
Algorithmic Cost Allocation Games:

Theory and Applications

vorgelegt von

Dipl.-Math. Nam Dũng Hoàng

aus Hanoi, Vietnam

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Promotionsausschuss
Vorsitzender: Prof. Dr. Fredi Tröltzsch

Berichter: Prof. Dr. Dr. h.c. mult. Martin Grötschel
Dr. habil. Ralf Borndörfer

Tag der wissenschaftlichen Aussprache: 6. Oktober 2010

Berlin 2010
D 83

For my parents

Abstract

Due to economy of scale, it is suggested that individual users, in order

to save costs, should join a cooperation rather than acting on their own.

However, a challenge for individuals when cooperating with others is that

every member of the cooperation has to agree on how to allocate the com-

mon costs among members, otherwise the cooperation cannot be realised.

Taken this issue into account, we set the objective of our thesis in inves-

tigating the issue of fair allocations of common costs among users in a

cooperation. This thesis combines cooperative game theory and state-of-

the-art algorithms from linear and integer programming in order to define

fair cost allocations and calculate them numerically for large real-world ap-

plications. Our approaches outclasse traditional cost allocation methods in

terms of fairness and users’ satisfaction.

Cooperative game theory analyzes the possible grouping of individuals

to form their coalitions. It provides mathematical tools to understand fair

prices in the sense that a fair price prevents the collapse of the grand coali-

tion and increases the stability of the cooperation. The current definition

of cost allocation game does not allow us to restrict the set of possible

coalitions of players and to set conditions on the output prices, which of-

ten occur in real-world applications. Our generalization bring the cost

allocation game model a step closer to practice. Based on our definition,

we present and discuss in the thesis several mathematical concepts, which

model fairness.

This thesis also considers the question of whether there exists a “best”

cost allocation, which people naturally like to have. It is well-known that

multicriteria optimization problems often do not have “the optimal solu-

tion” that simultaneously optimizes each objective to its optimal value.

There is also no “perfect” voting-system which can satisfy all the five sim-

ple, essential social choice procedures presented in the book “Mathematics

and Politics. Strategy, Voting, Power and Proof” of Taylor et al. Similarly,

the cost allocation problem is shown to experience the same problem. In

i

particular, there is no cost allocation which can satisfy all of our desired
properties, which are coherent and seem to be reasonable or even indis-
pensable. Our game theoretical concepts try to minimize the degree of
axiomatic violation while the validity of some most important properties is
kept.

From the complexity point of view, it is NP-hard to calculate the allo-
cations which are based on the considered game theoretical concepts. The
hardest challenge is that we must take into account the exponential num-
ber of the possible coalitions. However, this difficulty can be overcome by
using constraint generation approaches. Several primal and dual heuris-
tics are constructed in order to decrease the solving time of the separation
problem. Based on these techniques, we are able to solve our applications,
whose sizes vary from small with 4 players, to medium with 18 players, and
even large with 85 players and 285 − 1 possible coalitions. Via computa-
tional results, we show the unfairness of traditional cost allocations. For
example, for the ticket pricing problem of the Dutch IC railway network,
the current distance tariff results in a situation where the passengers in the
central Randstad region of the country pay over 25% more than the costs
they incur and these excess payments subsidize operations elsewhere, which
is absolutely not fair. In contrast, our game theory based prices decrease
this unfairness and increase the incentive to stay in the grand coalition for
players.

ii

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Dr. Dr.
h.c. mult. Martin Grötschel for the interesting research theme and for his
supervision. I am grateful to Dr. Ralf Borndörfer for his valuable supports
and suggestions.

I would like to express my thank to the Zuse Institute Berlin (ZIB) for
providing me a Konrad-Zuse Scholarship. I also want to thank to all my
friends and colleagues at ZIB for the wonderful working atmosphere.

Moreover, I am appreciative to my proof readers Carlos Cardonha, Dr.
Benjamin Hiller, and Dr. Thorsten Koch for their precious comments.

And last but not least, I would like to thank my parents for their care
and continual supports.

iii

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

2 The Cost Allocation Problem 9

2.1 The Cost Allocation Game 11

2.2 Desired Properties and Conflicts 13

2.2.1 Desired Properties 14

2.2.2 Conflicts . 18

2.2.3 Some Other Desired Properties 21

2.3 Game Theoretical Concepts 28

2.3.1 The Core and the f -Least Core 28

2.3.2 The f -Nucleolus . 51

2.3.3 The (f, r)-Least Core 66

2.3.4 Choosing the Weight Function 72

2.3.5 The Shapley Value 73

2.3.6 Another Conflict . 77

2.4 Alternative Ansatz . 78

2.5 Non-emptiness of the Core 78

2.6 Conclusions . 87

3 Complexity 91

3.1 NP-Hardness of Cost Allocation Game 91

3.2 Ellipsoid Method and Submodular Function Minimization . 92

3.3 Polynomial Time Algorithms for Submodular Games 94

3.3.1 Algorithm for the f -Nucleolus 95

v

CONTENTS

3.3.2 Algorithms for the f -Least Core and the (f, r)-Least
Core . 106

4 Computational Aspects 107

4.1 Combinatorial Game . 108
4.2 Constraints Generation Approaches 108

4.2.1 The f -Least Core and the f -Nucleolus 108
4.2.2 The (f, r)-Least Core 110
4.2.3 Choosing A Good Starting Set 112
4.2.4 The Separation Problem 121
4.2.5 Heuristics for the Separation Problem 123

5 The Fairness Distribution Diagram 127

6 A Simple Real Example 131

7 Allocating Production and Transmission Costs 137

7.1 Production and Transmission Costs 137
7.2 Nonlinear Multi-commodity Flow Model 138
7.3 Mixed Integer Model . 140
7.4 Piecewise Linear Approximation 148
7.5 Cost Allocation in Water Resources Development 154

7.5.1 The Water Resources Development Cost Allocation
Game . 155

7.5.2 The Separation Problem 160
7.5.3 Computational Results 162

8 Ticket Pricing Problem in Public Transport 167

8.1 The Ticket Pricing Problem 167
8.2 Calculating the Cost Function 170
8.3 The Separation Problem . 173
8.4 Ticket Prices for the Dutch IC Network 175

9 Perspectives 183

Bibliography 185

Notations 193

Index 195

vi

Chapter 1

Introduction

There has been an endless controversy on a fair price system for train slots
in Germany for years. The current one of the German railway infrastruc-
ture provider DB Netz AG is accused of being incommensurate with the
real cost. The train path charges per train path kilometer are composed of
route category, train path product, service-dependent component, regional
factor, and several other components. DB Netz AG has subdivided its
routes in 12 categories based on the maximal allowed speed, which reflects
the investment cost. The higher the maximal allowed speed of a route, the
more expensive is the basic price for one transport kilometer on this route.
There are 9 different train path products with 5 products for passenger
transport and 4 products for freight transport. Each of them is assigned
to a factor from 0.5 to 1.8. This classification is based on the customer’s
demands, e.g., direct connection, priority in terms of operations manage-
ment, and/or frequency. DB Netz AG claims that the role of the service-
dependent component is to provide “an incentive to reduce disturbances
and improve the efficiency of the rail network” by applying some penalty
factors on “very busy routes” and for trains where a minimum speed of 50
km/h is not achieved. As revealed from its name, regional factor differs
locally depending on the regional network concerned. They represent a
supplement on the top of the train path price. The train path price is then
the product of these components. However, it is unclear how DB Netz AG
came to these numbers. In the article “Schienennetz wird für Deutsche
Bahn zum blendenden Geschäft” from 18.07.2009 in Wirtschaftswoche, a
German weekly business news magazine, Christian Schlesiger wrote that:

The path prices are often incommensurate to the costs caused
by the trains. Example Hamburg-Berlin: On this route local

1

1. Introduction

and long distance trains pay the same amount of 6.95 Euros per
kilometer, although the load on the rails and railroad switches
is different. The ICE requires the triple of the capacity of the
regional trains, needs numerous expensive extra facilities, a spe-
cial trolley, and high-speed switches. According to a calculation
of KCW, a management consulting firm in public transport, the
charges of ICE ought to be 10.43 Euros per kilometer, while a
regional train would pay only 3.48 Euros. For Deutsche Bahn
that would be very unattractive, since it would have to trans-
port 37 passengers more per ICE in order to obtain the same
profit.

The “Interessengemeinschaft” Bibertbahn, which has striven for years for
the reactivation of the railway line Nuremberg-Stein-Altenberg-Zirndorf-
Leichendorf, also complained on the high path price for the 5.6 kilometer
route between Stein and the Nuremberg main station. DB Netz AG asked
for about one million euros per year, while the community claimed that
according to its estimation 200 thousands euros should be a reasonable
price since the extra cost for DB Netz AG is very small. These are only
two of many complaints on the DB Netz AG price system. The lack of
transparency and equity in the price calculation leads to this eternal strife.
In order to solve it, we have to answer the question: What is a fair price?
Finding fair prices for every party is the goal of a cost allocation problem.

This thesis deals with the cost allocation problem, i.e., the question
of fair allocations of common costs among users. It combines concepts of
cooperative game theory and state-of-the-art algorithms from linear and
integer programming in order to solve large real world applications. Cost
allocation problems (see [65] for a survey/an introduction) are widespread.
They appear whenever it is necessary or desirable to divide a common cost
between several users or items. Some parts of the cost are direct costs,
which are easy to allocate. However, it is not the case for the remainder.
And then a fair allocation method is needed. A cost allocation problem
arises whenever a cooperation exists. This cooperation can be forced or
voluntary because of financial benefit. In many cases, because of economy
of scale, it is cheaper for an individual user to join in a larger cooperation
than acting itself. The goal of a cost allocation problem is to find a “fair”
price for every user. Unfortunately, fairness has a vague meaning and may
be understood subjectively among people. However, we want to present and
discuss in this thesis several mathematical concepts, which model fairness
in some way. The analysis bases on the fact that several groups of users

2

can form real coalitions or theoretical coalitions. The cost of each coalition

is the minimal cost to fulfil the demand of every user in this coalition. If

real coalitions are allowed, then the users have an alternative to accepting

a given price, namely forming more favourable coalitions. Otherwise, each

given price for which there is a better theoretical alternative for some users,

will cause dissatisfaction and unrest among these users. A fair price can be

considered as a price which is accepted by every user or at least the best

possible solution in some sense.

History of cost allocation

The history of the cost allocation problem goes back to the early 20th cen-

tury. One of the first examples that we have found in the literature is the

cost allocation problem for the Tennessee Valley Authority [50, 52]. The

Tennessee Valley Authority was a major regional development project cre-

ated by an act of the congress in the 1930’s to stimulate economic activity

in the mid-southern United States. The goal was to construct a series of

dams and reservoirs along the Tennessee River in order to generate hydro-

electric power, control flooding, and improve navigational and recreational

uses of the waterway. Economists who analyzed the costs and benefits of

this project observed that there is no completely obvious way to attribute

costs to these purposes, because the system is designed to satisfy all of

them simultaneously. The concepts that they devised to deal with this

problem foreshadowed modern ideas in game theory [65]. This problem

was reconsidered later on as a cooperative game in [61, 65].

Game theory experienced a flurry of activity in the 1950’s and 1960’s,

during which time the concepts of the core [23, 24], the Shapley value [54],

and the nucleolus [53, 45] were developed. These concepts have been then

applied to the cost allocation problem. One of the first applications of

game theory to cost allocation is presented in Martin Shubik’s paper [57].

In this paper, Shubik argued that the Shapley value could be used to pro-

vide a mean of devising incentive-compatible cost assignments and internal

pricing in a firm with decentralised decision making. Since then, several

applications of the cost allocation problem using cooperative game theory

as a mathematical tool for analysis have been published. The allocation

of joint overhead costs of a firm among its different divisions is studied in

[31]. Four cost allocation schemes were evaluated using the core criteria

in this paper. Littlechild and Thompson [42, 44] considered the problem

of aircraft landing fees. They use the nucleolus, along with the core and

3

1. Introduction

Shapley value, to calculate fair and efficient landing and take-off fees for

Birmingham airport during the time 1968-1969. There were 11 different

aircraft types at that time. The total cost are the sum of annual runway

operating costs, which depend on the number of movements of all aircraft

types, and annual runway capital costs, which depend upon the largest

type for which the runway is designed. Young et al. [67] presented several

cost allocation methods and applied them to a municipal cost allocation

problem in Sweden. Their case study consists of 18 municipalities in the

Sk̊ane region of southern Sweden. At that time most of the municipal water

supply was drawn from three sources: local groundwater and water from

two lakes, Vombsjön and Ringsjön. Water from the lakes was distributed

to the municipalities via two pipeline systems. The question was how to

allocate fairly the common cost. Engevall et al. [13, 14, 15] studied the cost

allocation problem arisen in a distribution planning situation at the logis-

tics department at Norsk Hydro Olje AB, a sales and marketing company

for gas and gas-oil in Sweden. The logistics department is responsible for

the transportation of different qualities of gas and gas-oil to the customers.

The distribution planning problem was modeled as a vehicle routing prob-

lem and the transportation cost was defined as the corresponding optimal

value. Based on that they analyzed how to allocate the transportation cost

among Norsk Hydro’s customers.

Though one can name many more examples of the cost allocation prob-

lem than the ones listed above and in our bibliography, the number of real

applications in the mathematical literature is small. One reason may be

that price determination is a complicated task, which is influenced by po-

litical and/or psychological factors. Prices often result from negotiation or

monopoly decision, which are based on other facts than fairness. However,

fairness is immensely important. An unfair price will cause dissatisfaction

and instability. In our opinion, the necessity of equitable cost allocation

methods will increase. The regulation policy of the European Union in

telecommunication, transportation, and energy requires equitable tariffs.

Even if cost allocation methods are not used directly, the prices obtained

thereby can be used as basis for price determination or negotiation and

the mathematical concept of fairness still can be used to justify some given

tariff. Another reason for the small number of published applications may

be the size of the problem itself. Many cost allocation problems consist

of just a few users and have a simple structure, which can be solved eas-

ily without involved analysis. The users can agree on some simple pricing

scheme in that case. On the other hand, for problems with many users,

4

it is not easy to calculate the price since we have to take into account the

exponential number of possible groupings of users. All the problems listed

above are small except for the one studied by Engevall et al., which has a

medium size of 21 users and about two millions of possible coalitions. In

[67], the authors assort the 18 municipalities into six groups and solve the

problem of six users since in their opinion “to develop the costs for each

of the 218 − 1 possible groupings of the 18 municipalities would be imprac-

tical and unrealistic“. This was the situation in the 1980’s. However, it

is not necessary to evaluate the cost of every possible coalition. Using the

constraint generation technique [30, 15, 11], we only have to calculate the

costs of several coalitions and therefore are able to solve large applications

of the cost allocation problem in practice.

Thesis outline

The thesis is organized into two parts. The first part, which contains

Chapters 2, 3, 4, and 5, deals with the theory of the cost allocation problem,

while the second part is devoted to applications. In Chapter 2, we represent

the cost allocation problem as a cost allocation game. The definition of the

cost allocation game in this thesis is a generalization of the common one,

which allows us to restrict the set of possible coalitions of players and to set

conditions on the output prices. This generalization is practically relevant

and gives us not only the possibility to merge several game theoretical

concepts in a single one, but also a better understanding of the relationship

between different concepts. Several desired properties of the output of the

cost allocation game are considered. They are coherent and seem to be

reasonable or even indispensable. Unfortunately, against all hope in the

existence of “the best” allocation, there is no allocation method which fulfils

all these properties in general. It is the task of the decision maker to choose

the most important ones and sacrifice the others. We also investigate in this

chapter several game theoretical concepts like the Shapley value, the core,

the least core, the nucleolus, and their generalizations. These concepts only

focus on the possible grouping of each player with the other ones. Their

outputs reflect the strategic position of each player and are fair in that

sense. The major drawback of these concepts is that they do not take into

account the realizability of their outputs. The prices obtained by these

concepts are coalitionally fair, but may favour several players extremely

over some others. The new concept, called (f, r)-least core, with some

given weight function f and reference vector r, is a compromise between

5

1. Introduction

the coalitional fairness and the individual satisfaction. In the end of this

chapter, we present some theoretical results on the non-emptiness of the

core and the so called f -least core radius.

Chapter 3 analyses the computational complexity of cost allocations

which are based on the game theoretical concepts for cost allocation games

whose cost functions are given by minimization problems. In general, these

problems are NP-hard, even for simple games like the so called minimum

cost spanning tree game, whose cost function is polynomial time evaluable.

However, we can prove that there exist oracle-polynomial-time algorithms

based on the ellipsoid method for submodular cost allocation games.

Unfortunately, a real world application often does not have a submod-

ular cost function. This means that the polynomial-time solvability is not

guaranteed. Apart from that, the ellipsoid method sufferes from numer-

ical instability and poor performance in practice. The goal of Chapter 4

is to study state-of-the-art algorithms that work well for large real-world

applications. The hardest challenge is that we must take into account the

exponential number of the possible coalitions. To overcome this difficulty,

several constraint generation approaches and their separation problems as

mixed integer programs are presented. Computational results show that

these approaches work very well for our applications. We also discuss the

choice of a good starting set for the constraint generation approaches and

several primal and dual heuristics for the separation problem, which are

very effective in practice.

Chapter 5 shows how one can evaluate the fairness of a given price

vector visually. For games with many players, it is impossible to calculate

the cost and the profit (the satisfaction) of every coalition with a given

price vector. However, via a so called fairness distribution diagram, we

can show how the curve representing the profits of some essential coalitions

looks like and are able to compare different price vectors.

In Chapter 6, we demonstrate how different are the results when we

apply different cost allocation methods to the same cost allocation problem.

For this we consider a very simple real example with only four players.

We study in Chapter 7 the problem in which a good is produced in some

places and then transported to customers via a network. Example of this

problem are water supply system, irrigation system, or gas transportation.

The cost can be modeled by a non-linear multi-commodity flow problem.

However, in order to solve large cost allocation problems, it is linearized

using piecewise linear function as in [10]. Based on this model, we solve a

cost allocation problem in water resources development in Sweden.

6

The subject of Chapter 8 is the ticket pricing problem in public trans-
port, where passengers share a common infrastructure. The question of
ticket fee ist not new, but it has been considered from another perspec-
tive. Thereby, the decision maker either is only interested in maximizing
the revenue or just uses the common distance price. The distance price of
each passenger depends only on his traveling distance and the used means
of transport. These approaches do not take fairness into account. Conse-
quently, by using prices based on these approaches, there exist coalitions
which have to pay much more than their costs. We will show that for
the example of the Dutch IC railway network the current distance tariff
results in a situation where the passengers in the central Randstad region
of the country pay over 25% more than the costs they incur and these ex-
cess payments subsidize operations elsewhere, which is absolutly not fair.
Our approach models the ticket pricing problem as a cost allocation game,
where the set of all passengers traveling between each pair of an origin and
a destination is considered as a player, and calculates fair prices based on
the (f, r)-least core.

7

1. Introduction

8

Chapter 2

The Cost Allocation Problem

In economics, cost allocation means “an assignment of common costs to

cost objects (jobs or tasks)”. These assignments usually result from simple

forms or rules or just negotiation. However, the prices obtained this way

often do not reflect the real cost caused by each user (cost object) and

therefore raise discontent among them, like our example of the path price

system of the German railway infrastructure provider DB Netz AG in the

introduction. In order to avoid such kind of conflict, an equitable cost

allocation scheme is needed. This is exactly the goal of the cost allocation

problem. The cost allocation problem is the problem of allocating fairly

the common costs among the users. Whenever it is necessary or desirable

to divide a common cost between several users or items, a cost allocation

method is needed. Let us start with an illustrative example. There are

three cities A, B, and C. The distances in kilometers between these cities

are

AB = 800, BC = 100, and AC = 850.

Person 1 wants to travel from A to C while person 2 want to go from B

to C. The cheapest solution for person 1 to travel from A to C is with a

car at the cost of 90 euros. For person 2 traveling with the train from B

to C at the cost of 20 euros is the cheapest option. However, if the two

persons cooperate, i.e., instead of driving directly from A to C, person 1

firstly drives to B, picks up person 2 there, and then goes to C, then it will

cost them only 100 euros. In other words, this alternative will give them a

benefit of 10 euros. There are several ways to allocate the cost:

• Allocating the common cost proportionally to the driving distances:

The total driving distance of the two persons is 800 + 2 · 100 = 1000

9

2. The Cost Allocation Problem

kilometers. The price for each driving kilometer is then 10 cents.

This means that the prices for person 1 and person 2 are 90 and 10

euros, respectively.

• Allocating the benefit equally: Person 1 pays 85 euros and person 2

pays 15 euros.

• Allocating the common cost proportionally to the individual cost:

Person 1 pays 100 90
90+20

≈ 81.82 euros and person 2 pays 100 20
90+20

≈

18.18 euros.

The question is, which allocation is the most suitable solution? The first

one is a common solution. It is considered to treat the people equally

since each person has to pay the same amount of money for one unit (one

kilometer). However, this solution gives no incentive to person 1, since the

price that he has to pay is the same as the individual cost, while person

2 gets the whole benefit. The cooperation will be hardly realized with

this price. With the second and third allocations, each player has some

profits, and therefore cooperation is preferred. But these two allocations

differ from each other by the amount of the profits. With the second

one, each person has a benefit of 5 euros, i.e., person 1 saves only 5.56

percents, while person 2 has to pay 25 percents less. It may make person

1 discontented, since he would think that person 2 pays too few. By the

third allocation, this will not happen because each person has the same

relative profit, namely, 9.1 percents. The third allocation is perhaps the

best solution for our example. However, such simple analysis cannot be

applied to more complicated real world applications, though the main idea

is still useful. A general mathematical tool is then needed to determine fair

allocations or justify some given prices.

The first goal of this chapter is to present and study some desired prop-

erties of the cost allocation. The second goal is to consider several concepts

of fairness based on cooperative game theory. Cooperative game theory an-

alyzes optimal strategies for groups of individuals, presuming that they can

enforce agreements between them about proper strategies. The allocation

obtained in this way reflects the position and the real cost of each grouping

of individuals including each individual itself. The last part of this chapter

is devoted to a theoretical study, which helps to improve the computational

task.

10

2.1 The Cost Allocation Game

2.1 The Cost Allocation Game

The cost allocation game deals with price determination and can be defined
as follows. Given is a finite set of players N = {1, 2, . . . , n}. These play-
ers can form real coalitions or theoretical coalitions. The set of possible
coalitions is given by a family Σ ⊆ 2N . Assume that the family Σ contains
the grand coalition N and the set Σ\{∅, N} is non-empty. In addition,
given are also a cost function c : Σ → R satisfying

c(S) > 0, ∀S ∈ Σ\{∅},

and a polyhedron P ,

P = {x ∈ RN
+ |Ax ≤ b},

which gives conditions on the prices x that the players are asked to pay.
We denote Σ+ := Σ\{∅}. The tuple Γ := (N, c, P,Σ) is called data of a
cost allocation game. The corresponding cost allocation game is specified
by the requirement that the output of this game is a “fair” allocation of the
common cost c(N) among the players inN . We use the notation (N, c, P,Σ)
for both the cost allocation game as well as its data. Each cost allocation
problem can be modeled as a cost allocation game, where each player may
be an individual user or a group of users. Each price vector in P is called
a valid price. The cost allocation problem only makes sense if there exists
a valid price that covers exactly the cost. Therefore, we require that the
following set

X (Γ) :=
{

x ∈ P |
∑

i∈N

xi = c(N)
}

is non-empty. Each vector in X (Γ) is called an imputation of the game
and the set X (Γ) is called the imputation set of Γ. Each cost allocation
game (N, c,RN

+ , 2
N) is called a simple cost allocation game.

In the common definition of the cost allocation game, there are no other
requirements on the prices than the non-negativity and each subset of N
is a possible coalition, i.e., P = RN

+ and Σ = 2N . However, both kinds of
restrictions on prices and allowed coalitions occur in practice. Therefore,
a study of the cost allocation game in the general form above is desirable.
Moreover, with our definition of cost allocation game, we can on one hand
generalize several concepts from game theory into a single definition and
on the other hand describe easily some new concepts.

If we remove the restrictions in the definition of the cost allocation
game that the prices have to be non-negative and the cost function has to

11

2. The Cost Allocation Problem

be positive, then we obtain the so called general cost allocation game. Each
cost allocation game is a general cost allocation game as well.

For each general cost allocation game Γ := (N, c, P,Σ) and each possible
coalition S ∈ Σ+, we denote

ΣS := {T ∈ Σ |T ⊆ S}

and cS := c|ΣS
. For real applications, there are rules or conditions on

prices, which can be formulated mathematically with each given set of
players. We assume that for each general cost allocation game (N, c, P,Σ)
there exists an oracle that gives us the set PS of valid prices for players in
each given coalition S in Σ+ when they leave the grand coalition N and
form a cooperation themselves. The restriction ΓS = (S, cS, PS,ΣS) of Γ
to S is called a subgame of Γ. This subgame is nothing else than the general
cost allocation subproblem among the players in the coalition S.

For a given weight function f : Σ\{∅} → R>0, each price vector x ∈ RN ,
and each coalition S ∈ Σ+, we define the f -excess of S at x as

ef (S, x) :=
c(S)− x(S)

f(S)
.

In order to avoid any possible misunderstanding regarding the notation, we
explicitly point out that, for functions f and c, f(S) and c(S) denote the
values of these functions for coalition S, while for the price vector x, x(S)
denotes the sum

∑

i∈S xi, i.e., the price of the coalition S. The f -excess
represents the f -weighted gain (or loss, if it is negative) of the coalition
S, if its members accept to pay x(S) instead of operating some service
themselves at cost c(S). The excess measures price acceptability. The
smaller ef (S, x), the less favorable is the price x for coalition S; and the
larger ef (S, x), the more favorable is the price x. For ef (S, x) < 0, i.e., in
case of a loss, x will be seen as unfair by the members of S. If the players are
allowed to leave the grand coalition, then for the coalition S it is cheaper
to create its own cooperation than accepting the price x. Conversely, if
ef (S, x) > 0, then for the players in S accepting the price x is a better
alternative than acting themselves.

A cost allocation method is a function that maps each general cost allo-
cation game Γ := (N, c, P,Σ) in its domain to a vector in RN . We require
that the domain of each cost allocation method contains every simple cost
allocation game. A cost allocation method is called well-defined for a gen-
eral cost allocation game if this game and all of its subgames belong to
the domain of the cost allocation method. For a general cost allocation

12

2.2 Desired Properties and Conflicts

game Γ := (N, c, P,Σ), the price vector obtained by applying a given cost
allocation method Φ is Φ(Γ). The price for each player i in N is then Φ(Γ)i.
The sum

∑

i∈N Φ(Γ)i is the total price that players are asked to pay.

2.2 Desired Properties and Conflicts

In this section, we present and study some desired properties of cost alloca-
tion methods. Each of them seems to be indispensable, but unfortunately
they cannot be fulfilled simultaneously. Depending on the problem, one
has to decide which one is unalterable and which one should be approxi-
mated as well as possible. But before doing that, we want to list several
cost allocation methods, which will be used later as examples for verifying
the properties.
Non-cooperative cost allocation method: Each player is required to
pay the same amount as its individual cost. This means that the price of
each player i in N is

Φ1(N, c, P,Σ)i := c({i}).

Proportional cost allocation method: The price of each player is pro-
portional to its individual cost and the total price of all players is equal to
the common cost. That means the price of each player i in N is

Φ2(N, c, P,Σ)i :=
c({i})

∑

j∈N c({j})
c(N).

Minimum subsidy cost allocation method: The prices of players are
allocated in such a way that the price of each coalition (including the grand
coalition) is not larger than its cost by doing the job itself and the total
price is as large as possible. This means that the minimum subsidy cost al-
location method applied on a general cost allocation game Γ = (N, c, P,Σ)
gives us an optimal solution of the following linear program

max x(N)

s.t. x(S) ≤ c(S), ∀S ∈ Σ+

x ∈ P

provided that the linear program is feasible.
Proportional least core cost allocation method: Least core is a con-
cept of game theory, which will be defined in the next section. A least core

13

2. The Cost Allocation Problem

price is a price such that the common cost is exactly covered and the max-

imum ratio x(S)
c(S)

over every possible coalition S is kept as small as possible.

The idea behind this allocation method is that, for each coalition S the

smaller the ratio x(S)
c(S)

, the more favorable is the price x for this coalition.

Mathematically, this allocation method, denoted by Φ4, is defined as fol-

lows. For each general cost allocation game Γ = (N, c, P,Σ) which satisfies

that the following linear program is feasible and bounded

max
(x,ε)

ε

s.t. x(S) ≤ (1− ε)c(S), ∀S ∈ Σ\{∅, N}

x(N) = c(N)

x ∈ P,

let ε∗ be the optimal value, then
(

Φ4(Γ), ε∗
)

is an optimal solution of the

above linear program.

2.2.1 Desired Properties

In order to avoid repeating properties’ descriptions, we use the following

definition. A cost allocation method is said to have a property X if it holds

for every general cost allocation game in its domain.

Validity

The most important property is validity. A cost allocation is useless if it

does not fulfil the conditions of the game. A price vector x is called valid for

a general cost allocation game Γ = (N, c, P,Σ) if x belongs to P . A cost

allocation method Φ is called valid for a general cost allocation game Γ

in the domain of Φ if Φ(Γ) is valid for Γ. For an arbitrary general cost

allocation game Γ = (N, c, P,Σ), we have that

• The non-cooperative cost allocation method and the proportional cost

allocation method are valid for Γ if either P = RN or P = RN
+ and

the cost of each individual and the common cost c(N) are positive.

• The minimum subsidy cost allocation method and the proportional

least core cost allocation method are valid.

14

2.2 Desired Properties and Conflicts

Efficiency

In the case that there is no subsidy from outside, the cooperation can only

be realized if the common cost is covered. On the other hand, it is irrational

to pay more than the common cost. Therefore, the total price should equal

the common cost. A price vector x is called efficient for a general cost

allocation game Γ = (N, c, P,Σ) if the total price x(N) equals the common

cost c(N). A cost allocation method Φ is called efficient for a general cost

allocation game Γ in the domain of Φ if Φ(Γ) is efficient for this game.

• The proportional cost allocation method is efficient.

• The proportional least core cost allocation method is efficient.

Coalitional stability

We consider a cost allocation method Φ and a general cost allocation

game Γ = (N, c, P,Σ) which satisfy that Φ is well-defined for Γ, i.e., Γ

and all its subgames belong to the domain of Φ. For each coalition S

in Σ+, we denote the corresponding subgame by ΓS. Joining N is more

favourable for S than acting itself only if its price does not increase thereby,

i.e.,
∑

i∈S

Φ(Γ)i ≤
∑

i∈S

Φ(ΓS)i. (2.1)

This will guarantee the stability of the grand cooperation. A cost allocation

method Φ is called coalitionally stable for a general cost allocation game Γ =

(N, c, P,Σ), for which Φ is well-defined, if (2.1) holds for each coalition S

in Σ+. A cost allocation method Φ is called coalitionally stable if it is

coalitionally stable for every general cost allocation game, for which Φ is

well-defined.

• The non-cooperative cost allocation method is coalitionally stable.

• The minimum subsidy cost allocation method is coalitionally stable

for every general cost allocation game Γ = (N, c, P,Σ) in its domain

which satisfies that

x|S ∈ PS, ∀x ∈ P, ∀S ∈ Σ+, (2.2)

where PS is the set of valid prices of the subgame ΓS. For example,

each simple cost allocation game fulfills (2.2).

15

2. The Cost Allocation Problem

User friendliness

A price vector x is called user friendly for a general cost allocation game Γ =

(N, c, P,Σ) in the domain of Φ if the price of each coalition in Σ+ does not

exceed its cost, i.e.,

x(S) ≤ c(S), ∀S ∈ Σ+.

A cost allocation method Φ is called user friendly for a general cost allo-

cation game Γ in the domain of Φ if Φ(Γ) is user friendly for Γ.

• The minimum subsidy cost allocation method is user friendly.

Core cost allocation

The core is a well-known concept from game theory. The core of a general

cost allocation game is the set of all valid, user friendly, and efficient prices.

We will see in the next section that the core may be empty. However, if

it is non-empty, the allocated price should belong to it. A cost alloca-

tion method Φ is called a core cost allocation method if for every general

cost allocation game Γ in the domain of Φ whose core is non-empty, the

price Φ(Γ) belongs to the core of Γ.

• The minimum subsidy cost allocation method is a core cost allocation

method.

• The proportional least core cost allocation method is a core cost al-

location method.

Monotonicity

A desired property of the allocation method is that, if an arbitrary player

agrees to join some subcoalition of the grand coalition then his price does

not decrease compared to his allocated price in the grand coalition. If this

property holds, then there is no incentive for any player to leave the grand

coalition. A cost allocation method Φ is called monotonic for a general cost

allocation game Γ = (N, c, P,Σ) in the domain of Φ if for every coalition S

in Σ+ and its corresponding subgame ΓS there holds

Φ(Γ)i ≤ Φ(ΓS)i, ∀i ∈ S.

A monotonic cost allocation method is clearly coalitionally stable. Another

property of a monotonic cost allocation method is that, if a new player joins

16

2.2 Desired Properties and Conflicts

a cooperation such that the original game is a subgame of the new one and

the cost allocation method is well-defined for the new game, then the price

for each present player does not increase.

• The non-cooperative cost allocation method is monotonic.

Equality

Assume that there is some measure to evaluate the resource utilization of

each player based on certain unit. E.g., for the ticket pricing game in public

transport we can consider the resource utilization of each passenger as its

traveling distance and a unit is a traveling kilometer. A cost allocation is

called equal for the players if each player has to pay the same amount of

money for a unit. This allocation is widely used and is often claimed to be

“fair”.

Bounded variation

The cost function of real applications often can only be approximated

and/or can change over time. For example, transportation cost depends

on energy prices, which vary over time. Therefore, cost allocation method

should be insensitive to small changes of the cost function. A cost alloca-

tion method Φ is said to have bounded variation for a general cost allocation

game Γ := (N, c, P,Σ) if there exist λ > 0 and K > 0 such that for ev-

ery number α ∈ [0, λ] and general cost allocation game Γ̃ := (N, c̃, P,Σ)

satisfying

|c̃(S)− c(S)| ≤ α|c(S)|, ∀S ∈ Σ+, (2.3)

there holds

|Φ(Γ̃)i − Φ(Γ)i| ≤ Kα|Φ(Γ)i|, ∀i ∈ N : Φ(Γ)i 6= 0. (2.4)

In the above definition, K may vary depending on Γ. In the following one,

we require that K is independent on the general cost allocation games.

Φ is said to have uniformly bounded variation if there exist λ > 0 and

K > 0 such that for every number α ∈ [0, λ] and general cost allocation

games Γ := (N, c, P,Σ) and Γ̃ := (N, c̃, P,Σ) satisfying (2.3) there holds

(2.4).

• The non-cooperative cost allocation method has uniformly bounded

variation.

17

2. The Cost Allocation Problem

• The proportional cost allocation method has uniformly bounded vari-

ation considering only general cost allocation games with positive cost

functions.

The following table summarizes the properties of the four considered

cost allocation methods, namely, non-cooperative (Non-coop), proportional

(Prop), minimum subsidy (MinSub), and proportional least core (Prop LC)

cost allocation methods:

Non-coop Prop MinSub Prop LC

Validity No∗ No∗ Yes Yes

Efficiency Yes Yes

Coalitional stability Yes No∗

User friendliness Yes

Core cost allocation Yes Yes

Monotonicity Yes

Bounded variation Yes Yes∗

Table 2.1: Properties of cost allocation methods

Here, Yes∗ means that the property holds for cost allocation games, while

No∗ means that the property fails in general but holds for some large classes

of general cost allocation games that appear in practice.

2.2.2 Conflicts

The properties presented in the previous subsection are reasonable or even

indispensable. The question is whether there exists a cost allocation method

which has all these properties. As you could guess, the answer is no. For

each general cost allocation game whose core is non-empty, each efficient

core cost allocation method is also coalitionally stable and user friendly.

And clearly, a valid, efficient cost allocation method which is coalitionally

stable (or user friendly) for every cost allocation game in its domain having

a non-empty core is a core cost allocation method. However, neither equal-

ity nor uniformly bounded variation can hold simultaneously with the core

cost allocation property as we will see in the following. We also will show

that, in the general case, if the efficiency and core cost allocation property

are essential, then we have to sacrifice the other properties except validity.

18

2.2 Desired Properties and Conflicts

It is well-known that the core of a simple cost allocation game may be
empty. In other words, the following result holds.

Proposition 2.2.1. There is no efficient, coalitionally stable cost alloca-

tion method, even if we only consider cost allocation games which have

monotone, subadditive cost functions.

Proof. Let N = {1, 2, 3} and the cost function c be defined as follows

c(S) =

{

|S|, |S| ≤ 1,

|S| − 1, |S| ≥ 2.

Clearly, c is monotone and subadditive. Denote Si := N\{i} for i = 1, 2, 3.

For each efficient allocation method Φ, there holds

3
∑

i=1

Φ(Si, cSi
,R2

+, 2
Si)(Si) =

3
∑

i=1

c(Si) < 2c(N) =
3
∑

i=1

Φ(N, c,R3
+, 2

N)(Si),

i.e., Φ is not coalitionally stable.

Proposition 2.2.2. There is no efficient, user friendly cost allocation

method.

Proof. This proposition is a corollary of Proposition 2.2.1 because each ef-

ficient cost allocation method is user friendly if and only if it is coalitionally

stable.

Proposition 2.2.3. There is no efficient, monotonic cost allocation method.

Proof. This proposition is a corollary of Proposition 2.2.1 since each mono-

tonic cost allocation method is coalitionally stable.

Proposition 2.2.4. Each equal cost allocation method is not a core cost

allocation method.

Proof. We give a cost allocation game with a non-empty core for which

the price obtained by applying an arbitrary equal cost allocation does not

belongs to its core. If the allocated price vector is not efficient, then it

does not belong to the core. Therefore, we only have to consider equal cost

allocation methods which are efficient for our cost allocation game. There

19

2. The Cost Allocation Problem

are three cities A, B, and C. The distances in kilometers between these

cities are:

AB = 800, BC = 100, and AC = 820.

Person 1 wants to travel from A to C while person 2 wants to go from B

to C. The cheapest solution for person 1 to travel from A to C is with a

car at the cost of 88 Euros. For person 2, traveling by train from B to

C at the cost of 20 Euros is the cheapest option. However, if instead of

driving directly from A to C, person 1 firstly drives to B, picks up person 2

there, and then goes to C, then it will cost them only 100 Euros. In other

words, this alternative will give them a benefit of 8 Euros. The core of

this game is non-empty. The total traveling distance of the two persons is

800 + 2 · 100 = 1000 kilometers. By using an equal allocation method that

cover exactly the cost of 100 Euros, the price for each traveling kilometer

is 10 cents and the prices for person 1 and person 2 are 90 and 10 euros,

respectively. This means that the price for person 1 is larger than his

individual cost.

Proposition 2.2.5. Core cost allocation methods do not have uniformly

bounded variation, even if we only consider cost allocation games having

monotone, subadditive cost functions.

Proof. For arbitrary k > 0 and 0 ≤ α ≤ 1
k
, let N = {1, 2, 3} and the cost

functions c and c̃ be defined as follows

S c(S) c̃(S)

{1} 2 2

{2} 3 + k 3 + k

{3} 4 + k 4 + k

{1, 2} 3 + k 3 + (1 + α)k

{2, 3} 5 + 2k 5 + 2k

{3, 1} 4 + k 4 + (1 + α)k

{1, 2, 3} 6 + 2k 6 + (2 + α)k

The cost functions c and c̃ are monotone and subadditive and satisfy

0 ≤ c̃(S)− c(S) ≤ αc(S), ∀∅ 6= S ⊆ N.

20

2.2 Desired Properties and Conflicts

Denote Γk := (N, c,R3
+, 2

N) and Γ̃k := (N, c̃,R3
+, 2

N). Their cores C(Γk)

and C(Γ̃k) are

C(Γk) = {(1, 2 + k, 3 + k)}

C(Γ̃k) = {(1 + αk, 2 + k, 3 + k)}.

Hence, for each core cost allocation method Φ, there holds

Φ(Γ̃k)1 − Φ(Γk)1 = αk = αkΦ(Γk)1,

i.e., Φ does not have uniformly bounded variation.

Due to the above Propotitions and Table 2.1, we have the following
table, which indicates which properties fail/hold for which cost allocation
methods:

Non-coop Prop MinSub Prop LC

Validity No∗ No∗ Yes Yes

Efficiency No Yes No Yes

Coalitional stability Yes No No∗ No

User friendliness No No Yes No

Core cost allocation No No Yes Yes

Monotonicity Yes No No No

Bounded variation Yes Yes∗ No No

Table 2.2: Properties of cost allocation methods

Here, Yes∗ means that the property holds for cost allocation games, while
No∗ means that the property fails in general but holds for some large classes
of general cost allocation games that appear in practice (see Subsection
2.2.1). User friendliness often fails for the non-cooperative cost allocation
method because of economy of scale. The minimum subsidy cost allocation
method is also not monotonic in general. These statements can be easily
proved by constructing counter examples.

2.2.3 Some Other Desired Properties

Symmetry

Given a general cost allocation game Γ = (N, c, P,Σ), two players i and j
in N , are called equivalent if there hold

21

2. The Cost Allocation Problem

(i) Equivalence regarding Σ

∀S ⊆ N\{i, j} : S ∪ {i} ∈ Σ ⇐⇒ S ∪ {j} ∈ Σ,

∃S ∈ Σ : S ∋ i ∨ S ∋ j.

(ii) Equivalence regarding c

c(S ∪ {i}) = c(S ∪ {j}), ∀S ⊆ N\{i, j} : S ∪ {i} ∈ Σ.

(iii) Equivalence regarding P

∀x ∈ RN : x ∈ P =⇒ xij ∈ P,

where

xij
k =







xj if k = i
xi if k = j
xk otherwise.

A cost allocation method should then allocate the same amount to i and j.
A cost allocation method Φ is called symmetric for a general cost allocation
game Γ = (N, c, P,Σ) in the domain of Φ if it allocates the same amount
to equivalent players. A cost allocation method Φ is called symmetric if
it is symmetric for every general cost allocation game in the domain of Φ.
Symmetry is an indispensable requirement for a discrimination-free cost
allocation method.

• The non-cooperative cost allocation method is symmetric for general
cost allocation games whose sets of possible coalitions contain (the
coalition of) each single player.

• The proportional cost allocation method is symmetric for general
cost allocation games whose sets of possible coalitions contain (the
coalition of) each single player.

Additivity

A cost allocation method Φ is called additive if for any general cost alloca-
tion games Γ = (N, c, P,Σ), Γ1 = (N, c1, P1,Σ), and Γ2 = (N, c2, P2,Σ) in
the domain of Φ satisfying

c = c1 + c2 and P = P1 + P2,

there holds
Φ(Γ) = Φ(Γ1) + Φ(Γ2).

22

2.2 Desired Properties and Conflicts

With the additivity property, we can allocate different parts of the cost,

e.g., operating cost and fixed cost, separately without changing the total

allocated cost of each player.

• The non-cooperative cost allocation method is additive.

Scalar multiplicativity

For each general cost allocation game Γ = (N, c, P,Σ) and each number λ,

the scalar multiplication of λ and Γ is defined by

λΓ = (N, λc, λP,Σ).

A cost allocation method Φ is called scalar multiplicative if for any positive

real number λ and any general cost allocation game Γ = (N, c, P,Σ) in the

domain of Φ which satisfy that the general cost allocation game λΓ belongs

also to the domain of Φ, there holds

Φ(λΓ) = λΦ(Γ).

• The non-cooperative cost allocation method is scalar multiplicative.

• The proportional cost allocation method is scalar multiplicative.

Dummy player

Given a general cost allocation game Γ = (N, c, P,Σ) and a player i ∈ N

that satisfy Σ ∋ {i},

∀S ⊆ N\{i} : S ∪ {i} ∈ Σ ⇔ S ∈ Σ,

c(S ∪ {i}) = c(S) + c({i}), ∀S ∈ Σ, S 6∋ i,

and

P =
{

x ∈ RN
∣

∣ x|N\{i} ∈ Qi, xi ∈ Ii
}

for some polyhedron Qi and interval Ii ∋ c({i}). The player i is called a

dummy player of Γ. A dummy player with zero cost, i.e., c({i}) = 0, is

called a zero player of Γ. Since a dummy player contributes nothing to the

cooperation, it should pay his own cost, namely, c({i}).

• The non-cooperative cost allocation method charges each dummy

player exactly the same amount as his individual cost.

23

2. The Cost Allocation Problem

• The proportional cost allocation method charges zero players nothing.

In general, a cost allocation method may not charge a dummy player

exactly his individual cost. However, we may modify a given cost allocation

method, while we firstly find all dummy players of the given game, charge

each of them the amount equaling his individual cost, and finally apply

the cost allocation method to the subgame which contains all the remain-

ing non-dummy players. In the following, we define the above described

operator, denoted by D. To do it we need some other definitions. For

an arbitrary general cost allocation game Γ = (N, c, P,Σ), let d(Γ) denote

the set of all its dummy players. One can easily prove that there exist a

polyhedron Q and intervals Ii for i ∈ d(Γ) such that

P =
{

x ∈ RN
∣

∣ x|N\d(Γ) ∈ Q, xi ∈ Ii, ∀i ∈ d(Γ)
}

(2.5)

and Ii contains c({i}) for every i in d(Γ). DenoteM := N\d(Γ), cM := c|M ,

and

ΣM := {S ∈ Σ |S ⊆ M}.

Due to the definition of dummy players, since Σ ∋ N , we have that M be-

longs to ΣM . IfM and Σ+
M\{M} are not empty, then ΓD := (M, cM , Q,ΣM)

forms a general cost allocation game, called the dummy-free subgame of Γ.

Definition 2.2.6. For each cost allocation method Φ, the cost allocation

method D ◦ Φ, called the dummy-friendly version of Φ, is defined for any

general cost allocation game Γ which satisfies that Γ and its dummy-free

subgame ΓD belong to the domain of Φ as follows

D ◦ Φ(Γ)i :=

{

c({i}) if i ∈ d(Γ)

Φ(ΓD)i otherwise,
∀i ∈ N.

The operator D is called the dummy operator.

Directly from the definition, we have that D◦Φ(Γ) = Φ(Γ) if the dummy

players set d(Γ) is empty and D ◦Φ(Γ)i = c({i}) for all i ∈ N if d(Γ) = N .

Proposition 2.2.7. The dummy operator D preserves validity, efficiency,

user friendliness, core cost allocation, symmetry, and scalar multiplicativ-

ity.

24

2.2 Desired Properties and Conflicts

Proof. Let Φ be an arbitrary cost allocation method and Γ = (N, c, P,Σ)

be some general cost allocation game, for which Φ and D ◦ Φ are defined.

If Γ does not have any dummy player, then there is nothing to prove. We

assume that the set of all dummy players d(Γ) is non-empty. Let ΓD be

the dummy-free subgame of Γ. Denote M := N\d(Γ) and x := D ◦ Φ(Γ).

We have then

xi = c({i}), ∀i ∈ d(Γ).

If Φ is valid, then Φ(ΓD) is a valid price of ΓD. From this and (2.5) it

follows that D ◦ Φ(Γ) is a valid price of Γ as well.

If Φ is efficient, then we have

x(M) = Φ(ΓD)(M) = c(M).

On the other hand, there holds

c(N) = c(M) +
∑

i∈d(Γ)

c({i}).

Combining them yields

x(N) = c(N),

i.e., x is an efficient price of Γ.

If Φ is user friendly, then there holds

x(T) = Φ(ΓD)(T) ≤ c(T), ∀T ∈ Σ+
M . (2.6)

Moreover, for each set S ∈ Σ+, the set S\d(Γ) either is empty or belongs

to Σ+
M . If the set S\d(Γ) is empty, then S is a subset of d(Γ) and there

holds

x(S) =
∑

i∈S

xi =
∑

i∈S

c({i}) = c(S).

On the other hand, if S\d(Γ) ∈ Σ+
M , then because of (2.6) we have

c(S) = c
(

S\d(Γ)
)

+
∑

i∈S∩d(Γ)

c({i}) (2.7)

≥ x
(

S\d(Γ)
)

+
∑

i∈S∩d(Γ)

c({i})

= x
(

S\d(Γ)
)

+
∑

i∈S∩d(Γ)

xi

= x(S).

25

2. The Cost Allocation Problem

Hence, D ◦ Φ(Γ) is an user friendly price of Γ.

If Φ is a core cost allocation method and the core of Γ is non-empty,

then y := Φ(Γ) belongs to C(Γ). We want to prove that x belongs to C(Γ)

as well. We have y ∈ P ,

y(N) = c(N), (2.8)

and

y(S) ≤ c(S), ∀S ∈ Σ+\{N}. (2.9)

From these it follows that there hold for all i ∈ d(Γ)

c({i}) ≥ yi

= y(N)− y(N\{i})

= c(N)− y(N\{i})

≥ c(N)− c(N\{i})

= c({i}),

i.e., yi = c({i}). From this, (2.7), (2.8), and (2.9) it follows that

y(M) = c(M)

and

y(T) ≤ c(T), ∀T ∈ Σ+
M\{M}.

We also have that y|M belongs to Q. Hence, the core of ΓD contains y|M

and therefore is not empty. Since Φ is a core cost allocation method, x|M =

Φ(ΓD) belongs to C(ΓD). One can then easily prove that x belongs to C(Γ).

If two players i and j are equivalent regarding Γ, then either both of

them are dummy players or none of them is a dummy player and they are

equivalent regarding ΓD. In the first case, we have that {i}, {j} ∈ Σ,

xi = c({i}) and xj = c({j}).

Since {i}, {j} ∈ Σ and i and j are equivalent regarding Γ, we have c({i}) =

c({j}) and therefore xi = xj. In the second case, we have that i and j are

equivalent regarding ΓD and

xi = Φ(ΓD)i and xj = Φ(ΓD)j.

26

2.2 Desired Properties and Conflicts

If Φ is symmetric, then xi = xj. Therefore, if Φ is symmetric, then so

is D ◦ Φ.

Let λ be an arbitrary positive number, denote xλ := Φ(λΓ). Clearly, d(Γ)

is also the set of all dummy players of λΓ. Hence, we have

xλ
i = λc({i}) = λxi, ∀i ∈ d(Γ) = d(λΓ).

On the other hand, let Γλ
D be the dummy-free subgame of λΓ, we have Γλ

D =

λΓD. If Φ is scalar multiplicative, then there holds

xλ|M = Φ(Γλ
D) = λΦ(ΓD) = λx|M .

Therefore, it holds xλ = λx.

The following table summarizes the properties of the four considered

cost allocation methods:

Non-coop Prop MinSub Prop LC

Validity No∗ No∗ Yes Yes

Efficiency No Yes No Yes

Coalitional stability Yes No No∗ No

User friendliness No No Yes No

Core cost allocation No No Yes Yes

Monotonicity Yes No No No

Bounded variation Yes Yes∗ No No

Symmetry Yes∗∗ Yes∗∗

Additiviy Yes No No No

Scalar multiplicativity Yes Yes

Dummy player Yes No No No

Table 2.3: Properties of cost allocation methods

Yes∗ means that the property holds for cost allocation games; Yes∗∗ means

that the property holds for general cost allocation games whose sets of

possible coalitions contain (the coalition of) each single player; while No∗

means that the property fails in general but holds for some large classes

of general cost allocation games that appear in practice (see Subsection

27

2. The Cost Allocation Problem

2.2.1). Minimum subsidy and proportional least core cost allocation meth-

ods are actually two classes of cost allocation methods, since they are de-

fined based on the sets of the optimal solutions of two optimization prob-

lems which may have more than one optimal solutions. Because of this

non-uniqueness, symmetry and scalar multiplicativity may fail in general

for these cost allocation methods. However, these properties hold for some

of proportional least core cost allocation methods which will be consid-

ered in the next section. Proportional, minimum subsidy, and proportional

least core cost allocation methods may not charge a dummy player exactly

his individual cost, but their dummy-friendly versions do. Moreover, their

dummy-friendly versions have all of their other properties due to Proposi-

tion 2.2.7.

2.3 Game Theoretical Concepts

Due to the previous section, one cannot construct in general an efficient,

coalitionally stable core allocation method which has bounded variation.

Even worse, at most two of these four properties can be simultaneously

fulfilled. There are two way to proceed: One way is to consider more

specific families of cost allocation games which could have better properties,

another is to minimize the degree of axiomatic violation. Since specific cost

allocation games occur seldom in practice, we choose the latter approach.

We consider several game theoretical concepts, where the unfairness in the

sense of coalitional instability is minimized.

A cooperation can only be realized if the common cost is allocated in

a fair way and accepted by the users. Cooperative game theory analyzes

the possible grouping of individuals to form their own real or theoretical

coalitions. It provides mathematical tools to understand fair prices in the

sense that a fair price prevents the collapse of the grand coalition and

increases the stability of the cooperation. In this section, we present some

generalizations of several well-known concepts from game theory and a new

concept, namely, the (f, r)-least core.

2.3.1 The Core and the f-Least Core

The core is the most attractive solution concept in cooperative game theory.

It is the set of valid, efficient allocations that cannot be improved upon by

a subset (a coalition) of the economy’s consumers.

28

2.3 Game Theoretical Concepts

Definition 2.3.1. The core of the cost allocation game Γ = (N, c, P,Σ),

denoted by C(Γ), is the set of all valid, efficient, and user friendly prices

of Γ

C(Γ) = {x ∈ X (Γ) | x(S) ≤ c(S), ∀S ∈ Σ\{∅, N}}. (2.10)

If the core of Γ is non-empty, then by using a price in the core there is

no incentive for each subcoalition S of N to leave the grand coalition N and

create its own subgame ΓS = (S, cS, PS,ΣS) since the total price that S has

to pay will not decrease thereby. Unfortunately, the core in general may

be empty, e.g., the ticket-pricing problem that we consider in Chapter 8.

Because of this reason, Shapley and Shubik generalized the core concept to

the strong ε-core and weak ε-core [56], which are non-empty with suitable

parameter ε. Following this line of reasoning, Maschler, Peleg, and Shapley

[45] introduced in 1979 the least core, which is the intersection of all non-

empty strong ε-cores. The least core is non-empty under the assumption

that the imputation set X (Γ) is non-empty and it is a subset of the core

in the case the core is non-empty. These concepts appear as special cases

in the following definition.

Definition 2.3.2. Given a cost allocation game Γ = (N, c, P,Σ) and a

weight function f : Σ+ → R>0. The set

Cε,f (Γ) :=
{

x ∈ X (Γ) | ef (S, x) ≥ ε, ∀S ∈ Σ+\{N}
}

is called the (ε, f)-core of Γ. In particular, C0,f (Γ) is the core of Γ, Cε,1(Γ)

is the strong ε-core, and Cε,|·|(Γ) is the weak ε-core.

Let εf (Γ) be the optimal value of the following linear program

max
(x,ε)

ε (2.11)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x ∈ X (Γ).

The number εf (Γ) is called the f -least core radius of Γ. The f -least core

of the game Γ, denoted LCf (Γ), is the set of all vectors x ∈ X (Γ) such

that (x, εf (Γ)) is an optimal solution of the above linear program, i.e.,

LCf (Γ) = Cεf (Γ),f (Γ).

29

2. The Cost Allocation Problem

Equivalently, we have

εf (Γ) = max
x∈X (Γ)

min
S∈Σ+\{N}

ef (S, x),

i.e., εf (Γ) is the largest ε such that Cε,f (Γ) is non-empty. In other words,

the f -least core is the set of all vectors in X (Γ) that maximize the minimum

f -excess of coalitions in Σ+\{N}.

For each cost allocation game whose core is empty, there exists for

every valid, efficient price at least one coalition such that its price exceeds

its cost. In that case, what we only can do is to minimize the loss of such

coalitions and thereby decrease the dissatisfaction of them. This is exactly

the idea behind the f -least core. The f -least core can also be used for cost

allocation games having non-empty core to determine fair prices. In that

case, for each price vector in the core, no coalition has to pay more than

its cost. However, the coalitions have different amounts of benefit. A price

where most coalitions have a small or zero benefit and only a few coalitions

have a significant cost saving will also be seen as unfair. The minimum

f -excess εf (x; Γ) of coalitions in Σ+\{N} at a price x,

εf (x; Γ) := min
S∈Σ+\{N}

c(S)− x(S)

f(S)
,

is a global coalitions’ gain indicator. An allocation x with a large εf (x; Γ)

makes the cooperation more attractive and gives each coalition the feeling

that they are taken seriously by the decision maker. Maximizing εf (x; Γ)

prevents unrest among the users. Choosing a suitable weight function f is

the job of the decision maker. Typically one can choose f equal to 1, or the

cardinal function, or the cost function itself. The f -least core is called least

core with f = 1, weak least core with f = | · |, and proportional least core

with f = c.

As we said, the original reason for the study of the f -least core is the

existence of cost allocation games with empty core. The reader may won-

der why we should calculate prices for such games, since for every valid,

efficient price there exists at least a coalition such that its price exceeds its

cost? For each of these coalitions creating its own cooperation would be a

better alternative. Why don’t we just consider the corresponding subgames

and the game consisting of the remaining players? The first reason is that,

in many games, the players are not allowed to form their real coalitions.

30

2.3 Game Theoretical Concepts

1

1 11

1

1

1

1 1

S

A

B

C

Figure 2.1: Steiner tree game

Considering theoretical coalitions provides alternatives in theory. For play-

ers, if they can find a better alternative even only in theory, then they will

feel discriminated. However, if the decision maker can show that it is the

best solution due to mathematical reasons, then the players may accept

the price. The second reason is that, even if real coalitions are allowed,

for some games the coalitions, for which creating its own cooperation is

a better alternative than accepting a given price, overlap each other and

therefore one cannot decide which coalitions among them should be real-

ized. Let us consider a Steiner tree game of 3 players A, B, and C as in

Figure 2.1. Each player has to be connected to the source S and the cost

of each arc is as in the figure. The cost function is then

c({A}) = c({B}) = c({C}) = 2, c({A,B,C}) = 5,

c({A,B}) = c({B,C}) = c({C,A}) = 3.

Since the players are symmetric, each of them should pay the same amount

of 5/3. That mean the price for each coalition of two players is 10/3, which

is larger than its cost of 3. However, one cannot decide which two players

should leave the grand coalition to build their own cooperation, because

the three players are identical. This game is totally unstable and the only

solution for the three players is staying in the grand coalition. With the

above price each player still has a benefit of 1/3 in comparison with acting

alone.

In the following, we prove that the f -least core is well-defined.

Proposition 2.3.3. For each cost allocation game Γ = (N, c, P,Σ), if X (Γ)

is non-empty then the f -least core of Γ is well-defined and non-empty.

Proof. Due to the definition of a cost allocation game we have Σ+\{N} 6= ∅.

The polyhedron defined by the constraints of (2.11) is non-empty because

31

2. The Cost Allocation Problem

with each x ∈ X (Γ), since f(S) > 0 for all S in Σ+, we can choose ε

sufficiently small such that

x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}.

On the other hand, since x ∈ X (Γ) ⊆ RN
+ , the objective value of (2.11) is

bounded for each feasible solution (x, ε),

ε ≤
c(S)− x(S)

f(S)
≤

c(S)

f(S)
, ∀S ∈ Σ+\{N}.

Therefore, the linear program (2.11) has at least one optimal solution. Let

ε∗ be the optimal value, then the f -least core of Γ is

{x ∈ X (Γ) | (x, ε∗) is a feasible solution of (2.11)},

which is non-empty.

Proposition 2.3.4. Given a cost allocation game Γ = (N, c, P,Σ) with a

non-empty imputation set X (Γ). For f = αg+βc, with α, β ≥ 0, α+β > 0,

and some function g : Σ → R satisfying g|Σ+ > 0, let ε∗ be the f -least core

radius of Γ. Then there holds βε∗ ≤ 1.

Proof. If ε∗ is negative, then clearly the proposition holds. We consider

the case that ε∗ is non-negative. The f -least core of Γ is non-empty due to

Proposition 2.3.3. For any x∗ ∈ LCf (Γ) ⊆ R
N
+ , there holds for every set S

in Σ+\{N}

0 ≤ x∗(S) ≤ c(S)− ε∗f(S) ≤ c(S)− ε∗βc(S).

Since the cost function is positive, from this it follows that βε∗ ≤ 1.

The core and the f -least core of general cost allocation games are defined
in the same way as the ones of cost allocation games. However, the non-
emptiness of the imputation set is not sufficient to guarantee that the f -
least core is well-defined. The following property is needed.

Definition 2.3.5. A general cost allocation game Γ := (N, c, P,Σ) is called

bounded if there exists a finite number M such that for each vector x ∈

X (Γ) there exists a set S ∈ Σ+\{N} satisfying x(S) ≥ M . Clearly, each

cost allocation game is bounded with M = 0.

32

2.3 Game Theoretical Concepts

Remark 2.3.6. As we will see in Proposition 2.3.8, each general cost al-

location game Γ := (N, c, P,Σ) with Σ = 2N is bounded. If Σ 6= 2N , then

it does not hold in general. We consider a general cost allocation game

with N = {1, 2}, P = RN , and Σ =
{

∅, {1}, N
}

. We have Σ+\{N} =
{

{1}
}

and x({1}) is not bounded from below for x ∈ X (Γ). Therefore, the

linear program (2.11) is unbounded for this game. Consequently, the f -least

core of Γ is not well-defined.

Definition 2.3.7. Let N be a given finite set. For S ⊆ N , let χS ∈ {0, 1}N

denote the incidence vector of S, i.e., χi
S is 1 if i ∈ S and 0 else. A

family Σ ⊆ 2N is called a partitioning family of N if there exist Si ∈

Σ+\{N} and λi ∈ R>0 for i = 1, 2, . . . , k such that

k
∑

i=1

λiχSi
= χN .

Clearly, the power set 2N of N is a partitioning family of N .

Proposition 2.3.8. For each general cost allocation game Γ = (N, c, P,Σ),

if Σ is a partitioning family of N , then Γ is bounded.

Proof. Let x be an arbitrary vector in X (Γ). We have that x(N) = c(N).

On the other hand, since Σ is a partitioning family of N , there exist Si ∈

Σ+\{N} and λi ∈ R>0 for i = 1, 2, . . . , k such that

k
∑

i=1

λiχSi
= χN .

From this it follows that

c(N) = x(N) =
k
∑

i=1

λix(Si).

Clearly, there exists j ∈ {1, 2, . . . , k} such that

x(Sj) ≥ min

{

0,
c(N)

λ1

}

,

i.e., Γ is bounded.

33

2. The Cost Allocation Problem

Proposition 2.3.9. The f -least core of a general cost allocation game Γ =

(N, c, P,Σ) is well-defined and non-empty iff X (Γ) is non-empty and Γ is

bounded.

Proof. If the f -least core of Γ = (N, c, P,Σ) is well-defined, then the fol-

lowing linear program has optimal solutions with the optimal value εf (Γ)

max
(x,ε)

ε (2.12)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x ∈ X (Γ).

Therefore, X (Γ) is non-empty and for each vector x ∈ X (Γ) there exists a

set T ∈ Σ+\{N} such that

x(T) + εf (Γ)f(T) = c(T),

i.e.,

x(T) = c(T)− εf (Γ)f(T) ≥ min
S∈Σ+\{N}

(

c(S)− εf (Γ)f(S)
)

> −∞.

This means that Γ is bounded.

With X (Γ) is non-empty and Γ is bounded, we want to prove that the

linear program (2.12) has optimal solutions. The linear program (2.12) is

feasible because with each x ∈ X (Γ), since f(S) > 0 for all S in Σ+, we

can choose ε sufficiently small such that

x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}.

Since Γ is bounded, there exists a finite number M such that

∀x ∈ X (Γ), ∃S ∈ Σ+\{N} : x(S) ≥ M.

Let (x, ε) be an arbitrary feasible solution of (2.12), then there exists a

set T ∈ Σ+\{N} such that x(T) ≥ M . From this it follows that

ε ≤
c(T)− x(T)

f(T)
≤

c(T)−M

f(T)
≤ max

S∈Σ+\{N}

c(S)−M

f(S)
.

This means that the linear program (2.12) is bounded from above. And

therefore it has optimal solutions and the f -least core of Γ is well-defined

and non-empty.

34

2.3 Game Theoretical Concepts

The following proposition shows that the f -least core of a general cost
allocation game Γ = (N, c,RN ,Σ) is well-defined if and only if Σ is a
partitioning family of N .

Proposition 2.3.10. Given a finite set N , a family Σ ⊆ 2N satisfying

Σ+\{N} 6= ∅, a function u : Σ → R, and a weight function f : Σ+ → R>0.

The following linear program

max
(x,ε)

ε (2.13)

s.t. x(S) + εf(S) ≤ u(S), ∀S ∈ Σ+\{N}

x(N) = u(N)

is bounded if and only if Σ is a partitioning family of N .

Proof. The linear program (2.13) is feasible because with each x ∈ RN

satisfying x(N) = u(N), since f(S) > 0 for all S in Σ+, we can choose ε

sufficiently small such that

x(S) + εf(S) ≤ u(S), ∀S ∈ Σ+\{N}.

Therefore, if it is bounded, then it has optimal solutions. That means, due

to the duality theorem, the dual problem

min
(λ,µ)

∑

S∈Σ+\{N}

νSu(S) + µu(N)

s.t.
∑

S∈Σ+\{N}
S∋i

νS + µ = 0, ∀i ∈ N

∑

S∈Σ+\{N}

νSf(S) = 1

νS ≥ 0, ∀S ∈ Σ+\{N}

is feasible. Let (λ, µ) be a feasible solution of the dual problem. Since ν is

non-negative,
∑

S∈Σ+\{N}

νSf(S) = 1 > 0,

and

f(S) > 0, ∀S ∈ Σ+,

35

2. The Cost Allocation Problem

the set Ω defined by

Ω := {S ∈ Σ+\{N} | νS > 0}

is non-empty. Let T be a set in Ω and j be an element of T , we have then

µ = −
∑

S∈Σ+\{N}
S∋j

νS ≤ −νT < 0.

Define for each S ∈ Ω

λS = −
νS
µ
,

then we have that (λS)S∈Ω is positive and

∑

S∈Ω

λSχS = χN ,

i.e., Σ is a partitioning family of N .

Assume now that Σ is a partitioning family of N . The linear pro-

gram (2.13) is bounded due to Proposition 2.3.8 and the proof of Proposi-

tion 2.3.9.

Definition 2.3.11. A cost allocation method defined for every bounded

general cost allocation game with a non-empty imputation set whose output

belongs to the f -least core for some weight function f is called a f -least

core cost allocation method.

In the following, we present some properties of the f -least core and
f -least core cost allocation methods beside the two obvious ones, namely,
validity and efficiency.

Core cost allocation

Proposition 2.3.12. For any bounded general cost allocation game Γ =

(N, c, P,Σ), if the core of Γ is non-empty, then there holds

LCf (Γ) ⊆ C(Γ).

Proof. If the core is non-empty then the f -least core radius is non-negative

and therefore each vector in the f -least core belongs also to the core.

36

2.3 Game Theoretical Concepts

Scalar multiplicativity

Proposition 2.3.13. For any bounded general cost allocation game Γ =

(N, c, P,Σ) with a non-empty imputation set X (Γ), any weight function f :

Σ+ → R>0, and any positive number λ, there holds

LCf (λΓ) = λLCf (Γ).

Proof. Let ε∗ be the f -least core radius of Γ and δ∗ be the f -least core

radius of λΓ. Due to the definition, we have that δ∗ is the optimal value of

the following linear program

max
(y,δ)

δ (2.14)

s.t. y(S) + δf(S) ≤ λc(S), ∀S ∈ Σ+\{N}

y ∈ X (λΓ).

Since X (λΓ) = λX (Γ), by setting ε = δ
λ
and x = 1

λ
y, the linear pro-

gram (2.14) is equivalent to the following one

λmax
(x,ε)

ε (2.15)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x ∈ X (Γ).

From this it follows that

λε∗ = δ∗

and

LCf (λΓ) = λLCf (Γ).

Proposition 2.3.14. For any bounded general cost allocation game Γ =

(N, c, P,Σ) with a non-empty imputation set X (Γ), any weight function f :

Σ+ → R>0, and any positive number µ, there holds

LCµf (Γ) = LCf (Γ).

37

2. The Cost Allocation Problem

Proof. Let ε∗ be the f -least core radius of Γ and ε̃ be the µf -least core

radius of Γ. Similarly to the proof of Proposition 2.3.13, one can prove

that µε̃ = ε∗ and

LCµf (Γ) = LCf (Γ).

Combining Proposition 2.3.13 and Proposition 2.3.14 gives us the fol-
lowing result.

Proposition 2.3.15. For any bounded general cost allocation game Γ =

(N, c, P,Σ) with a non-empty imputation set X (Γ), any weight function f :

Σ+ → R>0, and any positive numbers λ and µ, there holds

LCµf (λΓ) = λLCf (Γ).

Using the scalar multiplicativity, we may scale the cost function and the
weight function in order to improve the numerical stability when calculating
the f -least core.

Stability

Due to Proposition 2.3.12, each f -least core cost allocation method is a core
cost allocation method. As we showed before in Section 2.2.2, in general,
no core cost allocation method has uniformly bounded variation. However,
the f -least core has another stability property in the case f = c. Let Γ =
(N, c, P,Σ) be a cost allocation game and Γ̃ = (N, c̃, P̃ ,Σ) with P̃ = c̃(N)

c(N)
P

be a perturbed cost allocation game of Γ. Assume that the imputation sets
of Γ and Γ̃ are non-empty. Let α2 ≥ α1 > −1 be real numbers that satisfy

(1 + α1)c(S) ≤ c̃(S) ≤ (1 + α2)c(S), ∀S ∈ Σ+\{N}.

Denote β := c̃(N)
c(N)

− 1. Since c(N) > 0 and c̃(N) > 0, we have that β > −1.

Let ε be the c-least core radius of Γ, ε̃ be the c̃-least core radius of Γ̃, x be
an arbitrary point in LCc(Γ), and x̃ be an arbitrary point in LC c̃(Γ̃). We
have then x ∈ X (Γ), x̃ ∈ X (Γ̃),

min
S∈Σ+\{N}

c(S)− x(S)

c(S)
= ε

and

min
S∈Σ+\{N}

c̃(S)− x̃(S)

c̃(S)
= ε̃.

38

2.3 Game Theoretical Concepts

Because of the definition of β and since P̃ = (1 + β)P , we have that

(1 + β)x ∈ X (Γ̃) and
1

1 + β
x̃ ∈ X (Γ).

Let δ̃(x) be the largest number such that (1 + β)x ∈ Cδ̃(x),c̃(Γ̃), i.e.,

δ̃(x) = min
S∈Σ+\{N}

c̃(S)− (1 + β)x(S)

c̃(S)
,

and δ(x̃) be the largest number such that 1
1+β

x̃ ∈ Cδ(x̃),c(Γ), i.e.,

δ(x̃) = min
S∈Σ+\{N}

c(S)− 1
1+β

x̃(S)

c(S)
.

In general, (1 + β)x and 1
1+β

x̃ may lie outside of LC c̃(Γ̃) and LCc(Γ), re-
spectively, i.e.,

δ̃(x) < ε̃ and δ(x̃) < ε.

However, the following result shows that the gaps ε̃ − δ̃(x) and ε − δ(x̃)
are bounded by an order of α2 − α1. Therefore, these gaps are small if the
difference between α2 and α1 is sufficiently small. In other words, in that
case, (1 + β)LCc(Γ) is a “good” approximation of LC c̃(Γ̃) and vice versa.

Proposition 2.3.16. For any cost allocation games Γ = (N, c, P,Σ) and

Γ̃ = (N, c̃, P̃ ,Σ) whose imputation sets are non-empty and numbers α2 ≥

α1 > −1 that satisfy

P̃ =
c̃(N)

c(N)
P

and

(1 + α1)c(S) ≤ c̃(S) ≤ (1 + α2)c(S), ∀S ∈ Σ+\{N},

let ε, ε̃, δ, and δ̃ be defined as above, then there hold

0 ≤ ε̃− δ̃(x) ≤ (α2−α1)
(1 + β)(1− ε)

(1 + α1)(1 + α2)
≤ (α2−α1)

1− ε̃

1 + α1

, ∀x ∈ LCc(Γ)

and

0 ≤ ε− δ(x̃) ≤ (α2 − α1)
1− ε̃

1 + β
≤ (α2 − α1)

1− ε

1 + α1

, ∀x̃ ∈ LC c̃(Γ̃).

39

2. The Cost Allocation Problem

Proof. Denote β := c̃(N)
c(N)

− 1. Since c(N) > 0 and c̃(N) > 0, we have

that β > −1. Let x be an arbitrary vector in LCc(Γ) and x̃ be an arbitrary

point in LC c̃(Γ̃). Because P̃ = (1 + β)P ,

1

1 + β
x̃(N) =

1

1 + β
c̃(N) = c(N),

and

(1 + β)x(N) = (1 + β)c(N) = c̃(N),

we have that 1
1+β

x̃ ∈ X (Γ) and (1 + β)x ∈ X (Γ̃). Hence, there hold

min
S∈Σ+\{N}

c(S)− 1
1+β

x̃(S)

c(S)
≤ max

y∈X (Γ)
min

S∈Σ+\{N}

c(S)− y(S)

c(S)
= ε (2.16)

and

δ̃(x) = min
S∈Σ+\{N}

c̃(S)− (1 + β)x(S)

c̃(S)
≤ max

y∈X (Γ̃)
min

S∈Σ+\{N}

c̃(S)− y(S)

c̃(S)
= ε̃.

(2.17)
From (2.16), 1 + β > 0, and the non-negativity of x̃, it follows that

(1 + β)ε ≥ min
S∈Σ+\{N}

(1 + β)c(S)− x̃(S)

c(S)

= min
S∈Σ+\{N}

(

1 + β −
x̃(S)

c(S)

)

≥ min
S∈Σ+\{N}

(

1 + β −
x̃(S)
1

1+α2
c̃(S)

)

= β − α2 + (1 + α2) min
S∈Σ+\{N}

(

1−
x̃(S)

c̃(S)

)

= β − α2 + (1 + α2)ε̃,

i.e.,

ε̃ ≤
α2 − β

1 + α2

+
1 + β

1 + α2

ε. (2.18)

40

2.3 Game Theoretical Concepts

On the other hand, we have

δ̃(x) = min
S∈Σ+\{N}

c̃(S)− (1 + β)x(S)

c̃(S)

= min
S∈Σ+\{N}

(

1−
(1 + β)x(S)

c̃(S)

)

≥ min
S∈Σ+\{N}

(

1−
(1 + β)x(S)

(1 + α1)c(S)

)

=
α1 − β

1 + α1

+
1 + β

1 + α1

min
S∈Σ+\{N}

(

1−
x(S)

c(S)

)

=
α1 − β

1 + α1

+
1 + β

1 + α1

ε. (2.19)

Combining (2.17)–(2.19) yields

α1 − β

1 + α1

+
1 + β

1 + α1

ε ≤ δ̃(x) ≤ ε̃ ≤
α2 − β

1 + α2

+
1 + β

1 + α2

ε. (2.20)

Denote

κ :=
1

1 + α1

−
1

1 + α2

=
α2 − α1

(1 + α1)(1 + α2)
,

we have

ε̃− δ̃(x) ≥ 0

and

ε̃− δ̃(x) ≤

(

α2 − β

1 + α2

+
1 + β

1 + α2

ε

)

−

(

α1 − β

1 + α1

+
1 + β

1 + α1

ε

)

=
α2

1 + α2

−
α1

1 + α1

+ βκ− (1 + β)κε

=

(

1−
1

1 + α2

)

−

(

1−
1

1 + α1

)

+ βκ− (1 + β)κε

= (1 + β)κ(1− ε)

= (α2 − α1)
(1 + β)(1− ε)

(1 + α1)(1 + α2)
. (2.21)

To estimate ε − δ(x̃) we just have to swap the role of Γ and Γ̃ in the

above proof. Denote

α̃1 := −
α1

1 + α1

, α̃2 := −
α2

1 + α2

, and β̃ := −
β

1 + β
,

41

2. The Cost Allocation Problem

we have then

(1 + α̃2)c̃(S) ≤ c(S) ≤ (1 + α̃1)c̃(S), ∀S ∈ Σ+\{N},

β̃ =
c(N)

c̃(N)
− 1,

and

δ(x̃) = min
S∈Σ+\{N}

c(S)− (1 + β̃)x̃(S)

c(S)
,

Due to (2.20), we have

α̃2 − β̃

1 + α̃2

+
1 + β̃

1 + α̃2

ε̃ ≤ δ(x̃) ≤ ε ≤
α̃1 − β̃

1 + α̃1

+
1 + β̃

1 + α̃1

ε̃. (2.22)

Since

1 + α̃i =
1

1 + αi

, i ∈ {1, 2}

and

1 + β̃ =
1

1 + β
,

there hold for i ∈ {1, 2}

α̃i − β̃

1 + α̃i

=
(1 + α̃i)− (1 + β̃)

1 + α̃i

= (1 + αi)

(

1

1 + αi

−
1

1 + β

)

=
β − αi

1 + β
,

and
1 + β̃

1 + α̃i

=
1 + αi

1 + β
.

Therefore, the inequalities (2.22) are equivalent to

β − α2

1 + β
+

1 + α2

1 + β
ε̃ ≤ δ(x̃) ≤ ε ≤

β − α1

1 + β
+

1 + α1

1 + β
ε̃. (2.23)

From this it follows that

0 ≤ ε− δ(x̃) ≤

(

β − α1

1 + β
+

1 + α1

1 + β
ε̃

)

−

(

β − α2

1 + β
+

1 + α2

1 + β
ε̃

)

,

i.e.,

0 ≤ ε− δ(x̃) ≤ (α2 − α1)
1− ε̃

1 + β
. (2.24)

42

2.3 Game Theoretical Concepts

From (2.23) we have that

1− ε ≤ 1−
β − α2

1 + β
−

1 + α2

1 + β
ε̃ =

1 + α2

1 + β
(1− ε̃).

From this and (2.21) it follows that

ε̃− δ̃(x) ≤ (α2 − α1)
(1 + β)(1− ε)

(1 + α1)(1 + α2)
≤ (α2 − α1)

1− ε̃

1 + α1

.

Similarly, from (2.20) we have

1− ε̃ ≤ 1−
α1 − β

1 + α1

−
1 + β

1 + α1

ε =
1 + β

1 + α1

(1− ε).

From this and (2.24) it follows that

0 ≤ ε− δ(x̃) ≤ (α2 − α1)
1− ε̃

1 + β
≤ (α2 − α1)

1− ε

1 + α1

.

Symmetry

Proposition 2.3.17. For any bounded general cost allocation game Γ =

(N, c, P,Σ) with a non-empty imputation set X (Γ) and two equivalent play-

ers i and j and any weight function f : Σ+ → R>0 satisfying

f(S ∪ {i}) = f(S ∪ {j}), ∀S ⊆ N\{i, j} : S ∪ {i} ∈ Σ,

if a vector x belongs to the f -least core of Γ, then so do xij and 1
2
(x+ xij),

where

xij
k =











xj if k = i

xi if k = j

xk otherwise.

Proof. Since x belongs to LCf (Γ), x belongs to P and x(N) = c(N). For

each set S ⊆ N and player k ∈ N , denote Sk := S ∪ {k}. Since x belongs

to P and i and j are equivalent, xij belongs to P as well. On the other

hand, there holds

xij(N) = x(N) = c(N)

43

2. The Cost Allocation Problem

and hence xij belongs to X (Γ). Moreover, since i and j are equivalent, we

have

∀S ⊆ N\{i, j} : Si ∈ Σ ⇔ Sj ∈ Σ

and

c(Si) = c(Sj), ∀S ⊆ N\{i, j} : Si ∈ Σ.

From these and the definition of xij it follows that

c(S)− xij(S)

f(S)
=

c(S)− x(S)

f(S)
, ∀S ∈ Σ+ : {i, j} ⊆ S or {i, j} ∩ S = ∅,

c(Si)− xij(Si)

f(Si)
=

c(Sj)− x(Sj)

f(Sj)
, ∀S ⊆ N\{i, j} : Si ∈ Σ,

and
c(Sj)− xij(Sj)

f(Sj)
=

c(Si)− x(Si)

f(Si)
, ∀S ⊆ N\{i, j} : Sj ∈ Σ.

Combining the above equalities yields

min
S∈Σ+\{N}

c(S)− xij(S)

f(S)
= min

S∈Σ+\{N}

c(S)− x(S)

f(S)
,

i.e., xij belongs to LCf (Γ).

Let ε be the f -least core radius of Γ, i.e.,

ε = min
S∈Σ+\{N}

c(S)− x(S)

f(S)
= max

z∈X (Γ)
min

S∈Σ+\{N}

c(S)− z(S)

f(S)
.

Denote y := 1
2
(x + xij). As x and xij belong to X (Γ), so does y. Hence,

there holds

min
S∈Σ+\{N}

c(S)− y(S)

f(S)
≤ ε.

On the other hand, we have

min
S∈Σ+\{N}

c(S)− y(S)

f(S)
=

1

2
min

S∈Σ+\{N}

(

c(S)− x(S)

f(S)
+

c(S)− xij(S)

f(S)

)

≥
1

2

(

min
S∈Σ+\{N}

c(S)− x(S)

f(S)
+ min

S∈Σ+\{N}

c(S)− xij(S)

f(S)

)

= min
S∈Σ+\{N}

c(S)− x(S)

f(S)

= ε.

44

2.3 Game Theoretical Concepts

From these it follows that

min
S∈Σ+\{N}

c(S)− y(S)

f(S)
= ε,

i.e., y belongs to LCf (Γ).

Dummy player

Proposition 2.3.18. For any general cost allocation game Γ = (N, c, P,Σ)

with a non-empty core, each core cost allocation method defined for Γ

charges dummy players exactly the amount of their individual costs.

Proof. Let k be a dummy player of Γ, we have then

∀S ⊆ N\{k} : S ∪ {k} ∈ Σ ⇔ S ∈ Σ

and

c(S ∪ {k}) = c(S) + c({k}), ∀S ∈ Σ, S 6∋ k.

Since N ∈ Σ, the set N\{k} belongs also to Σ. Let Φ be a core cost

allocation method. Since the core C(Γ) of Γ is non-empty, we have Φ(Γ)

belongs to C(Γ). Hence, there holds

Φ(Γ)k ≤ c({k}),

∑

i∈N\{k}

Φ(Γ)i ≤ c(N\{k}),

and
∑

i∈N

Φ(Γ)i = c(N).

Therefore, we have

c({k}) ≥ Φ(Γ)k =
∑

i∈N

Φ(Γ)i −
∑

i∈N\{k}

Φ(Γ)i

≥ c(N)− c(N\{k})

= c({k}),

i.e.,

Φ(Γ)k = c({k}).

45

2. The Cost Allocation Problem

The above proposition shows that each f -least core allocation method

charges the dummy players of any bounded general cost allocation game

with a non-empty core exactly their costs. It remains to consider games

with empty core.

Proposition 2.3.19. For any given bounded general cost allocation game

Γ = (N, c,RN ,Σ) which has a non-empty imputation set X (Γ) and an

empty core, any dummy player k of Γ, and any weight function f : Σ+ →

R>0 satisfying

f(S ∪ {k}) = f(S), ∀S ∈ Σ+ : S 6∋ k,

each f -least core cost allocation method charges the dummy player k exactly

c({k}).

Proof. If |N | = 1, then there is nothing to prove. Assume that |N | ≥ 2.

Let Φ be an arbitrary f -least core cost allocation method and ε be the f -

least core radius of Γ. Denote x := Φ(Γ), we have

ε = min
S∈Σ+\{N}

c(S)− x(S)

f(S)
= max

y∈X (Γ)
min

S∈Σ+\{N}

c(S)− y(S)

f(S)
. (2.25)

Since the core of Γ is empty, the number ε is negative. Denote

Ω :=

{

T ∈ Σ+\{N}
∣

∣

∣

c(T)− x(T)

f(T)
= ε

}

.

For each set S ∈ Σ+ which does not contain k, there holds

c(S ∪ {k})− x(S ∪ {k})

f(S ∪ {k})
=

c(S) + c({k})− x(S)− xk

f(S)
. (2.26)

We want to prove xk = c({k}) by contradiction. Suppose that xk 6= c({k}).

If xk < c({k}), due to (2.26) there holds

c(S ∪ {k})− x(S ∪ {k})

f(S ∪ {k})
>

c(S)− x(S)

f(S)
, ∀S ∈ Σ+ : S 6∋ k

and
c({k})− xk

f({k})
> 0 > ε.

46

2.3 Game Theoretical Concepts

Therefore, any set T in Ω does not contain k. Denote

ν := min
S∈Σ+\{N}

S∋k

c(S)− x(S)

f(S)
.

We have then ν > ε. Denote

δ :=
1

2
(ν − ε) min

S∈Σ+\{N}
S∋k

f(S) > 0

and

xδ
i :=

{

xi + δ if i = k

xi −
δ

|N |−1
otherwise,

∀i ∈ N.

Clearly, xδ(N) = x(N) = c(N) and there hold

c(S)− xδ(S)

f(S)
>

c(S)− x(S)

f(S)
≥ ε, ∀S ∈ Σ+\{N} : S 6∋ k.

On the other hand, for each set S ∈ Σ+\{N} containing k, we have

c(S)− xδ(S)

f(S)
≥

c(S)− x(S)− δ

f(S)

≥
c(S)− x(S)

f(S)
−

1

2
(ν − ε)

≥ ν −
1

2
(ν − ε)

> ε.

Therefore, it holds

min
S∈Σ+\{N}

c(S)− xδ(S)

f(S)
> ε

contradicting (2.25). Hence xk > c({k}) and due to (2.26) there holds

c(S ∪ {k})− x(S ∪ {k})

f(S ∪ {k})
<

c(S)− x(S)

f(S)
, ∀S ∈ Σ+ : S 6∋ k.

Therefore, any set T in Ω contains k. Denote

µ := min
S∈Σ+\{N}

S 6∋k

c(S)− x(S)

f(S)
.

47

2. The Cost Allocation Problem

We have then µ > ε. Denote

θ :=
1

2
(µ− ε) min

S∈Σ+\{N}
S 6∋k

f(S) > 0

and

xθ
i :=

{

xi − θ if i = k

xi +
θ

|N |−1
otherwise,

∀i ∈ N.

Similarly as above, one can prove that xθ(N) = c(N) and

min
S∈Σ+\{N}

c(S)− xθ(S)

f(S)
> ε

contradicting (2.25).

Similarly, one can prove the following result.

Proposition 2.3.20. For any given cost allocation game Γ = (N, c,RN
+ ,Σ)

which has a non-empty imputation set X (Γ) and an empty core, any dummy

player k of Γ, and any weight function f : Σ+ → R>0 satisfying

f(S ∪ {k}) = f(S), ∀S ∈ Σ+ : S 6∋ k,

each f -least core cost allocation method charges the dummy player k exactly

c({k}).

Since the weight function f = 1 satisfies the conditions of Proposi-

tion 2.3.19 and Proposition 2.3.20, from these propositions and Proposi-

tion 2.3.18 we have the following results.

Corollary 2.3.21. Each least core cost allocation method charges the dummy

players of any bounded general cost allocation game (N, c,RN ,Σ) exactly

their individual costs.

Corollary 2.3.22. Each least core cost allocation method charges the dummy

players of any cost allocation game (N, c,RN
+ ,Σ) exactly their individual

costs.

Unfortunately, if the weight function f does not fulfil the assumption

of Proposition 2.3.19, then the dummy-property does not hold in general.

48

2.3 Game Theoretical Concepts

Proposition 2.3.23. For any given bounded general cost allocation game

Γ = (N, c,RN ,Σ) which has a non-empty imputation set X (Γ) and an

empty core, any dummy player k of Γ, and any weight function f : Σ+ →

R>0 satisfying

f(S ∪ {k}) > f(S), ∀S ∈ Σ+ : S 6∋ k,

each f -least core cost allocation method charges the dummy player k more

than c({k}).

Proof. Let Φ be an arbitrary f -least core cost allocation method and ε be

the f -least core radius of Γ. Denote x := Φ(Γ), we have

ε = min
S∈Σ+\{N}

c(S)− x(S)

f(S)
= max

y∈X (Γ)
min

S∈Σ+\{N}

c(S)− y(S)

f(S)
. (2.27)

Since the core of Γ is empty, the number ε is negative. We want to

prove xk > c({k}) by contradiction. Suppose that xk ≤ c({k}). Denote

Ω :=

{

T ∈ Σ+\{N}
∣

∣

∣

c(T)− x(T)

f(T)
= ε

}

.

We want to prove that any set T in Ω does not contain k. Suppose that it

were not the case and there exists a set S ∈ Ω which contains k. Since

c({k})− xk

f({k})
≥ 0 > ε,

the set S\{k} is non-empty and hence belongs to Σ+. Since

c(S)− x(S) = εf(S) < 0

and

f(S) > f(S\{k}) > 0

there holds

ε =
c(S)− x(S)

f(S)

>
c(S)− x(S)

f(S\{k})

=
c(S\{k}) + c({k})− x(S\{k})− xk

f(S\{k})

≥
c(S\{k})− x(S\{k})

f(S\{k})

≥ ε,

49

2. The Cost Allocation Problem

contradiction. Hence, any set T in Ω does not contain k. Due to the proof

of Proposition 2.3.19, one can construct a vector xδ ∈ X (Γ) satisfying

min
S∈Σ+\{N}

c(S)− xδ(S)

f(S)
> ε,

which contradicts (2.27).

For any f -least core cost allocation method which does not have the

dummy-property we still can apply the dummy operator D. One can easily

prove that if a general cost allocation game Γ is bounded and satisfies

{x ∈ X (Γ) | xi = c({i}), ∀i ∈ d(Γ)} 6= ∅,

then its dummy-free subgame ΓD is also bounded and X (ΓD) is non-empty.

With other words, each f -least core cost allocation method is defined for

both Γ and ΓD in that case. Because of Proposition 2.2.7, since each f -

least core cost allocation method Φ is a valid, efficient core cost allocation

method, so is its dummy-friendly version D◦Φ, which charges every dummy

player exactly its individual cost.

Summary. Each f -least core cost allocation method has the following

properties:

• Validity

• Efficiency

• Core cost allocation method (Proposition 2.3.12)

• Scalar multiplicativity for bounded general cost allocation games

whose f -least core contains a unique vector (Proposition 2.3.15)

• Stability (Proposition 2.3.16)

• Symmetry for bounded general cost allocation games whose f -least

core contains a unique vector (Proposition 2.3.17)

• Dummy player property for some general cost allocation games (Propo-

sitions 2.3.18–2.3.20).

50

2.3 Game Theoretical Concepts

2.3.2 The f-Nucleolus

Vectors in the f -least core maximize the minimal f -excess (minimal weighted
gain) among all possible coalitions. We can also go further and find a price
that maximizes the f -excesses of all possible coalitions with respect to the
lexicographic ordering. Such a price keeps the benefit of each coalition as
high as possible (or keeps the loss of each coalition as low as possible) and
reflects the position and the cost of each coalition. Keeping in mind that
a coalition which has many good alternatives to form cooperations with
other players has a better strategic position than another one which does
not have such an advantage. That is the idea behind the f -nucleolus.

In the following, we define the f -nucleolus formally. It is well-defined
for general cost allocation games with the following property.

Definition 2.3.24. A general cost allocation game Γ = (N, c, P,Σ) is called

strongly bounded if for each family Ω (Σ\{∅, N} and each finite vec-

tor α ∈ RΩ which satisfy that the set

X (Γ,Ω, α) := {x ∈ X (Γ) | x(S) = αS, ∀S ∈ Ω}

is non-empty, there exists a finite number M such that there holds

∀x ∈ X (Γ,Ω, α), ∃S ∈ Σ+\(Ω ∪ {N}) : x(S) ≥ M.

A strongly bounded cost allocation game is bounded as well.

One can easily prove the following result.

Proposition 2.3.25. Each general cost allocation game Γ = (N, c, P,Σ)

which satisfies at least one of the following two conditions

(i) x is bounded below for all x ∈ X (Γ),

∃m ∈ R : xi ≥ m, ∀i ∈ N, ∀x ∈ X (Γ),

(ii) for each S0 ∈ Σ+\{N} there exist S1, S2, . . . , Sk(S0) ∈ Σ+\{N} and

positive real numbers λ0, λ1, . . . , λk(S0) such that

k(S0)
∑

i=0

λiχSi
= χN

is strongly bounded.

51

2. The Cost Allocation Problem

Remark 2.3.26. Each cost allocation game satisfies the condition (i) in

Proposition 2.3.25 with m = 0. The condition (ii) is fulfilled if, e.g., for

each non-empty set S (N there holds

S ∈ Σ ⇔ N\S ∈ Σ

or Σ contains the coalition of each single player, i.e.,

{i} ∈ Σ, ∀i ∈ N.

Let Γ = (N, c, P,Σ) be a strongly bounded general cost allocation game
and f : Σ+ → R>0 be a weight function. Due to Proposition 2.3.9, the f -
least core of Γ is well-defined and non-empty if the imputation set X (Γ)
is non-empty. In that case, the f -least core of Γ may contain, in general,
more than one point. However, if the family Σ is full dimensional , i.e.,

dim
(

span(χΣ)
)

= |N |,

then uniqueness can be enforced by imposing a lexicographic order. Here,
we use the notation χΩ to represent the set {χS |S ∈ Ω} for each family Ω
of coalitions in N . A general cost allocation game with a full dimensional
family of possible coalitions is called full dimensional.

For each x ∈ X (Γ), let θf,Γ(x) be the vector in R|Σ+|−1 whose compo-
nents are the f -excesses ef (S, x) of S ∈ Σ+\{N} arranged in increasing
order, i.e.,

θif,Γ(x) ≤ θjf,Γ(x), ∀1 ≤ i < j ≤ |Σ+| − 1.

The vector θf,Γ(x) is called the f -excess vector of Γ at x. The function θf,Γ
is called the f -excess function of Γ. For x, y ∈ X (Γ), θf,Γ(x) is lexicographi-
cally greater than θf,Γ(y), denoted θf,Γ(x) ≻ θf,Γ(y), if there exists an index
i0 such that

θi0f,Γ(x) > θi0f,Γ(y) and θif,Γ(x) = θif,Γ(y), ∀i < i0.

We say x is more acceptable than y.

Definition 2.3.27. The f -nucleolus of a strongly bounded general cost

allocation game Γ, denoted by Nf (Γ), is the set of all vectors in X (Γ) that

maximizes θf,Γ in X (Γ) with respect to the lexicographic ordering. The f -

nucleolus is called nucleolus, weak nucleolus, and proportional nucleolus

for f = 1, f = | · |, and f = c, respectively.

52

2.3 Game Theoretical Concepts

Remark 2.3.28. Our definition of the f -nucleolus here is different than

the common one. In the common definition, there is no requirement on the

set of prices, the family of possible allocations is the power set of N, and

our f -nucleolus is actually “f -prenucleolus” in that sense. The common f -

nucleolus is the set of vectors in Π,

Π := {x ∈ RN | x(N) = c(N) and xi ≤ c({i}), ∀i ∈ N},

that maximizes θf,Γ in Π with respect to the lexicographic ordering. How-

ever, in our definition of the cost allocation game, it is allowed to set some

requirements on the prices. That means we can add the conditions

xi ≤ c({i}), ∀i ∈ N

to the requirements on the prices. We thereby unite the f -nucleolus and

the f -prenucleolus in the common sense into a single definition.

The following algorithm computes points in the f -least core after each

step and terminates with the f -nucleolus. It is a generalization of the al-

gorithm calculating the nucleolus in [45], i.e., the f -nucleolus with f = 1

for cost allocation games with 2N as the family of possible coalitions. Here

a different update step is used, which guarantees that the number of linear

programs that have to be solved is bounded by the number of players. The-

orem 2.3.30 shows that the f -nucleolus is well defined and Algorithm 2.3.29

works correctly. Algorithm 2.3.29 allocates step by step prices to coalitions

and terminates when the price of each coalition is uniquely determined. By

calculating the f -nucleolus of a strongly bounded general cost allocation

game Γ = (N, c, P,Σ), the algorithm starts with finding the f -least core

radius and the f -least core LCf (Γ) of Γ. Each price vector in the f -least

core maximizes the minimal weighted benefit among the possible coalitions.

There exists coalitions in Σ+\{N} whose prices do not change by choos-

ing different price vector in LCf (Γ). That means their prices are already

optimal and cannot be improved. Hence these coalitions should accept the

prices obtained by an arbitrary price vector in LCf (Γ). By considering any

dual optimal solution and taking the linear combination of all coalitions

whose corresponding dual optimal variables are positive, the algorithm can

find some of these coalitions. Denote the family of these found coalitions

as Ω. Let pΩ ∈ RΩ be the allocated prices of the coalitions in Ω. Since the

53

2. The Cost Allocation Problem

price of every coalition in Ω is fixed, we only have to consider the coalitions

in Σ̃ := Σ\Ω and the set of possible prices shrinks from P to P̃ ,

P̃ := {x ∈ P | x(S) = pS, ∀S ∈ Ω}.

In the next step, the algorithm again calculates the f -least core radius

and the f -least core of the new strongly bounded general cost allocation

game Γ̃ = (N, c|Σ̃, P̃ , Σ̃). This process will be repeated until the price of

each coalition is uniquely determined. The algorithm thereby maximizes

gradually the attractiveness of a cooperation for all coalitions by improving

their prices.

Algorithm 2.3.29. Computing the f -nucleolus of a strongly bounded gen-

eral cost allocation game Γ = (N, c, P,Σ) with non-empty imputation set

X (Γ).

1. Set k := 0, A1 := {χN}, and P1 := X (Γ).

2. Set k := k + 1, define

Sk := Σ+\{S ∈ Σ+ |χS ∈ spanAk},

and solve the linear program

max
(x,ε)

ε (2.28)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Sk (2.29)

x ∈ Pk. (2.30)

Let (xk, εk) and (λk, µk) be primal and dual optimal solutions of (2.28),

where λk corresponds to the constraint (2.29).

3. Define

Πk+1 := {S ∈ Sk |λ
k
S > 0},

Bk+1 ⊆ Πk+1 : χBk+1
is a basis of spanχΠk+1

Pk+1 := {x ∈ Pk | x(S) = c(S)− εkf(S), ∀S ∈ Bk+1},

Ak+1 :=Ak ∪ χBk+1
.

54

2.3 Game Theoretical Concepts

4. If |Ak+1| < dim(spanχΣ) then goto 2, else Pk+1 is the f -nucleolus

of Γ and xk is a point in it.

We denote in the following the linear program (2.28) for k = i by (2.28i)

and the set of its optimal solutions by Oi.

Theorem 2.3.30. Given a strongly bounded general cost allocation game

Γ = (N, c, P,Σ). If X (Γ) is non-empty then the f -nucleolus of Γ is non-

empty. In that case, Algorithm 2.3.29 gives a point in the f -least core

of Γ after each step and terminates after at most dim(spanχΣ) − 1 steps.

Moreover, if the family Σ is full dimensional, i.e., dim(spanχΣ) = |N |,

then the f -nucleolus contains a unique point.

Proof. By induction, we can easily prove that the linear program (2.28k)

has an optimal solution for every k ≥ 1 satisfying Sk 6= ∅, i.e., |Ak| <

dim(spanχΣ). Due to Proposition 2.3.9, it holds for k = 1. Assume that the

linear program (2.28k) has an optimal solution for every k ≤ k̄. If Sk̄+1 = ∅,

then there is nothing to prove. We consider the case Sk̄+1 6= ∅. Let (yk̄, εk̄)

be an optimal solution of (2.28k̄), then we have due to the complementary

slackness theorem

yk̄(S) = c(S)− εk̄f(S), ∀S ∈ Bk̄+1.

Combining this with yk̄ ∈ Pk̄ yields yk̄ ∈ Pk̄+1, i.e., (y
k̄, εk̄) is a feasible

solution of (2.28k̄+1). Therefore, if we can prove that the objective func-

tion is bounded above, then the linear program (2.28k̄+1) has an optimal

solution. Since Γ is strongly bounded, there exists a finite number M such

that there holds

∀x ∈ Pk̄+1, ∃T ∈ Sk̄+1 : x(T) ≥ M.

Therefore, for each feasible solution (x, ε) of the linear program (2.28k̄+1)

there exists a set T ∈ Sk̄+1 satisfying x(T) ≥ M. From this it follows that

c(T) ≥ x(T) + εf(T)

≥ M + εf(T),

55

2. The Cost Allocation Problem

i.e.,

ε ≤
c(T)−M

f(T)
≤ max

S∈Sk̄+1

c(S)−M

f(S)
.

That means the linear program (2.28k̄+1) is bounded.

As next we consider z1, z2 ∈ Pl for some integer l ≥ 1 satisfying Sl 6= ∅.

We prove that

ef (S, z
1) = ef (S, z

2), ∀S ∈ Σ+\Sl. (2.31)

Due to the definition of Pl, there holds

z1(S) = c(S)− εif(S) = z2(S), ∀S ∈ Bi+1, ∀1 ≤ i ≤ l − 1,

i.e.,

z1(S) = z2(S), ∀S ∈ ∪l
i=2Bi = {T ∈ Σ+\{N} |χT ∈ Al}.

From this and since

z1(N) = c(N) = z2(N)

it follows that

z1(S) = z2(S), ∀S ∈ {T ∈ Σ+ |χT ∈ spanAl} = Σ+\Sl, (2.32)

i.e., (2.31) holds.

For each i ≥ 1 satisfying Si 6= ∅ and each optimal solution (yi, εi)

of (2.28i), due to the complementary slackness theorem, we have

yi(S) = c(S)− εif(S), ∀S ∈ Bi+1.

On the other hand, we have yi ∈ Pi. Therefore, there holds

yi ∈ Pi+1, ∀(y
i, εi) ∈ Oi, ∀i ≥ 1 : Si 6= ∅. (2.33)

If Si+1 6= ∅, then (yi, εi) is a feasible solution of (2.28i+1). Hence, there

holds

εi ≤ εi+1, ∀i ≥ 1 : Si+1 6= ∅. (2.34)

Let (yi+1, εi+1) be an arbitrary optimal solution of (2.28i+1). Because

of (2.34) and f(S) > 0 for every coalition S in Σ+, we have

yi+1(S) + εif(S) ≤ yi+1(S) + εi+1f(S) ≤ c(S), ∀S ∈ Si+1. (2.35)

56

2.3 Game Theoretical Concepts

On the other hand, since yi ∈ Pi+1 and yi+1 ∈ Pi+1, there holds due

to (2.32)

yi+1(S) + εif(S) = yi(S) + εif(S) ≤ c(S), ∀S ∈ Si\Si+1. (2.36)

From (2.35), (2.36), and yi+1 ∈ Pi+1 ⊆ Pi it follows that (yi+1, εi) is a

feasible solution and therefore an optimal solution of (2.28i). By induction

we have that for an arbitrary integer k ≥ 1 satisfying Sk 6= ∅ and an

arbitrary optimal solution (yk, εk) of (2.28k), (yk, εi) is an optimal solution

of (2.28i) for each 1 ≤ i ≤ k. Especially, since (xk, ε1) is an optimal solution

of (2.281), we have xk ∈ LCf (Γ) for every k ≥ 1.

We now consider an arbitrary k-th. step of Algorithm 2.3.29 with |Ak| <

dim(spanχΣ), i.e., Sk 6= ∅. Let (λk, µk) be a dual optimal solution of (2.28k).

Then we have
∑

S∈Sk

f(S)λk
S = 1 > 0.

Therefore, since f(S) > 0 for all S ∈ Sk, the set Πk+1 is non-empty. Hence,

Bk+1 is non-empty and

|Ak+1| − |Ak| ≥ 1.

On the other hand, we have A1 = {χN} and dim(spanχΣ) > 1. Therefore

|Ak+1| ≥ k + 1, ∀k ≥ 1 : |Ak| < dim(spanχΣ).

So there exists 1 ≤ l ≤ dim(spanχΣ) such that

|Al| ≥ dim(spanχΣ). (2.37)

Let k∗ + 1 ≤ dim(spanχΣ) be the smallest number l satisfying (2.37),

then Sk is non-empty for every k ≤ k∗. The algorithm stops after k∗ steps.

It remains to prove that Pk∗+1 is the f -nucleolus of Γ and xk∗ belongs

to it. Clearly, xk∗ belongs to Pk∗+1 due to (2.33). Now let y be an arbitrary

vector in P1 = X (Γ). If y ∈ Pk∗+1 then there holds

xk∗(S) = y(S), ∀S ∈ Σ+ : χS ∈ Ak∗+1.

Since Ak∗+1 ⊆ χΣ, |Ak∗+1| ≥ dim(spanχΣ), and Ak∗+1 is independent, from

this it follows that

xk∗(S) = y(S), ∀S ∈ Σ+,

57

2. The Cost Allocation Problem

i.e.,

θf,Γ(x
k∗) = θf,Γ(y), ∀y ∈ Pk∗+1. (2.38)

Hence, it remains to consider the case y ∈ P1\Pk∗+1. Since

P1\Pk∗+1 = ∪k∗

i=1(Pi\Pi+1),

there exists 1 ≤ l ≤ k∗ satisfying

y ∈ Pl\Pl+1. (2.39)

Clearly, it holds

min
S∈Sl

ef (S, y) < εl. (2.40)

If this were not so, then, since y ∈ Pl, (y, ε
l) is a feasible solution and

therefore an optimal solution of (2.28l). Due to (2.33) there holds

y ∈ Pl+1,

which contradicts (2.39). On the other hand, since y ∈ Pl and xk∗ ∈

Pk∗+1 ⊆ Pl, we have due to (2.31)

ef (S, x
k∗) = ef (S, y), ∀S ∈ S1\Sl. (2.41)

Moreover, as we showed before in this proof, for each k ≥ 1 satisfying Sk 6=

∅ and each optimal solution (yk, εk) of (2.28k), (y
k, εi) is also an optimal

solution of (2.28i) for every 1 ≤ i ≤ k. Therefore, since (xk∗ , εk
∗

) is an

optimal solution of (2.28k∗), (x
k∗ , εl) is an optimal solution of (2.28l) and

we have

min
S∈Sl

ef (S, x
k∗) = εl. (2.42)

From (2.40), (2.41), and (2.42) it follows that

θf,Γ(x
k∗) ≻ θf,Γ(y), ∀y ∈ P1\Pk∗+1. (2.43)

From (2.38) and (2.43), we have that Pk∗+1 is the f -nucleolus of Γ.

If Σ is full dimensional, then there holds

|Ak∗+1| ≥ dim(spanχΣ) = |N |.

Hence, since Ak∗+1 is independent, Pk∗+1 contains at most a point. On

the other hand, since xk∗ belongs to Pk∗+1, we have Pk∗+1 = {xk∗}. That

means the f -nucleolus of Γ contains a unique point, namely, xk∗ .

58

2.3 Game Theoretical Concepts

The following algorithm is similar to Algorithm 2.3.29 but with a dif-

ference, namely, the set Pk,

Pk = {x ∈ Pk−1 | x(S) = c(S)− εkf(S)},

is replaced by the set Qk defined by

Qk := {x ∈ Qk−1 | x(S) ≤ c(S)− εkf(S)}.

It also gives us the f -nucleolus but may be less vulnerable to numerical

error than Algorithm 2.3.29.

Algorithm 2.3.31. Computing the f -nucleolus of a cost allocation game Γ =

(N, c, P,Σ) with non-empty imputation set X (Γ).

1. Set k := 0, A1 := {χN}, Q1 := X (Γ), and Q̄1 := X (Γ).

2. Set k := k + 1, define

Sk := Σ+\{S ∈ Σ+ |χS ∈ spanAk},

and solve the linear program

max
(x,ε)

ε (2.44)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Sk (2.45)

x ∈ Qk. (2.46)

Let (xk, εk) and (λk, µk) be primal and dual optimal solutions of (2.44),

where λk corresponds to the constraint (2.45).

3. Define

Πk+1 := {S ∈ Sk |λ
k
S > 0},

Bk+1 ⊆ Πk+1 : χBk+1
is a basis of spanχΠk+1

Qk+1 := {x ∈ Qk | x(S) ≤ c(S)− εkf(S), ∀S ∈ Bk+1},

Q̄k+1 := {x ∈ Q̄k | x(S) = c(S)− εkf(S), ∀S ∈ Bk+1},

Ak+1 :=Ak ∪ χBk+1
.

59

2. The Cost Allocation Problem

4. If |Ak+1| < dim(spanχΣ) then goto 2, else Q̄k+1 is the f -nucleolus

of Γ and xk is a point in it.

Theorem 2.3.32. For any cost allocation game Γ with non-empty imputa-

tion set X (Γ), Algorithm 2.3.31 gives a point in the f -least core of Γ after

each step and terminates with the f -nucleolus after at most dim(spanχΣ)−1

steps.

Proof. Consider the linear program

max
(x,ε)

ε (2.47)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Sk

x ∈ Q̄k.

We denote in the following the linear program (2.44) for k = i by (2.44i)

and the linear program (2.47) for k = i by (2.47i). We want to prove

by induction that for every step k satisfying Sk 6= ∅, each primal and

dual optimal solutions of (2.44k) are also primal and dual optimal solution

of (2.47k). Then Theorem 2.3.32 follows this and Theorem 2.3.30. With k =

1 the above statement is true since Q1 = X (Γ) = Q̄1. Assume that the

statement holds for every k ≤ i, we want to show that it is true for k = i+1

as well. If Si+1 = ∅, then there is nothing to prove. We consider the

case Si+1 6= ∅. Clearly, each optimal solution of (2.44i) is a feasible solution

of (2.44i+1). Therefore, (2.44i+1) is feasible. For each feasible solution (x, ε)

of (2.44i+1), since f is positive, x ∈ Qi+1 ⊆ R
N
+ , and

x(S) + εf(S) ≤ c(S), ∀S ∈ Si+1,

we have

ε ≤
c(S)

f(S)
, ∀S ∈ Si+1,

i.e., (2.44i+1) is bounded above. Therefore, (2.44i+1) has optimal solutions.

Let (yi+1, εi+1) be an arbitrary optimal solution of (2.44i+1). Since each

optimal solution of (2.44i) is feasible for (2.44i+1), there holds εi+1 ≥ εi.

From this it follows that (yi+1, εi) is feasible and hence optimal for (2.44i).

60

2.3 Game Theoretical Concepts

Then, due to the induction hypothesis, (yi+1, εi) is an optimal solution

of (2.47i). Hence, we have

yi+1 ∈ Q̄i. (2.48)

On the other hand, since (yi+1, εi) is an optimal solution of (2.44i), due to

the complementary slackness theorem, there holds

yi+1(S) = c(S)− εif(S), ∀S ∈ Bi+1. (2.49)

Combining (2.48) and (2.49) yields yi+1 ∈ Q̄i+1, i.e., (y
i+1, εi+1) is feasible

for (2.47i+1). On the other hand, since each feasible solution of (2.47i+1)

is feasible for (2.44i+1), the optimal value εi+1 of (2.44i+1) is an upper

bound of (2.47i+1). Therefore, (y
i+1, εi+1) is optimal for (2.47i+1) with the

optimal value εi+1 as well. Due to the duality theorem, from this it follows

that the dual problems of (2.44i+1) and (2.47i+1) have the same optimal

value, namely εi+1. Moreover, each dual feasible solution of (2.44i+1) is

also dual feasible for (2.47i+1). Combining these results, we have that each

dual optimal solutions of (2.44i+1) is a dual optimal solution of (2.47i+1)

as well.

We have directly from the definition of the f -least core and the f -
nucleolus the following result.

Proposition 2.3.33. For each strongly bounded general cost allocation

game Γ = (N, c, P,Σ) with a non-empty imputation set X (Γ) and each

weight function f : Σ+ → R>0, there holds

Nf (Γ) ⊆ LCf (Γ).

Definition 2.3.34. A cost allocation method defined for every strongly

bounded general cost allocation game with a non-empty imputation set whose

output belongs to the f -nucleolus for some weight function f is called a f -

nucleolus cost allocation method.

The next part of this section is devoted to the properties of f -nucleolus
cost allocation methods. Due to Proposition 2.3.33, each f -nucleolus cost
allocation method is a f -least core cost allocation method and therefore it
has all properties of a f -least core cost allocation method, e.g., validity, ef-
ficiency, and core cost allocation. Moreover, it has the following properties.

61

2. The Cost Allocation Problem

Scalar multiplicativity

Proposition 2.3.35. For each strongly bounded general cost allocation

game Γ = (N, c, P,Σ) with a non-empty imputation set X (Γ), each weight

function f : Σ+ → R>0, and each positive numbers λ and µ, there holds

Nµf (λΓ) = λNf (Γ).

Proof. Let θf,Γ be the f -excess function of Γ and θf,λΓ be the f -excess

function of λΓ. Let x∗ be an arbitrary vector in Nf (Γ) and y∗ be an

arbitrary vector in Nf (λΓ). We have then

θf,Γ(x
∗) � θf,Γ(x), ∀x ∈ X (Γ)

and

θf,λΓ(y
∗) � θf,λΓ(y), ∀y ∈ X (λΓ).

On the other hand, since λx∗ ∈ X (λΓ) and 1
λ
y∗ ∈ X (Γ), from these it

follows that

θf,Γ(x
∗) � θf,Γ

(

1

λ
y∗
)

and

θf,λΓ(y
∗) � θf,λΓ(λx

∗).

Moreover, because there holds

θf,λΓ(λx) = λθf (x), ∀x ∈ RN ,

the above two inequalities are equivalent to the following ones

θf,λΓ(λx
∗) � θf,λΓ(y

∗)

and

θf,Γ

(

1

λ
y∗
)

� θf,Γ(x
∗).

That means, λx∗ belongs to Nf (λΓ) and
1
λ
y∗ belongs to Nf (Γ). Hence, we

have finally

Nf (λΓ) = λNf (Γ).

With a similar proof, we have

Nµf (Γ) = Nf (Γ)

62

2.3 Game Theoretical Concepts

and therefore

Nµf (λΓ) = Nf (λΓ) = λNf (Γ).

Since the f -nucleolus of each full dimensional, strongly bounded general

cost allocation game whose imputation set is non-empty contains a unique

vector, from the above proposition we have the following result.

Corollary 2.3.36. For each full dimensional, strongly bounded general

cost allocation game Γ with a non-empty imputation set X (Γ), each weight

function f : Σ+ → R>0, and each positive numbers λ, there holds for

any f -nucleolus cost allocation method Φ

Φ(λΓ) = λΦ(Γ).

Symmetry

Proposition 2.3.37. For any strongly bounded general cost allocation game

Γ = (N, c, P,Σ) with a non-empty imputation set X (Γ) and two equivalent

players i and j and any weight function f : Σ+ → R>0 satisfying

f(S ∪ {i}) = f(S ∪ {j}), ∀S ⊆ N\{i, j} : S ∪ {i} ∈ Σ,

there holds for each f -nucleolus cost allocation method Φ

Φ(Γ)i = Φ(Γ)j.

Proof. Denote x = Φ(Γ) and define y as follows

yk =

{

1
2
(xi + xj) if k ∈ {i, j}

xk otherwise.

We have x ∈ Nf (Γ). Suppose that xi 6= xj. We want to show that y ∈ X (Γ)

and

θf,Γ(y) ≻ θf,Γ(x),

which contradicts x ∈ Nf (Γ). Due to the proof of Proposition 2.3.17,

we have that y belongs to X (Γ). Without loss of generality, we assume

63

2. The Cost Allocation Problem

that xi > xj. For each set S ⊆ N and player k ∈ N , denote Sk := S ∪ {k}.

Recalling that the f -excess of each set S ∈ Σ+ at ξ ∈ RN is

ef (S, ξ) =
c(S)− ξ(S)

f(S)
.

Since xi > xj, we have

xi > yi = yj > xj .

From this and the definition of y it follows that

ef (S, y) = ef (S, x), ∀S ∈ Σ+ : {i, j} ⊆ S or {i, j} ∩ S = ∅

and

ef (Si, x) < ef (Si, y) = ef (Sj, y) < ef (Sj, x), ∀S ⊆ N\{i, j} : Si ∈ Σ.

On the other hand, due to the definition of equivalent players, the set

{S ⊆ N\{i, j} |Si ∈ Σ}

is non-empty and

∀S ⊆ N\{i, j} : Si ∈ Σ ⇐⇒ Sj ∈ Σ.

Hence, there holds

θf,Γ(y) ≻ θf,Γ(x),

which contradicts x ∈ Nf (Γ). Therefore, xi = xj.

Dummy property

Since each f -nucleolus cost allocation method is a f -least core cost al-
location method, there hold the results on dummy player presented in
section 2.3.1 for f -nucleolus cost allocation methods as well. We have
then each f -nucleolus cost allocation method charges every dummy player
of any strongly bounded general cost allocation game with a non-empty
core exactly its cost. Each nucleolus cost allocation method charges ev-
ery dummy player of any strongly bounded general cost allocation game
(N1, c1,R

N1 ,Σ1) and any cost allocation game (N2, c2,R
N2

+ ,Σ2) with a non-
empty imputation set exactly its cost. Unfortunately, this does not hold
in general. But for any f -nucleolus cost allocation method which does not

64

2.3 Game Theoretical Concepts

have the dummy-property, we still can apply the dummy operator D. One
can easily prove that if a general cost allocation game Γ = (N, c, P,Σ) is
strongly bounded and satisfies

{x ∈ X (Γ) | xi = c({i}), ∀i ∈ d(Γ)} 6= ∅, (2.50)

then its dummy-free subgame ΓD is also strongly bounded and X (ΓD) is
non-empty. With other words, each f -nucleolus cost allocation method
is defined for both Γ and ΓD in that case. Because of Proposition 2.2.7,
since each f -nucleolus cost allocation method Φ is a valid, efficient, and
symmetric core cost allocation method, so is its dummy-friendly version D◦
Φ, which charges every dummy player exactly its cost.

Scalar multiplicativity may not hold in general for each f -nucleolus cost
allocation method, since the f -nucleolus may contain more than one vector.
However, for full dimensional games we have the following result.

Proposition 2.3.38. For any full dimensional, strongly bounded general

cost allocation game Γ = (N, c, P,Σ) with a non-empty imputation set X (Γ)

satisfying (2.50), any weight function f : Σ+ → R>0, any positive num-

ber λ, and any f -nucleolus cost allocation method Φ, there holds

D ◦ Φ(λΓ) = λD ◦ Φ(Γ).

Proof. With Γ is full dimensional, its dummy-free subgame ΓD is full di-

mensional as well. Let λ be an arbitrary positive number. Due to Corol-

lary 2.3.36, there holds for any f -nucleolus cost allocation method Φ

Φ(λΓD) = λΦ(ΓD).

From this and Proposition 2.2.7 it follows that

D ◦ Φ(λΓ) = λD ◦ Φ(Γ).

Summary. Each f -nucleolus cost allocation method is a f -least core cost
allocation method and has the following properties:

• Validity

• Efficiency

• Core cost allocation method (Proposition 2.3.33)

65

2. The Cost Allocation Problem

• Scalar multiplicativity for full dimensional, strongly bounded general

cost allocation games (Theorem 2.3.30 and Proposition 2.3.35)

• Stability (Proposition 2.3.16)

• Symmetry (Proposition 2.3.37)

• Dummy player property for some general cost allocation games (Propo-

sitions 2.3.18–2.3.20).

2.3.3 The (f, r)-Least Core

The f -nucleolus is a nice concept from the cooperative game theory. But in

this concept the coalitions of one player have the same priority as the other

coalitions. The roll of each individual player is however more important.

Imagine you have a choice between earning $50,000 a year while other

people make $25,000 or earning $100,000 a year while other people get

$250,000. Prices of goods and services are the same. Which would you

prefer? Surprisingly, studies show that the majority of people select the

first option. The social critic HL Mencken once quipped that, “a wealthy

man is one who earns $100 a year more than his wife’s sister’s husband.”

That means human’s objective is quite local. It does not rely on some

absolute measure but is relative to what other people have. It is very

hard to convince someone that his price is fair, while somebody else has

to pay just a fractional of his price for one unit. Game theoretical fairness

(or coalitional fairness) means that the price should reflect the position of

each coalition and its cost by considering all possible of grouping. While

individual fairness tends to equality. Designing a cost allocation method

should take into account the both types of fairness, since if an allocation is

fair in the sense of the cooperative game theory, but some players are not

happy with this solution, then it is hardly realized. The (f, r)-least core

is a compromise between coalitional fairness and individual satisfaction.

Due to Proposition 2.2.4, equality and core cost allocation cannot hold

simultaneously. While the core cost allocation property is indispensable,

we try to approximate the equality as well as possible.

Given a cost allocation game Γ = (N, c, P,Σ) with a non-empty impu-

tation set X (Γ) and a weight function f : Σ+ → R>0. Let r ∈ RN
>0 be a

vector that satisfies
∑

i∈N

ri = c(N).

66

2.3 Game Theoretical Concepts

r is called a reference price-vector of Γ. For example for the ticket pricing

problem we can choose r as the distance-price vector. The distance-price

of a passenger is the product of the traveling distance and some base-price

for a passenger for a distance unit. The ration xi

ri
in this case is nothing else

than the ratio between the price that the player i asked to pay for a distance

unit and the base-price. Each individual player i prefers a small ratio xi

ri
.

A price xi with a big ratio xi

ri
will be seen as unfair by the player i, since

in this case there exists a player j with much smaller ratio
xj

rj
. Our goal is

to find a price vector in the f -least core of Γ that is as “near” as possible

to r. That means from the point of view of the cooperative game theory

our price is fair since it belongs to the f -least core and hence the minimal

weighted benefit of the coalitions in Σ+\{N} is as large as possible. On the

other hand, from the point of view of each individual player, the increment

of the price of each player in comparison to its reference price is as small

as possible. Define

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

R is called a reference price-function of Γ. We have then a new cost al-

location game ∆ := (N,R,LCf (Γ),Λ). The imputation set X (∆) of ∆

is LCf (Γ) since

x(N) = c(N) = R(N), ∀x ∈ LCf (Γ).

For each price vector x and player i ∈ R, the R-excess of the coalition {i}

at x is

eR({i}, x) =
R({i})− xi

R({i})
= 1−

xi

ri
.

Due to Theorem 2.3.30, the R-nucleolus of ∆ is well-defined and contains

a unique point. It maximizes θR,∆(x) in X (∆) with respect to the lexico-

graphic ordering, where θR,∆(x) is the R-excess vector of ∆ at x, i.e., the

vector in RN whose components are the R-excesses eR({i}, x), i ∈ N , ar-

ranged in increasing order. Let us define ϑR,∆(x) as the vector in R
N whose

components are the ratios xi

ri
, i ∈ N , arranged in decreasing order. Then,

equivalently, the R-nucleolus of ∆ minimizes ϑR,∆(x) in X (∆) with respect

to the lexicographic ordering. That means, by using the R-nucleolus of ∆

as the price, the ratios xi

ri
, i ∈ N , are kept as small as possible.

67

2. The Cost Allocation Problem

Definition 2.3.39. Given a cost allocation game Γ = (N, c, P,Σ) with a

non-empty imputation set X (Γ), a weight function f : Σ+ → R>0, and a

reference price-vector r ∈ RN
>0 of Γ. Define

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

The R-nucleolus of ∆ = (N,R,LCf (Γ),Λ) is called the (f, r)-least core

of Γ, denoted by LCf,r(Γ). Since ∆ is full dimensional, due to Theo-

rem 2.3.30, the set LCf,r(Γ) contains a unique point.

Remark 2.3.40. The (f, r)-least core concept works also for each bounded

general cost allocation game Γ = (N, c, P,Σ) with c(N) > 0. If the cost

function is positive in Σ+, then we can use directly the definition of the

(f, r)-least core of cost allocation games. However, without the positivity

of the cost function, it is not clear whether a positive reference price vector

makes sense. Therefore, for the sake of simplicity, we just consider cost

allocation games.

Definition 2.3.41. The (f, r)-least core cost allocation method is the cost

allocation method defined for all cost allocation games whose output is the

vector in the (f, r)-least core.

Beside the coalitional and individual fairness, the (f, r)-least core cost

allocation method has some other interesting properties, which will be pre-

sented in the following. From the definition we have that the (f, r)-least

core is a subset of the f -least core. That means the (f, r)-least core cost al-

location method has all properties of a f -least core cost allocation method,

e.g., validity, efficiency, and core cost allocation.

Fairness

If the reference price-vector belongs to the f -least core, then the (f, r)-least

core is the set of the reference price-vector. In that case, both coalitional

goal as well as individual target are reached.

68

2.3 Game Theoretical Concepts

Proposition 2.3.42. Given a cost allocation game Γ = (N, c, P,Σ) with a

non-empty imputation set X (Γ), a weight function f : Σ+ → R>0, and a

reference price-vector r ∈ RN
>0 of Γ. If r belongs to the f -least core of Γ,

then {r} is the (f, r)-least core of Γ.

Proof. Define

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

We have to prove that {r} is theR-nucleolus of ∆ = (N,R,LCf (Γ),Λ). Due

to the assumption we have r ∈ LCf (Γ). Let x be a vector in LCf (Γ)\{r},

we have

x(N) = c(N) =
∑

i∈N

ri.

Since x 6= r, there exists j ∈ N such that

xj > rj.

Hence, there holds

min
i∈N

ri − xi

ri
≤

rj − xj

rj
< 0 = min

i∈N

ri − ri
ri

.

Therefore, we have

θR,∆(r) ≻ θR,∆(x).

That means {r} is the R-nucleolus of ∆.

Scalar multiplicativity

Using Propositions 2.3.14, 2.3.15, and 2.3.35, we can prove the scalar mul-

tiplicativity of the (f, r)-least core.

Proposition 2.3.43. For any cost allocation game Γ = (N, c, P,Σ) with a

non-empty imputation set X (Γ), any weight function f : Σ+ → R>0, any

reference price-vector r of Γ, and any positive numbers λ and µ, there holds

LCµf,λr(λΓ) = λLCf,r(Γ).

69

2. The Cost Allocation Problem

Proof. Since r is a reference price-vector of Γ, λr is a reference price-vector

of λΓ. Define

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

Due to Proposition 2.3.15, we have

LCµf (λΓ) = λLCf (Γ).

From the above result and the definition of (f, r)-least core, we have

LCf,r(Γ) = NR

(

(N,R,LCf (Γ),Λ)
)

(2.51)

and

LCµf,λr(λΓ) = NλR

(

(N, λR,LCµf (λΓ),Λ)
)

= NλR

(

(N, λR, λLCf (Γ),Λ)
)

,

(2.52)

From (2.51), (2.52), and Proposition 2.3.35 it follows that

LCµf,λr(λΓ) = λNR

(

(N,R,LCf (Γ),Λ)
)

= λLCf,r(Γ).

Symmetry

Proposition 2.3.44. For any cost allocation game Γ = (N, c, P,Σ) with

a non-empty imputation set X (Γ) and two equivalent players i and j, any

weight function f : Σ+ → R>0 satisfying

f(S ∪ {i}) = f(S ∪ {j}), ∀S ⊆ N\{i, j} : S ∪ {i} ∈ Σ,

and any reference price-vector r of Γ with ri = rj, let {x} be the (f, r)-least

core of Γ, there holds

xi = xj.

Proof. Define

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

70

2.3 Game Theoretical Concepts

Then {x} is theR-nucleolus of the cost allocation game ∆ := (N,R,LCf (Γ),Λ).

Assume that xi 6= xj. We want to find y ∈ X (∆) satisfying

θR,∆(y) ≻ θR,∆(x),

which contradicts x ∈ NR(∆). Define y as follows

yk =

{

1
2
(xi + xj) if k ∈ {i, j}

xk otherwise.

Due to Proposition 2.3.17, we have that

y ∈ LCf (Γ) = X (∆).

Without loss of generality, we assume that xi > xj. There holds

xi > yi = yj > xj .

From this and the definition of y it follows that

rk − xk

rk
=

rk − yk
rk

, ∀k ∈ N\{i, j}

and
ri − xi

ri
<

ri − yi
ri

=
rj − yj

rj
<

rj − xj

rj
.

These mean

θR,∆(y) ≻ θR,∆(x),

which contradicts x ∈ NR(∆). Therefore, xi = xj.

Dummy property

Since each (f, r)-least core cost allocation method is a f -least core cost
allocation method, there hold the results on dummy player presented in
section 2.3.1 for f -nucleolus cost allocation methods as well. We have
then each (f, r)-least core cost allocation method charges every dummy
player of any cost allocation game with a non-empty core exactly its cost.
Each (f, r)-least core cost allocation method with f = 1 charges every
dummy player of any cost allocation game (N, c,RN

+ ,Σ) with a non-empty
imputation set exactly its cost. Unfortunately, this does not hold in general.
But for any (f, r)-least core cost allocation method which does not have

71

2. The Cost Allocation Problem

the dummy-property, we still can apply the dummy operator D. Clearly,
if a cost allocation game Γ = (N, c, P,Σ) satisfies

{x ∈ X (Γ) | xi = c({i}), ∀i ∈ d(Γ)} 6= ∅,

then the imputation set X (ΓD) of its dummy-free subgame ΓD is non-
empty. With other words, for any weight function f and any reference
price-vector r, the (f, r)-least core cost allocation method is defined for
both Γ and ΓD in that case. Because of Proposition 2.2.7, since each (f, r)-
least core cost allocation method Φ is a valid, efficient, symmetric, and
scalar multiplicative core cost allocation method, so is its dummy-friendly
version D ◦ Φ, which charges every dummy player exactly its cost.

Summary. The (f, r)-least core cost allocation method is a f -least core
cost allocation method and has the following properties:

• Validity

• Efficiency

• Core cost allocation method (Proposition 2.3.12)

• Scalar multiplicativity (Proposition 2.3.43)

• Stability (Proposition 2.3.16)

• Symmetry (Proposition 2.3.44)

• Dummy player property for some cost allocation games (Propositions
2.3.18–2.3.20)

• If the reference price vector r belongs to the f -least core, then {r} is
the (f, r)-least core (Proposition 2.3.42).

2.3.4 Choosing the Weight Function

The outputs of the game theoretical concepts presented in the previous
sections depend on the weight function. Typical choice for it is either the
constant 1, the cardinality function, or the cost function. Here, we consider
only cost allocation games, since in practice the cost functions are positive
and the prices should be non-negative. Let us consider a simple example
to demonstrate how different the results with these weight functions are.
From this we may have an idea about the most suitable choice. Let Γ =

72

2.3 Game Theoretical Concepts

(N, c,RN
+ , 2

N) be a cost allocation game of two players, N = {1, 2}, and
the cost function is defined by

c({1}) = 900, c({2}) = 100, and c({1, 2}) = 900.

A cooperation of the two players will give them a profit of 100. The dis-
tribution of this profit among the players varies depending on the weight
function. One can easily show that the least core and weak least core of Γ
contain exactly one point, namely, (850, 50), while the proportional least
core of Γ is {(810, 90)}. Least core cost allocation methods, i.e., f -least
core cost allocation methods with f = 1, allocate the total cost to players
such that the corresponding smallest profit among the coalitions differing
fromN and ∅ is kept as high as possible. A least core cost allocation method
treats the coalitions equally and independently on their cardinalities and
their costs. While weak least core cost allocation methods distribute the
common cost to the players in such a way that the smallest average profit
per player of the coalitions differing from N and ∅ is as high as possible.
That means, in comparison to a least core cost allocation method, the profit
of each coalition is scaled down by its cardinality. For our example, there
are only two coalitions differing from N and ∅, namely, {1} and {2}. Since
their cardinality is 1, the outcomes of least core and weak least core cost
allocation methods coincide. With the price vector (850, 50), player 1 saves
only 5.56% of its cost, while the saving of player 2 is 50%. This will make
player 1 dissatisfied. And since his relative saving is although positive but
quite small especially in comparison to the one of player 2, he may refuse
to join in the cooperation. The same thing will not happen by using the
price vector (810, 90), since each player has the same saving of 10%. It is
also large enough to prevent the collapse of the grand coalition N . The
proportional cost allocation methods do not consider the profit or the av-
erage profit of each coalition differing from N and ∅ but its relative profit,
i.e., the ratio between the profit and the cost of each coalition. Thereby
the common cost is allocated proportionally. Because of this reason, the
cost function may be the most appropriate weight function.

2.3.5 The Shapley Value

The Shapley value of a general cost allocation game Γ = (N, c,RN , 2N) is
defined as following

φSh
i (Γ) =

∑

S⊆N\{i}

|S|! (|N\S| − 1)!

|N |!

(

c(S ∪ {i})− c(S)
)

, i ∈ N.

73

2. The Cost Allocation Problem

Here for simplicity we assume that c(∅) = 0, otherwise we just eliminate
every term with c(∅) in the above form. Directly from the definition we have
that the Shapley value is symmetric, additive, and scalar multiplicative,
and charges zero-player nothing. It is also well-known that the Shapley
value is efficient.

Proposition 2.3.45. For any general cost allocation game Γ = (N, c,RN , 2N)

the Shapley value is efficient, symmetric, additive, and scalar multiplicative

and charges dummy players exactly their costs.

Proof. We only prove that the Shapley value is efficient and charges dummy

players exactly their costs, since the other properties are obvious. Let Γ =

(N, c,RN , 2N) be an arbitrary general cost allocation game. Denote n :=

|N | and

αk :=
k! (n− k − 1)!

n!
.

From the definition, we have

∑

i∈N

φSh
i (Γ) =

∑

i∈N

∑

S⊆N\{i}

α|S|c(S ∪ {i})−
∑

i∈N

∑

∅6=S⊆N\{i}

α|S|c(S)

=
∑

∅6=S⊆N

|S|α|S|−1c(S)−
∑

∅6=S(N

|N\S|α|S|c(S)

= nαn−1c(N) +
∑

∅6=S(N

(

|S|α|S|−1 − |N\S|α|S|

)

c(S).

On the other hand, we have

nαn−1 = n
(n− 1)! 0!

n!
= 1

and

|S|α|S|−1 − |N\S|α|S| = |S|
(|S| − 1)! (n− |S|)!

n!

− (n− |S|)
|S|! (n− |S| − 1)!

n!

= 0

From these it follows that

∑

i∈N

φSh
i (Γ) = c(N),

74

2.3 Game Theoretical Concepts

i.e., φSh is efficient.

Now assume that Γ has a dummy player k, i.e.,

c(S ∪ {k}) = c(S) + c({k}), ∀S ⊆ N\{k}.

We split Γ into two games Γ1 = (N, c1,R
N , 2N) and Γ2 = (N, c2,R

N , 2N)

with

c1(S) =

{

c(S\{k}) if S ∋ k

c(S) otherwise

and

c2(S) =

{

c({k}) if S ∋ k

0 otherwise

We have then c = c1 + c2. Since the Shapley value is additive, there holds

φSh
i (Γ) = φSh

i (Γ1) + φSh
i (Γ2), ∀i ∈ N. (2.53)

Clearly, we have that

φSh
k (Γ1) = 0 (2.54)

and

φSh
i (Γ2) = 0, ∀i ∈ N\{k}. (2.55)

Combining (2.53) and (2.55) yields

φSh
i (Γ) = φSh

i (Γ1), ∀i ∈ N\{k}. (2.56)

From (2.54) and (2.56) and since the Shapley value is efficient it follows

that

φSh
k (Γ) = c(N)−

∑

i∈N\{k}

φSh
i (Γ)

= c(N)−
∑

i∈N\{k}

φSh
i (Γ1)

= c(N)−
∑

i∈N

φSh
i (Γ1)

= c(N)− c1(N)

= c({k}).

75

2. The Cost Allocation Problem

Interestingly, Shapley proved in [54] that there exists an unique cost

allocation method having all properties listed in Proposition 2.3.45.

Theorem 2.3.46. (Shapley [54])

For each fixed finite set N there exists an unique cost allocation method that

is efficient, additive, and symmetric and charges zero players nothing for

all general cost allocation games (N, c,RN , 2N), namely the Shapley value.

However, the Shapley value has a weak point, namely, it may lie outside

of the core in the case the core is non-empty.

Proposition 2.3.47. The Shapley cost allocation method does not have

uniformly bounded variation and the Shapley value may lie outside of the

core (in the case it is non-empty).

Proof. We again consider the counter example in the proof of Proposition

2.2.5. For arbitrary k > 0 and 0 < α ≤ 1
k
, let N = {1, 2, 3} and the cost

functions c and c̃ be defined as follows

S c(S) c̃(S)

∅ 0 0

{1} 2 2

{2} 3 + k 3 + k

{3} 4 + k 4 + k

{1, 2} 3 + k 3 + (1 + α)k

{2, 3} 5 + 2k 5 + 2k

{3, 1} 4 + k 4 + (1 + α)k

{1, 2, 3} 6 + 2k 6 + (2 + α)k

There holds

0 ≤ c̃(S)− c(S) ≤ αc(S), ∀S ⊆ N.

Denote Γk := (N, c,R3
+, 2

N) and Γ̃k := (N, c̃,R3
+, 2

N). We have

φSh(Γk) = (1, 2 + k, 3 + k),

φSh(Γ̃k) =

(

1 +
2

3
αk, 2 +

(

1 +
α

6

)

k, 3 +
(

1 +
α

6

)

k

)

,

76

2.3 Game Theoretical Concepts

and

C(Γ̃k) = {(1 + αk, 2 + k, 3 + k)}.

From these it follows that

φSh(Γ̃k) 6∈ C(Γ̃k)

and

φSh(Γ̃k)1 − φSh(Γk)1 =
2k

3
αφSh(Γk)1,

i.e., φSh does not have uniformly bounded variation.

As we have seen, the Shapley value concept has some nice properties
but it does not belong to the core in general. Moreover, most of real world
applications has some side constraints on the allocated prices, which can
be violated by the Shapley value, since this concept does not take any con-
ditions on the output vector into account. The family of possible coalitions
in real applications may also differ from the power set. It is not clear how
to generalize the Shapley value in order to cover that case. Therefore, the
Shapley value may be not suitable for many real world applications, e.g.,
our ticket pricing problem.

Besides, since the Shapley cost allocation method is efficient, it is neither
coalitionally stable, nor user friendly, nor monotonic due to Propositions
2.2.1, 2.2.2, and 2.2.3.

2.3.6 Another Conflict

Theorem 2.3.46 and Proposition 2.3.47 give us the following result.

Proposition 2.3.48. There exists no core cost allocation method that is

efficient, additive, and symmetric and charges zero players nothing.

As efficiency and symmetry are indispensable, we can only give up one of
the other properties. If it is the core cost allocation property, then we have
the Shapley value as the only one method which is efficient, additive, and
symmetric and charges zero players nothing for all general cost allocation
games (N, c,RN , 2N). If additivity is negligible, then we have the dummy-
friendly version of each efficient and symmetric core cost allocation method
fulfilling all the other properties. Recalling that each f -nucleolus allocation
method and each (f, r)-least core allocation method are efficient, symmetric
core cost allocation methods.

77

2. The Cost Allocation Problem

2.4 Alternative Ansatz

There are several articles on the cost allocation problem where the authors
favour the monotonicity over the efficiency. In order to obtain the mono-
tonicity, they have to sacrifice the efficiency, but they want to cover the
common cost as much as possible. A cost allocation method is called α-
budget balanced for some α ≤ 1 if the total price is not larger than the total
cost and not smaller than α times the total cost. For certain cost alloca-
tion games, one can construct cost allocation methods which are monotonic
and α-budget balanced for some α ≤ 1. For example, the Steiner forests
game with α = 0.5 [38], the metric facility location game with α = 1/3
[49], or the single-source rent-or-buy game with α = 1/15 [49], etc. There
are also randomized cost allocation methods for these game which are α-
budget balanced for some α ≤ 1 with high probality and monotonic [18, 40].
Immorlica et al. [33] showed that every monotonic cost allocation method
for the metric facility location game is at most 1/3-budget balanced. That
means the factor 1/3 is the best cover-ratio for the metric facility location
game. These cost allocation methods are based on the combinatorial struc-
ture of the underlying cost function and there are no other requirements on
the prices besides their non-negativity. It is not clear how to construct such
methods if some real-world conditions on the prices exist. It is also unclear
in the case of cost allocation problems whose cost functions do not have a
common combinatorial structure. Apart from that, the low cover ratio of
the common cost makes these cost allocation methods hardly applicable in
practice. In our opinion, the monotonicity is too strict and only provides
some interesting properties for the mechanism design [34].

2.5 f-Least Core Radius, Balanced Game,

and Non-emptiness of the Core

In this section, we will give explicit formulations of the f -least core radius
of the general cost allocation game and the cost allocation game under
certain assumptions. Using these formulations one can directly prove the
Bondareva-Shapley theorem on the non-emptiness of the core for the so-
called balanced game. For a given finite non-empty set N , a collection
B ⊆ 2N\{∅, N} is called balanced if

∃(λS)S∈B ∈ RB
>0 :

∑

S∈B

λSχS = χN . (2.57)

78

2.5 Non-emptiness of the Core

A pair (B, λ) of a collection B of coalitions and a vector (λS)S∈B ∈ RB
>0 is

called balanced if B is balanced and λ fulfils (2.57). A general cost allocation

game (N, c, P,Σ), where Σ is a partitioning family of N , is called balanced

if for any balanced pair (B, λ) satisfying B ⊆ Σ+\{N} we have

∑

S∈B

λSc(S) ≥ c(N).

Bondareva [3] and Shapley [55] proved the equivalence between the bal-

anceness of a general cost allocation game and the non-emptiness of its

core in the case P = RN and Σ = 2N .

Theorem 2.5.1. (Bondareva-Shapley)

A general cost allocation game (N, c,RN , 2N) is balanced if and only if its

core is non-empty.

The Bondareva-Shapley theorem follows Theorem 2.5.2 below. More-

over, using it, we can prove the same result for general cost allocation

games with P = RN and Σ must not be 2N but some partitioning family

of N .

Theorem 2.5.2. Given a general cost allocation game Γ = (N, c, P,Σ),

where Σ is a partitioning family of N , and a weight function f : Σ+ → R>0.

Assume that the imputation set X (Γ) is non-empty. Let ε∗ be the f -least

core radius of Γ, then there holds

ε∗ ≤ min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
.

If P = RN , then we have

ε∗ = min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
.

Proof. Due to Proposition 2.3.8 and Proposition 2.3.9, the f -least core of Γ

is well-defined and non-empty. Hence, there exists an optimal solution of

79

2. The Cost Allocation Problem

the following linear program

max
(x,ε)

ε (2.58)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x(N) = c(N)

x ∈ P.

Let (x∗, ε∗) be an optimal solution of (2.58). For each balanced pair (B, λ)

satisfying B ⊆ Σ+\{N}, there holds

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
≥

∑

S∈B λS

(

x∗(S) + ε∗f(S)
)

− c(N)
∑

S∈B λSf(S)

=
x∗(N) + ε∗

∑

S∈B λSf(S)− c(N)
∑

S∈B λSf(S)

= ε∗,

i.e.,

ε∗ ≤ min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
. (2.59)

Now let P = RN . The dual problem of (2.58) with P = RN is the

following linear program

min
(ν,µ)

∑

S∈Σ+\{N}

c(S)νS + c(N)µ (2.60)

s.t.
∑

S∈Σ+\{N}
S∋i

νS + µ = 0, ∀i ∈ N

∑

S∈Σ+\{N}

νSf(S) = 1

νS ≥ 0, ∀S ∈ Σ+\{N}.

Let (ν∗, µ∗) be an optimal solution of (2.60). Since

∑

S∈Σ+\{N}

ν∗
Sf(S) = 1 > 0

80

2.5 Non-emptiness of the Core

and f(S) > 0 for each S ∈ Σ+, the set of coalitions S whose corresponding

values ν∗
S are positive is non-empty

B∗ := {S ∈ Σ+\{N} | ν∗
S > 0} 6= ∅.

Let T be a set in B∗ and j be an element of T . Since ν∗ ≥ 0, there holds

−µ∗ =
∑

S∈Σ+\{N}
S∋j

ν∗
S ≥ νT > 0.

Define (λ∗
S)S∈B∗ := − 1

µ∗
(ν∗

S)S∈B∗ . The pair (B∗, λ∗) is then balanced. More-

over, due to the complementary slackness theorem, we have

x∗(S) + ε∗f(S) = c(S), ∀S ∈ B∗.

Therefore, it holds
∑

S∈B∗ λ∗
Sc(S)− c(N)

∑

S∈B∗ λ∗
Sf(S)

=

∑

S∈B∗ λ∗
S

(

x∗(S) + ε∗f(S)
)

− c(N)
∑

S∈B∗ λ∗
Sf(S)

=
x∗(N) + ε∗

∑

S∈B λ
∗
Sf(S)− c(N)

∑

S∈B λ
∗
Sf(S)

= ε∗. (2.61)

Combining (2.59) and (2.61), we have

ε∗ = min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
.

Theorem 2.5.2 provides also a heuristic to calculate a good upper bound
of the f -least core radius. For details see Section 4.2.3. It gives us also the
Bondareva-Shapley theorem, which is a special case of the following one.

Theorem 2.5.3. For each general cost allocation game Γ = (N, c,RN ,Σ),

where Σ is a partitioning family of N , Γ is balanced if and only if its core

is non-empty.

Proof. On one hand, the core of Γ is non-empty if and only if its f -least

core radius is non-negative. On the other hand, due to Theorem 2.5.2, this

is equivalent to
∑

S∈B

λSc(S) ≥ c(N), ∀(B, λ) balanced,B ⊆ Σ+\{N},

i.e., Γ is balanced.

81

2. The Cost Allocation Problem

Due to Theorem 2.5.2, we have that for each general cost allocation
game Γ = (N, c, P,Σ) the value εU defined by

εU = min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)

is an upper bound of the f -least core radius ε∗ of Γ. In the case P = RN ,
we have then ε∗ = εU . It gives us the necessary and sufficient conditions
for that the equality holds.

Corollary 2.5.4. Given a general cost allocation game Γ = (N, c, P,Σ),

where Σ is a partitioning family of N , and a weight function f : Σ+ → R>0.

Assume that the imputation set X (Γ) is non-empty. Let ε∗ be the f -least

core radius of Γ, then there holds

ε∗ ≤ εU

and the equality holds if and only if the optimal values of the following two

linear programs

max
(x,ε)

ε (2.62)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x(N) = c(N)

x ∈ P

and

max
(x,ε)

ε (2.63)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Σ+\{N}

x(N) = c(N)

coincide.

Proof. Due to Theorem 2.5.2, we have that εU is the f -least core radius

of the general cost allocation game (c,N,RN ,Σ), which is also the optimal

value of the linear program (2.63), and there holds

ε∗ ≤ εU .

82

2.5 Non-emptiness of the Core

On the other hand, ε∗ is the optimal value of the linear program (2.62).

We have then our corollary.

In the following, using Corollary 2.5.4, we can derive a form of the
f -least core radius of the cost allocation game like the one in Theorem
2.5.2 under certain assumptions. We now consider a cost allocation game
(N, c,RN

+ , 2
N). Since the outcome of our cost allocation game is non-

negative, we may need some assumptions on the cost function. We will
see that the monotonicity of the cost function is necessary. A function
f : Σ → R, Σ ⊆ 2N , is called monotonically increasing if there holds

f(S) ≤ f(T), ∀S, T ∈ Σ : S ⊆ T.

To archive our final theorem we have to prove the following lemma.

Lemma 2.5.5. Given a finite set N and monotonically increasing func-

tions c, f : 2N\{∅} → R>0, then for each optimal solution (x, ε) of the

linear program

max
(x,ε)

ε (2.64)

s.t. x(S) + εf(S) ≤ c(S), ∀∅ 6= S N

x(N) = c(N),

x is non-negative.

Proof. Due to Proposition 2.3.9 and since 2N is a partitioning family of N ,

the linear program (2.64) has optimal solutions. Let (x, ε) be an optimal

solution of (2.64). We now consider two cases.

Case 1 - ε ≥ 0: Since ε ≥ 0 we have

x(N\{i}) ≤ c(N\{i}), ∀i ∈ N.

From this and because of the monotonicity of c, it follows that there holds

for each i ∈ N

xi = x(N)− x(N\{i})

= c(N)− x(N\{i})

≥ c(N)− c(N\{i})

≥ 0.

83

2. The Cost Allocation Problem

Case 2 - ε < 0: Denote

Λ := {∅ 6= S N | c(S)− x(S) = εf(S)}.

Clearly, since ε < 0, there holds |N | > 1. We firstly want to prove that for

each i ∈ N there exists a set S ∈ Λ such that S contains i. Suppose that it

were wrong, i.e., there exists i ∈ N such that i does not belongs to ∪S∈ΛS.

We have then

c(S)− x(S) > εf(S), ∀S N : S ∋ i,

i.e.,

δ := min
i∈S N

c(S)− x(S)

f(S)
> ε.

We choose ν > 0 such that

min
i∈S N

c(S)− x(S)− ν

f(S)
> ε,

and define for each j ∈ N

x̃j :=

{

xj + ν if j = i

xj −
ν

|N |−1
otherwise.

Clearly x̃(N) = c(N) and

ε̃ := min
∅6=S N

c(S)− x̃(S)

f(S)
> ε,

i.e., (x̃, ε̃) is a better feasible solution than (x, ε), which contradicts the fact

that (x, ε) is an optimal solution of (2.64).

Suppose that there exists i ∈ N such that xi < 0. From the above

result, there exists a set T ∈ Λ that contains i. Since

c({i})− xi > 0 > εf({i}),

{i} 6∈ Λ and therefore the set T\{i} is non-empty. Since xi < 0, ε < 0,

and c and f are monotonically increasing, there holds

c(T\{i})− x(T\{i})− εf(T\{i}) ≤ c(T)− x(T\{i})− εf(T)

< c(T)− x(T)− εf(T)

= 0,

i.e., (x, ε) is not feasible for (2.64), which is a contradiction.

84

2.5 Non-emptiness of the Core

Corollary 2.5.4 and Lemma 2.5.5 give us the following theorem.

Theorem 2.5.6. Given a cost allocation game Γ := (N, c,RN
+ , 2

N) with

a monotonically increasing cost function c and a monotonically increasing

weight function f : 2N\{∅} → R>0. Let ε∗ be the f -least core radius of Γ,

then there holds

ε∗ = min
(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
.

Remark 2.5.7. The condition on the monotonicity of c in Lemma 2.5.5

and Theorem 2.5.6 is indispensable, since for each cost allocation game

(N, c,RN
+ , 2

N) the optimal values of (2.62) and (2.63) with P = RN
+ and Σ =

2N do not coincide in general for cost functions which are not monotonically

increasing. Let N = {1, 2} and c be given by

c({1}) = 1, c({2}) = 5, c(N) = 2.

For f = 1 or f = |·|, (2.62) has exactly one optimal solution, namely, (0, 2)

with the optimal value 1, while (2.63) has exactly one optimal solution,

namely, (−1, 3) with the optimal value 2.

We can also construct a counterexample for the case f = c. We now

consider another cost allocation game (N, c,RN
+ , 2

N) with N = {1, 2, 3}

and c is defined as follows

c({1}) = 1, c({2}) = 2, c({3}) = 2, c(N) = 1

c({1, 2}) = 1, c({2, 3}) = 4, c({3, 1}) = 1.

Let (x1, ε1) be a feasible solution of (2.62), i.e.,

x1 ∈ R3
+, x

1(N) = c(N) = 1, and x1(S) + ε1c(S) ≤ c(S), ∀∅ 6= S N.

We have then

2ε1 = c({1, 2})ε1 + c({3, 1})ε1

≤ c({1, 2})− x1({1, 2}) + c({3, 1})− x1({3, 1})

= 2− x1(N)− x1
1

= 1− x1
1

≤ 1,

85

2. The Cost Allocation Problem

i.e., ε1 ≤ 1
2
. On the other hand, with x2 := (−1

3
, 2
3
, 2
3
), (x2, 2

3
) is a feasible

solution of (2.63), i.e.,

x2(N) = c(N) = 1 and x2(S) ≤
1

3
c(S), ∀∅ 6= S N.

Hence, the optimal value of (2.62) is strictly smaller than the one of (2.63).

Theorem 2.5.6 gives us the Bondareva-Shapley theorem for cost alloca-
tion game.

Theorem 2.5.8. For a cost allocation game Γ := (N, c,RN
+ , 2

N) with a

monotonically increasing cost function c, Γ is balanced if and only if its

core is non-empty.

Proof. Due to Theorem 2.5.6, the least core radius of Γ is

ε∗ = min
(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λS

.

The core of Γ is non-empty if and only if its least core radius ε∗ is non-

negative, which is equivalent to

∑

S∈B

λSc(S) ≥ c(N), ∀(B, λ) balanced,

i.e., Γ is balanced.

Remark 2.5.9. Again the requirement in Theorem 2.5.8 that c is mono-

tonically increasing is inevitably. We consider the cost allocation game

(N, c,RN
+ , 2

N) where N = {1, 2, 3} and c is defined by

c({1}) = 2, c({2}) = 2, c({3}) = 1, c(N) = 3

c({1, 2}) = 4, c({2, 3}) = 1, c({3, 1}) = 1.

The core of the general cost allocation game (N, c,RN , 2N) is non-empty,

since it contains (2, 2,−1). And, therefore, due to the Bondareva-Shapley

theorem, (N, c,RN , 2N) is balanced. That means (N, c,RN
+ , 2

N) is balanced

as well. However, the core of the cost allocation game Γ := (N, c,RN
+ , 2

N)

is empty. Suppose that it were non-empty, i.e.,

C(Γ) = {x ∈ R3
+ | x(N) = c(N) and x(S) ≤ c(S), ∀∅ 6= S N} 6= ∅.

86

2.6 Conclusions

Let x be a vector in C(Γ). We have

x3 = x({2, 3}) + x({3, 1})− x(N)

= x({2, 3}) + x({3, 1})− c(N)

≤ c({2, 3}) + c({3, 1})− c(N)

= −1

< 0,

contradiction.

2.6 Conclusions

In this section, we presented the mathematical definition of cost allocation

problem as a cost allocation game. Several cost allocation methods based

on game theoretical concepts, namely, the core, the f -least core, the f -

nucleolus, the (f, r)-least core, and the Shapley value, were presented. Each

of them has some relevant properties for the cost allocation problem. How-

ever, there exists no cost allocation method that satisfies all the desired

properties. We proved that several properties cannot hold simultaneously,

e.g.,

• efficiency and coalitional stability,

• efficiency and user friendly,

• equality and core cost allocation,

• core cost allocation and bounded variation,

• efficiency, symmetry, core cost allocation, additivity, and charging

zero-player nothing.

Table 2.4 indicates which properties fail/hold for which cost allocation

methods. In our opinion, validity, efficiency, and symmetry are indis-

pensable. The Shapley value may violate the validity property in gen-

eral, while each f -nucleolus and (f, r)-least core cost allocation method

and their dummy-friendly versions have all these properties. The Shap-

ley value is additive, but not the other above-mentioned methods. On

the other hand, the Shapley value does not belong to the core in general.

87

2. The Cost Allocation Problem

Core cost allocation property is immense important for the stability of the
cooperation. It is hardly to convince somebody that a price which does
not belong to the core in the case it is non-empty is fair. While keeping
validity, efficiency, symmetry, core cost allocation, and the dummy-player
property (charging dummy players exactly their costs), we have to sacri-
fice the remaining properties in general. The dummy-friendly versions of
each f -nucleolus and each (f, r)-least core cost allocation method fulfil all
these properties. These two concepts differ from each other in one point,
namely, the objective of the f -nucleolus is the coalitional fairness, where
the output reflects the strategic position of every coalitions, while the (f, r)-
least core is a compromise solution taking into account both coalitional and
individual fairness. The (f, r)-least core firstly keeps the weighted profit of
each coalition as high as possible and secondly approximates the equality
as well as possible. Which cost allocation method should be used depends
on the goal of each cost allocation problem.

88

2
.6

C
o
n
c
lu
sio

n
s

Non-coop Prop MinSub f -nucleolus (f, r)-least core Shapley

Validity No∗ No∗ Yes Yes Yes No∗

Efficiency No Yes No Yes Yes Yes

Coalitional stability Yes No No∗ No No No

User friendliness No No Yes No No No

Core cost allocation No No Yes Yes Yes No

Monotonicity Yes No No No No No

Bounded variation Yes Yes∗ No No No No

Symmetry Yes∗∗ Yes∗∗ - Yes Yes Yes

Additiviy Yes No No No No Yes

Scalar multiplicativity Yes Yes - - Yes Yes

Dummy player Yes No No - - Yes

Yes∗ means that the property holds for cost allocation games; Yes∗∗ means that the property holds for general cost allocation

games whose sets of possible coalitions contain (the coalition of) each single player; while No∗ means that the property fails

in general but holds for some large classes of general cost allocation games that appear in practice (see Subsection 2.2.1).

Table 2.4: Properties of cost allocation methods

89

2. The Cost Allocation Problem

90

Chapter 3

Complexity

This chapter is devoted to the computational complexity of the considered

game theoretical concepts. We recall a result in [17] to show that calcu-

lating a point in the f -least core is NP-hard even for simple games like

the minimum cost spanning tree game, whose cost function is in polyno-

mial time evaluable. Consequently, it is also NP-hard to compute the f -

nucleolus and the (f, r)-least core in general. However, if the cost function

is submodular, then they can be computed in oracle-polynomial time using

the ellipsoid method. This result is based on the well-known theorems of

Grötschel, Lovász, and Schrijver on the equivalence between separation and

optimization and the oracle-polynomial solvability of submodular function

minimization on certain sets [26, 27].

3.1 NP-Hardness of Cost Allocation Game

Computing a vector in the f -least core of a given strongly bounded gen-

eral cost allocation game is NP-hard in general. Clearly, it is NP-hard if

the underlying cost function is given by a NP-hard optimization problem.

However, even if the cost function is evaluable in polynomial time, the

problem may be still NP-hard. An example is the so called minimum cost

spanning tree game. A minimum cost spanning tree game is defined by

a set N of players, a supply node s 6∈ N , a complete graph with vertex

set V = N ∪ {s}, and a non-negative distance function l defined on the

edge set of the graph. The set of possible coalitions is 2N while the set of

valid prices is RN . The cost c(S) of a coalition S in 2N is the length of

a minimum spanning tree in the subgraph induced by S ∪ {s}. Faigle et

91

3. Complexity

al. [17] proved that the problem of computing a vector in the f -least core

of the minimum cost spanning tree game is NP-hard for a certain class of

weight functions including f = 1, f = | · |, and f = c. In that article,

the authors reduce the minimum cover problem to the problem of finding

a vector in the f -least core of a minimum cost spanning tree game. The

minimum cover problem is NP-hard and defined as follows. Let q ∈ N and

let U be a set of k ≥ q elements and W be a set of 3q elements. Consider a

bipartite graph with the node set U ∪W (partitioned into U and W) such

that each node u ∈ U is adjacent to exactly three nodes in W . We say that

the node u ∈ U covers its three neighbors in W . A set D ⊆ U is called a

cover if each w ∈ W is incident with some u ∈ D. A minimum cover is a

cover that minimizes |D|. For further details see [17].

3.2 Ellipsoid Method and Submodular Func-

tion Minimization

In 1979, Khachiyan indicated how the ellipsoid method can be used in order

to check the feasibility of a system of linear inequalities in polynomial time

[36], which implies the polynomial time solvability of linear programming

problems. This result was sharpened by Grötschel, Lovász, and Schrijver

in [26, 27], where they showed the equivalence between separation and

optimization for any so called well-described polyhedron. Consequently, the

submodular function minimization problem on certain sets can be solved in

oracle-polynomial time. In the following, we recall these results since they

will be needed in the next section. But let us start with some definitions

from [27].

Informally, we imagine an oracle as a device that solves certain problems

for us. We make no assumptions on how a solution is found. An oracle

algorithm is an algorithm which can “ask questions” from an oracle, and can

use the answers supplied. An oracle algorithm is called oracle-polynomial

if the number of computational steps, counting each call to the oracle as

one step, is polynomial.

Let P ⊆ Rn be a polyhedron and let ϕ be a positive integer. We say

that P has facet-complexity at most ϕ if there exists a system of inequalities

with rational coefficients that has solution set P and such that the encoding

length of each inequalities of the system is at most ϕ. In case P = Rn

we require ϕ ≤ n + 1. A well-described polyhedron is a triple (P ;n, ϕ)

92

3.2 Ellipsoid Method and Submodular Function Minimization

where P ⊆ Rn is a polyhedron with facet-complexity at most ϕ. The

encoding length 〈P 〉 of a well-described polyhedron (P ;n, ϕ) is ϕ+ n.

For well-described polyhedra, Grötschel, Lovász, and Schrijver showed

the following result.

Theorem 3.2.1. ([27], Theorem 6.6.5) There exist algorithms that, for any

well-described polyhedron (P ;n, ϕ) specified by a strong separation oracle,

and for any given vector c ∈ Qn,

(a) solve the strong optimization problem max{cTx | x ∈ P}, and

(b) find an optimum vertex solution of max{cTx | x ∈ P} if one exists.

The number of calls on separation oracle, and the number of elementary

arithmetic operations executed by the algorithms are bounded by a poly-

nomial in ϕ. All arithmetic operations are performed in numbers whose

encoding length is bounded by a polynomial in ϕ + 〈c〉, where 〈c〉 denotes

the encoding length of c.

Based on the above and several other results, Grötschel, Lovász, and

Schrijver showed that the submodular function minimization problem on

certain subcollections of a lattice family can be solved in oracle-polynomial

time [26, 27]. Let N be a finite set and C be a lattice family on N , i.e., a

non-empty collection of subset of N satisfying

S, T ∈ C ⇒ S ∩ T ∈ C and S ∪ T ∈ C.

Let S be a subcolletion of C satisfying the following condition for all S, T ⊆

N :

If three of the sets S, T, S ∩ T, S ∪ T belong to C\S, (3.1)

then also the fourth belongs to C\S.

Let F : C → Q be a submodular function on C, i.e.,

F (S ∪ T) + F (S ∩ T) ≤ F (S) + F (T), ∀S, T ∈ C.

We assume that F is given by an oracle and that we know an upper bound ̺

on the encoding lengths of the outputs of this oracle. Moreover, S is also

given by a membership oracle: we can give any set S to the oracle, and it

answers whether S belongs to S or not. Then the following theorem holds.

93

3. Complexity

Theorem 3.2.2. ([27], Theorem 10.4.6) For any C,S, F, ̺ (given as de-

scribed above), where S satisfies (3.1), one can find a set T ∈ S with

F (T) = min{F (S) |S ∈ S}

in oracle-polynomial time.

Remark 3.2.3. Let N be a finite set and C be a lattice family on N satis-

fying the following condition for all S, T ⊆ N :

If three of the sets S, T, S ∩ T, S ∪ T belong to C, (3.2)

then also the fourth belongs to C.

Let A be a subset of χC,

χC = {χS |S ∈ C}.

Define

S := C\{S ∈ C |χS ∈ span(A)}.

For arbitrary sets S, T ⊆ N , because of (3.2) and since

χS + χT = χS∩T + χS∪T

and

C\S = {S ∈ C |χS ∈ span(A)},

if three of the sets S, T, S ∩ T, S ∪ T belong to C\S, then also the fourth

belongs to C\S. Therefore, the subcollection S satisfies (3.1).

If C is given by a membership oracle and |A| ≤ |N |, then for each

set S we can answer whether S belongs to S or not in oracle-polynomial

time, since only polynomial time is needed to check whether χS belongs to

span(A) or not.

3.3 Polynomial Time Algorithms for Sub-

modular Games

The problem of calculating a vector in the f -least core, f -nucleolus, or (f, r)-
least core is NP-hard in general. However, there exist oracle-polynomial

94

3.3 Polynomial Time Algorithms for Submodular Games

time algorithms for special general cost allocation games. In [16], the au-
thors proved that there exists an oracle-polynomial time algorithm cal-
culating the nucleolus, i.e., f -nucleolus with f = 1, of any general cost
allocation game of type (N, c,RN , 2N) whose cost function is submodular.
It is, however, unclear how to generalize this result for any submodular
general cost allocation game using their proof technique. In the following,
we present another proof for the general case based on Theorem 3.2.1 and
Theorem 3.2.2 where the weight function satisfies a certain property.

3.3.1 Algorithm for the f-Nucleolus

In this section, we investigate the complexity of the f -nucleolus of a strongly
bounded general cost allocation game Γ = (N, c, P,Σ) which has a non-
empty imputation set X (Γ) and satisfies the following requirements. We
require that the family Σ of possible coalitions is a latice family on N which
is given by a membership oracle and satisfies the following condition for
all S, T ⊆ N :

If three of the sets S, T, S ∩ T, S ∪ T belong to Σ, (3.3)

then also the fourth belongs to Σ.

The cost function is assumed to be rational-valued and submodular. We
consider a special class of the weight function f , namely, f = αg+ βc with
α, β ∈ Q+, α + β > 0, and some modular function g : Σ → Q, i.e.,

g(S ∪ T) + g(S ∩ T) = g(S) + g(T), ∀S, T ∈ Σ,

which satisfies
g(S) > 0, ∀S ∈ Σ+.

β is equal to 0 if Γ is not a cost allocation game, i.e., if either c is not positive
or P does not belong to RN

+ . We can choose, for example, g = α1 + α2| · |
with some numbers α1, α2 ∈ Q+, α1 + α2 > 0. We also require that
the functions c and g are given by two oracles whose outputs’ encoding
lengths are bounded above by 〈c〉 and 〈g〉, respectively. Moreover, we
denote |N | by n and assume that (P ;n, ϕ) is a well-described polyhedron
which is specified by a strong separation oracle. Let Ax ≤ b be a system
of inequalities with rational coeficients that has solution set P and such
that the encoding length of each inequality of the system is at most ϕ.
We will show that there exists an algorithm calculating the f -nucleolus
of Γ in oracle-polynomial time. The number of calls on the oracles and the

95

3. Complexity

number of elementary arithmetic operations executed by the algorithms are

bounded by a polynomial in 〈N,P, c, f〉 := n + ϕ + 〈c〉 + 〈g〉 + 〈α〉 + 〈β〉,

where 〈·〉 is the function evaluating the encoding length. All arithmetic

operations are performed in numbers whose encoding length is bounded by

a polynomial in 〈N,P, c, f〉.

Firstly, we consider the following linear program

max
(x,ε)

ε

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ S (3.4)

x ∈ Q,

with some non-empty well-described polyhedron (Q;n, ζ) which is specified

by a strong separation oracle and belongs to the imputation set X (Γ), and

some collection ∅ 6= S ⊆ Σ\{∅, N} satisfying

Assumption 1.1: For every S, T ⊆ N , if three of the sets S, T, S ∩
T, S ∪ T belong to Σ\S, then also the fourth belongs to Σ\S

and

Assumption 1.2: There exists a membership oracle to answer whether
a set S belongs to S or not for each set S ⊆ N .

The chosen weight function f : Σ → Q is such that f is positive in Σ+ and

at least one of the following properties holds

Assumption 2.1: The function c− εf is submodular for all ε ∈ R;

Assumption 2.2: There exists an upper bound ε0 ∈ Q of (3.4)
which can be determined in oracle-polynomial time and has an en-
coding length bounded by a polynomial in n+ 〈c〉+ 〈f〉 such that the
function c− εf is submodular for every ε ≤ ε0.

The weight function f is given by an oracle and 〈f〉 is an upper bound on

the encoding lengths of the outputs of the f -oracle.

Proposition 3.3.1. Given α, β ∈ Q+, α + β > 0, such that β = 0 if Γ is

not a cost allocation game, and a modular function g : Σ → Q satisfying

g(S) > 0, ∀S ∈ Σ+,

then the function f = αg+ βc fulfils either Assumption 2.1 or Assumption

2.2.

96

3.3 Polynomial Time Algorithms for Submodular Games

Proof. If β = 0, then since

αg(S) + αg(T) = αg(S ∩ T) + αg(S ∪ T), ∀S, T ∈ Σ (3.5)

and c is submodular, Assumption 2.1 holds.

For β > 0, we have that Γ is a cost allocation game, i.e., c is positive

in Σ+ and P belongs to RN
+ . The optimal value of (3.4) is the f -least core

radius of the cost allocation game (N, c,S ∪ {N}, Q) whose imputation

set coincides with the set Q and therefore is non-empty. Due to Proposi-

tion 2.3.3 and Proposition 2.3.4, the linear program (3.4) has an optimal

solution and ε0 := β−1 is an upper bound of its optimal value. Trivially,

for all ε ≤ ε0, since c is submodular, εβ ≤ ε0β = 1, and because of (3.5),

the function

c− εf = (1− εβ)c− εαg

is submodular as well. This means that Assumption 2.2 holds.

Using Theorem 3.2.1 and Theorem 3.2.2 we have the following result.

Lemma 3.3.2. Given c, f , Σ, and S that fulfil the above assumptions, the

separation problem of (3.4) can be solved in oracle-polynomial time and one

can find an optimal solution of (3.4) or assert that the problem is infeasible

or unbounded in oracle-polynomial time. The number of calls on oracles

and the number of elementary arithmetic operations executed are bounded

by a polynomial in ω := n + ζ + 〈c〉 + 〈f〉. All arithmetic operations are

performed in numbers whose encoding length is bounded by a polynomial

in ω.

Proof. We denote

QS = {(x, ε) | x(S) + εf(S) ≤ c(S), ∀S ∈ S}.

Clearly, the polyhedron QS has facet complexity at most n + 〈c〉 + 〈f〉.

Therefore, the polyhedron {(x, ε) ∈ QS | x ∈ Q} has facet complexity at

most ω. We want to prove that the separation problem of (3.4) can be

solved in oracle-polynomial time. Let (x̄, ε̄) ∈ Qn+1 be an arbitrary vector.

Firstly, we use the separation oracle of Q to check whether x belongs to Q

or not. If x 6∈ Q, then we have a valid cut that cuts off the point (x̄, ε̄).

97

3. Complexity

Otherwise, we should check whether this point fulfils the remaining con-

straints. From the assumptions, either we have a submodular function

F = c − ε̄f or there holds ε̄ > ε0 for an upper bound ε0 of (3.4), which

can be calculated in oracle-polynomial time. So we only have to consider

the first case. Since F is submodular, F − x̄ is also submodular. From

Theorem 3.2.2 it follows that one can find an optimal solution T of the

following optimization problem

min
S∈S

c(S)− ε̄f(S)− x̄(S)

in oracle-polynomial time. If the optimal value is non-negative, then (x̄, ε̄)

is feasible. Otherwise, x(T) + εf(T) ≤ c(T) is a valid cut that cuts off the

point (x̄, ε̄). Therefore, the separation problem of (3.4) can be solved in

oracle-polynomial time. It follows from Theorem 3.2.1 that one can find

an optimal solution of (3.4) in oracle-polynomial time or assert that the

problem is infeasible or unbounded. Note that each input vector (x̄, ε̄) of

the separation oracle in the algorithm is given by solving the non-emptiness

problem of a polyhedron in Rn whose facet complexity is bounded by some

polynomial in ω. Hence, the encoding length of (x̄, ε̄) is bounded by a

polynomial in ω (see Theorem 6.4.1, Theorem 6.4.9, and Theorem 6.6.5

in [27] for details). Therefore, the number of calls on the oracles and the

number of elementary arithmetic operations executed are bounded by a

polynomial in ω and all arithmetic operations are performed in numbers

whose encoding length is bounded by a polynomial in ω.

Lemma 3.3.3. Let Γ = (N, c, P,Σ) be a strongly bounded general cost al-

location game, where c and Σ satisfy the above assumptions and (P ;n, ϕ)

is a well-defined polyhedron specified by a strong separation oracle. Choose

the weight function f = αg + βc, where α, β ∈ Q+ satisfy α + β > 0

and g : Σ → Q is a modular function whose value is positive in Σ+. Be-

sides, if Γ is not a cost allocation game, then β = 0. Given two oracles

calculating the values c(S) and g(S) for S ∈ Σ, if the imputation set X (Γ)

is non-empty, then for each k-th. step of Algorithm 2.3.29 with Sk 6= ∅

the separation problem of (2.28k) can be solved in oracle-polynomial time

and one can find an optimal solution of (2.28k) in oracle-polynomial time

98

3.3 Polynomial Time Algorithms for Submodular Games

based on the oracles of c and g, the membership oracle of Σ, and the

separation oracle of P . The number of calls on oracles and the number

of elementary arithmetic operations executed are bounded by a polynomial

in ν := n+ϕ+〈c〉+〈g〉+〈α〉+〈β〉. All arithmetic operations are performed

in numbers whose encoding lengths are bounded by a polynomial in ν.

Proof. With X (Γ) 6= ∅, due to Theorem 2.3.30, the f -nucleolus of Γ is non-

empty and the linear program (2.28k) is neither infeasible nor unbounded.

With Sk 6= ∅, we have k < dim(spanχΣ) ≤ n. This lemma is then a direct

conclusion of Lemma 3.3.2. We only have to show that the encoding length

of the optimal value εi of (2.28i) is bounded by a polynomial in ν for every

i ∈ [1, k) and all the assumptions of Lemma 3.3.2 are fulfilled. Let k∗ be

the largest number such that Sk∗ 6= ∅, we have k∗ < dim(spanχΣ) ≤ n.

We now prove that the encoding length of the optimal value εi of (2.28i) is

bounded by a polynomial in ν for every i ∈ [1, k∗]. For each i ∈ [1, k∗], we

can rewrite (2.28i) as follows

max
(x,ε)

ε (3.6)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Si

Ax ≤ b

x(N) ≤ c(N)

−x(N) ≤ −c(N)

x(S) ≤ c(S)− εjf(S), ∀S ∈ Bj+1, ∀1 ≤ j ≤ i− 1

−x(S) ≤ εjf(S)− c(S), ∀S ∈ Bj+1, ∀1 ≤ j ≤ i− 1.

The dual problem of (3.6) is the following linear program

min
∑

S∈Si

c(S)λS + bTµ+ c(N)(ξ+ − ξ−)

+
i−1
∑

j=1

∑

S∈Bj+1

(

c(S)− εjf(S)
)

(ρ+S − ρ−S) (3.7)

s.t.
∑

S∈Si
S∋l

λS +
(

A· l

)T
µ+ ξ+ − ξ− +

i−1
∑

j=1

∑

S∈Bj+1

S∋l

(ρ+S − ρ−S) = 0, ∀l ∈ N (3.8)

99

3. Complexity

∑

S∈Si

f(S)λS = 1 (3.9)

λ ≥ 0, µ ≥ 0, ξ+ ≥ 0, ξ− ≥ 0, ρ+ ≥ 0, ρ− ≥ 0. (3.10)

The polyhedron Q defined by (3.8)–(3.10) has got vertices. Therefore, there

exists an optimal solution (λ̃, µ̃, ξ̃+, ξ̃−, ρ̃+, ρ̃−) of (3.7), which is a vertex

of Q. Since (λ̃, µ̃, ξ̃+, ξ̃−, ρ̃+, ρ̃−) is a vertex of Q, the number of its non-zero

coordinates is not greater than n + 1 and its encoding length is bounded

by a polynomial in ν. Moreover, due to the duality theorem, since εi is the

optimal value of (3.6) we have

εi =
∑

S∈Si

c(S)λ̃S+bT µ̃+c(N)(ξ̃+−ξ̃−)+
i−1
∑

j=1

∑

S∈Bj+1

(

c(S)−εjf(S)
)

(ρ̃+S −ρ̃−S),

i.e.,

εi +
i−1
∑

j=1

∑

S∈Bj+1

f(S)(ρ̃+S − ρ̃−S)ε
j

=
∑

S∈Si

c(S)λ̃S + bT µ̃+ c(N)(ξ̃+ − ξ̃−) +
i−1
∑

j=1

∑

S∈Bj+1

c(S)(ρ̃+S − ρ̃−S).

It means that (ε1, ε2, . . . , εk∗) is the solution of a system of linear equations

with k∗ variables and k∗ equations. The coefficients of this system are

rational numbers, whose encoding lengths are bounded by a polynomial in

ν. Hence, the encoding length of εi is bounded by a polynomial in ν for

every i ∈ [1, k∗].

It remains to show that all the assumptions of Lemma 3.3.2 are fulfilled.

Since

P1 = {x ∈ P | x(N) = c(N)}

and

Pk = {x ∈ P1 | x(S) = c(S)− εif(S), ∀S ∈ Bi+1, ∀1 ≤ i < k}, ∀k ≥ 2,

Pk is in oracle-polynomial time separable based on the separation oracle

of P , the oracle calculating g, and the cost-function oracle. Pk has facet

complexity at most polynomial in ν. f fulfils either Assumption 2.1 or

100

3.3 Polynomial Time Algorithms for Submodular Games

Assumption 2.2 due to Proposition 3.3.1. Finally, due to the definition of

Sk, we have

Sk = Σ+\{S ∈ Σ+ |χS ∈ spanAk}

= Σ\{S ∈ Σ |χS ∈ spanAk}.

Due to Remark 3.2.3, Sk fulfils Assumption 1.1 and for each set S ⊆ N

we can answer whether S belongs to Sk or not in oracle-polynomial time

based on the membership oracle of Σ.

For the upcoming results, we strengthen Assumption 2.2 as follows:

Assumption 2.3: There exists a strict upper bound ε0 ∈ Q of (3.4)
which can be determined in oracle-polynomial time and has an encoding
length bounded by a polynomial in n+ 〈c〉+ 〈f〉 such that the function
c− εf is submodular for every ε ≤ ε0.

Lemma 3.3.4. For each c and Σ that fulfil the assumptions presented in

the beginning of this section, each rational-valued weight function f which

fulfils either Assumption 2.1 or Assumption 2.3, and each non-empty col-

lection S ⊆ Σ\{∅, N} satisfying Assumption 1.1 and Assumption 1.2, given

two oracles calculating the values c(S) and f(S) for S ∈ S, one can find

a basic dual optimal solution of (3.4) or assert that the dual problem is

infeasible or unbounded in oracle-polynomial time. The number of calls on

oracles and the number of elementary arithmetic operations executed are

bounded by a polynomial in ω := n + ζ + 〈c〉 + 〈f〉. All arithmetic oper-

ations are performed in numbers whose encoding lengths are bounded by a

polynomial in ω.

Proof. Assume that f satisfies Assumption 2.3. The other case, namely,

when f satisfies Assumption 2.1, can be treated similarly. We firstly check

whether the primal problem is infeasible or unbounded with the algorithm

in Lemma 3.3.2. If one of these cases occurs, because of the duality theorem,

we assert that the dual problem is infeasible or unbounded. Otherwise, we

solve (3.4) using the ellipsoid method (presented in Theorem 6.4.9 in [27])

with the separation oracle described in the proof of Lemma 3.3.2. There

are three types of the output of the separation oracle:

• cjx ≤ dj (given by the separation oracle of Q).

101

3. Complexity

• x(S) + εf(S) ≤ c(S) for some S ∈ S.

• ε ≤ ε0.

We consider a new linear program which has the same variables and objec-

tive function as (3.4) and the constraints that appear in the output of the

separation oracle. The problem is as follows:

max
(x,ε)

ε (3.11)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ S̄ (3.12)

Cx ≤ d (3.13)

ε ≤ ε0, (3.14)

with some set S̄ ⊆ S, matrix C, and vector d such that (3.12)–(3.13) rep-

resent the constraints of the first two types described above. Since ε0 is

an upper bound of (3.4) and each feasible solution of (3.4) satisfies the

constraints (3.12)–(3.13), the optimal value of (3.11) is an upper bound

for (3.4). On the other hand, if the ellipsoid method concludes that ε∗

is the optimal value of (3.4) using only inequalities (3.12)–(3.14), then it

necessarily has to conclude that ε∗ is the optimal value of (3.11) as well.

Moreover, because of Assumption 2.3, we have that ε0 is a strict upper

bound of (3.4), and therefore of (3.11). Hence, we can remove the inequal-

ity (3.14) from the linear program (3.11) without changing the optimal

value. So we can rewrite (3.11) as follows

max
(x,ε)

ε (3.15)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ S̄

Cx ≤ d.

Clearly, each basic optimum solution of the dual problem of (3.15) is a

basic optimum solution of the dual problem of (3.4). Using the ellipsoid

method, we can solve the dual problem of (3.15) in oracle-polynomial time.

One can easily show that the number of calls on oracles and the number

of elementary arithmetic operations executed are bounded by a polyno-

mial in ω, and all arithmetic operations are performed in numbers whose

encoding length is bounded by a polynomial in ω.

102

3.3 Polynomial Time Algorithms for Submodular Games

Using the lemma above, we have the following results.

Lemma 3.3.5. Let Γ = (N, c, P,Σ) be a strongly bounded general cost

allocation game where c and Σ fulfil the assumptions presented in the be-

ginning of this section and (P ;n, ϕ) is a well-defined polyhedron specified

by a strong separation oracle. Let f be a modular, rational-valued weight

function. Given two oracles calculating the values c(S) and f(S) for S ∈ Σ,

if the imputation set X (Γ) is non-empty, then for each k-th. step of Al-

gorithm 2.3.29 with Sk 6= ∅ one can find a basic dual optimal solution

of (2.28k) in oracle-polynomial time based on the oracles of c and f , the

membership oracle of Σ, and the separation oracle of P . The number of

calls on oracles and the number of elementary arithmetic operations exe-

cuted are bounded by a polynomial in ϑ := n+ϕ+ 〈c〉+ 〈f〉. All arithmetic

operations are performed in numbers whose encoding length is bounded by

a polynomial in ϑ.

Proof. Because X (Γ) 6= ∅, due to Theorem 2.3.30, the f -nucleolus of Γ

is non-empty and the linear program (2.28k) is neither infeasible nor un-

bounded. Therefore, its dual problem has an optimal solution. This lemma

follows directly from Lemma 3.3.4, since all its assumptions are fulfilled due

to the proof of Lemma 3.3.3.

Lemma 3.3.6. Let Γ = (N, c, P,Σ) be a cost allocation game where c and Σ

fulfil the assumptions presented in the beginning of this section and (P ;n, ϕ)

is a well-defined polyhedron specified by a strong separation oracle. Choose

the weight function f = αg + βc for some numbers α ∈ Q+, β ∈ Q>0, and

modular function g : Σ → Q whose value is positive in Σ+. Two oracles

calculating the values c(S) and g(S) for S ∈ Σ are given. For each k-

th. step of Algorithm 2.3.29 with Sk 6= ∅, if the imputation set X (Γ)

is non-empty and the optimal value of (2.28k) is smaller than β−1, then

one can find a basic dual optimal solution of (2.28k) in oracle-polynomial

time based on the oracles of c and g, the membership oracle of Σ, and the

separation oracle of P . The number of calls on oracles and the number

of elementary arithmetic operations executed are bounded by a polynomial

in ν := n+ϕ+〈c〉+〈g〉+〈α〉+〈β〉. All arithmetic operations are performed

in numbers whose encoding length is bounded by a polynomial in ν.

103

3. Complexity

Proof. Because X (Γ) 6= ∅, due to Theorem 2.3.30, the f -nucleolus is non-

empty and the linear program (2.28k) is neither infeasible nor unbounded.

Therefore, its dual problem has an optimal solution. This lemma follows

directly from Lemma 3.3.4, since all assumptions of Lemma 3.3.4 are ful-

filled due to the proof of Lemma 3.3.3. Here, f satisfies Assumption 2.3

with ε0 = β−1.

Finally, using the above results, we have the following theorem.

Theorem 3.3.7. Let Γ = (N, c, P,Σ) be a strongly bounded general cost

allocation game where c and Σ fulfil the assumptions presented in the be-

ginning of this section and (P ;n, ϕ) is a well-defined polyhedron specified

by a strong separation oracle. Choose the weight function f = αg + βc,

where α, β ∈ Q+ satisfy α + β > 0 and g : Σ → Q is a modular func-

tion whose value is positive in Σ+. Besides, if Γ is not a cost allocation

game, then β = 0. Given two oracles calculating the values c(S) and g(S)

for S ∈ Σ, one can find the f -nucleolus Nf (Γ) of Γ in oracle-polynomial

time based on the oracles of c and g, the membership oracle of Σ, and the

separation oracle of P . The number of calls on oracles and the number of

elementary arithmetic operations executed are bounded by a polynomial in

ν := n+ϕ+ 〈c〉+ 〈g〉+ 〈α〉+ 〈β〉. All arithmetic operations are performed

in numbers whose encoding length is bounded by a polynomial in ν.

Proof. We first check whether

X (Γ) := {x ∈ P | x(N) = c(N)}

is empty. This can be done in oracle-polynomial time using the ellipsoid

method. If it is the case, then the f -nucleolus Nf (Γ) is the empty set.

Otherwise, due to Theorem 2.3.30, the f -nucleolus of Γ is non-empty and

can be calculated by Algorithm 2.3.29. It terminates after k∗ steps and we

obtain Nf (Γ) = Pk∗+1. We prove that the running time of this algorithm

is oracle-polynomial. Since Algorithm 2.3.29 needs at most n− 1 steps, we

only have to show that each step takes oracle-polynomial time.

We firstly consider the case β > 0. In this case, Γ is a cost alloca-

tion game, i.e., c is positive in Σ+ and P belongs to RN
+ . For each k ≤

104

3.3 Polynomial Time Algorithms for Submodular Games

k∗, we have |Ak| < dim(spanχΣ) and the set Sk is non-empty. Due to

Lemma 3.3.3, one can find an optimal solution (xk, εk) of (2.28k) in oracle-

polynomial time. Recalling that εk ≤ β−1. We consider two cases: εk < β−1

and εk = β−1.

(i)Case 1.1 - εk < β−1: One can find a basic dual optimal solution (λk, µk)

of (2.28k) in oracle-polynomial time due to Lemma 3.3.6. The number

of positive coordinates of λk is then polynomial in ν. Therefore, we can

calculate Πk+1, Bk+1, and Ak+1 in polynomial time. The polyhedron Pk+1

is well-defined and its facet complexity is bounded by a polynomial in ν.

(ii) Case 1.2 - εk = β−1: We have

xk(S) + β−1αg(S) + c(S) ≤ c(S), ∀S ∈ Sk.

Since xk ∈ P ⊆ RN
+ , g|Sk

> 0, α ≥ 0, and β > 0, it follows that

xk(S) = 0, ∀S ∈ Sk,

i.e.,

ef (S, x
k) =

c(S)

f(S)
, ∀S ∈ Sk. (3.16)

Let x∗ be an arbitrary vector in the f -nucleolus of Γ. Then we have

x∗ ∈ Nf (Γ) = Pk∗+1 ⊆ Pk.

Since x∗ ∈ P ⊆ RN
+ and f |Sk

> 0, there holds

ef (S, x
∗) =

c(S)− x∗(S)

f(S)
≤

c(S)

f(S)
, ∀S ∈ Sk. (3.17)

On the other hand, since xk, x∗ ∈ Pk, due to (2.31), we have

ef (S, x
k) = ef (S, x

∗), ∀S ∈ Σ+\Sk. (3.18)

Since x∗ belongs to the f -nucleolus of Γ, from (3.16)–(3.18) it follows that

x∗(S) = 0, ∀S ∈ Sk.

Therefore, we have

Nf (Γ) = Pk∗+1

= {x ∈ Pk | x(S) = 0, ∀S ∈ Sk}

= {x ∈ Pk | xi = 0, ∀i ∈ ∪S∈Sk
S}.

105

3. Complexity

So, we can stop Algorithm 2.3.29 and do not need to calculate a basic dual

optimal solution of (2.28k).

The case β = 0 can be treated similarly using Lemma 3.3.3 and Lemma

3.3.5.

3.3.2 Algorithms for the f-Least Core and the (f, r)-

Least Core

We consider any bounded general cost allocation game Γ = (N, c, P,Σ)
with a non-empty imputation set X (Γ), where c is rational-valued and
submodular, (P, |N |, ϕ) is a well-described polyhedron given by a strong
separation oracle, and Σ is a latice family on N given by a membership
oracle, which satisfies (3.3). Let f be a rational-valued weight function
satisfying either Assumption 2.1 or Assumption 2.2 in the previous subsec-
tion with S = Σ\{∅, N} and Q = X (Γ). Function f can be chosen as in
Proposition 3.3.1. Functions c and f are also given by two oracles. Due
to Lemma 3.3.2 with S = Σ\{∅, N} and Q = X (Γ), there exists an algo-
rithm calculating the f -least core radius εf (Γ) and, therefore, the f -least
core LCf (Γ) of Γ,

LCf (Γ) =
{

x ∈ X (Γ) | x(S) + εf (Γ)f(S) ≤ c(S), ∀S ∈ Σ\{∅, N}
}

,

in oracle-polynomial time. From this lemma, it also follows that the sepa-
ration problem of the f -least core can be solved in oracle-polynomial time.
Let r ∈ QN

>0 be a reference price-vector of Γ. Define

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and
R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

The (f, r)-least core of Γ is the R-nucleolus of ∆ := (N,R,LCf (Γ),Λ). We
use Algorithm 2.3.29 to calculate the R-nucleolus of ∆. With a similar
proof as the one of Lemma 3.3.3, we can prove that the encoding length of
the optimal value of the linear program in each step of Algorithm 2.3.29
for ∆ is bounded by a polynomial in the encoding length of the input
data. Since |Λ| = |N | + 1 and the separation problem of the f -least core
can be solved in oracle-polynomial time, one can prove that each step of
Algorithm 2.3.29 for ∆ can be solved in oracle-polynomial time. On the
other hand, since Algorithm 2.3.29 needs at most |N |−1 steps, from this it
follows that one can calculate the (f, r)-least core of Γ in oracle-polynomial
time.

106

Chapter 4

Computational Aspects

The goal of this chapter is to investigate computational methods for the

game theoretical solutions of the cost allocation problem. Finding a point

in the f -least core, the f -nucleolus, or the (f, r)-least core is NP-hard in

general. The biggest challenge is that there is exponential number of pos-

sible coalitions which must be taken into account. A medium-sized cost

allocation game with 30 players has 230 − 1 possible coalitions, i.e., more

than one billion. A cost allocation problem of this size is not unusual

in practice and we want to solve even larger problems. For example, the

number of players in our ticket pricing game is almost three times as large.

The difficulty is not only to solve a huge linear program itself but also to

calculate its coefficients. In order to write it completely, we have to know

the cost of every coalition, which is practically impossible for games having

more than 30 players. For many real world applications, the cost function

is given by a NP-hard optimization problem, which is not easy to compute

for every (large) coalition. Knowing explicitly the linear program will takes

us centuries in those cases. Apart from that, such a huge linear program

with several billions constraints is unlikely solvable. However, in practice,

we may not need to know the complete information. Just a few constraints

influence the optimal solutions of the linear program, while the remain-

ders are just redundant. An usual idea to overcome the difficulty is using

a constraint generation approach [30, 15, 11]. We start with a simplified

version of the original linear program formed by a few of its constraints.

The remaining constraints are gradually added to the simplified linear pro-

gram until its optimal solution is also feasible and therefore optimal for the

original problem. With this technique we are able to solve large real world

applications.

107

4. Computational Aspects

4.1 Combinatorial Game

In order to apply a constraint generation approach, one requirement must

be made, namely, the cost function is given by a minimization problem.

This is reasonable since people usually want to pay the minimal cost. A

general cost allocation game Γ = (N, c, P,Σ) whose cost function c is given

by a optimization problem of the following form

∀S ∈ Σ+ : c(S) :=min
ξ

cξ (4.1)

s.t. Bξ ≥ CχS

Dξ ≥ d

ξj ∈ Zj, j = 1, 2, . . . , k,

where χS is the incidence vector of S and Zj is the set of either real, or

integer, or binary numbers, is called a combinatorial cost allocation game.

We will see in Section 4.2.4 that for a combinatorial cost allocation game

one can formulate the separation problem of the constraint generation ap-

proach as a maximization problem, which can be solved without evaluating

the cost of every possible coalition.

4.2 Constraints Generation Approaches

In this section, we present constraint generation approaches for calculat-

ing the f -least core, the f -nucleolus, and the (f, r)-least core. Two main

questions of such constraint generation approaches, namely, how to find a

good starting set of constraints and how to solve its separation problem,

will be answered. For the sake of simplicity, we only consider cost alloca-

tion games. This is reasonable since all applications that we know are cost

allocation games. Many, but not all, of the following results still hold for

general cost allocation games.

4.2.1 The f-Least Core and the f-Nucleolus

Let Γ = (N, c, P,Σ) be a cost allocation game whose imputation set X (Γ)

is non-empty and f : Σ+ → R>0 be a weight function. One can calculate

the f -nucleolus of Γ using either Algorithm 2.3.29 or Algorithm 2.3.31.

Since the first loop of these algorithms give us the f -least core of Γ, we

concentrate on the f -nucleolus. We consider only Algorithm 2.3.31 because

108

4.2 Constraints Generation Approaches

Algorithm 2.3.29 can be treated identically. The biggest challenge thereby
is the step 2 in every loop of the algorithm, where we have to solve a linear
program with exponential many constraints. The other steps are trivial.

Let us consider an arbitrary k-th loop. We have to solve the following
linear program

max
(x,ε)

ε (4.2)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Sk (4.3)

Akx ≤ bk (4.4)

and its dual program. For the sake of simplicity, assume that the polyhe-
dron P is given by Ax ≤ b, whose number of constraints is polynomial in
the number of players, i.e., the exponential number of constraints of (4.2)
comes only from (4.3). This assumption holds for every application that
we have found in the literature and practice. If it is not the case, then
the constraint (4.4) cannot be treated explicitly, but only via constraint
generation.

The following algorithm calculates primal and dual optimal solutions
of (4.2).

Algorithm 4.2.1. Finding primal and dual optimal solutions of (4.2).

Given a non-empty (small) subset Ω of Sk.

1. Solve the following linear program

max
(x,ε)

ε (4.5)

s.t. x(S) + εf(S) ≤ c(S), ∀S ∈ Ω

Akx ≤ bk.

Let (xk, εk) and (νk, µk) be primal and dual optimal solutions of (4.5).

2. Consider the separation problem

max
S∈Sk

(

xk(S) + εkf(S)− c(S)
)

.

If the optimal value is positive, then find a set T in Sk that satisfies

xk(T) + εkf(T)− c(T) > 0, (4.6)

set Ω := Ω ∪ {T}, and go to 1.

109

4. Computational Aspects

3. Define λk ∈ RSk as

λk
S =

{

νk
S if S ∈ Ω

0 otherwise.

(xk, εk) and (λk, µk) are primal and dual optimal solutions of (4.2).

Proposition 4.2.2. Algorithm 4.2.1 works correctly and terminates after

a finite number of steps.

Proof. Let us consider an arbitrary step of the algorithm, where there exists

a set T satisfying (4.6). Clearly T does not belong to Ω. On the other hand,

the algorithm stops at the latest when Ω = Sk. Therefore, it terminates

after a finite number of steps. So we only have to prove that if

max
S∈Sk

(

xk(S) + εkf(S)− c(S)
)

≤ 0,

then (xk, εk) and (λk, µk) are primal and dual optimal solutions of (4.2).

Trivially, we have that (xk, εk) is a feasible solution of (4.2). On the other

hand, the optimal value of (4.5) is an upper bound of (4.2). Hence, (xk, εk)

is an optimal solution of (4.2). From this it follows that the dual optimal

values of (4.2) and (4.5) coincide. And therefore, since (λk, µk) is a feasible

solution of the dual problem of (4.2), it is also an optimal solution.

4.2.2 The (f, r)-Least Core

Let Γ = (N, c, P,Σ) be a cost allocation game whose imputation set X (Γ) is
non-empty, f : Σ+ → R>0 be a weight function, and r ∈ RN

>0 be a reference
price-vector of Γ. Denote

Λ :=
{

{i} | i ∈ N
}

∪ {N}

and define

R : Λ → R>0, R(N) = c(N) and R({i}) = ri, ∀i ∈ N.

The following algorithm gives us the (f, r)-least core of Γ.

Algorithm 4.2.3. Computing the (f, r)-least core of Γ = (N, c, P,Σ).

Given a subset Ω of Σ satisfying Ω ∋ N and Ω\{∅, N} 6= ∅.

110

4.2 Constraints Generation Approaches

1. Compute the f -least core radius εΩ of ΓΩ := (N, c|Ω, P,Ω). The f -

least core of ΓΩ is the following set

LCf (ΓΩ) =
{

x ∈ X (ΓΩ) | x(S) ≤ c(S)− εΩf(S), ∀S ∈ Ω+\{N}
}

,

where Ω+ := Ω\{∅}.

2. Compute the (f, r)-least core of ΓΩ, i.e., the R-nucleolus of the cost

allocation game (N,R,LCf (ΓΩ),Λ), using Algorithm 2.3.29 or Algo-

rithm 2.3.31 and obtain a vector x∗.

3. Consider the separation problem

max
S∈Σ+\{N}

(

x∗(S) + εΩf(S)− c(S)
)

.

If the optimal value is positive, then find a set T in Σ+\{N} that

satisfies

x∗(T) + εΩf(T)− c(T) > 0, (4.7)

set Ω := Ω ∪ {T}, and go to 1.

4. {x∗} is the (f, r)-least core of Γ.

Proposition 4.2.4. Algorithm 4.2.3 works correctly and terminates after

a finite number of steps.

Proof. Let us consider an arbitrary step of the algorithm, where there exists

a set T satisfying (4.7). Since x∗ belongs to LCf (ΓΩ), we have

max
S∈Ω+\{N}

(

x∗(S) + εΩf(S)− c(S)
)

= 0.

It follows that T does not belong to Ω. On the other hand, the algorithm

stops at the latest when Ω = Σ. Therefore, it terminates after a finite

number of steps. So we only have to prove that if

max
S∈Σ+\{N}

(

x∗(S) + εΩf(S)− c(S)
)

≤ 0, (4.8)

then {x∗} is the (f, r)-least core of Γ. For each x ∈ X (ΓΩ) = X (Γ), since

Ω ⊆ Σ and Ω+\{N} 6= ∅, we have

min
S∈Ω+\{N}

c(S)− x(S)

f(S)
≥ min

S∈Σ+\{N}

c(S)− x(S)

f(S)
.

111

4. Computational Aspects

Hence, there holds

εΩ = max
x∈X (ΓΩ)

min
S∈Ω+\{N}

c(S)− x(S)

f(S)
≥ max

x∈X (Γ)
min

S∈Σ+\{N}

c(S)− x(S)

f(S)
. (4.9)

From (4.8) it follows that

c(S)− x∗(S)

f(S)
≥ εΩ, ∀S ∈ Σ+\{N}. (4.10)

Since x∗ ∈ LCf (ΓΩ) ⊆ X (Γ), from (4.9) and (4.10) it follows that

εΩ = min
S∈Σ+\{N}

c(S)− x∗(S)

f(S)
= max

x∈X (Γ)
min

S∈Σ+\{N}

c(S)− x(S)

f(S)
,

i.e., εΩ is the f -least core radius of Γ and x∗ belongs to LCf (Γ). We have

that {x∗} is the R-nucleolus of (N,R,LCf (ΓΩ),Λ). On the other hand,

LCf (Γ) is a subset of LCf (ΓΩ) since

LCf (Γ) = CεΩ,f (Γ)

=

{

x ∈ X (Γ)

∣

∣

∣

∣

c(S)− x(S)

f(S)
≥ εΩ, ∀S ∈ Σ+\{N}

}

⊆

{

x ∈ X (Γ)

∣

∣

∣

∣

c(S)− x(S)

f(S)
≥ εΩ, ∀S ∈ Ω+\{N}

}

= CεΩ,f (ΓΩ)

= LCf (ΓΩ).

Therefore, {x∗} is the R-nucleolus of (N,R,LCf (Γ),Λ) as well, i.e., it is

the (f, r)-least core of Γ.

Remark 4.2.5. We can use Algorithm 4.2.3 to calculate the (f, r)-least

core of a bounded general cost allocation game Γ = (N, c, P,Σ) with c(N) >

0. But we have to choose Ω such that the general cost allocation game ΓΩ

is bounded in order to ensure that the (f, r)-least core of ΓΩ is well-defined.

Everything else works similarly.

4.2.3 Choosing A Good Starting Set

As we have seen in the previous sections, the constraint generation approach
can be used to handle the exponential number of constraints. A good

112

4.2 Constraints Generation Approaches

starting set of constraints is very important for this method as it may
improve the solving time drastically. The goal of this section is to show
how to construct such a good starting set.

Let Γ = (N, c, P,Σ) be a cost allocation game, r be a reference price
vector, and f : Σ+ → R>0 be a weight function. In order to determine
either the f -least core, the f -nucleolus, or the (f, r)-least core of Γ, we
have to calculate its f -least core or the f -least cores of some modified cost
allocation games. Therefore, we can concentrate on the f -least core of Γ.

Let ε∗ be the f -least core radius of Γ. Due to Theorem 2.5.2 and
Theorem 2.5.6 we have that

ε∗ ≤ min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
=: εU . (4.11)

Equality holds for certain types of cost allocation game, e.g., if Σ = 2N ,
P = RN

+ , and c is monotonically increasing. The value εU is an upper
bound of the f -least core radius, but it is not easy to compute. Hence,
instead of considering all balanced collections, we only look at balanced
collections of cardinality 2 or 3. Denote

εk := min
B⊆Σ+\{N}, |B|=k

(B,λ) balanced

∑

S∈B λSc(S)− c(N)
∑

S∈B λSf(S)
. (4.12)

Then ε2 and ε3 are upper bounds of ε
∗. One can easily prove the following

results

• For B = {S1, S2} and λ = (λ1, λ2), the pair (B, λ) is balanced iff
χS1

+ χS2
= χN and λ1 = λ2 = 1.

• For B = {S1, S2, S3} and λ = (λ1, λ2, λ3), the pair (B, λ) is balanced
iff either

χS1
+ χS2

+ χS3
= χN and λ1 = λ2 = λ3 = 1

or
χS1

+ χS2
+ χS3

= 2χN and λ1 = λ2 = λ3 = 0.5.

Using these results, we can solve the problem (4.12) for k = 2 and k = 3.
In the case of balanced collections of cardinality 2, we have

ε2 = min
S1,S2∈Σ+\{N}
χS1

+χS2
=χN

c(S1) + c(S2)− c(N)

f(S1) + f(S2)
. (4.13)

113

4. Computational Aspects

For f = 1, f = | · |, or f = c, one can easily prove that a pair (S1, S2) is

an optimal solution of (4.13) if and only if it is an optimal solution of the

following problem

min
S1,S2∈Σ+\{N}
χS1

+χS2
=χN

c(S1) + c(S2). (4.14)

At this point, the reader may ask how can one solve (4.14), as there are

exponentially many coalitions in Σ. Obviously, we do not want to evaluate

the cost of every coalition. We consider the case that the cost allocation

game Γ is a combinatorial cost game, i.e., the cost function is given by an

optimization problem for every coalition S ∈ Σ+ as follows

c(S) :=min
ξ

cξ (4.15)

s.t. Bξ ≥ CχS

Dξ ≥ d

ξj ∈ Zj, j = 1, 2, . . . , k,

where χS is the incidence vector of S and Zj is a set of either real, integer,

or binary numbers. Then we can rewrite (4.14) as

min
z1,z2,ξ1,ξ2

cξ1 + cξ2 (4.16)

s.t. Bξl ≥ Czl, l = 1, 2

Dξl ≥ d, l = 1, 2

z1i + z2i = 1, ∀i ∈ N

1 ≤ z1(N) ≤ z2(N)

ξlj ∈ Zj, l = 1, 2, j = 1, 2, . . . , k,

z1, z2 ∈ χΣ,

which can be solved even if we do not know the cost of every coalition explic-

itly. The variables z1 and z2 in (4.16) are the incidence vectors of the set S1

and S2 in (4.14). It remains to answer the question of how can one handle

the last constraint, i.e., z1, z2 ∈ χΣ. In the case Σ = 2N , this constraint

is nothing else than z1, z2 ∈ {0, 1}N . In the general case, with Σ (2N ,

we solve (4.16) using a constraint generation approach. Firstly, we solve

a relaxed problem of (4.16), where the requirement z1, z2 ∈ χΣ is replaced

by z1, z2 ∈ {0, 1}N . If every obtained optimal solution (z̄1, z̄2, ξ̄1, ξ̄2) of

114

4.2 Constraints Generation Approaches

the relaxed problem is infeasible for (4.16), i.e., if z̄1, z̄2 ∈ χΣ is violated,

say z̄1 6∈ χΣ, then we add the constraint

∑

i∈N :z̄1i =1

(1− z1i) +
∑

i∈N :z̄1i =0

z1i ≥ 1

to the relaxed problem and solve it again. The above constraint is equiva-

lent to z1 6= z̄1. This process is repeated until we have an optimal solution

of the relaxed problem, which is also a feasible and hence optimal solution

of (4.16). The case of balanced collections of cardinality 3 can be treated

similarly. Once we have balanced pairs (B, λ), which are optimal or subop-

timal solutions of (4.12) for k = 2 or k = 3, we can add every set in B to

the starting set of our constraint generation approach that finds the f -least

core.

For the proportional least core or the weak least core, i.e., f = c or f =

| · |, we can do even more. If f = c, then we have

εU = min
B⊆Σ+\{N}

(B,λ) balanced

(

1−
c(N)

∑

S∈B λSc(S)

)

. (4.17)

If f = | · |, then we have

εU = min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B λSc(S)− c(N)

|N |
. (4.18)

The sets of optimal solutions of (4.17) and (4.18) coincide. A pair (B, λ) is

an optimal solution of these problems if and only if it is an optimal solution

of the following problem

min
B⊆Σ+\{N}

(B,λ) balanced

∑

S∈B

λSc(S).

We can use this fact to improve a given starting set Ω, which differs from

the set Σ+\{N}. Given two numbers δ1, δ2 ∈ [0, 1], δ1 + δ2 > 0, we find

two sets T1, T2 ∈ Σ\{N} and a vector λ ∈ RΩ
+ such that at least one of the

two sets T1 and T2 is non-empty and (χT1
, χT2

, λ) is an optimal solution of

115

4. Computational Aspects

the following problem

min
z,λ

δ1c[z
1] + δ2c[z

2] +
∑

S∈Ω

λSc(S) (4.19)

s.t. δ1z
1
i + δ2z

2
i +

∑

S∈Ω:S∋i

λS = 1, ∀i ∈ N

z1(N) ≤ z2(N) ≤ |N | − 1

z2(N) ≥ 1

z1, z2 ∈ χΣ

λS ∈ [0, 1], ∀S ∈ Ω,

where c[z] is the cost of the coalition whose incidence vector is z. This

problem is feasible if, for example, Ω contains every set of each single

player. In order to solve (4.19), we also use the definition of the cost

function in (4.15) and rewrite it as a minimization problem similarly to

what we have done with (4.16). We then add the non-empty sets T1 and T2

to Ω.

The above tricks provide a good starting set in the case that (4.11)

holds equality, i.e., ε∗ = εU , or εU − ε∗ is small. In general, the quality of

the starting set obtained in that way may be unsatisfactory, since the gap

between ε∗ and εU can be large. It happens because the requirement that

the price must belong to the polyhedron P ,

P = {x ∈ RN |Ax ≤ b},

is ignored in the considered heuristics. Therefore, in that case, we have to

consider this requirement as well. In the following, we present a heuristic

to improve a given starting set of constraints in the case b = 0 and f = c.

The problem of finding the proportional least core of Γ is the following

max
(x,ε)

ε (4.20)

s.t. x(S) + εc(S) ≤ c(S), ∀S ∈ Σ+\{N}

x(N) = c(N)

Ax ≤ 0.

116

4.2 Constraints Generation Approaches

Its dual problem is

min
(λ,µ,ν)

∑

S∈Σ+\{N}

λSc(S) + µc(N) (4.21)

s.t.
∑

S∈Σ+\{N}
S∋i

λS + µ+ (A·i)
Tν = 0, ∀i ∈ N

∑

S∈Σ+\{N}

λSc(S) = 1

λ ≥ 0, ν ≥ 0,

where A·i denotes the i-th. column of the matrix A. If P = RN , we just
ignore the matrix A in the above linear program. The dual problem (4.21)
can be rewritten as

min
(λ,µ,ν)

1 + µc(N) (4.22)

s.t.
∑

S∈Σ+\{N}
S∋i

λS + µ+ (A·i)
Tν = 0, ∀i ∈ N

∑

S∈Σ+\{N}

λSc(S) = 1

λ ≥ 0, ν ≥ 0.

The dual problem in this form is unlikely solvable. On one hand, it is
impossible to evaluate the cost function explicitly for every coalition with
games having many players. On the other hand, if we want to use the
definition of the cost function directly as we did above, then it is unknown
how to formulate the second constraint of the dual problem. Therefore, we
have to transform it into some equivalent problem, which can be handled
more easily. If (4.22) has an optimal solution (λ∗, µ∗, ν∗) with µ∗ < 0,
then (λ∗, µ∗, ν∗) is an optimal solution of the following optimization prob-
lem

min
(λ,µ,ν)

1 + µc(N) (4.23)

s.t.
∑

S∈Σ+\{N}
S∋i

λS + µ+ (A·i)
Tν = 0, ∀i ∈ N

∑

S∈Σ+\{N}

λSc(S) = 1

λ ≥ 0, ν ≥ 0, µ < 0,

117

4. Computational Aspects

which can be reformulated by using the transformation

µ := −
1

∑

S∈Σ+\{N} θSc(S)
,

λ := −µθ, and ν := −µτ

as follows:

min
(θ,τ)

1−
c(N)

∑

S∈Σ+\{N} θSc(S)
(4.24)

s.t.
∑

S∈Σ+\{N}
S∋i

θS + (A·i)
T τ = 1, ∀i ∈ N

θ ≥ 0, θ 6= 0, τ ≥ 0.

On the other hand, the optimization problem (4.24) is equivalent to the
following one

min
(θ,τ)

∑

S∈Σ+\{N}

θSc(S) (4.25)

s.t.
∑

S∈Σ+\{N}
S∋i

θS + (A·i)
T τ = 1, ∀i ∈ N

θ ≥ 0, θ 6= 0, τ ≥ 0.

Therefore, if (4.22) has an optimal solution (λ∗, µ∗, ν∗) with µ∗ < 0, then,
instead of solving (4.22), we can find an optimal solution (θ∗, τ ∗) with θ∗ 6= 0
of the following linear program

min
(θ,τ)

∑

S∈Σ+\{N}

θSc(S) (4.26)

s.t.
∑

S∈Σ+\{N}
S∋i

θS + (A·i)
T τ = 1, ∀i ∈ N

θ ≥ 0, τ ≥ 0.

Proposition 4.2.6. If Σ is a partitioning family, then µ∗ < 0 in every

optimal solution (λ∗, µ∗, ν∗) of (4.22).

Proof. If we can prove that there exists a feasible solution (λ, µ, ν) of (4.22)

with µ < 0, then the proposition is true. Since Σ is a partitioning family,

118

4.2 Constraints Generation Approaches

there exists δ ∈ RΣ+\{N}
+ such that

∑

S∈Σ+\{N}

δSχS = χN .

Clearly, δ 6= 0. Since the cost function is positive, we have

∑

S∈Σ+\{N}

δSc(S) > 0.

Define

µ := −
1

∑

S∈Σ+\{N} δSc(S)
and λ := −µδ.

Then there hold

µ < 0, λ ≥ 0,
∑

S∈Σ+\{N}

λSχS + µχN = 0,

and
∑

S∈Σ+\{N}

λSc(S) = 1,

i.e., (λ, µ, 0) is a feasible solution of (4.22) with µ < 0.

From the above results we have the following proposition.

Proposition 4.2.7. If Σ is a partitioning family, then there exists an op-

timal solution (θ∗, τ ∗) of (4.26) which satisfies θ∗ 6= 0. Moreover, for any

optimal solution (θ∗, τ ∗) with this property, the triple (λ̄, µ̄, ν̄) defined by

µ̄ := −
1

∑

S∈Σ+\{N} θ
∗
Sc(S)

,

λ̄ := −µ̄θ∗ and ν̄ := −µ̄τ ∗

is an optimal solution of (4.21).

Therefore, under the assumption that Σ is a partitioning family, instead
of solving the dual problem (4.21) we can find an optimal solution (θ∗, τ ∗)
of (4.26) satisfying θ∗ 6= 0. Apparently, (4.26) can only be solved via a
column generation approach. This method is as time-consuming as solving
the original problem (4.20) itself, which is undesirable. However, we do not
want to solve the linear program (4.26). But based on it we may improve

119

4. Computational Aspects

some given non-empty starting set Ω (Σ+\{N} of constraints as follows.
Let α be a given positive number in (0, 1]. We calculate the cost of each
coalition S in Ω. Consider the following optimization problem

min
(z,θ,τ)

αc[z] +
∑

S∈Ω+\{N}

c(S)θS (4.27)

s.t. αzi +
∑

S∈Ω+\{N}
S∋i

θS + (A·i)
T τ = 1, ∀i ∈ N

θ ≥ 0, τ ≥ 0

z ∈ χΣ+\χΩ∪{N},

where c[z] denotes the cost of the coalition having the incidence vector z.
The optimization problem (4.27) is a relaxation of (4.26) and is feasible if,
for example, Ω contains every set of each single player. Using the definition
of the cost function in (4.15), we can rewrite (4.27) as

min
(z,ξ,θ,τ)

αcξ +
∑

S∈Ω+\{N}

c(S)θS (4.28)

s.t. αzi +
∑

S∈Ω+\{N}
S∋i

θS + (A·i)
T τ = 1, ∀i ∈ N

Bξ ≥ Cz

Dξ ≥ d

θ ≥ 0, τ ≥ 0

ξj ∈ Zj, j = 1, 2, . . . , k,

z ∈ χΣ+\χΩ∪{N}.

It remains to answer the question of how can one handle the last constraint
on z, i.e., z ∈ χΣ+\χΩ∪{N}. If Σ = 2N , then this constraint is nothing else
than

z ∈ {0, 1}N , 1 ≤ z(N) ≤ |N | − 1, and z 6= χS, ∀S ∈ Ω.

The condition z 6= χS for any given coalition S can be written as
∑

i∈N :χi
S
=1

(1− zi) +
∑

i∈N :χi
S
=0

zi ≥ 1.

If Σ (2N , then we solve (4.28) using a constraint generation approach.
Firstly, we solve a relaxed problem of (4.28), where the requirement z ∈

120

4.2 Constraints Generation Approaches

χΣ+\χΩ∪{N} is replaced by z ∈ χ2N\{∅}\χΩ∪{N}. If every obtained optimal
solution (z∗, ξ∗, θ∗, τ ∗) of the relaxed problem violates the constraint that
z∗ belongs to χΣ+\χΩ∪{N}, then we add the constraint z 6= z∗, i.e.,

∑

i∈N :z∗i =1

(1− zi) +
∑

i∈N :z∗i =0

zi ≥ 1,

to the relaxed problem and solve it again. This process is repeated until
we have an optimal solution of the relaxed problem which is feasible and
hence optimal for (4.28). Once we have an optimal (or sub-optimal) solu-
tion (z∗, ξ∗, θ∗, τ ∗) of (4.28), we add the set S∗ whose incidence vector is z∗

to Ω. This procedure can be repeated several times in order to get a good
starting set.

In problem (4.28), α is a given parameter. We can also consider it as a
non-negative real variable, but then the problem becomes non-linear and
can only be easily solved for “simple” cost functions c.

4.2.4 The Separation Problem

An important part in the constraint generation approaches for the f -least
core, the f -nucleolus, and the (f, r)-least core consists of solving the sepa-
ration problem to verify whether a given pair (x̄, ε̄) is feasible, and if not,
finding a cut that separates (x̄, ε̄) from the set of feasible solutions. The
separation problem in general has the form

max
S∈Λ

(

x̄(S) + ε̄f(S)− c(S)
)

(4.29)

with some non-empty family Λ ⊆ Σ+\{N}. In the case of the f -least core
or the (f, r)-least core, we have Λ = Σ+\{N}. For the f -nucleolus, the fam-
ily Λ is equal to Σ+\{N} in the first step and shrinks during the calculation
step by step. Again, we consider the case that the cost allocation game Γ
is a combinatorial cost allocation game, where the cost function is given by
the optimization problem (4.15). For f = α + β| · | + γc, with α, β, γ ≥ 0
and α + β + γ > 0, if γε̄ ≤ 1, then we can rewrite (4.29) as follows

max
(z,ξ)

αε̄+
∑

i∈N

(x̄i + βε̄)zi + (γε̄− 1)cξ (4.30)

s.t. Bξ ≥ Cz

Dξ ≥ d

ξj ∈ Zj , j = 1, 2, . . . , k,

z ∈ χΛ.

121

4. Computational Aspects

This trick can be used for calculating the f -least core, the f -nucleolus,
and the (f, r)-least core because of Proposition 2.3.4 and because each
input (x̄, ε̄) of the separation problem in our algorithms is a pair composed
of a vector in the f -least core of some cost allocation game and the f -least
core radius of that game. If the cardinality of the set 2N\Λ is small, then
we formulate the constraint z ∈ χΛ as

z ∈ {0, 1}N and z 6= χS, ∀S ∈ 2N\Λ,

where the condition z 6= χS is equivalent to
∑

i∈N :χi
S
=1

(1− zi) +
∑

i∈N :χi
S
=0

zi ≥ 1.

If the cardinality of Λ is small, then we can introduce some binary vari-
ables wS, S ∈ Λ, satisfying

∑

S∈Λ

wS = 1

and represent the constraint z ∈ χΛ as

z =
∑

S∈Λ

wSχS.

In general, it may happen that the sets Λ and 2N\Λ have exponential
many elements. In this case, to solve (4.30), we should not formulate the
constraint z ∈ χΛ explicitly, but use a constraint generation approach as
we did in Subsection 4.2.3.

The separation problem is NP-hard in general and it may be very time-
consuming to find an optimal solution of (4.30). However, in order to
find a violated constraint, it is not necessary to solve (4.30) to optimal-
ity. On the other hand, adding constraints with small violations leads to
only slight changes of the solution. Consequently, it converges slowly and
solving each step at the end is expensive because of the large number of
added constraints. Therefore, good feasible solutions of (4.30) with positive
objective value are needed. We also should add not only one but several
violated constraints in each step. However, their number should be kept
small in order to prevent a fast grow in the size of the constraints set. For
this, we need a criterion assessing the obtained violated constraints. Given
two violated coalitions S1 and S2, i.e., their corresponding constraints are
violated, we have

x̄(Si) + ε̄f(Si)− c(Si) > 0, i = 1, 2.

122

4.2 Constraints Generation Approaches

We say that S1 is more violated than S2 if

x̄(S1)− c(S1)

f(S2)
>

x̄(S2)− c(S2)

f(S2)
. (4.31)

In our code, it is allowed to add up to 10 violated constraints per step in

the first 50 steps and up to 5 violated constraints per step later on.

4.2.5 Heuristics for the Separation Problem

In this subsection, we consider several heuristics for the separation problem.

Heuristics do not solve the original problem in general, but they may speed

up the solving process immensely. We are interested in primal and dual

heuristics. The primal heuristic provides good starting solutions for the

mixed integer program (4.30), while the dual heuristic give us some measure

to answer the question of whether the current best solution is good enough.

Primal Heuristics

During the constraint generation process, we add several constraints to the

starting set. A natural idea is to create a heuristical method where some z-

variables in (4.30) are fixed to 1 in a reliable way. For this, a function

evaluating the history of the added constraints is required. Let h be a

function defined for every finite sequence of binary numbers. Typically, we

can choose h equal to the sum of the values of some function eatx with a > 0

applied to the elements of the input sequence, where t and x correspond to

their indexes and their values, respectively. This choice is reasonable, since

the recent added constraints are more likely to provide reliable information

for fixing variables than the older ones, while the ones that were added

long before may have no connection anymore with the current separation

problem and should be ignored. As a result we can define h for any given

sequence of binary numbers {ω1, ω2, . . . , ωm} as

h(ω1, ω2, . . . , ωm) =

{ ∑m
j=1 e

ajωj if m ≤ K
∑m

j=n−K+1 e
ajωj otherwise,

for some given numberK ∈ N. Let 1m denote the sequence ofm numbers 1.

For our calculations, we choose a = 0.1 and K = 30. Define

hm := h(1m)

123

4. Computational Aspects

and

H(ω1, ω2, . . . , ωm) :=
h(ω1, ω2, . . . , ωm)

hm

.

The function H can be used to find heuristically the players which are

likely to belong to a violated coalition of the current separation problem

as follows. We consider now the m + 1-th separation problem. Since it is

allowed to add more than one violated coalition at each separation step,

we only consider the most violated one according to (4.31). Denote this

set of coalitions as (S1, S2, . . . , Sm). For each player i ∈ N , we have a

sequence {χi
S1
, χi

S2
, . . . , χi

Sm
} which tells us whether the player i belongs to

the most violated coalition found in each past separation step. For each

player i, denote Hm(i) := H(χi
S1
, χi

S2
, . . . , χi

Sm
). Hm(i) = 1 means that i

belongs to every coalition in {S1, S2, . . . , Sm}. If Hm(i) is almost 1, then i

may belong to a violated coalition in the present step. Let ν1 be a positive

number which is smaller but close to 1, e.g., ν1 = 0.97. For every player i

satisfying Hm(i) ≥ ν1, we fix zi = 1 in (4.30) and solve (4.30).

Another fixing method is based on the idea of Relaxation Induced

Neighborhood Search (RINS) [9]. Let ν2 and ν3 be positive numbers which

are smaller but close to 1 and ν2 < ν1 (e.g., ν2 = 0.94 and ν3 = 0.91).

Let zR be an optimal LP-relaxation solution of (4.30). We then fix zi = 1

for every player i satisfying Hm(i) ≥ ν2 and zRi ≥ ν3 and solve (4.30).

Computational results show that our heuristical fixing methods are very

effective. They can find violated coalitions in almost every separation steps.

It is not clear whether we just interrupted the heuristics when they fail too

early or there does not exist any violated coalition satisfying the fixation.

By using the found violated coalitions as starting solutions for the original

separation problem (4.30), we can identify violated coalitions faster or find

worse coalitions in the same given time limit. The solving process also

seems to be more stable in the sense that it needs less separation steps

and has better running time. Table 4.1 presents the running times (in

seconds) and the separation steps numbers for our ticket pricing application

in Chapter 8 with and without the primal heuristics. These numbers are

the averages of three runs. The computations were done on a PC with an

Intel Core2 Quad 2.83GHz processor and 16GB RAM. CPLEX 11.2 was

used as linear and integer program solver. The use of the primal heuristics

yields a speedup of factor 1.45.

We also use the solution polishing heuristic of CPLEX. It often finds

a much better solution of the separation problem from an initial one after

just a few seconds.

124

4.2 Constraints Generation Approaches

With primal heuristics Without primal heuristics

Running time (s) 41048 59375

Separation steps 75.67 91.33

Table 4.1: With primal heuristics vs. without primal heuristics

Stopping Criterion and Dual Heuristic

Since we only want to find a good solution of (4.30) with a positive ob-

jective value, we need a stopping criterion. We stop the solver whenever

a time limit or a gap limit is exceeded. The gap limit is given by a func-

tion depending on the objective value of the current best found solution

of (4.30). Let p1 and p2 be two price vectors such that the optimal value of

the separation problem (4.30) is large when x̄ = p1 and small when x̄ = p2.

It is much easier to solve (4.30) with x̄ = p1 to a given gap than with x̄ = p2
to the same gap. Therefore, the gap limit function should be decreasing

on the objective value of the current best solution. For example, we can

choose it equal to avb with some numbers a > 0 and b < 0 for v ≥ 0, where

v is the objective value of the current best solution.

It is hard to improve not only the primal bound of (4.30) but also its

dual bound. However, the optimal values of successive separation problems

are only slightly different. Therefore, since we do not solve the separation

problem to optimality, an exact dual bound is not required and we can use

the best dual bound of the separation problems in the past to evaluate the

obtained solutions in the current separation step. The dual heuristic works

as follows. Define a number called heuristical dual bound and set it to

infinite at the beginning of the constraint generation process. Whenever it

is larger than the dual bound of the current separation problem or smaller

than the current best found feasible solution, we set it to the current dual

bound. The later can happen, but in pratice it only occurs a few (say, less

than five) times in the first steps of the constraint generation process. The

heuristical gap is defined as

|heuristical dual bound− best objective value|

10−10 + |best objective value|
.

The solver is stopped whenever either the time limit is exceeded or the min-

imum of the gap and the heuristical gap is smaller than the gap limit. But

if the heuristical dual bound and the dual bound of the current separation

125

4. Computational Aspects

problem are close to each other, then we keep the solver running for a short
time in order to guarantee that if the heuristical dual bound is updated
then the improvement is not too small. Numerical computations for the
ticket pricing problem in Chapter 8 show that the number of separation
steps where the heuristical dual bound needs to be updated is only 21.33,
while the total number of steps is 75.67. These numbers are the averages
of three runs. Moreover, most of the updates happen at the beginning
of the constraint generation process, while later on, when the separation
problem is very expensive, only a few updates are required. That means
we can save a lot of time spent on improving the dual bound. Using dual
heuristic, we can reduce the average computational time of three runs for
the ticket pricing problem by a factor of 1.34.

126

Chapter 5

The Fairness Distribution

Diagram

This chapter deals with the question of how one can evaluate the fairness

of a given price vector and/or compare two different price vectors visually.
For games with many players, it is impossible to calculate the cost and
profit of every coalition with a given price vector. Therefore, we should

only consider some essential coalitions and plot some graphs representing
their profits. These graphs are called fairness distribution diagram. We

are going to describe its construction in the follwing.

Given are a combinatorial cost allocation game Γ = (N, c, P,Σ), i.e.,
the cost function c can be represented by (4.1), a weight function f =

α + β| · | + γc with α, β, γ ≥ 0 and α + β + γ > 0, and a price vector p.
The first task is to create a pool of essential coalitions. This pool should

contain coalitions S which have the smallest f -profit c(S)−p(S)
f(S)

. To do so,
we consider the following optimization problem

max
ε

ε (5.1)

s.t. εf(S) ≤ c(S)− p(S), ∀S ∈ Σ\{∅, N}.

The optimal value of (5.1) is the smallest f -profit of all coalitions in Σ\{∅, N}
with the price vector p. This optimazation problem can be solved using con-
straint generation approach as we did by calculating the f -least core radius

of Γ in Chapter 4. The separation problem remains the same. The con-
straint generation approach collects on its course many coalitions and also

coalitions with the smallest f -profit at the end. We add all these coalitions
to our pool in non-decreasing order regarding their f -profits. The curve

127

5. The Fairness Distribution Diagram

representing the f -profits of the coalitions in the pool may be not smooth.

In other words, the number of samplers (coalitions) is not sufficiently large

for representing the f -profits of all coalitions in Σ\{∅, N}. Therefore, we

need to enlarge our pool. We make a copy of the pool and denote it as Π.

Let m be a given parameter satisfying 0 < m < |N |. Typically we choose

m = 0, 1, 2, or 3. For each coalition S in Π, we denote its f -profit by εS
and consider the following optimization problem for each player i ∈ S

min
T∈Σ\({∅,N}∪Π)

c(T)− p(T)− εSf(T) (5.2)

s.t. S\{i} ⊆ T

|T | ≤ |S|+m.

The constraints of (5.2) means that coalition T is only slightly different

from S. One can rewritte (5.2) into a (mixed) integer program as we did

in Chapter 4. Using a MIP solver like CPLEX one can solve this problem

and obtain a set of feasible solutions. By applying this process for every

player i in S we may obtain new coalitions whose f -profits are close to εS.

We insert these coalitions into the pool such that coalitions in the pool

are still sorted in non-decreasing order regarding their f -profits. After

considering all coalitions in Π we may repeat this whole process several

times in order to have a sufficiently large number of samplers of f -profits.

We stop whenever the f -profit curve of coalitions in the pool is smooth

or the pool contains already all coalitions in Σ\{∅, N}. The last task is

to eliminate coalitions having similar f -profits. Two coalitions are said

to have similar f -profits if their relative difference is small, say less than

0.02%. This number is problem-dependent. For each pair of two coalitions

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

distance prices

Figure 5.1: c-profits of essential coalitions

128

having similar f -profits, we just delete one of them from the pool. The
reason for this task is that, since it is imposible to calculate the costs
and the f -profits of all coalitions in a large cost allocation game, we are
only interested in samplers of the possible f -profit values. The f -profit
curve of coalitions in the pool at the end looks like Figure 5.1. This figure
represents the c-profit curve with the current distance prices in the ticket
pricing problem for the Dutch IC network in Chapter 8. The pool in this
example contains 7084 essential coalitions. We can see that there exist
many coalitions whose c-profits are smaller than −0.1, i.e., they lose more
than 10%. This is an indicator for the unfairness of the distance prices.

Given now are two different price vectors. In order to compare them
we create for each price vector its pool of essential coalitions as described
above. We add these two pools together and select one of the two prices
vector as the default price vector. The coalitions in the new pool are sorted
in non-decreasing order regarding their f -profits with the default price
vector. In Figure 5.2, which compares the distance prices and the (c, r)-
least core prices of the ticket pricing problem in Chapter 8, the distance
prices was chosen as the default price vector. The picture on the left side
plots the c-profits of coalitions in the pool with the two price vectors. The
coalitions whose c-profits are smaller than −0.1 with the distance prices
have now positive c-profits with the (c, r)-least core prices. That means the
(c, r)-least core prices are more favorable for them. The minimal c-profit
with the (c, r)-least core prices is considerably increased compared to the
smallest c-profit with the distance prices. With other words, the (c, r)-least
core prices make the users more satisfied and decrease their incentive to
leave the grand coalition. The picture on the right side of Figure 5.2 also
plots the c-profits of coalitions in the pool with the two price vectors but
the profits are sorted in non-decreasing order for both price vectors.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

Figure 5.2: Distance vs. (c, r)-least core prices

129

5. The Fairness Distribution Diagram

With the help of the fairness distribution diagram, we have an effective
instrument to evaluate the fairness of a given price vector and to compare
different price vectors visually.

130

Chapter 6

A Simple Real Example

In this chapter, we consider a very simple real example with only four play-

ers. The goal is to demonstrate how different are the results when we apply

different cost allocation methods to the same cost allocation problem. We

will also see that the f -nucleolus allocation methods may provide impracti-

cable prices. It is a question of how can one allocate the common cost of a

waste water system to the households using it. In Germany, each household

must be conneted with the sewage system. They can either do this using

the service of the local waterworks company at a high cost or acting them-

selves. The four considered households represented in Figure 6.1 chose the

later. Each household has to be connected to the point S, which denotes a

connection point to the sewage system of the city. The cost of each sewage

line depends mostly on its length and not on its capacity. The reason is

House1

House2 House3

House4

S

Figure 6.1: A simple real example

131

6. A Simple Real Example

that in our example one has to dig the same channel for a pipe indepen-
dently on its size, while the variation in the pipe’s expense is insignificant
by choosing pipes with different sizes. The digging cost together with some
other costs which are independent on the capacity make up the main part
of the total cost. Therefore, a cooperation of the four households saved
them a large amount of money. But a cooperation can only be realized if
the participants can agree on the price for each of them. In reality, they
agreed on a common sewage network represented by the red lines in Figure
6.1 and a simple cost allocation scheme for the common cost. This scheme
works as follows. Firstly, the network is decomposed into segments. A
segment is just a part of the network such that each household either uses
this part completely or does not use it at all in order to connect to S in the
built network. For each segment, the price is uniformly distributed among
the households who use it. The price for each household is then the sum of
the prices of all its segments. The allocated prices was (in German Mark):

p1 = 19159.02, p2 = 13681.18, p3 = 19981.51, p4 = 8754.57.

This allocation sounds reasonable and was accepted by all the four house-
holds. However, it does not take into account the possibility of contracting
out the cooperation and establishing a smaller cooperation of each coali-
tion.

We now construct a cost allocation game for our problem in order to
analyse the price p and calculate several prices based on the game the-
oretical concepts. Consider each household as a player. The player set
is N = {1, 2, 3, 4}, the set of possible coalitions is 2N , and the set of possi-
ble prices is RN

+ . We have a cost allocation game Γ := (N, c,RN
+ , 2

N) where
the cost function is given as follows

Coalition Cost Coalition Cost

{1} 43002.78 {2} 27223.36
{3} 30805.28 {4} 17951.64
{1, 2} 38770.24 {2, 3} 42709.61
{3, 4} 36367.19 {1, 3} 58489.03
{1, 4} 48810.10 {2, 4} 33030.69
{1, 2, 3} 54299.33 {2, 3, 4} 49626,30
{1, 2, 4} 44674.61 {1, 3, 4} 65405.72
{1, 2, 3, 4} 61576.32

Household 1 needs a cooperation with household 2, because without a
permission of household 2, household 1 can not use the land of household

132

2 in order to build his pipe. In that case, he has to build another line, for

which an expensive pump system is needed. This is the reason why the

cost of household 1 alone is even more than the cost of household 1 and 2

together. And because of the same reason, there hold

c({1, 3}) > c({1, 2, 3}), c({1, 4}) > c({1, 2, 4}) and c({1, 3, 4}) > c(N).

The price p belongs to the core of Γ but it has some drawbacks. The

price for coalition {1, 2, 3} with p is then 52821.71 DM, i.e., almost equal

to its cost of 54299.33 DM. Coalition {1, 2, 3} can save only 1477.62 DM,

while coalition {4} can save 9197.07 of 17951.64 DM. Coalition {1, 2, 3}
agreed with the price p since the players did not notice their alternative,

which can be used as a strong argument in the price negotiation with

player 4. The price p favours player 4 and is unfair for coalition {1, 2, 3}.
If the players 1, 2, and 3 had known it, a cooperation would have been

hardly realized with the price p. With other words, player 4 should pay

more than he did. The same thing happens for coalition {1, 2, 4} and

coalition {3}. Coalition {1, 2, 4} saves only 3079.84 DM of 44674.61 DM,

while coalition {3} has a benefit of 10823.77 DM from its individual cost

of 30805.28 DM.

Prices obtained by using game theoretical concepts like the f -nucleolus

or the (f, r)-least core do not suffer from the above unfairness. Denote li
as the length of the pipe connecting the household i and S in the network

represented in Figure 6.1:

l1 = 113.1, l2 = 87, l3 = 76.4, l4 = 39.38 (meters).

Choose the reference price vectors r1 and r2 as follows

r1i = c(N)
li

∑4
j=1 lj

, i = 1, 2, 3, 4,

r2i = c(N)
c({i})

∑4
j=1 c({j})

, i = 1, 2, 3, 4.

Table 6 presents several prices obtained by using the game theoretical con-

cepts. With our game theoretical allocations, player 3 and player 4 have

to pay more while player 2 has to pay less in comparison to p, which elim-

inates the drawbacks of the price p mentioned above. By choosing c as

the weight function f , every vector in the c-least core of Γ has the same

third and fourth coordinates. Therefore, the prices for player 3 and player

133

6. A Simple Real Example

Player 1 Player 2 Player 3 Player 4

p 19159.02 13681.18 19981.51 8754.57

1-nucleolus 22525.69 6746.27 20964.54 11339.82

| · |-nucleolus 22017.84 6238.42 21472.39 11847.67

c-nucleolus 20735.16 7749.11 20925.00 12167.05

(1, r1)-least core 16545.02 12726.94 20964.54 11339.82

(| · |, r1)-least core 16520.70 11735.55 21472.39 11847.67

(c, r1)-least core 16419.24 12065.03 20925.00 12167.05

(1, r2)-least core 17924.60 11347.36 20964.54 11339.82

(| · |, r2)-least core 17302.64 10953.62 21472.39 11847.67

(c, r2)-least core 17442.26 11042.01 20925.00 12167.05

Table 6.1: Several allocations

4 do not change by using c-nucleolus, (c, r1)-least core, and (c, r2)-least

core cost allocation methods. The same thing happens when we choose the

weight function f equal to 1 or the cardinality function | · |. Therefore, for
each f ∈ {1, | · |, c}, the three price vectors f -nucleolus, (f, r1)-least core,

and (f, r2)-least core differ from each other just in the prices for player 1

and player 2.

The f -nucleolus prices, f(S) = 1, |S|, c(S), for player 2 are very low,

which reflects his strong position against player 1. However, player 1 may

think that player 2 is favored with a saving of almost 75 percents in compar-

ison to the individual cost. In contrast, the (f, r1)-least core price vectors

charge player 2 much higher, maybe too high. The reason is that the (f, r1)-

least core prices for player 1 and player 2 are almost proportional to their

distances to the connection point S. As we discussed before, without a

cooperation with player 2, player 1 has to build an expensive pipe system.

That means the price for player 2 must be sufficiently attractive in order

to increase his incentive to participate in a common solution for the four

households. Choosing r2, which is proportional to the individual costs, as

the reference price vector seems to be more suitable for our cost allocation

problem. The (f, r2)-least core prices for player 1 and player 2 are almost

proportional to their individual costs. In our opinion, the (f, r2)-least core

price or the average of the f -nucleolus and the (f, r2)-least core prices are

better than the f -nucleolus and the (f, r1)-least core prices.

134

As our earlier observation, one should choose the cost function c as the
weight function f , although the difference of the outputs by using the three
different weight functions is insignificant in this simple example.

135

6. A Simple Real Example

136

Chapter 7

Allocating Production and

Transmission Costs

In this chapter, we want to consider the problem in that a good is produced

in some places and then transported to customers via a network. For ex-

ample the problem of cost distribution for water supply systems, irrigation

systems, or gas transportation. Our task is to allocate the common cost

fairly to the customers. The cost can be modeled as a non-linear multi-

commodity flow problem. However, in order to solve large cost allocation

problems, they are linearized using piecewise linear function as in [10].

Based on this model, we solve a cost allocation problem in water resources

development in Sweden.

7.1 Production and Transmission Costs

The underlying network is given by a directed graph, where the nodes are

production places, customer positions, and intermediate stations. Each arc

in the graph represents the direct connection between two nodes. Each

customer has a certain demand. The value of the cost function of each

group of customers is then the minimal cost of solutions that satisfy the

demand of every customer in this group. The cost of each solution is the

sum of the production cost and the transmission cost. The production

cost is the sum of the production cost of each producer. The production

cost of each producer p, denoted by Cp(q), depends on the quantity q

of its produced good and some specific parameters. Cp(q) is monotonically

increasing, positive for each q > 0, and equal to 0 for q = 0. For example, Cp

137

7. Allocating Production and Transmission Costs

p

Cp

c1

c2

c3
e

Ce

Figure 7.1: Underlying graph

has the formula αpq
βp , where αp is positive and βp belongs to the interval

(0,1] because of the monotonicity of the cost function and the economy

of scale. The transmission cost is the sum of the transmission cost on all

arcs. The transmission cost on an arc a, denoted by Ca(q), depends on

the quantity of goods which are transported through this arc and some

specific parameters. Ca(q) is increasing, positive for each q > 0, and equal

to 0 for q = 0. Typically it can be formulated as αaq
βa with some specific

parameters αa and βa, αa > 0, βa ∈ (0, 1]. The cost function can be

modeled as the optimal value of a multi-commodity flow problem with a

non-linear objective function as we will see in the next section.

7.2 Nonlinear Multi-commodity Flow Model

To model the cost function as a multi-commodity flow problem, we need to

modify the graph slightly. Without loss of generality, we assume that no

production place is the tail of an arc in the original graph. If it is not the

case, then the following construction must be slightly modified. For each

arc a in the original graph whose head does not represent a producer, we

define the weight wa(q) of this arc as the transmission cost Ca(q). For each

producer p, we create an artificial node p′ and add it to the graph. Then we

add the arc pp′ to the graph and define its weight wpp′(q) as the production

cost Cp(q) of p. For each node i such that pi is an arc in the original graph,

we add the arc p′i to the graph, define the weight wp′i(q) of this arc as

the transmission cost Cpi(q) from p to i, and eliminate the edge pi from

the graph. We now have a new weighted directed graph G = (V,A,w).

p′p

c1

c2

c3
e

Ce

Cp

Figure 7.2: Modified graph

138

7.2 Nonlinear Multi-commodity Flow Model

For each arc a in A, the weight wa(q) is monotonically increasing, positive
for q > 0, and equal to 0 for q = 0. We denote the set of customers by C
and the set of producers by P . Each customer c in C can be served by
some given producers Pc ⊆ P . The set Pc is not empty and may differ
from P . We can consider the goods that the customer c obtains from the
producers Pc as flows from these nodes to c. For each customer c ∈ C, each
producer p ∈ Pc, and each arc a ∈ A, the non-negative variable xpc

a denotes
the quantity of goods transported from producer p to customer c through
the arc a. For some applications the variable x should be integral. We
represent this requirement by the constraint x ∈ Q with some appropriate
set Q, which is either a set of integral vectors or a set of real vectors. The
quantity qa of goods on each arc a is then equal to

∑

c∈C

∑

p∈Pc
xpc
a . If the

head of a is a producer p, then a is the arc between p and its artificial
node p′ and qa is the quantity of goods produced by p. If the head of a
is not a producer, then qa represents the quantity of goods transported
through the arc a.

Let dc be the demand of the customer c, dc is positive and finite. Each
group of customers S in C is represented by its incidence vector zS ∈ {0, 1}C

∀k ∈ C : zkS =

{

1 if k ∈ S
0 otherwise.

DenoteXa :=
∑

c∈C

∑

p∈Pc
xpc
a , the minimal cost of each non-empty group S

is determined as follows

c(S) = min
x

∑

a∈A

wa(Xa) (7.1)

∑

p∈Pc

∑

(p,k)∈A

xpc
pk = dcz

c
S, ∀c ∈ C

∑

p∈Pc

∑

(i,p)∈A

xpc
ip = 0, ∀c ∈ C

∑

p∈Pc

∑

(c,k)∈A

xpc
ck = 0, ∀c ∈ C

∑

p∈Pc

∑

(i,c)∈A

xpc
ic = dcz

c
S, ∀c ∈ C

∑

(i,j)∈A

xpc
ij −

∑

(j,k)∈A

xpc
jk = 0, ∀c ∈ C, ∀p ∈ Pc, ∀j ∈ V \{p, c}

xpc
a ≥ 0, ∀a ∈ A, ∀c ∈ C, ∀p ∈ Pc

x ∈ Q.

139

7. Allocating Production and Transmission Costs

We require that the functions wa, a ∈ A, are continuous and the optimiza-

tion problem (7.1) is feasible for each non-empty subset S of C. Clearly,

the set of all feasible solutions is closed and bounded, i.e., compact. On the

other hand, the objective function is bounded from below. Therefore, (7.1)

has optimal solutions for each non-empty subset S of C and hence the cost

function c is well-defined.

7.3 Mixed Integer Model

We now want to approximate the objective function of (7.1) by some piece-

wise linear function to get an approximated model to (7.1). Assume that

there exist positive numbers la and non-negative finite numbers ua for

a ∈ A, such that for every non-empty set S ⊆ C there exists an opti-

mal solution x∗ of (7.1) that satisfies

(

∑

c∈C

∑

p∈Pc

x∗pc
a = 0 ∨

∑

c∈C

∑

p∈Pc

x∗pc
a ≥ la

)

∧
∑

c∈C

∑

p∈Pc

x∗pc
a ≤ ua, ∀a ∈ A.

We will discuss in the end of this section how to find such numbers. The

reason why we need those numbers is that on one hand some types of

weight functions that we are interested in cannot be approximated with an

arbitrary small given relative error in the neighbourhood of 0 and on the

other hand the piecewise linear approximation on a finite grid only works

for finite intervals in general. Assume that ua ≥ la, since if ua < la then

we have
∑

c∈C

∑

p∈Pc

x∗pc
a = 0, i.e.,

x∗pc
a = 0, ∀c ∈ C, ∀p ∈ Pc,

and can therefore eliminate these variables without changing the optimal

value. We can add to (7.1) the following constraints

∑

c∈C

∑

p∈Pc

xpc
a ≤ ua, ∀a ∈ A (7.2)

∑

c∈C

∑

p∈Pc

xpc
a = 0 ∨

∑

c∈C

∑

p∈Pc

xpc
a ≥ la, ∀a ∈ A. (7.3)

For each arc a, let {ta1, t
a
2, . . . , t

a
ka
} be a discretization grid of the finite inter-

val [la, ua]. We approximate the weight wa(q) by a function wl
a(q), which is

140

7.3 Mixed Integer Model

non-negative and linear in every interval [taj , t
a
j+1] for j = 1, 2, . . . , ka−1. We

set wl
a(0) = wa(0). The cost function c is approximated by the function cl

which is defined as follows

cl(S) := min
x

∑

a∈A

wl
a(Xa) (7.4)

Xa :=
∑

c∈C

∑

p∈Pc

xpc
a

x satisfies the constraints of (7.1) and (7.2)–(7.3).

Because of the requirements on the original problem (7.1), the approxi-

mated problem (7.4) has optimal solutions for each non-empty subset S

of C and therefore the function cl is well-defined.

A natural question arises then, namely how large is the error caused

by the linearization. Given numbers α2 ≥ α1 > −1. Assume that for

every a ∈ A the function wl
a satisfies

(1 + α1)wa(q) ≤ wl
a(q) ≤ (1 + α2)wa(q), ∀a ∈ A, ∀q ∈ [la, ua].

We will describe in Section 7.4 how one can construct such functions for

arbitrary given numbers α2 ≥ α1 > −1. We set wl
a(0) = wa(0) = 0.

Obviously, the following result holds:

Proposition 7.3.1. If there exist numbers α2 ≥ α1 > −1 such that

(1 + α1)wa(q) ≤ wl
a(q) ≤ (1 + α2)wa(q), ∀a ∈ A, ∀q ∈ {0} ∪ [la, ua],

then there holds

(1 + α1)c(S) ≤ cl(S) ≤ (1 + α2)c(S), ∀∅ 6= S ⊆ C.

The following proposition says that if wl
a is a good approximation of wa

for each arc a, then the c-least core of Γ is well approximated by the cl-least

core of Γl.

Proposition 7.3.2. Given cost allocation games Γ = (N, c, P,Σ) and Γl =

(N, cl, P,Σ) with cost functions c and cl described as above and P satisfies

x ∈ P ⇒ λx ∈ P, ∀λ > 0.

141

7. Allocating Production and Transmission Costs

Let ε be the c-least core radius of Γ and εl be the cl-least core radius of Γl.

Denote β := cl(N)
c(N)

− 1 and define

δ(xl) := min
S∈Σ+\{N}

c(S)− 1
1+β

xl(S)

c(S)
.

If there exist parameters α2 ≥ α1 > −1 such that

(1 + α1)wa(q) ≤ wl
a(q) ≤ (1 + α2)wa(q), ∀a ∈ A, ∀q ∈ {0} ∪ [la, ua],

then there holds

0 ≤ ε− δ(xl) ≤ (α2 − α1)
1− εl
1 + β

≤ (α2 − α1)
1− ε

1 + α1

, ∀xl ∈ LCcl(Γl).

Proof. Let xl be an arbitrary point in the cl-least core LCc(Γl) of Γl. Since

there exist parameters α2 ≥ α1 > −1 such that

(1 + α1)wa(q) ≤ wl
a(q) ≤ (1 + α2)wa(q), ∀a ∈ A, ∀q ∈ {0} ∪ [la, ua],

due to Proposition 7.3.1, we have

(1 + α1)c(S) ≤ cl(S) ≤ (1 + α2)c(S), ∀∅ 6= S ⊆ C.

Hence, due to Proposition 2.3.16, there holds

0 ≤ ε− δ(xl) ≤ (α2 − α1)
1− εl
1 + β

≤ (α2 − α1)
1− ε

1 + α1

.

The optimization problem (7.4) is not in a form which we can handle
easily. Therefore, we want to rewrite it as a mixed integer program using
the idea of Dantzig [10]. For each arc a, we will represent the function wl

a

in {0} ∪ [la, ua] by a linear system of equalities and inequalities using the
grid {ta1, t

a
2, . . . , t

a
ka
} and the values yaj , j = 0, 1, . . . , ka, which are defined

by
ya0 := wl

a(0) and yaj := wl
a(t

a
j), ∀j ∈ {1, 2, . . . , ka},

and some additional variables. The main idea is that each point qa in the
interval [la, ua] lies between two points tak and tak+1 for some index k, 1 ≤
k ≤ ka − 1. Therefore, qa can be represented as a convex combination
of these two points. The value wl

a(qa) is then equal to the corresponding
convex combination of yak and yak+1. That means only the index k and the

142

7.3 Mixed Integer Model

coefficients of the convex combination have to be determined. We consider
the following problem

q =
ka
∑

j=1

µj
a t

a
j

ka−1
∑

j=0

λj
a = 1

ka
∑

j=0

µj
a = 1 (7.5)

λ0
a ≤ µ0

a,

λj
a ≤ µj

a + µj+1
a , ∀j ∈ {1, 2, . . . , ka − 1}

λj
a ∈ {0, 1}, ∀j ∈ {0, 1, . . . , ka − 1}

µj
a ∈ [0, 1], ∀j ∈ {0, 1, . . . , ka}.

The variables λj
a for j ∈ {1, 2, . . . , ka − 1} indicate whether q belongs to

the interval [taj , t
a
j+1]. This is the case if and only if λj

a = 1. One can easily
prove that for each given number q in {0} ∪ [la, ua] there exist λa and µa

such that (q, λa, µa) fulfils (7.5). Moreover, for each triple (q, λa, µa) that
fulfils (7.5), it holds that

q ∈ {0} ∪ [la, ua]

and

wl
a(q) =

ka
∑

j=0

µj
ay

a
j .

Hence, we can formulate (7.4) as the following mixed integer program

cl(S) = min
∑

a∈A

ka
∑

j=0

yaj µ
j
a (7.6)

∑

p∈Pc

∑

(p,k)∈A

xpc
pk = dcz

c
S, ∀c ∈ C

∑

p∈Pc

∑

(i,p)∈A

xpc
ip = 0, ∀c ∈ C

∑

p∈Pc

∑

(c,k)∈A

xpc
ck = 0, ∀c ∈ C

∑

p∈Pc

∑

(i,c)∈A

xpc
ic = dcz

c
S, ∀c ∈ C

143

7. Allocating Production and Transmission Costs

∑

(i,j)∈A

xpc
ij −

∑

(j,k)∈A

xpc
jk = 0, ∀j ∈ V \{p, c}, ∀c ∈ C, ∀p ∈ Pc

xpc
a ≥ 0, ∀a ∈ A, ∀c ∈ C, ∀p ∈ Pc

x ∈ Q

∑

c∈C

∑

p∈Pc

xpc
a =

ka
∑

j=1

taj µ
j
a, ∀a ∈ A

ka−1
∑

j=0

λj
a = 1, ∀a ∈ A

ka
∑

j=0

µj
a = 1, ∀a ∈ A

λ0
a ≤ µ0

a, ∀a ∈ A

λj
a ≤ µj

a + µj+1
a , ∀a ∈ A, ∀j ∈ {1, 2, . . . , ka − 1}

λj
a ∈ {0, 1}, ∀a ∈ A, ∀j ∈ {0, 1, . . . , ka − 1}

µj
a ∈ [0, 1], ∀a ∈ A, ∀j ∈ {0, 1, . . . , ka}.

In the end of this section, we describe how to calculate good bounds la
and ua for each arc a ∈ A. Choosing good bounds is important because
the number of variables λa and µa in the MIP (7.6) depends on the number
of discretization grid points of the interval [la, ua], i.e., by choosing a small
interval we may reduce the number of variables of the mixed integer model.
We assume in the following that for every arc a ∈ A the weight function wa

is concave in [0,+∞). Every function of the type αxβ for some numbers α >

0 and β ∈ [0, 1] and the sum of several functions of that type are concave.
Under this assumption, we prove the following proposition:

Proposition 7.3.3. If the weight function wa is concave for every arc a ∈

A, then for each non-empty set S ⊆ C there exists an optimal solution x̄

of (7.1) such that the flow of good from every producer p to every customer c

is unsplitted and acyclic, i.e., there exists a path Ppc from p to c such that

x̄pc
a = 0, ∀a 6∈ Ppc.

Proof. Let x be an arbitrary optimal solution of (7.1). Let c∗ be an arbi-

trary customer and p∗ be an arbitrary producer in Pc∗ . Due to the flow

conservation constraints, an arc a ∈ A satisfies xp∗c∗

a > 0 if and only if a

144

7.3 Mixed Integer Model

belongs to a walk from p∗ to c∗, whose value xp∗c∗

e is positive for every arc e

in this walk. If there exists at most one such walk, then there is nothing

to do and we consider another pair of customer and producer. Otherwise,

there exist two different walks P1 and P2 from p∗ to c∗ such that

xp∗c∗

a > 0, ∀a ∈ P1 ∪ P2.

Denote

µi := min
a∈Pi

xp∗c∗

a , i = 1, 2

and

χipc

a :=

{

1 if p = p∗, c = c∗, and a ∈ Pi

0 otherwise,
for a ∈ A, c ∈ C, p ∈ Pc, i = 1, 2.

We consider ξ, x1, and x2 defined by

ξ := x− µ1χ
1 − µ2χ

2,

and

xi := ξ + (µ1 + µ2)χ
i, i = 1, 2.

Clearly, x1 and x2 are feasible solutions of (7.1). For i = 1, 2, the number

of walks from p∗ to c∗, on which there exists a non-empty flow from p∗ to c∗

in the solution xi, is one less than the number of these walks in the original

solution x. We want to prove that the cost of x is not smaller than the

minimum of the costs of x1 and x2. Denote

w(x) :=
∑

a∈A

wa

(

∑

c∈C

∑

p∈Pc

xpc
a

)

,

ya :=
∑

c∈C

∑

p∈Pc

ξpca , ∀a ∈ A,

and

h(λ) :=
∑

a∈P1\P2

wa

(

ya + (µ1 + µ2)λ
)

+
∑

a∈P2\P1

wa

(

ya + (µ1 + µ2)(1− λ)
)

.

145

7. Allocating Production and Transmission Costs

We have then

w(x1)− w(x) =
∑

a∈P1\P2

wa(ya + µ1 + µ2) +
∑

a∈P2\P1

wa(ya)

−
∑

a∈P1\P2

wa(ya + µ1)−
∑

a∈P2\P1

wa(ya + µ2)

= h(1)− h

(

µ1

µ1 + µ2

)

and

w(x2)− w(x) =
∑

a∈P1\P2

wa(ya) +
∑

a∈P2\P1

wa(ya + µ1 + µ2)

−
∑

a∈P1\P2

wa(ya + µ1)−
∑

a∈P2\P1

wa(ya + µ2)

= h(0)− h

(

µ1

µ1 + µ2

)

.

Since the function wa is concave in [0,+∞) for every a ∈ A, the function h

is concave in [0, 1]. Hence

h

(

µ1

µ1 + µ2

)

≥ min{h(0), h(1)}.

Therefore, we have

w(x) ≥ min{w(x1), w(x2)}.

That means either x1 or x2 is an optimal solution of (7.1). Assuming that x1

is an optimal solution of (7.1), we repeat the above process for x1. This

will be repeated until we finally obtain a solution x̄ which is unsplitted,

i.e., for each customer c and each producer p ∈ Pc there exists a walk P̄pc

such that

x̄pc
a = 0, ∀a 6∈ P̄pc.

If the walk P̄pc contains circles, we remove them one by one and set the

value x̄pc
a to 0 for every arc a in the removed circles. During the elimination

the solution that we obtain is still feasible and its cost is not increasing since

the weight functions are monotonically increasing, i.e., it remains optimal.

After some steps we obtain a path Ppc from p to c from the walk P̄pc.

146

7.3 Mixed Integer Model

Proposition 7.3.3 helps to determine a good interval [la, ua] for each

arc a ∈ A and eliminate superfluous variables. For each arc a ∈ A, we

denote Ca as the set of all customers c in C such that there exists a path P

from some producer p ∈ Pc to c that contains a. For an arbitrary non-

emptyset S ⊆ C, let x̄ be an optimal solution of (7.1) as described in

Proposition 7.3.3. We have then

x̄pc
a = 0, ∀c ∈ C, ∀p ∈ Pc, ∀a ∈ A : Ca = ∅,

∑

c∈C

∑

p∈Pc

x̄pc
a ≤

∑

c∈Ca

dc

and
∑

c∈C

∑

p∈Pc

x̄pc
a = 0 ∨

∑

c∈C

∑

p∈Pc

x̄pc
a ≥ min

c∈Ca
dc.

Therefore, we can eliminate all arcs a ∈ A with Ca = ∅ and for the remaining

edges we can choose

la = min
c∈Ca

dc (7.7)

and

ua =
∑

c∈Ca

dc. (7.8)

Moreover, for every arc a ∈ A, every customer c ∈ C, and every pro-

ducer p ∈ Pc, if there does not exist a path from p to c that contains a,

we can also eliminate the variable xpc
a . The bounds above are independent

of the coalition S. Using this we can create the same discretization grid

for both calculating the cost of every coalition and solving the separation

problem. One can easily show that, if the capacity for the good which is

transmitted through an arc a in the optimal solution x̄ of (7.1) is non-zero,

then the following numbers are its lower and upper bounds

la(S) = min
c∈Ca∩S

dc (7.9)

ua(S) =
∑

c∈Ca∩S

dc. (7.10)

Clearly, we have ua = ua(C) and la = la(C).

147

7. Allocating Production and Transmission Costs

7.4 Piecewise Linear Approximation

There are many papers where piecewise linear approximation of concave

(convex) functions is used. But to the best of our knowledge, none of

them answers the question that we are interested in, namely, how one can

construct a piecewise linear approximation of positive, concave functions,

especially functions of type axb with a > 0 and b ∈ (0, 1), with an arbitrary

small relative error in any given positive interval explicitly. For functions

of this type, we present a very simple, efficient algorithm.

Given a positive, concave function w in an interval [l,+∞), a num-

ber u > l, and two numbers α2 > α1 > −1, we want to determine a grid l =

t1 < t2 < · · · < tk = u and non-negative values yj, j ∈ {1, 2, . . . , k}, such

that the piecewise linear function w̄ which is linear in each interval [tj, tj+1]

for every j ∈ {1, 2, . . . , k − 1} with

w̄(tj) = yj, ∀j ∈ {1, 2, . . . , k},

satisfies

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q), ∀q ∈ [l, u]. (7.11)

Proposition 7.4.1. Let w be a positive, concave function in [l,+∞) with

some finite number l, α2 be a real number that satisfies α2 > −1, l = s1 <

s2 < · · · < sk = u be an arbitrary finite grid, and w̄ be a function that is

linear in each interval [sj, sj+1] for 1 ≤ j ≤ k − 1 and satisfies

w̄(sj) = (1 + α2)w(sj), ∀j ∈ {1, 2, . . . , k}. (7.12)

Denote

θ(q) :=
w̄(q)− w(q)

w(q)

and

α1 := min
j∈{1,2,...,k−1}

min
p∈[sj ,sj+1]

θ(p).

Then there holds

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q), ∀q ∈ [l, u].

148

7.4 Piecewise Linear Approximation

w(x)

w(x)

t
2

t
3

t
4

t
1

Figure 7.3: Piecewise linear approximation

Proof. Let j be an arbitrary index in {1, 2, . . . , k − 1}. Since w is positive

and concave in [sj, sj+1], w̄ is linear in that interval, and because of (7.12),

there holds for any number λ ∈ [0, 1]

θ
(

λsj + (1− λ)sj+1

)

=
w̄
(

λsj + (1− λ)sj+1

)

w
(

λsj + (1− λ)sj+1

) − 1

≤
λw̄(sj) + (1− λ)w̄(sj+1)

λw(sj) + (1− λ)w(sj+1)
− 1

=
λ(1 + α2)w(sj) + (1− λ)(1 + α2)w(sj+1)

λw(sj) + (1− λ)w(sj+1)
− 1

= α2,

i.e.,

θ(q) ≤ α2, ∀q ∈ [sj, sj+1].

Hence, we have

α1 ≤ θ(q) ≤ α2, ∀q ∈ [sj, sj+1],

i.e.,

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q), ∀q ∈ [sj, sj+1].

Based on the above result, we have the following algorithm to determine
a function w̄ such that (7.11) holds.

Algorithm 7.4.2. Piecewise linear approximation

Input: Two numbers α2 > α1 > −1, a finite interval [l, u], l < u, and

a function w that is positive and concave in [l,+∞).

Output: A grid l = t1 < t2 < · · · < tk = u and a function w̄ defined in

[l, u] that is positive, linear in each interval [tj, tj+1], j = 1, 2, . . . , k−1,

149

7. Allocating Production and Transmission Costs

and satisfies

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q), ∀q ∈ [l, u].

1. Set k = 1 and s1 = l.

2. Set tk = sk and yk = (1 + α2)w(tk).

3. Set k := k + 1 and find a number sk > tk−1 such that

min
q∈[tk−1,sk]

fk(q)

w(q)
≥ 1 + α1, (7.13)

where fk is the linear function satisfying fk(tk−1) = yk−1 and fk(sk) =

(1 + α2)w(sk).

4. If sk < u, then go to 2.

5. Set tk = u and yk = fk(tk).

6. Define w̄ as the function that is linear in each interval [tj, tj+1], j =

1, 2, . . . , k − 1, and satisfies

w̄(tj) = yj, ∀j ∈ {1, 2, . . . , k}.

The main part of Algorithm 7.4.2 is to find sk such that (7.13) holds.
We now consider the case where w(q) = aqb for some numbers a > 0, b ∈
(0, 1), and l > 0. The requirement l > 0 is needed since one cannot
approximate the function w(q) with an arbitrary small given relative error
in the neighbourhood of 0 by piecewise linear functions. Since with

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q), ∀q ∈ [l, u],

there also holds

(1 + α1)λw(q) ≤ λw̄(q) ≤ (1 + α2)λw(q), ∀λ > 0, ∀q ∈ [l, u],

we can assume that a = 1 without loss of generality. Given k > 1, tk−1 ∈
[l, u), and yk−1 = (1 + α2)t

b
k−1, we want to find a number sk > tk−1 such

that

min
q∈[tk−1,sk]

f(q)

qb
≥ 1 + α1, (7.14)

150

7.4 Piecewise Linear Approximation

where f is the linear function satisfying

f(tk−1) = yk−1 and f(sk) = (1 + α2)s
b
k. (7.15)

In the following, we show that the largest number sk which satisfies (7.14)
is equal to the product of tk−1 and a number which only depends on the
exponent b and the parameters α1 and α2. From (7.15) it follows that

f(q) =
f(sk)− f(tk−1)

sk − tk−1

q +
f(tk−1)sk − f(sk)tk−1

sk − tk−1

= (1 + α2)

(

sbk − tbk−1

sk − tk−1

q +
tbk−1sk − sbktk−1

sk − tk−1

)

= (1 + α2)






tb−1
k−1

(

sk
tk−1

)b

− 1

sk
tk−1

− 1
q + tbk−1

sk
tk−1

−
(

sk
tk−1

)b

sk
tk−1

− 1






.

Denote γ := tb−1
k−1 and z :=

sk
tk−1

> 1, we have then

f(q) = (1 + α2)γ

(

zb − 1

z − 1
q + tk−1

z − zb

z − 1

)

.

We now consider the function g(q) :=
f(q)

qb
in [tk−1, sk]. We have

g′(q) =
f ′(q)q − bf(q)

qb+1

=
(1 + α2)γ

qb+1

(

(1− b)
zb − 1

z − 1
q − btk−1

z − zb

z − 1

)

.

Therefore, since q∗ ≥ tk−1 > 0, g′(q∗) = 0 iff

(1− b)
zb − 1

z − 1
q∗ − btk−1

z − zb

z − 1
= 0,

which is equivalent to

q∗ = tk−1
b

1− b

z − zb

zb − 1
.

It holds that q∗ ∈ (tk−1, sk). Since α2 > −1, γ > 0, b ∈ (0, 1), z > 1,
and tk−1 > 0, there hold

g′(q) < 0, ∀q ∈ [tk−1, q
∗)

151

7. Allocating Production and Transmission Costs

and
g′(q) > 0, ∀q ∈ (q∗, sk].

This means q∗ is the minimizer of g in [tk−1, sk]. We have

f(q∗) = (1 + α2)γ

(

zb − 1

z − 1
· tk−1

b

1− b

z − zb

zb − 1
+ tk−1

z − zb

z − 1

)

= (1 + α2)γ

(

tk−1
b

1− b

z − zb

z − 1
+ tk−1

z − zb

z − 1

)

= (1 + α2)γtk−1
1

1− b

z − zb

z − 1

= (1 + α2)t
b
k−1

1

1− b

z − zb

z − 1

and hence

f(q∗)

q∗b
=

1 + α2

bb(1− b)1−b

(

zb − 1

z − zb

)b
z − zb

z − 1

=
1 + α2

bb(1− b)1−b

(

z − 1

z − zb
− 1

)b
z − zb

z − 1
.

Therefore, (7.14) holds iff

1 + α2

bb(1− b)1−b

(

z − 1

z − zb
− 1

)b
z − zb

z − 1
≥ 1 + α1.

Since 0 < b < 1 and α2 > −1, this is equivalent to

v(z) :=

(

z − 1

z − zb
− 1

)b
z − zb

z − 1
≥ bb(1− b)1−b1 + α1

1 + α2

.

One can prove that for each number b ∈ (0, 1) the function z−1
z−zb

is strictly

decreasing in (1,+∞) and its value in that interval belongs to
(

1, 1
1−b

)

, and

the function (y−1)b

y
is strictly increasing in

(

1, 1
1−b

)

. Hence, the function v

is strictly decreasing in (1,+∞). Moreover, using the L’Hopital’s rule, we
have that

lim
z→1+

z − 1

z − zb
=

1

1− b
and lim

z→+∞

z − 1

z − zb
= 1.

From these and since

lim
y→1+

(y − 1)b

y
= 0 and lim

y→ 1

1−b

−

(y − 1)b

y
= bb(1− b)1−b

152

7.4 Piecewise Linear Approximation

it follows that

lim
z→1+

v(z) = bb(1− b)1−b and lim
z→+∞

v(z) = 0.

On the other hand, since α2 > α1 > −1 and b ∈ (0, 1), it holds that

bb(1− b)1−b1 + α1

1 + α2

∈
(

0, bb(1− b)1−b
)

.

Therefore, there exists exactly one solution z∗ ∈ (1,+∞) of the following

equation

v(z) = bb(1− b)1−b1 + α1

1 + α2

. (7.16)

We have that sk = z∗tk−1 is the largest number such that (7.14) holds.

Moreover, the inequality (7.14) still holds for sk = ztk−1 with every num-

ber z ∈ (1, z∗]. It is quite interesting that the optimal factor z∗ does not

depend on tk−1 but only on the exponent b and the parameters α1 and α2.

We have the following result:

Proposition 7.4.3. Given u > l > 0 and two real numbers α2 > α1 > −1.

For w(q) = aqb with a > 0, b ∈ (0, 1), let z∗ be the solution of (7.16) and z

be an arbitrary number in (1, z∗]. Define the grid {t1, t2, . . . , tk} as follows

t1 = l, tk = u, tk ≤ ztk−1,

and

ti+1 = zti, ∀i = 1, 2, . . . , k − 2.

Let w̄ be the piecewise linear function which is linear in each interval [ti, ti+1]

for i = 1, 2, . . . , k − 1 and satisfies

w̄(ti) = (1 + α2)w(ti), ∀i = 1, 2, . . . , k,

then there holds

(1 + α1)w(q) ≤ w̄(q) ≤ (1 + α2)w(q).

153

7. Allocating Production and Transmission Costs

Figure 7.4: The water transmission network

7.5 Cost Allocation in Water Resources De-

velopment: A Case Study of Sweden

Water is one of the most important resources. Development and manage-

ment of water resources are grand issues, which happen all over the world.

Such projects are often huge in size and involve many participants. In this

thesis, we consider a water supply network of Sweden in the eighties [67].

The Sk̊ane region of southern Sweden consists of eighteen municipalities

(see Figure 7.4). In the 1940s several of them banded together to form a

regional water supply utility known as the Sydvatten Company. As water

demands have grown, the company has been under increasing pressure to

increase long-term supply and incorporate outlying municipalities into the

system. The question is how the cost should be allocated among the vari-

ous townships. This problem was already considered by Young et al. [67].

However, due to the absence of computational technology at that time,

they were only able to consider a relaxed problem, where the 18 municipal-

ities were grouped into six independent units and a cost allocation problem

154

7.5 Cost Allocation in Water Resources Development

of 6 players arised. The cost allocation game with 6 players can be writ-
ten explicitly and easily solvable. We want to reconsider the original game
with 18 players using our game theoretical concepts and computational al-
gorithms. Unfortunately, a direct comparison between the two approaches
is impossible. Some formulas in [67] are incorrect. Besides, there might
be some omitted information, as it is not possible to reproduce the costs
reported in [67], even with their formulas.

7.5.1 The Water Resources Development Cost Allo-

cation Game

We formulate the cost allocation problem as a cost allocation game. The
set of customers C is the set of all municipalities, C = {1, 2, . . . , 18}. Each
municipality is considered as a player and each grouping of players is a
possible coalition. That means, N = C and Σ = 2N . We require only that
the price for each player is non-negative, i.e., P = R18

+ . It remains to define
the cost function c.

We follow the cost function description presented in [67] with the cor-
rected formulas. Table 7.1 gives the water demand of every municipal-
ity. Bara is included in the municipality of Svedala, while Vellinge, Räng,
and Skanör constitute a single municipality. The water supply system in-
cludes two lakes (Vombsjön and Ringsjön), one major groundwater aquifer
(Alnarp), and other minor on-site sources. The possible routes of a wa-
ter transmission network are shown in Figure 7.4. The distances between
points (in parantheses) and their elevations are also shown in that figure.
It is assumed that the pressure at each demand point does not depend on
the arrangement by which the water is supplied. This allows us to treat
each arc of the transmission network independently. The cost analysis of
the network is therefore carried out arc by arc.

The cost of water transmission through a pipe a includes the following
components:
Cost of pipelines [Skr]

C1
a = c1La = (γ + αDβ

a)La,

cost of pumps [Skr]
C2

a = c2fPa,

and cost of electricity [Skr/year]

C3
a = c3Pa,

155

7. Allocating Production and Transmission Costs

Municipality Water demand Municipality Water demand

x 106m3/year x 106m3/year

Ängelholm 2.65 Malmö 10.66

Åstorp 0.63 Staffanstorp 2.30

Bjuv 1.36 Svalöv 0.50

Burlöv 1.67

Eslöv 1.32 Svedala 1.10

Helsingborg 4.60 Bara 0.73

Höganäs 1.48

Kävlinge 2.74 Trelleborg 1.26

Klippan 0.60

Landskrona 1.80 Vellinge 2.30

Lomma 1.01 Räng 0.57

Lund 3.53 Skanör 0.25

Bara is included in the municipality of Svedala,

while Vellinge, Räng, and Skanör constitute a single municipality.

Table 7.1: Water demand

where
c1 is the unit cost of piping [Skr/m],
La is the length of pipe [m],
c2 is the unit cost of a pump [Skr/kW],
f is the safety factor,
c3 is the unit cost of electricity [Skr/kW year],
Pa is the effective capacity of a pump, Pa = (9.81/E)QaHa [kW],
Qa is the flow of water through a pipe [m3/s],
Ha is the required pumping head, Ha = H0

a + IaLa [m],
H0

a is the difference in altitude between origin
and destination of pipe [m],

Ia is the hydraulic gradient,
E is the pumping efficiency,
Da is the pipe diameter [m],
α, β, γ are positive coefficients.

The total annual cost of transmission through an arc a is given by

wa =
(

C1
a +max{0, C2

a}
)

CRF +max{0, C3
a},

156

7.5 Cost Allocation in Water Resources Development

where CRF is the capital recovery factor defined by

CRF =
i(1 + i)n

(1 + i)n − 1

with the interest rate i and the amortization period in years n. In [67], the

calculations of C1
a , C

2
a and C3

a are incorrect and the authors did not notice

that C2
a and C3

a can be negative, since H0
a can be negative. Therefore, we

have to take the maximum of these functions and zero. The cost wa is a

function of the pipe diameter Da, the flow Qa, the pumping head Ha, and

the length of pipe La. These factors are related by the Hazen-Williams

formula

Ha = H0
a + 10.7(Cw)−1.85D−4.87

a Q1.85
a La,

where Cw is the Hazen-Williams coefficient. We have

wa =

{

C1
a · CRF =: w1

a, if Ha ≤ 0
(C1

a + C2
a)CRF + C3

a =: w2
a, if Ha ≥ 0.

With a given water demand Qa, we want to calculate the economical pipe

diameter D∗
a, i.e., the diameter that minimizes wa. We consider Ha as a

function of Da. Denote

D0
a :=

(

4.87 d1d2
αβ CRF

)1/(β+4.87)

Q2.85/(β+4.87)
a

and

D1
a :=

(

d2Q
1.85
a La

|H0
a |

)1/4.87

,

where

d1 = (c2fCRF + c3)9.81/E and d2 = 10.7(Cw)−1.85.

We have that ∂w2
a/∂Da is equal to 0 with Da = D0

a, negative in (0, D0
a), and

positive in (D0
a,+∞). This means that w2

a is strictly decreasing in (0, D0
a]

and strictly increasing in [D0
a,+∞). If H0

a ≥ 0, then Ha is non-negative

for any Da > 0. Therefore, in this case, wa = w2
a and the economical pipe

diameter D∗
a is equal to D

0
a. If H

0
a < 0, then Ha is equal to 0 with Da = D1

a,

positive in (0, D1
a), and negative in (D1

a,+∞). From this it follows that

wa =

{

w1
a, if Da ∈ [D1

a,+∞)
w2

a, if Da ∈ (0, D1
a].

157

7. Allocating Production and Transmission Costs

On the other hand, we have

argmin
Da∈[D1

a,+∞)

w1
a(Da) = {D1

a}

and

argmin
Da∈(0,D1

a]

w2
a(Da) =

{

min{D0
a, D

1
a}
}

.

Therefore, the optimal diameter D∗
a is

D∗
a =

{

D0
a if H0

a ≥ 0 ∨ (H0
a < 0 ∧D0

a ≤ D1
a)

D1
a otherwise.

The economical hydraulic gradient I∗a is obtained as

I∗a = d2(D
∗
a)

−4.87Q1.85
a .

We have

D0
a ≤ D1

a ⇐⇒

(

4.87d1d2
αβCRF

)1/(β+4.87)

Q2.85/(β+4.87)
a ≤

(

d2Q
1.85
a La

|H0
a |

)1/4.87

⇐⇒ Q4.87−1.85β
a ≤

(

αβCRF

4.87d1

)4.87

dβ2

(

La

|H0
a |

)β+4.87

.

The parameters are determined from the Swedish data as follows: α = 477

Skr, β = 1.60, γ = 150 Skr, E = 0.63, Cw = 100, f = 1.33, CRF = 0.0872,

i = 0.06, n = 20 years, c2 = 1893 Skr/kW, c3 = 613 Skr/kW yr. The

results are:

D0
a ≤ D1

a ⇐⇒ Qa ≤ 2.16

(

La

103|H0
a |

)3.39

=: q̄a,

• If H0
a ≥ 0 ∨ (H0

a < 0 ∧Qa ≤ q̄a):

D∗
a = 1.115Q0.44

a , I∗a = 1.255Q−0.295
a × 10−3,

wa = w2
a(D

∗
a) = 13.08La + 12964H0

aQa + 65.78LaQ
0.704
a .

• If H0
a < 0 ∧Qa > q̄a :

D∗
a = 1.115Q̄0.06

a Q0.38
a

wa = w1
a(D

∗
a) = 13.08La + 49.5q̄0.096a LaQ

0.608
a .

158

7.5 Cost Allocation in Water Resources Development

The water demands are given in 106m3/year, therefore we should convert
the flow unit in the above formulas from m3/s to 106m3/year. Let Q̃a be
the flow of water in millions of cubic meters per year corresponding to Qa,
i.e., Qam

3/s = Q̃a 10
6m3/year, we have Qa = 0.03171Q̃a. Denote

q̃a :=
q̄a

0.03171
= 68.12

(

La

103|H0
a |

)3.39

,

then the optimal cost of pipe a for a positive demand Q̃a (106m3/year) is

wa(Q̃a) =

{

13.08La + 4.36q̃0.096a LaQ̃
0.608
a if H0

a < 0 ∧ Q̃a > q̃a
13.08La + 411H0

aQ̃a + 5.79LaQ̃
0.704
a otherwise.

The cost data of treating water at the two lakes were not avaiable and
hence could only be estimated by the authors in [67]. However, as we
cannot reproduce the cost reported in this paper, we do not know how
realistic the ratio between the transmission cost and the water treatment
cost is with our corrected formulas. Therefore, for the computation part
we only consider the transmission cost. Moreover, since the authors did
not give the positions of the ground water sources, we will ignore them as
well. This means the question now is, how to allocate the transmission cost
from the two lakes Vombsjön and Ringsjön to the municipalities.

The water transmission network forms a directed graph G = (V,A).
The cost wa on each arc a is given by a function depending on the length
of this edge, the difference in altitude between origin and destination of
the pipe, and the water transmission capacity Q̃a (106m3/year): wa(0) = 0
and for Q̃a > 0

wa(Q̃a) =

{

13.08La + 4.36q̃0.096a LaQ̃
0.608
a if H0

a < 0 ∧ Q̃a > q̃a
13.08La + 411H0

aQ̃a + 5.79LaQ̃
0.704
a otherwise.

We approximate the non-linear part of wa by piecewise linear functions
as presented in the previous sections of this chapter. The cost func-
tion can be modeled via the multi-comodity flow model (7.1) with a non-
linear objective function which can be approximated by the mixed inte-
ger program (7.6). Here the discretization error parameters are chosen
as α1 = −0.001 and α2 = 0.001. Note that the same discretization grid
must be used for both calculating the cost of each coalition and solving the
separation problem. The capacity of a good which is transmitted through
an edge e can be restricted to the set {0}∪ [la, ua] with 0 < la ≤ ua defined
by (7.7) and (7.8). We now construct an appropriate discretization grid for

159

7. Allocating Production and Transmission Costs

the piecewise linearization. We only consider the case where H0
a < 0 and

q̃a ∈ (la, ua]. Other cases can be treated similarly. Due to Proposition 7.4.3,

to achieve a piecewise linear approximation with the lower and upper rel-

ative errors α1 and α2, we can choose for each arc a the discretization grid

{ta1, t
a
2, . . . , t

a
la
, . . . , taka} as follows

ta1 = la, tala = q̃a, tala ≤ z∗1t
a
la−1,

tai+1 = z∗1t
a
i , ∀i = 1, 2, . . . , la − 2,

taka = ua, taka ≤ z∗2t
a
ka−1,

and

taj+1 = z∗2t
a
j , ∀j = la, la + 1, . . . , ka − 2,

where z∗1 = 1.315 and z∗2 = 1.295. The choice of the increments z∗1 and z∗2
for piecewise linearizing the functions q0.704 and q0.608 is based on Proposi-

tion 7.4.3. Let cl denote the piecewise linear approximation of the original

cost function c defined by (7.6), where

yaj = (1 + α2)wa(t
a
j), ∀a ∈ A, ∀j ∈ {0, 1, . . . , ka}.

Due to Proposition 7.3.1 and Proposition 7.4.3, we have that

(1 + α1)c(S) ≤ cl(S) ≤ (1 + α2)c(S), ∀∅ 6= S (N.

The cost allocation game Γl := (N, cl,R
N
+ , 2

N) is a well approximation of the

the water resources development cost allocation game Γ := (N, c,RN
+ , 2

N).

7.5.2 The Separation Problem

We only consider the separation problem for finding the (f, r)-least core

of Γl. The separation problem for finding the f -nucleolus of Γl is similar.

In order to calculate the (f, r)-least core of Γl, we use Algorithm 4.2.3 and

have to solve the separation problem in every loop. The separation problem

for (x∗, ε∗) is to find a coalition T ∈ 2N\{∅, N} such that (x∗, ε∗) violates

the constraint

x∗(T) + ε∗f(T) ≤ cl(T). (7.17)

To do so, we solve the following optimization problem

max
∅6=S(N

x∗(S) + ε∗f(S)− cl(S). (7.18)

160

7.5 Cost Allocation in Water Resources Development

If the optimal value is non-positive then the algorithm terminates and we
obtain the (f, r)-least core of Γ. Otherwise, there exists a coalition T
which violates the constraint (7.17). We choose f(S) = α + β|S| + γcl(S)
for some numbers α, β, γ ≥ 0 satisfying α + β + γ > 0. Assume that the
pair (x∗, ε∗) is not arbitrary but satisfies γε∗ ≤ 1. This assumption holds
for every separation problem of Algorithm 4.2.3 because of Proposition
2.3.4. Moreover, due to Section 4.2.4, the optimization problem (7.18) can
be reformulated as the following integer program

max
(ξ,ρ,z)

αε∗ +
∑

i∈N

(x∗
i + βε∗)zi + (γε∗ − 1)min

∑

a∈A

ka
∑

j=0

yaj µ
j
a (7.19)

∑

p∈Pc

∑

(p,k)∈A

xpc
pk = dcz

c
S, ∀c ∈ C

∑

p∈Pc

∑

(i,p)∈A

xpc
ip = 0, ∀c ∈ C

∑

p∈Pc

∑

(c,k)∈A

xpc
ck = 0, ∀c ∈ C

∑

p∈Pc

∑

(i,c)∈A

xpc
ic = dcz

c
S, ∀c ∈ C

∑

(i,j)∈A

xpc
ij −

∑

(j,k)∈A

xpc
jk = 0, ∀j ∈ V \{p, c}, ∀c ∈ C, ∀p ∈ Pc

xpc
a ≥ 0, ∀a ∈ A, ∀c ∈ C, ∀p ∈ Pc

x ∈ Q

∑

c∈C

∑

p∈Pc

xpc
a =

ka
∑

j=1

taj µ
j
a, ∀a ∈ A

ka−1
∑

j=0

λj
a = 1, ∀a ∈ A

ka
∑

j=0

µj
a = 1, ∀a ∈ A

λ0
a ≤ µ0

a, ∀a ∈ A

λj
a ≤ µj

a + µj+1
a , ∀a ∈ A, ∀j ∈ {1, 2, . . . , ka − 1}

λj
a ∈ {0, 1}, ∀a ∈ A, ∀j ∈ {0, 1, . . . , ka − 1}

µj
a ∈ [0, 1], ∀a ∈ A, ∀j ∈ {0, 1, . . . , ka}

z ∈ {0, 1}|N |\{0,1}.

161

7. Allocating Production and Transmission Costs

The variables zi, i ∈ N , correspond to a coalition S ⊆ N , zi is equal to 1 if

the player i belongs to S and 0 otherwise. Other variables and constraints

come from the integer program (7.6), which models the cost function. A

violated constraint exists iff the optimal value is larger than 0. In that case,

one can find a feasible solution (ξ̄, ρ̄, z̄) of (7.19) with a positive objective

function value. Define T := {i ∈ N | z̄i = 1}, then (x∗, ε∗) violates the

constraint (7.17). We can use the primal and dual heuristics presented in

Section 4.2.5 in order to find violated coalitions faster and have a good

stopping criterion in each separation step.

7.5.3 Computational Results

In this section, we compare several prices for the water resources develop-

ment cost allocation game. The first one is the proportional price vector p1

where the total cost is allocated proportionally to the individual cost:

p1i =
c({i})

∑

j∈N c({j})
c(N), ∀i ∈ N.

This price reflects the demand and the distance to the sources of each

player, however it does not consider the possibility that players can form

coalitions. Consequently, some players prefer to form their own coalition

than to accept the proportional price. The second price vector that we

considered is the c-nucleolus price. We also consider two (f, r)-least core

prices with (f, r) = (c, p1) and (f, r) = (c, p2), where p2 denotes the efficient

price vector which has a uniform unit price, i.e., each player has to pay the

same transmission cost for a cubic meter:

p2(N) = c(N) and
p2i
di

=
p2j
dj
, ∀i, j ∈ N.

Choosing p2 as the reference price vector makes sense, since several gov-

ernments want to keep the living condition equal. Though using p2 as the

price vector will cause unrest among the municipalities. The reason is that

the price vector p2 clearly discriminates the municipalities which are close

to the two lakes. They have to pay much more than they should in order

to subsidize the faraway municipalities. With the price vector p2, there are

at least seven coalitions with a relative loss (c-loss) of more than 40% com-

pared to their costs. The (c, p2)-least core price is a compromise between

having a uniform unit price and keeping the coalitional stability.

162

7.5 Cost Allocation in Water Resources Development

-0.1

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500

re
la

tiv
e

pr
of

it

coalition

proportional price
c-nucleolus price

-0.1

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500

re
la

tiv
e

pr
of

it

coalition

proportional price
(c,p1)-least core price

-0.1

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500

re
la

tiv
e

pr
of

it

coalition

proportional price
(c,p2)-least core price

-0.1

 0

 0.2

 0.4

 0.6

 0.8

 0 500 1000 1500 2000 2500

re
la

tiv
e

pr
of

it

coalition

proportional price
c-nucleolus price

(c,p1)-least core price
(c,p2)-least core price

Figure 7.5: Comparison of four price vectors

In order to compare the above four prices vector, we consider their fair-

ness distribution diagram based on a pool of 2678 essential coalitions which

contain coalitions having the worst relative profits with these prices (see

Chapter 5). The coalitions in the pool are sorted in non-decreasing order

regarding their relative profits with the proportional price vector. Compu-

tational results show that the c-least core radius of our cost allocation game

is 0.013835. This means that the core of this game is non-empty. The c-

nucleolus, (c, p1)-least core, and (c, p2)-least core prices belong to the c-least

core and therefore they are stable, since no coalition has a profit by leaving

the grand coalition and acting on its own. Each coalition has a relative

profit (c-profit) of at least 1.38% with these prices. On the contrary, the

proportional price is unstable, since 8 municipalities in the north, namely,

Svalöv, Landskrona, Helsingborg, Höganäs, Bjuv, Klippan, Åstorp, and

Ängelholm, have to pay 7.8% more compared to the cost when they form

their own coalition and build their pipe system themselves. This means

that for this coalition leaving the grand coalition and building its pipe sys-

tem itself is obviously a better solution than accepting the price vector p1.

163

7. Allocating Production and Transmission Costs

Figure 7.5 compares the four prices. The first three pictures plot the rela-
tive profits c(S)−x(S)

c(S)
of every coalition S in the pool. The last picture plots

also these c-profits but the values are sorted in non-decreasing order, i.e.,
a point k in the horizontal axis does not represent the k-th. coalition in
the pool but the coalitions which have the k-th. smallest c-profits with the
four prices.

Table 7.2 presents the unit prices and the ratios to the individual costs
of the municipalities with the four considered price vectors. The ratio
between the maximal and minimal unit prices of the (c, p2)-least core price
is the smallest. While the (c, p1)-least core price is the (lexicographically)
nearest price vector to the proportional price vector p1 among the three
game theory-based prices.

In our opinion, the three game theory-based prices are significantly
better in terms of fairness and coalitional stability than the proportional
price vector, which is unfair for the above mentioned coalition consisting
of almost half of the players. But the decision which game theory-based
price among the three ones should be chosen depends on the additional
goals of each specific cost allocation problem beside fairness. If the goal is
to have a price vector which is as proportional as possible to the individual
costs, then the (c, p1)-least core price is the most suitable. If the allocated
price vector should charge the players as equally as possible for one unit,
then the (c, p2)-least core price is preferred. And if the decision maker is
just interested in coalitional fairness, then he should choose the c-nucleolus
price.

In [67], the authors assort the 18 municipalities into six groups and
solve the problem of six players since in their opinion “to develop the costs
for each of the 218 − 1 possible groupings of the 18 municipalities would
be impractical and unrealistic“. With the modern techniques, it takes only
1987, 713, and 594 seconds respectively in order to calculate the c-nucleolus,
the (c, p1)-least core, and the (c, p2)-least core of the original cost allocation
game with 18 players respectively. The computations were done on a PC
with an Intel Core2 Quad 2.83GHz processor and 16GB RAM. CPLEX
11.2 was used as linear and integer program solver.

164

7
.5

C
o
st

A
llo

c
a
tio

n
in

W
a
te
r
R
e
so

u
r
c
e
s
D
e
v
e
lo
p
m
e
n
t

Proportional price c-nucleolus price (c, p1)-least core price (c, p2)-least core price

Price per Price
Individual cost

Price per Price
Individual cost

Price per Price
Individual cost

Price per Price
Individual cost

106m3 106m3 106m3 106m3

Ängelholm 288582 0.432267 297547 0.445696 283767 0.425056 283767 0.425056

Åstorp 761844 0.432267 497757 0.282425 614863 0.348871 435727 0.24723

Bjuv 396286 0.432267 266686 0.2909 319832 0.348871 238146 0.259768

Burlöv 188232 0.432267 145126 0.333275 181915 0.41776 122398 0.281082

Eslöv 69817 0.432267 159280 0.986163 159280 0.986163 159280 0.986163

Helsingborg 126592 0.432267 103547 0.353577 102169 0.348871 150904 0.515285

Höganäs 391998 0.432267 412834 0.455243 387514 0.427322 387514 0.427322

Kävlinge 80443 0.432267 100205 0.538457 85718 0.460609 94178 0.506072

Klippan 842303 0.432267 626013 0.321268 679800 0.348871 561438 0.288128

Landskrona 165022 0.432267 177065 0.463812 155370 0.406983 155370 0.406983

Lomma 310545 0.432267 276350 0.384668 300123 0.41776 238959 0.332623

Lund 89180 0.432267 74171 0.359516 86187 0.41776 93729 0.454318

Malmö 61400 0.432267 78745 0.554372 75475 0.531353 93729 0.659866

Staffanstorp 94841 0.432267 100891 0.459842 91658 0.41776 93729 0.427198

Svalöv 326321 0.432267 420216 0.556646 340940 0.451632 340940 0.451632

Svedala+Bara 245610 0.432267 328346 0.577881 308623 0.543169 308623 0.543169

Trelleborg 424808 0.432267 367265 0.373714 451885 0.45982 336560 0.342469

Vellingen+ 215400 0.432267 268206 0.538239 229129 0.45982 270188 0.542216

Räng+Skanör

Table 7.2: Comparison of four price vectors

165

7. Allocating Production and Transmission Costs

166

Chapter 8

Ticket Pricing Problem in

Public Transport

The subject of this chapter is the ticket pricing problem in public transport,

where passengers share a common infrastructure. Public transport ticket

prices are well studied in the economic literature on welfare optimization

as well as in the mathematical optimization literature on certain network

design problems, see, e.g., the literature survey in [7]. To the best of our

knowledge, however, the fairness of ticket prices has not been investigated

yet. The point is that typical pricing schemes are not related to infrastruc-

ture operation costs and, in this sense, favor some users, which do not fully

pay for the costs they incur. We will show that in the example of the Dutch

IC railway network, the current distance tariff results in a situation where

the passengers in the central Randstad region of the country pay over 25%

more than the costs they incur, and these excess payments subsidize op-

erations elsewhere. One can argue that this is not fair. We therefore ask

whether it is possible to construct ticket prices that reflect operation costs

better. Our approach calculates fair prices based on the game theoretical

concepts in Chapter 2.

8.1 The Ticket Pricing Problem

The problem of designing a system of fares in public transport has been

considered in several publications. See, e.g., [7] for an overview. It is

an important issue and must be handled in every public transport com-

pany. There are several objectives like revenue, social wellfare, or simplic-

167

8. Ticket Pricing Problem in Public Transport

ity/clarity, etc. Our interest is however the fairness, which has not been
considered.

In order to apply the framework of Chapter 2, we formulate the ticket
pricing problem as a cost allocation game Γ = (N, c, P, 2N) as follows.
Consider a railway network as a graph G = (V,E), and let N ⊆ V × V be
a set of origin-destination (OD) pairs, between which passengers want to
travel, i.e., we consider each (set of passengers of an) OD-pair as a player.
We define the cost c(S) of a coalition S ⊆ N as the minimum expense
of a network of railway lines in G that services S. Using the classical
line planning model in [8], c(S) can be computed by solving the following
integer program

c(S) :=min
(ξ,ρ)

∑

(r,f)∈R×F

(c1r,fξr,f + c2r,fρr,f)

s.t.
∑

r∈R,r∋e

∑

f∈F

ccapf(mξr,f + ρr,f) ≥
∑

i∈S

P i
e , ∀e ∈ E

∑

r∈R,r∋e

∑

f∈F

fξr,f ≥ F i
e , ∀(i, e) ∈ S × E (8.1)

ρr,f − (M −m)ξr,f ≤ 0, ∀(r, f) ∈ R×F
∑

f∈F

ξr,f ≤ 1, ∀r ∈ R

ξ ∈ {0, 1}|R×F|, ρ ∈ Z|R×F|
≥0 .

The model assumes that the Pi passengers of each OD-pair i travel on a
unique shortest path P i (with respect to some distance in space or time)
through the network, such that demands P i

e on capacities of edges e arise,
and, likewise, demands F i

e on frequencies of edges. These demands can
be covered by a set R of possible routes (or lines) in G, which can be
operated at a (finite) set of possible frequencies F , and with a minimal and
maximal number of wagons m and M in each train. ccap is the capacity of
a wagon, c1r,f and c2r,f , (r, f) ∈ R×F , are cost coefficients for the operation
of route r at frequency f . The variable ξr,f is equal to 1 if route r is
operated at frequency f , and 0 otherwise, while variable ρr,f denotes the
number of wagons in addition to m on route r with frequency f . The
constraints guarantee sufficient capacity and frequency on each edge, link
the two types of route variables, and ensure that each route is operated at
a single frequency.

Finally, we define the polyhedron P , which gives conditions on the
prices x that the players are asked to pay, as follows. Let (uj−1, uj), j =

168

8.1 The Ticket Pricing Problem

1, . . . , l, be OD-pairs such that uj, j = 0, . . . , l, belong to the travel path
Pst associated with some OD-pair (s, t), u0 = s, and ul = t, and let (u, v) be
an arbitrary OD-pair such that u and v also lie on the travel path Pst from
s to t. We then stipulate that the prices xi/Pi, which individual passengers
of OD-pair i have to pay, must satisfy the monotonicity properties

0 ≤
xuv

Puv

≤
xst

Pst

≤
l
∑

j=1

xuj−1uj

Puj−1uj

. (8.2)

Moreover, for a given number K > 1, we require that the prices should
have the following property

max
st

xst

dstPst

≤ Kmin
st

xst

dstPst

, (8.3)

where dst is the distance of the route (s, t). This inequality guarantees that
the price difference per unit of length, say one kilometer, is bounded by a
factor of K.

The tuple Γ = (N, c, P, 2N) defines a cost allocation game to determine
prices for using the railway network G. Let x∗ be an outcome of the game.
Then the ticket price of each passenger of the i-th. OD-pair is x∗

i divided
by the number of passengers of this OD-pair.

Let f = α + β| · |+ γc for some non-negative numbers α, β, and γ sat-
isfying α + β + γ > 0 and r be some reference price vector of Γ. We want
to use the (f, r)-least core cost allocation method or its dummy friendly
version to allocate the common cost to the passengers. These allocation
methods are valid, efficient, scalar multiplicative, symmetric core cost al-
location methods and the later is dummy friendly due to Section 2.3.3. In
practice, the cost allocation game Γ often does not have any dummy player.
In that case, the two methods coincide.

Due to Section 2.3.4, the best choice for the weight function f may
be the cost function c, i.e., α = β = 0 and γ = 1. As the reference
price vector r we can choose the distance price. This is reasonable since
when two individual passengers compare their prices with each other, they
often base on two factors, namely, the traveling distance and the means
of transportation. The distance price gives them the feeling that they are
treated equally. If they use the same type of train, then their distance prices
depend only on the length of their routes. The distance price of a train
type is often given by a piecewise linear function, where the average cost for
one length unit is decreasing with respect to the traveling distance. With
the distance price, the two passengers have to pay almost the same amount

169

8. Ticket Pricing Problem in Public Transport

of money for a traveling unit by using the same means of transportation.

With this choice of f and r, the (f, r)-least core price is firstly fair in the

game theoretical meaning and secondly kept as near the distance price as

posible. The (f, r)-least core price is more stable than the distance price,

since no group of passengers has to pay much more than their own cost

as we will see in Section 8.4. In special case, when the reference vector r

belongs to the f -least core of Γ, the (f, r)-least core price and r coincide

due to Proposition 2.3.42.

One can also use the f -nucleolus cost allocation method. However, on

one hand it does not take into account the direct comparison between two

individual players, and on the other hand calculating it is very expensive

for large applications like our IC ticket pricing problem.

8.2 Calculating the Cost Function

We recall several heuristics presented in [8] for the integer program (8.1).

Obviously, its first constraint can be strengthened as follows

∑

r∈R,r∋e

∑

f∈F

f(mξr,f + ρr,f) ≥

⌈
∑

i∈S P
i
e

ccap

⌉

, ∀e ∈ E.

Given a set S of OD-pairs, let ldS(e) and FS(e) denote the traffic load

and the required frequency on the edge e for serving all passengers in S,

i.e.,

ldS(e) =
∑

i∈S

P i
e

and

FS(e) = max
i∈S

F i
e .

A route r operating at frequency f is called a line (r, f). We use the short-

hand notation (r, f, γ) for each line (r, f) with γ wagons. The number νr,f,γ
indicates whether it is needed to operate the route r with γ wagons at the

frequency f . If νr,f,γ is set to 0, then the answer is no. At the beginning we

set νr,f,γ = 1 for every triple (r, f, γ). There are several tricks to eliminate

variables, which are listed belows.

If the traffic load for every edge of a route r is satisfied by a single

line (r, f ∗) with γ∗ wagons, i.e.,

ccapf
∗γ∗ ≥ max

e∈r
ldS(e),

170

8.2 Calculating the Cost Function

then it is not needed to use more wagons, i.e.,

νr,f∗,γ = 0, ∀γ > γ∗. (8.4)

Furthermore, if the frequency requirement for every edge of r is also satisfied
by the line (r, f ∗), i.e.,

f ∗ ≥ max
e∈r

FS(e),

then no larger frequency is needed, i.e.,

νr,f,γ∗ = 0, ∀f > f ∗. (8.5)

If a line (r, f) is selected, then in order to fulfil the frequency require-
ment at least k := max{0, FS(e) − f} other trains of other lines must
pass e. Since each train consists of at least m wagons, they transport at
least kmccap passengers. Hence, there remains at most ldS(e) − kmccap
passengers for line (r, f). That means only γ∗

e := ⌈(ldS(e)− kmccap)/ccap⌉
wagons on edge e is needed for line (r, f). Therefore, we can set

νr,f,γ = 0, ∀γ > max
e∈r

γ∗
e . (8.6)

Let (r∗, f ∗) be a line satisfying the frequency requirement of every edge
in r∗. Furthermore, assume that the frequency f ∗ is sufficient to satisfy the
demand of wagons of every edge e in r∗, i.e.,

γ∗ := max

{⌈

1

f ∗
max
e∈r∗

⌈

ldS(e)

ccap

⌉⌉

,m

}

≤ M.

The line (r∗, f ∗) with γ∗ wagons can fulfil the demands of every edge in r∗.
For each line (r, f) with γ wagons, we denote its cost as cr,f,γ ,

cr,f,γ = c1r,f + (γ −m)c2r,f .

For any frequency f > f ∗, if the cost of the line (r∗, f) with m wagons,
cr∗,f,m, is not smaller than cr∗,f∗,γ∗ , then we can replace the line (r∗, f) by
the line (r∗, f ∗) without increasing the objective value. We set

νr∗,f,γ = 0, ∀γ. (8.7)

Even if cr∗,f,m < cr∗,f∗,γ∗ we can derive a bound on the number of wagons in
the line (r∗, f). If the cost of the line (r∗, f) with γ wagons exceeds cr∗,f∗,γ∗ ,
i.e,

γ ≥

⌈

cr∗,f∗,γ∗ − c1r∗,f
c2r∗,f

⌉

+m,

171

8. Ticket Pricing Problem in Public Transport

then the line (r∗, f) with γ wagons can be replaced by the line (r∗, f ∗)

with γ∗ wagons in any optimal solution. Hence, we can set

νr∗,f,γ = 0, ∀γ ≥

⌈

cr∗,f∗,γ∗ − c1r∗,f
c2r∗,f

⌉

+m. (8.8)

The last variable elimination scheme is based on the so called dominance

rule. A line (r, f, γ) is dominated by another line (r, f ′, γ′), (f, γ) 6= (f ′, γ′),

if cr,f,γ ≥ cr′,f ′,γ′ and the capacity and frequency of (r, f, γ) are smaller than

the ones of (r′, f ′, γ′) or the extra amounts are superfluous, i.e.,

fγ ≤ f ′γ′ or f ′γ′ccap +max{0, FS(e)− f ′}mccap ≥ ldS(e), ∀e ∈ r

and

f ≤ f ′ or f ′ +max

{

0,
ldS(e)−min{f ′γ′, fγ}ccap

Mccap

}

≥ FS(e), ∀e ∈ r.

The dominated line (r, f, γ) can be replaced by the line (r′, f ′, γ′) in every

feasible solution without increasing the objective value. Therefore, we can

set for all dominated line (r, f, γ)

νr,f,γ = 0. (8.9)

We can also use the idea of the dominance rule to define the domination of

two lines (r1, f1, γ1) and (r2, f2, γ2) over a line (r, f, γ). Again, a dominated

line can be ignored.

Finally, we eliminate the variables ξr,f and ρr,f of the integer pro-

gram (8.1) for every line (r, f) satisfing

νr,f,γ = 0, ∀m ≤ γ ≤ M.

For a line (r, f), if the above condition does not hold, then we still can

derive an upper bound for ρr,f as follows

ρr,f ≤ max
m≤γ≤M
νr,f,γ 6=0

γ −m.

172

8.3 The Separation Problem

8.3 The Separation Problem

In order to calculate the (f, r)-least core of Γ, we use Algorithm 4.2.3 and
have to solve thereby the separation problem in every loop. The separation
problem for (x∗, ε∗) is to find a coalition T ∈ 2N\{∅, N} such that (x∗, ε∗)
violates the constraint

x∗(T) + ε∗f(T) ≤ c(T). (8.10)

This can be done by solving the optimization problem

max
∅6=S(N

x∗(S) + ε∗f(S)− c(S). (8.11)

If the optimal value is non-positive, then the algorithm terminates and gives
us the (f, r)-least core of Γ. Otherwise, there exists a coalition T , which
violates the constraint (8.10). We choose f = α+β|·|+γc for some numbers
α, β, γ ≥ 0 satisfying α + β + γ > 0. Assume that the pair (x∗, ε∗) is not
arbitrary but satisfies γε∗ ≤ 1. This assumption holds for every separation
problem of Algorithm 4.2.3 because of Proposition 2.3.4. Moreover, due to
Section 4.2.4, the optimization problem (8.11) can be reformulated as the
following integer program

max
(ξ,ρ,z)

αε∗ +
∑

i∈N

(x∗
i + βε∗)zi + (γε∗ − 1)

∑

(r,f)∈R×F

(c1r,fξr,f + c2r,fρr,f) (8.12)

s.t.
∑

r∈R,r∋e

∑

f∈F

ccapf(mξr,f + ρr,f)−
∑

i∈N

P i
ezi ≥ 0, ∀e ∈ E

∑

r∈R,r∋e

∑

f∈F

fξr,f − F i
ezi ≥ 0, ∀(i, e) ∈ N × E

ρr,f − (M −m)ξr,f ≤ 0, ∀(r, f) ∈ R×F
∑

f∈F

ξr,f ≤ 1, ∀r ∈ R

ξ ∈ {0, 1}|R×F|, ρ ∈ Z|R×F|
≥0 , z ∈ {0, 1}|N |\{0,1}.

The variables zi, i ∈ N , correspond to a coalition S ⊆ N , zi is equal
to 1 if the player i belongs to S and 0 otherwise. Other variables and
constraints come from the integer program (8.1), which models the cost
function. A violated constraint exists iff the optimal value is larger than
0. If it is positive, then one can find a feasible solution (ξ̄, ρ̄, z̄) of (8.12)
with a positive objective function value. Define T := {i ∈ N | z̄i = 1}, then
(x∗, ε∗) violates the constraint (8.10).

173

8. Ticket Pricing Problem in Public Transport

For solving the separation problem, we can use the primal and dual

heuristics presented in Section 4.2.5 in order to find violated coalitions

faster and have a good stopping criterion in each separation step. Moreover,

one can exploit the special structure of the problem to eliminate some

variables of the integer program (8.12). The idea is to modify the heuristics

in Section 8.2. Let ld(e) and F (e) denote the traffic load and the required

frequency on the edge e for serving all passengers in N , i.e.,

ld(e) =
∑

i∈N

P i
e

and

F (e) = max
i∈N

F i
e .

Clearly, the traffic load and the required frequency on each edge e for

serving any coalition S are bounded by ld(e) and F (e), respectively. Again,

at the beginning, we set νr,f,γ = 1 for each line (r, f, γ). The heuristics

(8.4), (8.5), (8.7), and (8.8) with S = N are still true for the integer

program (8.12), while the heuristics using the dominance rule must be

modified. We apply the heuristics (8.4), (8.5), (8.7), and (8.8) with S = N

and can set thereby νr,f,γ = 0 for several lines (r, f, γ). The heuristics using

the dominance rule can be modified as follows. For each line (r, f, γ), if

there exists another line (r, f ′, γ′) satisfying cr,f,γ ≥ cr′,f ′,γ′ ,

fγ ≤ f ′γ′ or f ′γ′ccap ≥ ld(e), ∀e ∈ r

and

f ≤ f ′ or f ′ ≥ F (e), ∀e ∈ r,

then we can replace the line (r, f, γ) by (r, f ′, γ′) in any feasible solution

of (8.12) without decreasing the objective value. And, hence, in that case

we can set νr,f,γ = 0. Finally, we eliminate the variables ξr,f and ρr,f of the

integer program (8.12) for every line (r, f) satisfing

νr,f,γ = 0, ∀m ≤ γ ≤ M.

For a line (r, f), if the above condition does not hold, then we still can

derive an upper bound for ρr,f as follows

ρr,f ≤ max
m≤γ≤M
νr,f,γ 6=0

γ −m.

174

8.4 Ticket Prices for the Dutch IC Network

Breda

Eindhoven

Sittard

Arnhem

Zwolle

Assen

Groningen

Apeldoorn

Maastricht

Leeuwarden

Amsterdam

Den Haag

Heerenveen

Schiphol

Rotterdam

Rosendaal

Zevenaar

Oldenzaal

Hengelo

Lelystad

Utrecht

Figure 8.1: The intercity network of the Netherlands

8.4 Ticket Prices for the Dutch IC Network

We now use our ansatz to compute ticket prices for the intercity network

of the Netherlands, which is shown in Figure 8.1. Our data is a simplified

version of that published in [8], namely, we consider all 23 cities, but re-

duce the number of OD-pairs to 85 by removing pairs with small demand.

However, with 285 − 1 possible coalitions, the problem is still very large.

Since there is only one train type, the distance price depends only on the

traveling distance. As reported in [6], the distance price, which has been

used by the railway operator NS Reizigers for this network, is piecewise

linear depending on the traveling distance, where the average price for one

kilometer decreases. However, since the data of this academic example and

the real data of NS Reizigers are different, we do not know the coefficients

of the distance price function for our application. Hence, instead of using

a piecewise linear function, we choose the linear distance price function for

pricing. That means each passenger has to pay the same amount of money

175

8. Ticket Pricing Problem in Public Transport

for one traveling distance, which is called the base price. The distance price

of each passenger is then the product of the base price and the traveling

distance. The base price is so chosen that the total distance prices cover

exactly the common cost, i.e.,

base price =
common cost

total traveling kilometers of all passengers
.

The distance price x̄i of an OD-pair i is the product of the distance price

for one passenger in this OD-pair and the number of its passengers. For

our (f, r)-least core price, we choose f = c and r = x̄. We start with

a “pure fairness scenario” where the prices are only required to have the

monotonicity property (8.2), i.e., we ignore property (8.3) for the moment.

By using Algorithm 4.2.3, we determine the (c, x̄)-least core, which contains

a unique point x∗, and define the (c, x̄)-least core ticket price (lc-price) for

each passenger in an OD-pair i as p∗i := x∗
i /Pi.

In order to compare the distance and (c, x̄)-least core prices, we consider

their fairness distribution diagram based on a pool of 7084 essential coali-

tions (see Chapter 5). The pool contains coalitions which have the worst

relative profits with these prices. The coalitions in the pool are sorted

in non-decreasing order regarding their relative profits with the distance

prices. Figure 8.2 compares the lc-price vector with the distance price vec-

tor. The picture on the left side plots the relative profits c(S)−x(S)
c(S)

of every

coalition S in the pool with x = x∗ and x = x, while the picture on the

right side considers only the 100 first coalitions. The picture on the left

side of Figure 8.3 plots also these c-profits but the values are sorted in non-

decreasing order for both prices x∗ and x, i.e., a point k in the horizontal

axis does not represent the k-th. coalition in the pool but the two coali-

tions which have the k-th. smallest c-profits with the two prices x∗ and x.

Note that the core of this particular game is empty and therefore with any

price vector there exist coalitions which have to pay more than their costs.

The maximum c-loss of any coalition with the lc-prices is a mere 1.1%.

This hardly noticeable unfairness is in contrast with the 25.67% maximum

c-loss of the distance prices. In fact, there are 10 other coalitions in our

pool with losses of more than 20%. Even worse, the coalition with the

maximum loss is a large coalition of passengers traveling in the center of

the country. It is the coalition of the following 8 OD-pairs: Amsterdam

CS – Den Haag HS, Rotterdam CS – Schiphol, Amsterdam CS – Rotter-

dam CS, Den Haag HS – Rotterdam CS, Roosendaal Grens – Schiphol,

Amsterdam CS – Roosendaal Grens, Den Haag HS – Roosendaal Grens,

176

8.4 Ticket Prices for the Dutch IC Network

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

Figure 8.2: Distance vs. unbounded (c, x̄)-least core prices (1)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices 1

 2

 4

 6

 8

 10

 12

 14

 0 20000 40000 60000 80000

lc
-p

ric
es

/d
is

ta
nc

e-
pr

ic
es

number of passengers

distribution

Figure 8.3: Distance vs. unbounded (c, x̄)-least core prices (2)

Roosendaal Grens – Rotterdam CS. Table 8.1 lists several major coalitions,

which would earn a substantial benefit from shrinking the network. This

table demonstrates the unfairness and instability of the distance price vec-

tor. Figure 8.2 shows that the lc-prices decrease significantly for all of the

100 worst coalitions. Many of them have even a relative profit of more than

10% with the lc-prices.

The picture on the right side of Figure 8.3 plots the distribution of the

ratio between the lc-prices and the distance prices. A point (Π, ρ) in this

graph means that there are exactly Π passengers who have to pay at least ρ

times their distance prices. It can be seen that lc-prices are lower, equal,

or slightly higher than the distance prices for most passengers. However,

some passengers, mainly in the periphery of the country, pay much more to

cover the costs that they produce. The increment factor is at most 3.775

except for two OD-pairs, which face very high price increases. The top of

the list is the OD-pair Den Haag CS–Den Haag HS, which gets 14.4 times

more expensive. The reason is that the travel path of this OD-pair consists

177

8. Ticket Pricing Problem in Public Transport

Coalition ID Relative profit Percentage of all

passengers

0 -0.256723 15.34%

26 -0.183909 18.35%

56 -0.16356 30.81%

88 -0.141216 34.02%

133 -0.118969 57.34%

191 -0.104312 78.14%

Table 8.1: Unfairness of the distance price vector

of a single edge that is not used by any other travel route. The other two in

the top three OD-pairs with a high increment factor are Hengelo–Oldenzaal

Grens (factor 11.85) and Apeldoorn–Oldenzaal Grens (factor 3.775). The

passengers of these OD-pairs travel in the periphery of the country.

From a game theoretical point of view, these (unbounded) lc-prices can

be seen as fair. It would, however, be very difficult to implement such prices

in practice. We therefore add property (8.3) in order to limit the difference

in the prices for one traveling kilometer of passengers by a factor of K.

Considering the results from the previous computation, we set K = 3.

The (c, x̄)-least core prices with this constraint are called the bounded lc-

prices. Figure 8.4 compares the relative profits of the coalitions in our

coalition-pool with the bounded and unbounded (c, x̄)-least core prices.

The picture on the left side presents the relative profits of 7050 coalitions,

while the picture on the right side plots also these c-profits but their values

are sorted in non-decreasing order. Here we do not plot the remaining 34

-0.05
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

unbounded lc-prices
bounded lc-prices

-0.05
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

unbounded lc-prices
bounded lc-prices

Figure 8.4: Unbounded vs. bounded lc-prices

178

8.4 Ticket Prices for the Dutch IC Network

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 20 40 60 80 100

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

Figure 8.5: Distance vs. bounded (c, x̄)-least core prices (1)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000

re
la

tiv
e

pr
of

it

coalition

lc prices
distance prices

 0

 0.5

 1

 1.5

 2

 0 20000 40000 60000 80000

lc
-p

ric
es

/d
is

ta
nc

e-
pr

ic
es

number of passengers

distribution

Figure 8.6: Distance vs. bounded (c, x̄)-least core prices (2)

coalitions in the pool which have larger c-profits in order to observe the

differences better. These pictures show that the c-profits of every coalition

with the two lc-prices are relatively close to each other. However, the

bounded lc-prices are better than the unbounded ones. Figure 8.5 and

Figure 8.6 give the same comparisons to the distance prices as Figure 8.2

and Figure 8.3 for the bounded lc-prices. The maximum c-loss of any

coalition with the bounded lc-prices is 1.68%, which is slightly worse than

before. But the price increments are significantly smaller as plotted in the

picture on the right side of Figure 8.6. Again a point (Π, ρ) in this graph

says that there are exactly Π passengers who have to pay at least ρ times

their distance prices. Table 8.2 presents the 20 smallest and 15 largest

ratios of lc-prices to distance prices. The set of coalitions with these ratios

is the same for bounded and unbounded lc-prices. With the bounded lc-

prices, nobody has to pay more than 1.89 times his distance price and

nobody has to pay for one unit more than 3 times the unit price of another

passenger. In this way, one can come up with price systems that constitute

179

8. Ticket Pricing Problem in Public Transport

a good compromise between fairness and enforceability.
The computations were done on a PC with an Intel Core2 Quad 2.83GHz

processor and 16GB RAM. CPLEX 11.2 was used as linear and integer pro-
gram solver. It took in average 41048 and 65929 seconds respectively in
order to calculate the bounded and unbounded lc-prices.

180

8.4 Ticket Prices for the Dutch IC Network

OD-pair
bounded lc-price

distance price

unbounded lc-price

distance price

BEST 20

Arnhem–Zevenaar Grens 0.63 0.52

Amsterdam CS–Roosendaal 0.63 0.62

Breda–Eindhoven 0.63 0.56

Roosendaal–Rotterdam CS 0.63 0.47

Roosendaal–Zwolle 0.65 0.66

Eindhoven–Den Haag CS 0.65 0.62

Roosendaal–Schiphol 0.69 0.69

Eindhoven–Roosendaal 0.70 0.61

Eindhoven–Rotterdam CS 0.71 0.63

Amsterdam CS–Eindhoven 0.72 0.74

Den Haag HS–Roosendaal 0.73 0.78

Roosendaal–Utrecht CS 0.73 0.70

Rotterdam CS–Zwolle 0.74 0.75

Amsterdam CS–Rotterdam CS 0.76 0.75

Amsterdam CS-Zevenaar 0.79 0.84

Utrecht CS–Zevenaar 0.84 0.81

Rotterdam CS–Zevenaar 0.85 0.82

Arnhem–Roosendaal 0.85 0.83

Arnhem–Eindhoven 0.86 0.62

Lelystad–Schiphol 0.86 0.51

WORST 15

Breda–Roosendaal 1.30 1.28

Hengelo–Utrecht CS 1.30 1.37

Schiphol–Zwolle 1.30 1.42

Den Haag CS-Schiphol 1.35 1.31

Den Haag HS–Schiphol 1.36 1.35

Amsterdam Zuid–Zwolle 1.42 1.54

Amsterdam CS–Zwolle 1.52 1.26

Breda–Rotterdam CS 1.55 1.58

Lelystad–Utrecht CS 1.55 1.58

Amsterdam Zuid–Lelystad 1.84 1.88

Apeldoorn–Hengelo 1.89 1.67

Apeldoorn–Oldenzaal 1.89 3.77

Den Haag HS–Den Haag CS 1.89 14.41

Hengelo–Oldenzaal 1.89 11.85

Lelystad–Zwolle 1.89 2.62

Table 8.2: The ratios of lc-prices to distance prices

181

8. Ticket Pricing Problem in Public Transport

182

Chapter 9

Perspectives

We have seen that there does not exist a “perfect” cost allocation method

which safisfies all of our axioms. For more specific families of cost allocation

games, there may exist cost allocation methods which safisfy more desired

properties simultaneously than for the general case. However, real-world

applications often do not fulfil the required assumptions of such families.

This negative result shows that total fairness is hard to define mathemati-

cally and often does not exist in practice. The presented concepts can model

fairness in some way and reflect the real costs of coalitions. However, there

are still several issues which must be answered for each application, namely,

the choice of weight function and reference price vector. On one hand, this

shows that mathematical concepts can help but in order to construct a cost

allocation method which should be accepted by all users convincing and

negotiating are still required. On the other hand, the freedom by choosing

weight function and reference price vector provides the decision maker the

possibility to have a pool of several cost allocations, which are fair in some

way, for selecting.

The numerical results for the considered applications show that the

game theoretical concepts provide much better prices in terms of coalitional

stability than the traditional cost allocation approaches. These game the-

oretical prices minimize the incentive for users to form subcoalitions and

increase satisfaction with the allocated prices amongst users. We are con-

fident that these game theoretical concepts will bring advantages against

traditional approaches for every real-world applications.

In this thesis, the difficulty by calculating the allocations which are

based on the considered game theoretical concepts are overcome by using

constraint generation approaches. Several general heuristics are considered

183

9. Perspectives

in order to improve the solving time. Our approach works well for large
applications like the ticket pricing problem for the Dutch IC network with
85 players and 285 − 1 coalitions. In order to solve even larger applications
or to decrease the running time, one may investigate more problem specific
heuristics and valid cuts for the separation problem.

184

Bibliography

[1] R. Aumann and S. Hart, Handbook of Game Theory with Economic

Applications, Vol. 3, Handbooks in Economics 11, Elsevier, Amster-

dam, 2002.

[2] E. Bjørndal, H. Hamers, and M. Koster, Cost allocation in a

bank ATM network., Mathematical Methods of Operations Research,

59 (2004), pp. 405–418.

[3] O. N. Bondareva, Some applications of linear programming methods

to the theory of cooperative games (in russian), Problemy Kybernetiki,

10 (1963), pp. 119–139.

[4] R. Borndörfer, M. Grötschel, S. Lukac, M. Mitusch,

T. Schlechte, S. Schultz, and A. Tanner, An auctioning ap-

proach to railway slot allocation, Tech. Rep. ZIB Report 05-45, Zuse-

Institut Berlin, 2005.

[5] R. Borndörfer and N.-D. Hoang, Determining Fair Ticket

Prices in Public Transport by Solving a Cost Allocation Problem, to

appear in Modeling, Simulation and Optimization of Complex Pro-

cesses, Proceedings of the Fourth International Conference on High

Performance Scientific Computing, Springer, 2011.

[6] R. Borndörfer, M. Neumann, and M. E. Pfetsch, Opti-

mal fares for public transport, Operations Research Proceedings 2005,

(2006), pp. 591–596.

[7] , Models for fare planning in public transport, Tech. Rep. ZIB

Report 08-16, Zuse-Institut Berlin, 2008.

[8] M. R. Bussieck, Optimal Lines in Public Rail Transport, PhD thesis,

TU Braunschweig, 1998.

185

BIBLIOGRAPHY

[9] E. Danna, E. Rothberg, and C. Le Pape, Exploring relaxation

induced neighborhoods to improve MIP solutions, Mathematical Pro-

gramming Series A, 102 (2005), pp. 71–90.

[10] G. B. Dantzig, On the significance of solving linear programming

problems with some integer variables, Econometrica, 28 (1960), pp. 30–

44.

[11] R. W. Day and S. Raghavan, Fair payments for efficient alloca-

tions in public sector combinatorial auctions, Management science, 53

(2007), pp. 1389–1406.

[12] N. Devanur, M. Mihail, and V. V. Vazirani, Strategyproof cost-

sharing mechanisms for set cover and facility location games, Proceed-

ings of the 4th ACM Conference on Electronic Commerce, (2003),

pp. 108–114.

[13] S. Engevall, Cost Allocation in Some Routing Problem - A Game

Theoretic Approach, PhD thesis, Linköping Institute of technology,

2002.

[14] S. Engevall, M. Göthe-Lundgren, and P. Värbrand, The

traveling salesman game: An application of cost allocation in a gas

and oil company, Annals of Operations Research, 82 (1998), pp. 453–

471.

[15] , The heterogenous vehicle-routing game, Transportation science,

38 (2004), pp. 71–85.

[16] U. Faigle, W. Kern, and J. Kuipers, On the computation of the

nucleolus of a cooperative game, Internat. J. Game Theory, 30 (2001),

pp. 79–98.

[17] U. Faigle, W. Kern, and D. Paulusma, Note on the compu-

tational complexity of least core concepts for min-cost spanning tree

games, Math. Methods of Operations Research, 52 (2000), pp. 23–38.

[18] L. Fleischer, J. Könemann, S. Leonardi, and G. Schäfer,

Simple cost sharing schemes for multi-commodity rent-or-buy and

stochastic steiner tree, Proceedings of the 38th Annual ACM Sym-

posium on Theory of Computing, (2006), pp. 663–670.

186

BIBLIOGRAPHY

[19] V. Fragnelli, Game theoretic analysis of transportation problems,

Proceedings of the 4th Twente Workshop on Cooperative Game The-

ory joint with 3rd Dutch-Russian Symposium, (2005), pp. 27–38.

[20] V. Fragnelli, I. Garcia-Jurado, H. Norde, F. Patrone,

and S. Tijs, How to Share Railway Infrastructure Costs?, F.Patrone,

I.Garcia-Jurado and S.Tijs, editors, Game Practice: Contributions

from Applied Game Theory, Kluwer, Amsterdam, 1999, pp 91-101.

[21] V. Fragnelli and A. Iandolino, A cost allocation problem in

urban solid wastes collection and disposal., Mathematical Methods of

Operations Research, 59 (2004), pp. 447–463.

[22] M. Garey and D. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness, Freeman, New York, 1979.

[23] D. B. Gillies, Some Theorems on N-Person Games, PhD thesis,

Princeton University, 1953.

[24] , Solutions to general non-zero-sum games, Annals of Mathemat-

ics Studies 40, (1959), pp. 47–85.

[25] M. Goemans and M. Skutella, Cooperative facility location

games., Journal of Algorithms, 50 (2004), pp. 194–214.

[26] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid

method and its consequences in combinatorial optimization, Combi-

natorica, 1 (1981), pp. 169–197.

[27] , Geometric Algorithms and Combinatorial Optimization, 2. corr.

ed., Springer-Verlag, 1993.

[28] A. Gupta, A. Kumar, and T. Roughgarden, Simpler and

better approximation algorithms for network design, Proceedings of

the Thirty-Fifth Annual ACM Symposium on Theory of Computing,

(2003), pp. 365–372.

[29] A. Gupta, A. Srinivasan, and E. Tardos, Cost-sharing mecha-

nisms for network design, Proceedings of the 7th International Work-

shop on Approximation Algorithms for Combinatorial Optimization

Problems, (2004), pp. 139–150.

187

BIBLIOGRAPHY

[30] Å. Hallefjord, R. Helming, and K. Jørnsten, Computing the

nucleolus when the characteristic function is given implicitly: A con-

straint generation approach, International Journal of Game Theory, 24

(1995), pp. 357–372.

[31] S. S. Hamlen, W. A. Hamlen Jr., and J. T. Tschirhart, The

use of core theory in evaluating joint cost allocation schemes, The

Accounting Review, 52 (1977), pp. 616–627.

[32] S. Herzog, S. Shenker, and D. Estrin, Sharing the cost of mul-

ticast trees: An axiomatic analysis, IEEE/ACM Transactions on Net-

working, 5 (1997), pp. 847–860.

[33] N. Immorlica, M. Mahdian, and V. S. Mirrokni, Limita-

tions of cross-monotonic cost sharing schemes, Proceedings of the

Sixteenth Annual ACM-SIAM symposium on Discrete Algorithms,

(2005), pp. 602–611.

[34] K. Jain and V. V. Vazirani, Applications of approximation algo-

rithms to cooperative games, Proceedings of the Thirty-Third Annual

ACM Symposium on Theory of Computing, (2001), pp. 364–372.

[35] P. A. Kattuman, R. J. Green, and J. W. Bialek, Allocating

electricity transmission costs through tracing: A game-theoretic ratio-

nale, Operations Research Letters, 32 (2004), pp. 114–120.

[36] L. G. Khachiyan, A polynomial algorithm in linear programming

(in Russian), Doklady Akademii Nauk SSSR, 244 (1979), pp. 1093–

1096 (English translation: Soviet Mathematics Doklady 20 (1979) pp.

191–194).

[37] E. Kohlberg, On the nucleolus of a characteristic function game,

SIAM Journal on Applied Mathematics, 20 (1971), pp. 62–66.

[38] J. Könemann, S. Leonardi, and G. Schäfer, A group-

strategyproof mechanism for Steiner forests, Proceedings of the Six-

teenth Annual ACM-SIAM Symposium on Discrete Algorithms,

(2005), pp. 612–619.

[39] J. Könemann, S. Leonardi, G. Schäfer, and S. van Zwam,

From primal-dual to cost shares and back: A stronger lp relaxation for

188

BIBLIOGRAPHY

the Steiner forest problem, Proceedings of the 32nd International Col-

loquium on Automata, Languages and Programming, (2005), pp. 930–

942.

[40] S. Leonardi and G. Schäfer, Cross-monotonic cost sharing meth-

ods for connected facility location games, Proceedings of the 5th ACM

Conference on Electronic Commerce, (2004), pp. 242–243.

[41] F. Leveque, Transport Pricing of Electricity Networks, Kluwer Aca-

demic Publishers, Dordrecht, 2003.

[42] S. Littlechild, A simple expression for the nucleolus in a special

case, International Journal of Game Theory, 3 (1971), pp. 21–29.

[43] S. Littlechild and G. Owen, A simple expression for the Shapley

value in a special case, Management Science, 20 (1973), pp. 370–372.

[44] S. Littlechild and G. Thompson, Aircraft landing fees: A game

theory approach, The Bell Journal of Economics and Management Sci-

ence, 8 (1977), pp. 186–204.

[45] M. Maschler, B. Peleg, and L. S. Shapley, Geometric proper-

ties of the kernel, nucleolus, and related solution concepts, Mathemat-

ics of Operations Research, 4 (1979), pp. 303–338.

[46] N. Megiddo, Cost allocation for steiner trees, Networks, 8 (1978),

pp. 1–6.

[47] H. Moulin and S. Shenker, Strategyproof sharing

of submodular costs: Budget balance versus efficiency,

http://www.aciri.org/shenker/cost.ps, (1997).

[48] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani,

Algorithmic Game Theory, Cambridge University Press, Cambridge,

2007.

[49] M. Pal and E. Tardos, Group strategyproof mechanisms via primal-

dual algorithms, Proceedings of the Annual IEEE Symposium on Foun-

dations of Computer Science, (2003), pp. 584–593.

[50] T. Parker, Allocation of the Tennessee Valley Authority projects,

Transaction of the American Society of Civil Engineers, 108 (1943),

pp. 174–187.

189

BIBLIOGRAPHY

[51] J. A. M. Potter, An axiomatization of the nucleolus, International
Journal of Game Theory, 19 (1991), pp. 365–373.

[52] Ransmeier, The Tennessee Valley Authority: A case study in the
economics of multiple purpose stream planning, Vanderbilt University
Press; Nashville, Tennessee, (1942).

[53] D. Schmeidler, The nucleolus of a characteristic function game,
SIAM Journal on Applied Mathematics, 17 (1969), pp. 1163–1170.

[54] L. S. Shapley, A Value of n-person Games, In H. W. Kuhn and A.
W. Tucker, editors, Contributions to the Theory of Games, Princeton
University Press, 1953, pp. 307-317.

[55] , On balanced sets and cores, Naval Research Logistics Quarterly,
14 (1967), pp. 453–460.

[56] L. S. Shapley and M. Shubik, Quasi-cores in a monetary economy
with non-convex preferences, Econometrica, (1966), pp. 805–827.

[57] M. Shubik, Incentives, decentralized control, the assignment of joint
costs and internal pricing, Management Science, 8 (1962), pp. 325–
343.

[58] D. Skorin-Kapov, On the core of the minimum cost Steiner tree
game in networks, Annals of Operations Research, 57 (1995), pp. 233–
249.

[59] C. Snijders, Axiomatization of the nucleolus, Mathematics of Oper-
ations Research, 20 (1995), pp. 189–196.

[60] A. I. Sobolev, The characterization of optimality principles in co-
operative games by functional equations, Mat. Metody soc. Nauk., 6
(1975), pp. 94–151.

[61] P. Straffin and J. P. Heaney, Game theory and the tennessee
valley authority, International Journal of Game Theory, 10 (1981),
pp. 35–43.

[62] A. D. Taylor and A. M. Pacelli, Mathematics and politics. Strat-
egy, voting, power and proof. 2nd ed., Springer, 2008.

[63] H. P. Young, Monotonic solutions of cooperative games, Interna-
tional Journal of Game Theory, 1985 (14), pp. 65–72.

190

BIBLIOGRAPHY

[64] , Cost Allocation: Methods, Principles, Application, North-
Holland, Amsterdam, 1985.

[65] , Cost Allocation, In R. J. Aumann and S. Hart, editors, Handbook
of Game Theory, vol. 2, North-Holland, Amsterdam, 1994, pp. 1193-
1235.

[66] , Cost allocation, demand revelation, and core implementation,
Mathematical Social Sciences, 36 (1998), pp. 213–228.

[67] H. P. Young, N. Okada, and T. Hashimoto, Cost allocation in
water resources development, Water Resources Research, 18 (1982),
pp. 463–475.

191

BIBLIOGRAPHY

192

Notations

C(Γ) the core of Γ
Cε,f (Γ) the (ε, f)-core of Γ
ΓD the dummy-free subgame of Γ
ΓS the subgame of Γ corresponding to the coalition S
D the dummy operator
d(Γ) the set of all dummy players of Γ
dim dimension of a vector space
ef (S, x) f -excess of coalition S at x
θf,λ f -excess function of Γ
λΓ scalar multiplication of λ and Γ
LCf (Γ) the f -least core of Γ
LCf,r(Γ) the (f, r)-least core of Γ
Nf (Γ) the f -nucleolus of Γ
Q+ {x ∈ Q | x ≥ 0}
Q>0 {x ∈ Q | x > 0}
R+ {x ∈ R | x ≥ 0}
R>0 {x ∈ R | x > 0}
RN R|N | for some given set N
Σ+ Σ\{∅}
span(V) the subspace of Rn spanned by V = {v1, v2, . . . , vm},

vi ∈ R
n, i = 1, . . . ,m

x(S)
∑

i∈S xi

X (N, c, P,Σ) imputation set {x ∈ P | x(N) = c(N)}
χS incidence vector of the set S with respected to N ⊇ S
χΣ {χS |S ∈ Σ} for Σ ⊆ 2N

IP integer program
LP linear program
MIP mixed integer program

193

194

Index

(ε, f)-core, 29
(f, r)-least core, 68
(f, r)-least core cost allocation, 68
f -excess, 12
f -excess function, 52
f -excess vector, 52
f -least core, 29
f -least core cost allocation, 36
f -least core radius, 29
f -nucleolus, 52
f -nucleolus cost allocation, 61

additive, 22

balanced collection, 78
balanced game, 79
balanced pair, 79
bounded general cost

allocation game, 32

coalition, 11
coalitionally stable, 15
combinatorial cost allocation game,

108
core, 29
core cost allocation method, 16
cost allocation game, 11
cost allocation problem, 9

data of a cost allocation game, 11
dummy operator, 24
dummy player, 23
dummy-free subgame, 24
dummy-friendly version, 24

efficient cost allocation method, 15
efficient price, 15
ellipsoid method, 92
equal cost allocation method, 17
equivalent players, 21
excess, 12
excess function, 52
excess vector, 52

facet-complexity, 92
fairness distribution diagram, 127
family of possible coalitions, 11
full dimensional, 52
full dimensional game, 52

general cost allocation game, 12
grand coalition, 11

imputation, 11
imputation set, 11

lattice family, 93
least core, 30
least core cost allocation, 36
least core radius, 29

modular function, 95
monotonic cost allocation method, 16
monotonically increasing, 83

nucleolus, 52
nucleolus cost allocation, 61

oracle, 92
oracle-polynomial, 92

195

INDEX

partitioning family, 33
possible coalitions, 11
proportional least core, 30
proportional nucleolus, 52

reference price-function, 67
reference price-vector, 67

scalar multiplication, 23
scalar multiplicative, 23
set of valid prices, 11
simple cost allocation game, 11
strongly bounded general

cost allocation game, 51
strong ε-core, 29
subgame, 12
submodular function, 93
symmetric, 22

user friendly cost allocation method,
16

user friendly price, 16

valid cost allocation method, 14
valid price, 11, 14

weak least core, 30
weak nucleolus, 52
weak ε-core, 29
well-defined cost allocation method,

12
well-described polyhedron, 92

zero player, 23

196

