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Abstract

The development of wind turbines relies on solid numerical models. From the tips of the
blades through to the design of wind parks, numerical models are crucial. Engineering models
have been the solid back bone of wind turbine engineering. However, useful as these models
are, they do face limitations. This study explored how a combination of engineering models
and more recent data science/machine-learning-type models could help solve the increasingly
complex problems associated with wind energy. This dissertation relies on three papers as
examples of these concepts. The first paper shows how an engineering model (blade element
momentum method) can be replaced with a free vortex lifting line theory method for floating
platform simulations. Furthermore, the instantaneous aerodynamic damping of a rotor in fore-aft
motion was derived. The second paper explores, through experimental work, the highly complex
aerodynamics of wind turbines in standstill conditions. To address these complex aerodynamics,
the third paper engages machine learning methods to highlight the cycle-to-cycle differences
in dynamic stall. These three papers demonstrate where engineering models, medium-fidelity
simulations and machine learning can be useful. This work makes recommendations for seven
strategies to integrate the newest family of models - the machine learning models - into the wind
energy system.





Zusammenfassung

Die Entwicklung von Windkraftanlagen basiert auf zuverlässigen numerischen Modellen. Von
der Spitze der Blätter bis zur Gestaltung von Windparks ist die Verwendung von numerische
Modelle unersetzlich. So nützlich diese Modelle auch sind, sie haben ihre Grenzen. Die
vorliegende Arbeit untersucht, wie eine Kombination aus vereinfachtenModellen undmoderneren
Modellen der Datenwissenschaft sowie des maschinellen Lernens dazu beitragen kann, die immer
komplexeren Probleme der Windenergie zu lösen. Diese Arbeit basiert auf drei Papieren als
Beispiele für dieses Konzept. Das erste Papier zeigt, wie die Blade Element MomentumMethode
durch eine Free Vortex Lifting Line Theory Methode für schwimmende Plattformsimulationen
ersetzt werden kann. Daraus wird die momentane aerodynamische Dämpfung eines Rotors in
der Längsbewegung abgeleitet. Das zweite Papier untersucht, durch experimentelle Arbeiten,
die hochkomplexe Aerodynamik von Windkraftanlagen im Stillstand. Um diese komplexe
Aerodynamik zu verstehen, beschäftigt sich das dritte Papier mit maschinellen Lernmethoden
um die Unterschiede zwischen den Zyklen im dynamischen Strömungsabriss aufzuzeigen. Alle
drei Papiere zeigen, wo Ingenieurmodelle, Simulationen mittlerer Genauigkeit und maschinelles
Lernen nützlich sein können. Abschließend gibt diese Arbeit Empfehlungen für sieben Strategien
zur Integration der neuesten Modellfamilie - den Modellen des maschinellen Lernens - in die
Windenergie.
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Chapter 1 Wind Energy

1.1 Climate change in four pictures

The climate is changing [138]. The industrial age has brought wonders - running water, high
quality housing, electricity, modern medicine, the Internet, and a great leap forward in the
general well-being of humanity. However, these developments have come at a cost, and the
planet has been extending its line of credit. As fossil fuels burn, the emissions blanket our planet
thus trapping more heat [138]. Greenhouse gases, such as carbon dioxide, have always existed in
the atmosphere for hundreds of millions of years, and their concentrations have varied. In more
recent times, carbon dioxide concentrations have dramatically increased measurements since the
industrial revolution [146].

Figure 1.1: Carbon dioxide measurements from ice core samples (After NASA [146])

By trapping heat in the atmosphere, greenhouse gases cause the temperature of the planet to
rise [146].
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Chapter 1. Wind Energy

(a) 1884

(b) 2018

Figure 1.2: Global temperature change (After NASA [146])

This represents the largest-scale experiment ever run by humanity [120]. As the temperature
of the planet rises, we can expect to see changes in global rainfall patterns, with some previously
fertile regions experiencing droughts [146]. Hurricanes are expected to grow larger and more
intense [146]. We can already see the effects of global climate change on the extent of Artic
sea-ice levels [146].
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Chapter 1. Wind Energy

(a) 1979

(b) 2018

Figure 1.3: Minimum seasonal Arctic sea ice (After NASA [146])

Electricity generation is one of the largest sources of carbon emissions, but has enormous
potential for improvement [7]. It is difficult, on a global scale, to expect people to use less
electricity, especially in developing countries that are making the slow climb into affluence.
Increasing the price of electricity to cover the costs of renewable energy is politically unpalatable
in many countries, including those that can well afford it [37]. It seems that given the current
political climate, the only option is to make renewables so cheap that financial investors abandon
all fossil-fuel electricity production. If we look at the current growth in renewable electricity
generation, we may be encouraged, but we must bear in mind that fossil fuel generation is also
on the increase.
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Chapter 1. Wind Energy

Figure 1.4: Electricity generation by fuel source [86]

1.2 Wind energy in three pictures

Although it only presents a small sliver of the total energy mix, wind energy production is rapidly
increasing.

Figure 1.5: Electricity generation by wind [86]
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Chapter 1. Wind Energy

If we look at the economic figures, we can understand the rapid uptake of wind energy. If we
simplify our view down to the levelized cost of energy (LCOE), we can see that onshore wind is
already particularly competitive, with offshore being slightly more expensive [96]. However,
we must additionally account for deployability; an area in which gas or coal plants excel. In
order for wind to be part of the renewable energy transformation, further cost reductions will
be necessary. It seems that politicians share the view that wind energy needs to become more
competitive, as they have begun to withdraw fossil fuel subsidies [169].

Figure 1.6: LCOE for electricity in Germany (after [96], reproduced with permission)

Recently, the charge for increasing rotor sizes (Figure 1.7) has come from the offshore sector.
Unlike land based transport, transportation of the components by sea allows for larger rotor sizes.
Offshore wind energy is more expensive and more complicated to operate. However, offshore
wind is usually stronger and has lower levels of turbulence [6]. Larger rotors have better capacity
factors and can amortise fixed project costs out across larger wind farm capacities for a given
area [6].
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Chapter 1. Wind Energy

Figure 1.7: The dramatic growth of wind turbine rotors through time (rotor lengths after [6])

1.3 The current challenges of wind energy

As market pressure applies and the sizes of wind turbines grow, the challenges of wind energy
shift. In 2016, the European Academy ofWind Energy (EAWE) compiled a document "Long-term
research challenges in wind energy" [203]. The document provided a good overview of the kinds
of problems that are relevant to wind energy. In the following section, I extract several examples
from this document to point out another underlying pattern; namely that many of the challenges
fit into one of three categories:

1. The assumptions baked into the current engineering models are too restrictive;

2. The higher physics model is too computationally expensive; and

3. Current data availability and data analysis is insufficient.

We can see that these three limitations pervade each of the technical areas shown in Figure 1.8.

8



Chapter 1. Wind Energy

Figure 1.8: The different technical areas of wind energy

The following section briefly highlights some of the limitations faced in each of these areas.
As aerodynamics was the most relevant focus of this study, it is featured more heavily.

1.3.1 Aerodynamics

Engineering models

The most obvious and powerful model used in wind energy aerodynamics is the blade element
momentummethod (BEM). In this method, a rotor blade is cut into span-wise sections and treated
as two-dimensional [77]. Furthermore, the wake is treated as a simple momentum balance across
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Chapter 1. Wind Energy

the rotor plane which gives an angle of attack at each span-wise section [77]. The coefficients of
lift, drag and moment are read from a table (aka polar diagrams) that derives from simulations or
measurements [77]. This algorithm is implemented as an iterative solution bouncing between
the wake and airfoil. It is a fast and robust algorithm and has been the workhorse simulation tool
for wind turbine aeroelastic simulations.
BEM has some strong assumptions baked into its formulation. The input polar diagrams

strongly influence the quality of the simulation [108]1. The treatment of the sections as two-
dimensional does not hold up to reality in areas such as the hub and tip [134]2. Rotational flows
change the stall behavior of airfoils, creating stall delay effects [55]. Wind turbines will often
operate under yawed conditions [97, 89, 57, 210]. Furthermore, dynamic inflow and unsteady
aerodynamics are also neglected by the model. All of these problems are treated as secondary
corrections on top of the base model.

What happens when we strip away some of these assumptions? Free vortex lifting line theory
(FVLLT) simulation approaches treat the wake explicitly using a Lagrangian wake formulation
[134]. This means that markers that represent circulation are shed from the blade into the flow at
each time step. Through the Biot-Savart equation, this vorticity translates into induced velocity,
meaning that it is possible to cheaply simulate the wake of the wind turbine. This simulation
approach explicitly treats tip effects (at the wake level), unsteady inflows, apparent angle of
attack delay and yawed inflows. A recent work by Perez-becker et al. [159] highlighted that the
BEM method has over predicted loads in quite a number of load cases. Leroy et al. [118] also
showed that the vortex methods and BEM with corrections differ for floating platform cases.
The FVLLT approach still has its limitations. Although the wake elements can represent the

attached flow delay effects, as you would find in Theordorsen [195] or Wagner functions [207],
there is no treatment for the time delay effects of stall. This means that there is still a need for a
stall model [209]. Furthermore, it is still necessary to account for the stall delay effects of the
rotational flows [55].
Vorticity as a mathematical concept, has shortcomings, as vortex cores become badly

conditioned at Radius = 0. In potential flows, the inner radius is treated with an approximation
that does not diverge [134]. Furthermore, the FVLLT methods rely on relatively unsophisticated
models for the viscous dissipation of the vorticity [134]. The wakes of FVLLT simulations
diverge after some rotor diameters due to the Lagrangian formulation’s poor ability to mimic the
stretching of vortex filaments [134]. Even with the drastic improvements that of vortex methods
bring to simulations compared to BEM, we are quite dependent on numerical short cuts.

BEM and the vortex models both rely on stall models to simulate the behaviours not captured
by steady polars. The stall models come in a variety of styles; we will talk here about the

1 Associated publication
2 Associated publication
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Beddoes-Leishmann type models [105, 106, 158, 78, 82, 209]. The Beddoes-Leishmann model
is built in three parts - attached flow, light stall and dynamic stall. The model faces its first
limitation here, as deep stall with periodic-type shedding is not included in the model - a problem
that is discussed in much greater depth below. When applied to a FVLLT simulation, the attached
flow part of the model is unnecessary [209]. The light stall appears in the form of a simple
blending function between the attached and separated states [209]:

Cst
L = f Catt

L + (1 − f )Csep
L (1.1)

The blending parameter, f , is then determined using a simple differential equation:

Tf
Ûf dyn + f dyn = f (1.2)

The point at hand here is not so much the context of the derivation, but to see examples of the
shortcuts used. While in some interpretations the blending parameter, f , may be described as the
development of trailing edge separation, it is a pragmatic numerical trick; a convenient equation
that seems to work.

Other numerical tricks appear in the aerodynamic models. There are two general extensions to
Theodorsen’s unsteady lift response functions for unsteady inflow [195] the Greenberg [88] and
Isaacs [87] 3 formulations. The Greenberg derivation assumes that the unsteady component of
the inflow would be small compared to the mean inflow [190]. Isaacs and Van Der Wall avoided
this shortcut [190]. When tested against wind-tunnel data, it can be seen that the shortcut did
eventually limit the predictive performance of the Greenberg approach [190]. In this case, a
numerical short cut resulted in a lack of flexibility in properly representing the physics.

All the methods outlined above make a very similar assumption, in that we can treat the wing
as a collection of two-dimensional airfoil sections. In a rotating system, with a non-infinite
aspect ratio, and twisted, tapered and swept blades, such an assumption is brave. One of the key
issues lies in the lack of availability of a three-dimensional integral boundary layer model in the
same way as Drela’s XFOIL [203].

We have seen that the engineering models can face a number of problems:

1. A mathematical simplification imposes an unrealistic boundary condition (i.e. Greenberg’s
assumption of low inflow variance);

2. The underlying model does not include certain physical effects or regimes (i.e. Beddoes-
Leishmann’s model does not account for periodic shedding);

3. The choice of formulation can be unstable (i.e. vortex core or vortex stretching); and

3 Generalised by Van Der Wall [202]
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Chapter 1. Wind Energy

4. There has been an over simplification of the problem, (i.e. two-dimensional airfoil
sections).

These models remain very useful in spite of these shortcomings, but, in a lot of cases, the manual
design of the equations has placed limitations on the predictive performance.

High fidelity models

Wind turbine aerodynamics simulations have a fundamental problem. The scales involved are
massively different [188]. Let us consider a computational fluid dynamics simulation (CFD)
that has no shortcuts - an absurd proposition, but a useful thought experiment. We would start by
having a simulation of Earth’s entire atmosphere. At one scale below this, we would have the
terrain effects of mountain ranges and cities. One scale further down, and we would consider
smaller scales of terrain effects, such as houses and forests. At this scale, we have to consider the
effect of the wind turbine’s wake on itself, and its effect on other wind turbines throughout the
wind park. One scale further down, and we can consider the local blade inflow angles. Finally, at
the smallest scale, we would consider the development of the boundary layer in millimetres. Such
an approach is not possible, so at some stage during our simulations, we need to set boundary
conditions to make the simulations feasible.
To investigate the effects of wind turbines on each other, it is necessary to model each wind

turbine as an actuator disk [201, 63, 20, 8, 188] or actuator line [184, 214, 154, 90, 178]. An
actuator disk is an idealised version of a rotor that has an infinite number of blades which induces
a wake into the flow in a CFD simulation. It assumes that the forces spread evenly across the
disk [185]. An actuator line model resolves the flow field using CFD but uses tabulated data to
resolve the influence of the blade on the flow field [185].
It would be useful to be able to resolve the blade, nacelle and tower but this would require

a grid architecture that would allow for movement, not to mention a huge number of cells to
resolve the boundary layer while maintaining sensible limits on cell growth. Unsteady Reynolds
averaged Navier-Stokes (URANS) simulations perform well in situations where the flow is
attached [185]. However, once there is separation, URANS simulations fail to perform well
[185, 173]. Large-Eddy simulations (LES) perform better for both airfoil aerodynamics and
wake dynamics [173, 63]. LES results are generally higher quality but depend on the estimation
of the inflow and the spatial resolution used. The National Renewable Energy Laboratory’s
(NREL, CO, USA) simulator for wind farm applications (SOWFA) model takes two days of
supercomputer time to calculate a 10-minute simulation of two wind turbines, and that is for
a model that simplifies away the blade [8]. LES simulations with the blade resolved are not
currently common, and the examples that do exist usually cut down on computational time by
using a far wake model, and only model a single blade with periodic boundary conditions [84].
Methods that mix fidelity across the scales can be quite a good way of approaching the

12
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wind energy problem. For example, resolving the full geometry of a vortex generator is a
computationally expensive way of creating a simulation. Instead of fully resolving the vortex
generator, the Bender-Anderson-Yagle (BAY) [15] model induces the effect of vortex generators
into the boundary layer as a source term, without the mesh density required to fully resolve the
geometry of the vortex generator [56]. This approach is effective, as along as the model is tuned
correctly [131, 132, 13, 128, 129].

Another approach overcoming the scale problem is to use amixedEuler-Lagrangian formulation
to over come the far wake numerical stability problem of the vortex methods [11]. This model
uses an Eulerian grid to resample the vortex markers in such a way that they remain numerically
stable. Again, such methods rely on some sort of technique to relay the information between
scales, which comes with an accuracy cost.

Within wind turbine aerodynamics, it is very difficult to create a simulation that is all-seeing,
all-knowing at all of the scales we really need. For the foreseeable future, we will be setting
the boundary conditions of these simulations with approximations. The high-fidelity methods
tend to be relatively expensive, and are used more in the validation of lower-order models or in
special cases, rather than as a work-horse tool for load case simulations.

Data

In wind turbine aerodynamics, accurate results are missing. While simulations struggle to set
realistic boundary conditions at all scales, experiments also face significant challenges. The
core of the problem lies in the impossibility of simultaneously performing tests under realistic
boundary conditions while accurately measuring those boundary conditions. [203]

In the laboratory, it is difficult to create realistic levels of turbulence and a Reynold’s number
for airfoil testing. While improvements are being made in this direction, using active-grid
wind tunnels [100], it is still challenging. Furthermore, once in stall, even a two-dimensional
airfoil section has complicated three-dimensional stall patterns across the span [130]. Testing
a three-dimensional blade in a rotating system in a wind tunnel is a step in the right direction,
but the increase in complexity makes basic inflow conditions, or local blade inflow conditions,
difficult to identify [156, 177].
The realistic operating environment of a wind turbine blade is complicated. Leading edge

erosion and fouling are different in each case, and have a strong effect on the boundary layer
[161, 162, 199, 168]. The blades will also have large manufacturing tolerances which can
result in dents that cause small bubbles [199] not normally associated with wind turbine airfoils.
Furthermore, it is hard to measure, to a fine scale, what inflow each section of the blade is
experiencing at each time step. Normally, even instrumented wind turbines have a relatively
sparse array of sensors [121], and commonly we only have measurements that are integral values
such as the rotor power and root bending moments. Such integral values are dangerous error
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metrics, as errors can cancel out. Experimental campaigns, such as the DANAERO Project,
represent a move in the right direction [121], but it is difficult to say that we have a solid ground
truth from which we can design our models.

1.3.2 Aeroelasticity

Engineering models

Aeroelasticity presents an interesting array of engineering models. In static aeroelasticity
problems, we need to incorporate predictions of the aerodynamics and structural stiffness [50].
In dynamic aeroelasticity problems, we need additional inertial terms in order to complete the
collar triangle [50]. In a wind turbine context, then also have to include the effects of a pitch,
torque and yaw controller.
We can test aeroelastic stability in the time domain, but often it is desirable to have a direct

formulation [172]. In a standard derivation of coalescence flutter we would assume:

1. Harmonic motion;

2. A linear lift slope or, in more advanced versions, a principle component analysis reduced
order model [194];

3. Linear structural properties;

4. Attached flow; and

5. A two-dimensional section.

If we extended this out to a wing shape, we would rely on the additional linear superposition of
modes in formulations [50].
In time-marching aeroelastic simulations, we are also forced to make simplifications. It is

standard practice in many codes to sparsify the description of the structural dynamics to the first
two flap-wise modes - first edge-wise and first torsional models [91]. BEM methods are the
most commonly-used representations of the aerodynamics, with extra models to account for the
unsteady aerodynamic effects [76]. It is an issue that the unsteady aerodynamics models vary
significantly, and fail to accurately capture the physics of dynamic stall or periodic shedding;
these affect the aeroelastic stability [9, 81, 112]4. Even the quality of the input polar data would
have a strong effect on our load estimations [111, 2]5.
While these methods have generally performed well, it should be noted that we are relying

on the manual tuning of semi-empirical models. The unsteady aerodynamics models are quite

4 Associated publication
5 Associated publication
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commonly tuned against the NREL dataset measured at Ohio State University [27, 197, 74,
160, 209, 73, 196, 142, 82, 51, 168]6. As airfoils geometries have changed over time, we can
justifiably question whether our models are still correctly tuned. The structure of such models
can also be a design choice; for example, in the Rayleigh-Ritz approach, we have to manually
select the trial functions used to fit the mode shapes [50]. In the end, the choices need to be
justified against data.

High fidelity models

The highest-fidelity approaches available for time marching aeroelastic involve a finite element
representation of the turbine with CFD for the aerodynamics [49, 176]. This is not a trivial task,
though, as the blades are then moving through the domain, either requiring computationally
expensive remeshing or another interpolation scheme [49]. FVLLTwith a finite element structural
model moves in the direction of higher fidelity, while maintaining acceptable computational
costs for engineering design [113, 175, 134, 135]. The downside of these methods is that they
are time marching. This means that, to test that a wind turbine will not flutter, we need to run
relatively exhaustive tests across the operational domain.

Data

Aeroelastic data is difficult to obtain for wind turbines. While some wind tunnel tests do
use aeroelastic similarity laws to scale down wind turbines [21, 32], this is still represents an
incomplete comparison to real machines. In the field, however, it is unlikely that we have a
full enough understanding of the boundary conditions to enable us to make fine adjustments
to the models. This has been a challenge in addressing vortex-induced vibrations [183, 69]
However, some examples of field-testing do exist that have helped in blind-testing aeroelastic
models [29, 12, 162, 121, 122, 119, 16, 74].

1.3.3 Inflow, wakes and turbulence

Engineering models

At its core, turbulence is an abstraction used to understand flow perturbations. If we look at
the Van der Hoven spectrum of wind speeds, we can see that there is a spectral gap between
long-term patterns, such as seasons, synoptic changes and the day/night cycle, and the short-term
fluctuations [19]. In wind energy, we consider everything shorter than the spectral gap as
turbulence [19]. Our description of the turbulence in terms of the zeroth- and second-order
spectral moments, relies on a strict assumption that the unsteady wind component is normally

6 This may change in the future with recent efforts to make data easily accessible [67]
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distributed. Storm conditions, in particular, can be instationary and break these assumptions,
including the assumption that we can split the steady and unsteady components into independent
parts [19]. Furthermore, offshore conditions tend to create abnormal wind shear profiles which
are not described by the typical low-order models, the simplest of which, rely on assumptions of
constant vertical fluctuations of temperature, velocity and shear stress, sufficient time averaging
and a uniform surface roughness [141].
Even under less extreme conditions, we tend to make strong assumptions. The IEC61400

standard calls for load cases, including the Mexican hat gust [123]. This gust arrangement is
considered to be an extreme alignment of various scales of turbulence. Bos [19] makes the
point that, just because an event is rare, it does not necessary follow that it produces the greatest
amount of damage. There are more common events, that tend to cause higher damages even
though the Mexican hat is a severe test case for the controller [19]. With modern rotor sizes, it is
also open to question whether engulfing the entire rotor in a gust is a realistic test case [19].
Unfortunately due to the scale problems, it is not possible to directly imitate turbulence in

wind-turbine design simulations. Instead, we rely on a statistical representation of the flow
perturbations. One strong assumption is that inflow turbulence can be superimposed onto the
mean wind speed. It is unclear whether this assumption holds in cases with complicated terrain
or wake interactions [188]. It is also common practice to use Taylor’s frozen wake hypothesis to
simplify the calculation of turbulent wind fields in wind field simulations [188]. Turbulent wind
fields are often generated using pragmatically designed models [125, 205].

High fidelity models

When we increase the fidelity of the representation of turbulence, we can see that results diverge.
Branlard [24] created a vortex-particle-resolved LES simulation. Strong differences arise in the
wake development, particularly when the wind shear is resolved rather than frozen. Ramos-García
et al. [165] also showed such the same effects for shear, but went further to demonstrate the
dramatic effects of inflow turbulence on wake mixing. To be clear, this method simply allowed
for turbulence to be freely transported through the model rather than be frozen. The inflow
turbulence was still defined by the Mann model [125], although it is also possible to use precursor
simulations to achieve the same result [192]. These models are too computationally intensive to
include in day-to-day wind turbine analysis.

Data

Atmospheric turbulence exerts a strong influence with on wind farms. Measurements show that
different atmospheric stability conditions yield different performance outputs from wind farms
[75]. More stable conditions cause a greater drop in performance due to decreased turbulent
mixing. The most common measurement devices - anemometers - only sample the wind speed
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in exactly the stream-tube where they are located. In reality, gusts do not necessarily engulf the
entire wind turbine, especially given the size of modern rotors. Fortunately, recent developments
in LIDAR [14] technology mean that atmospheric data are becoming a normal part of the wind
energy dataset.

1.3.4 Floating platforms, foundations, waves and offshore

Engineering models

As wind turbines move farther offshore, floating platform wind turbines are transitioning from
being a research topic to commercial reality. The HyWind project from Equinor consists of five
floating platform wind turbines, each with a 6-MW capacity [1]. Further project plans have been
announced for a 200-MW floating platform wind farm in South Korea [62].
The simplest models rely on potential flow assumptions, augmented with drag and damping

coefficients obtained from experiments or high-fidelity simulations [203]. The real difficulty
arises because of the highly non-linear nature of waves. Consider that a model may have to
accomodate; breaking waves, free surface stretching and, interaction with the structure, not to
mention the effects of changing water depths [139]. It is difficult to compress these effects into
a simple numerical formulation. Approaches like the Morison equation [143] discard effects
such as wave diffraction based on Taylor’s long-wavelength approximation [139]. The Morison
[143] equation also assumes that viscous drag dominates, and ignores wave radiation damping
[139], the implication being that the Morison equation assumes that the structure is invisible to
the waves. All of these simplifications are required to reach a workable set of equations.
Even onshore foundations are not straightforward to model. The currently used p-y curves

represent a simple model that relates the deflection of the pylon to a non-linear spring constant
[203]. The problem is that, over time, soil properties change due to cyclic stresses. For both
onshore and offshore the models seem to be over simplified representations of the system.

High fidelity models

For floating platforms, once the Morrison equations are no longer valid because of the structure
being visible to the waves, we need to move to higher-fidelity options. A common approach is to
treat the problem of incoming wave-boundary interactions using panel methods. The cheapest
version of the simulation uses quadrilateral panels, whereas the expensive version uses B-splines
to represent the potential [151, 92, 103]. Another approach is to use particle methods to represent
the waves [102].
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Data

Floating platform validations are difficult to make at the moment due to a shortage of available
data at the appropriate scale [189]. For full-size testing, the only data available is from Equinor
(previously Statoil) [54], this data set is not publicly available but does appear in some academic
papers. In this case, a lack of data will be a barrier to improving the models used in floating
platform research.

1.3.5 Structures

Engineering Models

Fatigue in composite wind turbine blades has always been a challenging topic. In available
guidelines, such as the IEC61400 [123] or the DNV GL [47], the full stochastic loading scenario
compresses down to a single set of damage-equivalent loads. This family of methods is called
fatigue-life models. The biggest limitation is probably the use of Miner’s rule, which sums up
the damage from each cycle [124, 203]. Some test data seem to agree with the Miner’s rule
assumption, but researchers still openly question how well this formula generalises to all types
of composites and loading states [35]. Constant life diagrams also can incorporate very strong
assumptions such as a linear relationship between strain amplitude and strain mean for a given
constant life [171]. Both Miner’s rule and the constant life diagrams are good examples of
engineering type models that do not actually consider the actual physical damage mechanisms
[33, 34]7.

In reality, the geometry and material properties of a wind turbine can vary strongly depending
on the manufacturing process. Sources of variations include cycle curing, bonding defects,
the fibre volume fraction, waviness and voids [36, 171, 31, 147, 148, 150, 149]. Furthermore,
there is evidence to suggest that the order of loading is actually important. Castro-Ardila [36]
attempted to extend the fatigue life models by creating a statistical representation of the constant
life diagram.
Phenomenological fatigue models predict material property degradation based on empirical

relations something in the direction of a data-driven approach [36]. Unfortunately, such models
need test data in order to tune them to each case analysed, making them difficult to generalise
[36]. The topic of model generalisation is discussed in depth in Chapter 2.

High fidelity models

The third composite fatigue category includes damage mechanics models [36]. These models
incorporate the most detailed physics of the damage mechanisms, such as off axis matrix cracks,

7 Associated publication
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delaminations and fibre breakages. Essentially, damage initiation and propagation is physically
modelled, rather than implied. While two-dimensional finite-element methods do provide useful
information, they struggle to analyse certain sections, such as the transition between the circular
root and the airfoil. Furthermore, buckling (which can be brought on by fatigue damage) and
delaminations lie outside the predictive ability of two-dimensional finite-element models [36].
For these reasons, a three-dimensional damage-mechanics based finite-element model would be
necessary to entirely analyze a wind turbine blade in high fidelity.

Data

As of writing, the largest blade in development is 107 m for a 12-MW wind turbine [95]. Fatigue
testing is usually conducted at the eigenfrequency of the lowest blade modes to make the test
energy efficient [153, 104]. As the structures get larger, the eigenfrequencies drop, making each
cycle slow, nonetheless the blades have to undergo enough cycles to represent a 20+ year service
life. This means the tests are becoming very long.

Composite material data is usually collected at three different levels small coupons, subcom-
ponents and full-scale tests [140]. Coupon tests are cheap, and so a large number of tests can
be performed, ensuring statistical convergence. However, a coupon test does not necessarily
represent real test conditions. As we move into subcomponent and full scale testing, the cost
of testing increases dramatically. For full scale tests, usually only one or two blades can be
subjected to a full test. This means that, even at the full scale, where we can test something close
to real conditions, we will still never have enough data to provide statistical significance [140].
There is a significant motivation for assessing wind turbine composites from a statistical

standpoint. As already highlighted, manufacturing problems cause a wide variation in properties.
Defects such as waviness in the matte material will result in drastically reduced strength. Nelson
et al. [148] suggested applying adjustments for such defects, but high degrees of uncertainty
remain, which propagate into all fatigue-life estimates [171, 35]. Research on these problems is
on-going in projects such as "BLATIGUE" at Denmark Technical University [46].

1.3.6 Control system, SCADA, grid

Engineering models

The wind turbine controllers implemented in the industry are based on classical design techniques.
They often use simple PI or PID algorithms coupledwith various filters, such as notch or band-pass
filters. In the wind energy context, the control system can usually be reduced to a set of (almost)
uncoupled, single-input/single-output controllers [28]. The downside of these classical-type
models is that the tuning requires a high level of skill and experience [28]. Floating platform
wind turbines [65, 18], wind farm wake effects and degrading aerodynamic performance are
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challenging for simple controllers [203]. For example, floating platforms require an extra control
loop in order to use the pitching of the wind turbine blades in order to stabilize the platform
motion [54].
As with aeroelasticity, testing in the time domain is a very expensive undertaking due to the

broad operating envelope. Usually, the controllers are first tuned in the frequency domain, on
linear controllers, and then fine-tuned in the time domain. While the linearisation is conducted
locally [91], there is still an associated accuracy cost.

High fidelity models

Many more advanced controller concepts exist that could be used for wind energy. Burton et al.
[28] argued that, while such methods have the advantage of being mathematically rigorous,
tuning the cost function for these models ends up just as cumbersome as manually tuning a
classical controller.

Data

Data is a real problem for wind turbine controllers. For many controllers8, the only availiable
inputs will be the rotor/generator speed, pitch angles and wind speed from the anemometer. The
one environmental signal available, the anemometer will be offset and quite noisy due to it being
mounting on the nacelle. Of course, these readings are often corrected through CFD simulation,
but such a correction can not possibly recover a good-quality signal. Any improvement in wind
turbine controllers will probably start with the inclusion of additional sensors, such as LIDAR or
optic-fibre strain gauges.

1.4 The common themes

Throughout this brief, and by no means exhaustive sampling of wind-energy problems, the reader
will likely have noticed the following three recurring themes:

1. The assumptions baked into the current engineering model are too strong;

2. The higher physics models are too computationally expensive; and

3. Current data availability and data analysis methods are insufficient.

These three themes are distributed differently across the various disciplines, but roughly the
same issues are there in each.

8 To be clear, the supervisory controller will have more monitoring inputs
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These themes are important because, in all three areas, there is work to be done improving
the availability of data, improvement of engineering models, and the improvement of higher
fidelity tools, but, data science and machine learning may also help make improvements. For
instance, part of an expensive numerical process may be replaceable with a cheaper, machine-
learned equivalent. An engineering model may be extended by replacing an assumption with
a machine-learned model. The manual choice of empirical equations could also be replaced
with machine-learned equations [67, 94, 25]. Data may be reinterpreted in a way that makes it
useful for model building. While this study focused on aerodynamic and aeroelastic problems,
the principles should transport into other fields as well.

Here I would like to make a philosophical claim about black-box models. Many of the models
I discussed above are incredibly complex and their derivations even more so. Here is the core of
my claim: once models reach a certain complexity, it does not matter whether a scientist nearly
100 years ago created the formulation or whether a computer decides - we probably do not fully
understand the implications of the mathematical formulas used in the model. For most of us,
these models are black-box, or at least very murky. Why do we trust them? Because they work,
and because we understand the boundary conditions under which they work. Machine-learned
models are no different, we just need to think differently about how we test the models. In the
end, all models are wrong, but some are useful [23]. In the next section, we will explore this
concept further by discussing machine learning approaches in greater detail.
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Chapter 2 Machine Learning, Data Science,
Data Driven Methods

On the 3rd of May 1997, the world gasped as Gary Kasparov resigned during the second
game of the chess tournament against IBM’s Deep Blue. It did not matter that a bug in the
programming was responsible for the move that had stupefied the Grandmaster [182]. It did not
matter that Kasparov could have held out for a draw. What mattered is that, for the first time,
there were enough transistors available in Deep Blue’s architecture to encompass enough of the
informational entropy of chess to enable play at the highest level.

Fast forward through 21 years of computer hardware and artificial intelligence (AI) innovation
and we arrive at DeepMinds AlphaStar [206]9. AlphaStar has been trained to play the computer
game StarCraft. The increase in complexity since Deep Blue is startling. The game plays out
in real time, and the computer has to make decisions based on imperfect information; that is,
the computer does not know what the opponent is doing. The game involves incredibly long
chains of cause and effect throughout each game which run for up to 1 hour, resulting in tens of
thousands of time steps. Each time step can involve, between 10 and 26 actions, meaning that the
overall entropy of the game is orders of magnitude greater than chess. Against one of the worlds
best human players, AlphaStar won 5-0. It won by creating strategies never previously seen by
humans, the training data did not lie and the computer found a way to beat human player.
The computing power behind this strong agent comes from an architecture called a tensor

processing unit [206]. TPUs and their cousins the graphics processing unit (GPU), are well
suited for the tensor operations that form the backbone of neural networks [93]. The cost of using
such a computational resource has been dropping at a rate of roughly one order of magnitude per
12 years [3]. This has resulted in vast amount of computational power becoming more readily
available. Ultimately, this gives developers the chance to use highly complicated and flexible AI
models. The result is that incredible achievements like the AlphaStar AI, are possible.
Computational power is only one part of the AI equation. The second part is the vast

amounts of research resources being invested by private sector companies like Amazon, Baidu,
Netflix, Uber, Tesla, Facebook, Alphabet/Google, Microsoft and IBM. The consulting firm
McKinsey estimated a research and development investment from the top-tier tech companies of

9 It is worth reading the original article to obtain an understanding of the training process [206]

25



Chapter 2. Machine Learning, Data Science, Data Driven Methods

$20-$30billion in 2016 alone [26]. This investment and other, publicly-funded, research efforts
have yielded well-developed open-source machine-learning libraries, such as sci-kit learn[157],
TensorFlow (Google) [133] and PyTorch (Facebook) [155]. These abstract away the daunting
task of programming on a GPU or TPU from the user, and provide front ends in high-level
languages, such as Python. Furthermore, projects such as Dask [43] and Numba [101] make it
possible to compile Python and parallelise code across large-scale computational infrastructures.
Projects like fast.ai [83] and Keras [39] have provided even higher-level interfaces, exposing
some of the most powerful machine-learning techniques to anyone with a modest amount of
programming skill. In short, the most advanced machine-learning techniques are within the
reach of non-specialists.
The third part of the machine-learning recipe is data - huge volumes of data [191]. Each of

the technology companies mentioned above has billions of users and thus billions of users’ data,
transactions, driving behaviours and images. By the way of example, the ImageNet database
contains over 14 million labeled images [45], the AlphaStar AI was trained on 200 years’ worth
of game-play data [206] and Tesla has been tracking driver behavior since 2016 [42]. Such huge
datasets contain a wide diversity of data meaning that the AI is unlikely to be ’surprised’ by
new examples. The more flexible a model is, the more complex a task it can achieve; however,
highly-flexible models need to be constrained with large datasets or they will tend to explode in
regions not populated with training data.

The modern environment of huge investment, large-scale computationale power and big data
has resulted in some other amazing examples of machine learning. The WaveNet neural network
architecture can generate convincing new music samples [61]. Style-transfer neural networks can
transform a picture into any given art style, such as a Picasso or Monet [68]. ’Deep fake’ images
and videos of famous actors and politicians have been convincing enough provoke controversy.
Such advancements show that the deep learning side of machine learning has a tremendous
future.

WaveNet, style transfer and deep fakes represent the most exotic examples of machine learning.
Underpinning these, there is a vast range of algorithms and methods that are more useful in the
day-to-day context of wind energy. Machine-learning models can undertake a range of tasks, such
as classification, regression, clustering, creating association rules, forecasting, dimensionality
reduction and density estimation [157]. Each of these tasks can be achieved by a large numbers
of algorithms, ranging from simple linear regression through deep learning. The important
constant is that the techniques behind machine learning can turn data into models. Models that
even chess Grandmasters cannot out think.

26



Chapter 2. Machine Learning, Data Science, Data Driven Methods

2.1 The Language of Machine Learning

Machine learning has it’s own language and definitions. Let us rewind and first establish what is
meant by machine learning.

Definition 1. "Machine learning is the scientific study of algorithms and statistical models
that computer systems use in order to perform a specific task effectively without using explicit
instructions, relying on patterns and inference instead. It is seen as a subset of artificial
intelligence. Machine learning algorithms build a mathematical model based on sample data,
known as ’training data’, in order to make predictions or decisions without being explicitly
programmed to perform the task" [40]

The most basic example of machine learning is the humble polynomial regression. Let us
generate some random data points, and then make a fit with different polynomial orders.

Figure 2.1: The development of training error with model complexity (in this case, polynomial
order)

We see that, for the linear fit, the line roughly captures the trend, although the data doesn’t sit
on the line perfectly. This introduces the second definition:

Definition 2. Bias occurs when an algorithm has limited flexibility to learn the true signal from
a dataset, also known as underfitting [58].

As the polynomial order increases, the fit becomes perfect. We may be tempted to take the
highest-order polynomial and consider the job done; however, there is a danger sign. While the
highest-order polynomial passes through all the data points perfectly, the curve is ’wiggly’, more
formally said, the curve contains some large gradients [17]. Let us now take some more data
from the data set and add it to the plot (in red).
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Figure 2.2: The development of validation error with model complexity (in this case, polynomial
order)

While the high-order polynomial could fit the data it trained with, when we apply it to new
data, the model is almost useless; the model does not generalize well. This introduces our third
definition.

Definition 3. Variance refers to an algorithm’s sensitivity to specific sets of training data, also
known as over-fitting [17].

When designing a model, we have to consider both the bias and variance. If the model is too
simple, it will never represent the underlying data [17]; if the model is too complicated, it will
do everything possible to match the data it trained on [17]. However, it will not represent new
data well. This is called the bias - variance trade-off and the aim is to find the sweet spot that
minimises the total error that the model produces [17]. The bias/variance trade-off is one of the
ground truths of machine learning.
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Figure 2.3: Bias/variance trade off

Now we know that we have to account for both bias and variance, how do we go about selecting
the best polynomial fit from the example given above? We split the data into three parts. The
first part is called the training data, and this is usually the largest share. The training data will be
used to regress the selected model. The error from the training process indicates the model’s
bias - commonly referred to as ’training error’. The second part of the data - the validation data -
is used to check how well the model generalises, so that a model selection can be made. The
validation error is the indication of the model’s variance10. We can use the model error from the
training and validation data together to find which of the polynomials fits the data best. The
third part of the data - the test set - gives a final indication of the model’s performance.

Figure 2.4: Splitting data into - training, validation and test datasets

In the polynomial regression, we used the validation data to test which order of the polynomial
suits the data. The polynomial order is an example of a hyper-parameter:

Definition 4. A hyper-parameter is a parameter that is set before the training process commences
[204]

10 Here, I avoid diving into cross-validation techniques for the sake of simplicity. For a more detailed treatment see
Bishop [17]
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In contrast, the coefficients of the polynomial regression are parameters.

Definition 5. A parameter is a variable that is set during training [204]

We can interpret hyper-parameters as determining the architecture of the model, whilst the
parameters are the contents of the model itself.

2.2 The tasks of machine learning

Machine learning encompasses a wide range of tasks, each of which has its own challenges
and algorithms. In the following section, the main tasks of machine learning are discussed in
depth, and either a known example of an application or a plausible application in wind energy is
provided. I avoid discussing specific algorithms wherever possible, as this would take an entire
textbook to cover, even for the most common algorithms (e.g. Bishop [17] or Raschka [166]).

Figure 2.5: The tasks of machine learning

2.2.1 Regression

Regression is the most obvious form of machine learning, where input is transformed into
a continuous output [166]. Indeed, the polynomial example given above is an example of
regression. In wind energy, there are many examples:

1. Fitting lift and drag polars from simulation data or experiments;

2. Estimating the power curve of a wind turbine from operational data;
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3. Determining the required blade pitch setting for each wind speed; and

4. Finding the convection speed of a dynamic stall vortex traversing an airfoil from pressure
information

The input data may vary, but regression always results in the output of one or several, continuous
variable(s).

2.2.2 Classification

Classification takes input data and puts it into a category or categories [166]. An example of a
single-label classification is determining whether a picture is of a dog or a cat. A multi-label
classification would list all the features in a satellite image (i.e. land, river, trees). Training a
classifier requires a set of input/output pairs, making it a supervised method [166].
In the context of wind energy, there are a number of uses for clustering. In the computer-

vision-type models, a good example of classification would be using images taken from a drone
making blade inspections [181]; each image is processed, and labels are added for common
elements, such as vortex generators, or defects like visible cracks or lightning-strike burns.
Classification can also determine the operating state of the wind turbine from the Supervisory
Control and Data Acquisition (SCADA) data. This means that we can identify unusual operating
states, which can arise from faults; this is called anomaly detection [213]. Classifiers can also be
built for time-series classification, an example of this is determining the boundary layer state on
an airfoil using microphone data [109].

Figure 2.6: Labelling parts of the pressure signal as laminar or turbulent (after Lennie et al.
[109])

2.2.3 Clustering

Clustering takes a set of data and splits it into groups of local neighborhoods [166]. A well-
functioning clustering algorithm will have groups where each of the items in the group are
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very similar to each other and very different from the items in other groups. Clustering is an
unsupervised method, meaning that the algorithm is not based on pairs of input and output data
[166]. Rather, the methods have to have their own success metrics. The beauty of neighborhood-
type methods is that you can break down the dataset before trying to make inferences. This is
particularly useful in datasets where there are multiple modes or highly skewed data [166].

In the context of wind energy, there are two notable examples. The first is the use of clustering
to split data into groups to help in understanding the variations within the dataset. This is covered
at length in this thesis. The second use is breaking up the operating regime of a wind turbine
into several clusters.

Figure 2.7: Breaking up a dataset into clusters

Each cluster can then have a customised controller. The advantage of this is that each controller
can be perfectly suited to its operating region. This is preferable to a case where a single
controller has to be highly flexible in order to fit significantly different regimes. Examples of
this can be found in the work of Nair et al. [145].

2.2.4 Dimensionality Reduction

Consider a relatively simple geometry - a spiral. The spiral can be plotted in terms of its x and
y coordinates. In this case, Euclidean geometry is an inefficient way of describing the spiral.
Euclidean geometry has to be flexible enough to describe all possible shapes. In this case, this
spiral represents the location of our data, meaning that we can discard the geometry that does not
describe anything. In other words, the geometry of the spiral is sparse in the two dimensions used
to display it, and our data is confined to a small volume fraction [17]. We could, instead, define
the spiral as a unidimensional manifold, simply mark the center as zero, the outermost point as
one. By doing this, we are unrolling the spiral into a flat line and reducing the two-dimension
system to one dimension [180].

Why is it useful to do this? Let us consider a standard-sized photograph from a modern digital
camera. Each picture will have 10 million pixels, each of them containing three colour channels,
resulting in 30million features/dimensions. In each colour channel, there are 255 possible
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values11. The information entropy of this system is astronomically high, being able represent
almost everything. If we were to randomly set the pixel values, we would have the same chance
of finding a sheet of paper floating in space as of finding a picture of something real, such as
a dog. However, if we found the sheet of paper, we would find that all natural pictures and
scientific pictures actually exist on this one piece paper, very near to the picture of the dog. This
small fraction of all possibilities contains all natural shapes, gradients and patterns. To strip
away the metaphor, photographic images have a relatively tiny set of real dimensions compared
to the feature space we display them on-screen [17].
The problem with huge dimensional spaces is that our model first has to find the sheet of

paper floating in space - the tiny volume with in the high dimensional space - where reasonable
outputs can be found. The model exists in a space where nearly all outputs are not just wrong,
but are not even viable. The huge search space and the tiny space of reasonable outputs (the
volume fraction) is known as the ’curse of dimensionality’ [17]. In practical terms, increasingly
large dimensional spaces usually require more data and more computational time to converge.
Let us revisit the geometry of the spiral [180]. Imagine we have placed a prize - the correct

output - somewhere along the spiral. If we were to instruct a child to follow the spiral, we could
describe the instructions as ’at coordinate x go to coordinate y’. By describing the space in the
original dimensionality, we first have to get the child to the spiral, and then need to expend a lot
of effort in keeping the child constrained to the spiral. If the child takes one step off the spiral,
they have no chance of finding the prize. If we instead give the child instructions in terms of the
embedded coordinate, we can simply, tell the child to walk along the spiral until they find the
prize. The instructions are much easier, and the child can instantly discard all areas other than
the spiral as possibilities. Training models in a reduced dimensionality is far easier for the same
reason [17].
The most common dimensionality reduction used in the context of wind energy is the

simplification of structures by casting the structure as an eigenvalue problem. Usually, the long,
slender blades of a wind turbine blade would be represented by beam elements [91]. We can
take such a finite element representation, and push it it through an eigen-decomposition [91].
We would then use the mode shapes to describe the deformations of the blade rather than the
individual dimensions [110, 108, 137, 136] 12. It turns out the top three to five structural mode
shapes contain nearly all of the information, and that the rest of the modes can be discarded
without losing much accuracy [91]. This approach is used in aeroelastic simulation software,
such as NREL’s FAST [5]. The eigenvalue decomposition is a particular example of a singular
value decomposition that forms the basis of many of the linear algebra dimensionality reduction

11 There is a good interview where this concept is used to explain high dimensionality and entropy, in reference to
transfer learning [200]

12 Associated publications
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methods.

Figure 2.8: Removing the redundant dimensionality of a spiral using local linear embedding (an
adapted from the lecture notes of [180]

The reduced-order representations can be transferred back into their full representations,
which is the point. A good example of this uses a sparse set of sensors to predict an entire wind
field. We first put simulated wind data into reduced-order space, and then use a sparse number
of sensors to predict the reduced coordinates - a much easier task than predicting every grid
point of the wind field. The first implementation of this approach from Annoni et al. [8] used the
Manohar et al. [127] method, which uses a dynamic mode decomposition to get the mode shapes.
The mode shapes are pushed through a second proper orthogonal decomposition using the QR
pivoting method. The nice thing about the QR pivoting algorithm is that it ranks which of the
sensors contribute the most predictive power within the coordinates in the reduced-order system.
We then have an automatic greedy sensor selection, which does not result in a combinatorial
search. Reduced-order representations are very powerful when used judiciously.

2.2.5 Density Estimation

The simplest forms of density estimation are probably familiar to most researchers in this field.
We can take a dataset and fit a function, such as a normal distribution to present the density of
the data in a concise way. We can compare the mean and variance of two different noisy datasets
to measure changes in the population. The normal distribution is an example of a parametric
distribution, which is defined by an equation that has just a few coefficients that can be learned
from the data. However, in many real-world datasets, such simple functions fit the data poorly.

For complicated data, we can use non-parametric density estimations, such as the kernel density
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approximation [17]. Ice-fall from wind turbines presents a good use-case for non-parametric
distributions. When building wind turbines in areas with ice, it is possible for ice chunks to be
thrown or to fall from the blades and nacelle. It is necessary to ensure that a threshold probability
of injury or death is not exceeded. Probability distributions have been measured for the ballistic
properties of possible ice chunks and wind conditions. A physics-based simulation in QBlade
samples ice chunks and then launches them from the wind turbine, producing a scatter pattern
of landing points. This two-dimensional scatter pattern is complicated, but a non-parametric
distribution is able to represent the complicated geometry13.

Figure 2.9: A kernel density estimate representation of the risk distribution from an icing
simulation conducted using QBlade

This kind of risk assessment approach asks the general question: from the possible outcomes,
how likely is each outcome? For instance, if we were to estimate the energy yield from a wind
farm, we could sample from distributions of wind speed, wind direction, temperature, breakdown
probabilities and power curves. We would then get a distribution of viable energy yields. The
expected value might show a good energy yield, with the expectation of a good profit. However,
the distribution of possible energy yields might show that, for 20% of the time, the wind farm
would run at a loss, with break-downs appearing in moderate numbers - good grounds to question
the project’s viability. We use the knowledge of such distributions to make decisions [17].

13 These references are associated publications [115, 116]

35



Chapter 2. Machine Learning, Data Science, Data Driven Methods

Distributions can also help us to simply understand the underlying structure of the data. When
airfoils experience stall, the boundary layer becomes very, unsteady and cycle-to-cycle variations
explode. Figure 2.10, illustrates violin plots of the pressure over an airfoil experiencing dynamic
stall. A violin plot is a kernel density estimation [17] of the probability 14. We can see that, as
the vortex traverses the airfoil, the probability distributions become bimodal and skewed. In this
case, a density estimation shows clearly that, before trying to fit a model, we should understand
the process itself has a massive underlying level of variability.
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Figure 2.10: Cycle-to-cycle variations in dynamic stall in the pressure data

2.2.6 Forecasting

When people think of forecasting, they most often think of weather. In this case, this is entirely
appropriate because successfully selling the energy from a wind farm requires a high-quality
weather forecast. Forecasting can yield a continuous output (regression) or a label (classification).

14 These figures and analysis are from the associated publication of Lennie et al. [114]
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The difference is that forecasting tries to predict a future state based on the current and past
states. Forecasting is a very well developed field due to econometrics, where there are significant
incentives for predicting the price movements of stocks and bonds before one’s competitors
[167]. One peculiarity of forecasting is how careful one has to be in ensuring that the validation
and test data are not accidentally included in the training set [167].
In the context wind energy, there are several challenging applications for forecasting. One

challenging example is forecasting ice growth on wind turbine blades [30]. This task is
particularly difficult because of the sensitivity of the ice formation to conditions such as the
surface properties of the blade and the tower, as well as the humidity and temperature, which can
change over the altitude difference that occurs in a single revolution. In this case, a more accurate
ice forecast would help to predict the power output, and would help operators to optimise the
use of de-icing and anti-icing systems. A second challenge is that obtaining a labelled set of
training data is not trivial. Instruments can develop ice earlier, and that ice can melt earlier than
it does on the blades [30], and other methods based on deviations from the power curve [44], or
in shifts of the rotor blade’s natural frequencies from the added weight, can react slowly [198].
Anti-icing/de-icing systems are expensive to run, and a forecast would have to be accurate within
a time window of roughly 10 minutes; however, most ice forecasts are probabilistic, usually
over the course of a day [30]. In summary, we have a system sensitive to input conditions,
with imperfectly-labeled and unbalanced training data, unbalanced training data and the system
requires a relatively high-quality output. This is the types of problem that is very challenging for
machine learning.

2.2.7 Association Rules

Association rules attempt to find patterns in data [38]. A common use is analysing people’s
shopping baskets; with enough data, it is possible to infer information from the contents. Let us
say someone has in their basket mince-meat, bread rolls, lettuce and cheese. From basic human
knowledge, we can infer that the person is not planning to cook tomato soup, but more likely a
hamburger. Association rules might tell us that the person is also likely to buy ketchup. If you
have ever shopped on a website and see the words ’People who bought this item also bought...’,
then you have seen an association rule [38].
A possible application in the context of wind energy would be in the analysis of faults and

repairs. An obvious example would be wind turbines where the lubrication system has a faulty
seal, will often need some cleaning. Less obvious examples may lurk in the data. We may find
something more exotic, such as a pitch misalignment leading to cracks in a specific area of a
blade where a composite layer drop-off occurs. Such a connection would be difficult for a single
technician to make, especially if they were not working on both the pitch alignment and rotor
blade inspection. However, such associations could be mined from fleet-wide datasets, with
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something like ’Wind turbines that had this fault also had...’.

2.2.8 Generation

Generation is the concept of teaching a system to imitate a set of rules with a certain amount
of randomness, so that it can create new, believable examples [41]. A recent demonstration of
this concept took a set of celebrity faces and pushed them into a generative adversarial network
(GANS). The network then created new, believable celebrity faces. Such a network is trained in
such a way that there is a second neural network attempting to label pictures as real or fake [41].
This means that the generated pictures end up as photo-realistic [41].

A simpler form of generation, in the context of wind energy is responsible for creating
turbulent wind fields. Fake turbulent wind fields are required for load-case simulations under
realistic turbulent conditions. The Mann [125] and Veers [205] models are good examples of
this. These methods are based on manually selected equations rather than purely data-driven,
but they do the same job.

2.3 Why wind energy is challenging for machine learning

Wind energy is a challenging area to apply machine learning to. The following anecdote provides
an insight into the experience of working with wind-energy data. When the wind industry began
to use vortex generators to improve aerodynamic performance, a reasonable question was asked:
how much annual energy production will I get from this product?15 The answer is roughly 2%,
but it is not trivial to arrive at this answer. Why is this? This is a hypothesis test where we have
to reject the null hypothesis that the performance of the wind turbine is the same before and after
the installation. If we use frequentist statistics, we would usually accept or reject a hypothesis
based on a P-value, but here is the problem, as the variance of the data increases16, the data with
and without vortex generators will increasingly overlap. Now consider that we are searching for
an effect that is only 2%, a very small confidence interval. This means we will need a lot of data,
or data with a very low variance.
So what kind of data is available to check the performance of a wind turbine? SCADA data,

measured by the wind turbine. Here we encounter our first problem. The wind speed experienced
by each wind turbine is usually measured by an anemometer on the nacelle, in the middle of the
separated wakes of the blade root regions 17. The anemometers are calibrated using CFD and
against meteorological mast measurements, where possible. Even under ideal conditions, an

15 The example described in this paragraph comes from Hwangbo et al. [85], extra details come from discussions
with the authors of that paper

16 For the sake of this discussion, normality is assumed
17 Vortex generators affect the separation of the root region, complicating the analysis further
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anemometer is only a point measurement, representing an entire wind field. Usually, we assess a
wind turbine’s performance in terms of its power curve, the key input variable being wind speed.
The most important feature for this analysis is very noisy.

The second problem is that most SCADA systems have classically recorded data averaged
over 10-minute intervals, partly due to the wind spectral gap [19]. This is unfortunately a long
time interval for time-resolved data, and such measurements result in large uncertainties on all
axes of the power curve. Furthermore, such a low sampling rate decreases the samples available.
The first method presented by Hwangbo et al. [85], using the ten-minute interval data eventually
arrived at the correct answer, but with large error bars or a large confidence interval [85]. Let
us recall the answer - 2%; very good machine learning resulted in error bars of roughly 4%
[85]. This means that there is still a relatively high chance that the change we are seeing is from
random sampling effects rather than being a real effect.
Finally, a second method used shorter interval data with simpler methods. The key was

getting a good set of baseline data enable a comparison between two turbines. Vortex generators
were installed on one set of blades, with the other remaining as a reference - in essence a giant
anemometer. In data science, this is known as an A/B test [17]. With higher-frequency data and
reference to another turbine, it was possible to get an answer with high enough confidence to
satisfy the customers. The lesson is that basic methods using good-quality data and features will
beat the best machine-learning methods on uncertain data.
Unfortunately, many forms of wind-energy data have large deviations. Rotor blades are

massive structures, and the resulting tolerances are orders of magnitude larger than what is
expected in gas turbines. The constituent glass fibre mat are hand-laid into the molds, which
results in waves along with other defects; which are highly detrimental to the strength properties
of the blades [171]. Once the two halves of the molds are filled with resin and cured, the massive
blade sections are glued together. Bonding lines are one of their most critical failure points [35].
Thus, the production process results in small and large defects. This means that, across a family
of blades, a large amount of variation is inherent [35]. Also, variations in the parameters of the
input materials can introduce uncertainty into a blade’s expected fatigue life [35, 10].

Now, let us imagine that we would like to predict delamination occurrences in the rotor blade’s
trailing edge. In order for the results to be useful, we would like to predict this early in the
process, to initiate repairs before damage propagates. After the blades have been in production
for some time, the maintenance personnel may begin to note faults during their inspections, these
potentially being years apart. Thus, the blades are highly variable, and the onset of failure is only
known to be sometime since the last inspection. Again, converging such a model is possible, but
only with a huge amount of data. Unlike for the Silicon Valley giants, billions of data points are
not available because there are not billions of rotor blades in service.

Engineers who work with wind turbine data often complain about the quality, not only because
of the uncertainty of the input features, such as the wind speed from the nacelle-mounted
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anemometer, but also because of the uncertain baseline. A common problem is that repairs
can fix leading edge tapes, yaw errors or pitch misalignments, or perhaps vortex generators
are installed. A huge dump of data arrives from the operator, with no mention of the change
[98]. At some stage during the time-series, the wind turbine can seem like a different machine.
Eventually the engineers will find the problem and ’clean’ the data using additional information
from the maintenance logs. These steps take time, and there can be other small details like
non-standard data formats, meaning that even parsing the data becomes a manual chore. Further
technical issues that arise from the nature of the data itself not just the measurement techniques
[80]. However, if wind turbine analytics are to be efficiently scaled, adopting a different culture
around data quality seems necessary. Quaeghebeur and Zaaijer [164] provided a useful review
of the quality of SCADA data and the common problems. Conversations with data engineers
have indicated that some of the major companies are taking the data-quality issue seriously, but
recommendations from Quaeghebeur and Zaaijer [164] indicate that in many cases, there is an
almost primitive approach to data collection.

These examples do not represent an overarching call for pessimism regarding machine learning
in the context of wind energy. However, the fact is that the largest data source in wind energy -
operational SCADA data - is not of a high quality. Dealing with SCADA data requires big data
infrastructure and expertise. Machine-learning algorithms can deal with noise, but poor-quality
data makes the job much more difficult, and sets an upper limit on the eventual quality of the
model. If this was the only approach available, that would be cause for despair.
There are better problems to take on. One example is the use of text analysis to extract key

information from maintenance reports without having to manually read them. This task has its
challenges, including abbreviations and spelling mistakes in the reports; nonetheless the project
was successful [174], resulting in a drastic reduction in time spent reviewing maintenance reports.
The examples given here have been largely to do with predictive maintenance - a highly valuable,
but difficult, problem to take on. However, these are not the only open problems in wind energy
that can be solved by machine learning. One of the themes of this study was to demonstrate
other uses of machine learning that could harvest the low-hanging fruit.
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So far, I have reviewed the state of affairs with respect to wind energy and data science. Now it is
possible to put this study into context. In the discussion about the challenges of wind energy, there
were recurring themes, with engineering models needing improvement, high-fidelity models
often being expensive to run and data sometimes not being well described by basic approaches.
Solving these problems requires a number of lines of attack:

1. Improved simulation tools to match the expanding needs of wind energy;

2. Better engineering models and analysis methods that meet modern challenges; and

3. Better utilisation of machine learning to help mine and model data.

The publications in the following sections give examples of these approaches.
In this thesis, I demonstrate how a combination of approaches can be used to increase the

quality of our simulations and data analyses. The first paper demonstrates the use of the
FVLLT aerodynamics simulation approach for floating-platform wind turbines. This involved
the simulation of a case that fell outside the standard BEM engineering model. In the paper, I
developed an engineering method for estimating the instantaneous aerodynamic damping as a
demonstration of how engineering tools, even with their limitations, can still be useful.
The second paper is a demonstration of the kinds of problems that are very difficult to solve

with traditional engineering models. This experimental study investigated the shedding patterns
behind a wind turbine blade at very high angles of attack. The results were so complicated, that
it motivated the third paper, in which I used machine learning to dissect dynamic stall. From the
machine-learning results, it became apparent that cycle-to-cycle variations of stalled airfoils are
significant. Any approach that simulates airfoils has to first address, what exactly should be
reproduced? The mean?!

In these three papers, I provide cases of how we can use engineering models and data science
in wind energy. I highlight where engineering models and high-fidelity simulations can be
effective, and where they are not. Based on the conclusions from these papers, and my associated
research, I develop seven new strategies for developing numerical models for wind energy. The
new methods, models and measurements will have a large impact on load case simulations of
wind turbines especially for previously difficult to simulate cases, i.e. floating platform wind
turbines or parked wind turbines. The rotor plane instantaneous aerodynamic damping model
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may also find use in helicopter aerodynamic applications. The grand concept of this study is
presented in Figure 3.1.
In the next immediate section, I will briefly describe the contents of each of the attached

publications before each of the papers is presented in full.

Lennie, M., Marten, D., Pechlivanoglou, G., Nayeri, C. N., & Paschereit, C. O. (2017). Modern
methods for investigating the stability of a pitching floating platform wind turbine, Wind
Energ. Sci., 2, 671–683, https://doi.org/10.5194/wes-2-671-2017, 2017.

Lennie, M., Selahi-moghaddam, A., Holst, D., Pechlivanoglou, G., Nayeri, C. N., & Paschereit,
C. O. (2018). GTP-17-1616 Vortex shedding and frequency lock in on stand still wind
turbines, a baseline experiment. Journal of Engineering for Gas Turbines and Power, 140(11),
112603–112603. https://doi.org/10.1115/1.4039818 Republished with permission of ASME;
permission conveyed through Copyright Clearance Center, Inc.

Lennie, M., Steenbuck, J., Noack, B. R., & Paschereit, C. O. (2019). Cartographing dynamic stall
with machine learning,Wind Energ. Sci., 5, 819–838, https://doi.org/10.5194/wes-5-819-2020,
2020.
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Figure 3.1: The grand concept
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3.1 Modern methods for investigating the stability of a pitching
floating platform wind turbine

Floating-platform wind turbines are a challenging problem in wind turbine modelling. The
rotors are large and flexible, and the rotor plane can move, leading to much larger deflections
than would be expected from an onshore machine. For floating platforms, we also need to take
into account a new dimension of stability because of the platform. Furthermore, it is not clear
that the simple BEM approaches normally used are suitable for such cases.

For this paper, I undertook two major tasks:

1. Validated the FVLLT code in QBlade against higher fidelity simulations of an airfoil rotor
undergoing pitch; and

2. Deriving a new formulation for the instantaneous damping of a rotor under going fore-aft
motion.

Figure 3.2: Outcomes

The FVLLT code performed well against the higher- and lower-fidelity simulations, although
there were some small discrepancies between the different simulation tools’ predictions of thrust.
This probably originates from the strong assumptions made by some models, it serves a reminder
to carefully tune the wake simulation with FVLLT codes.
The new formulation uses the Hilbert transform to create a phase-difference estimate of the

rotor motion and it’s thrust. After a lengthy derivation and normalisation, it is possible to use
this phase difference as a representation of the aerodynamic damping of the system. By analogy,
we can think of it as a single degree of freedom flutter. This can only occur when we account
for the delay effects between the pitching of the airfoil and the moment. Usually, we do this
through Theordorsen type functions [195]. The Pitt-Peters formulation of the thrust forces
incorporates the same wake memory effect as the Theordorsen function [163]. This may be an
unsatisfying explanation, but it can be alternatively formulated as: rotor planes experience added
mass and circulatory terms in the same way as an airfoil, though for slightly different reasons.
This analogy means that we can take the Bowles et al. [22] formulation as a model for looking at
the rotor plane. The instantaneous damping term helps us understand how control actions and
non-linear wake effects create an unstable or stable platform.
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This paper demonstrates the importance of a new generation of simulation tools that are needed
to take on challenging cases like floating platform wind turbines. Furthermore, the derivation
of the instantaneous aerodynamic rotor damping is a perfect example of how an engineering
approach can give us a useful tool, even in the age of data-driven models.

3.2 Vortex shedding and frequency lock in on stand still wind
turbines, a baseline experiment

When wind turbines are under construction or maintenance, the rotor is usually locked. It might
also be that there is no power, leading to the turbine being in a locked yaw position. Under these
conditions, the blades of a wind turbine can experience very high-angle-of-attack inflows that
can induce vortex induced vibrations. This means that the blades are collecting fatigue cycles
before they are even generating electricity. Vortex-induced vibrations is the phenomenon of
a structural frequency and a shedding frequency synchronizing over a certain bandwidth; this
leads to large amplitude vibrations.
In this study, I performed extensive wind-tunnel experiments on a blade at large angles of

attack. The measurements are, to my knowledge, the only measurements of a twisted-tapered
blade at high angles of attack. The aim was to provide baseline results for the wake behaviour
that could be translated into an engineering-type reduced-order model. These results are the
key outcome. The most obvious candidate model would be simply identifying the Strouhal
number of a blade and working out the frequencies from there. I even tentatively made that
recommendation in this paper.

Figure 3.3: Outcome

The problem was that this kind of model would be over-fit from the outset, meaning that it
was very difficult to generalise the patterns observed in these experiments. This is because
there are patterns, not a single pattern. This paper explores the complexity presented by
these high-angle-of-attack flows. The shedding behaviour changes with angle of attack, and,
unfortunately other research indicates the same with azimuth [183]. This data set lead me to
realize that certain physical processes can’t be squashed into a reduced-order system, because
there is no underling low order process! This data inspired me to look at stall behaviour from
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a data-driven, machine-learning perspective. The data serve as baseline for CFD and model
calibration.

3.3 Cartographing dynamic stall with machine learning

We saw in the previous section that stalled airfoils are incredibly difficult to interpret. In this
paper, I take a deep dive into how stalled airfoils are highly variable. To do this, I used several
advanced machine-learning techniques.
The first of two methods developed employs dynamic time-warping as a distance metric to

create clusters via a hierarchical clustering algorithm. The many repetitions of a dynamic stall
experiment are split, and then clustered together into groups of similar behaviours. By doing this
analysis, we found that the shedding mechanisms that create dynamic stall are not reliable for a
given set of input conditions. In some repetitions, secondary vorticity disappears, whereas in
others, the secondary vorticity is stronger than the primary. The method developed in this paper
represents a new approach to inspecting cycle-to-cycle variations in airfoils.
It is useful to look broadly at groups of similar behaviours, but it is also useful to extract

features from data repetitions to allow a direct comparison. As it convects over an airfoil,
a dynamic stall vortex shows up on a pressure-versus-time plot as a strong diagonal stripe .
Extracting this feature from data looks trivial - it’s a straight line - but creating a rule that
generalises well is not possible. In this paper, we implemented a highly sophisticated deep
learning computer vision model using transfer learning to automatically extract such features
from the data.

The key achievements of this paper are:

1. time series clustering algorithm for airfoils

2. a computer vision machine learning model for dynamic stall convection detection.

The achievements should be considered as an important step towards unleashing machine learning
and data science on the field of wind energy.

Figure 3.4: Outcome
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Abstract. The QBlade implementation of the lifting-line free vortex wake (LLFVW) method was tested in
conditions analogous to floating platform motion. Comparisons against two independent test cases using a variety
of simulation methods show good agreement in thrust forces, rotor power, blade forces and rotor plane induction.
Along with the many verifications already undertaken in the literature, it seems that the code performs solidly
even in these challenging cases. Further to this, the key steps are presented from a new formulation of the
instantaneous aerodynamic thrust damping of a wind turbine rotor. A test case with harmonic platform motion
and collective blade pitch is used to demonstrate how combining such tools can lead to a better understanding of
aeroelastic stability. A second case demonstrates a non-harmonic blade pitch manoeuvre showing the versatility
of the instantaneous damping method.

1 Introduction

The proliferation of large wind turbine rotors has been ac-
companied by the need for accurate and computationally in-
expensive aeroelastic simulation tools. For aeroelastic simu-
lations, the aerodynamics of the wind turbine are most typi-
cally calculated using methods based on blade element mo-
mentum (BEM). In the scenario of offshore wind, particu-
larly when designing for floating platforms, the significant
motion of the rotor leads to complicated aerodynamics. Se-
bastian and Lackner (2013) have made a convincing case
that, even with secondary correction factors, floating plat-
form wind turbine aerodynamics exceed the capabilities of
BEM-based simulation methods. The main reason is that a
floating platform wind turbine will dynamically pitch and
yaw. As BEM does not explicitly solve the flow pattern of
the wake, it is simply not possible to accurately represent
such behaviour.

The lifting-line free vortex wake (LLFVW) method uses
non-linear polar data1 to calculate the blade forces coupled

1Including viscous effects such as separation.

with a free vortex wake formulation and serves as a good
method for simulating cases in which large rotor displace-
ments and yaw misalignments occur (see Fig. 2). Recently,
the implementation of an LLFVW code was completed and
included in the QBlade wind turbine simulation code (Marten
et al., 2015). Simultaneously to this study, the LLFVW solver
was extended to include an unsteady aerodynamics model2

and coupled with the structural formulations of the FAST
framework (Wendler et al., 2016; Saverin et al., 2016). In this
paper, a comparison is made between the LLFVW code and
existing literature comparisons in which higher-order aero-
dynamic simulation techniques were used, i.e. URANS CFD
(Tran et al., 2014; Sebastian and Lackner, 2013). The com-
parisons and further test cases are made using the NREL
5MW reference turbine undergoing prescribed harmonic mo-
tion (see Fig. 1; Jonkman, 2013).

2LLFVW formulations inherently account for attached flow un-
steadiness; the unsteady aerodynamic model mentioned here only
includes terms for detached flow and leading edge vorticity. The
details are given by Wendler et al. (2016).
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After the validation of the LLFVW code for simulations
involving a moving rotor plane, the aerodynamic damping
of the rotor is investigated. For this analysis, a new formula-
tion is presented for the instantaneous aerodynamic damping
of the fore–aft motion degree of freedom. The formulation
is a modification of an existing formulation that was first
presented by Bowles et al. (2014) and Corke and Thomas
(2015) and later applied by Lennie et al. (2016) to an air-
foil with microtabs. For the first time, this new formula-
tion makes it possible to look at the aerodynamic damping
throughout the pitch cycle of the wind turbine as opposed to
the traditional approach in which only cycle-averaged values
are inspected. Such a formulation is particularly useful for
analysing aeroelastic instabilities for which limit cycle oscil-
lations are present. Limit cycle oscillations will have cycle-
averaged values that are neutral but could have occurrences
of highly negative damping. Using this method on LLFVW
data makes it possible to understand the aeroelastic thrust
stability of the rotor without the heavy linearization of the
aerodynamics applied in most stability analysis techniques.
It is also a useful way of understanding the full effects of
controller wind turbine interactions. An example will be pre-
sented showing the effect of collective blade pitch cycles dur-
ing fore–aft motion of the rotor.

2 Rotor motion

For the scope of this paper, two varieties of prescribed mo-
tion are considered. The first variety, pitching, is the more
realistic representation in which the rotor plane undergoes
both pitch and linear translation (see Fig. 1). The second va-
riety, fore–aft motion, assumes that the rotor plane pitching
component is insignificant compared to the influence of the
linear translation. Within the scope of this study investigating
the total rotor thrust, the difference between the assumptions
is assumed to be small. There may be applications for which
this assumption is unsuitable. In the comparisons, the same
magnitude and type of motion is used as in the literature so
that no additional assumptions were introduced.

3 Comparison cases

The QBlade LLFVW implementation has been previously
tested for a range of standard HAWT and VAWT cases as
can be found in the existing literature (Marten et al., 2015;
Saverin et al., 2016). When the wind turbine starts moving
relative to the steady inflow, the wake will become distorted.
In the case of a harmonic movement, the wake will display
harmonic contractions and expansions (see Fig. 2) which in-
duce velocity onto the rotor plane. The publications men-
tioned above focused on verifying the performance of the
QBlade LLFVW under stationary conditions and cases with
yaw. This means that the battery of verifications undertaken
should be extended to include cases in which platform mo-

ϕ0 X0(a) (b)

Figure 1. The two different assumed motions for the wind turbine:
(a) wind turbine pitching and (b) wind turbine fore–aft motion.

tion is present, thus ensuring that LLFVW techniques are a
suitable approach for floating platform wind turbine aerody-
namics. A number of comparison papers have been sought
from the literature that test a horizontal axis wind turbine
rotor in prescribed floating platform motion. For the scope
of this paper, only rigid body motion will be considered. The
comparison will be undertaken by replicating the simulations
from the literature which used higher-order methods.

Two different papers were used as a basis for compari-
son, both investigating the NREL 5MW reference turbine
(Jonkman, 2013). Tran et al. (2014) compare a number of
techniques with virtual blade motion using multiple refer-
ence frames (CFD-MRF) and real rigid body blade motion
(CFD-RBM). The highest-order simulation is a 3-D unsteady
Reynolds-averaged Navier–Stokes (URANS) CFD simula-
tion with a k−ω shear-stress transport turbulence model.
The blade rigid body motion was achieved using an over-
set grid, which is described at length including a discussion
of the mesh convergence. The actual CFD simulations were
conducted using the commercial code Fluent™ with Star-
CCM+™ for meshing. It appears from the presented infor-
mation that the simulations should be high quality and within
the limitations of URANS.

Tran et al. (2014) also compared their results against
lower-order simulations using the unsteady blade element
momentum method. The Tran et al. (2014) implementation
of the unsteady blade element moment (UBEM) method was
taken from Hansen (2008) with corrections for tip losses,
wake unsteadiness and unsteady aerodynamics. This partic-
ular implementation took the platform motion into account
by changing the relative inflow velocity. Further compar-
isons were made using modified versions of FAST (Jonkman,
2015) from the National Renewable Energy Laboratory; one
comparison used a momentum balance for the wake solu-
tion (FAST-BEM) and the other used generalized dynamic
wake (FAST-GDW). In both cases, the structural modes were
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Figure 2. Snapshot of LLFVW simulation during pitching platform motion; vorticity isosurface of the wake coloured with velocity magni-
tude.

locked and no controller was used; for more complete details,
see the original paper from Tran et al. (2014).

Tran et al. (2014) simulate the pitching of the wind turbine
as shown in Fig. 1 (see the left-hand side). Two cases were
simulated with platform pitching amplitudes of 1 and 4◦ and
a constant harmonic pitching frequency of 0.1 Hz. The calcu-
lations were performed at a steady inflow speed of 11 m s−1

with a constant rotational speed of 12 rpm and a constant
blade pitch angle of 0◦. From this paper it was possible to
compare thrust, power and integrated blade forces.

The QBlade simulations were run with the same condi-
tions as described above. The unsteady aerodynamic model
from Wendler was enabled without vortex lift as the wind tur-
bine is operating at near rated speed without yaw (Wendler
et al., 2016). The standard NREL 5MW model (Jonkman,
2013) was set up according to the definition3.

The simulation settings can be found in Table 1. The
FVLLW requires a number of input parameters which con-
trol the behaviour of the wake. The QBlade implementation
of FVLLW lumps together wake elements in two stages in or-
der to simulate a full-length wake without prohibitive compu-
tational costs. The wake age, full wake and fine wake param-
eters determine the positions at which the two stages of wake
thinning occur and at which the wake is finally truncated.
The parameters are described in terms of rotor revolutions to
remove the dependency of the parameters on the tip speed
ratio. The wake thin factor describes the extent to which the
wake is thin. The initial vortex core radius is an important
parameter for the de-singularization of the Biot–Savart equa-
tion. The turbulent vortex viscosity introduces diffusion to
the wake. These parameters should be noted in attempts to
reproduce the simulations performed in this paper. The full
explanation of each of these parameters can be found in the
paper from Marten et al. (2015).

The LLFVW (Fig. 2) shows moderately good agreement
for all cases, which can be seen in Figs. 3, 4 and 5. It is in-
teresting to note that steady and even unsteady BEM simu-
lations, when compared to CFD or LLFVW results, under-
predict the magnitude of the load cycle in most cases. The

3The standard 5MW project file is available for download with
the standard QBlade package.

Table 1. QBlade FVLLW wake simulation settings.

Wake age in revolutions 8
Full wake in revolutions 0.5
Fine wake in revolutions 4
Wake thin factor 2
Initial vortex core radius 0.20
Turbulent vortex viscosity 40
Time step 0.1 s

three classes of simulations compared all face limitations.
The LLFVW and BEM cases both rely on 2-D polar data
which are sensitive to measurement or simulation settings
like wind tunnel turbulence or turbulence model. Lennie et al.
(2015) and Eisele et al. (2013) have shown that the quality
of the 2-D polar data is critical for power and load predic-
tion. For the BEM-based methods, it is expected that the em-
pirical corrections will struggle to represent the complicated
fore–aft motion. The CFD solutions are based on unsteady
Reynolds-averaged Navier–Stokes (URANS) equations. Af-
ter conducting thorough verification and validations of multi-
ple URANS solvers with multiple turbulence closure models,
Rumsey showed that URANS-based models have a very lim-
ited ability to model cases with separation (Stangfeld et al.,
2015; Rumsey, 2016). Furthermore, the tendency of URANS
codes to smear vorticity will cause errors in the wake induc-
tion for cases in which the blades are modelled. With each
of the simulation methods facing some sort of limitation, it
is difficult to choose one method as the baseline or “most”
accurate. Nonetheless, integrated blade forces agree well for
the CFD from Tran et al. (2014) and the LLFVW (see Fig. 5).
Discrepancies in thrust and power can be seen in Figs. 3 and
4, but they are of a reasonable magnitude.

In the publication chosen for a second comparison, Vaal
et al. (2014) use a moving actuator disc CFD hybrid method,
which allows for a good comparison of the unsteady wake
induction between CFD and the LLFVW. The moving ac-
tuator disc model essentially places a moveable actuator disc
into a CFD simulation (implemented in Fluent™). In practice
this means that the actuator disc acts as a volume force onto
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Figure 3. Thrust and power over phase angle for pitching platform motion (4◦ pitch amplitude). Comparison case: Tran et al. (2014).
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Figure 4. Thrust and power over phase angle for pitching platform motion (1◦ pitch amplitude). Comparison case: Tran et al. (2014).

the surrounding cells. It is argued by Vaal et al. (2014) that,
because this method explicitly solves the wake rather than
relying on simplified relations, the method should be more
robust than commonly used methods such as the Pitt–Peters
model (Pitt and Peters, 1983) or the Stig Øye model (Hansen,
2008). Vaal et al. (2014) present a number of investigations
into the relative performance of the models; for this paper,
the rotor plane induction is the most interesting to compare.

Vaal et al. (2014) undertook a sensitivity study show-
ing the wake velocity before and after the rotor at different
phases for different operating conditions. From this study,
the authors choose the largest amplitude (16 m) of fore–aft
movement (right-hand side of Fig. 1). The fore–aft motion
was harmonic with a frequency of 0.08 Hz; the inflow speed
was 11.2 m s−1, the blade pitch was 0◦ and the rotor speed
was a constant 0.2 Hz. Vaal et al. (2014) allowed several os-
cillations to pass in order to let the wake effects develop. The
grid extended 10 rotor diameters upstream and downstream.
It appears that the approach and settings used by Vaal et al.
(2014) provide good-quality results for comparison.

The QBlade simulations were conducted again using the
settings stated above, with prescribed linear rotor plane
movement. Like Vaal et al. (2014), a number of oscillations
were simulated before finally extracting the data. The com-
parison was made at the exact rotor plane for which the axial

velocity could be sampled over an area determined by the
rotor radius. There was not enough information provided by
Vaal et al. (2014) to ensure the consistency of the sampling
area for the induced velocity. In the context of a wake with
expansion and contraction occurring, the assumptions have
a distinct effect on the induction results. Therefore, no up-
stream or downstream comparisons were attempted. A ro-
tor plane axial velocity field snapshot was taken at equally
spaced points within the cycle. The results in Fig. 6 show
that the rotor plane induction for the two methods matches
well over the four snapshots. It therefore seems that there
is a good agreement between the two methods for the most
challenging test case presented by Vaal et al. (2014).

From the two verifications performed here it seems that the
QBlade LLFVW simulation model produces results that are
comparable to other higher-order or hybrid methods. These
results and the results already published give a high degree
of confidence in the simulation tool’s ability to model wind
turbines undergoing platform motion.
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4 Using the Hilbert transform method to obtain
instantaneous aerodynamic damping of a
translating rotor

The following section briefly outlines a reformulation of
the instantaneous damping calculation method outlined by
Bowles et al. (2014) and Corke and Thomas (2015). The
original reference by Bowles et al. (2014) describes the orig-
inal method in complete detail, and Lennie et al. (2016) pro-
vide an application of the method to an airfoil with microtabs
and gurney flaps. In the reformulation described here, the in-
stantaneous damping calculation is applied to the fore–aft
motion of the whole rotor, a situation particularly interest-
ing for floating platform wind turbines. It is assumed for this
paper that a small pitch angle means that the linear motion
will have a greater effect on the wake than the pitching of the
rotor plane.

4.1 Cycle harmonic damping

Before setting out the derivation of the instantaneous damp-
ing coefficient it is first essential to set out the cycle to-
tal aerodynamic damping. The approach taken follows the

derivation provided by Carta and Niebanck (1969) but for a
rotor undergoing fore–aft motion rather than a pitching air-
foil section. The authors would like to clearly acknowledge
that the following derivation is a modification of existing
concepts rather than a completely new derivation.

4.1.1 Linear harmonic system in a vacuum

To begin the derivation, let us start with the homogeneous
equation of the wind turbine oscillating in linear fore–aft mo-
tion (denoted as x):

mẍ∗+ cẋ∗(t)+ kx∗(t)= 0, (1)

where we make an assumption of harmonic motion thus tak-
ing

x∗(t)= x0e
iωt , (2)

which then gives

ẋ∗(t)= iωx0e
iωt , (3)

ẍ∗(t)=−ω2x0e
iωt . (4)

www.wind-energ-sci.net/2/671/2017/ Wind Energ. Sci., 2, 671–683, 2017

57



676 M. Lennie et al.: Methods for wind turbine platform stability

Substituting these results into the equation of motion then
gives

(−ω2m−

C︷︸︸︷
iωc + k)x∗(t)= 0. (5)

As highlighted by Carta and Niebanck (1969), the damp-
ing terms are contained within the imaginary term of the
equation of motion. For similar linear systems, the damp-
ing should be contained within the imaginary terms of the
differential equation.

4.1.2 Linear harmonic system in air

Now by introducing the aerodynamic terms into the equation
we arrive at the particular equation of

(−ω2m−

C︷︸︸︷
iωc + k)x∗(t)= T ∗U . (6)

Still following the logical steps set down by Carta and
Niebanck (1969), the unsteady thrust force can be written
as

T ∗U = T1ẍ
∗
+ T ∗2 ẋ

∗
+ T ∗3 x

∗, (7)

where

T2,T3 ∈C, (8)

but

T1 ∈R (9)

due to the rationale that T1 represents the apparent mass
terms of the system which are identified in terms of the in-
stantaneous reaction forces of an impermeable disc in still
air. Instantaneous reaction forces are in phase with the ac-
celeration and therefore real. A similar rationale was used
in the SDOF torsional airfoil oscillator formulation by Carta
and Niebanck (1969), Bisplinghoff et al. (2013) and Scanlan
and Rosenbaum (1951), this time by directly comparing to
the Theodorsen theory (Theodorsen, 1935) in which a well-
known distinction is made between the real and imaginary
parts of the Bessel function. By substituting in the Cartesian
forms of the thrust force

T2 = T2R+ iT2I, (10)
T3 = T3R+ iT3I, (11)

we arrive at the following equation:

(m− T1)ẍ∗+ (c− T2R− iT2I)ẋ∗ (12)
+ (k− T3R− iT3I)x∗ = 0.

By assuming harmonic motion and collecting real and imag-
inary terms, the equation is reduced to

[(−ω2(m− T1)+ωT2I+ k− T3R) (13)
+ i(ω(c− T2R)− T3I)]x∗ = 0.

By eliminating the mechanical damping terms, which are the
terms present in a vacuum, the aerodynamic damping can be

shown as

ξ =−ωT2R− T3I. (14)

This result will form a key step in the next decomposition.

4.1.3 Work done by a rotor in fore–aft motion

Let us now take a different decomposition of the thrust force
into its constituent steady and unsteady parts4.

TTOTAL = TMEAN+ TUR cosωt + TUI sinωt (15)

Two options exist for the normalization of the thrust force:
the freestream velocity or with the inflow velocity thus ac-
counting for the rotor movement. The former assumption
simply implies that the unsteady coefficient will contain the
freestream effects for the expected velocity ratios expected
for wind turbine pitching movement and freestream veloc-
ities. This may cause some peculiarities in the appearance
of the data similar to the lift coefficient overshoots seen by
Müller-Vahl (2015) and Strangfeld (2015) in unsteady air-
foil wind tunnel measurements. Nonetheless, the freestream
velocity is taken as convention, meaning that the unsteady
features will be wrapped up into the unsteady thrust coeffi-
cient.

This gives the coefficient form

CTTOTAL = CTMEAN+CTUR cosωt +CTUI sinωt. (16)

The work performed over one cycle of rotor fore and aft mo-
tion can be given as

WT =

∮
TTOTALdx (17)

or in coefficient form

CWT =

∮
CTTOTALdx. (18)

Here the differential operator can be switched

dx = x0 sinωtdωt, (19)

and the integral range can be set from 0< ωt <−2π to cap-
ture a single cycle, finally giving

CWT =−

2π∫
0

[CMEAN+CTUR cosωt (20)

+CTUI sinωt]x0 sinωtdωt.

By assuming that the thrust force will be simple harmonic
(or deviate minimally), evaluating the integral shows that the

4TUnsteady is hereafter abbreviated TU.
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real unsteady term and the mean terms are both eliminated
during the integration, leaving

CWT = πx0CTUI. (21)

This result can also be represented in the form

CWT = πx0CTUI = x0CT0 sinφ. (22)

This result is the second of the building blocks required to
extract the aerodynamic damping from the measurement or
simulation data.

4.1.4 The third decomposition of the thrust force

Let us now inspect the unsteady thrust force terms further. If
we assume the thrust to be a sinusoidal time-dependent func-
tion, the unsteady thrust force can be given in the Cartesian
form

TU = TUR+ iTUI. (23)

For a prescribed motion system, the earlier homogeneous
equation (Eq. 13) can be written as a particular equation, thus
giving

TU = TUR+ iTUI = [(−ω2(m− T1)+ωT2I+K − T3R)
(24)

+ i(ω(C− T2R)− T3I)]x.

By equating real and complex terms we get

TUI = [(ω(c− T2R)− T3I)]x. (25)

This result provides the key to extracting the aerodynamic
damping coefficient from the thrust data. From earlier we
know that

ξ = (−ωT2R− T3I). (26)

These two equations can be related through

ξ =−
dTUI

dx
(27)

or written in the coefficient form

4=−
dCTUI

dx
. (28)

Using the earlier result of

CWT = πx0CTUI = x0CT0 sinφ, (29)

we can finally arrive at the conclusion that

4CYCLE =
dCWT
πx0

dx
=−

1
πx2

0

∮
CTTOTALdx. (30)

This equation will form the basis of checking whether the
instantaneous equation formulation is correct. In practice it
also provides a useful debugging tool for the code implemen-
tation.

4.2 Instantaneous damping derivation

In most formulations, certainly as shown above, only a cycle-
averaged value of aerodynamic damping is found. Bowles
et al. (2014) and Corke and Thomas (2015) provided a break-
through on this front by using the Hilbert transform to get an
estimate of the magnitude and phase of a signal. If we inspect
the following equation from the earlier whole-cycle deriva-
tion, we may already see the general direction that such a
method would follow.

CWT = x0T0 sinφ (31)

The instantaneous damping derivation begins with yet an-
other form of the basic equation of motion for the prescribed
fore–aft motion of a wind turbine rotor. The prescribed mo-
tion leaves only the aerodynamic forces,

mt ẍ+h
∗(t)ẋ(t)+ κ∗x(t)= T (t), (32)

into which we can insert the apparent mass or inertia of air
(Pitt and Peters, 1983),5

mtair =
8
3
ρR3, (33)

and then the complex damping and stiffness terms can be
described in polar form as

h∗ = hr + ihI = he
iγ1 , (34)

κ∗ = κr + iκI = κe
iγ2 . (35)

Thus we arrive at

8
3
ρR3ẍ+heiγ1 ẋ+ κeiγ2x = T . (36)

By introducing the natural frequency parameter ω0 as

ω0 =

√
3κ

8ρR3 , (37)

the equation reduces to

ẍ+ 2h0ω0e
iγ1 ẋ+ω2

0e
iγ2x =

3
8ρR3 T . (38)

Now taking the Hilbert transform of both sides of the equa-
tion results in

Ẍ + 2h0ω0e
iγ1Ẋ +ω2

0e
iγ2X = 3T

8ρR3 , (39)

5The inertia is not used in this derivation and the apparent mass
terms are actually cancelled out later. However, it is important to
note that the apparent mass analogy can be made for a rotor. If that
were not true, then the first term would also be complex and this
derivation would be invalidated.
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where we replace the thrust and movement with their analyt-
ical signal counterparts

X =X+ iX̃ = xampe
iωt , (40)

T = Tu+ iT̃u = At (t)eφ(t), (41)

and equate the imaginary and real components

−ω2
− 2h0ω sinγ1+ω

2
0 cosγ2+ i(2h0ωcosγ1+ω

2
0 sinγ2) (42)

=
3

8ρR3xAmp
(Tu+ iT̃u)e−iωt .

Again, the imaginary components correspond to the damping
of the system.

2h0ωcosγ1+ω
2
0 sinγ2 (43)

=
3

8ρR3xAmp
(T̃u cosωt − Tu sinωt) (44)

=
3AT (t)

8ρR3xAmp
sin

ψ︷ ︸︸ ︷
(φ(t)−ωt) (45)

The left-hand term of this equation correlates with the damp-
ing of the system normalized by the apparent mass of the
air using a combination of the equations set down by Carta
and Niebanck (1969) and the normalization highlighted by
Bowles et al. (2014) and Corke and Thomas (2015).

ξ =
AT (t)
xAmp

sin

ψ︷ ︸︸ ︷
(φ(t)−ωt) (46)

Finally, we can normalize

4(t)=
ξ

PdynA
=−

ACt (t)
xamp

sinψ(t), (47)

where C̃t (t) is given by the Hilbert-transformed thrust coef-
ficient time series Ct (t)

C̃t (t)=H[Ct ] = −
1
π
P

inf∫
−inf

Ct (τ )
τ − t

dt, (48)

thus giving the analytical signal magnitude

ACt =

√
C2
t + C̃

2
t (49)

and phase

φ(t)= arg(Y (t))= arg(Ct + C̃t ), (50)

which gives us the phase difference between the lift and the
fore–aft motion,

ψ(t)= φ(t)−ωt, (51)

from the assumed motion

X(t)=X0e
iωt . (52)

The time-averaged damping then gives us the cycle damp-
ing:

4avg =−
1
T

T∫
0

4(t)dt. (53)

As previously undertaken by Bowles et al. (2014), Corke and
Thomas (2015) and Lennie et al. (2016), the cycle-averaged
damping formulation provided by Carta and Niebanck
(1969) can be used as a comparison. For this derivation, the
comparison will be against the formula derived earlier for the
fore–aft motion of a rotor.

4=
dCWT
πX0

dx
=−

1
πX2

0

∮
CTTOTALdx (54)

Agreement between the two calculations provides a useful
(although not completely “leak-proof”) verification that the
analytical signal is well conditioned and that no implemen-
tation errors are present. Verifications undertaken in Lennie
et al. (2016) for the original formulation showed less than
< 1 % variation between the methods; Bowles et al. (2014)
also remarked on the good agreement.

On the practical side, Hilbert transforms are intended to
analyse narrowband signals. It was previously established in
Lennie et al. (2016) that numerical or experimental noise
does not cause problems for this formulation; therefore no
signal filtering will be applied. Both original and phase-
averaged data were analysed, although only graphs of the
phase-averaged data are presented in the paper. In the origi-
nal time series, stochastic variations due to turbulent inflow
are present in cases with turbulence. Otherwise after a few
cycles the results converge to the phase mean.

5 Demonstration case 1: collective blade pitch

Having presented the analysis methods, it is possible to use
these methods to investigate an example case of floating plat-
form wind turbine aeroelasticity. A case was selected that
should demonstrate more complicated thrust damping be-
haviour. The case chosen is harmonic collective pitch in the
presence of platform translation. Further potential test cases
for future work would include harmonic platform movement
in combination with the following:

– yawed inflow;

– inflow turbulence;

– gusts or sudden changes in direction;
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Figure 7. Collective pitch damping cycles.

– changes in airfoil performance through simulated active
flow control;

– and/or non-synchronous pitch and platform movements.

Harmonic collective pitch in conjunction with platform
movement is a complicated test case, but it is still simple
enough to give a good demonstration of this particular tool
chain. The collective pitch motion was prescribed using the
formula

α = α0 sin(ωt +φpitch). (55)

The test case settings are given in Table 2.
The collective pitch cycle chosen is not a realistic control

regime, but it was chosen to give a clear demonstration of the
method. The LLFVW simulation was run for 60 s with a sin-
gle cycle chosen for analysis after the initial wake effects had
died out. The instantaneous damping was calculated from the
thrust data using the method already discussed. As a verifi-
cation the two cycle-averaged values were compared and had
good agreement; the values are presented in Table 1.

The cycle-averaged aerodynamic damping values do in
fact show that collective pitch has an effect. While thrust

Table 2. Demonstration case 1 simulation settings.

Rotor speed (rpm) 12.1
α0 (◦) 0.5
φpitch (–) 0, 0.5π , π , 1.5π
Inflow velocity (m s−1) 11.4
ωpitch, ωplatform (rad s−1) 0.5

forces tend to be positively damped (with this sign conven-
tion, that means good damping), we can see that the mag-
nitude of the damping is altered. In Fig. 7, it is possible to
follow the chain of logic that leads to these changes. In the
thrust force sequences, it is possible to see that while there
are some magnitude shifts, the more important feature is that
the phase of the thrust force is shifted. This then manifests as
changes to the aerodynamic damping.

A closer inspection reveals an interesting feature: a 0.5π
(green) phase shift of the pitching sequence leads to an al-
most constant thrust force. This may appear to be favourable
to reduce the fatigue loads of the wind turbine. However,
what has effectively happened is that there is no force in
phase with the velocity of the movement and therefore no
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Figure 8. Negative blade pitch manoeuvre.

Table 3. Comparison of cycle damping values.

Averaged Cycle- Error
instantaneous averaged

damping damping

φPitch = 0 0.030 0.031 3.5 %
φPitch = π 0.036 0.038 3.5 %
φPitch = 1.5π 0.060 0.062 3.5 %
φPitch = 0.5π −0.001 −0.001 3.5 %
Baseline 0.036 0.037 3.5 %

complex term, thus resulting in slightly negative aerody-
namic damping. In this case, the system would rely on the
other sources of damping6 to reduce the amplitude of oscil-
lation.

In the opposite case with a pitch phase shift of 1.5π (yel-
low), the thrust force is more in phase with the velocity, and
thus the opposing movement of the rotor is enhanced. The
cycle-averaged damping reflects this with a stronger damping

6i.e. structural or that provided by the floating platform.

value. The instantaneous damping value starts to show some
departure from a pure harmonic signal. This can be traced to
the matching non-linearity in the thrust force, which could
arise from rotor wake interactions; it is these effects that are
difficult to account for in a cycle-averaged value. In the lit-
erature examples in which a pitching airfoil was examined
(Bowles et al., 2014; Corke and Thomas, 2015; Lennie et al.,
2016), the non-linearities were very strong due to dynamic
stall and caused strong spikes in aerodynamic damping. In
simulations in which sudden changes of operating conditions
are present, the instantaneous damping method will highlight
sudden drops in aerodynamic damping when they occur, even
if they do not show up in the cycle-averaged values.

6 Demonstration case 2: collective blade pitch
manoeuvre

The second case attempts to demonstrate one of the most use-
ful aspects of the instantaneous damping approach. Again in
this case, we will look at a collective blade pitch manoeuvre,
but this time the pitching will not be periodic. This highlights
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Figure 9. Positive blade pitch manoeuvre.

one of the advantages of the assumptions made in the deriva-
tion. The prescribed motion of the platform must be periodic,
but the thrust force response has no restriction. This in turn
means that we are free to try out any control manoeuvres as
long as the platform motion remains periodic.

The second demonstration case will consist of a simple
5.2◦ blade pitch manoeuvre at a rate of 4◦ s−1. In total, eight
cases were simulated with the pitching beginning at different
phase angles with respect to the harmonic translation of the
platform. The platform translation had an amplitude of 2 m
with a frequency of 0.5 rad s−1. These simulation values are
summarized in Table 4. The FVLLT simulation was run using
the same inputs as listed earlier.

The results are presented in two sets with the negative
blade pitch manoeuvre in Fig. 8 and the positive pitch ma-
noeuvre in Fig. 9. For the negative blade pitch manoeuvres,
we can see a clear increase in aerodynamic damping when
the blades are pitched as the rotor retreats. Pitching the blades
as the platform is advancing causes a clear drop in the aero-
dynamic damping. For the positive blade pitch manoeuvres,
pitching as the rotor advances creates only a small increase

Table 4. Demonstration for case 2 simulation settings.

Rotor speed (rpm) 12.1
α0 (◦) 0
αManoeuvre (◦) 5.2, −5.2
ωpitch (◦ s−1) 4
φpitch (–) 0, 0.5π , π , 1.5π
Inflow velocity (m s−1) 11.4
ωplatform (rad s−1) 0.5
X0 (m) 4

in the aerodynamic damping compared to the retreating case.
These kinds of results could help design a controller which
restricts negative blade pitch rates as the rotor plane advances
in order to maximize tower-top stability. The same approach
is also useful for cases with other variations like changes in
rotor speed for start up or shut down.
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7 Conclusions

The QBlade implementation of the lifting-line free vor-
tex wake (LLFVW) method proved to be a useful tool
for analysing floating platform wind turbines. Comparisons
against two independent test cases using a variety of meth-
ods showed relatively good agreement in thrust forces, rotor
power, blade forces and rotor plane induction. Along with
the many verifications already undertaken in the literature, it
seems that the code will perform solidly even in these chal-
lenging cases. Further work is required to extend the same
analysis with flexible blades, tower and eventually platform
rather than prescribed motion; research on some of these top-
ics is already under way.

A new formulation of the instantaneous aerodynamic
thrust damping of a wind turbine rotor was described. The
first demonstration case was used to verify that the cycle-
averaged damping values line up with well-established meth-
ods. The case also showed how the system alternated be-
tween being stable and unstable within a single cycle. The
second demonstration case showed a more complicated pitch
manoeuvre; the instantaneous damping method was useful
in understanding the system but provided helpful informa-
tion for designing control strategies. It would be useful in
future work to generalize the method so that any mode shape
could be analysed without having to undertake the extensive
derivation described in this paper.

Code availability. The full implementation of QBlade is available
for download at https://sourceforge.net/projects/qblade/.
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Vortex Shedding and Frequency
Lock in on Stand Still
Wind Turbines—A
Baseline Experiment
During the commissioning and stand-still cycles of wind turbines, the rotor is often
stopped or even locked leaving the rotor blades at a standstill. When the blades are at a
standstill, angles of attack on the blades can be very high, and it is therefore possible
that they experience vortex-induced vibrations. This experiment and analysis helps to
explain the different regimes of flow at very high angles of attack, particularly on moder-
ately twisted and tapered blades. A single blade was tested at two different flow velocities
at a range of angles of attack with flow tuft visualization and hotwire measurements of
the wake. Hotwire wake measurements were able to show the gradual inception and end-
ing of certain flow regimes. The power spectral densities of these measurements were
normalized in terms of Strouhal number based on the projected chord to show that cer-
tain wake features have a relatively constant Strouhal number. The shedding frequency
appears then to be relatively independent of chord taper and twist. Vortex generators
(VGs) were tested but were found to have little influence in this case. Gurney flaps were
found to modify the wake geometry, stall onset angles, and in some cases the shedding
frequency. [DOI: 10.1115/1.4039818]

Introduction

During the commissioning and stand-still cycles of wind tur-
bines, the rotor is often stopped or even locked leaving the rotor
blades at a standstill. Rotors can also be set to idle outside of the
normal wind operation bounds or during grid failure. Furthermore,
before blades are usually attached to the hub during assembly by
crane. In these configurations, the inflow angle on the rotor blades
can reach very high angles of attack. During informal discussions,
a number of manufacturers have revealed that large vibrations
have been observed and literature also points towards such prob-
lems. Such vibrations are a problem as they contribute to the
fatigue life of the turbine, even when there is no power being pro-
duced. This paper will explore some of the aerodynamic drivers
of problems that can appear during such load cases.

At high angles of attack, we leave the realm of attached flow
and enter the region of stall. Stall is an inherently unstable process

in both space and time. In light stall, we can observe unsteady
pressure oscillations as the separation point moves along the chord
and even span. If the angle of attack continues to dynamically
increase into deep stall, the shear layer wraps up into a leading
edge vortex [1], which eventually washes downstream to create
lift spikes and moment dumps [2]. The wake structure here is
coherent and this form of shedding is called the “wake mode” in
literature [3,4].2 If airfoil is exposed to high angles of attack stati-
cally, the shear layer rolls up into large-scale structures as part of
a continuous process; these structures grow spatially as they travel
downstream [5]. This mode is referred to the “shear layer” mode.
At very high angles of attack, bluff body type shedding can be
observed with vorticity shedding from both the leading and trail-
ing edges. In terms of spatial variations, Manolesos et al. observed
that “stall” cells would develop and then jump to otherwise span-
wise locations without any observable cause [6]. Water tunnel
experimental results are particularly effective in demonstrating
just how unstable the lift can be due this kind of behavior [7]. Add

1Corresponding author.
Contributed by the Turbomachinery Committee of ASME for publication in the

JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received
November 14, 2017; final manuscript received March 1, 2018; published online July
30, 2018. Editor: David Wisler.

2See “The Dynamics of Static Stall” [5] for a detailed discussion on the
differences between static and dynamic stall wake behavior.
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these effects to a flexible wind turbine blade and large vibrations
can occur.

Besam et al. [8–11] have been exploring the concept of vortex
induced vibrations and particularly the effect of frequency lock-
in. The frequency lock-in effect sees the physical translation or
pitch of an airfoil (or cylinder) drive the vortex shedding at high
angles of attack with in a bandwidth of frequencies centered about
the natural shedding frequency. A critical part of Besem’s work
was to establish through experiments and simulations the relation-
ship between the magnitude of the excitation and the bandwidth
of frequency control. With modern wind turbine blades being flex-
ible, it is entirely possible that the rotor blades are not only the
victim of pure aerodynamics but also part of an aeroelastic closed
feedback loop.

A key question is: is it practical to manipulate this behavior in
order to avoid these kinds of frequency lock-in effects? For the
structure, it may be possible to change the modal frequencies or
shapes to make the driving aerodynamic force and response inco-
herent. Unfortunately, making significant changes to mode shapes
and frequencies of blades requires massive amounts of material and
may cause the blades to be sensitive to other driving frequencies in
its normal operation. Thus, changing the structure is probably unde-
sirable but it may be possible to change the aerodynamic driving
frequencies. This could be achieved through the use of passive flow
control devices. The upside of this approach would be that many of
these devices are cheap to manufacture and install.

The first device investigated in this work is the vortex generator
(VG’s). Vortex generators are small devices installed usually to
the suction side of an airfoil to delay stall. VGs delay stall by cre-
ating longitudinal vortices, which transfer high momentum fluid
into the boundary layer; this extra momentum helps overcome the
adverse pressure gradient found on the suction side of airfoils.
This effect tends to delay stall until higher angles of attack resort-
ing in a high maximum lift at a higher angle of attack [12,13].
These improvements are accompanied with an increase in para-
sitic drag, which is most noticeable at low angles of attack. Of
course, the VGs have to be exposed to high momentum fluid in
order to function. This means that once the VGs are either
swamped by the boundary layer or separated flow, they are no lon-
ger effective; the lift behavior will then merge again with the
behavior of the original airfoil. Wind turbine airfoils are usually
relatively thick with well-rounded leading edge geometry; we can
expect stall to develop gradually from the trailing edge as the
angle of attack increases [7,14]. An experimental parameter study
from Mueller-Vahl et al. [12] demonstrates that this kind of trail-
ing edge separation can be delayed. In practice, vortex generators
have resulted in an increase in annual energy production with
either neutral or slightly increased loading [15,16]. The results are
particularly positive when leading edge roughness is present [17],
which is commonly the case on wind turbines [18].

The question that remains, however, is: will the VGs have any
effect on the kinds of lock on effects which are the main subject
of this study? There is ample evidence that the leading edge type
of shedding (wake mode) can be attenuated or removed com-
pletely through the use of periodic excitations. A zero-net mass
flux actuator, for instance, forces shear layer roll up at a higher
frequency than the natural frequency (thus have a smaller scale),
which results in smaller vortices, which encourage mixing much
like the vortex generators [19,20]. Various sources have investi-
gated the use of VGs (and dynamic VGs) for dynamic stall control
[21–24]. These studies invariably indicate that dynamic stall vorti-
ces can be attenuated using active or passive VGs. Experimental
PIV studies seem to indicate that like the zero-net mass flux actua-
tors, by breaking up the large structures into smaller structures,
the flow seems to have a better resistance to the adverse pressure
gradients [23]. Greenblatt and Wygnanski [19,20] indicated that
the addition of control did introduce a small perturbation in the
lift, drag, and moment coefficients but seemed to suppress the
large inter-cycle oscillations usually present post stall [25]. Mull-
eners and coworkers [23], however, seemed to indicate that

although the VGs did smooth the stall behavior, in post stall, high
amplitude pressure perturbations where present, which were
attributed to the shifting position of the separation point.3 Such
unsteadiness would be detrimental rather than beneficial. It seems
that VGs can exert control on wake mode types of stall in a mostly
beneficial manner. This study will try to establish whether VGs
show an effect in shear layer mode shedding as well, that is,
before the VGs at completely engulfed by the separated flow.

Vortex generators function by introducing a stream wise vortex
into the flow, which acts to transfer momentum into the boundary
layer and chops large flow structures into smaller structures.
Another way to influence shear layer mode shedding to introduce
vorticity with a spanwise core into the flow. We can achieve this
passively by adding gurney flaps to an airfoil. Liebeck [26] was
one of the first authors to consider the vortex system that would
form around a gurney flap (see Fig. 1). This is a static representa-
tion of the vorticity; in real circumstances, we can expect a Von
Karman street shedding system to form as the shear layer roll up
(thus vortex formation) alternates between the upper and lower
shear layers [27,28]. The shedding frequencies are usually much
higher than the airfoil shedding frequency and may have a particu-
larly strong effect on the trailing edge shear layer. In a steady
sense, gurney flaps operate by disrupting the Kutta condition. In
place of the normal Kutta condition, vorticity forms upstream and
downstream of the gurney flap on both the suction side and pres-
sure side as shown in Fig. 1. The shedding downstream of a Gur-
ney flap results (on average) in a shift toward the direction of
gurney flap. Nevertheless, the gurney flap inherits a periodic wake
consisting of a pronounced downwash and a lighter upwash, as
shown by Holst et al. [29] for finite width gurney flap.

Previous two-dimensional (2D) testing has shown that gurney
flaps on the suction side of an airfoil will become ineffective at
modifying the time-averaged coefficients at high angles of attack
[30]. This is true for static and dynamic pitch tests. While the
Kutta condition does not hold in separated flows, gurney flaps
should nonetheless modify the wake geometry. Instead of steering
the entire wake, we can expect the trailing edge shear layer to be
steered instead. Through computational fluid dynamics (CFD),
Bach [28] was able to demonstrate qualitatively that suction-side
microtabs will modify the size and strength of trailing edge and
leading edge vorticity even though the airfoil was already in deep
stall at (18 deg). A simple flow visualization on an S809 airfoil
was enough to demonstrate that even at very high angles of attack,
gurney flaps will change the geometry of the wake which should
have an effect on the unsteady lift (see Fig. 2). The flow visualiza-
tions show that the gurney flap does steer the shear layer down-
ward thus increasing the separated zone, analogous to an increase
in chord length. It was not possible to observe unsteady effects
hypothesized above with the smoke visualization but they may

Fig. 1 Vortex patterns from VGs and a gurney flap on the pres-
sure side of an airfoil

3These tests were conducted on an OA209 a thinner airfoil with harder stall
characteristics than most modern wind turbine airfoils.
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well still be present. Between the mean effects of modified wake
geometry and the dynamic effects of introducing high frequency
vorticity at the shear layer, some effect on the shedding behavior
of the airfoil can be expected. This study will try to establish
whether this hypothesis is valid by also testing gurney flaps
installed on the pressure side of the airfoil.

The simulations and experiments provided by literature so far
cover prismatic airfoil sections with constant mechanical proper-
ties. Essentially, the test configurations were distilled to only con-
sider 2D effects. Wind turbine blades have none of these features;
they are twisted, have variable chords, and the airfoils are gradu-
ally changed over the span. Manolesos et al. [6] highlighted that
even for a prismatic section, stall should be considered as a three-
dimensional (3D) effect. But consider now that natural vortex
shedding frequencies are partly driven by chord length and pitch.
Over the blade, we now have a range of natural shedding frequen-
cies and mode shapes (with associated eigenfrequency). So, there
are still some steps required before understanding vortex-induced
vibrations on a wind turbine.

Literature provides different ways of approaching instabilities
at high angles of attack. Wang et al. [31] used nonlinear time
domain and linear eigenvalue analysis to identify possible modes
while the turbine is idling. Pirrung et al. [32] have been attempting
to address the problem through reduced order methods by creating
a trailed vorticity model for blade element momentum. If we look
at a standard implementation of a Beddoes Leishman type [33]
unsteady aerodynamics model like that provided by Wendler et al.
[34], we can see that the treatment of very deep or massive stall is
not specifically treated. So, if the wind turbines are being sub-
jected to vortex-induced vibrations, we could not expect the cur-
rent models to capture it accurately. Various CFD efforts using
dynamic eddy simulation (DES) and Reynolds averaged
Navier–Stokes have shown vortex-induced vibrations and lock-in
effects for 2D profiles [35,36]. While Besam [9] used a harmonic
balance method based on Reynolds averaged Navier–Stokes to
resolve the shedding frequency, there is a lack of literature at this

point in time extending the principle the 3D case,4 likewise for
DES or large eddy simulation solution methods. Deep dynamic
stall comparisons between 2D and 3D indicate that pressure distri-
butions, lift curves, moment curves, and vortical dynamics are
better resolved by 3D simulations (of a prismatic airfoil section)
[37,36]. In a recent study, Gaunaa et al. [38] used 3D DES simula-
tions on blades during installation to build a correction factor for
the static forces, thereby highlighting the influence of cross flows
and other 3D effects on blades at unusually high angles of attack.
It seems that there is still a lot to learn about the full 3D case and
certainly a need for greater understanding.

This paper describes an experimental campaign that will estab-
lish a baseline of a 3D blade at very high angles of attack. The
experiment consists of a 3D wind turbine blade taken from the
Berlin research wind turbine (BeRT) [39] being tested in the Gro-
WiKa wind tunnel at the Technische Universit€at Berlin. A pair of
X configuration hot wires was used to measure the flow velocity
downstream of the blade. This setup is not actuated so these
results will serve as a baseline study. With this setup, we can par-
ticularly demonstrate for the 3D case whether the frequency spec-
trum behavior found in the work of Tang and Dowell [11], where
a distinct shift between broadband noise and narrowband shedding
(with increasing angle of attack), can be discerned as clearly. The
results will also provide an assessment of whether the 2D assump-
tion made in the aforementioned literature can be treated as accu-
rate enough. It is hoped that these results will provide a better
understanding of vortex-induced vibrations on wind turbines.

Experiment Setup

The BeRT wind turbine is a research turbine designed for the
GroWiKa wind tunnel (Fig. 3) at the Hermann-F€ottinger-Institut
of Technische Universit€at Berlin [39]. The wind tunnel is a
closed-loop wind tunnel with a turbulence level of less than 0.5%
and a test section of 1.4 m� 2 m. The test subject was a single
rotor blade from the BeRT Wind turbine [40]. The rotor blades
were designed based on a Clark-Y airfoil with a chord length and
twist distribution shown in Table 1. It should be noted that this
airfoil is not a standard wind turbine airfoil but was chosen for the

Fig. 2 Smoke visualization of an S809 with 5mm gurney flap at
high angles of attack (low Reynolds) in the visualization wind
tunnel. Notice the steering of the trailing edge shear layer and
also the interaction between the shear layers downstream.

Table 1 Overview of the chord and twist of the blade for each
measurement height

Span
(mm)

Chord
(mm)

Twist
(deg)

Span
(mm)

Chord
(mm)

Twist
(deg)

0 267 10 360 180 5.4
90 242 8.7 450 164 4.5
180 221 7.5 540 144 3.4
270 201 6.4 630 115 2.2

Fig. 3 GroWiKa wind tunnel

4Read here: 3D Blade with twist and taper. The following references have
analyzed a simple 2D airfoil with a 3D grid [35–37].
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BeRT wind turbine in the context of a larger research project.
This airfoil is thinner than a large modern wind turbine airfoil so
some differences in the stall behavior can be expected due to the
tendency of thin airfoils with sharper leading edges to stall hard
[14]. Furthermore, the baseline test configuration is a clean blade,
which again departs from the reality of wind turbine practice [41]
where leading edge soiling causes a forced transition of the
boundary layer.

A single blade was detached from the turbine and clamped ver-
tically (using the standard hub connection) onto the rotating force
balance. The blade passed through the rotating turntable plate
with a small gap between the foil and the plate. Behind the blade,
a two-axis traverse with two X configuration hot-wire probes was
constructed. Prandtl tubes were used to measure the incoming and
wake flow velocities as a backup for the velocities measured from
the wind tunnel nozzle pressure difference and X wires, respec-
tively. An overview of the setup is presented in Figs. 4 and 5.

For the vortex generator configuration, there were used two dif-
ferent sizes. The smaller VGs had a width of 7mm and a height of
5mm, the bigger VGs had a size of 15mm and 10mm, respec-
tively. Ten of the smaller VGs were installed and seventeen of the
large. The small VGs were fixed on the blade beginning at 70mm
beneath the blade tip and covering a range of 325mm, the big
VGs covering a range of 210mm and beginning 25mm beneath
the lowest small VGs.

The gurney flap was constructed from a simple plastic L-
profile. It was mounted along the trailing edge on the suction side
of the blade beginning 65mm beneath the tip and ranging to
988mm beneath the tip. This covered the entire measurement
range. The gurney flaps had a height of 5mm based on previous
parameter studies undertaken by Bach [28]. The configurations
for the VGs and gurney flaps are shown in Fig. 6.

An initial fast sweep of the wake was undertaken to detect the
edges of the wake at all angles of attack. An adaptive grid was
then generated for the main tests to ensure that the regions of high
gradient were well resolved with a high density of measurement
points (see Fig. 7). The two hotwires were oriented perpendicu-
larly and then each of the measurement points was repeated for
each probe, thus resolving the velocities in all three directions.
The hotwires were calibrated against the probe designated as the
“Wake Prandtl Tube” with the traverse in a position well clear of
any interference from the wake. The hotwires were used in

Fig. 4 Top view of the experimental setup (not to scale)

Fig. 5 Side view of the experimental setup (not to scale)

Fig. 6 The VG and GF configurations
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constant temperature configuration with a 2 kHz low pass filter on
the TSI IFA100 Anemometers (Table 2).

The data were sampled at a rate of 5 kHz using a NI 9188
cDAQ chassis equipped with NI-9215 modules. The signals were
digitized synchronously at 16 bit and recorded using a custom
LabVIEW program. Inflow speed and ambient data were obtained
by additional sensors as depicted in Figs. 5 and 7.

The blade was tested in quasi-static conditions for a range of
angles of attack and for two Reynolds numbers. For simple flow
visualization, a case was run with flow tufts. The tufts and backing
foil were then removed resulting in a clean configuration for the
main baseline tests.

Results

Baseline Results. For the scope of this paper, two data sets will
be analyzed. The first set is the flow tuft visualization shown in
Fig. 8. During the short wake measurements, photos were taken at
each angle of attack. The photographs were post processed using
a sequence of brightness adjustment, threshold filtering, and ero-
sion thickening to leave only the tufts in black and white. One
“dead” tuft was removed from the photograph after it was discov-
ered posttest that it was stuck in reversed position. The outline of
the blade was then superimposed back onto the diagrams giving
the results shown in Fig. 8. These steps were taken to improve
readability.

The flow tuft results show that for the higher angles of attack,
as expected, the tufts seem to indicate separated flow. What is
interesting is that different cross flow patterns can be observed
over the span of the blade with a pattern change most noticeably
at midspan. Video sequences showed that this midspan pattern

Fig. 7 Measurement point density optimized to capture the
edge of the wake

Table 2 Overview of the different run configurations

# Surface Velocity Samples AoA

1 Clean 14 m/s 262,144 �6 deg, �3 deg, 0 deg, 3 deg, 6 deg, 9 deg, 12 deg, 15 deg, 20 deg,
30 deg, 40 deg, 50 deg, 60 deg, 90 deg

2 Clean 20 m/s 262,144
3 VG 14 m/s 262,144
4 Gurney 14 m/s 262,144

Fig. 8 Flow tufts visualization on the suction blade surface at
6 deg, 30deg and 70deg from left to right

Fig. 9 Wake coordinates normalized by projected chord
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change seems to surge up and down the span of the blade. This
surge pattern was not harmonic but seemed to have two distinct
states. Unfortunately, surface pressure measurements were not
possible but the simple visual result seems to show some kind of
stall cell behavior like described by Manolesos et al. [6].

The hotwire data were post processed to yield the power spec-
tral densities using overlapping and average methods with a Han-
ning Window. The signal was split into 255 segments using a
window overlap of 50%. The coordinate corresponding to the
width of the wake was normalized by the projected chord length
for the local angle of attack taking into account the global pitch

setting and local blade twist (see Fig. 9). For very low angles of
attack, the normalization was based on the thickness of the section
thus giving

cprojected ¼ max
tmax

c sinðaÞ

(
(1)

where

tmax ¼ maximumairfoil thickness (2)

Fig. 10 V component wake velocities at a height of 360mm (above reference) for Angles of Attack from 0deg to 90deg at an
inflow of 14 m/s: (a) alocal 2.6deg, (b) alocal 9.4 deg, (c) alocal 12.4deg, (d) alocal 17.4deg, (e) alocal 27.4deg, (f) alocal 37.4deg, (g)
alocal 47.4deg, (h) alocal 57.4deg, and (i) alocal 87.4deg
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and then

xnorm ¼ xabsolute
cprojected

� c 1� xpitchaxisð Þ
cprojected

(3)

The results were then offset to place the trailing edge at zero
and the leading edge or thickness are placed at 1 (see Fig. 9 for an
example graph). For ease of comparison, all graphs were given
the same axis limits. The frequencies were normalized giving the

results in terms of Strouhal number using the following formula
based again on the projected chord length:

St ¼ fcprojected
U1

(4)

The hotwire measurements in Fig. 10 display four different
wake regimes. (Item enumeration corresponds to the subfigure
enumeration.) They are:

Fig. 11 V component wake velocities across the blade span for a reference pitch 40deg at an inflow of 14m/s: (a) alocal 34deg
at 90mm from reference, (b) alocal 35deg at 180mm from reference, (c) alocal 36deg at 270mm from reference, (d) alocal 37deg
at 360mm from reference, (e) alocal 38deg at 450mm from reference, (f) alocal 39deg at 540mm from reference, and (g) alocal
40deg at 630mm from reference
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Figures 10(a)–10(b): Attached flow, slight presence of bound-
ary layer noise at the trailing edge.

Figures 10(c) and 10(d): Trailing edge separation with a domi-
nant frequency around St¼ 0.15. Increasing angle of attack
extends the shed wake zone toward leading edge.

Figures 10(e) and 10(f): The dominant frequency content is
now located toward the leading edge. The shedding frequencies
are still centered about St¼ 0.15 but are more broadband. The
structures are large extending more than 1 project chord length
suggesting wake mode shedding and look the same as a dynamic

stall vortex. Simultaneously, towards the trailing edge, what
appears to be a trailing edge vortex.

Figures 10(g)–10(i): The trailing edge shear layer is still present
and appears to be unaffected by further increases of angle of
attack. The leading edge is no longer shedding the large scale
structures seen in Figs. 10(e) and 10(f), the vorticity seems to be
confined to the shear layer. The wake pattern at this distance from
the foil looks like two shear layers with a large dead zone in the
middle. The hotwires are too close to capture the kinds of shear
layer interactions seen in Fig. 1. The leading edge shedding

Fig. 12 V component for angles of attack from 12deg to 19deg with varying spanwise positions and chord lengths at an
inflow of 14m/s: (a) alocal 12.4deg, spanwise position 360mm, (b) alocal 13.3deg, spanwise position 450mm, (c) alocal 14deg,
spanwise position 90mm, (d) alocal 14.4deg, spanwise position 540mm, (e) alocal 15.3deg, spanwise position 180mm, (f) alocal
15.6deg, spanwise position 630mm, (g) alocal 16.4deg, spanwise position 270mm, (h) alocal 17.4deg, spanwise position
360mm, and (i) alocal 18.3deg, spanwise position 450mm

112603-8 / Vol. 140, NOVEMBER 2018 Transactions of the ASME

Downloaded From: https://gasturbinespower.asmedigitalcollection.asme.org on 07/26/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use
77



frequencies increase with angle of attack closing the disparity
between leading and trailing edge frequency bands. The leading
edge has transitioned from wake mode shedding to a shear layer
shedding pattern between 35 and 50 deg angle of attack.

The transition into the shear layer shedding mode occurs at
roughly the same angles of attach as shown in Tang’s results,
which were surface pressure based [11]. Interestingly, at 35 deg,
Tang’s results show a clean peak at the higher frequency at a

rather messy spectrum at the lower frequencies. As the angle of
attack increases to 50 deg the high frequency peak is in fact a dou-
ble peak, which could be attributed to the different wake frequen-
cies at the leading and trailing edge. It appears that qualitatively,
the behavior of the 3D case is very similar to the 2D case tested
previously. Also, the shift in frequency content seen on the pres-
sure sensors in Tang’s results can be understood as a change of
wake behavior.

Fig. 13 V component wake velocities at a height of 360mm (above reference) for angles of attack from 0deg to 90deg at an
inflow of 20m/s: (a) alocal 2.6 deg, (b) alocal 9.4deg, (c) alocal 12.4deg, (d) alocal 17.4deg, (e) alocal 27.4deg, (f) alocal 37.4deg, (g) alocal
47.4deg, (h) alocal 57.4deg, and (i) alocal 87.4deg
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If one could consider the wake to be spanwise independent, this
would be very useful for analysis. The results discussed so far
were for a single spanwise position at different pitch settings. Fig-
ure 11 shows different spanwise stations for a single pitch setting
of 40 deg resulting in local angles of attack from 34 deg to 40 deg
due to the twisted blade. As the angle of attack increases, trailing
edge shear layer vorticity strengthens and the leading edge transi-
tions eventually at 39 deg to shear layer type shedding. In Fig. 10,
a selection of wake measurements was collected from different
spanwise positions, different blade pitch angles but with similar
local angles of attack (12–19 deg). From these data, it is possible
to see that the spanwise location of the section is a rather small

influence compared to the local angle of attack (Fig. 12). The one
exception here is the sections close to the tip region where tip vor-
ticity is present due to the sudden change in circulation. Further-
more, increasing the Reynolds number had no significant effect as
can be seen by comparing Fig. 13 with an inflow of 20 m/s with
Fig. 10 with an inflow of 14m/s.5 It seems that in this case where
changes in chord length and twist are gradual over the span, local
angle of attack is determining the shedding behavior. Such an
assumption would enable a method based on finding overlaps of

Fig. 14 V component wake velocities at a height of 360mm (above reference) for angles of attack from 0deg to 90deg at an
inflow of 14m/s with VGs: (a) alocal 2.6deg, (b) alocal 9.4deg, (c) alocal 12.4deg, (d) alocal 17.4deg, (e) alocal 27.4deg, (f) alocal
37.4deg, (g) alocal 47.4deg, (h) alocal 57.4deg, and (i) alocal 87.4deg

5This should be assessed case by case; this result in no way means that Reynolds
number effects are never present.
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the shedding frequencies and the structural frequencies at each
chordwise station. Such a method would be suitable to highlight
cases that need further simulation during load case assessments.

Passive Flow Control Elements. While the authors had
expected vortex generators to have an effect on the onset of wake
mode stall and then transition to shear layer stall, this effect was
not observed in the data due to the sparse test matrix. Figure 14
can be compared with the baseline measurements (Fig. 10) to
demonstrate that no observable difference was made by the VGs.
It is expected that the onset of wake mode type stall would be

affected by the vortex generators but the dataset is too sparse to
make any further revelations. However, unless the VGs are on the
leading edge it seems safe to ignore them when assessing potential
vortex-induced vibrations as the vorticity seems to be localized to
the shear layer.

The gurney flaps made a pronounced change to the behavior
over all of the angles of attack.

Figure 14(a): The flow is attached. At St¼ 0.2, the shedding
frequency of the gurney flap is present. The wake is steered signif-
icantly lower than the clean airfoil.

Figures 14(b)–14(d): Trailing edge separation is already present
at 9.4 deg with an St of roughly 0.8, which lower than the clean

Fig. 15 V component wake velocities at a height of 360mm (above reference) for angles of attack from 0deg to 90deg at an
inflow of 14m/s with Gurney Flaps: (a) alocal 2.6 deg, (b) alocal 9.4 deg, (c) alocal 12.4deg, (d) alocal 17.4deg, (e) alocal 27.4deg, (f)
alocal 37.4deg, (g) alocal 47.4deg, (h) alocal 57.4deg, and (i) alocal 87.4deg
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case. With increasing angle of attack, the st increases gradually to
0.1. Like the clean case, the vorticity is largely concentrated about
the trailing edge extending towards the leading edge with increas-
ing angle of attach. The trailing edge vorticity is lower than the
clean case.

Figures 10(e) and 10(f): The leading edge wake mode shedding
dominates like in the clean case. The trailing edge shear layer vor-
ticity is located lower than in the clean case. The transition from
wake mode to shear layer mode appears to begin a little earlier
than the clean case already showing a middle stage in sub-figure
(f).

Figures 10(g)–10(i): The transition to shear layer mode shed-
ding completes and again the leading edge vorticity increases in
frequency with angle of attack. The trailing edge vorticity is again
located lower than in the clean airfoil.

Figures 1 and 2 already demonstrated how gurney flaps steer
the wake and shear layer. This effect is present across all four
flow regimes. For the shear layer mode of shedding, the flow visu-
alizations (Fig. 1) and the wake measurements indicate that gur-
ney flaps are acting like a virtual extension of chord length. The
current data leave it inconclusive whether this results in a shift in
the surface pressure frequencies finally seen by the airfoil as the
hotwires were located in the dead zone of the flow for these very
high angles of attack. But the results do seem to indicate (Fig. 15).

� Gurney flaps on the suction side of an airfoil can shift the
shedding frequency in trailing edge and leading edge stall
scenarios.

� Gurney flaps should be considered in the analysis of stand-
still vibrations as a potential method of shifting frequencies.

Conclusions

In this study, a test wind turbine blade was tested in high angle
of attacks to imitate wind turbine rotor blades in a state of stand
still. Flow visualization showed the highly 3D flow pattern at high
angles of attack. However, in spite of the 3D behavior, it seems
that twisted tapered blade geometries can be for some analysis
purposes treated as 2D for sections away from the tip where it
appears that tip shedding dominates. Normalizing by Strouhal
number was effective with certain flow regimes showing stable
shedding frequencies independent of spanwise position, chord
length, and Reynolds number(for the limited range tested). Treat-
ing each spanwise section as independent will enable wind turbine
designers to use a Strouhal number versus structural frequency
and mode shape-based approach in order to isolate the combina-
tions of conditions that may create vortex induced vibration prob-
lems. This reduced set of parameters can then be investigated with
higher order CFD tools.

Passive flow control devices were tested on the blade to see if
any changes to the shedding behavior occurred. Vortex generators
did not show any significant influence in this experiment and can
probably be ignored for the very high angles of attack when con-
ducting analysis. Gurney flaps modified the wake geometry by
either moving the shear layer or wake downward. In some flow
regimes, the shedding frequencies were also affected and the onset
of trailing and leading edge stall was at slightly lower angles of
attack than the clean airfoil. It seems that Gurney flaps may have
an effect on vortex-induced vibrations and should be investigated
further.
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Abstract. Once stall has set in, lift collapses, drag increases and then both of these forces will fluctuate strongly.
The result is higher fatigue loads and lower energy yield. In dynamic stall, separation first develops from the trail-
ing edge up the leading edge. Eventually the shear layer rolls up, and then a coherent vortex forms and then sheds
downstream with its low-pressure core causing a lift overshoot and moment drop. When 50+ experimental cycles
of lift or pressure values are averaged, this process appears clear and coherent in flow visualizations. Unfortu-
nately, stall is not one clean process but a broad collection of processes. This means that the analysis of separated
flows should be able to detect outliers and analyze cycle-to-cycle variations. Modern data science and machine
learning can be used to treat separated flows. In this study, a clustering method based on dynamic time warping
is used to find different shedding behaviors. This method captures the fact that secondary and tertiary vorticity
vary strongly, and in static stall with surging flow the flow can occasionally reattach. A convolutional neural
network was used to extract dynamic stall vorticity convection speeds and phases from pressure data. Finally,
bootstrapping was used to provide best practices regarding the number of experimental repetitions required to
ensure experimental convergence.

1 Introduction

Beyond small angles of attack, airfoil boundary layers have
to contend with strong adverse pressure gradients. When the
boundary layer does not have enough momentum, a flow re-
versal occurs and eventually the flow separates from the sur-
face of the airfoil (Abbott and Doenhoff, 1959). Once this
occurs, viscous effects dominate and any assumption of po-
tential flow falls apart (Schlichting and Gersten, 2016). This
means that modeling separated flows has always been a chal-
lenging part of designing wind turbines or even understand-
ing experimental and field data. Even in the age of computa-
tional fluid dynamics (CFD), attempts to simulate stall with
unsteady Reynolds-averaged Navier–Stokes (URANS) equa-
tions have not yet yielded good-quality results (Strangfeld
et al., 2015; Rumsey, 2008; Rumsey and Nishino, 2011).
Large-eddy simulations (LESs) show promise but are still
too computationally expensive to be used as an ordinary de-
sign and analysis tool (Rumsey and Nishino, 2011). In the

wind industry, semiempirical models (Andersen et al., 2007;
Wendler et al., 2016; Holierhoek et al., 2013) are still the
main analysis tools for stalled airfoil flows. These models
have to make simplifications to be viable in terms of avail-
able computational power and input boundary conditions.
The key questions are as follows. What information is lost?
If we had better understanding and better models, how much
could we improve wind turbine designs?

Fortunately, the recent surge in development of machine
learning techniques has provided a new set of tools to answer
these types of questions. The foundational idea at the basis
of this paper is that modern machine learning approaches
are accessible to aerodynamics practitioners and can help
us better understand experimental data and better recreate
that physics in simulations. We will provide a number of
demonstrations on how machine learning can help dissect
stalled airfoil data. We will also provide a road map for cre-
ating a machine-learned semiempirical dynamic stall model.
It should be obvious by the end of this paper not only that
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these new methods are powerful and accessible but also that
they are of vital importance for dealing with airfoil stall.

Stall is the term used to describe a broad range of phe-
nomena that occur during boundary layer separation. There
are two broad characteristics that help us provide a loose def-
inition.

1. A flow reversal in the boundary layer results in the
stream-wise streamline no longer following the surface
of the airfoil (Abbott and Doenhoff, 1959). The region
of flow reversal will usually have a neutral pressure.

2. Instabilities, such as shear layer instabilities or wake
mode (vortex shedding) instabilities (Hudy and Naguib,
2007), are present. These instabilities make the pressure
footprint on the airfoil highly unsteady.

While the following explanations of the categories of stall
will dive deep into details, these two features remain the ba-
sic underlying phenomena.

Let us begin by considering a stationary airfoil. As the
angle of attack increases, the airfoil will encounter trailing-
edge (light) stall (McCroskey, 1981). Light stall will de-
velop at moderate angles of attack and is more likely to be
present on airfoils with a well-rounded leading edge (Green-
blatt and Wygnanski, 2002; Leishman, 2006). The adverse
pressure gradient overcomes the momentum of the bound-
ary layer somewhere downstream of the point of minimum
pressure (Abbott and Doenhoff, 1959). The vertical size of
the viscous region will be on the order of the airfoil thick-
ness (McCroskey, 1982). A well-rounded leading edge will
result in a smooth development of trailing-edge stall, whereas
a sharp leading edge may cause trailing-edge stall to be by-
passed rapidly (Leishman, 2006). The separated region will
not contribute to the lift, implying a smooth roll off of the
lift, increase in drag and a nose-up moment. Even on a sta-
tionary airfoil, the boundaries of the separated region will be
unsteady (Mulleners and Rütten, 2018) and will vary along
the span and chord.

At higher angles of attack, deep stall will develop on the
airfoil (McCroskey, 1982). Deep stall is characterized by
separation occurring at the leading-edge region. As the angle
of attack increases, the point of minimum pressure will move
closer to the leading edge as the stagnation point moves more
towards the pressure side of the airfoil (Abbott and Doenhoff,
1959). Here the airfoil leading-edge geometry is critical as a
tight radius will cause a stronger adverse pressure gradient
which can lead to deep stall initiating from the leading edge,
thus bypassing light stall. Even though the stall occurs at the
leading edge, the definition of “leading-edge stall” usually
involves a laminar bubble bursting but the mechanism can
more simply be trailing-edge stall that engulfs the entire suc-
tion side of the airfoil (Leishman, 2006). In the steady case,
deep stall will cause a plummet in the lift being produced
and a sharp increase in drag. The vertical size of the viscous
region will be on the order of the airfoil chord (McCroskey,

1982). The viscous region will be home to various instabili-
ties such as shear layer mode or wake mode shedding (Hudy
and Naguib, 2007), essentially different types of shedding
phenomena leading to fluctuating airfoil forces.

Flow that detaches from the leading edge can reattach due
to transition of the shear layer (Abbott and Doenhoff, 1959)
or a re-thickening of the airfoil; for example, wind turbine
airfoils can have dents due to manufacturing (Madsen et al.,
2019). This phenomenon is called a separation bubble. Bub-
bles are a sensitive phenomenon and small changes to bound-
ary conditions can make them disappear completely (Ward,
1963). Inflow turbulence, leading-edge surface erosion, foul-
ing or ice will often cause forced transition (Pires et al.,
2018). Earlier transition will tend to reduce or remove bub-
bles (Ward, 1963). Even without outside influences, bubbles
are an unstable phenomena due to shear-layer disturbances
which lead to transition and eventual reattachment or burst-
ing (Kirk and Yarusevych, 2017). For certain older airfoil
families, i.e., NACA 63-2nn, the presence or lack of a bubble
may cause an airfoil to switch between leading and trailing-
edge stall; this phenomenon is known as double stall (Bak
et al., 1998). While double stall might no longer be as rel-
evant in new generations of airfoils on wind turbines with
pitch regulation, bubbles can affect stall behavior and the
eventual performance of the airfoil.

What happens when the airfoil starts moving? When an
airfoil moves from low angles of attack into light stall
regimes, there will be a phase lag between the angle of at-
tack and the separation. This effect becomes stronger as the
airfoil pitches faster and can be seen as a resistance to stall
when compared to the stationary case. One can interpret this
effect in a few ways:

1. The wake has not yet forgotten the previous flow ar-
rangement, meaning the effective angle of attack is still
catching up with the geometric angle of attack, i.e., cir-
culatory lift delay.

2. The current boundary layer still has the higher momen-
tum from the former more favorable flow state.

3. The surface of the airfoil accelerates the boundary layer
during the motion.

When moving from light stall angles of attack down to at-
tached flow, the flow attachment is delayed for the same rea-
son. This appears in polar diagrams as hysteresis loops but
can also be interpreted as a dangerous phase difference be-
tween the angle of attack and the lift, moment and drag. In
this context, phase differences mean that the structure will
absorb or dissipate energy (Bowles et al., 2014; Lennie et al.,
2016). In short, this phase difference can lead to single-
degree-of-freedom pitch flutter also known as stall flutter
(McCroskey, 1982). If the unstable nature of separated flows
leads to the extent and phase of light stall being variable be-
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tween cycles of pitching, then it follows that the aeroelastic
damping of the airfoil will also be variable between cycles1.

When an airfoil moves rapidly from attached flow into
deep stall, it creates an effect known as dynamic stall. The
separation moves rapidly from the trailing edge up to the
leading edge; the shear layer becomes unstable and then rolls
up into a vortex with a strong low-pressure core (Mullen-
ers and Raffel, 2013). The vortex then travels downstream,
causing a spike in low pressure across the airfoil, which
presents as a strong spike in lift and a strong dump in the
moment. A full description of dynamic stall would be ex-
traneous here but excellent reviews can be found in McAl-
ister et al. (1978), McCroskey (1982), McCroskey (1981),
Leishman (2002) and Carr (1987). More modern experimen-
tal works can be found in Granlund et al. (2014), Mulleners
and Raffel (2013), Mulleners et al. (2012), Mulleners and
Raffel (2012), Müller-Vahl et al. (2017), Müller-Vahl et al.
(2015), Strangfeld et al. (2015), Balduzzi et al. (2019), and
Holst et al. (2019). For the discussion here, it is sufficient
to note that as the strength and phase of the leading vortex
varies, so will the aeroelastic stability.

To review the previous section,

1. there are different types of stall that occur differently in
static or dynamic conditions,

2. the spatiotemporal variation is in both span and chord,
and

3. differences in stall behavior will also lead to changes in
aeroelastic stability.

So how are these variations treated? Treating stall as
a stochastic process is a relatively recent idea. As early
as 1978, one sees acknowledgment that stall is variable in
literature such as McAlister et al. (1978), an experimental
report that described taking measurements of 50 cycles of a
pitching airfoil undergoing dynamic stall to ensure conver-
gence of the lift. While these researchers did acknowledge
the variability of the data, they still used a simple average to
represent the data. This was a reasonable choice at the time
given that many of the more advanced tools now available
did not exist nor was the requisite computational power avail-
able. Only more recently have researchers begun to address
the spatial and temporal variability of stall in experimental
work. Mulleners and Raffel (2013) were able to show that
dynamic stall could be described by two stages of a shear
layer instability and that the development of these instabili-
ties varied across cycles. In light stall, it was shown that the
trailing-edge separation region had two modes, resulting in
either a von Kármán shedding pattern or a stable dead water
zone (Mulleners and Rütten, 2018). The separation pattern

1While we may normally consider an operating state to be stable
or unstable on a long range trajectory, we may have to consider that
each operating state can display short-term behaviors that appear
unstable.

fluctuates unreliably and when vorticity is present, the vortex
convection speed is also variable.

Experimental data from Manolesos serve as a detailed re-
minder that stall happens in three dimensions (Manolesos
et al., 2014; Manolesos, 2014). Even on a simple 2D wind
section, flow visualization showed four different separation
patterns (Manolesos, 2014). These patterns are referred to as
stall cells, and they create complicated vortex patterns on and
behind the airfoil. Even more complicated still are the sepa-
ration patterns on wind turbine blades due to the changes of
airfoil shape, twist and chord length (various surface visu-
alizations can be found in Manolesos, 2014; Lennie et al.,
2018b; Vey et al., 2014). Wind turbines uniquely experience
very high angles of attack, where the spatial patterns create
further complications (Skrzypinski et al., 2014; Skrzypinski,
2012; Gaunaa et al., 2016; Lennie et al., 2018b). The pic-
ture that should now be clear is that stall is a continuum of
behaviors rather than a small number of defined cases.

So variability is rampant in stall. How should we measure
and interpret airfoil stall behavior? This paper will attempt to
demonstrate that machine learning has provided a new set of
tools that can be helpful for these very tasks. This paper will
demonstrate

1. a clustering method to group similar time series to-
gether,

2. a computer vision method for extracting vortex convec-
tion speeds from pressure data, and

3. how to detect outliers and inspect the convergence of
the dataset.

Furthermore, we will provide a future perspective on the way
that machine learning may help us in modeling airfoil stall in
simulations. While the specific methods used in this paper
should prove to be useful and while we will point out some
specific aerodynamic effects in the examples section, these
are only examples. This paper is trying to communicate that
machine learning more broadly is approachable and useful
for unsteady aerodynamics, wind energy and other adjacent
fields.

Before jumping into the new methods we should establish
what kind of techniques have been used previously. It should
be clear given the discussion so far that simple averaging
or even phase averaging will remove important data (Riches
et al., 2018). In dynamic stall, for example, phase-averaged
flow visualizations and pressure data appear vastly cleaner
and more coherent than a single cycle. The cycle-to-cycle
variations and outliers are an important part of the dataset and
should not be smeared out. Manolesos (2014) suggested con-
ditional averaging to produce better airfoil polar diagrams.
Mulleners and Rütten (2018) also performed a kind of con-
ditional averaging using the orbits of POD coordinates dis-
played onto recurrence plots. Furthermore, Holst et al. (2019)
also suggest a binning approach, especially when consider-
ing very deep stall. Conditional averaging is an interesting
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approach, but the important question becomes the following:
what rules should we use to split the data and is it possible to
automate this process to some degree?

Fluid dynamics has always been a natural case for dimen-
sionality reduction. In particular, there is abundant literature
using singular value decomposition (SVD) methods such
as proper orthogonal decomposition– principle component
analysis (POD–PCA) (Taira et al., 2017), dynamic mode de-
composition (DMD) (Schmid, 2010; Kutz et al., 2015; Brun-
ton et al., 2015) and spectral proper orthogonal decomposi-
tion (SPOD) (Sieber et al., 2015). These methods generally
do not perform well in cases with any kind of traveling wave
behavior (Taira et al., 2017; Riches et al., 2018; Hosseini
et al., 2016). The reason for this lies in the creation of fixed
spatial functions and basis functions. If the shedding is con-
sistent, the system will be sparse, a sensible reduced-order
system can be found. However, introduce phase jitter and the
small number of basis functions no longer does a good job in
representing the shedding; so more mode shapes are needed.
Even for a simple cylinder shedding, up to 50 modes were
required to represent the system reasonably well (Loiseau
et al., 2018). Dynamic stall convection velocities vary con-
tinuously (Mulleners and Rütten, 2018); therefore we cannot
expect a sparse set of spatial functions to represent the sys-
tem well.

Fortunately the SVD and simple averaging-type methods
are not the only forms of dimensionality reduction techniques
available. It turns out the dimensionality reduction is a cor-
nerstone technique of machine learning; an interactive sum-
mary can be found on Christopher Olah’s website (Olah,
2019). In this paper, we will show how multidimensional
scaling (MDS) (O’Connell et al., 1999) and clustering (Mai-
mon and Rokach, 2006) can be used as a reliable analysis
technique for airfoil stall. Nair et al. (2019) have demon-
strated one approach to clustering for separated flows in the
context of cluster-based feedback control. Cao et al. (2014)
also demonstrated the use of time series clustering in the con-
text of combustion. The advantage of cluster-type methods
is that they break the data down into similar neighborhoods
rather than assuming that a set of global basis functions can
describe the whole domain. Both Loiseau et al. (2018) and
Ehlert et al. (2019) have demonstrated that local linear em-
bedding (LLE), a neighborhood-type method, can create a
sparse representation of the system. In this paper, we will
focus on clustering and MDS, although other methods also
show promise.

The MDS and clustering methods rely on a distance metric
to gauge the similarity between the time series of lift of var-
ious experimental repetitions. As already discussed, the data
will contain phase jitter which may cause simple distance
metrics such as Euclidean metrics to overestimate the dif-
ference between cycles (Ratanamahatana and Keogh, 2004).
The problem is amplified by the strong gradients present
around the time of vortex convection. This is a common time
series problem, and dynamic time warping (DTW) was cre-

ated for this purpose (Morel et al., 2018; Ratanamahatana
and Keogh, 2004). DTW allows for the time series to be
stretched and squashed a small amount to allow for an ef-
fective comparison between experimental repetitions. The
approach of using a cycle-to-cycle distance metric (in this
case DTW) is different to making time-independent clusters
used in the work of Nair et al. (2019). The difference in ap-
proach comes from intended application. In this paper, we
will create clusters and MDS plots by comparing the entire
time series of separate pitch cycles.

Methods such as clustering and MDS belong to a branch of
machine learning called unsupervised learning, i.e., learning
from the data without having the answer ahead of time. Con-
versely, supervised learning uses a labeled dataset to learn a
mapping between input and outputs. Once a model is trained,
we can then map new data. This is the nature of our sec-
ond example, extracting the vortex convections from pres-
sure data. We manually create a small set of examples by
clicking on the vortex patterns. We then use these data to
train a model that can do the same job over the whole dataset
efficiently. Manually clicking on the patterns is a laborious,
time-wasting and unpleasant task. For these reasons, we want
to do this only for the bare minimum number of examples.
Fortunately, we can leverage the concept of transfer learning
to minimize the effort.

The concept of transfer learning exploits the fact that once
a model has been trained for one task, it can be easily re-
molded to complete similar tasks (Brownlee, 2017). In prac-
tice this means that a neural network can be trained for
a specific computer vision task and then easily be reused;
i.e., a network originally trained for classifying breeds of
dogs within photographs can be easily reused on aerodynam-
ics data (the FASTAI project has a lecture series expanding
at length on this theme; Howard et al., 2019). This may seem
like an exotic claim but there is solid reasoning underpinning
the claim. Pictures are displayed in pixels, which is an incred-
ibly high-dimensional space (modern cameras have a 10 MP
range). If we randomly choose pixel values, the chances of
getting a sensible picture are almost zero; we would usually
only get noise. This means that sensible pictures with geo-
metric features such as lines and circles exist in an incredibly
small neighborhood. That is to say, any real picture (of an
elephant, a calculator, a cloud or even a plot of our pressure
vs. time) is more similar to any other real picture than it is
to a picture of the kind of random static noise we know from
old television sets. Why does this matter? It means that we
can use any general picture dataset to get our neural network
to the right neighborhood, that is, being able to recognize
real geometry. It turns out that as far as the neural network
is concerned, the pressure plots look close enough to real
world pictures that it only needs a small amount of retrain-
ing. Therefore, instead of requiring millions of training data
examples, we only needed roughly 700.

In this paper, we will demonstrate the utility of trans-
fer learning by using a pre-trained convolutional neural net-
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work (CNN) to extract vortex convection speeds from airfoil
pressure plots. A huge challenge of working with experimen-
tal data is that it is exceptionally difficult to extract features
from data in an automated fashion. One example of this is ex-
tracting the convection speed of a vortex from pressure data.
To the human eye it is a fairly obvious stripe in the pres-
sure plot; however it is challenging to extract this feature au-
tomatically based on basic rules. Computer vision machine
learning is perfect for such cases. While the vortex convec-
tion speeds are themselves an interesting result, the example
should demonstrate to readers the incredible power of using
pre-trained neural networks for extracting features from data.
Deep neural networks are becoming increasingly used within
the wind industry for applications, e.g., for predicting rotor
icing (Yuan et al., 2019), power-curve estimation (Kulkarni
et al., 2019) or even for rotor–blade inspections (Shihavud-
din et al., 2019). We hope to demonstrate with this paper that
modern machine learning tools and infrastructure can pro-
vide a useful boost to research in unsteady aerodynamics,
wind energy and other adjacent fields.

2 Experimental data

Most machine learning methods are heavily reliant on an ini-
tial dataset2. The analyses shown in the rest of this paper
rely on two existing datasets. We use these two datasets to
demonstrate different approaches as they feature different in-
teresting effects. The wind tunnel dataset is the primary data
source and unless explicitly stated will be used in all figures,
graphs and discussions. The towing-tank dataset provides a
great example for outlier detection. The following introduc-
tions aim to provide some context but do not exhaustively
describe the experimental setups or the data they retrieved.
The original references provide a far more detailed view into
the setups.

2.1 Wind tunnel

The first dataset was collected by Müller-Vahl (2015). Ex-
tensive unsteady aerodynamic experiments were conducted
in a blowdown wind tunnel powered by a 75 kW backward
bladed radial blower. The test section is depicted in Fig. 1
and is 610 mm per 1004 mm. The model is mounted on two
circular, rotatable plexiglas windows and the wind speed is
measured with two hot-wire probes. The pressure around the
model is captured by 20 pressure sensors on both suction and
pressure sides (40 in total). The NACA 0018 airfoil model
has two control slots at 5 % and 50 % chord for additional
blowing. The model has a chord length of 347 mm and a span
of 610 mm. More information about the tunnel can also be
found in Greenblatt (2016), and excerpts of the dataset can be

2Most but not all. For example, reinforcement learning can use
self-play as a training mechanism.

Figure 1. View of the test section showing the pitching mechanism
and the approximate location of the airfoil model. From Müller-
Vahl (2015).

found at https://www.flowcontrollab.com/data-resource (last
access: 13 September 2019).

The wind tunnel data cover a comprehensive collection of
experiments with varying boundary conditions. The dataset
has been thoroughly explored in previous publications and
appears to be of good quality. It ranges from static baseline
investigations over oscillating pitching and variation in free-
stream velocity (and a combination of both). In order to ma-
nipulate the boundary layer, blowing was added. One pecu-
liarity of this dataset is that boundary layer tripping can be
induced by the taped-over blowing slots on the suction side
of the airfoil. For the purposes of our analysis, this detail was
not critical.

2.2 Towing tank

The second dataset comes from a large towing-tank facility
at the Technische Universität Berlin. This dataset is used to
demonstrate outlier detection as the test configuration used
in these data did have some peculiar stall behavior on some
cycles. The water tank dimensions are 250 m in length, 8.1 m
in width, and about 4.8 m in average depth. A carriage runs
on rails, towing a rig (and the model) through the water with a
maximum speed of 12.5 m s−1. On it the complete measuring
system is installed. The rig consists of two side plates with a
length of 1.25 m, a height of 1 m and a thickness of 0.035 m
prohibiting lateral flow around the model. In between the side
plates, the model, with a span size up to 1 m, can be inserted
at arbitrary angles of attack. The model resembles a flat plate
with an elliptical nose and blunt trailing edge. It has a span
of 0.95 m, 0.5 m chord and a thickness of 0.03 m. The surface
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Figure 2. Cross section of the mounted flat plate. Red dots indicate
position of pressure sensors. From Jentzsch et al. (2019).

is covered in aluminum, and 12 pressure ports are inserted
at the specified locations in Fig. 2. The airfoil model is an
unusual form but only some qualitative demonstrations are
made with this dataset. A more detailed description is given
in Jentzsch et al. (2019).

3 Machine learning approaches

In this paper, we aim to provide a demonstration of a few
machine learning methods and how they can be applied to
unsteady aerodynamics data. A brief overview of the algo-
rithms is provided to give a sense of what each of the al-
gorithms is doing. The first algorithm demonstrates how to
train and use a relatively simple machine learning algorithm,
clustering, from scratch. The second example demonstrates
the more advanced deep-learning approach and shows a few
tricks to make it possible to do so with a modest amount of
data and computational power. Usually each task will call for
a different algorithm and different approach, but many of the
principles discussed in the following section should transfer
well onto other problems. This is especially true for the deep-
learning training tricks.

3.1 Dynamic time warping, clustering and
multidimensional scaling

In this section, we will describe a method of grouping simi-
lar data together called clustering. For clustering to work we
need two parts, a distance metric/measurement and a cluster-
ing algorithm. The distance metric gives us a measurement of
similarity between our data3. The clustering algorithm takes
the distances and groups the data into clusters.

Dynamic time warping (DTW) is a distance measurement
that allows for squashing and stretching of the time series
in order to reach a best fit. In practice, it is comparable to
taking a winding path through a grid where each box corre-
sponds to a time step from the two paths being compared (see
Fig. 5). The dynamic time warping algorithm is particularly
useful in this case because it will still indicate that time series
are similar even if there is a slight phase difference in vortex
shedding or other stall phenomena (this effect is shown in the
wave form in Fig. 5). The general rule of thumb is that a small
amount of warping is a good thing; a lot can end up distorting

3In this example, we are comparing a time series of a single
experimental repetition against another. Clustering can also work
with much more simple distance metrics.

Figure 3. Soft-DTW centroid for clustered time series with strong
phase jitter. (Example data from pressure sensor reading from tow-
ing tank.)

reality. Therefore, DTW algorithms are usually implemented
with either global or local constraints, and these constraints
have a bonus of increasing the computational efficiency.

A useful extension to the DTW algorithm creates a com-
posite of multiple time series called a centroid (see Fig. 3).
Normally the problem with dynamic stall time series is that
the vortex shedding is smeared out when simple means are
taken. The onset of static stall can also appear to be a smooth
process rather than a sudden separation that occurs at vari-
able phases across different cycles of the experiments (see
Fig. 3). The barycenter extension to DTW creates an average
that preserves these features. This means that the resulting
centroid will be far more representative of a real stall process.
In short, it is just a pseudo-average using different mathemat-
ics in the background, but it provides a better answer to the
following question: for these boundary conditions, what does
the stall process typically look like?

For this research, the soft-DTW algorithm was used to
compute the barycenter and was taken from the Python mod-
ule tslearn by Tavenard (2008). The algorithm was first pro-
posed by Cuturi and Blondel (2017). To create the clusters,
it is necessary to compare every time series within a group
to each other. This means the complexity of the algorithm
is O(N2). Two steps were taken to scale the process; firstly
the data were downsampled, thus reducing “N”, and sec-
ondly the code was scaled using DASK (Dask Development
Team, 2016). DASK is a Python library designed to paral-
lelize standard Python functions onto cluster architecture.
The second step may at first appearance seem extreme. In
practice the power required was more than a standard desk-
top but one or two compute nodes were more than sufficient.
For the examples computed in this paper, one to two workers
(nodes with eight cores each) would process a single experi-
ment within a few minutes. A combination of parallelization
and downsampling was used in this study4.

4Combining the soft-DTW algorithm and the DASK module did
require some programming effort, but as both tools were well devel-
oped, the effort was smaller than it perhaps first appears. In partic-
ular, tools like DASK allow people with very modest programming
skill to run cluster-scale code.
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Figure 4. Time series clustering algorithm.

Reducing the number of samples gives a significant speed
boost as the complexity of the distance measurement is based
on the number of time steps. While reducing the sample size,
the spectral resolution is reduced about the same factor. The
frequency of the expected phenomena limits the amount of
downsampling. In order to improve the cluster results the
data are, in addition to downsampling, filtered. Dynamic time
warping is noise sensitive as the algorithm shifts and bends
the time series in order to match similar values. Fortunately,
tuning these steps is not difficult as a visual inspection of the

Figure 5. Euclidean distance vs. DTW distance between two time
series.

resulting data will indicate whether the algorithm is making
sensible groups or not. This topic is explored in greater detail
in the related work from Steenbuck (2019).

Clustering is a method of dimensionality reduction based
on the principle that the dataset can be efficiently described
by a set of subgroups. These subgroups are formed on the as-
sumption that the description of the cluster is a useful enough
generalization for each member of the cluster. This means
that the groups are formed on the basis of similarity. Cluster-
ing is an unsupervised method in the sense that there is no
correct answer defined ahead of time. Usually unsupervised
methods will reveal underlying data structures. This is not to
say that we can just passively use these algorithms and use-
ful results will ensue. Each clustering algorithm will perform
well for some datasets and will deliver nonsense for others;
care is required. To ensure good results, users will usually
have to tune hyper-parameters for the dataset, and the sim-
plest of these parameters is the number of clusters. A first
estimation about a reasonable number can be made from in-
specting the dendrogram or the MDS plot as described below.
Another approach is to calculate the mean silhouette score of
all elements for a range of cluster numbers (Fig. 6). The sil-
houette score is calculated by comparing the distance from a
data element to its own cluster center to the distance to the
center of the closest neighboring cluster (Raschka, 2015). By
calculating the mean silhouette score for a number of differ-
ent clusters, we can see that once we get to four clusters, we
only marginally change the quality of the clusters (shown in
Fig. 6). This means that breaking the dataset up into further
smaller pieces is not going to improve our analysis.

For this application hierarchical clustering turned out to
produce groups that were physically meaningful and shared
features. Hierarchical clustering creates links between data
points (in our case a single cycle of a dynamic stall test)
to form a dendrogram as seen in Fig. 4. This process es-
sentially takes the distances that we previously calculated
and starts collecting similar data together recursively which
is what is shown in the dendrogram. The dendrogram is
then cut at a height which results in a given number of
clusters. As longer branches indicate bigger differences,
the height of cutting should be chosen so that the longest
branches are cut. The clustering was implemented using
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Figure 6. Mean of silhouette scores per cluster number.

SciPy’s (Jones et al., 2019) hierarchical clustering algorithm
(scipy.cluster.hierarchy) with the ward method as a measure
for distances between newly formed clusters. Hierarchical
clustering was chosen after exploratory analysis showed that
other basic algorithms such as k-means tended to perform
poorly for these data. Fortunately, well-developed machine
learning libraries such as Sci-Kit Learn make it very simple
to trial different algorithms.

Another way of presenting the data is to use multidimen-
sional scaling (MDS) (O’Connell et al., 1999). MDS essen-
tially takes a cloud of data points with high dimensionality
and squashes the points onto a low-dimension plane while at-
tempting to maintain the distance between the points. In our
case, each time step of a single series represents a dimension
or feature which results in dimensionality that is incredibly
difficult to interpret. Now take each series as a single data
point and then squash it onto a 2D plane, and the data reveal
an underlying structure. We can then color each point and
use a k nearest-neighbor classifier to color the background
as seen in Fig. 4. The resulting point cloud (hopefully) in-
herits distinct clusters. The number of clusters encountered
here gives a good first estimation about a reasonable cluster
number for further analysis. So instead of creating a chaos of
overlapping time series, the data appear as a low-dimensional
representation image with each color representing time se-
ries with similar behavior. In some circumstances, the coor-
dinates of the image will even have a clear physical meaning;
i.e., dimension 1 could correlate with the Reynolds number.
A broad overview of the algorithm used in this paper can be
found in Fig. 4.

An example of the cluster analysis is depicted in Fig. 4. In
this figure, we summarize all of the time series of a single
cluster by displaying only its centroid. We can see that each
of the centroids represents a slightly different behavior, par-
ticularly during the secondary vortex shedding. Each cluster
has a small uncertainty band shown by the standard devi-
ation. As the dataset can be represented by three centroids
instead of trying to compress the entire data into a single av-
erage, the representation is concise but still provides a more
accurate view of the process.

3.2 Convolutional neural networks

In the previous section, we looked at how we can cluster to-
gether similar experimental samples. This section aims to see
if we can extract some interesting features from our data us-
ing machine learning. For this example, we will attempt to
use computer vision (machine learning applied to pictures)
to extract information about the dynamic stall vortex.

Convolutional layers are the special trick that have turned
neural networks into a wildly effective computer vision tool
(Krizhevsky et al., 2012). Convolutional layers allow pictures
to maintain their structure as a grid of pixels. Convolution
operations are applied over the picture as a kind of moving
window shape filter. The shape filters are learned and often
end up resembling recognizable patterns. In the first layer of
the network, the filters will be detecting edges, slow gradi-
ents and color changes (Zeiler and Fergus, 2013). As we pro-
ceed deeper into the neural network, the filters begin to look
like natural features such as a birds eye, a bicycle wheel or
a doorframe. Each of these filters is created during the train-
ing process where large datasets are fed through the network,
and the error is propagated backwards through the network to
allow for incremental improvement. It is helpful to note that
as pictures are just made up of a grid of pixels, a 2D matrix
structure (for single channel), in a great deal of cases, data
can be represented in this form. This means that computer
vision tools can be used on data that can be structured like
a picture. Convolutional neural networks are most effective
when features are local.

We have discussed neural networks here with a high num-
ber of layers. This is referred to as deep learning. Deep learn-
ing is a field that has seen rapid innovation due to the abun-
dance of graphical processor units (GPUs) and more recently
tensor processing units (TPUs). Platforms such as PyTorch or
TensorFlow provide high-level front ends in Python. These
front ends abstract away much of the complexity, meaning
that users avoid much of the low-level matrix algebra and
optimization. Furthermore, it is common practice to pub-
lish well-performing neural network architectures that are
already pre-trained (transfer learning). Many of the once
difficult decisions, such as choosing a learning rate, have
now been made simpler with tools such as learning rate
finder (Howard et al., 2019). Cheap computational power,
easy high-level coding and the advent of transfer learning
means that these incredibly powerful tools are now available
for aerodynamic applications like detecting boundary layer
transition from microphone data (see Fig. 7). These inno-
vations mean that non-machine learning specialists can use
deep learning with a low barrier to entry.

In this paper, we will provide an example of turning aero-
dynamic data into a picture and then using a convolutional
neural network to extract useful information. Dynamic stall
vortices have a strong low-pressure core which causes a lift
overshoot and moment dump. When dynamic stall vortex
data are averaged over 50+ cycles, it tends to show dynamic
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Figure 7. Identification of a boundary layer state using a recur-
rent neural network (data from Bak et al., 2010) (see code exam-
ple https://github.com/MatthewLennie/Aerodynamics, last access:
13 September 2019).

stall vorticity as far more clean and coherent than is the case
for a single cycle. The strength of each vortex, its convec-
tion speed and onset of convection vary between cycles. This
leaves the following questions. How much do dynamic stall
vortices convect differently? Do boundary conditions like the
reduced frequency affect the variability?

The dynamic stall vortex feature of a pressure vs. time plot
is easily distinguished by the human eye; however, pulling
this feature from the data is rather difficult. The authors at-
tempted the task with a number of more simple approaches
such as simply finding the peak at each chord-wise position, a
Hough transform or even Bayesian linear regression with the
pressure plot interpreted as a probability distribution. They
all worked for a few cases but failed to generalize and in the
end did not perform well enough to be usable. Each vortex
is different and therefore manually creating a rule to auto-
matically pull the dynamic stall vortex feature from the data
was not trivial. However, this is a standard computer vision
task very similar to a driverless car identifying a cyclist in
a picture. Fortunately, heavy development in the computer
vision field has resulted in some incredibly powerful pre-
trained models such as the RESNET family of models (He
and Sun, 2016)5. The model is a convolution neural network
that has been pre-trained on a massive dataset of real world
images. This means that the convolutional layers of the net-
work already have a set of shape filters that are broadly appli-
cable to all natural pictures. This means that with a relatively
small amount of training data and computational effort, we
are able to simply remold the convolutional layers to identify
dynamic stall vortices’s and give the convection speed and
phase.

Pre-trained neural networks can be built and retrained us-
ing any of the typical frameworks such as PyTorch, Keras or

5Note that while we were able to get acceptable results from
the RESNET models, a higher level of accuracy may be obtained
by network architectures that were built specifically for this kind of
localization task.

TensorFlow. In this case, we used a RESNET50 model within
the FASTAI architecture which is a high-level interface built
on top of PyTorch (Howard et al., 2019). The FASTAI archi-
tecture implements several current best practices as defaults
such as cyclical learning rates, drop-out, training data aug-
mentation and data normalization. We can think of the pre-
trained neural network as a template: most of the training has
already been done, and we only need to retrain the network
to react correctly to our dataset. This approach is cheap in
terms of data volume and computational power.

The final layer of the neural network was replaced with
two outputs to represent a linear fit of the vortex convection
(slope, offset). For this analysis, acceleration of the vortex
was ignored, though the code could be easily extended. The
pressure data were represented as a picture where the hori-
zontal dimension represents phase, and the vertical dimen-
sion represents the suction side of the airfoil with the bottom
of the picture being the leading edge (an example of an al-
ready processed picture is in Fig. 8, where the training data
do not have the blue line identifying the vortex but are oth-
erwise the same). Training data were created by manually
clicking (and storing) the positions of the vortex on 733 im-
ages (an attempt with only 300 pictures tended to over-fit on
RESNET50 or have high bias on smaller models). The man-
ual clicking does introduce some measurement error, but a
few practice runs showed that the error was much smaller
than the effect of the physical phenomena. The images were
selected from a wide range of cases with randomized test
training splitting within each case to ensure good general-
ization of the fitted model. However, data were limited to
examples with a strong wake mode shedding, meaning that
the vorticity is easily visible on the pressure footprint. The
training was done in two stages, first with the internal lay-
ers of the RESNET model frozen. This means we train only
the very last layers that output the slope and onset. Once the
training error reached stopped improving, the internal layers
were unfrozen to mold the internal layers for a small number
of epochs (training repetitions).

Initially 80 % of the data were taken as the training set and
the training was completed with 20 epochs with the convo-
lutional layers frozen so that the newly added layers could
quickly converge. The training was stopped at 20 epochs
once the validation error began to increase. The convolu-
tional layers were then unfrozen and the training was con-
tinued for a further 20 epochs. During training no geometri-
cal augmentations on the training were undertaken, but the
brightness of the images was augmented6. The error statis-
tics were still unsatisfactory and additional training did not
improve the performance further. However, the current set-
tings of the hyper-parameter settings and training procedure
had seemed to extract the best model given the available data.
The training procedure was repeated exactly the same a sec-

6Geometric augmentations would have been the next method to
improve the model if the process had not worked well enough.
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Figure 8. Example CNN output. Color intensity refers to suction
pressure, and the blue line is regressed fit. Pressure is standardized;
therefore the colors represent Z scores. No units or color bar are
provided for this reason.

ond time, with the same hyper-parameters and the same num-
ber of epochs; however this time the dataset was not split
into test and training sets, thus neglecting validation error (a
practice described by Goodfellow et al., 2016). This may be
perceived as opening up the risk of over-fitting; however the
training procedure and hyper-parameters were already tested
and the neural network did not over-fit. Furthermore, usu-
ally additional data will help reduce over-fitting. We there-
fore have confidence that with this procedure the validation
error will not increase and that the training error is repre-
sentative across the dataset. Thankfully the additional data
did reduce the training error enough to make the model us-
able (see an example results in Fig. 8). The residuals of both
the slope and constant were distributed roughly as Gaus-
sians with standard deviations of 0.15. In total, the train-
ing took on the order of 30 min of computational time on
a GPU. Readers are encouraged to view the source code at
https://github.com/MatthewLennie/VortexCNN (last access:
13 September 2019). The repository contains training sets
and final data used to produce the following analysis.

The resulting model incurs a small measurement error so
the resulting distributions have be adjusted. Fortunately, the
measurement error could be quantified. Both the error and
the resulting vortex convection values can be approximated
as Gaussian. The real distribution is sought by guessing a
distribution, running a Gaussian convolution filter over the
distribution and then measuring the difference between the
resultant distribution and the data. Essentially, we knew the
measurement error distribution roughly, we knew the output
distribution, and we can work backwards on a statistical ba-
sis. This error term is fed into a optimizer, thus giving an
estimation of the real data distribution without the error in-
curred by the neural network inference. In practice, this re-
duces the standard deviations of both the slope and intercept

by roughly 30 %. We should note that we can not “repair”
the measurement data and locate the true convection speed
of each measurement, but on a statistical basis, we can get
closer to a true estimation. It is also worth mentioning that
this neural net will find the speed that the vortex footprint
travels across the airfoil, and the vortex will usually have an
additional component normal to the airfoil.

The procedure described above represents a first iteration
of such an approach, a feasibility demonstration. With some
more effort, a better neural network architecture could be
chosen and the clicking procedure could be replaced with
comparison to flow visualization. With these improvements,
we could potentially avoid the final step where we attempt to
repair the distributions. We would prefer to remove this final
step which forces us to assume that the distribution is Gaus-
sian. Nonetheless, the current model is workable enough for
our purposes.

4 Examples

So far we have explored the idea that stall is variable as well
as a few machine learning methodologies that could help in-
terpret the data. We will now provide demonstrations of both
of the algorithms. While the specific results are interesting
and we will briefly discuss the physical effects observed by
the algorithms, the aim of this section is to provide illustra-
tive examples of the approaches in use. The description of
the physical effects is provided merely to motivate that the
methods appear to be finding sensible phenomena.

4.1 Extracting vortex convection with a convolutional
neural network

In this section, we provide a demonstration of the neural
network extracting dynamic stall vortices’s from the surface
pressure of the airfoil–time series data. The time series data
come from the wind tunnel dataset which sees an airfoil in a
wind tunnel. The airfoil pitches sinusoidally, the free-stream
velocity can be changed and the leading-edge blowing is in-
stalled. A number of test configurations with dynamic stall
were chosen and pushed through the neural network. The
first case is relatively complicated, as it features an oscillat-
ing inflow velocity (sinusoidal with a variation of 50 % in
the mean inflow), pitching into the dynamic stall range (up
to 25◦) with leading-edge blowing active. Four example tests
were compared with different phase differences between the
angle-of-attack motion and the inflow velocity. The pitch and
blowing phases for each case are shown in Fig. 9. Medina
et al. (2018) made a very similar analysis and found that de-
celerating flow tended to destabilize the boundary layer and
encourage earlier separation. With the convection speed and
onset data retrieved by the neural network, it is possible to
show that this is true in the specific detail of the dynamic stall
vortex. Figure 10 shows that for cases where the inflow speed
is in phase with the angle of attack, the shedding occurs later.
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Figure 9. Inflow and angle of attack for Figs. 10 and 11.

Figure 10. Probability distributions of the convection speed of
dynamic stall with airfoil blowing different phases of harmonic
inflow (τ ). Uamp

U
= 0.5, k = 0.08, Re = 2.5× 105 and α0 = 15◦,

αamp = 10◦.

However, when it does finally occur, the vortex will shed at
a higher velocity (see Fig. 11). Interestingly the results seem
to indicate a much higher variability in the cases where the
flow is decelerating during the vortex convection. Figure 14
also shows the relationship between the onset of the vortex
shedding and the convection speed. There is a weak correla-
tion (∼ 0.3 Pearson metric) but not strong enough with the
existing data to make conclusions about the relationship be-
tween the two. This first example shows us that we can use
a machine learning tool to better understand how our bound-
ary conditions such as inflow velocity affect the physical pro-
cess. We were able to take a large set of test repetitions and
summarize them in a compact yet descriptive manner without
having to resort to averaging.

A second example shows the effect of varying only the
Reynolds number with constant inflow velocity (see Figs. 13
and 12). We can see that the mean vortex convection veloc-
ity scales with Reynolds number as we should expect. The
vortex convection onset has a constant variance across both
examples (see Fig. 13). However, interestingly the variance
of the convection velocity grows with Reynolds number (see
Fig. 12). This example shows us to be very careful about how

Figure 11. Probability distributions of the onset of dynamic stall
with airfoil blowing and different phases of harmonic inflow (τ ).
Uamp
U
= 0.5, k = 0.08, Re = 2.5× 105 and α0 = 15◦, αamp = 10◦.

Figure 12. Probability distributions of the convection speed of dy-
namic stall with different Reynolds numbers, k = 0.09, and α0 =
18◦, α1 = 7◦.

Figure 13. Probability distributions of the onset of dynamic stall
with different Reynolds numbers, k = 0.09, and α0 = 18◦, α1 = 7◦.

we think about variability and how it applies to each part of
the physical process. While these results and the first exam-
ple’s results are interesting and can be expanded upon, the
important lesson is that a small data, low computational cost
machine learning method was able to help extract a richer set
of information from the dataset.

4.2 Dynamic stall clustering

In the following section, we have chosen a few examples
purely for the purpose of demonstrating the clustering ap-
proach and their usefulness in analyzing dynamic stall. In
particular, we would like to see if there are distinct behaviors
possibly stemming from stall cells or other complex phenom-
ena. By using clustering, we hope to split our dataset into
clusters of different airfoil behaviors as far as they exist. This
provides us with a way of inspecting the data without having
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Figure 14. Relationship between the onset of shedding and convec-
tion speed for a range of blowing cases.

to laboriously compare each time series or to simply inspect
averaged data that will hide these effects.

At high angles of attack (α0 = 21.25◦ and αamp = 8.25◦),
we can observe the different kinds of stall behaviors that can
occur. Figures 15 and 16 show contrasting behaviors for the
same angles of attack. In Fig. 15, a quasi-periodic shedding
appears. Without flow visualization it is hard to determine
the shedding type, but the pressure footprint shows the vortex
as weak and smeared. This kind of footprint would indicate
that the vorticity is not close to the surface of the airfoil or
is large and not very coherent. This probably indicates that
we are seeing a shear layer instability rather than very clear
wake mode examples seen in the previous section. The clus-
ters seem to indicate that the shedding behavior is not reli-
able, with cluster 3 (green) and cluster 4 (red) showing am-
plitudes of oscillation dissipating rapidly. However, the other
two clusters show a more sustained shedding pattern.

Now let us consider a second case with a different
Reynolds number and reduced frequency but with the same
angle of attack range (Fig. 15). The airfoil moves into stall,
releases one (cluster 2 – orange) or two coherent vortices
(cluster 1 – blue cluster) and then resolves into weaker small-
scale shedding. That is, we are seeing two different shedding
patterns for the same boundary conditions.

In Figs. 17 and 18 we can observe the effect of changing
the reduced frequency while holding the Reynolds number
and angle of attack constant. The first most obvious differ-
ence is that the period between the primary and secondary
vorticities remains constant. The data do otherwise follow
the general wisdom that the lift overshoot will increase with
reduced frequency, but it does not happen uniformly. Fur-
thermore, the lower reduced frequency seems to create a
much wider variance in the primary stall vortex compared
to the higher reduced frequency where both clusters display
a strong primary vortex with only a barely visible change in
primary stall. Using the clustering method we are also able to

reveal that, in both cases, one cluster has a strong secondary
vorticity and the other has a nearly nonexistent secondary
vorticity (read carefully, colors do not match). Interestingly
the higher reduced frequency in Fig. 18 seems to suppress the
secondary vortex as Fig. 17 shows strong secondary vorticity
in 55.8 % of the cycles and a somewhat weaker secondary
vortex for the other cycles.

We have observed with these four example cases that dif-
ferences in reduced frequency and Reynolds number will re-
solve into a quite different type of vortex shedding. Further-
more, even within the same case we can see a strong vari-
ation in the strength of the shedding mechanism. The insta-
bility mechanism driving this shedding is very sensitive to
the small variations in input conditions. The shedding mech-
anisms shown in these four examples are just one of the va-
riety of shedding behaviors.

A quick visual inspection of the time series data would be
unlikely to uproot the variable shedding behaviors seen in
these two examples. However, the cluster centroids or even
simply the MDS plots (i.e., Fig. 20) make the differences
clear and easy to interpret. In any of the example cases,
phase-averaged results would have been a poor representa-
tion of the dataset because we would not have any way of see-
ing the variable nature of the results. Better information leads
to better decisions. For example, when we calibrate sim-
ulation tools, particularly empirical unsteady aerodynamic
models, we should be aware of where our models will per-
form poorly because the underlying flow physics is highly
stochastic, even showing distinct behaviors. Our model de-
sign choices can be more well informed, i.e., choosing to
fit a model on the most commonly occurring cluster only
or even trying to recreate the variability. We should also be
aware that standard measurements of a model’s performance
such as mean-squared error are only valid for homoscedas-
tic regimes; that is, we expect the same amount of variance
throughout the whole range of the model’s validity. If we vi-
olate this condition, the models will tend to be a poor repre-
sentation of reality. This is true for fitting machine learning
models and also the semiempirical models commonly used
in unsteady aerodynamics. Finally, one can easily find exam-
ples of experimental field data where clustering would be a
powerful data analysis tool, e.g., the double stall measure-
ments from Bak et al. (1998).

5 Convergence and outliers

The clustering and MDS can also be used together to qualify
outliers that may corrupt the quality of the dataset. For in-
stance in wind tunnels, the first cycles of a test will often be
different to later cycles due to the wake effects and dynamics
of the tunnel. Similar start-up effects can also be seen in the
towing tank. However, more broadly speaking, test data are
often plagued with test data poisoned by some sort of exter-
nal influence. Figure 19 is an example of a single leading-
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Figure 15. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0992, Re = 3.3×105 and α0 = 21.25◦, αamp = 8.25◦.

Figure 16. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0574, Re = 5.7×105 and α0 = 21.25◦, αamp = 8.25◦.

edge pressure sensor from the towing tank where obvious
outliers are present. The pressure values in the main cluster
(blue) show detached flow over the entire cycle. However, a
small number of cycles in the green and orange clusters ac-
tually reattach. The MDS representation alone (Fig. 20) in-
dicates that it is worth inspecting the data further. Such an
obvious representation could speed up the task of possibly
pruning the dataset where outliers are created by known ef-
fects such as startup or a measurement failure.

It would also be possible to remove outliers automatically
based on the cluster data. In practice, this level of automation
is not necessary on most experimental setups and the visual
inspection provided by MDS and clustering was enough to
find outliers quickly and efficiently. On a practical level, it

is possible to put the MDS plots into a folder and view the
image thumbnails an efficient quality assurance step.

While in this paper we have broadly recommended mak-
ing cluster-based centroids rather than a mean of the whole
dataset, the reality is that the latter is still common practice.
McAlister et al. (1978) made the recommendation of taking
at least 50 cycles of data to ensure convergence of cases with
dynamic stall. The methods used in that paper were limited
by available computational power.

Bootstrapping is a method of uncertainty estimation which
uses resampling. The concept is quite simple: stick the data
in a bucket, resample with replacement until you reach the
size of the dataset, and then find your mean, variance and
other statistics required. This process is then repeated until a
probability distribution of the values is found, very similar to
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Figure 17. Deep stall investigations: cluster analysis for boundary conditions: k = 0.0992, Re = 3× 105 and α0 = 18◦, αamp = 7◦.

Figure 18. Deep stall investigations: cluster analysis for boundary conditions: k = 0.1346, Re = 3× 105 and α0 = 18◦, αamp = 7◦.

Figure 19. Clustered time series from towing-tank surge experi-
ment. Boundary conditions:U∞(φ)= 2.5 m s−1

+0.7 m s−1 sin(φ),
Re = 1.25× 106, f = 0.21 Hz, α = 10◦.

the concept of confidence intervals. This provides us a quan-
titative statement such as “the existing data indicate 90 % of
the time that the mean lies between 0 and 1”. Bootstrapping
has some nice mathematical properties mostly propagating
from central limit theory. A good treatment of the subject is
given by Chernick (2008).

In our case, we would like to see how the uncertainty of
our population estimates decreases as we collect more data.
To do this, we repeat the bootstrapping process, pretending
at each step that we only have a given number of cycles. This
results in a graph comparing uncertainty to number of cycles
available (see Figs. 21 and 22). One will note that the vari-
ance and interquartile ranges converge slower than the mean
and median. This is due to the simple fact that the central mo-
ments of the distribution will collect more data more quickly
and will therefore converge with fewer data. In practice this
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Figure 20. (a) Silhouette samples per cluster. (b) MDS representa-
tion. Data from towing-tank surge experiment.

Figure 21. Convergence of the population estimates for a light stall
case as the number of tests increases.

means how much data you need will depend on whether you
need the central moments or the extreme events.

Lennie et al. (2017) demonstrated that when considering
stall, it is probably best to avoid using mean and variance
due to the non-Gaussian spread of the data. Median and in-
terquartile range will serve better in cases of stall. All of the
population estimates are presented here, as percentile based
estimates such as median and interquartile are still rarely
used in literature. Representing the variability with a non-
parametric distribution (kernel density estimate) gives the
best representation and can be achieved with violin plots (see
examples in Lennie et al., 2017). The error itself is based
on the temporal mean of the respective estimate throughout

Figure 22. Convergence of the population estimates for a deep stall
case as the number of tests increases.

the time series. A similar convergence approach was used in
Lennie et al. (2018a).

A number of test cases were chosen with varying degrees
of separation. In deep stall cases, as seen in Fig. 22, the error
of the standard deviation drops below 2 % after ∼ 60 repeti-
tions. The light stall case in Fig. 21 shows quick convergence
at low values. Already after 20 repetitions all errors are be-
low 1 %. In cases with unsteady inflow, the normalization
of aerodynamic coefficients with the inflow speed can am-
plify experimental noise and therefore converge slower than
expected. It may be possible to converge the inflow speed
and lift values separately and then apply normalization to
speed up convergence. Of course different levels of confi-
dence would require more or fewer repetitions; however, for
general purposes the following principles can be made:

1. For deep stall use < 60–100 cycles.

2. For light stall use < 20 cycles.

3. Be careful in cases with unsteady inflow; even attached
flow can take up to ∼ 40 cycles to converge.

These principles should be read in the context of the limited
example given here. In most of the examined cases, the vari-
ability and thus the rate of convergence were reduced with
higher Reynolds numbers. The higher the angle of attack, the
more pronounced the effect. The convergence may be influ-
enced further by the reduced frequency and the addition of
flow control elements. It is always best practice to conduct
the bootstrapping for each new test configuration.

While a main recommendation from this paper is to use
clustering to represent data, simple averaging will remain a
popular analysis tool. However, we advocate using bootstrap-
ping to at least help quantify the uncertainty of the averaging
and clustering to find outliers. Even if the final analysis will
be conducted on averaged data, the steps outlined in this sec-
tion will still help isolate problems with the dataset7.

7An extended set of results can be found in the master’s thesis
of Steenbuck (2019).
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6 Potential new dynamic stall modeling approaches

The marriage of data science and aerodynamics presented
in this study has so far been an exercise of data visualiza-
tion. However, machine learning tools can also be useful
for other tasks such as robust dynamic prediction (Brun-
ton and Noack, 2015). The natural extension of this study
would be to create a new generation of unsteady aerody-
namics models using machine learning techniques. A chal-
lenge to the current stable of unsteady aerodynamic mod-
els is modeling vortex-induced vibrations. Wind turbines can
be exposed to very high angles of attack, particularly dur-
ing construction and shutdown, and furthermore the blades
are relatively flexible, giving rise to vortex-induced vibration
problems (Lennie et al., 2018b). There are complex relation-
ships between the operating regime and the wake structure
(Lennie et al., 2018b). The empirical models8, such as the
Beddoes–Leishman model, will be very difficult to extend
to handle vortex-induced vibrations given the fact that shed-
ding behavior varies strongly with many of the input condi-
tions and therefore will be hard to encode into a readable set
of equations. The authors of the Beddoes–Leishman model
even hint that the model they developed was difficult to ex-
tend without amplifying noise (Leishman, 1988). Essentially
it becomes too difficult for a human creator to write down
a complex enough model that is well behaved over all op-
erating regimes. This is a recognized problem in machine
learning, that models with enough capacity to learn a com-
plex system tend to memorize the training data and perform
poorly on new examples. This is called over-fitting.

Machine learning provides another path to improving
aerodynamic models, as it provides the tools and techniques
to fit high-capacity models while simultaneously handling
the problem of over-fitting. Such an approach would perform
much the same role as the current models but would be ma-
chine learned. It is important to note here that neural net-
works are not a look-up table. In the same way that our con-
volutional neural network learned more complex features as
we moved deeper into the network, a neural network would
begin to learn abstractions that are useful in the context of
unsteady aerodynamics, i.e., relationships between angle of
attack and lift.

Of course, the network has to be trained to learn these ab-
stractions. Using the concept of transfer learning it would be
possible to train the model in stages. We outline a potential
recipe for creating such a new model with the disclaimer that
this is speculative, and we fully expect some of the stages to
require modification. Nonetheless, the recipe discusses the
principle of training in stages, first with larger quantities
of computationally cheap data and then again with smaller
quantities of higher-quality data. The machine-learned model
training process could be achieved with the following steps:

8Holierhoek et al. (2013) have a good comparison of the models.

1. Generate a huge set of “cheap” training data using a
standard unsteady aerodynamic model.

2. Train the machine learning model on these data until it
performs as well as the standard model.

3. Generate unsteady CFD and experimental training data
for a single airfoil.

4. Use the smaller amount of higher-fidelity data to further
train the machine learning model.

5. For each airfoil, generate a small amount of CFD data.

6. Recalibrate the machine-learned model to each airfoil.

This approach has the advantage that the model can be con-
strained with a nearly endless supply of cheap data from
the standard unsteady aerodynamics models. We would now
have confidence that over nearly all operating conditions the
model would not diverge too far from reality. In this first
stage, we have trained the network to learn a useful set of ab-
stractions that apply to unsteady aerodynamics. The model
can then be remolded just enough to represent the higher-
fidelity data from experiments and CFD without losing the
constraints set in the previous step. This would produce a
base model. For each new airfoil a new sub-model could be
spawned off with a small amount of training data and com-
putational effort. This means we have the robustness of the
engineering model with an improved ability to match high-
quality data.

This concept does come with some challenges. The cur-
rent low-fidelity unsteady aerodynamics models are not de-
signed to produce results at very high angles of attack. Fur-
thermore, at very high angles of attack it is usually required
to use 3D CFD to get high-quality results. Finally, the shed-
ding modes are affected by the flexibility of the structure,
that is to say the full 3D structure. A possible approach is
to use very rough approximations for the cheap training data
(just based on the Strouhal number) followed by 2D CFD.
While these two approaches are unlikely to be accurate, it
will pre-train the model to reproduce the rough physics. This
would then reduce the amount of 3D CFD with structural in-
teraction that would be required to represent the very high
angles of attack. This approach would treat the final version
of the model as a blade dynamic stall model rather than an
airfoil. These simulations would still require large amounts
of computational power given current standards but will be
the cheaper (if not cheap) approach. While the method de-
scribed here does not provide a final approach, it hopefully
demonstrates a useful machine learning principle of refining
models in stages to make the best use of the data available.
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7 Conclusions

This paper has attempted to bridge the gap between un-
steady aerodynamics and the field of data science and ma-
chine learning. In particular we have attempted to provide
some use cases of machine learning in unsteady aerodynam-
ics. Stall is a complex phenomenon which varies in both time
and space, and the data have shown strong variations between
cycles of the experiments. The combination of clustering, dy-
namic time warping and multidimensional scaling allows us
to effectively cluster cycles together, making the data easy to
interpret and reveal patterns that were previously difficult to
inspect visually. Convolutional neural networks allow us to
use computer vision on pressure data to find dynamic stall
vortex convection. Using neural networks to extract complex
features from data has an incredible potential within aerody-
namics, especially due to the advent of transfer learning.

Even the few examples analyzed in this study demonstrate
that stall behavior is complex. The clustering results demon-
strated that the shedding behavior varies across cycles, espe-
cially in the secondary and tertiary vorticities. The neural net-
work was able to extract the vortex convection feature from
the pressure plots to show that the onset of dynamic stall and
the convection speed vary with the inflow conditions as well
as cycle to cycle. The approaches described in this paper are
just examples of the potential approaches that can be used to
provide detailed insights into unsteady aerodynamics data.

The results of this study already provide a number of rec-
ommendations about stall and data science.

1. Means are not a sufficient description of stall. Data sci-
ence and machine learning provide good ways of inves-
tigating cycle-to-cycle variations.

2. Multidimensional scaling and clustering with DTW as
a distance metric is an effective way of examining data
for different shedding modes or experimental outliers.

3. Dynamic stall behaviors vary significantly even within
the same test conditions.

4. It is unlikely the traditional empirical models are the
solution to modeling stall more accurately, and machine
learning may be the better option.

5. Dynamic stall vortices will convect at different times
and with different speeds. A neural network can retrieve
this information from pressure data with a reasonable
amount of training data and computational resources.

6. The bootstrapping method will help with determining
the number of cycles needed to reach a given level of
confidence.

7. The examples in this paper did not require huge datasets
(though they can be used on larger datasets) or large
computational resources, nor did they require signifi-
cant amounts of specialized knowledge.

Finally, we hope that the demonstrations provided in this pa-
per will communicate that there is a rich family of machine
learning methods available for use in wind energy, unsteady
aerodynamics and other adjacent fields.
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Chapter 7 Seven strategies for machine
learning in wind energy

In the introduction to this thesis, we saw that wind energy is in need of:

1. Improved simulation tools to match the expanding needs of wind energy;

2. Better engineering models and analysis methods that meet modern challenges; and

3. Better utilisation of machine learning to help mine and model data.

Good examples of all three ideas have been laid down. The FVLLT model proved to be a
good simulation method for floating-platform wind turbines - an otherwise challenging case
for previous models. The derivation of the instantaneous aerodynamic rotor damping was
a perfect example of how a traditional derivation approach can still yield powerful, closed-
form engineering models. Conversely, airfoil deep stall modelling was beyond the traditional
engineering approaches, and a data-driven machine-learning approach proved to be more
powerful. The key achievements can be found in Figure 7.2. The outcomes of this study will
impact load case simulation most heavily especially in previously difficult simulations domains
such as stand still vibrations or floating platform wind turbine simulations. However, I believe
this study should serve as a strong motivation for machine learning and data science in wind
energy.
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Figure 7.1: The key achievements from the three journal papers

Machine learning and data science have great potential in the context of wind energy, but
there are road-blocks standing in the way. The largest data source in wind energy comes from
SCADA systems, and the data is not high quality, meaning that it presents a challenging and
labour-intensive data science problem - not ideal to enthuse an industry about the power of these
methods. Engineering models, such as BEM, have a long history and extensive testing. BEM
does not work well in a lot of situations, but the designers are comfortable with this because it is
easy to understand what is wrong when it does not work, and why. Finally, BEM is incredibly
computationally cheap. It is hard to persuade someone to replace the model they know well with
a black-box.
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However, this is simply a failure in marketing. In my opinion, machine learning will change
wind energy not by creating an omniscient AI that can design a wind turbine without any human
input. Data science and machine learning will add value to wind energy through the following
seven strategies;

1. Low fidelity models and transfer learning;

2. Feature engineering and data mining;

3. Machine learning to move between scales;

4. Sparse sensing;

5. Efficiency through convergence criteria;

6. Machine learn a small part of the system;

7. Machine learn the whole task.

Note here that only the last strategy is to machine-learn a whole task. Machine learning will help
stepwise, by replacing an assumption with a model or, an expensive computation with a cheaper,
machine-learned, version, by helping us understand our data or by simply reducing the number
of sensors needed to measure the state of a machine.
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Figure 7.2: Seven Strategies for Machine Learning in Wind Energy

In the following section, I describe these seven strategies for using data science and machine
learning in the context of wind energy. These strategies derive from lessons learned from the
studies in the three papers presented. For some of the strategies, there are already examples of
the wind industry embracing these approaches. The important point is that machine-learning
approaches do not discard past developments, but rather build on them. These seven strategies
provide a road map for integrating engineering models and data science into wind energy.

7.1 Strategy 1 - Low fidelity models and transfer learning

Transfer learning is probably the single most important concept that needs to penetrate the minds
of people not involved in machine learning. Transfer learning can be defined as:

Definition 6. "Transfer learning is the improvement of learning in a new task through the
transfer of knowledge from a related task that has already been learned." [60]
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The implications of this concept are deeper than they first appear. The key is, what is a related
task? It turns out that, especially for neural networks, many datasets are very closely related.
Modern convolutional neural network architectures, such as the ResNet models [79], have

a vast amount of flexibility. With such architecture, it’s possible to build a classifier that will
correctly label (with unprecedented accuracy) most common objects, such as trees, cars, dogs, a
chessboard or a computer. The way we represent pictures is useful for projecting onto a computer
screen, but the method inefficient. Almost every possible value combination of a photograph
will be noise, and only an extremely small subset of pixel combinations will give a picture that
we would expect to find in nature. This means that real geometries are much closer to each
other than non-real pixel combinations. That is to say, a picture of a dog and a salt shaker are
much closer to each other than a picture of a dog and the noise of a disconnected television
set [200]19. The important point is that, whatever pictures we can generate in science, (i.e. a
pressure plot versus time) will be much closer to the picture of the dog and the salt shaker than
to the picture of noise. Our scientific plots sit in the same subset of possible geometries as all
pictures in nature. Once we understand this, we can see that ’related’ applications has a broad
definition. There was an example of this in the computer vision model built to extract dynamic
stall vortex convection speeds - a model simply remolded from its pretrained weights.

Let us shift to an example applicable to wind energy, such as building a working replacement of
the unsteady aerodynamics models. The model should generalisable across airfoils, maintain the
reliability of the current models, but provide improved performance in very deep stall. Transfer
learning provides a road map for undertaking this task (Figure 7.3).

Figure 7.3: The transfer learning approach

We want to work with low-fidelity data in the early stages, because it is computationally cheap
and little effort is required to produce large amounts of it. The Leishman-type models tend
towards bias (i.e. being wrong, but stable), thus avoiding overfitting and numerical instabilities
[78, 158, 73, 105]. Such models provide a rough sketch of what unsteady aerodynamics look
like (see Figure 7.4). We can create very dense data for all of the input variables, even including

19 Jeremy Howard details this point at length on the TWIML podcast [200]
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some turbulence for data augmentation.

Figure 7.4: Low cost training data

We now have a cheap dataset that we can use to build up a model, but what kind of model? For
time-series prediction with multiple inputs and as complicated complicated behaviour as unsteady
aerodynamics, a recurrent neural network would be an appropriate choice. The first choice would
be to take a pretrained model or architecture from a different application, such as econometrics,
but if we need to generate our own architecture, there now exist efficient approaches to do this.
Architecture generating algorithms exist in various forms. SethBling has demonstrated a nice
implementation of such a process [179] (Figure 7.5). In this implementation, a neural network
based agent learned to play Nintendo’s Mario. In each generation, the architecture was trained,
and then the best-performing architectures spawned children, and so on. Over many generations,
the agent learned how to overcome each obstacle in the level.
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Figure 7.5: An example of evolved network architectures as described by Stanley and Miikku-
lainen [187] and implemented by SethBling [179]. The further Mario gets in the level after
training, the better the architecture is ranked. (Mario is a trademark of Nintendo)

In our case, the same general approach can apply. There are many techniques, but they all
concentrate on generating good neural network architectures. A useful review of the modern
approaches can be found in Elsken et al. [60]. The good thing is that, we can do this data-hungry
work using a cheap dataset to improve the efficiency of the project [60]. At the end of the process,
we have a neural network architecture that represents the low fidelity training data (Figure 7.6).
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Figure 7.6: Designing the neural network architecture through evolution

At this stage, we need some higher fidelity data in order to improve the model further.
Experiments and CFD both have their problems, but a combination of both these sources
represents the best ground truth possible.
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Figure 7.7: High-fidelity data

Finally, we are able to leverage transfer learning. Out of all of the possibilities that can
be represented by our neural network, the difference between the low-fidelity data and the
high-fidelity data will be relatively modest. This means we can think of the high-fidelity data as
adding the finishing touches on the model. It is critical in this case that this stage is performed
with care. As the high-fidelity data is pushed through the neural network more times, the model
will become more and more like the small amount of high quality data, however, if the training is
too long, the neural network will begin to only represent the high-quality dataset and thus will
generalise poorly. This means we would need to employ early stopping - the practice of stopping
a model mid-training to prevent overfitting. In order to apply this model to different airfoils,
we could leverage the same retraining procedure, as, the performances of airfoils are relatively
similar.
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Figure 7.8: Retraining with high-fidelity data

Unsteady aerodynamics is just one application. If we think back to the introduction, there
are multiple examples of low-order models that could be enhanced by high-fidelity data in
this way. For example, we could use the Morrison equation for the first round of training in
a floating-platform model, and expensive CFD or panel methods for the final tuning. Other
possible applications might include controllers, inflow-measurement data models or structural
monitoring models. This approach provides a smooth departure from engineering models into
machine learning models.
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7.2 Strategy 2 - Feature engineering and data mining

Feature engineering is the concept that data should be preprocessed before trying to predict on it
[152]. It is the process of transforming data so that a learning algorithm can easily perform a
task. Common examples include dimensionality reduction or clustering. In feature engineering,
we are trying to make it easier for a model to make predictions. We can achieve this with
dimensionality reduction techniques such as, principle component analysis (PCA) or linear
discriminant analysis (LDA). Figure 7.9 shows how PCA can rotate axes into the directions of
highest variance, thus making regression easier. Figure 7.9 also shows how LDA can rotate the
axes into a direction that creates a maximum separation of classes, making classification easier.
Feature engineering can be achieved by adding new features.

Figure 7.9: Using dimensionality reduction as feature engineering (adapted from Raschka [166])

Usually, the idea of machine learning is to let the model training process determine what to do
with the features. However, as we retreat from influencing the process, we leave more things for
the model to learn. In the unsteady aerodynamics example given in the last section, we forced
the neural network to learn all physical behaviours such as attached flow lift, detachment of the
boundary layer and system unsteadiness. We can afford to do this in this case because we have a
very cheap model with which we can create endless amounts of data. However, sometimes, we
may want to constrain the problem slightly to make the model easier to train with the data on
hand.
What is a model constraint? A good example is in a simple logistic regression. A logistic

regression is the same as a linear regression, but we push the result through a sigmoid function at
the end to squash the signal between zero and one [17]. Having the sigmoid function constrains
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the output so the regression problem no longer has to learn first that the outputs will exist in a
small sub-space of the domain before then learning the correct output. The constrained problem
will require less data and less training time 20. Prior knowledge about the problem to applies
pre-constraints to the output.

We can also leverage engineering knowledge on the input features. In the following example,
I would like to identify whether each microphone on an airfoil is experiencing a laminar or
turbulent boundary layer. The input feature is a single time-series. We can see very clearly
two regions, the areas with strong high-frequency content are turbulent. The key is that, our
engineering knowledge tells us that high frequency content means turbulent.
If we put a single time-series into the model - a recurrent neural network in this case - the

neural network has to first learn that high frequencies are different from low frequencies, and
then that high frequencies mean a turbulent boundary layer. Of course, the neural network will
abstract these learning steps in a way that we cannot understand, but regardless, the input and
output data are further apart.
It is relatively easy to lift a single time-series into different spectral coefficients. In this

example, the input time series was lifted into Mel-frequency cepstral coefficients using the
Librosa library by Ellis et al. [59]. Mel-frequency cepstral coefficients (MFCC) [211] are
usually used as a model for what humans can hear, and not for a technical application, but the
method worked quite well for this case. Training the recurrent neural network with only the
time-series signal was difficult, given the restricted dataset available. With the MFCC features,
the classifier worked well. For this example, domain knowledge about the boundary layer and
signal processing helped engineer a feature that was very effective to use in a model.

20 This advice is one of the practical tips given in the Practical Deep Learning course by Howard and Others [83]

118



Chapter 7. Seven strategies for machine learning in wind energy

Figure 7.10: A pressure time series lifted into MFCC

As we can see, the resulting classifier performed well on a task that was reasonably simple,
once the correctly engineered features were available.

Figure 7.11: The predictions resulting from the recurrent neural network
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In ’Modern methods for investigating the stability of a pitching floating platform wind turbine’,
an example of another engineering feature was given - the instantaneous aerodynamic damping
of a pitching wind turbine. A machine-learned controller could eventually learn the relationship
between the thrust and the motion, and how it affects the pitch stability. The controller can be
handed a shortcut for the process by including this feature from the beginning, with the controller
now trying to learn in a world where thrust and motion have a relationship to the stability of the
turbine. The world looks simpler with well engineering features.

Bowles et al. [22] and Lennie et al. [112]21 both demonstrated a similar formulation in action,
with the instantaneous aerodynamic damping formulation was derived for an airfoil by Bowles
et al. [22]. The formulation identifies the negative effects of trailing edge stall on flutter stability.
Any machine-learned model would benefit from this knowledge.

In the context of wind energy, there are many first-order equations and derivations that do
have limitations but can still make fantastic input features into machine-learned approaches.
This is at the heart of strategy two - use the domain knowledge built over the last generation of
wind-energy development as input features in the data-driven approaches.

Another feature engineering approach is to cluster our operating domain into smaller chunks.
In "Cartographing dynamic stall with machine learning", we saw and example of clustering
being used to help understand the data. An additional step would be to build a flow control
system where each cluster has its own unique control [145]. Clustering methods don’t just help
us understand our data but actively provide us with a reduced-order system with which we can
train models.

7.3 Strategy 3 - Machine Learning to move between scales

Wind-energy aerodynamics simulations will always suffer from the effects of being multi-scale
problems. Simulations at the scale of wind farms have to simplify the appearance of wind
turbines in the field. Simulations of a single wind turbine will usually have to simplify the
representation of the inflow conditions based on statistics. Running a precursor simulation to
generate inflow turbulence is possible, but costly. It would be better to use a cheap model that
produces good results.
Augmenting a low resolution inflow field to include turbulence, looks a lot like the image

super-resolution approaches that have become popular in the machine learning community. Wang
et al. [208] provides a thorough overview of the specific approaches. Here, it is enough say that
it is possible to turn a low-resolution photograph into a high-resolution photograph using an
intelligent, machine-learned interpolation. A wind speed over a plane of a wind turbine field is
essentially a photograph, with three wind components instead of three color channels.

21 Associated publication

120



Chapter 7. Seven strategies for machine learning in wind energy

To train such a model in a supervised manner, it would be necessary to have a set of low-/high-
resolution image pairs. The training data would have to cover a range of scenarios, including
different terrain, roughness and the influence of the other wakes from other machines. The
training data would have to be resolved at quite a high level, and this would present a challenge.
However, once achieved, it might be possible to take a large-scale wind simulation with a coarse
mesh (for an individual CFD simulation) and upgrade it to include much smaller scales of
turbulence. Given that wind field data is structurally the same as photographic data, it would
also be possible to use pretrained networks from general photographs, thus reducing the data and
computational requirements.
Such an approach would be most useful for the investigation of wind-farm-level control.

Using a plant-level controller has the advantage of making it possible to run one wind turbine
suboptimally in order to optimize the performance of the entire plant. Several experimental and
numerical studies have investigated the concept of wake steering; that is, deliberately yawing
a wind turbine so that the wake steers away from the rotor of the second row of the plant
[165, 64]. The upstream rotor will experience higher loads due to the yaw misalignment but
the downstream rotor will experience a cleaner inflow, leading to high power and lower loads.
For numerical simulations, it is critical to conduct the large wind farm simulations in a way
that resolves atmospheric effects which can strongly influence the wake structure and therefore
the effectiveness of wake steering [165]. But this level of simulation may not provide enough
resolution to calculate the difference in loads experienced by each wind turbine. A machine
learned approach could convert the coarse wind field simulation data into high resolution
inflow data for individual wind turbines. The machine learning approach would be initially
computationally intensive to train, but, usually, inference is orders of magnitude computationally
cheaper than training, at least with neural networks, which are the most likely candidates for
such an approach.

7.4 Strategy 4 - Sparse Sensing

Sparse sensing is a method used for intelligently extrapolating a full-state estimation from a small
numbers of features. The assumption is that there are strong underlying patterns in the data that
are repeatable and predictable [126]. We can use these known patterns to our advantage, placing
sensors only where necessary to measure these patterns. Sensors are expensive to install and
manage, therefore its a great advantage to obtain a full state estimation from a limited number.
A good example of this would be for an airfoil. Let us assume for now that the airfoil is

not experiencing stall. If we measure pressure on the airfoil surface, we notice that there is a
coherent pattern. We notice that as the flow accelerates around the curvature of the suction side
of the airfoil, resulting in a strong suction pressure. At the trailing edge, we can see the effects
of the Kutta condition take hold, thus decelerating the flow to enforce the continuity condition
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[4]. There are physical rules to the system.
When a system, such as an airfoil, has physical rules, it means that the system is constrained.

From all the infinite numerical combinations of pressure that the sensors could measure, there is
only a small set that obeys the Navier-Stokes equations. If we place large numbers of pressure
sensors across the airfoil, the chances are that most of the sensors are measuring redundant
dimensionality once we have enough data to train a model. The system is sparse, and we can
leverage that in a special way.

Manohar et al. [126] provided an in-depth demonstration of how to exploit ’known patterns’22.
Explicitly said, they advocated for using a tailored set of basis functions to represent the flow.
The alternative would be to compress the dimensions using prescribed basis functions, such
as in a Fourier series or Wavelet Transform, which may not be optimally sparse. Instead they
advocate using a PCA to find the modes ranked in order of the variance they describe in the
system. Essentially, these basis functions recognise that the Navier-Stokes equations constrain
the system, encoding these rules into the highest ranked modes of the decomposition.

When the underlying physical system is dimensionally low, it is possible to truncate the number
of modes used to represent the full reconstruction without causing much of an error [193]. We
can see that, for the airfoil demonstration case, by the sixth component, the variance explained
by additional components is close to zero (see Figure 7.12). It turns out that to predict to what
degree each of these modes is present, only a small number of sensors is necessary. But which
sensors? Choosing the sensors is a tricky problem because combinatorial searches are, in most
cases, not computationally possible [126]. We also do not want to choose sensors that provide
the same information.

22 The following three paragraphs briefly describe the concepts from Manohar et al. [126]
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Figure 7.12: The principle components of airfoil pressure

Here, it is possible to use the QR decomposition, with pivoting, to rank-order the sensors.
The QR decomposition with pivot has a nice property in that it selects the sensor with the
highest predictive power as the first pivot, essentially, the first selected sensor that can be
used most efficiently for predicting the low order representation of the airfoil pressure. The
QR decomposition then removes the information provided by this sensor from the remaining
sensors during the Householder step. This means that the next pivot will be the second most
effective, given that we already have the information from the first sensor. As we continue, we
can efficiently rank-order the sensors. However, this method doesn’t account for every single
combination; this is what is known as a greedy search.
Once we have selected the sensors, we need to use this data to reconstruct the full state. The

first step is to find the mode coefficients that result in the what is being measured by the sensors
(Figure 7.13). These coefficients are then multiplied out over the entirety of the mode shapes to
provide the full reconstruction (Figure 7.14).

Let us now look at this method in action on an airfoil. Figure 7.15 shows a toy version of the
airfoil problem, simply using airfoil pressures generated with XFoil [53]. With three sensors
and two PCA components, it was possible to get 98% accuracy on the validation set. Naturally,
real data will make the problem more difficult, but this example should provoke ideas of other
possible applications in other areas of wind energy.

The same formulation can also estimate an entire wind field from a sparse set of anemometers
[8]. Meteorological masts and LIDAR’s are too expensive to install enough in each wind
field to get a fine spatial resolution across an entire wind farm. Knowing the exact inflow
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Figure 7.13: The principle components of airfoil pressure with a small number of selected
sensors (adapted from Manohar et al. [126])

Figure 7.14: Reconstruction of the airfoil using three sensors

conditions experienced by each wind turbine at each time would help to identify machines that
are performing badly, or that are experiencing higher than expected loads. Annoni et al. [8]
achieved reasonable accuracy, but they required 50 sensor points.
In the description of this method so far, we have concentrated on the Manohar et al. [126]

method. But PCA modes are simply one reduced order representation that we can leverage for
this problem. Other methods, such as local linear embedding, also show promise. Figure 7.16
shows an example of a local linear embedding being used as an auto-encoder. First tests show
that such an embedding can represent such a system with suitable accuracy, the trick will now be
creating a sparse prediction of the embedded coordinates. This demonstration simply shows that
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Figure 7.15: Reconstruction of the airfoil using three sensors

dimensionality reduction can take multiple forms, which can be useful for different datasets.
Having a selection of methods helps in applying sparse sensing across a wide range of fields in a
wind-energy context, such as control, structural dynamics and even manufacturing. The wind
energy operating environment is incredibly hostile to sensors; Strategy 4 helps us better use the
sensors we can place on a wind turbine.

Figure 7.16: Reconstruction of a wind field from the validation set
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7.5 Strategy 5 - Efficiency through convergence criteria

The IEC61400 and DNV GL guidelines provide the basic rules for conducting load case
simulations. For extreme loads, the main estimation approaches are extrapolation or Monte
Carlo [72]. Monte Carlo approaches are very inefficient at testing the tails of datasets, and take a
very long time to converge. Furthermore, a high-dimensional system like a wind turbine, basic
samplers such as the Metropolis-Hastings Markov chain Monte Carlo, will struggle to even
sample the central moments efficiently [144]. Extrapolation out to extreme events where there is
no sampled data is also questionable. Graf et al. [72] suggested using a combination of sampling
techniques in stratified regions to solve this problem, although the work is only preliminary.
To demonstrate the issue, we can look at another sampling-based problem - ice fall risk

assessments, which tend to be tricky. Ice formation and shedding tend to occur during inclement
weather conditions, making it difficult to measure when and how the ice sheds from the wind
turbines. The most common approach is to use simple ballistics with randomly-sampled ice
chunks.

Figure 7.17: Ice throw simulation in QBlade [117]

The risk assessments have to determine the risk contours for 10−4 - 10−7 chance of someone
being hit per square metre per year [99]. These are very much on the tails of the distribution.
If we use a Monte Carlo sampling approach, we would need a huge number of samples to
converge these risk thresholds with reasonable confidence. Instead, it is much more efficient to
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use uniform distributions for all inputs and operating conditions, and then weight the individual
results based on their likelihood at the end of the calculation (see Figure 7.20) [107, 48, 116].
This has a second advantage; when we conduct bootstrapping to estimate the convergence of
the tail contours, we are conducting the sampling on uniform distributions, meaning that an ’m
from n’ bootstrap is not unreasonable. Using this approach, we could show that it requires only
60,000-70,000 particles in a standard simulation to define the safety boundaries within a 20 m
tolerance (see Figure 7.19) [117]23. In this context, given the input data uncertainties24, adding
20m is not an unreasonable compromise (Figure 7.18).

Figure 7.18: Risk contours overlaid onto a map [117]

Figure 7.19: Convergence of the 10−6 probability boundary [117]

23 Associated publication
24 In "Uncertainties and choices in ice risk assessments: How to get the results you want", Drapalik elucidates just

how wide the uncertainties are [52]
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Figure 7.20: Monte Carlo versus importance (or uniform) sampling

Ice fall is not the only environmental phenomenon that needs to be treated stochastically.
Simulating the structural response of Earth quakes is also approached statistically. From all of
the possible earth quakes, we can derive range of statistics. From these we derive a frequency
spectrum as a baseline and add sampled noise (Figure 7.21). The spectrum is converted into
a time series and then placed in the aeroelastic simulation of QBlade. We can also see here,
through bootstrapping, that we must ensure an adequate number of sampled earthquakes, to
ensure that we properly representing the statistics of the possible earthquakes (Figure 7.22).
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Figure 7.21: Creating a random earthquake

The same knowledge can be used in load-case simulations. By recognising exactly what
sampling algorithms we are using in load-case simulations, we can also start to understand how
sensitive our results are to our dataset. This can lead to smarter, more intelligent sampling
approaches. Furthermore, Bos [19] pointed out the important concept that an exceedingly rare
event, like a Mexican hat gust, does not necessarily lead to the most dangerous or damaging
scenario. We can also understand how to properly implement our safety factors when using
sampling methods (see Figure 7.23). This is critically important if we want to use more expensive
simulation tools, such as FVLLT or CFD, where we want to minimise the number of cases being
computed.
We should also be careful when our models use an expected value, but the reality is a

distribution. One example are the material properties of composite materials, another is the
cycle-to-cycle variability of aerodynamic responses during airfoil separation - a topic discussed
at length in this dissertation. We should be careful in claiming convergence when we forced
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stochastic parameters to be constant without suitable justification. In aerodynamics [114, 66]25

and composites [35, 36, 170], there are examples of modifying engineering models to include a
stochastic perturbation. [186] even go as far to recommend taking a probabilistic approach to the
whole design process.

Figure 7.22: Convergence of the mean root torsional moment with a growing selection of
earthquakes

Figure 7.23: Understanding how modifying safety factors can falsely modify distributions

25 Associated publication
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7.6 Strategy 6 - Machine Learn a small part of the system

Wind turbines operate in hostile environments under a complex set of constraints. The controllers
require a range of inputs that are more complicated than a sensor alone can provide. A good
example of this is ice accumulation on wind turbine blades. As ice accumulates, the extra mass
and the modified aerodynamics present an efficiency and loads problem [44]. The wind turbine
needs to have an accurate estimation of the icing for two reasons; is a shut down required?;
and/or should the anti- or de-icing systems be activated? Whether or not a wind turbines blade’s
are iced can be determined through a number of methods including:

1. Changes in modal frequency measured using strain gages [198];

2. Time series extrapolation from a nacelle-mounted anemometer pair [30]; and

3. Deviation from the power curve [44].

All of these methods can be compressed down to different versions of a classifier: icing? yes/no.
The modal frequency approach uses sparse sensing on a reduced-dimensionality representation

of the blades (i.e. blade modes) [198]. The icing sensors have to account for icing onset and
dissipation occuring at different times, resulting in some offsets [30]. The deviation from the
power curve has to take in noisy data, and separate out real changes in operating conditions from
the base-level noise. In short this method represents online change point detection of noisy data
[44]; quite similar to the vortex generator analysis discussed in the introduction. The approaches
here take different input features but all produce in a classifier at the end.

For the icing case, the machine-learned ’sensor’ provided input to the supervisory controller,
providing a better feature for the control system to work with. It was unnecessary to learn an
entire controller with machine learning to start yielding benefits.
The icing sensor is a specific example of anomaly detection, which asks, is the operational

data normal or is something weird [213, 212]? Due to the manufacturing tolerances and different
operating conditions for wind turbines, it is often difficult to hard-code thresholds, for example,
if the first flap frequency drops to 0.8 Hz, then there is a fault. Each machine has its own profile
of normal behaviour. The data quality is an issue, but there are examples of research making
headway, as seen in the review paper by Helbing and Ritter [80]. A machine-learning method
would incorporate data, creating and tuning the model from scratch or perhaps transfer learning
from a base example.

In some scenarios, it would be useful to operate the wind turbine in an unusual configuration
to meet the demands of the grid. ’Curtailing’ is the act of operating a wind turbine or farm
under its capability to guarantee the power that was sold ahead of time. To do this efficiently, we
need accurate knowledge of the offset between the current power generation and the maximum
achievable power. This is difficult in a wind farm where the wakes of each wind turbine will

131



Chapter 7. Seven strategies for machine learning in wind energy

affect the wind speed experienced by adjacent wind turbines. Essentially, we need a way of
including the behaviour of the wind farm in the model. The behaviour can be estimated through
physics-based engineering models, but the engineering models can be inadequate [70]. Recent
work has used a recurrent neural network to produce a better estimation of the percentage reserves
[71]. In this case, the wind turbine controller would then have an online estimate of the current
performance compared to theoretically available. Again, notice here that we are gaining from a
machine learned model with a relatively modest task.

This strategy is all about finding small parts of the models or monitoring systems that can be
replaced with a machine-learned model for better performance. The more we can do with small
data, small computational efforts and short development times, the better.

7.7 Strategy 7 - Machine learn the whole task

So far, I have been discussed where machine learning can make small improvements to parts
of simulations or processes. The idea was to demonstrate that wind energy can benefit from a
range of small implementations of modest tasks rather than an omniscient AI that will remove
humans from the design and operation of wind turbines completely. Sometimes, there are tasks
where, there are only two options; intense human input or machine learning. Two examples of
this are rotor-blade inspections and automated maintenance reporting.
Rotor-blade inspections usually require a trained rope access crew to manoeuvre around the

blades to conduct an assessment. For obvious reasons, the wind turbine can not be operated
during this time. The combined cost of the crew and the shut down means that inspections are a
costly task. However, a major part of the assessment is visual, answering questions such as:

1. How bad is the leading edge erosion?;

2. Have vortex generator panels lost wings or fallen off completely?;

3. Is there lightning damage on the blades?;

4. Are the trailing edges delaminated; and

5. Is the leading edge tape delaminated?

There are some questions that require a knock test or a more physical inspection, such as:

1. How deep does the crack in the leading edge bond line go?; and

2. Has the skin of the blade separated from the spar caps?

It seem difficult to create a machine-learning method to cover all of these functions, but if the
visual component can be performed with operators on the ground, it would still save time and
money.
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With the continued development of convolutional neural networks, a range of tasks that were
previously very difficult have become possible. A key task is the labelling of images for their
content; that is, this picture contains a vortex generator or this picture has leading-edge erosion
[181]. There have now been multiple implementations of mounting cameras to drones to create
inspection images which are then post-processed by a neural network. The post-processed data
can then be quickly checked by a structural engineer to recommend repairs or on blade inspection.
This is a great example of where machine learning replacing cost intensive work.

Another example is the interpretation of the reports filled out by maintenance teams. Each
time a maintenance crew does some work on a wind turbine, they fill out a report describing the
work done. The input into these reports is not standardised and the crews often use abbreviations
or synonyms (Generator becomes: ’gen’, ’gen.’, ’genie’, ’gener’ and so on). This means that a
simple word search is labour-intensive to program because, for every rule a human can think
to encode, the data will contain many more exceptions. However, a data-driven approach can
automatically encode such rules [174]. Furthermore, dimensionality-reduction techniques can
identify when alternate spellings are indeed the same word. Having an engineer or technician
react to summary data, rather than the individual reports, is obviously economically sensible.
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Chapter 8 Conclusion

In this study, we have repeatedly revisited a number of themes. The numerical models we use in
wind energy are critical for the continuing success of the wind industry. We can see that the
engineering-model approach has been, and continues to be, a highly effective way of designing
and operating wind turbines. However, these models tend to have some strong assumptions baked
in. High-fidelity models continue to make progress from the blade tips to the foundations, but
many of the models are quite computationally expensive. It has been shown in this dissertation
that the new data science approaches will help us not only understand our data, but also to bring
this data into our models. In the discussion, I outlined a number of recommendations for how to
integrate the knowledge of data science and machine learning into our engineering approaches.
Some of these examples are already being used in industry, others are works in progress.

This study sought to create solutions that:

1. Improve simulation tools to match the expanding needs of wind energy;

2. Provide better engineering models and analysis methods that meet modern challenges; and

3. Demonstrate better machine learning usage to help mine and model data.

All three of these solutions were achieved (Figure 8.1).
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Figure 8.1: The Impact

These achievements will most obviously impact the load simulations of wind turbines,
particularly for complicated cases like floating platform wind turbines. The instantaneous
aerodynamics damping will prove a useful design feature and analysis feature for floating
platform wind turbines. The experimental data provides a good insight into the complicated
flows of stand-still wind turbine blades and provides a baseline for model development and
simulation. The new methods for dissecting airfoil stall should change the way we interpret
testing data and build low-order models. However, I believe that along with the specific results
of the this study, my seven strategies will prove a vital breakthrough for machine learning in
wind energy. At the end of this work, I hope that the reader shares my optimism for the future
of machine learning and data science in wind energy without forgetting the noble engineering
models that will continue to be the backbone of the clean energy revolution.
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