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Abstract: Hybrid modeling, meaning the integration of data-driven and knowledge-based
methods, is quickly gaining popularity in many research fields, including bioprocess engineering
and development. Recently, the data-driven part of hybrid methods have been largely extended
with machine learning algorithms (e.g., artificial neural network, support vector regression),
while the mechanistic part is typically based on differential equations to describe the dynamics
of the process based on its current state. In this work we present an alternative hybrid model
formulation that merges the advantages of Gaussian Process State Space Models and the
numerical approximation of differential equation systems through full discretization .

The use of Gaussian Process Models to describe complex bioprocesses in batch, fed-batch, and
continuous has been reported in several applications. Nevertheless, handling the dynamics of
the states of the system, known to have a continuous time-dependent evolution governed by
implicit dynamics, has proven to be a major challenge. Discretization of the process matching
the sampling steps is a source of several complications, as are: 1) not being able to handle
multi-rate date sets, 2) the step-size of the derivative approximation is defined by the sampling
frequency, and 3) a high sensitivity to sampling and addition errors. We present a coupling of
polynomial regression with Gaussian Process Models as representation of the right-hand side of
the ordinary differential equation system and demonstrate the advantages in a typical fed-batch
cultivation for monoclonal antibody production.

Keywords: Nonparametric methods, Nonlinear system identification, Grey box modelling, Time
series modelling, Gaussian Process Models, Bioprocess Engineering, Mammalian Cell Cultures

1. INTRODUCTION Support Vector Machine (for regression)

and genetic programming

Mathematical representations of (bio)chemical reaction ki-  ( ).

netics in complex process systems can be broadly classified
into two approaches: (i) data-driven, statistical, black box,
or Machine Learning (ML) models, and (ii) first principles-
based, mechanistic, or white box models

( ). Hybrid models or grey-box models have emerged
aiming to combine the features of existing modeling tech-
niques and very interesting applications have been re-
ported in chemical engineering and in biotechnology

(2019); (2014).
1.1 Hybrid/Grey-Box Models

A typical procedure to setup the hybrid model involves
formulating the basic mass and energy balances while
using data-driven models to describe complex unknown
properties of the system. Some commonly used data-driven
models are: artificial neural network ( ),
Adaptive Regression Splines ( ),

* this work is a result of the research and development team at
DataHow A.G.

1.2 Gaussian Process State Space Models

A very promising class are Gaussian Process State Spaces
Models (GPSSM) ( ), which aim to
predict the dynamics of a process and its time evolution by
describing the state space with Gaussian Process Models
(GPM) ( ). By this, the advantages of
GPMs can be applied to nonlinear dynamic processes with
a very limited knowledge of the first principles governing
the time evolution of the system such as fed-batch cultiva-
tion ( ). The added value of GPSSMs has
been documented in several applications ( ),
and offer a clear advantage on systems, with small to mid
size data sets with noise that is close to Gaussian, and
where the uncertainty in the predictions play an impor-
tant role. Still, a major drawback is the forward problem
handling of the data and its representation, and issues
associated with it (e.g. sensitivity to noise). An additional
limitation is the impossibility to treat multi-rate data
sets properly. Finally, the discretization of the continuous



dynamic process is bound to the sampling rate of the data
set, which can pose several difficulties in scarce sampling
processes (e.g. mammalian cell cultures with samplings on
a daily basis).

1.8 Continuous Gaussian Process State Space Models

We present an alternative approach in an effort to enable
training of the GPSSMs considering a continuous time
system and exploiting the advantages in the sense of in-
verse problem theory. To achieve this, we use a polynomial
regression on the states over time and train the GPMs
on its derivatives. In a sense, the rationale is close to
formulating a parameter estimation problem using full
discretization ) if we consider
that the right hand side of the differential equation system
is defined by GPMs. As a result, we obtain the exact
derivatives over time for any desired point and are able
to train significantly more efficient and flexible GPSSMs.
One of the major challenges is the fact that polynomial
slopes are not known. To tackle this, we apply a slight
modification of the IPDA method as presented by

( ). We demonstrate that the increase in compu-
tational burden due to the iterative procedure and larger
number of support points, as well as the complexity of the
problem formulation due to additional hyperparameters
and optimization to be solved, is justified for many cases.

1.4 Hybrid Modelling of Bioprocesses

The inherent complexity of cellular biochemical reaction
that take place in bioprocess cultivations combined with
the limited and low-quality observations obtained from
laboratory experiments and production sites, has proven
to be an ideal playground for the use of hybrid models.
On the one hand, thousands of biochemical reactions are
taking place in each one of the millions of cells inside
the reactor. On the other, it is very challenging to ob-
serve most of the species (e.g. intracellular metabolites,
enzymes, ribosomes) involved in the process. Even the
desired product and its quality require typically complex
and sophisticated analytical methods, strongly limiting the
number of possible samples per experiment (mostly end
point evaluations). On the one hand, mechanistic models
require model development and specific experiments to
support it. On the other, Black box models require many
experiments as the relation between inputs and outputs
that is typically highly non-linear. Both approaches are in-
feasible due to the intrinsic costs of each experiment, such
that hybrid approaches are essential to find a proper trade-
off and tackle this situation. Without loss of generality, we
demonstrate the advantages of the continuous GPSSMs in
a cell culture fed-batch process for production of a Mono-
clonal Antibody (MAB) ). These processes
are known to be very difficult to model with first principle
formulations and require large adaptations even for slight
changes in the process, the cell line, or the product. For
many of the industrial process parameters that are used to
improve the cultivation, (e.g. pH and temperature) there
exist no mechanistic equations. Finally, the cost of each
experiment is very high, such that only a few experiments
are possible strongly limiting the information that can be
obtained about the system.

2. METHODOLOGY
2.1 Gaussian Process State Space Models

For the sake of generality, we stick to the definition of
GPSSM given in ( ) The GPSSM
is here considered as a dynamical system whose building
blocks are Gaussian processes. The dynamical system is
represented by

= f(@—1,u—1) + €5,y = (1) + €4 (1)

where ¢ indexes time, 2 € RP is a latent state, u € R” are
control signals (actions) and y € R are observations. Fur-
thermore, we assume i.i.d. Gaussian system/measurement
noise. The state-space model equation (1) can be fully
described by the measurement and transition functions, g
and f, respectively. The key idea of a GPSSM is to model
the transition function f in equation (1) using GPMs:

t

flxer,ue—1) =41 + / GPM(z7,u—1)dr (2)
21

2.2 ¢cGPSSM

The applications of GPSSM are well documented, the
reader is referred to ( ) for a detailed descrip-
tion and case studies. Still, especially for dynamic systems
with a low frequency sampling rate, the limitations of
GPSSMs become clear. The step size of the prediction
A(xzy—x—1) is fixed and defined by the sampling intervals.
For this reason the discretization is inaccurate if the sam-
pling is not faster than the time constant of the dynamic
system. Furthermore, the highest sampling rate that can
be used for the training of the GPs is subject to the fixed
rate where all observed states are measured. These are
important limitations that give Differential Equation Sys-
tems a significant advantage for a number of applications.

We propose an alternative approach based on three itera-
tive steps: 1. fitting polynomial curves to the data set, 2.
training the GPs with the derivative of the polynomials,
and 3. penalizing the polynomial fit if there is a large
difference between the GP predicted derivatives and the
polynomial derivatives

As a result, GPs are trained with the exact derivative at
any given point and can be used for adaptive multistep in-
tegration methods. Furthermore, the penalization assures
that the derivatives of all polynomials fitted in the different
data sets comply with the function defined by the GP.
This allows, considering that the data set is sufficiently
large, a well-posed problem penalizing divergent dynamics
in different data sets.

This approach stems from the gradient matching method,
were a similar methodology is suggested for parameter
inference of differential equation systems using GPs in-
stead of solving the inverse problem. ”Techniques based on
gradient matching, which aim to minimize the discrepancy
between the slope of a data interpolant and the derivatives
predicted from the differential equations, offer a computa-
tionally appealing shortcut to the inference problem”



3. ALGORITHM
3.1 Polynomial Regression on Finite Elements

In order to cope with the nature of bioprocesses, piece wise
polynomial functions divided in finite elements are pre-
ferred in terms of simplicity and flexibility. Furthermore, in
many applications, mammalian cell cultures are performed
using a bolus feeding strategy causing discontinuities in
the state variable profiles due to the sudden change in
concentration at each pulse. The grid should then be set
such that the value of all states is known in the initial time
point of each finite element. This is typically the same at
the rate of one finite element per day in mammalian cell
cultures. For the sake of simplicity, we do not consider the
case where some values are missing at the start of the finite
elements. This issue can easily be tackled by selecting other
methods to initialize the polynomials. Here, a polynomial
regression is used to generate the initial derivative values
to be used in the training of the GPM for each finite
elements. There are of course several polynomial types
that can be used, spline functions or Lagrange polynomials
for example. In this first case we use a simple quadratic
equation of the form:

p=a+B-(t—tor)+7-(t—tor)’ (3)

where «, 8, are the polynomial coefficients, ¢ represents
the time and tg j the initial time point of the k — th FE.
In the first iteration, v is set to zero, resulting in a linear
step identical to the GPSSM formulation.

We determine the coefficients of the quadratic polynomi-
als, minimizing the weighted least squares function:

S = Z Wii(yi — pri(a, B,7))% Wi = 1/07 (4)
n=1

3.2 GPM training with polynomial derivatives

Once the polynomials have been fitted to the data, we can
use their derivatives as a first approximation to train the
GPMs:

.o _dp
pk,z—dt—

B42-v-(t—tox) ()
The GPMs are trained using the state variables, the
experimental set points, and the time varying control
variables (typically piece wise constant) as inputs. The
outputs dgp M, ; are the derivatives of the polynomials on
the selected support points py, ;.

It is worth stressing that the polynomials in the first
iteration are restricted to v = 0, hence the GPMs are
firstly trained with a piece wise constant profile. Selecting
a proper Kernel is crucial to ensure a convergence towards
the actual curvature of the time evolution of the states.
Considering that we are dealing with processes properly
described by Lipschitz continuous functions, the GPMs ap-
proximate the derivatives of the polynomials closer to the
average value of all experiments. As a result, the deriva-
tives are dragged towards the ”real” continuous curvature
of the process profile. The linearization enforced (caused
by the large step discretization: v = 0) on lines that in
reality have curvatures causes different derivative values

for very similar input variables. As a result, if suficient
experimental data is used at suficiently different condi-
tions, the GPMs con only predict mean vaule averaging
the inconsistent slopes throughout the state space.

3.8 Iterative convergence to continuous functions

In order to drive the polynomials to the expected curve,
the iterative solution of the least square problem in equa-
tion (4) is penalized by the mean derivative predicted by
the GPMs at the given input conditions:

P= Z(p;@j — dGPM;w-)Z (6)

n=1

The resulting function for optimization being:
cH=S-A=-1)+P- A (7)

As shown in figure 1 through an iterative process, the
polynomials converge to a proper description of the true
dynamics of the states at any point inside the design space,
given following conditions:

a sufficiently informative data set,

a correct selection of the finite element size,

the proper degree and type of polynomials, and

an observable system with the sampled state variables

8.4 Numerical integration

Being able to predict the exact derivatives of the function
at any given point within the design space, the GPM
predictions can now be used to predict the time evolution
of the process through numerical approximation. In this
example, we use an explicit Euler method with a fixed step
size of 0.5 hours. This is sufficient given the smoothness
of the process within each finite element and avoids an
extensive number of function calls. It is here noteworthy
that the pulses are solved with the equality constraints
between each finite elements. Depending of the size of the
data set contained in the GPM, the prediction calls can
rapidly increase the computational burden of the integra-
tion. This is especially the case, when standard integrators
are used which tend to start with very small step sizes and
perform a number of evaluations to assure robustness in
the solution. Note that the prediction results now deliver
values at a much higher frequency than the sampling one
(1 sampling per day), and could also work with adaptive
step approaches if necessary. The use of polynomials to link
GPMs and data allows a continuous and smooth prediction
of the systems dynamics throughout the state space and
accordingly of the evolution of the process over time.
Furthermore, due the property of GPMs, the predicted
derivatives also account for its uncertainty. This can be
used to compute not only the predicted time evolution
but also its associated uncertainty. This of course requires
a special treatment of the uncertainty propagation during
integration, which is out of the scope of this contribution.

3.5 Materials

The computations for the selected case study were per-
formed in a simple laptop computer. Memory: 7,6 GiB,
Processor: Intel®) Core™ i7-8565U CPU @ 1.80GHz x 8,



OS: Linux, Ubuntu 18.04.6 LTS. The code was written and
computed using Matlab2021a. The packages (toolboxes)
used were: the nonlinear least-squares solver lsqnonlin
from the optimization toolbox, the polyfit function from
the curve fitting toolbox, and the rgp class from the sta-
tistical toolbox. The kernel used for the GPMs was the
ardexponential kernel with a (d+1)—by—1 vector ¢, where
@(i) contains the length scale for predictor ¢, and ¢(d + 1)
contains the signal standard deviation. d is the number of
predictor variables. Default initial value of the length scale
parameters are the standard deviations of the predictors
and the signal standard deviation is the standard deviation
of the responses divided by square root of 2. That is,

¢ = [std(X)'; std(y)/sqrt(2)] (8)

The code can unfortunately not be shared due to Intellec-
tual Property concerns. However, pseudocode is presented
in the following section to illustrate the step-by-step pro-
cedure for implementation of the proposed algorithm.

Algorithm 1 pseudocode for the cGPPM approach: train-
ing
1: build grid of N, points for discretization in finite
elements
2: select support points for GPM training
3: define the training set of Ng, experiments with N,
process variables. Define Threshold
4: Start iterative penalized least-square procedure for up
to Nj; iterations. Set penalization P = 0.

5: for N =1,2,..., Ny do

6: fOI‘nEx:LZ,...,NEme

7: for nyqr = 1,2,..., Nyor do

8: for n.=1,2,...,N. do

9: polynomial regression with penalization
for each variable and each finite element (if n;=1 use
linear regression)

10: end for

11: end for

12: end for

13: train GPMs on the support points using the slope
of the polynomials

14: penalize the polynomial regression for next itera-
tion, n;; + 1

15: if n;; = Ny V cH < Threshold then

16: finalize iterations
17: end if
18: end for

Algorithm 2 pseudocode for the cGPPM approach: sim-
ulation
Define initial conditions z(;—y, integration step dt,
feeding times t¢;; and feeding profile uy; for ¢ =
1,2,...,Ny¢. Set k=1, tik=1) =0
2: forn=2,3,..., Ny do
solve mass balance for bolus addition us;—1
4: while t;, < t;, do
compute g1 = xp + GPM (xy) * dt

6: compute tg11 =t + dt
add step k=k+1
8: end while
end for

4. RESULTS
4.1 Case Study

We demonstrate the performance of the approach with a
mammalian cell culture bioreactor using a macro-kinetic
model to generate in-silico data. A cell culture fed-batch
bioreactor is simulated using a system of ODEs with
six variables, namely the Viable Cell Density (VCD),
glucose as the main substrate (Glc), glutamine (Gln),
ammonia (Amm), lactate (Lac) and the product titer.
30 experiments are planned using a Latin hypercube
sampling method, varying the bolus feed (F) and the initial
concentration of biomass and substrate. 20 experiments
are used to train the model and 10 experiments are used to
test the model. Time profiles are simulated in the interval
of [0, 14] days and measurements perturbed with 15%
Gaussian noise. For a detailed description of the insilico
data, the reader is referred to ( ). For
the evaluation of the results, concentrations normalized to
the maximum value of the respective states in the training
set are used as inputs. The different models are compared
based on the Root Mean Squared Error in prediction
(RMSEP), computed with respect to the true values (not
the perturbed measurements), of individual states.

4.2 Description capabilities of the cGPSSM

As we can see in Figure 1, the resulting model can describe
a continuous smooth dynamic profile of the fed-batch pro-
cess. It can be seen, that the iterative procedure converges
to a smooth representation that is indeed closer to the
"real” trajectory of the process. The model catches the
smooth evolution seen in the Cell Viable Density but also
(due to the proper grid discretization) the discrete changes
in the glucose profile. The discontinuities caused by the
sudden additions are handled in the switch from one finite
element to the next one. Figure 2 shows a comparison
between the standard method (discretized GPM) versus
c¢cGPSSM on the validation data set demonstrating the
improved prediction capabilities of the proposed approach.
Furthermore, the smooth curves, describing the real time
evolution of the process, that are generated with this novel
method are depicted in Figure 3. An important concern is
the convergence of the penalized LSQ to a stable solution,
which was indeed the case in our example (see Figure 4).
Still, the method can fail if the value of X is selected to
close to 1, or the insufficiency of data impede an accurate
prediction for each given state.

Two important conditions are to be considered, that are
only valid in the in-silico data set and not necessarily in
real process data. First, the system we are dealing with is
time invariant and fully observable. There are, hence, no
complications due to state variables that affect the process
but are not monitored and the dynamics of the system
never change (in contrast to real biological systems). Sec-
ondly, the noise is Gaussian by which it completely fulfills
the underlying assumptions and the necessary conditions
to use GPMs. Real data sets do not have a perfectly
Gaussian noise, and, in fact, the error distributions can
be very complex. Still, several real applications are close
to the conditions given in our example and the capability
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Fig. 1. Simulation results for an experiment of the training
subset. The simulation of all 60 iterations of the
c¢GPSSM framework. The first iteration is represented
by the dark blue line and red represents the last one.
The convergence to a significantly better prediction
and a smooth representation of the time evolution of
the states is clearly represented

Fig. 2. Simulation results on an experiment of the valida-
tion subset showing first (standard GPSSM solution)
and 15th iterations of the cGPSSM framework. The
six state variables are depicted. The better prediction
of a previously unseen experimental setup is demon-
strated.

of GPMs to describe mammalian cell cultures has been
widely reported Tsopanoglou and del Val (2021).

5. DISCUSSION

Despite their advantages, there still some challenges re-
lated to the implementation of the approach. Clearly, the
iterative process implies a significantly higher computa-
tional burden, and it adds further hyperparameters to
the framework. Additionally, the integration can also be
computational demanding, especially if the uncertainty in-
tervals are computed using ensemble models. Furthermore,
there is no experimental evidence on the true curvature of
the polynomial between two sampling points. As a result,
it is difficult to validate the final results besides visual in-
spection. Still, this approach allows the use of GPSSMs in

Viable Cell Density

3.5 T T
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0 2 4 8 B 10 12 14
Exp31; Time (days)
Fig. 3. Simulation results of the Viable Cell Density

(VCD) time evolution in an experiment of the valida-
tion subset showing first (standard GPSSM solution)
and 15th iterations of the cGPSSM framework. The
better prediction of a previously unseen experimental
setup is demonstrated.

Fig. 4. Evolution of the Root Mean Square Error (RMSE)
throughout the iterations, for experiments in the
training subset (left) and in the validation subset
(right). For the specific case, 15 iterations are suffi-
cient to reach the final result and best predictions.

multi-rate sampling data sets enabling the implementation
of GPM technologies in new fields and applications.

6. CONCLUSIONS

In this work, we present an alternative formulation to ob-
tain Gaussian Process State Space Models with a smooth
continuous time evolution of the state variables. To achieve
this, we use polynomials as interpolants in the data and
solve a penalized least-squares problem to enforce consis-
tency across data from different experiments. The mam-
malian cell culture example demonstrates, not only the
good performance of the approach, but also its added value
for the description of complex processes that are widely
used in biotechnology and biopharma. The bolus fed-
batch process is described precisely in comparison to the
ground truth obtained from the in-silico simulations and a
continuous smooth time evolution is obtained despite the
large gaps in the measurement samplings. This approach



can also overcome important issues that standard machine
learning algorithms face. First, it can deal with process
information with different sampling rates in its varibales.
Second, it allows the use of adaptive step integrators and
delivers an accurate prediction at any given time point
within the design space. Thirdly the convergence of the
iterative training and penalized least-square procedure
assures a consistent and somewhat ”well-posed” problem.
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