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Zusammenfassung 

 

Synthetische Antioxidationsmittel in Nahrungsmitteln sollen künftig durch natürliche Stoffe 

mit antioxidativen Eigenschaften ersetzt werden, was durch die Erforschung an verschiedenen 

Gemüsen sowie an Rohstoffen mit neu identifizierten Antioxidantien gefördert wird.  

Die Lebensmittelindustrie erzeugt wesentliche Mengen an phenolreichen Nebenprodukten, 

welche wertvolle Quellen für Antioxidantien darstellen. Im Rahmen dieser Untersuchungen 

werden die antioxidativen Eigenschaften sowie die Gesamtgehalte an phenolischen 

Verbindungen (Flavonoide, Flavonole) von drei industriellen Nebenprodukten untersucht. 

Dazu wurden Kartoffelschalen, Fruchtfleisch der  Zuckerrüben und Sesamkuchen mit 

verschiedenen Extraktionsmitteln behandelt und später untersucht. Die antioxidativen 

Verbindungen haben unterschiedliche Aktionsmechanismen, so dass es notwendig war, 

verschiedenste Methoden zur Beurteilung der antioxidativen Effizienz der Extrakte 

vorzunehmen. Unter den sechs getesteten Lösungsmitteln stellte sich Methanol als das 

optimalste Extraktionsmittel mit den höchsten Extraktausbeuten bei Kartoffelschalen und 

Zuckerrüben heraus. Dagegen erbrachten die Extraktionen von Sesamkuchen mit Diethylether 

die besten Ergebnisse.  Methanol besitzt für phenolische Verbindungen das höchste 

Extraktionspotential mit Gesamtphenolgehalten von 2.91, 1.79 und 0.81 mg Gallussäure / g 

Trockengewicht in Kartoffelschalen, Zuckerrüben und Sesamkuchen sowie die höchsten 

antioxidativen Fähigkeiten der drei genannten Proben. Alle drei Methoden zeigen, dass 

Kartoffelschalen die höchsten antioxidativen Aktivitäten auf grund ihrer hohen Gehalte an 

phenolischen Verbindungen und Flavonoiden aufweisen. Die bioaktiven Komponenten, 

welche mit Methanol bzw. Ethanol extrahiert wurden, konnten in weiteren Analysen auf ihre 

antioxidativen Fähigkeiten untersucht werden und mit synthetischen Antioxidantien 

verglichen werden. Dieses Experiment wurde modellhaft unter besonderen beschleunigten 

Oxidationsbedingungen unter Verwendung von Sonnenblumen- und Sojabohnenöl als 

Oxidationssubstrat in unterschiedlichen Konzentrationen bei 70°C für 72 Stunden 

duchgeführt. Es wurden inverse Verhältnisse zwischen Peroxidwerten und oxidativen 

Stabilitäten sowie zwischen sekundären Oxidationsprodukten, gemessen durch p- Anisidin 

und den Stabilitäten nach beendeten Lagerungen, festgestellt. Die Absorptionsfähigkeit bei 

232 nm und 270 nm ist gleichmäßig mit zunehmender Zeit gestiegen, welches durch die 

Formation der konjugierten Diene und Polyene verursacht wird. Die Reihenfolge der 
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oxidativen Stabilitäten sieht wie folgt aus: TBHQ > Kartoffelschalen > BHT = Fruchtfleisch 

der Zuckerrüben > BHA > Sesamkuchen.  Die HPLC Analysen der Kartoffelschalen-, 

Zuckerrüben- und Sesamkuchenextrakte spiegeln das Vorhandensein der phenolischen 

Verbindungen wieder. Auf Basis der erhaltenen Ergebnisse stellen Kartoffelschalen, 

Zuckerrübenfruchtfleisch und Sesamkuchen wertvolle Quellen natürlicher Antioxidantien 

wieder.  Diese antioxidativen Aktivitäten können sinnvoll in der Lebensmittelindustrie 

verwendet werden, um der Oxidation von Ölen vorzubeugen.  Ausserdem könnten sie 

Verwendung als Konservierungsstoff in der Lebensmittel- und Pharmaindustrie finden. 

 

 

Schlüsselwörter: beschleunigte Lagerung, antioxidative Aktivität, Nebenprodukt, oxidative 

Stabilität, Kartoffelschalen, Sesamkuchen, Lösungsmittelpolarität, Sojabohnenöl, 

Fruchtfleisch der Zuckerrüben, Sonnenblumenöl, Gesamtgehalte Flavonoide und Phenole 
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ABSTRACT 
 

Growing interest in the replacement of synthetic food antioxidants by natural ones has fostered 

research on vegetable sources and screening of raw materials to identify new antioxidants. The 

food-processing industry generates substantial quantities of phenolic-rich by-products that could 

be valuable natural sources of antioxidants. In this study the antioxidant properties and total 

phenolic, flavonoid, and flavonol contents of three industrial by-products; potato peels, sugar 

beet pulp, and sesame cake, extracted with various solvents were examined. Since the 

antioxidant compounds have different mechanisms of action, several methods were used to 

assess the antioxidant efficacy of extracts. Among the six solvents tested, methanol gave the 

highest extract yield of potato peels and sugar beet pulp, while diethyl ether gave the highest 

extract yield of sesame cake. Methanol exhibited the highest extraction ability for phenolic 

compound, with total phenolics amounting to 2.91, 1.79, and 0.81 mg gallic acid equivalent g-1 

dry weight in potato peels, sugar beet pulp, and sesame cake extracts respectively, and also 

showed the strongest antioxidant capacity in the three assays used. All three methods proved that 

potato peels extract had the highest antioxidant activity owing to its high content of phenolic 

compounds and flavonoids. The bioactive materials which extracted with methanol and ethanol 

were further examined for their antioxidant activity in comparison with synthetic antioxidants 

under accelerated oxidation conditions using sunflower and soybean oils as oxidation substrates 

at different concentrations for 72 h at 70 °C. Inverse relationships were noted between peroxide 

values and oxidative stabilities and also between secondary oxidation products, measured by p-

anisidine value and stabilities at termination of the storage. Absorptivity at 232 nm and 270 nm 

increased gradually with the increase in time, due to the formation of conjugated dienes and 

polyenes. The order of oxidative stability was as follow: TBHQ > potato peels > BHT = sugar 

beet pulp > BHA > sesame cake. The HPLC analysis of potato peels, sugar beet pulp, and 

sesame cake extracts revealed the presence of phenolic compounds. On the basis of the results 

obtained, potato peels, sugar beet pulp, and sesame cake extracts could serve as natural 

antioxidants, owing to their significant antioxidant activity, that might be explored to prevent 

oxidation of vegetable oils. Therefore they could be used as preservative ingredients in the food 

and/or pharmaceutical industries. 
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Keywords: Accelerated storage, antioxidant activity, by-products, oxidative stability, potato 

peels, sesame cake, solvent polarity, soybean oil, sugar beet pulp, sunflower oil, total flavonoids, 

total phenolics content 
 

 

 
 
 
 
 
 
 
 

 
 
 
  

 



Acknowledgements 
  
 

v 
 

 

ACKNOWLEDGEMENTS 
 

This dissertation is part of the requirement for the achievement of the German Ph.D. program. 

Belonging myself, as Ph.D. fellow, to Methods of Food Biotechnology, Institute of Food 

Technology and Food Chemistry, Faculty of Process Engineering, Berlin University of 

Technology, Germany. The study was carried out during the years from 2007 to 2010; part of the 

work was performed at the Department of Food Science and Technology, Faculty of Agriculture, 

Fayoum University, Egypt. 

Scholarship from Food Science and Technology Department, Faculty of Agriculture, Fayoum 

University (Egypt) and the partial financial support from the Egyptian Ministry of High 

Education are gratefully acknowledged. 

I would like to thank my supervisor Prof. Dr. Eng. Dr. Agr. Iryna Smetanska, for the continuous 

support, confidence, scientific advice, and especially, for her amazing motivation and 

implication. My sincere gratitude is due to my supervisor, Prof. Dr. Mohamed Atef Sarhan, for 

the encouragement, exceptional ideas, and tireless optimism that have kept me going. I would 

also like to express my thanks to Prof. Dr. Dietrich Knorr, for his help and assistance. I can not 

forget to extend my thanks to Ass. Prof. Dr. Awad A. Mahmoud for his valuable advice, 

encouragement and scientific contributions. Special thanks also go to Ass. Prof. Dr .Mohamed F. 

Ramadan and Ass. Prof. Dr. Abdelrahman R. Ahmed for their advice and encouragement. I am 

gratefully thanking Dr. Inga Mewis for her help in HPLC analysis of this work. 

To all present and former colleagues at the Department I am thankful for providing a very 

comfortable atmosphere during my time at the Department. A particular thanks to the technical 

assistants Irene, Heidi, Anja and our secretary Christine.  Nay Min, Kavitha, Zhenzhen, Dase, 

Anita, Alexandra, Onur, Esma, Yaroslav as well as our former secretary Sophie I want to thank 

for encouraging me and helpful discussions after work. Also, I would like to thank all the 

colleagues in Institute of Food Technology and Food Chemistry. 

I would like to thank my friends in Germany and Egypt for making me spare time enjoyable and 

helping me in ‘recharging batteries’ when it was needed. 

I am extremely grateful to the Egyptian Government and Missions Office for the financial 

support during my studies in Germany, especially, Prof. Dr. El Sayed Tag Eldin. 



Acknowledgements 
  
 

vi 
 

Gratitude is also extended to all staff members, my colleagues and workers of the Food Science 

and Technology Department, Faculty of Agriculture, Fayoum University, Egypt for their 

continuous encouragements. 

Finally, my sincere thanks and gratitude are for my parents, my dear wife N. Ibrahim, my son 

Mrwan, my baby Saif, and my family throughout my studies and during these years abroad. In 

spite of being away you were always present for their advices and encouragement during my stay 

in Germany. 

 

 

 

Adel Abdel razek Abdel azim Mohdaly 

Berlin, October 2010  
 
 

 



Contents 
  
 
TABLE OF CONTENTS 
 
 Zusammenfassung.......................................................................................................... i 
 Abstract.......................................................................................................................... iii 
 Acknowledgements........................................................................................................ v 
 Contents.......................................................................................................................... vii 
 List of figures................................................................................................................. ix 
 List of tables................................................................................................................... xii 
 List of abbreviations....................................................................................................... xiii 
1 INTRODUCTION.......................................................................................................... 1 
2 REVIEW OF LITERATURE......................................................................................... 4 
 2.1 General................................................................................................................. 4 
 2.2 Antioxidant activity.............................................................................................. 5 
  2.2.1 Free radicals.............................................................................................. 5 
  2.2.2 Lipid oxidation......................................................................................... 5 
   2.2.2.1 Lipid autoxidation...................................................................... 5 
   2.2.2.2 Photosensitised oxidation.......................................................... 6 
  2.2.3 Antioxidants............................................................................................. 8 
   2.2.3.1 Classification of antioxidants.................................................... 9 
   2.2.3.2 Mechanisms of action................................................................ 9 
   2.2.3.3 Natural antioxidants................................................................... 11 
   2.2.3.4 Synthetic antioxidants................................................................ 18 
   2.2.3.5 Assays involved in the determination of antioxidant activity… 22 
 2.3 Phenolics and their importance as natural products............................................. 31 
  2.3.1 Classes of phenolic compounds................................................................ 33 
   2.3.1.1 Simple phenols and phenolic acids............................................ 33 
   2.3.1.2 Flavonoids.................................................................................. 34 
   2.3.1.3 Stilbenes..................................................................................... 35 
   2.3.1.4 Lignans....................................................................................... 36 
   2.3.1.5 Tannins....................................................................................... 36 
  2.3.2 Antioxidant properties of food phenolics................................................. 37 
  2.3.3 Mechanism of action of phenolic antioxidants......................................... 39 
 2.4 Main sources of natural antioxidants from foods................................................. 43 
  2.4.1 By-products of plant food processing as a source of functional 

compounds................................................................................................ 45 
   2.4.1.1 By-products of potato................................................................ 46 
   2.4.1.2 By-products of sugar production............................................... 47 
   2.4.1.3 By-products of sesame............................................................... 48 
 2.5 Aims and objectives of work............................................................................... 49 
3 MATERIALS AND METHODS................................................................................... 52 
 3.1 Materials and reagents......................................................................................... 52 
 3.2 Sample preparation.............................................................................................. 52 
 3.3 Proximate analysis of potato peels, sesame cake, and sugar beet pulp............... 52 
 3.4 Determination of total phenolics........................................................................ 53 
 3.5 Determination of total flavonoids....................................................................... 53 
 3.6 Determination of total flavonols......................................................................... 53 

vii 
 



Contents 
  
 
 3.7 Antioxidant activity of extracts........................................................................... 54 
  3.7.1 Determination of DPPH· radical scavenging capacity............................ 54 
  3.7.2 ABTS radical scavenging assay.............................................................. 54 
  3.7.3 ß-Carotene/linoleic acid bleaching.......................................................... 55 
 3.8 Storage studies..................................................................................................... 55 
  3.8.1 Selection of oils....................................................................................... 55 
  3.8.2 Sample preparation for oxidative stability determination....................... 55 
  3.8.3 Analytical procedures.............................................................................. 56 
   3.8.3.1 Peroxide value (PV)................................................................. 56 
   3.8.3.2 p-Anisidine value (AV) ........................................................... 56 
   3.8.3.3 Conjugated dienes (CD) and conjugated trienes (CT)............. 57 
 3.9 Thin-layer chromatography and UV scan of extracts......................................... 57 
 3.10 HPLC analysis.................................................................................................... 57 
 3.11 Statistical analysis............................................................................................... 58 
4 RESULTS AND DISCUSSION.................................................................................... 59 
 4.1 Proximate composition of materials................................................................... 59 
 4.2 Extract yields...................................................................................................... 59 
 4.3 Total phenolic compounds as affected by solvent used...................................... 60 
 4.4 Amount of flavonoids and flavonols................................................................... 61 
 4.5 Antioxidant activity............................................................................................. 62 
  4.5.1 General.................................................................................................... 62 
  4.5.2 DPPH radical-scavenging activity.......................................................... 63 
  4.5.3 ABTS radical-scavenging activity.......................................................... 65 
  4.5.4 ß-carotene/linoleic acid bleaching........................................................... 67 
 4.6 Stability of oils as affected by addition of potato peels, sugar beet pulp, and 

sesame cake extracts............................................................................................ 69 
  4.6.1 General.................................................................................................... 69 
  4.6.2 Effect of methanolic extracts on sunflower oil oxidation....................... 69 
  4.6.3 Effect of methanolic extracts on soybean oil oxidation.......................... 78 
  4.6.4 Effect of ethanolic extracts on sunflower oil oxidation.......................... 86 
  4.6.5 Effect of ethanolic extracts on soybean oil oxidation............................. 93 
 4.7 Identification of phenolic compounds using TLC and UV spectra..................... 101 
 4.8 Identification of phenolic compounds using HPLC analysis.............................. 104 
5 CONCLUSIONS............................................................................................................ 109 
6 REFERENCES............................................................................................................... 111 
List of Publications............................................................................................................. 124 

 
 
 
 
 
 
 
 

viii 
 



List of figures 

LIST OF FIGURES 
 
Figure 2.1. The ene reaction (Bradely et al., 1992)........................................................................ 7
Figure 2.2. Structure of alpha tocopherol (Schuler, 1990)............................................................. 11
Figure 2.3. Basic structure of flavonoids (Hopia and Heinonen, 1999)....................................... 13
Figure 2.4. Structure of sesamol (Ohsawa, 1991)...................................................................... 18
Figure 2.5. Chemical structures of butylated hydroxyanisole (BHA) and butylated 
hydroxytoluene (BHT) (Porter, 1980 ........................................................................................ 20
Figure 2.6.  Structure of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) (Eklund et al., 2005) .......... 23
Figure 2.7. Scavenging of free DPPH by antiradical species (Espin et al., 2000) …................. 24
Figure 2.8. Formation of stable ABTS radical from ABTS with potassium persulfate (Re et 
al., 1999)......................................................................................................................................  25 
Figure 2.9. The reaction of p-anisidine with alkenals (Michael, 2001)......................................  28 
Figure 2.10. Formation of adducts from -carotene and antioxidant with a lipid peroxide 
radical (Tsuchihashi, 1995).........................................................................................................  29 
Figure 2.11. Formation of a chromogen by reaction of TBA with malonaldehyde (Michael, 
2001).......................................................................................................................  30 
Figure 2.12. Formation of conjugable oxidation products (Michael, 2001) ……......................  31 
Figure 2.13. Shikimate pathway and phenyl propanoid pathway (Macheix et al., 1990)……....  32 
Figure 2.14. Chemical structure of vanillin and gallic acid (Macheix et al., 1990)...................  33 
Figure 2.15. Chemical structure of hydroxylated derivatives of some phenolics (Macheix et 
al., 1990)......................................................................................................................................  34 
Figure 2.16. Diseases and damages caused by reactive oxygen species (Shahidi and Naczk, 
2004)............................................................................................................................................  37 
Figure 2.17. Consequences of reactive oxygen species in diseases and preventive role of 
phenolics (Shahidi and Naczk, 2004)..........................................................................................  38 
Figure 2.18. General scheme for autoxidation of lipids containing polyunsaturated fatty acids 
(RH) and their consequences (Shahidi and Naczk, 2004)...........................................................  39 
Figure 4.1. Scavenging activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 
extracts against DPPH radical compared with that of BHA, BHT, and TBHQ at different 
concentrations. Data are mean ±SD of three determinations......................................................  64 
Figure 4.2. Scavenging activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 
extracts against ABTS radical compared with that of BHA, BHT, and TBHQ at different 
concentrations. Data are mean ±SD of three determinations......................................................  66 
Figure 4.3. Antioxidant activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 
extracts in ß-carotene/linoleic acid system compared with that of BHA, BHT, and TBHQ at 
different concentrations. Data are mean ±SD of three determinations........................................  68 
Figure 4.4. Relative increase in peroxide value (PV) of treated sunflower oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 
under accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................  71 
Figure 4.5. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 
under accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................  73 
Figure 4.6. Absorptivity at 232 nm of treated sunflower oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation.......................   76 

ix 
 



List of figures 

Figure 4.7. Absorptivity at 270 nm of treated sunflower oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation........................ 78 
Figure 4.8. Relative increase in peroxide value (PV) of treated soybean oil samples: (a) with 
potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts under 
accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 80 
Figure 4.9. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 
under accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 82 
Figure 4.10. Absorptivity at 232 nm of treated soybean oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation.......................  83 
Figure 4.11. Absorptivity at 270 nm of treated soybean oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation....................... 85 
Figure 4.12. Relative increase in peroxide value (PV) of treated sunflower oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 
accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 87 
Figure 4.13. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 
accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 89 
Figure 4.14. Absorptivity at 232 nm of treated sunflower oil samples: (a) with potato peels, 
(b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation.......................  91 
Figure 4.15. Absorptivity at 270 nm of treated sunflower oil samples: (a) with potato peels, 
(b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error 
bars show the variations of three determinations in terms of standard deviation.......................  93 
Figure 4.16. Relative increase in peroxide value (PV) of treated soybean oil samples: (a) with 
potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 
accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 95 
Figure 4.17. Relative increase in p-anisidine value (AV) of treated soybean oil samples: (a) 
with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 
accelerated storage. Error bars show the variations of three determinations in terms of 
standard deviation........................................................................................................................ 97 
Figure 4.18. Absorptivity at 232 nm of treated soybean oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error bars 
show the variations of three determinations in terms of standard deviation............................... 99 
Figure 4.19. Absorptivity at 270 nm of treated soybean oil samples: (a) with potato peels, (b) 
with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error bars 
show the variations of three determinations in terms of standard deviation............................... 101
Figure 4.20. UV absorbance scanning between 200 and 400 nm of (1) potato peels, (2) sugar 
beet pulp, and (3) sesame cake methanolic extracts.................................................................... 102
Figure 4.21. UV absorbance scanning between 200 and 400 nm of (1) potato peels, (2) sugar 
beet pulp, and (3) sesame cake ethanolic extracts....................................................................... 102

x 
 



List of figures 

Figure 4.22. Thin layer chromatography profile of the samples and standard. Lanes: 1, sugar 
beet pulp extract; 2, potato peels extract; 3, ferulic acid; 4, p- coumaric acid; 5, -cumaric 
acid; 6, caffeic acid; 7, qurecetin; 8, gallic acid; 9, sesame cake extract; 10, chlorogenic acid; 
and 11, sinabic acid...................................................................................................................... 103
Figure 4.23. HPLC chromatograms of methanolic extract from (a) potato peels (b) sugar beet 
pulp and (c) sesame cake. Identification: peak 1, unknown; peak 2, unknown; peak 3, 
hydroxybenzoic acid; peak 4, vanillic acid; peak 5, chlorogenic acid; peak 6, caffeic acid; 
peak 7, p-coumaric acid; peak 8, sinapic acid; peak 9, trans-o-hydroxycinnamic acid; peak 
10, unknown, and peak 11, cinnamic acid................................................................................... 105
Figure 4.24. HPLC chromatograms of ethanolic extract from (a) potato peels (b) sugar beet 
pulp and (c) sesame cake. Identification: peak 1, unknown; peak 2, unknown; peak 3, 
hydroxybenzoic acid; peak 4, vanillic acid; peak 5, chlorogenic acid; peak 6, caffeic acid; 
peak 7, p-coumaric acid; peak 8, sinapic acid; peak 9, trans-o-hydroxycinnamic acid; peak 
10, unknown, and peak 11, cinnamic acid................................................................................... 107

 

xi 
 



List of tables 

LIST OF TABLES 

Table 2.1. Antioxidant activity of flavones.............................................................................. 14
Table 2.2. Synthetic food antioxidants and their properties..................................................... 19
Table 2.3. Different classes of flavonoids, their substitution patterns and dietary sources 
(Shahidi and Naczk, 2004)........................................................................................................ 35
Table 2.4.  Natural food sources of some antioxidants (Nagendran et al., 2006)……...…...... 44
Table 4.1. Chemical composition of potato peels, sugar beet pulp, and sesame cake extracts 
(% dry weight basis).................................................................................................................. 59
Table 4.2. Extract yield and total phenolic content of potato peels, sugar beet pulp and 
sesame cake extracts.................................................................................................................. 60
Table 4.3. Total flavonoid and flavonol contents of potato peels, sugar beet pulp and sesame 
cake extracts.............................................................................................................................. 62

 
 

xii 
 



List of abbreviations 

LIST OF ABBREVIATIONS 

 

TPC                   Total phenolic contents  

FCR                   Folin-Ciocalteu reagent 

GAE                  Gallic acid equivalent  

DW                    Dry weight 

QE                     Quercetain equivalent 

PV                      Peroxide value  

PPE                    Potato peel extracts  

SCE                    Sesame cake extracts  

SBP                    Sugar beet pulp  

AV                      p-anisidine value  

CD                      Conjugated dienes  

CT                      Conjugated trienes  

SFO                    Sunflower oil  

SBO                   Soybean oil  

TLC                   Thin layer chromatography 

HPLC                High-performance liquid chromatography 

GC                     Gas chromatography 

MS                    Mass spectrometry 

UV/Vis             Ultraviolet-visible light  

NMR                Nuclear magnetic resonance 

AOA                Antioxidant activity 

ROOH             Hydroperoxide 

PUFA              Polyunsaturated fatty acid  

 

xiii 



List of abbreviations 

AE                  Antiradical efficiency  

 1O2                 Singlet oxygen 

BHA               Butylated hydroxyanisole  

BHT                Butylated hydroxytoluene  

PG                   Propyl gallate  

DG                  Dodecyl gallate  

TBHQ            Tertiary butyl hydroquinone  

NDGA           Nordihydroguaiaretic acid  

AOM             Active oxygen method  

OS                 Oxidative stability  

ORAC           Oxygen radical absorbance capacity 

TEAC            Trolox equivalent antioxidant capacity 

DPPH            1,1-diphenyl-2-picrylhydrazyl 

ABTS            2, 2 -azinobis (3-ethylbenzthiazoline- sulphonic acid)  

TBA              Thiobarbituric acid value  

PAL               Phenylalanine ammonia lyase  

PAF               Platelet activating factor  

ROS               Reactive oxygen species  

RCS               Reactive chlorine species  

RNS              Reactive nitrogen species  

GRAS           Generally recognized as safe  

GAC             Granulated activated carbon  

CME            Crude methanolic extract  

RSA             Radical scavenging activities  

FDA             Food and drug administration 

xiv 



Introduction 

1 INTRODUCTION 

One of the principal causes of food quality deterioration is lipid peroxidation (Gordon, 1991). 

Lipid peroxidation results in formation of reactive oxygen species and free radicals; which are 

purportedly associated with carcinogenesis, mutagenesis, inflammation, DNA changes, aging, 

and cardiovascular diseases (Shahid et al., 2008). Food lipids undergo a variety of chemical 

reactions such as accelerated oxidation, thermolysis, and polymerization under heat exposure 

(Jinyoung et al., 2008). Oxidation of oils modifies their organoleptic properties and affecting 

the shelf life of the product. It results in the loss of nutritional value of food as well as 

changes in colour, texture, sensory and other physiological properties (Iqbal and Bhanger, 

2007). Due to these changes, consumers do not accept oxidized products and industries suffer 

from economic losses. The oil industry has to pay special attention in this context, as oils, fats 

and fatty foods suffer stability problems (Valenzuela et al., 2003). The oils with higher 

contents of unsaturated fatty acids, especially polyunsaturated fatty acids, are more 

susceptible to oxidation. It is, therefore, important to evaluate the oxidative stability (OS) of 

oils as affected by processing and storage conditions.  

Several methods have been reported to measure the OS of edible oils. The oxidative stability 

of oils and fats with added antioxidants can be determined during storage under normal 

ambient conditions and packing. However, in general, oxidation can take a long time to occur, 

e.g. a few days to a few months, which is impractical for routine analysis. For this reason, 

accelerated oxidation or aging tests are conducted. Normally Schaal oven test is used for 

determination of oxidation of oils (Mahuya et al., 2008). Storage of oil samples at high 

temperatures (oven test) was employed for monitoring OS of oils and for antioxidant choice. 

The extent of oxidation in oils has been frequently evaluated by measuring the peroxide value 

(PV). This index is related to the hydroperoxides, the primary oxidation products, which are 

unstable and readily decompose to form mainly mixtures of volatile aldehyde compounds. 

The oxidative degradation compounds that derived from degradation of hydroperoxides are 

generally termed secondary oxidative products which are determined in oils and fats by the p-

anisidine (AV) method (Ramadan and Mörsel, 2004). 

In order to overcome the stability problems of oils and fats, synthetic antioxidants, such as 

butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), tert-butyl hydroquinone 

(TBHQ) have been used as food additives. However, recent reports reveal that these 

compounds may be implicated in many health risks, including cancer and carcinogenesis 
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(Prior, 2004). Due to these safety concerns, there is an increasing trend among food scientists 

to replace these synthetic antioxidants with natural ones, which are supposed to be safer 

(Yanishlieva and Marinova, 2001). Natural antioxidants such as flavonoids, tannins, 

coumarins, curcumanoids, xanthons, phenolics, lignans and terpenoids are found in various 

plant products (such as fruits, leaves, seeds, and oils) (Jeong et al., 2004) and they are known 

to protect easily-oxidizable constituents of food from oxidation.  

Processing of fruits, vegetables, and oilseeds result in large amounts of waste materials such 

as peels, seeds and stones. Disposal of these materials usually represents a problem that is 

further aggravated by legal restrictions. Thus, new aspects concerning the use of these wastes 

as by-products for further production of food additives or supplements with high nutritional 

value have gained increasing interest because these bioactives are high-value products and 

their recovery may be economically attractive (Vasso and Constantina, 2007).  

Different solvent systems have been used for the extraction of polyphenols from plant 

material (Pinelo et al., 2004). Extraction yield is dependent on the solvent and the method of 

extraction (Goli et al, 2004). Wang and Helliwell (2001) reported that aqueous ethanol was 

superior to methanol and acetone for extracting flavonoids from tea. However, in another 

work, water was found to be a better solvent, for extracting tea catechins, than were 80% 

methanol or 70% ethanol (Khokhar and Magnusdotti, 2002). 

Potato (Solanum tuberosum L., Solanaceae) is one of the most important staple crops grown 

worldwide. Because of its low cost, low fat content and a good source of carbohydrates, high 

quality protein, fibre and vitamins, it plays an important role in human nutrition. Although 

potatoes are consumed directly, processed potato products such as French fries, chips, mashed 

potato, crisps, starch, potato flakes, flour, and puree represent majority of the consumption 

(Amir and Venket, 2009). In processing, 10-25% of the raw product is discharged as waste. 

Peels are the major waste of potato processing that is perishable and cause many management 

problems in terms of disposal and sanitation.  

Sugar is a strategic commodity to many countries of the world, since it comes right after 

wheat from the importance point of view to many countries in Europe, Africa, North and 

South America and Australia. In Egypt, sugar cane was considered to be the main source for 

sugar industry up to 1981 season and the cultivation of sugar beet did not known 

economically before 1982 season.  Nowadays, sugar beet (Beta vulgaris L., Chenopodiaceae) 

becomes an important crop for sugar in Egypt.  Beet pulp is a sugar-depleted and highly 

fibrous material that is produced after sugar is extracted from sugar beet. Pulp is a valuable 
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cattle feed and supplies carbohydrates, proteins, and minerals. The pulp content of sugar beet 

ranges from 4 to 6% (Mosen asadi, 2007).  

Sesame (Sesamum indicum L., Pedaliaceae) is one of the most important oilseed crops 

(because of its high content of lipid) in the world (Shyu and Hwang, 2002). It is not only a 

source of edible oil, but also widely used in baked goods and confectionery products (Namiki, 

1995). In Egypt, the major part of the imported sesame is essentially transformed to Halaweh. 

This food product is obtained after mixing the white tehineh (white sesame seed dehulled, 

roasted and grinded), saponin (Saponaria officinalis) and Nougat (heat-treated sucrose) (Abu-

Jdayil et al., 2002).  The sesame cake is a by-product of the oil industry which could be 

recovered and used as a value added product. However, in some sesame processing countries, 

this by-product is generally discarded, or used in animal feeding.  

Due to this fact we investigated the possibilities of obtaining natural antioxidant compounds 

from inexpensive residual sources. Therefore, the objectives of this study were to evaluate 

potato peels, sesame cake, and sugar beet pulp as sources of natural antioxidant using 

different extracting solvents to determine their antioxidant capacities. In the study, the content 

of total phenols, flavonoids, and flavonols were determined. Since different antioxidant 

compounds have different mechanisms of action, different methods have been used to assess 

the antioxidant efficacy of extracts. The aim of this work was also to evaluate the antioxidant 

effectiveness of potato peels, sesame cake, and sugar beet pulp extracts during oxidation of 

sunflower and soybean oils by measuring both primary (hydroperoxides) and secondary 

oxidation products and to compare its antioxidant activity with commercially antioxidants. 

The study also attempts to identify the antioxidant compounds present in the extracts using 

chromatographic and spectroscopic techniques. 
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2 REVIEW OF LITERATURE 

2.1 General 

Lipids are broadly defined as any fat-soluble (lipophilic), naturally-occurring molecule, such 

as fats, oils, waxes, cholesterol, sterols, fat-soluble vitamins (such as vitamins A, D, E, and 

K), monoglycerides, diglycerides, phospholipids, and others. The main biological functions of 

lipids include energy storage, acting as structural components of cell membranes, and 

participating as important signaling molecules (Maton et al., 1993). Chemically, fats are 

generally triesters of glycerol and fatty acids. Fats may be solid or semi-sold at normal room 

temperature, depending on their chemical composition. Although the words "oils", "fats", and 

"lipids" are all used to refer to fats, "oils" is usually used to refer to fats that are liquids at 

room temperature, while "fats" is usually used to refer to fats that are solids at normal room 

temperature. "Lipids" is used to refer to both liquid and solid fats. Examples of animal fats are 

lard (pig fat), fish oil, and butter or ghee. Examples of edible plant fats are peanut, soya bean, 

sunflower, sesame, coconut, olive, and other vegetable oils. (Maton et al., 1993). 

Fats, oils and lipid-based foods deteriorate through several degradation reactions both on 

heating and on long term storage. The main deterioration processes are oxidation reactions 

and the decomposition of oxidation products which result in decreased nutritional value and 

sensory quality. The retardation of these oxidation processes is important for the food 

producer and, indeed, for all persons involved in the entire food chain from the factory to the 

consumer. Oxidation may be inhibited by various methods including prevention of oxygen 

access, use of lower temperature, inactivation of enzymes catalysing oxidation, reduction of 

oxygen pressure, and the use of suitable packaging. Another method of protection against 

oxidation is to use specific additives which inhibit oxidation. These are correctly called 

oxidation inhibitors, but nowadays are mostly called antioxidants. These inhibitors represent a 

class of substances that vary widely in chemical structure, and have diverse mechanisms of 

action. 
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2.2 Antioxidant activity 

2.2.1 Free radicals  

Lipid oxidation is a process with detrimental effects occurring in foods and the metabolically 

active cells of the body. In foods it can lead to rancidity and loss of nutritional value, flavor, 

odor, spoilage and potential toxicity. In the cell, however lipid oxidation and products of lipid 

oxidation are associated with many conditions of cellular damage and cytotoxicity. This is 

due to changes in membrane structure and fluidity, increased permeability of membranes and 

damage to biologically important molecules such as DNA and proteins, resulting in chronic 

diseases such as a herosclerosis and cancer. (De Beer et al., 2002). 

Lipid oxidation leads to free radical generation. A free radical can be defined as any 

molecular species capable of independent existence that contains an unpaired electron in an 

atomic orbital (Young and Woodside, 2001). Radicals are weakly attracted to a magnetic field 

and are said to be paramagnetic. There are several processes that lead to lipid oxidation, 

including autoxidation, photoxidation and lipolysis. 

 

2.2.2 Lipid oxidation 

2.2.2.1 Lipid autoxidation 

Autoxidation is a natural process that takes place between molecular oxygen and unsaturated 

lipids in the environment. The process of autoxidation of polyunsaturated lipids in food 

involves a free radical chain reaction that is generally initiated by exposure of lipids to light, 

heat, ionizing radiation, metal ions or metalloprotein catalysts. Enzyme lipoxygenase can also 

initiate oxidation. The classical route of autoxidation includes initiation (production of lipid 

free radicals), propagation and termination (production of nonradical products) reactions 

(Reaction 2.1 to Reaction 2.6) (Sanchez-Moreno et al., 1998). 

 

Initiation:                            RH                                            R• + H•                                       (2.1) 

Propagation:                        R• + O2                             ROO•                                       (2.2) 

                                           ROO•+ RH                         ROOH + R•                            (2.3) 
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Termination:                        R• + R•                              RR                                        (2.4) 

                                            R• + ROO•                        ROOR                                   (2.5) 

                                            ROO• + ROO•                        ROOR + O2                           (2.6) 

Where: 
RH                 = Unsaturated fatty acid  
R• , ROO•       = Free radicals  
ROOH           = Hydroperoxides           
 

The initiation step occurs when an unsaturated lipid (RH) loses a hydrogen atom, forming a 

free radical (R•). The free radical thus formed reacts with oxygen in the propagation step to 

form an unstable peroxyl radical (ROO•), and this last in turn abstract an hydrogen from 

another lipid (RH) to yield unstable hydroperoxide (ROOH), the primary product of 

autoxidation, and another free radical (R•). The new (R•) groups react with oxygen, and the 

sequence of reactions just described is repeated. This chain reaction continues until either the 

unsaturated compound has been exhausted or the free radicals have inactivated each other. 

The propagation reaction becomes a continuous process as long as unsaturated fatty acids are 

available (German and Dillard, 1998).  Transition metals speed up deterioration in food lipids 

where they are powerful catalysts of autoxidation and initiate free radical chain reaction by 

electron transfer (Bors et al., 1996). 

2.2.2.2 Photosensitised oxidation 

In food, photosensitized oxidation occurs in the presence of photosensitisers. Natural 

pigments in foods such as chlorophyll, flavins, protoporphyrins, and riboflavins are efficient 

photosensitisers (Bradely et al., 1992). These sensitisers absorb energy in the visible or near 

ultraviolet regions. This renders them excited and more efficient to generate singlet oxygen in 

foods.  As singlet oxygen (1O2) is highly electrophilic, it can react rapidly with unsaturated 

lipids and initiates lipid oxidation by the ene-reaction (Figure 2.1) to yield lipid 

hydroperoxides. 
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Figure 2.1. The ene reaction (Bradely et al., 1992). 

Photosensitised oxidation generally involves light excitation of the electrons in the outer 

orbital of the sensitiser molecule to the singlet state (1Sensitiser*), followed by intersystem 

crossing to the triplet state (3Sensitiser*). 

1Sensitiser   + hv     1Sensitiser*    3Sensitiser*  

Two pathways have been proposed for photosensitized oxidation (Chen, 1997):

a) The sensitiser presumably reacts, after absorption of light, with substrate (A) to form 

intermediates which then react with triplet oxygen and yield the oxidation products. 

3Sensitiser* + A                                       (Sensitiser - A) 

(Sensitiser - A) + 3O2 AO2 + 1Sensitiser

 

b) Molecular oxygen rather than the substrate is presumably the species that reacts with the 

sensitiser upon light absorption. 

 
3Sensitizer*    + 3O2         

1O2* + 1Sensitizer 
1O2* + RH   ROOH                  Free radicals  

 

Where: 
1Sensitizer*: Activated singlet state sensitiser  
3Sensitizer*: Activated triplet state sensitiser 
 1O2*: Activated singlet state oxygen 
 3O2:  Activated triple state oxygen   

7
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The lifetime of singlet O2 in the hydrophobic cell membrane is greater than in aqueous 

solution. Furthermore, photo-oxidation is a quicker reaction than autoxidation since it was 

demonstrated that photo-oxidation of oleic acid can be 30 000 times quicker than autoxidation 

and for polyenes photo-oxidation can be 1000-1500 times quicker. Similar effects have been 

described in liposomes and in intact membranes.  

The inhibition of photosensitised oxidation by carotenoids is complicated because they are 

very susceptible to autoxidation, and are quickly destroyed during the free-radical oxidation 

process. To be effective in unsaturated lipids exposed to light irradiation, carotenoids must be 

protected by an antioxidant (Haila et al., 1996; Yanishlieva et al., 2001). Without antioxidant 

protection, e.g. in pure triacylglycerols of rapeseed (Haila et al., 1996) and of sunflower 

(Yanishlieva et al., 2001) oils, they exert a pro-oxidative effect. Photosensitised oxidation can 

be also quenched by tocopherols (Edwin, 2006) and flavonoid substances (Criado et al., 

1995). 

 

2.2.3 Antioxidants  

An antioxidant is defined as: “any substance that, when present in low concentrations 

compared to that of an oxidizable substrate, significantly delays or inhibits the oxidation of 

that substrate” (Young and Woodside, 2001). The physiological role of antioxidants, as this 

definition suggests, is to prevent damage to cellular components arising as a consequence of 

chemical reactions involving free radicals (Young and Woodside, 2001). Antioxidants protect 

key cell components from damage by neutralizing or preventing the free radicals. They do 

this by giving up electrons to the free radicals or by removing or inactivating chemical 

intermediates that produce free radicals. Antioxidants can interfere with the oxidation process 

by reacting with free radicals in one or more of the following ways: (I) as reducing agents, (II) 

as free radical scavengers, (III) as complexers of prooxidant metals and (IV) as singlet oxygen 

quenchers (Pratt and Hudsom, 1990). 

Since there are many different oxidation reactions, from the oxidation of iron to rust, to the 

transformation of lipids to peroxide, there is no single substance that is a universal 

antioxidant, and there can be no standard antioxidant test because antioxidants are situation 
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dependent. Each different oxidation reaction will have particular requirements to stop the 

reaction and respond to specific antioxidant compounds. 

Antioxidants are provided through the diet or are produced by the body (Papas, 1999). 

Antioxidants cannot reverse damage, but they can retard its progress. Damage that leads to 

chronic diseases is cumulative, usually occurring over decades. It is very important that 

antioxidant requirements should be met on a daily basis to slow this cumulative damage that 

builds up over the course of a lifetime (Madhavi and Salunkhe, 1995). 

2.2.3.1 Classification of antioxidants 

Antioxidants can be classified into primary antioxidants (chain-breaking) and secondary 

(preventive) antioxidants, according to the mechanism by which they prevent or retard 

oxidation (Koleva et al., 2002). Primary antioxidants interrupt oxidation by donation of 

hydrogens or electrons to free radicals (R•, ROO•, RO•), resulting in the formation of more 

stable products such as antioxidant free radicals (A•). Secondary antioxidants inhibit the 

oxidation of lipids by delaying and retarding the rate of oxidation rather than by stopping the 

radical chain reaction. Some antioxidants may exhibit more than one mechanism, and are 

therefore called multiple-function antioxidants (Madhavi and Salunkhe, 1995). 

Along with specific antioxidant enzymes, antioxidant compounds are physically classified 

according to their solubility into two major groups: water soluble (hydrophilic) antioxidants 

(ascorbic acid, polyphenolic compounds as flavonoids, uric acid and thiols) and lipid soluble 

(lipophilic) antioxidants (vitamin E, carotenoids, ubiquinols) (Arnao et al., 2001). 

2.2.3.2 Mechanisms of action 

Scavenging of free radicals: The reaction of the scavenger with an intermediary free radical 

and the formation of more or less stable secondary radicals usually lead to final products 

being different from the products in the absence of the scavenger. Radical scavengers usually 

donate one electron to the unpaired electron of the free radical, and thus reduce it. 

Polyphenols are very active in this respect and the radical scavenging activities of 

propylgallate, nordihydroguaiaretic acid, ellagic acid, flavonoids, ascorbic acid, and 

tocopherol are due to this function (Kochhar and Rassell, 1990). 
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Quenching of singlet excited states: The physical transfer of energy from the primarily 

excited molecule to the quencher results in energy dissipation by light emission or as heat. It 

thus avoids single electron transfer reactions or direct reaction of the primarily excited 

molecule with critical targets. Tocopherol and carotenes are physical quenchers of excited 

states of pigment molecules, as well as of singlet oxygen (Eriksson and Na, 1995). 

Chelating of transition metals: Certain oxidation reactions depend on the availability of 

metals. Interference with this process of catalysis by chelating would have a strong effect on 

the progress of the radical reaction. Metal chelating agents have effect on increasing the

oxidation stability through blocking the pro-oxidant metal ions, and thus limiting the 

formation of chain initiators by preventing metal-assisted homolysis of hydroperoxides. Many

metal chelating substances are present in foods, especially in plant materials. The salts of 

phytic acid, phospholipids, and oxalates are the most common representatives of this group. 

Phosphoric, citric, tartaric, quercetin, caffeic, malic and ascorbic acids also possess 

pronounced chelating activities. Polyphosphates are added to inactivate iron, for example, in 

meat products (Chen and Ahn, 1998).

Inactivation/ Activation of enzymes: Some enzymes can catalyse highly oxidative species to 

more stable species; for instance, the enzyme superoxide dismutase can reduce the superoxide 

radicals O2
•, which are produced from hydrogen peroxide, into triplet oxygen       

Synergism: Synergism plays an important role in the efficiency of antioxidants. Synergist 

antioxidants can be classified as oxygen scavengers or chelators. They function by the 

combination of different mechanisms. In this case, they may be more active than if used 

alone. This synergistic effect is significant for the reduction in the level of antioxidants added 

to food, thereby minimising the undesirable side effects of antioxidants, as well as production 

costs. Pronounced synergistic effects occur between phenolic compounds and certain acidic 

substances such as ascorbic acid, citric acid and phosphoric acid (Donnelly and Robinson, 

1991). The synergistic effect of citric acid is attributed to metal chelation (Frankel, 1998). 

Other polyvalent acids such as tartaric, malic, gluconic, oxalic, succinic and hydroxyglutaric 

acids, as well as sodium triphosphate and pyrophosphate also possess synergistic properties 

similar to those of citric acid. Another chelator, phytic acid (inositol hexaphosphate), has been 

also reported to be a synergist in lipid oxidation (St Angelo et al., 1990). Ascorbic acid can 
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act as a synergist with tocopherols by regenerating or restoring their antioxidant properties 

(Niki, 1987). 

2.2.3.3 Natural antioxidants 

Antioxidants in foods may originate from compounds that occur naturally in the foodstuff or 

from substances formed during its processing (Shahidi, 1997; Shahidi and Wanasundara, 

1992). Natural antioxidants are primarily phenolic and polyphenolic compounds. They are 

multifunctional and can act as reducing agents (free radical terminators), metal chelators, and 

singlet oxygen quenchers. Examples of common plant phenolic antioxidants include 

flavonoid compounds, cinnamic acid derivatives, coumarins, tocopherols and polyfunctional 

organic acids (Pratt and Hudson, 1990). Several studies have been carried out in order to 

identify natural phenolics that possess antioxidant activity. Some natural antioxidants have 

already been extracted from plant sources and are produced commercially (Schuler, 1990). 

Tocopherols and their antioxidant activity: Monophenolic antioxidants as tocopherols 

stabilize most vegetable oils. Tocopherols are composed of eight different compounds 

belonging to two families, namely, tocols and tocotrienols, referred to as , , , or , 

depending on the number and position of methyl groups attached to the chromane rings. 

Tocopherols also possess vitamin E activity. In tocols, the side chain is saturated, while in 

tocotrienols it is unsaturated. With regard to vitamin E activity, -tocopherol is the most 

potent member of this family (Figure 2.2).  
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Figure 2.2. Structure of alpha tocopherol (Schuler, 1990). 
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The antioxidant activity decreases from  to  (Dziezak, 1986). Vegetable foods contain 

considerable amounts of different tocopherols and tocotrienols in their lipid fraction. Cereals 

and cereal products, oilseeds, nuts and vegetables are rich sources of tocopherols; however, in 

the animal kingdom, tocopherols are only found in trace quantities. During manufacturing of 

oils, 30 to 40% of tocols and tocotrienols are lost (Dziezak, 1986; Schuler, 1990). 

Tocopherols are important biological antioxidants. Alpha-tocopherol, or vitamin E, prevents 

oxidation of body lipids including polyunsaturated fatty acids and lipid components of cells 

and organelle membranes. Tocopherols are produced commercially and used as food 

antioxidants. The antioxidant activity of tocopherol is based mainly on the tocopherol–

tocopheryl quinone redox system.  

Tocopherols (AH2) are radical scavengers and quench lipid radicals (R•), thus regenerating 

RH molecules as well as producing a tocopheryl semiquinone radical. Two tocopheryl 

semiquinone radicals (AH) may form a molecule of tocopheryl quinone (A) and a regenerated 

molecule of tocopherol, as can be seen in Reaction 2.7 and Reaction 2.8: 

R• + AH2     RH + AH•                                                                                                      (2.7) 

2AH•           A• + AH2                                                                                                        (2.8) 

The mechanism of oxidation of -tocopherol with linoleate hydroperoxides has been studied 

in details (Tappel, 1972). After releasing one H atom, the -tocopheryl radical formed 

releases another H atom to produce methyl tocopheryl quinone, which is unstable and gives 

rise to -tocopheryl quinone as its main product. The reaction between two semiquinoid 

radicals may also lead to the formation of -tocopherol dimer, which possesses antioxidant 

properties (Schuler, 1990). Ishikawa and Yuki (1975) described the antioxidant effect of the 

products of tocopherols as oxidized -, -, and -tocopherol with trimethylamine oxide. Some 

of the oxidation products formed were isolated and tested for their antioxidant activity.  

Tocopherols are commercially extracted from deodorizer sludge obtained in the deodorization 

of vegetable oils. Various tocols and tocotrienols of such extracts contain sterols, esters of 

sterols, free fatty acids and triacylglycerols. The separation of tocopherols from other 

compounds is possible by esterification with lower alcohol, washing and vacuum distillation 

or by saponification or fractional liquid–liquid extraction. Further purification may be 

achieved using molecular distillation, extraction, crystallization or a combination of these 

processes (Schuler, 1990). The total tocopherol content of the extracts is usually between 30 
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and 80%, but higher in - and -tocopherols. The -tocopheryl acetate is the commercially 

available form of vitamin E, which is not an antioxidant because its active OH group is 

blocked. However, under acidic aqueous conditions, tocopherol is released by hydrolysis and 

the released tocopherol may then act as an antioxidant (Schuler, 1990).  

The commercial synthesis of -tocopherol involves condensation of 2,3,5-trimethyl 

hydroquinone with phytol, isophytol or phytol halogenides. The crude tocopherol product can 

be purified by vacuum distillation (Schuler, 1990). Because use of isophytol is preferred, the 

distillation produces a racemic mixture of all possible tocopherol isomers. Products intended 

for antioxidant applications are generally marketed in oil forms. Pure, all-racemic -

tocopherol, mixed tocopherols having various contents of -, - and/or -tocopherols; 

synergistic mixtures composed of tocopherols, ascorbyl palmitate or other antioxidants, and 

synergists such as lecithin, citric acid and carriers are also available (Schuler, 1990). 

Flavonoids and their antioxidant activity: Flavonoids constitute a large group of naturally 

occurring plant phenolics. They are characterised by the carbon skeleton C6–C3–C6. The basic 

structure of these compounds consists of two aromatic rings linked by a three-carbon aliphatic 

chain which normally has been condensed to form a pyran or, less commonly, a furan ring 

(Figure 2.3).  
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Figure 2.3. Basic structure of flavonoids (Hopia and Heinonen, 1999). 

 

Flavonoids, including flavones, flavonols, isoflavones, flavonones and chalcones occur in all 

types of higher plant tissues. Flavones and flavonols are found in almost every plant, 

particularly in the leaves and petals, with flavonols occurring more frequently than flavones 
13
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(Hopia and Heinonen, 1999). Approximately 90 % of the flavonoids in plants occur as 

glycosides. Many of flavonoids and related phenolic acids have shown marked antioxidant 

characteristics (see Table 2.1) (Pratt and Hudson, 1990).  

 
Table 2.1. Antioxidant activity of flavones. 
 

Compound Time to Reach 
Peroxide Value of 
50 (h)a

Induction Period 
by Rancimat (h)b

Control    

     Stripped corn oil 110 A B 

     Lard — 1.3 0.35 

Isoflavones 

     Daidzein (7,4 -dihydroxy) — 1.4 — 

     Genistein (5,7,4 -trihydroxy) — 2.6 — 

Chalcones 

     Butein (2 ,4 ,3,4-tetrahydroxy) — 94.0 — 

     Okanin (2 ,3 ,4 ,3,4-pentahydroxy) — 97.0 — 

Phenolic acids 

     Protocatechuic acid (3,4-dihydroxybenzoic acid) — — 4.8 

     Gallic acid (3,4,5-trihydroxybenzoic acid) — — 28.6 

     Coumaric acid (p-hydroxycinnamic acid) — 120 0.8 

     Ferulic acid (4-hydroxy-3-methoxy-cinnamic  

     acid) 

— 145 2.0 

     Caffeic acid (3,4-dihydroxycinnamic acid) — 495 23.3 

     Dihydrocaffeic acid (3,4   
     Dihydroxyphenylpropionic acid) 

— — 31.4 

     Chlorogenic acid (caffeoyl quinic ester) — 505 — 

     Quinic acid — 105 — 

Phenolic ester 

     Propyl gallate — 435 21.8 
Note: A and B denote different batches of oil. 
a 5 × 10–4 M in stripped corn oil. 
b 2.3 × 10–4 M in lard. 
Source: Adapted from Pratt and Hudson, 1990 in Food Antioxidants, Hudson, Ed., Elsevier Applied Science, London, 171–192. 
 

The ability of flavonoids to inhibit lipid oxidation is well documented, both for natural lipid 

products and for model lipids. Flavonoids may act as antioxidants by scavenging radicals that 

include superoxide anions, lipid peroxyl radicals, and hydroxyl radicals. Other mechanisms of 
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action of selected flavonoids include singlet oxygen quenching, metal chelation, as well as 

lipoxygenases inhibition (Bors et al., 1996).  

Flavonoids and cinnamic acids are known as primary antioxidants and act as free radical 

acceptors and chain breakers. Flavonols are known to chelate metal ions at the 3-hydroxy-4-

keto group and/or 5-hydroxy-4-keto group (when the A-ring is hydroxylated at the fifth 

position). An o-quinol group at the B-ring can also demonstrate metal chelating activity (Pratt 

and Hudson, 1990). 

It has been established that the position and degree of hydroxylation are of primary 

importance in determining antioxidant activity of flavonoids. The o-dihydroxylation of the B-

ring contributes to the antioxidant activity. The p-quinol structure of the B-ring has been 

shown to impart an even greater activity than o-quinol; however, para and meta 

hydroxylation of the B-ring do not occur naturally (Pratt and Hudson, 1990). All flavonoids 

with 3 ,4 -dihydroxy configuration possess antioxidant activity (Dziedzic and Hudson, 1983). 

Robinetin and myricetin have an additional hydroxy group at their 5  position, thus leading to 

enhanced antioxidant activities over those of their corresponding flavones that do not possess 

the 5  hydroxy group, namely, fisetin and quercetin. Two flavanones (naringenin and 

hesperitin) have only one hydroxy group on the B-ring and possess little antioxidant activity. 

Hydroxylation of the B-ring is the major consideration for antioxidant activity (Pratt and 

Hudson, 1990). Other important features include a carbonyl group at position 4 and a free 

hydroxy group at position 3 and/or 5 (Dziedzic and Hudson, 1983).  

In addition, it was found that a double bond between the 2 and 3 poisitions on the C ring 

contributed to antioxidant activity. Also found that the aglycones were stronger antioxidants 

than their corresponding glucosides. Possibly due to the lack of a free 3-hydroxy substitution 

in the C ring. The isoflavone aglycones from soybeans exhibited greater activity than their 

glucosides counterparts. 

Bors et al. (1996) has investigated the importance of other sites of hydroxylation. It has been 

shown that the o-dihydroxy grouping on one ring and p-dihydroxy grouping on the other (e.g., 

3,5,8,3 ,4 - and 3,7,8,2 ,5  pentahydroxy flavones) produce very potent antioxidants, while 5,7 

hydroxylation of the A-ring apparently has little influence on the antioxidant activity of the 

compounds (Pratt and Hudson, 1990). Thus, quercetin and fisetin have almost the same 

activity, while myricetin possesses an activity similar to that of robetin. The 3-glycosylation 
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of flavonoids with monosaccharides/disaccharides reduces their activity compared with that 

of the corresponding aglycones (e.g., rutin is less active than quercetin).  

The ability of flavonoids to form complexes with cupric ion has also been demonstrated by 

UV spectral studies. Such complexations may contribute to the antioxidative action of 

flavonoids (Hudson and Lewis, 1983). Chelation of metal ions renders them catalytically 

inactive. Chalcones, the natural precursors of flavones and flavanones, are readily cyclized 

under acidic conditions and have been shown to possess potent antioxidant activity. The 3,4-

dihydroxychalcones are particularly effective and chalcones are more effective than their 

corresponding flavanones. Effectiveness of 3,4-dihydroxychalcones, namely, butein and 

okanin, depends on the formation of resonance-stabilized free radicals (Dziedzic and Hudson, 

1983). In the isoflavone, it is clear that both hydroxyl groups in 4  and 5 positions are needed 

for significant antioxidant activity as genistein. Even 6,7,4 - trihydroxyisoflavone is 

marginally active when compared to analogous flavon apigenin, which is inactive as an 

antioxidant. Genistein is particularly active. The resonance-stabilized quinoid structures show 

that for isoflavone the carbonyl group at position four remains intact and can interact with the 

5-hydroxy group, if present; however, in flavone, the carbonyl group at position four loses its 

functionality. This may explain the superior antioxidant activity of genistein compared with 

that of apigenin (Dziedzic and Hudson, 1983).  

The results of the study led to several conclusions relative to the structural features which 

affect the antioxidant activity (AOA) of the flavonoids. First, it was noted that the molecule 

needed multiple hydroxyl group; 3', 4' dihydroxy configuration gave strong antioxidant 

activity. Second, the molecule must have a 4- carbonyl group for activity. Third, the molecule 

needed a free 3- hydroxyl group as opposed to a 5- hydroxyl group, but the presence of both 

3- and 5- hydroxyl groups was also effective. They projected that there was cooperation 

between the 4- carbonyl and the 3- or 5- hydroxyl groups which acted to chelate the copper 

ion. 

Phenolic acids and their antioxidant activity: The antioxidant activity of phenolic acids and 

their esters depends on the number of hydroxy groups in the molecule; this will be 

strengthened by steric hindrance (Dziedzic and Hudson, 1983). Hydroxylated cinnamic acids 

have been found to be more effective than their benzoic acid counterparts. It has been 

mentioned that at least two and, even better, three neighboring phenolic hydroxy groups 
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(catechol or pyrogallol structure) and a carbonyl group in the form of an aromatic ester or 

lactone or a chalcone, flavonone or flavone are the essential molecular features required to 

achieve a high level of antioxidant activity (Dziedzic and Hudson, 1983).  

Phenolic antioxidants act to inhibit lipid oxidation by trapping the peroxy radical. This can be 

accomplished in one of two ways:  

 
LOO• + ArOH                 LOOH + ArO•

LO•   + ArO•                    LOOAr   
 

In the first mechanism, the peroxy radical (LOO•) abstracts a hydrogen proton from the 

antioxidant (ArOH) to yield an aroxyl radical (ArO•) and the hydroperoxide (LOOH). In the 

second mechanism, a peroxy and an aroxyl react by radical- radical coupling to form a 

nonradical product.  

The aroxyl radical formed from the oxidation of an antioxidant can further react and can, in 

some instances, contribute to the production of free radicals. 

 
    ArO• + LOOH                 LOO• + ArOH 

    ArO• + LH                      ArOH + L•  
  

Vitamin C: Essential for the production of collagen, the cellular glue that keeps cells attached 

together. It strengthens the connective tissue. It is thought to protect against cataract, against 

lipid oxidation, and essential for immune system health. Has the important job of recharging 

fat-soluble vitamin E when it becomes a free radical itself. The pharmacophore of vitamin C 

is the ascorbate ion. In living organisms, ascorbate is an antioxidant, since it protects the body 

against oxidative stress, and is a cofactor in several vital enzymatic reactions (Higdon and Frei, 

2004). 

Sesamol: Sesamol seed oil exhibits antioxidant property when added to other fats. The active 

antioxidant of oils is sesamol which is present in unsaponifiable matter of sesamol seed oil 

(Ohsawa, 1991). Sesamol not only occurs in varying amounts in different sesame oils, but the 

amount present in a given oil has been shown to be markedly affected by different processing 

conditions. Furthermore, it may exist in either a free or a bound form, each of which has 

different properties (Namiki, 1995). Four crude oils obtained from different varieties of 

17
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sesame seed were reported to contain 0.7-1.5 % sesamolin, with only traces of free sesamol 

(Namiki, 1995). Bleached and hydrogenated sesame oils, however, may contain over 0.9 % 

free sesamol, because of the splitting of sesamolin during bleaching and hydrogenation 

(Visavadiya and Narasimhacharya, 2008). 

OH

O

O

 

 

Figure 2.4. Structure of sesamol (Ohsawa, 1991). 

Lecithin: Lecithin is one of the first antioxidant to receive serious consideration in the united 

state for use in edible oils. Commercial lecithin preparation have been found to be somewhat 

effective in vegetables oils like cotton seed oil but are relatively ineffective in lard (Iwata et 

al., 1993). Sunflower seed can be considered a potential source of lecithin due to the 

distribution of the main phospholipid components, which appear to be similar to soybean 

lecithin (Holló et al., 1993). Lecithin exhibits emulsification properties in numerous 

applications in food and pharmaceutical industries (Nieuwenhuyzen, 1981). By changing the 

hydrophilic/lipophilic balance of phospholipids, it is possible to produce lecithin for different 

applications (Mustranta et al., 1995). Fatty-acid profiles of phospholipids depend on the 

lecithin source and may be modified by several enzymatic methods, such as hydrolysis, 

transesterification or alcoholysis, in order to enhance lecithin functional properties (Ghosh 

and Bhattacharyya, 1997). 

2.2.3.4. Synthetic antioxidants 

The application of antioxidants in foods is governed by federal regulations. Food and drug 

administration (FDA) regulations require that the ingredient labels of products declare 

antioxidants and their carriers followed by an explanation of their intended purpose (Dziezak, 

18
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1986). Table 2.2 summarizes the permitted food phenolic antioxidants, some of their 

properties. Synthetic food antioxidants currently permitted for use in foods are butylated 

hydroxytoluene (BHT), butylated hydroxyanisole (BHA), propyl gallate (PG), dodecyl gallate 

(DG) and tertiarybutylhydroquinone (TBHQ).  

 
Table 2.2. Synthetic food antioxidants and their properties. 
 
 Gallates  

Characteristic BHA   BHT Propyl   Dodecyl  TBHQ 

Melting point °C 50–52 69–70 146–148 95–98 126–128 

Carry-through 

properties 

Very good Fair–good Poor Fair–good Good 

Synergism BHT and 
gallates 

BHA BHA BHA — 

Solubility (w/w%) 

Water 0 0 <1 <1 <1 

Propylene glycol 50 0 6.5 4 30 

Lard 30–40 50 1 — 05–10 

Corn oil 30 40 0 0 10 

Glycerol 1 0 25 — <1 

Methyl linoleate Very soluble Very soluble 1 1 >10 
Sources: Adapted from Coppen, 1983, in Rancidity in Foods, Allen and Hamilton, Eds., Applied Science Publishing Company, London, 67–
87 and Dziezak, 1986, Food Technol., 9, 94–102. 
 
 
 
BHA and BHT are monohydric phenolic antioxidants (Figure 2.5). Chemically, BHA is a 

mixture of 3-tertiary-butyl-4-hydroxyanisole (90%) and 2-tertiary-butyl-4-hydroxyanisole 

(10%) (Porter, 1980). BHA is commercially available as white waxy flakes and BHT is 

available as a white crystalline compound; both are extremely soluble in fats and insoluble in 

water. Furthermore, both assert a good carry-through effect; however, BHA is slightly better 

than BHT in this respect (Dziezak, 1986).  

BHT is more effective in suppressing oxidation of animal fats than vegetable oils. Among its 

multiple applications, BHA is particularly useful in protecting the flavour and colour of 

essential oils and is considered the most effective of all food-approved antioxidants for this 

application (Stuckey, 1972). BHA is particularly effective in controlling the oxidation of 
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short-chain fatty acids such as those found in the coconut and palm kernel oils typically used 

in cereal and confectionary products (Dziezak, 1986). 
 
 

OCH3

OH

CH3

CH3

H3C

H3C

H3C
CH3

CH3

CH3

CH3

OH H3C

 
 
 
       BHA                                                                                          BHT 
 
 

Figure 2.5. Chemical structures of butylated hydroxyanisole (BHA) and butylated 

hydroxytoluene (BHT) (Porter, 1980). 
 
As a monophenol, BHT can produce radical intermediates with moderate resonance 

delocalization. The tertiary butyl groups of BHT do not generally allow involvement of the 

radical formed from it after hydrogen abstraction in other reactions. Thus, a lipid peroxy 

radical may join the molecule of BHT in the para position to the phenoxy group (Dziezak, 

1986).  

The volatile nature of BHA and BHT makes them important additives in packaging materials 

because they can migrate into foods. For this purpose, these antioxidants are added directly to 

the wax used in making inner liners or applied to the packaging board as an emulsion (Porter, 

1980; Dziezak, 1986). A synergistic effect has been shown to exist when BHT and BHA are 

used in combination. The oxidative reactions of nut and nut products are very responsive to 

the combination of these two antioxidants (Dziezak, 1986).  

Tertiary-butylhydroquinone is regarded as the best antioxidant for protecting frying oils 

against oxidation (Khan and Shahidi, 2001) and provides good carry-through protection to 

fried products similar to those of BHA and BHT. TBHQ may be considered as an alternative 

to hydrogenation for increasing oxidative stability (Dziezak, 1986). TBHQ is adequately 

soluble in fats and does not complex with iron or copper; therefore, it does not discolor the 

treated products. TBHQ is available as a beige-colored powder to be used alone or in 

20



 Review of literature 

21

combination with BHA or BHT at a maximum amount of 0.02% or 200 mg/kg, based on the 

fat content of foods, including essential oils. TBHQ is not permitted in combination with 

propyl gallate (Dziezak, 1986). Coppen (1983) has reported that TBHQ shows good 

performance in stabilizing crude oils.  

Chelating agents such as citric acid and monoacylglycerol citrate can further enhance lipid-

stabilizing properties of TBHQ. This combination is primarily used in vegetable oils and 

shortenings but not extensively for animal fats. Confectioneries, including nuts and candies, 

also benefit from the use of TBHQ or its mixtures (Buck, 1984). As a diphenolic antioxidant, 

TBHQ reacts with peroxy radicals to form a semiquinone resonance hybrid. The semiquinone 

radical intermediates may undergo different reactions to form more stable products. They can 

also react with one another to produce dimmers or react with one another to produce a 

quinone and a hydroquinone molecule or add to a lipid peroxy radical to produce a 

semiquinone. 

Propyl gallate is commercially prepared by esterification of gallic acid with propyl alcohol 

followed by distillation to remove the excess alcohol. PG is available as a white crystalline 

powder and is sparingly soluble in water; it functions particularly well in stabilizing animal 

fats and vegetable oils. With a melting point of 148°C, PG loses its effectiveness during heat 

processing and is therefore not suitable in frying applications that involve temperatures 

exceeding 190°C. PG chelates iron ions and forms an unappealing blue–black complex 

(Dziezak, 1986). Hence, PG is always used with chelators such as citric acid to eliminate the 

pro-oxidative iron and copper catalysts. Good synergism is obtained with BHA and BHT; 

however, their coapplication with TBHQ is not permitted (Buck, 1984). PG may be used to 

inhibit the oxidation of vegetable oils, animal fats and meat products, including fresh and 

frozen sausages and snacks. Its usage has been permitted in chewing gum base at <0.1% and 

with BHA and/or BHT at a total concentration of <0.1%. Moreover, the amphiphilic nature of 

PG makes it a very effective antioxidant for dry vegetable oils. Gallates have lower volatility 

and thus have less phenolic odor than monohydric phenols such as BHA and BHT (Dziezak, 

1986). 

Nordihydroguaiaretic acid (NDGA) is a grayish-white crystalline compound that was widely 

used as an antioxidant in animal fats in the 1950s and 1960s. It possesses phenolic properties 

similar to gallates, including their advantages and disadvantages. Besides the isolation of 

natural material (resinous exudate of creosote bush), NDGA has also been chemically 
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synthesized. Due to unfavorable toxicological findings, NDGA is no longer of practical 

importance in the food industry (Gordon, 1990; Schuler, 1990). 

2.2.3.5 Assays involved in the determination of antioxidant activity 

Methods for measuring antioxidant activity are generally based on the inhibition of reactions 

in the presence of antioxidants. The most widely used methods are those that involve the 

generation of radical species, where the presence of antioxidant determines the disappearance 

of these radicals. This approach has been applied to the estimation of antioxidant activity in 

aqueous systems, of both pure compounds and biological samples (Arnao et al., 1998). 

The activity of an antioxidant can be estimated by quantitatively determining primary or 

secondary products of autoxidation of lipids or by monitoring other variables. Generally, the 

delay in hydroperoxide formation or production of secondary products of autoxidation by 

chemical or sensory methods can be used. These procedures can be applied to intact foods, 

their extracts or to model systems. Studies on foods can be performed under normal storage 

conditions or under accelerated oxidation such as active oxygen method (AOM), Schaal oven 

test, oxygen uptake/absorption, and oxygen bomb calorimetry, or by using a fully automated 

oxidative stability instrument (OSI), a Rancimat apparatus, or an oxidograph, among others 

(Kochhar and Rossell, 1990). The extension of the induction period by addition of an 

antioxidant has been related to antioxidant efficacy, which is sometimes expressed as 

antioxidant index or protection factor. It is also possible to use a luminescence apparatus, also 

known as Photochem, which measures antioxidant activity of hydrophilic and lipophilic 

compounds (Amarowicz et al., 2003). ORAC (oxygen radical absorbance capacity) and 

TEAC (Trolox equivalent antioxidant capacity) tests have also been used in the recent 

literatures; artificial radicals such as DPPH (1,1-diphenyl-2-picrylhydrazyl) radical have been 

employed. All of these offer means of evaluating antioxidant activity of food phenolics and 

other constituents. 

 

Radical-scavenging methods: 

Radical scavenging is the main mechanism by which antioxidants act in foods. Several 

methods have been developed in which the antioxidant activity is assessed by the scavenging 

of synthetic radicals in polar organic solvents, e.g. methanol, at room temperature. Those used 
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include 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2 -azinobis (3-ethylbenzthiazoline- 

sulphonic acid) (ABTS) radicals.  

 

Screening of antioxidant activity using the DPPH method: The stable organic radical 

DPPH• (Figure 2.6) has been widely used in antioxidant activity (AOA) studies of single 

compounds (Sanchez Moreno et al., 1998), plant extracts and foods, etc. (Koleva et al., 2002). 

DPPH• has an unpaired valence electron at one atom of nitrogen bridge (Eklund et al., 2005). 

As this electron is paired off in the presence of a free radical scavenger, absorption vanishes 

and the resulting decolouration is stoichiometric with respect to the number of electrons taken 

up. This bleaching of DPPH, which occurs when the odd electron of the radical is paired, is 

thus representative of the capacity of the compounds to scavenge free radicals independently 

on any enzymic activity (Fauconneau et al., 1997). 

 

N N

O2N

O2N

NO2

.

 

 

Figure 2.6.  Structure of 1,1-diphenyl-2-picrylhydrazyl (DPPH•) (Eklund et al., 2005). 

Yamaguchi et al (1998) reported the mechanism of the reaction of antioxidants with the 

DPPH radical: 

DPPH• + AH                                DPPH-H + A•                                                                                                   (2.9) 

A• + DPPH•                                  DPPH-A                                                                         (2.10) 

A• + A•                                          A-A                                                                                 (2.11) 
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The newly formed radical (A•) can give radical-radical interactions (Reactions 2.9 and 2.10) 

to form more stable molecules (Aruoma, 1998). The reduction in DPPH• is measured by the 

decrease in absorbency at 515 nm as the radical is scavenged by the antioxidant until the 

reaction reaches a plateau (Figure 2.7) (Espin et al., 2000).  

Fast reaction of DPPH radicals occurs with some phenols e.g. -tocopherol, but slow 

secondary reactions may cause a progressive decrease in absorbance, so that the steady state 

may not be reached for several hours. Most papers in which the DPPH method has been used 

report the scavenging after 15 or 30 min reaction time. The antioxidant activity can be 

expressed as EC50 (efficient concentration) and AE (antiradical efficiency). EC50 is the 

concentration of the antioxidant necessary to decrease the initial DPPH• concentration by 

50%. Antiradical efficiency (AE) is (1/ EC50).  EC50 is directly calculated from the curve 

resulting after plotting DPPH concentration vs concentration of the antioxidant. 
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Figure 2.7. Scavenging of free DPPH by antiradical species (Espin et al., 2000). 

ABTS (2,2 -Azinobis (3-ethylbenzothiazoline-6 sulfonic acid)) assay: The ABTS assay, 

which is also called the ABTS radical assay, has been widely used to evaluate antioxidant 

activities of components in foods and beverages due to its applicability in aqueous and lipid 

phases (MacDonald-Wicks, 2006). The original ABTS assay was based on the activation of 

metmyoglobin by hydrogen peroxide in the presence of ABTS (Miller et al., 1993). In the 

improved version of this assay, a stable ABTS radical cation, which has a blue-green 
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chromophore absorption, was produced by oxidation of ABTS with potassium persulfate prior 

to the addition of antioxidants as shown in Figure 2.8 (Re et al., 1999). The ABTS radical 

cation is more reactive than the DPPH radical, and reaction of the ABTS radical cation with 

an antioxidant is taken as complete within 1 min (Michael, 2001).  
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Figure 2.8. Formation of stable ABTS radical from ABTS with potassium persulfate (Re et 

al., 1999). 

The antioxidant activity of the natural products, including carotenoids, phenolic compounds, 

and some plasma antioxidants, is determined by the decolorization of the ABTS, by 

measuring the reduction of the radical cation as the percentage inhibition of absorbance at 734 

nm (Biglari et al., 2008). This method has been applied to investigating the antioxidant 

activities of many natural products including fruits and vegetables (Tachakittirungrod  et al., 

2007; Sun et al., 2007), medicinal plants (Surveswaran et al., 2007; Kawaree et al., 2008), 
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wines and grapes (Rivero-Perez et al., 2008), cereals (Abdel-Aal and Rabalski, 2008; Hu et 

al., 2007), beverages (Gomez-Ruiz et al., 2007), and essential oils (Zhao et al., 2008; Erkan et 

al., 2008), but antioxidant effectiveness in foods must always be studied by other methods 

because their activity in foods is dependent on a variety of factors including polarity, 

solubility, and metal-chelating activity. 

Methods for measuring the current state of an oil or food sample: 

Some methods can be applied to assessing the current state of an oil or food sample. In order 

to be applied in assessment of antioxidant effectiveness, an experiment must be designed in 

which the antioxidant is incorporated into the food and the food is stored under controlled 

conditions. The principles of these methods are described below. 

Sensory analysis: For the food industry, the detection of oxidative off-flavours by taste or 

smell is the main method of deciding when a lipid-containing food is no longer fit for 

consumption. Consequently, any antioxidant used in the food will ultimately be evaluated by 

its potential for extending the time before this off-flavour can be detected. The ability of 

individuals to describe the nature of the aroma is useful, and the sensitivity of a trained panel 

to oxidative off-flavours may allow detection of oxidative deterioration at a stage when 

common chemical methods, e.g. peroxide value measurements, are unable to detect any 

deterioration. The main problems with sensory evaluation are that different individuals vary 

in their sensitivity to these off-flavours, and their performance may vary depending on their 

state of health and other variables. Trained panellists are much more reliable than untrained 

panellists, but the reproducibility of sensory analysis is normally worse than that of chemical 

or instrumental methods (Michael, 2001). 

Peroxide value (PV): The PV is still the most common chemical method of measuring 

oxidative deterioration of oils. Although hydroperoxides decompose to a mixture of volatile 

and non-volatile products and they also react further to endoperoxides and other products, the 

PV measurement is a useful method of monitoring oxidative deterioration of oils, although it 

should normally be combined with a method of monitoring secondary oxidation products to 

provide a fuller picture of the progress of oxidation. Huang et al. (1995) showed that 

increased addition of a-tocopherol to oil may increase the PV whilst reducing hexanal 

formation. This suggests that a high PV value may reflect either increased formation of 
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hydroperoxides or reduced decomposition. Consequently, antioxidants may improve the 

flavour stability of oil without it being evident from PV measurements.  

The traditional method of determining PV involves a titration of the oil containing potassium 

iodide in a chloroform–acetic acid mixture. The hydroperoxides oxidise the iodide to iodine, 

which is determined by titration with sodium thiosulphate. In order to avoid the use of 

chloroform, the AOCS has developed an alternative method which uses isooctane as solvent, 

although the method is limited to PV < 70meq kg-1, as described in the AOCS guidelines 

(1998). The PV determination should not be used as a method of assessing the deterioration of 

oils used for frying, since hydroperoxides decompose spontaneously above 150°C, and the 

measured PV can be more an indication of the cooling and storage conditions after frying than 

of oxidation products formed at frying temperatures. Even at temperatures of 80 to 90°C, 

formation of hydroperoxides is accompanied by decomposition at a significant rate. 

The PV at which oxidation of oils can be detected as an off-flavour varies widely depending 

on the nature of the oil. Samples of olive oil may not be perceived as rancid till the PV 

reaches 20meq kg -1 whereas fish oil may develop off-flavours at PV < 1meq kg-1. 

Conjugated diene assay: The term conjugated diene is defined as a moiety with two double 

bonds separated by a single bond. This kind of moiety does not normally occur in unsaturated 

fatty acids. However, a conjugated diene is readily formed from a moiety with two double 

bonds separated by a single methylene group, which occurs most commonly in 

polyunsaturated fatty acids, by the action of ROS and oxygen (formation of 

monohydroperoxide). Once a conjugated diene is formed, it can be monitored 

spectrophotometrically using its characteristic absorption at 234 nm (Moore and Roberts, 

1998). This represents a simple and rapid method of monitoring oxidative deterioration of oil.  

The antioxidant effect of test substances can be evaluated by monitoring the conjugated diene 

formation. The major drawback of this method is that many biological and natural compounds 

have significant absorbance around 234 nm, which, consequently, interferes with absorption 

by a conjugated diene. Therefore, this method has not been applied in studies of natural or 

biological substances as frequently as the -carotene bleaching assay. However, if a simple 

fatty acid, such as linoleic acid, is used, this method is useful because of its simplicity. Also, 

this method can be used for investigation of the early stage of lipid peroxidation. This assay 

has been used with various other antioxidant assays (TBA, DPPH, and ABTS) for studies of 
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natural food sources including fruits and vegetables (Chirinos et al., 2008), herbs and spices 

(Lee and Shibamoto, 2002), teas (Yanagimoto et al., 2003), and honeys (Gheldof and 

Engeseth, 2002). The antioxidant activity of an extract of an edible marine red alga was 

evaluated by conjugated diene assay using linoleic acid and fish oil (Athukorala et al., 2003). 

This method tends to be used in combination with a nonlipid system, such as DPPH and 

ABTS assays. 

Para-anisidine value: Para-anisidine is a reagent that reacts with aldehydes to give products 

that absorb at 350 nm (Figure 2.9). The p-anisidine value is defined as the absorbance of a 

solution resulting from the reaction of 1 g fat in isooctane solution (100 mL) with p-anisidine 

(0.25 % in glacial acetic acid). The products formed by reaction with unsaturated aldehydes 

(2-alkenals) absorb more strongly at this wavelength, and consequently the test is particularly 

sensitive to these oxidation products. Although the test does not distinguish between volatile 

and non-volatile products, the palate is generally more sensitive to unsaturated volatile 

aldehydes than to saturated volatile aldehydes, so the test is a reasonable way to assess 

secondary oxidation products (Michael, 2001).  

H

O

N C
R

H

N H 2

O M e

+

O M e

R  C  

 

 p-anisidine reagent        aldehydes (2-alkenals)                              Absorbs at 350nm 
 
Figure 2.9. The reaction of p-anisidine with alkenals (Michael, 2001). 

Measurements of p-anisidine value are commonly used together with peroxide value 

measurements in describing the total extent of oxidation by the Totox value, which equals the 

sum of the p-anisidine value plus twice the peroxide value. However, the Totox value is an 

empirical parameter since it corresponds to the addition of two parameters with different units 

(Michael, 2001). 
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-Carotene Bleaching Assay: It has long been known that -carotene reacts with the peroxyl 

radical to produce -carotene epoxides (Kennedy and Liebler, 1991). Therefore, -carotene 

has received attention as a radical scavenger or antioxidant (Tsuchihashi, 1995). Later, an 

antioxidant assay using -carotene combined with lipids, such as linoleic acid, was 

established. Lipids, such as linoleic acid, form a peroxyl radical (LOO•) in the presence of 

ROS and O2. This peroxyl radical reacts with -carotene to form a stable -carotene radical as 

shown in Figure 2.10; subsequently, the amount of -carotene reduces in a testing solution 

(Tsuchihashi, 1995). If an antioxidant is present in a testing solution, it reacts competitively 

with the peroxyl radical (Takada et al., 2006). Therefore, antioxidant effects are easily 

monitored by bleaching the color of a test solution with a spectrophotometer at 470 nm, which 

is the typical absorbance by -carotene.  
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LOO• / Antioxidant adduct

 
 
 
 
 
 
 
 

Figure 2.10. Formation of adducts from -carotene and antioxidant with a lipid peroxide 

radical (Tsuchihashi, 1995). 

 

Chaillou and Nazareno (2006) measured the antioxidant activities of various phenolic 

compounds using the -carotene bleaching assay. In this study, linoleic acid was selectively 

oxidized with lipoxygenase. Among 18 phenolic compounds tested by this method, quercetin 

exhibited the greatest antioxidant activity, which was confirmed by the DPPH assay. A more 

comprehensive study of the antioxidant activities of 42 flavonoids was reported using the -

carotene bleaching method, in which linoleic acid was oxidized by heat treatment (Burda and 

Oleszek, 2001). Quercetin also exhibited strong antioxidant activity by this method, and the 

result was consistent with the one obtained by DPPH assay. In addition to studies on phenolic 

compounds, this method has been used for antioxidant studies on various plants and their 

components. 
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Thiobarbituric acid value (TBA): Malonaldehyde may be formed from polyunsaturated 

fatty acids with at least three double bonds. The concentration of this product may be assessed 

by reaction with thiobarbituric acid which reacts with malonaldehyde to form red 

condensation products (Figure 2.11) that absorb at 532–535nm with molar absorptivity of 

27.5 absorbance units/μmol (Michael, 2001).  
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Figure 2.11. Formation of a chromogen by reaction of TBA with malonaldehyde (Michael, 

2001). 

 

However, the reaction is not specific, and reaction with a wide variety of other products may 

contribute to the absorbance. 2, 4-Alkadienals such as 2, 4-decadienal also react with TBA to 

show strong absorption at 532nm. Saturated aldehydes normally absorb at lower wavelengths 

after reaction with TBA. Several food components including proteins, Maillard browning 

products and sugar degradation products affect the determination. In order to emphasise the 
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lack of specificity, the values obtained in the test are commonly described as TBARS (TBA 

reactive substances) (Guillen and Guzman, 1998). 

Conjugable oxidation products: Analysis of conjugable oxidation products is based on the 

fact that hydroperoxides from polyunsaturated fatty acids and some decomposition products 

may be reduced with sodium borohydride and dehydrated to give conjugated trienes and 

tetraenes (Figure 2.12) (Parr and Swoboda, 1976). Triene and tetraene concentrations are 

determined from the absorbance values at 268nm and 301nm respectively. 

                                                             
 

R  CH  CH  CH  CH  CH  

31

 
 
 
 
 
 
 
R  CH  CH  CH  CH  CO                               R  CH  CH  CH  CH  CH  

NaBH4

-H2O 

OH

OOH

NaBH4

 
 
 
 
 
 
 
 
 
                                                                        R  CH  CH  CH  CH  CH  CH  
 
                                                                                                                        Conjugated triene 
 
 

Figure 2.12. Formation of conjugable oxidation products (Michael, 2001). 

 

2.3 Phenolics and their importance as natural products 

The plant phenols are secondary metabolites or products that embrace a considerable range of 

substances that possess one or more aromatic rings bearing one or more hydroxyl 

constituents. This definition is not entirely satisfactory since it inevitably includes compounds 

such as oestrone, the female sex hormone (which is principally terpenoid in origin), which is 

why a definition based on the metabolic origin is preferable. For this reason, plant phenols are 
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being regarded as those substances derived from the shikimate pathway and the phenyl 

propanoid pathway (Figure 2.13) (Ryan and Robards, 1998).  
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Figure 2.13. Shikimate pathway and phenyl propanoid pathway (Macheix et al., 1990).

 

Phenylalanine ammonia lyase (PAL) is the key enzyme in the biosynthetic pathway of most 

phenolic compounds. PAL catalyses the elimination of ammonium from L-phenylalanine 

giving rise to trans-cinnamate (Vinson et al., 1998), which is the first step in plant 

phenylpropanoid biosynthesis as lignin, suberin, flavonoids, coumarins and amides (Sanchez-

Moreno et al., 1998). Plant phenols have been classified into fifteen major groupings 

distinguished by the number of constitutive carbon atoms in conjugation with the structure of 

the basic phenolics skeleton. The range of known phenolics is vast. 

Phenolic compounds can be simple phenols containing a single aromatic ring, such as vanillin 

or gallic acid (Figure 2.14), or polyphenols containing more than one ring as flavonoids 
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(Macheix et al., 1990). Polyphenolic components of higher plants manifest antioxidant, 

antimutagenic, anti-inflammatory, and antimicrobial activities (Sanchez-Moreno et al., 1998). 

Additional structural complexity is introduced by the common occurrence of certain phenolics 

as O-glycosides in which one or more of the phenolic hydroxyl groups are bound to a sugar or 

sugars by glycosidic bonds. Glucose is the most commonly encountered sugar, with rhamnose 

and the disaccharide, rutinose (6-O- -L-rhamnosyl-D-glucose) also being encountered. 

Acylation of the glycosides, in which one or more of the sugar hydroxyls are derivatised with 

an acid, such as acetic or ferulic acid, is occasionally observed (Ryan and Robards, 1998).

OH

O

H

OMe

OH

OH

OH

OH

O

Vanillin Gallic acid

 

Figure 2.14. Chemical structure of vanillin and gallic acid (Macheix et al., 1990). 

 

2.3.1 Classes of phenolic compounds 

2.3.1.1 Simple phenols and phenolic acids 

The simple phenols include monophenols such as p-cresol isolated from several fruits and 

diphenols. Diphenols such as hydroquinones are probably the most widespread simple 

phenols (Van Sumere, 1989). 

Major types of natural antioxidants are the phenolic acids. There are two classes of phenolic 

acids, hydroxybenzoic acids and hydroxycinnamic acids. Except in certain red fruits and 

onions, the content of hydroxybenzoic acids in edible plants is usually very low (Shahidi and 

Naczk, 2004). Tea can be an important source of gallic acid which is 3,4,5-trihydroxybenzoic 

acid (Tomas-Barberan and Clifford, 2000). Gallic acid usually occurs in plants in souble form 

as catechin esters, quinic acid ester or hydrolyzable tannins.  
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The hydroxycinnamic acids and their derivatives are more common than are the 

hydroxybenzoic acids in foods. Hydroxycinnamic acids and their derivatives are almost 

exclusively derived from p-coumaric acid, caffeic acid, and ferulic acid whereas sinapic acid 

is, in general, less encountered (Figure 2.15). The occurrence of hydroxycinnamic acids in 

food has been reviewed by Herrmann (1989). Caffeic acid and its esterified derivatives are the 

most abundant hydroxycinnamic acids in a variety of fruits. On the other hand, ferulic acid 

and its derivatives are the most abundant hydroxycinnamic acids found in cereal grain 

(Manach et al., 2004). 
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OMe

COOHMeO
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p-coumaric acid Caffeic acid

Ferulic acid Sinapic acid  
 

Figure 2.15. Chemical structure of hydroxylated derivatives of some phenolics (Macheix et 

al., 1990). 

 

2.3.1.2 Flavonoids 

Flavonoids are ubiquitous in plants; almost all plant tissues are able to synthesize flavonoids. 

There are also a wide variety of types at least 2000 naturally occurring flavonoids. Flavonoids 

are present in edible fruits, leafy vegetables, roots, tubers bulbs, herbs, spices, legumes, tea, 

coffee, and red wine (Shahidi and Naczk, 2004).   
34
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In general, the leaves, flowers, and fruits or the plant contain flavonoid glycosides; woody 

tissues contain aglycones, and seeds may contain both. Flavonoids can be classified into 

seven groups: flavones, flavanones, flavonols, flavanonols, isoflavones, flavanols (catechins), 

and anthocyanidins (Table 2.3). 

 
Table 2.3. Different classes of flavonoids, their substitution patterns and dietary sources 

(Shahidi and Naczk, 2004). 

 
Class  Name  Substitution  Dietary Source 

Apigenin  5,7-OH Parsley, celery 

Rutin 5,7,3',4'-OH,  
3-O-rutinose, 

Buckwheat, citrus 

Flavone 

Tangeretin 4,5,6,7,4'- OCH3 Citrus 
 

Naringin 5,4' - OH Citrus Flavanone 
Naringenin 5,7,4' - OH Orange peel 

 
Kaempferol 3,5,7,4' - OH Broccoli, tea Flavonol 
Quereetin 3,5,7,3',4'-OH Onion, broccoli, 

apples, berries 
Flavononol Taxifolin 3,5,7,3',4' -OH Fruits 

 
Genistein 5,7,4' - OH Soybean 
Daidzein 4' - OH, 7- O- glucose Soybean 

Isoflavone 

Puerarin 7,4'-OH, 8- C-glucose Kudzu 
 

(-)-Epicatechin 3,5,7, 3',4' -OH Tea 
(-)-epigallocatechin 3,5,7, 3',4',5'- OH Tea 

Flavanol  (catechin) 

(-)-epigallocatechin 
gallate 

5,7, 3',4',5'- OH, 3-
gallate 

Tea 

Cyanidin 3,5,7,3',4'-OH Cherry, strawberry Anthocyanidin 
Delphinidin 3,5,7, 3',4',5'- OH Dark fruits 

 

2.3.1.3 Stilbenes 

Stilbenes are phenolic compounds which contain two benzene rings separated by an ethane 

bridge. They are widely distributed in higher plants and their main physiological roles relate 

to their action as phytoalexins and growth regulators (Gotham, 1989). Stilbenes had not 

caught the attention of food and nutritionists until one of its family members, resveratrol 
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(3,5,4'-trihydroxystilbene) was reported to demonstrate a preventing effect on cancer 

(Savouret and Quesne, 2002). 

2.3.1.4 Lignans 

Lignans are dimers of phenylpropanoid units linked by the central carbons of their side 

chains. In plants, lignans and their higher oligomers act as defensive substances (Shahidi and 

Naczk, 2004). Lignan-rich plant products were found to be active ingredients in the treatment 

of disease in Chinese folk medicine. Unfortunately, many of the active ingredients of these 

plant products have not been scientifically tested as therapeutic agents (Ayres and Loike, 

1990). However, flax and sesame lignans have been considered as important components with 

health benefits (Spence et al., 2003) 

Lignans represent a vast and rather diverse group of phenylpropanoidic secondary metabolites 

found throughout the plant kingdom, including species with a renowned food and dietary use. 

Their presence is recurrent in a large number of fruits, seeds, vegetables and beverages like 

juices, beer, coffee and wine (Kuhnle et al., 2008; Bonzanini et al., 2009). If assumed in 

nutritionally relevant amounts, lignans are reputed beneficial for preventing the onset of 

various diseases and disorders; on this regard specific evidences are available for 

atherosclerosis and cancer prevention, inhibition of platelet activating factor (PAF), reduction 

of inflammation, risk factors for stroke and oxidative stress (Pradash, 2005). Some of these 

properties are closely related to a remarkable antioxidant activity exerted by the majority of 

lignans (Niemeyer and Metzler, 2003).  

2.3.1.5 Tannins 

Depending on their structures, tannins are defined as hydrolyzable or condensed. 

Hydrolyzable tannins are glycosylated gallic acids (Ho, 1993). Condensed tannins also known 

as proanthocyanidins and are linear polymers of flavan-3-ol (catechin and gallocatechin), and 

flavan-3,4-diol units. The consecutive units of condensed tannins are linked through the 

interflavonoid bond between C-4 and C-8 or C-6 (Hemingway, 1989). Tannins occur widely 

in different foods and are often concentrated in the skin of fruits and seed coats, among 

others. 
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2.3.2 Antioxidant properties of food phenolics  

Antioxidants markedly delay or prevent oxidation of the substrate (Halliwell, 1999; Shahidi, 

2000), when they are present in foods or in the body at low concentrations compared to that of 

an oxidizable substrate. Food manufacturers have used food-grade antioxidants, mainly of a 

phenolic nature, to prevent quality deterioration of products and to maintain their nutritional 

value. Antioxidants have also been of interest to health professionals because they help the 

body to protect itself against damage caused by reactive oxygen species (ROS) as well as 

reactive nitrogen species (RNS) and reactive chlorine species (RCS) associated with 

degenerative diseases (Figure 2.16). 
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Figure 2.16. Diseases and damages caused by reactive oxygen species (Shahidi and Naczk, 

2004). 

 

Antioxidants act at different levels in the oxidative sequence involving lipid molecules. They 

may decrease oxygen concentration, intercept singlet oxygen, prevent first-chain initiation by 

scavenging initial radicals such as hydroxyl radicals, bind metal ion catalysts, decompose 

primary products of oxidation to nonradical species and break chains to prevent continued 

hydrogen abstraction from substrates (Shahidi, 2000, 2002).  
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Natural antioxidants from dietary sources include phenolic and polyphenolic compounds, 

among others. The mechanism by which these antioxidants exert their effects may vary 

depending on the compositional characteristics of the food, including its minor components. 

Furthermore, the beneficial health effects of consuming plant foods have been ascribed, in 

part, to the presence of phenolics, which are associated with counteracting the risk of 

cardiovascular diseases, cancer and cataract as well as a number of other degenerative 

diseases. This is achieved by preventing lipid oxidation, protein cross linking and DNA 

mutation and, at later stages, tissue damage (Figure 2.17).  
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Figure 2.17. Consequences of reactive oxygen species in diseases and preventive role of 

phenolics (Shahidi and Naczk, 2004). 

Although phenolic compounds and some of their derivatives are very efficient in preventing 

autoxidation, only a few phenolic compounds are currently allowed as food antioxidants. The 

major considerations for acceptability of such antioxidants are their activity and potential 
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toxicity and/or carcinogenicity. The approved phenolic antioxidants have been extensively 

studied, but the toxicology of their degradation products is still not clear. Figure 2.18 

represents a general scheme for autoxidation of polyunsaturated lipids and their consequence 

in quality deterioration of food. 
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Figure 2.18. General scheme for autoxidation of lipids containing polyunsaturated fatty acids 

(RH) and their consequences (Shahidi and Naczk, 2004). 

 

2.3.3 Mechanism of action of phenolic antioxidants 

The first detailed kinetic study of antioxidant activity was conducted by Boland and ten-Have 

(1947) who postulated Reaction 2.12 and Reaction 2.13 for free radical terminators. Phenolic 
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antioxidants (AH) interfere with lipid oxidation by rapid donation of a hydrogen atom to lipid 

radicals (Reaction 2.12 and Reaction 2.13). The latter reactions compete with chain 

propagation Reaction 2.4 to Reaction 2.6 and Reaction 2.16: 

 

ROO• + AH             ROOH + A•                                                                                    (2.12) 

RO• + AH                ROH + A•                                                                                       (2.13) 

ROO• + A•               ROOA                                                                                            (2.14) 

RO• + A•                  ROA                                                                                               (2.15) 

RO• + RH                ROOH + R•                                                                                     (2.16) 

 

These reactions are exothermic in nature. The activation energy increases with increasing A–

H and R–H bond dissociation energy. Therefore, the efficiency of the antioxidants (AH) 

increases with decreasing A–H bond strength. The resulting phenoxy radical must not initiate 

a new free radical reaction or be subject to rapid oxidation by a chain reaction. In this regard, 

phenolic antioxidants are excellent hydrogen or electron donors; in addition, their radical 

intermediates are relatively stable due to resonance delocalization and lack of suitable sites for 

attack by molecular oxygen (Belitz and Grosch, 1987).  

In the body, free radicals may be involved in a number of diseases and tissue injuries such as 

those of the lung, heart, cardiovascular system, kidneys, liver, eye, skin, muscle and brain, as 

well as the process of ageing. Oxidants and radicals are known to mediate such disorders, but 

are generally neutralized by antioxidant enzymes in healthy individuals. However, with age 

and in individuals with certain ailments, the endogenous antioxidants may require exogenous 

assistance from dietary antioxidants in order to maintain the integrity of cell membranes. The 

phenoxy radical formed by reaction of a phenol with a lipid radical is stabilized by 

delocalization of unpaired electrons around the aromatic ring as indicated by the valence bond 

isomers in Reaction 2.17. 



 Review of literature 

OH

OH

O .

OH

.

OH

O

O

OH

OH

ROO . ROOH ROO . ROOH
           (2.17) 

 

However, phenol is inactive as an antioxidant. Substitution of the hydrogen atoms in the ortho 

and para positions with alkyl groups increases the electron density of the OH moiety by an 

inductive effect and thus enhances its reactivity toward lipid radicals. Substitution at the para 

position with an ethyl or n-butyl group rather than a methyl group improves the activity of the 

phenolic antioxidant; however, presence of chain or branched alkyl groups in this position 

decreases the antioxidant activity (Gordon, 1990).  

The stability of the phenoxy radical is increased by bulky groups at the ortho positions as in 2, 

6-di-tertiary-butyl, 4-methoxyphenol or butylated hydroxyanisole (BHA). Because these 

substituents increase the steric hindrance in the region of the radicals, they further reduce the 

rate of possible propagation reactions that may occur, as in Reaction 2.18 to Reaction 2.20, 

involving antioxidant free radicals (Gordon, 1990): 

 

A• + O2                               AOO•                                                                                           (2.18) 

AOO• + RH               AOOH + R•                                                                                  (2.19) 

A• + RH                    AH + R•                                                                                         (2.20) 
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The introduction of a second hydroxy group at the ortho or para position of the hydroxy 

group of a phenol increases its antioxidant activity. The effectiveness of a 1,2-

dihydroxybenzene derivative is increased by the stabilization of the phenoxy radical through 

intramolecular hydrogen bond. Thus, catechol and hydroquinone are much more effective in 

their peroxynitrite scavenging activity than phenol (Heignen et al., 2001). Similarly, flavonols 

containing a catechol moiety (3 - and 4 -OH) in ring B (rutin and monohydroxyethyl 
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rutinoside) or an AC-ring with three OH groups (3-, 5-, and 7-OH) are potent scavengers. The 

3-OH group is found to be the active center, its activity influenced by electron-donating 

groups at the 5- and 7-positions (galangin, kaempferol, and trihydroxyethyl quercetin). In 

another study, Heim et al. (2002) found that multiple hydroxyl groups conferred substantial 

antioxidant, chelating, and, in some cases, pro-oxidant activity to the molecule. Methoxy 

groups introduce unfavorable steric effects, but presence of a double band and carbonyl 

functionality in the C ring increases the activity by affording a more stable flavonoid radical 

through conjugation and electron delocalization. 

Finally, the antioxidant activity of hydroxyflavones is influenced by pH. The antioxidant 

potential increases, as determined by the TEAC assay, upon deprotonation of the hydroxyl 

group. This indicates that the mechanism of action of flavonoids is variable and, although 

abstraction of the hydrogen atom is involved for underprotonated species, electron (not 

hydrogen) atom donation is involved in the deprotonated species (Lemanska et al., 2001). 

Furthermore, the hydroxyl radical scavenging activity of phenolics involves multiple 

mechanisms, including hydroxyl bond strength, electron donating ability, enthalpy of single 

electron transfer and spin distribution of the phenoxy radical after hydrogen abstraction 

(Cheng et al., 2002). Arts et al. (2003) have reported a critical evolution of the use of 

antioxidant capacity in defining optimal antioxidant structures.  

The antioxidant activity of dihydroxybenzene derivatives is partly due to the fact that the 

semiquinoid radical produced initially can be further oxidized to a quinine by reaction with 

another lipid radical. It can also form into a quinone or hydroquinone molecule, as in 

Reaction 2.21: 

O. O

..
O

.

O

      (2.21) 

 

The activity of 2-methoxyphenol is, in general, much lower than that of catechol, which 

possesses two free hydroxy groups, because 2-methoxyphenols are unable to stabilize the 

phenoxy radical by hydrogen bonding as in Reaction 2.21 (Gordon, 1990). The effect of 

antioxidant concentration on autoxidation rates depends on many factors, including the 
42
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structure of the antioxidant, oxidation conditions, and nature of the sample oxidized. Often 

phenolic antioxidants lose their activity at high concentrations and behave as pro-oxidants 

(Cillard et al., 1980) by involvement in initiation reactions such as those in Reaction 2.18 to 

Reaction 2.20 (Gordon, 1990). Antioxidant activity by donation of a hydrogen atom is 

unlikely to be limited to phenols. Endo et al. (1985) have suggested that the antioxidant effect 

of chlorophyll in the dark occurs by the same mechanism as phenolic antioxidants. 

Phenolic antioxidants are more effective in extending the induction period when added to oil 

that has not deteriorated to any great extent. However, they are ineffective in retarding 

decomposition of already deteriorated lipids. Thus, antioxidants should be added to foodstuffs 

as early as possible to achieve maximum protection against oxidation (Coppen, 1983). 

The oils with higher content of unsaturated fatty acids, especially polyunsaturated FA, are 

most susceptible to oxidation. In order to overcome the stability problems of oils and fats 

synthetic antioxidants, such as butylate hydroxyanisole (BHA), butylated hydroxy tolune 

(BHT), tertiary butyl hydroquinone (TBHQ) have been used as food additives. But resent 

reports reveal that these compounds may be implicated by health risks, including cancer and 

carcinogenesis (Prior, 2004). Therefore the most powerful synthetic antioxidant (TBHQ) is 

not allowed for food application in Japan, Canada and Europe. Similarly, BHA has also been 

removed from the generally recognized as safe (GRAS) list of compounds (Farag et al., 

1989). Due to these safety concerns, there is an increasing trend among food scientists to 

replace these synthetic antioxidants with natural ones, which in general are supposed to be 

safer. 

 
2.4 Main sources of natural antioxidants from foods 

Plants provide a rich of natural antioxidants. These include tocopherols, vitamin C, 

carotenoids, and phenolic compounds. There are wide variations between the total phenolics 

contents of the different fruits or vegetables, or even for the same fruits or vegetables reported 

by different authors. These differences may be due to the complexity of these groups of 

compounds, and the methods of extraction and analysis (Kalt et al., 2001). For example, 

phenolic compounds present in fruits are found in both free and bound forms (mainly as -

glycosides), but as the latter are often excluded from analyses, the total phenolics contents of 

fruits are often underestimated (Sun et al., 2007). Besides, phenolics contents of plant foods 
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depend on a number of intrinsic (genus, species, cultivars) and extrinsic (agronomic, 

environmental, handling and storage) factors (Rapisarda et al., 2000).  Beverages such as fruit 

juices, tea and wines are important sources of phenolics in the human diet. Reductions or 

losses of phenolic compounds have been reported in commercial juices, and these have been 

attributed to commercial processing procedures (Nagendran et al., 2006). Table 2.4 

summarizes some of the natural antioxidants and their source in plant materials. 

 

Table 2.4.  Natural food sources of some antioxidants (Nagendran et al., 2006).  
 
Compounds Example of source 

Vitamin E (tocopherols ) Oilseed, palm oil, nuts, eggs, dairy products, whole 

grains, vegetables, cereals, margarine, etc. 

Vitamin C Fruits and vegetables, berries, citrus fruits, 

sporouts, green peppers, potatoes. 

Carotenoids  Dark leafy vegetables, carrots, sweet potatoes, 

yams, tomatoes, cantaloupes, apricots, citrus fruits, 

kale, turnip greens, palm oil.  

Flavonoids \isoflavones  Fruits and vegetables, oilseeds, berries, eggplants, 

peppers, citrus fruits, cruciferous vegetables, yams 

tomatoes, onions,  

Phenolic acids  Oilseeds and certain oils, cereals, grains.  

Catechins  Green tea, berries, certain oilseeds. 

Extracts  Extracts from green tea, rosemary, sage, clove, 

oregano, thyme, oat, rice bran. 

     

 

Plant phenolics are thought to protect the plants against tissue injuries as they oxidize and 

combine with proteins and other components, In addition, phenolic compounds in plants may 

serve as defense system against herbivory. By products of photosynthesis may also produce 

high levels of oxygen, free radical, and reactive oxygen species (ROS) in profusion. Thus, 

plants use a myriad of antioxidant compounds to deal with these in order to survive.  
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2.4.1 By-products of plant food processing as a source of functional compounds 

There is a rapidly growing body of literature covering the role of plant secondary metabolites 

in food and their potential effects on human health. Furthermore, consumers are increasingly 

aware of diet related health problems, therefore demanding natural ingredients which are 

expected to be safe and health-promoting (Vasso and Constantina, 2007).  

Processing of fruits, vegetables, and oilseeds result in high amounts of waste materials such as 

peels, seeds, stones, and oilseed meals. Disposal of these materials usually represents a 

problem that is further aggravated by legal restrictions. Plant waste is prone to microbial 

spoilage; therefore, drying is necessary before further exploitation. The cost of drying, 

storage, and transport poses additional economical limitations to waste utilization. Therefore, 

agro-industrial waste is often utilized as feed or fertilizer. However, demand for feed or 

fertilizer varies and depends on agricultural production. Moreover, valuable nutrients 

contained in agro-industrial wastes are lost. Thus new aspects concerning the use of these 

wastes as by-products for further exploitation on the production of food additives or 

supplements with high nutritional value have gained increasing interest because these are 

high-value products and their recovery may be economically attractive (Vasso and 

Constantina, 2007). There exist precedents for the recovery of antioxidant substances from 

herbs, citrus peel, shrimps, grape skins etc. (Bocco et al., 1998). 

Agricultural and industrial residues are attractive sources of natural antioxidants (Moure et 

al., 2001). By-products, which remain after processing of fruit and vegetable in food 

processing industry, still contain a huge amount of phenolic compounds. Some studies have 

already been done on by-products, which could be potential sources of antioxidants. Visoli et 

al. (1999) studied olive oil waste, Sreenath et al. (1995) studied citrus by-products, while by-

products obtained after artichoke, cauliflower, carrot, celery, and onion processing were 

investigated by Larrosa et al. (2002). There were also many researches done on the 

polyphenols acquiring from grape marc. Loo and Foo (1999) made researches on grape seeds 

and grape pomace peels. Bonilla et al. (1999) explored the possibilities of using phenolic 

compounds from grape marc for use as food lipid antioxidants. Louli et al. (2004) 

investigated the effect of various process parameters; solvent type, and feed pretreatment 

(crushing, removal of stems), on the extraction efficiency of phenolic antioxidants from grape 

marc, whereas Negro et al. (2003) investigated the content of total polyphenols and 
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antioxidant activity of grape marc extracts. Abdalla et al. (2007) collected Egyptian mango 

seeds as wastes from local fruit processing units and checked their antioxidant potential. 

Astadi et al., (2009) measured antioxidant activity of anthocyanins of black soybean seed coat 

in human low density lipoprotein (LDL). Maier et al. (2009) observed antioxidant potential of 

seven grape seed samples originating from mechanical seed oil extraction. Besides these, 

search of newer sources of natural antioxidants from economical materials, agricultural 

wastes is hot area of research in recent years. As a step towards series of investigations in the 

said dimension, antioxidant potential of potato peels, sugar beet pulp, and sesame cake have 

been studied in this study. 

2.4.1.1 By-products of potato

Due to its resemblance to a truffle, herbalists in sixteenth century Europe called it by this 

name for a time. It took a long time for the potato to be accepted as an important part of the 

diet in Europe, due in part to its similarity to the nightshade, which was known to be 

poisonous. Others resisted the crop’s acceptance because the phallic shape of the tuber caused 

it to be labeled as an aphrodisiac, casting shame upon anyone who showed interest in it. 

Furthermore, due to the appearance of the skin, it was suspected of causing leprosy (Brown 

1993). The upper-class population at the time deemed potato an inferior dish suitable only for 

those who could not afford something better (Niederhauser 1993). 

Potato (Solanum tuberosum L., Solanaceae) is one of the most important staple crops grown 

worldwide. Because of its low cost, low fat content and a good source of carbohydrates, high 

quality protein, fibre and vitamins, it plays an important role in human nutrition. Potatoes 

provide an excellent source of lysine (Freidman 1996), making them superior to cereal 

proteins, which lack this important amino acid. In addition to high quality proteins, potatoes 

contain substantial levels of vitamins and minerals, including vitamins C, and B 

(Niederhauser 1993).  

Although potatoes are consumed directly, processed potato products such as French fries, 

chips, mashed potato, crisps, starch, potato flakes, flour, and puree represent majority of the 

consumption (Amir and Venket, 2009). Most of the wastes from potato plants arise from 

peeling, trimming, slicing, cleaning, and rinsing operations, and the discharge of these liquid 

and solid wastes creates a pollution problem. According to Schieber et al. (2001), losses 

caused by peeling range from 10 to 25%, their amount depending on the procedure applied, 
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i.e. steam, abrasion or lye peeling. Potato peels, however, contains several beneficial 

phytochemicals such as the polyphenols and carotenoids that can have potential applications 

in the formulation of functional foods. Like citrus waste, the use of potato waste has been 

directed toward its upgrading to single-cell protein. (Mahmood et al., 1998) and could be 

considered as a new source of natural antioxidant. Aqueous peel extracts were shown to be a 

source of phenolic acids, especially of chlorogenic, gallic, protocatechuic and caffeic acids 

(Onyeneho and Hettiarachchy, 1993).  

A number of byproducts from vegetable processing industry have been previously studied as 

potential sources of antioxidants (Azizaha et al., 1999; Lu and Foo, 2000). However, little 

work is reported relating to the utilization of the potato peel for the recovery of phenolic 

compounds. 

2.4.1.2 By-products of sugar production 

Sugar is a strategic commodity to many countries of the world, since it comes right after 

wheat from the importance point of view to many countries in Europe, Africa, North and 

South America and Australia. Whereas, it occupies the second position after rice in Asian 

countries. Sugar differs than any other food commodity in being consumed daily at different 

rates by all people regardless of their standards or classes. In addition to the direct 

consumption of sugar, it is also, used in many industries whether foods, chemicals, cosmetics, 

painting materials … etc. There are also many industries which are based on the by-products 

of sugar industry.  The production of sugar in the world depends on two main crops namely 

sugar cane (Saccharum officinarum L., Poaceae) and sugar beet (Beta vulgaris L. ssp. 

Vulgaris var. altissima DÖLL, Chenopodiaceae). In Egypt, sugar cane was considered to be 

the main source for sugar industry up to 1981 season and the cultivation of sugar beet did not 

known economically before 1982 season. Nowadays, sugar beet becomes an important crop 

for sugar in Egypt. Sugar beet contribution to sugar production increased largely from 2.4 % 

in 1982 season to about 32 % of the total sugar production in 2006 season. At Fayoum 

province, the cultivation of sugar beet started in 1989/1990 season, so sugar beet considers a 

recent crop introduced to Fayoum agricultural (Proc. 37th conference of the Egyptian Society 

of sugar Technologist, 2006).  

The beet-sugar factory produces waste products such as pulp, fibrous, and molasses. If beet-

sugar producers are not diligent in caring and disposing of waste products, the wastes can 
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pollute the natural environment significantly. It makes good business sense for producers to 

reduce pollution and comply with all legally required actions and limitations with regard to 

the creation, storage, treatment, and disposal of pollutants, wastes, and hazardous compounds. 

Molasses represents the runoff syrup from the final stage of crystallization. It mainly consists 

of fermentable carbohydrates (sucrose, glucose, fructose), and of non-sugar compounds which 

were not precipitated during juice purification. Furthermore, molasses contains substances 

formed chemically or enzymatically during processing and storage (betaine and other amino 

acids, Maillard products, Strecker decomposition products, lactic acid, mineral and trace 

elements, and vitamins especially of the B-group). Molasses is used as feed and as a source of 

carbon in fermentation processes, e.g. for the production of alcohol, citric acid, L-lysine and 

L-glutamic acid (Higginbotham and McCarthy, 1998). In volume, bagasse is the by-product 

of highest relevance. The fibrous residue from the extraction process is utilized as fuel and as 

a source of pentosans, for the production of furfural from pentosan-rich raw material, and for 

the recovery of fibrous products (Delavier, 1998).  

Depending on the process, exhausted beet pulp has a dry matter content of 8–15%. Therefore, 

its economic utilization requires dewatering which is mostly performed by mechanical 

pressing (pressed pulp), followed by thermal drying. Pressed pulp is an energy-rich animal 

feed the shelf-life of which can be extended by ensiling (Harland, 1998). Enzymatic release of 

ferulic acid from sugar beet pulp and subsequent bioconversion to vanillin in a two-step 

process has been demonstrated (Thibault et al., 1998). A freeze-dried arabinan substitute for 

gum arabicum and a fat replacer based on linear arabinan were also obtained from sugar beet 

pulp (Broughton et al., 1995). Addition of sugar beet fiber to semolina increased dietary fiber 

content but adversely affected colour and cooking loss of spaghetti (Ozboy and Koksel, 

2000). Owing to its high content of acetyl groups and its low molecular weight, beet pectin 

has poor gelling properties and is of very limited commercial value (Broughton et al., 1995). 

2.4.1.3 By-products of sesame 

Sesame (Sesamum indicum L.) is one of the most important oilseed crops (because of its high 

content of lipid) in the world (Shyu and Hwang, 2002). It is not only a source of edible oil, 

but also widely used in baked goods and confectionery products (Namiki, 1995). It is also 

consumed as a nutritious food, beneficial to health in oriental countries. Several studies have 

reported the health-promoting properties of sesame (Shyu and Hwang, 2002). Sesame is 
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cultivated on a worldwide basis for both oil and protein and the seed is composed of 55% 

lipid and 20% protein (Abou-Gharbia et al., 1997). Elleuch et al. (2007) noted that sesame oil 

was highly stable to oxidation compared with other plant oils. The stability of sesame oil is 

due to the presence of endogenous antioxidants, sesamin, sesamolin and sesamol. Sesamol is 

usually present in traces, but may also be released from sesamolin by hydrogenation, 

bleaching earth, or other conditions of processing. Sesame seed contains 0.4 to 1.1% sesamin, 

0.3 to 0.65% sesamolin and traces of sesamol. Sesamol is a free 3,4-methylenediphenoxy 

phenol; sesamolin is an acetal type derivative of sesamol and sesamin. The 3,4-

methylenediphenoxy phenol is attached to the 2,7-dioxabicyclo-(3,3,0)- octane nucleus 

directly. Sesamol is as effective as BHT and BHA and more effective than PG (Lyon, 1972).  

Sesame is cultivated in several countries such as India, Sudan, China and Burma which are 

considered as the major producers (60% of its total world production) (Abou-Gharbia et al., 

2000). In Tunisia, 80% of the needed sesame seed is imported from Sudan and 20% from 

Egypt (Elleuch et al., 2007). Its seeds are used essentially for the production of oil, but also in 

the production of the paste (tehineh) and in food formulations such as Halaweh (sweetened 

tehineh), java beans and salads (Abou-Gharbia et al., 2000; Abu-Jdayil et al., 2002; Namiki, 

1995). 

In Egypt, the major part of the imported sesame is essentially transformed to Halaweh. This 

food product is obtained after mixing the white tehineh (white sesame seed dehulled, roasted 

and grinded), saponin (Saponaria officinalis) and Nougat (heat-treated sucrose) (Abu-Jdayil 

et al., 2002).  The sesame cake is a by-product of the oil industry which could be recovered 

and used as a value added product. However, in some sesame processing countries, this by-

product is generally discarded, or used in animal feeding. Preliminary studies showed that an 

appreciable amount of antioxidants was still present in sesame cake. 

2.5. Aims and objectives of work 

With the advent of industrial revolution, environmental pollution has increased significantly. 

As a result, chances of cardiovascular diseases and cancer have increased. Many 

epidemiological studies have suggested that antioxidative compounds from different plant 

sources are useful in the control of these diseases. Many plant polyphenols, such as ellagic 

acid, catechins, chlorogenic, caffeic and ferulic acids, as well as their dietary sources, such as 
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tea, have been shown to act as potent antimutagenic and anticarcinogenic agents (Ayrton et 

al., 1992). 

Vegetable oils nowadays are a great source of balancing oil consumption in families and 

because of consumers concern with the saturated/unsaturated fatty acid ratio in the diet, the 

lipid composition of fruit and vegetable has lately received particular attention. Consumers 

are especially interested in essential fatty acids, with emphasis on the health potential of 

polyunsaturated fatty acids. It is considered that these fatty acids play a natural preventive 

role in cardiovascular diseases and in alleviation of some other health problem, because they 

promote the reduction of both total and HDL cholesterol (Melgarejo and Artes, 2000). But 

these fatty acids are damaged by oxidation process and shelf life of oils is decreased due to 

lipid oxidation/rancidity. Synthetic antioxidants as additives into the oils are not only 

expensive, but also carcinogenic. So nowadays focus of research is to find antioxidants from 

natural sources.  

In the last few years, an increased attention has been focused on the industrial wastes, 

especially those containing residual phenols from the plant raw material used (Shaker, 2006). 

As a step towards series of investigations in the said dimension, this research project follows a 

line of investigation on the antioxidative potential from potato peels, sugar beet pulp, and 

sesame cake and their efficacy in stabilization of sunflower and soybean oils under 

accelerated storage conditions. 

The current study covered the following points: 

(1) Determining the chemical composition of sesame cake, sugar beet pulp, and potato peels 

wastes. 

(2) Extraction and determination of total phenolic compounds from sesame cake, sugar beet 

pulp, and potato peels using different extracting solvents as well as measurement of 

flavonoid and flavonol contents. 

(3) Antioxidant activities of sesame cake, sugar beet pulp, and potato peels extracts were  

evaluated by 2,2-azinobis (3- ethylbenzthiazoline sulphonate) (ABTS) radical scavenging 

activity, 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging capacity, and -

carotene/linoleic acid test system for total antioxidant activity, and compared with that of 

butylated hydroxy anisole (BHA), butylated hydroxy toluene (BHT) and tert-butyl 

hydroquinone (TBHQ). 
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(4) Investigation the antioxidant properties of sesame cake, sugar beet pulp, and potato peels 

in comparison with synthetic antioxidant under accelerated oxidation conditions using 

sunflower and soybean oils as oxidation substrates at different concentrations for 72 h at 

70°C. For this purpose, peroxide value (PV), p-Anisidine value (AV), conjugated dienes 

(CD), and conjugated trienes (CT) of treated oils were determined. 

(5) Identification the antioxidant compounds present in sesame cake, sugar beet pulp, and 

potato peels extracts using high performance liquid chromatography (HPLC), thin layer 

chromatography (TLC), and UV scan techniques. 



Materials and methods 

3 MATERIALS AND METHODS  
 

3.1 Materials and reagents 

Potato peels (Solanum tuberosum cv Diamond) obtained from a local potato chip 

manufacturer (6 October, Egypt) and sesame cake (Sesamum indicum cv Shandweel -3) 

purchased from Hamada market (Giza, Egypt) in November 2007 and stored in a deep freeze 

at -20°C until use. Sugar beet pulp (Beta vulgaris cv Gloriato) was supplied by a local sugar 

manufacturer (Fayoum, Egypt). BHA, BHT, hydroxybenzoic acid, chlorogenic acid, vanillic 

acid, and 2,2 -Azinobis (3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) were purchased from 

Sigma (St Louis, MO, Germany). 1,1-diphenyl-2-picrylhydrazyl (DPPH), p-coumaric acid, 

sinapic acid, caffeic acid, TBHQ, p-Anisidine (4-Amino-anisol; 4-Methoxy-anilin), cinnamic 

acid, and  carotene were obtained from Fluka (Buchs, Switzerland). All other chemicals used 

were analytical grade.  

Sunflower oil was produced by Brökelmann-Oelmühle GmbH (Hamm, Germany) obtained 

from Aldi supermarket (Berlin, Germany), while soybean oil which obtained from Edeka 

aktivmarkt (Berlin, Germany) was produced by Kunella Feinkost GmbH (Cottbus, Germany) 

and the oils were free of any synthetic antioxidant. 

3.2 Sample preparation  

Potato peels, sesame cake and sugar beet pulp were washed, dried in hot air at 40º C and 

ground to fine powder in a mill. Ground materials (10 g) were extracted with organic solvents 

(100 mL) methanol, ethanol, acetone, hexane, petroleum ether, and diethyl ether overnight in 

a shaker at room temperature followed by filtration through Whatman No.1 filter paper. The 

residues were re-extracted under the same conditions. The combined filtrates were evaporated 

in a rotary evaporator below 40ºC. The extracts obtained after evaporation of organic solvents 

were weighted to determine the extract yield and stored at -20°C until further use. 

3.3 Proximate analysis of potato peels, sesame cake, and sugar beet pulp 

The major chemical constituent, moisture, ash, crude fat, crude fiber, and crude protein were 

determined in triplicate according to AOAC standard methods (1990). Carbohydrate content 

was calculated by difference.  
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3.4 Determination of total phenolics  

Total phenolic content of each extract was determined by the Folin–Ciocalteu micro-method 

(Saeedeh and Asna, 2007). A 20 μL aliquot of extract solution was mixed with 1.16 mL 

distilled water and 100 μL of Folin–Ciocalteu reagent, followed by addition of 300 μL of 

Na2CO3 solution (20%). Subsequently, the mixture was incubated in a shaking incubator at 

40°C for 30 min and its absorbance at 760 nm was measured. Gallic acid was used as a 

standard for calibration curve. Total phenolic content expressed as gallic acid equivalent 

(GAE) was calculated using the following linear equation based on the calibration curve:  

A = 0.98C + 9.925 x 10-3              (R2 = 0.9996), 

where A is the absorbance and C is the concentration (mg GAE g-1 dry weight (DW)). 

3.5 Determination of total flavonoids  

Total flavonoid content was determined by the method of Ordon et al. (2006). A 0.5 mL 

aliquot of 2% AlCl3 ethanolic solution was added to 0.5 mL of extract solution. After 1 h at 

room temperature the absorbance at 420 nm was measured. A yellow color indicated the 

presence of flavonoids.  Extract samples were evaluated at a final concentration of 0.1 mg 

mL-1. Total flavonoid content expressed as quercetin equivalent (QE) was calculated using the 

following equation based on the calibration curve:    

y = 0.0255x                                (R2 = 0.9812), 

 

where x is the absorbance and y is the concentration (mg QE g-1 DW). 

3.6 Determination of total flavonols  

Total flavonol content was determined by the method of Kumaran and Karunakaran (2007). 

To 2.0 mL of extract solution, 2.0 mL of 2% AlCl3 ethanol and 3.0 mL (50 g/L) sodium 

acetate solutions were added. The absorption at 440 nm was read after 2.5 h at 20°C. Extract 

samples were evaluated at a final concentration of 0.1 mg mL-1. Total flavonol content 

expressed as QE was calculated using the following equation based on the calibration curve:   

 y = 0.0232x                              (R2 = 0.9752),  

where x is the absorbance and y is the concentration (mg QE g-1 DW). 
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3.7 Antioxidant activity of extracts 

Because of the differences among the various test systems available, the results of a single 

method can provide only a limited assessment of the antioxidant properties of a substance 

(Gianni et al., 2005). For that reason, in this study the antioxidant capacity of each extract was 

determined through three complementary assay procedures. 

3.7.1 Determination of DPPH· radical scavenging capacity 

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay (Lee et al., 2003) was utilised with some 

modifications. The stock reagent solution (1 x 10-3M) was prepared by dissolving 22 mg of 

DPPH in 50 mL of methanol and stored at -20°C until use. The working solution (6 x 10-5 M) 

was prepared by mixing 6 mL of the stock solution with 100 mL of methanol to obtain an 

absorbance value of 0.8 ± 0.02 at 515 nm, as measured using a spectrophotometer. Extract 

and synthetic antioxidants (TBHQ, BHA, and BHT in ethanol) solutions of different 

concentrations (0.1 mL of each) were vortexed for 30 s with 3.9 mL of DPPH solution and 

left to react for 30 min, after which the absorbance at 515 nm was recorded. A control with no 

added extract was also analysed. Scavenging activity was calculated as follows: 

DPPH radical-scavenging activity (%) = [(Acontrol – Asample)] / (Acontrol)] × 100,  

where A is the absorbance at 515 nm. 

3.7.2 ABTS radical scavenging assay  

For the ABTS assay the method of Re et al. (1999) was adopted. The stock solutions were 7 

mM ABTS solution and 2.4 mM potassium persulfate solution. The working solution was 

prepared by mixing the two stock solutions in equal quantities and allowing them to react for 

12-16 h at room temperature in the dark. Then 1 mL of the resulting ABTS•+ solution was 

diluted with 60 mL methanol to obtain an absorbance of 0.706 ± 0.001 units at 734 nm, as 

measured using a spectrophotometer. ABTS•+ solution was freshly prepared for each assay. 

Extract and synthetic antioxidants (TBHQ, BHA, and BHT in ethanol) solutions of different 

concentrations (0.1 mL of each) were allowed to react with 1 mL of ABTS•+ solution for min, 

after which the absorbance at 734 nm was recorded. A control with no added extract was also 

analysed. Scavenging activity was calculated as follows: 

 ABTS radical-scavenging activity (%) = [(Abscontrol – Abssample)] / (Abscontrol)] × 100, 
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where Abscontrol is the absorbance of ABTS radical + methanol and Abssample is the absorbance 

of ABTS radical + extract/synthetic antioxidants. 

3.7.3 ß-Carotene/linoleic acid bleaching  

The ability of extracts and synthetic antioxidants to prevent the bleaching of ß-carotene was 

assessed as described by Keyvan et al. (2007). In brief, 0.2 mg ß-carotene in 1mL chloroform, 

20 mg of linoleic acid and 200 mg of Tween 20 were placed in a round-bottom flask. After 

removal of the chloroform, 50 mL of distilled water was added and the resulting mixture was 

stirred vigorously. Aliquots (6 mL) of the emulsion were transferred to tubes containing 

different concentrations of extracts/synthetic antioxidants. Immediately after mixing, an 

aliquot from each tube was transferred into a cuvette and the absorbance (Abs0) at 470nm was 

recorded. The remaining samples were placed in a water bath at 50 °C for 2 h, after which the 

absorbance at 470nm was recorded (Abs120). A control with no added extract was also 

analysed. Antioxidant activity was calculated as follows: 

antioxidant activity (%) = [1 – (Ab0
sample - Abs120 sample) / (Ab0 control - Abs120 control)] x 100 

 

3.8 Storage studies 

3.8.1 Selection of oils 

The selection of test oils was based on the presence of varying polyunsaturated fatty acids 

(PUFA) composition. Thus, sunflower oil (SFO) which includes high level of linoleic acid 

(18:2n - 6) and soybean oil (SBO) which is rich in -linolenic acid (18:3n - 3) in addition to 

linoleic acid were used in this investigation. Schaal oven test (Fennema, 1976) was conducted 

to evaluate the effect of antioxidants against oxidation during the accelerated oxidative 

storage of oils. 

3.8.2 Sample preparation for oxidative stability determination  

Since preliminary evaluation showed that methanolic and ethanolic extracts contained  higher 

antioxidant potential, the methanolic and ethanolic extracts of potato peels, sesame cake, and 

sugar beet pulp were applied to commercial edible sunflower and soybean oils obtained from 

local market (free of any antioxidant) at different concentrations (5, 10, 50, 100 and 200 ppm, 

based on extract weight), in a series of transparent glass bottles having a volume of 20 mL 
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each, to examine their antioxidative activity. TBHQ, BHA and BHT at a level of 200 ppm 

were also applied for comparison. The bottles were completely filled with oil and sealed. A 

control sample was prepared by using the same amount of methanol used to dissolve the 

antioxidant and the extracts (Moure et al., 2000). The antioxidant-enriched oil samples were 

evaporated in a vacuum evaporator below 40 ºC to evaporate the solvent and subjected to 

accelerated oxidation in the dark in an oven at 70 °C for 72 h. Aliquot (20 g) were removed 

periodically every 4, 8, 24, 32, 36, 48, 56, and 72 h for analysis. Immediately after storage 

period, oil samples were withdrawn for triplicate analyses. The oils were sampled for each 

measurement from separate bottles. 

 

3.8.3 Analytical procedures 

3.8.3.1 Peroxide value (PV) 

Peroxide value of samples was measured according to Kirk and Sawyer (1991). The method is 

based on iodometric titration, which measures the iodine produced from potassium iodide by 

the peroxides present in the oil. In a stopper conical flask (250 mL) vegetable oils sample (4 ± 

0.5 g) was taken along with chloroform (10 mL), glacial acetic acid (15 mL) and fresh 

saturated aqueous potassium iodide solution (1 mL). The flask was stoppered and shaken 

vigorously for 1 min and then kept in the dark for further 5 min (IUPAC, 1987). In the next 

step, double distilled water (10 mL) was mixed thoroughly with the solution and titrated 

against 0.002 N sodium thiosulphate solution until the yellow colour almost disappeared. 

Then about 0.5 mL of soluble starch indicator (1%) solution was added. Titration was 

continued until the blue colour just disappeared. One blank reagent (without sample) was 

prepared. 

Peroxide value (meq kg-1) =   (V - V0) × N × 103

                                                            W                , 

where V is the titre value (mL) of sodium thiosulphate solution for sample, V0 the titre value 

(mL) of sodium thiosulphate solution for blank, N the normality of sodium thiosulphate 

solution and W the weight of sample in gram. 

 

3.8.3.2 p-Anisidine value (AV) 

The p-anisidine value (AV) was determined according to Cd 18-90 method (AOCS, 1995). 

The method is based on the spectrophotometric determination of products formed in the 
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reaction between aldehydic compounds in the oil and p-anisidine. Oil samples (0.5-2.0 g) 

were dissolved in 25 mL iso-octane and absorbance of this fat solution was measured at 

350 nm using a spectrophotometer (Hitachi U-3000, Tokyo, Japan). Five millilitres of the 

above mixture was mixed with 1 mL 0.25% p-anisidine in glacial acetic acid (w/v) and after 

10 min standing, absorbance was read at 350 nm using a spectrophotometer. The p-anisidine 

value (AV) was calculated according to the equation: 

AV = 25 × (1.2 As - Ab) / m       

where As is the absorbance of the fat solution after reaction with the p-anisidine reagent; Ab 

is the absorbance of the fat solution and m is the mass of oil sample (g). 

3.8.3.3 Conjugated dienes (CD) and conjugated trienes (CT) 

Specific extinctions at 232 and 270 nm (i.e., conjugated dienes and conjugated trienes) were 

determined using a spectrophotometer. Oil samples were diluted with iso-octane to bring the 

absorbance within limits following the standard method of IUPAC method II. D. 23 (IUPAC, 

1979). 

3.9 Thin-layer chromatography and UV scan of extracts 

An aliquot of extracts (10 μL) was spotted on a precoated silica gel plate (F254, 0.25 mm, 

Merck, Darmstadt, Germany). The plates were developed in the ascending direction for 17 cm 

with chloroform: methanol (1:1, v/v) then sprayed with 10-4 M DPPH in methanol. UV 

spectrum (200-400 nm) of diluted extracts in methanol (1%) was recorded by 

spectrophotometry (Shimadzu UV-260 visible recording spectrophotometer; Kyoto, Japan). 

3.10 HPLC analysis 

The ground materials of potato peels, sesame cake, and sugar beet pulp were used to extract 

the phenolic acids with 70% methanol (pH 4.0) and placed in ultrasonic water bath with ice 

for 15 minutes for the better cell wall disintegration. The pellet was re-extracted two times 

after centrifugation. The supernatant were collected and concentrated in a vacuum 

concentrator for about 2 hours to a certain volume and then dissolved in 40 % acetonitrile. 

The samples were filtrated and injected into the HPLC.  

Instrumentation and chromatographic conditions: The separation of phenolic compounds 

was performed on HPLC (Dionex Summit P680A HPLC-System, USA), equipped with P680 
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pump, ASI-100 automated sample injector, a Narrow-Bore AcclaimPA C16-column (3 μm, 

2.1 × 150 mm, Dionex) and PSA-100 photodiode array detector (Dionex) and software 

Chromeleon 6.8 (Dionex, USA). The column was operated at a temperature of 35 °C. The 

mobile phase consisted of 0.1% (v/v) phosphoric acid in ultrapure water (eluent A) and of 

40% (v/v) acetonitrile in ultrapure water (eluent B). A multistep gradient was used for all 

separations with an initial injection volume of 40 L and a flow rate of 0.4 mL/min. The 

multistep gradient was as follows: 0-1 min: 0.5% (v/v) B; 1-10 min: 0.5-40% B; 10-12 min: 

40% B; 12-18 min: 40-80% B; 18-20 min: 80% B; 20-24 min: 80-99% B; 24-30 min: 99-

100% B; 30-34 min: 100-0.5% B; 34-39 min: 0.5% B. Simultaneous monitoring was 

performed at 290, 330 and 254 nm at a flow rate of 0.4 mL/min 

3.11 Statistical analysis 

Statistical analyses were conducted using SPSS (Statistical Programme for Social Sciences, 

SPSS Corporation, Chicago, IL, USA) version 16.0 for Windows. All analyses were 

performed in triplicate and data reported as means ± standard deviation (SD). Data were 

subjected to analysis of variance (ANOVA). The confidence limits used in this study were 

based on 95% (P < 0.05). 
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4 RESULTS AND DISCUSSION 

 

4.1 Proximate composition of materials 

 
The results in Table 4.1 show the proximate analysis of potato peels, sesame cake, and sugar 

beet pulp. This indicates that these by-products could be used as a source of carbohydrate, fat 

and protein. The lipid content in sesame cake was lower than that reported by Suja et al. 

(2004). 

Table 4.1. Chemical composition of potato peels, sugar beet pulp, and sesame cake extracts 

(% dry weight basis). 

Parameter Moisture Ash Crude fat Crude protein Crude fiber Carbohydrate* 

potato peels 6.55±0.34 8.48±0.34 8.46±0.36 13.85±0.36 12.98±0.34 56.23±0.36 

sugar beet pulp 6.90±0.36 6.64±0.20 6.92±0.34 10.84±0.27 17.82±0.20 57.78±0.27 

sesame cake 5.71±0.20 6.12±0.36 30.39±0.27 23.76±0.34 10.86±0.27 28.87±0.34 
Data are mean ± SD of three replicates.  
* by difference 

 

4.2 Extract yields 
 

Solvent extraction is more frequently used for isolation of antioxidants and both extraction 

yield and antioxidant activity of extracts are strongly dependent on the solvent, due to the 

different antioxidant potential of compounds with different polarity (Marinova and 

Yanishlieva, 1997). Ethanol and methanol are the most widely employed solvents for hygienic 

and abundance reasons, respectively. Since the activity depends on the polyphenol 

compounds and the antioxidant assay, comparative studies for selecting the optimal solvent 

providing maximum antioxidant activity are required for each substrate. 

The extract yields of potato peels, sugar beet pulp and sesame cake extracts with different 

solvents varied from 15.9 to 203.1 g kg-1 dry weight (Table 4.2). A significant difference (p  

0.05) in the yield of extracts with different solvents was observed. For potato peels and sugar 

beet pulp the highest yield was observed with methanol followed by ethanol, acetone, diethyl 

ether, petroleum ether, and hexane, while for sesame cake, owing to its high lipid content, the 

highest yield was observed with diethyl ether followed by ethanol, hexane, petroleum ether, 

acetone, and methanol. Variation in the yields of various extract is attributed to differences in 
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polarity of compounds present in plants, and such differences have been reported in the 

literature on fruit seeds (Jayaprakasha et al., 2001).   

The amount of materials that can be extracted from a plant depends on the nature and amount 

of solvent used, mixing during extraction procedure and it is possible sample-to-sample 

variation in extracted materials (Hsu et al., 2006). Therefore, an appropriate extraction 

method should be developed to extract maximum quantity of antioxidative compounds before 

its exploration for the possible application in food industry. 
 

Table 4.2. Extract yield and total phenolic content of potato peels, sugar beet pulp and sesame 

cake extracts. 
Sample Solvent  Extract yield (g kg-1 DW) Total phenolics (mg GAE g-1 DW) 

Methanol 125.83±0.36 2.91±0.02 
Ethanol 101.50±0.33 2.74±0.03 
Acetone 45.37±0.27 2.39±0.04 
Hexane 16.83±0.15 1.12±0.04 
Diethyl ether 42.50±0.15 1.12±0.03 

Potato peels 

Petroleum ether 37.0±0.15 1.08±0.04 
 
Methanol 108.2±0.34 1.79±0.01 
Ethanol 87.87±0.10 1.52±0.05 
Acetone 40.90±0.17 0.83±0.04 
Hexane 15.93±0.14 0.11±0.05 
Diethyl ether 38.77±0.03 0.12±0.06 

Sugar beet pulp 

Petroleum ether 36.23±0.09 0.08±0.03 
 
Methanol 150.03±0.21 0.81±0.02 
Ethanol 192.10±0.14 0.55±0.06 
Acetone 166.23±0.20 0.24±0.04 
Hexane 186.67±0.10 0.12±0.05 
Diethyl ether 203.10±0.15 0.13±0.03 

Sesame cake 

Petroleum ether 186.07±0.15 0.12±0.02 
Data are mean ± SD of three replicates.  
 
 
4.3 Total phenolic compounds as affected by solvent used 
 
 
Total phenolic contents (TPC) were determined by using Folin-Ciocalteu reagent (FCR). 

Folin-Ciocalteu reagent react nonspecifically with phenolic compounds as it can be reduced 

by a number of nonphenolic compounds e.g., vitamin C, Cu (II), etc. Although exact reaction 

of the reagent with reducing species is not known, but it is considered that a complex is 

formed between phospho-molybdic tungstate and reducing species, phenolate ion, changing 

color from yellow to blue where absorbance at 760 nm is measured against gallic acid as a 

standard (Haung et al., 2005). The amount of total phenolics determined in different solvent 

extracts of potato peels, sugar beet pulp, and sesame cake is shown in Table 4.2.The contents 

of total phenolics varied in the different extracts, ranging from 0.08 to 2.91 mg gallic acid 
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equivalent (GAE) g-1 DW. The results revealed that methanol and ethanol were better than the 

other solvents at extracting phenolic compounds owing to their higher polarity and good 

solubility for phenolic components from plant materials (Wieland et al., 2006). The data in 

Table 4.2 show that methanol was the best solvent for extracting phenolic compounds, 

followed by ethanol and acetone, with respective values of 2.91, 2.74, 2.39 mg GAE g-1 DW 

for potato peels, 1.79, 1.52, 0.83 mg GAE g-1 DW for sugar beet pulp, and 0.81, 0.55, 0.24 mg 

GAE g-1 DW for sesame cake. The lower-polarity solvents, particularly hexane, petroleum 

ether, and diethyl ether, showed much lower ability to extract phenolic compounds compared 

with the higher-polarity solvents. Singh et al. (2002) extracted antioxidative compounds from 

pomegranate peels and seeds and found that methanol gave maximum antioxidant yield. 

Similar results were observed in the present investigations as the most effective antioxidative 

compounds were extracted with methanol. 

Potato peels extract had a higher phenolic compound (2.91 mg GAE g-1 DW) determined in 

the methanolic extract in the present study was found to be lower than tomato (2.92-5 mg 

GAE g-1 DW) (Kequan and Liangli, 2006) and apple peels (33 mg GAE g-1 DW) (Wolfe and 

Liu, 2003), but greater than carrot (1.52 mg GAE g-1 DW) (Kequan and Liangli, 2006), 

banana (2.32 mg GAE g-1 DW) (Nagendran et al., 2006), wheat bran, and onion (1.0 and 2.5 

mg GAE g-1 DW ), respectively (Kähkönen et al., 1999). 

 

4.4 Amount of flavonoids and flavonols 
 
Table 4.3 shows the flavonoid and flavonol contents of extracts. Because antioxidant activity 

does not always correlate with the presence of large quantities of polyphenolic compounds, 

the two sets of data need to be examined together. Flavonoids possess a broad spectrum of 

chemical and biological activities including radical scavenging properties. Such properties are 

especially distinct for flavonols. For this reason, all extracts were analyzed for total phenolic, 

flavonoid and flavonol contents.  

Sugar beet pulp extracts had the highest total flavonoid and flavonol contents, with values 

ranging from 0.46 to 1.24 (mg quercetain equivalent (QE) g-1 dry weight (DW)) and from 

0.17 to 0.85, respectively followed by potato peels and sesame cake extracts, depending on 

the solvent used for extraction. The highest flavonoid and flavonol contents were observed in 

extracts with methanol, while the lowest levels were found in extracts with petroleum ether. 

Statistical analysis allowed the detection of significant differences in flavonoid and flavonol 

contents in all samples (p  0.05). The results confirmed a previous report that flavonoids 

represent the main group of phenolic compounds in white onion (Yang et al., 2004). 
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Table 4.3. Total flavonoid and flavonol contents of potato peels, sugar beet pulp and sesame 

cake extracts. 
Sample Solvent Total flavonoids (mg QE g-1 DW) Total flavonols (mg QE g-1 DW) 

Methanol 0.96±0.03 0.41±0.02 
Ethanol 0.81±0.04 0.38±0.03 
Acetone 0.65±0.02 0.26±0.01 
Hexane 0.56±0.01 0.22±0.04 

Diethyl ether 0.72±0.02 0.25±0.02 

Potato peels 

Petroleum ether 0.51±0.01 0.19±0.01 
 

Methanol 1.24±0.03 0.85±0.01 
Ethanol 0.91±0.02 0.77±0.04 
Acetone 0.77±0.01 0.65±0.06 
Hexane 0.71±0.05 0.42±0.05 

Diethyl ether 0.76±0.03 0.44±0.06 

Sugar beet pulp 

Petroleum ether 0.46±0.02 0.17±0.03 
 

Methanol 0.4±0.02 0.16±0.02 
Ethanol 0.29±0.01 0.14±0.01 
Acetone 0.19±0.02 0.12±0.02 
Hexane 0.06±0,01 0.11±0.01 

Diethyl ether 0.12±0.02 0.10±0.01 

Sesame cake 

Petroleum ether 0.01±0.03 0.09±0.02 
Data are mean ± SD of three replicates 
 

4.5. Antioxidant activity 

4.5. 1 General 

The antioxidant activity depends on the type and polarity of the extracting solvent, the 

isolation procedures, purity of active compounds, as well as the test system and substrate to be 

protected by the antioxidant (Meyer et al., 1998). It has been suggested that the determining 

factor for the antioxidant activity is the lipophilic nature of the molecules and the affinity of 

the antioxidant for the lipid (Brand-Williams et al., 1995; von Gadow et al., 1997). A close 

dependency on the antioxidant activity of phenolic acids (Pekkarinen et al., 1999; von Gadow 

et al., 1997) has been reported for phenolic compounds, and even the recommended 

concentration of synthetic antioxidants has been indicated for some tests (Karamac and 

Amarovicz, 1997). The antioxidant potential of a compound is different according to different 

antioxidant assays or, for the same assay when the polarity of the medium differs, since the 

interaction of the antioxidant with other compounds plays an important role in the activity 

(Pekkarinen et al., 1999). Dramatic differences in the relative antioxidant potential of model 

compounds were observed when one model compound is strongly antioxidant with one 

method and prooxidant with another (von Gadow et al., 1997). A phenomenon known as 

`Polar paradox' has been repeatedly reported; hydrophilic antioxidants are more effective than 
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lipophilic antioxidants in bulk oil, whereas lipophilic antioxidants present greater activity in 

emulsions. 

As stressed by Huang et al. (2005), no single method is adequate for evaluating the 

antioxidant capacity of foods, since different methods can yield widely diverging results. 

Several methods based on different mechanisms must be used. Here we applied assays of 

ABTS radical-scavenging activity, DPPH radical-scavenging activity and -carotene/linoleic 

acid bleaching to each extract. 

 
4.5.2 DPPH radical-scavenging activity 
 
 
Free radicals involved in the process of lipid peroxidation are considered to play a major role 

in numerous chronic pathologies such as cancer and cardiovascular diseases (Dorman et al., 

2003). DPPH• is considered to be a model of a stable lipophilic radical with deep violet colour. 

A chain reaction of lipophilic radicals is initiated by lipid autoxidation. Antioxidants react 

with DPPH•, reducing the number of DPPH• free radicals equal to the number of their 

available hydroxyl groups. Therefore, the absorption at 515 nm is proportional to the amount 

of residual DPPH• (Juan et al., 2005). It is visually noticeable as a discoloration from purple 

to yellow. Because these radicals are very sensitive to the presence of hydrogen donors, the 

whole system operates at very low concentration; with it, it can allow a large number of 

samples to be tested in a short time (Iqbal et al., 2006; Zhou and Yu, 2004). 

The scavenging activity of extracts against DPPH• was concentration-dependent (Figure 4.1).  

Significant (p < 0.05) differences between different extracts were observed, but the results 

clearly indicate that all extracts exhibited antioxidant activity.  The extracts that showed 

relatively high antioxidant activity (those with methanol and ethanol), as strong as that of 

BHA and BHT but weaker than that of TBHQ, contained the highest amount of total phenolic 

compounds (Table 4.2). These findings are in close agreement with previous findings of 

Singh et al. (2002) who found a strong correlation between the contents of TPC and DPPH• 

scavenging activity of methanolic extract from pomegranate peels. 

It has been proven that the antioxidant activity of plant extracts is mainly ascribed to the 

concentration of the phenolic compounds present in the plants (Heim et al., 2002). The 

scavenging activity of potato peels methanolic extract was far superior to that of any of the 

other extracts investigated as well as that of green and black tea extracts, which ranged from 

49 to 66% according to Yen and Chen (1995). 
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Figure 4.1. Scavenging activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 

extracts against DPPH radical compared with that of BHA, BHT, and TBHQ at different 

concentrations. Data are mean ±SD of three determinations. 
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The results of the DPPH• free radical scavenging assay suggest that components within the 

extracts are capable of scavenging free radicals via electron- or hydrogen-donating 

mechanisms and thus should be able to prevent the initiation of deleterious free radical 

mediated chain reactions in susceptible matrices, e.g. biological membranes. This further 

shows the capability of the extracts to scavenge different free radicals in different systems, 

indicating that they may be useful therapeutic agents for treating radical-related pathological 

damage. 

 

 
4.5.3 ABTS radical-scavenging activity 

 

Although the DPPH• free radical is ubiquitously used to estimate the potential free radical- 

scavenging activity of natural products, the ABTS•+ free radical is commonly used when 

issues of solubility or interference arise and the use of DPPH•-based assays becomes 

inappropriate (Dorman and Hiltunen, 2004). Having considered the solubility of the test 

samples and the advantages and disadvantages of the use of the DPPH• free radical, it was 

considered necessary to further assess the extracts against the ABTS•+ free radical. Proton 

radical scavenging is an important attribute of antioxidants. ABTS•+, a protonated radical, has 

characteristic absorbance maxima at 734 nm that decreases with the scavenging of the proton 

radicals (Mathew and Abraham, 2006). The extracts demonstrated a wide range of ABTS•+ 

scavenging activities and could be ranked from 36% to 86% (Figure 4.2). In our study, all 

extracts exhibited significant antioxidant activity. Extracts with methanol were the most 

efficient ABTS•+ scavenger followed by those with ethanol and acetone. However, extracts 

with hexane, petroleum ether and diethyl ether were less effective in minimizing the oxidation 

of lipids. Similar results were found by Djeridane et al. (2006) from some medicinal plants.  

It can be concluded that the extracts obtained using high polarity solvents were considerably 

more effective radical-scavengers than those obtained using low-polarity solvents, indicating 

that antioxidants or active compounds of different polarity could be present in the extracts 

with high antioxidant capacity. Change in the polarity of a solvent alters its ability to dissolve 

a selected group of antioxidant compounds and influences activity estimation (Kequan and 

Liangli, 2004). Scavenging of the ABTS+ radical by the extracts was found to be higher than 

that of DPPH radical. Factors such as stereoselectivity of the radicals and the solubility of 

extracts in different test systems have been reported to affect the capacity of extracts to react 

with and quench different radicals (Yu et al., 2002).  
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Figure 4.2. Scavenging activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 

extracts against ABTS radical compared with that of BHA, BHT, and TBHQ at different 

concentrations. Data are mean ±SD of three determinations. 
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Wang et al. (1998) found that some compounds possessing ABTS+ -scavenging activity did 

not show DPPH -scavenging activity. This was not the case in the present study. 

The ABTS•+ scavenging data suggest that components within the extracts are capable of 

scavenging free radicals via a mechanism of electron/hydrogen donation and should be able to 

protect susceptible matrices from free radical-mediated oxidative degradation. 

 
4.5.4 ß-carotene/linoleic acid bleaching 
 

Synthetic free radical-scavenging (ABTS and DPPH) models are valuable tools to indicate the 

potential antioxidant activity of plant extracts; however, these systems do not use a food or 

biologically relevant oxidisable substrate so no direct information on an extract’s protective 

action can be obtained (Dorman et al., 2003). Therefore, it was considered important to assess 

the extracts in a ß-carotene/linoleic acid lipid-water emulsion assay despite its reported 

limitations (Koleva et al., 2002; Ley and Bertram, 2003). In this assay, oxidation of linoleic 

acid produces hydroperoxide-derived free radicals that attack the chromophore of ß-carotene, 

resulting in bleaching of the reaction emulsion. An extract capable of retarding/ inhibiting the 

oxidation of ß-carotene may be described as a free radical scavenger and primary antioxidant 

(Liyana-Pathirana and Shahidi, 2006). 

As can be seen in Figure 4.3, all extracts were capable of inhibiting the bleaching of ß-

carotene by scavenging linoleate-derived free radicals. The order of decreasing efficacy at a 

dose of 200 μg mL-1 was TBHQ  methanol extracts  BHT = ethanol extracts  BHA  

acetone extracts  diethyl ether extracts  hexane extracts = petroleum ether extracts. The 

results reveal that, overall, methanolic and ethanolic extracts had comparable scavenging 

ability to the synthetic antioxidants BHA, BHT, and TBHQ. 

It has been suggested that the polarity of an extract is important in water-oil emulsions, in that 

non-polar extracts are more effective antioxidants than polar extracts owing to a 

‘concentrating effect’ within the lipid phase (Koleva et al., 2002). Thus it would be expected 

that the less polar extracts would be more potent. This phenomenon was not observed in the 

case of all extracts studied here, a finding which has been reported previously (Koleva et al., 

2003). 

According to the ß-carotene/linoleic acid bleaching data, the extracts are capable of 

scavenging free radicals in a complex heterogenous medium. This suggests that the extracts 

may have potential use as antioxidative preservatives in emulsion-type systems. 
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Figure 4.3. Antioxidant activity of (a) potato peels, (b) sugar beet pulp, and (c) sesame cake 

extracts in ß-carotene/linoleic acid system compared with that of BHA, BHT, and TBHQ at 

different concentrations. Data are mean ±SD of three determinations. 
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Considering the results of all three assays, the extracts prepared from potato peels had the 

highest antioxidant activity, followed by those prepared from sugar beet pulp, while sesame 

cake extracts were less effective. This may be due to the high soluble sugar and protein 

contents of sesame cake, which could produce considerable interference in these antioxidant 

capacity assays. Phenolic compounds can explain high antioxidant capacity, (Fernandez-

Pachon et al., 2006; Kevers et al., 2007; Mullen et al., 2007) although some authors have 

reported that there is no correlation between the content of these main antioxidant compounds 

and radical-scavenging capacity (Yu et al., 2002). The results obtained by us do not support 

these claim. The antioxidant activity of phenolic compounds is mainly due to their redox 

properties, which can play an important role in adsorbing and neutralising free radicals, 

quenching singlet and triplet oxygen, or decomposing peroxides (Osawa, 1994). 

 

4.6 Stability of oils as affected by addition of potato peels, sugar beet pulp, 

and sesame cake extracts 
 
4.6.1 General 
 
On the basis of preliminary evaluation of antioxidant activity of extracts of potato peels, sugar 

beet pulp and sesame cake from different solvents, methanolic and ethanolic extracts showing 

higher antioxidant activity were further evaluated towards stabilization of sunflower and 

soybean oils. Oil stability is usually determined under accelerated oxidation conditions (60 °C 

or more) because ambient conditions demand an excessively long period. Similar accelerated 

storage tests have been used by other authors to evaluate the efficacy of antioxidants (Mariod 

et al., 2006, 2008). To evaluate the antioxidant efficacies of methanolic and ethanolic extracts 

in soybean and sunflower oils, PV, AV and UV absorptivity were determined as indices of 

lipid oxidation. The oxidative stability studies were carried out at 70 °C in an oven. This 

temperature was ideal, because at higher temperatures the peroxides will decompose very fast 

(Mariod et al., 2010). 

 

4.6.2 Effect of methanolic extracts on sunflower oil oxidation 

 

Peroxide value (PV) is a measure of the concentration of peroxides and hydroperoxides 

formed in the initial stages of lipid oxidation. Peroxide value is one of the most widely-used 

tests for the measurement of oxidative rancidity in oils and fats. A continuous increase in PV 
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with the increase in storage period was observed for all the samples (Figure 4.4). Initially rate 

in PV was very slow, but it started to increase after 32 h of storage and went on increasing 

further with the increase in storage period. Peroxide value was in the range of 1.34 ± 0.21–

15.78 ± 0.26 meq kg-1 for potato peels extracts (PPE), 1.34 ± 0.21–16.94 ± 0.24 meq kg-1  for 

sesame cake extracts (SCE), while it was 1.34 ± 0.21–16.88 ± 0.24 meq kg-1  for sugar beet 

pulp ones (SBP). Sunflower oil samples without antioxidant (control) reached a maximum PV 

of 25.82 ± 0.24 meq kg-1 after 72 h of storage. A significant difference (p  0.05) in PV was 

observed between the control and sunflower oil samples containing extracts and synthetic 

antioxidants, which slowed the rate of peroxide formation. The PV of sunflower oil 

containing 200 ppm of potato peels, sesame cake, sugar beet pulp, TBHQ, BHT, and BHA 

were found to be 11.88 ± 0.19, 13.86 ± 0.26, 13.8 ± 0.26, 11.04 ± 0.26, 13.44 ± 0.26 and 

13.86 ± 0.24 meq kg-1  after 72 h of storage, respectively. These data suggest the superiority of 

antioxidant activity of potato peels, sesame cake, and sugar beet pulp extracts over synthetic 

antioxidants. However, among these treatments, TBHQ remained the most effective and gave 

the lowest PV (Ying et al., 2010). 
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(b) Storage period at 70 °C ( h) 
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Figure 4.4. Relative increase in peroxide value (PV) of treated sunflower oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 

under accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 
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Antioxidants are mainly used in lipids to delay the accumulation of primary oxidation 

products and thus to improve the oxidative stability. The primary products of lipid 

peroxidation are hydroperoxides, which are generally referred to as peroxides. Therefore the 

results of PV estimation give a clear indication of lipid autoxidation. For further confirmation 

of these results, other oxidation parameters, such as conjugated dienes, conjugated trienes and 

p-anisidine values were also measured. 

The p-anisidine value (AV), which measures the secondary oxidation products produced 

during the oxidative degradation of oil, was determined by reacting p-anisidine with the oil in 

iso-octane and the resultant color was measured at 350 nm. Figure 4.5 depicts the p-ansidine 

values for sunflower oil samples stabilized with methanolic extracts, TBHQ, BHT, BHA, and 

control.  
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(b) Storage period at 70 °C ( h) 
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Figure 4.5. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 

under accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 
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The p-anisidine value of control reached a maximum of 14.22 ± 0.14 from an initial value of 

0.98 ± 0.13 after 72 h of storage. The values for potato peels, sesame cake, sugar beet pulp, 

BHA, BHT and TBHQ at 200 ppm were 9.10 ± 0.24, 9.44 ± 0.31, 9.40 ± 0.31, 9.42 ± 0.14, 

9.36 ± 0.14, and 8.84 ± 0.14, respectively. A significant difference was noted between the 

values for control and experimental samples. The results demonstrated that the extracts 

prepared from potato peels had higher antioxidant activity than BHT, sugar beet pulp extracts, 

BHA, and sesame cake extracts but lower than TBHQ. The results confirmed our pervious 

experiments, wherein phenolic compounds can explain higher antioxidant capacity of potato 

peels (2.91 ± 0.02 mg GAE g-1 DW) than sugar beet pulp (1.79 ± 0.01 mg GAE g-1 DW) and 

sesame cake (0.81 ± 0.02 mg GAE g-1 DW). 

Figures 4.6 and 4.7 show the relative increase in conjugated dienes (CD) and trienes (CT) 

contents of sunflower oil under accelerated storage as function of storage time. The 

assessment of CD and CT is a good parameter for the measurement of oxidative deterioration 

of oils, hence indicates the effectiveness of antioxidants in oils (Shahidi and Wanasundara, 

1997). Initially, rate of formation of CD was higher, and went on decreasing with the increase 

in storage time, while the reverse behavior was observed for CT content, i.e., initial rate was 

lower, and went on increasing with the storage time. Formation of high contents of CD may 

be related to the presence of higher contents of polyunsaturated fatty acids (Liu and White, 

1992) in sunflower oil. Conjugated trienes may be produced by dehydration of conjugated 

diene hydroperoxides (Fishwick and Swoboda, 1977). Highest contents were observed for 

control, indicating greater intensity of oxidation, followed by BHA = BHT, SCE, SBP, PPE 

and TBHQ.  
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(c) Storage period at 70 °C ( h) 
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Figure 4.6. Absorptivity at 232 nm of treated sunflower oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation.  

 

The increase in CD and CT contents is proportional to the uptake of oxygen. The greater the 

levels of CD and CT the lower the oxidative stability of the oils will be (Chatha et al., 2006). 

Iqbal and Bhanger (2007) described the antioxidant activity of garlic extracts in sunflower oil, 

assessed under accelerated conditions, using CD and CT as indicators of oxidative 

degradation. Siddiq et al. (2005) also investigated the antioxidant efficacy of methanolic 

extract of Moringa oleifera leave indicating antioxidant potential of stabilization of sunflower 

oil under accelerated aging by measuring of CD and CT contents. 
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(c) Storage period at 70 °C ( h) 
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Figure 4.7. Absorptivity at 270 nm of treated sunflower oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation.  
 

4.6.3 Effect of methanolic extracts on soybean oil oxidation 

 

Figure 4.8 shows the PV developments during the storage of soybean oil at 70 °C for 72 h 

with various concentrations of potato peels, sesame cake, and sugar beet pulp extracts. 

Additional treatments included TBHQ, BHA, and BHT at 200 ppm and a control without 

additives. Highest PV was observed for control followed by sesame cake, BHA, sugar beet 

pulp, BHT, potato peels, and TBHQ at 200 ppm after 72 h of storage. A significant difference 

(P <0.05) in PV was observed between the control and soybean oil containing extracts, BHT, 

BHA, and TBHQ. These results indicated that potato peels, sesame cake, and sugar beet pulp 

extracts inhibited soybean oil oxidation. Further, the antioxidant effect of potato peels extracts 

was better than BHT and BHA; while sugar beet pulp and sesame cake extracts had 

comparable scavenging ability to the synthetic antioxidants BHA, BHT. During incubation, 

TBHQ maintained significantly the lowest PV.  
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(c) Storage period at 70 °C ( h) 
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Figure 4.8. Relative increase in peroxide value (PV) of treated soybean oil samples: (a) with 

potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts under 

accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 

 

The effect of potato peels, sesame cake, and sugar beet pulp extracts on soybean oil oxidation 

(measured by p-anisidine value) is shown in Figure 4.9 In control sample formation of 

carbonyls was higher than in samples with added extracts (P < 0.05). When compared with 

the control, potato peels, sugar beet pulp, and sesame cake extracts at 200 ppm were found to 

be even more effective in retarding the formation of carbonyl components than BHT and 

BHA, which predicted their high antioxidant potential. However, at all the stages of storage 

period these extracts were less effective than TBHQ. Utilization of p-anisidine measurement 

to assess potential of natural antioxidants in vegetable oils under accelerated storage 

conditions is generally accepted. These findings were supported by previous reports of Ying et 

al. (2010), who reported that in soybean oil rosemary extract high in carnosic acid, could 

significantly (P<0.05) lower the peroxide value and p-anisidine value of oil during storage at 

60°C. The study also indicated a better antioxidant effect for carnosic acid, which separated 

from rosemary dried leaves, than BHT and BHA, but less active than TBHQ. 
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(c) Storage period at 70 °C ( h) 
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Figure 4.9. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake methanolic extracts 

under accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 
 

Absorption at 232 nm and 270 nm, due to the formation of primary and secondary compounds 

of oxidation (Figures 4.10 and 4.11), showed a pattern in good agreement with that of the PV 

and AV.  
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(b) Storage period at 70 °C ( h) 
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Figure 4.10. Absorptivity at 232 nm of treated soybean oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation.  
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CD and CT contents continued to increase with the increase in storage time. Control exhibited 

the highest content of CD followed by BHA, BHT, SCE, SBP, PPE and TBHQ. On the other 

hand, CT levels followed the pattern control > BHA > BHT = SBP > SCE > PPE > TBHQ, 

respectively. CD and CT of all stabilized samples are quite lower than control; thus indicating 

that the extracts under investigation had good antioxidant activity. Similar results were found 

by Iqbal et al. (2008), who reported that control exhibited the highest content of CD and CT 

followed by BHT, and pomegranate peel extract.  
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Figure 4.11. Absorptivity at 270 nm of treated soybean oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake methanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation. 
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4.6.4 Effect of ethanolic extracts on sunflower oil oxidation 

Oxidation degree on sunflower oil samples was determined by measuring PV in the absence 

and presence of antioxidants at 70 °C for 72 h. The influence of antioxidants on PV of potato 

peels, sugar beet pulp, and sesame cake ethanolic extracts during storage is shown in Figure 

4.12.  In general, peroxide value of all sunflower oil samples increased significantly (p < 0.05) 

with increasing storage time. Initially on 0 h, all samples including control indicated similar 

peroxide value. On 4 and 8 hours of storage, all the antioxidant fortified samples differed 

significantly (p < 0.05) in their peroxide formation levels except potato peels, sugar beet pulp, 

and sesame cake extracts at 5 and 10 ppm. But from 24 h onwards, all the treatments had 

significantly (p < 0.05) lower peroxide value compared with the control. Ability of 

antioxidants in preventing peroxide formation in samples decreased in the order of TBHQ> 

PPE > BHT > BHA = SBP > SCE throughout the storage period. TBHQ showed highest 

ability in preventing peroxide formation because TBHQ is a strong synthetic antioxidant. 

BHA and BHT although used frequently in food industry, are not strong antioxidants like 

TBHQ. Besides, TBHQ is stable at high temperature and less volatile than BHA and BHT 

(Allen, 1983). Almeida-Doria and Regitano-Darce (2000) observed that natural extracts from 

rosemary and oregano were as effective as BHA and BHT in controlling oxidation of oil but 

less effective than TBHQ.  
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(b) Storage period at 70 °C ( h) 
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Figure 4.12. Relative increase in peroxide value (PV) of treated sunflower oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 

accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 
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Regarding the inhibitory effect of natural antioxidants in peroxide formation, sesame cake 

extracts showed poor performance than other antioxidants. This is in accordance with our 

previous finding that sesame cake extract has lower antioxidant activity in all three assays 

used. 

p-Anisidine value (AV) plays an important role in the oxidation process of edible oil and 

edible fats. Calculating AV is one of the oldest methods for evaluating secondary lipid 

oxidation. It is based on the reactiveness of the aldehyde carbonyl bond on the p-anisidine 

amine group, leading to the formation of a Schiff base that absorbs at 350 nm (Ying et al., 

2010): 

 

R=CH=O + H2N— —OMe  R—CH=N—  —OMe (Schiff base) + H2O          

 

Figure 4.13 depicts the p-ansidine values for sunflower oil samples stabilized with PPE, SBP, 

SCE extracts, TBHQ, BHT, BHA, and control. We can see AV increased significantly 

throughout the storage time, which increased in acceleration after 32 h. The p-anisidine value 

of control reached a maximum of 14.22 ± 0.14 from an initial value of 0.98 ± 0.13 after 72 h 

of storage. The difference in antioxidant activity may be accounted for on the basis of 

chemical structures. The stability of phenoxy radicals reduces the rate of propagation and 

further reactions and thus increases the oxidative stability of lipids (Ying et al., 2010).  
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(b) Storage period at 70 °C ( h) 
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Figure 4.13. Relative increase in p-anisidine value (AV) of treated sunflower oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 

accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 

 



Results and Discussions 
 

The results demonstrated that potato peels extract had higher antioxidant activity than BHA 

and BHT but lower than TBHQ. In addition, in most cases, the synthetic antioxidant TBHQ 

which has two para-hydroxyl groups can make the phenols more easily donate hydrogen 

atoms to active free radicals to interrupt the chain reaction of oxidation (Jiang and Wang, 

2006) and this is responsible for superior antioxidant activity in various edible oils (Ying et 

al., 2010). In this study, in comparison with synthetic antioxidants, effects of potato peels, 

sugar beet pulp, and sesame cake extracts may also play an important role in the observed 

trends. 

Conjugated dienes (CD) and trienes (CT) contents of sunflower oil samples stabilized with 

natural extracts, BHT, BHA, TBHQ, and control are shown in Figures 4.14 and 4.15. The CD 

and CT contents increased parallely to increase of storage time with greater rate for control. 

The oil samples stabilized with PPE, SBP, and SCE extracts showed lower levels of CD and 

CT compared to control, indicating antioxidant potential of the potato peels, sugar beet pulp, 

and sesame cake extracted components. The results of the CD and CT in present study 

revealed the antioxidant activity of extracts applied at 200 ppm as strong as that of BHA and 

BHT but weaker than that of TBHQ at their legal amounts.   
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Figure 4.14. Absorptivity at 232 nm of treated sunflower oil samples: (a) with potato peels, 

(b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation.  
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Measurement of CD and CT is a good parameter for the determination of oxidative stability of 

the oils. Lipids containing methylene-intrupted dienes or polyenes show a shift in their double 

bond position during oxidation. The resulting conjugated dienes exhibit intense absorption at 

232 nm; similarly conjugated trienes absorb at 270 nm. 
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Figure 4.15. Absorptivity at 270 nm of treated sunflower oil samples: (a) with potato peels, 

(b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error 

bars show the variations of three determinations in terms of standard deviation.  

 

4.6.5 Effect of ethanolic extracts on soybean oil oxidation 

 

The effect of natural and synthetic antioxidants on peroxide value of potato peels, sugar beet 

pulp, and sesame cake ethanolic extracts over 72 h of storage in oven is shown in Figure 4.16 

Results showed that peroxide value increased linearly with storage time and increased in 

acceleration after 24 h. PV was in the range 11.44-17.60 meq kg-1 for stabilized samples up to 

72 h, while maximum value of PV for control sample was 26.80 meq kg-1. At all stages, 

highest PV was observed for control sample followed by SCE, SBP, BHA, BHT, PPE, and 

TBHQ, respectively. A significant difference (p < 0.05) in PV was observed between the 

control and soybean oil samples. These results indicated that potato peels, sugar beet pulp, 

and sesame cake extracts, at all the concentrations, controlled peroxide value appreciably; 

revealing good antioxidant efficacy in stabilization of soybean oil.  
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(c) Storage period at 70 °C ( h) 
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Figure 4.16. Relative increase in peroxide value (PV) of treated soybean oil samples: (a) with 

potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 

accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 

 

 

The effect of potato peels, sugar beet pulp, and sesame cake extracts on soybean oil oxidation 

(measured by p-anisidine value) is shown in Figure 4.17 We can see p-anisidine value 

increased significantly throughout the storage time, which increased in acceleration after 24 h. 

Addition of PPE, SBP, and SCE extracts caused significant reduction in AV of soybean oil 

during 72 h at 70 °C. It is evident from these results that, the same order of natural extracts 

efficiency was observed as the content of polyphenol increased, inhibitory effects on AV also 

increased considerably, better than BHA and BHT but lower than TBHQ.  
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(c) Storage period at 70 °C ( h) 
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Figure 4.17. Relative increase in p-anisidine value (AV) of treated soybean oil samples: (a) 

with potato peels, (b) with sugar beet pulp, and (c) with sesame cake ethanolic extracts under 

accelerated storage. Error bars show the variations of three determinations in terms of 

standard deviation. 

 

 

Absorption at 232 nm and 270 nm, due to the formation of primary and secondary compounds 

of oxidation (Figures 4.18 and 4.19), showed a pattern in good agreement with that of the PV 

and AV. On the 0 h, although the control did not differ significantly from the treatments but it 

showed significantly (P < 0.05) higher absorptivity value at 232 and 270 nm than the 

treatments with increasing storage period. Exception is seen in sugar beet pulp and sesame 

cake extracts at 5 ppm which are very close to the values obtained for the control. According 

to the ability of antioxidants in reducing absorptivity level at 232 and 270 nm, the antioxidants 

can be arranged in the following decreasing order TBHQ> PPE > BHT > BHA > SBP > SCE. 

TBHQ has shown the best ability in reducing the absorptivity. Differences in absorptivity 

between the natural antioxidant samples were not of large magnitude. However, among them, 

potato peels showed the best result.  
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Figure 4.18. Absorptivity at 232 nm of treated soybean oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error bars 

show the variations of three determinations in terms of standard deviation.  

 

Peroxide value (PV), p-anisidine value (AV), and UV absorptivity analyses showed that 

sunflower oil have significantly better oxidative stabilities than soybean oils. This is because 

sunflower oil (SFO) includes high level of linoleic acid (18:2n - 6) content but soybean oil 

(SBO) is rich in -linolenic acid (18:3n -3) in addition to linoleic acid. . These results indicate 

that oils with high linolenic contents have low oxidative stabilities. 

Soybean oil is relatively unstable to oxidation than sunflower oil. The off-flavore that develop 

are caused by volatile compounds released during the breakdown of hydroperoxides, which 

are flavourless but unstable compounds formed during the oxidation of unsaturated fats The 

hydroperoxides are transformed to secondary products such as aldehydes, alcohols, ketones, 

acids, hydrocarbons, esters and lactones. The degree of unsaturation of a fatty acid has a 

significant effect on the oxidation rate. The relative reaction rate with oxygen and the 

hydroperoxide decomposition rate of linolenate (18:3) are much faster than those of linoleate 

(18:2) and oleate (18:1). Because 18:3 oxidizes much easier than the other fatty acids, it has 

been considered an important cause of off-flavor development in soybean oil, although it 

accounts for only 8 % to 10 % of the total fatty acids in soybean oil (Stephanie et al., 2007). 
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Figure 4.19. Absorptivity at 270 nm of treated soybean oil samples: (a) with potato peels, (b) 

with sugar beet pulp, and (c) with sesame cake ethanolic extracts during oven test. Error bars 

show the variations of three determinations in terms of standard deviation.  

 

4.7 Identification of phenolic compounds using TLC and UV spectra 
 

To know what is/are the responsible active ingredient(s) in potato peels, sugar beet pulp, and 

sesame cake, TLC and absorptivity spectra between 200 and 400 nm were screened. Phenolic 

compounds exhibit two major absorption bands in the ultraviolet/visible region: a first band in 

the range between 320 and 380 nm and a second band in the 250 to 285 nm range (Matthäus, 

2002). As can be seen from Figures 4.20 and 4.21, methanolic and ethanolic extracts of potato 

peels, sugar beet pulp, and sesame cake showed maximum absorption in the range between 

220 and 380 nm. This absorbance was more accentuated for potato peels extract than sugar 

beet pulp and sesame cake. These results are in agreement with the peroxide and p-anisidine 

values, which showed that potato peels extract had the highest antioxidant activity followed 

by sugar beet pulp and sesame cake. Absorption maxima of extracts at 220 nm may be due to 

the presence of flavone/flavonol derivatives (Chang et al., 2002). 
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In the past decades, extensive analytical methods have been developed to separate and 

determine phenolic compounds in various plant samples. The techniques include thin-layer 

chromatography (Kader et al., 1996), gas chromatography (GC) (Fiamegos et al., 2004), high-

performance liquid chromatography (HPLC) (Seeram et al., 2005; Soong and Barlow, 2005), 

and capillary electrophoresis (Kronholma et al., 2004). Thin layer chromatography (TLC) has 

its own advantages (e.g., rapidity and inexpensiveness) (Kader et al., 1996).  

Some authors have reported that the total phenolic content did not correspond well with the 

antioxidant activity of the extracts. Thus, individual phenolic compounds may provide a better 

indication of the antioxidant activity of the extracts in vegetable oils (Bin and Clifford, 2008). 

Figure 4.22 shows a representative TLC profile of the samples and standard. It shows that the 

methanolic extract of potato peels contains chlorogenic, gallic, p-coumaric, and caffeic acids, 

while in sesame cake extract p-coumaric was identified. Chlorogenic, p-coumaric, sinabic and 

gallic acids were detected in sugar beet pulp.  

 

1 2 3 4 5 6 7 8 10 119
 

 
Figure 4.22. Thin layer chromatography profile of the samples and standard. Lanes: 1, sugar 

beet pulp extract; 2, potato peels extract; 3, ferulic acid; 4, p- coumaric acid; 5, -cumaric 

acid; 6, caffeic acid; 7, qurecetin; 8, gallic acid; 9, sesame cake extract; 10, chlorogenic acid; 

and 11, sinabic acid. 
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The results confirmed our pervious experiments, wherein methanolic extract of potato peels 

showed the highest total phenols followed by sugar beet pulp and sesame cake. Chlorogenic, 

and caffeic acids may play an important role in the antioxidant activity of potato peels extract. 

In the present research, phenolic acids are proven, using TLC analysis, to be present in potato 

peels, sugar beet pulp, and sesame cake and the antioxidant activity of these compounds is 

mainly due to their redox properties, which can play an important role in adsorbing and 

neutralizing free radicals, quenching singlet and triplet oxygen, or decomposing peroxides 

(Osawa, 1994). This finding may indicate that these compounds contribute to the antioxidant 

activity of potato peels, sugar beet pulp, and sesame cake extracts. 

 
4.8 Identification of phenolic compounds using HPLC analysis. 
 

The analysis of phenolic compounds is very challenging due to the great variety and reactivity 

of these compounds. On the other hand, polyphenolics are suitable compounds for analysis 

using modern separation and detection methods, such as hyphenated techniques of high 

performance liquid chromatography (HPLC) with mass spectrometry (MS), ultraviolet-visible 

light (UV/Vis), or nuclear magnetic resonance (NMR) spectroscopy (Bronze and Boas, 1998). 

For the purpose of separation and quantification of individual phenolic compounds, HPLC is 

most frequently used because of its high-separation capacity and relative simplicity. It does 

not require sample derivatization prior to analysis (Huang et al., 2007).  

Of the six solvent extracts, methanolic and ethanolic extracts exhibited high yield, and 

antioxidant activity (high in TPC and better AOA). Therefore, methanolic and ethanolic 

extracts were used for further investigations towards identification by HPLC. The HPLC 

analysis of potato peels, sugar beet pulp, and sesame cake extracts revealed the presence of 

phenolic compounds. By this means, the crude methanolic and ethanolic extracts in the three 

samples were analysed. 

Chlorogenic, caffeic, 4-hydroxybenzoic, p-coumaric, vanillic, trans-o-hydroxycinnamic, 

cinnamic, and sinapic acids were detected in both extracts (methanolic and ethanolic), but 

slightly higher in methanolic extracts (Figure 4.23A, B, and C) than in ethanolic extracts 

(Figure 4.24A, B, and C). These compounds have been identified according to their retention 

time and the spectral characteristics of their peaks compared to those of standards, as well as 

by spiking the sample with standards. Tentative identification of peaks for which standard 

compounds were not available was obtained by comparing their retention time with the data 

from the pervious literatures.  
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Figure 4.23A, B, and C shows a representative chromatogram of the crude methanolic extracts 

of potato peels, sugar beet pulp, and sesame cake, respectively.  

 

(a) 

m
A

U

Retention time (min)

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 39,0

0

500

1.000

1.500

2.500

2.000

3

5

7

9
62

 

(b)

m
AU

Retention time (min)

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 39,0

0

100

200

300

500

400

8

7

643

1

2

 

 

(c)

m
AU

Retention time (min)

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0 22,0 24,0 26,0 28,0 30,0 32,0 34,0 36,0 39,0

0

400

800

1.200

2.000

1.600

3
11

7

4
1

2

10

 
 
Figure 4.23. HPLC chromatograms of methanolic extract from (a) potato peels (b) sugar beet 

pulp and (c) sesame cake. Identification: peak 1, unknown; peak 2, unknown; peak 3, 

hydroxybenzoic acid; peak 4, vanillic acid; peak 5, chlorogenic acid; peak 6, caffeic acid; 

peak 7, p-coumaric acid; peak 8, sinapic acid; peak 9, trans-o-hydroxycinnamic acid; peak 10, 

unknown, and peak 11, cinnamic acid.  
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Chlorogenic acid was detected to be the major phenolic component in methanolic and 

ethanolic extracts of potato peels, contributing about 48.65% and 48.34% to the total amount, 

respectively. Caffeic, 4-hydroxybenzoic, p-coumaric, and trans-o-hydroxycinnamic acids 

were also predominant in both methanolic and ethanolic extracts of potato peels. While in 

methanolic and ethanolic extracts of sugar beet pulp p-coumaric acid was detected to be the 

major phenolic component, contributing about 48.43% and 45.41% to the total amount, 

respectively. Caffeic, 4-hydroxybenzoic, sinapic, and vanillic acids were also predominant in 

both methanolic and ethanolic extracts of sugar beet pulp. 

Figure 4.23C shows that the crude methanolic extract of sesame cake contains cinnamic, 4-

hydroxybenzoic, p-coumaric, and vanillic acids with high area in cinnamic acid. Based on 

their retention time, some peaks were tentatively identified. Three significant peaks (peak 1, 2, 

and 10) in Figure 4.23, which were tentatively identified as protocatechuic acid, gallic acid, 

and sesamin respectively (Onyeneho and Hettiarachchy, 1993; Rangkadilok et al., 2010). 

Results demonstrated that differences in methanolic extracts of potato peels, sugar beet pulp, 

and sesame cake phenolic composition were significantly quantitative and qualitative, where 

potato peels showed higher amounts in 4-hydroxybenzoic than sugar beet pulp and sesame 

cake. While, sugar beet pulp and sesame cake contain sinapic and cinnamic acids, 

respectively, which were not found in potato peels. Potato peels contains chlorogenic, trans-o-

hydroxycinnamic acids which were not found in sugar beet pulp and sesame cake.   

Methanolic and ethanolic extracts of potato peels, sugar beet pulp, and sesame cake possess 

similar composition. Therefore, the differences in both extracts in phenolic composition were 

significantly more quantitative than qualitative, where methanolic extract showed higher 

amount than ethanol crude extract. 
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Figure 4.24. HPLC chromatograms of ethanolic extract from (a) potato peels (b) sugar beet 

pulp and (c) sesame cake. Identification: peak 1, unknown; peak 2, unknown; peak 3, 

hydroxybenzoic acid; peak 4, vanillic acid; peak 5, chlorogenic acid; peak 6, caffeic acid; 

peak 7, p-coumaric acid; peak 8, sinapic acid; peak 9, trans-o-hydroxycinnamic acid; peak 10, 

unknown, and peak 11, cinnamic acid.  
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The antioxidant activity of phenolic compounds is affected by their chemical structure. 

Structure-activity relationships have been used as a theoretical method for predicting 

antioxidant activity and are studied by Hudson and Lewis (1983), Ogata et al. (1997), and 

Saint-Cricq de Gaulejac et al. (1999). Polymeric polyphenols are more potent antioxidants 

than simple monomeric phenolics. Also the antioxidant effect depends on the number and 

position of hydroxyl and methoxyl groups in the benzene ring and on the possibility of 

electron delocalization in the double bonds (Xiang and Ning, 2008). Vanillic acid, which was 

not found in potato peels, is hindered phenols, since the -OCH3 group ortho or meta to the 

hydroxyl group suppresses antioxidant activity. This steric hindrance is likely responsible for 

the relative ineffectiveness of vanillic. In addition, the caffeic acid, which was found in potato 

peels and sugar beet pulp but not in sesame cake, having two -OH groups at adjacent 

positions, acts as a chelator for most of the metal ions that act as pro-oxidants and that may 

catalyze the reaction even if present in trace amounts. For those reasons, all experiments 

demonstrated that the extracts prepared from potato peels had the highest antioxidant activity, 

followed by those prepared from sugar beet pulp, while sesame cake extracts were less 

effective 

Previous studies reported that phenolic compounds such as hydroxybenzoic, chlorogenic, 

sinapic and p-coumaric acids containing significant antioxidant activities (Zhang et al., 2009). 

The above mentioned HPLC results indicate that such phenolic rich extracts from potato 

peels, sugar beet pulp, and sesame cake may inhibit the oxidation of vegetable oils. Isolation 

and characterisation of such extracts may be useful in developing natural antioxidants. 
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5 CONCLUSIONS 
 
As a continuation of our study on potato peels, sugar beet pulp, and sesame cake, extracts of 

these by-products were prepared using different organic solvents, and in vitro antioxidant 

activity of each extract was investigated. The various extracts showed varying degrees of 

antioxidant activity in different test systems in a dose-dependent manner. Furthermore, the 

pattern of activity of the extracts within the assays also differed. As observed, extracts with 

higher antioxidant capacity also had higher polyphenol content. It can be concluded that the 

extracts obtained using higher-polarity solvents were more effective radical-scavengers than 

those obtained using lower-polarity solvents. Methanol showed slightly better characteristics 

than ethanol as a solvent for phenolic compounds, flavonoids, flavonols, and antioxidant activity 

but the differences were not large, so, for use in the food industry, ethanol would be a more 

appropriate solvent. Furthermore, it is notable that potato peels extracts exhibited the strongest 

antioxidant capacity in all assays used, followed by sugar beet pulp and sesame cake extracts.  

From the present study, it can be concluded that potato peels, sugar beet pulp, and sesame cake 

can stabilize both sunflower and soybean oils very effectively at all concentrations. They inhibit 

thermal deterioration of oil by improving its hydrolytic stability, inhibiting double bond 

conjugation and reducing the losses of polyunsaturated fatty acids. Potato peels extract at 

concentration of 100 and 200 ppm and sugar beet pulp and sesame cake extracts at 200 ppm have 

stabilization efficiency comparable to commonly-employed synthetic antioxidants BHT and 

BHA at their legal limit, but less effective than the synthetic antioxidant TBHQ. Potato peels 

extract has a strong antioxidative effect during initial and final steps of oxidation in the dark in 

an oven at 70 °C for 72 h followed by sugar beet pulp and sesame cake extracts. Therefore, 

potato peels, sugar beet pulp and sesame cake could be recommended as potent sources of 

antioxidants for the stabilization of food systems, especially unsaturated vegetable oils and they 

could be used as preservative ingredients in the food and/or pharmaceutical industries provided 

that any resulting organoleptic effects were acceptable. However, further research is required 

before such use can be proposed with confidence. Eight different individual phenolic compounds 

were identified in the studied samples by HPLC. The phenolic compounds appear to be 

responsible for the antioxidant activity of potato peels, sugar beet pulp, and sesame cake, 

although further studies are required to reveal whether they contain other antioxidative 
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constituents. In addition, in vivo evidence and isolation of antioxidant components in potato 

peels, sugar beet pulp, and sesame cake merit further investigation to evaluate their potential 

benefits. 
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