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ABSTRACT  DEUTSCH   

Um bei Türen und Wänden eine hohe Schalldämmung zu erreichen, ist es meist 

erforderlich, eine hohe Masse in Kauf zu nehmen. Im industriellen Leichtbau (Schiffs- 

und Flugzeugkabinen, Auto, etc.) ist der Einsatz von Masse zur Schalldämmerhöhung 

aus Gewichts- und Kostengründen meistens nicht umsetzbar. 

In dieser Arbeit wird untersucht, ob es möglich ist, mit dem Einsatz geringer Masse eine 

möglichst hohe Schalldämmung bzw. eine Beeinflussung der Schallausbreitung 

zugunsten einer erhöhten Schalldämmung zu erreichen.  

Die Ausbreitung von Biegewellen in sog. Kettenleitern erfolgt nach den bekannten 

physikalischen Gesetzmäßigkeiten, die, abhängig von den gewählten Abständen der 

Kettenglieder zueinander, bestimmte Frequenzbereiche von Biegewellen reflektieren 

(sogenannte Sperrbänder bzw. stop-bands) und andere Frequenzbereiche unbeeinflusst 

durchlassen (sogenannte Durchlassbänder bzw. pass-bands). 

Im Gegensatz zu solchen, in periodischen Abständen unterstützten bzw. unterbrochenen 

Balken- und Plattensystemen (z.B. Schiene auf Schwellen, Schiffsrumpf auf Spanten, 

etc.), werden in dieser Arbeit die Diskontinuitäten innerhalb der neutralen Faser eines 

Balkens bzw. einer Platte eingebettet. 

In einem ersten Schritt wird analytisch untersucht, wie zylindrische Massen, die in 

periodischen Abständen innerhalb oder außerhalb der neutralen Faser eines 

unendlichen Balkens eingebettet sind, die Ausbreitung von erzwungen angeregten 

Biegewellen beeinflussen. Es kann gezeigt werden, dass bei der Einbettung innerhalb 

der neutralen Faser ebenfalls Durchlass- und Sperrbereiche auftreten - analog zu den 

bekannten in periodischen Abständen mechanisch gestützten Kettenleitern. Werden 

diese Massen gleichmäßig verschoben außerhalb der neutralen Faser angeordnet, 

spielen hinzu kommende Moment-Reaktionen eine Rolle, die die Eigenschaften der 

Sperr- und Durchlassbereiche verändern. 

Indem nun diese Massen in eine federnde Umgebung eingesetzt werden, lässt sich 

zeigen, dass überwiegend die Eigenschaften der Resonanzen dieser Masse-

Federsysteme die Transfer-Admittanz beeinflussen. Somit können mit einer 

entsprechenden Anzahl von Massen, gefederten Massen und deren geometrischen 

Anordnung in oder außerhalb der neutralen Faser die Sperrbereiche im Rahmen 

bestimmter Grenzen verschoben und erweitert werden. 

Einige dieser analytisch gewonnenen Effekte können anhand von Messungen an 5m 

langen Holzbalken mit in Sand eingelassenen Enden zur Simulation unendlicher Länge 

(oberhalb eines bestimmten Frequenzbereiches) und eingebetteten Diskontinuitäten mit 

hoher Wahrscheinlichkeit nachgewiesen werden. 

In einem zweiten Teil werden diese analytischen und experimentellen Untersuchungen 

auf eine Platte erweitert. 

Dafür wird zunächst in der analytischen Untersuchung eine halb unendliche Platte 

mittig angeregt und die Transfer-Admittanz hinter konzentrisch angeordneten 

Winkelsegmenten bzw. Halb-Ringen aus Massen bzw. Masse-Feder-Systemen errechnet. 

Hierbei zeigen sich analoge Effekte zu den eindimensionalen Berechnungen des 

unendlichen Balkens. Werden die Diskontinuitäten in Kreisringen um den Anregepunkt 

herum angeordnet, können die angeregten Biegewellen an ihrer Ausbreitung gehindert 



werden, so, dass diese reflektiert werden und innerhalb der Ringe „eingesperrt“ sind. 

Dabei kann gezeigt werden, dass sich diese Isolationswirkung bei einer durchmischten 

Anordnung von Massen und gefederten Massen auf einen verbreiterten 

Frequenzbereich ausweiten lässt. 

Messtechnische Untersuchungen auf einer 0,8m x 1m großen Plexiglas-Platte mit 

ringförmig angeklebten Massen bzw. federnd gelagerten Massen zeigen teils 

übereinstimmende, teils aber auch indifferente Ergebnisse, welche sehr wahrscheinlich 

von dominierenden Plattenschwingungen überlagert sind, die durch die zusätzlichen 

Massen und die Reflexionen an den ungedämpften Plattenrändern entstehen. 

Anhand der erzielten numerischen Ergebnisse und den experimentellen Erkenntnissen 

am Balken kann jedoch davon ausgegangen werden, dass die hier gezeigten Methoden 

eine praktische Anwendung auch bei endlichen Platten wie Türen oder Wände erlauben. 

In dieser Arbeit werden demnach verschiedene Möglichkeiten aufgezeigt, wie mit 

Massen und Feder-Masse-Systemen und einer entsprechenden Anordnung Einfluss auf 

die Reflexionen der sich ausbreitenden Biegewellen genommen werden kann, sowohl im 

Balken als auch in der Platte. 

Der Schwerpunkt liegt hierbei in den Kombinationsmöglichkeiten der untersuchten 

physikalischen Einflüsse Periodizität und Resonanzen, die eine gewünschte Isolation 

von Biegewellen möglich machen. 



ABSTRACT  ENGLISH 

To achieve a high level of sound insulation in doors and walls, it is usually necessary to 

take a high mass into account. In lightweight industrial construction (for instance ship 

and aircraft cabins, car body, etc.), the use of pure mass to achieve better noise 

insulation is mostly not feasible due to weight and cost reasons. This work will 

investigate whether it is possible to achieve a high sound insulation by using less mass. 

Bending waves in periodic wave-guides propagate in compliance with the well-known 

laws of physics, which, depending on the distance of the equidistant rigid or flexible 

supports, leads either to bending wave reflections at certain frequency ranges (stop-

bands) or to a full transmission at other frequency ranges (pass-bands). 

In contrast to structures, which are supported or interrupted in periodic distances (e.g., 

railway sleepers, bulkheads, etc.), this work manifests its discontinuities embedded in 

the material of a beam or a plate. 

A first step is to analyse the propagation of forced excited bending waves at an infinite 

beam with cylindrical masses, embedded in periodic distances within or outside the 

neutral layer. It can be shown that when masses are embedded in the neutral layer, 

pass- and stop-bands also occur - in the same way as if the beam were supported by 

equidistant rigid supports. If the masses were uniformly shifted and located outside the 

neutral layer, additional moment reactions play a role, altering the properties of both 

stop- and pass-bands. 

If masses are coated with a rubber material, the properties of the resonances of these 

spring-mass systems predominantly impact transfer mobility. Thus, the attenuation in 

stop-bands or resonances can be shifted to a certain limit in frequency and enlarged in 

its amplitude with a corresponding number of masses, spring-masses, and their 

geometrical arrangement in or outside the neutral axis. 

Some of these effects, obtained analytically, can be demonstrated at measurements with 

discontinuities embedded in 5m long wooden beams, having their ends covered with 

sand to simulate infinite length above a certain frequency range. 

In a second step, these analytical and experimental studies are extended to a plate. 

In the analytic investigation, a semi-infinite plate is excited in the center and the 

transfer mobility is calculated behind concentrically arranged angular segments or 

half-rings made of masses or spring-mass systems.  

Here, the observed effects correspond to the one-dimensional calculations of the infinite 

beam. If these discontinuities are arranged in circular rings around the excitation point, 

the propagating bending waves are reflected by the inserts and seem to be trapped 

within the rings. 

Hereby, it could have been shown, that a mixed distribution of masses and spring-

masses increases the effect of isolation and yield a broadened frequency range. 

Measurement tests were conducted on a 0.8m x 1m plate out of acrylic glass loaded 

with rings of adhered masses or elastically supported masses. Results partly exhibited 

corresponding, but also inconclusive results. The vibrations on the plate are very likely 

superimposed by the impact additional mass and the reflections at the undamped plate 

edges. 



Based on the obtained 1-D and 2-D numerical results and the experimental findings on 

the beam, it can be assumed that the methods shown herein allow a practical 

application even with finite panels, such as doors and walls. 

Therefore different ways in this work show how influence can be exerted on the 

reflections of the propagating bending waves with masses and spring-mass systems and 

a corresponding location, both in the beam and in the plate. 

The main focus rests on possible combinations of physical effects such as periodicity 

and resonances, which yield a desired isolation of bending waves. 
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1 AN  INTRODUCTION   

Worldwide noise pollution mainly signifies construction, motor noise, aircraft noise, 

and rail noise. 

Airborne noise can be generated directly or indirectly. For instance, in an aircraft 

engine, the interaction between the wakes from a rotating Fan with the vanes of an 

outlet guide directly results in the propagation of airborne noise. On the other hand, 

many other audible sources - the neighbours’ constant hammering, for example - have 

their roots in structure-borne sound. The vibrations resulting from the wall being 

pounded by your neighbour’s hammer are transmitted to our room by the elements of 

structure in the building. The affected walls, the ceiling, and the floor in our room excite 

the adjacent air to vibrate as well. Finally this airborne sound propagates through the 

room and reaches our ears. 

In cases, whether airborne sound is excited directly or indirectly, it is one of the main 

interests of an acoustic engineer to investigate and, accordingly, reduce the impact of 

the sound source itself. 

Various airborne sound absorbers are available for all kinds of applications and 

frequency ranges. In the example of the hammering neighbours, well-defined absorbers 

in our room allow for a reduction of the airborne sound within certain limits.  

As it is often not possible to reduce the impact of the source itself, it could be better to 

reduce the structure-borne sound on its way to our room. 

The noise source should be insulated, which is easily accomplished by increasing the 

mass of the transition paths or decoupling them using 2 plasterboards sandwiched with 

absorption material. However, it is often not possible to increase the masses of transition 

paths or to use large absorption walls. Thus, such solutions might not be very welcome 

in many situations. Most vehicles, for instance, are designed to be as lightweight as 

possible. Therefore, it would be more advantageous to reflect or isolate incoming 

bending waves and minimise the emission of noise without increasing the space or the 

masses. 

PERIODIC STRUCTURES 

In periodic structures, e.g. railways with evenly distributed rigid supports, the 

propagating waves are reflected at each element and only propagate freely in certain 

frequency bands, while in others they decay. As pointed out by Brillouin [8] in his 

classic work about periodic structures, Newton [78] started the investigation of 

vibrational behaviour on periodic structures more than 300 years ago. He tried to derive 

a formula for the velocity of sound on a one-dimensional lattice. Since that time many 
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studies of periodicities in crystals, optics, electrical transmission lines and also in solid 

structures such as beams and plates have been researched1.  

Heckl [31] has shown, that “waves in periodically supported, undamped beams can only 

propagate freely (without decaying) in certain frequency bands”. Furthermore, “simple 

sinusoidal waves cannot propagate independently along multi-supported beams. 

Reflections occur at each support and ‘near-field’ wave effects also exist” (Mead [69] 

p. 182).  

Mead [69] explained the existence of propagating and non-propagating waves with the 

phases of the vibration of adjacent bays. If there is no difference between the motions in 

adjacent bays or if they vibrate exactly in counter-phase, the wave is of non-propagating 

form. Thus, no wave energy is transmitted and the wave motion decays along the beam. 

Next to this frequency exists another band in which free wave propagation again is 

possible. These bands of propagating (pass-band) and non-propagating (stop-band) free 

waves are alternating, which was first described by Cremer and Leilich [13]. Mead also 

pointed out that “the free harmonic motion of an undamped infinite beam on regularly 

spaced identical supports may be regarded as a group of sinusoidal waves, travelling in 

different directions and at different speeds” (Mead [69] p. 196)2. 

Blanc [6] explained the non-propagating waves in periodic beams with standing waves: 

“At certain frequencies, the reflected waves interfere with the incoming waves and 

create a standing wave within a structural period. As a result of standing waves, energy 

does not propagate along the structure” (Blanc [6] p. 21). He also pointed out, that a 

length disorder can be used to broaden the pass-band. 

DISORDERED/RANDOMISED DISTRIBUTION 

Hodges and Woodhouse [40] found out in a simple experiment with a string and equally 

distributed masses attached to it that the phenomenon of Anderson localisation also 

works in an acoustical context. Moving the masses in a controlled way to provide a 

small irregularity leads to a reduction in the vibration level. According to Heckl [32] no 

pass-bands exist if the periodic system is disturbed, but therefore the nearfield decay is 

extended along the host structure. 

Bansal [5] also investigated “the effect of different amounts of disorders on free flexural 

wave motion in undamped beam-type systems consisting of finite multi-span repeating 

units that are disordered”. He approved that “the presence of disorders normally 

interferes with free wave motion and narrows down the effective frequency bands of 

                                                 

1
 With periodic structures, it is even possible to attenuate sound in air, as Martínez-Sala et al. [66] 

demonstrated, obtained from a mass of trees by arranging them in a periodic lattice. Alagoz [1] used a 

two-dimensional sonic crystal triangular lattice made of rods to show reflective conditions in audible 

frequency ranges. 

2
 This implies the side-effect, that the acoustic coincidence effect can be shifted to much lower 

frequencies. 
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free wave propagation”. But, he also explained, that “the transmission of waves can be 

controlled” and even the free wave propagation in certain frequency bands be broadened 

“by introducing appropriate disorders” (Bansal [5] p. 365).  

Bouzit and Pierre [7] experimentally demonstrated “that the transmission of vibration 

which takes place within the frequency pass-bands of the periodic beam is greatly 

hindered when span length randomness is introduced” [p. 649]. In addition, they also 

found that at most frequencies in the pass-bands the spatial decay due to damping in the 

ordered beam was negligible compared to the spatial decay due to disorder in the 

disordered beam [p. 664]. 

Coming back to strictly ordered systems, “periodic beams have been a subject of special 

interest due to their common usage in several engineering applications. Based on the 

type of periodicity, they can be classified under the following two general categories: 

Beams with geometric/material periodicity and beams resting on equispaced supports. 

Most of the efforts so far to model dynamically periodic beams have been spent on the 

characterizations of the second category” (Hawwa [30] p. 453).  

MATHEMATICAL MODELS 

Heckl [31] and his daughter Maria [35] investigated the existence of different wave 

types in periodic structures. Maria Heckl [35] presented a mathematical model for the 

propagation of structural waves on an infinite long, periodically supported beam. The 

wave types considered were bending waves with displacements in the horizontal and 

vertical directions, compressional waves and torsional waves. She displayed two effects: 

The impact of stop- and pass-bands as well as couplings of the different waves.  

A number of authors have produced various mathematical models to calculate the wave 

behaviour in periodic structures (e.g. Mead [68] [69] [70] [71], Mace [61]). Heckl [32] 

presented four different methods for the calculation of structure borne sound 

propagation on beams with many discontinuities. The method which is based on 

equivalent sources will be used in this thesis for the numerical study on a one-

dimensional Euler-Bernoulli beam and on a two-dimensional thin plate (see Chap. 4 and 

7). It will be shown, that this mathematical description will also work for inserts, which 

are embedded in the neutral layer of a beam or a plate3. 

RESONANT SUPPORTS AND INSERTS 

“In a typical ship, the main propulsion and auxiliary machinery, the bulkheads decks, 

piping, cargo, fuel, etc. comprise more than twice mass of the hull and the same is true 

for many aerospace mainframes. None of these substructures are attached to the main 

structure in a completely rigid manner and so they behave as ‘sprung masses’, each with 

                                                 
3
 Heckl, Maria [35] used Hamilton’s principle (Cremer and Heckl [12]) to calculate the Green’s function 

matrix of the Timoshenko beam. According to Thompson [92] the attenuation in Timoshenko beams is 

slightly increased with rising frequency in comparison with Euler-Bernoulli beams. Thus, the use of an 

Euler-Bernoulli beam seems to be appropriate in determining attenuation with regard to a conservative 

appraisal.  
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one or more frequencies of resonance. If several of them have resonances at frequencies 

near the frequency of vibration, they can absorb and dissipate considerable vibratory 

power from the main structure” (Strasberg and Feit [89] p. 335). 

Thus, it is of great interest in this thesis to involve spring-masses in the investigation of 

periodic structures. Furthermore, Strasberg and Feit [89] calculated the damping 

induced by substructures attached to an axially vibrating rod and to a flexurally 

vibrating beam. They reviewed the frequency dependence of the driving point 

impedance of a spring-mass and displayed the possibility of a “small and lightly 

damped spring-mass to introduce considerable damping into a much more massive 

structure”. This paradoxical inverse relation between the damping of the attached 

spring-mass-systems and the dissipation in the structure “may be understood by noting 

that as the damping becomes smaller, the vibratory motion of the mass and 

accompanying deformation of the spring become larger, for constant motion of the drive 

point, and the power dissipated in the spring is proportional to the square of its 

maximum deformation” [p. 336]. Furthermore, the impedance change at the location of 

the vibration absorber lead to reflected and scattered bending waves. However, the 

reflection or dissipation with a low damped spring-mass only works at the frequency 

near to resonance.  

“To induce damping over a wide range of frequencies, many spring-mass frequencies 

distributed over that range are required” (Strasberg and Feit [89] p. 335). In their work 

the vibration have been limited to one direction only and effects of periodicity and 

moment reactions have not been considered.  

Alsaif and Foda [2] developed a “method based on the dynamic Green functions to 

determine the optimum values of masses and/or springs on their locations on a beam 

structure in order to confine the vibration at an arbitrary location” [p. 629]. They 

verified in measurements, that the “vibrations of both simply supported and cantilevered 

beams can be controlled at an arbitrary location within the beam with a minimum value 

of attached masses or springs. The optimum locations of the masses are found to be at 

peaks or troughs of the flexural wave of the unloaded beam forced response” [p. 645]. 

Since the year 2000 a lot of research has been applied with the so called “locally 

resonant sonic materials”. Liu et al. [55] came up with a fabricated sonic crystals 

consisting of small spheres with a heavy core and a soft cladding layer. Each of these 

coated spheres has inherent mechanical resonance, when embedded in a matrix medium. 

Sound waves in the material can be totally reflected within some tuneable sonic 

frequency ranges, which are verified on measurements with resonances at low 

frequencies. According to Hirsekorn et al. [39] “sonic crystals are artificial structures 

consisting of a periodic array of acoustic scatterers embedded in a homogeneous matrix 

material, with a large impedance mismatch between the two materials” [p. 1].  

“Sound transmission loss measurements on an epoxy plate containing lead spheres with 

a silicon-rubber coating show remarkable improvements over the mass law” 

(Maysenhölder [67] p. 1). These “periodic realisations of elastic heterostructures, called 

‘phononic crystals’, make it possible for the achievement of complete elastic wave band 

gaps within which sound and vibrations are all forbidden. These new materials can be of 
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real interest because of the rich physics of acoustic and elastic systems, where the wave 

can have mixed longitudinal and transverse modes” (Wang et. al. [95] p. 1).  

According to Bragg’s mechanism (having stop- and pass-bands in a periodic structure) it 

is “hardly to achieve low frequency band gaps with small dimensions, because the 

wavelength of low frequency elastic wave in common solids is long” (Wang et al. [96] 

p. 167). Thus, making them resonating by embedding these masses in very soft rubber, 

are most likely to obtain low-frequency gaps with structures of small dimension (Wang 

et al. [95]). The numerical study of these “locally resonant phononic crystals”, attached 

to the top of a beam, occurred with an Euler beam and considered flexural (bending) 

waves only4. Nevertheless, experimental results agreed very well and showed, that if the 

lattice constant is larger than the height and width of a beam, shearing deformation and 

the rotational inertia of the cross section are negligible.  

In a recently published article about the coupling of resonances and Bragg scattering 

effects Yuan et al. [110] describe the enhancement of attenuation bands with locally 

resonant sonic materials, although in a low frequency region employing shear stresses.  

In almost all publications of sonic crystals the resonance frequency is set below the 

1
st
 stop-band. The interaction of stop-bands within a resonance band gap or above is not 

investigated in detail and will be part of the observations in this work (see sub-

section 4.3.2). It will be shown, that the coupling of stop-bands and resonant band gaps 

using a mixed lattice with masses and spring-masses increases the attenuated high 

frequency bandwidth at an infinite plate (see Chapter 7).  

In all investigations with resonant units, the damping factor5 of the spring plays a major 

role. Conventional passive tuned vibration absorbers are mainly used to reduce motion 

at a certain frequency and are preferably positioned at the anti-node of the modal host 

structure (Jolly and Sun [44]). By increasing the damping factor of the spring, the 

effective magnitude at the resonance frequency is reduced, but a broader band of 

frequencies near the resonance can be achieved. Vibration absorbers with a low 

damping factor show a large attenuation in a very narrow frequency band at or near the 

resonance.  

Hettler [38] investigated the effects of internal resonators in sandwich constructions to 

improve the sound insulation with the least possible mass increase. He successfully 

applied internal resonators to finite, lightweight double-panel structures for increasing 

sound reduction at low frequencies at the mass-air-mass resonance. The use of different- 

tuned low damped absorbers yielded a larger sound reduction than having absorbers 

with increased damping.  

                                                 
4
 In some of the literature used the distances of phononic crystals in a lattice is called “lattice constant”. 

“Locally resonant phononic crystals” are sonic crystals, which become resonant by being embedded in a 

rubber material.  

5
 The damping factor of the spring is also called “loss factor of the spring” or “dissipation factor of the 

spring”. 
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It is obvious that this thesis should give attention to a couple of vibration absorbers with 

low damping factors, each tuned to a different resonance, embedded in the host 

structure to achieve a broadened and large attenuation band. As mentioned above, the 

transmitted energy in the structure is partly dissipated, but mainly damped by being 

reflected due to the impedance change at the vibration absorbers. 

This short overview of existing literature on masses and resonant units6 attached or 

embedded in beams and plates is far from being complete. A more detailed list can be 

reviewed in the References (Chap. 12). 

However, there is no available literature that lists the possibilities of combined effects 

having changed periodicity, resonances and moment reactions. Based on parameter 

studies and measurement results this PhD thesis will offer an overview on the effects 

appearing. The main focus is the following question: which combinations and 

distributions of embedded masses and spring-masses are sufficient to isolate bending 

waves in beams and plates. 

STRUCTURE OF THIS THESIS 

The examination begins with a numerical study of several inserts of varying impedances 

and positions in an infinite beam (Chap. 4).  

If the calculations are made with the theory for an Euler-Bernoulli beam and the method 

which is based on equivalent sources (Heckl [32]), the embedded masses or spring-

masses can be seen as if they were attached to the beam.  

To verify the observed effects with measurements on a beam, a suitable rubber material 

had to be found through experimental investigation with different beam pieces. These 

pre-test measurements and up-following measurements on a real beam with different 

masses and spring-masses inserted within or out of the neutral layer are described in 

Chapter 5. Some of the main conclusions of the numerical study are verified by 

measurements on a beam with embedded inserts with damped ends (Chap. 5). 

Additional investigation of the measured transfer mobility at phases and coherences 

increases confidence in main conclusions. 

All results of the numerical and experimental research at the beam with inserts are listed 

in Chapter 6. 

Calculations on a half-infinite plate with embedded masses and spring-masses 

distributed in circles are described in Chapter 7. Main parts of this Chapter have been 

published by Weith and Petersson at the RASD conference in Southampton 2006 [98]. 

In Chapter 8 measurement results with masses and spring-masses attached to both sides 

of a finite plate suggest the complexity of a practical use.  

                                                 
6
 The resonant inserts used in this thesis will be called spring-masses or spring-mass systems, independent 

of their locations and damping factors. As is described in this chapter, many other expressions - such as 

“vibration absorbers”, “vibration neutralizers”, “sonic crystals” or “locally resonant phononic crystals” - 

exist in the literature.  



AN  INTRODUCTION 

______________________________________________________________________________________________ 

 

  

 19 

The main observations of the numerical study and the measurements at beams and 

plates are summarised in the Concluding Remarks (Chap. 9). 

However, several ways to improve the findings of this PhD thesis are discussed in the 

Outlook (Chap. 10). 

In Attachments (Chap. 11) additional side-effects of the material properties are 

displayed and an error investigation is discussed. 

References are listed in alphabetical order of authors in Chapter 12. Sources, which are 

not referenced in this thesis, were additionally studied to create this work and may be 

used to provide the reader with a deeper insight and better overview of the diversity of 

periodic structures. 

All numerical studies and appraisals of the measurement results have been conducted 

with MATLAB. 

Although the objective of vibration damping is to reduce the sound propagation in air, 

calculations or measurements of the sound power transmitted from the observed host 

structures to the fluid have not been applied. Considering primarily investigations on 

infinite structures, I’d like to cite Arthur Blanc (Blanc [6] p. 21), who pointed out that 

“if no waves propagate in an infinite structure, no sound is radiated in the far field”. 
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2 LIST  OF  SYMBOLS   

UPPER CASE LATIN LETTERS 

B  Bending stiffness of a beam 

'B  Bending stiffness of a plate 

E  Complex Young’s modulus 

real
E  Young’s modulus (real part) 

F  Frequency 

0F  Excitation force 

massF  Excitation force on a mass 

systemmassspringF   Excitation force on a spring-mass system 

rF  Frequency resolution 

F  Substituted force an insert 

vF  Resulting force on an insert 

),( 00xxGF  Green’s function (force) of a pure beam with excitation 

at x00 

),( vF xxG  Green’s function (force) of a beam with inserts with 

excitation at xν 

KonstG  
 

),( vM xxG  Green’s function (moment) of a beam with inserts with 

excitation at xν 
)2(

0H
 

Hankel function of the second kind 

massM  Moment of a mass 

systemmassspringM   Moment of a spring-mass system 

M  Substituted moment an insert 

vM  Resulting moment on an insert 

N Natural number  

X  Position on a plate 

SX  Excitation point on a plate 

X  Distance in X-direction from excitation point to the 

insert on a plate 

vX  Distance in X-direction from excitation point to the 

arbitrary insert on a plate 

34Bk
GKonst






LIST  OF  SYMBOLS 

______________________________________________________________________________________________ 

 

  

 21 

 

 

 

 

 

 

LOWER CASE LATIN LETTERS 

a  
Acceleration 

b  Width of the beam 

dist Distance between two inserts 

resf  Resonance frequency 

f  Frequency of a stop-band 

h  Height of the beam/plate 

m  Mass 

'm  Mass per unit length (beam) 

''m  Mass per unit area (plate) 

n n=1,2,3 • • • Є N 

k  Wave number 

NLr  Distance of the inserts to the neutral layer 

springss,  Complex stiffness of the spring 

0s  Stiffness of the spring 

v  Velocity 

)(xv  Velocity at position x 

)( xv  Velocity of an insert 

w  Rotational velocity 

)(xw  Rotational velocity at position x 

)( xw  Rotational velocity of an insert 

x  Position x at the beam, plate 

Y Transfer mobility 

massFZ ,  
Impedance of a mass, excitation by a force 

massspringFZ ,  
Impedance of a spring-mass, excitation by a force 

massMZ ,  
Impedance of a mass, excitation by a moment 

massspringMZ ,  
Impedance of a spring-mass, excitation by a moment 

FZ  Impedance of the substituted force of an insert 

MZ  Impedance of the substituted moment of an insert 
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00x
 Excitation point at the beam 

x
 

Distance in x-direction from excitation point to the insert 

at a beam 

vx
 

Distance in x-direction from excitation point to the 

arbitrary insert at a beam 
y

 Position y at the plate 

 

GREEK LETTERS 

21,
 

Angles at both sides of 0  
in Nyquist plot to calculate 

the damping factor of a spring 

beam
 Loss factor of the beam 

plate
 Loss factor of the plate 

spring
 Loss factor of the rubber coating 

B  Wavelength of the bending waves 

bandstop
 

Wavelength of the bending waves at stop-band-

frequencies 


 Poisson’s ratio 

  Index of the inserts substituted by a force and moment 

v  Index of the arbitrary inserts 

  Density 

  Angular velocity 

0  
Angular velocity corresponding to the maximum sweep 

angular velocity (resonance in Nyquist plot) 

21,
 

Angular velocities in Nyquist plot to calculate the 

damping factor of a spring 
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3 ABBREVIATIONS   

 

 

 

 

 

 

 

 

DAGA Tagung der Deutschen Arbeitsgemeinschaft für Akustik 

DEGA Deutsche Gesellschaft für Akustik e.V. 

FTT Fast Fourier Transformation 

NOVEM Noise and Vibration: Emerging Methods 

PUR 
Polyurethane (2- and 3component castable resins have been 

used as rubber material in beams and on a plate) 

PVC foam 
Polyvinyl chloride foam is a light-weight material used as a 

rubber material. 

ISTA 
Institute of Fluid Dynamics and Engineering Acoustics (ISTA), 

Technical University of Berlin 

ISVR 
Institute of Sound and Vibration Research, University of 

Southampton  

OROS 
OROS – Measuring Noise & Vibration, Data acquisition 

system  

RASD Recent Advances in Structural Dynamics 

ShA 
Shore hardness (with 2- and 3-component liquids various 

Shore hardness of a rubber material could have been produced) 
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4 CALCULATIONS  ON  BEAMS  WITH  

EMBEDDED  RIGID  OR  FLEXIBLE  

INSERTS   

4.1 INTRODUCTION TO THE STUDY ON BEAMS   

The wave propagation in beams with equi-spaced rigid or flexible supports (Figure 1) 

have been frequently addressed and researched (see Chap. 1)7.  

By using evenly distributed rigid supports the waves can only propagate freely in 

certain frequency bands, whereas in the so called stop-bands they decay. These stop- 

and pass-bands alternate over the frequency. 

 

Figure 1: Infinite beam with evenly distributed rigid supports.  

One of the main interests in this study is the investigation of the propagation in a 

homogenous slender beam with equi-spaced rigid or flexible supports, which are 

embedded within the beam (Figure 2). If the calculations are made with the theory of an 

Euler-Bernoulli-beam, the embedded inserts can be seen as were they attached to the 

beam.  

 

Figure 2: Infinite beam with evenly distributed embedded masses within the beam (in this case 

out of the neutral layer). The transfer mobility is derived by locating the driving point before the 

first discontinuity and registering the velocity behind the last insert.  

However, bringing them into the neutral layer of the beam makes the moment reactions 

vanish (Figure 3). 

                                                 
7
 Fragments in this chapter have been published by Weith and Petersson in [99], [101] and [102] 
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Figure 3: Infinite beam with evenly distributed embedded masses in the neutral layer.  

It will be shown, that if these masses were coated with rubber (Figure 4), the attenuation 

at the resonance becomes in a considerable increased, whereas the stop- and pass-bands 

above the resonance frequency nearly vanish. 

 

Figure 4: Infinite beam with evenly distributed rubber-coated masses in the neutral layer. 

Changing the stiffness of the rubber coating of each insert broadens the attenuated 

frequency range (Figure 5). 

 

Figure 5: Infinite beam with evenly distributed rubber-coated masses with increasing 

stiffnesses8 in the neutral layer. 

Bringing them out of the neutral layer, additional moment effects arise, which 

compromises the attenuation, but gives another opportunity to change the behaviour of 

the propagating bending waves (Figure 6). 

                                                 
8
 In case of varying stiffness of the resonant inserts the plural of stiffness („stiffnesses“) will be used. 
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Figure 6: Infinite beam with evenly distributed rubber-coated masses with increasing stiffnesses 

displaced from the neutral layer.  

It will be shown, that the attenuation can be influenced with the variation of following 

parameters:  

- Weight of the masses 

- Stiffness of the rubber coating 

- Damping factor of the rubber coating 

- Distribution of the inserts in axial direction 

- Distribution of the inserts in vertical direction in distance to the neutral layer  

4.2 FORMULATION   

Following Cremer and Heckl [32] employing Euler-Bernoulli-theory, the governing set 

of equations can be written as9: 

and 

The discontinuities are substituted by the forces and moments resulting, which are 

applied to the uniform beam (equation (1) and (2)). GF, GFν, GM and GMν are the Green’s 

functions pertaining to the point excited, infinite beam: 

                                                 
9
 In accordance to Prof. B.A.T. Petersson, who was supervising this PhD thesis, the moment reactions of 

the inserts in equation (1) are set to be against the initial forces. Thus, the algebraic sign of the moment 

reactions in equation (1) has been changed in comparison to Heckls formulation [33]. 
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With the responses of the possibly differing discontinuities expressed in terms of the 

associated impedances as 

and 

The set of linear equations for the solution of the unknown auxiliary force and moments 

can be written as  

and 
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By means of this set of 2N equations, the unknown auxiliary forces and moments can be 

solved for and subsequently be substituted into equations (1) and (2) to obtain the 

vibration field of the periodic structure: 
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Equation ( 11 ): 
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4.2.1 IMPEDANCES   

The force impedance of a pure mass in the neutral layer can be described as 

Figure 7 depicts the masses in the neutral layer in an infinite beam. 

 

Figure 7: Embedded masses in the neutral layer. 

In case of embedded rubber-coated steel balls (Figure 8), the force impedance of one 

discontinuity becomes 

In this work castable resin will be used as a rubber material. It is expected that small 

vibrations yield a complex stiffness with a displacement dependent behaviour rather 

than to viscous damping behaviour [77]. Thus, the damping factor is used as shown in 

equation (15), which reflects a displacement-dependency of stiffness and damping, 

proportional to the excited force10.  

                                                 
10

 By the use of viscous rubber material a velocity-dependency would have been expected. 

 mj
v

F
Z mass

massF  , . ( 14 ) 

and  

 )1(0 springjss  . ( 15 ) 
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Figure 8: Rubber-coated balls in the neutral layer. 

The impedances of the moment reactions depend on the distance of the masses from the 

neutral layer rNL (Figure 9). 

 

Figure 9: Masses out of the neutral layer. 

If the masses were coated with rubber material, the impedance of the moment reactions 

also depends on the distance of the inserts from the neutral layer rNL (Figure 10). 
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Figure 10: Rubber-coated balls at a distance from the neutral layer. 

4.2.2 PARAMETERS   

An infinite slender beam with 5, 10 or 20 discontinuities will be used. It is of interest to 

investigate such values, which are close to the parameters of real beams, masses and 

spring stiffnesses of the up-following measurements (see section 5.2). 

The rectangular beams measure 70mm in height and 48mm in width. The loss factor of 

the beam
 

is set to 0.01 and the complex Young´s modulus is set to 

5.610
9
(1+jηbeam) N/m² with a damping factor of ηbeam=0.015. The density of the beam 

is set to 400 kg/m³, while the density of the inserted masses amounts to 7800 kg/m³. The 

complex spring stiffness of the rubber-coated balls is set to 2.510
5
(1+j ηspring) N/m 

with ηspring = 0.02. 

The inserts are distributed over different lengths with various distances each in axial 

direction. In case of the inserts were located out of the neutral layer, their distance 

amounts to 0.02m in vertical direction. The driving point force is located 0.5m before 

the first discontinuity and the velocity is registered 0.5m behind the last insert in most 

cases (Figure 11). The considered frequency range is between 10 Hz and 10 kHz.  

In all investigations the limit of the simple bending wave equation has to be 

considered11. 

                                                 
11

 In all calculations and measurements with beams, the vertical height of the beam is about h=80mm. The 

error of the simple bending wave equation from Euler-Bernoulli increases if the corresponding bending 

wave length becomes larger than 6 times that height (λ > 6h) (Cremer and Heckl [12]). Thus, transferred 

into a frequency, all calculated results with frequencies higher than f=2359Hz need to be considered 

under this condition. 
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Figure 11: An infinite homogenous slender beam with inserts in the neutral layer. The inserts 

are distributed over various lengths. The driving point force is located 0.5m before the first 

discontinuity and the velocity is registered 0.5m behind the last insert. 

To broaden the attenuation in the resonance area, the spring stiffness will be changed in 

a way that the complex spring stiffnesses of each spring-mass system are increasing in a 

logarithmical order, for instance, between  

4.3 NUMERICAL INVESTIGATION   

The following calculations show the main observations of an infinite homogenous 

slender beam with embedded discontinuities. These inserts consist of either pure masses 

or rubber-coated masses. They are distributed in the neutral layer or out of the neutral 

layer of the beam to study the influence of additional moment reactions12. 

In all following plots the calculations of the transfer mobility are depicted in a 

comparison with the same beam without inserts. 

4.3.1 HOMOGENEOUS INFINITE BEAM WITH MASSES IN THE NEUTRAL 

LAYER   

A homogeneous slender beam with evenly distributed masses in the neutral layer shows 

effects of stop- and pass-bands in the transfer mobility (see Figure 12). Their 

appearance depends on their separation. By bringing them together in always the same 

distance the periodic structure allows certain wavelengths to pass while other waves will 

be reflected. 

Figure 12 shows 5 masses which are equally distributed over a length of 10m. In the 

double logarithmic plot the pure beam (blue curve) shows a descent at higher 

frequencies, which is dependent on the loss factor of the beam. The transfer mobility of 

                                                 
12

 In an attachment to this work (sub-sections 11.1.1 - 11.1.3) additional side effects of the main 

observations are depicted in order to increase confidence in the physical behaviour of the formulas used. 

 
m

N
js

m

N
j )02.01(105)02.01(105 65  . ( 19 ) 



CALCULATIONS  ON  BEAMS  WITH  EMBEDDED  RIGID  OR  FLEXIBLE  INSERTS 

______________________________________________________________________________________________ 

 

  

 33 

the beam with embedded pure masses illustrates the existence of stop- and pass-bands 

(red curve). The negative slopes follow from the reflections of the bending waves in 

these frequency ranges. These are the so called stop-bands and their occurrence is 

periodical due to the equi-spaced masses13. 

 

Figure 12: Transfer mobility of an infinite beam with 5 embedded masses in the neutral layer. 

As depicted in the sketch on the right side 5 masses are equally distributed over a length of 10m. 

If now 10 masses are evenly distributed over the length of 10m (Figure 13), the 

distances in the frequency but also the depth and width of the stop-bands are increased.  

                                                 
13

 The correlation of the distances of the masses to the frequency of the stop-bands is depicted in Table 2.  
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Figure 13: Transfer mobility of an infinite beam with 10 embedded masses in the neutral layer. 

As depicted in the sketch on the right side 10 masses are equally distributed over a length of 

10m. 

At the beam with 20 equally distributed masses (Figure 13) these observed effects are 

increased again. In the range of 10 Hz to 10 kHz only four pass-bands are visible. The 

smaller the distances from mass to mass the higher the stop-bands in frequency are. 

 

Figure 14: Transfer mobility of an infinite beam with 20 embedded masses in the neutral layer. 

As depicted in the sketch on the right side 20 masses are equally distributed over a length of 

10m. 

These observations correspond to the findings Heckl [33] and Mead et al. [70] made 

with beams on rigid supports. 
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Figure 15: Transfer mobility of an infinite beam with 5, 10 and 20 embedded masses in the 

neutral layer. The lowest stop-bands in frequency of the beam with 5 masses are not visible in 

this plot. As depicted in the sketches on the left side 5, 10 and 20 masses are equally distributed 

over a length of 10m. 

In the comparison of the three calculated types (5, 10 and 20 masses) the observed 

effects of increased depth and width are highlighted in Figure 15. As the distances from 

mass to mass per beam vary (see Table 1) the stop- and pass-bands, which are related to 

the wavelength, do not coincide at the same frequency ranges. 

Table 1: The distances from mass to mass as depicted in Figure 15 

Number of masses 

equally distributed 

over a length of 10m 

Distance of mass to 

mass in meter 

5 2.5 

10 1.11 

20 0.53 

If the distances were all the same as depicted in Figure 16 the stop- and pass-bands 

coincide. The different slopes of the beams without discontinuities arise from the loss 

factor of the beam with regard to the different distances of the test points. 



CALCULATIONS  ON  BEAMS  WITH  EMBEDDED  RIGID  OR  FLEXIBLE  INSERTS 

______________________________________________________________________________________________ 

 

  

 36 

 

Figure 16: Transfer mobility of an infinite beam with 5, 10 and 20 embedded masses in the 

neutral layer with all the same distances. As depicted in the sketches on the right side 5, 10 and 

20 masses are equally distributed with distances of 0.5m to each other. The test points are 

located 0.5m behind the last insert. 

Stop-bands occur if a half of the bending wavelength or a multiple of it fits with the 

distances of the masses (Strasberg and Feit [89]). 

Their appearance in the frequency range follows from the bending wave equation 
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According to these equations, there is a non-linear increase of the frequency from one 

stop-band to another. 

The first four stop-band frequencies for different distances from mass to mass are 

depicted in Table 2. It can be seen that within a range of 0.2m and 2.5m distance the 

first stop-band varies between 22 Hz and 3.4 kHz. In the measurements at Chapter 5 the 

first three stop-bands of the beam with 5 masses are within the relevant frequency range 

from 10 Hz to 10 kHz. At the measurements with 10 masses equally distributed with 

distances of 0.2m to each other only one stop-band exists within this range14. 

                                                 
14

 These observations show that very long distances are needed to achieve attenuation at lower 

frequencies in the audible frequency range (see also Hirsekorn [39]). 
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Table 2: Calculated frequencies of the first four stop-bands for beams with different distances from 

mass to mass 

Distances from 

mass to mass  

1
st
  

stop-band 

2
nd

  

stop-band 

3
rd

  

stop-band 

4
th

  

stop-band 

Related to 

0.16m 5.302 kHz 21.21 kHz 47.72 kHz 84.84 kHz Calculations  

Figure 31 

0.2m 3.393 kHz 13.57 kHz 30.54 kHz 54.29 kHz Measurements  

Figure 46 

Figure 47 

Figure 48 

Figure 49 

0.25m 2.172 kHz 8.687 kHz 19.55 kHz 34.75 kHz Calculations 

Figure 30 

0.26m 2.008 kHz 8.032 kHz 18.07 kHz 32.13 kHz Calculations  

Figure 31  

0.4m 848 Hz 3.393 kHz 7.635 kHz 13.57 kHz Measurements  

Figure 45 

0.5m 543 Hz 2.172 kHz 4.886 kHz 8.687 kHz Calculations 

Figure 16 

Figure 20 

Figure 23 

Figure 24 

Figure 25 

Figure 26 

Figure 27 

Figure 29 

0.526m 490 Hz  1.96 kHz 4.41 kHz 7.84 kHz Calculations 

Figure 14 

Figure 15 

1.053m 122.5 Hz 490 Hz  1.102 kHz  1.96 kHz Calculations 

Figure 21 

Figure 22 

Figure 28 

1.11m 109.9 Hz 439.8 Hz 989.5 Hz 1.759 kHz Calculations 

Figure 13 

Figure 15 

2.1m 30.8 Hz 123.1 Hz 277.0 Hz 492.5 kHz Calculations 

Figure 22 

2.5m 21.7 Hz 86.9 Hz  195.5 Hz 347.5 Hz Calculations 

Figure 12 

Figure 15 

4.3.2 HOMOGENEOUS INFINITE BEAM WITH RUBBER-COATED MASSES 

IN THE NEUTRAL LAYER   

If these evenly distributed steel cylinders are coated with rubber, the effects of stop- and 

pass-bands diminish.  

Figure 17 shows 5 masses coated with rubber, which have a complex spring stiffness of 

2.5 10
5
 (1+j 0.02) N/m. The attenuation is dominated by the spring-mass system, albeit 

in a very narrow frequency band. 
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Figure 17: Transfer mobility of an infinite beam with rubber-coated masses embedded in the 

neutral layer. As depicted in the sketch on the right side 5 rubber-coated masses are equally 

distributed over a length of 2m. 

The more rubber-coated masses are involved the more the transfer mobility is decreased 

in the resonance frequency15 (Figure 18). 

According to the equation of a single-degree-of-freedom spring-mass system the 

attenuation of the transfer mobility coincides with the resonance of that system, which is 

set to fres= 224 Hz with 

 
m

N
jskgm cylindercylinder )02.01(105.2;1267.0 5 

  
( 27 ) 

                                                 
15

 The propagating bending waves are mainly reflected in the “resonance frequency” of the low damped 

spring-mass systems. According to the system “Infinite beam - Rubber - Mass”, this “resonance 

frequency” can be seen as the beam’s “anti-resonance” (see also the pre-test measurements in sub-section 

5.1.1). 
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Figure 18: Transfer mobility of an infinite beam with 5, 10 and 20 rubber-coated masses 

embedded in the neutral layer. The transfer mobility of the beam without inserts (dashed lines) 

has got the same test point as the beam with 5 rubber-coated masses. As depicted in the 

sketches on the right side 5, 10 and 20 rubber-coated masses are equally distributed with 

distances of 0.5m to each other. The test points are located 0.5m behind the last insert. 

In a next step the masses and stiffnesses vary in such way, that the resonances increase 

in a logarithmic order.  

Figure 19 shows the masses being changed in a logarithmical order from 

0.126 kg  m  0.0126 kg, the complex spring stiffnesses from 

2.5•10
5
 N/m  m  2.5•10

6 
N/m with a loss factor of the spring of 0.02. 

It is obvious that a reduction of the masses leads to reduced attenuations while changes 

in spring stiffness keep the reduction in the resonances on similar levels. Thus, in order 

to achieve a large attenuation over a broader frequency range, the changing of the spring 

stiffness is more sufficient than changing the masses. Last not least, it is much easier to 

vary the spring stiffness with different rubber materials in comparison to embedding 

larger masses in the same structure. This knowledge will be applied in the 

measurements (Chap. 5). 
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Figure 19: Transfer mobility of an infinite beam with 5 rubber-coated masses with variable 

masses and stiffnesses embedded in the neutral layer. As depicted in the sketches on the right 

side 5 rubber-coated masses with various masses or spring stiffnesses, respectively, are equally 

distributed with distances of 0.5m to each other. 
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4.3.3 HOMOGENEOUS INFINITE BEAM WITH PURE AND RUBBER-COATED 

MASSES IN THE NEUTRAL LAYER   

An interesting effect arises if the rubber-coated masses are compared with the same 

number of pure masses located at the same positions. Figure 20 shows the influence of 

the mass-controlled stop- and pass-band onto the rubber-coated masses16. The reduction 

of the transfer mobility becomes smaller in the frequency range of the transition from a 

stop-band to a pass-band. The level of the transfer mobility of both beams is almost the 

same. It appears that the elastically supported masses behave like pure masses in that 

frequency range. 

 

Figure 20: Transfer mobility of an infinite beam with 20 pure masses and 20 rubber-coated 

masses embedded in the neutral layer. As depicted in the sketches on the right side 20 masses or 

20 rubber-coated masses are equally distributed with distances of 0.5m to each other. The test 

points are located 0.5m behind the last insert. 

If the distances of the inserts were increased the first stop- and pass-band appears below 

the first resonance frequency of the rubber-coated masses (Figure 21). It is well-known 

from spring-mass-systems that below the resonance frequency the impedance of each 

spring-mass system is mass-controlled. Thus, in the frequency range below the lowest 

resonance, the 1
st
 stop-band appears as it would be from the beam with pure masses, 

even with a higher attenuation. 

At frequencies above the highest resonance frequency, the appearance of the stop- and 

pass-bands is vanished. This observation corresponds to the knowledge about spring-

                                                 
16

 According to Heckl, Maria [35] a support consisting of a single mass and spring has a single resonance 

frequency. Below this resonance frequency, each support behaves like a mass; the beam is then effectively 

mass-supported. Above this frequency, each support behaves like a spring; the beam is then effectively 

spring-supported. Directly at this resonance frequency, each support becomes rigid (if it is undamped), 

and the beam is effectively simply supported. 
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mass-systems, attached to beams, which are decoupled and solely spring controlled 

above their resonance frequency (Thompson [91]). 

Although a small trough is visible on the 3
rd

 stop-band the low influence reflects the 

spring-controlled behaviour at frequencies17, which are higher than the resonances. In 

the frequency range above the 3
rd

 stop-band the transfer mobility follows the one from 

the beam without any inserts. 

 

Figure 21: Transfer mobility of an infinite beam with 20 pure masses and 20 rubber-coated 

masses embedded in the neutral layer. As depicted in the sketches on the right side 20 masses or 

20 rubber-coated masses are equally distributed with distances of 1.05m to each other. The test 

points are located 0.5m behind the last insert. 

The observation in the following plot (Figure 22) underlines the spring- and mass-

controlled behaviour above and below the resonance band. The impact of the stop-band, 

which reduces the attenuation of the beam with rubber inserts, is larger at stop-bands 

that are related to inserts with doubled distances. At the three non-common stop-bands 

within the resonance band (see the green curve in Figure 22), the attenuation is only 

reduced at the resonances of the corresponding beam (see the red dashed curve). On the 

other side, reductions are higher at the common stop-bands at the beam that has its 

inserts closer in distance (1.05m). 

However, if the resonances occur in or close to a stop-band frequency, the attenuation is 

reduced. 

With respect to the mass-controlled numbers of spring-and-mass systems, the level of 

reduced attenuation should be higher for the more systems involved. That means that 

                                                 
17

 It can be seen in the following Figure 21, that a small attenuation trough is visible close to the 3
rd

 stop-

band above the highest resonance. This behaviour is possibly - although not expected - related to 

scattering effects in the calculations. 
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the stop-band that is lowest in frequency within the resonance band should have a 

higher impact than a stop-band on a higher frequency within the resonance band 

according to the number of masses that are below its own resonance and therefore still 

mass-controlled. In fact, this assumption is not visible in the observations of this 

numerical study. 

As mentioned, according to Heckl, Maria [35] is the behaviour of a support consisting 

of a single mass and a spring rigid in its resonance, if it is undamped. Although used a 

low damped spring factor in these calculations, this might explain the reduced 

attenuation even at higher stop-bands within the resonance band.  

It is even the case that the reduction induced by a stop-band occurs at frequencies that 

are above the highest resonance of the spring-mass systems. It is possible that the 

spring-mass systems still slightly act as pure masses or as “slightly rigid”; otherwise the 

frequency range of the mass-controlled area scatters around the resonance. The latter 

may explain why the reduction in the highest resonance can even occur by having only 

one spring-mass system above the stop-band frequency as in Figure 22 (see the red 

dashed curve at the highest stop-band within the resonance band)18. 

 

Figure 22: Transfer mobility of infinite beams with 10 pure masses and 10 rubber-coated 

masses embedded in the neutral layer. As depicted in the sketches on the right side 10 masses or 

10 rubber-coated masses are equally distributed with distances of 1.05m or 2.1m, respectively. 

The test points are located 20.5m behind the first insert. 

If the equidistant distribution of the pure masses is disturbed and the inserts are 

distributed randomly along the neutral layer, the appearance of stop-bands is 

                                                 
18

 By having only one mass-controlled rubber-coated insert, an impact related to stop- and pass-bands of 

the transfer mobility is not expected. At least two masses and a “distance between them” are needed to 

reveal stop- and pass-band behaviour. 
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significantly changed (Figure 23, blue curve)19. The attenuation of the transfer mobility 

scatters according to the non-equal distribution. 

Such random distributions have got a lower impact onto the attenuation, if resonant 

inserts with low stiffnesses are randomly distributed along the neutral layer. The 

stiffnesses of the rubber-coated masses is reduced by a factor of 100 (Figure 23, red 

dashed curve). The resonances occur in a frequency range below the first stop-band. 

Both curves, the green with inserts equally distributed and the red dashed curve with 

inserts randomly distributed, respectively, agree very well. Strasberg and Feit [89] also 

stated that the position of the spring-mass system along a beam is not relevant. In fact, 

as the next figure shows (Figure 24), involvement of periodic effects compromises the 

magnitude of attenuated resonance frequencies.  

 

Figure 23: Transfer mobility of infinite beams with 10 pure masses and 10 rubber-coated 

masses with very low stiffnesses embedded in the neutral layer. As depicted in the sketches on 

the right side 10 masses or 10 rubber-coated masses are equally distributed with distances of 

0,5m and randomly distributed, respectively. The test points are located 5.5m behind the forcing 

point. 

If the resonances of the rubber-coated masses occur in or near a stop-band, differences 

in the comparison with the same rubber-coated masses, which are equally distributed 

along the neutral layer, are visible (Figure 24). The impact of the stop-bands or evoked 

attenuations deteriorates the resonance band, similar to the observations shown in 

Figure 22. 

Furthermore, Weith and Petersson [102] have shown, that the effect of a reduced 

attenuation at or near by a stop-band is removed with randomised distributed spring-

                                                 
19

 See also Chapter 1 – Disordered/Randomised Distribution. 
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mass systems within the neutral layer20. Thus, within certain limits, the attenuation band 

at resonances can be controlled with the distribution of inserts along the neutral layer. 

 

Figure 24: Transfer mobility of infinite beams with 10 pure masses and 10 rubber-coated 

masses with very high stiffnesses embedded in the neutral layer. As depicted in the sketches on 

the right side 10 masses or 10 rubber-coated masses are equally distributed with distances of 

0.5m and randomly distributed, respectively. The test points are located 5.5m behind the forcing 

point. 

                                                 
20

 In the work of Weith and Petersson [102] 100 calculations of the Transfer mobility with randomised 

distributed spring-mass systems along the neutral layer have been averaged. 
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4.3.4 HOMOGENEOUS INFINITE BEAM WITH MASSES OUT OF THE 

NEUTRAL LAYER   

All previous calculations have been made with inserts located in the neutral layer. 

Figure 25 shows a comparison of 10 masses in the neutral layer (see Figure 16) with the 

same 10 masses, now, displaced from the neutral layer in a distance of 0.02m. The 

displacement of these masses changes the transfer mobility such that the stop-bands are 

smeared at higher frequencies. At the 4
th

 stop-band the transfer mobility shows higher 

values than the beam without any inserts. 

 

Figure 25: Transfer mobility of an infinite beam with 10 pure masses embedded in and out of 

the neutral layer. As depicted in the sketches on the right side 10 masses are equally distributed 

in and out of the neutral layer with distances in axial direction of 0.5m to each other. The test 

points are located 0.5 m behind the last insert. 

In all four figures with 10 and 20 masses (Figure 25, Figure 26, Figure 27, Figure 28), 

which are distributed over two distinct distances, it can be observed that the 1
st
 stop-

band coincides in these examples. Differences occur from the 2
nd

 stop-band on and are 

manifested in smeared appearances of the stop-bands as well as in an amplified 

behaviour. Effects of smearing and changed attenuations of the stop-bands at higher 

frequencies are visible. From the 2
nd

 stop-band on, they vary such that the attenuations 

are lower and broadened to both sides of each stop-band. Negative peaks appear which 

show higher attenuations than in the beam with inserts in the neutral layer.  

This behaviour reflects the observations of Mead et al. [70] and deteriorates the 

objective in this work of having a defined and large attenuation.  
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Figure 26: Transfer mobility of an infinite beam with 20 pure masses embedded in and out of 

the neutral layer. As depicted in the sketches on the right side 20 masses are equally distributed 

in and out of the neutral layer with distances in axial direction of 0.5m to each other. The test 

points are located 0.5 m behind the last insert. 

 
Figure 27: Transfer mobility of an infinite beam with 10 and 20 pure masses embedded out of 

the neutral layer with distances of 0.5m to each other. As depicted in the sketches on the right 

side 10 and 20 masses are equally distributed out of the neutral layer with distances in axial 

direction of 0.5m to each other. The test points are located 10 m behind the first insert. 
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Figure 28: Transfer mobility of an infinite beam with 20 pure masses embedded in and out of 

the neutral layer. As depicted in the sketches on the right side 20 masses are equally distributed 

in and out of the neutral layer with distances in axial direction of 1.05m to each other. The test 

points are located 0.5 m behind the last insert. 

With respect to achieving a large attenuation of the transfer mobility, a displacement of 

the masses from the neutral layer is not appropriate. Moment reactions reduce the 

attenuation even if the masses are coated with rubber, as can be observed in the 

following sub-section (4.3.5). 

4.3.5 HOMOGENEOUS INFINITE BEAM WITH RUBBER-COATED MASSES 

OUT OF THE NEUTRAL LAYER   

In the following the rubber-coated inserts are displaced from the neutral layer. The 

moment reactions slightly reduce the attenuated regions at higher frequencies (Figure 

29). It can also be seen that the changed behaviour of the transfer mobility with rubber-

coated masses seems to be independent of the changes with pure masses displaced from 

the neutral layer. The frequency ranges of the beam with pure masses and with rubber-

coated masses, which are affected by the displacement (in this case approximately at 

and above the 2
nd

 stop-band) are not correlating. These changes in the transfer mobility 

are larger at the beam with pure masses than of the beam with rubber-coated masses 

(see also Figure 25). 
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Figure 29: Transfer mobility of an infinite beam with 10 pure masses out of the neutral layer, 

10 rubber-coated masses in and 10 rubber-coated masses out of the neutral layer. As depicted 

in the sketches on the right side 10 inserts are equally distributed in and out of the neutral layer 

with distances in axial direction of 0.5m to each other. The test points are located 0.5 m behind 

the last insert. 

By doubling the number of inserts while maintaining the distances, the influence of the 

moment reactions becomes more visible (Figure 30). The attenuation in the resonance 

bands is increasing if the inserts are in the neutral layer and decreasing if they are 

outside it.  

In the frequency range of the stop-band from the beam with pure masses, both transfer 

mobilities of the beam with resonant inserts show a reduced attenuation, as shown in 

sub-section 4.3.3. The impact of the stop-band on the inserts, which are displayed in the 

neutral layer, is less significant. Above the highest resonance, both curves of the beam 

with rubber-coated inserts again agree very well and follow the curve of the beam 

without any inserts. 

However, in order to achieve a large attenuation with resonant inserts, it seems to be 

advantageous to keep them in the neutral layer. 



CALCULATIONS  ON  BEAMS  WITH  EMBEDDED  RIGID  OR  FLEXIBLE  INSERTS 

______________________________________________________________________________________________ 

 

  

 51 

 

Figure 30: Transfer mobility of an infinite beam with 20 pure masses out of the neutral layer, 

20 rubber-coated masses in and 20 rubber-coated masses out of the neutral layer. As depicted 

in the sketches on the right side 20 inserts are equally distributed in and out of the neutral layer 

with distances in axial direction of 0.25m to each other. The test points are located 0.5m behind 

the last insert. 

In the following plot (Figure 31) it can be observed that there is very little influence of a 

stop-band on rubber-coated masses that are displayed from the neutral layer. In 

comparison to a beam with its inserts out of the neutral layer and distributed such that 

the stop-band coincides with the resonance band, there is a minor difference in the same 

beam with the 1
st
 stop-band above its resonance band (compare the 1

st
 stop-bands of the 

blue and black curves shown in Figure 31). Both curves of a beam with rubber-coated 

masses agree very well (compare the green and red dashed curves shown in Figure 31). 
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Figure 31: Transfer mobility of an infinite beam with 20 pure masses and 20 rubber-coated 

masses out of the neutral layer, with different equally distributed distances. As depicted in the 

sketches on the right side 20 inserts are equally distributed out of the neutral layer with 

distances in axial direction of 0.16m and 0.26m, respectively. The test points are located 20.5m 

behind the first insert. 

Furthermore, according to Weith and Petersson [102] it could have been shown that the 

reduced attenuation at rising frequency with the rubber-coated masses out of the neutral 

layer can be minimised by distributing the inserts in randomised distances to the neutral 

layer.  

That means that a randomised distribution of the inserts in vertical as well as in axial 

directions at a beam (see sub-section 4.3.3) may be helpful in controlling the 

attenuation.  

4.4 SUMMARY OF THE CALCULATIONS ON A BEAM   

All these numerical observation with masses and rubber-coated masses embedded into 

an infinite beam show, that there are several possibilities influence the propagating 

bending waves within certain limits. 

As some of the effects from the numerical study can be verified with a high confidence 

on measurement results of a beam with ends placed in sand (see Chap. 5), all the 

observations of the numerical and experimental results on a beam are summarised in 

Chapter 6. 
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5 MEASUREMENTS  ON  SLENDER  BEAMS  

WITH  EQUI-SPACED  RIGID  OR  

FLEXIBLE  INSERTS   

5.1 PREPARATION OF THE MEASUREMENTS WITH A 

SLENDER BEAM   

For the measurements with beams, a set of five beams with lengths of 5m and widths 

and heights of 60x80mm were purchased in order to run the investigations with various 

inserts21. 

Cylindrical steel cylinders with a length of 60mm, a diameter of 16mm and a weight of 

0.1267 kg had been produced by the in house workers of the Acoustic Institute of the 

Technical University of Berlin. The holes in the beam were drilled with a diameter of 

16mm inserting the pure cylinders or with a diameter of 20mm embedding the cylinders 

in a suitable rubber material. Thus, the radial layer thickness of the rubber material is set 

to 2mm. 

5.1.1 PRELIMINARY INVESTIGATION OF AN APPROPRIATE RUBBER 

MATERIAL   

A large effort and many trials with different materials were necessary to discern a 

suitable rubber material, which lead to measurement results in the frequency ranges of 

interest. Main objective with these measurements was to show the influences by stop-

bands and resonances. Hereby, low damped spring behaviour is favourised with respect 

to a better distinction of both conditions. Commercial silicone did not show appropriate 

results as the damping factor of the spring appeared too large22. At the end a special 

elastically Polyurethane castable resin (PUR-CR) from a specialised dealer for sculpture 

was most sufficient [73]. It was even possible to vary the shore hardness using a 

hardener (2- or 3-component liquids) within a range from ShA 40 to ShA 80. 

                                                 
21

 Due to the limited number of beams available, it was not possible to explore each observation that 

follows from the results in the numerical study. 

22
 In a very early trial with silicone rubbered masses embedded in one of the wooden beams, significant 

resonance behaviour could not been measured (Stütz [90]). Commercial silicone appeared to have large 

damping properties, which vary by the time. As discussed in Chapter 1 and shown in sub-section 11.1.2, it 

is useful to obtain a significant attenuation at the resonances of the rubber-coated masses by keeping the 

loss factor of the springs as low as possible. 
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5.1.2 PRE-TEST MEASUREMENTS WITH RUBBER-COATED MASSES 

EMBEDDED INTO BEAM PIECES   

In pre-test measurements small pieces were cut from a wooden beam to lengths of 50 

mm and filled with a mass coated with rubber material. To assess the appropriate 

material conditions, measurements with a shaker have been carried out. 

Therefore such a piece of a beam with the length of 50mm and an embedded steel 

cylinder coated in the PUR has been screwed onto a shaker. Acceleration sensors were 

placed to both sides of the mass and onto the top of the beam (see Figure 32). The 

excitation by the shaker happened vertically. 

Three samples of the polyurethane castable resin were mixed with shore hardness of 

ShA 40, 60 and 80. An amplified white noise signal has been used to excite the beam 

piece by the shaker (Figure 32). 

 

Figure 32: Measurement set-up with a small piece of the wooden beam, filled with a rubber-

coated mass, which was vertically driven by a shaker. To assess an appropriate material, 

measurements with a shaker, excited by white noise, have been carried out. 

The measurement system used has been a 16-Multi-channel acquisition system by 

OROS. The sampling rate was set to 20 kHz with a 6400 FFT size. Thus, according to 

Nyquist the frequency resolution Fr of all measurements amounts to 

Accelerometer on the top of the beam piece 

Shaker 

Two Accelerometers, attached to the side 

of the rubber-coated mass cylinder 

Charge amplifiers 

Cylindrical 

mass (not 

visible), 

embedded in 

the center of 

the wooden 

piece 
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The frequency responses of each accelerometer placed on the sides of a mass to the 

accelerometers on the top of the length of beam are shown in Figure 33. The magnitude 

shows a minimum between 1 kHz and 2 kHz on the left side of the masses with ShA 40 

and ShA 80 and a maximum between 2 kHz and 3.5 kHz on both sides of the masses. 

The beam piece with the rubber layer with ShA 60 only shows a smoothed frequency 

response without significant extremes and may not be appropriate for use with the 

following measurements. 

 

Figure 33: Frequency response of three beam pieces with embedded rubber-coated masses. The 

Shore hardness of the pieces is set to ShA 40, 60 and 80. Accelerometers are placed on each 

side of a mass and on the top of the beam piece. 

The results show that the movement of the mass cylinder obviously varies over its 

cylindrical length. The minimum and maximum of the frequency response are visible 

either on the left or on the right side of the mass. The phases of the two minimum 

accelerations (ShA 40 and ShA 80 at frequencies about 1.5 kHz and 1.8 kHz) 

correspond very well. Phase changes of the pieces with a Shore hardness of ShA 40 and 

ShA 80 corresponds to the maxima of the mass vibrations.  

 Hz
Hz

Fr 625.1
6400

10000
  ( 28 ) 
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Figure 34: Three beam pieces with embedded rubber-coated masses. The Nyquist plot shows 

the real and imaginary part of the mean of the accelerations on the sides of the masses to the 

acceleration of the top of the beam piece. The Shore hardness of the pieces is set to ShA 40, 60 

and 80. 

The frequency responses of the two accelerometers on the sides of the top accelerometer 

reveals information about the resonance and damping conditions of this system. The 

Nyquist plots of the three different Shore hardnesses (Figure 34) show that rubber-

embedded masses react differently. The resulting circles of ShA 40 and ShA 80 have 

larger diameters than those with a Shore hardness of ShA 60. The larger the diameter of 

the circles in a Nyquist plot, the lower the damping factor or the spring is23. 

These observations led to the decision to use the mixture of PUR with a Shore hardness 

of ShA 40 for a lower resonance frequency and ShA 80 for a higher resonance 

frequency in the measurements with a beam. 

In addition it is of interest, which impact these observations will have onto the transfer 

mobility of a real beam with rubber-coated inserts. As we have seen in the calculations a 

large attenuation in the transfer mobility at the spring-mass resonances is to be expected 

(see Figure 17). 

                                                 
23

 In the measurements on a piece of beam with Shore hardness of ShA 40 two different resonances in the 

Nyquist-plot are visible (Figure 34). The doubled circles correspond to the two maxima arising at 

different frequencies in Figure 33.  
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In the following figures (Figure 35 and Figure 36) the magnitudes of the velocity are 

shown. On the beam piece with a Shore hardness of ShA 40 one side of the mass show a 

minimum velocity between 1 kHz and 2 kHz (see the orange circle in Figure 35). The 

same behaviour can be seen at the four pieces with a Shore hardness of 80 ShA, 

whereas the other side follows the vibrations of the entire beam piece (Figure 36). 

In the frequency ranges between 2 kHz and 3 kHz (ShA 40) respectively 2 kHz and 

5 kHz (ShA 80) the mass vibrations reach maximum values. Close to these frequencies 

the entire beam piece shows a minimum (see the brown circles). It is very likely that the 

largest reflection of bending waves in an entire beam, embedded with such rubber-

coated inserts, happens in this frequency region, when the beam vibration is minimised 

and the rubber-coated masses are resonating. Thus, this frequency range can be declared 

in the system beam-rubber-mass as the “anti-resonance” of the beam piece. 

 

Figure 35: Velocity of a beam piece with masses embedded in rubber coating with the Shore 

hardness of ShA 40. Accelerometers are placed on each side of a mass and on the top of a piece. 

The orange dotted circle denotes a velocity minimum of one side of the masses, the pink 

coloured dotted circle the maximum of it. The brown dotted circle highlights a minimum 

vibration of the entire beam piece, which is possibly the anti-resonance. 
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Figure 36: Velocity of 4 beam pieces with masses embedded in rubber coating with a Shore 

hardness of ShA 80 each. Accelerometers are placed on each side of a mass and on the top of 

each piece. The orange dotted circle denotes a velocity minimum of one side of the masses, the 

pink coloured dotted circle the maximum of it. The brown dotted circle highlights the minimum 

vibration of the entire beam piece. 

The scattering of the resonances is very likely related to the sensible filling procedure of 

the PUR. It is obvious that the masses do not vibrate as one mass point. Varying 

thicknesses of the layers come along with varying stiffnesses along the cylindrical axis 

and in radial directions. This may explain the scattering in resonances and an 

asymmetric shaking cylinder24.  

However, within certain frequency ranges (1 kHz to 3 kHz with ShA 40 and 1 kHz to 

5 kHz with ShA 80), a reduced vibration of either the masses or the entire beam piece is 

to be expected. It is necessary to investigate if the vertical vibrations of the shaker onto 

the beam piece are directly comparable to the propagating bending waves induced by a 

shaker on one end of a beam (see section 5.2). Furthermore, the reflections of the 

                                                 
24

 Maysenhölder [67] experimentally investigated rubber-coated lead spheres in a rigid frame and 

explained the existence of two maxima with the thickness resonances of the elastic layer. Maria Heckl 

[35] proved the existence of two different resonance frequencies for bending waves and torsional waves 

exciting a rubber-coated mass. In this measurement set-up - with a vertical excitation of a small wooden 

piece - torsional vibrations are not expected, but they may need to be considered in the measurements 

with beams. 
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bending waves in a beam with inserts are not measurable in these pre-tests with a “one-

dimensional” beam piece. 

Therefore, the existence of three different observed conditions of velocity needs to be 

considered in the following assessment of the measurement results on real wooden 

beams: 

1. The minimum velocity of one side of the mass. 

2. The “real resonance” with a maximum velocity of the cylindrical mass.  

3. The “anti-resonance”, since the vibration of the beam piece is considerably 

reduced25. 

It will be shown in the investigation on a real beam with 5 or 10 embedded spring-mass 

systems, that the beam with inserts and a castable resin with a Shore hardness of ShA 40 

has its minimum at a frequency that appears in the range of the minimum velocity of 

one side of the mass of the beam piece (compare Figure 35 and Figure 50 in sub-section 

5.3.4). 

On the other hand, it makes sense to imagine ideal reflections of bending waves evoked 

by the resonance of the rubber-coated masses while the entire beam is stationary. 

Furthermore, a large impedance change might be “seen” by the bending wave, when the 

mass is vibrating in maximum. 

However, in the numerical study the attenuation peaks of the transfer mobility are 

related to the maximum acceleration of the cylindrical mass. Thus, these pre-test 

measurements show the complexity of real conditions such as diverting vibrations of 

cylindrical masses, the presence of inhomogeneous and non-isotropic wooden beams, 

scattering damping factors of the spring, etc. 

Nevertheless, it will be shown, that some of the observed effects in the calculations can 

be determined with “real conditions” as well. 

Finally, as a result of the pre-test measurements, the castable resin with a Shore 

hardness of ShA 40 for rubber with a low stiffness and ShA 80 for rubber with a high 

stiffness seems to be most appropriate for taking measurements on the beams. 

                                                 
25

 It is assumed that the resulting resonance frequencies of the “real resonance” and this “anti-resonance” 

coincide within a small range at measurements on beams. In all further discussions with the infinite or 5m 

long beams this “anti-resonance” will be called “resonance” for short. 
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5.2 MEASUREMENTS ON A SLENDER BEAM   

For measurements on real beams, the same system and FFT settings used for the pre-test 

measurements has been employed26. The shaker has been driven by an impulse, which 

triggers the start of the recording of the OROS measurement system. The inserts, the 

shaker and the sensors were set up in the same way as described for the numerical study. 

The shaker excited the beam with impulses. The force transducer was located between 

the shaker and the beam. 

The general test set-up of the beams was as follows: 

- Both ends of the beams were embedded into sand in a depth of 0.5m to reduce 

reflections. 

- In 1.25m distance to one end of a beam the excitation point was located. 

- In 1.25m distance to the other end of a beam the measurement point with an 

accelerometer was located. 

- 5 or 10 discontinuities were placed on positions starting in 0.35m distance to the 

excitation point. The distances from mass to mass were set to 0.4m 

(5 discontinuities) or 0.2m (10 discontinuities) to each other. 

Figure 37 shows the general measurement set-up. 

                                                 
26

 See sub-section 5.1.2 
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Figure 37: Basic measurement set-up of a slender beam with discontinuities embedded in the 

neutral layer. Both ends of the beam with a length of 5m are covered by sand to reduce 

reflections. The excitation happened on the left side of the 1
st
 insert with a shaker and a force 

transducer connected. Data evaluation happened with an accelerometer placed on the right side 

of the inserts, Data acquisition and analysis were performed using a multi-channel data 

acquisition system from OROS. For the measurements either 5 or 10 insert were used. These 

consist of pure masses or rubber-coated masses with two different shore hardness and had been 

placed within the neutral layer or shifted by 20mm out of the neutral layer. 
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In the following Table 3 the six measurement configurations are shown: 

Table 3: Six configurations with beams and inserts have been measured 

 

5 pure masses in the neutral layer 

 

10 pure masses in the neutral layer 

 

10 rubber-coated masses in the neutral 

layer (low stiffness, Shore hardness of 

ShA 40) 

 

10 rubber-coated masses in the neutral 

layer (high stiffness, Shore hardness of 

ShA 80) 

 

10 rubber-coated masses out of the neutral 

layer (low stiffness, Shore hardness of 

ShA 40) 

 

10 rubber-coated masses out of the neutral 

layer (high stiffness, Shore hardness of 

ShA 80) 

The beam was excited with a short impulse on the driver point. Accelerometers were 

placed on the half way in the middle of the beam and in 1.85m distance to the other end 

of the beam (0.35m distance to the 10
th

 inserts by using 10 discontinuities or 0.55m 

distance to the last insert, if 5 discontinuities were only used).  
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Figure 38: Measurement set-up of a slender beam. Both ends of the beam are embedded into 

sand to reduce reflections. 10 rubber-coated masses are equally distributed in the neutral layer. 

In the foreground the shaker unit is shown, which is placed on a metal cube to adjust the 

optimised distance to the beam (for the up following measurements the tip of the shaker has 

been placed centrically to the metal coin). In the background the pre-test measurement set-up 

with four pieces of a beam with rubber-coated masses embedded is visible. 

A detailed picture of the shaker unit is displayed in Figure 39. To increase the initial 

energy into the beam, the shaker was driven by a short impulse induced over a metal tip 

on the shaker and a metal coin, which was bonded on the bottom side of the beam. The 

force transducer is rigidly screwed between the shaker excitation unit and this metal tip. 

In Figure 40 the rubber coated area of a spring-mass is highlighted.  

Embedded end of the 

beam into sand 

3 of 10 rubber-coated 

cylindrical masses 

Accelerometer 

on the test 

point 

Shaker with force 

transducer, excited by 

impulses 

Pre-test measurements with various Shore-hardnesses: Beam 

pieces with rubber-coated, cylindrical masses embedded in 

the center 
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Figure 39: Measurement equipment of a slender beam with the excitation point of the shaker in 

1.25m distance to one end of the beam. 

 

 

Figure 40: The 5
th
 and 6

th
 position of rubber-coated masses out of the neutral layer on a slender 

beam. The green circle highlights the rubber area of the embedded steel cylinder on the left side 

of the picure. The accelerometer in the middle of the inserts on the top of the beam has been 

used for control reasons.  
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5.3 MEASUREMENT RESULTS OF A SLENDER BEAM   

5.3.1 REPEATABILITY CHECK   

For each configuration five measurements have been carried out. In Figure 41 the 

transfer mobility of a pure beam (without any holes or inserts) shows a high 

repeatability of the five measurements. In the frequency range below 200 Hz reflections 

from the ends are very likely the reasons for the peaks. The damping effect of the 

embedded ends into sand does not represent ideal non-reflecting conditions. In all 

measurement results it has to be considered that the wooden beam out of pine cannot be 

treated as entirely isotropic and homogenous.  

Additionally some of the beams were slightly drilled in axial direction, which could 

influence the bending waves leading in torsional vibration. 

The weight of the beams also scatters, which has an impact to the densities and varying 

bending wave speeds. 

Nevertheless, we will see that the measurements of the wooden beam with different 

configurations are sufficient to detect some of the effects observed in the numerical 

study (section 4.3). 

 
Figure 41: Transfer mobility of 5 measurements carried out on a pure beam within one test 

sequence. The various curves overlay very well and underline a high repeatability of the test 

runs. 
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5.3.2 MEASUREMENT RESULTS OF A BEAM WITH HOLES   

In Figure 42 the transfer mobilities of the pure beam and the same beam with drilled 

holes are depicted. In the interesting frequency range between 200 Hz and 5 kHz slight 

differences are visible. As the configurations with embedded inserts will be normalised 

later on to be comparative with the measured test results, one of the wooden beam with 

only holes has been used as a baseline for further comparisons27.  

 
Figure 42: Transfer mobilities of the mean of 5 measurements carried out on a pure beam and 

on the same beam with 10 holes. 

5.3.3 MEASUREMENT RESULTS OF A BEAM WITH MASSES   

In the following figures the measurement results are compared with the results of the 

calculations. 

To be able to compare the measurements with the calculations the ratio of the transfer 

mobilities of the beam with discontinuities to the beam without discontinuities 

                                                 
27

 Five beams had been available for this measurement series. It turned out that the properties of these 

beams with respect to their isotropic and homogeneous behaviour differ. Thus, it has to be considered, 

that each of these beams reveals in slightly varying transfer mobilities. Due to the large effort of 

measuring the transfer mobility of a beam, the decision was made using one of the beams with only holes 

as a baseline. Thus, not every beam has been measured in its form with only holes and therefore the ratios 

of the transfer mobilities are affected by the different conditions of each beam. 
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(calculations) and to the beam with only holes (measurements), respectively, will be 

shown. Thus, a ratio smaller than unity displays attenuation in the transfer mobility. 

The measurements were undertaken with a resolution of 1.625 Hz, such that the results 

could be smoothed, employing a moving average. 

To get an impression of expected results, Figure 43 illustrates the ratios of the transfer 

mobility of beams with 5 and 10 masses from the calculations done in Chapter 4. The 

stop-bands of the beam with 5 masses and with 10 masses are clearly depicted. The 1
st
 

stop-band of the beam with 10 masses coincides with the 2
nd

 stop-band of the beam with 

5 masses and shows a larger attenuation. 

 
Figure 43: Calculated ratio of the transfer mobility of a beam with 5 masses (distances 0.4m) 

and a calculated beam with 10 masses (distances 0.2m), normalised with the same beam 

without any inserts. As depicted in the sketches on the right side the masses are equally 

distributed in the neutral layer. The test points are located 0.5m behind the last insert. 

Figure 44 shows the first comparison of a measured beam with 5 masses (0.4m 

distances) and 10 masses (0.2m distances). The ratio of the transfer mobility measured 

on beams with 5 and 10 pure masses in the neutral layer illustrates the influence of the 

periodically distributed masses.  

As expected the possible 1
st
 stop-band of the 5 masses in the frequency range of about 

848 Hz (see Table 2) does not exist at the beam with 10 masses28. The 2
nd

 stop-band of 

the beam with 5 masses, expected at a frequency of 3.93 kHz, coincides very well with 

the 1
st
 stop-band of the beam with 10 masses. The attenuation of the beam with 

10 masses is increased and has a broader frequency range than the beam with 5 masses.  

                                                 
28

 The measured attenuations at the beam with pure masses are very likely related to real existing stop-

bands.  
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As has been shown in sub-section 4.3.1, the effect of a reflection of bending waves is 

higher and broader the more discontinuities are used. 

Now it is interesting, what happens with the 3
rd

 stop-band of the beam with 5 masses, 

which is expected to be at a frequency of 7.67 kHz (see Table 2). There is a decreased 

area of the transfer mobility at the frequency range around 6 kHz visible (see the blue 

curve and blue arrow in Figure 44), which might be the measured 3
rd

 stop-band. On the 

other side a similar effect can be seen at a slightly lower frequency range at the beam 

with 10 masses, which is not expected due to the calculations (the 2
nd

 stop-band of the 

10 masses should be beyond the measurement upper limit of 10 kHz). Thus, at higher 

frequencies a significant conclusion becomes difficult.  

However, the observed conditions at the measurement with the masses show a good 

agreement with the calculations at frequencies up to 4 kHz. 

 
 

 

 

 

 

 
Figure 44: Measured transfer mobility of a beam with 5 and 10 masses (distances 0.2 m and 

0.4 m), normalised with the same beam with only holes. As depicted in the sketches on the 

bottom side both ends of the beams are embedded into sand to simulate infinite conditions. 

Possible stop-bands are highlighted.  
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If we compare now the ratio of the transfer mobility of a beam with 5 masses again, but 

with the calculated results (Figure 45), the influence of the periodically distributed 

masses is obvious. The measurement curve shows a higher and broader attenuation in 

the first three stop-bands and the center frequency seems to be higher in compare with 

the calculated result. As it was observed in the parameter study of the loss factor of the 

beam and the Young’s modulus (Sub-section 11.1.1, Figure 84), such variations might 

be put down to discrepancies of these values in real conditions.  

At low frequencies both curves agree very well (Figure 45). The first stop-band, which 

is located in the frequency range of 500 Hz to 600 Hz is slightly visible. 

The 3
rd

 stop-band in the range of 6 kHz of the measured beam was expected to have a 

larger attenuation than the 2
nd

 stop-band in the range of 2 kHz to 4 kHz (see the blue 

curve of the calculated beams). This is not the case and might be put down to 

inhomogeneous and non-isotropic conditions of the wooden beam and increased 

measurement errors at higher frequencies. Influences of differing Young’s modulus in 

the real beam might be responsible for the slightly shifted stop-bands in frequency. In 

addition, the in-situ stiffnesses of the masses might have an influence to the results. 

 

Figure 45: Ratio of the transfer mobility of beams with 5 masses (distances 0.4m). The 

normalisation happened with a beam without any inserts (calculation) and with the same beam 

with only holes (measurement), respectively. As depicted in the sketch on the right bottom side, 

both ends of the measured beam are embedded into sand to simulate infinite conditions. The test 

points are located 0.5m (calculation) and 0.55m (measurement) behind the last insert. 

The same comparison with 10 masses shows similar effects at the stop-band (Figure 

46). The attenuation of the transfer mobility is broader and increased at the measured 

beam. At frequencies from 4 kHz on variations are visible, which do not coincide with 

the measurement result. These differences as mentioned before might be put down to 

inhomogeneous and non-isotropic conditions of the wooden beam.  
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Figure 46: Ratio of the transfer mobility of a beam with 10 masses (distances 0.2m). The 

normalisation happened with a beam without any inserts (calculation) and with the same beam 

with only holes (measurement), respectively. As depicted in the sketch on the right bottom side, 

both ends of the measured beam are embedded into sand to simulate infinite conditions. The test 

points are located 0.5m (calculation) and 0.35m (measurement) behind the last insert. 

Summarised, the results of the measurements on beams with 5 and 10 masses embedded 

in the neutral layer show that the 1
st
 stop-band of both types arise at the frequency range 

as expected, although with a broader and increased attenuation of the transfer mobility.  

At higher frequencies differing results appeared. These could be attributed to the limits 

of the Euler-Bernoulli beam and real existing other wave types, which are not 

considered in the numerical study29. 

                                                 
29

 On rails Maria Heckl [35] has shown different stop- and pass-bands in terms of whether the other wave 

types exist. 
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5.3.4 MEASUREMENT RESULTS OF A BEAM WITH RUBBER-COATED 

MASSES   

If the embedded masses are coated with rubber, each represents a spring-mass system 

distributed along the beam in the neutral layer. 

As we have seen in the numerical investigation (Chap. 4.3), the stop-bands vanish by 

coating the masses with a rubber material and the attenuation at the resonance of these 

spring-mass systems appears instead (Figure 17). Thus, this resonance attenuation 

dominates in comparison with the attenuation of a stop-band in the calculations. 

Figure 47 shows the comparison of a beam with 10 rubber-coated masses with shore 

hardness of 40 ShA and the beam with 10 pure masses. On the first view it is not quite 

clear, which attenuation in the transfer mobility represents the “resonances” as expected 

from the calculations. A larger attenuation band is visible between 800 Hz and 2 kHz, 

two others at about 300 Hz and 5 kHz. 
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Figure 47: Ratio of the transfer mobility of a beam with 10 masses (distances 0.2m) and 10 

spring-masses, respectively. The normalisation happened with the same beam with only holes. 

As depicted in the sketches on the bottom both ends of the measured beams are embedded into 

sand to simulate infinite conditions. The test points are located 0.35 m behind the last insert. 

In pre-test measurements with only one rubber-coated mass embedded in a beam piece 

(Figure 35), it was observed that there were two suspicious frequency ranges resulting 

in attenuated vibrations. One of those appeared at approximately 1.5 kHz (one 

accelerometer on one side of the mass), the other at about 2.5 kHz (accelerometer on the 

top of the beam piece). In addition, it resulted that the appearance of these resonances 

belied a large scattering. 

However, it is very likely, that the attenuated transfer mobility between 800 Hz and 

2 kHz indicates the resonance band of the rubber-coated masses with low stiffness 

(Shore hardness of ShA 40). 

To emphasize this assumption and to increase the confidence of having “real” 

resonances and stop-bands, it makes sense to include the results of the phases and 

coherences, respectively. 

Possible 2
nd

 stop-band of 
the beam with 10 masses 

Unexpected 
attenuation 

Possible resonance band of the beam 
with 10 rubber-coated masses 

Unexpected 
attenuation 
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5.3.5 RESONANCE AND STOP-BAND INVESTIGATION WITH PHASES AND 

COHERENCES   

The transfer mobility of the beam with 10 rubber-coated masses in Figure 47 gives 

reason to assume that a resonance band is located in the frequency range between 

800 Hz and 2 kHz. However, this is only an assumption, which needs to be investigated 

by having a closer look onto the phases and the coherences30. 

It would have been a large undertaking to measure the resonance of each spring-mass 

system by fixing accelerometers on the sides of each mass (as has been done on the 

beam pieces for pre-test purposes in sub-section. 5.1.1). 

Thus, the behaviour of the transfer mobility in the frequency range between 400 Hz and 

10 kHz has been investigated by observing the behaviour of the phase and coherence of 

the transfer mobility of each beam with inserts. It has been examined, if one of the 

following conditions possibly exists: 

- Stop-band of pure masses 

- Resonance area of rubber-coated inserts 

Changes in the phases and a reduction in the coherences in comparison with the 

behaviour of the beam without any inserts can be indications for being a stop-band or a 

resonance area31. 

The measurements also reveal that coherence is reduced in a resonance when the input 

and output signal are - disturbed by a reflection and a phase shift, respectively - no 

longer in a fixed relation32. 

In the following plots (Figure 48 and Figure 49) all measurements with rubber-coated 

masses are depicted and put into relation with the measurements of a pure beam and of a 

beam with 10 pure masses, respectively. 

                                                 
30

 Usually the resonance of a spring-mass system can be determined by searching for zero-crossings of 

the imaginary part of the transfer mobility. In this case, various investigations of the results have shown 

that this method is not conclusive and cannot be applied. Consequently, changes in phase and troughs in 

coherence will be explored to achieve the frequencies of possible resonances. 

31
 The phase of the transfer mobility v/F on an infinite beam changes according to the run-time of the 

propagating bending waves between the excitation and test points (see Figure 48). In a similar 

measurement set-up with a continuous elastic beam with periodically attached oscillators Wang et al. [96] 

demonstrated phase shifts in the resonance frequencies. That means, slight changes in the phase of the 

transfer mobility are to be expected when bending waves are delayed, crossing spring-mass systems on 

their way. Slight changes in phase are also assumed for reflections evoked by stop-bands. 

32
 The coherence indicates relationship between the propagating input and output signal in the beam, 

which is very likely reduced if the signal is deteriorated by reflections or delays. 
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It is obvious that in the frequency range between 1 kHz and 7 kHz the assumed mean of 

the transfer mobilities from all beams with inserts is below the value 1 and therefore a 

reduction in propagating bending waves can be adduced (see the pink colored circle on 

the left side plots in Figure 48 and Figure 49). 

It is now left to determine which effects cause this attenuation. Are the reasons related 

to the impact of stop-bands or of resonances, or even influenced by other issues? 

Figure 48 and Figure 49 show the behaviour of the beams with 10 masses, 10 rubber-

coated masses in and 10 rubber-coated masses out of the neutral layer with the transfer 

mobility, the phases and coherences. As it is very difficult to see the behaviour in the 

phase and the coherence over the entire frequency range, a detailed investigation with 

zoomed frequency ranges has been made. 

The focus will be on the following conditions, if applicable: 

 Resonances 

 Stop-bands 

 Moment reactions 

The relevant frequency ranges on the plots with transfer mobilities are highlighted. All 

measurement results in this investigation are shown over a non-logarithmic frequency 

range on the x-axis, as it is easier to see any influence of phases and coherences. 
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Figure 48: 400 Hz to 10 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 pure masses and with 10 low 

stiffened (sketch in the bottom left) and 10 high stiffened (sketch in the bottom right) rubber-

coated masses. The beams with inserts are located in the neutral layer and the ratios are 

normalised to the beam with only holes. As depicted in the sketches, both ends of the measured 

beams are embedded in sand to simulate infinite conditions. The test points are located 0.35 m 

behind the last insert. The black line denotes the ratio 1. All curves below that line represent 

reduced vibrations on the position of the accelerometer (see the pink colored circle). 
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Figure 49: 400 Hz to 10 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses with low stiffness (sketches in the top) 

and high stiffness (sketches at the bottom), distributed in and out of the neutral layer (all ratios 

are normalised with the beam with only holes). As depicted in the sketches both ends of the 

measured beams are embedded into sand to simulate infinite conditions. The test points are 

located 0.35 m behind the last insert. The black line denotes the ratio 1. All curves below that 

line represent reduced vibrations on the position of the accelerometer (see the pink colored 

circle). 

Possible resonance area of the beam with 10 low stiffened rubber-coated inserts in 

the neutral layer at 400 Hz to 2 kHz: 

The beam with 10 rubber-coated masses with a low stiffness (ShA 40) shows a 

significant trough in the frequency range of 1.5 kHz to 2 kHz. As the phases and 

coherence are significantly differing in comparison to the pure beam, this area very 

likely shows the resonances of the 10 rubber-coated inserts (see Figure 50). Changes in 
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the phase are visible in the frequency range of 1.4 kHz, which supports the assumption 

of real resonances in this area. In the frequency range 1.7 kHz and below, a large 

reduction in coherence can be observed, which underlines the assumption of real 

resonances. 

Thus, it is very likely that the main number of rubber-coated masses is responsible for 

the trough in the transfer mobility in that frequency region. 

As the filling procedure of the holes with rigid resin comes along with variations in coat 

thicknesses, different resonance frequencies within one beam are to be expected. Thus, 

the strong likelihood of a broader band of different resonance frequencies has to be 

considered. 

According to the pre-test measurements employing a beam piece and a Shore hardness 

of ShA 40 (see sub-section 5.1.1, Figure 35), the resonance of the coated masses with 

the maximum acceleration appeared in the frequency range of approximately 2 kHz to 

3 kHz. In these pre-test measurements, the acceleration of one side of a mass has its 

minimum at about 1.5 kHz. It is possible that this attenuation at the beam is related to 

this condition rather than to the resonating effects of spring-mass systems. 

 

Figure 50: 400 Hz to 2 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 
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Possible resonance area of the beam with low stiffened rubber-coated inserts out of 

the neutral layer at 400 Hz to 2 kHz: 

The beam with 10 rubber-coated masses with a low stiffness out of the neutral layer 

shows a significant trough in the same frequency ranges (1.5 kHz to 4 kHz) as the beam 

with inserts located in the neutral layer (see Figure 51). As the phase and the coherence 

also coincide with the beam with the low stiffened rubber-coated masses in the neutral 

layer, it is very likely that this area also shows the resonances of the 10 rubber-coated 

inserts. 

There are no indications of having an impact of moment reactions. The reason therefore 

might be related to the findings in the numerical study, which shows the moment 

reactions becoming dominant at higher frequency range (see sub-section 4.3.4.). 

 

Figure 51: 400 Hz to 2 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer and with high or low stiffened rubber material. 

Possible 1st stop-band area of the beam with 10 masses in the neutral layer at 

1.5 kHz to 3 kHz: 

With regard to the divergence of the phase and coherence to the other three beams it is 

very likely that in the frequency range between 1.5 kHz and 3 kHz the 1
st
 stop-band of 

the beam with 10 masses in the neutral layer is visible (Figure 52). Especially in the 
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frequency range between 2.5 kHz and 3 kHz a large attenuation in the transfer mobility 

and a significantly reduced coherence underlines the assumption of having a stop-band. 

According to the calculations the 1
st
 stop-band is expected at a frequency of 3.4 kHz. 

With respect to the scattering and non-ideal conditions at a real beam a high confidence 

of having a real stop-band in the measurements can be applied. 

 

Figure 52: 1.5 kHz to 3 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 

Possible 1st stop-band area of the beam with 10 rubber-coated masses with high 

stiffness in the neutral layer at 1.5 kHz to 3 kHz: 

The beam with 10 rubber-coated masses with high stiffness located in the neutral layer 

shows a significant trough in the same frequency ranges (1.5 kHz to 4 kHz) as the beam 

with pure masses located in the neutral layer (Figure 52). This gives reason to assume 

that this area is the 1
st
 stop-band or the resonance area. 

If the assumption about a resonance area in the frequency range at 1.5 kHz of the beam 

with inserts of low stiffness (see Figure 51) were true, here the same reduction in 

coherence would have been expected. However, this is not observed: the coherence is 

almost unchanged. A slightly changed phase variation is visible at frequencies between 

2 kHz and 2.5 kHz, signifying that in a range where attenuation is reduced the influence 

of the stop-band dominates. 
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On the other hand the beam with pure masses shows a similar significant behaviour at 

the phase and the coherence in compare with the beam with low stiffened inserts, 

although in another frequency range. 

According to the pre-test measurements (see 5.1.2), we expect the 1
st
 resonances of the 

beam with high stiffened coated masses in the frequency ranges between 2 kHz and 

4 kHz. 

However, it is difficult to determine, if these troughs of the transfer mobility really 

represent the 1
st
 stop-band. With respect to the results in the calculation (see sub-section 

4.3.3) a beam with resonant inserts only has stop-bands in the mass controlled 

frequency range, which is below the 1
st
 resonant frequencies. 

It will be shown in sub-section 4.3.5 that the 1
st
 resonance area appears to be at a higher 

frequency range. Thus, it is very likely that the beam with high stiffened inserts is mass 

controlled in the frequency range from 1.5 kHz to 4 kHz and shows the appearance of 

the 1
st
 stop-band, although this is not reflected in the behaviour of the coherences.  

Possible 1st stop-band area of the beam with 10 rubber-coated masses with high 

stiffness in and out of the neutral layer at 1.5 kHz to 3 kHz: 

The transfer mobilities of the beams with highly stiffened inserts, which are out of the 

neutral layer follow the curves of the same beams having inserts within the neutral 

layer, although with less reduced transfer mobility (Figure 53). 

According to the numerical study in sub-section 4.3.5, stop-band influence is low in 

resonance bands when they appear at lower frequencies. Thus, it is to be expected that 

the beam with high-stiffened inserts outside the neutral layer also follows the trough of 

the 1
st
 stop-band with respect to the given assumptions. Differences between 

calculations for the beam with rubbered inserts outside the neutral layer and those for 

the beam with them inside the neutral layer included a reduced attenuation within a 

resonance band and a lower impact of stop-bands on the transfer mobility. The 

attenuation of the beam with inserts outside the neutral layer is lower than that of the 

beam with inserts inside the neutral layer (Figure 53). This is a slight indication of the 

impact of the moment reactions, which must be considered under the given explanation. 
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Figure 53: 1.5 kHz to 3 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer and with high or low stiffened rubber material. 

Continuation of the possible 1st stop-band area of the beam with 10 masses and of 

the 10 rubber-coated masses with high stiffness in the neutral layer at 

2.5 kHz to 4 kHz: 

In order to the transfer mobility and the coherence the frequency range between 2.5 kHz 

and 4 kHz shows the continuation of the 1
st
 stop-band (Figure 54). The same behaviour 

is visible at the beam with 10 resonant inserts of high stiffness. As discussed above it is 

not quite certain if we really see a stop-band in this frequency range, as the coherence 

remains the same, whereas the beam with resonant inserts shows large troughs. As 

evidenced by the calculations (see Table 2), the centre of the stop-band is expected to 

occur at a frequency range of 3.4 kHz. In the measurement results the maximum 

reduction is visible at around 2.8 kHz, whereas the entire stop-band area is very wide 

and ranges from 1.5 kHz to 3.5 kHz. 
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Figure 54: 2.5 kHz to 4 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 

Continuation of the possible 1st stop-band area of the beam with 10 masses in the 

neutral layer at 2.5 kHz to 4 kHz: 

It appears to be the continuation of the 1
st
 stop-band of the beam with 10 rubber-coated 

masses with high stiffness, which is visible in the frequency range from 2.5 kHz to 

3.5 kHz (Figure 55). In the frequency range at 3.2 kHz increased transfer mobility is 

visible, which seems to be related to the behaviour of the pure beam with only holes. In 

the evaluation of this work this divergence will not be considered. 

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness in and out of the neutral layer at 2.5 kHz to 4 kHz: 

At 3.7 kHz on the beam with the high stiffened inserts out of the neutral layer it is very 

sensible that the 1
st
 trough of the resonance is visible (Figure 55). The change in the 

phase and the reduction in the coherence underline this assumption. 

The beam with the highly stiffened inserts in the neutral layer does not show any hints 

of resonance in phases or coherence in the frequency range 2.5 kHz to 4 kHz. The 

trough in attenuation between 2.5 kHz and 3 kHz cannot therefore be applied to a 

specific effect. 
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There are also not any indications visible on the beams with low stiffened inserts.  

 

Figure 55: 2.5 kHz to 4 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer with high and low stiffened rubber material. 

Possible resonance area of the beam with 10 rubber-coated masses with low 

stiffness in and out of the neutral layer at 3.5 kHz to 5 kHz: 

In the frequency range from 3.5 kHz to 5 kHz the attenuation of the transfer mobility of 

the beams with low stiffened inserts is increased, although in very narrow frequency 

bands (Figure 56). The behaviour in phases and coherences is changed as well and gives 

reason to assume another resonance frequency herein. Because the resonance band was 

discovered at a lower frequency range, this behaviour was not expected. However, 

because of the sensitive filling procedure for castable resin, it is possible that layer 

thickness varies and increases stiffness, as a higher resonance in one or more inserts 

reveals. 

It is also interesting to note that the beam with the low-stiffened masses, which are 

outside the neutral layer, shows a negative attenuation in the stop-band. Considering 

that not all spring-mass systems are above their resonance, this behaviour coincides 

very well with the numerical study observations. 
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Figure 56: 3.5 kHz to 5 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness in and out of the neutral layer at 3.5 kHz to 5 kHz: 

In the frequency range from 3.5 kHz to 5 kHz it is obvious that a possible resonance 

area at the beam with highly stiffened inserts is visible (Figure 57). If these inserts are 

out of the neutral layer various troughs in the transfer mobility at 3.6 kHz and above are 

visible. At the beam with the rubber-coated inserts within the neutral layer only one 

trough at 4.2 kHz arises.  

These reduced transfer mobilities are visible in the phases and the coherences as well. 

Thus, it is very likely to see particular resonance areas for different inserts. 

Due to the indifferent kind of filling the holes with Polyurethane and centring the 

masses a scattered appearance of the resulting resonance frequencies is very likely.  

However, assuming the resonances of the highly stiffened inserts at a beam with the 

inserts in the neutral layer to appear in the frequency range of 3.5 kHz to 5 kHz 

according to the pre-test measurements (see sub-section 5.1.2), this effect is not 

reflected in the measurement results. 
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It is very likely to observe some resonances at the beam with high-stiffened rubber-

coated masses located outside the neutral layer, whereas this does not seem to be the 

case in the beam with the same inserts inside the neutral layer. 

 

Figure 57: 3.5 kHz to 5 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer and with high or low stiffened rubber material. 

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness out of the neutral layer at 4.5 kHz to 6 kHz: 

The trough in the transfer mobility of the beams with 10 low-stiffened spring-masses is 

possibly indicative of higher-order resonances (Figure 58). The coherence and the phase 

underline this assumption. However, it was not expected to observe either resonances or 

stop-bands above the lower resonance band at 2 kHz; therefore it is difficult to judge 

these observations. 

The beam with the high stiffened resonant inserts within the neutral layer does not show 

significant hints for a resonance area in this frequency range. 

Possible resonance area of the beam with 10 rubber-coated masses with low 

stiffness in the neutral layer at 4.5 kHz to 6 kHz: 

As is described in the frequency band from 2.5 kHz to 5 kHz it looks as if the trough in 

the frequency ranges of 4.5 kHz to 6 kHz is caused by higher resonances of the lower 
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stiffened beam (Figure 58). A reduced coherence and changes in the phases underlines 

this assumption. 

 

Figure 58: 4.5 kHz to 6 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 

Undefined area of the beam with 10 rubber-coated masses with high stiffness in the 

neutral layer at 4.5 kHz to 6 kHz: 

Although a very low trough just below 5 kHz is visible it is not sure, if this is a 

resonance. The phase and the coherence do not show significant hints (Figure 59).  

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness out of the neutral layer at 4.5 kHz to 6 kHz: 

It is the beam with high-stiffened inserts outside the neutral layer that gives us reason to 

assume small resonance areas in the frequency range 4.5 kHz to 6 kHz, and especially at 

5.4 kHz and above 5.5 kHz (Figure 59). The phases and coherences bolster this 

assumption. 
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Figure 59: 4.5 kHz to 6 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer and with high or low stiffened rubber material. 

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness in the neutral layer at 5.5 kHz to 7 kHz: 

In the range 6 kHz and above, a resonance area in the beam with high-stiffened inserts 

within the neutral layer is very likely, albeit with lower characteristics in comparison to 

the resonances observed at the other beams (Figure 60). Changes in phase and a reduced 

coherence amplify this assumption. 
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Figure 60: 5.5 kHz to 7 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of measured beams without discontinuities, with 10 masses and with 10 high and 

low stiffened rubber-coated masses. All discontinuities are located in the neutral layer and the 

ratios are normalised with the beam with only holes. 
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Figure 61: 5.5 kHz to 7 kHz: Measurement results from the ratio of the transfer mobility, phase 

and coherence of 4 beams with 10 rubber-coated masses. The discontinuities are located either 

in or out of the neutral layer and with high or low stiffened rubber material. 

Possible resonance area of the beam with 10 rubber-coated masses with high 

stiffness out of the neutral layer at 5.5 kHz to 7 kHz: 

In the frequency ranges just above 6 kHz and 6.3 kHz resonances of the beam with high 

stiffened inserts out of the neutral layer are very likely. Reduced coherences in these 

frequencies underline this assumption, whereas the phase only shows slight changes. 

The transfer mobility at higher frequency ranges from 6 kHz on becomes fuzzy as the 

results seem to be dominated by many other influences. According to the numerical 

investigation and the pre-test measurements it is very unlikely to detect any other 

resonances or stop-bands in the frequency range from 6 kHz to 10 kHz. Thus these plots 

are not displayed in this work.  
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5.3.6 SUMMARY OF DISCUSSED OBSERVATIONS OF TRANSFER MOBILITY, 

PHASES AND COHERENCES ON MEASUREMENTS WITH BEAMS   

The observations of the transfer mobility, the phases and the coherences at the 

measurement results on beams with 10 masses, 10 rubber-coated masses in the neutral 

layer and 10 rubber-coated masses out of the neutral layer give reason to make the 

following assumptions: 

1. The 1
st
 stop-band on a beam with 10 pure masses appears with high confidence 

in the frequency range from 1.5 kHz to 4 kHz as expected, although with a 

broader and wider attenuation range (see Figure 52 and Figure 54). 

2. There is a high confidence of having the first resonance band in the frequency 

range from 800 Hz to 1500 Hz on the beam with 10 equally distributed low 

stiffened rubber-coated masses in and out of the neutral layer, respectively 

(Figure 51). The resonances of the beam with low stiffened inserts appear for the 

most part in the range as expected. Due to the measurement results and the 

filling procedure of the castable resin (PUR) it is very likely that the resonance 

of each spring-mass system vary and lead to a scattering of the resonance 

frequency. Some of the resonance frequencies appear in higher frequency 

regions, which might be attributed to thinner layers of the castable resin or 

shaking behaviour of the cylinders. The frequency of attenuation depends on the 

spring stiffness and the size of attenuation follows from the damping factor of 

the spring; both vary accordingly to the scattering of the layer thickness. With 

regard to the pre-test measurements on beam pieces this frequency range 

coincides with the cylindrical mass with a minimum vibration on one side 

(compare sub-section 5.1.2). Due to the massive scattering effects that are very 

likely concurrent with the given conditions in measurements, it is difficult to 

confirm an association. 

3. There is medium confidence of having a resonance band in the frequency range 

from 2.5 kHz to 4 kHz on the beam with 10 high stiffened rubber-coated masses 

in the neutral layer (Figure 53 and Figure 55). For the most part, the resonances 

in the beam with high-stiffened inserts appear in higher frequency ranges as 

expected. Due to the observation of phases and coherences in these suspected 

frequency ranges, a real resonance is not always obvious. However, the 

attenuation of the transfer mobility and the expected resonance frequencies 

makes it likely to be the real resonances. Some of the resonance frequencies 

appear in higher frequency regions, which might be attributed to thinner layers 

of the castable resin. The size of the attenuation depends on the spring stiffness 

of the spring-mass-system and varies accordingly to the scattering of the layer 

thickness. According to the pre-test measurements with beam pieces it could not 

be identified, whether these attenuations are related to one of the three observed 

conditions (compare sub-section 5.1.2). 

4. Under the assumption of having real resonances at the beam with high stiffened 

inserts, tendencies are visible, which reflect the mass controlled behaviour of the 

spring-mass systems below their resonances. Attenuated transfer mobility at a 
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possible resonance frequency range in the expected 1
st
 stop-band underlines this 

assumption (Figure 53).  

5. The beams with the inserts out of the neutral layer show differences to the beams 

with the inserts in the neutral layer. The possible resonance band of the beam 

with low stiffened inserts in the neutral layer coincides very well with the one 

having the inserts out of the neutral layer. On the beams with high stiffened 

inserts this effect is not visible. A lower influence of stop-bands onto the 

attenuation of resonant inserts, which are displaced from the neutral layer, could 

not be detected. 

6. Some tendencies in the measurement results reinforce observations from the 

parametric study on the impacts of moment reactions at higher frequencies. 

Because various scattering effects at beams with inserts outside the neutral layer 

are visible, this assumption can be determined with a low confidence. 

These investigations show that some of the effects can be identified with a high 

confidence, e.g. the 1
st
 stop-band of the beam with pure masses or the resonances of the 

beam with low stiffened rubber-coated masses, respectively. Furthermore, other effects 

appear with a lower confidence and are revealed to be difficult to announce, e.g. the 

mass controlled 1
st
 stop-band or the resonances of the beam with high stiffened rubber-

coated masses. Scattering effects change or superimpose some observed phenomena, 

which are known from the numerical calculations. 

In the following chapter all effects from the numerical investigation and measurements 

with a beam are listed. 
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6 SUMMARY  OF  OBSERVATIONS  WITH  

CALCULATIONS  AND  MEASURED  

RESULTS  OF  BEAMS   

Various phenomena in the numerical investigation of beams with inserts could have 

been detected. At measurements with 5 or 10 inserts, some effects observed from the 

calculations could have been verified. With respect to the consideration of observed 

phases and coherences, some of these effects occur with a high confidence, whereas 

others are to be handled with a lower confidence. However, some other effects could not 

be verified. 

For an overview of the validation of the theoretically observed effects, all are 

summarised, and observations of the measurements are attached, if applicable. Those 

are depicted with an arrow “”. 

6.1 SUMMARY OF OBSERVATIONS WITH PURE MASSES 

EMBEDDED IN A BEAM   

1. The transfer mobility of the beam with embedded pure masses illustrates the 

existence of stop- and pass-bands. The negative slopes follow from the 

reflections of the bending waves in these frequency ranges. These are the so-

called stop-bands, and their occurrence is periodic due to equidistant masses (see 

Figure 12, Figure 13 and Figure 14). 

 Measurements with 5 or 10 masses underline the appearance of stop- and 

pass-bands (see Figure 45 and Figure 46). 

2. The larger the distances of the masses, the broader the distances of the stop-

bands in the frequency range are (see Figure 15 and Figure 44). 

 Measurements with 5 or 10 masses show broader distances in frequency of 

stop-bands coming along with larger distances from mass to mass (see Figure 45 

and Figure 46). 

3. The larger the weight of the masses, the larger the attenuations of the stop-bands 

are (see Figure 87). 

 N/A 

4. The more masses involved and compressed within the same overall distance, the 

higher the attenuation - and the larger the width - of the transfer mobility in the 

stop-bands is (see Figure 15). 

 Measurements with 5 or 10 masses show that the attenuation of the transfer 

mobility in the common stop-band is increased and broadened at the beam with 

10 masses (see Figure 44). 
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5. The more masses with identical distances to each other involved, the higher the 

reduction of transfer mobility in the stop-bands is. The width of the attenuations 

remains the same (see Figure 16). 

 N/A 

6. If masses are distributed randomly along the neutral layer, the appearance of 

stop-bands is significantly changed (see Figure 23). Attenuation of the transfer 

mobility scatters according to a non-equal distribution. 

 N/A 

7. If pure masses are distributed out of the neutral layer, smearing effects and 

reduced attenuations in the transfer mobilities can be observed at higher 

frequencies (see Figure 25, Figure 26, Figure 27 and Figure 28). These changes 

appear in the figures mentioned from approximately the 2
nd

 stop-band on. 

 N/A 

6.2 SUMMARY OF OBSERVATIONS WITH RUBBER-

COATED MASSES EMBEDDED IN A BEAM   

8. If the evenly distributed steel cylinders are coated with (all the same) rubber, the 

effects of stop- and pass-bands diminish. Attenuation is dominated by the spring-

mass system, albeit in a very narrow frequency band (see Figure 17 and Figure 

18).  

 Attenuation of the 1
st
 stop-band vanishes, and the reduction in the resonances 

of the spring-mass systems dominates at the beam with 10 rubber-coated masses 

in comparison to the beam with 10 masses (see Figure 47). 

9. The more rubber-coated masses involved, the higher the attenuation in the 

resonance is (see Figure 18). 

 N/A 

10. To gain larger attenuations in transfer mobility, it makes sense to change the 

stiffnesses rather than the masses (see Figure 19). 

 N/A, as the used masses had all the same weight and size. 

11. To receive a large attenuation at a certain frequency, the damping factor of the 

spring needs to be very low33. Nevertheless, it has to be considered that the 

                                                 
33

 To achieve large attenuation at discrete frequencies with spring-mass-systems, the physical principle 

refers to the reflection of the propagating bending waves. In contrast to the well-known “vibration 

dampers”, the focus in this work is on the reflection - and not the absorption - of bending waves. Thus, to 
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attenuated frequency range is broader but lower in its magnitude with a higher 

damping factor of the spring (see Figure 85). 

 By coating the masses with silicon in the first trials, the anticipated effects did 

not appear. Much better results could have been observed by instead using the 

castable resin (PUR) with a lower damping factor of the spring (see Figure 47).  

12. As the rubber-coated masses are mass-controlled below their resonances, the 

appearance of stop-bands below the resonances of rubber-coated masses is 

visible. At frequencies higher than the resonances the rubber-coated masses are 

spring-controlled, and reflections due to distance-controlled stop-bands do not 

appear (see Figure 20, Figure 21, Figure 22, Figure 30 and Figure 31). 

 In comparing the different behaviour (see Figure 52) between the 1
st
 beam 

stop-band with 10 masses to the beams with low- and high-stiffened rubber-

coated masses, this effect can be observed with a high confidence. The beam, 

which appears to have the resonance band above the 1st stop-band (high 

stiffness), reflects a reduction of the transfer mobility at this suspected stop-

band, whereas the beam with low stiffness does not. 

13. A stop-band impact of transfer mobility within the range of resonances (same 

masses, but differing spring stiffnesses) can be observed (see Figure 20, Figure 

21, Figure 22, Figure 30 and Figure 31). The attenuation of transfer mobility at 

or close to the stop-band is reduced. 

 N/A 

14. The analysis shows that the influence of stop- and pass-bands vanishes in the 

resonance band when the inserts are randomly distributed along the neutral layer. 

The transfer mobility differs the more the higher the resonances become (see 

Figure 24). However, if its resonances are low in frequency (see Figure 23), a 

randomised distribution of the rubber-coated masses along the neutral layer 

almost does not differ from equally distributed inserts. 

 N/A, although it is very likely that different spring-mass systems scatter in 

spring stiffness. 

15. If rubber-coated masses are equally distributed out of the neutral layer, 

attenuation in the transfer mobility is decreasing at rising frequencies in 

comparison to the spring masses distributed in the neutral layer (see Figure 29 

and Figure 30).  

 N/A 

                                                                                                                                               
achieve large reflections it is of high interest to keep the damping factor of the springs as low as possible 

(see also Chapter 1 - Resonant Supports and Inserts). 
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16. If the rubber-coated masses are equally distributed out of the neutral layer, the 

stop-bands do have a minor influence on the reduced transfer mobility in the 

resonances in comparison to the spring-masses embedded in the neutral layer. 

Moment reactions dominate and reveal a reduced attenuation band at rising 

frequency (see Figure 30 and Figure 31). 

 N/A 

17. Moment effects of rubber-coated masses in a beam have a significant impact on 

the transfer mobility. Their existence is dominant in comparison to reduced 

attenuations at a stop-band, where the higher frequency is. 

 N/A 

18. If the vertical distances to the neutral layer were no longer fixed and randomly 

distributed, the reduction in attenuation becomes smaller (see Weith and 

Petersson [102]). 

 N/A 

6.3 SUMMARY OF THE GENERAL OBSERVATIONS WITH 

INSERTS EMBEDDED IN A BEAM   

19. The loss factor of the beam reduces the transfer mobility at higher frequencies. 

An impact on stop-bands or resonances is very low (Figure 84).  

 N/A 

20. The higher the Young’s modulus the more the stop-bands of a beam with pure 

masses embedded are shifted at higher frequencies (Figure 84).  

 Although it is not directly applicable in the measurements, one reason for the 

shifting in frequency of the stop-bands from measurements to calculations is 

very likely related to varying Young’s modulus at real beams (see Figure 45 and 

Figure 46). 

21. The higher the damping factor of the complex spring stiffness, the lower the 

attenuation of the transfer mobility is, though with broader side banks. It was 

observed that the influence of the 2
nd

 stop-band, which overlaps at the 

resonances, seems to be reduced with higher damping factor of the spring (see 

Figure 85). 

 N/A 
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7 CALCULATIONS  ON  INFINITE  PLATES  

WITH  EQUI-SPACED  RIGID  OR 

FLEXIBLE  INSERTS   

7.1 INTRODUCTION TO THE STUDY ON PLATES   

This investigation expands the study of embedded inserts from one-dimensional beams 

(Chap. 4 and 5) to two-dimensional cases with plates34. 

Therefore, the wave propagation in a homogeneous thin plate with pure masses and 

resonant inserts, which are embedded in the neutral layer, has been studied. If the 

analysis is made with the theory for a homogeneous thin infinite plate, the embedded 

masses can be seen as were they attached to the plate. When the masses are coated with 

rubber, the attenuation at resonance is increased considerably, whereas the stop- and 

pass-bands above the resonance frequency nearly vanish.  

It is of interest now if the geometrical distribution of the inserts in two dimensions 

influence the propagation of bending waves. Thus, this poses the question, if the effects 

of the bending wave propagation in a beam with embedded inserts can be observed in 

an equivalent plate with inserts distributed in circles around the excitation point.  

7.2 FORMULATION FOR A PLATE WITH INSERTS   

Following Cremer and Heckl [12] employing Kirchhoff-theory, the governing set of 

equations is similar to the formulations of the numerical study with the beam (see 

section 4.2), but extended to plates and can be written as 

wherein index S denotes the external source and  an arbitrary position of one of the 

inserts. 

The inserts are substituted by the forces resulting, which are applied to the infinite plate. 

GF are the Green’s functions pertaining to the point excited, infinite plate: 

The responses of the, possibly differing, inserts can be expressed in terms of the 

associated impedances as 

                                                 
34

 Main parts of the numerical study on a plate in this Chapter have been published by Weith and 

Petersson at the RASD conference in Southampton 2006 [98]. 
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where the force impedances of a pure mass and of a mass embedded in rubber are given 

by 

and 

respectively. 

This means that the set of linear equations for the solution of the unknown auxiliary 

forces can be written as  
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By means of this set of N equations, the unknown auxiliary forces can be solved for and 

subsequently be substituted into equation (29) to obtain the complete vibration field of 

the plate. 

7.3 NUMERICAL CALCULATIONS ON PLATES WITH 

INSERTS   

The following calculations concern an infinite, homogeneous plate with inserts in the 

neutral layer distributed over the plate. Previous calculations and measurements with a 

beam (see Chap. 4 and 5) have shown an undesirable amplification of the transfer 

mobility in case of discontinuities which are embedded out of the neutral layer. For this 

reason moment effects are not considered in this work.  

The thickness h of the plate is about 0.02m with a density  of 400 kg/m
3
. The complex 

Young’s modulus is set to E=5.610
9
 (1+plate ) N/m

2
 with a  loss-factor plate = 0.0135. 

Each mass is calculated as a cylinder with a diameter of 0.008m and a height of 0.02m. 

To emphasise the effects of these inserts, each mass is multiplied by the factor 10, which 

                                                 
35

 In all calculations with plates, the thickness of the plate is set to h=20mm. The error of the simple 

bending wave equation at Kirchhoff plates increases if the corresponding bending wave length becomes 

larger than 6 times that height (λ>6h) (Cremer and Heckl [12]). Thus, transferred into a frequency, all 

calculated results with frequencies higher than f=9461 Hz are affected. Yet, as all observed frequencies in 

this chapter are below 9 kHz, the limited range of the Kirchhoff plate can be neglected. 
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results in a weight of 0.315 kg per mass. In case of rubber-coated masses with all the 

same stiffness, the value for the spring stiffness s is 3.510
6
 N/m with a loss-factor spring 

of 0.01. 

In the following the effects of a beam with embedded inserts will be compared with 

those observed for a plate with inserts ordered in circular arcs. The question arises, if 

the filtering effect produced by a periodic array also will be noticeable in a reflective 

finite environment. For multiple reflections on a finite plate with conservative boundary 

conditions the influence of the distributed masses mainly disappears36, only the increase 

in mass remains. Thus, the effect of periodicity will become negligible. In consideration 

of losses at the boundaries of a finite plate it is assumed that the calculations on an 

infinite plate are asymptotically correct.  

Figure 62 shows the difference of the inserts ordered in an arc and ordered in a half 

circle. In an infinite plate the results are the same. Thus, the calculations have shown 

that an opening angle of 60° is sufficient to obtain results comparable with those of a 

full circle respectively of a beam. 

 

Figure 62: Transfer mobility of three plates. With 5 circular arcs (213 inserts) in an angular 

range of 0° to 180°, with 5 circular arcs (71 inserts) in an angular range of 60° to 120° and 

without inserts. The inserts are pure masses. 

Therefore, it makes sense to investigate the influence of various distributions of the 

inserts on the plate. The incremental arc length between two sequential inserts and the 

                                                 
36

 In fact, it will be shown in Chap. 7, that measurement results on a finite plate with masses and resonant 

inserts distributed in circles show indifferent results. 



CALCULATIONS  ON  INFINITE  PLATES  WITH  EQUI-SPACED  RIGID  OR FLEXIBLE  INSERTS 

 
 

 

  

 99 

radii of the circular arcs increase with a fixed increment. The opening angle of the arcs 

varies between 0° and 180° with the source point as the centre.  

In Figure 63 the effects of masses are shown, starting with the arc when all are 

positioned along the line connection the source and receiver print. The general effects of 

the masses are displayed in terms of the transfer mobility from the source to the 

receiver. 

Also the transfer mobility of an infinite homogeneous plate without inserts is included 

in Figure 63 for comparison. The divergence as well as the loss factor of the plate makes 

the curve decreasing with the frequency. If pure masses are embedded between the 

excitation and source point in one line (plate 1), the appearance of stop- and pass-bands 

above 300 Hz is observed. In the range below, the transfer mobility shows an 

amplification compared with the transfer mobility of a plate without inserts, possibly 

stems from the accumulated near field contribution and increased masses.  

The attenuation of the stop-bands increases with more masses, which are distributed in 

circular arcs left and right of the constellation in plate 1. In the frequency range between 

3 kHz and 6 kHz also, a broader band of attenuation can be observed. The comparison 

with an infinite homogeneous beam with pure masses in a periodic distribution indicates 

the same properties with the exception of the broad band of attenuation at higher 

frequencies. To establish if effects of scattering are the reasons for this observation, a 

plate is investigated next, where the number of existing circular arcs is doubled, while 

the distances are halved.  
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Figure 63: Transfer mobility of three plates. With 5 inserts in 1 line, with 5 circular arcs (53 

inserts) and without inserts. In plate 2 the circular arcs are ordered in an angular range from 

75° to 105°. The inserts are pure masses. 

An observation of such a plate shows Figure 64. The first stop-band in the frequency 

range between 300 Hz and 600 Hz (plate 1) does not exist anymore for the new 

arrangement of plate 2. In contrast, the second stop-band is increased in amplitude and 

also markedly in bandwidth towards low frequencies. The bandwidth in the third stop-

band, in turn, is smaller than that of the plate with less inserts. The effect of moving 

stop-bands to high frequencies with reduced distances of the inserts has been shown 

numerically in sub-section 4.3.1 and via measurements in sub-section 5.3.3 on beams. 

The bending wave length at 500 Hz is around 0.5 m. The distances from arc to arc in 

plate 1 is the half of it (0.25m). That means that the anti-nodes of the bending wave fits 

exactly with the masses and the bending wave is reflected at most. 

The same effect can be seen in the frequency range from 900 Hz to 2 kHz for plate 2, 

where the relations between bending wave length and distances of the circular arcs are 

the same. Additionally, the broader band can be traced back to the various ways the 

bending wave use on their way through the net of inserts (scattering). For the next stop-

band, the relations are the other way around again, because the distances of the inserts 

equal an even multiple of the bending wave length. 
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Figure 64: Transfer mobility of three plates. With 5 circular arcs (53 inserts), with 10 circular 

arcs (108 inserts), and without inserts. The circular arcs are ordered in an angular range from 

75° to 105°. The inserts are pure masses. 

In Figure 65, the circular arcs are extended to an opening angle of 60°. The increased 

number of masses brings along increased attenuations of the transfer mobility in the 

stop-bands. Another evidence for the existence of scattering effects can be observed in 

the form of a new trough in the transfer mobility in a low frequency range around 

200 Hz. This stop-band is due to the new and longer paths the bending wave propagates 

in plate 2. 
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Figure 65: Transfer mobility of three plates. With 10 circular arcs (108 inserts) in an angular 

range of 75° to 105°, with 10 circular arcs (214 inserts) in an angular range of 60° to 120° and 

without inserts. The inserts are pure masses. 

Figure 66 shows three different plates. The position of the receiver is different for each 

plate. At an angle of 120° can be observed for plate 2, that the influence of stop- and 

pass-bands at high frequencies is smeared in comparison with that for plate 1, but still 

visible. At low frequencies, below 1 kHz, the attenuation is even larger than that for an 

angle of 90°. This effect shows that the influence of masses can be large also remote 

from centre of the circular arcs. The attenuation indeed tends to zero, if the test point is 

out of the circular sector of the inserts. The transfer mobility of plate 3 displays this 

effect. 
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Figure 66: Transfer mobility of 4 plates. Three of them with 10 circular arcs (214 masses, test 

point angle 90°, 120° and 150°), and one plate without inserts. The circular arcs are ordered in 

an angular range from 60° to 120°. The inserts are pure masses. 

If the same masses are coated with rubber, Figure 67 shows the large attenuation in the 

frequency range of the resonances of the inserts. This range of resonances is denoted by 

two vertical dotted lines. To broaden the attenuation in the resonant range, the spring 

stiffness can be changed in a way, such that the stiffness of each spring-mass system is 

increased in a logarithmical order. For clarity presentation, the stiffnesses are 

dimensioned as follows: 

With the varying stiffnesses, an enlarged attenuation band can be observed as depicted 

in Figure 67. With equal stiffnesses the attenuation is significantly larger but on behalf 

of the bandwidth. The attenuation at resonances is growing with the stiffness. Strasberg 

and Feit [89] already investigated this effect, and found that it depends on the increasing 

impedance with frequency. At high frequencies no further stop-band can be observed. 

Beyond the highest resonance frequency, the influence of the rubber prevails and the 

transfer mobility approaches that of the plate without inserts. Above this frequency all 

inserts are dynamically decoupled and have no effect37.  

                                                 
37

 See also the observations at the numerical study on beams in sub-section 4.3.3. 
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Figure 67: Transfer mobility of three plates. Plate 1 with pure masses, plate 2 with mass- and 

spring-systems and one plate without inserts. 10 circular arcs are ordered in an angular range 

from 60° to 120° and include 214 inserts each. The dotted lines display the lowest and highest 

resonance frequency of the spring-masses. The test point is ordered at an angle of 90°.  

If the stiffnesses of the rubber-coated masses are multiplied by a factor of 100, an 

interesting effect can be seen within the second stop-band (Figure 68). The attenuation 

is reduced, although an effect of the resonances is expected. This comes from the 

influence of the stop-band, where the inserts in their resonances can be seen as rigid 

supports38. Below the first resonances of the inserts, the transfer mobility of the plate 

with spring-mass systems coincides with that of the plate loaded by pure masses. 

                                                 
38

 Heckl, Maria [35] pointed out, that the behaviour of a support consisting of a single mass and spring is 

rigid in its resonance, if it is undamped. Furthermore, it has to be noted, that some of the higher stiffened 

inserts are still mass-controlled at frequencies below their resonances and possibly act like pure masses 

(see also sub-section 4.3.3). 
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Figure 68: Transfer mobility of three plates. Plate 1 with pure masses, plate 2 with mass- and 

spring-systems and one plate without inserts. 10 circular arcs are ordered in an angular range 

from 60° to 120° and include 214 inserts each. The dotted lines display the lowest and highest 

resonance frequency of the spring-masses. The test point is ordered at an angle of 90°. 

In order to reduce the bending wave propagation on a plate, it suggests itself to combine 

the effects of stop-bands and resonant attenuation. As mentioned previously, a lot of 

masses are required with large distances to each other to obtain a stop-band at low 

frequencies. On the other hand, it makes sense to use the spring-mass systems below the 

first appearing stop-band due to pure mass-like inserts (see Figure 67 and Figure 68). 

Thus, in Figure 69 is illustrated a combination of inserts with arcs of masses and spring-

masses alternating. 

From a comparison with the plate with pure masses, it is seen that there is only a small 

drop in attenuation in the second stop-band between 1 kHz and 2 kHz. At the third stop-

band, the attenuation is reduced in bandwidth. Also, the attenuation at the resonant 

frequencies of the sprung-masses is appreciable. This combination of different inserts 

realise a possibility to reduce the bending wave propagation over a broader range than 

can be achieved with only either of the two kinds of inserts. 
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Figure 69: Transfer mobility of three plates. Plate 1 with pure masses, plate 2 with spring-mass 

systems and one plate without inserts. 10 circular arcs are ordered in an angular range from 

60° to 120° and include 214 inserts each. The dotted lines display the lowest and highest 

resonance frequency of the spring-masses. 

Figure 70 shows that with another distribution of the inserts, also for more high frequent 

and broad frequency ranges, the propagation can be influenced. 
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Figure 70: Transfer mobility of three plates. Plate 1 with mass- and spring-systems (214 

inserts), plate 2 with mass- and spring-systems (200 inserts) and one plate without inserts. 10 

circular arcs are ordered in an angular range from 60° to 120. The dotted lines display the 

lowest and highest resonance frequency of the spring-masses. 

7.4 SUMMARY OF CALCULATIONS ON A PLATE WITH 

PURE MASSES AND RESONANT INSERTS   

An infinite homogeneous plate with variations of embedded masses and spring-masses 

has been studied. Numerical calculations demonstrate similar features as those found for 

the bending wave propagation in beams with embedded inserts (Chap. 4 and 5). 

To exhibit the features observed for beams the masses embedded in a plate must be 

organised in arcs shadowing the response point from the source. The following 

observations could have been detected: 

1. The larger the distances of the masses in radial direction, the lower the 

frequency of the 1
st
 stop-band is (see Figure 62 and Figure 63). 

2. The attenuation of transfer mobility with inserts ordered in an arc is slightly 

lower than ordering the masses in a half-circle. In an infinite plate the resulting 

frequencies of the stop-band are the same (see Figure 62). 

3. If pure masses are embedded between the excitation and source point in one line, 

the appearance of stop- and pass-bands is observed (see Figure 63). The 

attenuation of the stop-bands increases with more masses, which are distributed 

in circular arcs left and right of such a line. 
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4. In the range below the 1
st
 stop-band, the transfer mobility shows amplification 

compared with the transfer mobility of a plate without inserts, stemming from 

the accumulated near-field contribution (see Figure 64). 

5. The attenuation in stop-band increases in amplitude with the number of masses. 

In the two-dimensional case of a plate, the band-width becomes broader than for 

a beam because of scattering effects, which make the bending waves take 

differing, extended paths through the net of inserts (see Figure 64).  

6. If the masses are coated with rubber, similar effects as those observed for the 

beam appear (see Figure 17). Below the resonances of the inserts, the transfer 

mobility behaves as if the inserts were pure masses, and stop-bands appear (see 

Figure 21 and Figure 67). 

7. For the range in which inserts are resonant, the higher the center frequency, the 

bigger the attenuation is (compare Figure 67 and Figure 68). 

8. With the variation in stiffness using only rubber-coated masses, an enlarged 

attenuation band can be achieved, extending the stop-band region to higher 

frequencies. The resonances are tuned to a frequency band adjacent to the first 

stop- and pass-band (see Figure 68).  

9. Above their resonances, stop-bands have no effect, as all resonant inserts are 

dynamically decoupled (see Figure 67). Beyond the highest resonance 

frequency, the influence of the rubber prevails, and the transfer mobility 

approaches that of the plate without inserts. 

10. If the resonances coincide with a stop-band, the attenuation displays drop 

(compare Figure 20 and Figure 68). However, there is no interaction with the 

inserts in a pass-band. 

11. The combination of different inserts (with pure and rubber-coated masses) 

realise a possibility to reduce the bending wave propagation over a broader 

range than can be achieved with only either of the two kinds of inserts (see 

Figure 69). 

12. With another distribution of these mixed inserts, as well as for more high and 

broad frequency ranges, the propagation can be influenced (see Figure 70). 

 



MEASUREMENTS  ON  A  FINITE  PLATE  WITH  MASSES  AND  ELASTICALLY  SUPPORTED  MASSES 

 
 

 

  

 109 

8 MEASUREMENTS  ON  A  FINITE  PLATE  

WITH  MASSES  AND  ELASTICALLY  

SUPPORTED  MASSES   

8.1 PREPARATIONS OF THE MEASUREMENTS ON A 

PLATE   

In the following, the measurements on a plate with masses and elastically supported 

masses located around the center point are displayed. In compare with the 

measurements with a slender wooden beam, in this case, the boundaries of the plate are 

not damped by sand. Those are supported on thin shelves with an overlap of 20mm of 

each boundary (Figure 71). 

The focus with these measurements is on the investigation of a forced excitation in the 

center of the plate, which is enclosed by rings consisting of pure and elastically 

supported masses, respectively. According to the calculations in section 7.3 it is 

expected that the inserts act as a barrier - evoked by stop-bands or resonances - for the 

propagating bending waves at certain frequencies. Thus, the frequency response within 

the rings is supposed to be larger compared with the frequency response outside of the 

rings. Whether the bending waves within the rings are really shadowed under such 

conditions will be investigated. 
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Figure 71: Measurement set-up of the plate supported on thin shelves with an overlap of 20mm. 

The pure masses or elastically supported masses, respectively, are distributed in circles around 

the center point of the plate.  

Therefore, the measurements are conducted with pure masses and rubber damped 

masses to investigate the impact of stop-bands and resonances. 

A plate consisting of Plexiglas with the sizes 0.8m x 1m and a thickness of 10 mm have 

been used. Steel cylinder (mass= 38g) with a diameter of 20mm and a height of 15mm 

were stuck to both sides of the plates in circular rings. 

In a pre-test, two different types of elastic material have been chosen by placing them 

between a steel cylinder and the excitation mass of a shaker in order to assess the most 

suitable rubber material. Figure 72 shows the measurement set-up. 
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Figure 72: Measurement set-up of the pre-tests with two different rubber materials. The 

vibration of the shaker has been measured with an accelerometer placed on a defined mass, 

whereas the acceleration of the mass has been conducted with a Laser vibrometer. In the 

zoomed picture the shaker with its excitation mass and the accelerometer attached are visible. 

The rubber material (PVC) carrying the mass is stuck to the excitation mass. The accelerometer 

is placed on a defined mass (47g) and the acceleration of the insert has been conducted with a 

Laser vibrometer. 

The exciting force has been measured with an accelerometer stuck to a defined 

cylindrical piece of metal, which was driven by the shaker with white noise. The 

resulting vibration of the spring-mass system has been measured with a Laser 

vibrometer. Two different damping materials had been used, PVC with a thickness of 

2mm (Figure 72, zoomed picture) and the castable resin (Polyurethane elastomer - 

PUR) with a thickness of 6.5mm39 (Figure 73).  

                                                 
39

 For the plates the same castable resin PUR has been used as for the measurements with the rubber-

coated masses in the beams (Chap. 5). The mixture of the 2-component rubber was set to a Shore 

hardness of 80 ShA. Cylindrical pieces out of metal with a thickness of 6.5mm and a diameter of 22mm 

had been produced for this experimental set-up. 
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Figure 73: Measurement set-up of the pre-tests with a layer of PUR as damping material. The 

accelerometer has been placed on a defined mass (47g). The acceleration of the mass, which is 

stuck onto the elastic material (PUR) has been obtained with a Laser vibrometer. 

For each rubber material three measurements had been averaged. The acceleration of the 

reference mass has been divided by the acceleration of the rubber damped mass. By 

dividing by j2πf, these ratios become proportional to the transfer mobility (a/j2πf) /F 40. 

The resulting resonances of these “mobilities” had been measured at frequencies of 

about 120 Hz for PVC and about 1260 Hz for the castable resin (PUR) (Figure 74). 

Assuming low frequency modes being dominant on a plate consisting of acrylic glass 

with finite boundaries, the elastic material PUR with a resulting higher resonance 

frequency has been chosen for the measurements with the plate to be able to see 

reasonable effects. 

These rubber gums have a diameter of 22mm and a height of 6.5mm with a weight of 

2.55g. 

                                                 
40

 The force is calculated by the mass times the acceleration. As the mass is fix, the chosen ratio is 

proportional to the transfer mobility. 

PUR 
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Figure 74: Frequency responses (FFT1 H1 vmass/aShaker) of two elastically supported cylindrical 

masses with different rubber materials (PVC and PUR). The excitation of these spring-mass 

systems occurs with a shaker driven by white noise. The resulting resonances appear at 120 Hz 

for the PVC and 1260 Hz for PUR. 

8.2 MEASUREMENT SET-UP OF A FINITE PLATE WITH 

MASSES AND ELASTICALLY SUPPORTED MASSES   

In the following measurements it is interesting to observe whether the impact of stop-

bands and resonances can be seen with masses or elastically supported masses attached 

to both sides of the plate41. Therefore a finite plate consisting of acrylic glass 

(Plexiglass®) has been chosen to run the measurements.42  

                                                 
41

 Assuming momentary effects are responsible for decreased reflection at stop-bands and resonances - as 

it could have been shown in the numerical investigation on beams (see Chap. 4) - the attachment of 

inserts on both sides of the plate was intended to simulate embedded inserts in the neutral layer. 

42
 As is described in Chap. 6 and Chap. 8, because the effects of stop-bands and resonance show up with 

high confidence in slender beams and in calculations with half-infinite plates, it became important to 

examine if such effects are visible in experiments with finite plates as well. 
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Following pictures show the measurement set-up on the plate. The excitation happened 

with an impulse hammer and a force transducer connected. Several accelerometers had 

been distributed on the plate inside and outside the rings. 

For all measurements on the plate ME525 (ICP) force transducers and ME820 (ICP) 

accelerometers had been used. 

 

Figure 75: Plate out of acrylic glass (Plexiglass®) with three rings of pure masses, glued on 

both sides of the plate. One accelerometer has been placed in the middle of the rings, six others 

are located out of the rings. The excitation happened with an impulse hammer, including a force 

transducer. The boundaries of the 0.8m x 1m plate are supported on vertical shelves without 

being glued. 

F1, a1 

a2 



MEASUREMENTS  ON  A  FINITE  PLATE  WITH  MASSES  AND  ELASTICALLY  SUPPORTED  MASSES 

 
 

 

  

 115 

 

Figure 76: Plate out of acrylic glass (Plexiglass®) with three rings of pure masses, glued on 

both sides of the plate. View from the bottom side.  
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Figure 77: Measurement set-up of all measurements on the finite plate out of acrylic glass 

(Plexiglass®) with three rings of 12, 18 and 24 pure masses or elastically supported masses, 

respectively, glued on both sides of the plate. The length measures are in mm. The boundaries of 

the 0.8m x 1m plate are supported on vertical shelves without being glued. The excitation 

happened at two positions on the top side of the plate with an impulse hammer, a force 

transducer connected. All accelerometers have been placed on the bottom side of the plate. 
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Figure 78: Plate out of acrylic glass (Plexiglass®) with three rings of elastically supported 

masses glued on both sides of the plate. View from the top side. For this configuration one 

accelerometer has been placed in the center of the rings, two others shifted by 20mm each and 

five others have been located out of the rings. The excitation happened with an impulse 

hammer, including a force transducer. 
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Figure 79: Plate out of acrylic glass (Plexiglass®) with three rings of elastically supported 

masses. View from the bottom side. 

To estimate the occurring stop-band frequencies following parameters had been used: 

- h = 0.01m (thickness) 

-  = 1150 kg/m
3
 

- Ereal, plate = 5.6*10
9
 N/m² (Young’s modulus of acrylic glass, see [12])  

- plate = 0.03 (loss-factor of the acrylic plate) 

- µ = 0.01 (Poisson’s ratio) 

With following equations, the stop-band frequencies can be estimated with  

Their appearance in the frequency range follows from the bending wave equation  

  ,...3,2,1;
2

n
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distbandstop . ( 36 ) 
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and yields  

with 

and  

Table 4: The first four calculated stop-bands on the plate with masses are shown, which are 

distributed in circles around the center with radial distances of 50 mm to each other. Stop-bands 

occur if a half of the bending wave-length - or a multiple of it - fits with the distances of the masses. 

It is only the 1
st
 stop-band, which is to be expected in the relevant frequency range from 10 Hz to 

10 kHz. 

Stop-bands 1
st
  2

nd
  3

rd
  4

th
  

Frequency 7.87 kHz 31.48 kHz 70.83 kHz 125.9 kHz 

8.3 MEASUREMENT RESULTS OF A FINITE PLATE WITH 

MASSES AND ELASTICALLY SUPPORTED MASSES   

In the appraisal of the measurement results it was observed that a direct comparison of 

the transfer mobilities of the pure plate with one of the plates with supports attached 

could not be applied due to the impact of increased mass of the plate with additional 

supports. 

Thus, the ratio of the point mobility v1/F1 to the transfer mobility v2/F1 is displayed, 

which finally yields the ratio of the inner to the outer velocity (equation (42))43: 

                                                 
43

 In the following, this “point mobility” in the center of the rings with the force F1 and the velocity v1, 

calculated with the accelerometer a1 exactly underneath this position, will be called “transfer mobility” in 

the context of the “ratios of the transfer mobilities”. 
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In all measurements, the masses or elastically supported masses are glued to the plate on 

both sides.  

At first, a comparison of a pure plate, a plate with one ring of masses and a plate with 

three rings of masses, each attached to both sides of the plate, has been conducted. It 

can be seen in Figure 80, that the vibration within the rings is larger compared to the 

vibration outside the rings over the entire frequency range from 200 Hz on. The black 

line at the value 1 denotes vibrations, which are of the same magnitude inside and 

outside the rings. Values larger than 1 indicate higher vibrations within the rings. 

Furthermore, it can be seen in Figure 80 that the vibrations of the plate with one and 

three mass-rings are different to the vibrations of the pure plate at frequencies from 

1 kHz on.  
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Figure 80: Non-smoothed ratio of the transfer mobility in the center of the plate from three 

plates. The plate on the left side is without masses, the plate in the middle with 1 mass-ring and 

the plate on the right side with three mass-rings. The masses are glued from both sides of the 

plate. 

In a zoomed plot (Figure 81) of the same configurations in a frequency range from 

500 Hz to 10 kHz, the smoothed ratios of the inner to the outer transfer mobilities of the 

plates with one mass ring and three mass rings show increased vibrations at a frequency 

range from 3 kHz to 5 kHz (see the black dotted circle). It is very unlikely that these 

differences are related to existing stop- and pass-bands, as the first stop-band is not 

expected below 7.87 kHz according to the calculations from Table 4. The orange dotted 

circle denotes the difference at a frequency range from 6 kHz to 7 kHz of one mass ring 

and three mass rings. Assuming scattering effects between the calculation and the 

measurement, these differences are possibly related to the stop-band, which reflects the 

propagating bending waves excited in the middle of the plate.  
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Considering the individual weight of each mass and each rubber, the overall weight of 

the Plexiglas plate is increased. The following table (Table 5) shows the impact of these 

additional inserts44. 

Table 5: Measured weights of the plate and the inserts. 

Type of plate Number of 

masses 

38g/mass 

Number of 

rubbers 

2.55g/rubber 

Weight 

 

[kg] 

Related to 

Pure plate 0 0 9.5 Figure 80 

Figure 81 

1 ring of masses glued on 

both sides 

24 0 0.91 Figure 80 

Figure 81 

 

Three rings of masses 

glued on both sides 

108 0 4.10 Figure 80 

Figure 81 

Three rings of elastically 

supported masses glued on 

both sides 

108 108 4.38 Figure 82 

Figure 83 

It is well known that additional masses, independent of their distribution, alter the 

vibration and the mode pattern of a finite plate and are accompanied by significant 

scattering. Thus, there are several possible reasons for an increased ratio of the transfer 

mobility with additional masses.  

However, because no radial distances exist with only one ring of masses on a plate, 

stop-bands should not appear. In other words, the comparison with the plate with three 

rings should show differences, if they exist. 

                                                 
44

 It is obvious that three rings of masses or elastically supported masses increase the weight of the plate 

by almost 50%. The impact of such a large weight increase needs to be considered in the discussion of 

measurement results, as it will very likely change the entire vibration behaviour significantly, though it is 

difficult to know in which dimensions exactly. 
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Figure 81: Smoothed ratio of the transfer mobility in the center of the plate from three plates. 

Zoomed plot at a frequency range from 500 Hz to 10 kHz. The plate on the left side is without 

masses, the plate in the middle with 1 mass-ring and the plate on the right side with three mass-

rings. The masses are glued from both sides of the plate. 

The ratio of the transfer mobility from a plate with three rings of elastically supported 

masses is shown in the following two plots (Figure 82 and Figure 83). The excitation 

happened in the center point and outside the rings. 

The ratios of the transfer mobilities of a force excitation within and outside the rings 

were compared using various accelerometers placed in both areas (inside and outside). 

In comparing these ratios with the two accelerometers within the rings, low differences 

are observed (compare dotted and non-dotted curves in Figure 82). Thus, the vibrations 

at or adjacent to the centre of the plate are almost identical at all measurements.  
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At frequencies higher than 4 kHz, all vibrations are increased within the rings, 

independent of the location of the introduced forces45. The excited bending waves seem 

to be trapped in that frequency range.  

The results of the two forces, one positioned within and the other outside the rings, 

show that below 4 kHz the vibrations are the highest close to or at the excitation point 

(see Figure 82, red curve, “F2 a1/a2”). 

According to the pre-test measurements (Figure 74) the resonances of the rubber-

damped masses are expected to be at about 1.26 kHz, which denotes the interesting 

frequency range for these measurements with rubber-coated masses. In fact, increased 

vibration levels can be seen at a frequency just below 1 kHz (Figure 82, orange dotted 

circle), which is possibly caused by the resonances of the elastically supported masses. 

Assuming variations in stiffness of the cylindrical rubber inserts lower resonance 

frequencies are possible, which lead to an increased vibration level within the rings.  

However, the red curves (Figure 82, black dotted circle with F2: a1/a2 and a3/a2) depict 

higher vibrations outside the rings and do not follow the assumption of having the 

resonance effect of the rubber-damped masses.  

Thus, although there are tendencies toward resonance effects, all of these observations 

underline the influence of finite conditions and adding weight to the plate (see Table 5). 

With regard to the calculations on beams and plates (see Figure 20, Figure 21 and 

Figure 67), the plate with elastically supported masses should be decoupled at 

frequencies higher than the resonances. That means that the appearance of an increased 

transfer mobility at higher frequencies may indicate a relation to effects other than those 

from stop-bands.  

                                                 
45

 Except of the acceleromter a7. 
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Figure 82: Smoothed ratios of the transfer mobility on different positions of the plate with 

elastically supported masses. The excitation happened in the center point and outside of the 

rings. 

In a further step, additional accelerometers, located outside the rings will be considered 

(orange dotted circle of Figure 83). In the frequency range between 400 Hz to about 

1 kHz, all vibration levels are higher than those outside the rings even when the plate is 

excited outside the rings. 
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Including the results of Figure 82, 7 of 8 test point positions underline the assumption of 

resonance effects in the frequency range of about 400 Hz to 1 kHz, which result in 

reduced bending wave vibrations within the ring. 

 

 

 

 

 

 

 

 

Figure 83: Smoothed ratios of the transfer mobility on different positions of the plate with 

elastically supported masses. The excitation happened in the center point and outside of the 

rings. 
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However, in a higher frequency range between 1 and 3 kHz the opposite behaviour can 

be observed. Almost all curves show an increased vibration level outside the rings 

(Figure 82 and Figure 83).  

At frequencies higher than 3 kHz, all curves (except the magenta ones of Figure 83, a7) 

show increased vibration levels. As discussed, it was not expected that stop-band 

influences would occur at the plate with elastically supported masses in this frequency 

region, as the masses should be decoupled above the resonances of the spring-mass 

systems. Therefore, this observation at higher frequencies might be related to the 

increased weight of the plate with inserts. 

In the following section all of these observed effects are summarised.  
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8.4 SUMMARY OF THE MEASUREMENTS ON A THIN, 

FINITE PLATE   

All these observations on a finite plate show that the measurements are accompanied by 

much scattering and many uncertainties. The results are often overlapped by several 

side conditions that are neither easy to detail nor to distinguish. The impact of having 

reflecting boundaries and the effects of additional masses on the entire plate increase the 

risk of scattering effects. 

Nevertheless, some of the measurement results indicate that the radial distances of the 

rings of masses or the resonances of elastically supported masses do have a reflecting 

impact onto propagating bending waves, which were excited in the center of the plate or 

outside the rings. At these measurement results, the transfer mobility shows attenuation 

within the rings at or close to the expected stop-band frequency or resonances. 

On the other hand, none of these measurements on the finite plate really prove an 

influence from stop-bands or resonances. Alone, bonding some additional masses onto a 

plate significantly changes the vibrations. All results, which are assigned to be related to 

stop-band or resonant impacts, could be accidentally determined conclusions. Even a 

direct comparison with a pure plate will be superimposed with the unknown influence 

of the additional masses, which change the entire vibrational behaviour. 

Furthermore, the modal behaviour of this finite plate might have a large impact to the 

results as the positions of the forces and accelerometers possibly match with nodes and 

anti-nodes of the mode pattern. 

To achieve real proof, a much larger plate with highly damped boundaries should be 

used. Furthermore, several measurements with the rings of circles shifted to several 

positions on the plate should be applied. If, accordingly, the vibrations within the circles 

were measured with higher amplitude compared to outside the rings - and if these were 

independent of the excitation point - we could be closer to an approval. 

However, there are tendencies that resonances and stop-band-effects exist with the 

measurement set-up used.  
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9 CONCLUDING  REMARKS   

The effects of periodically and non-equally distributed inserts in a wave guide have 

been studied. 

Calculations and measurements in a wooden beam have shown that stop- and pass-

bands appear when steel cylinders are evenly distributed in the neutral layer, but they 

vanish when the masses are coated with rubber. Instead, the resonance of the spring-

mass systems plays a dominant role in attenuation. The transfer mobility reveals a 

pronounced trough, and it is possible to broaden and move the attenuation in frequency 

by changing the stiffnesses.  

If resonances coincide with a stop-band, attenuation is reduced and new effects have 

been investigated when the inserts are in addition displaced from the neutral layer. 

Numerical calculations on a half-infinite homogeneous plate with variations of 

embedded masses, or spring-masses demonstrate similar features as those found for 

bending wave propagation in beams with embedded inserts.  

Stop- and pass-bands arise if pure masses are periodically distributed. To exhibit the 

features observed for beams, the masses embedded in a plate must be organised into 

arcs shadowing the response point from the source. The larger the distances of the 

inserts, the lower the frequency of the first stop-band is. The attenuation in stop-band 

increases in amplitude with the number of masses. In the two-dimensional case of a 

plate, the band-width becomes broader than for a beam because of scattering effects, 

which make the bending waves take differing, extended paths through the net of inserts. 

Even for the inserts placed along the connecting line between source and receiver can 

attenuation at low frequencies be achieved. 

If the masses are coated with rubber, similar effects as those observed for the beam 

appear. Below the resonances of the inserts, the transfer mobility behaves as if the 

inserts were pure masses, and stop-bands appear. For the range in which the inserts are 

resonant, the higher the centre frequency, the bigger the attenuation is. Also, inserts do 

not affect propagating bending waves above their highest resonance frequency.  

Based on observations, it is suggested to combine the effects of periodically distributed 

masses with resonantly reacting spring-mass inserts. It is observed that it is possible to 

widen the range of attenuation at low and high frequencies by distributing inserts in 

various alternating ways within circular arcs around the excitation point. The resonances 

are tuned to a frequency band adjacent to the first stop- and pass-bands. Since the drop 

in attenuation is limited to the removal of every second mass, a replacement with 

corresponding spring-masses, which yields a broadened band of attenuation, is 

suggested. 

Measurement results on a finite plate with rigid or flexible supports - ordered in circles 

and attached to both sides of the plate - indicate that propagating bending waves are 

shadowed in the frequency ranges of stop-bands or resonances. However, these 

measurements on a finite plate cannot be used for any kind of approval, as the 
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attachment of masses very likely significantly changes the entire vibration behaviour of 

the plate and overlay any other effects.  

Nevertheless, this work demonstrates various possibilities for reducing the bending 

wave propagation on beams and plates that have highly damped ends or boundaries 

without markedly increasing the total mass or substantially altering other properties.  

Furthermore, based on the obtained 1-D and 2-D numerical results and the experimental 

findings on the beam, it can be assumed that the methods shown herein allow a practical 

application to isolate bending waves even on finite panels, such as doors and walls. 
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10 OUTLOOK   

According to the effects shown in this work, there are options available that make it 

interesting for further investigations: 

- It could have been noticed that variation at the measurements with the beams is 

very likely related to non-isotropic conditions and torsion drilled beams. Thus, a 

future step could be the corroboration of the described effects using isotropic 

material on a beam. 

- In the observations of this work, moment reactions come along with a reduced 

attenuation in stop-bands and resonances. Thus, instead of using cylindrical 

inserts, which are embedded in the neutral layer of a beam or attached to both 

sides of a plate, rubber-coated spheres are suggested. These can be embedded in 

the neutral layer and fully covered by the isotropic material without significantly 

changing necessary mechanical parameters. 

- As shown in the numerical and experimental study on beams, the original idea of 

reducing the vibrations with some inserts looks promising. However, by only 

using embedded masses, their distances need to be too large for making stop-

bands effective in the interesting frequency range. But, further investigation with 

rubber-coated spheres embedded in the neutral layer of a beam might allow for 

an adjustment at lower frequency ranges. The unknown size will be the impact 

of finite conditions at beams, which was not investigated in this work. However, 

reflections in the evenly distributed spring-mass systems even occur in beams 

with finite ends. Thus, excited beams or bars, which are clamped or open at their 

ends, are recommended to be tested with embedded spring-mass systems. 

- It will be a challenge to reduce vibrations on finite plates such as lightweight 

structures (e.g., cabin doors in a ship). Main modes of excitation of bending 

waves are related to airborne sound on the entire surface or to structure-borne 

sound over the boundaries. Any additional inserts will change the bending-wave 

propagation on a finite plate due to the increased masses. According to the 

measurement results in this work on a finite plate, a satisfactory impact of stop-

bands or resonances is difficult to approve, and, accordingly, it is uncertain if it 

really exists. Therefore, additional measurements with a larger plate and damped 

boundaries are necessary to verify the stop-band and resonance impact on plates. 

Several measurements with the rings of circles shifted to different positions on 

the plate should be applied.  

- Although not explicitly shown in this work, numerical analyses also support the 

possibility of influencing the directivity of the wave field with defined patterns 

of the distributed inserts. It is worth checking whether smart distributions of 

inserts lead to bending waves that propagate mainly to a highly damped region 

within the finite plate, for instance. The overall vibrations might be larger 

damped than without such directing patterns.  
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For sure, there exist many other ideas to be researched in conjunction with the effects 

presented in this work. That means the possibilities for resonant inserts are far from 

exhausted, and much work remains to clarify the associated effects. 

Finally, it should be stated that the basic observations with the mixture of masses and 

rubber-coated masses, distributed in several ways in different structures, will hopefully 

animate other researchers to continue in this field.  
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11 ATTACHMENTS   

11.1 ADDITIONAL PARAMETER STUDY OF AN INFINITE 

HOMOGENOUS BEAM WITH INSERTS   

Following parameters are additionally investigated. These are useful for a better 

understanding of the behaviour of the transfer mobility and in addition of the 

understanding of the measurements. 

- beam (loss factor of the beam) 

- Ebeam (complex Young’s modulus) 

- spring (loss factor of the rubber coating) 

- mmass (mass of the inserts) 

11.1.1 LOSS FACTOR OF THE BEAM AND YOUNG’S MODULUS   

In Figure 84 the influence of the loss factor of the beam beam and the Young’s modulus 

Ebeam is depicted. While an increased beam loss factor only changes the magnitude, the 

E-Module has an impact on the frequency of the stop-bands (and the pass-bands). The 

higher the Young’s modulus, the more the stop-bands of a beam with pure masses 

embedded are shifted to higher frequencies. The beams used for the measurements in 

this work (see section 5.2) are neither ideally isotropic nor homogeneous. Therefore the 

likelihood that a shifted stop-band frequency is within the beam parameters needs to be 

considered. 
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Figure 84: Calculated transfer mobilities of a beam with 5 masses in distances of 0.2m with a 

doubled loss factor of the beam beam and a doubled Young’s modulus Ebeam. An increased loss 

factor leads to a slightly higher attenuation in the stop-bands and a slightly reduced attenuation 

between the stop-bands. An increased Young’s modulus affects the frequency range of the stop-

bands. 

11.1.2 LOSS FACTOR OF THE RUBBER COATING   

In Figure 85 the damping factor of the complex spring stiffness has been increased by a 

factor of 10 (from spring 0.02 to 0.2). As expected for spring-mass systems the 

attenuation in the resonance is decreased, but with broader side banks. An interesting 

effect can be seen in the frequency range at the 2
nd

 stop-and-pass-band, which shows a 

lower reduction of the spring-mass system with higher damping factor of the spring. 

The influence of the 2
nd

 stop-band, which overlaps at the resonances, seems to be 

reduced with higher damping factor of the spring. However, a shifted resonance 

frequency by a changed damping factor of the spring is not visible. 
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Figure 85: Transfer mobility of an infinite beam with 10 pure masses and 10 rubber-coated 

masses with different damping factors of the complex spring stiffness. All of them are embedded 

in the neutral layer. 

Furthermore, it is also of interest, which damping factor of the spring are to be expected 

at spring-mas systems embedded in the real beams. According to the pre-test 

measurements (sub-section 5.1.1, Figure 34) the damping factor of the spring of the 

beam piece with the high stiffened rubber-coated masses at a Shore hardness of 80 ShA 

will be determined. 

Therefore, the Nyquist plot of the beam piece with the high stiffened rubber-coated 

masses at a Shore hardness of 80 ShA has been used ( 

Figure 86). By calculating the poly-fitted curve of the circle, which includes the 

resonance of the mass- and spring-system, the damping factor of the spring can be 

evaluated with Karl et al. [45] or Möser [74] involving geometrical equations from 

Bronstein [9]:  

Hereby, α1 and α2 are the angles of the resonance frequency ω0 to the center point and 

the frequencies ω1 and ω2. The value of ηSpring,meas = 0.124 of these measurements is 
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much higher than the values chosen in most of the calculations (ηSpring,calc = 0.02). In the 

calculations, each mass-and spring system has been clearly defined, while the pre-test 

measurements show a scattering of the attenuations in the resonances (Figure 36), which 

can be anticipated in the beams with distributed spring-mass systems as well. 

 

Figure 86: Nyquist plot of a measured beam piece with a high stiffened rubber-coated mass 

(80 ShA). The real and imaginary parts are calculated with the cross spectra of the 

accelerometer on the top of the beam to the mean of the accelerometers on both sides of the 

rubber-coated mass. The fitted circle at the resonance of the measured transfer mobility succeed 

in the damping factor of the spring ηspring = 0.124, using equation (43). The resonance frequency 

is 3.24 kHz. 

11.1.3 IMPACT OF THE WEIGHT OF MASSES ONTO THE ATTENUATIONS IN 

THE TRANSFER MOBILITY   

In the following plot the weight of the masses of a beam with 10 equally distributed 

masses has been reduced by a factor of 2. As expected, the attenuations of the transfer 

mobility are reduced while stop-band frequencies remain the same (Figure 87).  
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Figure 87: Transfer mobility of an infinite beam with 10 embedded masses in the neutral layer 

of default weight and 10 masses with half of the weight. As depicted in the sketches on the right 

side 10 masses are equally distributed over a length of 4.5m. 
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11.2 ERROR INVESTIGATION   

The accuracy of numerical investigation is limited at high frequencies by the 

employment of the simple bending wave equation. This has to be taken into 

consideration for the results at higher frequencies. 

In addition, the comparison of the calculations and measurements for a beam with pure 

masses show that the attenuation of first appearing stop-band do not agree in magnitude. 

A reason therefore can be found in the use of a wooden beam. Wood is not isotropic and 

thus some parameters such as the Young´s modulus or the loss factor are not the same 

over the entire length of the beam. It is also not clear to what extend the bending waves 

are converted into longitudinal or torsional waves when the former are reflected at the 

inserts. 

Apart from the usual measurement errors, e.g. calibration and acquisition system errors, 

following effects might have an influence to the results: 

NUMERICAL INVESTIGATION 

- In all calculations and measurements with beams, the vertical height of the beam 

is about h=80mm. The error of the simple bending wave equation from Euler-

Bernoulli increases if the corresponding bending wave-length grows larger than 

6 times that height (λ>6h). Thus, transferred into a frequency, all calculated 

results with frequencies higher than f=2359Hz need to be considered under this 

condition. 

- Furthermore, the use of an Euler-Bernoulli-beam does not consider shear 

stresses. That means that wave transformation from vertical bending waves to 

torsional, longitudinal or horizontal bending waves is not reflected in the 

measurement results, although scattering in the results of the measurements are 

very likely related to such transformations. 

MEASUREMENTS ON A BEAM 

- Stiffness and loss factor of the polyurethane (PUR) changes by the time. 

- Non-isotropic inhomogeneous beams were used for the measurements. 

- Scattering effects appear due to the sensible filling procedure of polyurethane 

(PUR). 

- Beams in measurements are slightly screwed along the x-axis and vary in 

density. 

- Due to the very large effort of measuring the transfer mobility of a beam, the 

decision was made using one of the beams with only holes as a baseline. Thus, 

not every beam has been measured in its form with only holes and therefore the 

ratios of the transfer mobilities are affected by different conditions of each beam. 
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MEASUREMENTS ON A PLATE 

- Measurements of the plate with inserts stuck to both sides of the rings do not 

avoid moment effects, as mass heights very likely play a role. These moment 

reactions are even higher when masses are attached to the rubber.  

- As previously mentioned, the effects of additional masses and reflections at the 

boundaries very likely supersede any other effects and therefore possibly falsify 

conclusions. 
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