−1)

∗ro yielding the bound on the embeddability dimension for k = 0.

For k = 1 the skeleton complexes Σ1(Dme
) and Σ1(Dmo

) embed into the
boundaries ∂ ∆me−1 and ∂ ∆mo−1 of suitable simplices. Hence the skeleton
complex Σ1(P) of the product embeds into the join (∂∆me−1)

∗re∗(∂∆mo−1)
∗ro

which is homeomorphic to a (m− r − 1)-sphere.
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For k ≥ 2 the skeleton complex only embeds into ∂((∆me−1)
∗re ∗ (∆mo−1)

∗ro),
which is the boundary of an (m−1)-polytope, i.e. homeomorphic to a (m−2)-
sphere.

3.2.3 Projections of products of polygons

Combining the bounds on the embeddability dimensions of the skeleton com-
plexes of Theorem 3.10 with Corollary 2.17 we obtain the following obstruc-
tions to projectability of products of polygons.

Theorem 3.12. Let P = Dre
even ×D

ro

odd be a product of r = re + ro polygons
with m facets. Then for 0 ≤ k < 2r there exists no realization of the product
P in R2r such that the projection π : R2r → Re preserves the k-skeleton if

e < r + 1 +

⌊
k

2

⌋
+ min

{
0,

⌈
k

2

⌉
− re

}
.

In Sanyal & Ziegler [44] it was shown that there exist e-dimensional poly-
topes with the

⌊
e−2
2

⌋
-skeleton of the r-fold product of even polygons. For

the product of odd polygons we obtain the following obstruction to the pro-
jectability.

Corollary 3.13. Let P = Dro

odd be a product of odd polygons, 0 ≤ k < 2ro

with m facets. If

e < ro + 1 +

⌊
k

2

⌋

then there is no realization of P such that the projection to Re preserves the
k-skeleton.

This corollary generalizes the classical result that the product of two triangles
(ro = 2), or more generally, the product of two odd polygons may not be
projected into the plane (e = 2) such that all vertices survive the projection.
For the product of even polygons (r = re) Theorem 3.12 yields a bound of
e < k + 1, which is just the trivial dimension bound for the k-skeleton of the
product. Another interesting case studied for the product of even polygons
in [44] is when k = ⌊ e−2

2
⌋, i.e., the “neighborly” case.

Corollary 3.14. Let P = Dre
even×D

ro

odd be a product of r = re + ro polygons
and let e ≥ 1. If { ⌈

3e−2
4

⌉
< r for re <

⌊
e
4

⌋
,

⌊
e
2

⌋
< ro for re ≥

⌊
e
4

⌋

then there is no realization of P such that the image under projection to
e-space is neighborly, i.e. the image and P have isomorphic ⌊ e−2

2
⌋-skeleta.
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This corollary implies that one cannot project any realization of the product
of two odd polygons with an arbitrary number of even polygons into the
plane or R3 such that all the vertices survive. Further we deduce that the
number of factors ro must not exceed ⌈3e−2

4
⌉ if the projection of a product of

odd polygons to Re with e ≥ 4 should be neighborly.

3.3 Products of simplices

In this section we will establish bounds on the embeddability dimension of the
skeleton complexes of the product of simplices. In the spirit of the previous
section, we determine the embeddability dimension as well as the Sarkaria
index of the skeleton complex of a single simplex first. Then we use this
knowledge to prove tight bounds on the embeddability dimensions of face
complexes. Appealing to results from Section 2.1, this yields bounds on the
projectability of products of simplices.

3.3.1 Skeleton complexes of simplices

The key to determining the embeddability dimension and the Sarkaria index
of Σk(∆n−1) will be the following observation: The k-faces of the simplex are
intersections of exactly n−1−k facets. Hence the complements of the facets
defining a k-face consists of k + 1 facets.

Observation. For n ≥ 1 and 0 ≤ k ≤ n − 1 the kth skeleton complex
Σk(∆n−1) of the (n− 1)-simplex is isomorphic to the k-skeleton of ∆n−1.

Thus the skeleton complexes Σk(∆n−1) are well known complexes and the
calculation of the Sarkaria indices involves the classical Kneser graphs, which
we now recall.

Theorem 3.15 (Lovász [31]). For n ≥ 1 and 1 ≤ k ≤ n denote by KGn,k =

KG(
(
[n]
k

)
) the Kneser graph on the collection of all k-sets of [n]. Then

χ(KGn,k) =

{
n− 2k + 2 if k ≤ n+1

2

1 otherwise.

The Sarkaria index of the kth skeleton complex may easily be calculated as
follows.
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Lemma 3.16. For n ≥ 2 let ∆n−1 be an (n − 1)-simplex and let Σk(∆n−1)
be the kth skeleton complex for 0 ≤ k ≤ n − 1. Then the Sarkaria index is
the following:

indSK Σk(∆n−1) =





2k + 1, if 0 ≤ k ≤ n−3
2

,
n− 2, if n−3

2
< k ≤ n− 2,

n− 1, if k = n− 1.

Proof. To calculate the Sarkaria index we need to determine the chromatic
number of the Kneser graph on the minimal non-faces of the kth skeleton
complex of the (n− 1)-simplex. By the observation above, the minimal non-
faces are all (k + 2)-subsets of [n]. Note that for k = n − 1 there are no
minimal non-faces. For k ≤ n − 2 the Kneser graph to be investigated is
KGn,k+2. This yields the stated bound for 0 ≤ k ≤ n − 2. If k = n − 1 the
Kneser graph is empty and its chromatic number is 0. So the Sarkaria index
for k = n− 1 is n− 1.

In combination with Proposition 2.7 we obtain the following corollary.

Corollary 3.17. Let Σk = Σk(∆n−1) be the kth skeleton complex of an
(n− 1)-simplex for n ≥ 2. Then the embeddability dimension satisfies

e-dim(Σk) =





2k + 1 if 0 ≤ k ≤ n−4
2

,
n− 2 if n−4

2
< k ≤ n− 2,

n− 1 otherwise.

3.3.2 Skeleton complexes of products of simplices

We follow the same path to determine the embeddability dimension as in
Section 3.2 about products of polygons: First we prove upper bounds using
Proposition 2.7, then we find face types of the product of simplices maximiz-
ing the Sarkaria index among all face types. Finally we combine these results
to obtain obstructions to the projectability of products of simplices.

In the following we denote by

∆r
n−1 = ∆n−1×∆n−1× · · · ×∆n−1︸ ︷︷ ︸

r

an r-fold product of (n− 1)-simplices. The next lemma establishes an upper
bound on the embeddability dimension of Σk(∆

r
n−1).
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Lemma 3.18. Let Σk = Σk(∆
r
n−1) be the kth skeleton complex of the r-fold

product of (n− 1)-simplices with n ≥ 2 and 0 ≤ k ≤ r(n− 1). Then

e-dim(Σk) ≤

{
2k + 2r − 1 if 0 ≤ k ≤ 1

2
r(n− 2),

rn− 1 if 1
2
r(n− 2) < k ≤ r(n− 1)

≤ min{2k + 2r − 1, rn− 1}.

Proof. For λ ∈ Λk(∆
r
n−1) we have that

dim Σλ(∆r
n−1) =

r∑

i=1

dim Σλi
(∆n−1) + r − 1 =

r∑

i=1

λi + r − 1 = k + r − 1.

By using the covering of Proposition 3.2 we obtain that dim Σk = k+r−1 and
by Proposition 2.7 we have e-dim(Σk) ≤ 2k + 2r− 1. On the other hand, the
kth skeleton complex naturally embeds into the r-fold join of (n−1)-simplices
and therefore e-dim(Σk) ≤ r(n− 1) + r − 1 = rn− 1.

As in Section 3.2 we use the Sarkaria index to get lower bounds on the
embeddability dimension. In the following technical lemma we determine
face types of the product of simplices that maximize the Sarkaria index and
thus give the best possible lower bounds on the embeddability dimension via
face types.

Lemma 3.19. Let n ≥ 2 and 0 ≤ k ≤ r(n− 1). Let Σλ = Σλ(∆r
n−1) be the

face complex of ∆r
n−1 of type λ = (λ1, . . . , λr) ∈ Λk(∆

r
n−1). Then for n odd:

indSK Σλ ≤





2k + 2r − 1, if 0 ≤ k ≤ 1
2
r(n− 3),

r(n− 1) + j − 1, if j n+1
2
≤ k − 1

2
r(n− 3) < (j + 1)n+1

2

rn− 1, if r(n− 1) = k

And for n even:

indSK Σλ ≤





2k + 2r − 1, if 0 ≤ k ≤ 1
2
r(n− 4),

k + 1
2
rn− 1, if 0 < k − 1

2
r(n− 4)≤ r

r(n− 1) + j − 1, if j n
2
≤ k − 1

2
r(n− 2) < (j + 1)n

2

rn− 1, if r(n− 1) = k

where j = 0, . . . , r− 1. There are face types for which the bounds are sharp.

Proof. Let λ = (λ1, . . . , λr) with |λ| = k. From Proposition 3.5 we obtain
that the Sarkaria index is additive for joins of complexes, hence:

indSK Σλ(∆r
n−1) =

r∑

i=1

indSK Σλi
(∆n−1) + r − 1.
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In the following we will describe the optimal distribution of k onto the r
factors of the skeleton complex. According to Lemma 3.16 the Sarkaria index
of the skeleton complex of a single (n − 1)-simplex is monotone in λi. But
note that for 1

2
(n − 4) ≤ λi ≤ n − 2 it is constant. We will treat two cases

depending on the parity of n.

For n odd: The Sarkaria index is n − 2 for 1
2
(n − 3) ≤ λi ≤ n − 2. Hence

for 0 ≤ k ≤ 1
2
r(n− 3) all distributions λ with λi ≤

1
2
(n− 3) for i = 0, . . . , r

yield the same bound on the Sarkaria index of Σλ(∆r
n−1). Suppose λ′ is

a distribution with λ′
0 > 1

2
(n − 3). Then indSK Σλ(∆r

n−1) > indSK Σλ
′(∆r

n−1)
since redistributing the surplus λ′

0−
1
2
(n−3) onto some λi < 1

2
(n−3) increases

the Sarkaria index.

If k = 1
2
r(n − 3) + j n+1

2
+ k′ then the best distribution is obtained by the

following:

λi =





n− 1 if i = 1, . . . , j ,
1
2
(n− 3) if i = j + 1, . . . , r − 1 ,

1
2
(n− 3) + k′ if i = r.

For n even: In the even dimensional case Lemma 3.16 yields the following
Sarkaria index for the simplex:

indSK Σk(∆n−1) =





2k + 1 if 0 ≤ k ≤ 1
2
(n− 4),

n− 2 if 1
2
(n− 2) ≤ k ≤ n− 2

n− 1 if k = n− 1.

Note that, in contrast to the odd dimensional case, the index increases only
by 1 between the first (0 ≤ k ≤ 1

2
(n − 4)) and the second case (1

2
(n − 2) ≤

k ≤ n− 2). This leads to the extra case for the index indSK Σλ(∆r
n−1) if n is

even. The optimal distributions are obtained as follows:

◮ If 0 ≤ k ≤ 1
2
r(n− 4) then any distribution with λi ≤

1
2
(n− 4) yields a

Sarkaria index of 2k + 2r − 1.

◮ If k = 1
2
r(n− 4) + k′ with 1 ≤ k′ ≤ r then the optimal distribution is:

λi =

{
1
2
(n− 2) if i = 1, . . . , k′

1
2
(n− 4) otherwise.

◮ If k = 1
2
r(n− 2) + j(n

2
) + k′ with j = 0, . . . , r− 1 and k′ ∈ [n

2
− 1] then

λ with

λi =





n− 1 if i = 1, . . . , j ,
1
2
(n− 2) if i = j + 1, . . . , r − 1 ,

1
2
(n− 2) + k′ if i = r.
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To see that these distribution are really optimal, one can check that any
redistribution does not increase the Sarkaria bound.

In the above lemma we investigated the Sarkaria index for different face
types of the product of simplices. Since any decomposition λ of k yields a
subcomplex Σλ(∆r

n−1) of the kth skeleton complex Σk(∆
r
n−1), Lemma 3.19

yields a lower bound on the embeddability dimension of the kth skeleton
complex. After a little calculation and appropriate rounding we unify the
odd and even cases to obtain the following theorem.

Theorem 3.20. Let n ≥ 2, r ≥ 1 and 0 ≤ k ≤ r(n− 1). The embeddability
dimension of the kth skeleton complex Σk(∆

r
n−1) of the r-fold product of

simplices satisfies the following inequalities:

e-dim(Σk(∆
r
n−1)) ≥





2r + 2k − 1 if 0 ≤ k ≤ r⌊n−3
2
⌋

1
2
rn + k − 1 if r⌊n−3

2
⌋< k ≤ r⌊n−2

2
⌋

r(n− 1) + j − 1 if j⌊n+1
2
⌋≤ k − r⌊n−2

2
⌋< (j + 1)⌊n+1

2
⌋

rn− 1 if k = r(n− 1),

with j = 0, . . . , r − 1.

The second case in the above theorem is empty if n is odd. We combine
Lemma 3.18 and Theorem 3.20 to obtain the embeddability dimension of the
skeleton complex of the product of simplices for certain parameters.

Corollary 3.21. Let n ≥ 2, r ≥ 1 and 0 ≤ k ≤ r⌊n−3
2
⌋. The embeddability

dimension of the kth skeleton complex Σk(∆
r
n−1) of the r-fold product of

simplices is
e-dim(Σk(∆

r
n−1)) = 2r + 2k − 1.

3.3.3 Projections of products of simplices

We use the bounds on the embeddability dimension established in the previ-
ous section to determine whether or not a certain skeleton may be preserved
under projection.

Theorem 3.22 (Non-projectability of skeleta of products of simplices). For
n ≥ 2 and r ≥ 1 there exists no realization of the r-fold product ∆r

n−1 of
(n − 1)-simplices such that the projection from Rr(n−1) to Re preserves the
k-skeleton if

e <





r + 2k + 1 if 0 ≤ k ≤ r⌊n−3
2
⌋

1
2
r(n− 2) + k + 1 if r⌊n−3

2
⌋ < k ≤ r⌊n−2

2
⌋

r(n− 2) + j + 1 if j⌊n+1
2
⌋ ≤ k − r⌊n−2

2
⌋ < (j + 1)⌊n+1

2
⌋

r(n− 1) + 1 if k = r(n− 1).
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Proof. By Corollary 3.3 we get the following bound on the dimension e pro-
jected onto:

e < e-dim(Σk(∆
r
n−1)) + r(n− 1)− rn + 2 = e-dim(Σk(∆

r
n−1))− r + 2.

We obtain the stated result by inserting the bounds of Theorem 3.20 into
this inequality.

For r = 1 Theorem 3.22 yields bounds on the realizability of the k-skeleton
of the (n− 1)-simplex, i.e. there exists no projection of the (2k + 2)-simplex
to R(2k+1) which preserves the k-skeleton. This is exactly the Van Kampen–
Flores Theorem. In this sense, Theorem 3.22 is a generalization of the clas-
sical polyhedral Van Kampen–Flores Theorem from simplices to products of
simplices. Furthermore, the above theorem gives yet another proof of Corol-
lary 3.13 concerning the projection of products of 2-simplices (triangles).



Chapter 4

Polyhedral surfaces in wedge products
joint with Günter M. Ziegler

In this chapter we discuss a family of surfaces that is contained in a new family
of polytopes. The new polytopes are “wedge products.” They are dual to the
wreath products of Joswig & Lutz [27]. They may be obtained by iterating
the generalized wedge construction described in Section 4.1.1, which is a
special kind of subdirect product, as introduced by McMullen [35]. The new
surfaces are constructed as subcomplexes of the 2-skeleta of wedge products.
We may deform the wedge products containing the surfaces in a way that the
surfaces survive the projection to R4 and R3 for certain parameters. Using
the techniques introduced in Section 2.2, we obtain lower bounds on the
number of moduli for these realizations. Furthermore, we observe that the
dual surface is contained in the 2-skeleton of the dual 4-polytope, if the
prism over the primal surface is contained in the primal 4-polytope. So by
projecting the prism over the surface to the boundary of a 4-polytope we
obtain realizations of the dual surfaces in R3 as well. For other parameters
we use the techniques of Section 2.1 to show that we are not able to obtain
realizations of these surfaces via projections of a wedge products.

4.1 Wedge products

We begin this section with the construction of the generalized wedge. As
the name suggests, this construction generalizes the wedge construction for
polytopes which was used, e.g. by Fritzsche & Holt [21], to study the Hirsch
conjecture. We define the generalized wedge of two polytopes in terms of
an inequality system, which merges the inequality systems of the two con-
stituents. We also interpret the generalized wedge as a degenerate deformed
product and determine faces that are affinely equivalent to the two poly-
topes involved in the construction. The wedge product is also defined by its
inequality description but may also be obtained as an iterated generalized
wedge.

53
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Figure 4.1: The classical wedge over a pentagon.

4.1.1 Generalized wedges

Let P be a d-dimensional polytope in Rd with m facets, given by its facet
description Ax ≤ 1, with A ∈ Rm×d, x = (x0, . . . , xd−1)

t. Let F be the facet
of P defined by the hyperplane a0x = 1. The classical wedge over the poly-
tope P at F is constructed as follows: Embed P ×{0} in Rd+1 and construct
the cylinder P × R ⊂ Rd+1. Then cut the cylinder with two distinct hyper-
planes through F ×{0} such that both cuts are bounded. These hyperplanes
divide the cylinder into one bounded and two unbounded components. The
bounded part is the wedge. This construction can be performed in terms of
the inequality system

wedgeF (P ) :=
{( x

xd

)
∈ Rd+1

∣∣∣
(

A′

a0 ±1

)(
x
xd

)
≤

(1
1

)}
,

where A′ is the matrix A with the row a0 removed. The two hyperplanes
that cut the cylinder are a0x + xd = 1 and a0x − xd = 1. They may be
constructed by combining the equation a0x = 1 that defines the facet F with
the inequality description ±xd ≤ 1 of the interval [−1,+1] in xd-direction.

Deletion of the last coordinates yields a projection wedgeF (P )→ P : Fourier-
Motzkin elimination of xd (that is, addition of the two inequalities involv-
ing xd) recovers a0x ≤ 1 as an inequality that is valid, but not facet-defining
for wedgeF (P ).
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For the projection wedgeF (P ) → P the fiber above every point of P is an
interval I, except that it is a single point {∗} above every point of F . This
might be indicated by

(I, {∗}) −→ wedgeF (P ) −→ (P, F ).

For our purposes we need the following more general construction.

Definition 4.1 (Generalized Wedge P 2F Q). Let P be a d-polytope in Rd

with m facets given by the inequality system Ax ≤ 1, and let Q be a d′-
polytope in Rd′ with m′ facets given by By ≤ 1. Let G be the face of P
defined by the hyperplane cx = 1.

The generalized wedge P 2G Q of P and Q at G is the (d + d′)-dimensional
polytope defined by

P 2G Q :=
{(

x
y

)
∈ Rd+d′

∣∣∣
(

A′

C B

)(
x
y

)
≤

(11)}, (4.1)

where C = 1c is the m′× d matrix all of whose rows are equal to c, and A′ is
the matrix A if G is not a facets and A′ is the matrix A without the row a0

if G is a facet defined by a0x = 1.

The generalized wedge P 2G Q is a (d+d′)-dimensional polytope with m+m′

or m+m′− 1 facets depending on the dimension of the face G. The classical
wedge wedgeF (P ) may be viewed as the generalized wedge P 2F [−1, 1],
where F is a facet of P . The generalized wedge P 2G Q comes with a
projection to P similar to the projection of the classical wedge described
above.

Proposition 4.2. If P and Q are polytopes of dimension d resp. d′, then the
generalized wedge is a (d + d′)-polytope P 2G Q. It comes with a projection
to P (to the first d coordinates) such that the fiber above every point of P
is an affine copy of Q, except that it is a single point {∗} above every point
of G. That is,

(Q, {∗}) −→ P 2G Q −→ (P,G).

Proof. First we show that the projection maps to P . If G is not a facet of P ,
then this is obvious, since all facet inequalities of P also define facets of the
generalized wedge.

If G is a facet of P defined by the inequality a0x ≤ 1 then C = 1a0 in
the inequality system (4.1) of the generalized wedge. We need to show that
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Figure 4.2: The generalized wedge of a pentagon and an interval at a vertex.

this inequality is valid (but not facet-defining) for the generalized wedge as
well: Since Q is bounded, its facet-normals (the rows of B) are positively-
dependent, so there is a positive row-vector λ satisfying λB = 0 and λ1 = 1;
thus summing the inequalities in the system Cx + By ≤ 1 with coefficients
given by λ yields

a0x = λCx + λBy ≤ λ1 = 1

since λC = λ(1a0) = (λ1)a0 = a0.

Now given any point x ∈ P , the fiber above x is given by the inequality
system By ≤ 1 − Cx. For x ∈ G we have Cx = 1, and By ≤ 0 describes a
point. For x ∈ P \ G we have Cx < 1, and By ≤ 1 − Cx describes a copy
of Q that has been scaled by a factor of 1− cx. This is schematically shown
in Figure 4.3.

Remark 4.3. The subdirect product construction introduced when studying
projectively unique polytopes by McMullen [35] subsumes the generalized
wedge P 2G Q as the special case (P,G)⊗ (Q, ∅).

Remark 4.4. The generalized wedge may be interpreted as a limit case
(degeneration) of a deformed product in the sense of Amenta and Ziegler [2]:
If we consider an inequality cx ≤ 1 + ε for small ε > 0 instead of the
inequality cx ≤ 1 defining the face, then this inequality is strictly satisfied
by all x ∈ P . Further an inequality system similar to Equation (4.1) in
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G

Q

Q

Q Q

P

P

Figure 4.3: A schematic drawing of the generalized wedge P 2G Q. It is a
degeneration of the product P ×Q of two polytopes and contains many copies of
both constituents.

Definition 4.1 defines a deformed product:
{(x

y

)
∈ Rd+d′

∣∣∣
(

A
1

1+ε
C B

)(
x
y

)
≤

(11)},

where C is the m′ × d matrix with all rows equal to c. If ε → 0 then
the face G × Q of the product P × Q degenerates to a lower dimensional
face G× {0}, and we obtain the generalized wedge (see Figure 4.4).

The following example illustrates the relation between the product, the de-
formed product and the generalized wedge.

Example 4.5 (From product to generalized wedge). To construct the gen-
eralized wedge of a pentagon D5 and a triangle ∆2 we need an inequality
description of the two polytopes:

D5 =
{(x1

x2

)
∈ R2

∣∣



1 0
0 1

−1 0
0 −1

−1 −1



(

x1

x2

)
≤ 1},

∆2 =
{(y1

y2

)
∈ R2

∣∣
(

1 0
0 1

−1 −1

)(
y1

y2

)
≤ 1}.

We now choose the edge e5 given by the inequality −x1− x2 ≤ 1 as the base
facet of the generalized wedge. So the generalized wedge D5 2e5 ∆2 has the
following inequality description:

D5 2e5 ∆2 =
{
(

x1

x2

y1

y2

)
∈ R4

∣∣




1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0

−1 −1 1 0
−1 −1 0 1
−1 −1 −1 −1




(
x1

x2

y1

y2

)
≤ 1}.
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Figure 4.4: Schlegel diagrams showing the degeneration of a product to a gener-
alized wedge: The orthogonal product of pentagon and triangle (left), a deformed
product of pentagon and triangle (middle), and the generalized wedge of pentagon
and triangle (right).

The first two columns of the matrix contain the normals of the pentagon,
where the normal of the edge e5 is tripled. The lower part of the second
two columns contains exactly the normals of the triangle. In Figure 4.4 we
show the process of how an orthogonal product degenerates via a deformed
product to a generalized wedge.

The facet normals of the three steps in the degeneration for 0 < λ < 1 from
the product D5×∆2 via the deformed product D5 ×̃∆2 to the generalized
wedge D5 2 ∆2 are the following:

D5×∆2 D5 ×̃∆2 D5 2 ∆2




1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0

−1 −1 0 0
0 0 1 0
0 0 0 1
0 0 −1 −1







1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0

−1 −1 0 0
−λ −λ 1 0
−λ −λ 0 1
−λ −λ −1 −1







1 0 0 0
0 1 0 0

−1 0 0 0
0 −1 0 0

−1 −1 1 0
−1 −1 0 1
−1 −1 −1 −1




For the boundary cases of λ we obtain the orthogonal product for λ = 0
and the generalized wedge for λ = 1. Note that the inequality defining the
edge e5 is redundant and no longer defines a facet of the generalized wedge,
but only an edge.

Using the degeneration of the deformed product to a generalized wedge or a
little linear algebra we obtain the vertices of the generalized wedge.

Lemma 4.6 (Vertices of the generalized wedge P 2G Q). Let P 2G Q be the
generalized wedge of P and Q at G, where P has n vertices and Q has n′

vertices, and let H = {x ∈ Rd : cx = 1} be a hyperplane defining the face G
with n vertices. Then P 2G Q has (n − n)n′ + n vertices. These belong to
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two families

ukℓ =

{(
vk

0

)
for vk ∈ G, 0 ≤ k < n,(

vk

(1−cvk)wℓ

)
for vk /∈ G, 0 ≤ k < n, 0 ≤ ℓ < n′,

where vk is a vertex of P and wℓ is a vertex of Q.

With the above lemma or again using the degeneration of the deformed prod-
uct we can determine the combinatorial types of the facets of the generalized
wedge.

Lemma 4.7 (Facets of the generalized wedge P 2G Q). The inequalities
defining the generalized wedge P 2G Q as given by Definition 4.1 are of two
different kinds: (i) aix = 1 for i ∈ [m] resp. i ∈ [m] \ {0} if G is a facet
defined by a0x ≤ 1 and (ii) cx + bjy = 1 for j ∈ [m′].

(i) Let aix = 1 define the facet Fi 6= G of P . Then aix = 1 defines a facet
of the generalized wedge combinatorially equivalent to

(a) the product Fi ×Q if Fi ∩G = ∅, and

(b) the generalized wedge Fi 2(Fi∩G) Q if Fi ∩G 6= ∅.

(ii) Let bjy = 1 define the facet Fj of Q. Then a0x+ bjy = 1 defines a facet
combinatorially equivalent to the generalized wedge P 2G Fj .

The generalized wedge P2GQ contains many faces that are affinely equivalent
to the “base” P . These are characterized in the following proposition.

Proposition 4.8 (P -faces of P 2G Q). Let P 2G Q be the generalized wedge
of P and Q at G defined by the inequality G = P ∩ {x ∈ Rd | cx = 1}.
For an arbitrary vertex w of Q the convex hull of the vertices

(
vk

(1−cvk)w

)

for k = 0, . . . , n− 1 is a face that is affinely equivalent to P .

Proof. The vertex w ∈ Q is described by By = 1, where B is an invertible
square matrix, and By ≤ 1 is a subsystem of By ≤ 1. The corresponding
subsystem Cx + By ≤ 1 defines a face Gw of P 2G Q, since it is a valid
subsystem. This system is tight for the point

(0
w

)
that lies on the boundary

of P 2G Q. For any x ∈ P we get a unique solution y for Cx + By = 1,
which depends affinely on x. Hence x 7→ (x, y) yields an affine equivalence be-
tween P and the face Gw of P 2GQ that maps the vertices vk of P to

(
vk

(1−cvk)w

)

of Gw.
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Figure 4.5: The Schlegel diagram of the generalized wedge of a 5-gon and a
triangle displays the properties proved in this section: (1) It has a triangle face
for every vertex of the pentagon not on the base edge (Proposition 4.2). (2) It
has a pentagon face for every vertex of the triangle (Proposition 4.8). (3) It is a
simple polytope (Corollary 4.9).

In rare cases the generalized wedge of two polytopes is simple. To characterize
the simple wedge products we simply count the facets at each vertex.

Corollary 4.9 (Simple generalized wedges). The generalized wedge P 2G Q
of P and Q at G is simple if and only if

◮ P is a point and Q is simple (trivial case) or
◮ P is simple and Q is a simplex.

Proof. If P is a point then the inequality system (4.1) of Definition 4.1 is
exactly the inequality description of Q, that is, P 2G Q = Q. Hence the
generalized wedge of a point with a simple polytope is simple if and only if Q
is simple.

If the dimension of P is at least 1 we proceed as follows. The generalized
wedge is a simple polytope if and only if the number of facets incident to
every vertex is d + d′. Every vertex of P satisfies at least d ≥ 1 of the
inequalities aix ≤ 1 with equality and every vertex w of Q satisfies at least d′

of the inequalities bjx ≤ 1 with equality. We will distinguish two kinds of
vertices:

(1) Let
(

v
0

)
be a vertex of P 2G Q where v is a vertex of P on the face G

defined by cx = 1. Then v satisfies at least d inequalities of type aix ≤ 1



4.1 Wedge products 61

with equality. But maybe one of the inequalities a0x = 1 is redundant
if cx = 1 defines a facet. The vertex

(
v
0

)
also satisfies all m′ inequalities

of type cx+bjy ≤ 1 with equality. Hence
(

v
0

)
satisfies at least d−1+m′ of

the inequalities defining the generalized wedge with equality. Since m′ is
at least d′+1, the vertex

(
v
0

)
lies in exactly d+d′ facets of the generalized

wedge if and only if v lies in exactly d of the facets of P (one of which
is G) and Q has exactly d′ + 1 facets. In other words, the vertex

(
v
0

)
is

simple if and only if v is simple in P , Q is a simplex and G is a facet
of P .

(2) Let
(

v
(1−cv)w

)
be a vertex of P 2GQ where v is a vertex of P not contained

in the face G and w a vertex of Q. Since v is a vertex of P it satisfies at
least d inequalities of type aix ≤ 1 for i = 0, . . . ,m−1 with equality, non
of which is redundant. Since v is not on G, cv < 1, and hence

(
v

(1−cv)w

)

satisfies at least d′ of the inequalities of type cx + bjy ≤ 1 with equality.
Thus the vertices of this type are simple if and only if v is a simple
vertex of P and Q is simple.

Taking into account both types of vertices yields the lemma.

4.1.2 Wedge products

The wedge product of two polytopes P and Q may be obtained by iterating
the generalized wedge construction for all facet defining inequalities aix = 1
of P . This is made explicit in the following definition.

Definition 4.10 (Wedge product P 2Q). Let P be a d-polytope in Rd given
by Ax ≤ 1 with m facets defined by aix ≤ 1 for i ∈ [m] and let Q be a
d′-polytope in Rd′ given by By ≤ 1 with m′ facets that are given by bjy ≤ 1
for j ∈ [m′]. For i ∈ [m] denote by Ai the (m′ × d)-matrix 1ai with rows
equal to ai. The wedge product P 2 Q is defined by the following system of
inequalities:

{




x
y0

y1
...

ym−1



∈ Rd+md′

∣∣∣




A0 B
A1 B
...

. . .

Am−1 B







x
y0

y1
...

ym−1



≤




11
...1


}

. (4.2)

We denote the hyperplanes aix + bjyi = 1 defining the facets of the wedge
product by hi,j with (i, j) ∈ [m]× [m′].
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Remark 4.11. Comparing the inequality description of the wedge product
to the vertex description of the wreath products of Joswig & Lutz [27], we
observe that wedge product and wreath product are dual constructions. In
other words, if P and Q are polytopes and P ∗ and Q∗ their duals, then the
wedge product P 2 Q is the dual of the wreath product Q∗ ≀ P ∗.

According to Proposition 4.2 the generalized wedge P 2GQ comes with a nat-
ural projection onto P whose fibers are affine copies of the polytope Q. In the
wedge product we have a similar structure proved by analogous techniques.

Proposition 4.12 (Qm-faces of P 2 Q). The wedge product P 2 Q of P
and Q is a (d + md′)-dimensional polytope with mm′ facets hi,j indexed
by i ∈ [m] and j ∈ [m′]. It comes with a linear projection P 2 Q → P
(to the first d coordinates). The fiber above every interior point of P is a
product Qm, while the ith factor in the fiber degenerates to a point above
every point of P that is contained in the ith facet of P .

In a “fiber bundle” interpretation, the situation might be denoted as

(Q, {∗})m −→ P 2 Q −→ (P, {Fi}i).

This picture has an analogy to MacPherson’s topological description of the
moment map T(P ) → P for a toric variety, as presented in [20] and in [32,
Sect. 2.8].

We now give a purely combinatorial description of the faces of the wedge
product. Each face G of the wedge product P 2Q is determined by a subset
of the facets HG = {(i, j) ∈ [m] × [m′] | G ⊂ hi,j}. Ordering this subset by
the first index i, the faces may be identified with a vector (H0, . . . , Hm−1)
with Hi ⊆ [m′] in the following way:

j ∈ Hi ⇐⇒ F lies on hi,j . (4.3)

In this correspondence, the facets of the wedge correspond to the mm′ “unit
coordinate vectors” with one entry 1 and all other coordinates equal to 0.
The vertices of a simple polytope P correspond to vectors with dim (P ) ones
and zeroes otherwise. With this notation we now describe the vertex facet
incidences of the wedge product. It follows from iterating the generalized
wedge construction or by duality from the description of the wreath products
of Joswig & Lutz [27].
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Theorem 4.13. Let P 2Q be the wedge product of polytopes P and Q with
m resp. m′ facets. Then (H0, . . . , Hm−1) with Hi ⊆ [m′] corresponds to a
vertex of P 2 Q if and only if:

◮ {i ∈ [m] | Hi = [m′]} ⊆ [m] corresponds to a vertex of P , and
◮ Hi 6= [m′] corresponds to a vertex of Q.

The previous theorem is a purely combinatorial result and allows us to define
the wedge product of combinatorial types: Let P and Q be combinatorial
types of polytopes. The wedge product P 2Q is the polytope obtained from
the vertex-facet-incidences of Theorem 4.13.

Certain faces in a wedge product P 2Q that are affinely equivalent to P will
be particularly interesting to us.

Proposition 4.14 (P -faces of P 2 Q). Let (H0, . . . , Hm−1) with Hi ⊆ [m′]
correspond to a face F of the wedge product P 2Q. If the intersection of the
facets bjy ≤ 1 (j ∈ Hi) is a vertex wi of Q for all i ∈ [m], then F is affinely
equivalent to P .

Proof. Every Hi gives rise to a submatrix Bi = (bj)j∈Hi
of B, such that the

vertex wi is the unique solution of Biyi = 1. The corresponding subsystem
of the inequality system of P 2 Q is:




A0 B0

A1 B1
...

. . .

Am−1 Bm−1







x
y0

y1
...

ym−1



≤




11
...1

 .

It defines a face of the wedge product, since it is satisfied with equality
at the point (0, w0, . . . , wm−1)

t on the boundary of P 2 Q. Analogous to
the proof of Proposition 4.8, every point x ∈ P corresponds to a unique
point (x, y0, . . . , ym−1) on F where each yi is the unique solution of the sub-
system Biyi = 1− Aix. So F is affinely equivalent to P .

Using either duality and [27, Cor. 2.4], or Corollary 4.9, we obtain the fol-
lowing characterization of simple wedge products.

Corollary 4.15. The wedge product P 2 Q of two polytopes P and Q is
simple if and only if

◮ P is a point and Q is simple (trivial case) or
◮ P is simple and Q is a simplex.
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4.2 The polyhedral surfaces Sp,2q

In this section we study a particularly interesting polytope, the wedge prod-
uctWp,q−1 of a p-gon with a (q−1)-simplex. We use the general results of the
previous section and observe that this wedge product is a simple polytope
with many p-gon faces. These p-gon faces will be used to construct a regular
polyhedral surface of type {p, 2q} in the 2-skeleton of Wp,q−1.

4.2.1 Wedge product of p-gon and (q − 1)-simplex

The wedge product of a p-gon Dp and a (q−1)-simplex ∆q−1 will be denoted
by

Wp,q−1 := Dp 2 ∆q−1 .

This is a (2+p(q−1))-dimensional polytope with pq facets. By Corollary 4.15
it is simple.

Let us first fix some notation. We assume that the facets (edges) of Dp

are labeled in cyclic order, that is, if i, i′ ∈ [p] are indices of edges of Dp,
then they intersect in a vertex of the p-gon if and only if i′ ≡ i ± 1 mod p.
For j ∈ [q] we denote by j the set complement [q]\{j} of j in [q]. A vertex of
the (q−1)-simplex ∆q−1 is the intersection of any q−1 facets of the simplex,
hence for j ∈ [q] the intersection

⋂
j′∈j Fj′ of the facets Fj′ (j′ ∈ j) of the

simplex is a vertex. So Theorem 4.13 specializes as follows.

Corollary 4.16 (Vertices of wedge productWp,q−1). LetWp,q−1 be the wedge
product of p-gon and (q − 1)-simplex. Then the vertices of the wedge prod-
uct Wp,q−1 correspond to the vectors (H0, . . . , Hp−1) with

(H0, . . . , Hp−1) =

{
(j0, . . . , ji−1, [q], [q], ji+2, . . . , jp−1), or

([q], j1, j2, . . . . . . . . . , jp−3, jp−2, [q])
(4.4)

with ji ∈ [q] and ji = [q] \ {ji}. In other words, each vector that corresponds
to a vertex has two cyclically-adjacent [q] entries while all other entries are
subsets of [q] with q − 1 elements. The number of vertices is pqp−2.

For the construction of the surface in the next section we are interested in
the p-gon faces of Wp,q−1 that we obtain from Proposition 4.14.

Corollary 4.17 (p-gon faces of the wedge product Wp,q−1). The faces of
the wedge product Wp,q−1 of p-gon and (q− 1)-simplex corresponding to the
vectors

(H0, . . . , Hp−1) = (j0, . . . , jp−1),

where ji ∈ [q] and ji = [q] \ {ji} are p-gons. The number of such p-gons
in Wp,q−1 is qp.
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The following example illustrates the incidences of the p-gons at a vertex in
the above notation.

Example 4.18 (Vertices and 5-gons of W5,2). Let us consider the wedge
product W5,2 of a pentagon D5 and a triangle ∆2 to get used to the vector
notation for the faces. The wedge product W5,2 has dimension 12 and 15
facets. As described in Corollary 4.16, the vertices ofW5,2 correspond to the
vectors (H1, H2, H3, H4, H5) with two cyclically adjacent Hi0 = Hi0+1 = [3]
and Hi = ji for i 6∈ {i0, i0 + 1}:

(H1, H2, H3, H4, H5) =





([3],[3], j3 , j4 , j5 )
(j1 ,[3],[3], j4 , j5 )
(j1 , j2 ,[3],[3], j5 )
(j1 , j2 , j3 ,[3],[3])
([3], j2 , j3 , j4 ,[3])

.

Each of the five families of vertices of the wedge product W5,2 contains 33

vertices which makes a total of 5 · 33 = 135 vertices obtained from the 5
families of vertices by choosing the ji’s. Further each of the vertices is the
intersection of 2 · 3 + 3 · 2 = 12 facets, that is, W5,2 is a simple polytope.

There are 35 = 243 pentagons in the 2-skeleton each corresponding to a vector
(j1, j2, j3, j4, j5). Each vertex is adjacent to 32 = 9 of the pentagons. If we
look at the pentagon vertex figure of the vertex ([3], [3], 3, 3, 3), that is, we
intersect the pentagons adjacent to a vertex with a little sphere, then the 9
pentagons form a complete bipartite graph K3,3 on (3 + 3) vertices. Each
vertex of the K3,3 corresponds to an edge of the form ([3] \ {j1}, [3], 3, 3, 3)
resp. ([3], [3] \ {j2}, 3, 3, 3), with j1 ∈ [3] resp. j2 ∈ [3]. The 9 pentagons
with vector representation ([3]\{j1}, [3]\{j2}, 3, 3, 3) with j1, j2 ∈ [3] are the
edges of K3,3 (see Figure 4.6).

The task of the next section is to choose an appropriate subset of the p-gons
of the wedge product Wp,q−1 that forms a surface. It is not difficult to find a
set of p-gons that forms a 2-ball at each vertex, but the problem is to select
the p-gons such that they fit together globally to form a polyhedral surface.

4.2.2 Combinatorial construction

In this section we describe a combinatorially regular surface of type {p, 2q},
that is, a surface composed of p-gon faces, whose vertices have uniform de-
gree 2q, and with a combinatorial automorphism group that acts transitively
on its flags. It will be a subcomplex formed by some p-gons of the wedge
product Wp,q−1 = Dp 2 ∆q−1 of p-gon and (q − 1)-simplex defined in the
previous Section 4.2.1.
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(1, [3])

(2, [3])

(3, [3])

([3], 1)

([3], 2)

([3], 3)

(1, 1)

(1, 2)

(1, 3)

([3], [3])

Figure 4.6: The pentagon vertex figure of the wedge product W5,2 of pentagon

and 2-simplex at the vertex ([3], [3], 3, 3, 3). The labels only contain the first two
entries of the vector since the last three are always the same. The vertices of the
graph correspond to edges and the edges to 5-gons of the polytope.

To construct the surface we have to select certain p-gon faces of the wedge
product. By Corollary 4.17 we know that the p-gon faces ofWp,q−1 correspond
to vectors (j0, . . . , jp−1) with ji = [q] \ {ji}.

Definition 4.19 (Polytopal subcomplex Sp,2q of Wp,q−1). For p ≥ 3 and
q ≥ 2, the subcomplex Sp,2q is defined by the p-gon faces of the wedge prod-
uct Wp,q−1 that correspond to the following set of vectors:

Sp,2q =
{

( j0, . . . , jp−1 )
∣∣∣

p−1∑

i=0

ji ≡ 0 or 1 mod q
}
.

The subcomplex consists of all these p-gons, their edges and vertices.

Let us start with an easy observation on the faces contained in the subcom-
plex Sp,2q.

Lemma 4.20 (Vertices and edges of Sp,2q). The subcomplex Sp,2q contains
all the vertices ofWp,q−1. It contains all edges corresponding to vectors with
exactly one [q] entry, that is, all edges contained in at least one p-gon. Thus
the f -vector of Sp,2q is given by (f0, f1, f2) = (p, pq, 2q)qp−2.

In the following we will prove that the polytopal complex Sp,2q is a regular
surface. We start by proving the regularity.
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Proposition 4.21 (Regularity of the polytopal complex Sp,2q). The poly-
topal complex Sp,2q is regular, that is, the combinatorial automorphism group
acts transitively on its flags.

Proof. We use four special combinatorial automorphisms of the subcomplex
to show that the flag F0 : ([q], [q], 0, . . . , 0) ⊆ ([q], 0, 0, . . . , 0) ⊆ (0, 0, 0, . . . , 0)
may be mapped onto any other flag. Acting on (index vectors of) vertices,
they may be described as follows:

F : ( i0, i1, i2, . . . , ip−1 ) 7−→ ( ip−1, . . . , i2, i1, i0) (Flip)

P : ( i0, i1, i2, . . . , ip−1 ) 7−→ ( q − i0 + 1, q − i1, . . . , q − ip−1 ) (Parity)

R : ( i0, i1, i2, . . . , ip−1 ) 7−→ ( i0 + 1, i1 − 1, i2, . . . , ip−1 ) (Rotate)

S : ( i0, i1, i2, . . . , ip−1 ) 7−→ ( i1, i2, . . . , ip−1, i0 ) (Shift)

All four maps act on the vectors representing the faces of the subcom-
plex Sp,2q. The map P changes the parity of the p-gon, S shifts the vector
cyclically, F reverses the order of the vector, and R rotates around a vertex
preserving parity. Hence by applying an appropriate combination of F, S,
and P we may map an arbitrary flag to a flag of the type

F = ( [q], [q], j2, . . . , jp−1 ) ⊆ ( [q], j1, j2, . . . , jp−1 ) ⊆ ( j0, j1, j2, . . . , jp−1 ).

with
∑

ji ≡ 0 mod q. The two maps S and R do not change the parity of the
p-gon. If we now apply the following sequence of S and R to the flag F0 we
obtain the flag F :

F = (S(SRsp−2)(SRsp−3) · · · (SRs1)(SRs0))(F0)

where sℓ =
∑ℓ

i=0 ji. Each of the SR pairs adjusts one of the entries of the
flag, and the entire sequence maps F0 to F .

Remark 4.22. The symmetry group Aut(Sp,2q) of the surface Sp,2q is a sub-
group of the symmetry group [p, 2q] of the regular tiling of type {p, 2q}, that
is, the regular tiling with p-gon faces and uniform vertex degree 2q. (De-
pending on the parameters p and q these tilings are Euclidean, spherical, or
hyperbolic.) The group Aut(Sp,2q) is generated by “combinatorial reflections”
at the lines bounding a fundamental triangle of the barycentric subdivision
of the surface. The subgroup Gp,2q,r ≤ [p, 2q] studied by Coxeter [16] also
contains the group Aut(Sp,2q) for suitable parameter r.

We are now able to prove the following theorem on the structure of our
selected subcomplex.
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(0, 0)

(0, 1)

(3, 1)

(3, 2)(2, 2)

(2, 3)

(1, 3)

(1, 0)

Figure 4.7: The p-gons incident to the vertex ([q], [q], 0, 0, 0) of Sp,2q form a
2-ball. In this case p = 5 and q = 4 and the pentagons are labeled by the first
two entries of the vector representation.

Theorem 4.23 (Properties of Sp,2q). The subcomplex Sp,2q of the wedge
product Wp,q−1 = Dp 2 ∆q−1 of a p-gon and a (q − 1)-simplex is a closed
connected orientable regular 2-manifold of type {p, 2q} with f -vector

f(Sp,2q) = (p, pq, 2q)qp−2

and genus 1 + 1
2
qp−2(pq − p− 2q).

Proof. We start by proving that Sp,2q is a manifold, that is, that the p-
gons form a 2-ball at every vertex. By Proposition 4.21 all the vertices are
equivalent, so it suffices to consider the vertex v = ([q], [q], 0, . . . , 0). The
p-gons adjacent to the vertex v correspond to the vectors

( j0, j1, 0, . . . , 0) with j0 + j1 ≡ 0, 1 mod q.

Starting from the p-gon (0, 0, 0, . . . , 0) we obtain all the other p-gons adjacent
to v if we alternately increase the first component j0 or decrease the second
component j1 as shown in Figure 4.7. The 2q edges joining the p-gons cor-
respond to the vectors ([q], j1, 0, . . . , 0) or ( j0, [q], 0, . . . , 0) with j0, j1 ∈ [q].
Thus the p-gons around each vertex form a 2-ball and Sp,2q is a manifold with
uniform vertex degree 2q.

We proceed by showing that the manifold is connected by constructing a
sequence of p-gons connecting two arbitrary p-gons. Consider two arbitrary
p-gons F = (j0, j1, j2, . . . , jp−1) and G = (j′0, j

′
1, j

′
2, . . . , j

′
p−1). Then there ex-

ists a sequence of p-gons in the star of the vertex v0 = ([q], [q], j2, . . . , jp−1)
connecting F to a p-gon F1 = (j′0, j

′′
1 , j2, . . . , jp−1). For k = 1, . . . , p − 2 we

continue around the vertices vk = (j′1, . . . , j
′
k−1, [q], [q], jk+2, . . . , jp−1) to ob-

tain Fk = (j′1, . . . , j
′
k, j

′′
k+1, jk+2, . . . , jp−1) with the first k components equal
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to those of G. Then either Fp−1 = G or they share the common edge
(j′0, . . . , j

′
p−2, [q]). Hence we have shown so far that Sp,2q is a closed connected

equivelar 2-manifold of type {p, 2q} without boundary.

The surface Sp,2q consists of two families of p-gons (j0, . . . , jp−1), distinguished
by j0 + · · ·+ jp−1 mod q. We assign an orientation to the edges of the p-gons
as follows

([q], j1, j2, . . . , jp−1) → (j0, [q], j2, . . . , jp−1) → (j0, j1, [q], . . . , jp−1) → . . .

if j0 + · · ·+ jp−1 ≡ 0 mod q, and

([q], j1, j2, . . . , jp−1) ← (j0, [q], j2, . . . , jp−1) ← (j0, j1, [q], . . . , jp−1) ← . . .

if j0 + · · ·+ jp−1 ≡ 1 mod q. In Figure 4.8 this is illustrated for p = 5. Since
every edge is contained in one p-gon with sum ≡ 0 and one with sum ≡ 1
this yields a consistent orientation for the surface.

As Sp,2q is an orientable manifold we calculate the genus of the surface from
the f -vector given in Lemma 4.20 via the Euler characteristic:

g = 1−
1

2
χ(Sp,2q) = 1 +

1

2
((q − 1)p− 2q)qp−2.

For p = 3 we obtain a regular triangulated surface S3,2q of type {3, 2q} with
f -vector (3q, 3q2, 2q2) in the wedge productW3,q−1. The genus of the surface
is 1 + 1

2
q(q− 3) and thus quadratic in the number of vertices. Unfortunately,

the wedge product of a triangle and a (q − 1)-simplex is a polytope of di-
mension 3q− 1 with 3q facets, hence a (3q− 1)-simplex. So our construction
does not provide an “interesting” realization of the surface. The surface S3,2q

is well known and occurs already in Coxeter [15] called {3, 2q|, 3}. For q = 2
the surface is the octahedron and for q = 3 Dyck’s Regular Map. For Dyck’s
regular map there exist two realizations in R3, one by Bokowski [7] and a
more symmetric one by Brehm [11].

For q = 2 the surface Sp,4 is the surface of type {p, 4} constructed by Mc-
Mullen, Schulz and Wills [37, Sect. 4]. In their paper they construct a
realization of the surface directly in R3. Their construction also provides two
additional parameters m and n arising from the reflections around an m×n-
torus (see Section 5.1.1 for the dual construction). Our surfaces coincide with
the surfaces of McMullen, Schulz & Wills for m = 2 and n = 2.

So our surface generalizes two interesting families of surfaces. As we will see,
for some parameters it also provides a new way of realizing the surface in the
boundary complex of a 4-polytope and by orthogonal projection in R3.
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([q], j1, j2, j3, j4) (j0, [q], j2, j3, j4)

(j0, j1, [q], j3, j4)

(j0, j1, j2, [q], j4)

(j0, j1, j2, j3, [q])

(j0, j1, j2, j3, j4)

∑
jk ≡ 0

([q], j1, j2, j3, j4) (j0, [q], j2, j3, j4)

(j0, j1, [q], j3, j4)

(j0, j1, j2, [q], j4)

(j0, j1, j2, j3, [q])

(j0, j1, j2, j3, j4)

∑
jk ≡ 1

Figure 4.8: The orientation of the p-gons in the surface Sp,2q, for p = 5.

In contrast to simplicial complexes, which may always be realized in a high-
dimensional simplex, there is no fool-proof strategy for realizing general poly-
topal complexes. For abstract non-simplicial polyhedral 2-manifolds in gen-
eral not even a realization in RN for large N is possible. For example, equiv-
elar surfaces of type {p, 2q + 1} are not realizable in general:

Proposition 4.24 (Betke and Gritzmann [4]). Let S ⊂ RN be an equivelar
polyhedral 2-manifold of type {p, 2q + 1} with q ≥ 1 in Rd. Then

2(2q + 1) ≥ p + 1.

If realized in some RN , a polyhedral surface can be embedded into R5 via
an arbitrary general-position projection. Combining this observation with
Theorem 4.23 we get the following corollary.

Corollary 4.25. The regular surfaces Sp,2q of Theorem 4.23 (p ≥ 3, q ≥ 2)
can be realized in R5.
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4.3 Realizing the surfaces Sp,4 and S∗
p,4.

In the following we provide a construction for the surfaces Sp,4 and S∗
p,4 in R3

via projection. We construct a realization ofWp,1 that allows for a projection
of the surface into the boundary of a 4-dimensional polytope. A particular
property of the embedding will be that all the faces of the surface lie on
the “lower hull” of the polytope. In this way, we obtain the surface by an
orthogonal projection to R3 and we do not need to take the Schlegel diagram.
Using the new method introduced in Section 2.2, we prove a non-trivial lower
bound for the number of moduli of the surfaces Sp,4. The dual surface S∗

p,4

is constructed via a projection of the product Wp,1× I of the wedge product
with an interval I.

4.3.1 Projection of the surface to R4 and to R3

We are now ready to state our main result about the projections of the
surfaces contained in the wedge products of p-gons and intervals.

Theorem 4.26. The wedge product Wp,1 = Dp 2 ∆1 of a p-gon and a 1-
simplex of dimension 2 + p has a realization in R2+p such that all the faces
corresponding to the surface Sp,4 ⊂ Wp,1 are preserved by the projection to
the first four resp. three coordinates.

This realizes Sp,4 as a subcomplex of a polytope boundary in R4, and as an
embedded polyhedral surface in R3.

Proof. We proceed in two steps. In the first step we construct a wedge
product of a p-gon with a 1-simplex and describe a suitable deformation. In
the second step we use the Projection Lemma 1.13 to show that the projection
of the deformed wedge product to the first four coordinates preserves all the
p-gons of the surface Sp,4. Furthermore, all the faces of the projected surface
lie on the lower hull of the projected polytope and hence the surface may be
realized by an orthogonal projection to the first four/three coordinates.

Let the p-gon Dp be given by Dp = {x ∈ R2 | aix ≤ 1, i ∈ [p]} with facets in
cyclic order. Let ∆1 = {y ∈ R | ± εy ≤ 1} be a 1-simplex for a small ε > 0.
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Then by Definition 4.10 the inequality description of the wedge productWp,1

is:




a0 ±ε
a1 ±ε
a2 ±ε
...

. . .

ap−2 ±ε
ap−1 ±ε







x
y0

y1
...

yp−1



≤




1

1

1
...

1




.

Each of the rows in the matrix corresponds to two facets – one for each sign.
Since Wp,1 is a simple polytope we may perturb the facet normals of the
wedge product without changing the combinatorial structure. So for M > 0
large enough we obtain a realization of Wp,1 of the form




a0 ±ε − 1
M
− 1

M2 · · · −
1

Mp−2 −
1

Mp−1

a1 ±ε 1
M

a2 ±ε 1
M

...
. . . . . .

ap−2 ±ε 1
M

ap−1 ±ε







x
y0

y1
...

yp−1



≤




1

1

1
...

1




.

We rescale the inequalities of the wedge product and replace the variables
by multiplying the ith pair of rows for i = 0, . . . , p − 1 with M p−1−i and
setting y′

i = M p−1−iyi to get




Mp−1a0 ±ε −1 −1 · · · −1 −1
Mp−2a1 ±ε 1
Mp−3a2 ±ε 1

...
. . . . . .

Map−2 ±ε 1
ap−1 ±ε







x
y′

0

y′
1
...

y′
p−1



≤




Mp−1

Mp−2

Mp−3

...

1




.

The above modifications do not change the combinatorial structure: scaling
the inequalities does not change the realization, and the change of variables
is just a scaling of the coordinate axes. According to Definition 4.19, the
surface Sp,4 contains the following p-gon faces of Wp,1:

Sp,4 =
{

(j0, . . . , jp−1) ∈ [2]p
∣∣

p−1∑

i=0

ji ≡ 0, 1 mod 2
}

.
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Since [2] = {0, 1}, the surface Sp,4 contains all the “special” p-gons of Wp,1

specified by Corollary 4.17. Each of the p-gons is obtained by intersect-
ing p facets with one facet chosen from each pair of rows, that is, the p-
gon (j0, . . . , jp−1) corresponds to a choice of signs ((−1)j0, . . . , (−1)jp−1) in the
above matrix. So the normals to the facets containing the p-gon (j0, . . . , jp−1)
are:




Mp−1a0 (−1)j0ε −1 −1 · · · −1 −1
Mp−2a1 (−1)j1ε 1
Mp−3a2 (−1)j3ε 1

...
. . . . . .

Map−2 (−1)jp−2ε 1
ap−1 (−1)jp−1ε




(4.5)

By Lemma 1.11 a p-gon survives the projection to the first four coordinates
if the last p− 2 columns of the matrix are positively spanning. Since ε
is very small and the conditions of the projection lemma are stable under
perturbation, the last p− 2 columns are positively spanning independent of
the choice of signs (−1)ji. Consequently all the p-gons survive the projection
to the first four coordinates.

This deformed realization of the wedge product has the additional property
that all the p-gon faces of the surface have a face normal that has a negative
fourth (y1) coordinate as required in Lemma 1.13: The normal cone of a
p-gon face is spanned by the normals of the facets containing the p-gon given
by the matrix in Equation (4.5). Since the −1 in the y1 coordinate of the
first row dominates the y1 coordinates of the other normals, the normal cone
of the projected p-gon contains a vector ν = (νx, νy) ∈ R2+p with νyj

= 0
for j = 2, . . . , p− 1 and negative νy1 < 0. Hence the p-gons of the surface lie
on the lower hull of the projected polytope.

Thus we get a coordinatization of the surface by orthogonal projection to the
first three coordinates without the need of a Schlegel projection.

The construction of the surfaces via the projections of the deformed wedge
products yields very “skinny” realizations for large p. A realization of the
surface S5,4 of genus 5 is shown in Figure 4.9: Its 32 pentagon faces are ar-
ranged symmetrically to a horizontal plane. They come in 8 families of 4
pentagons. The 4 families above the horizontal plane are arranged as indi-
cated by Figure 4.9 (right).



74 Polyhedral surfaces in wedge products

Figure 4.9: The surface S5,4 consists of 32 pentagons on 40 vertices.

4.3.2 Moduli of the projected surfaces

For p ≥ 4, the surfaces Sp,4 do neither contain vertices of degree three, nor
triangle faces. So we cannot perform any local perturbations of the vertices
or the face normals without changing the combinatorial structure. Following
the approach of Section 1.3.1, the näıve estimate for the number of moduli
of a realization S of the surface Sp,2q in R3 is:

M(S, 3) ∼ 2p−2(3p− 4p + 12) = 2p−2(12− p).

Hence for large p we would not expect that realizations of the surfaces Sp,2q

have any non-trivial moduli. But as the surfaces are the projections of high-
dimensional simple polytopes, we may use the moduli of the simple wedge
product Wp,1 to obtain moduli for the surfaces according to Theorem 2.30.
So to obtain a lower bound on the dimension of the realization space of
the surfaces Sp,4 in R3, we need to determine an affine support set in the
corresponding wedge product Wp,1. The maximal size of an affine support A

is:

dimWp,1 + 1 = p + 3 ≤ |A| ≤ 2p = fp+1(Wp,1)

by Corollary 2.24 and Lemma 2.25. Unfortunately, we have not been able to
prove the existence of an affine support set of size 2p for this wedge product
yet. But we may use the general approach as described in Corollary 2.24.
This yields the following lower bound on the number of moduli for the real-
izations of the surfaces Sp,4 in R3 obtained from Theorem 4.26.

Theorem 4.27 (Moduli of Sp,4). The realizations of the surfaces Sp,4 in R3

obtained via projections of the wedge products Wp,1 have at least 3(p + 3)
moduli.
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The above theorem states that the number of moduli grows linearly with the
size of the polygons p, whereas the näıve count suggests that the number of
moduli decreases with the size of the polygons. This shows either that our
realizations of the surfaces are very specific compared to arbitrary realizations
or that there must be many incidence theorems hidden in the combinatorial
structure of the surface.

The maximal number of moduli for our realizations of the wedge product
surfaces obtainable from Theorem 2.30 is 6p since the wedge product Wp,1

has 2p facets. One candidate for an affine support set which would yield
the desired number of moduli is described in the following question. The
set is motivated by the affine support set Aneigh(p) of the p-cube discussed
in Section 2.2.3. The p-cube is the fiber of an interior point of the polygon
with respect to the canonical projection of the wedge product Wp,1 onto the
polygon (see Proposition 4.2). Maybe one can also use the fact that the wedge
product is a degenerate deformed product to prove the existence or even the
non-existence of an affine support set of size 2p for the wedge product Wp,1.

Question 4.28. Let Wp,1 be the wedge product of p-gon and 1-simplex
for p ≥ 3. Consider the subset A consisting of the vertices corresponding
to the following vectors:

A :=





([2],[2], 1 ,. . ., 0 , 0 , 0 )
([2],[2], 0 ,. . ., 1 , 1 , 1 )
( 0 ,[2],[2],. . ., 0 , 0 , 0 )
( 1 ,[2],[2],. . ., 1 , 1 , 1 )
( . , . , . ,. . ., . , . , . )
( 0 , 0 , 0 ,. . .,[2],[2], 1 )
( 1 , 1 , 1 ,. . .,[2],[2], 0 )
( 1 , 0 , 0 ,. . ., 0 ,[2],[2])
( 0 , 1 , 1 ,. . ., 1 ,[2],[2])
([2], 1 , 0 ,. . ., 0 , 0 ,[2])
([2], 0 , 1 ,. . ., 1 , 1 ,[2])





.

Is A an affine support for the wedge product Wp,1?

4.3.3 Surface duality and polytope duality

In Section 4.3.1 we obtained a realization of the surface Sp,4 as a subcomplex
of a polytope boundary in R4, and thus as an embedded polyhedral surface
in R3. Now our ambition is to derive a realization of the dual surface S∗

p,4

from the primal one. This is not automatic: For this the dimension 4 is
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Figure 4.10: The face lattice of a polytope (left) and its dual (right). The poset
of the surface is a subposet of the face lattice of the polytope (left) containing
elements of dimensions 0, 1 and 2. The face lattice of the dual polytope contains
a subposet corresponding to the dual surface, but the faces are of co-dimensions
0, 1, and 2.

crucial, and we also need that not only the primal surface Sp,4, but also
the “prism” Sp,4 × I over the primal surface embeds into a 4-polytope as a
subcomplex.

(Indeed, a surface embedded as a subcomplex in the boundary of a d-poly-
tope P exhibits a collection of faces of dimensions 0, 1, and 2. This corres-
ponds to faces of dimensions d − 1, d − 2 and d − 3 in the boundary of the
dual polytope P ∗ (see Figure 4.10). These do not form a subcomplex unless
the dimension is d = 3; for larger d this is a collection of high-dimensional
faces that just have the inclusion relations dictated by the face poset of S∗

p,4.)

For the following, the prism over a cell complex or polyhedral complex Σ
refers to the product Σ × I with an interval I = [0, 1], equipped with the
obvious cellular structure that comes from the cell decompositions of Σ (as
given) and of I (with two vertices and one edge). In particular, if Σ is a
polytope (with the canonical face structure), then Σ× I is the prism over Σ
in the classical sense of polytope theory.

Theorem 4.29. The prism Wp,1 × I over the wedge product Wp,1 has a
realization such that the prism over the surface Sp,4×I survives the projection
to R4 resp. R3.

Furthermore, the dual of the projected 4-polytope contains the dual sur-
face S∗

p,4 as a subcomplex, thus by constructing a Schlegel diagram we obtain
a realization of the surface S∗

p,4 in R3.

Proof. The proof follows the same line as the proof of Theorem 4.26. For
small positive 0 < δ ≪ 1 we construct the productWp,1× I of an orthogonal
wedge product with an interval {z ∈ R : ± δz ≤ 1} which has the following
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inequality description:




a0 ±ε
a1 ±ε
a2 ±ε
...

. . .

ap−2 ±ε
ap−1 ±ε

±δ







x
y0

y1
...

yp−1

z




≤




1
1
1
...
1
1
1




.

As in Theorem 4.26 we will project onto the first 4 coordinates indicated by
the vertical line in the next matrix. We perform a suitable deformation and
obtain a deformed polytope combinatorially equivalent to Wp,1 × I:




Mpa0 ±ε −1 −1 −1 −1 −1 −1
Mp−1a1 ±ε 1
Mp−2a2 ±ε 1

...
. . . . . .

M 2ap−2 ±ε 1
M 1ap−1 ±ε 1

0 ±δ







x
y′

0

y′
1
...

y′
p−1

z




≤




Mp

Mp−1

Mp−2

...
M 2

M 1

1




.

The matrix has the same structure as the one used in Theorem 4.26 except
for the 0 in the last row of the first column. The prism Sp,4 × I over the
surface is a union of prisms over p-gons, where each prism is identified with
the corresponding vector (j0, . . . , jp−1) of the p-gon face in the surface Sp,4.
The normals of the facets containing a prescribed p-gon prism are:




Mpa0 (−1)j0ε −1 −1 −1 −1 −1 −1
Mp−1a1 (−1)j1ε 1
Mp−2a2 (−1)j2ε 1

...
. . .

. . .

M 2ap−2 (−1)jp−2ε 1
M 1ap−1 (−1)jp−1ε 1




As in the previous proof, the last p−2 columns of these vectors are positively
spanning because they are positively spanning for ε = 0 and the given config-
uration is only a perturbation since ε is very small. Further the −1 in the y1

coordinate of the first row dominates and yields a normal with negative y1

coordinate for the prisms over the p-gons. So the prism over the surface
survives the projection to a 4-dimensional polytope and lies on its lower hull
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using Lemma 1.13. This way we obtain a realization of the prism over the
surface in R3 by orthogonal projection.

Looking at the face lattice of the projected polytope we observe that it con-
tains three copies of the face lattice of the surface Sp,4 – the top and the
bottom copy and another copy raised by one dimension corresponding to the
prism faces connecting top and bottom copy shown in Figure 4.11 (left). The
face lattice of the dual polytope contains three copies of the face lattice of
the dual surface. One of those copies based at the vertices corresponds to
the dual surface contained in the 2-skeleton of the dual polytope.

Figure 4.11: The face lattice of a 4-polytope containing the face poset of the
prism over the surface Sp,4 (left). The face lattice of the dual polytope contains
the face poset of dual surface (right).

4.4 Topological obstructions

In this section we show that for other parameters p and q the technique
used in this chapter to obtain realizations of the surfaces Sp,2q does not work.
Using the combinatorial structure of the surface we may use a result about the
non-projectability of the product of simplices from Section 3.3.3 to show the
non-projectability of some of the surfaces contained in the wedge products.

Theorem 4.30 (Non-projectability of wedge product surfaces). There is no
realization of the wedge product Wp,q−1, with p ≥ 3 and q ≥ 4, such that
all the faces corresponding to the surface Sp,2q are strictly preserved by the
projection π : R2+p(q−1) → Re for e < p + 1.

Proof. The regular surface contained in the wedge product consists of the
following p-gons:

Sp,2q =
{

( j0, . . . , jp−1 )
∣∣∣

p−1∑

i=0

ji ≡ 0, 1 mod q
}
.
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We prove the theorem by contradiction. So assume that there exists a
realization of Wp,q−1 such that the surface Sp,2q is strictly preserved by
the projection. According to Theorem 2.4 the associated simplicial com-
plex K(Wp,q−1, π) of the strictly preserved faces is embedded in a sphere of
dimension:

pq − (p(q − 1) + 2) + e− 2 = p + e− 4.

Since the polygons of the wedge product surface Sp,2q are strictly preserved
by the projection π the simplicial complex K(Wp,q−1, π) contains a subcom-
plex Σ corresponding to the polygons of Sp,2q. This subcomplex Σ consists of
all (p−1)-simplices (j0, . . . , jp−1) in the join (Dq)

∗p with
∑p−1

i=0 ji ≡ 0, 1 mod q,
where Dq is the simplicial complex on q disjoint vertices. To analyze the
projectability of the wedge product surface we first remove the asymmetry
from Σ by only considering the first p− 1 simplices in the wedge product:

Σ′ = {(j0, . . . , jp−2) : ji ∈ [q]}.

This is exactly the 0th skeleton complex Σ0(∆
p−1
q−1) of the (p − 1)-fold prod-

uct of (q − 1)-simplices. By Corollary 3.21 the embeddability dimension
of Σ0(∆

p−1
q−1) is 2p− 3. Hence the embeddability dimension of K(Wp,q−1, π) is

at least 2p−3 because Σ0(∆
p−1
q−1) = Σ′ ⊆ Σ ⊆ K(Wp,q−1, π). Thus if e < p+1

we obtain:
p + e− 4 < 2p− 3.

This is a contradiction to the embeddability of K(Wp,q−1, π) into an (p+e−4)-
dimensional sphere. So there exists no realization of Wp,q−1 such that the
surface Sp,2q is strictly preserved by the projection to Re.

The above theorem does not claim that there is no realization of the sur-
faces Sp,2q for p ≥ 4 and q ≥ 3 in R3 at all. It only proves that our technique
of embedding the surface in the wedge product and then projecting it to the
lower hull of a 4-polytope will not yield a proper realization. It would hence
be interesting to find other simple polytopes containing the surfaces or to
find realizations directly in R3. For q = 3 we obtain the triangulated sur-
faces S3,2q studied by Coxeter [15]. Unfortunately we can neither construct
wedge products W3,q−1 such that the surfaces survive the projection to R4

nor prove the non-projectability.





Chapter 5

Polyhedral surfaces in products of

polygons

The surfaces of McMullen, Schulz & Wills [37] are of particular interest,
because they have an “unusually large genus” compared with the number of
vertices. Further they can be realized in R3 with planar convex quadrilaterals
without self-intersection. The construction of McMullen, Schulz & Wills is
done entirely in R3 by building a “corner” of the surface and then reflecting
it around a torus as sketched in Section 5.1.1.

We take a different approach and describe two families of surfaces primarily
as subcomplexes of high-dimensional polytopes. They appear in the 2-skeleta
of the (deformed) products of polygons. For a suitable deformed realization
of the product we show that these subcomplexes are strictly preserved under
a projection to R4, resp. R3. One family of surfaces, given in Section 5.1.2,
is a generalization of the surfaces constructed by McMullen, Schulz & Wills.
The other family, constructed in Section 5.1.3, contains all the “polygon”
faces of the product of polygons, that is, all the faces of the product that are
products of one polygon with vertices of the other factors. These surfaces
have arbitrarily large vertex degree and an average polygon size arbitrarily
close to 8. A natural variation of Wills’ question concerning the existence
of equivelar surfaces of type {p, q} for p > 4 and q > 4 is: Can polyhedral
surfaces with average vertex degree and average polygon size larger than 4
be embedded in R3? Our quad-polygon surfaces of Section 5.1.3 provide such
polyhedral surfaces. Since we are able to construct a large affine support set
for the product of polygons, we obtain a large lower bound on the number
of moduli for our realizations of the surfaces in Section 5.2.2. Moreover, in
Section 5.2.3, we use polytope duality to obtain realizations of the duals of
the surfaces.

81
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Before we start with the combinatorial description of the surfaces, let us fix
some notation for the facets of the product of polygons. Let D2p be a 2p-gon
given by the inequality system Ax ≤ 1 where A ∈ R2p×2 and x ∈ R2. Then
the inequality description of the product (D2p)

r ⊂ R2r is




A
A

. . .

A







x0

x1
...

xr−1


 ≤




11
...1

 .

with xi ∈ R2 and rows ajxi ≤ 1 for i ∈ [r] and j ∈ [2p]. We denote the facet
defined by the inequality ajxi ≤ 1 by hi,j .

5.1 Hamiltonian surfaces

Hamiltonian surfaces are polyhedral surfaces in the 2-skeleton of a polytope
which contain the entire graph. They are higher dimensional analogs of
Hamiltonian cycles in the graph of a polytope, which are connected 1-mani-
folds without boundary containing all the vertices. (A general definition
of k-Hamiltonian m-manifold is given in Ewald et al. [19].) The products
of polygons contain two such families of polyhedral surfaces, which will be
described in the following. The family described in Section 5.1.2 includes the
equivelar surfaces of type {4, q} of McMullen, Schulz & Wills [37], reviewed in
Section 5.1.1. The surfaces given in Section 5.1.3 are not equivelar any more
but of high“complexity”since they use all the“polygon” faces of the product.
Both surfaces are defined in a purely combinatorial way as subcomplexes of
the 2-skeleton of the product of polygons.

To construct the surfaces we introduce some notation for the 2-skeleton of
the product of even polygons. All index calculations are performed mod-
ulo 2p resp. the size of the polygon in the following. We start with a single
2p-gon D2p, whose vertices are labeled with (j, j + 1) or (j, j − 1) where the
first component j ∈ [2p] is even (and hence j + 1 resp. j − 1 is odd). The
edge from (j, j−1) to (j, j+1) is labeled by (j, ∅) and the edge from (j, j+1)
to (j+2, j+1) is labeled by (∅, j+1). The polygon itself is denoted by (∅, ∅).
See Figure 5.1.
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(0, 1)

(2, 1)

(2, 3)

(4, 3)

(4, 5)

(6, 5)

(6, 7)

(0, 7)

(0, ∅)(∅, 1)

(2, ∅)

(∅, 3)

(4, ∅) (∅, 5)

(6, ∅)

(∅, 7)

(∅, ∅)

Figure 5.1: The non-empty faces of an 8-gon are denoted by vectors (j, j′) with
j ∈ {0, 2, 4, 6} ∪ {∅} and j′ ∈ {1, 3, 5, 7} ∪ {∅}.

Summarizing, we identify the non-empty faces of an even 2p-gon with the
following vectors:

D2p = {(j, ∅) : j ∈ [2p] even } (even edges)

∪{(∅, j) : j ∈ [2p] odd } (odd edges)

∪{(j, j′) : j, j′ ∈ [2p], j even, j′ odd, j′ = j ± 1 } (vertices)

∪{(∅, ∅)} (polygon)

(5.1)

All the faces of the r-fold product (D2p)
r of even polygons are products

of non-empty faces of its factors. Hence they may be identified with vec-
tors (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) where each (ji, j

′
i) is a non-empty face of the

2p-gon in the ith factor. This is exactly the representation of the faces of
the product as intersection of facets: The facets of the product of poly-
gons (D2p)

r are denoted by hi,j with i ∈ [r] and j ∈ [2p]. Then the vec-
tor (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) represents the face (D2p)

r ∩ (
⋂

i∈[r] hi,ji
∩ hi,j′i

)

(where hi,∅ = R2r).

The vertices of the product correspond to vectors with no ∅-entry, that is,
vectors (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) with ji ∈ [2p] even and j′i = ji ± 1 ∈ [2p]

odd. The edges are products of one edge and r−1 vertices and are identified
with vectors with one ∅-entry and again ji ∈ [2p] even and j′i = ji ± 1 ∈ [2p]
odd. A 2-face of the product (D2p)

r is either a 2p-gon or a quadrilateral.
Both 2-faces correspond to vectors with two ∅-entries: If the ∅-entries belong
to one factor then the face is a 2p-gon, if the ∅-entries belong to distinct
factors the face is a quadrilateral.
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5.1.1 MSW surfaces

In this section we review the construction of McMullen, Schulz & Wills [37] for
equivelar surfaces of type {4, q}, which we call MSW surfaces for short. These
surfaces are included in the family of surfaces considered by Coxeter [15]
in terms of their symmetry groups—the group {4, 2m|4m−1} is the sym-
metry group of the generalized MSW surfaces constructed in Section 5.1.2.
Ringel [41] considered three problems concerning cubes and identified the
Hamiltonian surface with symmetry group {4,m} in the 2-skeleton of the
cube. Since the even-dimensional cube is just the product of quadrilat-
erals, that is, even polygons, these surfaces are a subclass of the surfaces
constructed in Section 5.1.2 as well. Using geometric intuition McMullen,
Schulz & Wills [37] were able to construct realizations of the MSW sur-
faces in R3 that include the surfaces of Ringel, but are not as general as
Coxeter’s. Their construction starts with a “corner” of the surface. This cor-
ner is sheared such that it may be reflected around a 2p1×2p2 torus building
a two parameter family of surfaces. For p1 = p2 = 2 the MSW surfaces are
exactly the surfaces considered by Ringel. An example for p1 = p2 = 4 of
the construction of McMullen, Schulz & Wills is described in the following
example.

Example 5.1. We start with a corner consisting of two vertices, one edge,
and 5 rays at each vertex. The rays and edges are connected by half- and
quarter-planes, which are bounded by two rays resp. two rays and one edge.

In this case, the constructed corner fits nicely into an (8 × 8)-torus. After
a reflection around one of the meridian curves the blue half-planes close to
form quadrilaterals, and the green and red quarter-planes fit together to build
half-planes.
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By reflecting the above part of the surface around the other meridian of
the torus, all the remaining green and red half-planes form quadrilaterals.
So the this MSW surface consists of 64 corners which are reflected around
an (8× 8)-torus.

This surface is exactly the generalized MSW surface in the product of two
8-gons, as constructed in the following section.
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5.1.2 Generalized MSW surfaces

In this section we generalize the MSW surfaces by defining a certain subcom-
plex of the product of even polygons and showing that the subcomplex is an
orientable surface. The projection is postponed to Section 5.2. We start by
describing a certain subcomplex of the 2-skeleton of the product (D2p)

r of
even polygons. Since we want to construct a surface of type {4, 2r} the sub-
complex consists of quadrilateral faces only. Each quadrilateral corresponds
to a vector (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) with

◮ ji, j
′
i ∈ [2p] ∪ {∅},

◮ ji even and j′i = ji ± 1 odd, and

◮ exactly two ∅-entries which must not be in the same factor.

Each vertex of the product corresponds to a vector without ∅-entries and
each edge is identified with a vector with exactly one ∅-entry. To illustrate
the notation consider the following example.

Example 5.2. The faces of the product of three octagons (D8)
3 correspond

to vectors (j0, j
′
0; j1, j

′
1; j2, j

′
2) with j0, j1, j2 ∈ {0, 2, 4, 6, ∅} and j′0, j

′
1, j

′
2 ∈

{1, 3, 5, 7, ∅}. In preparation of Theorem 5.5 we have a look at the following
set of faces:

Q4(8),6 =





( ∅ , j′0 ; ∅ , j′1 ; j2, j′2)
(j0, j′0 ; ∅ , j′1 ; ∅ , j′2)
(j0, ∅ ; j1, j′1 ; ∅ , j′2)
(j0, ∅ ; j1, ∅ ; j2, j′2)
(j0, j′0 ; j1, ∅ ; j2, ∅ )
( ∅ , j′0 ; j1, j′1 ; j2, ∅ )





Every vector of this set corresponds to 128 quadrilateral faces: In each factor
of the product we choose either an even edge (ji, ∅), an odd edge (∅, j′i),
or a vertex (ji, j

′
i) to obtain a quadrilateral of each family. Since for each

even/odd edge we have four possibilities and there are eight vertices in each
factor we get 128 quadrilaterals per family.

Every edge of (D8)
3 corresponds to a vector with exactly one ∅-entry and

is contained in exactly two quadrilaterals belonging to two different fami-
lies. This makes the subcomplex Q4(8),6 a closed pseudo-manifold with 768
quadrilaterals, 1536 edges, and 512 vertices.

The quadrilaterals incident to the vertex (0, 1; 4, 3; 0, 7) are given in Fig-
ure 5.2. These quadrilaterals fit together to form a two dimensional ball.
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



( ∅, 1 ; ∅, 3 ; 0, 7 )
( 0, 1 ; ∅, 3 ; ∅, 7 )
( 0, ∅ ; 4, 3 ; ∅, 7 )
( 0, ∅ ; 4, ∅ ; 0, 7 )
( 0, 1 ; 4, ∅ ; 0, ∅ )
( ∅, 1 ; 4, 3 ; 0, ∅ )





(∅, 1; ∅, 3; 0, 7)

(0, 1; ∅, 3; ∅, 7)

(0, ∅; 4, 3; ∅, 7)

(0, ∅; 4, ∅; 0, 7)

(0, 1; 4, ∅; 0, ∅)

(∅, 1; 4, 3; 0, ∅)

Figure 5.2: The vertex star of the vertex (0, 1; 4, 3; 0, 7) in the subcomplex
Q4(8),6 ⊂ (D8)

3. The combinatorial representation of the quadrilaterals adjacent
to the vertex (left). The six quadrilaterals form a 2-dimensional ball (right).

This is true for any vertex of the product and hence Q4(8),6 is a Hamiltonian
2-manifold.

Based on the previous example we define a subcomplex of the quadrilaterals
of the product of even polygons.

Definition 5.3 (Generalized MSW surface). The generalized MSW surface is
the subcomplex Q4(2p),2r of the product (D2p)

r of r even 2p-gons generated by
the quadrilaterals that correspond to the vectors (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1)

with exactly two ∅-entries at the following positions:

1. two consecutive even edges, i.e. ji = ji+1 = ∅ with i = 0, . . . , r − 2, or
2. an odd edge of the first factor and an even edge of the last factor, i.e.

j′0 = ∅ and jr−1 = ∅, or
3. two consecutive odd edges, i.e. j′i = j′i+1 = ∅ with i = 0, . . . , r − 2, or
4. an even edge of the first factor and an odd edge of the last factor, i.e.

j0 = ∅ and j′r−1 = ∅.

We collect some easy facts of the subcomplex Q4(2p),2r in the next lemma.

Lemma 5.4. The subcomplex Q4(2p),2r of the product (D2p)
r of even 2p-

gons D2p is a closed connected 2-dimensional pseudomanifold containing all
the vertices and edges of the product. Its f -vector is ((2p)r, r(2p)r, 1

2
r(2p)r).

Proof. Each edge of the product (D2p)
r corresponds to a vector with exactly

one ∅-entry. From the description of Q4(2p),2r we easily see that every edge
of the product is contained in exactly two quadrilaterals. So Q4(2p),2r is a
closed 2-dimensional pseudomanifold containing all r(2p)r edges of the prod-
uct. It is connected because the graph of the polytope (D2p)

r is connected.
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(j0, j′0; j1, j′1; . . . ; ∅, j
′

r−2; ∅, j
′

r−1)

(j0, ∅; j1, j′1; . . . ; jr−2, j′r−2; ∅, j
′

r−1)

(j0, ∅; j1, ∅; . . . ; jr−2, j′r−2; jr−1, j′r−1)

(∅, j′0; ∅, j′1; . . . ; jr−2, j′r−2; jr−1, j′r−1)

(∅, j′0; j1, j′1; . . . ; jr−2, j′r−2; jr−1, ∅)

(j0, j′0; j1, j′1; . . . ; jr−2, ∅; jr−1, ∅) · · ·

· · ·

Figure 5.3: The star of a vertex (j0, j
′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) of the com-

plex Q4(2p),2r. The faces at the top are the quadrilaterals that are products
of even edges. The faces at the bottom are products of odd edges. The left and
the right quadrilateral correspond to the products of an even and an odd edge.

Further, Q4(2p),2r contains all (2p)r vertices of the product, since every vertex
is contained in some edge. Finally, each of the 2r families of quadrilater-
als given in Definition 5.3 contains p2(2p)r−2 quadrilaterals yielding a total
number of 1

2
r(2p)r quadrilaterals in Q4(2p),2r.

Theorem 5.5. The subcomplex Q4(2p),2r of the product (D2p)
r of r ≥ 2 even

2p-gons is an equivelar surface of type {4, 2r} with f -vector

f(Q4(2p),2r) = 1
2
(2p)r(2, 2r, r)

and genus 1 + 1
4
(r − 2)(2p)r.

Proof. By Lemma 5.4 we obtain that Q4(2p),2r is a closed connected 2-dimen-
sional pseudomanifold. All the faces of Q4(2p),2r are quadrilaterals because
they are products of two edges. Since a vertex of the product is the product
of vertices and each vertex is contained in exactly two edges in each factor,
every vertex has degree 2r. So the complex is equivelar of type {4, 2r}.

To prove that the given complex is a 2-manifold we show that the star of every
vertex is a 2-dimensional ball. Consider an arbitrary vertex v corresponding
to the vector (j0, j

′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1) with ji ∈ [2p] even and j′i ∈ [2p] odd.

The quadrilaterals adjacent to the vertex v are arranged as in Figure 5.3,
so Q4(2p),2r is a 2-manifold.

It remains to prove that Q4(2p),2r is orientable, which is not difficult but a
little technical. We assign an orientation to each quadrilateral and show that
it is consistent, that is, every edge is oriented in opposite directions by the
two adjacent quadrilaterals.
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+

(−;−)

−1

(−; +) −1 (+; +)

+1

(+;−)
+1

−

(−;−)

+1

(−; +) +1 (+; +)

−1

(+;−)
−1

Figure 5.4: The orientation of the quadrilaterals of the surface Q4(2p),2r. The
sign of the quadrilateral determines its orientation. Each vertex of the quadrilat-
eral is the product of two vertices v = (ji, j

′
i) and w = (jk, j′k) where i and k are

cyclically adjacent. They are labeled with their sign (σ(v), σ(w)). The edges are
labeled with +1 if the orientation coincides with the canonical orientation and
−1 if not.

We consider the following map on the vertices (ji, j
′
i) of the polygons:

σ(ji, j
′
i) =

{
+1 if j′i ≡ ji + 1 mod p

−1 if j′i ≡ ji − 1 mod p.

Every edge (ji, ∅) resp. (∅, j′i) is adjacent to a positive vertex (ji, ji + 1) resp.
(j′i − 1, j′i) and a negative vertex (ji, ji − 1) resp. (j′i + 1, j′i) and thus has a
canonical orientation from the negative to the positive vertex as follows:

+(ji, ji + 1)

(ji, ∅)

(ji, ji − 1)
−

+(j′i − 1, j′i)

(∅, j′i)

(j′i + 1, j′i)
−

Each quadrilateral is the product of two edges of cyclically adjacent factors
and r − 2 vertices. We extend the map σ to the quadrilaterals by taking
the product of the signs of the r − 2 vertices. In Figure 5.4 we define the
orientation of the quadrilaterals according to their sign. The vertices of the
quadrilaterals are denoted only by their signs. The edges are labeled with
a +1 if the orientation of the edge induced by the orientation of the quadrilat-
eral coincides with the canonical orientation of the edge, and −1 otherwise.
We are now ready to prove the orientability of the surface. Consider the
following edge:

e = (j0, j
′
0; . . . ; ji−1, j

′
i−1; ji, ∅; ji+1, j

′
i+1; . . . ; jr−1, j

′
r−1).

The two adjacent quadrilaterals are:

Q = (j0, j
′
0; . . . ; ji−1, ∅; ji, ∅; ji+1, j

′
i+1; . . . ; jr−1, j

′
r−1) and

Q′ = (j0, j
′
0; . . . ; ji−1, j

′
i−1; ji, ∅; ji+1, ∅; . . . ; jr−1, j

′
r−1)
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In the case where i = 0 or i = r − 1 we have to take the cyclically adjacent
factors, but the calculations remain the same. Define σi−1 = σ(ji−1, j

′
i−1)

and σi+1 = σ(ji+1, j
′
i+1). Now we read the orientation of e off Figure 5.4 and

obtain:

1. the edge e is σ(Q) · σi−1 oriented in Q, and
2. the edge e is −σ(Q′) · σi+1 oriented in Q′.

If σi−1 = σi+1 then the quadrilaterals Q and Q′ adjacent to e have the
same orientation and thus σ(Q) · σi−1 = −(−σ(Q′) · σi+1). So the edge has
opposite direction in Q and Q′. If σi−1 6= σi+1 then Q and Q′ have different
orientations and thus σ(Q) · σi−1 = −(−σ(Q′) · σi+1) as well. This proves
that the orientation defined via the extension of the vertex signs onto the
quadrilaterals is an orientation of the surface Q4(2p),2r.

For orientable surfaces we have the equality χ(Q4(2p),2r) = 2 − 2g(Q4(2p),2r)
relating the Euler characteristic χ and the genus g. Taking the f -vector from
Lemma 5.4 we obtain g(Q4(2p),2r) = 1 + 1

4
(2p)r(r − 2).

Remark 5.6. Our construction can easily be generalized to obtain surfaces
contained in the product

∏
D2pi

× Ik of arbitrary even polygons D2pi
and

intervals I. The intervals allow us to construct surfaces with odd vertex
degree. The MSW surfaces correspond to the surfaces in the 2-skeleton of
the product D2p1×D2p2×Ik of a 2p1-gon D2p1, a 2p2-gon D2p2 and k intervals.

Proposition 5.7. The automorphism group of the subcomplex Q4(2p),2r of
the product of r even 2p-gons (D2p)

r acts transitively on the flags, that
is, Q4(2p),2r is a regular polyhedral surface.

Proof. We will show that every flag of the surface may be mapped to one
particularly simple flag by a certain sequence of a set of combinatorial auto-
morphisms. Our basis flag is the following.

F0 : (0, 1; 0, 1; . . . ; 0, 1) ⊂ (0, ∅; 0, 1; . . . ; 0, 1) ⊂ (0, ∅; 0, ∅; 0, 1; . . . ; 0, 1).

The automorphisms of the surface act on the vectors representing the vertices,
edges and quadrilaterals simultaneously. Let us consider the following two
maps:

F : (j0, j
′
0; . . . ; jr−1, j

′
r−1) 7→ (jr−1, j

′
r−1; . . . ; j1, j

′
1; j0, j

′
0) (Flip)

S : (j0, j
′
0; . . . ; jr−1, j

′
r−1) 7→ (1− j′r−1, 1− jr−1; j0, j

′
0; . . . ; jr−2, j

′
r−2) (Shift)

The two maps are obviously automorphisms of the vertices, edges and quadri-
laterals of the product (D2p)

r. But they are also automorphisms of the sur-
face Q4(2p),2r: Since the surface contains all vertices and edges we only need
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to verify that the quadrilaterals of the surface are invariant under F and S.
But the two maps are exactly constructed in such a way that they map the
four families of quadrilaterals contained in the surface (see Definition 5.3)
onto each other.

By applying a suitable number of shifts S and a flip F if needed to an arbitrary
flag we obtain a flag F of the form:

F : (j0, j
′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1)

⊂ (j0, ∅; j1, j
′
1; . . . ; jr−1, j

′
r−1)

⊂ (j0, ∅; j1, ∅; . . . ; jr−1, j
′
r−1).

The automorphisms of each of the factors D2p of the product induce auto-
morphisms on the surface as well given by the following maps:

Ei : (. . . ; ji, j
′
i; . . . ) 7→ (. . . ;−ji,−j′i; . . . ) (Exchange)

Ri : (. . . ; ji, j
′
i; . . . ) 7→ (. . . ; ji + 2, j′i + 2; . . . ) (Rotate)

All other entries of the vectors are constant. Since each of the Ei and Ri

allows to map an arbitrary pair (ji, j
′
i) onto the pair (0, 1) we are able to map

the flag F to the flag F0. Thus the group of automorphisms acts transitively
on the flags of the surface.

5.1.3 Quad-polygon surfaces

In this section we describe another surface contained in the r-fold prod-
uct (D2p)

r of even 2p-gons. It is no longer equivelar but contains all 2p-gon
faces of the product and thus all the vertices and the entire graph.

Definition 5.8 (Quad-polygon surface QP{4,2p},2r). The facets of the poly-
hedral surface QP{4,2p},2r contained in the 2-skeleton of the r-fold prod-
uct (D2p)

r of even 2p-gons are given by the vectors (j0, j
′
0; j1, j

′
1; . . . ; jr−1, j

′
r−1)

with exactly two ∅-entries at cyclically adjacent positions.

Let us get used to the structure of the surface by the following simple exam-
ple.

Example 5.9. Consider the product of two 8-gons (D8)
2. Then the polyhe-

dral surface QP{4,8},4 contains the following polygons:

QP{4,8},2 =





( ∅ , ∅ ; j1, j′1)
(j0, ∅ ; ∅ , j′1)
(j0, j′0 ; ∅ , ∅ )
( ∅ , j′0 ; j1, ∅ )





.
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Figure 5.5: The Hamiltonian surface QP{4,8},4 contained in the Schlegel dia-
gram of the product of two 8-gons. The three picture show the different com-
ponents of the surface: the 8-gons and the quadrilaterals (left), and the surface
(right). The different families of 8-gons and quadrilaterals are displayed in dif-
ferent colors.

The first and the third row each correspond to a family of eight 8-gons, that
is, the product of a vertex of the one factor with the entire 8-gon of the other
factor. The second and the fourth row each correspond to 16 quadrilateral
faces, that is, the product of two edges, one from each factor. Each vector
with exactly one ∅-entry is an edge of the product and is contained in exactly
two quadrilaterals belonging to two different families. As we will show in
Theorem 5.11, the 8-gons and the quadrilaterals around one vertex form a
2-dimensional ball. Thus QP{4,8},4 is a two dimensional manifold contained
in the 2-skeleton of (D8)

2. A picture of the surface in the Schlegel diagram
of the product is shown in Figure 5.5.

We collect some simple facts about the subcomplex QP{4,2p},2r in the follow-
ing lemma.

Lemma 5.10. The subcomplex QP{4,2p},2r of the product (D2p)
r is a closed

connected 2-dimensional pseudomanifold containing all vertices and edges of
the product.

Proof. An edge of the product (D2p)
r corresponds to a vector with exactly one

∅-entry. Since the 2-faces of the complex are given by vectors with exactly
two cyclically adjacent ∅-entries, every edge of the polytope is contained
in exactly two faces of QP{4,2p},2r. As the graph of the product (D2p)

r is
connected, we obtain that QP{4,2p},2r is a closed connected 2-dimensional
pseudomanifold. The complex QP{4,2p},2r contains all the vertices of (D2p)

r

because every vertex is contained in an edge and the complex contains all
the edges.
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(∅, ∅; j1, j′1; j2, j′2; j3, j′3)

(j0, ∅; ∅, j′1; j2, j′2; j3, j′3)

(j0, j′0; ∅, ∅; j2, j′2; j3, j′3)

(j0, j′0; j1, ∅; ∅, j′2; j3, j′3)

(j0, j′0; j1, j′1; ∅, ∅; j3, j′3)

(j0, j′0; j1, j′1; j2, ∅; ∅, j′3)

(j0, j′0; j1, j′1; j2, j′2; ∅, ∅)

(∅, j′0; j1, j′1; j2, j′2; j3, ∅)

Figure 5.6: The vertex star of a vertex (j0, j
′
0; . . . ; jr−1, j

′
r−1) in the com-

plex QP{4,2p},r is a 2-ball consisting of r quadrilaterals and r 2p-gons. The
quadrilaterals and 2p-gons alternate around the vertex. The figure shows the
case r = 4.

Theorem 5.11. The subcomplex QP{4,2p},2r of the r-fold product (D2p)
r of

even 2p-gons is an orientable polyhedral surface in R2r with f -vector:

f(QP{4,2p},2r) = 1
2
(2p)r−1(4p, 4pr, pr + 2r)

and genus 1 + 1
4
(2p)r−1(3pr − 4p − 2r). This surface is Hamiltonian in the

sense that it contains all vertices and all edges (and all the 2p-gon faces)
of (D2p)

r.

Proof. As the combinatorial description of the complex QP{4,2p},2r is similar
to the description of the surface Q4(2p),2r, the proof is also similar to the
proof of Theorem 5.5. By Lemma 5.10 we obtain that QP{4,2p},2r is a closed
connected 2-dimensional pseudomanifold. Further, Figure 5.6 shows that
the star of every vertex is a 2-dimensional ball, hence QP{4,2p},2r is a 2-
dimensional manifold. The orientation is assigned to the polygons as in
the proof of Theorem 5.5 by taking the product of the signs of the vertices
involved, that is, for the 2p-gons we take the product of r − 1 vertex signs,
for the quadrilaterals of r − 2 vertex signs. An easy calculation then yields
the orientability of the surface QP{4,2p},r.

To complete the theorem we need to calculate the f -vector (f0, f1, f2) of
the surface. The surface contains all vertices and edges of the product and
thus f0 = (2p)r and f1 = r(2p)r. Further, the combinatorial description
implies that the surface contains all r(2p)r−1 2p-gon faces and rp2(2p)r−2

quadrilaterals of the product. So f2 = r(2p)r−1 + 1
4
r(2p)r.
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5.2 Realizing the surfaces in R3

In this section we prove that there exist realizations of the products of even
polygons such that the two surfaces described in Sections 5.1.2 and 5.1.3 sur-
vive the projection to the upper hull of a 4-polytope and hence by orthogonal
projection to R3. We construct particular deformed realizations of the prod-
ucts with the prescribed projection properties similar to the constructions of
Ziegler [48] and Sanyal & Ziegler [44]. In Section 5.2.2 we construct an affine
support set for the products of polygons. This affine support set yields a
lower bound on the number of moduli for the projected surfaces. Finally, we
follow the same path as in Section 4.3.3 to realize the duals of all the surfaces
in R3 as well.

5.2.1 Projection of the surface to R4 and to R3

To be able to prove our projection results, we work with a very special geo-
metric realization of the 2p-gon: Let ε≪ 1, aj = (αj, 1−α2

j ) on the parabola

y = 1 − x2 with αj = ε
2
(p−1−j

p−1
) for j = 0, . . . , 2p − 2 and a2p−1 = (0,−1).

Since the ai are in convex position and their convex hull contains 0 in its in-
terior, the inequality system aj

(
x
y

)
≤ 1 for j ∈ [2p] describes a convex 2p-gon.

By scaling the inequalities for odd j by ε we obtain the following inequality
description for our 2p-gon:

D⌢−
2p :=

{(x

y

)
∈ R2

∣∣∣




ε
2

1− ε2

4
ε2

2
(p−2

p−1
) ε− ε3

4
(p−2

p−1
)2

...
...

ε
2
(p−1−j

p−1
) 1− ε2

4
(p−1−j

p−1
)2

ε2

2
(p−j−2

p−1
) ε− ε3

4
(p−j−2

p−1
)2

...
...

− ε
2

1− ε2

4

0 −ε




(
x

y

)
≤




1

ε
...

1

ε
...

1

ε




}
(5.2)

As ε is small, the normals of the odd edges are perturbed (0, 0) vectors with
entries of orders (ε2, ε) and the normals to the even edges are perturbed (0, 1)
vectors with entries of orders (ε, 1− ε2) as shown in Figure 5.7. The advan-
tage of this realization of an even polygon is that every vertex lies on the
intersection of two edges whose normals are a perturbation of the (0, 0) and
the (0, 1) vector, respectively. In the following we will disregard the exact
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x = − ε
2

x = ε
2

a0

a1

a2

a3

a4

a5

a0

a1

a2

a3

a4

a5

Figure 5.7: The normals of the special hexagon D⌢−
6 are perturbations of the

vector (0, 0) and (0, 1) (left). The resulting hexagon is very skinny, depending on
the size of ε (right).

coordinates and denote the normal of odd and even edges by (∗, ∗) and (∗, 1),
respectively. This is very useful in the proofs of the next two theorems.

Theorem 5.12 (Realization of Q4(2p),2r). There exists a realization of the r-
fold product of even polygons (D2p)

r such that the surface Q4(2p),2r survives
the projection to the upper hull of a 4-polytope. Hence the surface may be
projected orthogonally to R3.

Proof. The proof proceeds as follows: We start with a short discussion of the
Gale transform of the pyramid over a properly labeled (2r−1)-gon. Then we
merge this Gale transform with the r-fold orthogonal product of our special
2p-gon D⌢−

2p to obtain a deformed product of polygons. Finally, the positive
dependences of the Gale transform of the pyramid (that is, the faces of the
pyramid) yield strictly preserved faces of the product under the projection
to R4. These faces in particular contain the quadrilaterals that form the
surface Q4(2p),2r.

Let us start with the Gale transform of pyr(D2r−1) with the apex labeled
by 2r − 1 and the vertices of the base labeled cyclically by increasing odd
numbers 1, 3, . . . , 2r− 3 followed by increasing even numbers 0, 2, . . . , 2r− 2
as shown in Figure 5.8. Since the vertices 0, 1, 2, and 2r − 1 are affinely
independent, the vectors g3, . . . , g2r−2 of the Gale transform are linearly inde-
pendent by Proposition 1.4. Hence we may assume, that the Gale transform
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9

0

2

4

6 8 1

3

5

7

Figure 5.8: Labeling of the pyramid over a (2r− 1)-gon need for the realization
of the surface Q4(2p),2r via projection of deformed product (example r = 5).

of pyr(D2r−1), which contains 2r vectors of dimension 2r−4, looks as follows:

Gt =




g0

g1

g2

1
1

1
1

. . .

1
0 0 0 0 · · · 0




The last 0-row corresponds to the apex of the pyramid. Since this is the
Gale transform of the pyramid it comes with certain positive dependences.
In particular, the edges of the polytope yield positive spanning subsets which
will correspond to the quadrilaterals of the surface Q4(2p),2r.
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The r-fold product of our particular realization of the 2p-gon D⌢−
2p has the

following inequality description:

(D⌢−
2p)

r =
{

(xj)
r−1
j=0 ∈ R2r

∣∣∣




A

A

A
. . .

A

A







x0

x1

x2

...

xr−2

xr−1




≤




b

b

...

b

b

b




}

where the matrices A ∈ R2p×2 contain the normals of our 2p-gon realization
and b ∈ R2p the corresponding right-hand sides as given in Equation (5.2).
The vertical line indicates that we are going to project onto the first 4 coor-
dinates.

Since the even resp. odd edges of our special realization of the 2p-gon are
almost equal, that is, the normals to the even resp. odd edges are perturba-
tions of the (0, 0) resp. (0, 1) vector, we use the following notation for the
left-hand side of the inequality description:




∗ 1
∗ ∗

∗ 1
∗ ∗

∗ 1
∗ ∗

. . .

∗ 1
∗ ∗




with
∗ 1
∗ ∗

∼

ε 1

ε2 ε

ε 1

ε2 ε
...

...

ε 1

ε2 ε

.
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Since the product of polygons is a simple polytope, a small perturbation of its
facet normals will not change the combinatorial type. So if M is a very large
number such that 1

M
≪ ε, then the following is still an inequality description

of a product of polygons:




∗ 1 1
M

g0

∗ ∗ 1
M

g1

∗ 1 g2

∗ ∗ 1
M

∗ 1

∗ ∗ 1
M
. . . . . .

∗ 1

∗ ∗ 1
M

∗ 1

∗ ∗







x0

x1
...

xr−3

xr−2

xr−1




≤




b
b
...
b
b
b




where the gi are componentwise scaled vectors of the Gale transform G of
the pyramid pyr(D2p−1) in the following way:

g0 := ( 1
M2 ,

1
M2 ,

1
M3 ,

1
M3 , . . . ,

1
Mr−1 ,

1
Mr−1 )⊙ g0

g1 := ( 1
M2 ,

1
M2 ,

1
M3 ,

1
M3 , . . . ,

1
Mr−1 ,

1
Mr−1 )⊙ g1

g2 := ( 1
M

, 1
M

, 1
M2 ,

1
M2 , . . . ,

1
Mr−2 ,

1
Mr−2 )⊙ g2

where ⊙ denotes the componentswise multiplication of two vectors, that
is, (v ⊙ w)i = vi · wi. All the following modifications are applied to the
normals of the facets of the product corresponding to the even and the odd
edges of the factors D⌢−

2p in the same way. We scale the inequalities of the jth
factor with M r−1−j for j = 0, . . . , r − 1 and replace the coordinates xj ∈ R2

with x′
j = M r−1−jxj. This way we obtain the following inequality system for
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a deformed product of polygons:




∗ 1 1 g0

∗ ∗ 1 g1

∗ 1 g2

∗ ∗ 1

∗ 1

∗ ∗ 1
. . . . . .

∗ 1

∗ ∗ 1

∗ 1

∗ ∗







x′
0

x′
1

x′
2
...

x′
r−2

x′
r−1




≤




M r−1

M r−1ε

M r−2

M r−2ε

M r−3

M r−3ε
...

M

Mε

1

ε




.

Each row of the above system corresponds to p odd resp. even edges of the
factors. Let us denote the last 2r−4 columns of the “condensed”matrix with
∗-entries by G̃, that is, G̃ has one row for the even and one row for the odd
edges of each factor and is a 2r × (2r − 4) matrix.

We need to verify that the quadrilaterals contained in the surfaceQ4(2p),2r are
strictly preserved by the projection to the first 4 coordinates. By Lemma 1.11
a quadrilateral Q is strictly preserved if the corresponding truncated facet
normals are positively spanning. The quadrilaterals of Q4(2p),2r come in four
families corresponding to the following vectors:

1. (j0, j
′
0; . . . ; ji−1, j

′
i−1; ∅, j

′
i; ∅, j

′
i+1; ji+2, j

′
i+2; . . . ; jr−1, j

′
r−1) for i ∈ [r]

2. (j0, ∅; j1, j
′
1; . . . ; jr−2, j

′
r−2; ∅, j

′
r−1)

3. (j0, j
′
0; . . . ; ji−1, j

′
i−1; ji, ∅; ji+1, ∅; ji+2, j

′
i+2; . . . ; jr−1, j

′
r−1) for i ∈ [r]

4. (∅, j′0; j1, j
′
1; . . . ; jr−2, j

′
r−2; jr−1, ∅)

Each of the ji resp. j′i corresponds to an even resp. odd facet of the ith
factor. Hence the truncated normals of the facets containing a quadrilateral
are the rows of G̃ with the rows corresponding to the ∅-entries removed. The
corresponding rows of the matrix Gt are positively spanning since G is the
Gale transform of the pyramid pyr(D2r−1) with our carefully chosen labeling
of the vertices. But G̃ is just a perturbation of the matrix Gt and positively
spanning vector configurations are stable under perturbation. Hence the
chosen rows of G̃ are also positively spanning and all the quadrilaterals of
the surface survive the projection.
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Figure 5.9: Labeling of the pyramid over a (2r − 1)-gon (r = 5) needed for the
realization of the surface QP{4,2p},2r via projection of a deformed product.

Further the quadrilaterals all project to the upper hull of the projected poly-
tope with respect to the fourth coordinate since the 1 of the first three rows
dominate the direction of normals of the projected quadrilaterals. Thus an
orthogonal projection to the first three coordinates yields a realization of the
surface in R3.

Theorem 5.13 (Realization of QP{4,2p},2r). There exists a realization of
the r-fold product of even polygons (D2p)

r such that the surface QP{4,2p},2r

survives the projection to the upper hull of a 4-polytope. Hence the surface
may be projected orthogonally to R3.

Proof. The proof is very similar to the proof of the previous theorem. We
only have to label the vertices of the pyramid over an (2r−1)-gon differently
as shown in Figure 5.9. This induces different positive dependences in the
Gale transform and implies that all the quadrilaterals and all the 2p-gons of
the surface QP{4,2p},2r survive the projection to R4, resp. R3.

The above theorem provides realizations of the surfaces QP{4,2p},2r in R3.
These surfaces have constant vertex degree 2r. The 2-faces of these surfaces
consist of r(2p)r−1 2p-gons and rp2(2p)r−2 quadrilaterals. So the average
polygon size is:

2p · r(2p)r−1 + 4 · rp2(2p)r−2

r(2p)r−1 + rp2(2p)r−2
=

2r(2p)r

1
2
r(2p)r−1(2 + p)

=
8p

p + 2
.
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Brehm & Wills [13, Sect. 4.2] raised the question whether equivelar polyhe-
dral surfaces of type {p, q} with p ≥ 5 and q ≥ 5 existed in R3. This question
relates to the following corollary since we obtain polyhedral surfaces in R3

with vertex degree and average polygon size at least 5.

Corollary 5.14 ({p, q}-surface in R3). The surfaces QP{4,2p},2r have average
polygon size δpoly = 8p

p+2
and obviously (average) vertex degree δvert = 2r.

In particular, for p ≥ 4 and r ≥ 3, both δvert and δpoly are at least 5 and
Theorem 5.13 shows the existence of surfaces with δvert ≥ 5 and δpoly ≥ 5
in R3.

5.2.2 Moduli of the projected surfaces

We use the methods developed in Section 2.2 to obtain a lower bound on
the moduli of the surfaces constructed in Sections 5.1.2 and 5.1.3. As all
the surfaces described in this chapter contain all the vertices of the product
of polygons, we need to find a large affine support set of the product of
polygons (D2p)

r.

The vertices of the product (D2p)
r are products of vertices of the factors

and are hence identified with the vectors (j0, j
′
0; . . . ; jr−1, j

′
r−1). For i ∈ [r]

consider the following vertices:

vi,j :=





(j, j + 1; . . . ; j, j + 1︸ ︷︷ ︸
i factors

; j, j − 1; . . . ; j, j − 1︸ ︷︷ ︸
r−i factors

) if j ∈ [2p] even,

(j + 1, j; . . . ; j + 1, j︸ ︷︷ ︸
i factors

; j − 1, j; . . . ; j − 1, j︸ ︷︷ ︸
r−i factors

) if j ∈ [2p] odd,

where the calculations are made modulo 2p. These vertices form a subset of
the vertices of size 2pr of the product, denoted by:

Ar
2p := {vi,j | i ∈ [r], j ∈ [2p]}. (5.3)

For r = 1 the set A1
2p contains all the vertices of the polygon. An example of

the case r = 2 is illustrated in the following example.

Example 5.15. In this example we investigate the set A2
6 which is a subset

of the vertices of the product of two 6-gons. The vertices vi,j contained in A2
6

are the following:

i\j 0 1 2 3 4 5
0 (0, 5; 0, 5) (0, 1; 0, 1) (2, 1; 2, 1) (2, 3; 2, 3) (4, 3; 4, 3) (4, 5; 4, 5)
1 (0, 1; 0, 5) (2, 1; 0, 1) (2, 3; 2, 1) (4, 3; 2, 3) (4, 5; 4, 3) (0, 5; 4, 5)
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Figure 5.10: The vertices of the subset A
2
6 in the product of two hexagons. The

(6×6)-grid on the left is a schematic picture of the torus (identify top & bottom,
and left & right) contained in the boundary of the product. The Schlegel diagram
of the product is shown on the right. Both images show the zigzag of the selected
vertices around the torus.

These vertices form a zigzag on the (6× 6)-torus contained in the boundary
of the product D6 ×D6 shown in Figure 5.10. The vertices contained in the
facet F = (2, ∅; ∅, ∅) are:

F ∩ A2
6 = {(2, 1; 0, 1), (2, 1; 2, 1), (2, 3; 2, 1), (2, 3; 2, 3)}.

Now the flag (2, 3; 2, 3) ⊂ (2, 3; 2, ∅) ⊂ (2, ∅; 2, ∅) ⊂ (2, ∅; ∅, ∅) “cuts off” one
vertex after the other and thus the vertices in F ∩A2

6 are affinely independent
for every realization. It follows from the symmetry that the selected vertices
in every facet are affinely independent for every realization of the product.
Hence A2

6 is an affine support set of the product (D6)
2.

Theorem 5.16 (Affine support set for products of polygons). The subset Ar
2p

of the vertices of the r-fold product (D2p)
r of 2p-gons is an affine support set

of size 2pr.

Proof. We use a flag to show that the set Ar
2p is an affine support set. By

the combinatorial symmetry of the product and the set Ar
2p we only need to

consider the vertices contained in the facet F := h0,2 = (2, ∅; ∅, ∅; . . . ; ∅, ∅).



5.2 Realizing the surfaces in R3 103

The vertices of Ar
2p in this facet are:

Ar
2p ∩ F =

{
(j0, j

′
0; . . . ; jr−1, j

′
r−1) ∈ Ar

2p

∣∣∣ j0 = 2
}

=
{

(2, 1; 2, 1; . . . ; 2, 1︸ ︷︷ ︸
i

; 0, 1; . . . ; 0, 1︸ ︷︷ ︸
r−i

) for i = 1, . . . , r
}

∪
{

(2, 3; 2, 3; . . . ; 2, 3︸ ︷︷ ︸
i

; 2, 1; . . . ; 2, 1︸ ︷︷ ︸
r−i

) for i = 1, . . . , r
}

.

The flag which shows that Ar
2p is an affine support set is constructed from

the vertex (2, 3; . . . ; 2, 3) by intersecting the facets defining this vertex in the
proper order: We start with the facet G2r−1 := (2, ∅; ∅, ∅; . . . ; ∅, ∅). Then
we add the even entries of the vector to the intersection such that the
face G2r−1−ℓ is the intersection of the face G2r−ℓ∩hℓ,2, that is, for ℓ = 1, . . . , r:

G2r−ℓ := (2, ∅; . . . ; 2, ∅︸ ︷︷ ︸
ℓ factors

; ∅, ∅; . . . ; ∅, ∅︸ ︷︷ ︸
r − ℓ factors

).

Then we start to intersect with the odd faces of the factors and obtain the
following faces for ℓ = r + 1, . . . , 2r:

G2r−ℓ := (2, 3; . . . ; 2, 3︸ ︷︷ ︸
ℓ − r factors

; 2, ∅; . . . ; 2, ∅︸ ︷︷ ︸
2r − ℓ factors

).

The sequence (Gk)
2r−1
k=0 obviously forms a flag. Finally, each Gk contains

exactly k+1 of the vertices in Ar
2p∩F and hence Ar

2p∩F is affinely independent
for every realization of the product.

The size of an affine support set is bounded by the number of facets, as shown
in Lemma 2.25. The number of facets of the r-fold product (D2p)

r of 2p-gons
is 2pr. Hence the affine support set Ar

2p defined in Equation (5.3) is maximal
and parametrizes the entire realization space of the product.

Remark 5.17. We can construct a similar affine support set Ar
2p+1 for prod-

ucts of odd polygons as well. But as this chapter deals with the construction
of surfaces in the boundary of the projection of products of even polygons,
we omit this simple generalization.

We are now ready to apply Theorem 2.30 to the quadrilateral surfaceQ4(2p),2r

of Section 5.1.2 and the surface QP{4,2p},2r of Section 5.1.3. Since both sur-
faces contain all the vertices of the product of polygons we obtain the follow-
ing corollary.
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Corollary 5.18 (Moduli of Q4(2p),2r and QP{4,2p},2r). The realizations of
the surfaces Q4(2p),2r resp. QP{4,2p},2r in R3 obtained from the projections of
r-fold products (D2p)

r of 2p-gons have at least 6pr moduli.

For r = 2 the surface Q4(2p),4 is the standard quadrangulation of a 2p × 2p-
torus. This torus has no triangular faces or faces with only degree three
vertices, hence there are no trivial moduli. For larger parameters p and r
all the surfaces of the families Q4(2p),2r and QP{4,2p},2r have no triangular
faces and only vertices of degree 2r. This is reflected in the näıve estimates
obtained from Equation (1.1) in Section 1.3.1. For arbitrary realizations SQ

resp. SQP of the surfaces Q4(2p),2r resp. QP{4,2p},2r in R3 we obtain the fol-
lowing näıve estimates on the number of moduli:

M(SQ, 3) ∼
1

2
(2p)r(6− 4r + 3r)

=
1

2
(2p)r(6− r),

M(SQP , 3) ∼
1

2
(2p)r−1(12p− 8pr + 3(rp + 2r))

=
1

2
(2p)r−1(12p + 6r − 5pr)

from their f -vectors given in Lemma 5.4 resp. Theorem 5.11. So similar to
the wedge product surfaces in Section 4.3.2 this reveals a huge discrepancy
between the lower bounds on the moduli of the above Corollary 5.18 and the
estimate by rule of thumb.

5.2.3 Realization of the dual surfaces

In Section 4.3.3 we established a relation between the duality of surfaces
and the duality of 4-polytopes: If a 4-polytope P contains the prism over
a surface S in its boundary, then the dual polytope P ∗ contains the dual
surface S∗ as a subcomplex of its 2-skeleton.

So to obtain realizations of the polyhedral surfaces Q∗
4(2p),2r and QP∗

{4,2p},2r,
we need to construct 4-polytopes containing the prisms over the respective
primal surfaces. In the following we construct these 4-polytopes as projec-
tions of suitable deformed products of 2p-gons with an interval I.

Theorem 5.19. There exists a realization of the product (D2p)
r × I of 2p-

gons with an interval I in R2r+1 such that the prism Q4(2p),2r × I over the
surface survives the projection to the boundary of a 4-polytope P .

Furthermore, the dual surface Q∗
4(2p),2r is a subcomplex of the 2-skeleton of

the dual polytope P ∗ and may be realized in R3 by Schlegel projection.
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Figure 5.11: Labeling of the pyramid over a 2r-gon needed for the realization
of the prism over the surface Q4(2p),2r × I via a projection of a deformed product
(example r = 4).

Proof. We mimic the proof of Theorem 5.12. We start with the orthogonal
product of the special 2p-gons. We attach the interval I = {x ∈ R | ±δx ≤ 1}
for small positive δ to obtain a polytope of combinatorial type (D2p)

r×I. We
deform this product using the Gale transform of the pyramid over a 2r-gon
labeled as in Figure 5.11 to obtain the following facet normals:




∗ 1 1 g0

∗ ∗ 1 g1

∗ 1 g2

∗ ∗ 1

∗ 1

∗ ∗ 1
. . . . . .

∗ 1

∗ ∗ 1

∗ 1

∗ ∗ 1

±δ




Then the triangles of the pyramid provide the positive dependences that
make sure that the prisms of the product of the surface with an interval
survive the projection to R4.
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Remark 5.20. The construction of Theorem 5.19 can easily be generalized
to products

∏
D2pi

× I of arbitrary even polygons with an interval. So the
above result finally allows us to obtain realizations for polyhedral surfaces
including all the combinatorial types of surfaces of type {4, p} and their duals
of type {q, 4} constructed in McMullen, Schulz & Wills [37].

As in the previous section, we only need to relabel the vertices of the pyramid
used in the proof to obtain the analogous result for the duals of the quad-
polygon surface QP{4,2p},2r.

Theorem 5.21. There exists a realization of the product (D2p)
r × I of 2p-

gons with an interval I in R2r+1 such that the prism QP{4,2p},2r × I over the
surface survives the projection to the boundary of a 4-polytope P .

Furthermore, the dual surface QP∗
{4,2p},2r is a subcomplex of the 2-skeleton

of the dual polytope P ∗ and can be realized in R3 by Schlegel projection.



Chapter 6

Zonotopes with large 2D-cuts
joint with Nikolaus Witte and Günter M. Ziegler

published in Discrete and Computational Geometry (online first)

Zonotopes, the Minkowski sums of finitely many line segments, may also be
defined as the images of cubes under affine maps, while their duals can be
described as the central sections of cross polytopes. So, asking for images of
zonotopes under projections, or for central sections of their duals doesn’t give
anything new: We get again zonotopes, resp. duals of zonotopes. The combi-
natorics of zonotopes and their duals is well understood (see e.g. Ziegler [47]):
The face lattice of a dual zonotope may be identified with that of a real hy-
perplane arrangement.

However, surprising effects arise as soon as one asks for sections of zonotopes,
resp. projections of their duals. Such questions arise in a variety of contexts.

Figure 6.1: Eppstein’s Ukrainian easter egg, and its dual. The 2D-cut, resp.
shadow boundary, of size Ω(n2) are marked.

For example, the“Ukrainian Easter eggs”as displayed by Eppstein in his won-
derful “Geometry Junkyard” [18] are 3-dimensional zonotopes with n zones
that have a 2-dimensional section with Ω(n2) vertices; see also Figure 6.1.
For “typical” 3-dimensional zonotopes with n zones one expects only a linear

107
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number of vertices in any section, so the Ukrainian Easter eggs are surprising
objects. Moreover, such a zonotope has at most 2

(
n
2

)
= O(n2) faces, so any

2-dimensional section is a polygon with at most O(n2) edges/vertices, which
shows that for dimension d = 3 the quadratic behavior is optimal.

Eppstein’s presentation of his model draws on work by Bern, Eppstein et
al. [3], where also complexity questions are asked. (Let us note that it takes a
closer look to interpret the picture given by Eppstein correctly: It is“clipped”,
and a close-up view shows that the vertical “chains of vertices” hide lines of
diamonds; see Figure 6.2.)

Figure 6.2: Close-up view of an Ukrainian Easter egg.

It is natural to ask for high-dimensional versions of the Easter eggs.

Problem 6.1. What is the maximal number of vertices for a 2-dimensional
central section of a d-dimensional zonotope with n zones?

For d = 2 the answer is trivially 2n = Θ(n), while for d = 3 it is of order
Θ(n2), as seen above. We answer this question optimally for all fixed d ≥ 2.

Theorem 6.2. For every d ≥ 2 the maximal complexity (number of vertices)
for a central 2D-cut of a d-dimensional zonotope Z with n zones is Θ(nd−1).

The upper bound for this theorem is quite obvious: A d-dimensional zonotope
with n zones has at most 2

(
n

d−1

)
facets, thus any central 2D-section has at

most 2
(

n
d−1

)
= O(nd−1) edges.

To obtain lower bound constructions, it is advisable to look at the dual
version of the problem.
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Problem 6.3 (Koltun [46, Problem 3]). What is the maximal number of
vertices for a 2-dimensional affine image (a “ 2D-shadow”) of a d-dimensional
dual zonotope with n zones?

Indeed, this question arose independently: It was posed by Vladlen Koltun
based on the investigation of his “arrangement method” for linear program-
ming (see [30]), which turned out to be equivalent to a Phase I procedure
for the “usual” simplex algorithm (Hazan & Megiddo [26]). Our construction
in Section 6.2 shows that the “shadow vertex” pivot rule is exponential in
worst-case for the arrangement method.

Indeed, a quick approach to Problem 6.3 is to use known results about large
projections of polytopes. Indeed, if Z is a d-zonotope with n zones, then the
polar dual Z∗ of the zonotope Z has the combinatorics of an arrangement
of n hyperplanes in Rd. The facets of Z∗ are (d − 1)-dimensional polytopes
with at most n facets — and indeed every (d − 1)-dimensional polytope
with at most n facets arises this way. It is known that such polytopes have
exponentially large 2D-shadows, which in the old days was bad news for the
“shadow vertex” version of the simplex algorithm [23] [39]. Lifted to the dual
d-zonotope Z∗, this also becomes relevant for Koltun’s arrangement method;
in Section 6.2 we briefly present this, and derive the Ω(n(d−1)/2) lower bound.

However, what we are really heading for is an optimal result, dual to Theo-
rem 6.2. It will be proved in Section 6.3, the main part of this paper.

Theorem 6.2∗. For every d ≥ 2 the maximal complexity (number of ver-
tices) for a 2D-shadow of the dual of a d-dimensional zonotope Z∗ with n
zones is Θ(nd−1).

Acknowledgments. We are grateful to Vladlen Koltun for his inspiration
for this paper. Our investigations were greatly helped by use of the polymake
system by Gawrilow & Joswig [22]. In particular, we have built polymake

models that were also used to produce the main figures in this paper.

6.1 Arrangements and zonotopes

Let A ∈ Rm×d be a matrix. We assume that A has full (column) rank d, that
no row is a multiple of another one, and none is a multiple of the first unit-
vector (1, 0, . . . , 0). We refer to [6, Chap. 2] or [47, Lect. 7] for more detailed
expositions of real hyperplane arrangements, the associated zonotopes, and
their duals.
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6.1.1 Hyperplane arrangements

The matrix A determines an essential linear hyperplane arrangement Â = ÂA

in Rd, whose m hyperplanes are

Ĥj =
{
x ∈ Rd : ajx = 0

}
for j = 1, . . . ,m

corresponding to the rows aj of A, and an affine hyperplane arrangement A =
AA in Rd−1, whose hyperplanes are

Hj =
{
x ∈ Rd−1 : aj

(
1
x

)
= 0
}

for j = 1, . . . ,m.

Given A, we obtain A from Â by intersection with the hyperplane x0 = 1
in Rd, a step known as dehomogenization; similarly, we obtain Â from A by
homogenization.

The points x ∈ Rd and hence the faces of Â (and by intersection also the
faces of A) have a canonical encoding by sign vectors σ(x) ∈ {+1, 0,−1}m,
via the map sA : x 7→ (sign a1x, . . . , sign amx). In the following we use the
shorthand notation {+, 0,−} for the set of signs. The sign vector system

sA(Rd) ⊆ {+, 0,−}m generated this way is the oriented matroid [6] of Â.

The sign vectors σ ∈ sA(Rd) ∩ {+,−}m in this system (i.e., without zeroes)

correspond to the regions (d-dimensional cells) of the arrangement Â. For a
non-empty low-dimensional cell F the sign vectors of the regions containing F
are precisely those sign vectors in sA(Rd) which may be obtained from σ(F )
by replacing each “0” by either “+” or “−”.

6.1.2 Zonotopes and their duals

The matrix A also yields a zonotope Z = ZA, as

Z =
{ m∑

i=1

λiai : λi ∈ [−1,+1] for i = 1, . . . ,m
}

.

(In this set-up, Z lives in the vector space (Rd)∗ of row vectors, while the
dual zonotope Z∗ considered below consists of column vectors.)

The dual zonotope Z∗ = Z∗
A may be described as

Z∗ =
{

x ∈ Rd :
m∑

i=1

|aix| ≤ 1
}
. (6.1)
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The domains of linearity of the function fA : Rd → R, x 7→
∑m

i=1 |aix| are the

regions of the hyperplane arrangement Â. Their intersections yield the faces
of Â, and these may be identified with the cones spanned by the proper faces
of Z∗. Thus the proper faces of Z∗ (and, by duality, the non-empty faces
of Z) are identified with sign vectors in {+, 0,−}m: These are the same sign

vectors as we got for the arrangement Â. (See Figure 6.4 on the left for a
3-zonotope and the corresponding linear arrangement.)

Expanding the absolute values in Equation (6.1) yields a system of 2m in-
equalities describing Z∗. However, a non-redundant facet description of Z∗

can be obtained from A and the combinatorics of Â by considering the in-
equalities σ(F )Ax ≤ 1 for all sign vectors σ(F ) of maximal cells F of Â:

Z∗ =
{
x ∈ Rd : σAx ≤ 1 for all σ ∈ sA(Rd) ∩ {+,−}m

}
.

To determine the faces that survive the projection to the first k coordinates
we need to find the normals of the facets adjacent to a given face. But since
the faces of the dual zonotope correspond to faces of the arrangement Â they
are easily obtained from the following lemma.

Lemma 6.4. Let Z∗ be a d-dimensional dual zonotope corresponding to the
linear arrangement Â given by the matrix A, and let F ⊂ Z∗ a be non-
empty face. Then the normals of the facets containing F are the linear
combinations σA of the rows of A for all sign vectors σ ∈ sA(Rd) obtained
from σ(F ) by replacing each “0” by either “+” or “−”.

So the information needed to verify that a face of a dual zonotope is pre-
served by a projection to the first k coordinates may be obtained from the
combinatorial structure of the arrangement Â and the matrix A.

6.2 Dual zonotopes with 2D-shadows of size Ω
(
n(d−1)/2

)

In this section we present an exponential (yet not optimal) lower bound for
the maximal size of 2D-shadows of dual zonotopes. It is merely a combination
of known results about polytopes and their projections. For simplicity, we
restrict to the case of odd dimension d.

Theorem 6.5. Let d ≥ 3 be odd and n an even multiple of d−1
2

. Then there
is a d-dimensional dual zonotope Z∗ ⊂ Rd with n zones and a projection

π : Rd → R2 such that the image π(Z∗) has at least
(

2n
d−1

) d−1
2 vertices.
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Here is a rough sketch of the construction.

(1) According to Amenta & Ziegler [2, Theorem 5.2] there are (d − 1)-
polytopes with n facets and exponentially many vertices such that the
projection π2 : Rd−1 → R2 to the first two coordinates preserves all the
vertices and thus yields a “large” polygon.

(2) We construct a d-dimensional dual zonotope Z∗ with n zones that has
such a (d− 1)-polytope as a facet F .

(3) The extension of π2 to a projection

π3 : R× Rd−1 → R3, (x0, x) 7→ (x0, π2(x))

maps Z∗ to a centrally symmetric 3-polytope P with a large polygon as
a facet. P has a projection to R2 that preserves many vertices.

In the following we give a few details to enhance this sketch.

Some details for (1): Here is the exact result by Amenta & Ziegler, which
sums up previous constructions by Goldfarb [23] and Murty [39]

Theorem 6.6 (Amenta & Ziegler [2]). Let d be odd and n an even multiple

of d−1
2

. Then there is a (d−1)-polytope F ⊂ Rd−1 with n facets and
(

2n
d−1

) d−1
2

vertices such that the projection π2 : Rd−1 → R2 to the first two coordinates
preserves all vertices of F . The polytope F is combinatorially equivalent to
a
(

d−1
2

)
-fold product of

(
2n

d−1

)
-gons.

Explicit matrix descriptions of deformed products of n-gons with “large” 4-
dimensional projections are given in Ziegler [48] and Sanyal & Ziegler [44]
These can easily be adapted (indeed, simplified) to yield explicit coordinates
for the polytopes of Theorem 6.6.

Some details for (2): We have to construct a dual zonotope Z∗ with F as
a facet.

Lemma 6.7. Given a (d− 1)-polytope F with n facets, there is a d-dimen-
sional dual zonotope Z∗ with n zones that has a facet affinely equivalent
to F .

Proof. Let {x ∈ Rd−1 : Ax ≤ b} be an inequality description of F , and let
(−bi, ai) denote the ith row of the matrix (−b, A) ∈ Rn×d.

The n hyperplanes Hi = {x ∈ Rd : (−bi, ai)x = 0} yield a linear arrange-
ment of n hyperplanes in Rd, which may also be viewed as a fan (polyhedral
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Figure 6.3: Shadow boundary of a centrally symmetric 3-polytope, on the right
displayed as its Schlegel diagram.

complex of cones). According to [47, Cor. 7.18] the fan is polytopal, and the
dual Z∗ of the zonotope Z generated by the vectors (−bi, ai) spans the fan.

The resulting dual zonotope Z∗ has a facet that is projectively equivalent to F ;
however, the construction does not yet yield a facet that is affinely equivalent
to F . In order to get this, we construct Z∗ such that the hyperplane spanned
by F is x0 = 1. This is equivalent to constructing Z such that the vertex vF

corresponding to F is e0. Therefore we have to normalize the inequality
description of F such that

n∑

i=1

(−bi, ai) = (1, 0, . . . , 0).

The row vectors of A positively span Rd−1 and are linearly dependent, hence
there is a linear combination of the row vectors of A with coefficients λi > 0,
i = 1, . . . , n, which sums to 0. Thus if we multiply the ith facet-defining
inequality for F , corresponding to the row vector (−bi, ai), by

−λi
n∑

j=1

λj bj

,

then we obtain the desired normalization of A and b.

Some details for (3): The following simple lemma provides the last part
of our proof; it is illustrated in Figure 6.3.

Lemma 6.8. Let P be a centrally symmetric 3-dimensional polytope and
let G ⊂ P be a k-gon facet. Then there exists a projection πG : R3 → R2

such that πG(P ) is a polygon with at least k vertices.
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Proof. Since P is centrally symmetric, there exists a copy G′ of G as a facet
of P opposite and parallel to G. Consider a projection π parallel to G (and
to G′) but otherwise generic and let nG be the normal vector of the plane
defining G. If we perturb π by adding ±εnG, ε > 0, to the projection
direction of π, parts of ∂G and ∂G′ appear on the shadow boundary. Since P
is centrally symmetric, the parts of ∂G and ∂G′ appearing on the shadow
boundary are the same. Therefore perturbing π either by +εnG or by −εnG

yields a projection πG such that πG(P ) is a polygon with at least k vertices.

6.3 Dual zonotopes with 2D-shadows of size Ω
(
nd−1

)

In this section we prove our main result, Theorem 6.2∗, in the following
version.

Theorem 6.9. For any d ≥ 2 there is a d-dimensional dual zonotope Z∗

on n(d− 1) zones which has a 2D-shadow with Ω(nd−1) vertices.

We define a dual zonotope Z∗ and examine its crucial properties. These are
then summarized in Theorem 6.12, which in particular implies Theorem 6.9.
Figure 6.4 displays a 3-dimensional example, Figure 6.7 a 4-dimensional ex-
ample of our construction.

6.3.1 Geometric intuition

Before starting with the formalism for the proof, which will be rather al-
gebraic, here is a geometric intuition for an inductive construction of Z∗ =
Z∗

d ⊂ Rd, a d-dimensional zonotope on n(d − 1) zones with a 2D-shadow of
size Ω(nd−1) when projected to the first two coordinates. For d = 2 any
centrally-symmetric 2n-gon (i.e., a 2-dimensional zonotope with n zones)
provides such a dual zonotope Z∗

2 . The corresponding affine hyperplane ar-
rangement A2 ⊂ R1 consists of n distinct points.

We derive a hyperplane arrangement A′
3 ⊂ R2 from A2 by first consider-

ing A2 × R, and then “tilting” the hyperplanes in A2 × R. The hyperplanes
in A2 × R are ordered with respect to their intersections with the x1-axis.
The hyperplanes in A2 × R are tilted alternatingly in x2-direction as in Fig-
ure 6.5 (left): Each black vertex of A2 corresponds to a north-east line and
each white vertex becomes a north-west line of the arrangement A′

3. For
each vertex in the 2D-shadow of Z∗

2 we obtain an edge in the 2D-shadow of
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Figure 6.4: A dual 3-zonotope with quadratic 2D-shadow, on the left with the
corresponding linear arrangement and on the right with its 2D-shadow.

the dual 3-zonotope Z∗
3
′ corresponding to A′

3. Now A3 ⊂ R2 is constructed
from A′

3 by adding a set of n parallel hyperplanes to A′
3, all of them close

to the x1-axis, and each intersecting each edge of the 2D-shadow of Z∗
3
′; see

Figure 6.5 (right).

A2

A′
3

H3

Figure 6.5: Constructing the arrangement A′
3 from A2 (left) and A3 from A′

3

(right).

For general d, let Hd ⊂ Ad be the subarrangement of the n parallel hyper-
planes added to A′

d in order to obtain Ad. Then A′
d ⊂ Rd−1 is constructed
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from Ad−1×R by tilting the hyperplanes Hd−1×R, this time with respect to
their intersections with the xd−2-axis. The corresponding d-dimensional dual
zonotope Z∗

d
′ has Ω(nd−2) edges in its 2D-shadow and each of these Ω(nd−2)

edges is subdivided n times by the hyperplanes in Hd when constructing Ad,
respectively Z∗

d . See Figure 6.6 for an illustration of the arrangement A′
4.

Figure 6.6: The affine arrangement A4 consists of three families of planes: The
first family A′

3 × R forms a coarse vertical grid; the second family (derived from
H3×R by tilting) forms a finer grid running from left to right; the last family H4

contains the parallel horizontal planes.

6.3.2 The algebraic construction.

For k ≥ 1, n = 4k + 1, and d ≥ 2 we define

b = (k − i)0≤i≤2k =




k
...
−k


 ∈ R2k+1 and

b′ =

(
i− k +

1

2

)

0≤i≤2k−1

=



−k + 1

2
...

k − 1
2


 ∈ R2k.

Let 0, 1 ∈ Rℓ denote vectors with all entries equal to 0, respectively 1, of
suitable size. For convenience we index the columns of matrices from 0 to
d − 1 and the coordinates accordingly by x0, . . . , xd−1. Let εi > 0, and for
1 ≤ i ≤ d − 1 let Ai ∈ Rn×d be the matrix with εi

(
b

b′

)
as its 0-th column
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vector,
( 1
−1) as its ith column vector,

(11) as its (i + 1)-st column vector, and
zeroes otherwise. In the case i = d − 1 there is no (i + 1)-st column of Ad

and the final
(11)-column is omitted:

Ai =

( 0 1 · · · i−1 i i+1 i+2 · · · d−1

εib 0 · · · 0 1 1 0 · · · 0
εib

′ 0 · · · 0 −1 1 0 · · · 0 ) ∈ R(4k+1)×d.

The linear arrangement Â given by the ((d− 1)n× d)-matrix A whose hori-
zontal blocks are the (scaled) matrices δ1A1, . . . , δd−1Ad−1 for δi > 0 defines
a dual zonotope by the construction of Section 6.1.2. Since the parameters δi

do not change the arrangement Â, any choice of the δi yields the same com-
binatorial type of dual zonotope, but possibly different realizations. The
choice of the εi however may (and for sufficiently large values will) change

the combinatorics of Â and hence the combinatorics of the corresponding
dual zonotope. For the purpose of constructing Z∗ we set α = 1

n+1
, and

εi = δi = αi−1. This choice for εi ensures that the “interesting” part of the
next family of hyperplanes nicely fits into the previous family. Compare Fig-
ure 6.5 (right): The interesting zig-zag part of family Ai is contained by the
interval εi[−k − 1

4
, k + 1

4
] in xi-direction and by εi[−

1
4
, 1

4
] in xi+1-direction;

since εi+1 = 1
n+1

εi we obtain εi+1(k + 1
4
) < εi

1
4

and the zig-zags nicely fit into
each other. For these parameters we obtain

A =




A1

αA2
...

αd−2Ad−1


 =




b 1 1
b′ −1 1

α2b α1 α1
α2b′ −α1 α1

...
. . .

α2(d−2)b αd−21
α2(d−2)b′ −αd−21




. (6.2)

This matrix has size (d−1)(4k+1)×d = n(d−1)×d. The dual zonotope Z∗ =
Z∗

A has (d − 1)n zones and is d-dimensional since A has rank d. According

to Section 6.1.1, any point x ∈ Rd is labeled in Â by a sign vector σ(x) =
(σ1, σ1

′;σ2, σ2
′; . . . ;σd−1, σd−1

′) with σi ∈ {+, 0,−}2k+1 and σi
′ ∈ {+, 0,−}2k.

The following Lemma 6.10 selects nd−1 vertices of the corresponding affine
arrangement A.
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Lemma 6.10. Let Hj1, Hj2, . . . , Hjd−1
be hyperplanes in A, where each Hji

is given by some row aji
of Ai, which is indexed by ji ∈ {1, . . . , n}. Then the

d − 1 hyperplanes Hj1 , Hj2, . . . , Hjd−1
intersect in a vertex of A with sign

vector (σ1, σ1
′;σ2, σ2

′; . . . ;σd−1, σd−1
′) ∈ {+, 0,−}n(d−1) with 0 at position ji

of the form

(σi, σi
′) =

{
(+ · · ·+ 0− · · · −,− · · · −+ · · ·+) with sum 0 or

(+ · · ·+− · · · −,− · · · − 0 + · · ·+) with sum 0
(6.3)

for each i = 1, 2, . . . , d−1. Conversely, each of these sign vectors corresponds
to a vertex v of the arrangement. In particular, v is a generic vertex, i.e., v
lies on exactly d− 1 hyperplanes.

Proof. The intersection v = Hj1∩Hj2∩· · ·∩Hjd−1
is indeed a vertex since the

matrix minor (aji,ℓ)i,ℓ=1,...,d−1 has full rank. We solve the system A′
(
1
v

)
= 0

to obtain v, where A′ = (aji
)i=1,...,d−1. As we will see, the entire sign vector

of the vertex v is determined by its “0” entries whose positions are given by
the ji. Hence every sign vector agreeing with Equation (6.3) determines a
set of hyperplanes Hji

and thus a vertex v of the arrangement.

To compute the position of v with respect to the other hyperplanes we take
a closer look at a block Ai of the matrix that describes our arrangement. For
an arbitrary point x ∈ Rd with x0 = 1 we obtain

Aix =

(
αi−1b 1 1
αi−1b′ −1 1)




1
xi

xi+1


 .

This is equivalent to the 2-dimensional(!) affine arrangement shown in Fig-
ure 6.5 on the left. We will show that if x lies on one of the hyperplanes and
if |xi+1| <

1
4
αi−1, then x satisfies the required sign pattern (6.3).

We start with an even simpler observation: If x′ lies on one of the hyper-
planes and has x′

i+1 = 0 (so in effect we are looking at a 1-dimensional affine
hyperplane arrangement), then there are:

◮ 2k “positive” row vectors aj of Ai with ajx
′ > 0,

◮ 2k “negative” row vectors aj of Ai with ajx
′ < 0, and

◮ one “zero” row vector corresponding to the hyperplane x′ lies on.

The order of the rows of Ai is such that the signs match the sign pat-
tern of (σi, σi

′) in (6.3). Since the values in αi−1b and αi−1b′ differ by
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at least 1
2
αi−1 we have in fact ajx

′ ≥ 1
2
αi−1 for “positive” row vectors and

ajx
′ ≤ −1

2
αi−1 for the “negative” row vectors of Ai. Hence we have

|ajx
′| ≥ 1

2
αi−1.

If we now consider a point x with |xi+1| < 1
4
αi−1 on the same hyperplane

as x′, then |xi
′ − xi| = |xi+1| <

1
4
αi−1. For the row vectors aj with ajx

′ 6= 0
we obtain:

|ajx| ≥ |ajx
′| − |aj(x− x′)|

≥ 1
2
αi−1 − (|xi − xi

′|+ |xi+1 − xi+1
′|)

> 1
2
αi−1 − 1

4
αi−1 − 1

4
αi−1 = 0.

Hence the sign pattern of x is the same as the sign pattern of x′.

To conclude the proof we show that the required upper bound |vi+1| <
1
4
αi−1

holds for the coordinates of the selected vertex v. For all i′ = 1, 2, . . . , d− 2
the inequality aji′

(
1
v

)
= 0 directly yields the bound |vi′ | ≤ kαi′−1 + |vi′+1|.

Further ajd−1

(
1
v

)
= 0 implies |vd−1| ≤ kαd−2 and thus recursively

|vi+1| ≤ kαi + |vi+2| ≤ kαi + kαi+1 + |vi+3|

≤ · · · ≤ kαi + kαi+1 + · · ·+ |vd−1| ≤ k
d−2∑

l=i

αl < kαi

∞∑

l=0

αl

=
kαi

1− α
=

k

4k + 1
αi−1 <

1

4
αi−1.

The selected vertices of Lemma 6.10 correspond to certain vertices of the
dual zonotope Z∗ associated to the arrangement A. Rather than proving
that these vertices of Z∗ survive the projection to the first two coordinates,
we consider the edges corresponding to the sign vectors obtained from Equa-
tion (6.3) by replacing the “0” in (σd−1, σ

′
d−1) by either a “+” or a “−”, and

their negatives, which correspond to the antipodal edges.

Lemma 6.11. Let S be the set of sign vectors ±(σ1, σ1
′; . . . ;σd−1, σd−1

′) of
the form

(σi, σi
′) =

{
(+ · · ·+ 0− · · · −,− · · · −+ · · ·+) with sum 0 or

(+ · · ·+− · · · −,− · · · − 0 + · · ·+) with sum 0

for 1 ≤ i ≤ d− 2 and

(σd−1, σd−1
′) = (+ · · ·+− · · · −,− · · · −+ · · ·+) with sum ±1.

Then the sign vectors in S correspond to 2nd−2(n + 1) edges of Z∗, all of
which survive the projection to the first two coordinates.
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Proof. The sign vectors of S indeed correspond to edges of Z∗ since they
are obtained from sign vectors of non-degenerate(!) vertices by substituting
one “0” by a “+” or a “−”.

Further there are 2nd−2(n+1) edges of the specified type: Firstly there are n
choices where to place the “0” in (σi, σi

′) for each i = 1, . . . , d − 2, which
accounts for the factor nd−2. Let p be the number of “+”-signs in σd−1. Thus
there are 2k + 2 choices for p, and for each choice of p there are two choices
for σd−1

′, except for p = 0 and p = 2k+1 with just one choice for σd−1
′. This

amounts to 2(2k + 2)− 2 = n + 1 choices for (σd−1, σd−1
′). The factor of 2 is

due to the central symmetry.

Let e be an edge with sign vector σ(e) ∈ S. In order to apply Lemma 1.11 we
need to determine the normals to the facets containing e. So let F be a facet
containing e. The sign vector σ(F ) is obtained from σ(e) by replacing each“0”
in σ(e) by either “+” or “−”; see Lemma 6.4. For brevity we encode F by a
vector τ(F ) ∈ {+,−}d−2 corresponding to the choices for “+” or “−” made.
Conversely, there is a facet Fτ containing e for each vector τ ∈ {+,−}d−2,
since e is non-degenerate.

The supporting hyperplane for F is a(F )x = 1 with a(F ) = σ(F )A being a
linear combination of the rows of A. We compute the ith component of a(F )
for i = 2, 3, . . . , d− 1:

a(F )i = (σ(F )A)i = ((σi−1, σ
′
i−1)Ai−1)i + ((σi, σ

′
i)Ai)i

= αi−2(σi−1, σ
′
i−1)

(11)+ αi−1(σi, σ
′
i)

( 1
−1)

Since we replace the zero of (σi−1, σ
′
i−1) by τ(F )i−1 in order to obtain σ(F )

from σ(e) we have (σi−1, σ
′
i−1)
(11) = τ(F )i−1. Since

∣∣(σi, σ
′
i)
( 1
−1)∣∣ is at most n

it follows that

◮ a(F )i ≥ αi−2 − nαi−1 = αi−1 > 0 holds for τ(F )i−1 = + and

◮ a(F )i ≤ −αi−2 + nαi−1 = −αi−1 < 0 holds for τ(F )i−1 = −.

In other words, we have for i = 2, 3, . . . , d− 1:

sign a(F )i = τ(F )i (6.4)

It remains to show that the last d− 2 coordinates of the 2d−2 normals of the
facets containing e, that is, the facets Fτ for all τ ∈ {+,−}d−2, span Rd−2.
But Equation (6.4) implies that each of the orthants of Rd−2 contains one
of the (truncated) normal vectors (a(Fτ )i)i=2,...,d−1. Hence the (truncated)
normals of all facets containing e positively span Rd−2 and e survives the
projection to the first two coordinates by Lemma 1.11.



6.3 Dual zonotopes with 2D-shadows of size Ω
(
nd−1

)
121

This completes the construction and analysis of Z∗. Scrutinizing the sign
vectors of the edges specified in Lemma 6.11 one can further show that these
edges actually form a closed polygon in Z∗. Thus this closed polygon is the
shadow boundary of Z∗ (under projection to the first two coordinates) and its
projection is a 2nd−2(n+1)-gon. This yields the precise size of the projection
of Z∗. The reader is invited to localize the edges corresponding to the closed
polygon from Lemma 6.11 and the vertices from Lemma 6.10 in Figures 6.5
and 6.6.

The following Theorem 6.12 summarizes the construction of Z∗ and its prop-
erties. Our main result as stated in Theorem 6.9 follows. Figure 6.4 displays
a 3-dimensional example, Figure 6.7 a 4-dimensional example.

Figure 6.7: Two different projections of a dual 4-zonotope with cubic 2D-
shadow. On the left the projection to the first two and last coordinate (clipped in
vertical direction) and on the right the projection to the first three coordinates.

Theorem 6.12. Let k and d ≥ 2 be positive integers, and let n = 4k+1. The
dual d-zonotope Z∗ = Z∗

A corresponding to the matrix A from Equation (6.2)
has (d−1)n zones and its projection to the first two coordinates has (at least)
2nd−1 + 2nd−2 vertices.

Remark 6.13. As observed in Amenta & Ziegler [1, Sect. 5.2] any result
about the complexity lower bound for projections to the plane (2D-shadows)
also yields lower bounds for the projection to dimension k, a question which
interpolates between the upper bound problems for polytopes/zonotopes
(k = d−1) and the complexity of parametric linear programming (k = 2), the
task to compute the LP optima for all linear combinations of two objective
functions (see [14, pp. 162-166]).

In this vein, from Theorem 6.9 and the fact that in a dual of a cubical
zonotope every vertex lies in exactly fk((d − 1)-cube) =

(
d−1
k

)
2k different

k-faces (for k < d), and every such polytope contains at most nd−1 faces of
dimension k, one derives that in the worst case Θ(nd−1) faces of dimension
k − 1 survive in a kD-shadow of the dual of a d-zonotope with n zones.





Bibliography

[1] N. Amenta and G. M. Ziegler, Shadows and slices of polytopes, in Pro-
ceedings of the 12th Annual ACM Symposium on Computational Geometry,
May 1996, pp. 10–19.

[2] N. Amenta and G. M. Ziegler, Deformed products and maximal shad-
ows, in Advances in Discrete and Computational Geometry (South Hadley,
MA, 1996), B. Chazelle, J. E. Goodman, and R. Pollack, eds., Contemporary
Mathematics 223, Providence RI, 1998, Amer. Math. Soc., pp. 57–90.

[3] M. W. Bern, D. Eppstein, L. J. Guibas, J. E. Hershberger, S. Suri,
and J. D. Wolter, The centroid of points with approximate weights, in Proc.
3rd Eur. Symp. Algorithms (ESA 1995), P. G. Spirakis, ed., no. 979 in Lecture
Notes in Computer Science, Springer-Verlag, September 1995, pp. 460–472.
http://www.ics.uci.edu/~eppstein/pubs/BerEppGui-ESA-95.ps.gz.

[4] U. Betke and P. Gritzmann, A combinatorial condition for the existence
of polyhedral 2-manifolds, Israel Journal of Mathematics 42, no. 4 (1982),
pp. 297–299.

[5] A. Björner, Posets, regular CW complexes and Bruhat order, European
Journal of Combinatorics 5, no. 1 (1984), pp. 7–16.

[6] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. M.
Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Cambridge
University Press, Cambridge, second (paperback) ed., 1999.

[7] J. Bokowski, A geometric realization without self-intersections does exist
for Dyck’s regular map, Discrete & Computational Geometry 4, no. 6 (1989),
pp. 583–589.

[8] J. Bokowski and A. Guedes de Oliveira, On the generation of oriented
matroids, Discrete & Computational Geometry 24, no. 2-3 (2000), pp. 197–
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