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Abstract

Colloidal core-shell semiconductor quantum dots present a fascinating field in both semi-
conductor research and applications, because they share many properties with more con-
ventional quantum dots embedded in bulk semiconductor materials, such as quantum
dots produced via a Stranski-Krastanov process. Yet they are are both much simpler to
produce, being the product of chemical synthesis methods, and, for this reason, their pro-
duction is also much simpler to scale, making them very promising as a low-cost industrial
substitute to quantum dots produced using high tech MOCVD machinery.
This advantage brings with it some challenges with regards to the control of the chemical
synthesis process, but at this time, it is possible to mass produce colloidal quantum dots
with very precise sizes and material compositions.
There have been theoretical studies of the electronic structure of colloidal core-shell quan-
tum dots, but some aspects that have been thoroughly studied in Stranski-Krastanov
quantum dots have so far not been the focus of the theoretical description of colloidal
quantum dots.
These are the influences the internal electric potentials, which arise in semiconductor
heterostructures, can have on the electronic structure of the quantum dots.
In this work, we compute both the piezoelectric potentials, which arise due to the strain
imposed on the lattice structure due to the lattice constant mismatch between core and
shell material, as well as the pyroelectric potentials, which are present only in semicon-
ductor heterostructures with wurtzite lattice structure.
These potentials are then employed in our calculations of the electronic structure of col-
loidal quantum dots, performed for quantum dots with zincblende and wurtzite lattice
structure using 8-band k·p theory. We present results both for the single-particle picture
and the multi-particle picture, derived using an iterative Hartree-Fock approach.
Our calculations show that the influence of the internal potentials differs strongly between
the two considered lattice structures: while for zincblende the changes in electronic struc-
ture induced by the internal potentials are negligible, for quantum dots with wurtzite
lattice structure we observe profound changes when internal potentials are incorporated:
electron- and hole-wavefunctions are spatially separated, and their energy difference is
strongly redshifted, an effect also observed for polar semiconductor heterostructures in
bulk materials and usually named the quantum confined Stark effect.
Additionally, we present calculations performed for non-spherical quantum dots, modeled
by us as ellipsoids. We find that deviations from sphericity lift degeneracies in the energy
structure, and also shift the effective bandgap of the quantum dots.
Insight into the excitonic properties is shown via the multiparticle calculations, here we
observe, for wurtzite quantum dots, that the excitonic ground state is not entirely spin-
polarized, leading to a non-zero matrix-element, and therefore luminescence from the
ground state. This is in contrast to previous work, which characterised this ground state
as a dark state.
Our analysis of the vibrational properties of the quantum dots lead to the following in-
sights: The vibrational eigenmodes, or phonons, of the system can be classified into distict
groups, differentiated by their energies. The phonons in a group all show similar distribu-

2



tions of their atomic dynamics; while some groups closely resemble bulk phonons, others
show a very localised dynamics that more resembles molecular vibrations.
When we determine the coupling of the phonons to different transitions in the excitonic
system, we find that only a small percentage of phonons show significant coupling, and
those who do are constrained to small parts of the energy scale, leading to the formation
of peaks in the coupling spectra. Furthermore, most phonons that exhibit significant
coupling are found to display a bulk-phonon-like dynamics distribution.
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Zusammenfassung

Kolloidale core-shell Quantenpunkte sind ein faszinierendes Feld in der Halbleiter-Forschung
und in ihrer Anwendung, da sie viele Eigenschaften von etablierteren Quantenpunkten
teilen, etwa Quantenpunkten, welche im Stranski-Krastanov Wachstumsmodus hergestellt
wurden.
Zugleich sind kolloidale Quantenpunkte jedoch mit sehr viel einfacheren Verfahren zu
produzieren, da sie das Produkt chemischer Syntheseverfahren sind, welche auch deut-
lich leichter im Produktionsvolumen zu skalieren sind als die sehr aufwändige und teure
Herstellung mit z.B. MOCVD-Verfahren.
Dieser Vorteil bringt auch Herausforderungen mit sich, da chemische Herstellungsprozesse
nicht notwendigerweise dieselbe Präzision wie MOCVD-Verfahren aufweisen, es ist jedoch
mittlerweile möglich, sehr präzise kolloidale Quantenpunkte, in Bezug auf ihre Größe und
chemische Komposition in Masse zu produzieren.
Die bisherige theoretische Behandlung der elektronischen Eigenschaften dieser Quanten-
punkte hat einige Aspekte, welche bei selbstorganisierten Quantenpunkten bereits seit
langem im Detail untersucht wurden, nicht in vollem Umfang mit einbezogen. Dies sind
insbesondere die internen elektrischen Potentiale, welche in Halbleiter-Heterostrukturen
jeder Art auftreten, und die Auswirkungen dieser Potentiale auf die elektronische Struk-
tur.
In dieser Arbeit präsentieren wir Berechnungen der elektronischen Struktur für kolloidale
core-shell Quantenpunkte für zwei verschiedene Gitterstrukturen: Zinkblende undWurtzit.
Wir berechnen sowohl piezoelektrische Potentiale, welche durch die Verzerrung der Git-
terstruktur innerhalb der Quantenpunkte entstehen, welche durch die unterschiedlichen
Gitterkonstanten der zwei Materialien ausgelöst wird, als auch die pyroelektrischen Po-
tentiale, welche für Wurtzit-Heterostrukturen auftreten.
Diese Potentiale werden dann in die Berechnung der elektronischen Struktur, welche
mithilfe von 8 Band k·p Theorie durchgeführt wird, einbezogen. Wir präsentieren Ergeb-
nisse sowohl im Einteilchen-Bild als auch für Exzitonen im Mehrteilchenbild. Die exzi-
tonischen Zustände werden durch in iteratives Hartree-Fock Verfahren berechnet.
Unsere Ergebnisse zeigen, dass der Einfluss der internen Potentiale für die beiden betra-
chteten Gitterstrukturen sehr unterschiedlich ausfällt: während die Änderungen der elek-
tronischen Struktur durch die Potentiale für Zinkblende-Quantenpunkte vernachlässigbar
sind, gibt es einen starken Einfluss für Wurtzit-Quantenpunkte: hier beobachten wir zum
einen eine räumliche Trennung von Elektronen- und Loch-Wellenfunktionen, als auch eine
starke Rotverschiebung ihrer Energiedifferenz. Dieses Phänomen wird im Forschungsfeld
selbstorganisierter Quantenpunkte und Quantenwells als quantum confined Stark effect
bezeichnet.
Zusätzlich präsentieren wir Ergebnisse für nicht-sphärische Quantenpunkte, welche von
uns als Ellipsoide modelliert werden: hier finden wir, dass Abweichungen von der Kugelform
sowohl Entartungen in der Energiestruktur der Zustände aufbrechen, als auch die effektive
Bandlücke verschieben können.
Aus den Berechnungen der exzitonischen Zustände lernen wir, dass der Grundzustand,
welcher in vorherigen theoretischen Betrachtungen von kolloidalen Quantenpunkten stets
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als dark state betrachtet wurde, nicht komplett spin-polarisiert ist, und daher ein nicht-
verschwindendes Matrixelement hat, also Lumineszenz zeigt.
Unsere Analyse der Schwingungseigenschaften der Quantenpunkte liefert uns folgende
Erkenntnisse: die Schwingungs-Eigenmoden, oder Phononen, des Systems können in klar
voneinander abgegrenzte Gruppen eingeteilt werden, wobei die Gruppen anhand der Schwingungsen-
ergien klassifiziert werden können. Die Phononen innerhalb einer Gruppe zeigen sehr ähn-
liche räumliche Verteilungen ihrer atomaren Dynamik; während die Phononen in einigen
Gruppen eine Dynamik zeigen, die sehr der Dynamik von Phononen in Bulk-Halbleitern
ähnelt, ist die Dynamik der Phononen in anderen Gruppen sehr stark räumlich lokalisiert,
und ähnelt eher Molekül-Schwingungen.
Die Untersuchung der Kopplungsstärke der atomaren Schwingungen an verschiedene Übergänge
des exzitonischen Systems brachte uns folgende Erkenntnis: nur ein kleiner Prozentsatz der
Schwingungs-Eigenmoden zeigt eine signifikante Kopplung, und diese Schwingungsmoden
liegen in wenigen, kleinen Teilen der Energie-Skala, was dazu führt, dass die Kopplungs-
Spektren klare Peaks zeigen. Ausserdem zeigen die meisten Phononen, welche an das
elektronische System koppeln eine atomare Dynamik, ähnlich der von Bulk-Halbleiter-
Phononen.
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1 Introduction

Quantum dots have been a fascinating field of research for many years, because they
exhibit similar characteristics to single atoms, but are much easier to control and produce.
Self-organized quantum dots grown on bulk materials offer a manifold of possibilities for
applications, from efficient light-sources [1], to sources of single photons [2] or entangled
photon pairs [3]. The drawback for applications is the expensive and difficult to control
fabrication process, using, for example, an MOCVD process [4].
Colloidal quantum dots share many of the promising characteristics of the quantum dots
embedded in a bulk semiconductor matrix. Yet they are most often produced in liquid
solution.
As a result, they are much simpler to produce, as they are the product of a chemical
synthesis process [5]. Additionally, their fabrication process is much easier to scale, because
it does not rely on expensive high-tech machinery, such as MOCVD production lines.
Their current and potential future applications are manifold: colloidal quantum dots are
used in such diverse areas as background-lighting in LED television screens [6] and bio-
logical sensors in medicinal research [7, 8, 9].
Most theoretical studies of the electronic structure of colloidal quantum dots have utilized
the very simple geometries of these systems to develop analytical solutions for the energies
and wavefunctions [10, 11, 12] of their electron- and hole-states. Subsequently, these solu-
tions have been utilized to develop a multi-particle picture [13, 14, 15], and a description
of the expected radiative behaviour of these quantum dots.
These analytical results for the electronic structure has then been combined with calcu-
lations of the vibrational properties [16, 17] of the atomic structure of colloidal quantum
dots, to assess electron-phonon coupling [18, 19].
In this work, we expand these theoretical descriptions, using a numerical approach to
compute the electronic structure, and incorporating strain effects and internal electric po-
tentials in these computations. The numerical calculation approach used in this work was
developed by my predecessors in my workgroup, and originally applied to self-organized
quantum dots grown in the Stranski-Krastanov growth mode. It was modified slightly to
enable us to apply it to this new class of quantum dots, making it possible for us to assess
the impact of these effects, that have not been the focus for studies of colloidal quantum
dots before.
In this work, we will begin, in chapter 2, by describing in detail the computational methods
and underlying theories employed for calculations of the electronic structure, the vibra-
tional properties and the coupling between these two systems. A particular emphasis is
placed on the 8-band k·p theory, outlining the differences between the two lattice struc-
tures.
Subsequently, in chapter 3, we will provide an overview over the preceding theoretical
descriptions for colloidal quantum dots.
In chapter 4 we will present the results of the calculations of the internal strain distribu-
tions inside the quantum dots, and the internal electric potentials, again emphasising the
differences that result from the different lattice structures.
We then proceed, in chapter 5, to the results of the single-particle results of the 8-band
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k·p calculations, analysing in detail the energy-spectrum and the symmetries of the single-
particle wavefunctions, as well as the impacts of our calculated internal potentials on these
properties. Another aspect presented here is the impact of deviations from sphericity of
the quantum dot shapes on the electronic structure.
Chapter 6 contains the results of the multi-particle 8-band k·p calculations. The energy
structure and wavefunctions of the excitons are detailed, and, additionally, we perform an
analysis of the spin-projections of the electron- and hole-components of the excitons as
well as the excitonic lifetimes.
Thereafter, in chapter 7, we present the results for the coupling of the vibrational eigen-
modes of the quantum dots to various transitions in the excitonic structure. The effects of
lattice structure and quantum dot geometry on these couplings are examined, and general
properties of exciton-phonon coupling in colloidal quantum dots are presented.
We then move on to present further analysis of the vibrational eigenmodes of the quantum
dots, in chapter 8. We develop a method to classify different vibrational eigenmodes based
on the spatial distribution of their atomic motion, and present the results of our application
of this method. We also investigate the properties of the phonons that display significant
coupling to the excitonic structure.
Finally, in chapter 9, we summarise the major results presented in this work, assess the
limitations of our methods and results, and present an outline of promising future research
to further our understanding of this particular field of research, and put the results of this
work into perspective.
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2 Methods

2.1 Overview

In this chapter, the conceptual and computational methods used in this work will be
introduced.
A solid consisting of electrons and atomic nuclei can be generally described by the following
Schrödinger equation:

H Ψ(r,R) = E Ψ(r,R) , (2.1)

where the wavefunction Ψ(r,R) is dependent on the positions of both the electrons r and
nuclei R. The Hamiltonian has the general form

H = TC(P) + Te(p) + VC−C(R) + Ve−e(r) + Ve−C(r,R) , (2.2)

and consists of the kinetic energy operators for electrons, TE , and nuclei, TC , as well as the
interactions between electrons, Ve−e, between nuclei, VC−C and also interactions between
electrons and nuclei, Ve−C .
Since the masses of electrons are much smaller than the nuclei masses, the timescales of
the electron dynamics are much smaller compared to the atomic nuclei. Therefore, we
can separate these dynamics, in what is called the Born-Oppenheimer-approximation, or
adiabatic approximation.
Assuming that on the timescale of electron dynamics, the nuclei can be considered to be
at their rest positions R(0), the electron may only depend on the electron coordinates r.
If we furthermore neglect electron-electron interaction, the Schrödinger equation for the
electrons becomes:

(
p2

2m + V (r,R(0))
)

Ψ(r) = EΨ(r) , (2.3)

with the electronic momentum operator p, the electron mass m and the potential V (r),
which is generated by the static atomic nuclei.
On the other hand, when modeling the dynamics of the atomic nuclei, we can assume that
they are affected by the electrons only by an effective potential Veff(R), which now only
depends on the coordinates of the atomic nuclei. We then obtain the Schrödinger equation
for the atomic nuclei as

(
N∑
i=1

P2
i

2Mi
+ Veff(R1, ...,RN )

)
Ψ(R1, ...,RN ) = E Ψ(R1, ...,RN ) , (2.4)

where Pi is the momentum operator and Mi are the atomic masses.
We have thus separated the electron dynamics from the dynamics of the atomic cores.
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Now, we will solve these two parts independently, by employing different methods, which
will be described in detail below:

1. The calculations for the electronic part are performed using single-particle and multi-
particle k·p-theory. These take into account strain effects as well as internal polari-
sation fields, and are performed employing a continuous media approach. Numerical
implementation is performed on a finite differences voxel-grid. These methods are
outlined in chapters 2.2, 2.3, 2.4 and 2.5.

2. The dynamics of the atomic nuclei are performed using an atomistic approach, and
are outlined in chapter 2.6.

Finally, to compute the coupling between the electronic and the vibrational systems inside
the quantum dot, we utilise the results of both these parts, which is outlined in chapter
2.7.
All computations will be performed for zincblende and wurtzite lattice structures.
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2.2 Strain Calculation

Strain in solids is commonly described via a displacement vector field u(r), which repre-
sents the displacement of atoms from their equilibrium positions. One can then introduce
a strain-tensor ε(r) which is related to the displacement field via

εij = ∂ui
∂xj

. (2.5)

Using Voigt-notation, we can express the relation, in linear approximation, of the strain
tensor to the stress tensor σ by



σxx

σyy

σzz

σyz

σxz

σxy


= C



εxx

εyy

εzz

2εyz
2εxz
2εxy


, (2.6)

where C is the (material-dependent) stiffness tensor. This expression is a generalisation
of Hooke’s Law in three dimensions.
Strain can be introduced into solids by external stress, lattice-mismatch, or thermal effects.
In the case of the colloidal quantum dots that are the subject of this work, we consider
only the strain caused by lattice mismatches. The total strain energy of the system, U ,
can then be expressed by [20]:

U =
∫
V

1
2
∑
i,j,k,l

CijklεijεkldV . (2.7)

For zincblende lattice structure, the stiffness tensor is given by [21]

C =



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44


. (2.8)

In the case of a wurtzite lattice structure, the stiffness tensor is [22]:
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C =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2


. (2.9)

Using equation 2.7, we can then iteratively calculate the strain distribution on a spacial
voxel grid by minimising the total lattice strain energy U [23].
Strain effects on the electronic structure can be approximated by evaluating different types
of strain. The hydrostatic strain

εH = εxx + εyy + εzz (2.10)

shifts the conduction and valence-band energies, while the biaxial strain

εB = εxx + εyy − 2εzz (2.11)

splits the band-edges of the highest energy valence-bands.
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2.3 Internal Potentials

2.3.1 Piezoelectric Polarisation

In lattice structures without inversion symmetry, such as zincblende and wurtzite, the
application of stress gives rise to an electric polarisation called piezoelectricity. This
polarisation is given by:

P = e · ε , (2.12)

using the electromechanical tensor e. In zincblende lattices, this tensor is given by:

e =


0 0 0 e14 0 0
0 0 0 0 e14 0
0 0 0 0 0 e14

 , (2.13)

whereas for wurtzite lattice structure it is of the following form:

e =


0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

 . (2.14)

The polarisation vectors are then given by

PZB
PZ = 2e14


εyz

εxz

εxy

 (2.15)

for zincblende and

PWZ
PZ = 2e15


εxz

εyz

0

+ e31


0
0

εxx + εyy

+ e33


0
0
εzz

 (2.16)

for wurtzite structure.

2.3.2 Pyroelectric Polarisation

The wurtzite crystal structure additionally exhibits spontaneous (pyroelectric) polarisation
due to not being centro-symmetric. This additional polarisation is modeled by a single
material-parameter and is given by
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PWZ
SP =


0
0
PSP

 , (2.17)

for a system where the z-direction coincides with the wurtzite [0001]-direction.
The total polarisation for wurtzite is then given by the sum of piezo- and pyroelectric
polarisations:

PWZ = PWZ
PZ + PWZ

SP (2.18)

2.3.3 Potential calculation

The electric potentials Φ(r) corresponding to these polarisations are then determined by
first calculating the polarisation charge densities ρ:

ρ(r) = −∇P(r) (2.19)

and subsequently solving the poisson-equation

ε0∇ · [εr(r)∇Φ(r)] = ρ(r) , (2.20)

while accounting for the position-dependent relative permittivity εr(r).
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2.4 Localised electronic states: k·p-Theory

In a periodic potential, for example in a bulk semiconductor, electron- and hole wavefunc-
tions are given as Bloch-waves, consisting of a plane-wave and a Bloch-function, which
carries the same periodicity as the potential:

Ψn,k(r) = exp(ik · r)un,k(r) . (2.21)

where n is the band-index and k is a wave-vector from the first Brillouin-zone. If we insert
this Ansatz into equation 2.3, we arrive at a Schrödinger-equation for the Bloch-functions:

 p2

2m + V (r)︸ ︷︷ ︸
H0

+ h̄2k2

2m + h̄k · p
m︸ ︷︷ ︸

Hk·p

un,k(r) = En,kun,k(r) , (2.22)

which has a term Hk·p that gives the theory its name.

2.4.1 Envelope-function Approximation

If we now consider semiconductor hetero-structures, we can no longer use the translational
symmetry of the lattice, and therefore choose a different Ansatz for the wavefunctions,
replacing the plane-waves with more general so called envelope-functions [24]:

Ψn(r) = Fn(r) un,k=0(r) . (2.23)

We are also now restricted to the Γ-Point in reciprocal space, and therefore replace all
occurences of wave-vector entries ki in the Hamiltonian by the corresponding real-space
derivatives i∂i which then yields a partial differential matrix equation for the envelope
functions. These envelope functions are the wavefunctions we obtain in this work.

2.4.2 Hamiltonian

Since we are interested in the electronic structure around the Γ-point, only four electronic
bands are taken into account: the lowest energy conduction band, as well as the three
highest energy valence bands. When accounting for spin, this yields a total of eight elec-
tronic bands included in the Hamiltonian. The influence of the other bands is accounted
for by Löwdin perturbation theory [25].
Following the Kane model [26], the Hamiltonian is expanded into the following basis of
Bloch-functions:

{|s ↑〉 , |x ↑〉 , |y ↑〉 , |z ↑〉 , |s ↓〉 , |x ↓〉 , |y ↓〉 , |z ↓〉} ,

and takes the block matrix form
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H =
(
G(k) Γ
−Γ̄ Ḡ(k)

)
(2.24)

where G(k) and Γ are 4x4-matrices. The matrix G is the sum of four different matrices:

G = G1 +G2 +GSO +Gst , (2.25)

where G1 accounts for the potential energy, G2 for the kinetic energy, GSO for the spin-
orbit splitting and Gst for the strain dependent part [27, 28, 29, 30]. The matrix Γ accounts
for the spin-orbit splitting between basis vectors of different spin.
The matrices G1, G2 and Gst differ between zincblende and wurtzite lattice structures.
For zincblende, they are given by:

G1 =


EC iPkx iPky iPkz

−iPkx E′V 0 0
−iPky 0 E′V 0
−iPkz 0 0 E′V

 (2.26)

G2 =


A′k2 Bkykz Bkxkz Bkxky

Bkykz L′k2
x +M(k2

y + k2
z) N ′kxky N ′kxkz

Bkxkz N ′kxky L′k2
y +M(k2

x + k2
z) N ′kykz

Bkxky N ′kxkz N ′kykz L′k2
z +M(k2

x + k2
y)

 (2.27)

Gst =



ac(εxx
+εyy + εzz)

b′εyz

−iP εxjkj
b′εzx

−iP εyjkj
b′εxy

−iP εzjkj

b′εyz

+iP εxjkj
lεxx

+m(εyy + εzz)
nεxy nεxz

b′εzx

+iP εyjkj
nεxy

lεyy

+m(εxx + εzz)
nεyz

b′εxy

+iP εzjkj
nεxz nεyz

lεzz

+m(εxx + εyy)



(2.28)

where in equation 2.28, the Einstein summation index runs over j = x, y, z. The εij are
the components of the strain tensor from chapter 2.2.
The conduction band edge EC and the valence band edge E′V as well as the Kane-
parameters A′, L′,M,N ′ and P and the strain coefficients l,m and n are given by [27, 26]:
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EC = EV + Vext + EG

E′V = EV + Vext + ∆SO

3

A′ = h̄2

2m0

( 1
me
− Ep
E0

E0 + 2∆0/3
E0 + ∆0

)

P =

√
h̄2

2m0
Ep

L′ = P 2

E0
− h̄2

2m0
(1 + γ1 + 4γ2)

M = − h̄2

2m0
(1 + γ1 − 2γ2)

N ′ = P 2

E0
− 3h̄2

m0
γ3

l = 2bv + ac − ag
m = ac − ag − bv
n =

√
3dv

using the following parameters:

• the band gap EG,

• the split-off energy ∆SO,

• the optical matrix parameter Ep,

• the valence band edge EV ,

• the relative electron mass at the Γ-point me,

• the Luttinger-parameters γ1, γ2 and γ3,

• the Kane-parameter B,

• the hydrostatic conduction band deformation potential ac,

• the hydrostatic band gap deformation potential ag,

• the [100]-direction uniaxial valence band deformation potential bv,

• the [111]-direction uniaxial valence band deformation potential dv,

• the conduction band shear strain coupling parameter b′,

• the external potential Vext, as calculated in equation 2.20.

For wurtzite crystal structure, the matrices take the following form [30, 31, 32]:
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G1 =


EC + ∆CR iP2kx iP2ky iP1kz

−iP2kx E′V + ∆CR 0 0
−iP2ky 0 E′V + ∆CR 0
−iP2kz 0 0 E′V

 (2.29)

G2 =



A′2(k2
x + k2

y)
+A′1k2

z

B2kykz B2kxkz B1kxky

B2kykz
L′1k

2
x +M1k

2
y

+M2k
2
z

N ′1kxky N ′2kxky −N ′3kx

B2kxkz N ′1kxky
M1k

2
x + L′1k

2
y

+M2k
2
z

N ′2kxkz −N ′3ky

B1kxky N ′2kxky +N ′3kx N ′2kxkz +N ′3ky
M3(k2

x + k2
y)

+L′2k2
z



(2.30)

Gst =



a2(εxx + εyy)
+a1εzz

0 0 0

0
l1εxx +m1εyy

+m2εzz
n1εxy n2εxz

0 n1εxy
m1εxx + l1εyy

+m2εzz
n2εyz

0 n2εxz n2εyz
m3(εxx + εyy)

+l2εzz



(2.31)

where the εij are the components of the strain tensor (from chapter 2.2) and the conduction
and valence band edges EC and E′V , the dipole matrix parameters P1/2, the parameters
from the matrix G2 as well as the strain parameters li,mi and ni are calculated by:
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(2.32)

EC = EV + EG + Vext

E′V = EV + Vext + ∆SO

3

P1/2 =

√
h̄2

2m0
Ep1/2

A′1 = h̄2

2

(
1
m
‖
e

− 1
m0

)
− P 2

1
EG

,

A′2 = h̄2

2

( 1
m⊥e
− 1
m0

)
− P 2

2
EG

,

L′1 = h̄2

2m0
(A2 +A4 +A5 − 1) + P 2

1
EG

,

L′2 = h̄2

2m0
(A1 − 1) + P 2

2
EG

,

M1 = h̄2

2m0
(A2 +A4 −A5 − 1),

M2 = h̄2

2m0
(A1 +A3 − 1),

M3 = h̄2

2m0
(A2 − 1),

N ′1 = h̄2

2m0
2A5 + P 2

1
EG

,

N ′2 = h̄2

2m0

√
2A6 + P1P2

EG
,

N ′3 = i
√

2A7,

l1 = D2 +D4 +D5,

l2 = D1,

m1 = D2 +D4 −D5,

m2 = D1 +D3,

m3 = D2,

n1 = 2D5,

n2 =
√

2D6

so that the Hamiltonian is parametrised by:

• the band gap EG,

• the split-off energy ∆SO,

• the crystal field splitting energy ∆CR,

• the optical matrix parameters Ep,1 and Ep,2,

• the valence band edge EV ,
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• the relative electron masses at the Γ-point m‖e, m⊥e and the free electron mass m0,

• the Luttinger-like parameters A1, A2, A3, A4, A5, A6 and A7,

• the conduction band deformation potentials a1 and a2,

• the valence-band deformation potentials D1, D2, D3, D4, D5 and D6

• the external potential Vext, as calculated in chapter 2.3

The parameters B1/2 are due to the lack of inversion symmetry in wurtzite, and are set
to zero in this work, since there are no reliable experimental values available.
The matrices Γ and GSO are the same for both crystal structures and are given by

GSO = i∆SO

3


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 (2.33)

Γ = ∆SO

3


0 0 0 0
0 0 0 1
0 0 0 −i
0 −1 i 0

 (2.34)

where ∆SO is the split-off energy.
The eigenvectors and eigenvalues of these Hamiltonians correspond to the electron- and
hole wavefunctions and energies of the modeled quantum dots. We numerically calculate
the states around the fundamental bandgap using an inner-eigenvalue solver, originally
developed by Oliver Stier [33] and adapted to the wurtzite lattice structure by Momme
Winkelnkemper [34]. The implementation is explored in further detail in the appendix in
section A.1.

2.4.3 Valence-Band Structure

The basis chosen for the k·p model, referred to in the following as the Sxyz-basis, is
convenient for the numerical implementation in rectangular coordinates. Additionally, the
optical matrix elements in this basis are given simply by

〈s|pi |j〉 = δijPi , i, j ∈ {x, y, z} . (2.35)

However, the Bloch-functions |x〉, |y〉 and |z〉 do not possess the same symmetry as the
Bloch states that form the heavy-hole, light-hole and split-off bands in zincblende, or
the A-, B- and C-bands in wurtzite. It is therefore necessary to expand the bloch-states
corresponding to the highest valence bands into our rectangular bloch-basis. For wurtzite,
this expansion is given by [31, 35]:
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|A ↑〉 = 1√
2

(|x ↑〉+ i |y ↑〉) (2.36)

|A ↓〉 = 1√
2

(|x ↓〉 − i |y ↓〉) (2.37)

|B ↑〉 = 1√
2
a(|x ↑〉 − i |y ↑〉) + b |z ↓〉 (2.38)

|B ↓〉 = − 1√
2
a(|x ↓〉+ i |y ↓〉) + b |z ↑〉 (2.39)

|C ↑〉 = 1√
2
b(|x ↑〉 − i |y ↑〉)− a |z ↓〉 (2.40)

|C ↓〉 = − 1√
2
b(|x ↓〉+ i |y ↓〉)− a |z ↑〉 (2.41)

where a and b are given by:

a = 1√
x2 + 1

(2.42)

b = x√
x2 + 1

(2.43)

x =
−(3∆CR −∆SO) +

√
(3∆CR −∆SO)2 + 8∆2

SO − λε
2
√

2∆SO

(2.44)

λε = D1εzz +D2(εxx + εyy) (2.45)

In the case of zincblende, ∆CR = 0 and λε = 0, which then leads to the Bloch-functions
for the three valence bands [26, 28]:

|HH ↑〉 = 1√
2

(|x ↑〉+ i |y ↑〉) (2.46)

|HH ↓〉 = 1√
2

(|x ↓〉 − i |y ↓〉) (2.47)

|LH ↑〉 = 1√
6

(|x ↑〉 − i |y ↑〉) +
√

2
3 |z ↓〉 (2.48)

|LH ↓〉 = − 1√
6

(|x ↓〉+ i |y ↓〉) +
√

2
3 |z ↑〉 (2.49)

|SO ↑〉 = 1√
3

[|x ↑〉 − i |y ↑〉 − |z ↓〉] (2.50)

|SO ↓〉 = − 1√
3

[|x ↓〉+ i |y ↓〉+ |z ↑〉] (2.51)

These expansions can be used to understand the contribution of the respective valence
bands to a calculated single-particle state. The set of basis functions obtained by these
transformations will be referred to in the following as the SABC- or SHHLHSO-basis in
the following.
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2.5 Coulomb-interaction: Excitonic properties

Chapter 2.4 described the calculation of single-particle electron- and hole-states in quan-
tum dots. In order to understand the luminescence of these quantum dot systems, however,
it is necessary to include the Coulomb-interaction between different particles, leading to
the formation of excitonic states. In this work, these interactions are treated by an iterative
Hartree-Fock method.
We did not explore more advanced calculation techniques for the Coulomb-interaction,
such as configuration interaction (CI), in this work because CI, while in theory provid-
ing more precise values for the excitonic energies, does not yield a well-defined excitonic
wavefunction and charge density distribution. We, however, require the charge-density as-
sociated to the excitonic particles for our calculations of the Huang-Rhys factors, discussed
in chapter 2.7.

2.5.1 Hartree-Fock

Consider a set φi of orthonormal single-particle solutions of the k·p-Hamiltonian Hsp
kp:

Hsp
kpφi = Espkpφi ; 〈φi|φj〉 = δij . (2.52)

To account for Coulomb-interaction between the particles, we introduce an interaction
operator VCoulomb,i for each particle, such that

HHF =
N∑
i=1

(Hkp
sp,i + VCoulomb,i) (2.53)

VCoulomb,i = 1
2 ·

1
4πε0εr

N∑
j=1

qiqj
|ri − rj |

(2.54)

holds, where N is the number of particles in the multiparticle state. We now approximate
the wavefunction ΨHF of the multi-particle state to be a Slater-determinant of the single
particle states:

ΨHF (t1, t2, ..., tN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(t1) φ1(t2) ... φ1(tN )
φ2(t1) φ2(t2) ... φ2(tN )
... ... ... ...

φN (t1) φN (t2) ... φN (tN )

∣∣∣∣∣∣∣∣∣∣∣
(2.55)

and calculate the energy EHF of the multi-particle state:

EHF = 〈ΨHF |HHF |ΨHF 〉 =
∫

Ψ∗HFHHFΨHFdt1...dtN . (2.56)

Expanding the left-hand determinant yields N ! terms that differ only in the order of their
indices ti, which can then be represented by a single one of these entries multiplied by N !.
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Different signs in the single terms are compensated by changing the sign in the right-hand
determinant where necessary.
After expanding the right-hand determinant, we can then eliminate all terms that con-
tain multiplication of different single particle wavefunctions depending on the same set
of coordinates, where these coordinates do not appear in the Hamiltonian, because of
orthogonality:

φ∗i (tk)φj(tk) = 0 . (2.57)

The remaining terms can then be grouped into three separate parts:

EHF = Esp + ECoulomb + Eexchange

Esp =
N∑
i=1

∫
φ∗i (ti) ·H

kp
sp,i · φi(ti)dti (2.58)

Ecoulomb = 1
2

1
4πε0

N∑
i,j

∫
qiqj
εr(ri)

φ∗i (ti)φ∗j (tj)φj(tj)φi(ti)
|ri − rj |

dtidtj (2.59)

Eexchange = −1
2

1
4πε0

N∑
i,j

∫
qiqj
εr(ri)

φ∗i (ti)φ∗j (tj)φi(tj)φj(ti)
|ri − rj |

dtidtj (2.60)

Esp represents the single particle energies of the N electrons/holes.
ECoulomb is the energy of the direct Coulomb-interaction between all pairs of particles,
analogous to the Coulomb energy attributed to the interaction of classical charge distri-
butions.
EExchange is the exchange-part of the Coulomb-interaction, which does not have a classical
analogon. It originates from the indistinguishability of the electrons. Note that for i = j:
ECoulomb + Eexchange = 0.
One can now employ a variational procedure on this expression for the energies, in order
to obtain the wavefunctions φi:

δEHF = δ(Esp + ECoulomb + Eexchange) = 0 . (2.61)

Performing these variational calculations [36], one arrives at the Hartree-Fock equations

Hkp
i +

N∑
j

(
V Coulomb
φj − V Exchange

ij

)φi(ti) = λiφi(ti) . (2.62)

The potential operators are given by
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V Coulomb
φj =

∫
qiqj
4πε0

1
εr(rj)

φ∗j (tj)φj(tj)
|ri − rj |

dtj (2.63)

V Exchange
ij =

∫
qiqj
4πε0

1
εr(rj)

φ∗j (tj)φi(tj)
|ri − rj |

dtj
φj(ti)
φi(ti)

. (2.64)

Equation 2.62 is analogous to the situation for the single particle calculations described
above, but with an additional potential containing direct Coulomb and exchange interac-
tion. The difficulty is that this potential for particle i depends on the wavefunctions for
all other particles in the multi-particle complex. Since these are not known beforehand,
the N equations 2.62 are solved using an iterative scheme visualised in figure 2.1.

Initial single
particle states

Calculate Coulomb
and exchange potentials

Calculate new single
particle states

Compare to
initial states

Set calculated states
as new inital states

Converged HF
single particle states

not identical

identical

Self-consistent HF-loop

Figure 2.1: Iterative Hartree-Fock calculation scheme: Starting with the single particle states,
Coulomb- and exchange-potentials are calculated. These are incorporated into the k·p Hamiltonian
to calculate a new set of states. These new states are compared to the initial states, and, if they
do not differ more than a predetermined threshold value, are the converged final exciton states. If
there is still a significant difference, the calculated states are used as the input states for the next
iteration of the Hartree-Fock loop

The iterative Hartree-Fock Scheme was implemented by Gerald Hönig for the wurtzite
structure [37], and reimplemented for zincblende in this work.
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2.6 Localised Phonons in Quantum Dots

This chapter outlines the concepts and methods used to obtain information about the
dynamics of the atomic nuclei in the quantum dots.

2.6.1 Atomistic Approach

The Schrödinger-equation for the atomic cores in a solid is given by equation 2.4.
We model the vibrations as small deviations from the equilibrium positions R(0)

i :

Ri = R(0)
i + ui . (2.65)

Following Czycholl [38] and using the abbreviation R = (R1, ...,RN ), we can expand the
effective potential in powers of these deviations:

Veff (R) = Veff (R(0)) +
N∑
i=1

3∑
α=1

∂Veff
∂Riα

|R(0) · uiα + 1
2

N∑
i,j=1

3∑
α,β=1

∂2Veff
∂Riα∂Rjβ

|R(0)uiαujβ + ... .(2.66)

Since the equilibrium positions are minima in the potential energy surface, the first deriva-
tives vanish. If we then cap the expansion after the quadratic term, we arrive at the
harmonised effective potential for the atomic nuclei.
If we now perform a coordinate transformation into mass-weighted coordinates:

ūiα =
√
Miuiα , p̄ = 1√

Mi
piα , (2.67)

we can express the Hamiltonian as

Hharm = 1
2(p̄T p̄ + ūTD ū) , (2.68)

using the dynamical matrix D:

Diα,jβ = 1√
MiMj

Φiα,jβ = 1√
MiMj

∂2Veff
∂Ri,α∂Rj,β

|R(0) . (2.69)

Since we harmonised the potential, the matrix D is real, symmetric and positive definite,
and can therefore be diagonalised by a suited orthogonal matrix C:

C ·D · C† = Ω , (2.70)

yielding the diagonal matrix of the eigenvalues of D, Ω.
After an orthogonal transformation of our coordinates, using x̄ = Cū, and a subsequent
diagonalisation of the Hamiltonian, we arrive at:
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Hharm = 1
2

N∑
i=1

3∑
α=1

(p̄2
iα + ω2

i x̄
2
iα) . (2.71)

For bulk-systems, the common description of phonons makes use of the translational sym-
metry of the crystal lattice. The phononic eigenmodes can thus be separated into the
eigenmodes of the atoms in the unit cell, multiplied by a plane wave that extends these
eigenmodes along the whole crystal.
For colloidal quantum dots, this translational symmetry is not present, as the quantum
dot size is usually only a few nanometers.
To calculate the vibrational properties of these quantum dots, we therefore employ an
atomistic method, modeling the interactions between the atoms with empirical pair po-
tentials. We then necessarily have to calculate and diagonalise the dynamical matrix of
the full system, which results in a size restriction on the systems that can be computed in
reasonable time.

2.6.2 Effective Pair-Potentials

The last step to obtain the eigenmodes of the atomistic motion is therefore to define the
effective potential Veff (R) from equation 2.66. In our case, this is done by defining an
effective pair-potential between all pairs of atomic nuclei inside the quantum dot, and
taking the sum of all of these pairwise potentials.
The potential used to model the interactions between the nuclei is introduced by [16] for
CdSe and extended to further materials in [39]:

Vij = qiqj
rij

+ 4εij


(
σij
rij

)12

−
(
σij
rij

)6
 , (2.72)

where the first term represents the long-range Coulomb interaction and the second term is
a Lennard-Jones potential modeling both the short-range repulsion and the Van-der-Waals
attraction of the nuclei.
The indices i and j run over Cadmium, Selenium and Sulfur.
The parameters εij and σij for pairs of different atoms are constructed via the combining
rules

εij = √εiεj ; σij = 1
2(σi + σj) (2.73)

The parameter set used in references [16, 39] was obtained by fitting to experimental
phonon dispersion data, with an emphasis on a good agreement with the acoustic phonon
branches. We performed a refit on the same experimental data, focusing more strongly on
the optical phonon branches, and obtained a separate set of parameters, which was used
throughout this work. These parameters can be found in table C.3 in the appendix.
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2.6.3 Calculation process

Atomic positions, from bulk parameters

Relaxed atomic equilibrium positions

Vibrational eigenmodes, energies

Minimise lattice energy

Calculate and diagonalise dynamical matrix

Figure 2.2: GULP calculation process: Starting from a set of atomic positions compiled from
bulk lattice parameters, the lattice energy is iteratively minimised, leading to a set of relaxed
atomic equilibrium positions. These are then utilised to determine the vibrational eigenmodes and
their associated frequencies.

These potentials were then used, employing the GULP [17] program, to obtain the vibra-
tional properties of the colloidal quantum dots.
The calculation procedure is outlined in figure 2.2 and consists of the following steps:

1. Create a set of atomic positions representing the quantum dot geometry, using the
bulk lattice constants.

2. Using GULP, obtain a modified set of atomic positions, representing the equilibrium
positions of the nuclei. These positions are created by minimising the total lattice
energy.

3. Generate the dynamical matrix and diagonalise it, resulting in a complete set of
vibrational eigenvectors, the phonons, and the corresponding eigenvalues, the phonon
energies.

The implementation of these calculations is outlined in more detail in the appendix in
section A.2.

2.6.4 Phonon analysis

Phonons in bulk lattices are easily classified by their symmetry as belonging to either
an acoustic or optical phonon branch, and each phonon branch has an energy dispersion
relation to their associated k-vectors.
The vibrational eigenmodes calculated above can not be as easily classified, for two reasons:

1. The absence of translational symmetry dictates that there is no dispersion in recip-
rocal space. As in the electronic calculations, we are limited to the Γ-point. For this
reason, there are no phonon branches.

2. The eigenmodes can not be classified by their symmetry in any one unit cell. There-
fore, we can not classify the vibrational modes into categories such as optical or
acoustic.
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Despite these limitations, we can still perform analysis on the vibrational eigenmodes. The
following properties of the single eigenmodes yield valuable insight into the vibrational
dynamics as a whole:

1. Localisation: How are the amplitudes of atomic motion distributed inside the quan-
tum dot? Is the majority of the total amplitude limited to just a small area in the
quantum dot or is it more evenly distributed throughout the system?

2. Core/Shell-modes: Are there modes where most of the vibrational amplitude is
distributed inside the quantum dot core or the quantum dot shell?

3. Surface/Interface-modes: Similar to the core/shell-modes: Are there eigenmodes
that exhibit most of their dynamics on atoms close to the surface or interface of the
quantum dot?

In order to compute this information, we use the following method:

• Calculate a (normalised) scalar field A(r) of amplitudes by adding a gaussian g(r) at
the position of each atom in the quantum dot, scaled by the vibrational amplitude
aj of the atom:

A(r) =
N∑
j=1

g(rj) · aj ;
∫
A(r)d3r = 1 . (2.74)

The variance of the gaussian function used is chosen to equal the mean distance
between atoms.

• Calculate a (normalised) homogeneous scalar field B(r) that is constant inside the
quantum dot, and zero outside the quantum dot.

B(r) =

const ; r inside qd

0 ; else
;
∫
B(r)d3r = 1 . (2.75)

• The degree of localisation of the vibrational eigenmode is then given by:

l =
∫
|A(r)−B(r)|d3r . (2.76)

If the amplitude distribution of an eigenmode would be completely homogeneously
distributed over all atoms, the resulting scalar amplitude A(r) field would be equal
to the homogeneous scalar field B(r), and therefore: l = 0. For eigenmodes with
a lower degree of homogeneity, the value for l is increased, giving us a measure for
phonon localisation.
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• In order to determine the degree of motion amplitude dR in a certain region R of
the quantum dot, e.g. the surface or the interface, we simply calculate the sum of
the amplitudes an of all the atoms inside the region, and then divide by the total
amplitude atot of all atoms in the quantum dot. We then normalise this result by
the volume fraction of the considered region in relation to the total quantum dot
volume

dR = VQD
VR
· 1
atot

N∑
n,

n inside QD

an . (2.77)

Thus, if dR = 1, then the amplitude fraction inside the considered region is the
same as the volume fraction of the region, and the eigenmode ist homogeneously
distributed with regard to the considered region.

Therefore, if dR > 1, the eigenmode is more localised in the considered region than
a homogeneous mode, and, for dR < 1 the mode is less localised.
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2.7 Electron-Phonon Interaction

The potential in equation 2.3 only depends on the equlibrium positions of the atomic
nuclei. If we introduce atomic motion via the atomic displacements ui, we can expand the
potential around the equilibrium positions:

V (r) =
N∑
i=1

v(r−Ri) (2.78)

=
N∑
i=1

v(r−R(0)
i − ui)

=
N∑
i=1

v(r−R(0)
i )︸ ︷︷ ︸

Vper(r)

−
N∑
i=1
∇v(r−R(0)

i )ui︸ ︷︷ ︸
Vel−ph(r)

.

Hence, an additional potential term, proportional to the atomic displacements ui is in-
troduced in addition to the lattice periodic potential. This model for electron-phonon
interaction is known as the Fröhlich-Model [40].

2.7.1 Huang-Rhys factors

Since there is an interaction between the electronic and vibrational properties in semicon-
ductors, interactions of the electronic system with light, in the form of the formation or
recombination of an exciton, can also couple to the vibrational system. This concept was
first formalised by Huang and Rhys [41], who described it in the context of bulk phonons
modifying the light-absorption properties of an F-center in diamond.
They introduced an electron-phonon coupling term Hel−ph into the Hamiltonian:

H =
∑

k
(p2

k + ω2
l q2

k −
1√
N
A′k · qk︸ ︷︷ ︸

Hel−ph

) , (2.79)

where A′k models the influence of the electric field Eµ′ of the F-center in the excitation
state µ′:

A′k = ωl

[ 1
2πva

( 1
ε∞
− 1
ε0

)]1/2 ∫
dv k
|k|
Eµ′(r)exp(ikr) . (2.80)

Since this new Hamiltonian is no longer diagonal in the original phonon coordinates, they
introduce the following coordinate transformation:

q′k = qk −
1√
N

A′k
ω2
l

, (2.81)

which results in the following, diagonal Hamiltonian
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H =
∑

k
(p2

k + ω2
l q′2k −

1
2
√
N

A′2k
ω2
l︸ ︷︷ ︸

Eµ′,el−ph

) . (2.82)

The two main physical consequences of the interaction between the phonons and the F-
center are therefore:

• The electric field from the F-center shifts the coordinates of the phonon eigenmodes;
they are still harmonic vibrations, but the equilibrium positions for the atomic nuclei
are shifted by electron-phonon coupling, as detailed by the coordinate transformation
in equation 2.81.

• The energy of the phononic system is changed by the constant Eµ′,el−ph.

If the F-center interacts with a photon, its excitation state is changed from µ′ to µ′′,
and a parameter S is introduced which estimates the magnitude of the coupling with the
phononic system for a given excitonic transition:

S = h̄va
2ω3

l

∫
dk(A′k −A′′k)2 . (2.83)

This parameter is called the Huang-Rhys factor and is proportional to the square of the
relative displacements of the equilibriom positions of the atomic nuclei introduced by the
two different excitation states of the F-center.
The method employed in this work to calculate electron-phonon coupling in colloidal
quantum dots is outlined in [19]. In contrast to the original work by Huang and Rhys, the
electronic system now couples to the vibrational modes of the isolated quantum dots, not
the bulk-phonons of the matrix material around an F-center.
We model the systems interaction with a phonon by assigning a different occupation of
electronic states in the quantum dot to the state before the interaction and after the
interaction.
In the simplest case, the emission of a photon from the quantum dot, before the emission
the electron and hole ground-states would be occupied by one electron and hole, respec-
tively, forming a ground-state exciton. This exciton would then recombine, emit one
photon and result in no electronic states in the quantum dot being occupied thereafter.
We are not limited to this simple case, however, and can assume arbitrary occupations
of the quantum dot for the before and after configurations. If we want to model photon
emission, however, the state after the interaction should always be obtainable from the
state before the interaction through the recombination of a single electron-hole pair.
We are, however, not numerically limited to these radiative recombination cases, and can
numerically assume arbitrary electronic configurations for both the before state and the
after state.
This gives us the ability to assess the coupling of the vibrational system to not just interac-
tions of the electronic system with photons, but to any change in electronic configuration.
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One example would be a spin-flip of an exciton, changing it from a dark to a bright state.
If we assume a harmonic potential, the energies of the atomic lattice, when displaced by
a small amplitude δ along a vibrational eigenmode qi ,for these two different electronic
configurations are given by

Eg,i(δ) = h̄ωi
2 (δqi)2 , Ee,i(δ) = h̄ωi

2 (δqi −∆i)2 , (2.84)

where the ∆i represents the displacement of the atomic equilibrium positions imposed by
the changed electronic configuration, as introduced in equation 2.81, projected onto the
phonon qi.
The energy-difference between excited and ground state, is then given by

Eeg,i = h̄ωi
2 (2δqi∆i + ∆2

i ) . (2.85)

This allows us to express the displacement in the following way:

∆i = 1
h̄ωi

dEeg,i
d(δqi)

. (2.86)

As shown above, the S-parameter, or Huang-Rhys factor is proportional to the square of
the atomic equlibrium position displacement, and in our model is given simply by

Si = 1
2∆2

i . (2.87)

Since in colloidal quantum dots, there are a finite number of lattice vibrations, and not, as
in bulk, a continuum of phonon states, we are able to assign a Huang-Rhys factor for each
vibrational eigenmode, as opposed to integrating over the entire Brillouin-zone. This yields
additional physical insight, as we know the energies of the vibrational eigenmodes, and
can thus predict, which phonons will be more likely to couple to the excitonic transition.
A global Huang-Rhys factor for the excitonic transition can simply be aquired by summing
over all phonons:

S =
∑
i

Si (2.88)

2.7.2 Numerical Procedure

The required information about the system is thus:

• Equlibrium positions and partial charges of all atoms in the quantum dot,

• Vibrational eigenmodes of the system in cartesian coordinates,
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• Probability densities |Ψ|2 of the electrons and holes in the quantum dot before and
after the excitonic transition.

in order to calculate the displacements ∆i according to equation 2.86, we need to calculate
the difference in lattice energy for the two different electronic configurations at both the
atomic equilibrium positions and the positions obtained when displacing the nuclei along
the considered vibrational eigenmode.
The influence of the electronic states present in the quantum dot on the lattice energy is
calculated by determining the charge density given by the probability density |Ψ|2 of the
wavefunctions. The partial charges Qi of the atomic nuclei are then modified according
to the value of the probability density value at their respective positions. These changes
in the partial charges are then normalised, so that a wavefunction of an electron states
introduces an additional charge of −e into the system, while a hole-state introduces a
charge of +e.
In the example of an exciton, consisting of an electron and a hole, the total additional
charge would be zero, keeping the quantum dot charge-neutral. However, since the wave-
functions for the electron and hole are different, the distribution of partial charges is
changed, leading to a change in lattice energy.
Since the change in lattice energy is brought about by the additional charge density which
arises from the electronic wavefunctions, we consider only the Coulombic part of the lattice
energy, neglecting the Lennard-Jones part of the interatomic potential given by equation
2.72.
We can therefore calculate the Coulombic part of the lattice energy for a given set of
partial charges and positions of the atomic nuclei as:

EC = 1
4πε0εr

N∑
i<j=1

QiQj
rij

, (2.89)

which allows us to calculate the derivative in equation 2.86 as a difference quotient, and
subsequently yields the Huang-Rhys factors for any given electronic configurations and
vibrational eigenmodes.

2.7.3 Phonon normalisation

It is worth noting, that equation 2.84 holds true only for normalised cartesian vibrational
eigenmodes, which are defined by the property that when displacing the atomic equilibrium
positions by one normalised phonon vector, the lattice energy is increased by h̄ωi/2, with
ωi being the vibrational frequency associated to the vibrational eigenmode.
Since the vibrational eigenmodes calculated by GULP are not normalised in this way, we
have to determine normalisation factors, to arrive at properly normalised Huang-Rhys
factors.
To achieve this, we calculate the lattice energies Eg(δn) at several multiples δn of the
phonon eigenmode.
We can then utilise equation 2.84 to fit a parabolic function
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Eparabolic(δ) = a · δ2 + b (2.90)

to the obtained energies, and can then derive a normalisation factor, such that

Eparabolic(δ = 1) = Eparabolic(δ = 0) + h̄ωi/2 . (2.91)

These normalisation factors have to be calculated for every vibrational eigenmode, in order
to obtain correct Huang-Rhys factors.
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3 Prior theoretical work

Electronic properties of spherical semiconductor quantum dots have been a topic of interest
for a long time.
Electronic structure calculations for spherical systems were first reported by Efros [12],
approximating the structures as a spherical potential well of infinite height. He then
calculated wavefunctions and energies, based on earlier work on spherical impurity states
in semiconductors [11, 10].
The electron energies are determined to be [13]:

E1S = h̄2π2

2mea2 (3.1)

with the radius of the quantum dot a , while the wavefunctions are given by

Ψα(r) =
√

2
a

sin(πr/a)
r

Y00(Ω)|Sα >, (3.2)

while the hole energies are

E3/2(β) = h̄2ϕ2(β)
2mhha2 , (3.3)

where β = mlh/mhh is the ratio of light-hole to heavy-hole mass and ϕ(β) is the first root
of the following equation:

j0(ϕ)j2(
√
βϕ) + j2(ϕ)j0(

√
βϕ) = 0 . (3.4)

The jn(x) are spherical Bessel functions. The hole wavefunctions are expressed by:

ΨM (r) = 2
∑
l=0,2

Rl(r)(−1)M−
3
2 ×

∑
m+µ=M

( 3
2 l 3

2
µ m −M

)
Ylm(Ω)uµ , (3.5)

where the Yii denotes a spherical harmonic function, the expression in the brackets is a
Wigner-3j-symbol und the uµ are the Bloch-functions of the valence band Γ8, given by
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u3/2 = 1√
2

(X + iY ) ↑ , (3.6)

u−3/2 = 1√
2

(X − iY ) ↓ , (3.7)

u1/2 = i√
6

[(X + iY ) ↓ −2Z ↑] , (3.8)

u−1/2 = i√
6

[(X − iY ) ↑ +2Z ↓] . (3.9)

(3.10)

And Rl(r) describes the radial dependency of the wavefunctions, given by

R2(r) = A

a3/2

[
j2(ϕr/a) + j0(ϕ)

j0(ϕ
√
β)
j2(ϕ

√
βr/a)

]
, (3.11)

R0(r) = A

a3/2

[
j0(ϕr/a) + j0(ϕ)

j0(ϕ
√
β)
j0(ϕ

√
βr/a)

]
. (3.12)

A is a normalization constant, and the jn, β and ϕ are the same functions used for the
electron states.
Note the similarity of the hole Bloch-functions to the valence-band Bloch-function trans-
formations utilized for the k·p-implementation used in this work.
Based on these results for the single-particle states, extensive work has been done to
compute multiparticle states, focusing strongly on exciton finestructure, bright- and dark-
states [13], and also biexcitons [14].
To compute excitonic states on the basis of the single-particle states introduced above,
an interaction Hamiltonian is introduced for the eight excitonic product-wavefunctions
Ψα,M = Ψα(re)ΨM (rh) leading to five distinct exciton energy-levels, named for their total
spin: 0U , 0L,±1U ,±1L,±2. The energies are then calculated for quantum dots of different
sizes and shapes.
Radiative rates for the various excitons are calculated as well, finding that the ±2 and
0L exciton levels are optically forbidden dark-states, while the other excitons are bright
states.
It is noted that the lowest-energy exciton is always a dark-state, seemingly in contradiction
with experimental evidence [15] of luminescence attributed to this ground-state.
This incongruence has led to the proposal of several mechanisms enabling the dark-state
to become optically active, including interactions with magnetic fields [13, 15], phonon-
assisted recombination [15], or coupling to magnetic polarons formed by dangling bonds
on the quantum dot surface [42].
What all of the above works have in common, however, is the assumption of complete
spherical symmetry, leading to electronic wavefunctions reproducing this symmetry. It is
therefore difficult to assess the impact of e.g. electric polarization fields, which break this
spherical symmetry, on the electronic structure.
The aim of this work is to integrate strain and internal electric potentials, and analyse their
impact on the energies and radiative behaviour of the excitons found in these quantum
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dots.
The single-particle results from Efros et al have been utilized by Kelley [18, 19] to study
electron-phonon coupling in CdSe colloidal quantum dots. She proposed the model used
in this work and outlined in detail in chapter 2.7.2, to calculate Huang-Rhys factors for
different CdSe quantum dots. The result was, that only very few vibrational eigenmodes
display notable exciton-phonon coupling strength, and those who do are located at only
two distinct frequency ranges: at very low wavenumbers and around 200 cm−1, which is
close to the frequency of the bulk LO-phonon of CdSe.
These results proved the validity of the coupling model, and allowed for the analysis of the
dependance of exciton-phonon coupling strength and phonon energies on the geometry of
the quantum dots.
In a further work [43], the impact of surface phonons on the Huang-Rhys factors was
examined, but only for single-material CdSe quantum dots.
Recently, a study [44] has been published that discusses the influence of piezoelectricity on
the electronic wavefunctions in colloidal core-shell quantum dots. In this work, multiband
k·p-theory is used to assess the impact of piezoelectric potentials on the wavefunction
separation of excitons in wurtzite colloidal CdSe/CdS quantum dots of varying shape. It
is found, that the piezoelectricity leads to wavefunction separation and increase in radiative
lifetimes. The role of pyroelectricity, however, was not accounted for.
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4 Strain and Electrical Potentials

4.1 Strain distribution

The results of the strain calculations are displayed for one quantum dot geometry A2-6 in
figure 4.1 for wurtzite lattice structure and in figure 4.2 for zincblende lattice structure.
The figures show hydrostatic and biaxial strain values, as defined in chapter 2.2, on three
two-dimensional cuts through the quantum dot center along the x-, y- and z-directions,
respectively. Furthermore, the following shear strain-components are displayed:

• εxy, plotted along the xy-plane

• εxz, plotted along the xz-plane

• εyz, plotted along the yz-plane

The shear strain components are not displayed along any other planes, because their values
are zero there.
The results for both lattice structures are quite similar and exhibit the following notable
common features:

• The quantum dot core displays hydrostatic compressive strain, that is homogeneous
inside the core. The shell displays tensile strain, which is also homogeneously dis-
tributed through the whole shell. This is the direct result of the larger lattice con-
stant of Cadmium Sulfide compared to Cadmium Selenide. The magnitude of the
hydrostatic strain of the core region is larger than that of the tensile strain in the
shell, which can be attributed to the shell having the larger total volume in this
geometry.

• The biaxial strain resides almost exclusively in the quantum dot shell, vanishing
almost completely inside the core. There are two regions of positive biaxial strain
at the core-shell interface oriented along the [001]-direction (or [0001]-direction for
wurtzite) and a ring of negative biaxial strain near the interface, oriented in the
(001)-plane (or (0001)-plane for wurtzite).

• The shear strain components are negligible inside the quantum dot core. Inside the
shell, all three shear strains display a similar shape in their respective planes, having
alternating positive and negative peaks along the diagonals, while vanishing along
the principal axes.

The differences between the two lattice structures are the following:

• While the values for the hydrostatic strain are very similar between the two lattice
structures, the biaxial strain is slightly more pronounced for the zincblende lattice
structure.

• In contrast to that, the shear strain amplitudes are more pronounced in the wurtzite
lattice structure.
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• Since in zincblende there is no preferred axis inside the crystal, and our exemplary
quantum dot geometry is also perfectly symmetrical, the plotted shear strain values
are interchangeable for all three shear strains. In the wurtzite case, the [0001]-axis
is a preferred axis of the crystal, and therefore the values for εxy are slightly smaller
than for the two other shear strains, which are again interchangeable.

Hydrostatic Strain

Biaxial Strain

Shear Strain

Strain Distribution, Wurtzite

𝝴xy 𝝴xz 𝝴yz

Figure 4.1: Strain distribution for quantum dot geometry A2-6 with wurtzite lattice structure.
All data is plotted on 2D-cuts along the xy-plane, xz-plane and yz-plane respectively. All 2D-cuts
are incorporating the quantum dot center. In the first row, the hydrostatic strain components
are displayed, showing a homogeneous compressive strain inside the quantum dot core and a
homogeneous tensile strain in the quantum dot shell. The second row of plots displays the biaxial
strain component. The values for the xz- and yz-planes are identical, showing positive values in the
shell above and below the core along the lattice c-axis, while the xy-plane displays homogeneous
positive entries in the core and homogeneous negative values in the shell. In the third row, the
three different shear strain components εxy, εxz and εyz are displayed in the respective 2D-cuts.
All three shear strains show a similar symmetry, yet the amplitude for εxy is slightly diminished
compared to the other two shear strain components.
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Strain Distribution, Zincblende

Hydrostatic Strain

Biaxial Strain

Shear Strain
𝝴xy 𝝴xz 𝝴yz

Figure 4.2: Strain distribution for quantum dot geometry A2-6 with zincblende lattice structure.
All data is plotted on 2D-cuts along the xy-plane, xz-plane and yz-plane respectively. All 2D-cuts
are incorporating the quantum dot center. In the first row, the hydrostatic strain components
are displayed, showing a homogeneous compressive strain inside the quantum dot core and a
homogeneous tensile strain in the quantum dot shell. The second row of plots displays the biaxial
strain component. The values for the xz- and yz-planes are identical, showing positive values in the
shell above and below the core along the lattice c-axis, while the xy-plane displays homogeneous
neutral entries in the core and homogeneous negative values in the shell. In the third row, the
three different shear strain components εxy, εxz and εyz are displayed in the respective 2D-cuts. All
shear strains show an identical symmetry and identical amplitudes, which is due to the zincblende
lattice having no preferred axis.

4.2 Piezoelectric and Pyroelectric Potentials

Calculated piezoelectric and pyroelectric potentials for quantum dot geometry A2-6 are
plotted in figure 4.3. The potentials are displayed both as 3D-isosurfaces and 2D-contourplots
on cuts through the quantum dot center.
In addition, linescans of the potentials for quantum dots with several different core-sizes
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Zincblende,
Piezo-Potential

Wurtzite,
Pyro-PotentialPiezo-Potential Total-Potential

Figure 4.3: Piezo- and Pyroelectric potentials for both zincblende and wurtzite lattice structure
for quantum dot geometry A2-6. In the top row, 3D isosurface plots of the potentials are displayed,
while in the bottom row, 2D contour-plots of the same potentials are shown. The 3D plots are
oriented so that the xz-plane is perpendicular to the viewing direction, with the z-axis pointing
upward. The 2D cuts for these plots are along the [110]- and [100]-directions for the zincblende
lattice structure, and along the [10-10]- and [0001]-directions for the wurtzite lattice structure.
Positive values are depicted in red, while negative values are depicted in blue. In the leftmost
column, the piezoelectric potential for the zincblende lattice structure is shown. The 3D plot
shows alternating maxima and minima along the [111] group of directions. In the second column,
the piezoelectric potential for the wurtzite lattice structure is displayed, showing a polarisation
along the z-axis, with two torus-shaped regions of opposite polarisation in the shell region. The
third column is displaying the pyroelectric potential for the wurtzite lattice structure, showing
a strong polarisation along the z-axis, opposite to the piezoeletric potential. The fourth column
depicts the total potential for the wurtzite case, showing a polarisation in the same direction as
the pyroelectric potential, due to its higher amplitude compared to the piezoelectric potential.

from series A2 are displayed in figure 4.4. The total radius of all these quantum dots is
5nm.
We observe several key differences between the two lattice structures:

• The shape of the piezoelectric potentials is completely different between the differ-
ent lattice structures. For zincblende, the potential has alternating maxima and
minima along the space-diagonals, thus replicating the symmetry of the zincblende
lattice, which has no preferred axis. For wurtzite structure, however, the piezoelec-
tric potential is aligned along the lattice c-axis, inducing an electric field in this
direction.

• The amplitude of the piezoelectric potential is an order of magnitude higher in the
wurtzite lattice structure.

For both lattice structures, the piezoelectric potentials are much stronger in the quantum
dot shell, compared to the core.
The pyroelectric potential of the wurtzite quantum dot has an even larger magnitude than
the piezoelectric potential, and also displays a gradient along the lattice c-axis. These two
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be surrounded by air or vacuum, by a variety of polymer coatings, or be in solution in
water, meaning that the relative permittivity of the quantum dot environment can be in
the range of 1-80 [45, 46].
We have therefore calculated the potentials for one quantum dot geometry (A2-6) for a
range of values of the environment εr.
2D contour-plots of these potentials are shown in figure 4.6, while linescans of the same
potentials are displayed in figure 4.5.
We can draw several conclusions from these calculations:

• The effects of the change of relative permittivity are mostly affecting the potentials
in the quantum dot shell and in the area outside the quantum dot. The changes
observed inside the quantum dot core are relatively minor.

• For wurtzite, the changes in the piezo- and pyroelectric potentials inside the quantum
dot core mostly offset each other, leading to an almost constant total potential inside
the quantum dot core for the whole range of values for the environment permittivity.

Because of the smaller bandgap of the quantum dot core compared to the shell, we expect
most wavefunctions to be largely confined to the core, where the electric potential ist not
drastically changed by the environment permittivity. Therefore, all further calculations
are performed with the environment permittivity εr = 1.
It is worth noting, however, that for quantum dots with thin shells, there could be a
non-negligible influence of the dielectric environment on the electronic structure of the
quantum dots.

4.3.1 Surface charges

As introduced in chapter 2.3, pyroelectricity is modeled by a single material parameter.
This in turn leads to charges arising at material interfaces, where the value of this param-
eter changes. Since the outside of the quantum dot is not a semiconductor material, there
is no reasonable value we can assign to the pyroelectric parameter outside of the quantum
dot area.
However, setting it to zero would introduce large charge densities at the quantum dot
surface. This would be an unphysical result, since the calculation method employed here
is only valid for interfaces of semiconductor materials. Additionally, we can not account
for any charged particles in the environment, which could be attracted by the surface
charges, and could to some extent neutralise them.
Since we do not possess a viable method for determining the charge densities at the
quantum dot surface, we artificially set them to zero for all calculations. Note, that
for the case of neutralisation of the charges by additional charges in the quantum dot
environment, this would be the correct result.
If the quantum dots were, for example, in solution in water, one would expect any surface
charges to be neutralised by the partial charges of the water molecules. The same principle
applies for any other kind of charged particles in the quantum dot environment, which
makes the artificial omission of these surface charges a realistic approximation of the true
charge densities at the surface.
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4.3.3 Multishell Quantum dots

This work is mainly focused on core-shell quantum dots. It is, however, possible to fabri-
cate colloidal quantum dots with arbitrary numbers of shells, making use of a variety of
semiconductor materials [47, 48]. These quantum systems have been called ”nano-onions”
in some publications [49].
In this section, we will explore the effects on the calculated potentials of adding additional
shells to the core-shell quantum dots, alternating CdS and CdSe for each additional shell.
Figure 4.9 shows the calculated potentials of quantum dots from series C with wurtzite
lattice structure with 2, 3, 4 and 5 shells, respectively. All potentials are displayed as
2D contour-plots as well as linescans along the [0001]-direction. Here, we only examine
quantum dots with wurtzite lattice structure, as the electric potentials are much more
pronounced in this case.
Examining the piezoelectric potential, we can see that the general shape of the potential of
a quantum dot with a single shell, as depicted in figure 4.3, is repeated for each additional
shell, with alternating signs. For each additional shell, the potential amplitude is increased.
This leads to the formation of an alternating potential landscape, where the overall slope
along the c-axis is dependent on the number of shells being even or odd, because of the
dominant effect of the potential associated to the outermost shell. One can see from the
linescans, that the values of the piezoelectric potentials of the quantum dots with an even
number of shells are increasing along the c-axis, while for quantum dots with odd number
of shells the potential values are decreasing overall.
Deviations between the quantum dots with different numbers of shells are more pronounced
toward the surface of the quantum dot, whereas they are very similar in the area of the
core and the innermost shell.
The pyroelectric potentials display an even stronger dependancy on the number of shells,
as the overall gradient along the c-axis is almost completely reversed between quantum
dots with odd or even numbers of shells, respectively. One can see in the linescan plot,
that the potentials for 2 and 4 shells are almost perfectly identical inside the inner 2 shells,
as are the potentials for 3 and 5 shells inside the inner 3 shells.
In contrast to the piezoelectric potential, however, the pyroelectric potential inside the
quantum dot core is also strongly affected by the number of shells. For an odd number of
shells, there is a strong potential gradient along the c-axis inside the core, as is the case
for the basic core-shell quantum dot. For an even number of shells, however, the potential
gradient is strongly decreased, and also has a different sign.
In contrast to that, the potential gradient in the innermost shell is much larger for the
quantum dots with an even number of shells, while it is strongly decreased in the case of
an odd number of shells.
Since the amplitude of the pyroelectric potential is dominant, the total potential mostly
follows the trends of the pyroelectric potential. This means that the potential inside the
quantum dot core, where the electronic single-particle wavefunctions are mostly confined,
can be very easily switched on and off by changing the number of shells grown on the
quantum dot.

50





4.3.4 Macroscopic Equivalent: IFGARD

Similar to the change in pyroelectric polarisation in the quantum dot core introduced
by additional shells, a way of controlling pyroelectric polarisation in an active region of
a semiconductor device through additional layers of semiconductor material outside the
active region was published in [50] and patented [51].
In this case, quantum wells and epitaxial quantum dots were studied, and it was shown
that the pyroelectric polarisation inside the active region could be completely switched off
by applying an additional layer of the material of the active region as a blocker layer (called
an IFGARD-layer) on both sides of the active region. This is the same effect described
above for additional shells on the colloidal quantum dots.
The upper part of figure 4.10 shows calculated band-edges for a single quantum well
without (in red) and including the IFGARD-layers. The gradient inside the quantum well
in the case without these layers is due to the potential gradient from the pyroelectricity of
the material. If the IFGARD-layers are introduced, the gradient inside the quantum well
is eliminated completely. This behaviour is similar to the change in potentials inside the
quantum dot core introduced by additional shells discussed above.
The fact that, for spherical quantum dots, the pyroelectric potential can not be completely
eliminated, but only decreased, is due to the fact that the interfaces between shells increase
in size for additional shells, leading to larger charges being introduced into the system with
each additional shell, causing the increased potential amplitudes found for the outermost
shells.
In contrast to this, the interfaces of the quantum wells remain exactly the same size,
leading to the complete elimination of the internal potentials through IFGARD.
An additional patent [52] was filed for the slightly different scenario where the IFGARD-
layers are not made from the same material as the active region, but consist of a material
composition from a range between the active region material and the matrix material.
This allows for precise tuning of the potential gradient inside the quantum dot, instead
of eliminating the potentials, allowing for e.g. the compensation of bias-voltage induced
gradients in electrically driven devices.
One could imagine a similar application for colloidal multishell quantum dots, where the
material of an additional shell would be CdSexS1−x, with x between 0 and 1. This
would presumably also allow for the possibility of tuning the potential gradient inside the
quantum dot core. We did, however, not perform any numerical analysis of this scenario.

4.4 Summary

While the strain distributions are similar for wurtzite and zincblende quantum dots, they
give rise to strongly different piezoelectric potentials. These piezoelectric potentials reflect
the symmetries of the crystal lattices: for zincblende, the alternating minima and maxima
along the [111]-directions lead to the interchangeability of the x-, y- and z-axes, while for
wurtzite there is a pronounced potential gradient along the crystal c-axis.
In the wurtzite case, the additional pyroelectric part of the electric potentials also possesses
a strong gradient along the c-axis, yet with opposite sign. Its larger amplitude leads the
gradient of the total potential being aligned with the pyroelectric gradient.
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Figure 4.10: From: [50]. Top: Band-diagrams for a single quantum well with and without
IFGARD layers. Bottom: Band-diagram for a double quantum well with IFGARD layers. The
band-edges inside the quantum wells are constant, when IFGARD-layers are present, indicating
the absence of a potential gradient. When there are no IFGARD layers, the band-edge energies
have a gradient, resulting from the gradient of the electric potentials inside the quantum dot.
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Variations in the dielectric constant of the quantum dot environment were shown to
strongly affect the calculated potentials in the quantum dot shell, with the potential
inside the core being largely unaffected. However, for thin shells, there still might be
non-negligible effects of the environment on the potential inside the quantum dot core.
We also analysed the effects on the potentials of additional quantum dot shells, finding that
the polarity of the pyroelectric part of the potential is switched when changing between
even and odd numbers of shells. The gradient amplitude inside the quantum dot core is
also strongly affected when changing between even and odd numbers of shells. This effect
is similar to the concept of IFGARD-layers in epitaxial quantum structures, on which the
author was a contributor.
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5 Electron and Hole Single Particle Calculations

In this chapter, we present the results of the single-particle calculations for the different
quantum dot series. The impact of the internal electric potentials as well as non-sphericity
on the electronic structure will be evaluated for both lattice structures.

5.1 Single particle energies and wavefunctions

Figure 5.1 shows the calculated single-particle energies for electrons and holes for quantum
dot series A2 with wurtzite lattice structure. Results are shown both for calculations
including electric potentials and calculations omitting them.
In figure 5.2, results for series A2 for zincblende lattice structure are shown. Here, only re-
sults including electric potentials are displayed, as the difference between the two scenarios
is negligible, with the largest deviation in single-particle energies being below 0.4 meV.
In both figures, the energies of the four lowest-energy electron orbitals as well as the six
highest-energy hole orbitals are displayed, with each orbital representing two single-particle
states, due to spin-degeneracy.
The energy scale has been chosen so that the unstrained valence band maximum of the
quantum dot shell is at zero energy.
Wavefunctions are displayed for the four orbitals closest to the band-edge, for both elec-
trons and holes. The wavefunction plots show the values of |Ψ|2 in both a 3D isosurface-
plot and a 2D contour-plot along a cut through the quantum dot center.
Analysing the energies first, we see that for all considered quantum dot series, the difference
between electron and hole energies decreases for larger core sizes. This is due to the
decrease in confinement energy, as the wavefunctions are primarily located in the quantum
dot core, which has the lower bandgap compared to the shell.
We make the following key observations concerning differences between the two lattice
structures:

• For zincblende, the first and second hole orbitals are energetically degenerate, which
is in agreement with prior analytical calculations [13]. Likewise, the third and fourth
orbitals, as well as the fifth and sixth orbitals also display energetic degeneracy. We
do not observe energetically degenerate hole orbitals for wurtzite quantum dots.

• For both lattice structures, the first electron orbital is energetically well separated
from the higher electron orbitals.

• For zincblende quantum dots, the second, third, and fourth electron orbitals all
display the same energy, whereas in the wurtzite case, only the second and third
orbital display degeneracy, with the fourth orbital being energetically split from
them. This separation is more pronounced when electric potentials are included.

When comparing the single-particle energies for wurtzite quantum dots with and without
the inclusion of intrinsic electric potentials, we make the following observations:

• For small core sizes, the single-particle energies are similar between the two cases, but
diverge strongly with increasing core sizes. When potentials are omitted, energies
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do not display strong changes for quantum dots with core radius 3 nm or above.
However, including electric potentials changes this completely, leading to a strong
shift in energies for quantum dots with larger core sizes.

• The energy-separation between the fourth electron orbital and the second and third
electron orbitals is more pronounced when internal potentials are included in the
calculations. When the potentials are omitted, the energy separation almost vanishes
for large quantum dot cores.

• The energy-separation between the different hole orbitals is not as strongly affected
by the internal potentials. Only for large core sizes is the energy difference be-
tween the first and sixth hole orbital noticeably smaller when internal potentials are
omitted.

When analyzing the wavefunctions, we first note that the hole wavefunctions are more
closely confined to the quantum dot core than the electrons wavefunctions, and also that
the wavefunctions of the holes are less spatially extended than for electrons, even for
quantum dots with rather large cores. This is attributed to the larger effective mass of
the holes.
When comparing the wavefunctions for the two lattice structures, we find the following:

• Electron and hole groundstates for both lattice structures exhibit s-type symmetry.
The two degenerate groundstate hole orbitals for zincblende structure both exhibit
s-type symmetry.

• For wurtzite lattice structure, the second and third electron orbitals as well as the
second and third hole orbitals have the form of a torus, oriented in the (0001)-plane.
This toroidal shape arises from a hybridisation of px- and py-type symmetries. The
fourth electron and hole orbitals, by contrast, possess pz type symmetry.

• The wavefunctions for the three energetically degenerate electron orbitals for zincblende
lattice structure are all hybridisations of px-, py-, and pz-type symmetries. The wave-
function of the second orbital has the shape of a hollow sphere, the wavefunction
for the third orbital has a dumbbell shape, oriented along the [111]-direction, and
the wavefunction of the fourth orbital has the shape of a torus, oriented in the
(111)-plane.

• In zincblende, the wavefunctions of the third and fourth hole orbitals display a
symmetry similar to the wavefunctions of the third and fourth electron orbitals.

When examining the effects of the electric potentials on the wavefunctions for the wurtzite
quantum dots, we find the following:

• The inclusion of electric potentials leads to a separation of the electron- and hole-
wavefunctions along the c-axis. The shape of the wavefunctions does not change
significantly, except for the pz-shaped fourth orbital for both electrons and holes,
where the probability density of the center-aligned half of the dumbbell-shape is
increasingly diminished.
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In figure 5.3, the single-particle energies for series A3 are plotted. In this case, wavefunc-
tions are not shown, as they are very similar to the results shown above.
For the zincblende calculations, we observe the same orbital degeneracies as in series A2
above. We also see a similar energy shift as above, thus decreasing the effective bandgap
for larger dots, which, again, is attributed to a decrease in confinement energy as the core
increases in size.
In the wurtzite case, we observe the same general trends as in the series above, superim-
posed by the energy shift due to the inclusion of the electric potentials.
Figure 5.4 shows single-particle energies for one wurtzite quantum dot (geometry A2-6)
for different values of the environment permittivity εr, ranging from 1 to 100. We did not
include results for zincblende lattice structure, as the single-particle energies for zincblende
are almost completely unaffected by this parameter, with a maximum deviation for any
single-particle energy of below 0.3 meV.
Evidently, increasing the permittivity of the environment increases the effective bandgap,
with the electron single-particle energies rising by the same magnitude as the hole single-
particle energies decrease. The energy shifts are uniform for all calculated orbitals, except
the fourth electron orbital, where the energy upshift is strongly decreased. From figure
5.1, we can see that the wavefunction corresponding to this orbital has pz-symmetry, and
that it is most strongly confined on the upper part of the quantum dot core.
One hypothesis regarding the origin of the decreased energy shift for this orbital is, that
the associated wavefunction has the smallest area of high probability density at the core-
shell interface, where the change of the electric potentials induced by the variation in
environment permittivity is the strongest, as can be seen in figure 4.6.
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Figure 5.1: Energies and wavefunctions of single particle states for quantum dots of series A2
for wurtzite lattice structure. The left side of the figure depicts results for calculations including
internal potentials, while on the right side results of calculations without internal potentials are
shown. The upper part of the energy-plot depicts the single-particle electron energies for the four
lowest energy electron orbitals, each consisting of two energetically degenerate states. In the lower
part of the energy-plot, the energies of the six highest energy hole orbitals are displayed. The
top part of the wavefunction visualisation shows the wavefunctions associated to the four lowest
energy electron orbitals, plotted in blue, while the bottom part shows the wavefunctions for the
four highest energy hole orbitals, plotted in yellow. There are both 3D isosurface and 2D contour-
plots of the wavefunctions. All wavefunction plots, except the ones marked by a red border, are
shown with a viewing direction parallel to the y-axis, while for the plots marked by a red border
the viewing direction is along the z-axis.
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Figure 5.2: Energies and wavefunctions of single particle states for quantum dots of series A2 for
zincblende lattice structure. The upper part of the energy-plot depicts the single-particle electron
energies for the four lowest energy electron orbitals, each consisting of two energetically degenerate
states. In the lower part of the energy-plot, the energies of the six highest energy hole orbitals are
displayed. The top part of the wavefunction visualisation shows the wavefunctions associated to the
four lowest energy electron orbitals, plotted in blue, while the bottom part shows the wavefunctions
for the four highest energy hole orbitals, plotted in yellow. There are both 3D isosurface and 2D
contour-plots of the wavefunctions. All wavefunction plots are shown with a viewing direction
parallel to the y-axis
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Zincblende Wurtzite
incl. Potentials       omit. Potentials

Figure 5.3: Energies of single particle states for quantum dots of series A3 for both crystal
structures. Wurtzite results are displayed both including and omitting electric potentials. The
upper part of the energy-plot depicts the single-particle electron energies for the four lowest energy
electron orbitals, each consisting of two energetically degenerate states. In the lower part of the
energy-plot, the energies of the six highest energy hole orbitals are displayed.
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Wurtzite

Figure 5.4: Energies of single particle states for varying values of environment permittivity for
quantum dot geometry A2-6 in wurtzite lattice structure. The six lowest-energy electron orbitals
are plotted in the top part of the plot, while the six highest energy hole orbitals are plotted in the
bottom part.
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5.1.1 Ellipsoidal quantum dots: degeneracy and symmetry-breaking

After examining single-particle calculation for spherical quantum dots with varying core-
sizes, we now present results for ellipsoidal quantum dots of series B1 and B2. The material
volumes of the core and the total quantum dots are the same for all quantum dots in the
series, with only the aspect ratio of the ellipsoids varying between the quantum dots in
these series. This provides us with the opportunity to examine the effects of a reduced
spacial symmetry on the single-particle states, while excluding the size effects on both
the confinement energy and the potentials, which we analysed in detail in the previous
subsection.
Figure 5.5 contains single-particle energies and wavefunctions for wurtzite lattice structure
with the aspect-ratio being varied along the [10-10]-direction. The wavefunctions are
plotted as 2D contour plots in the xz-plane and the yz-plane, to enable an easier comparison
of the different geometries.
Figure 5.7 contains single-particle energies for wurtzite lattice structure with the aspect
ratio variation along the [0001]-direction.
In figure 5.6 the corresponding results for zincblende lattice structure are displayed, with
the aspect ratio being varied along the [100]-direction. No additional aspect ratio series
along a different direction was performed for zincblende lattice structure, because of all
three principal lattice directions being equivalent.
When analyzing the results in figure 5.5, we find the following:

• At aspect ratio 1, the results from the spherical dots are replicated, including the
energetically degenerate second and third electron orbitals. As we change the aspect-
ratio, however, this degeneracy is split, leading to an approximately linear shift in
energy along the aspect ratio for both these orbitals, but with different sign.

• The geometry of the associated wavefunctions is also changed, from both orbitals
having a torus-shape to one orbital wavefunction being a dumbbell-shape in x-
direction and the wavefunction of the other orbital being a dumbbell-shape in y-
direction.

• The lowest electron orbital is only lightly affected by the change in aspect ratio, as
is the fourth electron orbital.

• Similar to the electrons, the second and third hole orbitals also show a crossing
behaviour, as well as the same kind of change in wavefunction geometries.

• In contrast to the electrons, all hole orbital energies show a strong downshift for
higher aspect ratios. The amplitude of this downshift is similar for all orbitals,
except for the one associated to the py-shaped wavefunction.

We can understand the observed energy shifts by looking at the interplay of confinement
energy and influences of the electric potential. For the wurtzite lattice structure, we
observed a strong potential gradient along the [0001]-direction. This leads to the displace-
ments of the wavefunctions and the change of single-particle energies, lowering the effective
bandgap. For aspect ratios below 1, the core is more extended along the [0001]-direction,
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leading to a larger area of this strong potential gradient. For aspect ratios above 1, the
opposite is true, and the length of the gradient is diminished. This directly leads to the
strong shifts in energies observed for the hole orbitals.
The shift is much stronger for holes than for electrons because of the more confined nature
of the hole wavefunctions, allowing them to follow the potential gradient to a much stronger
extent than the electrons. Additionally, the more the quantum dot geometry deviates from
sphericity, we increase the confinement energy imposed on the particles. This effect is
more strongly observed for the electrons, as their wavefunctions are much more extended
in space.
Due to the design of the ellipsoidal geometries, this effect is more strongly observed for
smaller aspect ratios than for larger ones, as the curvature radius at the uppermost point
(along the [0001]-direction) of the core-shell interface is smaller for aspect ratios below 1.
This is another factor explaining why the shift in electron energies is that much smaller
than for holes.
The splitting observed for the second and third orbitals for both particle types can be
understood by analysing the confinement energy changes induced by the change in aspect
ratio. For aspect ratios above 1, the quantum dot extent is larger in x-direction than
y-direction, leading to a lowering of the energy associated to the py-shaped wavefunction.
For aspect ratios smaller than 1, the opposite is true, leading to the observed splitting
behaviour.
If we compare this to the aspect ratio series in z-direction, plotted in figure 5.7, we observe
the following differences:

• The second and third orbitals for both electrons and holes no longer display energy-
splitting. In the case of electrons, they are degenerate, as is the case in spherical
quantum dots. For holes, their energies are almost degenerate, too.

• The energy shift for the holes is more strongly pronounced than before.

• The fourth electron orbital displays a slight downshift for higher aspect ratios, while
the other orbitals shift up.

These energy-shifts can again be explained by the interplay of confinement energy and
electric potentials: As we elongate our ellipsoidal quantum dot along the [0001]-direction,
the area of the potential gradient is increased much more strongly than before, leading to
the even stronger shifts displayed for the holes.
The increase in confinement energy, however, is also larger than for the series discussed
before, as both curvature radii on the uppermost part of the core-shell interface are smaller
than the values for the series discussed above. This leads to a reversal in energy shift for
the three lowest energy electron orbitals, as the influence of the confinement energy exceeds
the shift induced by the electric potential. The energy shift of the fourth electron orbital is
due to the wavefunction being much more spacially confined than the other wavefunctions,
and therefore being less affected by the increase in confinement energy.
Since the geometries for this aspect ratio series are identical in x- and y- direction, the
energy splitting from the series discussed before is not observed here.
For zincblende lattice structure, we make the following observations from figure 5.6:
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• The lowest energy electron orbital is not strongly affected by the change in aspect
ratio.

• The second, third and fourth orbitals, however, display a linear change in energy over
aspect ratio, as well as a change in the geometry of their associated wavefunctions:
One orbital displays a downshift in energy with increasing aspect ratio, with its
associated wavefunction having a px dumbbell geometry. The other two orbitals
remain energetically degenerate and display an energy upshift for increasing aspect
ratios, with the associated wavefunctions having the shape of a torus, oriented in
the yz-plane.

• The two highest energy hole orbitals, being energetically degenerate for spherical
systems, are likewise shifted in opposite directions for changing aspect ratios. The
associated wavefunctions continue to exhibit s-type symmetry, but differ slightly
from each other, in terms of their spacial extension in the different directions. The
wavefunction associated to the orbital energies displayed in yellow, is more extended
in x-direction, visible for aspect ratios greater than 1, while the other wavefunction
displays greater spacial extension in the yz-plane, visible for aspect ratios below 1.

• The third and fourth hole orbitals also display an energy upshift for aspect ratios
differing from one, and their degeneracy is broken as well. It is notable, that the
wavefunction geometries are similar between the two orbitals, yet differ strongly for
aspect ratios below and above 1.

Since the zincblende lattice does not give rise to the strong polarising potential seen in
the wurtzite case, these results can be understood by only assessing the impact of the
confinement.
As the wavefunction for the lowest energy electron orbital is located in the center of the
quantum dot, the confinement effects of changing the shape of the quantum dot core do
not greatly affect the orbital energy. The three next highest orbitals, however, are made
up by wavefunctions that are hybridisations of all three p-state orientations, which is due
to the perfect symmetry of the spherical confinement. As we change the aspect ratio, we
break this confinement symmetry, to the effect that, in the case of aspect ratios above
one, the confinement is weaker in x-direction, and stronger in the yz-plane. As a result,
the wavefunction hybridisation is broken, with one wavefunction now having the shape of
a dumbbell in x-direction, and corresponding lower confinement energy for larger aspect
ratios, while the wavefunctions corresponding to the other two orbitals having the shape
of a torus in the yz-plane, with lower confinement energies for lower aspect ratios. This is
very similar to the results found for spherical wurtzite quantum dots, where the spherical
symmetry is broken by the internal potentials, rather than the quantum dot shape.
The wavefunctions associated with the hole orbitals undergo a similar transformation,
with the geometry changes in the associated wavefunctions being less pronounced than for
the electrons.
In conclusion, we make the following observations for ellipsoidal quantum dot geometries:
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1. Deviations from the spherical geometry lift the energetic degeneracies observed for
the perfect spherical case discussed above.

2. By elongating the quantum dots in one direction, a preferred axis is created, thus
splitting the threefold electron p-state degeneracy in zincblende into a separate level
and a twofold degeneracy. In wurtzite, the potentials already delineate one preferred
axis, the observed twofold p-state degeneracy can then be further split by introducing
the geometric preferred direction along another axis. If we elongate the quantum
dot along the c-axis, the twofold degeneracy of the p-states is retained.

3. The shape of the calculated wavefunctions is strongly impacted by deviations from
spherical symmetry, eliminating the hybridisation observed for the wavefunctions
associated to degenerate energy orbitals.

4. Non-sphericity can induce large shifts in single-particle energies and the effective
bandgap, even while keeping the total quantum dot volume constant. This is ob-
served particularly for wurtzite lattice structure, owing to the strong gradients ob-
served in the pyroelectric potential.
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Figure 5.5: Energies and wavefunctions of single particle states for an aspect ratio series of
ellipsoids (series B1) with wurtzite lattice structure. The energies of the four lowest energy electron
orbitals are depicted in the upper part of the energy plot, while the energies of the four highest
energy hole orbitals are depicted in the lower part. Wavefunctions for each orbital are plotted for
aspect ratios of 0.85 on the left side, and aspect ratio 1.15 on the right side. Electrons are plotted
in blue, while holes are plotted in yellow. All wavefunctions are shown as 2D contour-plots in the
xz-plane and the yz-plane. The quantum dot shape is indicated by black ellipses.
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Figure 5.6: Energies and wavefunctions of single particle states for an aspect ratio series of
ellipsoids (series B1) with zincblende lattice structure. The energies of the four lowest energy
electron orbitals are depicted in the upper part of the energy plot, while the energies of the four
highest energy hole orbitals are depicted in the lower part. Wavefunctions for each orbital are
plotted for aspect ratios of 0.85 on the left side, and aspect ratio 1.15 on the right side. Electrons
are plotted in blue, while holes are plotted in yellow. All wavefunctions are shown as 2D contour-
plots in the xz-plane and the yz-plane. The quantum dot shape is indicated by black ellipses.
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Figure 5.7: Energies of single particle states for an aspect ratio series of ellipsoids (series B2)
with wurtzite lattice structure. The aspect ratio change is along the lattice c-axis. The energies
of the four lowest energy electron orbitals are depicted in the upper part of the energy plot, while
the energies of the four highest energy hole orbitals are depicted in the lower part.

5.2 Single-Particle lifetimes

The radiative ground-state lifetimes for the spherical quantum dot series A2 and A3 are
shown in figure 5.8. Here, lifetimes are plotted for calculations both including and omitting
electric potentials. The lifetimes for the ellipsoidal quantum dot series B1, B2, B3 and B4
are given in figure 5.9. Results for zincblende and wurtzite lattice structures are plotted
together here, to allow for easier comparisons.
Analysing the results for spherical quantum dots, we note the following points:

• For zincblende structure, the lifetimes are not affected by the inclusion of electric
potentials. This is in good agreement with the fact, that the single-particle energies
and wavefunctions are also hardly affected by these potentials.

• For wurtzite, however, we see a drastic increase in lifetimes for larger core-sizes, or
larger total quantum dot size when including the electric potentials, while mirroring
the zincblende behaviour when omitting them.

• The wurtzite lifetimes in absence of intrinsic potentials are about twice as large as in
the case of zincblende. This originates from the fact that the zincblende hole ground
state is energetically fourfold degenerate, and thus the number of radiative paths is
doubled compared to wurtzite.

• Lifetimes for wurtzite quantum dots with internal potentials included grow expo-
nentially with increasing core sizes or quantum dot sizes. This is attributable to
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5.3 Summary

To summarise the results from the single-particle calculations:

1. The electric potentials strongly influence the energies and wavefunctions for wurtzite
quantum dots, while the zincblende results are largely unaffected.

2. The combination of energy shifts towards a decreased effective bandgap, a wave-
function separation of electrons and holes, and strongly increased radiative lifetimes
is also found in other wurtzite nanostructures, and is usually called the Quantum
Confined Stark Effect.

3. Deviations from spherical geometries have impacts on the single particle energies
and wavefunctions, these impacts are again much stronger for the wurtzite lattice
structure.
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6 Coulomb-Interaction: Excitonic Properties

In this chapter we will present the results of the Multi-Particle Hartree-Fock Calculations
outlined in chapter 2.5. In chapter 3, we presented the exciton-structure obtained by
Efros et al for spherical quantum dots. We will compare these results to our own findings,
focusing on the impact of the intrinsic electric potentials.
We have calculated eight different exciton states for every quantum dot geometry, four of
which arise from the single-particle electron and hole ground-states and form the excitonic
ground states of the quantum dots. The other four excitons arise from the single-particle
electron ground state and the first excited hole state, and make up the first excited exci-
tonic states.
First we will introduce the nomenclature used for describing the different excitons cal-
culated: we identify each exciton by the spins of the electron and the hole, as well as a
number, indicating if it belongs to the ground states or the excited states. So the exciton
with both electron and hole spin up and belonging to the excitonic ground states would be
designated as X1 ↑⇑ with the electron spin indicated by the single-line arrow, and the hole
spin given by the double-lined arrow. The index 1 indicates it being an exciton ground
state. The exciton with identical spin-configuration, but belonging to the excited exciton
states is designated as X2 ↑⇑.
We will begin by presenting the exciton energies and energy-splittings for different quan-
tum dot series. After that we will analyse the projections of the calculated hole-states of
the excitons on the different valence bands as well as their spin projections, which will
provide us with some insight regarding the experimentally observed luminescence from
the spin-forbidden states.
Finally, the exciton lifetimes will be discussed and compared to previous investigations.

6.1 Exciton Energies

The exciton energy structure is very similar for all series investigated here. The X1 and
X2 excitons have very similar total energies, respectively. Yet there is an energy splitting
within the two groups of excitons between the excitons with parallel electron and hole
spins and the excitons with antiparallel spins.
The two excitons within the same group with parallel spins are energetically degenerate,
as are the two excitons with antiprallel spins.
Therefore, exciton energy plots are structured in the following way. In part (a), the total
energy of the excitons is displayed. In part (b), the energy difference between the X1

excitons and the X2 excitons is given. In part (c), we display the energy splitting of the
X1-excitons and in part (d), the splitting of the X2-excitons is plotted.
Exciton energies for wurtzite quantum dots from series A2 are displayed in figure 6.1, while
the results for the same quantum dots, but without inclusion of the internal potentials in
the calculations, are given in figure 6.2.
When we compare the total exciton energies for these two cases, we can clearly see, as
we did before for the single-particle results, that the internal potentials are lowering the
exciton energies for increasing core sizes, an effect that is not observable if these potentials
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are omitted in the calculation process.
Even if the internal potentials are omitted, however, the energies are still decreasing
towards larger quantum dot cores, which can be attributed to a decrease in quantum
confinement, and was also observed in the single-particle picture.
The energy difference between the X1 and X2 excitons is very similar for both scenarios,
showing a decrease towards larger core-sizes, which can also be attributed to the decrease
in quantum confinement.
The energy splitting results between excitons with parallel and antiparallel spin give us
the following information:

• Excitons with parallel electron and hole spins have a lower total energy than excitons
with antiparallel spins for all quantum dots.

• The energy splitting for theX2 excitons is almost exactly half that of the X1 excitons.
An explanation for this can be found in the different shape of the hole wavefunction
for the X2 excitons, to be discussed in detail later, leading to a smaller electron-hole
overlap.

• The energy splitting decreases for larger core-sizes for both exciton groups and in-
dependently of the inclusion of internal potentials in the calculations. This, too, is
caused by decreasing electron hole wavefunction overlap, induced by the decreasing
quantum confinement.

• The energy splitting for both exciton groups is very similar between the two cal-
culations for small core sizes, but diverges for increasing core sizes: When internal
potentials are included, the energy splitting decreases toward zero, while there re-
mains a splitting energy of close to 1meV for the X1 excitons and 0.5meV for the
X2 excitons, respectively, when internal potentials are omitted. This is due to the
wavefunction separation caused by the pyroelectric potentials, which decreases the
wavefunction overlap, an effect that is not observed when internal potentials are
omitted.

One interesting consequence of the internal potentials, then, is that the wavefunction
separation leads to fourfold degenerate exciton levels for quantum dots with core sizes
of 4 nm and above. Additionally, we observe the same effects already detailed for the
single-particle results, namely wavefunction separation and energy decrease, summarily
described as the quantum confined Stark effect (QCSE).
To compare these results to smaller quantum dots, the exciton energies of series A1 are
shown in figure 6.3. The total energies for quantum dots with the same core sizes are
closely resembling the ones for the larger dots, indicating that the shell thickness does
not have a strong influence on exciton energy. The separation between the X1 and X2

excitons is also closely reproduced for the small quantum dots.
The energy splitting due to exchange energy follows the same trend as with the larger
quantum dots, decreasing for increasing quantum dot size, but is increased in amplitude
for quantum dots with the same core size, by a factor of 1.5 .
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6.2 Valence-band and spin projections

Before we turn our attention to the radiative lifetimes associated to the different excitons,
we will examine the projections of the calculated hole-wavefunctions onto the different
valence-bands and determine their spin-projection. We do not further study the projections
of the electron wavefunctions, because they almost completely consist of the contributions
of the conduction band, as would be expected.
Since our implementation of the k·p method utilises a basis of Bloch-functions containing
|x〉, |y〉 and |z〉 for the valence bands, we first have to utilise the transformations outlined in
chapter 2.4.3 to obtain a representation of wavefunctions in the Bloch-basis corresponding
to the true valence-band structure.
To then obtain the distribution of the wavefunctions among the different valence bands
(and the conduction band associated to |s〉), we integrate their amplitude corresponding
to each band, and divide by the overall amplitude over all subbands.
The results of these calculations are displayed in figure 6.4. We make the following obser-
vations:

• The four X1 excitons have identical values of band projections for all four bands.
The same is true for all four X2 excitons.

• All exciton hole-wavefunctions have only minute contributions of the conduction
band (below 0.03 for all quantum dots), as is expected of hole-states.

• The largest share for all excitons in all quantum dots is the contribution of the A-
band, with the lower-energy X1-excitons exhibiting an even larger share of A-band
contribution than the higher energy X2-excitons. This share increases further with
increasing core-sizes for all excitons.

• For the X1 excitons, the contribution of the B-band is slightly higher than that of the
C-band, and both are slightly decreasing towards larger cores. For X2 excitons, the
contribution of the C-band exceeds that of the B-band for small cores, but decreases
stronger, leading to an equal share for both bands at large core-sizes.

We conclude, therefore, that all calculated excitons are A-excitons, but with contributions
from both the B- and C-bands (and very small contributions of the conduction band).
We will now examine the spin projections of the same exciton hole-wavefunctions. Because
the single-particle k·p theory does not employ a spin-dependant Hamiltonian, the spin
distribution is arbitrary between the two wavefunctions making up the energy-degenerate
orbitals. Wavefunctions obtained via the Hartree-Fock method, however, are expected to
be completely spin-polarised, because spin-dependent exchange-interaction effects are now
being taken into account.
When examining the basis transformations described in chapter 2.4.3, we notice that the
contributions of the |z〉 Bloch function are included with opposite spin than the contri-
butions of the |x〉 and |y〉 Bloch functions. Therefore, a wavefunction that is completely
spin-polarised in the original basis, would be less than completely spin-polarised in the
valence-band basis, if it has a contributions from the |z〉 Bloch state.
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7 Exciton-Phonon Interaction: Huang Rhys factors

We now present the results of the electron-phonon coupling calculations. As outlined in
section 2.7, we obtain a coupling constant, called a Huang-Rhys factor, for every vibra-
tional eigenmode, for each modeled transition of the electronic configuration inside the
quantum dot.
We are limited in our analysis to quantum dots with a radius of 2.6 nm, due to strong
superlinear scaling of the necessary computation time with system size. Therefore, we
restrict our study of Huang-Rhys factors to quantum dots from series A1.
Our analysis will start with the simplest electronic transition: the recombination of the
ground-state exciton, where we construct the exciton wavefunction from the ground-state
wavefunctions of the single-particle electron and hole calculations. The final electronic
state in this case is an empty quantum dot.
Then, we will compare this to the recombinations of excitons where either the electron or
hole wavefunction is taken from an excited state, with the final state once again being the
empty quantum dot.
Finally, we will examine the recombination of the Hartree-Fock excitons described in
section 6 and the changes introduced by the Coulomb interactions, when compared to the
results based on single-particle calculations.
In the last part, the transitions between different Hartree-Fock excitons are studied, which
may allow us to determine if these transitions might be phonon-assisted.
All calculations are performed for 10 different sets of atomistic phonon calculations, be-
cause the atomistic representation of a quantum dot is not unique to the geometry as
specified only be core radius and total radius. This is explained in more detail in ap-
pendix A.

7.1 Ground-state transition

Figure 7.1 shows calculated Huang-Rhys spectra for three exemplary quantum dot ge-
ometries. Results are shown for both zincblende and wurtzite lattice structure, with the
wurtzite results shown both for including and omitting the internal potentials. We do not
present zincblende results without internal potentials, as they are almost identical to the
results including potentials.
The following characteristics of the calculated Huang-Rhys factors stand out:

• Only a small percentage of vibrational eigenmodes display substantial coupling to
the electronic transition. There are more than 7000 eigenmodes for every quantum
dot, yet more than 90 % of them display no notable coupling strength.

• Only eigenmodes in specific frequency regions display sizeable Huang-Rhys factors,
leading to distinct peaks in the Huang-Rhys spectra.

• Coupling strengths are larger for wurtzite structure when compared to zincblende,
and larger when including internal potentials than when omitting them. Also, there
is a much larger number of eigenmodes displaying notable coupling strength in the
case of wurtzite lattice structure.
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• For both zincblende and wurtzite with included internal potentials, the overall mag-
nitude of the couplings remains similar for all three exemplary geometries, while for
the case of wurtzite without internal potentials, there is a sizeable decrease in overall
coupling strength towards larger core-sizes.

To further analyse the calculated Huang-Rhys factors and examine trends and changes
along the series of geometries, we separate the energy axis into four distinct regions, to
analyse the behaviour of the four different peaks we observe in the spectra.
These regions are:

1. 0 - 70 cm−1: In this frequency region, there is a distinct peak in all calculated
Huang-Rhys spectra. In bulk semiconductors, acoustic phonons would be associated
to frequencies in this range, which is why we refer to it as the acoustic region.

2. 70 - 160 cm−1: Eigenmodes in this frequency range display the lowest electron-
phonon coupling; in some cases, no eigenmode displays any coupling strength, while
for some quantum dots, there is a distinct peak, with lower amplitude than the other
observable peaks. We refer to this frequency range as the intermediate region.

3. 160 - 250 cm−1: For all quantum dots, there is a peak observable at around 200
cm−1, which is quite close to the optical phonon energies of bulk CdSe. For this
reason, we refer to this area as the CdSe region.

4. 250 - 400 cm−1: Similarly, most quantum dots show a peak at around 300 cm−1,
or around the energies of the bulk CdS phonons. Therefore, we refer to this energy
region as the CdS region.

To analyze the Huang-Rhys peaks in these areas, we calculate the following properties
for each area, considering only those eigenmodes, whose Huang-Rhys factors are above a
certain threshold:

1. Peak Frequency: To determine the center frequency of the peak, we calculate a
weighted average of the eigenmode frequencies in each area, with the Huang-Rhys
factors as the weights. Usual methods of determining peak frequencies in, for exam-
ple, measured photoluminescence spectra, e.g. the fitting of an appropriate function
to the data, are not feasible here, since even in the areas of the peaks, the majority
of eigenmodes display close to zero coupling.

2. Peak Sum: The peak sum is determined by adding all contributing Huang-Rhys
factors in the considered frequency range.

3. Peak Width: To assess the width of the observed peaks, we calculate the stan-
dard deviation from the weighted average used for the determination of the center
frequency.

Since there are 10 different atomistic calculations performed for every quantum dot ge-
ometry, we calculate the above properties for all frequency ranges for all dots, and then
average over all 10 atomistic iterations.
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Figure 7.2 displays the results of this analysis, with results displayed for both zincblende
and wurtzite lattice structure, and with results for calculations with included internal
potentials as well as omitted internal potentials.
Analyzing the peak positions first, we make the following observations:

• The peak positions for wurtzite lattice structure do not show strong dependencies
on the inclusion of internal potentials. The main deviations observable, in case of
excluded internal potentials, are a slight decrease in CdSe peak positions, an increase
in intermediate peak positions, as well as a decrease in acoustic peak positions, all
only observable for large cores (above 1.85nm).

• The results for zincblende do not show any dependancy on the presence of internal
potentials, which is why we excluded the spectra without internal potentials from
figure 7.1.

• The positions of the CdSe and CdS peaks for both zincblende and wurtzite structures
display similar trends: the CdS peak position decreases, while the CdSe peak position
increases with increasing core sizes.

• The CdS peak position is on average 6 wavenumbers higher for zincblende compared
to wurtzite, excluding the quantum dot with the largest core radius, where it drops
considerably.

• For core sizes of 0.6 nm and below, the CdSe peak position for zincblende is lower
than for wurtzite by an average of 5 wavenumbers, while for larger core sizes, there
is no difference between the lattice structures in terms of CdSe peak position.

• The position of the intermediate peak is considerably decreased for wurtzite lattice
structure. It is worth noting, however, that the peak sums of the intermediate peak
for zincblende structures are vanishingly small, making the determination of a center
peak frequency very noisy.

• For wurtzite lattice structure, the acoustic peak appears at higher frequencies than
for zincblende, excluding the quantum dot with the smallest core size. For both
lattice structures, this peak frequency remains rather constant for all core sizes,
except for the wurtzite calculations omitting the internal potentials, where the peak
position decreases for larger core sizes.

Regarding the peak sums, the following observations can be made:

• The peak sums, in contrast to the center frequencies, display a very strong depen-
dance on the inclusion of internal potentials for wurtzite lattice structure. While for
core sizes of 0.85 nm and below the results are quite similar, the omission of internal
potentials induces a reduction in peak sums by more than an order of magnitude
for quantum dots with larger cores. This reduction affects all four different peaks
included in this analysis.
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• The calculated Huang-Rhys peak sums are larger for wurtzite lattice structure by
an order of magnitude, except when omitting internal potentials, and even then only
for quantum dots with large core sizes.

• By contrast, for zincblende the peak sums are unaffected by the omission of internal
potentials, as were the center frequencies.

• For zincblende, the sum of the intermediate peak is almost zero, while the sum of the
acoustic peak shows a slight decrease from 0.7 at a core size of 0.85 nm to slightly
below 0.3 for the largest core size of 2.35 nm.

The CdS peak sum has a maximum of 2.4 at a core size of 0.85 nm and decreases
to almost zero for the largest core size, while the CdSe peak sum is continually
increasing from almost zero for the smallest core size to 2.5 at a core size of 2.1nm,
before slightly decreasing for the largest core.

• In the case of wurtzite lattice structure including internal potentials, the acoustic
peak sum has a maximum of 34.3 at a core size of 0.6nm, then decreases to values
around 5 for larger cores, before increasing again to 10.5 for the largest core size.

The intermediate peak is much less pronounced, while following the general trend of
the acoustic peak in terms of the positions of its maxima.

The CdS peak sum has two maxima, one at a core size of 0.6 nm at a value of 11.7
and another one at a core size of 1.6nm with a value of 7.7 . It decreases for the
largest quantum dots, yet in contrast to the zincblende case, does not approach zero,
reaching a minimal value of 3.8 .

Similar to the zincblende case, the sum of the CdSe peak is increasing for larger
core sizes, with the increase being largest for core sizes of 1.6nm and above. The
quantum dot with the largest core size also exhibits the largest Huang-Rhys sum for
the CdSe peak, at 31.3 .

• If the internal potentials are omitted for the wurtzite structure, the peak sums
for quantum dots with core sizes larger than 0.85 nm are drastically decreased, to
values comparable to the zincblende results. Both the acoustic peak and the CdS
peak decrease to zero at the largest core size, while the intermediate peak is already
at effectively zero for core sizes starting from 1.6 nm. The CdSe peak also decreases
with increasing core-sizes, reaching a value of 0.44 for the largest core.

Lastly, we analyse the variation of the peak widths:

• The widths of all observed peaks are between 10 and 30 wavenumbers, confirming
the fact that we are really examining well defined peaks, as opposed to random
variations in coupling strength.

• As a general trend for all examined quantum dot series, the width of the CdS peak
is constant around 10 wavenumbers for smaller core sizes, before strongly increasing
up to about 25 wavenumbers for core sizes starting at 1.6 nm.
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Huang-Rhys factors, ground state transition

Wurtzite Zincblende
Incl. Potentials Incl. Potentials

Omit. Potentials Omit. Potentials

Figure 7.2: Analysis of the peaks observed in the Huang-Rhys spectra for the electronic ground
state transition based on single-particle wavefunctions. Results are for quantum dot geometries of
series A1. Results for wurtzite lattice structure are shown on the left half of the figure, while results
for zincblende are given on the right side. The top row depicts results obtained from single-particle
wavefunctions calculated including internal electric potentials, while the bottom row details results
where these potentials are omitted. Each set of results contains three plots, showing the peak center
frequency, the sum of the peaks Huang-Rhys factors, and the peak width, for all four analyzed
peak regions. The plot of the peak-sums for the wurtzite case with internal potentials omitted is
a combination of two plots: results for core-sizes up to 1 nm are plotted on a different y-axis than
results for larger core-sizes.

7.2 Excited state transitions

We continue our analysis of the Huang-Rhys calculations by turning our attention to a
different transition of the electronic configuration: instead of the lowest exciton state,
formed by the ground-states of both the electron and hole single-particle calculations,
we study the radiative decay of two different exciton states, one of which consists of the
ground state of the hole and the first excited state of the electron, while the other consists
of the electron ground-state and the first excited state of the hole. The final state of the
electronic transition is the empty quantum dot, as was the case in our prior analysis.
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The Huang-Rhys spectra resulting from these transitions share the same characteristics
as the ones displayed in figure 7.1 above, and are therefore not plotted. Analysis data of
the different peaks found in the spectra are displayed in figure 7.3 for the two transitions
described above, for quantum dots in zincblende and wurtzite structure. In the case of
wurtzite, we again differentiate between two cases, one of which includes the internal
potentials in the calculation, and one where they are omitted.
We will analyse the differences compared to the ground-state exciton above for each of the
cases separately.
In the case of the transition with an excited electron state for wurtzite quantum dots
including potentials the results are very similar to the ground-state exciton. For the
transition involving the excited hole state, however, the peak sums for quantum dots with
small core sizes are strongly decreased, and the width of the CdSe peak is also decreased
in the same core-size range.
When omitting the internal potentials of the wurtzite quantum dots, the peak center fre-
quencies for both the excited electron and the excited hole case remain largely unaffected,
when compared to the ground state exciton case. For the transition involving the excited
electron state, the peak sums display the same decrease towards larger core sizes, except
the sum of the CdSe-peak, which is strongly enhanced when compared to the ground state
exciton transition. The values for the CdS peak sum are also enhanced for smaller core
sizes. The peak widths are largely unaffected, except for the intermediate peak, where the
width is increased slightly. In the case of the excited hole state transition, the peak sums
are reduced by a factor of 2, with the acoustic peak sum even more strongly suppressed.
The CdSe peak displays the same trend towards large core sizes as in the case of the
excited electron state transition. The peak width are similar to the excited electron case.
For the zincblende dots the frequencies of the peaks match the data for the ground-state
transition for both transitions discussed here. For the excited electron transition, the
peak sums display the same general trends seen in the ground-state transition, yet their
magnitude is increased by more than a factor of 2. The peak widths are also increased,
but only for smaller core-sizes. In the case of the transition with an excited hole state,
the peak sums are greatly decreased, with no single sum being above a value of 0.5, while
the peak widths match the behaviour seen for the ground state transition.
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7.3 Hartree-Fock exciton transitions

So far, we have modeled the coupling dynamics of the localised phonons only to changes
in electronic configurations made up of single-particle wavefunctions.
In the next step, we will analyze the interactions with the vibrational eigenmodes of the
excitonic transitions using the wavefunctions obtained from the Hartree-Fock calculations
from chapter 6. Figure 7.4 shows the results for four such transitions, the recombination
of the excitonic states X1 ↑⇓, X1 ↑⇑ and X2 ↑⇓ with the final state in these cases being
an empty quantum dot.
As a fourth case, the relaxation of the excitonic state X2 ↑⇓ into the excitonic state
X1 ↑⇓, which has a lower energy. Note that in this last case, we violate the assumption
of our exciton-phonon coupling model, namely that we only consider changes in electronic
configurations that are induced by radiative recombination, because the electronic tran-
sition in this last case is more likely associated to other mechanisms associated with the
relaxation of charge carriers to the energy minimum, such as Auger-recombination. Yet
the evaluation of this particular change in electronic configuration may yield insight into
the probability of the participation of localised phonons in these kinds of inter-excitonic
relaxations.
Analysing the calculations, we first note that the results for the recombination of the
X1 ↑⇓ and X1 ↑⇑ excitons are identical. This, of course originates from their associated
wavefunctions’ probability distributions being identical as well, as shown in figure 6.9.
Moreover, the results for the X1 excitons are very similar to the ones obtained for the
single-particle ground-state transition, which is due to the close resemblance of the wave-
functions of the corresponding excitons to the single-particle wavefunction.
The X2 ↑⇓ has a different hole wavefunction associated to it, leading to a change in the
resulting Huang-Rhys factors. This is most strongly seen as a decrease in the peak sum of
the CdSe peak for large core-sizes. Both the peak frequencies and the peak widths remain
largely unchanged. The results closely resemble the ones found for the configuration
involving the excited hole single-particle state including internal potentials depicted in
figure 7.3. This is again due to the close resemblance of the hole wavefunction of the X2

exciton to the excited hole wavefunction used before.
The results for the inter-exciton transition show a decrease of Huang-Rhys factors for the
CdSe and CdS peaks by an order of magnitude. The acoustic and intermediate peak sums
are lowered as well. The CdSe peak sum retains its trend of increasing for larger quantum
dot core sizes, while the CdS peak sum is also similar to before.
The acoustic peak sum shows an inverted trend to the ones before, decreasing for larger
cores.
Interestingly, the peak frequencies are unaffected by the shift to this inter-excitonic tran-
sition, and the peak widths also remain very similar.
It would also be of interest to examine the transitions between different X1 excitons,
yet this exceeds the capabilities of our model, because the probability density of their
associated wavefunctions is identical, as they only differ in their associated spin projections.
This leads to no change in charge-density induced by the change in electronic configuration,
making all Huang-Rhys factors zero.
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100 and 130 wavenumbers, yet not for all examined quantum dots.
We have performed systematic studies of the peak sums, positions and widths for a variety
of core-shell geometries for both lattice structures. This has led us to several key findings:

• The center frequencies of the peaks are mostly unaffected by the different electronic
configurations examined. They are only dependent on the quantum dot geometry
and the lattice structure. This leads us to the conclusion that only localised phonons
in limited frequency areas show coupling to the electronic system, and the frequency
shifts observed for different quantum dot geometries are largely due to changes in
strain in the core and shell, induced by a different volume share of CdSe and CdS.

• The peak attributed to CdSe displays an increasing amplitude towards larger core
sizes, while the peak attributed to CdS displays increased amplitude for smaller core
sizes. This relates very closely to the change in volume share of the two materi-
als. Therefore, we conclude that our attribution of these peaks to the two different
materials is valid.

• The peak sums for all peaks strongly increase for wurtzite lattice structure as opposed
to zincblende lattice structure. This effect can be mitigated by omitting the internal
potentials in the wurtzite calculations, in which case the peak sums are similar to the
zincblende case for larger core-sizes, yet remain large for small cores. We think that
this is due to the wavefunction separation seen in the wurtzite calculations, which
is mostly induced by the internal potentials. For zincblende, the electron- and hole-
wavefunctions are both centered in the middle of the quantum dot, leading to the
overall charge density of the resulting exciton to have much smaller amplitudes than
the charge density of an exciton constructed from separated wurtzite wavefunctions.

Since the method used for calculating Huang-Rhys factors scales with the overall
charge-density of the electronic configuration, this leads to the strongly enhanced
Huang-Rhys factors obtained in our calculations.

Since the coupling found in experiment does not show such strong discrepancies
between the two lattice structures, we come to the conclusion that the results we
obtain for the wurtzite case are unphysical in their amplitude.

One explanation for this can be found in a violation of one of the assumptions of
the model we used. Namely, it was assumed that the vibrational eigenmodes are
unaffected by the change in electronic configuration, even though the partial charges
of the atoms are affected by the electronic configuration, and these partial charges
are incorporated in the interatomic potentials. This is a reasonable assumption in
the case of zincblende, where the induced changes in partial charge are small, yet
might not be as valid in the case of separated wurtzite wavefunctions.

Another possible explanation is that the extent of the wavefunction separation might
be overestimated by our calculations.

We believe that even though the peak sums calculated for wurtzite quantum dots
are perhaps unreasonably high, the evaluation of their relative change for differ-
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ent quantum dot geometries and the evolution of the center-frequencies are valid,
nonetheless.
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8 Properties of localised Phonons

We will now shift our attention towards the vibrational eigenmodes obtained from the
atomistic calculations outlined in chapter 2.6. Because of the lack of translational symme-
try in our quantum dots, these are not identical to the phonons found in bulk semiconduc-
tors, but can rather be compared to molecular vibrations, when imagining the colloidal
quantum dot as a very large molecule. Our aim then, is to identify patterns in these vi-
brational motions, and find similarities and differences to the dynamics found in classical
bulk phonons on an atomic scale. On this account, we have introduced in chapter 2.6.4
a set of measures to be determined for each eigenmode, for the simple reason that the
number of eigenmodes is too large and their dynamics too complex to examine each one
by hand.

8.1 Amplitude Distribution and Localisation

Figure 8.1 shows, for one exemplary quantum dot, the results of the phonon-analysis, as
described in chapter 2.6.4. On the left side, the raw data is displayed. While one can
clearly make out general trends, the graphs are quite noisy, complicating further analysis.
For this reason, we applied a Savitzky-Golay filter [53] to the calculated data. The filtered
data is plotted on the right side, and allows for a much easier analysis of the different
graphs.
We will therefore use the filtered data to analyse the properties of the calculated vibrational
eigenmodes, and compare the results for different quantum dot geometries as well as
different lattice structures.
On this account, we have plotted the amplitude distribution and localisation results for
both lattice structures for three different quantum dot geometries from series A1 in figure
8.2.
The first thing to note is that for each geometry, the results of both the amplitude distri-
bution and the localisation analysis are very similar between the two lattice structures, in
regard to the position as well as the amplitudes of the maxima and minima.
We identify five distinct frequency areas that show strongly different properties of the
associated vibrational eigenmodes. In figure 8.3 there are three-dimensional plots of rep-
resentational eigenmodes for each of these areas:

1. 0 - 140 cm−1: Strongly delocalised, non-surface eigenmodes:

• In this whole frequency range, the amplitude is decreased at the surface, yet
otherwise relatively equally distributed through all other quantum dot regions.
Only for the largest core size is the shell amplitude also decreased, which is due
to the very thin shell largely coinciding with the surface area.

• The localisation of all modes in this frequency range represents the minimum
of localisation observed, except for a few outliers close to zero frequency.

• There are some small maxima observed for the core amplitude distribution at
40 and 120 wavenumbers, yet those are small deviations compared to the other
frequency regions.
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• The visual representation of one eigenmode from this frequency range, found in
figure 8.3 part (a), confirms these findings, as the amplitudes of the vibrational
dynamics are spread through the entire quantum dot. Furthermore, we note
that the amplitudes appear to be distributed evenly among atoms from both
sublattices.

• Overall, vibrational eigenmodes in this frequency region are homogeneously
distributed through the whole quantum dot, and therefore strongly resemble
the behaviour of bulk phonons. The fact that both sublattices are subject to
the motion, as opposed to only one sublattice moving relative to the other, is
another similarity to the atomic motion associated to acoustic phonons in bulk
structures, where neighbouring atoms move in-phase.

2. 140 - 170 cm−1: Strongly localised surface modes:

• The core amplitude share drops to almost zero for all but the largest core-size
in this region, while the surface amplitude share shows a distinct maximum
for the small and medium core sizes. For the large core-size, the maximum is
observed in the interface amplitude share. This can be attributed to the fact
that for large cores, the interface is rather close to the surface.

• The localisation results for this frequency range display a very distinct maxi-
mum for all considered core sizes.

• In figure 8.3 (b), these findings are confirmed, as the atomic motion is strongly
confined to a small area at the quantum dot surface. Also notable is the fact
that the dynamics are not confined to one sublattice, as the Cadmium atoms
also display motion amplitudes, albeit to a smaller degree than the Sulfur atoms.

• Thus the vibrational eigenmodes associated to frequencies in this range are
strongly localised vibrations close to the quantum dot surface, strongly differing
from the properties associated to bulk phonons.

• Localised surface phonons in small spherical nanocrystals have also been cal-
culated in the context of continuum dielectric theory [54, 55], and their impact
on the electron-phonon coupling has been studied in [43].

3. 170 - 210 cm−1: Core modes:

• The amplitude share of the quantum dot core is strongly enhanced in this
frequency area for all displayed geometries. For the small and medium core
sizes, the interface amplitude share is enhanced as well, while it is close to
unity for the largest core size. The amplitude shares of the shell and surface
are simultaneously decreased for all geometries.

• The localisation results for this frequency range show the following trend: for
the smallest core, they are uniformly high, though smaller than for the surface
modes dicussed above. For increasing core sizes, they decrease, until they are
almost as low as the values for the delocalised region below 140 wavenumbers.
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• The 3D-visualisation of a representational eigenmode from this frequency range
found in figure 8.3 (c) confirms the confinement to the core as well as the
homogenous distribution inside the core. It is notable, that the confinement
is not complete, as some areas in the quantum dot shell also display atomic
motion.

• From these findings, we can deduce that the eigenmodes associated to this
frequency range are mostly confined to the quantum dot core, and are homo-
geneously distributed inside the core.

4. 210 - 320 cm−1: Shell modes:

• The core amplitude share drops sharply in this frequency area. In the case
of small and medium core sizes, there is still a noticeable contribution of the
core for frequencies between 230 and 300 wavenumbers, the core contribution
is uniformly low for the large core

• For the small and medium core quantum dots, the surface contribution is di-
minished as well, while the contribution of the interface is close to unity. This
changes for the large core, where both the surface and interface more than
proportionally contribute to the atomic motion.

• The values for the localisation show an inverted trend when compared to the
core modes above: They are small for small cores, and then increase for larger
cores.

• The visual representation of an eigenmode from this frequency area, depicted
in figure 8.3 (d), shows that the dynamics are strongly confined to the Sulfur
atoms, and therefore to the quantum dot shell. This is similar to the dynamics
of bulk optical phonons, where neighbouring atoms move with inverse phase.

• We conclude from these findings, that the vibrational eigenmodes in this fre-
quency range are confined to the shell of the quantum dots, and the atomic
motion is distributed homogeneously inside the shell volume. This leads to
increased values of localisation if the overall shell volume is reduced.

5. > 320 cm−1: Strongly localised surface modes

• The area of the largest frequencies observed in the atomic motion calculation
shows almost no contribution from the quantum dot core, and only for the
largest core can we observe a contribution from the core-shell interface. The
contribution of the surface, however, is increased for all considered geometries.

• The localisation values calculated for the phonons show a strong increase with
frequency, and display the largest values calculated for all eigenmodes.

• Similar to the eigenmodes in the frequency range between 140 and 170 wavenum-
bers, the visualisation of one mode from this frequency range, depicted in figure
8.3 (e), shows a strong confinement to a small area on the quantum dot surface.
Differing from the surface mode at lower frequencies, however, the motion of
the Cadmium sublattice is notably decreased.
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In the case of the large core size, the modes are also located superproportionally at
the quantum dot interface, yet are also present at the quantum dots surface, which
is attributable to the thin quantum dot shell. In contrast to the case for small core
size, all contributing modes are located inside the peak of the localisation parameter.

• The phonons contributing to the CdSe Huang-Rhys peak are all located on the
border between the core-modes and the shell modes. They exhibit a wide variety of
amplitude distributions in the core and shell regions as well as the interface region.
Yet they all are contributing less than proportionally to the surface region. We
conclude that the CdSe peak in the calculated Huang-Rhys spectra is not entirely
comprised of phonons belonging to the core-modes, but also shows contributions
from the atomic motions in the quantum dot shell.

• The phonons comprising the CdS peak in the Huang-Rhys spectra, however, are all
found to be part of the shell-modes. They are suppressed both inside the quantum
dot core and its surface, and are homogeneously distributed inside the quantum dot
shell.

• The surface modes observed both between 140 and 170 wavenumbers and above 320
wavenumbers do not show strong coupling to the electronic transitions, aside from
a few outliers at high frequency, particularly for the largest core size.

8.3 Summary

We have introduced a method to study the properties of the large number of vibrational
eigenmodes of the examined quantum dots heuristically, by calculating the amplitude
distribution among the core and shell, as well as the interface and surface regions, and
introducing a measure for the localisation of the eigenmodes.
Using these heuristics, we are able to identify five distinct frequency regions, where the
associated eigenmodes display unique properties. In three of these frequency regions, the
vibrations display properties similar to those found for bulk phonons, while in the other
two, we find strongly localised surface vibrations. These heuristic findings are confirmed by
three dimensional visualisations of representational eigenmodes from each of the distinct
frequency ranges.
We conclude by analysing the properties of the phonons with notable contributions to the
Huang-Rhys coupling factors calculated in chapter 7, finding that almost all of them are
resembling bulk phonons.
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9 Summary

We have calculated the strain distributions and internal potentials for core-shell quantum
dots of various geometries for both zincblende and wurtzite crystal structure. While the
strain distributions are quite similar for the two lattice structures, the internal potentials
are drastically different; for wurtzite, they lead to a polarisation along the [0001]-axis,
while for zincblende, they are much smaller in amplitude and display no polarisation.
Influences of the dielectric environment of the quantum dot, while very significant for
the potentials outside the quantum dot and in the quantum dot shell, are shown to be
negligible inside the quantum dot core, where the electronic wavefunctions mostly reside.
Furthermore, it was shown, that adding additional shells to the quantum dot geometry
could lead to the screening of the polarisation potentials inside the quantum dot core for
wurtzite quantum dots.
Subsequently, the effects of the internal potentials on the electronic structure are studied
using k·p-theory. We find that, for zincblende, the influence of the potentials on the single-
particle energies and wavefunctions is negligible, while for wurtzite, the polarisation of the
potentials leads to a separation of wavefunctions and a decrease in effective bandgap, as
well as an exponential increase in radiative lifetimes, summarised as the quantum confined
Stark effect (QCSE).
We also find that for non-spherical quantum dots, modeled as ellipsoids with varying aspect
ratios, degeneracies in the single-particle energy structure are lifted, and that deviations
from sphericity, even when the total quantum dot volume is retained, can induce strong
shifts in effective bandgap.
We expand our analysis of the electronic structure by calculating excitonic states via an
iterative Hartree-Fock algorithm. These excitons replicate the results from the single-
particle picture, showing a strong quantum confined Stark effect induced by internal po-
tentials, but also add additional insight into the radiative properties and energy structure
of the excitons. We find that the lowest energy excitons, with parallel electron and hole
spins, are not classical dark-states that show no radiative recombination, but exhibit finite
lifetimes, that are a factor of 4 to 5 times higher than those found for the excitons with
antiparallel spin, the classical bright states. This is due to the B and C valence band
contributions to these excitons, which contain components of opposite spin. This result
yields an alternative explanation of luminescence from the assumed dark states, which
is reported in literature [15], and explained with the interaction of the dark-states with
magnetic fields or phonons.
We then provide results for the exciton-phonon coupling in colloidal core-shell quantum
dots, analysing Huang-Rhys factors for a series of quantum dot geometries for both crystal
structures. We find, that the vast majority of the vibrational eigenmodes display no
coupling to the exciton dynamics, and that those that do show coupling, are relegated
to several small regions in frequency. This leads to three distinct peaks in the spectra
of Huang-Rhys factors, attributed to low energy vibrational eigenmodes, akin to acoustic
phonons in bulk, and eigenmodes with energies comparable to the bulk LO phonons of
CdSe and CdS, respectively.
We find that the coupling is an order of magnitude stronger for wurtzite quantum dots

104



compared to zincblende. We attribute this to the wavefunction separation, as the results
are much closer when internal potentials are omitted in the wurtzite calculations. Overall it
was found that the center frequencies of the Huang-Rhys peaks are not strongly different
for different electronic transitions, but the total Huang-Rhys factor of the peaks was
affected.
Changes in peak frequency observed for variations in quantum dot geometry can be at-
tributed to a changed strain distribution inside the quantum dot. The standard deviation
of the peak frequencies, or width of the peaks, is also found to be larger for wurtzite
structure compared to zincblende.
In the final part, we perform an analysis of the vibrational eigenmodes themselves, em-
ploying self-designed measures for the distribution of vibrational amplitudes inside the
different regions of the quantum dot (core, shell, interface, surface) as well as for the
spacial localisation of the atomic motion. We find that the vibrational eigenmodes can
be split into five distinct groups, designated by specific frequency regions, of which three,
modes located in the whole quantum dot excepting the surface, modes located inside the
core and modes located inside the shell display similar dynamics on the atomic scale as
would be expected of classical bulk phonons, while the other two, strongly localised sur-
face modes observed in two distinct frequency regions, are more comparable to strongly
localised molecular vibrations.
We further find, that those vibrational eigenmodes, which exhibit notable Huang-Rhys
factors, all belong to the three groups of modes that are comparable to bulk phonons.
When assessing the validity of our results, we come to the following conclusions:

• The magnitude of the internal potentials might be overestimated. This is due to
two different reasons: first, we decided to use the vacuum-value of εr = 1 for the
environment dielectric constant, which could underestimate the amount of screening
the potentials might undergo in realistic conditions. And second, we artificially
removed all surface charges arising from the calculation of the pyroelectricity, because
the model we use is only valid for interfaces between semiconductors, and colloidal
quantum dots are not embedded in a semiconductor matrix, by definition. This
choice might underestimate the amount of surface charge building up, which would
decrease the potential amplitude inside the quantum dot. The qualitative results
of the potential calculation, however, we believe to be correct, including all their
consequences, such as the quantum confined Stark effect.

• The single-particle results of the k·p-model lead to several interesting insights, as
discussed above, but can’t be relied on for realistic values for the transition energies,
as particle interactions are not considered in this simplistic approach.

• Yet even for the more sophisticated Hartree-Fock excitons, the transition energies
might not show a realistic picture, as there are multiple influences not covered by our
model. The first is the fact that the exciton binding energies are affected by changes
of the dielectric constant of the quantum dot environment, the same limiting factor
seen for the potential calculations. The second one is that due to the possible high
contrast in dielectric constants between the quantum dot shell and the environment,
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mirror-charge effects could arise and would have to be included in the Hartree-Fock
calculations.

• The Huang-Rhys factors are overestimating realistic values for coupling strength seen
for these quantum structures. This is particularly evident in the case of Wurtzite
crystal structure. The wurtzite case is shown to be caused by the wavefunction
separation, which in turn leads to the violation of one of the assumptions of the
employed calculation model, namely that the total net charge of the excitons be
small compared to the partial charges of the atoms in the lattice. We nevertheless
believe that the relative comparisons of coupling strengths, as well as the coupling
frequencies and peak widths are viable results.

• The analysis of the atomic motions found in the vibrational eigenmodes of the quan-
tum dots led to the insight that the modes coupling to the exciton dynamics bear
strong similarities to classical bulk phonon dynamics on the atomic scale and that
those phonons, that are highly localised do not show this kind of coupling. We be-
lieve this to be viable results, even though they are obtained using a very simple
atomic interaction model.

In light of the results of this work, we would propose the following further work, to expand
the results and mitigate some of the shortcomings:

• To expand the analysis of the vibrational eigenmodes, the results in this work should
be compared to vibrational eigenmodes obtained using a more sophisticated inter-
atomic potential, such as, for example, a Tersoff-potential. This might also lead
to the overestimation in the Huang-Rhys factor calculations to be mitigated, since
these calculations also depend on the vibrational dynamics.

• In this same line of thinking, it would be very worthwhile to investigate the atomic
motions and exciton-phonon coupling of larger systems than the ones we are limited
to in this work. This would require either a faster computer, or some optimisations
in the calculation software.

• It would be interesting to know if the Huang-Rhys factors also show a strong depen-
dency on non-sphericity as the one observed in the electronic structure calculations.

• Another way of extending the scope of the exciton-phonon analysis would be to
project bulk phonons to an atomistic representation of, for example, an epitaxial
Stranski-Krastanov quantum dot, and perform the same kind of Huang-Rhys factor
calculation.

• It was shown that multishell quantum dots show an interesting screening effect of
the potential inside the quantum dot core. It could be worthwhile to perform a
study of the changes in electronic structure this screened potential would induce. It
might be possible to design polarisation screened colloidal quantum dots, with the
same benefits seen for the IFGARD structures [50].
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A Implementation details

A.1 Electronic calculations

Calculations of the strain, the electric potentials, as well as the single-particle calculations
are performed on a regularly spaced three-dimensional voxel grid. For this purpose, every
voxel is first assigned a material composition, via a numerical value. The employed CdSe-
CdS material system can be tuned in steps of one percent.
The orientation of the crystal axes relative to the three-dimensional grid is as follows:

• For zincblende crystal structure, the x-axis coincides with the [100]-direction, the
y-axis coincides with the [010]-direction and the z-axis is aligned with the [001]-
direction.

• For wurtzite crystal structure, the z-axis coincides with the [0001]-direction, while
the x-axis is aligned with the [10-10]-direction and the y-axis is not directly aligned
with a principal crystal axis, due to the symmetry of the wurtzite lattice.

For this reason, z-axis and [001]-direction (or [0001]-direction) may be used interchange-
ably in this work, as may the other directions/axes.

A.1.1 Quantum dot environment

The k·p-implementation used in this work was originally developed to be used for zero-
dimensional quantum structures embedded in semiconductor matrix materials. For these
cases, every voxel can be assigned a material composition, and for each voxel, there are
well-defined parameters available, because the calculation area is made up completely by
semiconductor materials.
The colloidal quantum dots explored in this work, however, are not enclosed in a matrix
of other semiconductor materials. They can be surrounded, in contrast, by a variety of
different materials, such as glass, water, a variety of polymer materials, or be in vacuum.
Since all of these are not semiconductor materials, the k·p-method does not apply to them,
and there are no material parameters available for the strain calculations as well.
Our workaround to this problem is the following:

• For the purpose of the strain-calculations the stiffness parameters of the surrounding
material are set to very low values, yet not to zero, as that would lead to numerical
issues with the relaxation algorithm. This yields a result analogous to a quantum
dot in vacuum, that is not subject to external strains.

• The surrounding bandgap is considerably larger than the one found inside the quan-
tum dot. We set the bandgap to a value of 14500 meV with the valence-band energy
offset 2140 meV below the CdS valence band energy.

• The deformation potentials are set to zero, to not allow any influence of the strain
calculation on the electronic calculation outside of the quantum dot.
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Since the calculated electronic states are strongly confined inside the quantum dot, we
assert that this approach to the problem leads to realistic calculation results for colloidal
quantum dots, even though the employed calculation method was originally developed
to only account for pure semiconductor systems. The only parameter that still strongly
influences the results is the relative permittivity of the quantum dot environment. The
influence of this parameter is explored in detail in section 4.3 for the electric potentials
and section 5.1 for the single-particle results.

A.2 Phonon Calculations

This chapter will provide some additional details on the calculation process for the atom-
istic phonons, briefly outlined in chapter 2.6.
In a first step, we create a list of atomic positions that make up the quantum dot. This
is done by using the bulk lattice constants of CdSe and, starting from the quantum dot
center, constructing unit cells in either wurtzite or zincblende lattice structure, where we
put Cd atoms at sites of one sublattice and Se atoms at the sites of the other sublattice. At
sites that are farther away from the quantum dot center than the core radius, we instead
place S atoms at the sites of the second sublattice. At last, all sites that are farther from
the center than the total radius of the quantum dot, are deleted.
There are two further constraints on the possible atomistic representations of the quantum
dot, namely:

• In order to calculate the coulombic part of the lattice energy, every atom is assigned
a partial charge, as designated by the parameters in table C.3. Thus, we obtain
the total charge of the quantum dot as the sum of all these partial charges. We are,
however, limited to quantum dots that are charge neutral, as the geometry relaxation
outlined in the next part is not well-suited to the forces arising in quantum dots with
nonzero charge.

• The calculation of the vibrational eigenmodes necessitates a further constraint: In
contrast to atoms not at the quantum dot surface, which always have four nearest
neighbours, due to the tetragonal symmetry of both zincblende and wurtzite, atoms
located at the quantum dot surface necessarily have a lower number of nearest neigh-
bours. Atoms with only two or one nearest neighbours, however, lead to unphysical
results in the vibrational calculation, as they then show a turning motion around an
axis formed by their neighbours. Therefore, we need to eliminate all surface atoms
with less than three nearest neighbours.

In order to obtain atomistic quantum dot configurations that meet these two constraints,
we randomly vary the quantum dot center relative to the atomic lattice by a random
vector, leading to different atomic configurations after the cutoff of all atoms outside the
quantum dot radius. After that, we remove all surface atoms with less than three nearest
neighbours, and check the total charge. We repeat this process, until we obtain a charge
neutral quantum dot configuration.
Our approach to atomistic quantum dot construction demonstrates that there are various
possible atomic representations for any given quantum dot geometry. To account for
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possible variations in the results arising from these different configurations, we construct
10 different atomistic representations for each quantum dot geometry, and use the average
of the obtained results for our analysis.
The numerical calculations performed using the GULP program [17], especially the re-
laxation of the atomic positions, are computationnaly demanding, and scale superlinearly
with the number of atoms in the quantum dot. For this reason, we are limited in our
analysis to quantum dots with a total radius of 2.6nm, for which the computation time is
still feasible.
The relaxation of the atomic positions in order to obtain the atomic equilibrium positions
is done via an iterative process and therefore carries a numerical error. This can lead
to some of the resulting frequencies to have an imaginary part, which is of course an
unphysical result. GULP outputs these imaginary frequencies as negative frequencies. In
our calculations, the number of negative frequencies is always below 0.5% of the total
number of frequencies. We are therefore confident to have found a good approximation of
the equilibrium positions and neglect the negative results for all further analysis.
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B Quantum dot Series

This appendix section lists all quantum dot geometries used for this work.

B.1 Spherical quantum dots

We consider three different series of spherical quantum dots in this work. Schematical
drawings of these are found in figure B.1. Calculations were performed for both zincblende
and wurtzite lattice structures for all quantum dot geometries.
Series A1 consists of quantum dots of a fixed total radius of 2.6nm with varying core
sizes. Details are found in table B.1. The value for the total radius was chosen because
it represents the maximum size where atomistic phonon calculations were still feasible in
terms of calculation time needed. This series, then, is where all the work on phonons and
exciton phonon coupling is performed.
Series A2 is made up of quantum dots with a total radius of 5 nm and varying core sizes.
Details are found in table B.2. These larger dots were examined to more precisely describe
the effects of the electric potentials, which strongly correlate with the size of the quantum
dots, particularly the core.
The quantum dots in series A3 vary in total size, but have a fixed ratio of core radius to
total radius. They allow for the examination of the effects of varying the total system size,
and connect the series A1 and A2.
The calculations for varying values of the environment permittivity were performed for
quantum dot geometry A2-6 (which is identical to A3-6). This geometry was also used for
all plots of the calculated potentials.

Description rcore [nm] rtot [nm]
A1-1 0.1 2.6
A1-2 0.35 2.6
A1-3 0.6 2.6
A1-4 0.85 2.6
A1-5 1.1 2.6
A1-6 1.35 2.6
A1-7 1.6 2.6
A1-8 1.85 2.6
A1-9 2.1 2.6
A1-10 2.35 2.6

Table B.1: Series A1 quantum dots
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Description rcore [nm] rtot [nm]
A2-1 0.5 5
A2-2 1 5
A2-3 1.5 5
A2-4 2 5
A2-5 2.5 5
A2-6 3 5
A2-7 3.5 5
A2-8 4 5
A2-9 4.5 5

Table B.2: Series A2 quantum dots

Description rcore [nm] rtot [nm]
A3-1 1.5 2.5
A3-2 1.8 3
A3-3 2.1 3.5
A3-4 2.4 4
A3-5 2.7 4.5
A3-6 3 5

Table B.3: Series A3 quantum dots

Series A2

Series A3

0.5nm
5.0nm

4.5nm
5.0nm

1.5nm
2.5nm

3.0nm
5.0nm

0.1nm
2.6nm

2.35nm
2.6nm

Series A1

Figure B.1: Quantum dot series: Spherical quantum dot geometries. Schematic representation
of the geometries of the spherical quantum dots used for calculations in this work.

B.2 Ellipsoidal quantum dots

While the geometry of spherical core shell quantum dots can be described by just the core
radius and total radius, ellipsoidal quantum dots are subject to additional parameters.
Generally, an ellipsoid is defined by different radii rx, ry and rz, for each spacial direction.
We construct these ellipsoidal quantum dots by defining an aspect ratio a, and then
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calculating:

rx = a · r ; ry = 1√
a
· r ; rz = 1√

a
· r (B.1)

which leads to an ellipsoidal quantum dot extended in x-direction, that retains the volume
of the spherical quantum dot with radius r. The same procedure can be used to extend
the ellipsoid in any other direction by switching the ri.
Schematic representations of all ellipsoidal quantum dot geometries are given in figure
B.2. Calculations for all geometries are performed for both zincblende and wurtzite lattice
structures, except for series B2, which is only done for wurtzite.
Series B1 and B2 both have fixed values for the core radius and total radius, and are then
modified by a range of different aspect ratios between 0.7 and 1.3. Details are found in
tables B.4 and B.5. The extension is done in x-direction for series B1 and in z-direction
for series B2.
Series B3 and B4 have fixed values of the aspect ratio of 0.8 and 1.2, respectively. The
total radius is a constant 5nm and the core-radius is varied. Exact geometry information
can be found in tables B.6 and B.7.

Description rcore [nm] rtot [nm] aspect ratio
B1-1 3 5 0.7
B1-2 3 5 0.75
B1-3 3 5 0.8
B1-4 3 5 0.85
B1-5 3 5 0.9
B1-6 3 5 0.95
B1-7 3 5 1.0
B1-8 3 5 1.05
B1-9 3 5 1.1
B1-10 3 5 1.15
B1-11 3 5 1.2
B1-12 3 5 1.25
B1-13 3 5 1.3

Table B.4: Series B1 quantum dots, the ellipsoids are extended along the x-direction
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Description rcore [nm] rtot [nm] aspect ratio
B2-1 3 5 0.7
B2-2 3 5 0.75
B2-3 3 5 0.8
B2-4 3 5 0.85
B2-5 3 5 0.9
B2-6 3 5 0.95
B2-7 3 5 1.0
B2-8 3 5 1.05
B2-9 3 5 1.1
B2-10 3 5 1.15
B2-11 3 5 1.2
B2-12 3 5 1.25
B2-13 3 5 1.3

Table B.5: Series B1 quantum dots, the ellipsoids are extended along the z-direction. This series
is wurtzite-only

Description rcore [nm] rtot [nm] aspect ratio
B3-1 0.5 5 0.8
B3-2 1.0 5 0.8
B3-3 1.5 5 0.8
B3-4 2.0 5 0.8
B3-5 2.5 5 0.8
B3-6 3.0 5 0.8
B3-7 3.5 5 0.8
B3-8 4.0 5 0.8
B3-9 4.5 5 0.8

Table B.6: Series B3 quantum dots, the values for the core radius are the same used for series
A2.

Description rcore [nm] rtot [nm] aspect ratio
B3-1 0.5 5 1.2
B3-2 1.0 5 1.2
B3-3 1.5 5 1.2
B3-4 2.0 5 1.2
B3-5 2.5 5 1.2
B3-6 3.0 5 1.2
B3-7 3.5 5 1.2
B3-8 4.0 5 1.2
B3-9 4.5 5 1.2

Table B.7: Series B4 quantum dots, the values for the core radius are the same used for series
A2.
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Series B1

Series B2

Series B3

Series B4

0.5nm
5.0nm

4.5nm
5.0nm

0.5nm
5.0nm

4.5nm
5.0nm

2.5nm
5.0nm

2.5nm
5.0nm

ar: 0.7

ar: 0.7

ar: 1.0

ar: 1.0 ar: 1.3

ar: 1.3

Figure B.2: Quantum dot series: Ellipsoidal quantum dot geometries. Schematic representation
of the geometries of the ellipsoidal quantum dots used for calculations in this work.
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B.3 Multishell quantum dots

Electric potentials are also calculated for a series of quantum dots with multiple shells.
These are created by alternately adding shells of CdSe and CdS on a spherical CdSe/CdS
core shell quantum dot. A schematic drawing of these multishell dots is given in figure
B.3.
The radius of the core, as well as the thickness of all present shells is always 1.5 nm and the
number of shells is varied between two and five. These calculations are only performed
for wurtzite crystal structure, as we are interested in the behaviour of the pyroelectric
potential.

3nm1.5nm

1.5nm

Series C

Figure B.3: Quantum dot series: Multishell quantum dot geometries. Schematic representation
of the geometries of the multishell quantum dots used for calculations in this work.
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C Parameter tables
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Å

6.
74
9

7.
01
5

Li
ne
ar

[5
6]

Fu
nd

am
en
ta
lg

ap
(1
.8

K
)

E
g

m
eV

25
82

18
41

Li
ne
ar

[5
7]

V
B

ed
ge

E
V

m
eV

18
0

60
0

Li
ne
ar

[5
8]

C
ry
st
al
-fi
el
d
sp
lit
tin

g
4

C
R

m
eV

27
39

[5
9]

Sp
in
-o
rb
it
co
up

lin
g
en
er
gy

4
SO

m
eV

65
41
6

[5
9]

O
pt
ic
al

m
at
rix

pa
ra
m
et
er

E
‖ p

m
eV

13
00
0

13
00
0

Li
ne
ar

es
t.

fr
om

fit
pr
oc
ed
ur
e

O
pt
ic
al

m
at
rix

pa
ra
m
et
er

E
⊥ p

m
eV

13
00
0

13
00
0

es
t.

fr
om

fit
pr
oc
ed
ur
e

C
B

eff
ec
tiv

e
m
as
s

m
‖ e

m
0

0.
20
5

0.
13

Li
ne
ar

[6
0,

61
]

C
B

eff
ec
tiv

e
m
as
s

m
⊥ e

m
0

0.
20
5

0.
13

[6
0,

61
]

Lu
tt
in
ge
r-
lik

e
pa

ra
m
et
er

A
1

-5
.9
2

-1
0.
2

Li
ne
ar

[6
2]

A
2

-0
.7

-0
.7
6

Li
ne
ar

[6
2]

A
3

5.
37

9.
35

Li
ne
ar

[6
2]

A
4

-1
.8
2

-3
.2

[6
2]

A
5

-1
.8
2

-3
.2

[6
2]

A
6

-1
.3
6

-2
.3
1

[6
2]

D
ef
or
m
at
io
n
po

te
nt
ia
ls

a
1

eV
-4
.7
1

-1
4.
6

cu
bi
c
ap

pr
ox
.

a
2

eV
0.
78

-1
0.
1

cu
bi
c
ap

pr
ox
.

D
1

eV
-3
.3
5

-1
3.
86

Li
ne
ar

[6
3]

D
2

eV
3.
06

-6
.4
2

Li
ne
ar

[6
3]

D
3

eV
1.
3

4.
0

Li
ne
ar

[6
3]

D
4

eV
-2
.9

-2
.2

Li
ne
ar

[6
3]

D
5

eV
1.
5

-1
.2

[6
3]

D
6

eV
-2
.4

-3
.0

[6
3]

El
as
tic

co
m
pl
ia
nc
e

C
11

G
Pa

85
.8
1

74
.6

Li
ne
ar

[6
4]

El
as
tic

co
m
pl
ia
nc
e

C
12

G
Pa

52
.1
2

46
.1

Li
ne
ar

[6
4]

El
as
tic

co
m
pl
ia
nc
e

C
13

G
Pa

46
.1
5

39
.3

[6
4]

El
as
tic

co
m
pl
ia
nc
e

C
33

G
Pa

93
.7

81
.7

[6
4]

El
as
tic

co
m
pl
ia
nc
e

C
44

G
Pa

14
.8
7

13
.0

Li
ne
ar

[6
4]

St
at
ic

di
el
ec
tr
ic

co
ns
ta
nt

ε s
9.
38

(9
.1
5+

9.
29
)/
2

Li
ne
ar

[6
5,

66
]

Pi
ez
oe
le
ct
ric

co
ns
ta
nt
s

Li
ne
ar

e 1
5

C
/m

2
-0
.1
83

-0
.1
38

Li
ne
ar

[6
7]

Li
ne
ar

e 3
1

C
/m

2
-0
.2
62

-0
.1
60

Li
ne
ar

[6
7]

e 3
3

C
/m

2
0.
38
5

0.
34
7

Li
ne
ar

[6
7]

Sp
on

ta
ne
ou

s
Po

la
riz

at
io
n

P
SP

C
/m

2
-0
.0
28

-0
.0
06

[6
8,

69
]

T
ab

le
C
.1
:
M
at
er
ia
lp

ar
am

et
er
s
fo
r
6.
5
K

us
ed

in
th
is

w
or
k.

117



Zincblende Phase
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GULP parameters

q ε σ

Cd 0.966786 0.044173 1.501329
Se -0.966786 0.035752 3.900962
S -0.966786 0.034259 4.066081

Table C.3: Parameters used for all GULP calculations in this work
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