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1 Introduction

This thesis attempts to give partial answers concerning the problem of how combinatorial

restrictions affect the topology, geometry, embeddability, and convexity of cell complexes.

As toy examples we will briefly review graph planarity and the combinatorial Gauß–Bonnet

theorem and discuss some higher-dimensional versions. We will allow ourselves to be some-

what imprecise at times in this introduction, but we add precise statements in subsequent

sections.

Kuratowski’s theorem [60] characterizes planar graphs, that is, 1-dimensional cell com-

plexes that are embeddable into R2, as those graphs without a subspace homeomorphic to

either K5 or K3,3. Here Kn denotes the complete graph on n vertices and Kn,m denotes

the complete bipartite graph on n+m vertices with independent sets of size n and m. By a

theorem of Fáry [37] (whose first proof seems to be due to Wagner [102]), a graph is planar

if and only if it admits an embedding into R2 with straight edges. For any continuous map

from a non-planar graph to R2 there are always two vertex-disjoint edges that have a point

in common by the Hanani–Tutte theorem; see Tutte [96]. Thus, it suffices to check whether

vertex-disjoint edges intersect to test the planarity of a graph.

We will be interested in higher-dimensional analogues of these theorems. Deciding the

embeddability of a k-dimensional complex into Rn is in general difficult. For example, it is

algorithmically undecidable whether a (d−1)-dimensional complex is embeddable into Rd for

d ≥ 5 by a result of Matoušek, Tancer, and Wagner [69]. Fáry’s theorem is no longer valid in

higher dimensions. It is not in general possible to straighten topological embeddings into Rd,

d ≥ 3: there are triangulations of the orientable surface of genus five that do not admit a

simplex-wise linear embedding into R3; see Schewe [83]. For genus g ≥ 6 such triangulations

were found earlier by Bokowski and Guedes de Oliveira [19], disproving a conjecture of

Grünbaum. It is an open question whether triangulations of orientable surfaces of genus

1 ≤ g ≤ 4 exist that cannot be embedded into 3-space in a simplex-wise linear fashion.

Earlier, Brehm [22] had already constructed a triangulation of the Möbius strip that is not

simplex-wise linear embeddable into R3.

Higher-dimensional versions of the Hanani–Tutte theorem are equivalent to deciding the

completeness of the Van Kampen obstruction — a Z/2-equivariant cochain capturing the

number of intersections of two disjoint facets modulo two. Van Kampen [54] essentially
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1 Introduction

introduced this obstruction, although the language of cohomolgy had not been fully devel-

oped at this point. A vanishing of this obstruction is necessary for the embeddability of

a d-complex into R2d. Van Kampen and independently Flores [38] used this to show that

the d-skeleton ∆
(d)
2d+2 of the (2d + 2)-simplex is not embeddable into R2d, and that there

is always an intersection of two disjoint faces. This is known as the Van Kampen–Flores

theorem. Completeness refers to the vanishing of the obstruction also being sufficient for

embeddability of a complex. Van Kampen’s proof of the completeness of his obstruction had

a lacuna that was essentially closed by Whitney [105] with what became known as Whitney

trick. Whitney was concerned with embedding smooth manifolds into Euclidean space, but

his reasoning works for general simplicial complexes as pointed out by Shapiro [84]. Freed-

man, Krushkal, and Teichner [40] show the exact analogue of the Hanani–Tutte theorem for

maps from a d-dimensional simplicial complex into R2d for d ≥ 3. Moreover, they show that

the Van Kampen obstruction is incomplete for the case d = 2.

A first step towards a higher-dimensional Kuratowski theorem was taken by Radon [78].

A simple reformulation of his result about intersecting convex hulls of points is that every

affine map f : ∆d+1 → Rd from the (d + 1)-simplex ∆d+1 to Rd identifies points from two

disjoint faces of ∆d+1. As straightening results are generally wrong in dimensions d ≥ 3,

this does not imply the same statement for f only a continuous map. While Radon’s

theorem follows from elementary linear algebra, its topological generalization by Bajmóczy

and Bárány [5] requires the use of the Borsuk–Ulam theorem. (An excellent introduction to

the use of the Borsuk–Ulam theorem and related results in discrete geometry is Matoušek’s

book [70].) Sarkaria [82] classified the d-complexes that are minimally non-embeddable

into R2d (that is, every proper subcomplex is embeddable) under some additional technical

assumptions and for d 6= 2, since only then is the Van Kampen obstruction complete. These

complexes, the Kuratowski complexes, are simplicial complexes that are joins of (s − 1)-

skeletons of 2s-simplices for possibly varying s ≥ 1.

In the case of maps from a graph to the plane generically only two edges will intersect

in a point. A new phenomenon for higher-dimensional complexes of low codimension in Rd

is multiple intersections of faces. Most generally, we will be interested in the intersection

pattern of pairwise disjoint faces in a simplicial complex when mapped to a Euclidean space

(or a manifold). For reasons that will become apparent very soon, we will refer to any such

result as a result of Tverberg-type. These results present a vast and natural generalization

of the theory of graph planarity and graph drawings. We have already pointed out that

some care is needed in distinguishing results for affine and merely continuous maps. Most

interestingly and perhaps surprisingly, divisibility properties of the number of faces involved

in the intersection play a major role in determining which intersection patterns that must

occur for affine maps also must occur for all continuous maps.
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Of course, multiple intersections of faces already appear for maps of 2-dimensional com-

plexes to the plane. Historically, this case is the starting point of Tverberg-type theory; see

the survey by Ziegler [107]: Birch [11] showed that any 3r points in R2 can be partitioned

into r intersecting triangles. If we care about optimality (we do!), we should note – as did

Birch – that in fact any 3r − 2 points in the plane can be partitioned into r sets of points

whose convex hulls intersect in a point. As for Radon’s theorem we can restate this as

follows: any affine f : ∆3(r−1) → R2 identifies r points taken from pairwise disjoint faces

of ∆3(r−1). This led Birch to conjecture that any (r − 1)(d + 1) + 1 points in Rd can be

partitioned into r sets with convex hulls intersecting in a common point. This conjecture

was proven by Tverberg [97].

This raises the question whether the topological generalization of Birch’s or even Tver-

berg’s result to continuous maps remains true: given integers r ≥ 2 and d ≥ 1, does every

continuous map f : ∆(r−1)(d+1) → Rd identify points from r pairwise disjoint faces? That

this should be true became known as the topological Tverberg conjecture. In 1976 Imre

Bárány wrote a letter to Helge Tverberg asking about the topological version of his theo-

rem, noting that there is a topological Radon theorem (due to Bajmóczy and Bárány), which

is the case r = 2 of the topological Tverberg conjecture. Tverberg then asked this question

for a general (r − 1)(d + 1)-polytope in place of the simplex ∆(r−1)(d+1) in Oberwolfach in

May 1978, see Gruber and Schneider [45]. (Thanks to Imre Bárány, Rolf Schneider, and

Günter Ziegler for helpful remarks concerning the history of this question!)

The topological Tverberg conjecture as stated above was proven for r a prime by Bárány,

Shlosman, and Szűcz [8]. Then the action of Z/r by a shift of coordinates on {(x1, . . . , xr) ∈
(Rd)r |

∑
xi = 0} is free away from the origin. For r a power of a prime the symmetric

group Sr has an elementary abelian subgroup that acts transitively and without fixed points

on this vector space. Özaydin [75] was able to use this to prove the topological Tverberg

conjecture for r a prime power. The topological Tverberg conjecture holds trivially for d = 1.

(In fact, on the real line the image of a face under a continuous map contains the convex

hull of the images of the vertices. Thus, the affine version of Tverberg’s theorem implies the

continuous one for d = 1.)

Since Özaydin’s 1987 paper no progress had been made on deciding any further cases of

the topological Tverberg conjecture. According to Matoušek [70, p. 154] it is one of the most

challenging problems in topological combinatorics. We will construct counterexamples to the

topological Tverberg conjecture for any r that is not a power of a prime. The construction

builds on an r-fold version of the Van Kampen–Shapiro result on the embeddabilty of com-

plexes in Euclidean space that was recently announced by Mabillard and Wagner [67]. For

this they proved an r-fold version of the Whitney trick. The main obstacle to get from the

result of Mabillard and Wagner to counterexamples of the topological Tverberg conjecture is

3



1 Introduction

that one has to circumvent the condition that the codimension of the complex in Euclidean

space be at least three. Indeed, note that the dimension of the simplex ∆(r−1)(d+1) is much

larger than d. Our main insight will be that a combinatorial reduction argument can elim-

inate this obstacle. This combinatorial reduction is the constraint method which was first

introduced in joint work of Blagojević, Ziegler, and the author [16]. We will remark later

on how surprisingly versatile and powerful this combinatorial trick really is.

Since there was no progress on the topological Tverberg conjecture for about 28 years,

the focus of research had shifted away from only considering simplices to Tverberg-type

problems in the full generality mentioned above. It is at this point that we come back to

our goal of generalizing results about the planarity of graphs. While we have remarked on

higher-dimensional versions of Kuratowski’s theorem, we have thus far neglected to mention

the corresponding multiple intersection results.

Sarkaria [81] proved an r-fold version of the Van Kampen–Flores theorem, that is, a

Tverberg-type result for an appropriate skeleton of a simplex, for r prime. This was extended

to prime power r by Volovikov [98]. This generalized Van Kampen–Flores theorem should

be seen as the correct analogue of the non-planarity of K5. As for the topological Tverberg

conjecture the validity of this theorem depends on divisibility properties for the number r of

faces: we will point out that the generalized Van Kampen–Shapiro theorem of Mabillard and

Wagner implies that the generalized Van Kampen–Flores theorem of Sarkaria and Volovikov

fails for every r that is not a prime power.

Tverberg-type results for complexes that have a partition into color classes such that

no edge has vertices of the same color are due to Bárány and Larman [7] for dimension

d = 2 and Živaljević and Vrećica [109] for general d. These results and the generalization

in Vrećica and Živaljević [99] specialize to the non-planarity of K3,3 for d = 2 and r = 2.

Moreover, Blagojević, Matschke, and Ziegler [18] were able to prove such a colored version

for r ≥ 3 a prime and for the optimal N = (r − 1)(d+ 1).

The original proofs of all these Tverberg-type theorems require involved machinery from

algebraic topology, where the case r prime is somewhat simpler than r a prime power. A key

insight in this dissertation is that most of these results follow from the topological Tverberg

theorem via the constraint method mentioned above. Since the original proofs of the Van

Kampen–Flores and colored relatives of the topological Tverberg theorem are more involved

than the proof of the original topological Tverberg theorem, this simplifies the proofs and

presents a general and elementary framework to prove a large class of Tverberg-type results,

many of them new or stronger than previously known versions.

The constraint method gives an effective way to restrict and control the combinatorics

of a simplicial complex and obtain results of a topological nature, where continuous maps

to Euclidean space are a benchmark for the complexity of the topology of the complex. One
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could wish for a more direct approach to determining the influence of combinatorics on the

topology of a complex. This will be developed for manifold triangulations in Chapter 3 of

this dissertation. Restricting to manifold triangulations also presents a chance to investigate

the interplay of combinatorics and geometry.

In dimension two, combinatorics, geometry, and topology are tightly connected via the

Euler characteristic. Combinatorially, the Euler characteristic χ(T ) of a surface triangula-

tion T of a surface M is χ(T ) = f0 − f1 + f2, where (f0, f1, f2) is the f -vector, that is, fi
counts the number of i-faces. This number χ(T ) is independent of the triangulation T and

equal to χ(M) = rkH0(M ;Q) − rkH1(M ;Q) + rkH2(M ;Q) the alternating sum of ranks

of rational homology groups — a purely topological definition. Geometrically, the Euler

characteristic can be defined (for a smooth surface) as 1
2π

∫
M
κ dA, the integral over the

Gauß curvature divided by 2π.

The Gauß–Bonnet theorem asserts that these three definitions coincide. As a corollary

we obtain that bounding local combinatorics of a surface triangulation leads to a global

volume bound and a finite number of triangulations. We can explain this phenomenon in

the following manner: start with a triangle and inductively build a triangulation. For this

choose an arbitrary vertex in the boundary of the currently built part of the triangulation

and close a disk of five triangles around this vertex. This process necessarily terminates.

The largest triangulation we can build in this way is the boundary of the icosahedron. On

the other hand by repeatedly gluing six triangles around a vertex we can tile the entire plane

and the triangulation does not have to close up after a finite amount of time.

The difference between triangulations of degree five and six can be seen by a simple

counting argument. By double-counting the f -vector of a surface triangulation is (f0, 3f0 −
3χ(T ), 2f0 − 2χ(T )). If every vertex has at most t incident edges, then 2f1 ≤ tf0 and, thus,

6f0 − 6χ(T ) ≤ tf0. Equivalently, (6− t)f0 ≤ 6χ(T ) and this remains true if t is the average

vertex degree in T . In fact, for the average vertex degree t we get equality (6−t)f0 = 6χ(T ).

Since χ(T ) ≤ 2 for any surface triangulation, t ≤ 5 immediately implies f0 ≤ 12. The sign

of 6− t is equal to the sign of χ(T ) and thus decides the geometry of the surface: spherical

for t < 6, Euclidean for t = 6, and hyperbolic for t > 6.

In more geometric terms the average angle of a Euclidean triangle is π
3 , and thus a disk of

five triangles around a vertex has an angle defect of 2π− 5π3 = π
3 on average. Angle defects

are a discrete analogue of curvature and the total curvature of a surface is bounded from

above by 4π. This again gives a bound of twelve vertices. Moreover, there is a spherical

triangle with angles equal to 2π
5 . Inducing this metric on every facet of a triangulation

with constant degree five yields a spherical metric on the underlying surface. Hence, the

underlying surface is necessarily compact and we cannot build infinitely large triangulations

with constant degree five.
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1 Introduction

Generalizing the combinatorial reasoning to higher dimensions leads to global volume

bounds from local volume bounds for manifold triangulations. The inequality f1 ≥ 3f0 − 6

can be generalized using the lower bound theorem, proven by Barnette [10] for polytopes,

by Walkup [103] for manifold triangulations in dimensions three and four, by Kalai [53]

for manifold triangulations in arbitrary dimension, and by Tay [93] for pseudomanifolds.

The lower bound theorem asserts that the number of facets fd of a d-dimensional manifold

triangulation is bounded below by df0 − (d + 2)(d − 1). If we now have the local volume

bound that on average every vertex is contained in fewer than d(d+ 1) facets, then for some

ε > 0 we have by the lower bound theorem

d(d+ 1)− ε ≥ (d+1)fd
f0

≥ (d+1)(df0−(d+2)(d−1))
f0

= d(d+ 1)− (d+2)(d+1)(d−1)
f0

.

This is equivalent to f0 ≤ (d+2)(d+1)(d−1)
ε and thus we have a global volume bound. The

local bound is tight in the sense that there are infinitely large triangulations where every

vertex is contained in precisely d(d+ 1) facets. This is related to results of Swartz [91] that

for any bound c on g2 = f1− (d+ 1)f0 + (d+ 1)d there are only finitely many d-dimensional

manifolds that admit a triangulation with g2 bounded by c.

Generalizing the geometric reasoning to higher dimensions we are interested in the pos-

sible dihedral angles of (regular) simplices in isotropic geometries. The dihedral angle of a

d-simplex at a (d−2)-face (a subridge) is the opening angle of the two adjacent (d−1)-faces

(ridges). In every dimension there is a regular spherical simplex with dihedral angles π
2 . It

can be obtained from radially projecting the crosspolytope outward onto the unit sphere.

In low dimensions there are two additional regular simplicial polytopes larger than the

crosspolytope. While in the crosspolytope every subridge is contained in precisely four

facets – we will refer to that number as the valence of the subridge – there are simplicial 3-

and 4-polytopes of constant valence five: the icosahedron and the 600-cell. Projecting these

onto the unit sphere yields triangles, respectively tetrahedra, with dihedral angles equal

to 2π
5 .

A regular Euclidean d-simplex has dihedral angles arccos( 1
d ); see Parks and Wills [77]

for an elementary calculation. For d ≤ 3 the dihedral angle arccos( 1
d ) is less than 2π

5 ,

which explains the existence of constant valence five triangulations of S2 and S3. Given any

triangulation of a 3-manifold with constant valence five, inducing the metric of the regular

spherical simplex from the 600-cell on every facet gives a homogeneous spherical metric on

this manifold. Thus, it is a quotient of the 3-sphere and, in fact, a combinatorial quotient

of the 600-cell.

This suggests that in any dimension d the triangulations with maximal valence four (or

even maximal valence five for d = 2 or d = 3) are spherical. Moreover, there are finitely

6



many such triangulations in each dimension since we can obtain a volume bound from

metric geometry. We will show that this is in fact true. Furthermore, we obtain a complete

combinatorial classification of such triangulations. After explaining some interesting 3-

dimensional examples we will generalize their constructions and thus obtain many symmetric

triangulations of 3-manifolds of maximal valence six.

Brady, McCammond, and Meier [21] proved that any closed 3-manifold admits a triangu-

lation with valences bounded by six. We will give a simple combinatorial proof of that fact

and obtain a related stronger result that additionally bounds the number of combinatorially

distinct vertex links by three. Previously, Cooper and Thurston [28] showed that there are

five vertex links that suffice to triangulate any closed 3-manifold. Our improvement had

already been observed by Walker (as pointed out in [28]) but was never published.

Interesting in regard to the influence of combinatorial restrictions on topological and

geometric properties is Shephard’s conjecture, that the boundary of any 3-polytope can be

unfolded into the plane without overlap by cutting along edges (while remaining strongly

connected). It is known that there are neither combinatorial nor metric obstructions to this

conjecture. However, so far it has not been possible to combine these two statements into a

proof of the conjecture.

Important steps towards a positive resolution of this conjecture were the insights that

there are no metric obstructions to unfolding 3-polytopes via the source unfolding of Sharir

and Schorr [85] and the star unfolding of Aronov and O’Rourke [3] and that there are no

combinatorial obstructions, that is, every combinatorial 3-polytope is affinely equivalent to

a polytope that has a net; see Ghomi [44].

Aronov and O’Rourke showed that the boundary of a 3-polytope can be unfolded in the

plane if one allows cuts not only along edges but also across 2-faces. In their approach the

metric space that can be isometrically embedded into the plane is obtained by cutting along

shortest paths from a fixed vertex to all other vertices. The resulting isometric embedding

is the star unfolding. This is essentially tied to the 3-dimensional case since Aronov and

O’Rourke make use of a lemma of Alexandrov that every cellular 2-sphere with a facet-wise

Euclidean metric and angles smaller than 2π around vertices is realizable as the boundary

of a convex polytope. This fails in higher dimensions.

The source unfolding of Sharir and Schorr unfolds a polytope starting from some point

not on an edge along shortest paths, that is, via the exponential map at this point. The

problem here is to show that this maps facets (locally) isometrically into the plane. Sharir

and Schorr work around this by slicing the polytope open along the cut locus, the closure

of sets of points with more than one shortest path to the source, and choosing a path for

every (connected component of a) facet and unfolding entire facets along the way. To show

that this gives a well-defined and injective unfolding they further cut the polytope boundary

7



1 Introduction

into peels, obtained by cutting along segments connecting the source to each vertex. This

restricts Sharir and Schorr’s approach to dimension three.

More recently, Miller and Pak [73] gave a proof that there is no metric obstruction to

unfolding any d-dimensional polyhedral space with angles of at most 2π around any subridge

into Rd. They investigate the locus of points at a constant distance from a fixed point

and define an unfolding via the exponential map, similar to Sharir and Schorr’s approach.

Additionally, they are interested in questions of computational complexity.

Here we point out that a correct tool to understand metric obstructions that come

from the combinatorics of the polytope are geometric structures induced by the face lattice.

One can obtain a Euclidean structure on the boundary of a 3-polytope away from the

vertices. Shepherd’s conjecture then can be investigated in terms of star-shaped regions in

the universal covering of a polytope with vertices removed.

A brief summary of the main contributions of this dissertation. This dis-

sertation provides a combinatorial toolbox to approach problems concerning the topology,

geometry, and embeddability of cell complexes. We develop the constraint method for

Tverberg-type results and give numerous applications of it, reproving and strengthening

several Tverberg-type results via a combinatorial reduction from the topological Tverberg

theorem. These results are joint work with Pavle Blagojević and Günter M. Ziegler. Most

importantly, this gives an elementary route to circumvent the codimension requirement in

work of Mabillard and Wagner, and thus gives rise to counterexamples to the topological

Tverberg conjecture. We will attempt to give some indication of the different nature of affine

and continuous maps from simplicial complexes to Euclidean space and how this depends

on divisibility properties of the number of faces involved in an intersection. In particular,

we will also show that the generalized Van Kampen–Flores result fails when the number of

faces is not a prime power.

This combinatorial black box approach can be used in other settings, but we will not de-

velop this theory in this dissertation. Rather, we will hint at the versatility of the constraint

method by reproving a result of Dobbins on the barycenters of points in a certain polytope

skeleton. This is joint work with Pavle Blagojević and Günter M. Ziegler.

The third chapter contains joint work with Frank Lutz and John M. Sullivan. We will

present combinatorial constructions to obtain manifold triangulations of low valence, thus

reproving a result of Brady, McCammond, and Meier [21] on 3-dimensional manifold tri-

angulations with valence bounds in an elementary way. For higher dimensions we provide

the first valence bound that does not depend on the dimension: every PL-manifold admits

a triangulation with valences of subridges bounded by nine. We show that certain local

combinatorics for 3-dimensional triangulations lead to manifolds with isotropic geometry,

8



namely, if every triangle has two edges of valence six and one edge of valence k, then the

underlying manifold is spherical for k = 3, Euclidean for k = 4, and hyperbolic for k = 5.

Every closed 3-manifold admits a triangulation with only these local combinatorics and

varying k ∈ {3, 4, 5}. This is a higher-dimensional analogue of the fact that every surface

admits a triangulation with vertex degrees five, six, and seven, where a surface with con-

stant degree five is spherical, degree six leads to Euclidean surfaces, and triangulations with

constant degree seven are hyperbolic.

Not only will we make use of combinatorial reasoning to obtain topological or geometric

results, we will also investigate the converse direction. We will construct interesting tri-

angulations of the 3-sphere via the Hopf fibration and employ metric geometry to deduce

combinatorial volume bounds – and thus finiteness results – for triangulations with valence

bounds.

In the last chapter we will give a conceptually simple proof of the result of Miller and

Pak [73] that there are no metric obstruction to Shephard’s conjecture in any dimension.

Miller and Pak use the exponential map and unfold along shortest paths. Instead of the

exponential map defined on the boundary of the polytope itself, we construct unfoldings

using the developing map of the Euclidean structure on the (universal covering of the)

polytope boundary away from the subridges. This approach is very similar to Miller and

Pak’s. The advantage of our method is that instead of developing along shortest paths we

can develop along geodesics in the universal covering and thus we are not tied to Dirichlet

domains. This allows for some flexibility.
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2 The constraint method and

Tverberg-type results

Abstract

We reprove (and improve) several Tverberg-type results in an elementary fash-

ion by deducing them from the topological Tverberg theorem via a combinato-

rial reduction: the constraint method. We also apply this method to prove that

any point in an nd-polytope is the barycenter of n points in the d-faces, which

was previously observed by Dobbins [32]. We circumvent the codimension re-

quirement in the generalized Van Kampen–Shapiro–Wu theorem of Mabillard

and Wagner [67] to show the existence of counterexamples to the topological

Tverberg conjecture.

Publication remark. The results of Sections 2.2 through 2.8 are joint with

Pavle Blagojević and Günter M. Ziegler and most of them can be found in [16],

as are the results of Section 2.10 that appeared in the preprint [15]. The results

of Section 2.9 mostly appeared in [42].

Tverberg-type results are concerned with the intersection pattern of faces in a simplicial

complex when mapped to some Euclidean space (or manifold) by an affine or merely contin-

uous map. We will be interested in the following problem: for given d and r characterize the

simplicial complexes K such that for any continuous map f : K → Rd there are r pairwise

disjoint faces σ1, . . . , σr of K such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅. Such a collection of faces

will be called an r-Tverberg partition for f . Points xi ∈ σi with f(x1) = · · · = f(xr) are

called points of Tverberg coincidence for f , while the intersection point f(xi) is an r-fold

Tverberg point for f .

Complete answers to the problem above are not even known if we restrict to simplices

only instead of general simplicial complexes. However, we will show that the characterization

of simplices ∆N such that any continuous map f : ∆N → Rd has an r-fold Tverberg points

depends on divisibility properties of the number r, thus making an important step towards a

more complete understanding of the problem. Moreover, we will be able to deduce numerous

Tverberg-type result for general simplicial complexes from such results for simplices only.

We provide a general combinatorial framework to generate such results in an elementary way,

11



2 The constraint method and Tverberg-type results

and thus reprove and strenghten most Tverberg-type results that were proven by involved

techniques from algebraic topology in the past.

2.1 The topological Tverberg theorem

Tverberg determined the optimal dimension of a simplex ∆N , such that any affine map

f : ∆N → Rd has an r-fold Tverberg point.

Theorem 2.1 (Tverberg [97]). Let r ≥ 2 and d ≥ 1 be integers and N = (r − 1)(d + 1).

Then for any affine map f : ∆N → Rd there are r pairwise disjoint faces σ1, . . . , σr with

f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

This N is indeed optimal. An intersecting family of simplices in Rd of dimensions

d1, . . . , dr with di ≤ d generically intersect in a set of codimension
∑
i d− di = rd−

∑
i di.

Thus, we need d − rd +
∑
i di ≥ 0, which is equivalent to

∑
i di + 1 ≥ (r − 1)(d + 1) + 1.

We can also explicitly construct a very non-generic map ∆(r−1)(d+1)−1 → Rd without r-fold

Tverberg point by splitting the vertices into d + 1 parts of r − 1 points and then sending

each part to one of the vertices of ∆d ⊆ Rd.

Generalizations of Theorem 2.1 to continuous maps have been of considerable interest.

The Radon case r = 2 was settled positively by Bajmóczy and Bárány [5] and led Tverberg

to ask whether there are such versions of his more general theorem in Oberwolfach in May

1978. Tverberg formulated his question even for any polytope of dimension N in place of

the simplex, since this is the version that was proven for r = 2. Notice though, that if

every continuous map f : ∆(r−1)(d+1) → Rd has an r-fold Tverberg point then so does every

continuous map ∂P → Rd from the boundary of an (r − 1)(d + 1)-polytope to Rd, since

polytopes are PL and thus are subdivisions of the simplex; see Grünbaum [48, Sec. 11.1]

or [46] for this specific statement. Tverberg’s question was quickly settled for r a prime:

Theorem 2.2 (Bárány, Shlosman, and Szűcz [8]). Let r ≥ 2 be a prime, d ≥ 1 be an integer,

and N = (r − 1)(d + 1). Then for any continuous map f : ∆N → Rd there are r pairwise

disjoint faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

It is worthwhile to present the outline of two possible proof strategies of this theorem.

The first is similar to the proof given in [8], but reformulated in the way it can be found in

Matoušek’s book [70]. The second proof outlined below is due to Vučić and Živaljević [101].

Their setup can be used to count the number of Tverberg partitions. Some improvements

in that direction are due to Hell [50].

At the heart of both proof strategies is the configuration space – test map scheme. We

will refer to [70] for any notation and facts. Here we briefly repeat the most important facts:

12



2.1 The topological Tverberg theorem

By pt we denote the one-point space and [r] denotes the discrete space with r points.

The join of two abstract (vertex-disjoint) simplicial complexes K and L is the simplicial

complex K ∗L = {σ∪ τ |σ ∈ K, τ ∈ L}. Its geometric realization is the join of the geometric

realizations of K and L as topological spaces. Given topological spaces X and Y we can

represent points in the join X ∗Y abstractly as convex combinations λx+µy with λ, µ ≥ 0,

λ + µ = 1, and x ∈ X, y ∈ Y . Here we have to take care whenever one of the coefficients

λ or µ vanishes, since 0x + 1y = 0x′ + 1y for all x, x′ ∈ X and y ∈ Y . The pairwise

deleted join of K with itself is defined by K∗2∆(2) = {σ ∗ τ | σ, τ ∈ K,σ ∩ τ = ∅}. We will

denote by K∗n and by K∗n∆(2) the n-fold join of K and the n-fold pairwise deleted join of K,

respectively. Joins and pairwise deleted joins of simplicial complexes can be interchanged:

(K∗n)∗r∆(2)
∼= (K∗r∆(2))

∗n.

Let N = (r − 1)(d+ 1) for a prime r ≥ 2 and an integer d ≥ 1. Let f : ∆N → Rd be an

arbitrary continuous map. Consider the configuration space (∆N )∗r∆(2) of joins of r-tuples of

pairwise disjoint faces in ∆N . This simplicial complex is isomorphic to

(∆N )∗r∆(2)
∼= (pt∗(N+1))∗r∆(2)

∼= (pt∗r∆(2))
∗(N+1) ∼= [r]∗(N+1).

By the general fact connX ∗ Y ≥ connX + connY + 2 for the connectivity of the join and

conn[r] = −1 we have conn(∆N )∗r∆(2) = N − 1.

Now we can define the test map

Φ: (∆N )∗r∆(2) → (Rd+1)r, λ1x1 + · · ·+ λrxr 7→ (λ1, λ1f(x1), . . . , λr, λrf(xr)).

This map is Sr-equivariant, where the symmetric group Sr acts by permuting copies of ∆N

on the domain and by permuting copies of Rd+1 on the codomain. Let D = {(y1, . . . , yr) ∈
(Rd+1)r | y1 = · · · = yr} be the diagonal. Then Φ(λ1x1 + · · ·+ λrxr) ∈ D implies that λ1 =

· · · = λr = 1
r and thus f(x1) = · · · = f(xr). The quotient map Φ̂ : (∆N )∗r∆(2) → (Rd+1)r/D

induced by Φ maps to 0 if and only if f has an r-fold Tverberg point. The diagonal D is

exactly the set of points in (Rd+1)r that have non-trivial stabilizers under the action of the

cyclic subgroup Z/r that acts by shifting copies. Here we use that r is prime. Thus, Z/r acts

freely on (Rd+1)r/D away from the origin. Observe that dim(Rd+1)r/D = (r − 1)(d+ 1) =

N = conn(∆N )∗r∆(2) + 1. Now, we finish the proof by applying a lemma of Dold to show that

Φ̂ has a zero.

Lemma 2.3 (Dold [33], see also Matoušek [70]). Let a non-trivial finite group G act on an

n-connected CW complex T and act linearly on an (n+ 1)-dimensional real vector space V .

Suppose that the action of G on V \ {0} is free. Then any G-equivariant map Φ̂ : T → V

has a zero.
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2 The constraint method and Tverberg-type results

We can also show the existence of a zero of the map Φ̂ by degree theoretic methods, similar

to the proof by Vučić and Živaljević [101]. For this we first need to find a suitable orientable

manifold of dimension N − 1 inside (∆N )∗r∆(2). To this end we first observe that S1 embeds

into (∆1)∗r∆(2) even in a Z/r-equivariant way, with Z/r acting freely on the circle S1. Let us

suppose that r 6= 2. Then in particular r is odd and N = (r − 1)(d+ 1) is even. By taking

joins we obtain a Z/r-equivariant embedding SN−1 ∼= (S1)∗N/2 → ((∆1)∗r∆(2))
∗N/2. By inter-

changing the order of the join and deleted join the codomain is isomorphic to (∆N−1)∗r∆(2).

If Φ̂ does not have a zero, we obtain a Sr-map (∆N )∗r∆(2) → SN−1 by normalizing. Thus,

we have the composition of maps SN−1 → (∆N−1)∗r∆(2) → (∆N )∗r∆(2) → SN−1 that we will

denote by Ψ. Since Ψ factors through the (N − 1)-connected space (∆N )∗r∆(2) we know that

deg Ψ = 0. However, the identity is a Z/r-equivariant map SN−1 → SN−1 of degree one, and

any equivariant map between free (closed and orientable) G-manifolds has the same degree

modulo the order of the group; see Kushkuley and Balanov [61]. This is a contradiction.

It might seem reasonable to expect that Theorem 2.2 can be extended to an arbitrary

number r of faces. In 1987 Özaydin was able to prove such an extension for r a power of a

prime with methods from equivariant cohomology theory.

Theorem 2.4 (Topological Tverberg theorem: Özaydin [75]). Let r ≥ 2 be a prime power,

d ≥ 1 be an integer, and N = (r − 1)(d + 1). Then for any continuous map f : ∆N → Rd

there are r pairwise disjoint faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

The cases for r having at least two distinct prime divisors have remained open since

then. We will build on work of Mabillard and Wagner [67] to construct counterexamples in

Section 2.9, thus disproving the following conjecture:

Conjecture 2.5 (Topological Tverberg conjecture). Let r ≥ 2 and d ≥ 1 be integers, and

N = (r−1)(d+ 1). Then for any continuous map f : ∆N → Rd there are r pairwise disjoint

faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

2.2 A general principle

It was generally believed that to prove Tverberg-type results for more general complexes

than simplices one has to extend the topological methods and results of the previous section.

However, one can use the topological Tverberg theorem as a black box to derive other results

by a combinatorial reduction argument based on the pigeonhole principle.

Lemma 2.6. Let r ≥ 2 be a prime power, let d ≥ 1 and c ≥ 1 be integers, and N =

(r − 1)(d+ c+ 1). Then given any continuous maps f : ∆N → Rd and g : ∆n → Rc we find

r points of Tverberg coincidence for f , f(x1) = · · · = f(xr) with g(x1) = · · · = g(xr).
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2.2 A general principle

Proof. Consider the map ∆N → Rd+c, x 7→ (f(x), g(x)) and use the topological Tverberg

theorem 2.4.

We will use the map g to constrain Tverberg partitions. Consequently, we refer to g as

a constraint function. The same theorem holds true for any r if N is replaced by the least

integer M such that every continuous map ∆M → Rd+c admits an r-fold Tverberg point.

Upper and lower bounds on this M will be investigated in Section 2.9.

Theorem 2.7. Let r ≥ 2 be a prime power, d ≥ 1 be an integer, and N = (r−1)(d+2). Let

Σ be a simplicial complex on more than N vertices such that for any partition of the vertex

set of Σ into r parts σ1, . . . , σr at least one part is a face of Σ. Then for any continuous

map f : Σ→ Rd there are r pairwise disjoint faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. We can think of Σ as a subcomplex of the simplex ∆M , where M + 1 > N is the

number of vertices of Σ. Extend the map f in an arbitrary way to a map F : ∆M → Rd.

Consider the constraint function g : ∆M → R, x 7→ dist(x,Σ), where dist is any continuous

function that is zero precisely on Σ, for example, the distance to Σ in a suitable metric

on ∆N . The map g is continuous since Σ is a closed subset of ∆M . By Lemma 2.6 there

exist r points of Tverberg coincidence for F , F (x1) = · · · = F (xr) that all have the same

distance to Σ. Let σi be the support of xi, that is, the minimal face of ∆M containing xi.

Then the σi are pairwise disjoint and contained in a partition of the vertex set of Σ. Thus,

one σj is a face of Σ and g(xj) = 0. Then g(xi) = 0 for all i = 1, . . . , r. This implies σi ⊆ Σ

for all i, since the xi are in the relative interior of the σi.

This suggests a more general approach: Given a continuous map f : ∆N → Rd and

integers r ≥ 2 and d ≥ 1, call a subcomplex Σ ⊆ ∆N Tverberg unavoidable for f if for every

Tverberg partition σ1, . . . , σr for f at least one σi is a face of Σ. Sometimes we will abbreviate

“Tverberg unavoidable for f ” to just “unavoidable.” Clearly the proof of Theorem 2.7 works

for any Tverberg unavoidable subcomplex Σ ⊆ ∆N for f . Moreover, we can also iterate this

to force the Tverberg partition into an intersection of Tverberg unavoidable complexes for

larger N .

Theorem 2.8. Let r ≥ 2 be a prime power, d ≥ 1 and c ≥ 1 be integers, and N =

(r− 1)(d+ c+ 1). Let a continuous map f : ∆N → Rd be given and let Σ1, . . . ,Σc ⊆ ∆N be

Tverberg unavoidable for f . Then there are r pairwise disjoint faces σ1, . . . , σr in Σ1∩· · ·∩Σc

with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. The proof is essentially the same as for Theorem 2.7, but now we consider the con-

straint function g : ∆N → Rc, x 7→ (dist(x,Σ1), . . . , dist(x,Σc)).
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2 The constraint method and Tverberg-type results

In light of the counterexamples to the topological Tverberg conjecture in Section 2.9 we

really need to require that r is a power of a prime. However, for an arbitrary integer r we

get a version of Theorem 2.8, where N = (r − 1)(d+ c+ 1) has to be replaced by the least

integer N such that every continuous map ∆N → Rd+c has an r-fold Tverberg point. The

corollaries we will derive from Theorem 2.8 below hold in a similar way whenever r is not

a power of a prime. In fact, this is a key insight into constructing counterexamples to the

topological Tverberg conjecture.

For N = (r − 1)(d + c + 1) we do not need to require that r is a prime power if the

map f as well as the constraint function g are affine. In this case we can use Tverberg’s

original theorem as a black box result. For Σ ⊆ ∆N the map g : ∆N → R, x 7→ dist(x,Σ) is

affine if and only if Σ is an induced subcomplex, that is, Σ is a subsimplex of ∆N . We can

use this to show that the (topological) Tverberg theorem for dimension d + 1 and r faces

implies the validity of the theorem for dimension d and the same number of faces. Also see

de Longueville [63, Prop. 2.5] for this observation, where an extended target space and the

unavoidability of a certain subcomplex is used.

Theorem 2.9. Let r ≥ 2, d ≥ 1, and N ≥ r − 1 be integers. If every affine (respectively

every continuous) map F : ∆N → Rd+1 admits an r-fold Tverberg point, then every affine

(respectively every continuous) map f : ∆N−r+1 → Rd admits an r-fold Tverberg point.

Proof. We can think of ∆N−r+1 as a subcomplex of ∆N . As remarked above ∆N → R, x 7→
dist(x,∆N−r+1) is an affine map. It remains to be shown that ∆N−r+1 is Tverberg unavoid-

able. Let σ1, . . . , σr be faces of ∆N that are pairwise disjoint. Then at most r − 1 of them

can have a vertex outside of ∆N−r+1. Thus, one face σj is contained in ∆N−r+1.

2.3 Weak colored versions of the topological Tverberg

theorem

While investigating the number of halving planes of a point set in R3 Bárány, Füredi, and

Lovász [6] realized the need for a “colored version” of Tverberg’s theorem, at least for points

in the plane. They prove the following:

Lemma 2.10 (Bárány, Füredi, and Lovász [6, Lemma 3]). There is a positive integer t,

such that given 3t points in general position in R2 partitioned into three sets A,B and C,

each of cardinality t, there exist nine points ai ∈ A, bi ∈ B, ci ∈ C, i = 1, 2, 3, with⋂
i conv{ai, bi, ci} 6= ∅.

Bárány, Füredi, and Lovász point out that they can prove that t ≤ 4 but for brevity’s sake

only present a proof of t ≤ 7. Phrasing Lemma 2.10 in terms of affine maps f : ∆3t−1 → R2
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we think of A, B, and C as colors assigned to the vertices of ∆3t−1. Faces that do not contain

edges with both endpoints in the same color class are called rainbow. The subcomplex R

of ∆3t−1 of all rainbow faces is the rainbow complex. Lemma 2.10 is then a Tverberg-type

result for the rainbow complex corresponding to the colors A, B, and C and r = 3.

As r = 3 is a prime power we can try to apply our general setup of unavoidable sub-

complexes, that is, attempt to obtain Lemma 2.10 as a corollary of the topological Tverberg

theorem. Let t ≤ 5, then the subcomplex of faces of ∆2t−1 that have at most one vertex

in A is unavoidable. In fact, let us note the following more general lemma for a single color

class A.

Lemma 2.11. Let r ≥ 2 be a prime power, d ≥ 1, and N = (r − 1)(d + 2). Let A ⊆ ∆N

be any set of at most 2r − 1 vertices, and let f : ∆N → Rd be any continuous map. Then

there are r pairwise disjoint faces σ1, . . . , σr of ∆N with |σi ∩ A| ≤ 1 such that f(σ1) ∩ · · ·
∩ f(σr) 6= ∅.

Proof. The subcomplex Σ of faces with at most one vertex in A is Tverberg unavoidable: let

σ1, . . . , σr be pairwise disjoint faces of ∆N and suppose that each σi has at least two vertices

in A. Then all the σi have at least 2r vertices in A since they are vertex-disjoint, but this is

in contradiction to |A| ≤ 2r−1. Thus, Σ contains a Tverberg partition by Theorem 2.8.

If we assume that |A| ≥ r then we can also state this theorem with equalities |σi∩A| = 1

by adding a point in A to every face σi that is disjoint from A. The following “colored Radon

theorem” is a direct consequence for r = 2.

Corollary 2.12 (Colored Radon: Vrećica and Živaljević [100, Cor. 7]). Let d ≥ 1, and

let the map f : ∆d+2 → Rd be continuous and let A ⊆ ∆d+2 be a set of three vertices.

Then there are disjoint faces σ1, σ2 in ∆d+2 with |σ1 ∩ A| ≤ 1 and |σ2 ∩ A| ≤ 1 such that

f(σ1) ∩ f(σ2) 6= ∅.

Coming back to Lemma 2.10 we have shown that the rainbow complex is an intersection

of three unavoidable complexes, one for each of the three color classes. Thus, by Theorem 2.8

the rainbow complex has a 3-fold Tverberg point if N ≥ (r− 1)(d+ c+ 1) = 2 · 6 = 12. This

means we obtain a Tverberg-type result for t = 5, since then 3t − 1 ≥ N = 12. Of course,

we can additionally forget about two arbitrary vertices.

Bárány and Larman [7] proved sharper versions and generalized to any r and d = 2.

Let the vertices of ∆3r−1 be partitioned into three color classes of cardinality r. Denote

the corresponding rainbow complex by R. The main result of [7] is that any affine map

f : R→ R2 has an r-fold Tverberg point. Bárány and Larman asked whether this generalizes

to higher dimensions. In particular, they asked for the least integer N = N(r, d) such that

if the vertices of ∆N−1 are partitioned into d+ 1 color classes of cardinality at least r, then
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2 The constraint method and Tverberg-type results

any affine map f : R → Rd has an r-fold Tverberg point. Here R ⊆ ∆N−1 denotes again

the corresponding rainbow complex. Bárány and Larman conjectured that the trivial lower

bound N(r, d) ≥ r(d+ 1) is tight, and their result above shows that this is true for d = 2.

We will refer to the statement N(r, d) = r(d+1) as the Bárány–Larman conjecture. Still

in the same paper [7] an argument of Lovász is presented showing N(2, d) = 2(d+ 1) using

the Borsuk–Ulam theorem. Indeed, for r = 2 the rainbow complex of d + 1 color classes

of size two is obtained from ∆2(d+1)−1 by deleting a perfect matching from the 1-skeleton.

This yields the boundary of the (d + 1)-dimensional crosspolytope. An application of the

Borsuk–Ulam theorem finishes the proof of N(2, d) = 2(d+ 1) noticing that for any x with

support σ in the crosspolytope the antipodal point −x is contained in the disjoint face −σ.
This suggests several routes to explore: application of the Borsuk–Ulam theorem does

not require an affine map. Thus, the proof above works to show that N(r, d) = 2(d + 1)

even for the more general topological analogue of the Bárány–Larman conjecture. As with

the general Tverberg theorem it is interesting to explore whether there might be differences

between the affine and continuous versions of this conjecture.

Moreover, for the case r = 2 the points of Tverberg coincidence are not arbitrary points

within their disjoint faces but they are precisely antipodal points of each other. Another

way to phrase this is that both points x and −x have the same barycentric coordinates with

respect to each color class. That is, if x =
∑
αivi is a convex combination of vertices vi,

where vi has color i, then −x =
∑
αi(−vi) has the same coefficients in the convex com-

bination, where the vertex −vi again has color i. Soberón [87] generalized this result for

affine maps to arbitrary r and that will be the topic of Section 2.5. There we will also give

a simple proof of Soberón’s result using our constraint setup and in the same way obtain a

continuous analogue of his theorem for r a prime power.

Lastly, even establishing that the numbers N(r, d) are finite (exist) for every r and d

is a highly non-trivial problem. Blagojević, Matschke, and Ziegler [18] proved the Bárány–

Larman conjecture for r+1 a prime. Their approach can also be used to show that N(r, d) ≤
2(d+1)(r−1)+1 for r prime [13]. Other bounds on N(r, d) are not known. We will remark

on their theorem and related results in Section 2.4.

Coming back to the problem that motivated these colored versions of Tverberg’s theorem

– finding asymptotic upper bounds on the number of halving planes of a point set in R3 –

one actually does not need to bound N(r, d) to obtain higher-dimensional versions, that is,

bounds on the number of halving hyperplanes for point sets in Rd. For this it is sufficient to

establish that the numbers T (r, d) are finite, where t = T (r, d) is the least integer such that

every affine f : R→ Rd has an r-fold Tverberg point, where R is the rainbow complex of d+1

color classes of size at least t. The problem was introduced by Živaljević and Vrećica [109].

They established the finiteness of T (r, d) for any r and d by topological means. In particular,
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their results still hold true for merely continuous f : R→ Rd.

Theorem 2.13 (Živaljević and Vrećica [109]). For any prime r and d ≥ 1 an integer, we

have T (r, d) ≤ 2r − 1. This implies T (r, d) ≤ 4r − 1 for arbitrary r.

The bound T (r, d) ≤ 2r − 1 can be extended to prime powers r, as noted by Živaljević

in [108]. Our proof of Lemma 2.10 was not tied to the fact that d = 2, so we can immediately

generalize it to higher dimensions d. We thus obtain a result that is slightly stronger than

Theorem 2.13.

Theorem 2.14 (Weak colored Tverberg). Let r ≥ 2 be a prime power, d ≥ 1, N =

(r − 1)(2d + 2) and let f : ∆N → Rd be continuous. If the vertices of ∆N are colored by

d+ 1 colors, where each color class has cardinality at most 2r− 1, then there are r pairwise

disjoint rainbow faces σ1, . . . , σr of ∆N such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. For each fixed color i, the subcomplex Σi of faces that have at most one vertex of

color i is Tverberg unavoidable.

Note that in Theorem 2.14 the fact that all vertices can be colored with d + 1 colors of

size at most 2r−1 implies that N + 1 ≤ (2r−1)(d+ 1). The theorem is “weak” as it needs a

large number of points/vertices to reach its conclusion, namely N + 1 = (r− 1)(2d+ 2) + 1,

while the optimal result requires only N +1 = (r−1)(d+1)+1 of them, as in Theorem 2.16

below. The special case of Theorem 2.14 when all color classes have the same cardinality

2r − 1, and thus N + 1 = (d + 1)(2r − 1), is Theorem 2.13. As we do not need to require

all color classes to have the same size (a simple observation that apparently was first used

by Blagojević, Matschke, and Ziegler [18]), we need d points/vertices less to force a colored

Tverberg partition.

Theorem 2.14 leaves some flexibility in the choice of color classes: For example, we could

consider d colors of cardinality 2r− 2 and one color class of size 2r− 1. Instead of shrinking

the size of color classes we can also allow fewer color classes. This gives a colored Tverberg

theorem “of type B” (in terminology of Vrećica and Živaljević introduced in [99]), that is,

fewer than d+ 1 colors are possible. This naturally leads to Tverberg-type theorems, where

the dimensions of faces in a Tverberg partition are bounded. We will discuss these theorems

in Section 2.6.

We obtain the following strengthening of Theorem 2.14, which in the special case where

all color classes have the same size is the main result of [99].

Theorem 2.15. Let r ≥ 2 be a prime power, d ≥ 1, c ≥ d r−1
r de+1, and N = (r−1)(d+1+c).

Let f : ∆N → Rd be continuous. If the vertices of ∆N are divided into c color classes, each of

them of cardinality at most 2r−1, then there are r pairwise disjoint rainbow faces σ1, . . . , σr

of ∆N such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.
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2 The constraint method and Tverberg-type results

Proof. We need that all N + 1 vertices can be colored by c colors of cardinality at most

2r − 1 to use Theorem 2.8, that is, we need c(2r − 1) ≥ N + 1, which is equivalent to

c ≥ d r−1
r de+ 1.

2.4 Optimal colored versions of the topological Tverberg

theorem

To apply the constraint method of Theorem 2.8 we need more than the optimal number

(r−1)(d+1)+1 of points. However, even for the optimal number, that is, for the topological

Tverberg theorem, one can restrict the Tverberg partitions. In other words there is a proper

subcomplex Σ ⊆ ∆(r−1)(d+1) such that each continuous f : Σ → Rd has an r-fold Tverberg

point, at least for the case r ≥ 3.

Theorem 2.16 (Blagojević, Matschke, and Ziegler [18]). Let r ≥ 2 be a prime, d ≥ 1 be an

integer, and N = (r−1)(d+ 1). Suppose the N + 1 vertices of ∆N are partitioned into color

classes C0, . . . , Cm each of size at most r − 1. Then for any continuous map f : ∆N → Rd

there are r pairwise disjoint rainbow faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

As corollaries Blagojević, Matschke, and Ziegler obtain that T (r, d) = r for r+1 a prime,

which implies T (r, d) ≤ 2r−2 for arbitrary r and the asymptotic bound T (r, d) ≤ (1+o(1))r

for r →∞.

For Theorem 2.8 we used the topological Tverberg theorem as a black box result to

reduce other Tverberg-type results to it via a purely combinatorial reduction. Theorem 2.16

is properly stronger than the topological Tverberg theorem for r an odd prime and so we

can use it as a black box result in place of the topological Tverberg theorem. We will give

some applications of this in this section.

Theorem 2.17. Let r ≥ 2 be a prime, d ≥ 1, ` ≥ 0, and k ≥ 0. Let the vertices of ∆N be

colored by `+k colors C0, . . . , C`+k−1 with |C0| ≤ r−1, . . . , |C`−1| ≤ r−1 and |C`| ≥ 2r − 1,

. . . , |C`+k−1| ≥ 2r − 1, where |C0| + · · · + |C`−1| > (r − 1)(d − k + 1) − k. Then for every

continuous map f : ∆N → Rd there are r pairwise disjoint rainbow faces σ1, . . . , σr of ∆N

such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. Without loss of generality we can assume that |C`| = · · · = |C`+k−1| = 2r − 1, by

deleting any additional vertices. Then the simplex ∆N has still N+1 = |C0|+ · · ·+ |C`−1|+
k(2r − 1) vertices, so

N = |C0|+ · · ·+ |C`−1|+ k(2r − 1)− 1 ≥ (r − 1)(d+ k + 1).
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Now we split each of the color classes C`, . . . , C`+k−1 into new color sub-classes of cardinality

at most r − 1. (For example, singletons will do.) Let Σi be the subcomplex of all faces of

∆N with at most one vertex in Ci. Thus Theorem 2.16 together with the proof technique of

Theorem 2.8 yields that there is a Tverberg r-partition σ1, . . . , σr where each of the simplices

σi is a rainbow simplex with respect to the refined coloring where the large color classes have

been split into sub-classes, and it also lies in Σ`∩· · ·∩Σ`+k−1, that is, it uses at most one of

the color sub-classes of each of C`, . . . , C`+k−1 and thus respects the original coloring.

This Theorem 2.17 contains Theorem 2.16 as the special case k = 0, and also Vrećica

and Živaljević’s [100, Prop. 5] as the special case |C0| = · · · = |C`−1| = r − 1 and |C`| =

· · · = |C`+k−1| = 2r − 1. If we further specialize to r = 2 and k = 1, this in turn reduces to

the “colored Radon” Corollary 2.12, as noted in [100, Cor. 7]. For ` = 0 we get Vrećica and

Živaljević’s colored Tverberg theorem “of type B,” see [99] and [100, Cor. 8].

As a second instance of combining Theorem 2.16 with the proof technique of Theorem 2.8,

we obtain from our method the following new result about colored Tverberg partitions

with restricted dimensions. For this we need the unavoidability of the d r−1
r de-skeleton

of ∆(r−1)(d+2):

Lemma 2.18. Let r ≥ 2 and d ≥ 1 be integers. Let N = (r − 1)(d + 2) and k ≥ d r−1
r de.

Then the k-skeleton ∆
(k)
N of ∆N is Tverberg unavoidable.

Proof. Let σ1, . . . , σr be a partition of the vertex set of ∆N into r parts, and suppose that

|σi| ≥ k+ 2 for all i. Then the σi involve at least r(k+ 2) ≥ (r− 1)d+ 2r > N + 1 vertices.

This is a contradiction since the σi can involve at most N + 1 vertices. Thus, there is a j

such that |σj | ≤ k + 1, which means σj is a face of ∆
(k)
N .

As an immediate consequence of this and using Theorem 2.16 as a black box (in place

of the topological Tverberg theorem as in Theorem 2.8) we get the following:

Theorem 2.19. Let r ≥ 2 be a prime, d ≥ 1, N = (r− 1)(d+ 2), and k ≥ d r−1
r de. Let the

vertices of ∆N be colored by m + 1 colors C0, . . . , Cm with |Ci| ≤ r − 1 for all i. Then for

every continuous map f : ∆N → Rd there are r pairwise disjoint rainbow faces σ1, . . . , σr

of ∆N with dimσi ≤ k for 1 ≤ i ≤ r, such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

2.5 Colored versions with equal barycentric coordinates

Let the vertices of ∆N be partitioned into ` color classes C0, . . . , C`−1. Every point x ∈ R
in the corresponding rainbow complex R has unique barycentric coordinates x =

∑`−1
i=0 αivi

with 0 ≤ αi ≤ 1 and vi a vertex in the color class Ci for 0 ≤ i ≤ ` − 1. We say that

two points x, y in the rainbow complex have equal barycentric coordinates if x =
∑`−1
i=0 αivi
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2 The constraint method and Tverberg-type results

and y =
∑`−1
i=0 αiwi, where vi and wi are vertices in the color class Ci. The following

theorem is a topological version of Soberón’s [87] “Tverberg’s theorem with equal barycentric

coordinates.”

Theorem 2.20 (Topological Tverberg with equal barycentric coordinates). Let r ≥ 2 be a

prime power, d ≥ 1, and N = r((r − 1)d + 1) − 1. Let f : ∆N → Rd be continuous. If the

vertices of ∆N are partitioned into (r− 1)d+ 1 color classes of size r, then there are points

x1, . . . , xr with equal barycentric coordinates in r pairwise disjoint rainbow faces σ1, . . . , σr

of ∆N whose images intersect, with f(x1) = · · · = f(xr).

Proof. Let the color classes be C0, . . . , C(r−1)d. Every point x ∈ ∆N is a unique convex

combination x =
∑
αivi of the vertices of ∆N . For 0 ≤ k ≤ (r − 1)d let gk : ∆N → R

be given by
∑
αivi 7→

∑
vi∈Ck

αi. Each gk is an affine function that is equal to 1 on the

simplex conv(Ck) ⊆ ∆N with vertex set Ck and 0 on all other vertices of ∆N .

By Lemma 2.6 there are x1, . . . , xr ∈ ∆N with xi ∈ σi, where the σi ⊆ ∆N are pairwise

disjoint and f(x1) = · · · = f(xr) as well as gk(x1) = · · · = gk(xr) for 1 ≤ k ≤ (r − 1)d; that

is, the lemma does not guarantee equality for g0. However, as g0 + · · ·+ g(r−1)d = 1 we also

obtain g0(x1) = · · · = g0(xr).

Suppose that for some k, the face σj has at least one vertex in Ck. As we may again

assume that σj is the minimal face of ∆N that contains xj , this implies that gk(xj) 6= 0 and

hence gk(xi) 6= 0 for 1 ≤ i ≤ r. Thus, all r faces σi have at least one vertex in Ck. However,

as |Ck| = r and the σi are pairwise disjoint, every σi has exactly one vertex in Ck. Since

this is true for every color, the σi belong to the rainbow complex.

Thus, the numbers gk(xi) for 0 ≤ k ≤ (r − 1)d are exactly the barycentric coordinates

of xi. These are equal for all the xi since gk(x1) = · · · = gk(xr) for all k.

In the preceding theorem the number N is large enough to allow for (r−1)d constraints.

Think of the simplex ∆(r−1)d as embedded into R(r−1)d. Then the constraint function could

be defined as the affine function mapping all vertices in color class Ci to vertex number i

of ∆(r−1)d.

Soberón in [87, Section 4] suggests an alternative idea for how to obtain the topological

analogue of his result that we have obtained using our ansatz. We also obtain Soberón’s

original result in the same way:

Theorem 2.21 (Tverberg with equal barycentric coordinates: Soberón [87]). Let r ≥ 2,

d ≥ 1, and N = r((r − 1)d + 1) − 1. Let f : ∆N → Rd be affine. If the vertices of ∆N are

partitioned into (r−1)d+1 color classes of size r, then there are points x1, . . . , xr with equal

barycentric coordinates in r pairwise disjoint rainbow faces σ1, . . . , σr of ∆N whose images

intersect, with f(x1) = · · · = f(xr).
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Proof. The proof is the same as for Theorem 2.20. The constraint functions are affine.

Soberón shows that the number of color classes and the number of points per color class

are optimal for the theorem to hold. Thus, the topological version, Theorem 2.20, is also

optimal in that sense.

2.6 Prescribing dimensions for faces in a Tverberg

partition

Tverberg’s theorem concerns maps from a high-dimensional complex to Euclidean space of

lower dimension. Oftentimes one is interested in Tverberg-type theorems for complexes of

positive codimension in the target space. For example, such a result will be a key step

towards the counterexamples of Section 2.9. Of particular interest are results about embed-

dings of complexes. In fact, one such non-embeddability result predates Tverberg’s theorem

by more than three decades.

Theorem 2.22 (Van Kampen–Flores theorem: Van Kampen [54] and Flores [38]). For

d ≥ 1 and every continuous map f : ∆
(d)
2d+2 → R2d there are two disjoint faces σ1 and σ2

of ∆
(d)
2d+2 with f(σ1) ∩ f(σ2) 6= ∅.

Here K(d) denotes the d-skeleton of K, that is, the faces in K of dimension at most d.

This theorem follows quite simply from Theorem 2.7: given a partition of the 2d+3 vertices

of ∆2d+2 into two sets, one of them must have at most d+ 1 elements. Before generalizing

this to r-fold intersections, we will make some remarks.

For d = 1 the Van Kampen–Flores theorem establishes the non-planarity of K5 in the

strong form that even two vertex-disjoint edges intersect under f . A simple reformulation

of Theorem 2.22 is that any map f : ∆
(dd/2e)
d+2 → Rd has a 2-fold Tverberg point, where the

odd-dimensional case follows by including Rd into Rd+1. We will give a strengthening of

this theorem below.

Comparing the Van Kampen–Flores theorem to the topological Radon theorem, that is,

the r = 2 case of the topological Tverberg theorem that any map f : ∆d+1 → Rd has a 2-fold

Tverberg point, we see that adding a point to ∆d+1 allows us to bound the dimension of

faces in a Radon partition.

As we have just seen the topological Radon theorem implies the Van Kampen–Flores

theorem. However, chronologically the Van Kampen–Flores theorem (1932/33) was proven

half a century earlier than the topological Radon theorem (1979). In fact, the two theorems

can be deduced from one another: Let f : ∆d+1 → Rd be continuous. Then we can regard

the join of the map f with itself as a map to R2d+1, explicitly, consider F : ∆d+1 ∗∆d+1 →

23



2 The constraint method and Tverberg-type results

R2d+1, λ1x1 +λ2x2 7→ (λ1, λ1f(x1), λ2f(x2)). Now F (λ1x1 +λ2x2) = F (µ1y1 +µ2y2) implies

λ1 = µ1 and, thus, f(x1) = f(y1) or for λ1 = 0 we have f(x2) = f(y2). This shows that if

F has a 2-fold Tverberg point then so does f , and F has such a point of coincidence by the

Van Kampen–Flores theorem since ∆d+1 ∗∆d+1
∼= ∆2d+3. We will use this construction in

Section 2.9 to investigate the asymptotics of the optimal N for maps ∆N → Rd to have an

r-fold Tverberg point if r is not a power of a prime.

Theorem 2.23 (Sarkaria [81] and Volovikov [98]). Let r ≥ 2 be a prime power, d ≥ 1 and

k ≥ r−1
r d be integers, and N = (r − 1)(d+ 2). Then for any continuous map f : ∆N → Rd

there are r pairwise disjoint faces σ1, . . . , σr with f(σ1)∩ · · · ∩ f(σr) 6= ∅ and dimσi ≤ k for

all i = 1, . . . , r.

This N is optimal as can be seen by placing r− 1 points at each vertex of the d-simplex

in Rd and r − 1 points in the barycenter. The statements of Sarkaria’s and Volovikov’s

theorems are much more involved and more general than the theorem we stated above.

We will discuss the prerequisites of these theorems in Section 2.8, where we discuss j-wise

disjoint Tverberg-type theorems.

Proof of Theorem 2.23. This is a corollary of Theorem 2.7 and Lemma 2.18, which states

that the k-skeleton of ∆N is Tverberg unavoidable.

Example 2.24. For d = r = 3 and f an affine map, this theorem asserts that given eleven

points in R3, one can find three pairwise disjoint sets of three points whose convex hulls

intersect. Ten points are not sufficient for this, as by the discussion above one needs more

than (r − 1)(d + 2) = 10 points. (This solves a problem discussed by Matoušek in [70,

Example 6.7.4].)

It is noteworthy that no affine version of Theorem 2.23 is known for r not a prime power.

Not even any bound on N is known in these cases. Moreover, some cases of Theorem 2.23

are wrong for r not a power of a prime and for any N , see Section 2.9. A proof of an

affine version of the Van Kampen–Flores theorem via Gale transforms is due to Soberón [87,

Corollary 8].

We can interpolate between colored versions of the topological Tverberg theorem and

versions with bounded dimension of the faces in a Tverberg partition.

Theorem 2.25. Let r ≥ 2 be a prime power, d ≥ 1 and c ≥ 0 be integers, and N =

(r − 1)(d+ c+ 1). Let A1, . . . , Ac pairwise disjoint sets of vertices of ∆N and let a1, . . . , ac

be non-negative integers with |Ai| ≤ (ai + 1)r − 1 for each i. Then for any continuous map

f : ∆N → Rd there are r pairwise disjoint faces σ1, . . . , σr of ∆N with f(σ1)∩· · ·∩f(σr) 6= ∅
and each σi has at most aj vertices in Aj.
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Proof. We only need to check that the complex of faces with at most aj vertices in the set Aj
is Tverberg unavoidable to use Theorem 2.8. But this is again an immediate consequence of

the pigeonhole principle: if each face σi has at least aj+1 vertices in Aj , then |Aj | ≥ r(aj+1),

a contradiction. Thus, the subcomplex of faces with at most aj vertices in each Aj is the

intersection of c Tverberg unavoidable subcomplexes.

This theorem has the following special cases:

• For c = 0 this gives the topological Tverberg theorem (but, of course, we used this

theorem in the proof).

• For c = 1 we get Theorem 2.23.

• For a1 = · · · = ac = 1 we get Theorems 2.14 and 2.15.

• More generally, for a1 = · · · = ac this theorem was recently reproven by Jojić, Vrećica,

and Živaljević [51] via shellability of multiple chessboard complexes.

• For r = 2 and |Ai| = 2ai + 1 we get the non-embeddability of Sarkaria’s Kuratowski

complexes [82].

One can ask for a further strengthening of Theorem 2.23 where we would not put the

same dimension bound on all simplices σi.

Theorem 2.26. Let r ≥ 2 be a prime power, d ≥ 1, N ≥ (r − 1)(d+ 2), and

r(k + 1) + s > N + 1 for integers k ≥ 0 and 0 ≤ s < r.

then for every continuous map f : ∆N → Rd there are r pairwise disjoint faces σ1, . . . , σr of

∆N such that f(σ1)∩· · ·∩f(σr) 6= ∅, dim(σi) ≤ k for all i, and the number ` of simplices σi
with dimσi = k satisfies `(k + 1) ≤ N − (r − s) + 1.

Proof. The complex ∆
(k−1)
N ∪ ∆

(k)
N−(r−s) is Tverberg unavoidable: If none of the faces

σ1, . . . , σr lies in ∆
(k−1)
N ∪ ∆

(k)
N−(r−s), then they all have dimension at least k, and since

they are disjoint only r − s of them can involve one of the last r − s vertices, so s of them

must have dimension at least k + 1. For this r(k + 1) + s vertices are needed.

Thus, there is a Tverberg partition σ1, . . . , σr with all simplices in the unavoidable sub-

complex, so we get dimσi ≤ k. Moreover, the simplices σi altogether can take up only

N + 1 ≤ r(k + 1) + s vertices.

The following generalization was conjectured in [16]:

Conjecture 2.27. Let r ≥ 2 be a prime power, d ≥ 1, N ≥ (r − 1)(d+ 2), and

r(k + 1) + s > N + 1 for integers k ≥ 0 and 0 ≤ s < r.
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then for every continuous map f : ∆N → Rd there are r pairwise disjoint faces σ1, . . . , σr

of ∆N such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅, with dimσi ≤ k + 1 for 1 ≤ i ≤ s and dimσi ≤ k

for s < i ≤ r.

This conjecture was recently proven by Jojić, Vrećica, and Živaljević [52] with topological

methods and (as in [51]) via shellability of multiple chessboard complexes. They show the

following:

Theorem 2.28 (Jojić, Vrećica, and Živaljević [52]). Let r ≥ 2 be a prime power, d ≥ 1,

N ≥ (r− 1)(d+ 2), and rk+ s ≥ (r− 1)d for integers k ≥ 0 and 0 ≤ s < r. Then for every

continuous map f : ∆N → Rd, there are r pairwise disjoint faces σ1, . . . , σr of ∆N such that

f(σ1) ∩ · · · ∩ f(σr) 6= ∅, with dimσi ≤ k + 1 for 1 ≤ i ≤ s and dimσi ≤ k for s < i ≤ r.

More generally, Roland Bacher has asked on mathoverflow [4] which dimensions di =

dimσi could be prescribed for a Tverberg partition if the number of points N is sufficiently

large. We have already noted that a Tverberg r-partition in which the codimensions of the

σi add to more than d will not exist for an affine general position map, so we need to assume

that
∑
i(d−di) ≤ d. Also arbitrarily large families of N points on the moment curve, whose

convex hulls are neighborly polytopes, show that we cannot force that dimσi < bd2c for

any i. See also Haase [49].

Theorem 2.29 (Van Kampen–Flores, sharpened). Let d ≥ 1. Then for every continuous

map f : ∆d+2 → Rd there are two disjoint faces σ1, σ2 of ∆d+2 such that dimσ1 = dd2e,
dimσ2 = bd2c, and f(σ1) ∩ f(σ2) 6= ∅.

Proof. The case d even is Theorem 2.22. It remains to settle the case when d is odd, with

dimσ1 = d−1
2 and dimσ2 = d+1

2 . In terms of Theorem 2.26, in this situation we have r = 2,

k = d+1
2 , s = 1, and thus there is a Tverberg 2-partition σ1, σ2 with dimσi ≤ d+1

2 , where at

most ` ≤
⌊N−(r−s)+1

k+1

⌋
=
⌊ (d+2)−(2−1)+1

d+1
2 +1

⌋
= 1 of the σi have dimension k = d+1

2 .

2.7 Embedding graphs into 3-space

Theorem 2.29 has consequences for embeddings of graphs into R3. Two disjoint closed curves

in R3 are unlinked if each can be filled with a disk that is disjoint from the other curve.

Otherwise the closed curves are called linked. A graph G is called intrinsically linked if for

every embedding f : G→ R3 we can find two vertex-disjoint cycles in G whose images under

f are linked curves. Here we will give a short and simple proof of the Conway–Gordon–Sachs

theorem that K6 is intrinsically linked.

Theorem 2.30 (Conway and Gordon [26], Sachs [80]). The complete graph on six vertices

K6 is intrinsically linked.
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Proof. Suppose there is an embedding f : K6 → R3 such that any two vertex-disjoint cycles

are unlinked. These cycles are necessarily 3-cycles. By definition of unlinked we can fill

in these cycles with disks which are disjoint from the cycle supported on the other three

vertices. In this way we can construct a map from the 2-skeleton ∆
(2)
5 of the 5-simplex

to R3, where any 2-face is disjoint from any vertex-disjoint edge. This is in contradiction to

Theorem 2.29.

Actually this proof shows more: a 2-dimensional complex K admits a map f : K → R3

such that for σ1 a triangle in K and σ2 an edge vertex-disjoint from σ1 we have f(σ1) ∩
f(σ2) = ∅ if and only if the 1-skeleton K(1) of K admits a linkless embedding into R3.

As another instance of a Hanani–Tutte theorem in dimension d = 3 Robertson, Seymour,

and Thomas [79] showed that a graph admits a linkless embedding if and only if it admits a

panelled embedding. Here panelled means that the disks that show that curves are unlinked

can be chosen disjoint from the rest of the graph, that is, also disjoint from edges that have

vertices in common with the cycle but do not belong to the cycle itself.

Robertson, Seymour, and Thomas classify intrinsically linked graphs as those that have

as a minor one of the seven graphs obtainable from K6 by Y −∆ and ∆−Y exchanges. This

also classifies those complexes K such that for any map f : K → R3 there is a triangle σ1

and a disjoint edge σ2 with f(σ1) ∩ f(σ2) 6= ∅ as those whose 1-skeleton K(1) have a minor

as above.

We note that we could use Theorem 2.29 to obtain higher-dimensional versions of the

Conway–Gordon–Sachs theorem.

2.8 j-wise disjoint Tverberg partitions

We described Tverberg-type results as theorems about the intersection pattern of pairwise

disjoint faces in a simplicial complex when mapped to a Euclidean space. We motivated the

requirement of faces being pairwise disjoint by higher-dimensional versions of the Hanani–

Tutte theorem. Here we will further reinforce that it is sufficient to investigate collections

of pairwise disjoint faces by showing that j-wise disjoint versions of Tverberg-type result

follow by another simple combinatorial reduction. A family of (not necessarily distinct)

faces σ1, . . . , σr is called j-wise disjoint if all subfamilies of at most j faces have empty

intersection.

A j-wise disjoint version of the topological Tverberg theorem is due to Sarkaria for the

number of faces r a prime, and due to Volovikov for r a prime power. We will give a simple

proof below. Also, our proof extends to the affine case for any r, which is a new result.
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Theorem 2.31 (j-wise disjoint topological Tverberg: Sarkaria [82], Volovikov [98]). Let

r ≥ 2 be a prime power, d ≥ 1, 2 ≤ j ≤ r, and

N + 1 > r−1
j−1 (d+ 1). (2.1)

Then for every continuous map f : ∆N → Rd there are j-wise disjoint faces σ1, . . . , σr of ∆N

such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. Let N ′ := (N + 1)(j − 1) − 1, let p be the natural simplicial projection ∆N ′ ∼=
∆
∗(j−1)
N → ∆N that maps each of the j − 1 copies of a vertex v ∈ ∆N in the join ∆

∗(j−1)
N to

the vertex v, and set f ′ := f ◦ p : ∆N ′ → Rd.

We have N ′ ≥ (r − 1)(d+ 1). Thus, by the topological Tverberg theorem, Theorem 2.4,

there are pairwise disjoint faces σ′1, . . . , σ′r ⊆ ∆N ′ such that f ′(σ′1) ∩ · · · ∩ f ′(σ′r) 6= ∅.
By definition of f ′ this is equivalent to f(p(σ′1)) ∩ · · · ∩ f(p(σ′r)) 6= ∅. Now, let σ1 =

p(σ′1), . . . , σr = p(σ′r). The faces σi of ∆N are j-wise disjoint: if j of the faces σi had a

vertex in common, then at least two of the faces σ′i would share a vertex. However, these

faces are pairwise disjoint.

Theorem 2.32 (j-wise disjoint Tverberg). Let r ≥ 2, d ≥ 1, 2 ≤ j ≤ r, and

N + 1 > r−1
j−1 (d+ 1). (2.2)

Then for every affine map f : ∆N → Rd there are j-wise disjoint faces σ1, . . . , σr of ∆N

such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. For affine maps f : ∆N → Rd we need not even assume that r is a prime power—if we

use Tverberg’s original theorem as the black box result. This is possible since the projection

map p : ∆
∗(j−1)
N → ∆N as in the proof of Theorem 2.31 is affine.

Sarkaria and Volovikov proved a j-wise disjoint version of Theorem 2.23. We will discuss

the theorem below and then observe that we obtain a stronger result using our methods.

Theorem 2.33 (Generalized Van Kampen–Flores: Sarkaria [81] and Volovikov [98]). Let

r ≥ 2 be a prime power, 2 ≤ j ≤ r, d ≥ 1, and k < d such that there is an integer m ≥ 0

that satisfies

(r − 1)(m+ 1) + r(k + 1) ≥ (N + 1)(j − 1) > (r − 1)(m+ d+ 2). (2.3)

Then for every continuous map f : ∆N → Rd there are r j-wise disjoint faces σ1, . . . , σr

of ∆N with dimσi ≤ k for 1 ≤ i ≤ r, such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.
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Let us discuss which of the conditions posed by (2.3) are necessary. First, the left-

hand side has to be strictly larger than the right-hand side, which yields the condition

(m+ 1)(r − 1) + r(k + 1)− (m+ d+ 2)(r − 1) > 0, that is,

k ≥ r−1
r d. (2.4)

This lower bound on k is necessary, as we see by looking at a generic affine map f , which

does not have the desired Tverberg r-partition unless the sum of the codimensions of the σi
is at most d, that is, r(d− k) ≤ d.

If the second inequality in (2.3) is satisfied for some m ≥ 0, then it is in particular

satisfied for m = 0, which gives (N + 1)(j − 1) > (r − 1)(d+ 2), that is,

N + 1 > r−1
j−1 (d+ 2). (2.5)

It is not clear whether this lower bound on N is necessary in general;

N + 1 > b r−1
j−1c(d+ 2)

is necessary for k < d, as one can see from an affine map ∆N → ∆d that maps at most

b r−1
j−1c vertices of ∆N to each of the vertices and to the barycenter of a d-simplex. This

example is suggested by Sarkaria in [81]. Note that for j = 2 the lower bound of (2.5) reads

N + 1 > (r− 1)(d+ 2), which is optimal, despite a mistaken claim in [81, Thm. 1.5 and the

sentence after this] that the bound N ≥ r(s+1)−2 is optimal, where s = k+1 in Sarkaria’s

notation. In the example he gives, the two bounds coincide.

Even if both conditions (2.4) and (2.5) hold the integer m that should satisfy (2.3) may

not exist. This requirement is non-trivial, see Example 2.35 below. It is not necessary, as

we shall see.

We now obtain our strengthening of Theorem 2.33 as a corollary of Theorem 2.23, the

special case j = 2.

Theorem 2.34 (Generalized Van Kampen–Flores, sharpened). Let r ≥ 2 be a prime power,

2 ≤ j ≤ r, d ≥ 1, and k ≤ N such that

k ≥ r−1
r d and N + 1 > r−1

j−1 (d+ 2). (2.6)

Then for every continuous map f : ∆N → Rd there are r j-wise disjoint faces σ1, . . . , σr

of ∆N , with dimσi ≤ k for 1 ≤ i ≤ r, such that f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

The proof is the same as for Theorem 2.31 by observing that the natural projection

p : ∆
∗(j−1)
N → ∆N does not increase the dimension of faces.
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2 The constraint method and Tverberg-type results

Example 2.35. To see that Theorem 2.34 is stronger than Theorem 2.33, let d = j = r = 3

and k = 2. Then the prerequisites of Theorem 2.34 are satisfied for N = 5. Thus for any

continuous map f : ∆5 → R3 there are three 3-wise disjoint faces of dimension at most 2

whose images intersect.

However, inequality (2.3) of Theorem 2.33 asks that (m + 1) · 2 + 3 · 3 ≥ (N + 1) · 2 >
(m + 5) · 2, that is, 2m + 11 ≥ 2N + 2 > 2m + 10. Such an integer m exists for no N , as

2N + 2 is even.

One can easily prove j-wise disjoint versions of the topological Tverberg theorem and its

relatives without the requirement that r be a prime power.

Theorem 2.36. Let r ≥ 2, d ≥ 1, and 2 ≤ j ≤ r be integers. Suppose r = (j − 1)q, where

q ≥ 2 is a prime power and N = (q− 1)(d+ 1). Then for any continuous map f : ∆N → Rd

there are r j-wise disjoint faces σ1, . . . , σr of ∆N with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. There are q pairwise disjoint faces σ1, . . . , σq of ∆N with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.
Now take (j − 1) copies of each σi.

Example 2.37. In particular, Theorem 2.31 is not tight. Let r = 4, d = 2, and j = 3.

Then Theorem 2.31 says that for any continuous map f : ∆4 → R2 there are four 3-wise

disjoint simplices σ1, . . . , σ4 of ∆4 with f(σ1)∩ · · · ∩ f(σ4) 6= ∅. The same statement is true

for f : ∆3 → R2 by Theorem 2.36 for q = 2, since every continuous map ∆3 → R2 has a

2-fold Tverberg point.

2.9 Counterexamples to the topological Tverberg

conjecture

In this section we will show how a result of Mabillard and Wagner [67] implies counterex-

amples to the r-fold version of the generalized Van Kampen–Flores theorem for any r that

is not a prime power. Since this result would be a corollary of the topological Tverberg

conjecture, this also implies that this conjecture is wrong for any r that is not a power of a

prime. For those cases we will investigate some techniques that can give insights (at least

asymptotically) into the smallest N such that any continuous map f : ∆N → Rd has an

r-fold Tverberg point.

For a simplicial complex K denote by

K×r∆(2) = {(x1, . . . , xr) ∈ σ1 × · · · × σr | σi face of K,σi ∩ σj = ∅ ∀i 6= j}

the pairwise deleted r-fold product of K. The space K×r∆(2) is a polytopal cell complex

30



2.9 Counterexamples to the topological Tverberg conjecture

in a natural way (its faces are products of simplices). Denote by Wr the vector space

{(x1, . . . , xr) ∈ Rr |
∑
xi = 0} with the action by the symmetric group Sr that permutes

coordinates.

Theorem 2.38 (Mabillard and Wagner [67, Theorem 3]). Suppose that r ≥ 2, k ≥ 3, and

let K be a simplicial complex of dimension (r − 1)k. Then the following statements are

equivalent:

(i) There exists an Sr-equivariant map K×r∆(2) → S(W⊕rkr ).

(ii) There exists a continuous map f : K → Rrk such that for any r pairwise disjoint faces

σ1, . . . , σr of K we have f(σ1) ∩ · · · ∩ f(σr) = ∅.

Thus, under certain requirements it is sufficient to construct an equivariant map from

the configuration space K×r∆(2) to some sphere in order to show the existence of a continuous

map f : K → Rd without r-fold Tverberg point.

Lemma 2.39. Let r ≥ 6 be an integer that is not a prime power, and let k ≥ 3, N ≥ 1 be

integers. Let K = ∆
((r−1)k)
N . Then there exists an Sr-equivariant map K×r∆(2) → S(W⊕rkr ).

Proof. The configuration space K×r∆(2) has dimension at most r(r−1)k. Özaydin shows that

there is an Sr-equivariant map from a finite, free, n-dimensional, (n − 1)-connected Sr-

complex into S(W⊕dr ), where n = (r− 1)d [75, Theorem 4.2]. This also gives an equivariant

map K×r∆(2) → S(W⊕rkr ) for any n-dimenional, finite, and free Sr-complex by observing that

such a complex always admits an equivariant map into an (n− 1)-connected Sr-space; see

for example Matoušek [70, Lemma 6.2.2].

To get a rough understanding how r being a prime power is related to the existence of

equivariant maps, we review the lemma Özaydin proves to construct such maps. This will

allow us to give an alternative proof of Lemma 2.39.

Lemma 2.40 (Özaydin [75, Lemma 4.1]). Let d ≥ 3 and G be a finite group. Let X be a

d-dimensional free G-CW complex and let Y be a (d− 2)-connected G-CW complex. There

is a G-map X → Y if and only if there are Gp-maps X → Y for every Sylow p-subgroup

Gp, p prime.

Again, the existence of an Sr-equivariant map K×r∆(2) → S(W⊕rkr ) is a simple conse-

quence. The reasoning is the same as in [75, Proof of Theorem 4.2]: the free Sr-space K×r∆(2)

has dimension at most d = r(r − 1)k, and S(W⊕rkr ) ∼= S(r−1)rk−1 is (d − 2)-connected.

By Lemma 2.40 the existence of an Sr-map K×r∆(2) → S(W⊕rkr ) reduces to the existence of

equivariant maps for Sylow p-subgroups, but p-groups have fixed points in S(W⊕rkr ) for r

not a prime power by [75, Lemma 2.1], so a constant map will do.

Combining Lemma 2.39 with Theorem 2.38 gives the following corollary.
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2 The constraint method and Tverberg-type results

Corollary 2.41. Let r ≥ 6 be an integer that is not a prime power, and let k ≥ 3 be an

integer. Then for any N there exists a continuous map f : ∆N → Rrk such that for any r

pairwise disjoint faces σ1, . . . , σr of ∆N with dimσi ≤ (r−1)k we have f(σ1)∩· · ·∩f(σr) = ∅.

We have already mentioned that if the topological Tverberg conjecture holds for some r,

then the generalized Van Kampen–Flores result holds for the same r. Since Corollary 2.41

contradicts the r-fold Van Kampen–Flores theorem for r not a power of a prime, the topo-

logical Tverberg conjecture must fail for those r.

Theorem 2.42 (The topological Tverberg conjecture fails). Let r ≥ 6 be an integer that is

not a prime power, and let k ≥ 3 be an integer. Let N = (r − 1)(rk + 2). Then there exists

a continuous map F : ∆N → Rrk+1 such that for any r pairwise disjoint faces σ1, . . . , σr

of ∆N we have F (σ1) ∩ · · · ∩ F (σr) = ∅.

Proof. We will explicitly construct the map F from the map f whose existence is guaranteed

by Corollary 2.41. Let f : ∆N → Rrk be a continuous map as constructed in Corollary 2.41,

that is, such that for any r pairwise disjoint faces σ1, . . . , σr of ∆N with dimσi ≤ (r − 1)k

we have f(σ1) ∩ · · · ∩ f(σr) = ∅. Define F : ∆N → Rrk+1, x 7→ (f(x), dist(x,∆
((r−1)k)
N )).

Suppose there were r pairwise disjoint faces σ1, . . . , σr of ∆N such that there are points

xi ∈ σi with F (x1) = · · · = F (xr). By restricting to subfaces if necessary we can assume

that xi is in the relative interior of σi. Then all the xi have the same distance to the

(r − 1)k-skeleton of ∆N .

Suppose all σi had dimension at least (r − 1)k + 1. Then these faces would involve at

least r((r− 1)k+ 2) = (r− 1)(rk+ 2) + 2 > N + 1 vertices. Thus, one face σj has dimension

at most (r − 1)k and dist(xj ,∆
((r−1)k)
N ) = 0. But then we have dist(xi,∆

((r−1)k)
N ) = 0 for

all i, so xi ∈ ∆
((r−1)k)
N and thus σi ⊆ ∆

((r−1)k)
N for all i. This contradicts our assumption

on f .

If the topological Tverberg conjecture holds for r pairwise disjoint faces and dimen-

sion d + 1, then it also holds for dimension d and the same number of faces; see Theorem 2.9.

Thus, we are only interested in low-dimensional counterexamples. If r is not a prime power

then the topological Tverberg conjecture fails for dimensions 3r + 1 and above. Hence, the

smallest counterexample this construction yields is a continuous map ∆100 → R19 such that

any six pairwise disjoint faces have images that do not intersect in a common point.

DefineNr(d) as the minimal integer N such that any continuous map f : ∆N → Rd has an

r-fold Tverberg point. So far we know that for r a prime power we have Nr(d) = (r−1)(d+1)

and for r not a prime power Nr(d) > (r− 1)(d+ 1). We will now establish some upper and

lower bounds on the function Nr.

Theorem 2.43. Let r ≥ 2 and d ≥ 1 be integers. Let q ≥ r be a prime power and

32



2.9 Counterexamples to the topological Tverberg conjecture

N = (q− 1)(d+ 1)− (q− r) = (q− 1)d+ r− 1. Then for any continuous map f : ∆N → Rd

there are r pairwise disjoint faces σ1, . . . , σr with f(σ1) ∩ · · · ∩ f(σr) 6= ∅.

Proof. Let M = (q − 1)(d + 1) and think of ∆N as a subcomplex of ∆M . Extend f to a

continuous map F : ∆M → Rd. By the topological Tverberg theorem there are q pairwise

disjoint faces σ1, . . . , σq of ∆M with F (σ1)∩ · · · ∩F (σq) 6= ∅. Only q− r vertices of ∆M are

not contained in ∆N , so at least r of the faces σ1, . . . , σq are contained in ∆N .

Let r ≥ 6 be an integer. By Bertrand’s postulate there is a prime strictly between r − 1

and 2r−4. Thus, Nr(d) ≤ (2r−6)(d+1) for r ≥ 6. We will now investigate the asymptotics

of Nr(d)
d for d→∞.

Lemma 2.44. Let d ≥ 1, r ≥ 2, k ≥ 2, and N ≥ (r − 1)(d+ 1). Suppose every continuous

map F : ∆k(N+1)−1 → Rk(d+1)−1 has an r-fold Tverberg point. Then the same holds for any

continuous map f : ∆N → Rd.

Proof. The simplex ∆k(N+1)−1 is isomorphic to the k-fold join ∆∗kN . Define F : ∆∗kN →
Rk(d+1)−1 by F (λ1x1 + · · · + λkxk) = (λ1, . . . , λk−1, λ1f(x1), . . . , λkf(xk)). Then there

are r pairwise disjoint faces σ1, . . . , σr of ∆k(N+1)−1 with F (σ1) ∩ · · · ∩ F (σr) 6= ∅. Let

λ
(i)
1 x

(i)
1 +· · ·+λ(i)

r x
(i)
r ∈ σi with F (λ

(1)
1 x

(1)
1 +· · ·+λ(1)

r x
(1)
r ) = · · · = F (λ

(r)
1 x

(r)
1 +· · ·+λ(r)

r x
(r)
r ).

Thus, λ(1)
j = · · · = λ

(r)
j for all j = 1, . . . , k, where we have equality for the λ(i)

k since

λ
(i)
k = 1−

∑k−1
j=1 λ

(i)
j .

At least one λ(1)
j is nonzero since

∑
j λ

(1)
j = 1. Then since λ(1)

j = · · · = λ
(r)
j we have

f(x
(1)
j ) = · · · = f(x

(r)
j ) and these points come from pairwise disjoint faces in ∆N . Hence, f

has an r-fold Tverberg point.

Define βr(d) = Nr(d) − (r − 1)(d + 1) ≥ 0. The function βr measures to which extent

the topological Tverberg theorem fails in dimension d for a fixed r. We will now show that

if the topological Tverberg theorem fails then it fails at least linearly in d.

Corollary 2.45. For any r ≥ 2 and d, k ≥ 1 we have that Nr(k(d + 1) − 1) ≥ kNr(d).

Moreover, βr(k(d + 1) − 1) ≥ kβr(d). This can be written as βr(d) ≥ β0

d0+1 (d + 1) for

d = k(d0 + 1)− 1 and β0 = βr(d0) for some fixed d0 ≥ 1.

Proof. Let N = Nr(d)−1 and f : ∆N → Rd a continuous map without Tverberg r-partition.

Construct F : (∆N )∗k → Rk(d+1)−1 as above. Since F does not have a Tverberg r-partition

we know that Nr(k(d+ 1)− 1) is at least one larger than the dimension of (∆N )∗k, that is,

Nr(k(d+ 1)− 1) ≥ k(N + 1) = kNr(d).

Moreover, Nr(k(d+1)−1) ≥ kNr(d) = (r−1)(kd+k)+kβr(d) and thus βr(k(d+1)−1) ≥
kβr(d). Now, d = k(d0+1)−1 implies k = d+1

d0+1 . Thus, βr(d) = βr(k(d0+1)−1) ≥ kβr(d0) =

d+1
d0+1 · β0.
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2 The constraint method and Tverberg-type results

Lemma 2.46. Let r ≥ 2. Suppose there is a d0 ≥ 1 for which Nr(d0) ≥ αr · (d0 + 1) + c

for some αr ≥ r − 1 and c ≥ 0. Then Nr(d) ≥ (αr + c
d0+1 ) · (d + 1) for d = k(d0 + 1) − 1

with k ∈ {1, 2, . . . }.

Proof. We have that β0 ≥ (αr − (r − 1))(d0 + 1) + c. Thus, by Corollary 2.45 βr(d) ≥
(αr−(r−1)+ c

d0+1 )·(d+1) for d = k(d0+1)−1. This implies Nr(d) ≥ (αr+ c
d0+1 )·(d+1).

We can formulate this asymptotic behavior in the following way:

Theorem 2.47. Let K1,K2, . . . be a sequence of simplicial complexes and denote the number

of vertices of Ki by Ni. Let r be an integer that is not a power of a prime. If for every

d ≥ 1 every continuous map f : Kd → Rd has an r-fold Tverberg point then for any ε > 0

eventually Nd ≥ (r − 1)d+ Ω(d1−ε).

2.10 Barycenters of polytope skeleta

The constraint method of forcing Tverberg partitions into a subcomplex is not tied to

Tverberg-type results. Indeed, similar theorems can be proven for equivariant maps; see

for instance [14, Section 3] for such results concerning mass partitions by hyperplanes. Here

we will give another application of the constraint method of a slightly different flavor.

A problem originally motivated by mechanics is to determine whether each point in a

polytope is the barycenter of points in an appropriate skeleton of the polytope [9]. Its

resolution by Dobbins recently appeared in Inventiones.

Theorem 2.48 (Dobbins [32]). For any nk-polytope P and for any point p ∈ P , there are

points p1, . . . , pn in the k-skeleton of P with barycenter p = 1
n (p1 + · · ·+ pn).

Here we simplify the proof of this theorem by using the idea of equalizing distances of

points to a certain unavoidable skeleton via equivariant maps to force them into the skeleton.

Thus, we obtain the following slight generalization of Theorem 2.48.

Theorem 2.49. Let P be a d-polytope, p ∈ P , and k and n positive integers with kn ≥ d.

Then there are points p1, . . . , pn in the k-skeleton P (k) of P with barycenter p = 1
n (p1 +

. . . + pn).

More generally, one could ask for a characterization of all possibly inhomogeneous di-

mensions of skeleta and barycentric coordinates:

Problem 2.50. For given positive integers d and n characterize the dimensions d1, . . . , dn ≥
0 and coefficients λ1, . . . , λn ≥ 0 with

∑
λi = 1 such that for any d-polytope P there are n

points p1 ∈ P (d1), . . . , pn ∈ P (dn) with p = λ1p1 + · · ·+ λnpn.
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Some remarks pertaining to this more general problem are contained in [32]. Still of

greater generality is the problem of characterizing the subsets F ⊆ Rd that contain a set

of n not necessarily distinct vectors p1, . . . , pn ∈ F with p1 + · · ·+pn = 0. In other words we

are interested in those sets F which contain a not necessarily embedded (n−1)-simplex with

barycenter at the origin. This is equivalent to Fn ⊆ Rd×n having non-empty intersection

withW⊕dn , where as beforeWn = {(x1, . . . , xn) ∈ Rn |
∑
xi = 0}. If F is a set of dimension k

with kn < d, then generically this intersection is empty for dimension reasons.

Let from now on the symmetric group Sn act on the space of matrices Rd×n by permuting

columns.

Theorem 2.51. Let n be prime, d ≥ 1 be an integer, and F ⊆ Rd be closed. If there is an

(n− 2)-connected, Sn-invariant subset Q ⊆ W⊕dn = {(x1, . . . , xn) ∈ Rd×n |
∑
xi = 0} such

that for each (x1, . . . , xn) ∈ Q there is an i with xi ∈ F , then there are p1, . . . , pn ∈ F with

p1 + · · ·+ pn = 0.

Proof. The map Ψ: Q→ Rn, (x1, . . . , xn) 7→ (dist(x1, F ), . . . , dist(xn, F )) isSn-equivariant.

Denote the diagonal by D = {(y1, . . . , yn) ∈ Rn | y1 = · · · = yn}. The map Ψ induces

by projection an Sn-equivariant map Φ: Q → D⊥ = Wn. The vector space Wn is

(n − 1)-dimensional and Q is (n − 2)-connected, so Φ has a zero by Lemma 2.3 applied

to the subgroup Z/n of Sn, which acts freely on Wn \ {0}. Let (p1, . . . , pn) ∈ Q with

Φ(p1, . . . , pn) = 0. This is equivalent to dist(p1, F ) = · · · = dist(pn, F ). There is an index i

such that pi ∈ F and thus dist(pi, F ) = 0. Thus, all pj satisfy dist(pj , F ) = 0 and hence are

in F , since F is closed. Since Q ⊆W⊕dn we have p1 + · · ·+ pn = 0.

This theorem can be extended to the case that n is a prime power using a generalization

of Dold’s theorem to elementary Abelian groups; for a rather general version see [17].

For the proof of Theorem 2.49 we take for Q a skeleton of a certain polytope. Before

proceeding we point out that the following naïve approach using a configuration space/test

map scheme to prove Theorem 2.48 fails: the origin is the barycenter of n points in the

d-skeleton of P if and only if the Sn-equivariant map (P (d))n → Rdn, (x1, . . . , xn) 7→
1
n (x1 + · · ·+ xn) maps some point in (P (d))n to 0. However, for this map to be equivariant

the Sn-action on Rdn must be trivial, and thus Sn-equivariant maps (P (d))n → Rdn \ {0}
exist. Dobbins’s novel idea was to intersect with a test space in the domain to avoid this

problem. We will employ that same idea. In contrast to Dobbins we need no requirement

of general position. Thus, we also do not need any kind of approximation in the proof.

Proof of Theorem 2.49. We can assume that p = 0 is in the interior of P , otherwise we could

restrict to a proper face of P with the origin in its relative interior. Let first n be prime.

Consider again the linear space W⊕dn = {(x1, . . . , xn) ∈ Rd×n |
∑
xi = 0} of codimension d.
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Then C = Pn ∩W⊕dn is a polytope of dimension (n− 1)d. The (n− 1)-skeleton C(n−1) of C

is homotopy equivalent to a wedge of (n− 1)-spheres and thus is (n− 2)-connected.

Let (x1, . . . , xn) ∈ C(n−1). By Theorem 2.51 we need to show that one xi lies in P (k).

Suppose for contradiction that xi /∈ P (k) for all i = 1, . . . , n. For each xi let σi be the

inclusion-minimal face of P with xi ∈ σi. We have that dimσi ≥ k + 1. Each face of C

is of the form (τ1 × · · · × τn) ∩W⊕dn with the τi faces of P . The point (x1, . . . , xn) lies in

the face (σ1 × · · · × σn) ∩ W⊕dn but in no proper subface. The dimension of this face is

dim
(
(σ1 × · · · × σn) ∩W⊕dn

)
≥ n(k + 1) − d ≥ n. Thus, (σ1 × · · · × σn) ∩W⊕dn /∈ C(n−1),

which is a contradiction.

The case for general n follows by a simple induction with respect to the number of prime

divisors, as in [32]: Suppose n = q1 · · · qt with qi prime and the theorem holds for any number

n that is a product of at most t − 1 primes. Let m = q2 · · · qt. Since m · q1k = nk ≥ d,

there are m points x1, . . . , xm in P (q1k) with p = 1
m (x1 + · · · + xm). Each xi is contained

in a (q1k)-face σi of P . Thus, there are q1 points y(1)
i , . . . , y

(q1)
i in the k-skeleton σ(k)

i of σi
with xi = 1

q1
(y

(1)
i + · · · + y

(q1)
i ). In particular, the y(j)

i are also contained in P (k) and

p = 1
m

∑m
i=1

1
q1

∑q1
j=1 y

(j)
i = 1

n

∑m
i=1

∑q1
j=1 y

(j)
i .
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3 Combinatorial restrictions on

manifold triangulations

Abstract

We give a complete combinatorial and topological classification of pseudo-

manifolds that are positively curved in a combinatorial sense. We simplify the

proof of a result of Brady, McCammond, and Meier [21] that any closed and

orientable 3-manifold admits a triangulation with edge-degrees four, five, and

six. We investigate relations to geometric structures in dimension three and

prove higher-dimensional versions.

Publication remark. This chapter is based on joint work with Frank Lutz

and John M. Sullivan [43]. The non-polytopal triangulation in Section 3.4 was

presented in [41].

A triangulation of a topological space X is a simplicial complex whose geometric realization

is homeomorphic toX. Thus, a manifold triangulation is a simplicial complex with geometric

realization a manifold. A manifold M is said to have piecewise linear structure (or just M

is PL for short) if M has an atlas of charts, where the transition functions are piecewise

affine as maps of Rd. Any PL manifold structure induces a triangulation, but not every

triangulation of a manifold is PL, that is, not every triangulation comes from a PL structure;

see Edwards [35]. A triangulation of a d-sphere is PL if and only if it has a common

subdivision with the boundary of the standard simplex; see Pachner [76]. A triangulation

of a d-dimensional manifold is PL if and only if all vertex links are PL triangulations of the

(d−1)-sphere. For d = 4 it is an open problem whether there are triangulated 4-spheres that

are 4-dimensional PL manifold triangulations but that do not have a common subdivision

with the boundary of the 5-simplex.

Every smooth manifold can be equipped with a PL-structure, but not every topological

manifold is PL; see Kirby and Siebenmann [55]. A first example of a non-triangulable

manifold can be obtained by combining work of Freedman [39] and Casson; see Akbulut and

McCarthy [1]. Due to Perelman’s proof of the Poincaré conjecture it in particular follows

that all non-smoothable 4-manifolds do not admit a triangulation. Recently, Manolescu [68]

showed that there also exists a d-manifold that does not admit a triangulation for every d ≥ 5.
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3 Combinatorial restrictions on manifold triangulations

In the following we will be interested in investigating one of the simplest combinatorial

analogues of curvature imaginable: the number of facets a face of codimension two is con-

tained in. We will refer to faces of dimension d − 2 in a d-complex as subridges, and the

number of facets it is contained in is its valence. Which bounds on valence correspond to

positive curvature depends on the dimension. Given a regular d-simplex the dihedral angle

between any two of its (d − 1)-faces is arccos( 1
d ); see Parks and Wills [77]. Thus, since

arccos( 1
3 ) < 2π

5 in dimensions two and three, valence five leads to an angle defect around

the subridge, while in higher dimensions the valence of a subridge needs to be at most four

to correspond to an angle defect.

A d-dimensional manifold triangulation with valences bounded from above by five for

d ≤ 3 or valences bounded from above by four for d ≥ 4 will be called combinatorially

positively curved. For the case d = 3 manifold triangulations with positive combinatorial

curvature were studied by Trout [95] by combinatorial means. Trout shows that this notion of

curvature leads to combinatorial versions of the Bonnet–Myers theorem, that is, a diameter

bound, and classifies the complexes with maximal combinatorial diameter. We give a simple

proof of the fact that combinatorially positively curved triangulations have bounded volume

via inducing a metric on every facet of the triangulation and then using results from metric

geometry.

We show that any PL-manifold admits a triangulation with valences bounded by nine.

Moreover, we investigate relations between valences and geometric structures on the under-

lying manifold in dimension d = 3. We focus on the case d = 3 throughout and explain the

construction of some examples of particularly round triangulations of S3.

The number of i-faces of a simplicial complex will be denoted by fi. We collect these

numbers in the f -vector (f0, . . . , fd). For a given number f0 of vertices, triangulations of S3

with the least number f3 of facets are the stacked instances. To stack a facet means to

remove it from the triangulation and cone the resulting boundary with a new vertex. A

triangulation is stacked if it can be obtained from the boundary of the simplex by repeated

stackings. These triangulations minimize the f -vector (f0, . . . , fd) among all pseudoman-

ifolds with the same number of vertices by the lower bound theorem [93]. On the other

end of this spectrum are the neighborly triangulations of the 3-sphere: they maximize the

f -vector coordinatewise among all triangulations of S3 by the upper bound theorem; see

McMullen [71] and Stanley [88]. A triangulation of a d-manifold is called neighborly if it

has a complete bd−1
2 c-skeleton. Boundary complexes of cyclic polytopes are instances of

neighborly triangulations.

Stacked and neighborly 4-polytopes are far from round in the sense that they have edges

of extremal valence. Stacked 3-dimensional triangulations always have an edge of valence

three, and every stacked triangulation on more than seven vertices has an edge of valence

38



3.1 From valence bounds to volume bounds

greater than five. Vertex links in neighborly 4-polytopes are stacked 2-spheres: the convex

hull of all but one vertex v of a neighborly 4-polytope (with vertices in general position)

induces a triangulation of lk(v) without interior edges. This defines a stacking order for lk(v).

This argument is due to Perles and can be found in Altshuler and Steinberg [2]. Thus,

neighborly 4-polytopes always have an edge of valence three. On the other hand they also

have edges of large valence.

3.1 From valence bounds to volume bounds

A d-pseudomanifold is a pure d-dimensional simplicial complex, where vertex links are con-

nected for d > 1, every (d−1)-face (ridge) is contained in precisely two facets, and such that

any two facets can be connected by a facet-ridge path, that is a path in the 1-skeleton of

the dual complex. This last property is called strong connectivity. If instead of every ridge

being contained in precisely two facets, every ridge is contained in one or two facets, we call

the complex a pseudomanifold with boundary. The boundary is the subcomplex induced by

ridges contained in exactly one facet.

All 0-pseudomanifolds are S0, 1-pseudomanifolds are triangulated circles, and thus 2-

pseudomanifolds are triangulated surfaces. We give a complete combinatorial (and hence

topological) classification of all pseudomanifolds of positive combinatorial curvature. The

special cases of low dimensions d = 2, 3 will be postponed to Section 3.3. The enumeration

of 3-pseudomanifolds with positive combinatorial curvature is achieved with a computer.

First we will show that positive combinatorial curvature leads to a volume bound in terms

of the number of facets.

Constant valence triangulations of spheres are always realizable as boundary complex of a

regular polytope. The d-simplex and the d-crosspolytope are the only two regular simplicial

polytopes that exists in dimensions d ≥ 5. (Their boundary spheres have dimension d − 1.)

The simplex has constant valence three, and the crosspolytope has constant valence four.

In low dimensions d = 3, 4 there is one more regular simplicial polytope, respectively, cor-

responding to constant valence five: the icosahedron and the 600-cell. Such examples only

exist in low dimensions since here the dihedral angles of the regular facets are less than 2π
5

and, thus, five facets around a common subridge lead to an angle defect.

Lemma 3.1. Let d ≥ 2. There is a spherical d-simplex with all dihedral angles equal to 2π
3 .

Also, there is a spherical d-simplex with all dihedral angles equal to 2π
4 . For d = 2 and

d = 3 there is a spherical d-simplex with dihedral angles 2π
5 . Moreover, all these simplices

are realized with their full group of combinatorial symmetries.

Proof. The regular simplicial polytopes can be realized with their full group of symmetries
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3 Combinatorial restrictions on manifold triangulations

and with vertices on the unit sphere. Radially projecting the boundary of the polytope onto

the unit sphere gives the desired spherical simplices.

To transfer from combinatorics to geometry we will induce a metric on every facet of a

triangulation and then use the toolbox of metric comparison geometry; see Burago, Burago,

Ivanov [24] for an introduction. In particular, we will use the following lemma:

Lemma 3.2 (Burago, Gromov, and Perelman [25, 2.9(6)]). Let K be a d-pseudomanifold.

Define on every facet of K the metric of a simplex from a space of constant curvature k

such that the angle around every subridge is at most 2π. Then K is an Alexandrov space of

curvature ≥ k.

Notice that while in [25] this lemma is stated for any simplicial complex, where every

ridge is contained in two facets and facets come from the space of constant curvature k,

Burago, Gromov, and Perelman actually use that vertex links are connected for k > 0.

That valence bounds lead to volume bounds is a purely combinatorial observation for

2-dimensional triangulations: here combinatorics and geometry are tightly related via the

Euler characteristic. In the trivial 1-dimensional case valence bounds the number of facets

(edges) that the empty set is contained in. Hence, it is a global bound on the number of

edges.

Let f = (f0, f1, f2) be the f -vector of a triangulated surface M of Euler character-

istic χ(M). By Euler’s equation, f0 − f1 + f2 = χ(M), and by double counting of the

edge-triangle incidences, 2f1 = 3f2, the f -vector of M can be written as f = (f0, 3f0 −
3χ(M), 2f0 − 2χ(M)).

A valence bound in dimension two bounds the degree deg(v) of a vertex v, that is, the

number of incident edges or, equivalently, the number of incident triangles. If deg(v) ≤ t

for all vertices v, then by double counting 2f1 =
∑

deg(v) ≤ f0t. Thus, (6− t)f0 ≤ 6χ(M).

In particular, if t = 5 then f0 ≤ 6χ(M) ≤ 12 and χ(M) is positive, that is, M is one of

the two spherical surfaces S2 or RP2. The largest such triangulation is the boundary of

the icosahedron, and the only triangulation with valence bounded by five of RP2 is the

antipodal quotient of the icosahedral triangulation. See Section 3.3 for a complete list of

surface triangulations with valence bounded by five.

As mentioned in the introduction this counting argument above works because of the

lower bound f1 ≥ 3f0 − 6 in dimension two. In higher dimensions the lower bound f1 ≥
(d+1)f0−

(
d+2

2

)
for manifold triangulations is due to Walkup [103] for dimensions d = 3 and 4

and due to Kalai [53] for general d. This was generalized to pseudomanifolds by Tay [93].

Now if the average vertex degree is bounded from above by 2d+2−ε for some ε > 0, we obtain

2d + 2 − ε ≥ 2f1
f0

= 2d + 2 − 1
f0

(
d+2

2

)
, and thus f0 ≤ 1

ε

(
d+2

2

)
. Specializing to d = 3 Walkup

showed that if K is a 3-manifold triangulation with f1 < 4f0 then K is homeomorphic
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3.2 A combinatorial classification

to S3. (For f1 ≤ 4f0 additionally S1×S2 and S2 n S1 are possible.) This was reinterpreted

in terms of valence bounds by Luo and Stong [64]: for a 3-manifold triangulation M with

f -vector (f0, f1, f2, f3) define the average valence of edges as v = 6f3
f1

and the average

vertex degree z = 2f1
f0

. By double counting we obtain f3 = 2f2 and f3 = f1 − f0, since

0 = χ(M) = f0−f1 +f2−f3; hence f1 < 4f0 is equivalent to v being bounded above by 4.5.

Since v = f3
f1

= 6f1−6f0
f1

= 6− 12
z it is also equivalent to z < 8.

A strict average valence bound of 4.5 leads to a volume bound and, moreover, the trian-

gulation is homeomorphic to S3, while there are arbitrarily large triangulations with average

valence equal to 4.5 (arbitrarily large coverings of the triangulations of S2 × S1). Here we

obtain a volume bound if the valence of every edge is at most five. That this statement is

not true for the average valence shows that a counting argument like for dimension two will

not work for dimension three.

Theorem 3.3. Let d ≥ 2. Let K be a d-pseudomanifold with valences bounded by four.

Then K has at most 2d+1 facets. If d = 3 and K has valences bounded by five, then K has

at most 600 facets. If d = 2 and K has valences bounded by five, then K has at most 20

triangles.

That a triangulation of a 3-manifold with edge valences bounded by five is always finite

was already noted by Stone [89]. For the proof we will need the following lemma from metric

geometry. Here µn denotes the n-dimensional Hausdorff measure.

Lemma 3.4 (Burago, Burago, and Ivanov [24, Corollary 10.6.9]). Let X be an n-dimensional

Alexandrov space of curvature bounded below by one. Then µn(X) ≤ µn(Sn).

Proof of Theorem 3.3. Induce the correct metric from Lemma 3.1 on every facet of the

triangulation, that is, the metric of the regular spherical d-simplex with dihedral angles 2π
k

if the valences in K are bounded by k. This metric agrees on lower-dimensional faces since

the simplices are realized with their full group of (transitive) symmetries. This turns the

triangulation into an Alexandrov space with curvature bounded below by one by Lemma 3.2.

Now by Lemma 3.4 the complex K has as most as many facets as the corresponding regular

simplicial polytope.

3.2 A combinatorial classification

We give a complete combinatorial classification of pseudomanifolds with valences bounded

by four. The case of valences bounded by three is essentially trivial.

Lemma 3.5. For d ≥ 1, the only d-pseudomanifold K with the property that every subridge

has valence at most three is the boundary ∂∆d+1 of the (d+ 1)-simplex ∆d+1.
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3 Combinatorial restrictions on manifold triangulations

This is simple to see combinatorially and a rephrasing of the fact that a simple pseu-

domanifold is the boundary of the simplex: by induction over d every vertex link is the

boundary of a simplex. Deleting any vertex and all its incident faces leaves a pseudomani-

fold with boundary, where every boundary subridge has valence one. Hence, this deletion is

a simplex. Thus, K is the boundary of a simplex. We will, however, now present a geometric

proof to highlight the geometric nature of valence bounds in a simple case.

Proof. Let K be a d-pseudomanifold with valences equal to three. Give every facet the

spherical metric with dihedral angles 2π
3 from Lemma 3.1. Since valences are equal to three,

this defines a spherical metric on K. In particular, K is an Alexandrov space with curvature

bounded below by one. By Lemma 3.4 K has at most d+1 facets and hence is the boundary

of a simplex.

Theorem 3.6. Let K be a d-pseudomanifold, d ≥ 1, with the property that every subridge

has valence at most four. Then K is the join product of boundaries of simplices, namely

exactly of the boundaries of empty faces in K. In particular, K is a the boundary of a

(d+ 1)-polytope.

This theorem (with the prerequisite that K be a simplicial polytope) is due to Deza,

Dutour, and Shtogrin [31, Theorem 2.5]. Here we present a different and self-contained

proof.

Proof. A 1-pseudomanifold is a triangulated circle. Therefore the only examples meeting

the valence condition are the boundary of a triangle and the boundary of a square, which is

the join product S0 ∗ S0. So let us assume that d ≥ 2 and that the statement holds for all

m-dimensional pseudomanifolds K with m < d.

First, we claim that if K contains a missing edge, that is, two vertices v and w that are

not connected by an edge, then K is the suspension {v, w} ∗ L, where L = lk(v). Thus, by

induction K is a join product of boundaries of simplices. This claim follows from the fact

that deleting v yields a pseudomanifold K ′ with boundary and at least one interior vertex w

such that the subridges in the boundary have valence at most two. Such a simplicial complex

necessarily is w∗L, where L is the boundary: start with any (d−1)-face σ in L with u∗σ ∈ K ′

for some interior vertex u ∈ K ′. Any (d− 1)-face τ in L sharing a common (d− 2)-face with

σ is contained in at most two facets of K ′. Thus, u ∗ τ must be this facet. By induction

using the strong connectivity of L we get K ′ = u ∗ L and in particular u = w.

If the d-complex K has a complete (d − 1)-skeleton, then K is the boundary of the

(d + 1)-simplex ∆d+1. So let us assume that K has a complete k-skeleton, but not a

complete (k + 1)-skeleton, with 1 ≤ k < d − 1. It follows that K has at least one empty

(k+ 1)-simplex σ ⊆ {1, . . . , n}, that is, σ is not a face of K, but all the facets of σ are faces
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3.3 Valence bounds in low dimensions

of K. We will show that every facet of σ has the same link L in K, from which it follows

that K = ∂σ ∗ L.
Let τ be a ridge of the boundary ∂σ of σ such that F = v ∗ τ and G = w ∗ τ are the two

maximal faces of ∂σ containing τ . Now, v and w are vertices of lk(τ) that are not connected

(if they were, then σ would be a face of K). Thus, as in the above case of a missing edge,

L := lkK(F ) = lklkK(τ)(v)
!
= lklkK(τ)(w) = lkK(G)

and

lkK(τ) = { v, w } ∗ L.

Since we can reach every maximal face of ∂σ from F along ridges, the maximal faces of ∂σ

all have L as their link; thus K = ∂σ ∗ L.
Lastly, notice that a join of boundaries of simplices is the boundary of a simplicial

polytope.

Boundaries of simplicial polytopes are PL triangulations of spheres. All triangulations

of closed 3-manifolds are PL; see Moise [74]. Thus, we obtain the following:

Corollary 3.7. Every combinatorially positively curved manifold triangulation is PL.

While it is reasonable to expect that all combinatorially positively curved manifold tri-

angulations are quotients of boundaries of polytopes (and this is true in all dimensions but

d = 3), this is in fact wrong, see Theorem 3.19.

3.3 Valence bounds in low dimensions

So far we have given a complete combinatorial classification of pseudomanifolds with va-

lences bounded by four. In dimensions two and three there are finitely many manifold

triangulations with valences bounded by five. A combinatorial classification in dimension

two is quite simple (as there are only twelve examples with at most twelve vertices) but such

a classification has not been done explicitly. However, much more general classes of surface

triangulations have been enumerated. For example, Brinkmann and McKay [23] enumerated

all triangulations of S2 with at most 23 vertices.

Theorem 3.8 (Brinkmann and McKay [23]). There are precisely twelve triangulated sur-

faces with vertex-degree at most five, eleven spheres and the vertex-minimal triangulation

RP2
6 of the projective plane.

These triangulations are the tetrahedron, triangular bipyramid, a tetrahedron where two

triangles have been stacked, octahedron, an octahedron where one face has been stacked, an
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3 Combinatorial restrictions on manifold triangulations

octahedron where two opposite faces have been stacked (this can be thought of as 3
5 th of the

icosahedron and we will make this notion precise below), suspension of a pentagon, a trian-

gulated cube, the dual of the associahedron, 4
5 th of the icosahedron, the icosahedron itself,

and the antipodal quotient of the icosahedron. Since 2-pseudomanifolds are triangulated

surfaces, this immediately implies:

Corollary 3.9. There are precisely twelve 2-pseudomanifolds with vertex-degree at most

five, eleven spheres and the vertex-minimal triangulation RP2
6 of the projective plane.

This leaves the task of classifying the combinatorial types of 3-pseudomanifolds with

edge valences bounded by five. By Theorem 3.3 they have at most 600 facets. Since this is

quite a large number of facets the enumeration of all instances will necessarily require the

help of a computer. This was achieved by Frank Lutz with a GAP implementation. See [43]

for details of the algorithm.

Theorem 3.10 ([43]). There are exactly 4787 combinatorially distinct triangulated 3-mani-

folds with edge valence at most five: 4761 triangulations of S3, 22 of RP3, two of L(3, 1),

one of L(4, 1), and one of the cube space S3/Q. In particular, all examples are spherical.

The topological types of the 4787 distinct combinatorial types were recognized with the

bistellar flip program BISTELLAR [66] (see Björner and Lutz [12] for a description). The

largest of the examples is the 600-cell with 120 vertices. See Section 3.4 for some interesting

examples and general constructions.

We saw that every 2-pseudomanifold with vertex-degree at most five is either one of

eleven 2-spheres or the vertex-minimal triangulation RP2
6 of the projective plane. It follows,

that in every 3-pseudomanifold K has the eleven 2-spheres and RP2
6 as possible vertex links.

Here we use that vertex links are connected. If RP2
6 does not appear as a vertex link, then

K is a triangulated 3-manifold and therefore one of the 4787 examples above.

Theorem 3.11. There are exactly 41 distinct 3-pseudomanifolds with edge valence at most

five that have RP2
6 as one of their vertex links. All 41 examples are homeomorphic to the

suspension S0 ∗ RP2.

This is proved like Theorem 3.10 with the help of a computer.

Corollary 3.12. There are exactly 4828 distinct 3-pseudomanifolds with edge valence at

most five, 4787 manifolds and 41 proper pseudomanifolds.

3.4 Three-dimensional examples

In this section we describe some interesting examples of 3-dimensional triangulations with

valence bounded by five. We will give some general construction principles for 3-dimensional
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triangulations: extended bipyramids and Hopf lifts.

A metric d on a manifold M obtained from gluing M from spherical simplices by isome-

tries of their faces is called a spherical cone-manifold structure on M . We call (M,d) a

spherical cone-manifold and refer to d as a (spherical) cone metric. See Cooper, Hodgson,

and Kerckhoff [27] for an introduction. Such a metric on M is a spherical metric away from

the subridges with an angle 6= 2π around them. The collection of these subridges is called

the singular locus. The angle around such a singular subridge is the cone angle.

We will always assume that a cone metric comes from a triangulation (in the sense

of a simplicial complex) and a spherical metric on every facet. This is without loss of

generality. We will refer to a triangulation with a spherical metric on every facet as a metric

triangulation of the induced cone metric. Given a cone metric one can ask for particularly

symmetric metric triangulations. A triangulation K of a spherical cone-manifoldM is called

regular metric triangulation if there exists a regular spherical simplex such that inducing its

metric on every facet of K gives the cone metric on M .

Given a cone metric on Sd−1 we can define a natural suspension cone metric on Sd. Glue

the cone-manifold structure on Sd−1 from spherical (d − 1)-simplices. For every spherical

(d−1)-simplex σ the cone over σ is naturally a spherical d-simplex; see Burago, Burago, and

Ivanov [24, Sec. 3.6]. Realize σ on the equator of the round d-sphere with metric diameter π.

The cone over σ is the spherical d-simplex that consists of all shortest paths connecting σ

to the north pole. Use this metric on the facets of the suspension to obtain a cone metric

on Sd. This metric is called spherical suspension metric. It is a cone metric by construction,

since it comes with a triangulation that simply is the suspension of the triangulation of Sd−1

inducing the cone metric.

Theorem 3.13. Let d be a spherical cone metric on S2 that comes from inducing the

metric of the spherical triangle with dihedral angles π
2 (respectively 2π

5 ) on every facet of a

triangulation K ′ of S2. Then the spherical suspension metric on S3 admits a regular metric

triangulation.

If edge lengths (and thus dihedral angles) are π
2 in K ′, then this follows trivially from

the definition of spherical suspension metric: the regular metric triangulation is the (com-

binatorial) suspension (bipyramid) K = ΣK ′. Inducing the metric with all edge lengths

equal to π
2 on K gives precisely the spherical suspension metric. For dihedral angles of 2π

5

in K ′ this construction fails, since then the edge lengths in K are not all equal. The correct

metric on each facet is the metric from the suspension of the icosahedron, which does not

consist of regular simplices. Thus, in this case we have to define an extended analogue of

the suspension.

Before we prove Theorem 3.13 let us consider the example whereK ′ is the boundary of the
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3 Combinatorial restrictions on manifold triangulations

icosahedron and hence the induced metric on S2 is the round metric. The spherical metric

suspension is the round metric on S3. This metric has three regular metric triangulations:

the boundary of the simplex, crosspolytope, and 600-cell.

Proof of Theorem 3.13. We remarked that the case of dihedral angles π
2 is obvious by con-

struction. Now let every dihedral angle in K ′ be 2π
5 . Project the 600-cell onto the unit

sphere to obtain a regular metric triangulation T of the round metric on S3. Let v be a

vertex in T and σ a triangle in lk(v). The collection of great semi-circles that connect v to

−v and pass through a point in σ is a subspace (but not a subcomplex) of T called a slice

of the 600-cell. Such a slice consists of facets and half-facets such that mirroring half-facets

gives a proper tetrahedron. The boundary of the slice is cut into three parts by geodesics

of edges connecting v to −v. Each part of the boundary corresponds to an edge of σ.

Define a metric triangulation K in the following way: for every triangle of K ′ pick a copy

of a slice of the 600-cell. For any edge in K ′ glue the slices together along the corresponding

part of their boundary. This identifies half-facets to full tetrahedra and K is a triangulation.

Together with the metric information from T it is a regular metric triangulation of the

spherical suspension metric.

In the proof above we constructed a triangulation K of S3 for every triangulation K ′

of S2. The triangulation K is called the extended bipyramid over K ′ and denoted ΣextK
′.

If K ′ has f -vector (k + 2, 2k, 3k) then ΣextK
′ has f -vector (11k + 10, 71k + 10, 120k, 60k).

In particular, an extended bipyramid on f0 vertices exists if and only if f0 − 10 is at least

22 and divisible by eleven.

A purely combinatorial way to construct the extended bipyramid of K ′ is to start with a

vertex v with vertex link isomorphic to K ′. Now extend this triangulation by the rule that

every edge in the link of v have valence five. Then at combinatorial distance two from v

we see a triangulated sphere that combinatorially is the dual of K ′, where every 2-face has

been stacked once. One can continue to build ΣextK
′ via the rule that every edge is in as

many facets as possible but at most five; see Trout [95, Sec. 5].

The metric suspension of any Alexandrov metric on S2 of curvature bounded below by

one has diameter π. The two suspension vertices in an extended bipyramid are always

connected by a geodesic that consists of edges. Thus, the combinatorial diameter of an

extended bipyramid is five, since the edge length of the spherical simplex with dihedral

angles 2π
5 is π

5 . This characterizes extended bipyramids among all positively curved 3-

manifold triangulations.

Theorem 3.14 (Trout [95]). A combinatorially positively curved 3-dimensional triangula-

tion K has combinatorial diameter at most five and is an extended bipyramid if and only if

it has combinatorial diameter five.
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This is the combinatorial analogue of the fact that an Alexandrov metric on S3 of curva-

ture bounded below by one has diameter π if and only if it is the metric suspension of such

an Alexandrov metric on S2.

For every cone metric on S2 one can obtain a cone metric on S3 by suspending. A

second way to construct a cone metric on S2 from a given metric on S2 is to lift through

the Hopf fibration. Think of S3 as the unit sphere in C2 and think of S2 as the Riemann

sphere C∪{∞}. The map h : S3 → S2, (w, z) 7→ w
z with w

0 :=∞ is called the Hopf fibration.

It is a fiber bundle with base S2 and fiber S1. The rotations Rϕ : S3 → S3, (w, z) 7→
(eiϕw, eiϕz) leave the fibers invariant.

The link type of the singular locus and the cone angles alone do not uniquely determine

the cone metric. If a cone metric is uniquely determined by this data it is called rigid. In

several papers the volume and rigidity of cone metrics have been studied; see for instance

Kolpakov and Mednykh [59], Kolpakov [57, 58], Mednykh [72], and Weiss [104]. A particular

simple way to determine the volume of a cone-manifold is to find a regular metric trian-

gulation of it and count the number of facets as well as determine the volume of a regular

spherical simplex.

A Hopf linked singular locus can arise by lifting a cone-metric on S2 via the Hopf fibra-

tion h. Then the fibers over the cone points on S2 are the singular locus with the same cone

angle in S3 as the projected point in S2. To lift a cone metric through the Hopf fibration

we are going to define the metric on S3 by first partially lifting triangles and then gluing

the metric together. Given a spherical triangle σ ⊆ S2, the solid torus h−1(σ) ⊆ S3 inherits

a metric from the round 3-sphere. It will in general not be possible to glue the solid tori

h−1(σ) – σ ranging over the triangles of a metric triangulation K ′ of a cone metric on S2 –

according to the edges of K ′. Rather there is a closing condition coming from the twist of

the bundle and to satisfy it we need to shorten the fibers in h−1(σ). We want that the length

of fibers is half the area of K ′; see Sullivan [90] for details. The resulting cone metric on S3

is called the Hopf lift of the cone metric on S2. Again, we want to find a good combinatorial

model for this metric.

Theorem 3.15. Let K ′ be a triangulation of S2 and induce the metric of the spherical

triangle with all dihedral angles equal to 2π
5 on each facet of K ′. The Hopf lift of the resulting

cone metric admits a regular metric triangulation. (This triangulation is not a simplicial

complex if K ′ is the boundary of the tetrahedron.)

To prove this theorem we first need to find a suitable triangulation of a solid torus

and then glue these solid tori together to obtain a triangulation of S3. The triangulation

B(n) = {[k, k + 1, k + 2, k + 3] ⊆ Z/n | k ∈ Z/n}, n ≥ 7, is called the Boerdijk–Coxeter

helix [29]. We will restrict to the case where n is divisible by three. Then there are three

47



3 Combinatorial restrictions on manifold triangulations

closed curves of valence one determined by the vertices k, k + 3, k + 6, . . . for k = 0, 1, 2,

respectively. These cut ∂B(n) into three annuli bounded by edges of valence one in B(n).

The edges that connect the two boundary curves of such an annulus have alternating valence

two and three in B(n). Note that B(n) does not have interior edges.

Given two copies of the triangulation B(n), n divisible by three, there are two combi-

natorially different ways of gluing them together along an annulus: either gluing valence

two edges to valence two edges and valence three edges to valence three edges, obtaining a

double Boerdijk–Coxeter helix with interior edges of valence four and six (we will refer to

this as unshifted gluing) or identifying the annuli such that valence three edges and valence

two edges are identified with one another giving a triangulation with all interior edges of

valence five (shifted gluing).

Given a triangulation K ′ of a surface M and an n ≥ 9 divisible by three, we construct a

manifold triangulation K in the following way: for each triangle of K ′ take a copy of B(n).

Each edge of K ′ determines an annulus of the Boerdijk–Coxeter helices corresponding to

the two adjacent triangles. Glue the helices along these annuli in the unshifted way. This

defines a triangulation K of M × S1. Every vertex of K ′ corresponds to a circle of edges

in K. The valence of these edges is the degree of the vertex in K ′. All other valences in K

are four and six.

Proof of Theorem 3.15. Let K ′ be a triangulation of S2 different from the boundary of the

simplex. The number f2 of triangles of K ′ is even. Let n = 3
2f2. Then identifying f2

copies of B(n) with a shifted gluing of the annuli corresponding to edges of K ′ gives a

triangulation K of S3. There is a natural simplicial projection f : K → K ′. This map is the

Hopf fibration S3 → S2.

The triangulation K constructed above is called the Hopf lift of K ′. If K ′ has f -vector

(k+2, 3k, 2k) then the Hopf lift ofK ′ has f -vector (k2+2k, 7k2+2k, 12k2, 6k2). In particular,

since k2 + 2k = (k + 1)2 − 1, a Hopf lift on f0 vertices exists if and only if f0 + 1 = m2

for some m ∈ Z, m ≥ 3. For K ′ = ∂∆3 the Hopf lift can be defined but is not a simplicial

complex; it is a regular CW complex. Here we need to define B(3) as a quotient of the helix

{[k, k + 1, k + 2, k + 3] | k ∈ Z} by 3Z, which is not a simplicial complex. The Hopf lift of

the icosahedron is the 600-cell, and the Hopf lift of the octahedron is the 24-cell, where each

octahedron of the 24-cell is triangulated by introducing a new edge. These new edges form

six circles of length four that are pairwise (Hopf) linked.

Our enumeration of combinatorially positively curved triangulations gives examples of

3-dimensional cone-manifold structures on S3 with cone angles 8π
5 and 6π

5 by inducing the

metric of the regular spherical simplex with dihedral angles 2π
5 on every facet of the triangu-

lation. The volume of the metric can then be computed in a combinatorial way from just the
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3.4 Three-dimensional examples

number of facets. Hopf lifts give examples of cone-manifold structures where the singular

locus consists of Hopf linked circles. This can be generalized to the construction of Seifert

fibred triangulation that fiber over a triangulated base orbifold. Below we will present a

few more examples of triangulations where the singular locus is a link. The numbers refer

to the position of the triangulation in the lexicographically ordered list that can be found

online [65].

Example 3.16 (Two polar trefoils – 4765). In the Boerdijk–Coxeter helix B(13) the edges

of valence one form a single loop that cuts a meridian of B(13) three times. Two copies

of B(13) can be arranged in such a way with the space between them filled symmetrically

with no further vertices such that the valence one edges in B(13) are precisely the edges of

valence four in this triangulation and these edges form trefoil knots. This triangulations has

vertex-transitive symmetry and f -vector (26, 130, 208, 104).

Example 3.17 (A (5, 4) torus knot – 4768). The 24-cell consists of six Hopf linked loops

of four octahedra each (touching vertex to vertex). One can thicken the 24-cell by choosing

a loop of four octahedra and replacing them by a loop of four pentagonal bipyramids. In

order to close this tessellation of S3 one has to add octahedra to the complement of the

pentagonal bipyramids. Instead of 5 · 4 = 20 octahedra one now has 5 · 5 = 25 octahedra.

The octahedra do not form Hopf linked loops anymore.

This thickened 24-cell (a 29-cell) can be triangulated in a natural way by introducing

edges along Hopf fibers to subdivide octahedra into four and pentagonal bipyramids into

five tetrahedra. This results in a triangulation of S3, where every edge has valence either

four or five and edges of valence four are exactly the edges that subdivide octahedra.

There are two loops of valence four edges; one of length five and one of length twenty.

The induced subcomplex of the long loop is a torus and the edges of valence four form a

(5, 4) torus knot on it. This triangulation has f -vector (29, 149, 240, 120).

The preceding example suggests a more general definition: let K be a cell complex home-

omorphic to S2 with a cellular Z/n-action that is free away from two antipodal points {±x}.
We do not require x or −x to be vertices but they will necessarily be barycenters of faces.

However, we exclude that x or −x is the midpoint of an edge. Lifting K \{±x} ∼= S1× (0, 1)

to the universal covering R× (0, 1) induces a cell structure with pointed cells (that is, cells

where an interior point is missing) or half-open edges and 2-faces (that is, edges or 2-faces

where a vertex is missing). There is a natural, free, cellular action of Z on this universal

covering, where the subgroup nZ is the group of deck transformations extended by lifted

Z/n-symmetries of K \ {±x}. Quotienting by some subgroup kZ < Z gives such a cell

structure on S1 × (0, 1), which can be closed off to a cell complex homeomorphic to S2 by

putting {±x} back in. This cell complex is called k
n -unwrapping of K. We define these
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3 Combinatorial restrictions on manifold triangulations

unwrappings in the same way for K a cell complex homeomorphic to S3 and an embedded

unknot K ′ such that Z/n acts freely and cellularly away from K ′. Here we ask that K ′ is a

sequence of edges or goes straight from the top to the bottom vertex of an n-gon.

A CW complex homeomorphic to S2 with two antipodal hexagons and twelve pentagons

is a 6
5 -unwrapping of the dodecahedron. A triangular bipyramid is a 3

4 -unwrapping of an

octahedron. The cone over a k-gon is a k
3 -unwrapping of the tetrahedron. Extended bipyra-

mids and unwrapping around the a great circle through the suspension points commute, for

example, the 4
5 -unwrapping of the 600-cell (the extended bipyramid over the icosahedron)

is the extended bipyramid over the 4
5 -unwrapping of the icosahedron with respect to two

antipodal vertices.

Hence Example 3.17 is a 5
4 -unwrapping of the Hopf lift of the octahedron with respect

to one Hopf circle of valence four. This turns the polar Hopf circle into a loop of five edges

of valence four. This loop is fixed by a Z/4-action that acts freely on the complement. The

corresponding 5
4 -unwrapping is the Hopf lift of the pentagonal bipyramid.

Example 3.18 (3-fold Hopf link with nested (1, 2) curve – 4770). This triangulation has 36

vertices. The edges of valence four split into four loops, three of which are of length six and

form a Hopf link. The fourth loop of valence four edges has length nine. The remaining nine

vertices have icosahedral vertex links and can be arranged to lie on a loop of length nine

that is parallel to the loop of valence four edges of the same length. In fact, these two loops

induce a subcomplex that is homeomorphic to a solid torus with these loops as a (4, 2)-link

on its boundary. The induced subcomplex of the remaining vertices is also a solid torus

with the three short loops of valence four edges as a (3, 3)-link on its boundary. Halfway

between these two solid tori is a torus defining the standard Heegaard splitting of S3. This

triangulation has f -vector (36, 189, 306, 153).

Other interesting examples include regular metric triangulations of a cone-manifold struc-

ture on S3 with singular locus the Borromean rings and cone angles of either 6π
5 in one

instance or 8π
5 in a second instance and of a cone-manifold structure with cone angle 8π

5

along a cable knot of the trefoil knot.

Any pseudomanifold with valences of subridges bounded by four is the boundary of a

polytope by Theorem 3.6. All triangulations of S2 are boundaries of polytopes. There

are 4761 triangulations of S3 that are combinatorially positively curved. We will explain

one of these triangulations below that is not the boundary complex of a polytope. Very

recently, Firsching was able to realize 4759 of the combinatorially positively curved trian-

gulations of S3 as boundaries of polytopes, even with vertices on the unit sphere (personal

communication).
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Theorem 3.19 (Bokowski and Schuchert [20]). There is a combinatorially positively curved

triangulation T of S3 that is not the boundary of a convex 4-polytope.

Bokowski and Schuchert show that while there is a tiling of S3 with cubes where two

opposite vertices have been truncated, this tiling is not the boundary of a convex 4-polytope.

The dual of this tiling is a triangulation of S3 where edges have valence at most five. We

will now describe this triangulation T (number 2766) in more detail. It was explained along

with further properties in [41].

We will explicitly construct T as a subcomplex of the 5-dimensional crosspolytope. Label

the vertices of the 5-dimensional crosspolytope by a0, . . . , a4, b0, . . . , b4, where ai is opposite

to bi. The five triangles of the form (ai, ai+1, , ai+2) are a triangulated Möbius strip, as are

the triangles (bi, bi+2, bi+4), where the indices are always modulo 5. These Möbius strips

have five boundary edges and five interior edges. A tetrahedron σ in the 5-dimensional

crosspolytope belongs to the subcomplex T if and only if either a triangle of σ is contained

in one of the Möbius strips and the other vertex of σ is in the other Möbius strip or σ has

two edges on the two opposite Möbius strips, such that either both are interior edges or

both are boundary edges.

The triangulation T has dihedral symmetry that acts transitively on the set of vertices.

Moreover, T is not weakly vertex decomposable and irreducible. We will define these notions

now.

A pure simplicial complex (i.e. one where all facets have the same dimension) is weakly

vertex decomposable if it is a simplex or if there is a vertex v such that deleting v results in a

weakly vertex decomposable simplicial complex. A pure simplicial complex is called vertex

decomposable if it is a simplex or there is a vertex v such that deleting v results in a vertex

decomposable simplicial complex and the link of this vertex is also vertex decomposable. An

edge (v, w) in a simplicial complex K is called contractible if lk(v, w) = lk(v) ∩ lk(w). Such

an edge can be contracted, and all incident faces collapsed to lower dimensional ones, to still

yield a simplicial complex of necessarily the same homotopy type. An edge is contractible if

and only if it is not contained in a missing face. A simplicial complex without contractible

edges is called irreducible.

Trivially, every vertex decomposable triangulation is also weakly vertex decomposable.

There is one more implication that holds in general:

Lemma 3.20 (Klee and Kleinschmidt [56, Sec. 6.2]). An irreducible triangulation of Sd

different from the boundary of the simplex is not vertex-decomposable.

The triangulation T constructed above is set apart from all other 3-dimensional com-

binatorially positively curved triangulations by these properties. This can be shown by a

computer enumeration.
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3 Combinatorial restrictions on manifold triangulations

Theorem 3.21. There is precisely one combinatorially positively curved 3-manifold tri-

angulation that is irreducible apart from the boundary of the simplex (respectively, vertex

decomposable, weakly vertex decomposable).

None of these properties are an obstruction to polytopality. Lockeberg [62] found a

simplicial 4-polytope that is not vertex decomposable. In fact, it is irreducible; see Klee and

Kleinschmidt [56]. They also give the facet list of Lockeberg’s polytope [56, Sec. 6.3] but

with a typo: replace aejk with aehk. (This typo was also pointed out in [30].) De Loera

and Klee [30] found simplicial d-polytopes that are not weakly vertex decomposable for

every d ≥ 4.

The triangulation T above is the smallest instance of a triangulation of S3 that is irre-

ducible apart from the boundary of the simplex (and is the smallest triangulation of S3 that

is not weakly vertex decomposable). This can be verified by a computer enumeration using

data of all triangulations of S3 on at most ten vertices generated by Lutz [65].

Theorem 3.22. Every triangulation of S3 on less than ten vertices is reducible to the

boundary of the simplex and weakly vertex decomposable. Of the 247882 triangulations of

S3 on ten vertices, 1668 are irreducible. Of those, 24 have f -vector (10, 40, 60, 30), and all

other irreducible instances have more edges.

3.5 Upper and lower bounds for f-vectors of 3-spheres

with valence bounds

We remarked that neighborly instances maximize f3 (equivalently, f1 or f2) among all

triangulations of S3 with the same number of vertices f0. The f -vector is minimized for a

given number of vertices by a stacked triangulation. These triangulations are not positively

curved for f0 ≥ 8. Here we investigate whether there are classes of triangulations of S3

minimizing or maximizing the number of facets while constrained to a valence bound. Recall

that if K ′ is a triangulation of S2 with f -vector (k+ 2, 3k, 2k) then the extended bipyramid

over K ′ has f -vector (11k + 10, 71k + 10, 120k, 60k) and the Hopf lift has f -vector (k2 +

2k, 7k2 + 2k, 12k2, 6k2). Two simple calculations show that for extended bipyramids f3 =

60
11 (f0 − 10) and for Hopf lifts f3 = 6f0 − 12

√
f0 + 1 + 12. An investigation of the census of

the 4761 triangulations of S3 that are combinatorially positively curved shows the following

upper and lower bound:

Theorem 3.23. Let K be a combinatorially positively curved triangulation of S3 with f -

vector (f0, f1, f2, f3). Then 60
11 (f0 − 10) ≤ f3 ≤ 6f0 − 12

√
f0 + 1 + 12.

Thus, extended bipyramids minimize f3 for a given f0 and Hopf lifts maximize the
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number of facets f3. The upper and lower bound coincide precisely for the 600-cell with

f0 = 120 vertices.

Does the inequality of Theorem 3.23 remain true for triangulations of S3 with valence

at least five? Since this seems like too much to hope for we conjecture that for such trian-

gulations the average vertex degree z stays bounded. Or equivalently;

Conjecture 3.24. For triangulations of S3 with valence at least five we have f3 ∈ Θ(f0).

We attempt to give some evidence in favor of this conjecture. Let a triangulation of

S3 with f -vector (f0, f1, f2, f3) be given and suppose that there are t facets around every

vertex on average. Then by double counting 4f3 = tf0. Thus, if f3 grows superlinearly in

f0 then t does not stay bounded and vertex links grow with the number of vertices. Now

since edges have valence at least five, every vertex link has vertex degrees bounded below by

five. Similar ideas to those presented by Elder, McCammond, and Meier [36] in their proof

of Thurston’s conjecture (see Theorem 3.33) might be applicable here.

3.6 Geometry from local combinatorics

We have established that there are only finitely many triangulations of 2- and 3-manifolds

with valences bounded by five, and that, moreover, all manifolds admitting such a triangu-

lation are spherical. We still need to investigate which valence bounds do not restrict the

topological type of a PL-manifold. For the 3-dimensional case there is the following result:

Theorem 3.25 (Brady, McCammond, and Meier [21]). Every closed orientable 3-manifold

admits a triangulation with valences four, five, and six.

We give a much simpler combinatorial proof of Theorem 3.25 and prove a new related

version, where we additionally only use three different kinds of vertex links. This improves

the previous published bound of Cooper and Thurston [28], that any closed 3-manifold

admits a triangulation with five fixed types of vertex links. That these three vertex links

suffice was previously observed but not published by Walker.

First we review the classical 2-dimensional case of surface triangulations with bounded

vertex degrees. This has close ties to the geometrical structure of the underlying surface. In

the following we will use the regular tiling of the plane with six triangles around each vertex.

The vertices of this tiling are the Eisenstein integers a+ bω with a, b ∈ Z and ω = e
2π
3 i.

Lemma 3.26. Every n-gon, n ≥ 5, has a triangulation with new vertices only in the interior

that have degree five or six and boundary vertices are contained in at most three triangles.

Proof. For a 5-gon and 6-gon we just need to introduce one new vertex in the interior. For

larger n we define a triangulation of an annulus bounded by an n-gon on one side and a
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6-gon on the other side that respects the valence condition in the interior. Moreover, if every

vertex in the 6-gon is contained in three or four triangles, we can cone it off to obtain a

triangulation of the n-gon as in the statement of the lemma.

Consider the quadrilateral with vertices 0, 6, (n−6)ω, and n+(n−6)ω in the Eisenstein

integers. Glue the sides (0, (n − 6)ω) and (6, n + (n − 6)ω) together to obtain an annulus.

All interior vertices have valence six. The annulus is bounded by a 6-gon with one vertex

(corresponding to 0 and 6) contained in four triangles and the other vertices contained in

three triangles. The other side of the annulus in an n-gon with one vertex (corresponding

to nω and n+ (n− 6)ω) contained in two triangles and all other vertices contained in three

triangles.

Lemma 3.27. A triangle has a triangulation with two new vertices on each edge and one

new vertex in the interior, such that the original vertices of the triangle are contained in one

triangle, the subdivision vertices on edges are contained in three triangles, and the interior

vertex is contained in six triangles.

Proof. This is the triangle with vertices 0, 3, and 3 + 3ω in the Eisenstein integers. The

only interior lattice point is then 2 + ω.

Theorem 3.28. Every closed surface admits a triangulation with valences five, six, and

seven.

Proof. Let K be an arbitrary triangulation of some closed surface. We modify K to have

degrees five, six, and seven. First triangulate every triangle of K according to Lemma 3.27 to

obtain K ′. All new vertices have degree six. The original vertices of K are at combinatorial

distance three in K ′. Delete vertices of degree three and four in K ′ and retriangulate

quadrilaterals with a diagonal. This results in a simplicial complex since we subdivided the

edges of K. Moreover, vertex degrees are at least five. We can now delete vertices of degree

at least seven and triangulate the resulting holes according to Lemma 3.26. This gives a

triangulation with degrees five, six, and seven.

Surface triangulations with constant valence are called equivelar. The boundary of the

icosahedron is an equivelar triangulation of the 2-sphere. The torus can be triangulated

with all valences six as a quotient of the regular triangular tiling of the plane. The non-

orientable surface with Euler characteristic −1 (sometimes called Dyck’s surface) does not

admit an equivelar triangulation (in the sense of a simplicial complex). But it does admit a

triangulation with valences six and seven. All orientable surfaces, however, admit equivelar

triangulations:

Theorem 3.29 (Combinatorial geometrization). Every closed orientable hyperbolic surface

admits a triangulation with constant valence seven.
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Proof. Construct a triangulation with constant valence seven of the orientable surface of

genus two. Such a triangulation can for instance be found in the census [65]. Observe that

every orientable surface of genus g ≥ 2 is a finite-sheeted cover of this surface and so the

triangulation lifts to every closed orientable hyperbolic surface.

By inducing the correct metric on every triangle of an equivelar triangulation we obtain

as an immediate corollary that every orientable surface admits a constant curvature metric.

Then this is also true for the non-orientable quotients.

Thus, a triangulation of constant degree five is spherical, degree six corresponds to Eu-

clidean surfaces, and triangulations with constant degree seven are hyperbolic. By mixing

these local combinatorics we can triangulate any surface. We will be interested in a 3-

dimensional analogue of this. In Theorem 3.35 we will determine local combinatorics that

lead to isotropic geometries in dimension three. That mixing these local combinatorics leads

to triangulations of all closed and orientable 3-manifolds, see Theorem 3.32, is a sharp-

ening of Theorem 3.25. We will obtain both Theorem 3.32 and Theorem 3.25 as simple

combinatorial corollaries of a first valence bound result for 3-manifolds due to Cooper and

Thurston.

Theorem 3.30 (Cooper and Thurston [28]). LetM be a closed orientable 3-manifold. Then

M can be tiled by cubes, such that every edge is in three, four, or five cubes. Moreover, no

cube contains two incident edges of valence 6= 4.

The barycentric subdivision of this tiling is a triangulation, where vertex links have only

five combinatorially different types.

Corollary 3.31 (Cooper and Thurston [28]). There are five fixed triangulations of S2, such

that every closed orientable 3-manifold admits a triangulation with only these 2-spheres as

vertex links. Such a triangulation has edge valences bounded by ten.

We will now improve this corollary and show that in fact three combinatorial types of

vertex links suffice to triangulate any closed and orientable manifold. Already in [28] it is

pointed out that Walker found such an improvement. Walker’s combinatorial refinement

(never published) is precisely the one that we give here. Moreover, in this triangulation each

triangle has two edges of valence six and one edge of valence three, four, or five.

Theorem 3.32 (independently Walker). There are three vertex links, such that every closed

orientable 3-manifold can be triangulated with only these vertex link types. They are a fully

stacked cube, 3
4 -th and 5

4 -th of a fully stacked cube. In this triangulation each triangle has

two edges of valence six and one edge of valence at most five.

Proof. Let M be a closed orientable 3-manifold and consider the tiling C by cubes as in

Theorem 3.30. We will modify this tiling to obtain the desired triangulation. First place a
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new vertex at the center of each cube. In any cube each edge and the new subdivision vertex

define a triangle. This gives a tiling of M by square pyramids. Deleting all squares leaves a

tiling by octahdra. Now triangulate each octahedron by introducing a new edge connecting

two subdivision vertices, that is, the edge is orthogonal to the deleted square.

The edges used to triangulate the octahdra all have valence four. The edges connecting

a subdivision vertex to a vertex of the cube have valence six. The original edges of the

tiling C have the same valence as in the tiling.

The vertex link of each vertex at the barycenter of a cube is a fully stacked cube. Original

vertices of C on valence four edges in C have the same vertex link. The two other vertex

links occur for original vertices of C on edges of valence three or five in C, respectively.

The construction given in the proof above generalizes to the construction of what we

will call the partial dual of a strongly regular, pure CW complex. Here a CW complex is

called strongly regular if the closure of each cell is a ball and any two closed cells intersect

in precisely one (possibly empty) face. The dual cell complex C∗ of a pure, strongly regular,

d-dimensional CW complex C is defined by putting a vertex at the barycenter of every

facet and connecting n such vertices by a k-face if the corresponding n facets intersect in a

(d− k)-dimensional face. Combinatorially, the dual arises by reversing the order of the face

poset. The dual complex is again a pure, strongly regular, d-dimensional CW -complex.

There is a well-defined pairing between primal and dual faces. If the face σ is k-

dimensional, its dual face σ∗ is (d − k)-dimensional. We can naturally identify the bidual

(C∗)∗ with the primal C, and thus for σ ∈ C∗ we have σ∗ ∈ C.
In the following we want to interpolate between the primal and dual complex and define

a partial dual. Given two strongly regular CW complexes C and C ′ on disjoint vertex sets

their join naturally is a CW complex C ∗C ′ := {σ ∗ σ′ : σ ∈ C, σ′ ∈ C ′}. The join C ∗C ′ is
again strongly regular and a set in its face poset is obtained by taking the union of any two

sets in the respective posets of C and C ′.

Let C be a pure, strongly regular, d-dimensional CW complex and k an integer with

−1 ≤ k ≤ d. The k-th partial dual Ck∗ of the complex C is a certain subcomplex of C ∗C∗

defined as

Ck∗ := {σ ∗ τ : σ ∈ C(d−k−1), τ ∈ (C∗)(k), σ ⊆ τ∗}.

We have the special cases C(−1)∗ = C and Cd∗ = C∗. The complex C0∗ is obtained

from C by stacking every facet, and dually C(d−1)∗ is obtained from C∗ by stacking every

facet. In general, we have that Ck∗ = (C∗)(d−k)∗. The complexes C and Ck∗ are always

PL homeomorphic since the barycentric subdivision of C is a common subdivision of both

complexes.

We will now prove that every closed orientable 3-manifold admits a triangulation with
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valences four, five, and six.

Proof of Theorem 3.25. Given a closed orientable 3-manifold M let C be the tiling by cubes

of Theorem 3.30. We assume that edges of valence three in C are sufficiently far apart in the

sense that no two edges in any cube have valence three. (This can be achieved by a cubical

subdivision.) Use the same combinatorial modification as in the proof of Theorem 3.32.

The only edges of valence three in the resulting triangulations are original edges of C that

are contained in only three cubes. For each such edge choose one adjacent octahedron

and instead of triangulating it by introducing a new edge that is orthogonal to the deleted

square, triangulate the octahedron by introducing one of the other two possible edges. This

increases the valence of all edges in the original square by one. It decreases the valence of

four other edges in the octahedron by one. Thus, all edges have valence between four and

six. Edges of valence three are sufficiently far apart that valences in any octahedron are

changed at most once.

We now turn to the question how local combinatorics influence the geometry of a manifold

triangulation. We note a result that is somewhat related to our Conjecture 3.24.

Theorem 3.33 (Elder, McCammond, and Meier [36]). A closed 3-manifold which admits a

triangulation where each triangle has two edges of valence six and the other edge of valence

five or six has word-hyperbolic fundamental group.

Lemma 3.34. There is a spherical (resp. Euclidean, hyperbolic) tetrahedron with two oppo-

site edges with dihedral angles 2π
3 (resp. 2π

4 , 2π
5 ) and the other edges with dihedral angles 2π

6 .

Edges with the same dihedral angle in a tetrahedron have the same length.

Proof. Projecting the boundary of the 4-simplex onto the 3-sphere gives a tiling by spherical

tetrahedra with three facets around each edge. Similarly, Euclidean space can be tiled with

four cubes around any edge, and hyperbolic space can be tiled by (hyperbolic) dodecahedra

where all edges have valence five. The partial dual C1∗ of these tilings C consists of tetra-

hedra that have the required metric. The opposite special edges have the same length since

these tilings are self-dual. Moreover, a reflection in a 2-face and a reflection in a dual 2-face

are symmetries of these triangulations. Thus, edges of valence six have the same length and

dihedral angles.

Theorem 3.35. Let k ∈ {3, 4, 5} be fixed. LetM be a 3-manifold that admits a triangulation

T where each triangle has two edges of valence six and one edge of valence k. Then M has

geometric structure. It is spherical for k = 3, Euclidean for k = 4, and hyperbolic for k = 5.

Proof. If each triangle consists of edges of valence 6, 6, k, then each tetrahedron has four

edges of valence six and two opposite edges of valence k. Inducing the spherical, Euclidean,
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or hyperbolic metric (depending on k) given in Lemma 3.34 on each tetrahedron gives the

geometric structure. For this notice that if a manifold is locally isometric to a geometric

manifold then it inherits the same geometric structure, if the geometry is isotropic.

3.7 Valence bounds in high dimensions

It is known that any PL-manifold has a triangulation with bounded vertex degrees, where the

bound only depends on the dimension. We will give a proof of this folklore theorem below,

see Theorem 3.37. This immediately gives some bound on the valence of the triangulation.

However, one can expect that there is a bound independent of the dimension of the manifold.

We will show that this is in fact true:

Theorem 3.36. Every PL-manifold can be triangulated with valences bounded by nine.

Proof. Consider the dual cell complex of some PL-triangulation, which is a simple cell com-

plex. Triangulate every 2-face as in Lemma 3.26. In any 3-face three 2-faces meet in a

vertex. The 2-faces are triangulated such that their boundary vertices are contained in at

most three triangles. Thus, in every 3-face vertex degrees are bounded by nine. Stacking

every 3-face triangulates the 3-skeleton in such a way that edges are contained in at most

nine 3-faces. Continue inductively stacking every face in the k-skeleton. This defines a

triangulation. Since the dual cell complex induces the same PL-structure and the triangu-

lation constructed here subdivides this dual cell complex, this triangulation has the same

PL-type.

Cooper and Thurston [28] write that “it is known that for any dimension n, there is a

finite set of link types such that every n-manifold has a triangulation in which the link of

each vertex is in this set.” The author was unable to locate a published reference for this

claim, so we give a brief proof at this point.

Theorem 3.37 (folklore). For every dimension d ≥ 1 there are finitely many combinatorial

types of vertex links that suffice to triangulate any smooth d-manifold.

Proof. Given a smooth d-manifold M , smoothly embed it into R2d. Take a sufficiently

fine standard lattice such that M intersect every k-cube, k ≥ d − 1, of the corresponding

cubulation of R2d transversely in a ball of dimension (k − d). This induces a regular cell

complex structure on M , where vertices correspond to d-faces of the cubulation. Vertex

degrees of this cell complex are bounded by 2d. The faces of this cell complex have at most

as many vertices as d-faces in a 2d-cube, that is,
(

2d
d

)
2d. Thus, the barycentric subdivision

is a triangulation of M with vertex degrees bounded above by a number that only depends

on the dimension d.
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4 Geometric structures and Shephard’s

conjecture

Abstract

The boundary of a polytope has a Euclidean structure away from its subridges.

We use the corresponding developing map to unfold the boundary of a polytope

in Euclidean space without overlap. This was previously done by Miller and

Pak [73] via the exponential map. Our approach is very similar but somewhat

more flexible.

We refer to Ziegler [106] for the basics of polytope theory. There are essentially two ways

to visualize a (d+ 1)-dimensional polytope in Rd, either by means of a Schlegel diagram or

by a net of the polytope. A Schlegel diagram is obtained by projecting the polytope onto

a facet through a point beyond but near to the facet. A net is constructed by cutting the

polytope along certain ridges and unfolding the resulting polyhedral space in Rd without

overlap. Thus, it is a model which can be glued to give back the polytope.

More precisely, a net of a (d + 1)-polytope P is a facet-ridge tree T (that is, a tree in

the 1-skeleton of the dual polytope) and for every facet σ ∈ P an isometry fσ : σ → Rd,

such that fσ(σ) ∩ fτ (τ) = fσ(τ ∩ σ) for every pair of facets (σ, τ) ∈ T in the facet-ridge

tree, and fσ(σ) ∩ fτ (τ) has dimension at most d − 2 for any two distinct facets σ and τ

that are not joined by an edge in T . This says that a net is a d-dimensional polyhedral

space, isometrically embedded into Rd, that has facetwise the same metric as the polytope

and preserves incidences among facets along a dual tree (and no other incidences). It was

conjectured by Shephard [86] that every 3-polytope has a net. Shephard attributes this

conjecture to Albrecht Dürer [34]. This conjecture and its higher-dimensional analogues have

remained unsolved. It is known to be false for non-convex (but star-shaped) 3-polyhedra

with convex faces; see Tarasov [92] and Grünbaum [47].

Every convex 3-polytope can be affinely dilated in such a way that it has a net; see

Ghomi [44]. Thus, there are no combinatorial obstructions to Shephard’s conjecture. Miller

and Pak [73] showed that there are no metric obstructions in any dimension, that is, the
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4 Geometric structures and Shephard’s conjecture

boundary of any convex d-polytope has a (geodesic) subdivision that admits a net. Their

results hold more generally for Euclidean cone-manifolds with cone-angles smaller than 2π.

Here we show that it is natural to unfold a subspace of the universal covering of a 3-

polytope without vertices. In fact, this approach works in the same way in higher dimensions

by deleting the subridges of the polytope. We show that results of this kind are most

naturally obtained from a geometric structure and its corresponding developing map.

4.1 Geometric structures

We refer to Thurston [94] for an introduction to geometric structures and the developing

map. Let Y be a Riemannian manifold and G a group of isometries of Y such that each

isometry g ∈ G is uniquely determined by its restriction to any non-empty open set: if

U ⊆ Y is non-empty and open, and g, h ∈ G such that g ·u = h ·u for all u ∈ U , then g = h.

Suppose the Riemannian manifold X is locally isometric to Y in such a way that every

change of coordinates is a restriction of an isometry in G, that is, every x ∈ X has a

neighborhood Ux ⊆ X and a function φx : Ux → Y that preserves distances, and if for

x, y ∈ X these neighborhoods Ux and Uy are not disjoint, then there is a g ∈ G, such that

φx ◦ φ−1
y |φx(Ux∩Uy) = g|φx(Ux∩Uy). The Riemannian manifold X is said to have a geometric

structure modelled on (G, Y ), and a maximal collection of such coordinate neighborhoods

{(U, φ)} is called a geometric structure.

Let x0 ∈ X and find a coordinate neighborhood U of x0 with an isometry Φ to some

open set in Y . Let γ be a path in X starting at x0. We can extend Φ along γ. Given a

point x on γ and a coordinate neighborhood V of x with an isometry Ψ to some open set in

Y , such that U ∩V 6= ∅, the coordinate transformation Φ◦Ψ−1 is given by the restriction of

some g ∈ G. We extend Φ by setting Φ(x) = g ·Ψ(x). Finitely many such continuation steps

suffice, since the image of γ is compact. Since continuation along a homotopic path gives the

same result, this defines a well-defined map dev : X̃ → Y on the universal covering space X̃

of X called the developing map. This map depends on the point x0 and isometry Φ, but it

is unique up to multiplying with an element in G. By construction the developing map is a

local isometry. Hence, also X̃ has geometric structure modelled on (G, Y ). A geodesic in a

cone-manifold is a path that is locally a shortest path. Every local isometry maps geodesics

to geodesics.

Theorem 4.1. Let X be a simply connected Riemannian manifold with geometry modelled

on (G,Rd) for some group of Euclidean isometries G. Suppose there is a set U ⊆ X and

a point x0 ∈ U such that any other point in U is connected to x0 via at least one geodesic.

Then dev |U : U → Rd is injective.
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4.2 Geodesics in cone-manifolds

If X is complete then U = X by the Hopf–Rinow theorem.

Proof. Consider the developing map. Suppose dev(x) = dev(x′) for some x, x′ ∈ U , x 6= x′.

There are geodesics γ and γ′ in X connecting x0 to x and x′, respectively. Since dev

is a local isometry dev ◦γ and dev ◦γ′ are geodesics in Rd that intersect in dev(x0) and

dev(x) = dev(x′). Geodesics in Rd cannot contain loops and if they intersect in two distinct

points they are equal between these two points. Thus, w.l.o.g. the image of dev ◦γ is

contained in the image of dev ◦γ′. Then dev is not even injective in any neighborhood of x0,

which is a contradiction to the definition of developing map.

Remark 4.2. In the proof of the previous theorem we only use that geodesics intersect

in at most one point in Euclidean space and a geodesic does not revisit any point, that is,

there are no closed geodesics. Thus, if the geometric structure on X is induced by a space

with these properties, Theorem 4.1 holds in the same way. In particular, it holds for simply

connected hyperbolic manifolds.

Theorem 4.3. Let X be a simply connected Riemannian manifold with geometry modelled

on (G,Sd) for some group of spherical isometries G. Suppose there is a set U ⊆ X and a

point x0 ∈ U such that any other point in U is connected to x0 via at least one geodesic of

length < π. Then dev |U : U → Sd is injective.

Proof. The proof is the same as for Theorem 4.1, now observing that any two geodesics in

Sd intersect each other in points that are at distance < π along both geodesics coincide for

the length of one of the geodesics.

4.2 Geodesics in cone-manifolds

Let Y be a topological space, and let a free, properly discontinuous action by the group G

acting by homeomorphisms on Y be given. Then a path-connected subspace X ⊆ Y is called

a fundamental domain if {g ·X : g ∈ G} is a partition of Y .

We briefly repeat the definition of cone-manifold for the case of Euclidean structure. Let

M be a d-dimensional topological manifold with a triangulation T such thatM has a metric

d that is induced by the Euclidean metric on every facet. Then (M,d) is called Euclidean

cone-manifold. Points that do not have a neighborhood isometric to a ball in Rd are called

singular. The set of singular points is a union of subridges in T called the singular locus.

Let x be a point in the singular locus of M . Then a neighborhood of x is isometric to a

cone over some metric (d− 1)-sphere.

Spherical or hyperbolic cone-manifolds are defined similarly by being glued from spherical

or hyperbolic simplices. Deleting the singular locus from a Euclidean cone-manifold gives
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4 Geometric structures and Shephard’s conjecture

a Riemannian manifold with Euclidean structure. (This remains true for any isotropic

geometry.) This manifold is incomplete if the singular locus is non-empty.

Let X be a d-dimensional Euclidean cone-manifold with singular locus S. LetM = X \S
with universal covering p : M̃ → M . Then X is called developable if the developing map

dev : M̃ → Rd is injective on a fundamental domain of M̃ with respect to the usual action

of π1(M) by deck transformations.

To prove that Euclidean cone-manifolds with cone angles < 2π are developable, we will

need two lemmas.

Lemma 4.4 (Burago, Burago, Ivanov [24, Prop. 2.5.19]). Let X be a compact metric space.

If x, y ∈ X can be connected by a path of finite length, they can be connected by a shortest

path.

Lemma 4.5 (Cooper, Hodgson, Kerckhoff [27, page 63]). In a cone-manifold with all cone-

angles less than 2π, if the interior of a geodesic contains a point in the singular locus, then

the entire geodesic is contained in a single stratum of the singular locus.

Theorem 4.6. Let X be a compact d-dimensional Euclidean cone-manifold with cone-

angles < 2π. Then X is developable.

Proof. Let M be the Euclidean manifold obtained from X by deleting the singular locus.

Let x0 ∈ M̃ be some point in the universal covering space of M and define U = {x ∈ M̃ :

there is a geodesic from x0 to x}. Then according to Theorem 4.1 the developing map in x0

is injective on U . We will show that U contains a fundamental domain of M .

Let p : M̃ → M be the covering map, and let y ∈ M be an arbitrary point. There is a

shortest path γ in X connecting p(x0) to y by Lemma 4.4. The path γ is even a geodesic in

M by Lemma 4.5 and thus lifts to a geodesic in M̃ . The endpoints of these geodesics are a

fundamental domain of M in M̃ . The set of endpoints is path-connected since the geodesics

are closed under taking initial segments and emanate from p(x0). For every point in M

there is exactly one endpoint of a chosen geodesic in M̃ . Thus, this set induces a partition

of M̃ under the action of π1(M).

Remark 4.7. In fact, here we used special fundamental domains to construct non-overlapp-

ing unfoldings in the case where cone angles are < 2π: let Γ be a set of geodesics in M

emanating from p(x0) ∈ M , such that every point is the endpoint of exactly one geodesic

and any initial segment of a geodesic in Γ is again in Γ. The geodesics Γ lift in a unique

way to the covering M̃ emanating from x0. The set of points that can be reached by these

lifted geodesics is a fundamental domain and the developing map is injective on them.
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4.3 Unfolding polytopes

4.3 Unfolding polytopes

Specializing to convex polytopes the corollary below is a direct consequence of Theorem 4.1.

Corollary 4.8. Let P be a (d + 1)-polytope, M = ∂P \ P (d−2), and x0 ∈ M̃ . Let U =

{x ∈ M̃ : there is a geodesic from x0 to x}. Then the developing map dev : M̃ → Rd in

x0 is injective on U .

The unfolding constructed here unfolds a point x in the boundary of the polytope multiple

times if there are multiple geodesics connecting x0 to a lift of x in the universal covering M̃ .

If we want to unfold every point only once then we would need to choose a specific set of

geodesics Γ as in Remark 4.7. For example, we can obtain such a set Γ by lifting unique

shortest paths inM to M̃ . This gives the theorem of Miller and Pak [73]. We have, however,

additional flexibility as the example below shows.

Example 4.9. Choosing Γ to be the set of shortest paths from a fixed point x0 does not

give a net for the standard 3-cube. However, there is a set of geodesics Γ that gives a net:

let σ be the facet of the cube that contains x0 and let τ be some adjacent facet; for every

point y in an adjacent facet of σ let the shortest path connecting x0 and y be in Γ (or rather

the unique lift to the universal covering thereof), and for a point y in the opposite facet

of σ, let the (lift of the) geodesic from x0 to y that only goes through σ, τ , and −σ be in Γ.

We can generalize this observation. The space M = ∂P \P (d−2) is tiled by the facets and

ridges of P and hence the universal covering M̃ inherits a tiling by (non-closed) polytopes.

If the universal covering contains a star-shaped, polyhedral fundamental domain, then P

has a (star-shaped) net.

Corollary 4.10. Let P be a (d+1)-polytope andM = ∂P \P (d−2) with universal covering M̃ .

If there is a point x0 ∈ M̃ such that U = {x ∈ M̃ : there is a geodesic from x0 to x}
contains a polyhedral fundamental domain, then P has a star-shaped net in Rd.
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