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Abstract

We propose a new solution methodology to incorporate symmetric local absorbing boundary conditions
involving higher tangential derivatives into a finite element method for solving the 2D Helmholtz equa-
tions. The main feature of the method is that it does not requires the introduction of auxiliary variable
nor the use of basis functions of higher regularity on the artificial boundary. The originality lies in the
combination of C0 continuous finite element spaces for the discretization of second order operators with
discontinuous Galerkin-like bilinear forms for the discretization of differential operators of order four and
above. The method proves to limit the computational costs than methods based on auxiliary variables as
soon as the order of the absorbing boundary condition is greater than three or the order of the numerical
scheme is greater than two. The article includes the numerical analysis of the discrete discontinuous
Galerkin variational formulation. Numerical results show that the method does not hamper the order of
convergence of the finite element method, if the polynomial degree on the boundary is sufficiently high.
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1. Introduction

We consider a second order partial differential equations in the connected Lipschitz domain Ω ∈ Rd,
d = 2, 3 with symmetric local absorbing boundary condition (see [24, Eq. 3.14] and [46]), which reads for
d = 2

∂νu+

J∑
j=0

(−1)j∂jΓ(αj∂
j
Γu) = g, (1)

on a closed subset Γ of the boundary ∂Ω for smooth enough function αj on Γ. Here, ∂ν and ∂Γ denote the
normal and tangential (surface) derivatives on Γ, ∂ν := ν ·∇, ∂Γ = τ ·∇, where n is the outer normalised
normal vector on Γ and τ the normalised tangential vector. Then, J ∈ N0 ∪ {−1} is the order of highest
(second) derivatives, and the condition has given names for special cases of J . For J = −1 it is called as
Neumann, for J = 0 as Robin and for J = 1 as Wentzell boundary condition [3, 9, 15, 17, 18, 55, 56]. The
symmetric local absorbing boundary conditions in three dimensions take a similar form, see Chap. 3.1.
Here, we also discuss a special class of non-symmetric local absorbing boundary conditions.

Local absorbing boundary conditions (1) are stated for example on artifical boundaries of truncated,
originally infinite domains, to approximate radiation or decay conditions. Then, the functions αj corre-
spond to the partial differential equation outside Ω and a better approximation is obtained by pushing the
artifical boundary further to infinity or by adding further terms, , increasing J . An overview over those
conditions, which are in the context of wave propagation problems also called transparent or non-reflecting
boundary condition, see [20, 30].

If a possibly bounded subdomain correspond to a highly conducting body in electromagnetics the
fields can be computed approximately by a formulation in the exterior of the conductor with so called
surface or generalised impedance boundary conditions on the conductor surface [26, 33, 42, 51, 52, 60].
Similar impedance boundary conditions have been derived for thin dielectric coatings on perfect con-
ducting bodies [4, 8, 16, 40] or for viscosity boundary layers in acoustics [48]. For thin layers inside the
domain impedance transmission conditions as maps between Dirichlet and Neumann jump and mean are
derived [34, 36, 39, 45, 49], even for microstructured layers [14] for which Γ is usually taken as mean-line.

The derivation of these local ABCs is often by asymptotic expansion techniques or a truncation of
Fourier series, where at least for the rigorous error estimates the boundary Γ and the local structure,
hence, the functions αj are assumed to be smooth. The local ABCs may be applied in each smooth
part for piecewise smooth boundaries Γ, e. g., domains with corners, or for piecewise smooth functions
αj which may have jumps. In this case the higher surface derivatives ∂jΓαj∂

j
Γ are not necessary weak

derivatives on the whole boundary Γ and corner conditions [53] have to supplement the ABC. To our
knowledge these conditions have not been mathematically analysed so far and we restrict ourselves to
Γ ∈ C∞ with ring topology and αj ∈ C∞.

With these assumptions the weak form of (1), after j-time integration by parts of the j-th term along
Γ is given by ∫

Γ

∂νuv +

J∑
j=0

αj∂
j
Γu ∂

j
Γv dσ(x) =

∫
Γ

gv dσ(x). (2)

It includes only surface integrals and no boundary terms appear on points of lower smoothness. If the local
ABCs are taken for the Helmholtz equation with homogeneous Neumann boundary conditions on ∂Ω\Γ
we can write a variational formulation as: Seek uJ ∈ VJ := H1(Ω) ∩HJ(Γ) such that

aJ(uJ , v) :=

∫
Ω

(
∇uJ · ∇v − κ2uJv

)
dx+

J∑
j=0

∫
Γ

αj∂
j
ΓuJ ∂

j
Γv dσ(x) = 〈fJ , v〉 ∀ v ∈ VJ , (3)

where fJ corresponds to the source terms.
If only second derivatives are present, i.e., for the Neumann, Robin and Wenttzel conditions, a

numerical realisation with usual piecewise continuous finite element methods is straightforward. For
J ≥ 2, the usual finite element spaces are not any more contained in the natural space VJ of the
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continuous formulation. Even so the use of trial and test functions with C(J−1)-continuity (at least)
along Γ [23, 24] or auxiliary unknowns [21, 22] have been proposed local ABCs with higher-derivatives
than two have rarely been used.

In this article we propose as an alternative nonconforming interior penalty finite element method for
the usual continuous finite element spaces of at least order J−1, in which for each j ≥ 2 in (1) additional
terms on the nodes of the boundary Γ appear (Section 2). For fourth order PDEs a similar approach has
been introduced by Brenner and Sung [12]. Some local ABCs of higher order do not take the symmetric
form (1) and incorporate surface derivatives of odd orders. For this case we derive the additional terms
in Sect. 2.5. Symmetric local ABCs and a class of non-symmetric local ABCs in three dimensions and
the related interior penalty formulation will given in Section 3. The numerical analysis of the numerical
method proposed in the article will be presented for the case of local symmetric ABCs in two dimension
in Section 4. It relies on analytical results of such conditions given in [46]. The theoretical convergence
results of Section 5 are validated by a series of numerical experiments in Section 5.

2. Interior penalty finite element formulation in 2D

For the derivation of the interior penalty formulation we need the following regularity result.

Lemma 2.1. Let uJ ∈ VJ be solution of (2) with infx∈Γ |αJ | > 0. Then, uJ ∈ C∞(Γ).

Proof. The proof is a simple generalization of the proof of Lemma 2.8 in [46] from constants αj to
αj ∈ C∞.

2.1. Definition of the C0-continuous finite element spaces

The presented non-conforming finite element method is based on a mesh Mh of the computation
domain Ω (see Fig. 1) consisting of possibly curved triangles Th and curved quadrilaterals Qh, which
are disjoint and which fill the computational domain, , Ω =

⋃
K∈Mh

K. Each cell K in Th or Qh can

be represented through a smooth mapping FK from a single reference triangle K̂ or a single reference
quadrilateral K̂, respectively. We denote E(Mh,Γ) the set of edges of Mh on Γ, N (Mh,Γ) is the set of
nodes of Mh on Γ and N (e) is the set composed of the two nodes of the external edge e. Furthermore,
we define the union of all outer boundary edges and the union of all cells as

Γh :=
⋃

e∈E(Mh,Γ)

e = Γ\
⋃

n∈N (Mh,Γ)

n, Ωh :=
⋃

K∈Mh

K = Ω\
⋃

e∈E(Mh)

e.

The edges E(Mh,Γ) ofMh are possibly curved, and for the analysis we assume that they resolve exactly
Γ, ,

Γ =
⋃

e∈E(Mh,Γ)

e.

Furthermore, we assume that each edge has counter-clockwise orientation and can be represented by a
smooth mapping Fe from the reference interval (0, 1). The mesh width h is the largest outer diameter of
the cells

h := max
K∈Mh

diam(K).

We are going to define the discretisation space. First, we denote K̂ a reference quadrilateral or triangle,
respectively, and ê denotes either one edge of K̂ or the reference interval. Furthermore, we denote Pp(K̂)

the space of polynomials of maximal total degree p for the reference triangle K̂ and of maximal degree p
in each coordinate direction for the reference quadrilateral K̂. The space Pp(K̂) can be decomposed into
interior bubbles, edges bubbles to one of the edges and the nodal functions. The space of interior bubbles
for the reference triangle is Pp(K̂, 0) := {v̂ ∈ Pp(K̂) : v̂|∂K̂ = 0} and the one of the edge bubbles related

to an edge ê in K̂ is given by Pp(K̂, ê) := {v̂ ∈ Pp(K̂) : v̂|∂K̂\ê = 0, 〈v̂, ŵ〉L2(K̂) = 0 ∀ŵ ∈ PP (K̂, 0)}.
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Now, let p be a function assigning each cell K ∈ Mh and each edge e ∈ E(Mh,Γ) a polynomial
order p(K) or p(e), respectively, which are all positive integers and p(e) ≥ p(K) if e ⊂ K. We denote
p := minK∈Mh

p(K) ≥ 1 and pΓ := mine∈E(Mh,Γ) p(e) ≥ p. To define the local solution space we denote
by Mh(K) the set of those neighbouring cells K in Mh\{K} which have a common edge with K and
by E(K,Γ) the edges of K which are on the domain boundary Γ. We take as local polynomial space in
K the space of polynomials with maximal degree p(K) on the reference element (in each direction for
a quadrilateral) and with possibly additional edge bubbles related to neighbouring elements and edge
bubbles related to boundary edges,

Pp(K) :=

{
vh ∈ C∞(K) : vh|K ◦ FK ∈ Pp(K)(F

−1
K K) ∪

⋃
K′∈Mh(K)

Pmin(p(K),p(K′))(F
−1
K K,F−1

K (K ∩K ′))

∪
⋃

e∈E(K,Γ)

Pp(e)(F
−1
K K,F−1

K e)

}
.

Note, that the respective space on the reference element K̂ is a subset of Pp?(K)(K̂) for some p?(K) ≥
p(K). Here, p?(K) is the polynomial degree to represent the basis functions on K. It is larger than p(K)
if p(K ′) is larger for one of the neighbouring elements K ′ ∈Mh(K) or if a edge bubble function related
to a higher polynomial order on a boundary edge has to be represented.

Then, we define the space of piecewise polynomial, continuous basis functions with polynomial orders
p as

Vh := Sp,1(Ω,Mh) := {vh ∈ C0(Ω) : vh|K ∈ Pp(K) }.

For the definition of the surface derivative, we fix the tangential vector τ to be always the counter-
clockwise (or clockwise) one on whole Γ (see Fig. 1).

Note, that Vh ⊂ Vj,h := H1(Ω) ∩H1(Γ) ∩Hj(Γh) for any j ∈ N. The spaces Vj,h are equipped with
the so called broken norms

‖v‖2Vj,h
:= ‖v‖2H1(Ω) + ‖v‖2Hj(Γh).

Finally, we have to define additional notations specific to the non-conforming formulation. For
each node n ∈ N (Mh,Γ), we denote by e+

n and e−n the two external edges sharing n, such that e+
n

follows e−n when going counter-clockwise (see Fig. 1). We define by v+
n = lims→0 v(Fe+n (s)) and by

v−n = lims→1 v(Fe−n (s)). The jump and the mean of v on n are respectively defined by

[v]n = v−n − v+
n and {v}n =

v+
n + v−n

2
.

We also denote by he the length of the edge e and by hn = min
(
he+n , he−n

)
.

2.2. Derivation of the interior penalty Galerkin variational formulation

Multiplying ∂jΓαj∂
j
Γu for a function u ∈ C∞ by vh ∈ Vh, which is in C∞(e) in each edge on Γ, and

applying j times integration by part in each edge e, we obtain

(−1)j
∫

Γ

∂jΓαj∂
j
Γuvh dσ(x) = (−1)j

∑
e∈E(Mh,Γ)

∫
e

∂jΓαj∂
j
Γuvh dσ(x)

=
∑

e∈E(Mh,Γ)

∫
e

αj∂
j
Γu∂

j
Γvh dσ(x) +

j−1∑
i=0

(−1)i+j
∑

n∈N (Mh,Γ)

[∂j−i−1
Γ αj∂

j
Γu ∂

i
Γvh]n

=

∫
Γ

αj∂
j
Γu∂

j
Γvh dσ(x) +

j−1∑
i=1

(−1)i+j
∑

n∈N (Mh,Γ)

{∂j−i−1
Γ αj∂

j
Γu}n[∂iΓvh]n. (4)

Here, we used the equivalence [ab]n = [a]n {b}n + {a}n [b]n, the fact that with uj , αj ∈ C∞ all jumps[
∂j−i−1

Γ αj∂
j
Γu
]
n
, i < j are zero and that with vh ∈ C0(Γ) all jumps

[
v
]
n

are zero.
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n

Γ

e+
n

e−n

ν

τ

Figure 1. The triangulation Mh of the domain Ω with boundary Γ (unit normal vector ν and tangential vector τ are
indicated) with partially curved cells. For functions on the boundary Γ the jump and average on boundary nodes n is
defined using the neighbouring edges e+n and e−n with counter-clockwise orientation.

If we are interested in symmetric bilinear forms to obtain the symmetric interior penalty Galerkin
formulation (SIPG) [59], we add the terms s [∂iΓu]n{∂j−i−1

Γ αj∂
j
Γvh}n with s = 1. We do not loose

consistency as with the assumption of u ∈ C∞(Γ) the terms
[
∂iΓu

]
n

are in fact zero. We then obtain

(−1)j
∫

Γ

∂jΓαj∂
j
Γuvh dσ(x) =

∫
Γ

αj∂
j
Γu∂

j
Γvh dσ(x) (5)

+

j−1∑
i=1

(−1)i+j
∑

n∈N (Mh,Γ)

(
{∂j−i−1

Γ αj∂Γu}n [∂iΓvh]n + s[∂iΓu]n{∂j−i−1
Γ αj∂Γvh}n

)
.

Note, that alternatively s = −1 for the non-symmetric (NIPG) [41] or s = 0 for the incomplete interior
penalty Galerkin formulation (IIPG) [54] can be chosen.

Finally, to ensure the coercivity of the bilinear forms (with a mesh-independent constant), we add for
j > 0 the terms

βj

h
2(J−j)+1
n

[∂j−1
Γ u]n[∂j−1

Γ vh]n,

which also do not harm the consistency since [∂j−1
Γ u]n = 0, j = 1, . . . , J − 1.

Remark 2.2. The assumption u ∈ C∞(Γ) in the derivation can be lowered. In fact u ∈ HJ(Γ), α0u ∈
L2(Γ), αj∂

j
Γu ∈ Cj−1(Γ) ∩ L2(Γ), j = 1, . . . , J is enough for consistency. This requires αj ∈ L∞(Γ),

j = 0, . . . , J and with ∂jΓu ∈ Cj−1(Γ) for 2j ≤ J that αj ∈ Cj−1(Γ), j = 1, . . . , bJ2 c. With these
assumptions it is indeed enough to require Γ to be Lipschitz and CJ,1 in a finite partition of the boundary.
However, if u is solution of the above system it is unlikely to fulfill the regularity assumptions in this
case [32].

Now, we are in the position to state the interior penalty Galerkin formulation: Seek uJ,h ∈ Vh such
that

aJ,h(uJ,h, vh) = 〈fJ , vh〉 , ∀vh ∈ Vh, (6)

where

aJ,h(uh, vh) :=

∫
Ω

(
∇uh · ∇v − κ2uhvh

)
dx+

J∑
j=0

(cj(uh, vh;αj) + bj,h;J(uh, vh;αj))

cj(uh, vh;αj) :=

∫
Γh

αj∂
j
Γuh ∂

j
Γvh dσ(x) ,
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b0,h;J = b1,h;J = 0 and for j > 1

bj,h;J(uh, vh;αj) :=

j−1∑
i=1

(−1)i+j
∑

n∈N (Mh,Γ)

({
∂j−i−1

Γ αj∂
j
Γuh

}
n

[
∂iΓvh

]
n

+ s
[
∂iΓuh

]
n

{
∂j−i−1

Γ αj∂
j
Γvh
}
n

)
+

∑
n∈N (Mh,Γ)

βj

h
2(J−j)+1
n

[∂j−1
Γ uh]n[∂j−1

Γ vh]n ,

where s corresponds to the symmetric, non-symmetric or incomplete interior penalty method.

2.3. Well-posedness and estimation of the discretisation error

If the finite element space is rich enough the interior penalty formulation is well-posed and we can
state a result on the discretisation error. The proofs of these results will be given in Chap. 4.

Theorem 2.3. Let infx∈Γ Re(αJ) > 0 or infx∈Γ |Im(αJ)| > 0 and let zero be the only solution of (3)
with fJ = 0. Then, there exists constants hunique, punique > 0 such that for all h < hunique and p ≥ punique
the discrete interior penalty Galerkin variational formulation (6) for s ∈ [−1, 1] and βj, j = 2, . . . , J large
enough admits a unique solution uJ,h ∈ Vh and there exists a constant CJ,h > 0 such that

‖uJ,h‖VJ,h
≤ CJ,h‖fJ‖V ′J,h (7)

and

‖uJ,h − uJ‖VJ,h
≤ CJ,h inf

vh∈Vh

‖vh − uJ‖VJ,h
. (8)

Lemma 2.4. Let J > 0, let the assumption of Theorem 2.3 be satisfied and let h < hunique, p ≥ punique
and pΓ ≥ J . Then, there exists a constant CJ,h > 0 such that for the solution uJ,h ∈ Vh of (6) it holds

‖uJ,h − uJ‖VJ,h
≤ CJ,h

(
inf

vh∈Vh

‖vh − uJ‖H1(Ω) + hpΓ−J+1‖fJ‖V ′J

)
. (9)

The first term in the right hand side of (9) is the H1-best-approximation error in the computational
domain, which depends on one side of κ(x) and so the regularity of uJ and on the other side on the mesh
and the polynomial degree distribution p, see e. g. [50] for p- and hp-finite element methods. The second
term is due to the discretisation of the surface differential operators in the symmetric local absorbing
boundary conditions. In order to achieve a convergent discretisation the minimum pΓ of the polynomial
degrees on Γh has to be chosen to be at least J . For simple refinement of uniform meshes Mh (h-
refinement) and polynomial degrees of at least p in the cells of Mh the polynomial degrees on the edges
of E(Mh,Γ) has to be chosen to be at least pΓ ≥ p+ J − 1 such that the error due to the discretisation
of the absorbing boundary condition does not dominate asymptotically for h→ 0.

2.4. Analysis of the computational costs

Our methodology requires p+J−1 additional degrees of freedom per edge in E(Mh,Γ) while classical
methodology requires the introduction of J−1 auxiliary unknowns and thus of p(J−1) additional degrees
of freedom per edge in E(Mh,Γ). Note that, when considering odd order ABC, the methodology proposed
by Hagstrom et.al. [27, 28] reduces this cost to (J − 1)/2 auxiliary unknowns and p(J − 1)/2 degrees of
freedom. Hence, our strategy is more costly when both p and J are small but less costly when p or J − 1
are greater than four. The higher p or J − 1 are, the more beneficial the proposed solution methodology
is.
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2.5. Interior penalty formulation for terms with odd tangential derivatives

The proposed interior penalty formulation can be extended to the local boundary condition involving
terms with odd tangential derivatives of order 2J − 1 and less. We will derive the additional term in the
variational formulation on the example of the term ∂2

Γ(γ∂Γu) for γ ∈ C∞(Γ). In analogy to terms with
even derivatives we integrate by parts on Γh and use the fact that

[
u
]
n

= 0 on all n ∈ N (Mh,Γ) to
obtain ∫

Γh

∂2
Γ(γ∂Γu)v dσ(x) = −

∫
Γh

∂Γ(γ∂Γu)∂Γv dσ(x).

Then, we divide the expression into two parts and apply integration by parts on one part, and using that[
∂Γu

]
n

= 0 on all n ∈ N (Mh,Γ)∫
Γh

∂2
Γ(γ∂Γu)v dσ(x) =

1

2

∫
Γh

−∂Γ(γ∂Γu)∂Γv + γ∂Γu∂
2
Γv dσ(x) +

1

2

∑
n∈N (Mh,Γ)

γn {∂Γu}n [∂Γv]n

where γn are the function values of γ on n ∈ N (Mh,Γ). Now, adding the terms sγn [∂Γu]n {∂Γv}n related
to the different variants of interior penalty formulations and using the identity γ∂Γu∂

2
Γv = ∂Γu∂Γ(γ∂Γv)−

∂Γγ∂Γu∂Γv we find∫
Γh

∂2
Γ(γ∂Γu)v dσ(x) =

1

2

∫
Γh

∂Γu∂Γ(γ∂Γv)− ∂Γ(γ∂Γu)∂Γv dσ(x)− 1

2

∫
Γh

(∂Γγ)∂Γu∂Γv dσ(x)

+
1

2

∑
n∈N (Mh,Γ)

γn ({∂Γu}n [∂Γv]n + s [∂Γu]n {∂Γv}n) .

We observe that the formulation with those additional terms related to odd derivatives looses symmetry
even for s = 1. Independent of the choice of s there is no need to add any further penalty term to ensure
coercivity.

3. Interior penalty finite element formulation in 3D

3.1. Local absorbing boundary conditions in 3D

In three dimensions we can decompose the gradient ∇u of a function u in the contribution normal to
the boundary Γ, that is ν∂νu = ν(∇u · ν), and the tangential gradient ∇Γu := ∇u − ν∂νu. Similarly,
the Laplacian ∆u can be decomposed into the second normal derivative ∂2

νu = ν>H(u)ν, where H is the
Hessian matrix with all partial second derivatives, and the Laplace-Beltrami operator ∆Γu := ∆u− ∂2

νu.
Note, that the latter is also given in terms of the surfacic divergence divΓ by ∆Γ := divΓ∇Γ (see [37,
Sect. 2.5.6] for smooth surfaces).

With the Laplace-Beltrami operator we can define the BGT condition of order [7], which is a non-
reflecting boundary condition for the time-harmonic Helmholtz equation in 3D. With wave-number k it
is given as the Wentzell condition

∂νu =
1

2

(
−ik +

2

R

)−1(
∆Γ +

2

R2
+

4ik

R
+ 2k2

)
u =: B2u, (10)

and set on spherical boundary Γ of radius R. If the shape of the boundary is arbitrary, but smooth, a
similar condition has been derived in [2], which includes a term of the form divΓ(I − i

kR)∇Γ), where I is
the identity and R the curvature tensor. In the framework of Givoli and Keller non-reflecting boundary
conditions for ellipsoidal boundaries, taking the form of a Wentzell condition, have been proposed in [6].
Generalised impedance boundary conditions for highly conducting bodies of order 3 [26] can be found in
the form of a Wentzel condition.

These conditions can be used directly with C0-continuous finite elements with an additional bilinear
form ∫

Γ

αuv + (β∇Γu) · ∇ΓvdS(x),

7



order α0 α1 α2 β0 β1

B1 −
(
−ik + 1

R

)
– – 1 –

B2 2
(
−ik + 1

R

)2
1 – −2

(
−ik + 2

R

)
–

B3 2
(
−2ik3 + 9k2

R + 9ik
R2 − 3

R3

)
−3
(
−ik + 1

R

)
– 4

(
−ik + 3

R

) (
−ik + 3

2R

)
1

B4 8
(
k4 + 8ik3

R −
18k2

R2 − 12ik
R3 + 3

R4

)
8
(
−ik + 3

R

)2
1 −8

(
−ik + 2

R

) (
−k2 − 6ik

R + 6
R2

)
−4
(
−ik + 1

R

)
Table 1. Coefficients of the BGT conditions.

only, where some scalar function α and some possibly tensorial function β appears.
Patlashenko and Givoli [38] introduce symmetric local absorbing boundary conditions of any order J

in three dimensions

∂νu =

J∑
j=0

αj (−1)j∆j
Γu, (11)

where αj are scalar constants. In this case (11) can be seen as a generalisation of (1) in three dimensions.
Harari has derived in the framework of [24] parameters αj for non-reflecting boundary conditions for the
exterior of a sphere [29].

To our best knowledge, the usage of local absorbing boundary conditions with higher tangential
derivatives than two in a finite element context has only been reported with basis functions with higher
regularity on Γ, but not with the usual C0-continuous basis functions only.

In the following we would like to discuss a more general case, where the Laplace-Beltrami operator is
applied once or more to the normal derivative ∂nu, and the highest derivative to u and ∂nu have same
order. These conditions have the form

0 =

J∑
j=0

(−1)j
(
αj ∆j

Γu+ βj ∆j
Γ∂nu

)
, (12)

where β0 6= 0. Hence, we can assume without loss of generality that β0 = −1. Those conditions arise
in the derivation of robust impedance conditions from a Padé approximation [26], but also the BGT
conditions [7] of odd order take this form as illustrated in Tab. 1. Note, that the BGT conditions of
order 1 and 2 can be written as (11).

To derive weak formulation for (11) or (12) in general we introduce by misuse of notation ∆
1/2
Γ := ∇u,

which is a vector valued function, and define in addition to ∆j
Γ for integer j the vector ∆j

Γ := ∇∆
j−1/2
Γ if

2j is an integer. Then, can write for any j ∈ N the integration by parts formula for functions u, v ∈ C∞(Γ)∫
Γ

(−1)j∆j
Γuv dS(x) =

∫
Γ

∆
j/2
Γ u ·∆j/2

Γ v dS(x),

where the dot product coincides with the usual product if j is multiple of two. With the seminorms

| · |Hj(Γ) := ‖∆j/2
Γ · ‖L2(Γ), j = 0, . . . , J we can define the Sobolev spaces HJ(Γ) in three dimensions and

VJ := H1(Ω) ∩HJ(Γ).
Then, the weak formulation for (11) reads: Seek u ∈ VJ such that∫

Ω

(
∇u · ∇v − κ2uv

)
dx+

J∑
j=0

αj

∫
Γ

∆
j/2
Γ u ·∆j/2

Γ v dS(x) = 〈fJ , v〉 ∀ v ∈ VJ , (13)

where fJ corresponds to the source terms. If Re(aJ) > 0 or |Im(aJ)| > 0 then the bilinear form aJ can
be written as a sum of a VJ -elliptic bilinear form aJ,0 and a bilinear form k with only lower derivatives
corresponding to a compact operator in VJ . Hence, it exists a G̊arding inequality. Then, the Fredholm
alternative applies and uniqueness of (13) implies existence of a solution (similar to [46, Chap. 2]).
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The usual way to incorporate conditions with derivatives on the normal trace are mixed formulations
which introduce a new unknown λ := ∂nu and take the condition in weak form as an additional equation.
We prefer to incorporate the condition (12) in addition in the original equation. Then, with the two
bilinear forms

bJ,0((u, λ), v) :=

∫
Ω

(
∇u · ∇v − κ2uv

)
dx+

J∑
j=0

αj

∫
Γ

∆
j/2
Γ u ·∆j/2

Γ v dS(x) +

J∑
j=1

βj

∫
Γ

∆
j/2
Γ λ ·∆j/2

Γ v dS(x),

bJ,1((u, λ), λ′) :=

∫
Γ

(
λλ′ −

J∑
j=0

αj∆
j/2
Γ u ·∆j/2

Γ λ′ −
J∑
j=1

βj∆
j/2
Γ λ ·∆j/2

Γ λ′
)
dS(x)

the mixed variational formulation for the Helmholtz equation with (12) on Γ reads: Seek (u, λ) ∈ VJ ×
HJ(Γ) such that

bJ((u, λ), (v, λ′)) := bJ,0((u, λ), v) + bJ,1((u, λ), λ′) = 〈fJ , v〉 ∀ (v, λ′) ∈ VJ ×HJ(Γ). (14)

This system uses the product bilinear form bJ . As the two equations are independent, we can equivalently
solve for bJ,0((u, λ), v) + γJbJ,1((u, λ), λ′) = 〈fJ , v〉 where the conjugate complex of the second equation
is taken and γJ 6= 0 is an arbitrary complex factor. If we use then the test functions v = u and λ′ = λ
and γJ = βJ

αJ
the mixed terms of highest order cancel out

bJ,0((u, λ), u) +
βJ
αJ

bJ,1((u, λ), λ) = |u|2H1(Ω) + αJ |u|2HJ (Γ) −
|βJ |2

αJ
|λ|2HJ (Γ)

+
〈
κu, u

〉
L2(Ω)

+

J−1∑
j=0

αj |u|2Hj(Γ) +
βJ
αJ

(
‖λ‖L2(Γ) −

J−1∑
j=1

βj |λ|2Hj(Γ)

)
+

J−1∑
j=1

(
βj −

βJ
αJ

αj
)〈

∆
j/2
Γ λ,∆

j/2
Γ u
〉
L2(Γ)

− βJ
αJ

α0

〈
λ, u

〉
.

If |Im(aJ)| > 0 and βJ 6= 0 then there holds a G̊arding inequality, , there exists a constant θ ∈ (−π, π)
and

Re

(
eiθ
(
bJ,0((u, λ), u) +

βJ
αJ

bJ,1((u, λ), λ)
))
≥ γ

(
‖u‖2VJ

+ ‖λ‖2HJ (Γ)

)
− δ

(
‖u‖2WJ−1

+ ‖λ‖2HJ−1(Γ)

)
,

for some constants γ > 0 and δ ∈ R, where WJ−1 := L2(Ω) ∩HJ−1(Γ). Hence, the Fredholm alternative
applies as well and we a unique solution of (14) exist except for a set of spurious eigenmodes.

3.2. Definition of the C0-continuous finite element spaces

Similarly to the two-dimensional case, the non-conforming finite element method is based on a mesh
Mh of the computational domain Ω consisting of possibly curved tetrahedra, hexahedra, prism or pyra-
mids, which are disjoint and which fill the computational domain, , Ω =

⋃
K∈Mh

K. We denote F(Mh,Γ)
the set of faces (triangles or quadrilaterals) of Mh on Γ, E(Mh,Γ) is the set of edges of Mh on Γ and
E(e) is the set composed of all the edges of the external boundary Γ. Furthermore, we define the union
of all outer boundary faces and the union of all cells as

Γh :=
⋃

f∈F(Mh,Γ)

f = Γ\
⋃

e∈E(Mh,Γ)

e, Ωh :=
⋃

K∈Mh

K = Ω\
⋃

f∈F(Mh)

f.

We assume that each face has direct orientation and can be represented by a smooth mapping Ff from

the reference triangle or quadrilateral F̂ . As in 2D, the mesh width h is the largest outer diameter of
the cells and Vh := Sp,1(Ω,Mh) is the space of piecewise polynomial, continuous basis functions with
polynomial orders p. In the same way, Vh ⊂ Vj,h := H1(Ω) ∩H1(Γ) ∩Hj(Γh) for any j ∈ N.
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Finally, we have to define additional notations specific to the non-conforming formulation. For each
edge e ∈ E(Mh,Γ), we denote arbitrarily by f+

e and f−e the two external faces sharing e, and we define
respectively by v+

e and by v−e the trace of v on e taken from within f+
e and f−e . Furthermore, on an edge

e of a face f ∈ F(Mh,Γ), we denote by τe the vector orthogonal to ν and e and outward to f . The jump
and the mean of a scalar function v on e are respectively defined by

[v]e = v−e − v+
e and {v}e =

v+
e + v−e

2
,

while the jump and the mean of a vectorial function v on e are respectively defined by

[v]e = v−e · τ−e + v+
e · τ+

e and {v}e =
v−e · τ−e − v+

e · τ+
e

2
,

We also denote by hf the diameter of the face f and by he = min
(
hf+

e
, hf−e

)
.

3.3. Definition of the interior penalty Galerkin variational formulation

The construction of the interior penalty Galerkin formulation is similar to the 2D case. First, we

multiply ∆
j/2
Γ αj∆

j/2
Γ u for a function u ∈ C∞ by vh ∈ Vh, which is in C∞(f) in each face f on Γ,

and we apply j times integration by part in each face f . Second, we used the equivalence [ab]e =

[a]e {b}e+{a}e [b]e, the fact that with uj , αj ∈ C∞ all jumps
[
∆

(j−i−1)/2
Γ αj∆

j/2
Γ u
]
e
, i < j are zero and that

with vh ∈ C0(Γ) all jumps
[
v
]
e

are zero. Third, we add the terms s
∫
e
[∆

i/2
Γ u]e{∆

(j−i−1)/2
Γ αj∆

j/2
Γ vh}e dσ(x)

with s = 1 for IPDG, s = −1 for NIPDG and s = 0 for IIPDG. We do not loose consistency as with the

assumption of u ∈ C∞(Γ) the terms
[
∆

i/2
Γ u
]
e

are in fact zero. Finally, to ensure the coercivity of the
bilinear forms (with a mesh-independent constant), we add for j > 0 the terms

βj

h
2(J−j)+1
e

∫
e

[∆
j−1/2
Γ u]e[∆

j−1/2
Γ vh]e dσ(x)

which do not harm the consistency since [∆
j−1/2
Γ u]e = 0, j = 1, . . . , J − 1.

The interior penalty Galerkin formulation reads then: Seek uJ,h ∈ Vh such that

aJ,h(uJ,h, vh) = 〈fJ , vh〉 , ∀vh ∈ Vh, (15)

where

aJ,h(uh, vh) :=

∫
Ω

(
∇u · ∇v − κ2uv

)
dx+

J∑
j=0

(∫
Γh

αj∆
j/2
Γ uh ·∆

j/2
Γ vh dS(x) + bj,h(uh, vh)

)

and b0,h = b1,h = 0 and for j > 1

bj,h(uh, vh) :=

j−1∑
i=1

(−1)i+j
∑

e∈E(Mh,Γ)

∫
e

({
∆

(j−i−1)/2
Γ αj∆

j/2
Γ uh

}
e

[
∆

i/2
Γ vh

]
e

+ s
[
∆

i/2
Γ uh

]
e

{
∆

(j−i−1)/2
Γ αj∆

j/2
Γ vh

}
e

)
dσ(x)

+
∑

e∈E(Mh,Γ)

βj

h
2(J−j)+1
e

∫
e

[∆
j−1/2
Γ uh]e[∆

j−1/2
Γ vh]e dσ(x).

4. Analysis of the interior penalty formulation in 2D

4.1. Associated variational formulation for infinite-dimensional spaces

Following [25] we are going to define a interior-penalty Galerkin variational formulation which is
identical to discrete one for the discrete space Vh and which can be defined for infinite-dimensional
function spaces as well. As the discrete space Vh is not contained in the continuous function spaces VJ for
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J ≥ 2, we will use larger spaces VJ,h, which include both Vh and VJ . These infinite-dimensional spaces
are defined by

VJ,h := H1(Ω) ∩H1(Γ) ∩HJ(Γh) ⊃ VJ (16)

with the norm

‖v‖2VJ,h
:= ‖v‖2H1(Ω) + ‖v‖2HJ (Γh) +

J∑
j=2

∑
n∈N (Mh,Γ)

1

h
2(J−j)+1
n

|
[
∂j−1

Γ v
]
n
|2.

Note, that the trace of functions v ∈ VJ,h is continuous on Γ and their tangential derivatives of order 1
to J − 1 are bounded, but may be discontinuous over the nodes N (Mh,Γ).

The discrete formulation (6) cannot directly be used with the function space VJ,h as the terms{
∂j−i−1

Γ αj∂
j
Γv
}
n

for v ∈ VJ,h are not well-defined for 2j − i > J . In the discrete variational formu-
lation those terms occur only in product with the finitely many piecewise polynomial functions in Vh.
We can define an extension of these products using the lifting operators Lj,i : H1(Γh)→ Vh, i, j ∈ N by∫

Γh

Lj,i(v)αj∂
j
Γwh dσ(x) =

∑
n∈N (Mh,Γ)

[v]n{∂j−i−1
Γ αj∂

j
Γwh}n ∀wh ∈ Vh, (17)

and replace any occurance of
∑
n∈N (Mh,Γ)

{
∂j−i−1

Γ αj∂
j
Γuh

}
n

[
∂iΓvh

]
n

or its symmetric counterpart in the

discrete formulation (6) by
∫

Γh
αj∂

j
ΓuLj,i(∂iΓv) dσ(x) or its symmetric counterpart, respectively, in that

for the infinite-dimensional spaces.
Now, we can define the interior penalty Galerkin variational formulation for the infinite-dimensional

spaces VJ,h: Seek ũJ ∈ VJ,h such that

ãJ,h(ũJ , v) = 〈fJ,h, v〉 , ∀v ∈ VJ,h, (18)

where

ãJ,h(u, v) :=

∫
Ω

(
∇uJ · ∇v − κ2uJv

)
dx+

J∑
j=0

(
cj(uh, vh;αj) + b̃j,h;J(u, v;αj)

)

and for b̃0,h;J = b̃1,h;J = 0 and for j > 1

b̃j,h;J(u, v;αj) :=

j−1∑
i=1

(−1)i+j
∫

Γ

αjLj,i(∂iΓu)∂jΓv + sαjLj,i(∂iΓv)∂jΓudσ(x)

+
∑

n∈N (Mh,Γ)

βj

h
2(J−j)+1
n

[
∂j−1

Γ u
]
n

[
∂j−1

Γ v
]
n
.

Note, that due to the definition of the lifting operators b̃j,h;J = bj,h;J on Vh×Vh and b̃j,h;J = 0 on Vj×Vj
as all jump terms and so all lifting operators vanish and the weak derivatives exists on whole Γ, not only
on Γh. Hence, ãJ,h = aJ,h on Vh × Vh and ãJ,h = aJ on VJ × VJ .

4.2. Analysis of the associated variational formulation

We will need in the following the equivalence of (3) and (18).

Lemma 4.1. Let 〈fJ , v〉 =
∫

Ω
fv dx +

∫
Γ
gv dσ(x) with f ∈ L2(Ω) and g ∈ L2(Γ). Then, the formula-

tions (3) and (18) possess the same solutions, , if uJ ∈ VJ is solution of (3), then it solves (18), and if
ũJ ∈ VJ,h is solution of (18), then it solves (3).

Proof. If J = 0, 1 the formulations (3) and (18) are identical, whereby we restrict ourself to J ≥ 2. The
proof is in two steps. First, we prove that the solution uJ ∈ VJ of (3) solves (18), and then, that the
solution ũJ ∈ VJ,h of (18) solves (3).
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(i) Let uJ ∈ VJ solution of (3). Taking test functions v ∈ H1
0 (Ω) ⊃ C∞c (Ω) vanishing on ∂Ω in (3) we

can assert using the definition of weak derivatives that uJ solves

−∆uJ − κ2uJ = f, in Ω. (19a)

In case of non-empty ∂Ω\Γ we take test functions v ∈ H1(Ω) with v ≡ 0 on Γ, and using integration
by parts in Ω and the fact that uJ solves (19a) we find that uJ solves

∂νuJ = 0 on ∂Ω\Γ. (19b)

Now, taking test functions v in the whole space VJ , using integration by parts in Ω and on Γ, and
using the fact that uJ solves (19a) and (19b) we find in the same way

∂νuJ +

J∑
j=0

(−1)j∂jΓ(αj∂
j
ΓuJ) = g, on Γ. (19c)

Following the same steps as for the construction of the bilinear form aJ,h (but using the lifting
operators instead of the jump terms), it follows easily that uJ solves ãJ,h(uJ , v) = 〈fJ,h, v〉 for all
v ∈ VJ,h.

(ii) Let ũJ ∈ VJ,h solution of (18). In the same way as in Part (i) we find that ũJ solves (19a) and (19b).

Now, we take test functions v ∈ VJ ∩ C∞c (Γh) such that bj(u, v) = b̃j,h(u, v) holds for any u ∈ VJ .
Then, using integration by parts in Ω and the fact that ũJ solves (19a) and (19b) we find that ũJ
solves (19c) on Γh.

Comparing with the integration by parts formula in (4) we find that for all v ∈ VJ ∩ C∞(Γh)

J∑
j=2

∑
n∈N (Mh,Γ)

( j−1∑
i=1

(−1)i+j
([
∂j−i−1

Γ αj∂
j
ΓũJ

]
n

{
∂iΓv

}
n
− s
[
∂iΓũJ

]
n

{
∂j−i−1

Γ αj∂
j
Γv
}
n

)
+

βj

h
2(J−j)+1
n

[
∂j−1

Γ ũJ
]
n

[
∂j−1

Γ v
]
n

)
= 0.

If we take test functions v ∈ VJ ∩C∞(Γh) for which it holds
{
∂j−1

Γ v
}
n

= 0 for all j = 2, . . . , J and

all n ∈ N (Mh,Γ) and for which
{
∂j−i−1

Γ αj∂
j
Γv
}
n

= 0 for all j = 2, . . . , J and i = 1, . . . , j − 1 if
s 6= 0 then it has to hold that

J∑
j=2

∑
n∈N (Mh,Γ)

βj

h
2(J−j)+1
n

[
∂j−1

Γ ũJ
]
n

[
∂j−1

Γ v
]
n

= 0.

This is only possible if
[
∂j−1

Γ ũJ
]
n

= 0 for j = 2, . . . , J and any n ∈ N (Mh,Γ).

Hence, we have shown that ũJ is in VJ and solves (19) and so (3).

This completes the proof.

In order to prove the well-posedness of the variational formulation (18) we need the following lemmata.

Lemma 4.2. The lifting operators Lj,i : H1(Γh) → Vh, i, j ∈ N defined by (17) are continuous, , there
exists constants Cj,i > 0 such that

‖Lj,i(v)‖2L2(Γ) ≤ C
2
j,i

∑
n∈N (Mh,Γ)

|[v]n|
2

h
2(j−i)−1
n

.
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Proof. From the definition of the mean over n, we deduce

∣∣∣{∂j−i−1
Γ αj∂

j
Γwh

}
n

∣∣∣2 ≤
∣∣∣(∂j−i−1

Γ αj∂
j
Γwh)+

n

∣∣∣2 +
∣∣∣(∂j−i−1

Γ αj∂
j
Γwh)−n

∣∣∣2
2

, (20)

with the notation (v)±n = v±n . Now, using inverse inequalities [50, 58] and the fact that hn ≤ he±n we
obtain ∣∣∣(∂j−i−1

Γ αj∂
j
Γwh)±n

∣∣∣2 ≤ C2
j,i

2h
2(j−i)−1
n

∫
e±n

|αj∂jΓwh|
2 dσ(x) (21)

with Cj,i := Cj,i(pΓ) = O(p
2(j−i)−1
Γ ), and using (20) we can assert that

∣∣∣{∂j−i−1
Γ αj∂

j
Γwh

}
n

∣∣∣2 ≤ C2
j,i

2h
2(j−i)−1
n

∫
e+n∪e−n

|αj∂jΓwh|
2 dσ(x)

and so ∑
n∈N (Mh,Γ)

h2(j−i)−1
n

∣∣∣{∂j−i−1
Γ αj∂

j
Γwh

}
n

∣∣∣2 ≤ C2
j,i‖αj∂

j
Γwh‖

2
L2(Γ). (22)

Now, using the definition of the lifting operator Lj,i and the Cauchy-Schwarz-inequality, we have

‖Lj,i(v)‖2L2(Γ) = max
wh∈Vh

∣∣∣∣ ∑
n∈N (Mh,Γ)

[v]n

{
∂j−i−1

Γ αj∂
j
Γwh

}
n

∣∣∣∣2
‖αj∂jΓwh‖2L2(Γ)

≤ max
wh∈Vh

∑
n∈N (Mh,Γ)

|[v]n|
2

h
2(j−i)−1
n

∑
n∈N (Mh,Γ)

h2(j−i)−1
n

∣∣∣{∂j−i−1
Γ αj∂

j
Γwh

}
n

∣∣∣2
‖αj∂jΓwh‖2L2(Γ)

,

and inserting (22) we conclude in the statement of the lemma.

Lemma 4.3. Let Let s ∈ [−1, 1], J ≥ 1, αJ ∈ L∞(Γ) with infx∈Γ Re(αJ) > 0 or infx∈Γ |Im(αJ)| > 0.
Then, for βj large enough the bilinear form ã0,J defined by

ã0,J(u, v) :=

∫
Ω

(∇u · ∇v + uv) dx+

J−1∑
j=0

(
cj,h(u, v; 1) + b̃j,h;J(u, v; 1)

)
+ cJ,h(u, v; 1) + b̃J,h;J(u, v;αJ),

(23)

is VJ,h-elliptic with an ellipticity constant independent of hn for all n ∈ N (Mh,Γ).

The proof is a simple consequence of the following lemma, in which we give a more explicit statement
how large the penalty terms βj need to be.

Lemma 4.4. Let the assumption on s and αJ in Lemma 4.3 be fulfilled. Then, there exist constants
C, γ and θ, such that for βj >

√
j C, j ≥ 2 it holds

Re

(
eiθ

J−1∑
j=0

(
cj,h(v, v; 1) + b̃j,h;J(v, v; 1)

))
+ Re

(
eiθ

(
cJ,h(v, v;αJ) + b̃J,h;J(v, v;αJ)

))

≥ γ

‖v‖2HJ (Γ) +

J∑
j=2

∑
n∈N (Mh,Γ)

1

h
2(J−j)+1
n

∣∣∣[∂j−1
Γ v

]
n

∣∣∣2
 ∀v ∈ Hj(Γh) .
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Proof. With the assumption on αJ there exists θ ∈ (−π2 ,
π
2 ) such that with a postive constant γJ it holds

Re

(
eiθ

∫
Γ

αJ |v|2
)
≥ γJ |v|2L2(Γ). (24)

In the remainder of the proof we assume θ such that (24) is fulfilled.
We start the proof by writing

Re
(

eiθb̃j,h;J(v, v;αj)
)

=

j−1∑
i=1

(−1)i+j Re

(
eiθ

∫
Γ

αjLj,i(∂iΓv)∂jΓv + sαjLj,i(∂iΓv)∂jΓv dσ(x)

)
+ cos(θ)

∑
n∈N (Mh,Γ)

βj

h
2(J−j)+1
n

∣∣∣[∂j−1
Γ v

]
n

∣∣∣2 .

Using that 2ab ≤ εa2 + ε−1b2 for any positive ε, the fact that αj = 1 for j < J in the bilinear forms

b̃j,h;J , the assumption on αJ and Lemma 4.2, we obtain

2

∣∣∣∣∫
Γ

αjLj,i(∂iΓv)∂jΓv dσ(x)

∣∣∣∣ ≤ ε‖∂jΓv‖2L2(Γ) + ε−1‖αjLj,i(∂iΓv)‖2L2(Γ)

≤ ε‖∂jΓv‖
2
L2(Γ) + ε−1‖αj‖2L∞(Γ)C

2
j,i

∑
n∈N (Mh,Γ)

1

h
2(j−i)−1
n

|
[
∂iΓv

]
n
|2 ,

where the same bound holds, if v and v are interchanged. Hence, we can assert that

Re

(
eiθ

J−1∑
j=0

(
cj,h(v, v; 1) + b̃j,h;J(v, v; 1)

))
+ Re

(
eiθ

(
cJ,h(v, v;αJ) + b̃J,h;J(v, v;αJ)

))

≥ cos(θ)
∥∥v∥∥2

H1(Γ)
+

J−1∑
j=2

(
cos(θ)− (j − 1) εj

)∥∥∂jΓv∥∥2

L2(Γ)
+
(
γJ − (J − 1) εJ

)∥∥∂JΓv∥∥2

L2(Γ)

+

J∑
j=2

∑
n∈N (Mh,Γ)

 cos(θ)βj

h
2(J−j)+1
n

−
J∑
i=j

ε−1
i ‖αi‖L∞(Γ)

C2
i,j−1

h
2(i−j)+1
n

∣∣∣[∂j−1
Γ v

]
n

∣∣∣2 .
Finally, choosing εj = cos(θ)/j for j = 2, . . . , J − 1 and εJ = γJ/J , and with the assumption on βj we
obtain the desired inequality.

We are going to state here the main results for the variational formulation (18), where we will prove
the well-posedness of (18) later.

Theorem 4.5. Let the assumption of Lemma 4.4 be satisfied, and let zero be the only solution of (18)
with uinc ≡ 0. Then, there exists a unique solution ũJ ∈ VJ,h of (18) and there exists a constant CJ > 0
independent of hn for all n ∈ N (Mh,Γ) such that

‖ũJ‖VJ,h
≤ CJ‖fJ,h‖V ′J .

Proof. The proof is along the lines of that of [46, Theorem 2.3]. By Lemma 4.3 the bilinear form ã0,J is

VJ,h-elliptic and so the associated operators Ã0,J are isomorphism in VJ,h. We define the Sobolev spaces

W0,h := L2(Ω), WJ,h := L2(Ω) ∩HJ−1(Γh), J > 0,

and the Rellich-Kondrachov compactness theorem [1, Chap. 6] implies that the embedding VJ,h ⊂⊂WJ,h

is compact. Now, we define the bilinear forms

k̃J(u, v) := −
∫

Γ

(κ2 + 1)uv dx+

J−1∑
j=0

(
cj,h(u, v;αj − 1) + b̃j,h;J(u, v;αj − 1)

)
, J > 0,
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and their associated operators K̃J are compact. Hence, the operators Ã0,J +K̃J associated to the bilinear

forms ãJ = ã0,J + k̃J are Fredholm with index 0 and by the Fredholm alternative [43, Sec. 2.1.4] the
uniqueness of a solution of (3) implies its existence and continuous dependence on the right hand side
with constants independent of hn for all n ∈ N (Mh,Γ), and the proof is complete.

Theorem 4.6. Let the assumption of Lemma 4.5 be satisfied, and let c−1 ∈ L∞loc(R2) fixed with c(x) =
c0 > 0 for |x| > RC and κ(x) = ω/c(x) with the frequency ω > R+. Then, (18) has a unique solution ex-
cept for a countable (possibly finite) set of frequencies ω, the spurious eigenfrequencies, which accumulates
only at infinity. The set of these frequencies coincides with those of (3).

Proof. The statement follows in analogy of the proof of [46, Lemma 2.6] and using Lemma 4.1.

Remark 4.7. As the solutions ũJ ∈ VJ,h of (18) coincides with uJ ∈ VJ of (3) and as the eigenfrequen-
cies coincide, the guaranteed uniqueness in case of Feng’s absorbing boundary conditions for large enough
domains by [46, Lemma 2.7] apply to ũJ as well.

4.3. Analysis of the discrete discontinuous Galerkin variational formulation

The discrete discontinuous Galerkin variational formulation (6) is the Galerkin discretisation of the
associated variational formulation (18), when using Vh as the finite-dimensional subspace of VJ,h.

Proof of Theorem 2.3. By the assumption that zero is the only solution of the continuous variational
formulation (3) with zero sources, we can choose a function c(x) and a frequency ω such that κ(x) =
ω/c(x) as in [46, Lemma 2.6] and ω is not a spurious eigenfrequency. For J = 0 and |Im α0| > 0 the
statement of the theorem has been proved by Melenk and Sauter [35, Thm. 5.8].

The discrete system (6) is the Galerkin discretisation of (18), which has with κ(x) = ω/c(x) by
Theorem 4.6 the same, eigenfrequencies as (3). Both systems are non-linear in ω and we regard them in
a similar fix-point form as in [46, Eq. (2.6)]. These systems are linear eigenvalue problems in ω2 for given
parameter ω̃ ∈ C\{0}, where the fix-point system of (18) admits a countable set of frequencies ωm(ω̃)
and that of (6) a finite set ωm,h(ω̃). As ω is not a spurious eigenfrequency, ωm(ω) 6= ω for any m ∈ N,
and so the distances of the curves ωm(ω̃) to the point ω̃ = ω is positive. Let dm, m ∈ N denote these
distances.

By the Babuška-Osborn theory [5] the discrete eigenfrequencies, ωm,h(ω̃) tend to ωm(ω̃) if the mesh-
widths tend to zero for a minimal polynomial degree, which depends on J , or if the polynomial degrees
tend to infinity. As a consequence, the distance dm,h of the curve ωm,h(ω̃) to the point ω̃ = ω tends to
dm, and for a fine enough mesh or large enough polynomial degrees |dm,h− dm| < 1

2dm, and so dm,h > 0.
This means that ω is not an eigenfrequency of the discrete variational problem (6). Hence, it admits a
unique solution [43, Sec. 2.1.6] bounded by (7) and, as the bilinear form satisfies a G̊arding inequality,
the Galerkin method is asymptotically quasi-optimal, see [11, 44] and [35, Sec. 3.2].

This completes the proof.

Proof of Lemma 2.4. We start to estimate the error of QΓ,huJ , where QΓ,h is the HJ(Γh)-projection on
Γ onto the trace space TVh(Γ) of Vh on Γ, which is defined by

J∑
j=0

∑
e∈E(Mh,Γ)

∫
e

∂jΓ(QΓ,huJ − uJ)∂jΓvh dσ(x) = 0 ∀vh ∈ TVh(Γ).

By Cea’s lemma [10] we can assert that

‖QΓ,huJ − uJ‖HJ (Γh) ≤ inf
vh∈TVh(Γ)

‖vh − uJ‖HJ (Γh) ≤ ChpΓ−J+1‖uJ‖HpΓ+1(Γ) ≤ C hpΓ−J+1‖fJ‖V ′J .

(25)

Here, we used [46, Lemma 2.8] to obtain the last inequality.
Now, we define a projection QΩ,h : VJ,h → Vh such that QΩ,h · |Γ = QΓ,h. For uJ it is given by∫

Ω

∇(QΩ,huJ − uJ) · ∇vh + (QΩ,huJ − uJ) vh dx = 0 ∀vh ∈ Vh,0,
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Γ = ∂ΩΩ

Figure 2. The geometrical setting for the (a) acoustic scattering on a rigid cylinder of radius RD = 1, and (b) for the
electromagnetic scatting on two cylinders with equilateral triangles as cross-section of length a = 1.05 and distance
d = 0.25. The outer boundary is a circle of radius R.

where Vh,0 is the subset of functions in Vh with vanishing trace on Γ. As the projection QΩ,h is defined
via the H1(Ω)-inner product its continuity follows by Lax-Milgram’s lemma

‖QΩ,huJ‖H1(Ω) ≤ ‖uJ‖H1(Ω).

As QΩ,h is a projection onto Vh we find that

‖QΩ,huJ − uJ‖H1(Ω) ≤ inf
vh∈Vh

‖QΩ,h(uJ − vh)− (uJ − vh)‖H1(Ω)

= inf
vh∈Vh

‖(QΩ,h − Id)(uJ − vh)‖H1(Ω) ≤ 2 inf
vh∈Vh

‖uJ − vh‖H1(Ω).

Using these results we can eventually estimate

(
inf

vh∈Vh

‖vh − uJ‖VJ,h

)2
= inf
vh∈Vh

(
‖vh − uJ‖2H1(Ω) +

J∑
j=1

|vh − uJ |2Hj(Γ)

)

≤ ‖QΩ,huJ − uJ‖2H1(Ω) +

J∑
j=1

|QΓ,huJ − uJ |2Hj(Γ)

≤ 2 inf
wh∈Vh

‖wh − uJ‖2H1(Ω) + ‖QΓ,huJ − uJ‖2HJ (Γ)

and using (8) the statement of the lemma follows.

5. Numerical experiments

We have implemented the non-conforming Galerkin formulation introduced in Sec. 2 for the Feng-4
and Feng-5 conditions in the numerical C++ library Concepts [13, 19, 47] , as well as Feng-0 till Feng-
3 with the usual continuous formulations (compare [57] for implementational details related to BGT
absorbing boundary conditions). The hp-FEM part of Concepts is based on quadrilateral, curved cells
in 2D where the polynomial degree can be set independently in each cell and even anisotropically. With
cells having circular edges the circular boundary can be exactly resolved (see Fig. 3), where a geometry
error appears only in the numerical quadrature of the integrals.

For the numerical experiments we study two model problems:
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Figure 3. A sequence of curved quadrilateral meshes for the scattering on a circular disk in Concepts.

Figure 4. The scattered field (real part) for the model problem A. (left) and model problem B. (right), both with R = 8.

A. the acoustic scattering on a rigid cylinder with circular cross-section, where the computational
domain Ω is the disk of radius R without the disk of radius RD = 1 (see Fig. 2(a)) and k = 1, and

B. the electromagnetic scattering on two dielectric cylinders, whose cross-section are equilateral tri-
angles of length a = 1.05 and distance d = 0.25 (see [31] and Fig. 2(b)). We have κ2(x) = ε(x)ω2

with the angular frequency ω and the (relative) dielectricity ε(x), which is −40.2741− 2.794i inside
the cylinders and 1 outside, hence k = ω. We choose as frequency ω = 0.638 corresponding to a
wave-length in the exterior λ = 2π/k = 9.84.

For both model problems the incident wave is a plane wave in direction (1, 0)> (from left). For model
problem B the mesh is refined close to the nodes of the triangles.

Discretisation error for model problem A. We study the the discretisation error for the Feng-
5 condition for the model problem A, where we compute on a family of meshes of the computational
domain Ω with R = 8, see Fig. 3. Reference solutions are computed for the same model with the Feng-5
condition and on the same mesh, respectively, but with a polynomial degree which is that high, that the
discretisation error of the reference solution can be neglected. The discretisation error is computed as
difference of the discrete solution and the reference solution.

The results of the convergence analysis are shown in Fig. 6. We observe convergence orders of the
discretisation error in the H1(Ω)-seminorm of 1.0 for p = 1, 2.0 for p = 2 and 3.0 for p = 3, and in the
L2(Ω)-norm of 2.0 for p = 1, 3.0 for p = 2 and 4.0 for p = 3. Hence, we observe convergence orders that
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Figure 5. Convergence of the relative discretisation error in (a) the H1(Ω)-seminorm, and (b) the L2(Ω)-norm for the
nonconforming Galerkin formulation with polynomial order p = 1 to p = 3 for the Feng-5 conditions for the model
problem A, where RD = 1 and R = 8.
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Figure 6. Convergence of the relative discretisation error in (a) the H1(Ω)-seminorm, and (b) the L2(Ω)-norm for the
nonconforming Galerkin formulation with polynomial order p = 1 to p = 3 for the Feng-5 conditions for the model
problem A, where RD = 1 and R = 3.

meet the orders of the best-approximation error. In the variational formulation with Feng’s conditions
we have integrals of the trace of the solution and its derivatives on the outer boundary Γ. Therefore,
we studied the convergence of the discretisation error on Γ as well. In the H1(Γ)-seminorm the obtained
convergence rates are 1.2, 2.0 and 3.0 for p = 1, 2, 3, respectively, and correlate to the convergence orders
of the best-approximation error. In the L2(Γ)-norm we get convergence rates of 2.0, 4.0, and 5.3 for
p = 1, 2, 3, respectively. The observed convergence rates are for p = 2 and p = 3 better than the those
for the best-approximation error of an arbitrary, smooth enough function.

Modelling error for model problem B. For model problem B we compare the use of Feng’s conditions
of different order for a fine mesh with polynomial p = 6, for which the discretisation error is less than
1 · 10−6 in L∞(Ω). Hence, the modelling error is dominating. In Fig. 8 we show the modelling error for
R = 8 using the Feng-0 condition, which is of Robin type, the Feng-2 condition, which is of Wentzel type,
and the Feng-4 condition. Increasing the order of the condition leads to a significant error reduction,
the error diminishes by a factor of 100 when using Feng-2 instead of Feng-0, and by another factor of

18



(a)

2−2 2−1 1 2 4 8
10−6

10−5

10−4

10−3

10−2

10−1

100

mesh width h

‖u
F
e
n
g
-N
,h
−
u
‖ L

2
(Ω

)
/‖
u
‖ L

2
(Ω

)

Feng-0

Feng-1

Feng-2

Feng-3

Feng-4

Feng-5

(b)

2−2 2−1 1 2 4 8
10−6

10−5

10−4

10−3

10−2

10−1

100

mesh width h

Feng-0

Feng-1

Feng-2

Feng-3

Feng-4

Feng-5

Figure 7. Convergence of the total error of the finite element discretisation for model problem A with Feng’s conditions of
order 0 to 5 in the mesh-width h for (a) p = 2 and (b) p = 3. The radius of the domain is R = 8.
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Figure 8. The error (absolute value) for model problem B with R = 8 on a fine mesh resolving the triangles and p = 6.

10 when using Feng-4 instead of Feng-2. For the parameters used the Feng-5 conditions do not give a
further error reduction. This will only be achieved for larger domain radia R.

Total error for model problem A. Using the proposed finite element method for the scattering using
Feng’s conditions the discrete solution compromises a discretisation error and a modelling error. When
fixing the domain, and let R large enough, then mesh refinement the error reduces due to a decrease of
the discretisation error and saturates on the level of the modelling error. To obtain a certain level of the
total error level the refinement of mesh might not be sufficient, where then either an higher order Feng
condition has to be used or the radius of the domain is to be increased.

We have studied the total error for the model problem A with a fixed domain Ω with R = 8, and
uniform polynomial degrees p = 2, 3. The total L2(Ω)-error as a function of the mesh-width h for Feng’s
conditions up to order 5 are shown in Fig. 7. Before reaching the level of the modelling error the total
error decays like O(h3) or O(h4) for p = 2 or p = 3, respectively.
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[4] Aslanyürek, B., Haddar, H., and Şahintürk, H. Generalized impedance boundary conditions
for thin dielectric coatings with variable thickness. Wave Motion 48, 7 (2011), 681–700.
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