
This version is available at https://doi.org/10.14279/depositonce-8475

© © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

Terms of Use

Femmer, H.; Vogelsang, A. (2019). Requirements Quality Is Quality in Use. IEEE Software, 36(3),
83–91. https://doi.org/10.1109/ms.2018.110161823

Henning Femmer, Andreas Vogelsang

Requirements Quality Is Quality in Use

Accepted manuscript (Postprint)Journal article |

1

Requirements Quality is Quality in Use
Henning Femmer and Andreas Vogelsang

Abstract—The quality of requirements engineering artifacts
is widely considered a success factor for software projects.
Currently, the definition of high-quality or good RE artifacts
is often provided through normative references, such as quality
standards, textbooks, or generic guidelines. We see various
problems of such normative references: (1) It is hard to ensure
that the contained rules are complete, (2) the contained rules
are not context-dependent, and (3) the standards lack precise
reasoning why certain criteria are considered bad quality. To
change this understanding, we postulate that creating an RE
artifact is rarely an end in itself, but just a means to understand
and reach the project’s goals. Following this line of thought,
the purpose of an RE artifact is to support the stakeholders
in whatever activities they are performing in the project. This
purpose must define high-quality RE artifacts. To express this
view, we contribute an activity-based RE quality meta model
and show applications of this paradigm. Lastly, we describe the
impacts of this view onto research and practice.

Index Terms—Quality, quality standards, requirements, docu-
mentation, roadmap

Three Actionable Insights:
• Always remember: Requirements engineering artifacts

are a means, not an end.
• Therefore, before writing your requirements, think about

the readers and how they use the artifacts first.
• Use this simple model to define who is using RE artifacts,

what RE artifacts are used for, and how RE artifacts
should therefore look like.

I. CURRENT STANDARDS ARE INCOMPLETE, INADEQUATE
AND IMPRECISE ON REQUIREMENTS QUALITY.

Requirements Engineering (RE) artifacts are central entities
in the software engineering process. Based on these artifacts,
project managers estimate effort, designers create architec-
tures, developers build the system, and test managers set up a
test-strategy. Consequently, quality defects in RE artifacts can
cause expensive consequences in subsequent software devel-
opment activities. Therefore, quality control of RE artifacts is
key for successful software development projects.

The definition of high-quality or good RE artifacts is
often provided through normative references, such as quality
standards or textbooks (e.g., ISO/IEEE/IEC-29148 [1]). We
see various problems of such normative references.

Quality standards are incomplete. Several quality stan-
dards describe quality through a set of abstract criteria. When
analyzing the characteristics in detail, we see that there are
two different types of criteria: Some criteria, such as ambi-
guity, consistency, completeness, and singularity are factors
that describe properties of an RE artifact itself. In contrast,
feasibility, traceability, and verifiability state that activities can
be performed with the artifact. This is a small, yet important
difference: While the former can be assessed by analyzing
just the artifact by itself, the latter describe a relationship

of the artifact in the context of its usage. Yet this usage
context is incompletely represented in the quality standards:
For example, why is it important that requirements can be
implemented (feasible in the terminology of ISO-29148) and
verified, but other activities, such as maintenance, are not
part of the quality model? Therefore, we argue that normative
standards do not consider all activities systematically, and thus,
are missing relevant quality factors.

Quality standards are not context-dependent. One could
go even further and ask about the value of some artifact-based
properties such as singularity or formality. Still widely cited
quality models of the past [2] proclaimed that (all) projects
should strive towards formalized requirements. What is the
purpose and reason behind such a property? A normative
approach does not provide rationales. This is different for
activity-based properties, such as verifiability, since these
properties are defined by their usage: If we need to verify the
requirements, properties of the artifact that increase verifiabil-
ity are important. In particular, we need to understand up-front
how we want to verify the requirements. For a formal veri-
fication, formalized requirements are a reasonable approach.
For manual testing, however, formalized requirements might
actually make them harder to understand and, therefore, harder
to test. This example shows that, in contrast to the normative
definition of quality in RE standards, RE quality usually
depends on the usage context.

Quality standards lack precise reasoning. The standards
remain abstract and vague when defining the criteria. Only
for some criteria, such as ambiguity, the standards provide a
detailed list of factors to avoid (e.g., comparatives). However,
even then, the concrete impact of these factors (such as
comparatives) onto the abstract criteria (such as ambiguity)
remains unclear.

Set of Reqs. /
Reqs. Document

Complete

Affordable

Bounded

Consistent

Unambiguity

Clear Structure

Modifiability and
Extensibility

Traceability

Requirements
Language Criteria

Subjective
Language

Vague Pronouns

Superlatives

Ambiguous Adverbs
and Adjectives

Open-ended, non-
verifiable. Terms

Comparatives

Negatives
Statements

Loopholes

Incomplete
References

Short Sentences
and Paragraphs

One Req. per
Sentence

(Individual)
Requirements

Necessary

Implementation Free

Unambiguous

Consistent

Complete

Singular

Feasible

Traceable

Verifiable

Agreed

Understandable

ISO 29148
Characteristic

ISO 29148 & IREB
Characteristics

IREB
Characteristics

Key:

2

Fig. 1: This figure compares the quality character-
istics of ISO 29148 and the IREB syllabus. Blue
characteristics are shared characteristics, orange and
green characteristics appear only in one of the
standards.

II. SIDEBAR: COMPARISON OF RE QUALITY
STANDARDS

To get a taste of current RE quality standards,
we compare the ISO/IEC/IEEE-29148 [1] quality
standard with the definition of quality attributes
from the curriculum of the International Require-
ments Engineering Board (IREB), a certification
also widely used in industry.

Both standards define a quality model through
a simple list of characteristics. According to the
standards, good requirements documents are those
in which these characteristics are present. The stan-
dards share nine of the characteristics (see Fig. 1),
mostly those characteristics defined in earlier litera-
ture and standards, such as the IEEE 830. However,
the standards disagree on more characteristics than
they agree on. In particular, the standards disagree
when it comes to concrete language criteria. Un-
fortunately, even when the standards agree on the
characteristics, the definitions of these character-
istics vary in specific details. Take, for example,
consistency. While the IREB definition only con-
siders disagreeing requirements as inconsistent, the
ISO 29148 definition of inconsistency also includes
duplication issues and terminological deficiency. In
addition, the IREB assesses quality characteristics
on a continuous scale, whereas the definitions of the
ISO standard suggest a Boolean interpretation.

At a glance, both standards share the same
approach towards quality, but their details differ
tremendously. This is especially true for the con-
crete, assessable language criteria. We argue that
these differences indicate two problems. First, the
missing agreement on the level of concrete language
criteria indicates that we do not yet know what is
good or bad quality, and that we have little to no
established understanding of the impacts of concrete
language criteria. Second and even more problem-
atic, the missing agreement at the level of abstract
quality characteristics indicates there is neither an
established understanding about nor an established
approach towards quality for RE artifacts as a whole.

Other authors have also noticed these deficien-
cies and came up with quality models that con-
sider the viewpoint of the user. For example, Lind-
land et al. [3] define different facets of quality
(syntactic, semantic, pragmatic), where pragmatic
quality emphasizes the extent to which the re-
quirements model is understood by the user. Deis-
senboeck et al. define an activity-based quality

model [4] for quality-in-use characteristics of source
code, such as maintainability. Our work details the
pragmatic quality facet through the use of activity-
based quality models.

III. GOALS OF REQUIREMENTS ENGINEERING

Let us take a step back. If we want to get to the bottom
of RE artifact quality, we need to reconsider the goals of
requirements engineering itself since RE artifacts should even-
tually support the goals of RE. Following the definitions of the
goals of RE as understood by Glinz [5, p.18], we understand
quality in RE as the degree to which the following goals are
sufficiently fulfilled for system stakeholders and the project
team:

1 Understand stakeholders’ needs: High quality in RE
is the degree of correct and complete understanding of
the goals, expectations, and constraints of the system
stakeholders.

2 Achieve agreement: High quality in RE is the degree of
agreement on a system that manifests the consensus of
all system stakeholders. To this end, high quality in RE
correctly prioritizes requirements, and ensures that a best-
possible solution is derived for the system stakeholders’
needs (iteration between problem and solution space, see
twin-peaks model [6]).

3 Create the same mental model between all system
stakeholders: High quality in RE is the degree to which
these system stakeholders’ needs and the derived consen-
sus are communicated correctly and completely between
all involved system stakeholders in the project.

4 Structure & manage requirements-based activities:
Many project activities are structured along the system
stakeholders’ needs, e.g., in the form of requirements.
Some exemplary activities are estimating the costs, plan-
ning the implementation of the system, developing the
system, or testing the system. Consequently, high quality
in RE is the degree to which engineers working with
the requirements (i.e., the information) can efficiently
and effectively use the requirements to execute their
requirements-based activities [7].

RE artifact quality should be defined and assessed with
respect to the achievement of these goals.

IV. A DIFFERENT VIEW ON REQUIREMENTS QUALITY

Gross and Doerr [7] argue that in order to create high-
quality requirements documentations that fit the specific de-
mands of successive document stakeholders, the research
community needs to better understand the particular infor-
mation needs of downstream development roles. We follow
this idea but relate artifact quality to development activities
and not to document stakeholders because information needs
of stakeholders may change depending on the activities they
have to perform in a specific context.

In the following, we describe our approach towards require-
ments artifact quality. We first describe the basic concepts, then
the detailed model, and finally an exemplary quality factor.

3

A. The Idea

We postulate that creating an RE artifact is rarely an end in
itself, but just a means to reach the project’s goals. In particu-
lar, they are a tool to reach the goals of RE, as described in the
previous section. Following this line of thought, the purpose
of a requirements artifact is to support the stakeholders in
whatever activities they are performing in the project. This
change of view means that it is unreasonable to talk about
good or bad RE artifacts in general. What is good and what is
bad must always be assessed with respect to the given context.
More specifically, good quality depends on the RE artifact
stakeholders and the activities that they conduct with the RE
artifacts. In fact, we argue that common quality criteria, even
completeness and correctness, have to be rethought from a
quality-in-use perspective. This contributes a novel view on
requirements engineering artifact quality, which discusses RE
artifact quality from a quality-in-use viewpoint.

B. The Model

To define RE artifact quality, we designed Activity-Based
RE artifact Quality Models (ABRE-QMs). To describe the
structure of ABRE-QMs, we provide an ABRE-QM meta
model that introduces the concepts needed to describe an
ABRE-QM (see Fig. 2 left):

An artifact is a documented collection of requirements
entities, which is produced during an RE process. An example
for an artifact is a use case document.

An entity is a coherent documented information. An entity
can be an information content item, but can also be further
decomposed, for example into the linguistic components of
such a content item. Examples for entities are a use case, an
alternative flow, or a step within the flow.

A stakeholder role is the role of someone with an interest
in the RE artifact [8], such as a test engineer. Each role
can include other roles that are more generic. For example,
both test engineer and developers are also readers of the
requirements artifact. Therefore, quality factors that affect the
activity read, affect all readers of the artifact, including test
engineers and developers through their included generic role
reader. This allows combining shared activities that multiple
stakeholders must execute.

An activity is an invested effort, which involves one or more
of the aforementioned artifacts, such as creating test cases, and
one or more of the aforementioned stakeholder roles, such
as the test engineer. An activity can be broken down into
subactivities. For example, the testing activity is decomposed
into creating, running, and maintaining test cases.

A quality factor is a property that is or is not present in an
entity. This property must be objectively assessable through a
measure to be used for quality control.

An impact is an explicit relation between a quality factor
and an activity. The impact influences either effectiveness or
efficiency of that activity. This impact is explicitly discussed
through: First, a reason, i.e., an argumentation why the pres-
ence of a specified characteristic (the quality factor) of an
artifact impacts the associated activity; second, consequences
on costs, schedule or quality of the developed system; and

third, a source from which this impact was derived and which
can provide further information, i.e., a requirements quality
standard or corporate guidelines.

A context factor influences the impact of a quality factor.
For example, the problematic impact of a passive voice re-
quirement varies, depending on the background of the reader.
If the reader has no or few domain knowledge, the passive
voice has a stronger impact. In contrast, in cases where the
reader is well aware of the domain and the ideas of the system,
the impact can be less problematic. Context factors can be
human, process or tool factors.

An assessment is a description for evaluating an entity
against a quality factor. The application of an assessment
against an entity results in a (potentially empty) set of quality
defects (cf. [4]). We see three potential categories of assess-
ments: manual, automatic, and semi-automatic assessments.

C. An Exemplary Quality Factor

To foster understanding, this section provides an exemplary
excerpt of an ABRE-QM (see Fig. 2 right). The example shows
the definition of one quality factor, namely the presence of
explicit steps in a use case flow.

1. Artifacts and entities: A use case document is a common
artifact for specifying functional requirements to software
systems. A use case usually contains a basic flow, which is a
sequence of steps that describes how the user interacts with
the system.

2. Stakeholder roles: For the sake of simplicity, in this
example, we consider only test engineers.

3. Activities: When we analyze how a test engineer pro-
cesses the use case document in a specific project, we discover
that, among other activities, the test engineers goes through the
use case steps and creates test step(s) for the use case’s basic
flow.

4. Quality factors: It is considered good practice in use
cases to explicitly separate each step instead of describing the
whole basic flow in one text block. With the aforementioned
context and activity in mind, we understand why a use case
with this quality factor is considered higher quality: The
test engineer can directly translate the use case steps to test
steps. Therefore, the test engineer’s task of creating a test
sequence can be executed more effectively (and maybe also
more efficiently) when the factor is present in the use case.
Fig. 2 explicates this reasoning through a positive (’+’) impact
in an ABRE-QM. Please note, that for simplicity, we only
discuss one of the impacts of this quality factor here.

5. Context factors: One could consider the applied tool
environment to be a context factors. Depending on the concrete
tools in use, the translation is more or less efficient.

6. Assessment: One could discuss various types of as-
sessments, depending on the tools used. An easy-to-apply
assessment is a manual review, which can spot this quality
defect. In addition, for various requirements management
tools, one could discuss automatic (or at least semi-automatic)
methods through automatic analysis of the use case’s structure.

This example shows the definition of one quality factor. An
ABRE-QM is a composition of a set of such quality factors

4

Artifact

Entity

Quality
Factor

Stakeholder
Role

Activity

Impact

performs

impacts

is
present

contains
contains

Context
Factor

Assessment

influenced by

evaluated by

includes generic role

consists of

Artifacts & Entities

Use Case
Document

Basic Flow

Step is explicitly
separated

Test Engineer
(T.E.)

Create Test
Steps

Rationale: T.E. can translate
steps

+

performs

impacts

is
present

contains

contains

Tool-Features

Manual Review

influenced by

evaluated by

Use Case

contains

Stakeholder & Activities

 Quality Factors & Impacts

Fig. 2: This figure shows the ABRE-QM meta model (left) and a simple example of a quality factor in an ABRE-QM (right).
The meta model consists of artifacts and their decomposition into entities, quality factors and their impact on activities, which
are performed by certain stakeholder roles. Impacts are influenced by context factors. Lastly, quality factors are evaluated by
assessments. The example discusses why explicitly separated steps in basic flows of use cases are considered good quality. In
this example, we discuss the impact on creating test steps, i.e., explicitly separated steps in basic flows allow more efficient
and effective creation of test steps through reuse.

Req. Engineer Implementer Tester User

Implement
UC

All Stakeholders

Create
UC

Maintain
UC

Find
UC

Understand
UC

Perform
UC

Use Case

Basic Flow

Name

Preconditions

Postconditions

Step UI Design Details

Rationale:
A visual representation of a
UI supports the stakeholder
in understanding, because it
makes the Use Case more
concrete.

+
Rationale:
Visual elements change
more often than the way
how a user interacts with
the system. Therefore, UC
with UI detail must be
changed more often.

-
Rationale:
The tester can associate the
UC directly to the UI which
makes running the test case
easier.

+
Rationale:
A user might have to use a
suboptimal UI, because it
was determined early in
the process.

-

Run
Test

Derivate
Test Idea

Impacts

Stakeholder & Activities

Artifacts & Entities

Fig. 3: This figure shows a more complex ABRE-QM. It discusses positive as well as negative impacts of UI design details
in use cases: On the one hand, UI details in use case descriptions eases understanding the use case and running tests. On the
other hand, it makes maintaining the use cases less efficient and might lead to suboptimal design, which makes it harder for
the user to perform the use case.

with their respective relations. Fig 3 shows a more extensive
example, where a quality factor has positive and negative
impacts onto activities and needs to be evaluated in context.

This model enables researchers to provide practitioners with
a precise definition of what they consider to be good or bad
quality, why (i.e., due to which consequences) and in which
context (i.e., based on which activities). Practitioners can then
use such a precise quality model and, based on artifacts,
activities and impacts, decide which quality characteristics are
relevant for their context.

V. APPLICATIONS IN RESEARCH AND PRACTICE.

We have applied the proposed meta model for different
purposes. The meta model proved beneficial in several contexts

that are discussed in the following.

Activity-based RE Guidelines. Nowadays, many compa-
nies have generic guidelines to help employees improve their
requirements and to create a baseline for quality. We argue
that guidelines that are defined in an activity-based manner
could help to make these guidelines more complete, precise,
and specific for their context. In a first study [9], practitioners
reported that a translated guideline helps to both discuss
validity of the existing rules and to create guidelines that are
more complete.

Activity-based Tailoring of Requirements Templates. Re-
quirements templates are blueprints that determine the syntac-
tic structure of a single requirement. One reported advantage
of requirements templates is that they facilitate requirements

5

specifications that are more complete. However, what complete
actually means depends on how requirements are used: The
information that needs to be provided in a requirement is
determined by the activities that are performed based on the
requirement. In a recent paper [10], we used activity-based
models to tailor requirements templates in a way that the
information they demand for a requirement fit the actual usage
in a specific development context. The result is a set of
requirements templates that are more specific and expressive
than general templates that are proposed to fit every situation.

Activity-based Cost Estimation. We used the proposed
meta model to develop cost models to enable an informed
decision making process: In a recent study [11], we used an
instance of the meta model to characterize the cost and benefits
of refactoring functional parts that reoccur in several functions
of a system specification. The decision whether a refactoring
pays off heavily depends on the context in which the respective
system specification is used. Therefore, we identified activities
that are performed with the system specification, and we
identified cost factors that affect these activities in the original
and the refactored version. Cost factors are a specific form of
quality factors as present in the meta model. As a result, the
decision whether to refactor a specification or leave it as it is
can be assessed with respect to the usage context.

Activity-based Quality Assurance. The presented
paradigm also has strong implications on quality assurance.
This is both for constructive aspects, such as tailoring
guidelines to requirements use, but also analytical approaches,
such as requirements smells [9], where ABRE-QMs enabled
us to decide which quality characteristics should hold in a
certain context.

Activity-based Impact of RE Quality in a Common
Theory. Lastly, the paradigm helps steer and unite research by
providing it with a common theory: Research can be structured
along quality factors and thus focus on activities that are im-
pacted by a certain quality factor. That way, both defining the
quality factor and understanding its impact follows a precise
structure. We followed this example in our experiment on the
impact of passive voice on understanding requirements [12].

VI. SO WHAT?

Based on our activity-based model, we can categorize where
the research in the field should be heading.

A. What Should Practitioners Do?

If you are a practitioner trying to improve the RE process
in your company by increasing the artifact quality, we argue
that these steps help to create more efficient and effective
requirements artifacts:

1) Always remember: Requirements engineering artifacts
are a means, not an end.

2) Therefore, before writing requirements, we suggest to
think about the readers and how they use the artifacts:
Which information do they need? Afterwards, we advise
to create a model of the RE artifacts produced in the
company, the stakeholders that use these artifacts, and the

activities that the stakeholders perform. The meta model
presented in this article can help to structure this model.

3) What is most important in our opinion is to talk to the
stakeholders who use an artifact to assess what helps or
hinders them in performing their tasks. Their experience
can be included as quality factors to the quality model.

4) After the basic model of artifacts, activities, and quality
factors is established, one can start introducing company-
wide guidelines or quality assurance measures based on
this model. We argue that these guidelines and measures
are more complete, specific, and justified than normative
references because they have a direct relation to activities
that profit from them. Requirements patterns may help
to remind the engineers of the information they need to
document (see [10]).

5) Lastly, it is important to evolve and maintain this model
over time. The stakeholders, activities, and therefore also
the notion of artifact quality may change over time or
there might be new quality factors that should be added.
Additionally, a change in some context factors (e.g.,
tooling improvements) may mitigate negative impacts.
This could mean that maintaining some quality factors
may no longer be relevant.

Implementing these steps in a company takes some effort.
However, we see this as the most promising approach to
effective quality definitions that are accepted by employees
because they see the benefit of following the guidelines. If
companies already maintain a reference model of artifacts
and stakeholders, the initial effort may be less compared with
companies that first have to create such a model. To reduce
initial costs, a company may focus on the most crucial (or
cost-intensive) activity and start building an ABRE-QM with
guidelines for this activity. As a result, the activity will directly
benefit from the new quality factors. Additional activities and
artifacts may successively be added to the model. We suggest
defining the role of a quality manager who is responsible for
creating and maintaining the ABRE-QM.

B. What Is Left For Research?

The activity-based approach for quality definitions strongly
benefits from a unified and well-tested body of quality factors
and related impacts. If research continues along this theory,
the community can create a generic ABRE-QM, which will
resemble the existing knowledge on RE artifact quality. The
precision of such a theory would allow researchers to discuss
results in the field systematically and its focus on activities
would enable practitioners to understand and weigh conse-
quences of bad quality in a structured manner. In the long
run, this paradigm could even be extended beyond artifacts to
create a general RE quality theory.

To accomplish this vision, researchers should work on the
following topics:

1) Create a reference artifact and usage model that serves
as a list of typical stakeholders, their most important ac-
tivities, and typical artifacts that are used in the activities.
Practitioners may use this reference model as a starting
point for a company-specific model.

6

2) Create a taxonomy of quality factors that serves as a
body of knowledge of quality factors. To observe these,
one can look through produced artifacts, for example:
• Review protocols that indicate the effort that was

invested during QA of the RE artifacts (as we, for
example, did in an earlier paper [13])

• Incorrect test cases or incorrect test results that show
that the test case engineer misunderstood the RE arti-
facts

• Requirements change requests, or defects in bug track-
ing systems that can be traced back to RE artifacts, to
understand defects in the RE artifact that are discovered
during development or further activities

• Concrete changes that have been performed on the
RE artifacts to understand maintenance efforts (as for
example performed by Basirati et al. [14])

3) Create a taxonomy of impacts that provides a list of
well-examined effects of quality factors on activities.
To evaluate impacts, one may use interviews [15], case
studies [14], or experiments [12].

Practitioners will benefit from this community effort only
if the necessary effort for tailoring the reference model and
taxonomies is reasonable. This should be investigated in future
work. Another issue that researchers should examine is how
to handle conflicts in the quality model: A quality factor that
has a positive impact onto one activity may have a negative
impact onto another activity (see Fig. 3).

VII. CONCLUSIONS

The strength of our approach, as first interviews with prac-
titioners indicate [15], lies in its clarity of reasoning. Taking
activities as the basis provides a simple rule whether or not
something is of better or worse quality: If it hinders someone, it
is bad quality. This rule, at the same time, generates falsifiable
hypotheses for each postulated rule for good or bad quality. We
argue that this quality model enables research to both argue
more clearly about their results, but also conduct better studies,
with a clearer research focus. We furthermore argue that this
model provides practitioners with a precise and valid approach
to understand: What are good requirements artifacts in my
case?

ACKNOWLEDGEMENTS

This work was performed within the project Q-Effekt; it
was funded by the German Federal Ministry of Education
and Research (BMBF) under grant no. 01IS15003 A-B. The
authors assume responsibility for the content.

PLACE
PHOTO
HERE

Henning Femmer Henning Femmer holds a Ph.D.
from Technical University Munich (TUM) and is
a co-founder of the requirements engineering con-
sulting company Qualicen. His research focuses on
improving the efficiency and effectiveness of re-
quirements quality control, with a particular focus
on automatic methods. He publishes at academic
venues, such as ICSE, RE, ESEM, but also speaks at
industry-focused events, such as REConf or Embed-
ded World. In both his research and practical work
he aims to combine scientific rigor with industrial

applicability in order to efficiently deliver high quality.

PLACE
PHOTO
HERE

Andreas Vogelsang Andreas Vogelsang is a pro-
fessor for systems engineering at the Berlin Insti-
tute of Technology (TU Berlin). He closely co-
operates with the Daimler Center for Automotive
IT Innovations (DCAITI) by leading the software
engineering research group. His research interests
comprise model-based requirements engineering, re-
quirements specification quality, and software archi-
tectures for software-intensive systems. He has pub-
lished over 20 publications in international journals,
conferences, and workshops including ICSE, RE,

and REFSQ. Additionally, he participated in several research collaborations
with industrial partners especially from the automotive domain. Most of the
research collaborations focused on how to create high-quality requirements
artifacts and how to improve the RE process.

7

REFERENCES

[1] ISO/IEC/IEEE, “Systems and software engineering – Life cycle pro-
cesses – Requirements engineering,” International Organization for
Standardization, Geneva, Switzerland, ISO/IEC/IEEE 29148:2011(E),
2011.

[2] K. Pohl, “The three dimensions of requirements engineering,” in In-
ternational Conference on Advanced Information Systems Engineering
(CAiSE), 1993.

[3] O. I. Lindland, G. Sindre, and A. Solvberg, “Understanding quality in
conceptual modeling,” IEEE Software, vol. 11, 1994.

[4] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard,
“An activity-based quality model for maintainability,” in International
Conference on Software Maintenance and Evolution (ICSM), 2007.

[5] M. Glinz, “A glossary of requirements engineering terminology,” In-
ternational Requirements Engineering Board and University of Zurich,
Tech. Rep., 2014.

[6] B. Nuseibeh, “Weaving together requirements and architectures,” IEEE
Computer, vol. 34, no. 3, 2001.

[7] A. Gross and J. Doerr, “What you need is what you get!: The vision of
view-based requirements specifications,” in Requirements Engineering
Conference (RE), 2012 20th IEEE International, 2012.

[8] K. Pohl, Requirements engineering: Fundamentals, principles, and tech-
niques. Springer Publishing Company, Incorporated, 2010.

[9] H. Femmer, D. Méndez Fernández, S. Wagner, and S. Eder, “Rapid
quality assurance with requirements smells,” Journal of Systems and
Software, 2016.

[10] J. Eckhardt, A. Vogelsang, H. Femmer, and P. Mager, “Challenging
incompleteness of performance requirements by sentence patterns,” in
International Requirements Engineering Conference (RE), 2016.

[11] A. Vogelsang, H. Femmer, and M. Junker, “Characterizing implicit com-
munal components as technical debt in automotive software systems,”
in Working Conference on Software Architecture (WICSA), 2016.

[12] H. Femmer, J. Kucera, and A. Vetrò, “On the impact of passive voice
requirements on domain modelling,” in International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2014.

[13] A. Vogelsang, H. Femmer, and C. Winkler, “Take care of your modes!
An investigation of defects in automotive requirements,” in International
Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ), 2016.

[14] M. R. Basirati, H. Femmer, S. Eder, M. Fritzsche, and A. Widera,
“Understanding changes in use cases: A case study,” in International
Requirements Engineering Conference (RE), 2015.

[15] H. Femmer, J. Mund, and D. Méndez Fernández, “It’s the activities,
stupid!: A new perspective on RE quality,” in International Workshop
on Requirements Engineering and Testing (RET), 2015.

