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Abstract
Despite recent breakthroughs in deep learning for materials informatics, there exists a disparity between their popularity in 
academic research and their limited adoption in the industry. A significant contributor to this “interpretability-adoption gap” 
is the prevalence of black-box models and the lack of built-in methods for model interpretation. While established methods 
for evaluating model performance exist, an intuitive understanding of the modeling and decision-making processes in models 
is nonetheless desired in many cases. In this work, we demonstrate several ways of incorporating model interpretability to 
the structure-agnostic Compositionally Restricted Attention-Based network, CrabNet. We show that CrabNet learns mean-
ingful, material property-specific element representations based solely on the data with no additional supervision. These 
element representations can then be used to explore element identity, similarity, behavior, and interactions within different 
chemical environments. Chemical compounds can also be uniquely represented and examined to reveal clear structures and 
trends within the chemical space. Additionally, visualizations of the attention mechanism can be used in conjunction to 
further understand the modeling process, identify potential modeling or dataset errors, and hint at further chemical insights 
leading to a better understanding of the phenomena governing material properties. We feel confident that the interpretability 
methods introduced in this work for CrabNet will be of keen interest to materials informatics researchers as well as industrial 
practitioners alike.
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Introduction

Machine learning (ML) in materials informatics (MI) has 
received significant attention in the academic research 
world and is gaining widespread adoption [1–5]. More 
specifically, it has recently been extensively studied for its 
use in the research and design of novel inorganic materials 
[6–10]. This is enabled by three major developments: (1) 
the increasing number of material property datasets as well 
as the improvement in dataset quality and variety, (2) the 
rapid pace and development of new ML models tailored to 

addressing different challenges in materials science (e.g., 
regression, classification), supplemented by (3) the increase 
in available computing power and accessibility to ML and 
deep learning tools. The combination of these developments 
led to improved capabilities in the exploration and modeling 
of material properties in the academic world.

Classical ML methods (e.g., linear regression, random 
forest, support vector machines) have successfully been 
used for the regression and classification of many mate-
rial properties [11–17]. These methods usually rely on the 
featurization of the input chemical formulae into numeri-
cal features that are usable by the models. Typically, this 
is achieved through the use of a composition-based fea-
ture vector (CBFV), which uses descriptive statistics of 
the properties of constituent atoms in each compound to 
uniquely represent it [18]. Some common CBFV feature 
sets are Oliynyk, Magpie, Jarvis and mat2vec [11, 12, 
19, 20]. Here, a distinction is made between physically 
derived CBFVs (with features based on measurable ele-
ment properties) like Oliynyk, Magpie and Jarvis, and 

 *	 Anthony Yu‑Tung Wang 
	 anthony.wang@ceramics.tu-berlin.de

1	 Technische Universität Berlin, Institute of Material Science 
and Technology, Fachgebiet Keramische Werkstoffe/Chair 
of Advanced Ceramic Materials, Straße des 17. Juni 135, 
10623 Berlin, Germany

2	 Department of Computer and Data Sciences, Case Western 
Reserve University, Cleveland, OH 44106, USA

http://orcid.org/0000-0002-7947-0309
http://crossmark.crossref.org/dialog/?doi=10.1007/s40192-021-00247-y&domain=pdf


42	 Integrating Materials and Manufacturing Innovation (2022) 11:41–56

1 3

computationally derived CBFVs (with features obtained 
from computational or deep learning models) like mat-
2vec. For some properties, additional features such as 
structural information and processing or measurement 
conditions are included to further improve model perfor-
mance [2, 16, 21, 22].

In more recent years, deep learning (DL) models have 
gained widespread popularity in MI due to numerous advan-
tages compared to classical ML methods. Some examples are 
ElemNet, CGCNN, MEGNet, DimeNet++, and ALIGNN 
[23–27]. More recently, graph neural network (GNN) mod-
els incorporating attention-based mechanisms such as Crab-
Net, Roost and H-CLMP have gained increasing popularity 
[28–30]. GNNs have shown improved performance com-
pared to other DL models, particularly in the absence of 
structural information as model inputs. Another advantage 
of GNNs is that the inductive biases built into the model and 
the input data structure are more suited to the learning of 
material properties, since the interactions between the atoms 
in the compound can be modeled as weighted interactions 
between nodes in a graph. In CrabNet, for example, the atom 
representations are either based on a CBFV feature (mat2vec 
element vectors) or a non-CBFV feature (onehot element 
vectors) [28]. For the sake of clarity, the remaining text will 
use the acronym DL to refer to both deep learning (DL) and 
graph neural network (GNN) models and methods.

Unfortunately, while DL methods show superb perfor-
mance in modeling material properties, the element features 
used by these models typically do not represent any measur-
able physical property of the elements themselves. Instead, 
the element representations are learned from the data during 
the model training process. Therefore, they do not directly 
provide useful information or insights that can be interpreted 
by humans. This is different from the CBFV representation 
typically used in classical ML, where the features represent 
properties of the elements which are known a priori, such 
as the atomic mass, first ionization energy, or number of 
valence electrons.

Despite the high performance of the DL models, there is a 
disparity between their extensive study in academic research 
and their limited adoption in the industry for the exploration 
of materials. We term this disparity the “interpretability-
adoption gap”. One significant hurdle to the widespread 
adoption of the often “black-box” models is the lack of 
built-in methods for model interpretation. While there are 
established methods of evaluating model performance in 
academia [14, 31–33], those who are less familiar with DL 
typically require more intuition into how the models function 
before they can fully trust the results. Particularly in indus-
try, where there is usually a lower risk tolerance compared 
to academia, findings based on black-box models and vague 
model evaluation criteria are not enough to justify making 
high-stakes decisions such as investing in new research [5, 

34–38]. Tangible methods of investigating and understand-
ing model decision-making processes are therefore required 
to facilitate their adoption in an industrial setting [39].

This led to the development of explainable AI (XAI), 
which aims to introduce methods for deciphering the inter-
nal workings of black-box models and thus enabling users 
to understand the modeling processes and results [39, 40]. 
Examples of XAI in research fields outside of MI include: 
visualizing word embeddings in natural language processing 
[41–43], inspecting decision-making processes in reinforce-
ment learning [44–46], visualizing pixel importances [47, 
48], or segmenting in computer vision [49, 50]. To date, 
however, XAI techniques have—with the exception of a few 
works employing classical ML—largely been underexplored 
for DL in the MI field [10, 51, 52].

Two common post-hoc model-agnostic methods for 
obtaining explainable models in classical ML are SHAP and 
LIME [39, 53–55]. Both of these methods are built on top of 
existing black-box models and use local feature perturbation 
to estimate the contributions from input features towards 
the predictions. Other models such as random forest, gradi-
ent boosting, and lasso regression inherently provide model 
interpretability via the use of internal feature importance 
metrics and (in some models) through bootstrap sampling 
and feature sampling [39, 51, 56]. Nonetheless, these tech-
niques require that the individual features of the input data 
are meaningful and represent a measurable feature or physi-
cal property. This works in the domain of classical ML and 
when using a physically derived CBFV to featurize com-
pounds; however, this is not the case for DL methods where 
the features typically do not reflect measurable values. Thus, 
these traditional ways of model interpretability fall short in 
use for the DL models.

Therefore, it is the goal of this work to explore how to 
increase model interpretability in DL models specifically for 
applications in MI. Here, we demonstrate how parts of the 
typically black-box modeling process can be communicated 
visually and in an interpretable way, using our attention-
based model, CrabNet [28]. We have extended CrabNet’s 
architecture to enable intrinsic interpretability using several 
methods to be discussed below. In this regard, we lay the 
first bricks in the bridge spanning the interpretability-adop-
tion gap between academia and industry. This will not only 
aid researchers in further developing complex models with 
interpretability in focus, but also promote the adoption of 
these modeling methods in the materials science industry.

Results and Discussion

The results of this study are described in five subsections. 
We first compare the element embeddings learned by Crab-
Net against other CBFV feature sets from the literature, 
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and show how chemical behavior and patterns in element 
properties can be learned entirely from the training data for 
each material property. We also show that the learned ele-
ment representations are comparable to physically derived 
CBFVs. Secondly, as part of this analysis, we characterize 
the element prevalence imbalance in the datasets using the 
Shannon equitability index and relate that to the quality of 
the learned element embeddings. Third, we further examine 
how the element representations are successively updated 
using information about their chemical environment in the 
compounds, and how they may be used to gain additional 
insights about element behaviors in different environments. 
Fourth, we inspect how entire chemical compounds can also 
be adequately captured using the EDMs and subsequently 
visualized. We identify interesting trends in the compound 
representations relating the bond character and number of 
elements in the compounds to the material property and pre-
diction error, and discuss how such visualizations can lead 
to additional understanding about the modeling process and 
the underlying materials chemistry. Lastly, we explore how 
the self-attention mechanism in CrabNet can be visualized 
in the form of videos and used to further examine the mod-
eling process, leading to potential new insights about the 
chemical interactions within a compound. While we use the 
OQMD_Bandgap dataset to demonstrate the analyses, we 
note that similar analyses can be also carried out with any of 
the 28 materials datasets presented in this work.

Learning Meaningful and Per‑Property Element 
Representations

Element representations were obtained as featurized 
CBFVs, which are fixed-length vectors where each element 
is uniquely described by the same set of features [12, 18]. 

For the Oliynyk, Magpie and mat2vec element property fea-
ture sets, we use the published vectors to represent the ele-
ments [18, 20]. For the CrabNet element representations, we 
extract the element vectors from the element-derived matri-
ces (EDMs) at the output of the embedding layer (please 
refer to the CrabNet publication for architecture details [28]). 
We then examine the similarity between two element vectors 
x and y by computing the Pearson correlation coefficient r 
using Equation 1:

where n is the number of features, xi and yi are the values 
of the ith feature, and x̄ and ȳ are the mean values of x and 
y, respectively.

The correlation r ranges from -1 to 1; the higher or lower 
the value of r is, the more correlated or anticorrelated are 
the features that describe the elements, respectively. A value 
of zero means that there are no correlations between the 
features of the elements. We compute the pairwise correla-
tion coefficients between the element vectors for all elements 
and for all element property representations, and show these 
as heatmaps in Fig. 1. Note that the plots are cropped to the 
range of elements of the Oliynyk heatmap to aid compari-
son; please refer to supplementary Fig. S-1 in the supple-
mentary information (SI) for the full heatmaps. In addition, 
interactive versions of the plots are provided in the SI.

Here, we can observe that element vectors based on 
the Oliynyk and Magpie CBFVs contain large regions 
of similar color in the heatmap. The regions of similar 
color indicate that the element representations are either 
highly correlated or highly anticorrelated with each other. 

(1)r =

∑n

i=1
(xi − x̄)(yi − ȳ)

�

∑n

i=1
(xi − x̄)2(yi − ȳ)2

Fig. 1   Heatmaps of Pearson correlation matrices between element 
vectors featurized using a Oliynyk, b Magpie, and c mat2vec element 
property feature sets. The x- and y-axes are labeled with the atomic 
numbers. Each cell at coordinate (x,  y) represents the correlation 
between the corresponding elements with atomic numbers x and y. 

Blue represents a high correlation and red represents a high anticor-
relation. For the interest of comparison, the heatmaps are truncated to 
the dimensions of the Oliynyk heatmap. Empty rows indicate that no 
element vector is available
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Furthermore, these regions are very similar between the 
two CBFVs. This is expected, since the CBFV features 
are based on physical properties of the elements. Thus, 
elements with similar physical properties will be more cor-
related while dissimilar elements will be more anticor-
related. Accordingly, the large colored regions typically 
correspond to similarities and dissimilarities between ele-
ments from families in the periodic table, such as alkali 
metals, alkaline earth metals, transition metals, metalloids 
and reactive nonmetals.

On the other hand, the element vectors from a DL model 
such as mat2vec do not exhibit such prominent behavior. 
Overall, the elements show less correlation with each other, 
and—with the exception of a few areas (to be discussed in 
later sections)—do not show large continuous regions of 
similar color. This is due to the fact that the starting element 
representations in DL models are randomly initialized and 
are not based on physical properties of the elements. These 
vector representations of the elements are only updated by 
the model throughout the training process using the training 
data. Thus, the correlation patterns that can be observed in 
this figure represent distinct patterns that the DL model has 
learned solely from the provided data.

We also note that a different number of element vectors 
are recorded in the feature sets. For the Oliynyk and Mag-
pie CBFVs, only the elements up to uranium and berkelium 
are reported, respectively, while vectors up to the element 
oganesson are provided by mat2vec (please refer to sup-
plementary Fig. S-1 in the SI for the uncropped heatmaps). 
Particularly for the Oliynyk CBFV, some element vectors are 
missing, as visible by the empty rows in the heatmap. This 
disparity in the availability of element vectors between dif-
ferent CBFVs can be caused by reasons such as the instabil-
ity or rarity of elements, lack of adequate information about 
the elements, or the inability to measure properties about 
the elements. The lack of element vectors in some material 
property feature sets can limit their applicability for certain 
tasks (such as when studying rare elements) and will be dis-
cussed in more detail in later sections.

In addition to learning element representations for a gen-
eral purpose in materials science, such in the case of mat-
2vec, DL methods can also learn to relate element charac-
teristics on a material property-specific basis. For example, 
element embeddings were extracted from the CrabNet and 
HotCrab models which were reproduced using the supplied 
model weights and the source code [57, 58]. The CrabNet 
and HotCrab models use mat2vec and onehot-encoded ele-
ment features as the starting element representations, respec-
tively. These features are then fine-tuned by the models for 
each of the 28 reported datasets. We extract one set of ele-
ment embeddings from each layer of the models. Then, the 
Pearson correlation between the element vectors are calcu-
lated and shown in Fig. 2.

In this work, we use the OQMD_Bandgap dataset to 
demonstrate our findings. Additional example plots for other 
properties can be found in the SI. The OQMD datasets are 
widely used by researchers to evaluate model performance. 
For detailed information about the OQMD_Bandgap dataset 
as well as information and discussion about the calculated 
values, please see the literature [59–61].

Here, we can observe that both CrabNet and HotCrab are 
able to learn embeddings for each element of the periodic 
table, and that the correlations between the elements have 
a similar pattern, irrespective of the starting element rep-
resentation (mat2vec or onehot). The observed correlation 
patterns are also similar to the mat2vec patterns as seen in 
Fig. 1c. The ability of both CrabNet and HotCrab models 
to learn similar element embeddings despite having drasti-
cally different starting representations is encouraging, and 
further suggests that domain knowledge is not necessarily 
required for element featurization if a sufficient quantity and 
quality of training data is available [18]. This finding is cor-
roborated by the similarly good performance of both models 
across a wide range of material properties [28]. Interest-
ingly, for deeper layers of the models (Fig. 2b and d), more 
intense correlation patterns between the elements emerge. 
This is likely attributed to the self-attention-based learning 
mechanism of the underlying CrabNet models. At each suc-
cessive layer within the model, information about additional 
element-element interactions within the compound (i.e., the 
chemical environment) are successively taken into account 
when updating the identity of an element within that com-
pound. As a result, the deeper the layer within the model, 
the more complex the element interactions—and the element 
representations—become.

It is also interesting to note the diagonal and horizon-
tal patterns which can be observed in all of the correlation 
matrices. For example, in Fig. 2d there is a 45-degree diag-
onal, blue line that can be seen in the correlation matrix 
starting at the coordinates (13, 31) (corresponding to the 
element pair (Al, Ga)) and continuing until (40, 58) (cor-
responding to (Zr, Ce)). This line highlights the well-known 
periodic law which states that elements with similar chemi-
cal properties fall into recurring periodic groups. Please 
refer to supplementary Fig. S-2 for the enlarged version of 
the annotated heatmap and for correlation plots for other 
material properties. Another observation is the triangular 
region of high correlation between (57, 57) and (71, 71), 
which indicates that the first-row elements of the f-block 
are highly similar to each other. A similar triangular region 
can be observed between (23, 23) and (29, 29), indicating 
similarities between some first-row elements of the d-block. 
Lastly, the vertical blue line starting at the coordinates 
(39, 57) and continuing to (39, 71) indicate the chemical 
similarities between yttrium and the first-row elements of 
the f-block. These and other patterns can also be observed in 
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the Oliynyk and Magpie CBFVs in Fig. 1 as well. The ability 
of the CrabNet and HotCrab models to learn such chemical 
relationships which are comparable to hand-curated CBFVs 
based solely on the chemical formulae is exciting, and fur-
ther reaffirms the finding that hand-engineering of features 
is not needed when training on big data [18].

Moreover, in Fig. 2c we observe a distinct “border” at 
the element plutonium (with atomic number 94), where 
the correlation coefficients between the elements sud-
denly decrease and the patterns become less pronounced. 

Additional analysis of the OQMD_Bandgap dataset showed 
that it does not contain any compounds with elements past 
plutonium. Due to the fact that the element representations 
are learned purely by the model from the dataset, their qual-
ity depends heavily on the quality of the dataset. Since the 
model performance depends on the quality of the element 
representations, by extension, it also then depends on the 
dataset quality [32].

We define element prevalence as the number of times 
a certain element has appeared as part of the compounds 

Fig. 2   Heatmaps of Pearson correlation matrices between element 
vectors extracted from CrabNet and HotCrab. These element rep-
resentations are learned entirely from data. The x- and y-axes are 
labeled with the atomic numbers. Each cell at coordinate (x, y) rep-
resents the correlation between the corresponding elements with 
atomic numbers x and y. The top row (a and b) shows the correlations 

between embeddings from CrabNet and the bottom row (c and d) 
from HotCrab. The left and right columns represent the embeddings 
extracted from the first and last layer of the models, respectively. Blue 
represents a high correlation and red represents a high anticorrelation. 
In d, some regions of interest are annotated
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in a given dataset. When examining the OQMD_Bandgap 
dataset, we note that there is an imbalance in element preva-
lence, with oxygen and copper appearing almost 1.5 times 
to twice as often, and fluorine, chlorine, bromine and iodine 
appearing only less than 0.1 times as often as the majority 
of the other elements in the dataset, respectively. This imbal-
ance in element prevalence is even stronger for other datasets 
such as the aflow__Egap, castelli, CritExam, mp_e_form 
and phonons datasets (see supplementary Fig. S-3 in the SI 
for some example element prevalence plots).

Quantifying Dataset Imbalance

The degree to which a dataset is imbalanced (otherwise 
referred to as its “evenness”) can be measured using the 
Shannon equitability index, which is a function of the Shan-
non entropy of the dataset [62–64]. Shannon entropy is 
widely used in information theory and can be used to char-
acterize the degree of imbalance in a dataset [65, 66]. The 
Shannon entropy H is defined in Equation 2 as:

where X is the set of discrete variables xi ∈ {x1, … , xn} , i 
is the class, P(xi) is the proportional abundance of xi and k is 
the total number of classes in the dataset.

For a dataset D of n data occurrences and k distinct chem-
ical elements (classes), each with counts ci , P(xi) =

ci

n
 and 

the Shannon entropy can thus also be written as Equation 3:

(2)H(X) = −

k
∑

i=1

P(xi) logP(xi)

For continuity, we note that when ci = 0 , it means that no 
data sample is related to class i in the dataset, and therefore 
the multiplicand within the summation is defined to be 0. 
Mathematically, limp→0+ p log(p) = 0 . The maximum value 
of H(D) is log(k) . This value occurs when all element classes 
in the dataset are observed at the same frequency (i.e., the 
dataset is completely balanced). Therefore, the Shannon 
entropy H(D) is scaled by log(k) to finally obtain the Shan-
non equitability index E(D) , which is defined in Equation 4 
as:

E(D) ranges between 0 for a maximally imbalanced dataset 
and 1 for a maximally balanced dataset. The Shannon equi-
tability indices are calculated for the 28 datasets examined 
in this work and are presented in Table 1. A plot showing 
the same information can be found in the SI (supplementary 
Figure S-4). For more information about the datasets, please 
refer to the CrabNet publication [28].

As can be seen in the table, the datasets studied in this 
work are not equally balanced in terms of element diversity. 
The more imbalanced a dataset is in terms of the element 
prevalence in the chemical compounds, the less likely the 
models will be able to adequately learn about the elements 
and their environments. The element embeddings learned for 
the infrequent elements will therefore be weaker and will not 

(3)H(D) = −

k
∑

i=1

ci

n
log

(ci

n

)

(4)E(D) =
H(D)

log(k)

Table 1   Shannon equitability 
indices calculated from the 
training data splits of the 28 
reported datasets. Datasets were 
taken from [28]

Material property dataset Equitability Material property dataset Equitability

castelli 0.823 aflow__ael_bulk_modulus_vrh 0.948
dielectric 0.864 aflow__ael_debye_temperature 0.948
elasticity_log10(G_VRH) 0.953 aflow__ael_shear_modulus_vrh 0.948
elasticity_log10(K_VRH) 0.953 aflow__agl_thermal_conductivity_300K 0.940
expt_gap 0.931 aflow__agl_thermal_expansion_300K 0.944
expt_is_metal 0.930 aflow__Egap 0.920
glass 0.771 aflow__energy_atom 0.917
jdft2d 0.872 CritExam__Ed 0.914
mp_e_form 0.913 CritExam__Ef 0.914
mp_gap 0.916 mp_bulk_modulus 0.923
mp_is_metal 0.916 mp_elastic_anisotropy 0.921
phonons 0.909 mp_e_hull 0.897
steels_yield 0.959 mp_mu_b 0.897

mp_shear_modulus 0.921
OQMD_Bandgap 0.976
OQMD_Energy_per_atom 0.976
OQMD_Formation_Enthalpy 0.976
OQMD_Volume_per_atom 0.976
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be able to capture as much information about these elements 
as compared to more frequently occurring elements. This 
leads to the observed weak correlation patterns between the 
less frequently seen elements beyond a certain cutoff atomic 
number in the datasets, as discussed earlier for Fig. 2.

If the weakly learned elements are then encountered dur-
ing inference time, the model will not be able to make an 
adequate prediction using the elements’ representations. 
Additionally, if certain elements or element combinations 
appear more frequently (majority classes) in the datasets 
as compared to other elements or combinations (minor-
ity classes), the model may be biased to better capture the 
behavior of majority classes at the expense of sacrificing 
performance on the minority classes. Such a dataset bias 
may appear in computational or experimental datasets due 
to the fact that some elements are more commonly studied 
for certain material applications. On the other hand, certain 
elements (e.g., rare or unstable elements) naturally occur 
less frequently and therefore are also contained in fewer 
compounds and datasets. Certain elements such as noble 
gases also rarely form compounds with other elements and 
are therefore rarely reported in materials datasets.

It is therefore important to implement data processing 
and modeling techniques to address biases as a result of 
dataset imbalance. Some example techniques include data-
set re-sampling, generating synthetic data for imbalanced 
classes, implementing weighted loss functions that penalize 
errors for minority classes more, or using alternative loss 
functions and metrics to evaluate model performance [64, 
67, 68]. Additionally, the model architecture can also be 
tailored to address dataset bias, and certain types of models 
(such as those based on self-attention or guided attention 
architectures) have an increased robustness against dataset 
bias [69, 70].

Lastly, it is worthy to note that while most DL models 
learn element representations from structured materials 
datasets, methods such as word2vec and mat2vec use text 
mining and other natural language processing (NLP) tech-
niques to learn the element embeddings from academic pub-
lications [20, 71, 72]. The data present in publications covers 
a much longer time period and contains a higher diversity in 
terms of types of compounds, material properties and appli-
cations studied. These data are in unstructured form and 
therefore cannot be used as training data for DL methods 
such as CrabNet; however, they can easily be used for word-
2vec and mat2vec. Therefore, these text mining methods are 
able to learn from a much larger corpus of materials data and 
are not restricted by the availability of structured datasets. 
Accordingly, DL models such as CrabNet can benefit by 
using the pre-trained mat2vec element embeddings and fine-
tuning them to new tasks, thereby minimizing the impact of 
missing elements in the training dataset.

Capturing the Influence of Chemical Environments 
on Element Representations

In addition to learning the representations of each element, 
CrabNet and HotCrab can also capture the behavior of the 
elements when they are present in different chemical envi-
ronments. Figure 3 shows the two-dimensional projections 
of the element vectors corresponding to the silicon atom 
from 2374 different silicon-containing compounds within 
the OQMD_Bandgap test dataset. The silicon vectors are 
extracted from the transformed EDM tensors from HotCrab 
(a onehot-featurized version of CrabNet) and show the trans-
formation of the silicon representations after they are passed 
through the three successive self-attention layers. For visu-
alization, the vectors are projected down to two dimensions 
using the uniform manifold approximation and projection 
(UMAP) method [73]. The resulting points are plotted and 
colored by three parameters: (1) the fractional abundance 
of the element silicon in the compound, (2) the predicted 
property value of the compound (in this case, band gap), and 
(3) the oxidation state of silicon as predicted by Pymatgen 
[74]. For more information, please see the Methods.

As can be seen in the plots from the first layer (first row), 
there is a large number of distinct point clusters, with one 
major cluster near the center, two medium clusters above and 
below the center cluster, and many smaller clusters consist-
ing of a few points. The larger clusters are formed because 
the initial representations of the silicon atoms are very 
similar to another (due to the learned element embedding 
of silicon). The similar silicon vectors are thus projected 
through UMAP into coordinates that lie close together, even 
though the silicon atoms are present in different chemical 
environments.

We can observe as well that the clustering in layer one 
is mostly attributable to the fractional amount, since each 
cluster consists primarily of points with the same fractional 
silicon amount. After the second layer, we observe that the 
points start to become separated into different and recogniz-
able clusters. The clusters are no longer identifiable entirely 
based on the fractional amount of silicon, and clusters based 
on the predicted band gap value of the compound and oxida-
tion state of silicon start to emerge. By the end of the third 
and last layer, we can observe four clusters that are distin-
guishable by the fractional amount of silicon, the predicted 
band gap, and the oxidation state of silicon (the clusters are 
outlined in Fig. 3, bottom left).

More specifically, we observe that the cluster at the bot-
tom-right side of the plot consists mainly of silicon with a 
fractional amount of around 0.15 to 0.3 (with a few points 
reaching 0.5), whereas the cluster near the bottom-left con-
tains almost exclusively of silicon with fractional amounts 
of 0.5 plus a few points above 0.5. The cluster near the top 
contains regions of silicon with fractional amounts between 
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0.3 to 0.4 near the left and right, and around 0.2 to 0.3 in 
the middle. Near the top of this cluster, a smaller cluster is 
highlighted which consists mainly of silicon instances with 
low abundance, between 0.2 and 0. Please note that interac-
tive versions of these plots can be found in the SI together 
with another example visualization plotted for the element 
chromium (supplementary Fig. S-5).

In the predicted value plot of the last layer, we observe 
that only the small cluster near the top contains the silicon 
element in compounds with a nonzero band gap. Similarly, 
when examining the oxidation state plot, we note that while 
most clusters contain a mixture of silicon atoms in several 
oxidation states, the same cluster near the top consists almost 

exclusively of silicon atoms in the +4 oxidation state and 
very few atoms in other oxidation states. Closer examination 
reveals that this cluster consists primarily of silicate mate-
rials such as Ca2SiO4, CaMgSiO4, MgMnSiO4, Li4SiO4, 
Sr3MgSi2O8, Li2MgSiO4, and others. Interestingly, while 
some compounds with silicon in the +4 state are visible in 
other clusters, these compounds have a zero band gap. This 
suggests that additional interactions between the elements 
were captured by HotCrab which lead to these compounds 
being correctly clustered together with other compounds 
with zero band gap.

These element behavior plots suggest that for silicon-
containing compounds in the OQMD_Bandgap dataset, 

Fig. 3   Vector representations of the silicon element in 2374 different 
chemical environments and at different layers of the HotCrab model. 
Each point shows the model-internal representation of the silicon 
atom, after the information regarding the other atoms in the chemi-
cal environment have been introduced via HotCrab through the three 
attention layers (top row to bottom row). The points are colored by: 

(left column) the fractional abundance of silicon, (center column) the 
predicted value of the compound, and (right column) the predicted 
oxidation state of silicon, where gray points indicate that the oxida-
tion state was unable to be predicted. Four clusters are outlined in the 
bottom-left plot
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the fractional amount and the oxidation state of the silicon 
atoms are important factors that together determine the band 
gap of the compounds. By cross-referencing the three plots, 
we can identify trends between the fractional amount and 
oxidation state of silicon and relate this information to the 
predicted band gap of the compounds. On the other hand, 
the clustering also suggests that there are other interactions 
between the elements in a compound which are currently 
not highlighted by the selected properties in Fig. 3. It is our 
expectation that by examining these interactions, additional 
insight about the modeling process and element representa-
tions can be gained. Moreover, the findings from examining 
internal representations of elements in this way may suggest 
additional studies to further improve the understanding of 
the underlying phenomena governing materials behaviors. 
Note that while these visualizations were generated using 
HotCrab, similar results can be obtained using the CrabNet 
model.

Capturing Globally Unique Representations 
of Chemical Compounds

In addition to examining the behavior of individual elements 
in different chemical environments, we can also visualize all 
of the compounds in a given dataset to uncover additional 
insights. We extract the internal vector representation of all 
of the 51242 compounds in the OQMD_Bandgap test dataset 
from the last self-attention layer of HotCrab, perform dimen-
sionality reduction using UMAP and finally visualize the 
compounds as shown in Fig. 4. In addition to coloring the 
plots by the predicted value, prediction error, and number of 
distinct elements for the compounds, we also highlight the 
chemical trend between ionic to covalent bonding character 
within the compounds. This trend is revealed by calculat-
ing and visualizing the standard deviation of the Pauling 
electronegativities of the constituent atoms �� in a given 
compound [75] according to Equation 5:

where �i is the Pauling electronegativity of each element i 
in the compound (totaling n elements), and 𝜒̄ is the average 
electronegativity of all elements in the compound. A higher 
�� signifies a more ionic bonding character, and a lower 
value signifies a more covalent bonding character.

Many clusters with varying sizes are visible in the fig-
ure. Some clusters are placed further apart, while some 
clusters are closer to, or are overlapping other clusters. In 
particular, the outlined cluster near the right of the figure 
is of particular interest. This is the only cluster where the 
compounds with a nonzero band gap are located, as is visible 
from Fig. 4a. Additionally, it is also within this cluster that 

(5)𝜎𝜒 =

�

∑n

i=1
(𝜒i − 𝜒̄)2

n − 1

HotCrab makes the largest errors when predicting the band 
gap value, as seen in Fig. 4b. For the other compounds, the 
prediction errors of HotCrab are close to zero. Even through 
a small proportion of model predictions have larger errors, 
the overall model performance is very good and is compa-
rable with, or better than, other state-of-the-art models [28]. 
This superior performance of CrabNet and HotCrab models 
when predicting properties with a defined cutoff (such as the 
cutoff of 0 eV in this case for band gap) is likely attributed 
to the prediction of element-logits in the modeling process. 
These element-logits are used to weight the final model 
predictions in CrabNet and HotCrab to improve the model 
accuracy [28].

Notably, we also observe from Fig. 4a, c and d that the 
band gap only partially depends on the bond nature of the 
compound and on the number of unique elements in the 
compound. While most of the compounds in the cluster of 
interest exhibit more ionic bond characters, there are also 
other clusters with similar bond character that do not have a 
nonzero band gap. Similarly, it appears that the compounds 
with a nonzero band gap mainly contain four or five unique 
elements; however, there are also other compounds with 
these numbers of unique elements which have a zero band 
gap.

Here, we do note that while UMAP can reveal structures 
and patterns within high-dimensional data, it generally 
emphasizes local structure at the expense of global struc-
ture. Therefore, for the UMAP visualizations shown in this 
work, it is more appropriate to interpret the local structure 
(e.g., the elements or compounds present within individual 
clusters in Fig. 3 and 4) than the global structure. While the 
number of local neighbors considered can be specified as 
a hyperparameter in UMAP, a trade-off is made between 
preserving local versus global structure. Therefore, the dis-
tances between elements and compounds within a single 
cluster are more meaningful than inter-cluster distances in 
the UMAP visualizations. Lastly, we note that while these 
visualizations were generated based on the test dataset using 
HotCrab, similar results can be obtained using CrabNet or 
the training dataset.

Visualizing the Training Progress

Beyond visualizing the element and compound represen-
tations from CrabNet after training, it is also possible to 
access the self-attention matrices of the CrabNet encoding 
layers to observe the model learning process during train-
ing. The attention matrices (commonly referred to as the 
attention maps) contain information regarding how each ele-
ment (rows) is influenced by all other elements in the com-
pound as well as itself (columns). The values in the attention 
maps are the attention scores and are used in the encoder to 
update the element representations. An attention score of 
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zero means that the element in the column is completely 
ignored when updating the element’s representation in that 
row. Conversely, a score of one means that the entire update 
is based solely on that column’s element.

In the CrabNet publication [28], example attention maps 
were shown for compounds after the model has finished 
training. Here, we extend this approach by visualizing the 
CrabNet attention maps during the model training process in 
the form of attention video clips (see SI files for examples). 
This is achieved by saving the attention matrices from the 
model encoder layers after every mini-step in the training 
process and generating a video to show the learning pro-
gress. Fig. 5 shows a snapshot of two example attention 

videos obtained at the end of model training. The attention 
maps from the first encoding layer of CrabNet are plotted as 
heatmaps in the left column, while the right column shows 
the predicted values from the model against the target value 
at every mini-step. This process is performed at every 
mini-step in the training process, and the resulting plots are 
merged into a video clip which shows the learning progress 
of the model throughout training.

From the attention maps, we can observe that some ele-
ments are considered less relevant in the determination of 
the material property, whereas some elements are considered 
very relevant. Also we can note that individual attention 
heads pay attention to different element-element interactions 

Fig. 4   Global representations of the 51242 compounds in the 
OQMD_Bandgap test dataset, extracted from layer three of HotCrab, 
embedded down to two dimensions using UMAP and colored by the 
parameters: a the predicted value of the compound (band gap); b the 
prediction error ( ̂y − y ); c the bond character of the compounds rang-

ing from more covalent (blue) to more ionic (red) as measured by the 
standard deviations in the Pauling electronegativities of the constitu-
ent elements; and d the number of distinct elements in the compound. 
A cluster of interest is outlined in the plot at the top-right
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in the compound, as is visible by the significantly different 
attention patterns in the plots. Throughout the training pro-
cess, the attention pattern for each head remains relatively 
fixed after a few mini-steps, indicating that the model dis-
covers a pattern for recognizing inter-element interactions 
early on in the training process, which it then continues to 
refine as more training steps are taken.

For the top compound, we can observe that while the 
model initially over- and underestimates the property value 
early on in the training, it learns to correct the error and 
finally achieves a low prediction error towards the end of 

training. Conversely, for the bottom compound, we observe 
that while the model initially correctly estimates the prop-
erty value of the compound, the predicted value decreases 
and the estimation error increases throughout training, with 
the error finally plateauing towards the end of the training. 
By examining the attention heatmaps for this compound, we 
notice that attention head 1 shows a significantly different 
behavior as compared to the other attention heads. It dedi-
cates almost all of its attention to the element iron, while 
the other attention heads capture many more inter-element 
interactions. It may be interesting to investigate further to 

Fig. 5   Snapshots of attention videos for observing the training pro-
gress of CrabNet using two example compounds a Gd

1
Mn

1
Si

1
 and b 

C
5
Ca

1
Fe

1
H

8
N

6
O

5
 from the validation data split of the aflow__Egap 

dataset. The left plots show the attention maps of the four attention 
heads at the first attention layer, where the x axis of each heatmap is 

labeled with the fractional amount of the elements and the other axes 
are labeled with the element symbol. The right plots show the model 
predictions (blue) for the compounds, evaluated after each training 
mini-step throughout the whole training process. The true property 
value (target) is represented with the red “X” and the dotted line
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find out if CrabNet is misrepresenting the interactions from 
the iron element with the other elements and thus making the 
prediction error, or if another phenomenon is contributing to 
the prediction error on this compound.

By observing the element groups and inter-elemental 
interactions that CrabNet pays attention to for each material 
property throughout the training process, we may be able to 
gain additional insight about which relevant elements and 
interactions contribute significantly to the material prop-
erty. Similarly, in the case where the model does not make a 
good property prediction or fails to learn a specific material 
property, these attention videos can be informative in show-
ing when, where, and how the model fails. Additionally, 
since the element representations in a compound are updated 
according to the attention scores, it would be interesting to 
train CrabNet on material properties where the property has 
a high sensitivity to changes in elemental prevalence. An 
example of this is in the case of dopants, where a small 
change in the dopant amount can significantly influence a 
material’s electrical [15, 76, 77], mechanical [17, 78–80], 
and thermal properties [81–84]. Finally, it may be interesting 
to expand the studied materials to include co-doped materi-
als and use the attention videos to visualize the complex 
inter-elemental interactions between the co-dopants and the 
host elements.

Conclusion

In this work, we examined the CrabNet model through the 
use of several built-in model interpretability methods in 
order to visualize the data featurization and modeling pro-
cess. We demonstrated that CrabNet can adequately capture 
the chemical behavior of compounds in a dataset by using 
the vector representations of their constituent elements. 
The element representations can be learned entirely from 
the training data on a per-property basis, and contain rich 
information about the elements and their chemical trends. 
Additionally, we examined dataset imbalance, its relation 
to the quality of learned representations, and the limitations 
that imbalanced datasets may ultimately impose on the mod-
eling processes.

The element and compound vectors can be projected 
using UMAP into distinguishable clusters which can then 
be visualized and characterized by the element stoichiom-
etry, local chemical environment and oxidation state of the 
elements, or by the bond behavior of the compounds. Lastly, 
the examination of the self-attention matrices during model 
training in the form of attention videos can be used to further 
understand the modeling process, debug potential model or 
dataset errors, or gain additional insights about chemical 
interactions within a given compound.

The model interpretability techniques presented in this 
work will enable materials science practitioners to not 
only visualize a specific element’s behavior within differ-
ent chemical environments, but also to obtain a global view 
of the chemical compounds, behaviors and trends within a 
larger dataset. The ability of CrabNet to adequately model 
and express the complex chemical behaviors and interac-
tions of elements and compounds based solely on learning 
from data is encouraging. With the addition of model inter-
pretability methods to CrabNet, the findings and intuitions 
presented in this work may lead to further insightful and 
interesting research. Specifically, we believe that follow-up 
works may fall into one of these three general directions: 

1.	 Learning and representing elements and compounds. 
Our work has shown that it is possible to visualize 
CrabNet’s internal representations of elements and 
compounds via techniques such as UMAP. However, it 
would be interesting to further investigate why Crab-
Net’s representations of some of these elements or com-
pounds lead to them being placed into the same cluster 
or not, despite the fact that these elements and com-
pounds are similar to each other in terms of identity and/
or chemical environment. This may also be combined 
with a more detailed examination of the attention vid-
eos and how the attention mechanism in CrabNet leads 
to the updating of the element representations for each 
compound.

2.	 Examination of individual attention head behaviors. 
This work used the EDM (element-derived matrix) data 
from CrabNet to examine the element and compound 
representations within CrabNet. CrabNet utilizes four 
self-attention heads to model element-element interac-
tions, the results of which are then concatenated and 
transformed back to an updated EDM matrix. As such, 
the EDM is a pooled representation of the compounds. 
It would be interesting to further examine the per-head 
modeling of the compounds, as it has been shown that 
each head can capture different types of inter-element 
interactions and thus may give additional insight to the 
modeling process within CrabNet.

3.	 Discovery of additional inter-element interactions. 
From the analyses presented in this study, it is clear 
that while some changes in the material property (e.g., 
band gap) can be explained by certain properties of the 
compounds (such as element stoichiometry, number of 
unique elements, and/or bond character), there are addi-
tional behaviors that govern the material property. These 
additional interactions are also adequately modeled by 
CrabNet, since it can predict a wide range of material 
properties with low errors. Examining the modeling 
process of these behaviors within CrabNet may lead to 
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an improved understanding of the complex phenomena 
underlying material properties.

Further research to answer these and subsequent questions 
may allow us to gain additional insights about the behav-
iors and properties of elements and materials, improve 
our understanding of models such as CrabNet, increase 
our confidence in the use of data-driven methods, and 
ultimately, accelerate the adoption of deep learning and 
machine learning in materials science.

Methods

Adaptation of CrabNet Model

The CrabNet model and material property datasets as 
originally reported were used as the basis for this study 
[28]. Fully trained model weights for both CrabNet and 
HotCrab were obtained from [57]. In order to obtain the 
EDMs containing the elements and compounds data used 
in this study, custom function hooks were implemented 
in PyTorch. These hooks were attached to the CrabNet 
model architecture to allow access to the model-internal 
data during training and inference.

The source code as well as the data that were used 
and generated in this study can be found on the updated 
CrabNet GitHub repository [58]. In addition, we provide 
detailed instructions for the use and reproduction of our 
reported results. Please note that due to the prohibitively 
large size of the stored attention matrices used in the atten-
tion videos, it is not possible to provide these for down-
load. However, instructions and scripts are provided for 
generating these matrices and videos.

All experiments, unless otherwise noted, were per-
formed on a workstation equipped with an Intel i7-8700K 
CPU, 32 GB of DDR4 RAM, and one Nvidia RTX 2080 
GPU.

Element Embeddings

Element embeddings for pure elements were generated on 
a per-property basis. To do this, an EDM consisting of all 
of the elements from hydrogen to oganesson was generated 
(with each row representing one element). Then, for each 
material property, the corresponding CrabNet or HotCrab 
model was loaded and the model hooks attached. The EDM 
was then passed through the network and the modified EDM 
at the output of the element embedding layer was obtained 
and detached from the model graph. This resulting EDM 
contains the property-specific element embeddings of all of 

the elements. Thus, each element was represented by a vec-
tor with the shape (1, dmodel) , where dmodel is the size of the 
embedding. Element embeddings for Oliynyk, Magpie, and 
mat2vec were obtained from the original publications [18].

Compound Embeddings

Compound embeddings were obtained in a similar fashion 
to element embeddings. Instead of generating an EDM 
from pure elements, the EDMs were generated from the 
actual chemical formulae from the datasets and collated 
in batches using the model data loader. Model hooks were 
then attached to the CrabNet and HotCrab models and 
enabled during model inference. The transformed EDMs 
after each of the three self-attention layers of the CrabNet 
models were then collected.

The obtained compound EDMs have the shape of 
(ncompounds, nelements, dmodel) , where ncompounds is the total 
number of compounds in the dataset, nelements is the maxi-
mum number of elements per compound, and dmodel is the 
size of the embedding. Thus, each compound in the EDM 
is represented by one tensor slice with the dimensions 
(1, nelements, dmodel) . Due to the fact that different compounds 
within the same dataset may contain a different number of 
elements, the extra rows of the EDMs were zero-filled to 
indicate no elements present. In order to ensure that the 
compound embeddings are comparable with each other 
using UMAP, the three-dimensional compound EDMs 
were collapsed to two dimensions (ncompounds, 1, dmodel) by 
calculating summary statistics (such as sum, range, vari-
ance) of the EDM columns across the elements dimension.

Dimensionality Reduction

CrabNet uses vectors with a dmodel dimension of 512 to rep-
resent chemical elements and compounds in the input data. 
It would be infeasible to try to visualize all 512 dimen-
sions. Therefore, dimensionality reduction was applied to 
the vector representations to transform the vectors into 
two-dimensional space for visualization.

Three common methods for dimensionality reduction 
were tested: principal component analysis (PCA), t-dis-
tributed stochastic neighbor embedding (t-SNE), and uni-
form manifold approximation and projection (UMAP) [73, 
85, 86]. Compared to t-SNE and PCA, UMAP revealed 
more visually distinct clusters for the data presented in 
this work. Therefore, UMAP was chosen as the dimen-
sionality reduction method. The random seed was fixed 
so that each initialization of the UMAP method produces 
the same results. For element embeddings, the rows of the 
EDMs with dimensions (1, dmodel) are transformed using 
UMAP. For the compound embeddings, the matrices 
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corresponding to each compound were first collapsed as 
described above, and the resulting representations with 
dimensions (1, dmodel) for each compound were transformed 
using UMAP.

Oxidation State Estimation

Oxidation states for elements in the compounds were esti-
mated using the Pymatgen package (version 2022.0.8) using 
the chemical formulae of the compounds. The built-in func-
tions for assigning oxidation states were used, which are 
based on charge-balancing heuristics and use the most prob-
able oxidation states as determined based on the compounds 
in the Inorganic Crystal Structure Database [74].

Attention Video Generation

Custom function hooks were programmed and attached 
to a newly-initialized CrabNet model. During training of 
CrabNet, the attention matrices of every CrabNet encoder 
layer was extracted from the model and saved into a com-
pressed Zarr array on disk. The model predictions for the 
properties were also generated and saved. This procedure is 
performed after every mini-step during the training process 
(corresponding to each mini-batch of data). The plots were 
then generated for each mini-step and merged together using 
the software FFMPEG to create the attention videos. Due to 
the large amount of storage and computing power required 
to store and process the attention matrices, these tasks were 
performed on a high-performance computing cluster.
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