Synthesis of α-Chiral Silanes by Asymmetric Conjugate Addition of Silicon Nucleophiles to Unsaturated Acceptors

vorgelegt von
M. Sc.
Wenbin Mao
ORCID: 0000-0001-8746-1616
an der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften
- Dr. rer. nat. -
genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Andreas Grohmann
Gutachter: Prof. Dr. Martin Oestreich
Gutachter: Prof. Dr. Bernd Plietker

Tag der wissenschaftlichen Aussprache: 30. September 2021

This dissertation was accomplished under the supervision of Professor Dr. MARTIN Oestreich from October 2017 to September 2021 in the Institut für Chemie of Technische Universität Berlin.

I am deeply indebted to Professor Dr. Martin Oestreich for the opportunity to conduct my PhD research in his group. These fantastic research topics assigned by Professor Dr. MARTIN Oestreich could not be finished without his support and suggestions.

I am grateful to Prof. Dr. Bernd Plietker to be the external referee of my dissertation and defense.

I appreciate Professor Dr. Andreas Grohmann to be the chairman of my doctoral committee.

I would like to express my gratitude to Dr. Hendrik Klare and Professor Dr. Johannes TEICHERT for their help and suggestions during my study in Oestreich group.

I am obligated to China Scholarship Council (CSC) for financial support.

I appreciate the Solvias AG for the generous donation of the Josiphos ligand.

Great appreciation is given to all employees from the Institut für Chemie of Technische Universität Berlin for their advice and help, especially to Dr. Elisbeth Irran, Paula Nixdorf, Marc Griffel and Dr. Maria Schlangen.

I also thank Dr. Hong Yı, Dr. Weichao Xue, Liangliang Zhang, Dr. Jianjun Feng, and Dou HONG for their contribution and collaboration. It is my honour to work with them.

I give thanks to my correction team: Andreas Weidkamp, Benedikt Wolff, Ming Cui, Dr. TaO He and Yan Xu. Because of their suggestions, my dissertation was improved in both language and logic. BENEDIKT WOLFF is warmly appreciated for the translation of the abstract.

A huge appreciation goes to all co-workers in OESTREICH group. It is my great honor to work with them. These include Dr. Tao He, Dr. Saravanakumar Elangovan, Dr. Phillip pommerening, Dr. Jonas Scharfbier, Dr. Huajie Jiang, Sven Richter, Andreas Weidkamp, liangliang Zhang, Jan Seliger, Yan Xu, Ming Cui, Avijit Roy, lucie Finck, Marvin Oberling, Zaneta Papadopulu, Benedikt Wolff, Pengwei long, Kaixue Xie, nektarios Kranidiotis, Haopeng Gao, Yi Peng, Zhiyuan Zhao, Aliyaah Rahman, Dou

Hong, Novid Kazeroonian, Dr. Weiqiang Chen, Benjamin Grob, Pedro Henrique Helou de Oliveira, Julien Fuchs, Dr. Huaquan Fang, Hendrik Simon, Shintaro Kamio, Dr. Daniel Janßen-Müller, Dr. Guoqiang Wang, Dr. Jian-Jun Feng, Dr. Polina Shaykhutdinova, Dr. Patrizio Orecchia, Dr. Johannes Walker, Dr. Clément Chauvier, Dr. Lars Sübe, Dr. Weichao Xue, Dr. Qian Wu, Dr. Hong Yi, Dr. Francis Forster, Vittorio Bonetti, Dr. Maria Vogler, Dr. Lukas Omann, Dr. Weiming Yuan, Dr. Susanne Bähr, Takuya Kinoshita, Dr. Xichang Dong, Dr. Digvijay Porwal, Dr. Hamideh Hazrati, Victoria Rendón López and Ryosuke Shishido. Also, I would like to acknowledge Lea Brechmann, Birte Zimmermann, Benyapa Kaewmee, Trung Tran Ngoc, Dimitrios-Ioannis Tzaras and Mahadeb Goral from Teichert group. Huge appreciation is given to our secretaries StEPHANIE KROMBACH and MONIKA UlRICH.

I appreciate all the members of BIG-NSE (Berlin International Graduate School of Natural Sciences and Engineering), especially to Dr. Jean-Philippe Lonjaret and TatJana Kliwer for their help and organization.

I express my thanks to my Bachelor's supervisor Professor Dr. Baolong LI and Master's supervisor Professor Dr. CHEN ZHU for their training and encouragement in the early stage of chemistry research.

Last but not the least, my sincere appreciation to my parents, brothers and sisters for their help and support. I especially thank my wife Hui Xu for her company and support.

Publications

Parts of this work have been published:
[1] "Copper-Catalyzed Regio- and Enantioselective Addition of Silicon Grignard Reagents to Alkenes Activated by Azaaryl Groups"
W. Mao, \dagger W. Xue, \dagger E. Irran, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 1072310726; Angew. Chem. 2019, 131, 10833-10836.
Selected as a "Hot Paper" by Angewandte Chemie.
Highlighted in SYNFACTS 2019, 15, 1024.
[2] "Enantioselective Synthesis of α-Chiral Propargylic Silanes by Copper-Catalyzed 1,4-Selective Addition of Silicon Nucleophiles to Enyne-Type $\alpha, \beta, \gamma, \delta$-Unsaturated Acceptors"
W. Mao, M. Oestreich, Org. Lett. 2020, 22, 8096-8100.

Collaborative work in other projects:
[3] "Enantioselective Construction of α-Chiral Silanes by Nickel-Catalyzed C(sp $\left.{ }^{3}\right)$ C(sp ${ }^{3}$) Cross-Coupling"
H. Yi, \dagger W. Mao, \dagger M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 3575-3578; Angew. Chem. 2019, 131, 3613-3616. Highlighted in SYNFACTS 2019, 15, 506.
[4] "Mechanistic Dichotomy of Magnesium- and Zinc-Based Germanium Nucleophiles in the C(sp $\left.{ }^{3}\right)$-Ge Cross-Coupling with Alkyl Electrophiles"
W. Xue, \dagger W. Mao, \dagger L. Zhang, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 64406443; Angew. Chem. 2019, 131, 6506-6509.

A review article:
[5] "Activation of the $\mathrm{Si}-\mathrm{B}$ Interelement Bond related to Catalysis" J.-J. Feng, \dagger W. Mao, \dagger L. Zhang, \dagger M. Oestreich, Chem. Soc. Rev. 2021, 50, 20102073.

Poster Presentation

[1] W. Mao, \dagger W. Xue, $\dagger ~ E . ~ I r r a n, ~ M . ~ O e s t r e i c h, ~$ "Copper-Catalyzed Regio- and Enantioselective Addition of Silicon Grignard Reagents to Alkenes Activated by Azaaryl Groups"
Molecular Nanotour Symposium, Berlin (Germany), 08/10/2019.

Abstract

This dissertation focuses on the development of asymmetric conjugate addition of silicon nucleophiles or silicon pronucleophiles to activated alkenes, providing general and efficient methods for stereodefined silanes. Silicon GrIGNARD reagents and $\mathrm{Si}-\mathrm{B}$ reagents are mainly employed as silicon sources for the enantioselective 1,4-silyl transfer.

The first part is about the application of silicon GRIGNARD reagents in the conjugate addition to azaaryl-substituted alkenes. Racemic and chiral versions were successfully established under the assistance of the LEWIS acid $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$. Various azaaryl groups could be employed to activate the $\mathrm{C}-\mathrm{C}$ double bond in the racemic transformation, demonstrating good functional group tolerance. A CuCl/Josiphos precatalyst plays a crucial role in high levels of enantioinduction in the asymmetric conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ to benzoxazoleactivated alkenes. Good to high enantioselectivities, up to 94% ee, were achieved with exclusive β-selectivity in 20 examples.

The second part demonstrates a general and efficient method for the synthesis of enantioenriched propargylic silanes through asymmetric conjugate addition of silylboronic esters to enyne-type $\alpha, \beta, \gamma, \delta$-acceptors. Ketones, esters and amides proved to be suitable Michael acceptors under our catalytic system, delivering the corresponding chiral propargylic silanes in good to excellent yields with high enantiomeric excesses of up to 95% ee. Good functional group tolerance, operationally simple procedure, exclusive 1,4-selectivity and excellent enantioselectivity are features of our method. The geometry of the $\mathrm{C}-\mathrm{C}$ double bond in the substrate shows a non-negligible influence in the chemoselectivity. (Z)Configuration results exclusively in propargylic silanes while (E)-Configuration mainly leads to allenylsilanes.

In the following, two chapters describe our ongoing efforts about asymmetric conjugate addition reactions. α, β-Unsaturated sulfones and phosphine oxides are chosen as MICHAEL acceptors. Moderate results with regard to yield and enantioselectivity have been obtained for the project of α, β-unsaturated sulfones, however, only racemic mixtures were achieved with α, β-unsaturated phosphine oxides. Further investigations are still ongoing for the optimal reaction conditions.

ZUSAMMENFASSUNG

Die vorliegende Dissertation befasst sich mit der Entwicklung asymmetrischer konjugierter Additionen von Siliciumnukleophilen und Siliciumpronukleophilen an aktivierte Alkene, um allgemein anwendbare und effiziente Methoden für die Darstellung von Silanen mit festgesetzter Stereoinformation zu erschließen. Silicium-GrIGNARD- und Si-B-Reagenzien dienten hauptsächlich als Siliciumquellen für enantioselektive 1,4-Silyl-Übertragungen.

Der erste Teil beschäftigt sich mit der Anwendung von Silicium-Grignard-Reagenzien in konjugierten Additionsreaktionen an azaarylsubstituierte Alkene. Eine racemische und chirale Reaktionsführung wurden erfolgreich unter Zuhilfenahme der LEWIS-Säure $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ erarbeitet. Verschiedene Azaarylgruppen fanden in der Aktivierung der C-C-Doppelbindung der racemischen Variante Verwendung, welche eine gute Toleranz gegenüber funktionellen Gruppen unter Beweis stellte. Ein CuCl/Josiphos Präkatalysator spielte eine entscheidende Rolle für die hohe Enantioinduktion in einer asymmetrischen konjugierten Addition von $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ an benzoxazolaktivierte Alkene. Gute bis hohe Enantioselektivitäten, bis zu 94% ee, wurden mit ausschließlich β-Selektivität für 20 Beispiele erzielt.

Der zweite Teil befasst sich mit einer allgemein anwendbaren und effizienten Methode enantiomerenangereicherte Propargylsilane durch asymmetrische konjugierte Addition von Silylboronsäureestern an $\alpha, \beta, \gamma, \delta$-Akzeptoren des Enin-Typs darzustellen. Ketone, Ester und Amide stellten sich als geeignete MICHAEL-Akzeptoren in unserem optimierten katalytischen System heraus, welches die entsprechenden chiralen Propargylsilane in guten bis sehr guten Ausbeuten mit hohen Enantiomerenüberschüssen, bis zu 95\% ee, lieferte. Unsere Methode zeichnet sich durch hohe Toleranz gegenüber funktionellen Gruppen, synthetisch geringem Aufwand, ausschließlicher 1,4-Selektivität und hohe Enantioselektivitäten aus. Zudem hat die Geometrie der C-C-Doppelbindung des Substrats einen nicht vernachlässigbaren Einfluss auf die Chemoselektivität der Reaktion. (Z)-Konfiguration führt zu Propargylsilanen, wohingegen (E)-Konfiguration hauptsächlich Allenysilane hervorbringt.

In den darauffolgenden zwei Kapiteln sind unsere noch andauernden Untersuchungen zur asymmetrischen konjugierten Addition dargestellt. α, β-ungesättigte Sulfone und Phophinoxide wurden als Substrate gewählt. Moderate Ausbeuten und Enantioselektivitäten wurden für die α, β-ungesättigten Sulfone erzielt, allerdings wurden einzig racemische Produkte α, β-ungesättigter Phophinoxide beobachtet. Die Optimierung der Reaktionsbedingungen dauert an.

Table of Content

Contents

Theoretical Part
1 InTRODUCTION 1
1.1 Asymmetric 1,2-Addition Reaction 2
1.1.1 Asymmetric 1,2-Addition of Hydrosilanes to C-C Double Bond 2
1.1.2 Asymmetric 1,2-Addition of Silylboronic Esters to C-C Double Bond 3
1.2 Asymmetric 1,4-Addition Reaction 6
1.2.1 Asymmetric 1,4-Addition Reaction of Dienes or Enynes 6
1.2.2 Asymmetric 1,4-Addition Reaction of α, β-Unsaturated Carbonyl and Carboxyl Compounds 9
1.3 Asymmetric 1,6-Addition Reaction 28
1.4 Miscellaneous Methods 30
1.5 Objective 35
2 Asymmetric Conjugate 1,4-Silyl Transfer to Aazairyl-Substituted Alkenes 37
2.1 Introduction 37
2.2 Racemic Version 38
2.2.1 Optimization Study 38
2.2.2 Substrate Scope for Racemic Transformation 39
2.3 Chiral Version 40
2.3.1 Optimization Study 40
2.3.2 Substrate Scope for Asymmetric Transformation 44
2.3.3 Follow-Up Chemistry 46
2.4 Conclusion 47
3 Asymmetric Conjugate 1,4-Silyl Transfer to Enyne-Type $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}$ - Unsaturated Acceptors 49
3.1 Introduction 49
3.2 Optimization Study 49
3.3 Substrate Scope 56
3.4 Control Experiments 58
Conclusion 59
4 AsYmmetric Conjugate 1,4-Silyl Transfer to α, β-Unsaturated Sulfones61
4.1 Introduction 61
4.2 Optimization Study 62
4.3 Conclusion 65
5 Asymmetric Conjugate 1,4-Silyl Transfer to $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Phosphine Oxides 67
5.1 Introduction 67
5.2 Optimization Study 67
5.3 Conclusion 68
6 Summary 69
EXPERIMENTAL PART
1 General Information 75
2 General Procedure 79
2.1 General Procedures for Asymmetric Conjugate 1.4-Silyl Transfer to Azaaryl- Substituted Alkenes 79
2.1.1 GP 1.1: General Procedure for Silicon GRIGNARD Reagents in $\mathrm{Et}_{2} \mathrm{O}$ 79
2.1.2 GP 1.2: General Procedure for Azaaryl-Substituted Alkenes 79
2.1.3 GP 1.3: General Procedure for Racemic Products 80
2.1.4 GP 1.4: General Procedure for Enantioenriched Products 80
2.2 General Procedures for Asymmetric Conjugate 1.4-Silyl Transfer to $\alpha, \beta, \gamma, \delta$-Un- saturated Acceptors 81
2.2.1 GP 2.1: General Procedure for Si-B Reagents 81
2.2.2 GP 2.2: General Procedure for $\alpha, \beta, \gamma, \delta$-Unsaturated Acceptors 82
2.2.3 GP 2.3: General Procedure for Racemic Products 84
2.2.4 GP 2.4: General Procedure for Enantioenriched Products 84
3 Description of Experiments 87
3.1 Asymmetric Conjugate 1.4-Silyl Transfer to Azaaryl-Substituted Alkenes 87
3.1.1 Preparation of Silicon GRIGNARD Reagents 87
3.1.2 Experimental Details and Characterization Data for Azaarenes 87
3.1.3 Experimental Details and Characterization Data for Racemic Products 96
3.1.4 Experimental Details and Characterization Data for Enantioenriched Products 103
3.1.5 Experimental Detail and Characterization Data for Enantioenriched Alcohol 128
3.2 Asymmetric Conjugate 1.4-Silyl Transfer to Enyne-Type $\alpha, \beta, \gamma, \delta$-Unsaturated Acceptors 130
3.2.1 Preparation of $\mathrm{Si}-\mathrm{B}$ reagents 130
3.2.2 Experimental Details and Characterization Data for Enyne-Type $\alpha, \beta, \gamma, \delta$-Unsatu- rated Acceptors 130
3.2.3 Experimental Details and Characterization Data for Enantioenriched Products 142
3.3 Asymmetric Conjugate 1.4-Silyl Transfer to α, β-Unsaturated Sulfones 170
3.3.1 Procedure for $(E) \mathbf{- 1 5 0}$ 170
3.3.2 Procedure for Enantioenriched Product 151 171
3.3.3 Characterization Data for 151 172
3.4 Asymmetric Conjugate 1.4-Silyl Transfer to α, β-Unsaturated Phosphine Oxides 173
3.4.1 Procedure for $(E)-152$ 173
3.4.2 Procedure for Product 153 173
3.4.3 Characterization Data for 153 174
APPENDIX
A1 X-Ray Structure Data 179
A1.1 Molecular Structure of (S)-90a 179
A1.2 Molecular Structure of (S)-134b 180
A1.3 Molecular Structure of (R)-136I 181
A2 Abbreviation 183
A3 Bibliography 187

Theoretical Part

1 Introduction

Silicon, known as the second most abundant element in the earth's crust, is the crucial component in organosilicon compounds, which have been extensively investigated in medicinal chemistry, ${ }^{[1]}$ agricultural chemistry ${ }^{[2]}$ and material science. ${ }^{[3]}$ Given this, reactions based on organosilicon compounds have attracted evergrowing attention of organic chemists and great achievements in this area have been made in the past decades. ${ }^{[4]}$ For example, the TAMAO-FLEMING oxidation accomplishes the transformation from α-chiral silanes to chiral alcohols in a stereospecific manner, and thus silyl groups are often considered to be
 new methods to prepare organosilicon compounds is critical to the development of organosilicon chemistry. As an important part, new methods for the preparation of chiral α-stereogenic silanes are highly desirable.

Scheme 1.1: \quad Oxidative degradation of α-chiral alkylsilanes. DMF $=N, N$-dimethylformamide; $m C P B A=3$-chloroperbenzoic acid.
[1] For selected reviews, see: a) R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 3779-3798; b) S. Fujii, Y. Hashimoto, Future Med. Chem. 2017, 9, 485-505; c) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; d) S. Gately, R. West, Drug Dev. Res. 2007, 68, 156-163; e) G. A. Showell, J. S. Mills, Drug Discovery Today 2003, 8, 551-556.
[2] For selected examples, see: a) W. K. Moberg, G. S. Basarab, J. Cuomo, P. H. Liang, Syn. Chem. Agrochem. 1987, 355, 288-301; b) S. M. Sieburth, C. N. Langevine, D. M. Dardaris, Pestic. Sci. 1990, 28, 289-307; c) S. M. Sieburth, C. N. Langevine, D. M. Dardaris, Pestic. Sci. 1990, 28, 309-319.
[3] For selected reviews, see: a) T. Asefa, Z. Tao, Can. J. Chem. 2012, 90, 1015-1031; b) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789-800; c) N. Auner, J, Weis in Organosilicon Chemistry V: From Molecules to Materials (Eds.: N. Auner, J. Weis), Wiley-VCH, Weinheim, 2003.
[4] For selected reviews, see: a) T. Hiyama, M. Oestreich in Organosilicon Chemistry—Novel Approaches and Reactions (Eds.: T. Hiyama, M. Oestreich), Wilely-VCH, Weinheim, 2019; b) T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631-651; c) S. E. Denmark, J. H.-C. Liu, Angew. Chem. Int. Ed. 2010, 49, 2987-2986; Angew. Chem. 2010, 122, 3040-3049; d) B. Marciniec, Hydrosilylation in Advances in Silicon Science (Ed.: B. Marciniec), Springer, Berlin, 2009.
[5] For a representative review, see: a) G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 75997662; for original works, see: b) K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120-2122; c) I. Fleming, R. Henning, H. Plaut, J. Chem. Soc. Chem. Commun. 1984, 29-31.

The past decades have witnessed a booming growth in methods for the preparation of chiral α-chiral silanes through $\mathrm{C}-\mathrm{Si}$ bond formation. ${ }^{[4 a, 4 \mathrm{~d}, 6]}$ Here, methods for asymmetric silyl transfer from silicon reagents to $\mathrm{C}-\mathrm{C}$ multiple bonds are described in four parts. Chapter 1.1 is mainly about asymmetric 1,2 -addition of silicon reagents to $\mathrm{C}-\mathrm{C}$ double bonds, including a brief introduction about asymmetric hydrosilylation at the beginning. Chater 1.2 focuses on asymmetric 1,4-addition reactions by using hydrosilanes or silylboronic esters as silicon source. Methods involving dienes, enynes, and α, β-unsaturated carbonyl compounds and their derivatives are presented in this part. Chapter 1.3 will give an introduction about asymmetric 1,6-addition of $\mathrm{Si}-\mathrm{B}$ reagents to diene- or enyne-type acceptors. The last section, Chapter 1.4, reports methods about construction of α-chiral silanes by using alkynes as starting materials. Concepts about asymmetric double hydrosilylation are described here.

1.1 Asymmetric 1,2-Addition Reaction

1.1.1 Asymmetric 1,2-Addition of Hydrosilanes to C-C Double Bond

Asymmetric 1,2-addition of hydrosilanes across alkenes represents a straightforward and atom economic approach to access α-chiral silanes, and great achievements have been accomplished with terminal alkenes in the last decades (Scheme 1.2, $5 \rightarrow \mathbf{6}$). ${ }^{[4 d, 6 d, 7]}$ To address main challenges in this area, involving regioselectivity and enantioinduction, various transition metal catalysts, based on Pd, $\mathrm{Fe}, \mathrm{Co}, \mathrm{Cu}$, and Rh , have been successfully applied. ${ }^{[8]}$ However, compared to well-developed hydrosilylation of terminal alkenes, internal alkenes are less exploited and substrates are limited (Scheme 1.2, 7 $\boldsymbol{7}$). ${ }^{[9]}$
[6] For selected reviews about silylboronic esters, see: a) J.-J. Feng, W. Mao, L. Zhang, M. Oestreich, Chem. Soc. Rev. 2021, 50, 2010-2073; b) W. Xue, M. Oestreich, ACS Cent. Sci. 2020, 6, 1070-1081; M. Oestreich, E. Hartmann, M. Mewald, Chem. Rev. 2013, 113, 402-441; for a recent review about asymmetric hydrosilylation, see: d) M. Zaranek, P. Pawluc, ACS Catal. 2018, 8, 9865-9876.
[7] For selected reviews, see: a) L. D. de Almeida, H. Wang, K. Junge, X. Cui, M. Beller, Angew. Chem. Int. Ed. 2021, 60, 550-565; Angew. Chem. 2021, 133, 558-573; b) T. Hayashi, Catal. Today, 2000, 62, 3-15; for mechanism, see: c) A. J. Chalk, J. F. Harrod, J. Am. Chem. Soc. 1965, 87, 16-21; d) A. M. LaPointe, F. C. Rix, M. Brookhart, J. Am. Chem. Soc. 1997, 119, 906-917.
[8] For reviews, see: Refs 4d, 6d, 7a, 7b; for seminal works, see: a) Y. Uozumi, T. Hayashi, J. Am. Chem. Soc. 1991, 113, 9887-9888; b) T. Naito, T. Yoneda, J. Ito, H. Nishiyama, Synlett 2012, 23, 2957-2960; c) M. W. Gribble, Jr., M. T. Pirnot, J. S. Bandar, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2017, 139, 2192-2195; c) B. Cheng, P. Lu, H.-Y. Zhang, X.-P. Cheng, Z. Lu, J. Am. Chem. Soc. 2017, 139, 9439-9442; d) B. Cheng, W.-B. Liu, Z. Lu, J. Am. Chem. Soc. 2018, 140, 5014-5017.
[9] For examples with strained-ring compounds, see: a) T. Hayashi, K. Tamao, Y. Katsuro, I. Nakae, M. Kumada, Tetrahedron Lett. 1980, 21, 1871-1874; b) Y. Uozumi, S.-Y. Lee, T. Hayashi, Tetrahedron Lett. 1992, 33, 7185-7188; c) Y. Uozumi, T. Hayashi, Tetrahedron Lett.

Scheme 1.2: Transition metal-catalyzed hydrosilylation.

1.1.2 Asymmetric 1,2-Addition of Silylboronic Esters to C-C Double Bond

As an alternative, silylboronic esters have been successfully employed as a silicon source in asymmetric 1,2-addition reactions, but are less studied. Activation of silylboronic esters through oxidative addition has been successfully applied in asymmetric 1,2-difunctionalization of allenes. ${ }^{[10]}$ From 2003 to 2006, SUGINOME, MURAKAMI and co-workers reported their continuous efforts on palladium-catalyzed enantioselective addition of silylboronic esters across an internal $\mathrm{C}-\mathrm{C}$ double bond of terminal allenes (Scheme 1.3). ${ }^{[10]}$ Great advance of their methods was achieved in the following three years, changing from double asymmetric induction conditions, based on an optically pure ligand and a chiral silylboronic ester [Scheme 1.3, $9 \rightarrow(S)-11$], to catalytic asymmetric conditions, only based on a chiral ligand [Scheme 1.3, $9 \rightarrow(S)$-13]. This extensively simplified the operation and broadened the generality of their protocol.

Scheme 1.3: Palladium-catalyzed asymmetric addition to an internal $\mathrm{C}-\mathrm{C}$ double bond of terminal allenes. $\mathrm{Cp}=$ cyclopentadienyl; Bpnd* $=$ optically pure pinanediolatoboron; $\mathrm{dba}=$ dibenzylideneacetone; Bpin = pinacolatoboron.

Other applications of silylboronic esters in this area involve $\mathrm{Cu}-\mathrm{Si}$ species, which results from transmetalation through σ-bond metathesis. OESTREICH group applied this $\mathrm{Cu}-\mathrm{Si}$ species in the asymmetric reaction of strained-ring compounds. In 2019, ZHANG and OESTREICH accomplished an asymmetric addition of silylboronic esters to cyclopropenes, providing a straightforward access to chiral cyclopropylsilanes (Scheme 1.4, 14a-e $\rightarrow \mathbf{1 5 a}$ e). ${ }^{[11]}$ Excellent enantiomeric excesses (up to 99% ee) and diastereoselectivity (most d.r. \geq 98:2) were observed under their optimized conditions. It is noteworthy that no directing group is needed for this transformation.

Scheme 1.4: Asymmetric 1,2-addition of silylboronic esters to 3,3-disubstituted cyclopropenes. THF $=$ tetrahydrofuran.

A plausible mechanistic scenario is outlined in Scheme 1.5. The catalytic cycle starts from the formation of copper alkoxide I, which first forms from $\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4} \mathrm{CuPF}_{6}$, chiral ligand (R) L3 and NaOtBu . Transmetalation between copper alkoxide I and silylboronic esters liberates [Cu]-Si species III and ROBpin 16 through σ-bond metathesis (II). Cyclopropene 14 coordinates to [Cu]-Si species III to form a π-complex IV. Then the [Cu]-Si species III adds across the alkene in a syn-fashion (IV $\rightarrow \mathbf{V}$), forming intermediate VI. Protonation generates the desired product 15 and reliberates catalyst \mathbf{I}.

$\mathrm{R}_{3} \mathrm{Si}=\mathrm{Me}_{2} \mathrm{PhSi}$
Scheme 1.5: Proposed mechanism for asymmetric 1,2-addition of silylboronic esters to 3,3disubstituted cyclopropenes.

Complementary to this method, a highly enantioselective addition of silylboronic esters to 7-oxa- and 7-azabenzonorbornadiene derivatives was reported by CuI and OESTREICH in 2020 (Scheme 1.6). ${ }^{[12]}$ Exclusive exo-selectivity happened throughout. Surprisingly, an opposite influence of exogenous proton source, such as methanol, was observed. MeOH is detrimental to the reaction of 7-oxabenzonorbornadiene [Scheme 1.6, 17 $\rightarrow(S, R, S)$-18], while it is indispensable with 7-azabenzonorbornadiene [Scheme 1.6, $19 \rightarrow(S, R, S)$-20]. Either
norbornene (21), norbornadiene (22) or benzonorbornene (23) was suitable under their optimal setup. Notably, no ring-opening product was observed under their optimal conditions.

Scheme 1.6: Asymmetric 1,2-addition to 7-oxa- and 7-azabenzonorbornadiene derivatives. Boc $=$ tert-butoxycarbonyl.

1.2 Asymmetric 1,4-Addition Reaction

1.2.1 Asymmetric 1,4-Addition Reaction of Dienes or Enynes

1.2.1.1 Dienes. Enantioselective 1,4 -hydrosilylation of dienes, using hydrosilanes as silicon source, has been demonstrated as an efficient approach to access a large library of chiral allylic silanes. ${ }^{[13]}$ Cyclic and acyclic dienes were identified as suitable substrates in this area, and various chiral ligands have been designed and investigated by using palladium complex $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ as catalyst [Scheme 1.7, $\mathbf{2 4} \rightarrow(S)-\mathbf{2 5}$ and $\left.(E)-\mathbf{2 6} \rightarrow(S, E)-27\right]$.
[13] For reviews, see: a) J. W. Han, T. Hayashi, Tetrahydron: Asymmetry 2010, 21, 2193-2197; b) T. Hayashi, Acc. Chem. Res. 2000, 33, 354-362; c) T. Hayashi, Acta Chem. Scand. 1996, 50, 259-266; for selected examples for cyclic dienes, see: d) T. Hayashi, J. W. Han, A. Takeda, J. Tang, K. Nohmi, K. Mukaide, H. Tsuji, Y. Uozumi, Adv. Synth. Catal. 2001, 343, 279-283; e) J. W. Han, T. Hayashi, Tetrahedron: Asymmetry 2002, 13, 325-331; for a selected example for acyclic dienes, see: f) J. W. Han, N. Tokunaga, T. Hayashi, Helv. Chim. Acta 2002, 85, 38483854.

Selected examples

Scheme 1.7: Asymmetric 1,4-hydrosilylation of dienes.

Enantioselective 1,4-silaboration of dienes was investigated carefully by Moberg, Jutand and co-workers [Scheme 1.8, $28 \rightarrow(R, S)-29] .{ }^{[14]} \operatorname{In} 2005$, a Pt/(S)-L7 catalysis was applied in the asymmetric addition of silylboronic esters to cyclohexa-1,3-diene, although only moderate enantioselectivity (70% ee) was obtained (Scheme 1.8, top). This started their exploration in the asymmetric addition reaction of cyclic 1,3-dienes, using catalysts based on metals in group 10. A systematic survey of reaction conditions increased the enantioselection to 82% ee (Scheme 1.8, bottom). Other catalysts, such as $\mathrm{Ni}(\mathrm{acac})_{2}$, only resulted in low levels of enantiomeric excess.

Scheme 1.8: Enantioselective silaboration of 1,3-cyclohexadiene. DIBAL-H = diisobutylaluminium hydride . acac = acetylacetonate .
$[14]$ a) M. Gerdin, C. Moberg, Adv. Synth. Catal. 2005, 347, 749-753; b) G. Durieux, M. Gerdin, C. Moberg, A. Jutand, Eur. J. Inorg. Chem. 2008, 4236-4241; c) M. Gerdin, M. Penhoat, R. Zalubovskis, C. Pétermann, C. Moberg, J. Organomet. Chem. 2008, 693, 3519-3526.

In 2012, SAITO, KOBAYSH and SATO reported a nickel-catalyzed enantio- and diastereoselective 1,2-difunctionalization of 1,3-dienes, simultaneously constructing multiple stereogenic centers with high efficiency [Scheme 1.9, (E)-30a-c $\rightarrow(E)$-32a-c]. ${ }^{[15]}$ Diastereoselectivity was excellent throughout, and enantioselection was good (most with more than $90 \% e e$). Internal diene (E, E)-30d was also tried and did work under the optimal conditions, delivering the desired product (S, S, S, E)-32d with high enantio- and diastereoselectivity, although in a low yield (22\%).

(E)-30
31 then sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution
(2.5 equiv)
Selected examples

(S,S,S,E)-32d: 92\% ee 22\% yield

(R)-L9

Scheme 1.9: Asymmetric 1,2-difunctionalization of dienes. DMF $=$ dimethylformamide; cod $=$ cycloocta-1,5-diene; MOM = methoxymethyl.
1.2.1.2 Enynes. Asymmetric 1,4 -addition to enynes by using HSiCl_{3} (23) as silicon source provides new avenues for the synthesis of axially chiral allenyl silanes. ${ }^{[16]}$ In 2001, HAYASHI and co-workers reported their work about asymmetric 1,4-hydrosilylation of enynes by using $\left[\operatorname{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ as catalyst and bisPPFOMe $\left[\left(S, R_{P}\right)-\mathrm{L} 10\right]$ as ligand (Scheme 1.10, $33 \rightarrow$ 34). ${ }^{[17]}$ Three substrates were researched in their work, and moderate to high levels of enantioselection were reported under their optimal conditions. Yields were comparatively low for 33b and 33c. Their following research about 1,4-hydrosilylation of enynes concentrated on new ligand design. In 2006, they found chiral ligand (R, R)-L11 was superior in the

[^0]reaction of 33b, compared with chiral ligand (S, R_{P})-L10. ${ }^{[18]} 80 \%$ yield of 1,4 -addition product (S)-34b was obtained with slightly higher enantioselectivity (92% ee). Other new ligands prepared in this work proved to be less efficient in both yields and levels of enantioinduction.

Scheme 1.10: Asymmetric 1,4-hydrosilylation of enynes. [a] 1.1 equiv HSiCl_{3} was used. [b] Reaction was conducted at $0^{\circ} \mathrm{C}$.

1.2.2 Asymmetric 1,4-Addition Reaction of α, β-Unsaturated Carbonyl and Carboxyl Compounds

1.2.2.1 Hydrosilanes. Methods for the construction of chiral silanes through asymmetric conjugate addition of hydrosilanes to α, β-unsaturated carbonyl compounds and their derivatives are elusive due to challenges in chemo-, regio- and enantioselectivity. In 2020, XU and co-workers reported their investigation about the palladium-catalyzed asymmetric hydrosilylation of maleimides [Scheme 1.11, 35a-m \rightarrow (S)-36a-m]. ${ }^{[19]}$ Chemoselectivity becomes one of the challenges in this work because the reduction of $\mathrm{C}-\mathrm{C}$ double bond is less energetically favored. By using $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ as catalyst and a chiral TADDOLderived phosphoramidite (R, R)-L12 as ligand, they realized the construction of chiral silyl succinimides in excellect yields (up to 99\% yield) with excellent enantioselectivity (up to 99\% ee). Functional groups include an ester as in (S)-36c, an amine as in (S)-36d, an alkoxy group as in (S)-36e, halo groups as in (S)-36g and (S)-36h, a trifluoromethyl group as in (S)-

[^1]36i, an acetal as in (S)-36k, and a thiophene as in (S)-36I. Unprotected maleimide $\mathbf{3 5 m}$ worked smoothly, delivering the hydrosilylation product (S)-36m in 69% yield with 81% ee. A gram-scale reaction of $\mathbf{3 5 a}$ was conducted under the optimal setup, and a slightly lower yield was observed, with hardly any erosion of enantioselection.

Selected examples

(S)-36j: d.r. $=58: 42$ 96\% ee, 68\% yield

(S)-36I: 96\% ee 84\% yield
(S)-36b ($\mathrm{R}=4-\mathrm{Me}$): 94% ee, 79% yield

(S)-36k: 93% ee 68\% yield

(S)-36m: 81% ee 69% yield

Scheme 1.11: Asymmetric addition of hydrosilanes to internal alkenes. [a] Gram-scale reaction of 35a afforded the silylation product (S)-36a in 74% yield with 96% ee.

As seen in (S)-36j in Scheme 1.11, only low diastereoselectivity was observed when orthosubstituted maleimide $\mathbf{3 5 j}$ was subjected to their optimal conditions. Diastereoselection became an urgent issue for them. They found high enantio- and diastereoselectivity could be obtained by increasing the steric congestion in the β-position of phenyl ring [Scheme 1.12, $\mathbf{3 5 n} \mathbf{- p} \rightarrow(S)-\mathbf{3 6 n} \mathbf{- p}] .{ }^{[19]}$ Several follow-up transformations by using hydrosilylation product $(S)-36 a$ as starting material were conducted to demonstrate the utility of their method (not shown).

Selected examples

Scheme 1.12: Palladium-catalyzed enantio- and diastereoselective hydrosilylation.
1.2.2.2 Silylboronic esters. Contrary to little progress about hydrosilylation of α, β unsaturated carbonyl compounds and their derivatives, asymmetric 1,4-addition reaction by using silylboronic esters as silicon source has been researched deeply and significantly advanced. Various catalytic systems have been reported, respectively. This part is arranged according to the α, β-unsaturated acceptors used in the research.

In 2011, IBRAHEM, CÓRDOVA and co-workers disclosed an enantioselective silyl transfer to α, β-unsaturated aldehydes, providing a mild and efficient method for chiral β-silyl aldehydes in good yields with high enantioselectivity (up to 94% ee) [Scheme 1.13, (E)-37a- $\mathbf{-} \rightarrow \mathbf{3 9 a}$ g]. ${ }^{[20]}$ This new approach proceeded through combination of amine-mediated iminium activation and copper-aided nucleophilic activation of silylboronic esters. Exclusive 1,4selectivity took place in the reaction. Control experiments showed that KOtBu and 4 $\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H}$ are critical (no KOtBu $\rightarrow 45 \%$ yield, 80% ee; no $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CO}_{2} \mathrm{H} \rightarrow 55 \%$ yield, 25% ee). Functional group tolerance was good under their setup. Another C-C double bond as in (R)-39f was intact after the reaction. β-Methyl-substituted aldehyde (E)-37g proved to be reactive, making this method suitable for the preparation of silanes with a quaternary stereocenter. α, β-Unsaturated esters were tried under their optimal conditions, yet no desired product was detected. Further derivatizations of β-silylation products were conducted to illustrate the utility of this method (not shown).
$\mathrm{CuCl}(10 \mathrm{~mol} \%)$
KOtBu ($5.0 \mathrm{~mol} \%$)
(S)-38 ($25 \mathrm{~mol} \%$)

Selected examples

(S)-39a: 90\% ee 78% yield

(S)-39b: 94% ee 70\% yield

(R)-39c: 80% ee 80\% yield

(R)-39d: 72\% ee 78\% yield

(R)-39e: 80% ee 65\% yield

(R)-39f: 88% ee 65% yield

(S)-39g: 76\% ee 67% yield

Scheme 1.13: Asymmetric silyl transfer to α, β-unsaturated aldehydes.

To shed light on the reaction mechanism, density functional theory (DFT) calculations were performed on the silylation step, and a plausible reaction pathway was proposed (Scheme 1.14). Activation of α, β-unsaturated aldehydes 37 with chiral amine (S) -38 forms the intermediate VII, which was confirmed through ${ }^{1} \mathrm{H}$ NMR and HRMS analysis. Intermediate VII first coordinates to [Cu]-Si species III, which originates from the reaction between copper salt, base and silylboronic esters, and then $\mathrm{Cu}-\mathrm{Si}$ species III adds caross the $\mathrm{C}-\mathrm{C}$ double bond to generate a [Cu]-C species IX through transition state VIII. Hydrolysis of intermediate IX liberates the silylation product 39, regenerating chiral amine (S)-38 and [Cu]-O complex I.

Scheme 1.14: A possible mechanistic scenario for asymmetric silyl transfer to α, β-unsaturated aldehydes (counteranion is undefined and omitted for clarity).
α, β-Unsaturated ketones and esters have been identified as suitable substrates in the asymmetric conjugate silyl transfer by HOVEYDA and co-workers, KOBAYASH and co-workers, OESTREICH and co-workers, PROCTER and co-workers, and XU and co-workers, independently. In 2006 and 2009, OESTREICH group demonstrated their application of Rh/BINAP catalysis in the enantioselective conjugate addition of silylboronic esters to cyclic α, β-unsaturated ketones and esters [Scheme 1.15, 40a-d $\rightarrow(S)$-41a-d and 42a-c \rightarrow 43ac]. ${ }^{[21]}$ Seven substrates were tried under the optimal conditions, delivering the corresponding products in synthetically useful yields with excellent enantioinduction (more than 90\% ee). Assessment of bases in the reaction of 40 b revealed that $\mathrm{K}_{3} \mathrm{PO}_{4}$ (98% ee, 71% yield) was superior to 2,2,6,6-tetramethylpiperidine (TMP, 96% ee, 75% yield), morpholine (trace), KOH (59\% ee, 68% yield) and $\mathrm{Et}_{3} \mathrm{~N}$ (97% ee, 70% yield).

[^2][((S)-BINAP)Rh(cod)] ${ }^{+} \mathrm{ClO}_{4}^{-}$
($5.0 \mathrm{~mol} \%$)
(S)-L13 (5.0 mol\%)

40/42
41/43

(S)-L13 [(S)-BINAP]

(S)-41b: 97\% ee 70\% yield

(S)-41c: 96% ee 45\% yield

(S)-41d: 92\% ee 22\% yield

(R)-43a: >99\% ee 39% yield

(S)-43b: 96% ee 58\% yield

(R)-43c: 98% ee 9\% yield

Scheme 1.15: Asymmetric conjugate silyl transfer to cyclic α, β-unsaturated acceptors.

In their following research, they expanded the substrate scope to acyclic α, β-unsaturated esters [Scheme 1.16, (Z)-44a-c \rightarrow 45a-c and (Z)-46a \rightarrow 47a]. ${ }^{[22,21 b]}$ Changing substituents in the β-position from an aryl group as in (Z)-44a, to an alkyl group as in (Z)-44b had a negligible influence on enantioinduction. Activated α, β-unsaturated amide (Z)-46a reacted well, providing the enantioenriched silane (S)-47a in 60% yield with more than 99% ee. Compared to E-configured esters, Z-configured ones worked more efficiently with regard to yield and enantioselection (Scheme 1.16, bottom). (E)-44c was subjected to their optimal setup, and 44% yield of desired product (S)-45c was obtained with low ee value (22% ee), along with the formation of the reduction product 48 c in 42% yield. Further investigation verified that protodesilylation of $(S)-45 c$ occurred under their reaction conditions, arriving at the reduction product 48c. Surprisingly, 45c achieved from either (Z)- and (E)-configured 44c has the same configuration, which indicated different transition states in the reaction. Utility of this asymmetric conjugate silyl transfer strategy was demonstrated in the synthesis of the C7-C16 fragment of (+)-neopeltolide ${ }^{[23]}$ and the C17-C25 fragment of dermostain $\mathrm{A}^{[24]}$ (not shown).
[22] C. Walter, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 3818-3820; Angew. Chem. 2008, 120, 3878-3880.
[23] E. Hartmann, M. Oestreich, Angew. Chem. Int. Ed. 2010, 49, 6195-6198; Angew. Chem. 2010, 122, 6331-6334.
[24] E. Hartmann, M. Oestreich, Org. Lett. 2012, 14, 2406-2409.

Scheme 1.16: Asymmetric conjugate silyl transfer to acyclic α, β-unsaturated esters. [a] reaction was carried out at $45^{\circ} \mathrm{C}$.

A tentative mechanism was proposed (Scheme 1.17). The catalytic cycle starts with the activation of silylboronic ester. [Rh]-OH complex \mathbf{X}, which comes from the reaction between $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{OTf},(R)-\mathrm{L13}, \mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{H}_{2} \mathrm{O}$, reacts with silylboronic ester 12 to form a nucleophilic [Rh]-SiR 3_{3} species XII and HOBpin (49) in a concerted way ($\mathbf{X} \rightarrow \mathbf{X I} \rightarrow \mathbf{X I I}$). 1,4-selective addition of $[\mathrm{Rh}]-\mathrm{SiR}_{3}$ species $\mathbf{X I I}$ to α, β-unsaturated esters forms Rh enolate XIII. Its hydrolysis liberates the silylation product and regenerates catalyst [Rh]-OH complex X, which starts a new catalytic cycle.

Scheme 1.17: A tentative mechanistic cycle.

In 2021, ZHANG and OESTREICH reported their research about diastereotopic group-selective intramolecular aldol reactions through a 1,4-addition-cyclization domino process [Scheme 1.18, (E)-50 \rightarrow cis-51 and (E)-50 \rightarrow ent-trans-51]. ${ }^{[25]}$ Four continuous stereocenters were formed in this new procedure with excellent diastereo- and enantioselectivity. The use of silicon nucleophile had a significant influence in the diastereoselectivity of the intramolecular aldol reaction. Silylboronic esters preferred cis-selectivity while organozinc reagents led to trans-selectivity. Distinguished selectivity arised from cis-trans isomerization through a retro-aldol-aldol process in the transformation, which was mediated by the more basic organozinc reagents (Scheme 1.18, cis-51 \rightarrow trans-51). Reaction of cis-51 under the standard conditions with organozinc reagents 52 afforded trans- 51 with hardly any erosion of diastereo- and enantioselection. Large-scale reaction of (E)-50 was conducted with silylboronic ester 12, providing the desired product ent-trans-51 in 43% yield with a slight decrease in stereocontrol (d.r. = 97:3, 92\% ee). Subsequent transformations of 51 by TAMAO-FLEMING oxidation and dehydration were conducted to further highlight the synthetic utility of this method (not shown).

Scheme 1.18: Diastereotopic group-selective intramolecular aldol reactions.

Aside from ketones as electron-withdrawing groups in the substrate, an ester as in (E)-53, a thioester as in (E) - 54 , an amide as in (E) - 55 and heterocycles, such as a benzoxazole as in $(E)-56$ and a benzothiazole as in (E)-57 were compatible in this reaction by using silylboronic ester 12 as the silicon source (Scheme 1.19). Subtle modification of reaction conditions was necessary to achieve good results. Excellent levels of diastereo- and enantioselectivity were achieved throughout, although yields were only moderate. Quinoline-derived acceptor (E)-58 was not efficient under the reaction conditions, only resulting in trace amounts of product ent-cis-64.

ent-cis-59:
d.r. $>98: 2,99 \%$ ee 46 yield

ent-cis-62:
d.r. $=88: 12,99 \%$ ee 60% yield $^{[a]}$

ent-cis-60: d.r. $>98: 2,95 \%$ ee 41% yield

ent-cis-63:
d.r. > 98:2, 89\% ee 64% yield $^{[a]}$

ent-cis-61: d.r. > 98:2, 99\% ee 56% yield

ent-cis-64: trace ${ }^{[a]}$

Scheme 1.19: Different electron-withdrawing groups (EWG). 2-MeTHF = 2-methyltetrahydrofuran. [a] CuCl was used instead of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ and THF was used instead of 2-MeTHF.

The Hoveyda group, PRocter group and Xu group independently investigated the use of chiral Cu/NHC (N-heterocyclic carbene) complexs in asymmetric 1,4-addition reactions by using silylboronic esters as the silicon source. In 2010, a general and efficient approach to make chiral silanes through enantioselective addition of silylboronic esters to α, β-unsaturated acceptors was reported by HOVEYDA and co-workers [Scheme 1.20, 40a-g \rightarrow 41a-g, 42b \rightarrow 43b, (E)-44d $\rightarrow(R)-45 \mathbf{d}$, and $(E)-65 \mathbf{a}-\mathbf{b} \rightarrow \mathbf{6 6 a} \mathbf{- b}] .{ }^{[26]}$ High levels of enantioselection were achieved by using CuCl/NHC catalysis. This procedure is applicable to both cyclic and acyclic α, β-unsaturated ketones and esters, delivering the enantioenriched silanes in excellent yields. Acrylonitrile (E)-67 was compatible under their optimal setup, giving the desired product (R)-68 in 95% yield with 80% ee. Exogenous proton sources were not required to close the catalytic cycle in this transformation because of the formation of boron enolate XV, which would convert into the target products through work-up with water.

Scheme 1.20: Asymmetric conjugate addition of silylboronic ester 12 to cyclic and acyclic $\alpha, \beta-$ unsaturated acceptors. [a] 2.0 mol\% CuCl was used with $2.2 \mathrm{~mol} \%(S, S)$-L15 and 4.4 mol\% NaOtBu.

As part of their work, a one-pot two-step procedure was developed to construct chiral polysubstituted cyclic silanes. Boron enolate XV, obtained during their reaction (cf. Scheme 1.20), was used as linchpin for further $\mathrm{C}-\mathrm{C}$ bond formation. Cyclic α, β-unsaturated ketone 40b could be easily converted to chiral ketoester $(S, S)-69 b$, which had been used as an intermediate in the preparation of (+)-erysotramidine (Scheme 1.21, top). ${ }^{[27]} 92 \%$ yield of (S, S)-69b was obtained as a single diastereomer with 95% ee. By adding benzaldehyde directly after the asymmetric 1,4-addition reaction of 40a and 40c, three consecutive chiral carbon centers were formed with moderate diastereocontrol (Scheme 1.21, bottom).
[27] L. F. Tietze, N. Tölle, D. Kratzert, D. Stalke, Org. Lett. 2009, 11, 5230-5233.

Scheme 1.21: One-pot two-step procedures for chiral polysubstituted cyclic silanes.

In 2012, their method was successfully expanded to dienones and dienoates as substrates [Scheme 1.22, (E, E)-71a $\rightarrow(R, E)-72 a,(E, E)-73 a \rightarrow(R, E)-74 a$, and $(E, E)-75 a-\mathbf{c} \rightarrow(R, E)-$ 76a-c]. ${ }^{[28]}$ Excellent regio- and enantioselectivity were observed in this efficient method. Five substrates were subjected to their optimized reaction conditions, delivering the target allylic silanes in high isolated yields and with excellent diastereo- and enantioselection (all ee values $>90 \%$).

Scheme 1.22: Asymmetric 1,4-addition to dienones and dienoates.

To fill the gaps of this strategy, asymmetric conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to 5membered lactones by using $\mathrm{Cu} / \mathrm{NHC}$ catalysis has been accomplished by PROCTER and co-
workers [Scheme 1.23, 42a $\rightarrow(R)-43 a]{ }^{[29]} 79 \%$ yield of the desired product was achieved with a high level of enantioselectivity. To further expand the toolbox for this area, They combined asymmetric conjugate addition with kinetic resolution, providing a new avenue to optically pure polysubstituted lactones (Scheme $1.23, \mathbf{4 2 d} \mathbf{- g} \rightarrow \mathbf{4 3 d} \mathbf{- g}$). ${ }^{[29 b]}$ The utility of this method was elaborated by converting chiral $(R, S)-43 \mathrm{~d}$ into the natural product (+)blastmycinone (not shown).

Scheme 1.23: Enantioselective addition of silylboronic esters to 5-membered lactones.

Another significant advance in the NHC-catalyzed asymmetric silyl transfer to cyclic and acyclic α, β-unsaturated carbonyl compounds has been made by HoveYDA group in 2011 (Scheme 1.24, $\mathbf{4 0} \rightarrow \mathbf{4 1 , 4 2 \rightarrow 4 3 , (E) - 3 7 a \rightarrow (R) - 3 9 a , (E) - 6 5 \rightarrow (R) - 6 6 \text { and } (E) - 4 4 d \rightarrow (R) - 1 . ~}$ 45d). ${ }^{[30]}$ Direct activation of silylboronic esters was accomplished in the presence of NHC (cf. XVI; note: it was detected by ${ }^{11} \mathrm{~B}$ NMR in the reaction of $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin and an achiral NHC in the presence of DBU and THF- d_{8}). α, β-Unsaturated aldehydes, ketones and esters proved to be efficient substrates under their optimal setup. Mechanistic studies rendered a radical pathway in this reaction unlikely. They also revealed that the solubility of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in $\mathrm{H}_{2} \mathrm{O}$ and THF helped transport a sufficient amount
[29] a) H. Y. Harb, K. D. Collins, J. V. G. Altur, S. Bowker, L. Campbell, D. J. Procter, Org. Lett. 2010, 12, 5446-5449; b) V. Pace, J. P. Rae, H. Y. Harb, D. J. Procter, Chem. Commun. 2013, 49, 5150-5152.
[30] a) J. M. O’Brien, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 7712-7715; b) H. Wu, J. M. Garcia, F. Haeffner, S. Radomkit, A. R. Zhugralin, A. H. Hoveyda, J. Am. Chem. Soc. 2015, 137, 10585-10602.
of hydroxide ions from $\mathrm{H}_{2} \mathrm{O}$ to THF in the form of $\mathrm{HDBU}^{+} \cdot-\mathrm{OH}$, which would transform the Bpin group of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}(12)$ into the $\mathrm{B}(\mathrm{OH})_{2}$ unit. This newly formed silylboronic acid is more reactive and leads to the formation of NHC-silylboronic acid complex efficiently (cf. XVI). Appropriate concentration of hydroxide ions in THF was pivotal, because too high concentration would result in decomposition of catalyst and silylboronic acid.
(S,S)-L16 (5.0 mol\%)

(S)-41a: 80% ee $>98 \%$ yield

(S)-41b: 96% ee 97\% yield

(S)-41c: 96% ee 95\% yield

(S)-41d: >96\% ee 74% yield

(R)-41e: 90% ee 73% yield

(S)-41g: 80% ee 50\% yield

(S)-43b: 70% ee 71% yield

Selected examples

Scheme 1.24: NHC-catalyzed asymmetric silyl transfer to α, β-unsaturated carbonyl compounds. [a] $12.5 \mathrm{~mol} \%(S, S)$-L16 and $37.5 \mathrm{~mol} \%$ DBU were used in the reaction. Mes = mesityl; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene.

In 2018, XU and co-workers reported their protocol about asymmetric 1,4-addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to 3 -acylindoles by using CuCl as catalyst and NHC (S,R)-L18 as ligand [Scheme 1.25, 77a-g $\rightarrow(R, R)-78 \mathbf{a - g}] .{ }^{[31]}$ Dearomatization of indoles was accomplished with good enantioselectivities (more than 85% ee). All the target products were produced as a single diastereomer in a trans manner. Halo groups as in (R, R)-78c-f and a cyano group as in $(R, R)-\mathbf{7 8 g}$ were compatible under their reaction conditions. Monitoring the reaction process of 77a by ${ }^{1} \mathrm{H}$ NMR verified the epimerization from cis-78a to trans-78a. Further trans-
formations of $(R, R)-78$ a have been conducted to illustrate the potential of this efficient method (not shown).

Scheme 1.25: Asymmetric dearomatization of 3-acylindoles. [a] THF was used instead of $\mathrm{CH}_{3} \mathrm{CN}$.

In some cases of asymmetric silyl transfer reactions, a solvent mixture of water and organic solvent was indispensable for high efficacy. However, only water as solvent was still elusive. In 2015. KOBAYASHI and co-workers developed a new catalyst from $\mathrm{Cu}(\mathrm{acac})_{2}$ and chiral bipyridine ligand (S,S)-L19 (Scheme 1.26) and successfully applied it in the asymmetric conjugate addition of silylboronic ester 12 to MICHAEL acceptors. ${ }^{[32]}$ This new catalyst was compatible with a wide range of α, β-unsaturated acceptors such as ketones (E)-65d, (E)-65e and $(E)-75 a$, and an ester (E)-44d, and an amide $(E)-46 a$. Alkenes with electron-withdrawing groups such as a cyano group as in (E)-67 and a nitro group as in $(E)-79$ proved to be reactive, providing the target products in good yields with high to excellent enantiomeric excesses. Gram-scale synthesis of (R)-66d was done in a little lower yield (90\%) with the same level of enantioinduction. Addition of THF into the reaction dramatically lowered the enantio-selectivity, however, with slight erosion of yield. Moreover, the catalyst could be easily recycled after the reaction, however, slightly less efficient than original ones with regard to both yield and ee value. Water worked as proton source here and was believed to play an important role in the sterically congested transition states.
[32] T. Kitanosono, L. Zhu, C. Liu, P. Xu, S. Kobayashi, J. Am. Chem. Soc. 2015, 137, 1542215425.

Scheme 1.26: Asymmetric silyl transfer. [a] Triton X-100 (25 mg) was added; [b] Me $2 \mathrm{PhSi}-\mathrm{Bpin}$ (11, 1.5 equiv) was used.
α, β-Unsaturated amide 44a has been illustrated as an efficient substrate for asymmetric 1,4addition reaction by using silylboronic esters as silicon source (cf. Schemes 1.16, 1.19 and 1.26). A modular method for the synthesis of chiral β-silyl amides was disclosed by PROCTER and co-workers in 2013 [Scheme 1.27, $81 \rightarrow(R)-82$ and $83 \rightarrow(R)-84] .{ }^{[33]}$ Lactams and acyclic amides were compatible under their reaction conditions. The optimal setup consisted of $5.0 \mathrm{~mol} \%$ Cul, $5.0 \mathrm{~mol} \% \mathrm{NHC}$ ligand (S,S)-L17, $11 \mathrm{~mol} \% \mathrm{NaOtBu}$ and $4 \AA$ MS in 2MeTHF. Good yields and enantioselectivities of up to $>98 \%$ ee were observed throughout. The potential of their methods was elaborated by synthesis of (R)-oxiracetam, a drug derived from (R)-82 (not shown).

Selected examples
Cul ($5.0 \mathrm{~mol} \%$)
(S,S)-L17 (5.0 mol\%)

(R)-82: 92\% ee 90\% yield

Scheme 1.27: Asymmetric silyl transfer from Me $\mathrm{M}_{2} \mathrm{PhSi}$-Bpin (12) to lactams and amides. Ts $=$ tosyl.

In 2018, Xu , LOH and co-workers developed a general and efficient route for the enantioselective addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to α, β-unsaturated imines [Scheme 1.28, (E)-85a-e \rightarrow 86a-e]. ${ }^{[34]}$ Good diastereo- and enantiocontrol were obtained by using $\mathrm{Cu}(\mathrm{CHB})_{2}$ as catalyst and PyBOX (S, S)-L20 as ligand. (E)-Configured chiral allylic silanes were obtained as the main product in this enantioselective transformation. Heterocycles, such as a thienyl group as in $(E)-85 \mathrm{c}$ and a furyl group as in $(E)-85 \mathrm{~d}$, were tolerated, providing the target 1,4addition products in good to excellent yields with good diastereo- and enantioselectivities. Transformations of 86a were performed to demonstrate the synthetic values (not shown).
$\mathrm{Cu}(\mathrm{CHB})_{2}(5.0 \mathrm{~mol} \%)$
(S,S)-L20 (20 mol\%)

(E)-85
Selected examples

(R)-86a: $E / Z=95: 5$

90\% ee, 90% yield

$(R)-86 \mathrm{c}: E / Z=92: 8$ 84\% ee, 73\% yield

(R)-86b: $E / Z=98: 2$
88% ee, 57% yield

(R)-86d: $E / Z=97: 3$
78% ee, 95% yield

(R)-86e: $E / Z>99: 1$ 88\% ee, 77\% yield

Scheme 1.28: Enantioselective 1,4-hydrosilylation of α, β-unsaturated imines. $\mathrm{Cu}(\mathrm{CHB})_{2}=\operatorname{copper}(\mathrm{II})$ bis(4-cyclohexylbutyrate)

Shortly after our publication about asymmetric silyl transfer from silicon GRIGNARD reagents to heterocycle-substituted alkenes, ${ }^{[35]} \mathrm{CHU}$, LIU and co-workers reported a Cu-catalyzed highly enantioselective conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to quinoline-substituted alkenes [Scheme 1.29, (E)-87a and $\mathbf{b} \rightarrow(S)$-88a and $\mathbf{b}] .{ }^{[36]}$ Excellent enantioinduction was achieved by using $\left(\mathrm{CH}_{3} \mathrm{CN}_{4} \mathrm{CuPF}_{6}\right.$ as precatalyst and chiral phosphoramidite (R)-L21 as ligand. All reactions proceeded at room temperature, and a wide range of functional groups were compatible. High yields with excellent enantiomeric ratios of up to 95% ee were
[34] B.-C. Da, Q.-J. Liang, Y.-C. Luo, T. Ahmad, Y.-H. Xu, T.-P. Loh, ACS Catal. 2018, 8, 62396245.
[35] W. Mao, W. Xue, E. Irran, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 10723-10726; Angew. Chem. 2019, 131, 10833-10836.
[36] Y.-L. Zeng, B. Chen, Y.-T. Wang, C.-Y. He, Z.-Y. Mu, J.-Y. Du, L. He, W.-D. Chu, Q.-Z. Liu, Chem. Commun. 2020, 56, 1693-1696.
observed with β-aryl-substituted quinolines. Diene-attached quinoline $(E)-93$ exclusively afforded the 1,4-addition product (S,E)-94 in 76\% yield with 85% ee. Benzoxazole (E)-89a and benzothiazole (E)-91 proved to be reactive, leading to the corresponding products in good yields with excellent enantioselection. Gram-scale reaction of $(E)-87 \mathrm{~b}$ was performed with almost same efficiency, highlighting the practicality of this method. Oxidative degradation of chiral silane (S)-88b was done through TAMAO-FLEMING procedure to afford the target chiral alcohol with the same enantioselectivity, further demonstrating the synthetical utility of this methods (not shown).

(S)-88a: 93% ee 86% yield

(S)-90a: 85% ee 81\% yield

(S)-88b: 94% ee
$(S)-88 b: 94 \%$
95% yield

(S)-92: 90% ee 89\% yield

(R)-L21

(S,E)-94: 85\% ee 76% yield

Scheme 1.29: Enantioselective conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) to azaaryl-substituted alkenes.

A possible mechanism was proposed (Scheme 1.30). Transmetalation between copper alkoxide I and $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) generates a nucleophilic [Cu]-Si species III in a concerted manner. Heterocycle-substituted alkene coordinates to $\mathrm{Cu}-\mathrm{Si}$ species III to form a π-complex XVII and then the $\mathrm{Cu}-\mathrm{Si}$ species III adds to alkene in 1,4 -selectivity, forming the intermediate XVIII. Protonation of the intermediate XVIII liberates the desired chiral silanes, along with the formation of copper alkoxide I.

Scheme 1.30: Catalytic cycle of enantioselective conjugate addition to azaaryl-substituted alkenes.

Asymmetric 1,4-addition of $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) to α, β-unsaturated sulfones was investigated by YIN group [Scheme 1.31, (E)-95a-j \rightarrow 96a-j]. ${ }^{[37]}$ The newly developed NHC-CuCl complex $[(R, R)-\mathrm{L22}-\mathrm{CuCl}]$ showed high reactivity in this reaction. α, β-Unsaturated sulfones bearing an alkyl or an aryl group in the β-position were reactive, giving the corresponding silylation products efficiently. Excellent yields with high levels of stereocontrol of up to 96% ee were observed throughout. Their methods displayed a high level of tolerance towards another $\mathrm{C}-\mathrm{C}$ unsaturated bond as in (E)-95b and (E)-95c, halo groups as in (E)-95d and (E)95e, a thioether as in (E)-95f and heterocycles as in $(E)-95 \mathbf{i}$ and $(E)-95 \mathbf{j}$. Subsequent derivatization of chiral products through JULIA-KOCIENSKI olefination provided a new and general avenue to access chiral allylic silanes (not shown)

Selected examples
(S)-96a ($\mathrm{R}=\mathrm{Me}$): 92% ee, 96% yield

(R)-96g: 93% ee 98% yield $^{[a]}$

(R)-96h: 92% ee 92% yield $^{[a]}$

(R)-96i: 85\% ee 73% yield $^{[a]}$

(R)-96j: 86% ee 82% yield $^{[a]}$

Scheme 1.31: Enantioselective silyl transfer from $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) to α, β-unsaturated sulfones. TBME $=$ tert-butyl methyl ether. [a] NaOMe (1.0 equiv) was used instead of NaOEt .

1.3 Asymmetric 1,6-Addition Reaction

Dienones and Dienoates. Asymmetric 1,6-addition of silylboronic esters to dienones and dienoates concentrated on β-occupied substrates. As part of the aforementioned work (cf. Schemes 1.22 and 1.26), HoVEYDA group and KOBAYASH group reported the application of their asymmetric catalysis in this field independently. Successful application of Cu-NHC catalysis has been done to cyclic and acyclic dienones and dienoates by HOVEYDA and coworkers (Scheme 1.32). ${ }^{[26,28]}$ Chiral allylic silanes were obtained with high diastereo- and enantioselectivity. Reactions of cyclic substrates were finished within 2 hours with comparatively lower loadings of catalyst (97a-c $\rightarrow \mathbf{9 8 a} \mathbf{- c}$). Prolonging reaction time was necessary for acyclic compounds, especially for dienoates $(99 \rightarrow 100,101 \rightarrow 102,103 \rightarrow$ 104).

Selected examples

(R)-102: ZIE > 98:2
$>98 \%$ ee, 73% yield

(R)-104: ZIE > 98:2
98\% ee, 69\% yield

Scheme 1.32: Asymmetric silyl transfer to dienones and dienoates. [a] Reaction was carried out at $78^{\circ} \mathrm{C}$ for 6 h .

Distinct products were obtained when $\mathrm{Cu}(\mathrm{acac})_{2}-(S, S)-\mathrm{L} 19$ catalysis from KOBAYASHI group was used to catalyze the reaction of $97 \mathbf{a}$ and $97 \mathbf{b}$ (Scheme 1.33). ${ }^{[32]}$ A single diastereomer was obtained exclusively under the optimal reaction conditions. Monitoring the reaction of 97b by ${ }^{1} \mathrm{H}$ NMR corroborated that kinetically favored 98 b occurred during the reaction and then entirely converted into 105b.

Scheme 1.33: Enantioselective 1,6-addition to cyclic dienones.

Enynoates. In 2015, Xu, LOH and co-workers disclosed their results concerning the formation of enantioenriched allenylsilanes through asymmetric 1,6-addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to enynoates [Scheme 1.34, (Z)-106a-d \rightarrow 107a-d]. ${ }^{[38]}$ This 1,6 -silyl transfer procedure was general and efficient. CuTC, combined with BOX ligand L25, contributed to excellent enantioinduction in the reaction (mostly $>90 \% e e$). Configuration of $\mathrm{C}-\mathrm{C}$ double bond in the enynoate was crucial to the high efficiency in the reaction in terms of yields and enantioselectivities. (E)-Configured 106a only afforded the 1,6-addition product (R)-107a in 17% yield with 63% ee. Increased sterically congestion in the β-position as in (Z)-106b was detrimental to enantioselectivity, leading to a polysubstituted allene with low ee value.

Selected examples

(R)-107a: 92\% ee 80\% yield

(R)-107b: 36% ee 74% yield

(R)-107c: 90\% ee 52\% yield

$(R)-107 \mathrm{~d}: 73 \%$ ee
75% yield ${ }^{[a]}$

(R)-107e: 68\% ee 76% yield

Scheme 1.34: Synthesis of chiral allenylsilanes by asymmetric 1,6-addition reactions. [a] Reaction was set at $-5^{\circ} \mathrm{C}$ for 72 h . CuTC $=\operatorname{copper}(\mathrm{I})$ thiophene-2-carboxylate; $t \mathrm{AmOH}=$ tertamyl alcohol.

1.4 Miscellaneous Methods

Asymmetric consecutive double hydrofunctionalization of alkynes through one-pot procedure has emerged as a thriving research area and received considerable attention from organic chemists. ${ }^{[39]}$ In 2002, HAYASHI and co-workers developed a one-pot procedure for the asym-
[38] M. Wang, Z.-L. Liu, X. Zhang, P.-P. Tian, Y.-H. Xu, T.-P. Loh, J. Am. Chem. Soc. 2015, 137, 14830-14833.
[39] A recent review, see: Z. Cheng, J. Guo, Z. Lu, Chem. Commun. 2020, 56, 2229-2239.
metric double hydrosilylation of aromatic alkynes [Scheme 1.35, 108a-e $\rightarrow(R)$-109a-e and 109a-e $\rightarrow(R)-110 a-\mathbf{e}] .{ }^{[40]}$ Excellent levels of enantioselection were observed throughout with good to excellent yields. Low loadings of catalysts were used in the reaction. Aliphatic alkynes were not suitable under their reaction conditions because of low transformation in the asymmetric hydrosilylation step.

Scheme 1.35: Asymmetric double hydrosilylation of alkynes in one-pot procedure. [a] [PdCl($\left.\left.\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ ($0.60 \mathrm{~mol} \%$) and (R)-L26 (1.2 mol\%) were used

Stereogenic sites switched when two same hydrosilanes were used as silicon source in the work of LU group about the asymmetric double hydrosilylation of aliphatic alkynes (Scheme $1.36,111 \rightarrow \mathbf{1 1 2) .}{ }^{[99]}$ This one-pot two-step procedure was developed by using $\mathrm{Co}(\mathrm{OAc})_{2}$ and $(S)-\mathrm{L} 27-\mathrm{CoCl}_{2}$ as catalysts. Yields were high for three substrates with excellent regio- and enantioselection. Enantiomers could be easily obtained by switching the addition sequence of hydrosilanes [111a $\rightarrow(R)$-112a and (S)-112a]

[40] T. Shimada, K. Mukaide, A. Shinohara, J. W. Han, T. Hayashi, J. Am. Chem. Soc. 2002, 124, 1584-1585

Scheme 1.36: Asymmetric double hydrosilylation of alkynes in one-pot procedure. DPEphos = Bis[(2diphenylphosphino)phenyl] ether.

Then different hydrosilanes were applied in the asymmetric double hydrosilylation of alkynes through tandem reaction by the same group shortly thereafter [Scheme 1.37, 111d $\rightarrow(R)$ 113d] ${ }^{[41]}$ All the starting materials were added sequentially at the beginning of the reaction. They found the addition sequence of reagents used in the reaction was crucial to the high efficacy of this approach. Chemo-, regio- and enantioselectivity are significant challenges. Generality of this method was demonstrated by 29 examples in yields varying from 25% to 85%, with excellent levels of enantioselection of more than 90% ee. Gram-scale synthesis was facilitated through subtle modification of catalyst loadings. A plausible mechanism was provided on the basis of control experiments and DFT calculations. Catalytic cycle (A) starts from the formation of [Co]-H species XIX from $\mathrm{CoBr}_{2} \cdot$ Xantphos and NaBHEt_{3}. Alkyne 106 coordinates to [Co]-H XIX, and then [Co]-H XIX adds across C三C triple bond to form a [Co]$\mathrm{C}\left(\mathrm{sp}^{2}\right)$ species $\mathbf{X X}$. Ligand displacement between [Co]-C(sp ${ }^{2}$) species XX and hydrosilane 4d through σ-bond metathesis generates intermediate (E)-114, along with the formation of [Co]-H species XIX. Asymmetric addition of chiral [Co]*-Si species XXI, which originates from (S)- $\mathrm{L} 28-\mathrm{CoBr}_{2}, \mathrm{NaBHEt}_{3}$ and $\mathrm{H}_{3} \mathrm{SiPh}$ (4b), to alkenylsilane (E)-114 affords a [Co]*$\mathrm{C}\left(\mathrm{sp}^{3}\right)$ species XXII. Ligand exchange between [Co]*-C(sp $\left.{ }^{3}\right)$ species XXII and $\mathrm{H}_{3} \mathrm{SiPh}$ (4b) through σ-bond metathesis liberates the target product $(R)-113$ and regenerates chiral [Co]*Si species XXI.

[^3]

(S) $-\mathrm{L28}-\mathrm{CoBr}_{2}$ NaBHEt_{3}

Scheme 1.37: Asymmetric double hydrosilylation of alkynes by tandem reaction. Xantphos $=(9,9-$ Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)

Consecutive asymmetric double hydrosilylation of enynes has been reported by $\mathrm{XU}, \mathrm{LOH}$ and co-workers in 2018. ${ }^{[42]}$ Optically pure 1,3-bis(silyl)propene compounds were obtained through asymmetric conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to enyne-type acceptors by using $\mathrm{Cu}(\mathrm{OTf})_{2}$ as precatalyst and chiral oxazoline (S, R)-L29 as ligand [Scheme 1.38, (E)-115 \rightarrow $(E)-116]$. Methanol worked as solvent and proton source. This new procedure featured high yields, high regio- and enantioselectivity and good functional group compatibility. Exclusive E-configured $\mathrm{C}-\mathrm{C}$ double bond formation emerged during the transformation. This procedure was compatible with gram-scale synthesis. 1.12 g of enyne (E)-115a reacted under the optimal reaction conditions, providing the target stereodefined product (R, E)-116a in 95% yield with 90% ee
$\mathrm{Cu}(\mathrm{OTf})_{2}(5.0 \mathrm{~mol} \%)$
(S,R)-L29 (11 mol\%)
DIPEA (2.0 equiv)

(E)-115
(E)-116

Selected examples

(R, E)-116a: 91\% ee 90\% yield

(R, E)-116b: 92\% ee 93\% yield

(R, E)-116c: 95% ee 88\% yield

(R, E)-116d: 74\% ee 90\% yield

65% yield

Scheme 1.38: Asymmetric consecutive double hydrosilylation of enynes. $\mathrm{Cu}(\mathrm{OTf})_{2}=\operatorname{copper}(\mathrm{II})$ triflate; DIPEA = N,N-diisopropylethylamine.

In 2019, ZHU and co-workers demonstrated their research about $\mathrm{Si}-\mathrm{H}$ bond insertion reactions of alkynes [Scheme $1.39,117 \rightarrow(S)-118] .{ }^{[43]}$ High efficiency with regard to both yield and enantioselection was obtained by using chiral Rh catalyst. Functional group compatibility is good. Halo groups such as fluoro and chloro, trifluormethyl group, acetal group, thienyl group and another $\mathrm{C}-\mathrm{C}$ double bond were tolerated, affording the corresponding products in good to excellent yields with high enantioselectivities, up to 97% ee (not shown). A possible mechanistic scenario is depicted in Scheme 1.39 (bottom). Enyne 117 coordinates to Rh catalyst XXIII, and then 5-exo-dig cyclization forms a carbene intermediate (XXIV $\boldsymbol{\rightarrow} \mathbf{X X V} \rightarrow$ $\mathbf{X X V I}$). Insertion of the carbene intermediate XXVI into $\mathrm{HSiMe}_{2} \mathrm{Ph}(\mathbf{4 e})$ generates the desired product $(S)-118$ and Rh catalyst XXIII. This step proved to be the rate-determining step by kinetic isotopic studies.
A selected example

Scheme 1.39: Asymmetric 1,1-hydrosilylation of carbene precursors. DCE = 1,2-dichloroethane.

1.5 Objective

Details involving asymmetric 1,4-addition of silicon nucleophiles to α, β-unsaturated carbonyl compounds and their derivatives have been demonstrated in Chapter 1.2.2 and significant progress has been made in the past decades. ${ }^{[6]} \mathrm{Si}-\mathrm{B}$ reagents are prevalent in this field, generating nucleophilic $\mathrm{M}-\mathrm{Si}$ species ($\mathrm{M}=$ metal) through transmetalation in a σ-bond metathesis manner. Although great achievements have been made in this area, limitations still exist. Direct applications of silicon nucleophiles such as $\mathrm{Si}-\mathrm{Zn}$ reagents and $\mathrm{Si}-\mathrm{Mg}$ reagents in asymmetric conjugate reactions are elusive because of their higher reactivity. ${ }^{[25]}$ Moreover, methods for special MICHAEL acceptors such as enyne-type acceptors, ${ }^{[38]} \alpha, \beta$ unsaturated sulfonyl compounds ${ }^{[37]}$ and α, β-unsaturated phosphine oxides are less reported. Thus, further research about 1,4-asymmetric addition reactions is highly desired for the development of organosilicon chemistry.

This dissertation reports our research about asymmetric conjugate 1,4-silyl transfer reactions (Scheme 1.40). Chapter 2 demonstrates an asymmetric addition of $\mathrm{Si}-\mathrm{Mg}$ reagents to
heterocycle-substituted alkenes. Silicon GRIGNARD reagents were first successfully applied in an asymmetric transformation, complementing the methods for asymmetric conjugate addition reactions. 1,4-Selective addition of $\mathrm{Si}-\mathrm{B}$ reagents to enyne-type $\alpha, \beta, \gamma, \delta$-unsaturated acceptors is described in Chapter 3, expanding the toolbox for optically pure propargylic silanes. Methods using α, β-unsaturated sulfonyl compounds as MICHAEL acceptors are detailed in Chapter 4. Chapter 5 describes our progress about enantioselective 1,4-addition of $\mathrm{Si}-\mathrm{B}$ reagents to α, β-unsaturated phosphine oxides.

Scheme 1.40: Asymmetric silyl transfer from silicon (pro)nucleophiles to MICHAEL acceptors. Py = pyridyl.

2 Asymmetric Conjugate 1,4-Silyl Transfer to AZAARYL-SUBSTITUTED ALKENES

2.1 Introduction

Asymmetric conjugate addition of nucleophiles to azaaryl-substituted alkenes ${ }^{[44]}$ has been researched for years. Starting from LAM's seminal work about asymmetric hydrogenation of in 2009, ${ }^{[45]}$ successful applications of various nucleophiles in this area have been reported (Scheme 2.1). Carbon nucleophiles from arylboronic acids, ${ }^{[46]}$ arylboronic esters, ${ }^{[47]}$ and GRIGNARD reagents, ${ }^{[48]}$ boron nucleophiles from $\mathrm{B}_{2} \mathrm{Pin}_{2},{ }^{[49]}$ nitrogen nucleophiles from pyrazoles, ${ }^{[50]}$ silicon nucleophiles from $\mathrm{Si}-\mathrm{B}$ reagents ${ }^{[36]}$ and sulfur nucleophiles from thiols ${ }^{[51]}$ proved to be efficient by using azaaryl-substituted alkenes as acceptors. Inspired by these innovative works, we planned to investigate enantioselective addition of silicon Grignard reagents to azaaryl-substituted alkenes. It is noteworthy that the project using $\mathrm{Si}-\mathrm{B}$ reagents as silicon source had not been known before our publication.

	Nucleophiles		
LAM group $\mathrm{H}_{3} \mathrm{SiPh}$ 2009	LAM group $\mathrm{ArB}(\mathrm{OH})_{2}$ 2010, 2011 and 2014	LAUTENS group ArBpin 2013	HARUTYUNYAN group RMgBr 2016 and 2017
MENG group $\mathrm{B}_{2} \mathrm{pin}_{2}$ 2017	Terada group pyrazoles 2017	$\begin{aligned} & \text { DIXON group } \\ & \text { thiols } \\ & 2016 \end{aligned}$	CHU and LIU group Si-B reagents 2020

Our work

[44] a) M. Lautens, A. Roy, K. Fukuoka, K. Fagnou, B. Martín-Matute, J. Am. Chem. Soc. 2001, 123, 5358-5359; b) R. Amengual, V. Michelet, J.-P. Genêt, Tetrahedron Lett. 2002, 43, 5905-5908.
[45] L. Rupnicki, A. Saxena, H. W. Lam, J. Am. Chem. Soc. 2009, 131, 10386-10387.
[46] a) G. Pattison, G. Piraux, H. W. Lam, J. Am. Chem. Soc. 2010, 132, 14373-14375; b) A. Saxena, H. W. Lam, Chem. Sci. 2011, 2, 2326-2331; c) I. D. Roy, A. R. Burns, G. Pattison, B. Michel, A. J. Parkerc, H. W. Lam, Chem. Commun. 2014, 50, 2865-2868.
[47] A. A. Friedman, J. Panteleev, J. Tsoung, V. Huynh, M. Lautens, Angew. Chem. Int. Ed. 2013, 52, 9755-9758; Angew. Chem. 2013, 125, 9937-9940.
[48] a) R. P. Jumde, F. Lanza, M. J. Veenstra, S. R. Harutyunyan, Science 2016, 352, 433-437; b) R. P. Jumde, F. Lanza, T. Pellegrini, S. R. Harutyunyan, Nat. Commun. 2017, 8, 2058.
[49] L. Wen, Z. Yue, H. Zhang, Q. Chong, F. Meng, Org. Lett. 2017, 19, 6610-6613.
[50] Y.-Y. Wang, K. Kanomata, T. Korenaga, M. Terada, Angew. Chem. Int. Ed. 2016, 55, 927-931; Angew. Chem. 2016, 128, 939-943.
[51] M. Formica, G. Sorin, A. J. M. Farley, J. Díaz, R. S. Paton, D. J. Dixon, Chem. Sci. 2018, 9, 6969-6974.

Scheme 2.1: Asymmetric conjugate addition to azaaryl-substituted alkenes. $\mathrm{Hal}=\mathrm{Cl}$ or Br .

2.2 Racemic Version

2.2.1 Optimization Study

Our research started from racemic transformation by using benzoxazole-substituted alkene (E)-89b as model substrate and $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119) as silicon source (Table 2.1). 73\% yield of desired silylation product rac-90b was obtained when $(E)-89 b$ reacted with $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119) by using CuCl as catalyst and LEWIS acid $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as additive in THF (entry 1). From various copper salts used, CuSCN stood out, affording the target product rac90b in 79% isolated yield (entries 1-8). Other BF_{3}-based LEWIS acids were examined; however, no better results were observed (entries 9-11). A solvent screening identified THF as the optimal choice (entries 12-14). Low reactivity was found without either copper salt or additive (entries 15-16). Reaction of (E)-89b with either of $\mathrm{Me}_{2} \mathrm{PhSiZnCl}(120), \mathrm{Me}_{2} \mathrm{PhSi}-$ Bpin (12), and Me ${ }_{2} \mathrm{PhSiLi}$ (121) resulted in much less transformation (entries 17-19). It is noteworthy that exclusive β-selectivity was observed in the transformation.

Table 2.1: A condition screening for racemic transformation. ${ }^{[a]}$

 (E)-89b		per salt (5.0 m dditive (1.5 eq iMgHal (119, solvent RT, 2 h		-90b
entry	copper salt	additive	solvent	yield (\%) ${ }^{[b]}$
1	CuCl	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	73
2	CuBr	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	74
3	Cul	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	68
4	CuTc	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	75
5	CuCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	69
6	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	80 (79)
7	$\mathrm{CuBr} \cdot \mathrm{Me}_{2} \mathrm{~S}$	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	65
8	CuCl_{2}	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	57
9	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OMe}_{2}$	THF	73
10	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OBu}_{2}$	THF	79 (76)
11	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{SMe}_{2}$	THF	75
12	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{THF}$	51
13	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ THF	51

14	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	toluene/THF	47
15	-	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	39
16	CuSCN	-	THF	36
$17^{[\text {[c] }}$	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	17
$18^{[d]}$	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	0
$19^{[\text {[] }]}$	CuSCN	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	THF	11

[a] All reactions were performed on a 0.15 mmol scale. [b] Yields were determined by GLC analysis with tetracosane as an internal standard; Isolated yields were in parentheses. [c] $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119) was replaced by $\mathrm{Me}_{2} \mathrm{PhSiZnCl}$ (120). [d] $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ was replaced by $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12). [e] $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ was replaced by $\mathrm{Me}_{2} \mathrm{PhSiLi}$ (121). Hal $=\mathrm{Br}$ or Cl .

2.2.2 Substrate Scope for Racemic Transformation

Having the optimal reaction conditions in hand, we then assessed the generality of this method (Scheme 2.2). β, β-Disubstituted (E)-89c reacted smoothly, arriving at the silylated product rac-90c in 67% yield. An alkyl group in the β-position as in (E)-89d was compatible, and a moderate yield was obtained. The compatibility of azaaryl groups was further studied (Scheme 2.2, bottom). A benzothiozole as in (E)-91, a benzimidazole as in (E)-122, a pyridine as in $(E)-124$, and quinolines as in $(E)-87$ a and (E) - 126 were tolerated, affording the corresponding addition products in yields varying from 45% to 73%. However, only trace amount of rac-129 was detected when (E)-stilbene [(E)-128] was used as substrate. This result suggested the necessity of azaaryl groups for the smooth conversion because of electronic activation of $\mathrm{C}-\mathrm{C}$ double bond by azaaryl groups. ${ }^{[52]}$ Furthermore, it might work as a directing or coordinating group, which explains the exclusive β-selectivity.

124, 87, 126, 128
125, 88, 127, 129

Scheme 2.2: Conjugate addition of silicon GrIGNARD reagents to azaaryl-substituted alkenes. All reactions were performed on a 0.15 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel.

2.3 Chiral Version

2.3.1 Optimization Study

Then, our research moved on to asymmetric transformation, and various chiral ligands were probed (Scheme 2.3). Monodentate phosphoramidite (R, S, S)-L31 only gave racemic mixtures as product in 58% yield. Chiral phosphine ligands such as (S)-BINAP [(S)-L13], (R, R)QuinoxP* [(R,R)-L4], DuPhos (R, R, R, R)-L32 and ferrocene-derived ligands [L33-L40] were investigated. Only QuinoxP* [(R,R)-L4] and Josiphos (R, S_{P})-L33 successfully induced moderate enantioselectivity (40% ee and 63% ee, respectively). Low levels of enantioselection were obtained when either of diamine (S, S)-L41, oxazoline (S, S)-L42, and bisoxazoline (S, S)-L43 was used as ligand in the reaction. Given higher ee value obtained with Josiphos $\left(R, S_{P}\right)$-L33, we determined to survey other parameters with it.
$\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ ($5.0 \mathrm{~mol} \%$)

L ($7.5 \mathrm{~mol} \%$)

90b

$\left(S, S_{P}\right)$-L39:
$<5 \%$ ee, 58% yield

(S)-L42:
$<5 \%$ ee, 68% yield

$\left(S, S_{P}\right)$-L40
<5\% ee, 59% yield
(S,S)-L41
<5\% ee, 73% yield

Scheme 2.3: A ligand screening for asymmetric transformation. All reactions were performed on a 0.10 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. $\mathrm{Hal}=\mathrm{Cl}$ and Br .

The influence of solvent was evaluated after the ligand screening (Table 2.2). Enantioinduction collapsed when THF or 2-MeTHF was used in the reaction. This is likely due to the strong ability of THF or 2-MeTHF to coordinate to copper salt (entries 2 and 3). ${ }^{[53]}$ Toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and TBME were inferior compared to $\mathrm{Et}_{2} \mathrm{O}$ (entries 4-6). We fortuitously found that ee value improved to 80% by increasing loadings of catalysts, and this only happened by using toluene and $\mathrm{Et}_{2} \mathrm{O}$ as cosolvents (entry 7).
[53] T. Robert, J. Velder, H. G. Schmalz, Angew. Chem. Int. Ed. 2008, 47, 7718-7721; Angew. Chem. 2008, 120, 7832-7835.

Table 2.2: A solvent screening for asymmetric transformation. ${ }^{\text {a] }]}$

entry	solvent	yield (\%) ${ }^{[b]}$	$e e(\%)^{[c]}$
1	$\mathrm{Et}_{2} \mathrm{O}$	69	63
2	THF/Et ${ }_{2} \mathrm{O}$	73	<5
3	2-MeTHF/Et ${ }_{2} \mathrm{O}$	84	<5
4	toluene/Et $/ 2 \mathrm{O}$	65	50
5	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$	70	31
6	TBME/Et ${ }_{2} \mathrm{O}$	85	40
$7^{\text {d }}$	toluene/Et ${ }_{2} \mathrm{O}$	70	80

[a] All reactions were performed on a 0.10 mmol scale. [b] Isolated yields were obtained after flash column chromatography on silica gel. [c] ee values were determined by HPLC analysis on a chiral stationary phase. [d] CuBr• SMe_{2} ($10 \mathrm{~mol} \%$) and ($R, \mathrm{~S}_{P}$)-L33 ($15 \mathrm{~mol} \%$) were used. $\mathrm{Hal}=\mathrm{Cl}$ and Br. TBME $=$ tert-butyl methyl ether.

Various LeWIS acids used as additive were explored by using $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ ($10 \mathrm{~mol} \%$) as precatalyst and Josiphos (R, S_{P})-L33 ($15 \mathrm{~mol} \%$) as ligand in the mixture solvent of toluene and $\mathrm{Et}_{2} \mathrm{O}$ (Table 2.3). BF_{3}-derived LEWIS acids proved to be effective (entries $1-3$). Good to ex-cellent yields were obtained with moderate to high enantioselectivities, and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was superior in enantioselection (entry 1). Others such as $\mathrm{BCl}_{3}, \mathrm{BBr}_{3}, \mathrm{BPh}_{3}, \mathrm{CeCl}_{3}, \mathrm{AlCl}_{3}$, $\mathrm{Fe}(\mathrm{OTf})_{2}, \mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{Ti}(\mathrm{OiPr})_{4}$ and TMSOTf, were detrimental, resulting in a dramatical decrease in ee values (entries 4-12).

Table 2.3: An additive screening for asymmetric transformation. ${ }^{[a]}$

(S)-90b
(E)-89b

entry	additive	yield $(\%)^{[b]}$	ee $(\%)^{[c]}$
1	$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$	70	80
2	$\mathrm{BF}_{3} \cdot \mathrm{OBu}_{2}$	65	75
3	$\mathrm{BF}_{3} \cdot \mathrm{SMe}_{2}$	90	61
4	BCl_{3} in heptane	38	<5
5	BBr_{3}	53	<5
6	BPh_{3}	49	<5
7	CeCl_{3}	58	<5
8	AlCl_{3}	70	<5
9	$\mathrm{Fe}(\mathrm{OTf})_{2}$	10	<5
10	$\mathrm{Sc}(\mathrm{OTf})_{3}$	45	<5
11	$\mathrm{Ti}(\mathrm{OiPr})_{4}$	28	<5
12	TMSOTf	33	<5

[a] All reactions were performed on a 0.10 mmol scale. [b] Isolated yields were obtained after flash column chromatography on silica gel. [c] ee values were determined by HPLC analysis on a chiral stationary phase. $\mathrm{TMSOTf}=$ trimethylsilyl triflate. $\mathrm{Hal}=\mathrm{Cl}$ and Br .

After assessment of additives, we turned our attention to different copper salts (Table 2.4). Employing CuCl instead of $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ increased the yield from 70% to 82% and enantioselectivity from 80% to 85% (entries 1 and 2). Other typical copper salts were examined, but inferior levels of enantioselection were observed (entries 3-13). Excellent result was achieved by using 2.0 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (entry 14). Significance of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was revealed in entry 15 . Reaction of $(E)-89 b$ without $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ was rendered racemic. Thus, the optimal reaction setup was comprised of $10 \mathrm{~mol} \% \mathrm{CuCl}$ as precatalyst, $15 \mathrm{~mol} \%$ Josiphos $\left(R, S_{P}\right)$-L33 as ligand, and 2.0 equivalents of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as additive in the solvent mixture of toluene and $\mathrm{Et}_{2} \mathrm{O}$ at $-78^{\circ} \mathrm{C}$.

Table 2.4: A copper salt screening for asymmetric transformation. ${ }^{[a]}$

			 90b
entry	catalyst	yield (\%) ${ }^{[b]}$	ee (\%) ${ }^{[\mathrm{c}]}$
1	$\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$	70	80
2	CuCl	82	85
3	CuBr	87	75
4	Cul	92	77
5	CuTc	72	73
6	CuCN	49	60
7	CuSCN	83	57
8	$\left(\mathrm{Ph}_{3} \mathrm{PCuH}\right)_{6}$	29	53
9	$\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{Cu}\right)_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	87	79
10	$\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{CuBF}_{4}$	78	77
11	$\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$	60	61
12	$\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{CuPF}_{6}$	69	65
13	CuCl_{2}	81	<5
$14^{[d]}$	CuCl	80	94
$15^{[\text {e] }}$	CuCl	80	<5

[a] All reactions were performed on a 0.10 mmol scale. [b] Isolated yields were obtained after flash column chromatography on silica gel. [c] ee values were determined by HPLC analysis on a chiral stationary phase. [d] $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (2.0 equiv) was used. [e] reaction was carried out without ($R, \mathrm{~S}_{\mathrm{P}}$)L33. $\mathrm{Hal}=\mathrm{Cl}$ and Br .

2.3.2 Substrate Scope for Asymmetric Transformation

Our optimal reaction conditions turned out to be general for various β-aryl-substituted akenes activated by benzoxazole (Scheme 2.4). Alkyl groups as in $(E)-89 b$ and $(E)-89 \mathbf{e}$, an alkoxy group as in $(E)-89 \mathrm{f}$, and halo groups as in $(E)-89 \mathrm{~g}$ and $(E)-89 \mathrm{~h}$ in the para-position of phenyl ring were compatible under our optimal reaction setup, delivering the corresponding silylated products in acceptable yields with good to high enantioselectivities of up to 91% ee. metaSubstituted $(E)-89 i$ and $(E)-89 \mathbf{j}$ showed less efficient, compared to corresponding para-
substituted alkenes [cf. (E)-89b and (E)-89f]. Substrates bearing heterocycles in the β position reacted smoothly. A benzothiazole as in (E)-89k, a furyl group as in $(E)-891$ and (E) 89n, and a thienyl group as in $(E)-89 \mathrm{~m}$ and (E)-89o were tolerated; good to high yields were obtained with ee values ranging from 70% to 90%. The influence of substituents in the benzoxazole was investigated $[(E)-89 \mathbf{p}-\mathbf{v}]$. A methyl group as in $(E)-89 \mathrm{p}$ and $(E)-89 \mathbf{t}$, a phenyl group as in $(E)-89 \mathbf{q}$, and halo groups as in $(E)-89 \mathrm{r},(E)-89$ s and $(E)-89 \mathrm{u}$ were compatible. Dimethyl-substituted $(E)-89 v$ did react in the reaction, giving the target product (S)-90v with 82% ee, although in a low yield. The absolute configuration of 90a was determined as (S) through X-ray diffraction analysis, and others were assigned by analogy.

(S)-90i ($\mathrm{R}^{1}=\mathrm{Me}$): 76\% ee, 77% yield
(S)-90j ($\mathrm{R}^{1}=\mathrm{OMe}$): 75\% ee, 70% yield
(S)-90a ($\mathrm{R}^{1}=\mathrm{H}$): 93\% ee, 65% yield (X-ray)
(S)-90e ($\left.\mathrm{R}^{1}=i \mathrm{Pr}\right): 86 \%$ ee, 76% yield
(S)-90f ($\mathrm{R}^{1}=\mathrm{OMe}$): 91% ee, 45% yield
(S) $\mathbf{- 9 0 g}\left(R^{1}=F\right): 80 \%$ ee, 51% yield $^{[a]}$
(S)-90h ($\left.\mathrm{R}^{1}=\mathrm{Cl}\right): 61 \%$ ee, 63% yield

(S)-901 ($\mathrm{X}=0$): 75% ee, 62% yield
(S)-90m ($\mathrm{X}=\mathrm{S}$): 82% ee, 75% yield

(S)-90k: 70% ee, 80% yield
(S)-90n (X = O): 72\% ee, 79\% yield
(S)-900 (X = S): 90% ee, 88% yield

(S)-90t $\left(R^{2}=M e\right): 90 \%$ ee, 73% yield
(S) $-90 u\left(R^{2}=F\right): 79 \%$ ee, 76% yield
(S)-90p $\left(R^{2}=\mathrm{Me}\right): 80 \%$ ee, 82% yield
(S)-90q ($R^{2}=P h$): 70% ee, 50% yield
(S)-90r ($\left.R^{2}=F\right)$: 76% ee, 70% yield
(S)-90s $\left(\mathrm{R}^{2}=\mathrm{Cl}\right): 80 \%$ ee, 58% yield

(S)-90v: 82% ee, 35% yield $^{[a]}$

Scheme 2.4: Asymmetric 1,4-addition of silicon nucleophiles to azaary-substituted alkenes. All reactions were performed on a 0.15 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. [a] 5.0 equiv of BF_{3}. OEt_{2} were used. Hal $=\mathrm{Cl}$ or Br .

No method fits all sizes (Scheme 2.5). β-Alkyl (E)-89d failed to afford enantioenriched product (R)-90d. Heterocycles, which could be used instead of benzoxazole in the racemic transformation, proved to be incompatible in the asymmetric transformation $[(E)-124 \rightarrow(S)$ 125, $(E)-87 a \rightarrow(S)-88 \mathrm{a}$, and $(E)-91 \rightarrow(S)-92]$. Increasing sterical congestion to silicon atom in GRIGNARD reagents resulted in sharply diminution in both yields and ee values $[(E)-89 a \rightarrow$ (S)-131a and (S)-133a].

Scheme 2.5: Failed examples for asymmetric transformation. All reactions were performed on a 0.15 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. [a] MePh ${ }_{2} \mathrm{SiMMHal}^{(130)}$ was used instead of $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119). [b] $\mathrm{Ph}_{3} \mathrm{SiMMHal}^{2}$ (132) was used instead of $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119).

2.3.3 Follow-Up Chemistry

As aforementioned (cf. Scheme 1.1), stereospecific transformation of silyl groups into hydroxy groups is one of the foremost synthetical applications of chiral silanes, which is known as Tamao-Fleming oxidation. Oxidative degradation of (S)-90b was performed through a two-step procedure, delivering the desired chiral alcohol (S)-134b in 67% yield,
without any loss of enantioselectivity (Scheme 2.6). Absolute configuration of (S)-134b was confirmed as (S) through single crystal X-ray crystallography. This result is in accordance with retention of configuration in TAMAO-FLEMING oxidation.

(S)-90b: 94% ee

RT, 12 h

(S)-134b: 94\% ee 67\% yield (X-ray)

Scheme 2.6: TAMAO-FLEMING oxidation of (S)-90b. Reaction was performed on a 0.20 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase.

2.4 Conclusion

In summary, we have reported a copper-catalysed silyl transfer from silicon GRIGNARD reagents to azaaryl-substituted alkenes with exclusive β-selectivity. Eight substrates in the racemic transformation demonstrated good functional group compatibility. Enantioselective version of benzoxazole-activated alkenes was accomplished by using CuCl as precatalyst and Josiphos (R, S_{P})-L33 as ligand. Good to high enantioselectivities of up to 94% ee were observed in this $\mathrm{C}-\mathrm{Si}$ bond formation. LEWIS acid $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was indispensable for both yields and high levels of enantioselection.

3 Asymmetric Conjugate 1,4-Silyl Transfer to Enyne-Type $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}, \boldsymbol{\delta}$-Unsaturated Acceptors

3.1 Introduction

Enantioselective conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to diene-type $\alpha, \beta, \gamma, \delta$-unsaturated carbonyl compounds and their derivatives to construct chiral allylic silanes has been disclosed by Hoveyda and co-workers (cf. Scheme 1.22), ${ }^{[28]}$ KOBAYASH group and co-workers (cf. Scheme 1.26), ${ }^{[32]}$ and CHU , LIU and co-workers (cf. Scheme 1.29), ${ }^{[36]}$ respectively. These methods feature High regio- and enantioselectivity. In 2015, XU, LOH and co-workers reported their protocol about copper-catalyzed enantioselective 1,6-addition of Si-B reagents to (Z)-configured enynoates, demonstrating general and efficient avenues for a wide range of optically pure allenylsilanes (cf. Scheme 1.34). ${ }^{[38]}$ However, synthesis of propargylic silane through 1,4-addition of $\mathrm{Si}-\mathrm{B}$ reagents to enynoates is still limited to a racemic transformation (Scheme 3.1, top). ${ }^{[54]}$ These intrigued us to explore new methods for chiral propargylic silanes through asymmetric conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to enyne-type $\alpha, \beta, \gamma, \delta-$ unsaturated acceptors. In the following chapter is reported a copper-catalyzed highly chemoand enantioselective 1,4-silyl transfer from $\mathrm{Si}-\mathrm{B}$ reagents to $\alpha, \beta, \gamma, \delta$-unsaturated acceptors.

Scheme 3.1: Asymmetric 1,4-silyl transfer to enyne-type acceptors.

3.2 Optimization Study

We commenced our study with evaluating different chiral ligands in the addition reaction by employing enynoate (E)-135a as model substrate and $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) as silicon source (Scheme 3.2). The use of phosphoramidite (R, S, S)-L31 in the presence of $\mathrm{CuCl}, \mathrm{NaOtBu}$
[54] J. Dambacher, M. Bergdahl, J. Org. Chem. 2005, 70, 580-589.
and MeOH in THF, afforded the 1,4-addition product 136a in 75% yield, however with low enantioselectivity. Significant improvements of ee values were observed by using SEGPHOS ligands, but allenylsilane rac-137a was the main product $[(R)$-L3, (S)-L44 and (S)-L45]. Good result was achieved in the reaction by using (R, R)-QuinoxP* $[(R, R)$-L4] as ligand. 84% yield of 1,4 -selective product 136 a was obtained with 70% ee. Ligands derived from BINAP showed less efficient in regioselectivity, delivering the target 136a in far lower yields [(R)-L13, (R)-L46, and (R)-L47]. Josiphos (R, S_{p})-L33 only induced 57% ee, not as good as (R, R) QuinoxP* $[(R, R)-L 4]$. Diamine ligand (S, S)-L48 did promote the reaction enantioselectively, affording chiral 136a in 25% yield with 47% ee. (S, S)-L49 failed to afford the product. Low levels of enantioinduction were found by using oxazole ligands [(S)-L42, (S)-L50, and (S)L51]. NHC ligands were tried, but did not give better results [(S,S)-L52 and (S)-L53]. Thus, (R, R)-QuinoxP* $[(R, R)$-L4] was identified as the optimal choice of ligand to carry on our further optimization.
$\mathrm{CuCl}(10 \mathrm{~mol} \%)$
Ligand ($15 \mathrm{~mol} \%$)
$\mathrm{NaOtBu}(20 \mathrm{~mol} \%)$
MeOH (4.0 equiv)

RT, 12 h
(E)-135a

(R, S, S)-L31: $13 \% e e^{[a]}$
75% yield, ${ }^{[b]} 92: 8^{[c]}$

$$
75 \% \text { yield, }{ }^{[b]} 92: 8^{[c]}
$$

(R, R)-L4 [(R, R)-QuinoxP*]:
70\% ee, 84% yield, $96: 4$
(R)-L13 [(R)-BINAP]: 50\% ee, 25\% yield, 40:60
(R)-L46 [(R)-Tol-BINAP]: 80\% ee, 13\% yield, 29:71
(R)-L47 [(R)-Xyl-BINAP]: 75\% ee, 19\% yield, 29:71

$\left(R, S_{P}\right)$-L33: 57\% ee
74\% yield, 86:14

(S)-L42: 7\% ee

27\% yield, >98:2

(S,S)-L51: 20\% ee 62\% yield, 76:24

(S)-L44 [(S)-SEGPHOS]: 80\% ee, 20\% yield, 25:75
(R)-L3 [(R)-DM-SEGPHOS]: 94\% ee, 33\% yield, 33:67
(S)-L45 [(S)-DTBM-SEGPHOS]: 3\% yield, 60:40

$\bar{M} e$

(S,S)-L50: 12\% ee 54\% yield, 72:28

(S,S)-L50: 20\% ee 84\% yield, 90:10

ee

(S,S)-L48: 47\% ee -

(S)-L51: <5\% ee

92\% yield, 92:8

Scheme 3.2: A ligand screening for asymmetric transformation. All reactions were performed on a 0.10 mmol scale. [a] ee values were determined by HPLC analysis on a chiral stationary phase. [b] Isolated yields were obtained after flash column chromatography on silica gel. [c] Ratios for 1,4- and 1,6-selectivity were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

A copper salt screening was conducted after the ligand screening (Table 3.1). CuBr offered the best results among the copper halides used in the reaction, affording the desired 1,4addition product $(R)-136$ a in 79% yield with 80% ee (entries 1-3). Slightly improvement of enantioselection from 80% ee to 82% ee was accomplished by using CuTC instead of CuBr (entry 4). CuCN and CuOAc failed to catalyze the silyl transfer from $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) to enynoate (E)-135a (entries 5 and 6). Similar or even better levels of enantioselection were obtained, however with far less conversion by using either of CuSCN and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ as precatalyst (entries 7 and 8). $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ provided a comparatively superb result, providing the target (R)-136a in 84% yield with 83% ee (entry 9). Excellent ratio for 1,4versus 1,6 selectivity was also observed. Only trace amounts of product (R)-136a was detected when $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{CuPF}_{6}$ was used (entry 10).

Table 3.1: A copper salt screening for asymmetric transformation. ${ }^{\text {[a] }}$

| |
| :---: | :---: | :---: | :---: | :---: |

[a] All reactions were performed on a 0.10 mmol scale. [b] Ratios for 1,4-versus 1,6-selectivity were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yields were obtained after flash column chromatography on silica gel. [d] ee values were determined by HPLC analysis on a chiral stationary phase.

We then investigated the influence of solvent in our method (Table 3.2). Assessment of different ether solvents identified 2-MeTHF as the optimal choice, affording (R)-136a in high yield with excellent enantioselectivity (entries 1-3). Only trace amounts of desired product were observed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or EtOH (entries 4 and 5). Use of $t \mathrm{AmOH}$ or toluene as solvent led to low conversion (entries 6 and 7).

Table 3.2: A solvent screening for asymmetric transformation. ${ }^{[a]}$

 (E)-135a				
entry	solvent	1,4:1,6 ${ }^{[b]}$	yield of 136a (\%) ${ }^{\text {[c] }}$	ee of 136a (\%) ${ }^{[d]}$
1	THF	>98:2	84	83
2	$\mathrm{Et}_{2} \mathrm{O}$	>98:2	80	75
3	2-MeTHF	>98:2	85	91
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	-	trace	-
5	EtOH	-	trace	-
6	$t \mathrm{AmOH}$	>98:2	33	78
7	toluene	92:8	42	60

[a] All reactions were performed on a 0.10 mmol scale. [b] ratios for 1,4-versus 1,6-selectivity were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yields were obtained after flash column chromatography on silica gel. [d] ee values were determined by HPLC analysis on a chiral stationary phase. 2-MeTHF = 2-methyltetrahydrofuran; tAmOH = tert-amyl alcohol.

Different kinds of alcohols were then evaluated (Table 3.3). Similar results were obtained for $\mathrm{EtOH}, n \mathrm{PrOH}$ and iPrOH , but not as good as MeOH (entries $1-4$). $\mathrm{H}_{2} \mathrm{O}$ also worked, delivering 75% yield of (R) - $\mathbf{1 3 6} \mathbf{a}$ with 88% ee (entry 5). It was notewothy that same level of site selectivity [(R)-136a:rac-137a > 98:2] was observed with different alcohols.

Table 3.3: An alcohol screening for asymmetric transformation. ${ }^{[a]}$

[a] All reactions were performed on a 0.10 mmol scale. [b] Ratios for 1,4-versus 1,6-selectivity were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yields were obtained after flash column chromatography on silica gel. [d] ee values were determined by HPLC analysis on a chiral stationary phase.

Various bases were probed by using $\left(\mathrm{Ph}_{3} \mathrm{Ph}\right)_{2} \mathrm{CuBH}_{4}$ as precatalyst, (R, R)-Quinox ${ }^{*}[(R, R)-$ L4] as ligand and MeOH as proton source in 2-MeTHF and results were outlined in Table 3.4. Sodium alkoxides and sodium hydroxide result in similar enantioselectivities (entries 14). LiOtBu was slightly less efficient in both yield and ee values, and KOtBu appeared to be same, compared to NaOtBu (entries 5 and 6). 80% yield of (R)-136a was obtained with 83% ee in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (entry 7). Lowering loadings of catalytic system would increase the yield from 92% to 95% yield, without any loss of enantioenrichment. Thus, the optimal reaction conditions for pilot substrate (E)-135a comprised $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ ($0.50 \mathrm{~mol} \%$), (R, R) QuinoxP* [(R,R)-L4, $0.75 \mathrm{~mol} \%]$, KOtBu ($5.0 \mathrm{~mol} \%$), and MeOH (2.0 equiv) in 2-MeTHF (1 mL).

Table 3.4: A base screening for asymmetric transformation. ${ }^{[a]}$

 (E)-135a				
entry	base	1,4:1,6 ${ }^{[b]}$	yield of 136a (\%) ${ }^{[c]}$	ee of 136a (\%) ${ }^{[d]}$
1	NaOtBu	>98:2	85	91
2	NaOMe	>98:2	81	90
3	NaOEt	>98:2	66	87
4	NaOH	>98:2	73	90
5	LiOtBu	>98:2	75	89
6	KOtBu	>98:2	85	92
7	$\mathrm{Et}_{3} \mathrm{~N}$	>98:2	80	83
$8{ }^{[\mathrm{e}]}$	KOtBu	>98:2	95	92

[a] All reactions were performed on a 0.10 mmol scale. [b] Ratios for 1,4-versus 1,6-selectivity were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. [c] Isolated yields were obtained after flash column chromatography on silica gel. [d] ee values were determined by HPLC analysis on a chiral stationary phase. [e] Reaction was carried out by using $0.40 \mathrm{~mol}(E)-135 \mathrm{a}, 1.5$ equiv of $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}(12), 0.50 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}, 0.75 \mathrm{~mol} \%(R, R)$-QuinoxP* $[(R, R)$-L4], $5.0 \mathrm{~mol} \%$ KOtBu , and 2.0 equiv of MeOH in 1 mL of $2-\mathrm{MeTHF}$.

Control experiments were done to verify the necessity of copper salt, base and alcohol (Table 3.5). Only trace amounts of (R)-136a were detected without $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ (entry 1). Reaction removing KOtBu led to noticeable erosion in both yield and enantioselectivity (entry 2). Absence of MeOH resulted in 7% of the desired product (R)-136a (entry 3).

Table 3.5: Control experiments for asymmetric transformation. ${ }^{[a]}$
2

3.3 Substrate Scope

We then probed the substrate scopes for this new method and various enyne-type $\alpha, \beta, \gamma, \delta$ unsaturated (E)-configured enynoates were prepared and subjected into our optimal setup (Scheme 3.3). Aryl groups in the δ-position, with electron-withdrawing groups or electrondonating groups were tolerated under our optimal conditions, providing the corresponding products in good to excellent yields, with excellent enantio- and regioselectivities $[(E)$-135b-I $\rightarrow(R)-136 \mathrm{~b}-\mathrm{I}]$. Good functional group compatibility was observed in the tolerance with halo $[(R)-\mathbf{1 3 6 f},(R)-\mathbf{1 3 6 g}$ and $(R)-\mathbf{1 3 6 h}], \mathrm{CF}_{3}[(R)-136 \mathrm{i}]$, cyano $[(R)-136 \mathrm{j}]$, ester $[(R)-\mathbf{1 3 6 k}]$ and boryl groups $[(R)-136 I]$. It is noteworthy that these groups are important linchpins for further elaboration. δ-Thienyl-substituted $(E)-\mathbf{1 3 5 m}$ and $(E)-135$ n were reactive, delivering similar results. Alkyl-substituted (E)-1350, as well as (E)-135p appeared to be less efficient in enantioinduction, compared to aryl-substituted enynoates. A silyl group as in (E)-135q remained intact after the transformation. Substrate $(E)-135$ r with a methyl group in the β position delivered racemic allene rac-137r as the main product. Influence of steric congestion around the silicon atom of $\mathrm{Si}-\mathrm{B}$ reagents was further investigated. It seemed the $\mathrm{Me}_{2} \mathrm{PhSi}$ group was optimal choice. Sterically less or more demanding silyl groups led to less ee values or no transformation $[(E)-135 \mathrm{a} \rightarrow(R)-139 \mathrm{a},(R)-141 \mathrm{a}$, and $(R)-143 \mathrm{a}]$. Absolute
configuration of 136I was determined as (R) through single crystal X-ray crystallography and others were assigned by analogy.

(hetero)aryl substitution

$(R)-136 \mathrm{~b}(\mathrm{R}=4-\mathrm{Me}): 92 \%$ ee, 80% yield, $>98: 2^{[\mathrm{a}]}$ $(R)-136 \mathrm{c}(\mathrm{R}=3-\mathrm{Me}): 92 \%$ ee, 76% yield, $>98: 2^{[a]}$
$(R)-136 \mathrm{~d}(\mathrm{R}=2-\mathrm{Me}): 91 \%$ ee, 72% yield, $>98: 2^{[a]}$
$(R)-136 e(R=4-O M e): 93 \%$ ee, 94% yield, $>98: 2$
(R)-136f ($\mathrm{R}=4-\mathrm{F}$): 92\% ee, 94% yield, $>98: 2$
$(R)-136 \mathrm{~g}(\mathrm{R}=4-\mathrm{Cl}): 89 \%$ ee, 88% yield, $>98: 2^{[b]}$
$(R)-136 \mathrm{~h}(\mathrm{R}=4-\mathrm{Br}): 85 \%$ ee, 69% yield, $>98: 2$
$(R)-136 i\left(R=4-F_{3}\right): 92 \%$ ee, 90% yield, $>98: 2$
$(R)-136 \mathrm{j}(\mathrm{R}=4-\mathrm{CN})$: 93\% ee, 61\% yield, 94:6
$(R)-136 \mathrm{k}\left(\mathrm{R}=4-\mathrm{CO}_{2} \mathrm{Me}\right)$: 90% ee, 72% yield, $98: 2$
(R)-136I ($\mathrm{R}=4$-Bpin): 92% ee, 67% yield, $>98: 2$ (X-ray)
alkyl substitution

(R)-1360: 89\% ee, 84\% yield, 98:2

(R)-136p: 84\% ee, 69\% yield, >98:2 ${ }^{[a]}$
silyl substitution

(R)-136q: 90\% ee, 80% yield, >98:2

$(R)-136 \mathrm{~m}$ (thien-2-yl): 93\% ee, 87% yield, $>98: 2^{[a]}$
(R)-136n (thien-3-yl): 93\% ee, 88\% yield, > 98:2 ${ }^{[b]}$

Si-B reagents

Scheme 3.3: Asymmetric 1,4-addition of $\mathrm{Si}-\mathrm{B}$ reagents to (E)-enynoates. All reactions were performed on a 0.20 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. [a] $5.0 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ and $7.5 \mathrm{~mol} \%(R, R)$-L4 were used. [b] $2.5 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ and $3.8 \mathrm{~mol} \%(R, R)$-L4 were used. [c] $10 \mathrm{~mol} \%$ $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ and $15 \mathrm{~mol} \%(R, R)$-L4 were used. $\mathrm{MePh}_{2} \mathrm{Si}-\mathrm{Bpin}(138), \mathrm{Ph}_{3} \mathrm{Si}-\mathrm{Bpin}$ (140) and Et $\mathrm{t}_{3} \mathrm{Si}-\mathrm{Bpin}$ (142) were used for (R)-139a, (R)-141a and (R)-143a, respectively.

We then applied our method to different enynamides (Scheme 3.4). N-Aryl or -alkyl protected substrates were compatible under our optimal setup, however, prolonging reaction time was
inevitable for high efficacy $[(E)-144 a \rightarrow(R)-145 a$ and $(E)-144 b \rightarrow(R)-145 b]$. Free H atom attached to nitrogen atom as in $(E)-144 \mathrm{c}$ and $(E)-144 \mathrm{~d}$ was also tolerated, however, far less conversion was observed. Activated enynimide (E)-144e gave $(R)-145 \mathrm{e}$ in 89% yield with only $\mathbf{3 0 \%}$ ee. Our method proved to be less reactive for enynone (E)-146a, and only $\mathbf{7 1 \%}$ ee was induced. It is worth mentioning that excellent ratios for 1,4 - versus 1,6 -selectivity were obtained for all the aforementioned examples, more than 95:5 in most cases.

Scheme 3.4: Asymmetric 1,4-addition of Si -B reagents to (E)-enynamides and (E)-enynones. All reactions were performed on a 0.20 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. [a] $1.0 \mathrm{~mol} \%\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$ and $1.5 \mathrm{~mol} \%(R, R)$ L4 were used for 12 h .

3.4 Control Experiments

To shed more light on the mechanism of our method, three control experiments were carried out (Scheme 3.5). Firstly, deuterated methanol was used instead of MeOH in the reaction of $(E)-127 a$. H/D scrambling exclusively happened in the α-position, resulting in the incorporation of 94% deuterium. This result suggested the role of MeOH as proton source in the reaction. Then, (Z) - 135 a, which represented optimal choice in XU and LoH's work, ${ }^{[38]}$ was prepared and subjected into our optimal reaction conditions. 34% yield of propargylic silane (R)-136a was obtained with 94% ee, along with the formation of 45% yield of racemic allene rac-137a. This result corroborated the importance about (E)-configuration of $\mathrm{C}-\mathrm{C}$ double bond in substrate to the domination of 1,4 -selectivity. Finally, (E) - $\mathbf{1 4 8}$ was tried, and all
starting material recovered after the reaction, partially indicating the participation of $\mathrm{C}-\mathrm{O}$ double bond in the reaction.

Scheme 3.5: Control experiments for asymmetric transformation. All reactions were performed on a 0.20 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase. [a] Diastereomeric ratio and deuterium incorporation were estimated through ${ }^{1} \mathrm{H}$ NMR spectroscopy.

3.5 Conclusion

In summary, we developed a general and efficient approach for optically pure propargylic silanes through enantioselective conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to enyne-type $\alpha, \beta, \gamma, \delta$ unsaturated acceptors. ${ }^{[55]}$ Merits of our method included high efficiency with regard to yield, chemo- and enantio-selectivity, excellent functional group tolerance, and simple operation procedure. Enynoates, enynamides and enynones were all suitable substrates, delivering the
desired products with hardly any formation of 1,6 -selective adducts. (Z)-configured $\mathrm{C}-\mathrm{C}$ double bond is an important factor in the domination of 1,4 -selectivity in our method.

4 Asymmetric Conjugate 1,4-Silyl Transfer to $\boldsymbol{\alpha}, \boldsymbol{\beta}$ Unsaturated Sulfones

4.1 Introduction

α, β-Unsaturated sulfones as suitable MICHAEL acceptors have been researched for years, ${ }^{[56]}$ and asymmetric applications have been successfully made in the hydrogenation, ${ }^{[57]} \mathrm{C}-\mathrm{C}$ bond formation, ${ }^{[58]} \mathrm{C}-\mathrm{N}$ bond formation, ${ }^{[59]}, \mathrm{C}-\mathrm{O}$ bond formation, ${ }^{[60]}$ and $\mathrm{C}-\mathrm{P}$ bond formation ${ }^{[61]}$. C-Si bond formation had not been realized between α, β-unsaturated sulfones and silicon nucleophiles until YIN's publication in 2021 (cf. Scheme 1.31). ${ }^{[37]}$ Long reaction time (≥ 60 hours) and low reaction temperature $\left(\leq-30^{\circ} \mathrm{C}\right.$), to some extent, limited their development. Thus, operationally simple and efficient modular methods for chiral silanes through asymmetric conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to α, β-unsaturated sulfones are still highly desirable. Notably, our project was ongoing when YIN and co-workers reported their work. This chapter discloses our progress about enantioselective silylation of α, β-unsaturated sulfones employing $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) as silicon source (Scheme 4.1).

Our work

Scheme 4.1: \quad Asymmetric 1,4 silyl transfer to α, β-unsaturated sulfones.
[56] For selected reviews, see: a) M. Mauduit, O. Baslé, H. Clavier, C. Crévisy, A. DenicourtNowicki, in Comprehensive Organic Synthesis, 2nd ed.; (Eds: G. A. Molander, P. Knochel), Elsevier: Oxford, 2014, Vol. 4, pp. 189-341; b) A. Alexakis, N. Krause, S. Woodward, in Copper-Catalyzed Asymmetric Synthesis, (Eds.: A. Alexakis, N. Krause, S. Woodward), WileyVCH, Weinheim, 2014, pp. 33-68.
[57] Selected examples for asymmetric hydrogenation, see: a) J.-N. Desrosiers, A. B. Charette, Angew. Chem. Int. Ed. 2007, 46, 5955-5957; Angew. Chem. 2007, 119, 6059-6061; b) Y. Sun, J. Jiang, X. Guo, J. Wen, X. Zhang, Org. Chem. Front. 2019, 6, 1438-1441.
[58] Selected examples for C-C bond formation, see: a) H. Li, J. Song, L. Deng, Tetrahedron 2009, 65, 3139-3148; b) J. J. Murphy, A. Quintard, P. McArdle, A. Alexakis, J. C. Stephen, Angew. Chem. Int. Ed. 2011, 50, 5095 -5098; Angew. Chem. 2011, 123, 5201-5204; c) T. Nishimura, Y. Takiguchi, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 9086-9089; d) K. M.-H. Lim, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3201-3204; e) R. Takechi, T. Nishimura, Chem. Commun. 2015, 51, 8528-8531;
[59] D. Enders, S. F. Müller, G. Raabe, J. Runsink, Eur. J. Org. Chem. 2000, 879-892.
[60] X. Yang, F. Cheng, Y.-D. Kou, S. Pang, Y.-C. Shen, Y.-Y. Huang, N. Shibata, Angew. Chem. Int. Ed. 2017, 56,1510-1514; Angew. Chem. 2017, 129, 1-6.
$[61]$ a) J. Lu, J. Ye, W.-L. Duan, Org. Lett. 2013, 15, 5016-5019; b) J. Lu, J. Yeb, W.-L. Duan, Chem. Commun. 2014, 50, 698-700.

4.2 Optimization Study

α, β-Unsaturated sulfone (E)-150 was chosen as model substrate and $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12) as silicon source to evaluate different chiral ligands in the presence of $\left(\mathrm{CH}_{3} \mathrm{CN}_{4}\right)_{4} \mathrm{CuPF}_{6}, \mathrm{LiOtBu}$ and MeOH in THF (Scheme 4.2). Phosphoramidites [(R)-L52, (R, R, R)-L31, (R)-L53, and (R, R, R)-L54] as ligand all successfully converted α, β-unsaturated sulfone (E) - 150 into the desired product 151, however with low levels of enantioselection. Phosphoric acid (R)-L55 as ligand delivered 151 racemically. Bidentate phosphine ligands such as (R)-BINAP [(R)-L13], (R)-SEGPHOS [(R)-L44], (R, R)-Quinoxp* [(R, R)-L5], DuPhos (R, R, R, R)-L32, Josiphos ligands $\left(R, S_{P}\right)$-L33 and $\left(R, S_{P}\right)$-L34, (S, S)-BDPP $[(S, S)$-L56] and $(R, R)-\mathrm{Ph}-\mathrm{BPE}[(R, R, R, R)-$ L57] all failed to produce enantioenriched 151. Diamine ligands (R, R)-L41 and (R, R)-L49 did not provide superior results in enantioselectivity, compared to aforementioned chiral ligands.

Scheme 4.2: A ligand screening for asymmetric transformation. All reactions were performed on a 0.10 mmol scale. [a] ee values were determined by HPLC analysis on a chiral stationary phase. [b] Isolated yields were obtained after flash column chromatography on silica gel.

Huge improvement in enantioselectivity was observed in the assessment of oxazoline ligands (Scheme 4.3). Tridentate PyBOX ligands with different substituents were firstly examined (L51, and L58-L68). 74\% ee was achieved when methyl-substituted (S,S)-L58 was employed as ligand. Increasing congestion in the ring of oxazoline did not provide further improvement. Other bidentate bisoxazoline ligands were investigated, but less efficient in enantiocontrol [(S,S)-L50, (S,S)-L69, and (S,S)-L70]. (S)-L42 worked well, delivering 151 in 95% yield with 70% ee. Ferrocene-derived $\left(S, S_{p}\right)$-L71 and Pyridine-derived
(S)-L72 led to dramatic decrease of enantioselectivity. Quinoline-substituted oxazoline ligands (L73-L76) were suitable, and (S, R)-L75 outperformed other ligands checked, increasing the ee value to 77%.

Scheme 4.3: A ligand screening for asymmetric transformation. All reactions were performed on a 0.10 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase.

After identifying (S, R)-L75 to be the optimal choice of ligand, we then investigated the influence of solvents (Table 4.1). Use of $\mathrm{Et}_{2} \mathrm{O}$ as solvent further improved the ee value to 83% (entry 2), and similar result was obtained with 2-MeTHF (entry 3). Dioxane, tAmOH and MeOH proved to be less efficient (entries 4-6). EtOAc offered the target 151 in 90% yield with 78% ee (entry 7). Water as solvent did promote the reaction, however was not better
than $\mathrm{Et}_{2} \mathrm{O}$ (entry 8). Unfortunately, similar work from YIN's group was published at this time. We decided to stop and start next project.

Table 4.1: A solvent screening for asymmetric transformation. ${ }^{[a]}$

[a] All reactions were performed on a 0.10 mmol scale. [b] Isolated yields were obtained through flash column chromatography on silica gel. [c] ee values were determined by HPLC analysis on a chiral stationary phase.

4.3 Conclusion

In summary, we reported our investigation about asymmetric conjugate addition of $\mathrm{Me}_{2} \mathrm{PhSi}-$ Bpin (12) to α, β-unsaturated sulfone (E)-150. Assessment of ligands and solvents has been done and 83% ee has been achieved. We believe that further evaluation about silicon source, catalyst, base, proton source, and temperature might provide an excellent enantioselectivity for this asymmetric transformation.

5 Asymmetric Conjugate 1,4-Silyl Transfer to $\alpha, \beta-$ Unsaturated Phosphine oxides

5.1 Introduction

Asymmetric conjugate addition reactions involving α, β-unsaturated phosphine oxides as MICHAEL acceptors are still elusive (Scheme 5.1). In 2008, enantioselective intramolecular STETTER reaction was reported by CULLEN and Rovis through asymmetric addition of C pronucleophiles to α, β-unsaturated phosphine oxides or α, β-unsaturated phosphonates. ${ }^{[62]}$ $\mathrm{B}_{2} \mathrm{Pin}_{2}{ }^{[63]}$ and phosphine oxides ${ }^{[64]}$ proved to be suitable pronucleophiles later by FERINGA and co-workers, and KONDOH, TERADA and co-worker, respectively. These outcomes intrigued us to explore asymmetric conjugate addition of Si nucleophiles to α, β-unsaturated phosphine oxides. In the following chapter is reported our progress about enantioselective 1,4-addition of $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) to α, β-unsaturated phosphine oxide 152.

Scheme 5.1: asymmetric conjugate addition reactions of α, β-unsaturated phosphine oxides.

5.2 Optimization Study

Our study was initiated by using α, β-unsaturated phosphine oxide (E) - 152 as model substrate and $\mathrm{Me}_{2} \mathrm{PhSi-Bpin}$ (12) as silicon source for a ligand screening (Scheme 5.2). Monodentate phosphoramidite (R, R, R)-L31 failed to deliver the target 153. Low to moderate yields of 153 were obtained when bidentate phosphine ligands such as (R)-BINAP [(R)-L13],

[^4]DuPhos [($R, R, R, R)$-L32], Josiphos (R, S_{P})-L33 and (R, R)-Ph-BPE [($\left.R, R, R, R\right)$-L57] were used as the ligand, however without any enantioselectivity. Other bidentate phosphine ligands such as (R)-SEGPHOS [(R)-L44], (R, R)-QuinoxP* [(R, R)-L4] and (S, S)-BDPP [(S,S)-L56] only gave trace amounts of 146. Diamine (R, R)-L41 and $\operatorname{PyBOX}(S, S)$-L51 worked with similar result to (R)-BINAP $[(R)$-L13]. Further investigation is still ongoing in our lab.

Scheme 5.2: A ligand screening for asymmetric transformation. All reactions were performed on a 0.10 mmol scale. Isolated yields were obtained after flash column chromatography on silica gel. ee values were determined by HPLC analysis on a chiral stationary phase.

5.3 Conclusion

In summary, we were exploring a general and efficient method to prepare chiral silanes through enantioselective 1,4 -addition of Si - B reagents to α, β-unsaturated phosphine oxides. Optimal reaction conditions are still under exploration. Several chiral ligands were tried, and only racemic mixtures were obtained. Further investigation will concentrate on assessment of ligand, base, solvent, proton source and temperature.

6 SUMMARY

This dissertation describes our research about asymmetric conjugate addition of silicon nucleophiles to α, β-unsaturated acceptors. Heterocycle-substituted alkenes were used as substrates in the first project (Scheme 6.1). Six different heterocycles including benzoxazole, benzothiazole, benzimidazole, pyridine, 1-quinoline and 2-quinoline, were successfully assembled in substrates, and tolerated under our optimized setup. Furthermore, $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ (119) as silicon nucleophile was first applied in asymmetric transformation by using benzoxazole-substituted alkenes as substrates. Good to high enantioselectivities of up to 94% ee, were achieved in 20 examples. Providing limited substrate scope in asymmetric version, further investigation is still needed to expand the utility of our method.

Asymmetric version

Scheme 6.1: Conjugate addition of silicon GRIGNARD reagents to heterocycle-substituted alkenes.

Our second project provides an efficient and straightforward method to prepare optically pure propargylic silanes through asymmetric conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to enyne-type $\alpha, \beta, \gamma, \delta$-unsaturated acceptors(Scheme 6.2). Enynones, enynoates and enynamides proved to be reactive under our optimal conditions. A wide range of functional groups were tolerated. Enantio- and chemoselectivity were excellent throughout. (Z)-configuration of $\mathrm{C}-\mathrm{C}$ double bond in substrates plays an irreplaceable influence in 1,4 -selectivity. Moreover, operationally simple procedure makes our method more appealing. An existing challenge in our method is to improve efficiency in the reaction of enynamides, because of their innate low reactivity.

Scheme 6.2: Asymmetric conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to enyne-type acceptors.

Investigations involving the use of α, β-unsaturated sulfones and α, β-unsaturated phosphine oxides as MICHAEL acceptor in the asymmetric 1,4 -silyl transfer are ongoing and details are reported in chapter 4 and chapter 5 (Scheme 6.3). α, β-Unsaturated sulfone (E)-150 was reactive by using $\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4} \mathrm{CuPF}_{6}$ as precatalyst and (S, R)-L75 as ligand, delivering the target 151 in 91% yield with 83% ee. Further investigation is needed to improve the enantioselectivity. 1,4-Silyl transfer from $\mathrm{Me}_{2} \mathrm{PhSi}$-Bpin (12) to α, β-unsaturated phosphine oxide (E) - $\mathbf{1 5 2}$ still limited to racemic transformation after assessment of several chiral ligands. Further examination to improve efficiency with regard to yield and enantioselectivity is ongoing in our group.

α, β-Unsaturated phosphine oxide (E)-152

Scheme 6.3: Asymmetric conjugate addition of $\mathrm{Si}-\mathrm{B}$ reagents to α, β-unsaturated sulfones and α, β Unsaturated phosphine oxides.

Asymmetric conjugate addition of silicon nucleophiles to MICHAEL acceptors represents a well-established method to construct optically pure silanes. Various catalytic systems have been reported. Challenges are still remaining. For example, construction of quaternary Cstereogenic center by asymmetric conjugate addition of silicon nucleophiles to MICHAEL
acceptors is less reported (cf. Schemes 1.13 and 1.26). This is an urgent issue to further develop our method. Another issue is about application of enolate intermediate formed in the reaction (cf. Schemes 1.19 and 1.21). In most cases, protonation is the most common choice. Further application of enolate intermediate could help construct more continuous chiral centers. Solving these two issues will make our methods more attractive.

Experimental Part

1 GENERAL INFORMATION

All reactions take place in heat gun-dried glassware under nitrogen by Schlenk techniques. Procedures for cleaning glassware include soak in an $\mathrm{iPrOH} / \mathrm{KOH}$ bath overnight, rinse with water, neutralization with saturated citric acid bath, rinse with water, soak in a distilled water bath for at least six hours, rinse with distilled water again and then desiccation at $120^{\circ} \mathrm{C}$ in an oven overnight. Glassware, used with transition metals, is washed with aqua regia (conc. HCl and conc. HNO_{3} in a ratio of $3: 1$) before soak in an $i \mathrm{PrOH} / \mathrm{KOH}$ bath. Disposable syringes and needles are used to transfer liquid chemicals into the reaction under nitrogen. Glass syringes, stainless-steel needles and cannulas are reused, and all of them are stored at $120^{\circ} \mathrm{C}$ in an oven before use. Solid chemicals are added directly against the current of nitrogen, or dissolve in a solvent before addition. Low temperature reactions are carried out by using a cooling bath or cryostat (EK90 from Haake and TC100E-F from Huber).

Solvents and reagents

n Pentane and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ are distilled at reflux over CaH_{2} under N_{2}. By using benzophenone as indicator, diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), tetrahydrofuran (THF), 1,4-dioxane and toluene are distilled at reflux over sodium under N_{2}. Copper(I) thiocyanate (CuSCN, anhydrous, 96\% from Alfa Aesar), copper(I) chloride (CuCl, anhydrous, 99\% from Acros), Bis(triphenylphosphine)copper(I) borohydride (($\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}$, from Fluka), $(R, R)-(-)-2,3$-Bis-(tert-butylmethylphosphino)quinoxaline ((R,R)-QuinoxP*, 98\% from $A B C R$), Josiphos ligands (anhydrous, 99% from Solvias' donation). boron trifluoride diethyl etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right.$ from Merck), potassium tert-butoxide (KOtBu, $\geqslant 98 \%$ from SigmaAldrich), 2-methyltetrahydrofuran (2-MeTHF, anhydrous, $\geqslant 99.5 \%$ from SigmaAldrich), HPLC grade solvents (nheptane from Roth, iPrOH from Roth, acetonitrile from Roth and water from SigmaAldrich) and all other commercially available chemicals are delivered from suppliers and used directly unless otherwise stated. Technical grade solvents (ethyl acetate, cyclohexane, tert-butyl methyl ether, npentane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and methanol) which are used for extraction or flash column chromatography are used after distillation through rotatory evaporator under reduced pressure.

Chromatography

Qualitative thin-layer chromatography (TLC) is conducted on glass plates with silica gel 60 F254 which were purchased from Merck KGaA.

Methods for visualizing TLC plates are as following:

1) UV light is a common method to visualize stains on TLC plates for compounds with aromatic or conjugated system.
2) The solution of $\mathrm{KMnO}_{4}(3.0 \mathrm{~g}), \mathrm{K}_{2} \mathrm{CO}_{3}(20 \mathrm{~g})$, and $\mathrm{KOH}(0.30 \mathrm{~g})$ in distilled $\mathrm{H}_{2} \mathrm{O}(300 \mathrm{~mL})$ is used to visualize stains of compounds bearing $\mathrm{C}-\mathrm{C}$ unsaturated bonds, or oxidizable groups.

Flash column chromatography are conducted using silica gel (40-63 $\mu \mathrm{m}, 230-400$ mesh, ASTM) from Merck.

Gas liquid chromatography (GLC) analyses are carried out on an Agilent Technologies 7820A gas chromatograph with an Agilent Technologies J\&W HP-5 capillary column ($30 \mathrm{~m} \times$ $0.32 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$ film thickness), adopting the following program: N_{2} carrier gas, injection temperature $250{ }^{\circ} \mathrm{C}$, detector temperature $300{ }^{\circ} \mathrm{C}$, flow rate: $1.7 \mathrm{~mL} / \mathrm{min}$; temperature program: start temperature $40^{\circ} \mathrm{C}$, heating rate $10^{\circ} \mathrm{C} / \mathrm{min}$, end temperature $280^{\circ} \mathrm{C}$ for $10-30$ min.

Nuclear magnetic resonance (NMR) spectroscopy

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{29} \mathrm{Si}$ NMR spectra are measured in CDCl_{3} or $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ on Bruker AV400 and AV500 instruments. Chemical shifts are recorded in parts per million (ppm) and referenced to the residual solvent resonance as the internal standard $\left(\mathrm{CHCl}_{3}: \delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}: \delta=77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C} \mathrm{NMR} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta=2.50 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR and $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta$ $=39.5 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR). All other nuclei (${ }^{19} \mathrm{~F}$ and ${ }^{29} \mathrm{Si}$) are referenced in compliance with the unified scale for NMR chemical shifts as recommended by the IUPAC stating the chemical shift relative to $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CCl}_{3} \mathrm{~F}$ and $\mathrm{Me}_{4} \mathrm{Si} .{ }^{[65]}$ Data are reported as following: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{mc}=$ centrosymmetric multiplet, $\mathrm{br}=$ broad signal), coupling constants (Hz), and integration. The assignment of signals refers to the numbering of the structures in the figures and accords with careful interpretations made from 2D NMR spectroscopy (${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}-\mathrm{COSY},{ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}-\mathrm{HMQC}$, ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}-\mathrm{HMBC},{ }^{13} \mathrm{C}$-DEPT, ${ }^{1} \mathrm{H} /{ }^{29} \mathrm{Si}$-HMQC NMR). Peaks that are within 0.01 ppm for ${ }^{1} \mathrm{H}$ NMR or 0.1 ppm for ${ }^{13} \mathrm{C}$ NMR and ${ }^{29} \mathrm{Si}$ DEPT NMR but are still distinguishable are reported to 0.001 ppm and 0.01 ppm , respectively. Coupling constants are quoted to the nearest 0.1 Hz for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR. The term "Ar" refers to unspecified protons or carbon atoms of an aromatic system. All samples were measured in reusable oven-dried standard NMR tubes.

High performance liquid chromatography (HPLC) analyses are performed on an Agilent Technologies 1290 Infinity instrument equipped with a chiral stationary phase, by using Daicel Chiralcel IB, OD-H and AD-H columns. Solvent mixture of nheptane and ipropanol is used as eluent.

[^5]
Optical rotations

Optical rotations are measured on a Schmidt \& Haensch Polartronic H532 Polarimeter with $\alpha_{\lambda}^{\mathrm{t}}$ values reported in $10^{-1}\left({ }^{\circ} \mathrm{cm}^{2} \mathrm{~g}^{-1}\right)$; with the concentration c in $\mathrm{g} / 100 \mathrm{~mL}$ and λ indicated.

Mass spectrometry

High resolution mass spectra (HRMS) analyses are performed on a Thermo Fisher Scientific LTQ Orbitrap XL apparatus using APCI/ESI/LIFDI techniques with a linear ion trap analyzer by colleagues from the Analytical Facility of Institut für Chemie in Technische Universität Berlin. The in-detail fragmentation is omitted and only the molecular ion peak or characteristic molecular fragments are considered.

Infrared spectroscopy

Infrared (IR) spectra are measured on an Agilent Technologies Cary 630 FTIR spectrophotometer equipped with an ATR unit and were reported as wave numbers $\left(\mathrm{cm}^{-1}\right)$.

X-ray crystal structural analysis

Data collection for the single crystal structure on an Agilent SuperNova diffractometer equipped with a CCD area Atlas detector and a mirror monochromator by utilizing Cu-Ka radiation ($\lambda=1.5418 \AA$) is finished by PAULA NIXDORF from the Analytical Facility of Institut für Chemie in Technische Universität Berlin, and then analyzed by Dr. ElisAbeth IrRan.

Physical data

Melting points (M.P.) are measured on a Leica Galen III melting point apparatus (Wagner \& Munz).

Software

GC-data are recorded and analyzed using EZChrom Elite Compact by Agilent. NMR data are recorded and analyzed using Topspin 3.2 or 3.5 by Bruker. The stacked NMR spectra are generated using GIMP 2.8.4 image manipulation program. GC-MS data are measured and analyzed using Enhanced ChemStation 02.02.1431 by Agilent Technologies. The HRMS data are analyzed using Mass++ 2.7.4 by Shimadzu and Eisai Co., Ltd. IR data are recorded and analyzed using Microlab and Agilent Resolutions Pro 5.2.0 by Agilent Technologies. Xray structures are analyzed using Mercury 3.10 .3 by CCDC. 3D graphics are generated using CYLview 1.0b. All schemes in this thesis are drawn in ChemDraw Professional 17.1 by

PerkinElmer. The references are retrieved using Chemistry Reference Resolver. ${ }^{[66]}$ The thesis is written using Microsoft Office 2016 by Microsoft.

Nomenclature and numbering

The numbering of compounds is done analogous to their representative structural drawing and does not correspond to the IUPAC recommendations.
[66] http://chemsearch.kovsky.net/

2 General Procedure

2.1 General Procedures for Asymmetric Conjugate 1.4-Silyl Transfer to AzaarylSubstituted Alkenes

2.1.1 GP 1.1: General Procedure for Silicon Grignard Reagents in $\mathrm{Et}_{2} \mathrm{O}$

A heat gun-dried two-neck round-bottom flask equipped with a water condenser and a magnetic stir bar is purged with N_{2}. To the flask are added magnesium turnings (292 mg , $12.0 \mathrm{mmol}, 1.20$ equiv) and THF (10 mL), and then it is heated at reflux in an oil bath. 1,2Dibromoethane ($1.88 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00$ equiv) is added to the flask quickly, and stirred at reflux for 3 hours to generate MgBr_{2} solution ($\sim 1 \mathrm{M}$ in THF at $66{ }^{\circ} \mathrm{C}$; note: high water flow rate in the condenser is necessary for safety because large amounts of explosive gas are produced during the reaction!). Dropwise addition of the freshly prepared $\mathrm{R}_{3} \mathrm{SiLi}$ solution (~ 1 M in THF, $10.0 \mathrm{mmol}, 1.00$ equiv) through syringe to the MgBr_{2} solution at reflux lasts at least 10 minutes to secure the concentration, and then the reaction mixture is allowed to cool to room temperature, affording the corresponding silicon GRIGNARD reagent in THF. ${ }^{[67]}$ THF in the reaction is removed under vacuum, and 10 mL dried $\mathrm{Et}_{2} \mathrm{O}$ is used to dissolve the residue. Concentration of $\mathrm{R}_{3} \mathrm{SiMgHal}$ solution ($\sim 0.8 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$) is titrated, using KNOCHEL's method. ${ }^{[68]}$ These silicon GRIGNARD reagents could be preserved at $2-8{ }^{\circ} \mathrm{C}$ in the fridge under N_{2}.

2.1.2 GP 1.2: General Procedure for Azaaryl-Substituted Alkenes

[^6][68] A. Krasovskiy, P. Knochel, Synthesis 2006, 890-891.

A heat gun-dried two-neck round-bottom flask equipped with a magnetic stir bar is purged with N_{2}. Sodium tert-butoxide ($865 \mathrm{mg}, 9.00 \mathrm{mmol}, 1.80$ equiv) and THF (10 mL) are added in sequence at $0^{\circ} \mathrm{C}$ in an ice bath, and then methyl-substituted benzoxazole (5.00 mmol , 1.00 equiv) is added slowly. The reaction mixture is stirred at $0^{\circ} \mathrm{C}$ for 30 minutes, and then the corresponding aldehyde ($5.00 \mathrm{mmol}, 1.00$ equiv) is added. After stirring at room temperature for 2 hours, the reaction is quenched by water (20 mL), and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 25 \mathrm{~mL})$. The combined organic phases are dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent or recrystallization in MeOH delivers the corresponding azaaryl-substituted alkene. ${ }^{[69]}$

2.1.3 GP 1.3: General Procedure for Racemic Products

A heat gun-dried Schlenk tube equipped with a magnetic stir bar and a septum is purged with N_{2}. CuSCN ($0.912 \mathrm{mg}, 7.50 \mu \mathrm{~mol}, 5.00 \mathrm{~mol} \%$) and the corresponding azaaryl-substituted alkene ($0.150 \mathrm{mmol}, 1.00$ equiv) are added in sequence, and then the tube is evacuated and backfilled with N_{2}. After that, THF (1 mL), $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(31.9 \mathrm{mg}, 0.225 \mathrm{mmol}, 1.50$ equiv) and $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ ($0.180 \mathrm{mmol}, 1.20$ equiv) are added sequentially to the tube and the reaction mixture is stirred at room temperature for 2 hours. The reaction is quenched by Water (10 $\mathrm{mL})$, and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases are dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent delivers the corresponding racemic product.

2.1.4 GP 1.4: General Procedure for Enantioenriched Products

A heat gun-dried Schlenk tube equipped with a magnetic stir bar and a septum is purged with $\mathrm{N}_{2} . \mathrm{CuCl}\left(1.49 \mathrm{mg}, 15.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%\right.$) and ($R, \mathrm{~S}_{\mathrm{P}}$)-L33 ($13.4 \mathrm{mg}, 22.5 \mu \mathrm{~mol}, 15.0 \mathrm{~mol} \%$) are added in sequence, and then the tube is evacuated and backfilled with N_{2}. After that, dried toluene $(1 \mathrm{~mL})$ is added to the Schlenk tube, and then the reaction mixture is stirred at room temperature for 30 minutes. The corresponding azaaryl-substituted alkene (0.150
[69] a) G. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802-1808; b) R. D. Viirre, G. Evindar, R. A. Batey, J. Org. Chem. 2008, 73, 3452-3459; c) L. Meng, Y. Kamada, K. Muto, J. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2013, 52, 10048-10051; Angew. Chem. 2013, 125, 1023210235; d) W.-C. Lee, T.-H. Wang, T.-G. Ong, Chem. Commun. 2014, 50, 3671-3673; e) A. A. Aleksandrov, E. V. Illenyeer, M. M. El'chaninov, Russ. J. Org. Chem. 2015, 51, 1111-1113; f) H. B. Hepburn, P. Melchiorre, Chem. Commun. 2016, 52, 3520-3523; g) R. P. Jumde, F. Lanza, M. J. Veenstra, S. R. Harutyunyan, Science 2016, 352, 433-437; h) R. Sharma, M. Abdullaha, S. B. Bharate, J. Org. Chem. 2017, 82, 9786-9793; i) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131-9135; Angew. Chem. 2018, 130, 9269-9273.
mmol, 1.00 equiv) is added. After stirring for 5 minutes at room temperature, the reaction mixture is allowed to cool to $-78{ }^{\circ} \mathrm{C}$ by using a cryostat. Then, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(42.6 \mathrm{mg}, 0.300$ mmol, 2.00 equiv) and $\mathrm{Me}_{2} \mathrm{PhSiMgHal}$ ($0.225 \mathrm{mmol}, 1.50$ equiv) are added sequentially and the reaction mixture is stirred at $-78^{\circ} \mathrm{C}$ for 12 hours. The reaction is quenched by Water (10 mL), and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases are dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent delivers the corresponding enantioenriched product.

2.2 General Procedures for Asymmetric Conjugate 1.4-Silyl Transfer to $\alpha, \beta, \gamma, \delta$ Unsaturated Acceptors

2.2.1 GP 2.1: General Procedure for Si-B Reagents

Method A

A heat gun-dried two-neck round-bottom flask equipped with a magnetic stir bar and activated lithium chunks ($999 \mathrm{mg}, 144 \mathrm{mmol}, 4.00$ equiv) is purged with N_{2}, followed by the addition of THF ($30 \mathrm{~mL}, \sim 1.2 \mathrm{M}$). The reaction mixture then cools to $-12{ }^{\circ} \mathrm{C}$ by using a cryostat, followed by the addition of $\mathrm{R}_{3} \mathrm{SiCl}(36.0 \mathrm{mmol}, 1.00$ equiv). The reaction mixture is allowed to warm to room temperature after 12 hours, and then is added to a solution of isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (iPrOBpin, $13.4 \mathrm{~g}, 72.0 \mathrm{mmol}, 2.00$ equiv) or 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin, $9.21 \mathrm{~g}, 72.0 \mathrm{mmol}, 2.00$ equiv) in hexane ($40 \mathrm{~mL}, \sim 1.8 \mathrm{M}$) over 30 minutes at $0{ }^{\circ} \mathrm{C}$ in an ice bath. After stirring overnight at room temperature, the reaction mixture is filtered through a sintered glass filter, and concentrated under reduced pressure. Purifying the residue by distillation delivers the corresponding Si-B reagent. ${ }^{[70 a]}$

Method B

[^7]A heat gun-dried two-neck round-bottom flask equipped with a magnetic stir bar and a condenser is purged with N_{2}, followed by the addition of $[\mathrm{Ir}(\mathrm{cod}) \mathrm{OMe}]_{2}(66.3 \mathrm{mg}, 0.100 \mathrm{mmol}$, $0.500 \mathrm{~mol} \%$), 4,4 '-di-tert-butyl-2,2'-dipyridyl (dtbpy, $53.7 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00 \mathrm{~mol} \%$) and bis(pinacolato)diboron ($5.08 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv). Cyclohexane ($40 \mathrm{~mL}, \sim 0.5 \mathrm{M}$) and $\mathrm{Et}_{3} \mathrm{SiH}(4.65 \mathrm{~g}, 80.0 \mathrm{mmol}, 4.00$ equiv) are added in sequence, and then the reaction mixture is stirred at $80^{\circ} \mathrm{C}$ in an oil bath. After 16 hours, it is allowed to cool to room temperature, and then solvent is removed under reduced pressure. Purifying the residue by flash column chromatography with clcylohexane/EtOAc $=20 / 1$ as eluent delivers the crude product as a gray oil. Further purification by short-path distillation affords pure $\mathrm{Et}_{3} \mathrm{Si}-\mathrm{Bpin}$ as a colourless oil. ${ }^{[700]}$

2.2.2 GP 2.2: General Procedure for $\alpha, \beta, \gamma, \delta$-Unsaturated Acceptors

Step A:

To a solution of methyl propiolate ($4.20 \mathrm{~g}, 50.0 \mathrm{mmol}, 1.00$ equiv) in glacial acetic acid (20 $\mathrm{mL}, \sim 2.5 \mathrm{M}$) is added $\mathrm{Nal}(8.24 \mathrm{~g}, 55.0 \mathrm{mmol}, 1.10$ equiv), and then the reaction mixture is stirred at $70^{\circ} \mathrm{C}$ in an oil bath for 15 hours. After cooling to room temperature, $\mathrm{NaOH}(7.00 \mathrm{~g}$ in 50 mL) is added slowly, and then the reaction mixture is extracted by Diethyl ether (3×50 $\mathrm{mL})$. The combined organic phases are washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution ($3 \times 50 \mathrm{~mL}$) and sat. aq. NaSO_{3} solution ($3 \times 50 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure to deliver the crude methyl (Z)-3-iodoacrylate which is used in the next step without further purification.
To a solution of crude methyl (Z)-3-iodoacrylate in toluene ($20 \mathrm{~mL}, \sim 2.5 \mathrm{M}$) is added $\mathrm{HI}(7.50$ $\mathrm{mmol}, 15.0 \mathrm{~mol} \%, 57 \%$ in water, 1 mL), and then the reaction mixture is stirred at $110^{\circ} \mathrm{C}$ in an oil bath for 15 hours. After cooling to room temperature, the reaction mixture is diluted with diethyl ether (50 mL), and then washed with sat. aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution $(3 \times 50 \mathrm{~mL})$ and sat. aq. NaSO_{3} solution ($3 \times 50 \mathrm{~mL}$). The organic phase is dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with npentane/EtOAc $=100 / 1$ as eluent delivers the desired methyl (E)-3-iodoacrylate as a white solid. Its spectroscopic data accord with those reported. ${ }^{[71]}$
[71] P. Koukal, J. Ulč, D. Nečas, M. Kotora, Eur. J. Org. Chem. 2016, 2110-2114.

Step B:

To a solution of methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in triethylamine (20 $\mathrm{mL}, \sim 0.25 \mathrm{M}$) are added $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(35.1 \mathrm{mg}, 50.0 \mu \mathrm{~mol}, 1.00 \mathrm{~mol} \%$), Cul ($4.75 \mathrm{mg}, 25.0$ $\mu \mathrm{mol}, 0.500 \mathrm{~mol} \%$) and the corresponding alkyne ($5.50 \mathrm{mmol}, 1.10$ equiv), and then the reaction mixture is stirred at $50{ }^{\circ} \mathrm{C}$ in an oil bath for 15 hours. After cooling to room temperature, the reaction is quenched by water (20 mL), and extracted by EtOAc (3×25 mL). The combined organic phases are dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent delivers the corresponding enyne. ${ }^{[72]}$

Step C:

To a solution of methyl (E)-5-phenylpent-2-en-4-ynoate ($0.931 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) in a mixture solvent ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}=8 / 1,10 \mathrm{~mL}, \sim 0.5 \mathrm{M}$) is added $\mathrm{NaOH}(0.400 \mathrm{~g}, 10.0 \mathrm{mmol}, 2.00$ equiv), and then the reaction mixture is stirred for 2 hours at $80^{\circ} \mathrm{C}$ in an oil bath. After cooling to room temperature, methanol is removed under reduced pressure, and then a solution of $\mathrm{HCl}(5 \mathrm{~mL}, \sim 2 \mathrm{M})$ is used for work-up. The reaction mixture is extracted by EtOAc $(3 \times 25 \mathrm{~mL})$. The combined organic phases are dried over anhydrous MgSO_{4}, filtered and
[72] a) R. Takeuchi, K. Tanabe, S. Tanaka, J. Org. Chem. 2000, 65, 1558-1561; b) B. C. Ranu, K. Chattopadhyay, Org. Lett. 2007, 9, 2409-2412; c) P.-Y. Tseng, S.-C. Chuang, Adv. Synth. Catal. 2013, 355, 2165-2171; d) B. Schmidt, S. Audörsch, Org. Lett. 2016, 18, 1162-1165; e) L. Chen, C.-J. Li, Tetrahedron Lett. 2004, 45, 2771-2774; f) A. A. Golovanov, D. R. Latypova, V. V. Bekin, V. S. Pisareva, A.V. Vologzhanina, V. A. Dokichev, Russ. J. Org. Chem. 2013, 49, 1264-1269; g) Z. Zhu, T. Li, X. Qu, P. Sun, H. Yang, J. Mao, Org. Biomol. Chem. 2011, 9, 7309-7312.
concentrated under reduced pressure to deliver the crude acid which is directly used in the next step.

To a solution of the aforementioned crude acid in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL}, \sim 0.5 \mathrm{M})$, are slowly added SOCl_{2} ($0.713 \mathrm{~g}, 6.00 \mathrm{mmol}, 1.20$ equiv) and DMF (1 mL) at room temperature. After stirring for 2 hours, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is evaporated under reduced pressure to provide the crude acyl chloride. The residue is dissolved in THF (10 mL), followed by the addition of $\mathrm{R}_{2} \mathrm{NH}$ (8.00 mmol, 1.60 equiv) and triethylamine ($6.60 \mathrm{mmol}, 1.32$ equiv). Then the reaction mixture is stirred at room temperature for 2 hours. The reaction is quenched by water (20 mL) and extracted by EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic phases are dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent delivers the corresponding product. ${ }^{[73]}$

2.2.3 GP 2.3: General Procedure for Racemic Products

A heat gun-dried Schlenk tube charged with a magnetic stir bar and a septum is purged with N_{2}, followed by the addition of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}(1.20 \mathrm{mg}, 2.00 \mu \mathrm{~mol}, 1.00 \mathrm{~mol} \%)$ and KOtBu ($2.30 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%$). The tube is evacuated and backfilled with N_{2} and then 2MeTHF (1 mL) and $\mathrm{R}_{3} \mathrm{SiBpin}$ ($0.300 \mathrm{mmol}, 1.50$ equiv) are added in sequence. After stirring at room temperature for 20 minutes, the corresponding enyne ($0.200 \mathrm{mmol}, 1.00$ equiv) and methanol ($13.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ equiv) are added successively. The reaction mixture is stirred at room temperature overnight, and then concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with indicated solvent as eluent delivers the corresponding product.

2.2.4 GP 2.4: General Procedure for Enantioenriched Products

A heat gun-dried Schlenk tube charged with a magnetic stir bar and a septum is purged with N_{2}, followed by the addition of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}(1.20 \mathrm{mg}, 2.00 \mu \mathrm{~mol}, 1.00 \mathrm{~mol} \%),(R, R)$ QuinoxP* [(R,R)-L4, $1.00 \mathrm{mg}, 3.00 \mu \mathrm{~mol}, 1.50 \mathrm{~mol} \%]$ and KOtBu $(2.30 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 10.0$ $\mathrm{mol} \%$). The tube is evacuated and backfilled with N_{2} and then 2-MeTHF (1 mL) is added. After stirring at room temperature for an hour, $\mathrm{R}_{3} \mathrm{SiBpin}$ ($0.300 \mathrm{mmol}, 1.50$ equiv) is added. The corresponding enyne ($0.200 \mathrm{mmol}, 1.00$ equiv) and methanol $(13.0 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.00 equiv) are successively added in 20 minutes. The reaction mixture is stirred at room temperature overnight, and then concentrated under reduced pressure. Purifying the residue

[^8]through flash column chromatography on silica gel with indicated solvent as eluent renders the corresponding product.

3 Description of Experiments

3.1 Asymmetric Conjugate 1.4-Silyl Transfer to Azaaryl-Substituted Alkenes

3.1.1 Preparation of Silicon Grignard Reagents

All silicon GRIGNARD reagents were synthesized according to GP 1.1, a procedure reported by Oestreich group. ${ }^{[67]}$

3.1.2 Experimental Details and Characterization Data for Azaarenes

89b, ${ }^{[697]} \mathbf{8 9 c}$, ${ }^{[69 d]} \mathbf{8 9 d},{ }^{[69 a]} \mathbf{8 9 f},{ }^{[697]} \mathbf{8 9 g},{ }^{[697]} \mathbf{8 9 p},{ }^{[69 d]} \mathbf{8 9 t},{ }^{[69 d]} \mathbf{1 2 2},{ }^{[69 d]}$ and $\mathbf{1 2 4},{ }^{[69]}$ were prepared according to reported procedures and all spectroscopic data accord with those known. 128 is commercially available.

$$
\begin{gathered}
(E)-89 \mathrm{a} \\
\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO} \\
\mathrm{M}=221.26 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(E)-2-Styrylbenzoxazole [(E)-89a]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00 \mathrm{mmol}$, 1.00 equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP
1.2. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=$ $30 / 1$ as eluent delivered (E)-89a as a yellow solid ($375 \mathrm{mg}, 56 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 d]}$

(E)-89e
$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}$
$\mathrm{M}=263.34 \mathrm{~g} / \mathrm{mol}$
(E)-2-(4-IsopropyIstyryl)benzoxazole [(E)-89e]: Synthesized from cuminaldehyde (741 mg, $5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{e}$ as a white solid ($590 \mathrm{mg}, 44 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[699]}$

(E)-2-(4-Chlorostyryl)benzoxazole [(E)-89h]: Synthesized from 4-chlorobenzaldehyde (703 $\mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{~h}$ as a yellow solid ($519 \mathrm{mg}, 41 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[699]}$

(E)-89i
$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}$
$\mathrm{M}=235.29 \mathrm{~g} / \mathrm{mol}$
(E)-2-(3-Methylstyryl)benzoxazole [(E)-89i]: Synthesized from m-tolualdehyde (601 mg , $5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{i}$ as a yellow solid ($593 \mathrm{mg}, 51 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 \mathrm{~d}]}$

(E)-2-(3-Methoxystyryl)benzoxazole [(E)-89j]: Synthesized from m-anisaldehyde (681 mg , $5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=10 / 1$ as eluent delivered $(E)-89 \mathrm{j}$ as a yellow solid ($0.416 \mathrm{~g}, 33 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[699]}$

(E)-2-(2-(Benzo[b]thiophen-2-yl)vinyl)benzoxazole [(E)-89k]: Synthesized from benzothio-phene-2-carboxaldehyde ($810 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($670 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered (E)-89k as a yellow solid ($0.313 \mathrm{~g}, 23 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $180-181^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.32-7.37(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 4', H-7', H-6" and H-7"), 7.43 (s, 1H, H-3"), 7.50-7.53 (m, 1H, H-5' or H-6'), 7.70-7.76 (m, $2 \mathrm{H}, \mathrm{H}-5$ ' or $\mathrm{H}-6$ ' and $\mathrm{H}-4 \mathrm{C}), 7.71-7.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{C}), 7.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,1}=16.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 110.3$ (C-5' or C-6'), 115.3 (C-1), 119.9 (C-5' or C-6'), 122.4 (C-5"), 124.2 (C-4"), 124.6 (C-4' or C-7'), 124.8 (C-7"), 125.4 (C-4' or C-7'), 126.0 (C6"), 127.3 (C-3"), 132.5 (C-2), 139.7 (C-3a' or C-7a'), 140.0 (3a' or C-7a'), 140.4 (C-2"), 142.2 (C-3a or C-7a), 150.5 (C-3a or C-7a), 162.1 (C-2') ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{NOS} 278.0634$, found 278.0624.

IR (ATR): $\tilde{\text { v }} 860,965,1024,1145,1268,1636,1673,3026,3060 \mathrm{~cm}^{-1}$.

(E)-891
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{2}$
$\mathrm{M}=211.22 \mathrm{~g} / \mathrm{mol}$
(E)-2-(2-(Furan-2-yl)vinyl)benzoxazole [(E)-89I]: Synthesized from furfural ($480 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according
to GP 1.2. Purification by recrystallization in MeOH delivered (E)-89I as a yellow solid (528 $\mathrm{mg}, 50 \%$ yield). All the spectroscopic data accord with those reported. ${ }^{[69 e]}$

(E)-89m
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NOS}$
$\mathrm{M}=227.28 \mathrm{~g} / \mathrm{mol}$
(E)-2-(2-(Thiophen-2-yl)vinyl)benzoxazole $[(E)-89 \mathrm{~m}]$: Synthesized from thiophene-2-carbox-aldehyde ($561 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole (666 mg , $5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH afforded (E)-89m as a yellow solid ($676 \mathrm{mg}, 60 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 \mathrm{c}]}$

(E)-89n
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{NO}_{2}$
$\mathrm{M}=211.22 \mathrm{~g} / \mathrm{mol}$
(E)-2-(2-(Furan-3-yl)vinyl)benzoxazole [(E)-89n]: Synthesized from 3-furaldehyde (480 mg , $5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($666 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(E)-89 \mathrm{n}$ as a gray solid ($0.386 \mathrm{~g}, 37 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 c]}$

(E)-2-(2-(Thiophen-3-yl)vinyl)benzoxazole [(E)-89o]: Synthesized from 3-thiophenecarboxaldehyde ($560 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) and 2-methyl-1,3-benzoxazole ($670 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-890$ as a grey solid ($0.595 \mathrm{~g}, 52 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $130-131^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 6.89\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.29-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 4^{\prime} and $\left.\mathrm{H}-7^{\prime}\right)$, $7.34-7.39$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-55^{\prime \prime}$), 7.47-7.53 (m, 2H, H-5' or H-6' and H-4"), $7.68-7.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5{ }^{\prime}\right.$ or $\left.\mathrm{H}-6{ }^{\prime}\right), 7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,1}=16.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$ ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 110.2$ (C-5' or C-6'), 113.7 (C-1), 119.7 (C-5' or C-6'), 124.4 (C-4' or C-7'), 124.8 (C-2"), 125.0 (C-4' or C-7'), 126.6 (C-4"), 126.9 (C-5"), 133.1 (C2), 138.2 (C-3"), 142.2 (C-3a or C-7a), 150.3 (C-3a or C-7a), 162.8 (C-2') ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NOS} 228.0478$, found 228.0470 .

IR (ATR): $\tilde{v} 868,969,1092,1147,1237,1639,3020,3060 \mathrm{~cm}^{-1}$.

(E)-5-Phenyl-2-styrylbenzoxazole [(E)-89q): Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) and 2-methyl-5-phenylbenzoxazole ($1.05 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{q}$ as a yellow solid ($907 \mathrm{mg}, 61 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 \mathrm{~d}]}$

(E)-5-Fluoro-2-styrylbenzoxazole [(E)-89r]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) and 5 -fluoro-2-methylbenzoxazole ($755 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv)
according to GP 1.2. Purification by recrystallization in MeOH rendered $(E)-89 \mathrm{r}$ as a yellow solid ($0.450 \mathrm{~g}, 38 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $108-109^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 7.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 6^{\prime}), 7.37-7.48 (m, 5H, H-4', H-7', H-3" and H-4"), 7.59-7.62 (m, 2H, H-2"), 7.80 (d, ${ }^{3} \mathrm{~J}_{2,1}=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2) \mathrm{ppm}$.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 106.2\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=25.4 \mathrm{~Hz}, \mathrm{C}-4\right.$) , $110.5\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=10.0\right.$ $\left.\mathrm{Hz}, \mathrm{C}-7{ }^{\prime}\right), 112.7$ ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=26.2 \mathrm{~Hz}, \mathrm{C}-6^{\prime}$), 113.6 (C-1), 127.6 (C-2"), 129.0 (C-3" or C-4"), 130.0 (C-3"or C-4"), 134.9 (C-1"), 140.1 (C-2), 143.0 ($\mathrm{d},{ }^{3}{ }^{\mathrm{J}, \mathrm{F}}=13.3 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{a}$), 146.7 (C-7a), $160.1\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=239.0 \mathrm{~Hz}, \mathrm{C}-5\right.$ ' $\left.^{\prime}\right), 164.5\left(\mathrm{C}-2{ }^{\prime}\right) \mathrm{ppm}$.
${ }^{19}$ F NMR (471 MHz, CDCl $3,298 \mathrm{~K}$): δ-117.8 (ArF) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNO} 240.0819$, found 240.0820 .

IR (ATR): $\tilde{v} 853,959,1130,1248,1638,3027,3060 \mathrm{~cm}^{-1}$.

(E)-5-Chloro-2-styrylbenzoxazole [(E)-89s]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) and 5-chloro-2-methylbenzoxazole ($838 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{~s}$ as a yellow solid ($570 \mathrm{mg}, 45 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 \mathrm{~d}]}$

(E)-6-Fluoro-2-styryIbenzoxazole [(E)-89u]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00$ mmol, 1.00 equiv) and 6-fluoro-2-methylbenzoxazole ($756 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{u}$ as a yellow solid ($289 \mathrm{mg}, 24 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 \mathrm{~b}]}$

(E)-5,6-Dimethyl-2-styrylbenzoxazole [(E)-89v]: Synthesized from benzaldehyde (531 mg , $5.00 \mathrm{mmol}, 1.00$ equiv) and 2,5,6-trimethylbenzoxazole ($805 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by recrystallization in MeOH delivered $(E)-89 \mathrm{v}$ as a yellow solid ($710 \mathrm{mg}, 57 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $137-138^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 2.34$ (s, $3 \mathrm{H}, 5^{\prime}-$ or 6 ' $-\mathrm{CH}_{3}$), 2.36 (s, $3 \mathrm{H}, 5$ '- or 6'-CH3), $7.04\left(\mathrm{~d},{ }^{3}{ }_{1,2}=16.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 7.28 (s, 1H, H-4' or H-5'), $7.33-7.37$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$), $7.37-7.42$ (m, 2H, H-3"), 7.46 (s, 1H, H-4' or H-5'), $7.55-7.58$ (m, 2H, H-2"), 7.71 (d, ${ }^{3} J_{2,1}=16.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 20.0$ ($5^{\prime}-$ or $6^{\prime}-\mathrm{CH}_{3}$), 20.4 ($5^{\prime}-$ or $6^{\prime}-\mathrm{CH}_{3}$), 110.5 (C-4' or C-7'), 114.1 (C-1), 119.8 (C-4' or C-7'), 127.3 (C-2"), 128.8 (C-3"), 129.4 (C-4"), 133.1 (C-4' or C-5'), 134.4 (C-4' or C-5'), 135.2 (C-1"), 138.3 (C-2), 140.3 (C-3a or C-7a), 149.0 (C-3a or C-7a), 162.0 (C-2') ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}$ 250.1226, found 250.1217.

IR (ATR): $\tilde{v} 824,949,1139,1241,1447,1631,2996,3042 \mathrm{~cm}^{-1}$.

(E)-2-Styrylbenzothiazole [(E)-91]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00 \mathrm{mmol}$, 1.00 equiv) and 2-methylbenzothiazole ($746 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=$ $20 / 1$ as eluent delivered (E)-91 as a yellow solid ($431 \mathrm{mg}, 36 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 d]}$

(E)-2-Styrylquinoline [(E)-87a]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) and quinaldine ($716 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 1.2. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=20 / 1$ as eluent delivered (E)-87a as a yellow solid ($433 \mathrm{mg}, 38 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[69 h]}$

(E)-1-Styrylisoquinoline [(E)-126]: Synthesized from benzaldehyde ($531 \mathrm{mg}, 5.00 \mathrm{mmol}$, 1.00 equiv) and 1-methylisoquinoline ($716 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP $\mathbf{1 . 2}$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=20 / 1$ as
eluent delivered $(E)-126$ as a yellow solid ($445 \mathrm{mg}, 39 \%$ yield). All spectroscopic data accord with those reported. ${ }^{[691]}$

3.1.3 Experimental Details and Characterization Data for Racemic Products

2-(2-(Dimethyl(phenyl)silyl)-2-(p-tolyl)ethyl)benzoxazole (rac-90b): Synthesized from (E)-2-(4-methylstyryl)benzoxazole [(E)-89b, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=$ $30 / 1$ as eluent delivered rac-90b as a white solid ($44.0 \mathrm{mg}, 79 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $54-55^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.30 (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 2.24 (s, 3 H , ArCH_{3}), $3.08\left(\mathrm{dd},{ }^{3} J_{2,1 \mathrm{~A}}=10.9 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.26-3.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.92(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}^{2 \prime}, 3^{\prime \prime}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 6.98\left(\mathrm{~d},{ }^{3} J_{3^{\prime \prime}, 2^{\prime \prime}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.17-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-7.35$ (m, 4H, H-4', or H-7', H-3'" and H-4'"), 7.42-7.45 (m, 2H, H-2'"), 7.53-7.56 (m, 1H, H-5' or H6^{\prime}) ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.7\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right), 20.9\left(\mathrm{ArCH}_{3}\right), 29.5(\mathrm{C}-2)$, 33.5 (C-1), 110.1 (Ar), 119.4 (Ar), 123.8 (Ar), 124.1 (Ar), 127.5 (C-2"), 127.7 (C-3"'), 128.8 (C-3"), 129.2 (C-4'"), 134.1 (C-2'"), 134.4 (C-4"), 136.3 (C-1"'), 137.8 (C-1"), 141.2 (C-3a or C-7a), 150.6 (C-3a or C-7a), 166.7 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 1 . 1}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOSi} 372.1784$, found 372.1788 .

IR (ATR): $\mathfrak{v ̃} 695,731,826,946,1003,1111,1242,1427,1565,1655,2957,3107 \mathrm{~cm}^{-1}$.

2-(2-(Dimethyl(phenyl)silyl)-2-phenylpropyl)benzoxazole (rac-90c): Synthesized from (E)-2-(2-phenylprop-1-en-1-yl)benzoxazole [(E)-89c, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered rac-90c as a brown solid ($37.2 \mathrm{mg}, 67 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $108-109{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.27$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.31 (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 1.62 (s, 3 H , $\left.\mathrm{CH}_{3}\right), 3.20\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{1 \mathrm{~A}, 1 \mathrm{~B}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~A}\right), 3.73\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{1 \mathrm{~B}, 1 \mathrm{~A}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}\right), 7.05-7.09$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 7.09-7.13 (m, 2H, H-2"), 7.15-7.22 (m, 4H, Ar and H-3"), 7.27-7.29 (m, 1H, Ar), 7.29-7.32 (m, 4H, Ar and H-2'"), 7.35-7.40 (m, 1H, Ar), 7.54-7.57 (m, 1H, Ar) ppm
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.9\left(\mathrm{SiCH}_{3}\right),-5.6\left(\mathrm{SiCH}_{3}\right), 20.7\left(\mathrm{CH}_{3}\right), 31.8(\mathrm{C}-2)$, 35.4 (C-1), 110.2 (Ar), 119.4 (Ar), 123.8 (Ar), 124.1 (Ar), 124.7 (C-4"), 126.8 (C-2"), 127.5 (Ar), 127.6 (Ar), 129.4 (Ar), 134.9 (Ar), 135.5 (C-1'"), 141.0 (C-3a or C-7a), 143.6 (C-1"), 150.6 (C-3a or C-7a), 165.4 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.2$ ($\left.\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOSi} 372.1778$, found 372.1777.

IR (ATR): $\tilde{v} 692,740,814,936,1028,1113,1245,1428,1599,1603,2962,3057 \mathrm{~cm}^{-1}$.

2-(2-(Dimethyl(phenyl)silyl)propyl)benzoxazole (rac-90d): Synthesized from (E)-2-(prop-1-en-1-yl)benzoxazole $[(E)-89 \mathrm{~d}, 23.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered rac-90d as a yellow oil ($21.4 \mathrm{mg}, 48 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc = 10/1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=\right.$ $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.61-1.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 2.70\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 \mathrm{~A}, 1 \mathrm{~B}}=15.2 \mathrm{~Hz},{ }^{3} J_{1 \mathrm{~A}, 2}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $1 \mathrm{~A}), 3.03\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 \mathrm{~B}, 1 \mathrm{~A}}=15.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{1 \mathrm{~B}, 2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}\right), 7.25-7.30(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.36$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{l}$ and $\mathrm{H}-4 \mathrm{C}$), 7.42-7.45 (m, 1H, Ar), 7.51-7.54 (m, 2H, H-2"), 7.63-7.66 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-5.0\left(\mathrm{SiCH}_{3}\right), 14.4\left(\mathrm{CH}_{3}\right), 18.4(\mathrm{C}-2)$, 31.1 (C-1), 110.2 (Ar), 119.5 (Ar), 124.0 (Ar), 124.3 (Ar), 127.8 (C-3"), 129.1 (C-4"), 133.9 (C2"), 137.0 (C-1"), 141.4 (C-3a or C-7a), 150.7 (C-3a or C-7a), 167.4 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.7\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NOSi} 296.1465$, found 296.1472.

IR (ATR): $\begin{gathered}\text { v } 698,777, ~ 831, ~ 1001, ~ 1025, ~ 1108, ~ 1242, ~ 1453, ~ 1565, ~ 1611, ~ 2951, ~ \\ 3064 \mathrm{~cm}^{-1} .\end{gathered}$

2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)benzothiazole (rac-92): Synthesized from (E)-2-styrylbenzothiazole $[(E)-\mathbf{9 1}, 35.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP $\mathbf{1 . 3}$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent rendered rac-92 as a brown oil ($40.7 \mathrm{mg}, 73 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.93\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=11.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.52-3.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.99-7.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.06-$ 7.10 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}$), 7.16-7.21 (m, 2H, H-3"), 7.23-7.27 (m, 1H, H-5' or H-6'), 7.32-7.39 (m, $4 \mathrm{H}, \mathrm{H}-5$ ' or H-6', H-3'" and H-4'"), 7.42-7.46 (m, 2H, H-2'"), 7.66-7.69 (m, 1H, H-4' or H-7'), 7.86-7.89 (m, 1H, H-4' or H-7') ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 34.6(\mathrm{C}-1), 36.8(\mathrm{C}-2)$, 121.3 (C-4' or C-7'), 122.3 (C-4' or C-7'), 124.4 (C-5' or C-6'), 125.2 (C-4"), 125.6 (C-5' or C6'), 127.8 (C-3'"), 128.0 (C-2"), 128.1 (C-2"), 129.4 (C-4"'), 134.2 (C-2"'), 135.2 (C-3a or C7a), 136.2 (C-1'"), 140.7 (C-1"), 152.7 (C-3a or C-7a), 172.4 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NSSi} 374.1393$, found 374.1400.

IR (ATR): ṽ 697, 757, 831, 938, 1062, 1113, 1246, 1428, 1595, 1655, 2951, $3058 \mathrm{~cm}^{-1}$.

2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-1-methylbenzimidazole (rac-123): synthesized from (E)-1-methyl-2-styrylbenzimidazole [(E)-122, $35.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=5 / 1$ as eluent delivered rac-123 as a yellow oil ($25.7 \mathrm{mg}, 46 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=5 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.19\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.20-3.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.99-7.02(\mathrm{~m}$, 2H, H-2"), 7.02-7.07 (m, 1H, H-4"), 7.09-7.20 (m, 5H, H-4', H-5', H-7' and H-3"), 7.25-7.30 (m, 2H, H-3'"), 7.30-7.35 (m, 1H, H-4'"), 7.39-7.43 (m, 2H, H-2'"), 7.64-7.68 (m, 1H, H-6') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.1\left(\mathrm{SiCH}_{3}\right),-3.7\left(\mathrm{SiCH}_{3}\right), 28.6(\mathrm{C}-1), 29.6\left(\mathrm{NCH}_{3}\right)$, 35.5 (C-2), 108.8 (Ar), 119.0 (C-6'), 121.6 (Ar), 121.7 (Ar), 125.1 (C-4"), 127.6 (C-3'"), 128.0 (C-2"), 128.1 (C-3"), 129.2 (C-4'"), 134.1 (C-2'"), 135.6 (C-7a), 136.6 (C-1'"), 141.9 (C-1"), 154.8 (C-2') ppm. Signal for C-3a overlaps with others.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.0\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{Si} 371.1938$, found 371.1934.

IR (ATR): $\tilde{v} 697,734,831,902,1074,1111,1247,1426,1596,2952,3050 \mathrm{~cm}^{-1}$.

2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)pyridine (rac-125): Synthesized from (E)-2styrylpyridine $[(E)$-124, $27.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=10 / 1$ as eluent delivered rac-125 as a yellow oil ($21.3 \mathrm{mg}, 45 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.20$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.5 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.18-3.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.86-6.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$ '), 6.896.95 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-5 \mathrm{C}$ and $\mathrm{H}-2 \mathrm{C}$), 6.97-7.02 (m, 1H, H-4"), 7.08-7.12 (m, 2H, H-3"), 7.29-7.38 (m, 4H, H-4', H-2'" and H-4'"), 7.40-7.43 (m, 2H, H-3'"), 8.40-8.43 (m, 1H, H-6') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.1\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 36.1(\mathrm{C}-2), 37.9(\mathrm{C}-1)$, 120.8 (C-5'), 122.9 (C-3'), 124.5 (C-4"), 127.6 (C-2'" or C-4'"), 127.8 (C-3"), 128.1 (C-2"), 129.1 (C-2'" or C-4'"), 134.2 (C-3'"), 135.8 (C-4'), 137.0 (C-1'"), 141.9 (C-1"), 149.0 (C-6'), 161.4 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NSi} 318.1673$, found 318.1675.

IR (ATR): $\tilde{v} 699,735,813,904,1074,1112,1248,1428,1590,2952,3064 \mathrm{~cm}^{-1}$.

2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)quinoline (rac-88a): Synthesized from (E)-2styrylquinoline $[(E)-87 a, 34.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.3. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered rac-88a as a yellow oil ($39.8 \mathrm{mg}, 72 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 0.29\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=11.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.42-3.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.98-7.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2{ }^{2}\right.$ and $\mathrm{H}-$ $\left.4^{\prime \prime}\right), 7.08\left(\mathrm{~d},{ }^{3} J_{3^{\prime}, 4^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.09-7.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.29-7.36\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime \prime}\right.$ and H-4'"), 7.39-7.43 (m, 1H, H-6'), 7.43-7.47 (m, 2H, H-2'"), 7.60-7.67 (m, 2H, H-5' and H-7'), $7.83\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{4,3^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.99\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.1\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right), 36.0(\mathrm{C}-2), 38.7(\mathrm{C}-1)$, 121.0 (C-3'), 124.6 (C-4"), 125.5 (C-6'), 126.6 (C-4a), 127.3 (C-5'), 127.6 (C-3'"), 127.9 (C3'), 128.1 (C-2"), 128.7 (C-8'), 129.0 (C-7' and C-4'"), 134.2 (C-2'"), 135.6 (C-4'), 137.0 (C1'"), 141.9 (C-1"), 147.7 (C-8a), 162.1 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 1 . 1}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NSi} 368.1829$, found 368.1834.

IR (ATR): $\tilde{v} 696,733,816,906,1074,1111,1247,1424,1595,2952,3051 \mathrm{~cm}^{-1}$.

1-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)isoquinoline (rac-127): Synthesized from (E)-1-styrylisoquinoline $[(E)-126,34.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP $\mathbf{1 . 3}$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered rac-127 as a yellow oil ($30.1 \mathrm{mg}, 55 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.19\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=9.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68-3.79(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.98-7.02(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 "$ and $\mathrm{H} 4 ")$, 7.08-7.13 (m, 2H, H-3"), 7.30-7.38 (m, 4H, H-4' H-3'" and H-4'"), 7.44-7.48 (m, 3H, H-7' and $\left.\mathrm{H}-2^{2}{ }^{\prime \prime}\right), 7.56-7.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.70\left(\mathrm{~d},{ }^{3} J_{5^{\prime} ; 6^{\prime}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{8^{\prime}, 7^{\prime}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.\mathrm{H}-8^{\prime}\right), 8.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}^{3}, 4^{\prime}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.1\left(\mathrm{SiCH}_{3}\right),-3.7\left(\mathrm{SiCH}_{3}\right), 35.3(\mathrm{C}-1), 36.3(\mathrm{C}-2)$, 119.0 (C-4'), 124.5 (C-4"), 125.1 (C-8'), 126.6 (C-7'), 127.0 (C-8a), 127.3 (C-5'), 127.6 (C3'"), 127.8 (C-3"), 128.2 (C-2"), 129.0 (C-4'"), 129.4 (C-6'), 134.2 (C-2'"), 136.1 (C-4a), 137.4 (C-1'"), 141.6 (C-3'), 142.6 (C-1"), 161.1 (C-1') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 1 . 1}\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{NSi} 368.1829$, found 368.1824.

IR (ATR): $\tilde{v} 696,731,813,902,1073,1110,1247,1425,1584,2953,3049 \mathrm{~cm}^{-1}$.

3.1.4 Experimental Details and Characterization Data for Enantioenriched Products

(S)-90b
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NOSi}$
$\mathrm{M}=371.56 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(p-tolyl)ethyl)benzoxazole [(S)-90b): Synthesized from (E)-2-(4-methylstyryl)benzoxazole [(E)-89b, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = $30 / 1$ as eluent delivered (S)-90b as a white solid ($44.5 \mathrm{mg}, 80 \%$ yield). All data accord with those of rac-90b.

Optical rotation: $[\alpha]_{D}^{20}=+44.2\left(c 0.2, \mathrm{CHCl}_{3}, 94 \% e e\right)$.

The enantiomeric ratio of $\mathbf{9 0 b}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: nheptane/ $\mathrm{PrOH}=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=47.3 \mathrm{~min}($ minor $), t_{\mathrm{S}}=50.2 \mathrm{~min}$ (major).

2-(2-(Dimethyl(phenyl)silyl)-2-phenylpropyl)benzoxazole (rac-90c): Synthesized from (E)-2-(2-phenylprop-1-en-1-yl)benzoxazole [(E)-89c, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent rendered rac-90c as a brown solid ($31.2 \mathrm{mg}, 56 \%$ yield).

Optical rotation: $[\alpha]_{D}^{20}=0\left(c 0.5, \mathrm{CHCl}_{3},<5 \% e e\right)$.

The enantiomeric ratio of rac-90c was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $99 / 1$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}): t=13.6 \mathrm{~min}, t=14.8 \mathrm{~min}$.

(R)-90d
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NOSi}$
$\mathrm{M}=295.46 \mathrm{~g} / \mathrm{mol}$
(R)-2-(2-(Dimethyl(phenyl)silyl)propyl)benzoxazole [(R)-90d]: Synthesized from (E)-2-(prop-1-en-1-yl)benzoxazole [(E)-89d, $23.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=$ $30 / 1$ delivered (R)-90d as a yellow oil ($19.5 \mathrm{mg}, 44 \%$ yield). All data accord with those of rac90d.

Optical rotation: $[\alpha]_{D}^{20}=-1.20\left(c 0.1, \mathrm{CHCl}_{3}, 13 \% e e\right)$.

The enantiomeric ratio of $(R)-90 \mathrm{~d}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=30.6 \mathrm{~min}($ major $), t_{\mathrm{S}}=34.6 \mathrm{~min}($ minor $)$.

(S)-90a
$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NOSi}$
$\mathrm{M}=357.53 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)benzoxazole [(S)-90a]: Synthesized from (E)-2-styrylbenzoxazole [(E)-89a, $33.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4 . Purification by flash column chromatography on silica gel with cyclohexane/EtOAc =30/1 as eluent deliver (S)-90a as a white solid ($35.1 \mathrm{mg}, 65 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $96-97^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.11$ ($\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}$ $\left.=10.8 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.28-3.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 7.00-7.03(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.03-$
7.07 (m, 1H, H-4"), 7.14-7.19 (m, 2H, H-3"), 7.19-7.23 (m, 2H, Ar), 7.27-7.31 (m, 2H, H-3'"), 7.31-7.35 (m, 2H, Ar and H-4'"), 7.40-7.43 (m, 2H, H-2'"), 7.53-7.56 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.6\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 29.4(\mathrm{C}-1), 34.1(\mathrm{C}-2)$, 110.1 (Ar), 119.4 (Ar), 123.8 (Ar), 124.2 (Ar), 125.1 (C-4"), 127.6 (C-2" or C-3'"), 127.7 (C-2" or C-3'"), 128.1 (C-3"), 129.2 (C-4"'), 134.1 (C-2'"), 136.1 (C-1'"), 141.1 (C-1"), 141.2 (C-3a or C-7a), 150.6 (C-3a or C-7a), 166.5 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{NOSi} 358.1627$, found 358.1632.

IR (ATR): $\tilde{v} 700,730,812,934,1076,1114,1242,1428,1597,2951,3062 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+24.0\left(c \quad 0.8, \mathrm{CHCl}_{3}, 93 \% e e\right)$.

The enantiomeric ratio of (S)-90a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH = 99.5:0.5, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{R}=48.6 \mathrm{~min}($ minor $), t_{\mathrm{S}}=51.6 \mathrm{~min}($ major $)$.

(S)-90e
$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NOSi}$
$\mathrm{M}=399.61 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(4-isopropylphenyl)ethyl)benzoxazole [(S)-90e): Synthesized from (E)-2-(4-isopropylstyryl)benzoxazole $[(E)-89 \mathrm{e}, 39.5 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = 30/1 as eluent delivered (S)-90e as a brown solid ($45.6 \mathrm{mg}, 76 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $59-60^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.21$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.18\left[\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $\left.7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.76-2.86\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 3.08(\mathrm{dd}, \mathrm{J}=10.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.26-3.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}^{2 \prime}, 3^{\prime \prime}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}-2^{\prime \prime}\right), 7.03\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3^{\prime \prime}, 2^{\prime \prime}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}-3^{\prime \prime}\right)$, 7.17-7.23 (m, 2H, Ar), 7.24-7.30 (m, 3H, H-3'" and H-4'"), 7.32-7.35 (m, 1H, Ar), 7.38-7.41 (m, 2H, H-2'"), 7.53-7.57 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.6\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right), 23.9\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 29.5(\mathrm{C}-$ 2), 33.4 [$\mathrm{C}-1$ or $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 33.5 [$\mathrm{C}-1$ or $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 110.1 (Ar), 119.4 (Ar), 123.8 (Ar), 124.1 (Ar), 126.1 (C-3"), 127.4 (C-2"), 127.6 (C-3'"'), 129.1 (C-4'"), 134.0 (C-2'"), 136.4 (C-1'"), 138.2 (C-1"), 141.3 (C-3a or C-7a), 145.5 (C-4"), 150.6 (C-3a or C-7a), 166.7 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.0\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{NOSi} 400.2091$, found 400.2099.

IR (ATR): $\tilde{v} 699,732,812,922,1056,1108,1242,1425,1568,2955,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+34.0\left(c 1.5, \mathrm{CHCl}_{3}, 86 \% e e\right)$.

The enantiomeric ratio of (S)-90e was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=38.7 \mathrm{~min}($ minor $), t_{\mathrm{S}}=46.6 \mathrm{~min}($ major $)$.

(S)-90f
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}$
$\mathrm{M}=387.55 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(4-methoxyphenyl)ethyl)benzoxazole [(S)-90f): Synthesized from (E)-2-(4-methoxystyryl)benzoxazole [(E)-89f, $37.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered (S)-90f as a yellow oil ($26.0 \mathrm{mg}, 45 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.6 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.25-3.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.71(\mathrm{~d}$, $\left.{ }^{3} J_{3^{\prime \prime}, 2^{\prime \prime}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 6.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2^{\prime \prime}, 3^{\prime \prime}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.17-7.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.27-7.36$ (m, 4H, Ar, H-3'" and H-4'"), 7.41-7.44 (m, 2H, H-2'"), 7.53-7.56 (m, 1H, Ar) ppm.
${ }^{13}{ }^{13}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 29.6(\mathrm{C}-1), 33.0(\mathrm{C}-2), 55.1$ $\left(\mathrm{OCH}_{3}\right), 110.1$ (Ar), 113.6 ($\mathrm{C}-3 \mathrm{3}$), 119.4 (Ar), 123.8 (Ar), 124.1 (Ar), 127.7 (C-3'"), 128.5 (C2"), 129.2 (C-4'"), 132.9 (C-1"), 134.1 (C-2'"), 136.3 (C-1'"), 141.2 (C-3a or C-7a), 150.6 (C3a or C-7a), 157.2 (C-4"), 166.6 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.1$ ($\left.\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{CINOSi} 388.1727$, found 388.1724.

IR (ATR): $\tilde{v} 694,731,836,914,1027,1109,1241,1424,1563,2956,3049 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+50.1\left(c 0.6, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $)$.

The enantiomeric ratio of (S)-90f was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $99.5 / 0.5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=81.4 \mathrm{~min}($ minor $), t_{\mathrm{S}}=91.0 \mathrm{~min}$ (major).

(S) $\mathbf{- 9 0} \mathrm{g}$
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNOSi}$ $\mathrm{M}=375.52 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(4-fluorophenyl)ethyl)benzoxazole [(S)-90g]: Synthesized from (E)-2-(4-fluorostyryl)benzoxazole [(E)-89g, $35.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 \mathrm{~g}$ as a white solid $(28.9 \mathrm{mg}, 51 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $87-88^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=9.5 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.29-3.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.82-6.87(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{l}), 6.91-$ 6.96 (m, 2H, H-2"), 7.20-7.23 (m, 2H, Ar), 7.30-7.35 (m, 4H, Ar, H-3'" and H-4'"), 7.39-7.42 (m, 2H, H-2'"), 7.53-7.56 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right), 29.5(\mathrm{C}-1), 33.4(\mathrm{C}-2)$, 110.1 (Ar), 114.9 ($\left.{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=21.0 \mathrm{~Hz}, \mathrm{C}-3 \mathrm{C}\right)$), 119.5 (Ar), 123.9 (Ar), 124.3 (Ar), 127.8 (C-3'"), 128.8 ($\left.{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=7.5 \mathrm{~Hz}, \mathrm{C}-2 "\right), 129.4$ (C-4'"), 134.1 (C-2'"), 135.8 (C-1"'), $136.6\left({ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=2.8 \mathrm{~Hz}\right.$, C-4"), 141.2 (C-3a or C-7a), 150.6 (C-3a or C-7a), 160.7 ($\left.{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=241.6 \mathrm{~Hz}, \mathrm{C}-4 "\right), 166.3$ (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-118.4$ (ArF) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNOSi} 376.1527$, found 376.1529.

IR (ATR): $\tilde{v} 693,731,835,932,1094,1116,1242,1428,1564,2952,3049 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+26.9\left(c \quad 0.4, \mathrm{CHCl}_{3}, 80 \% \mathrm{ee}\right)$.

The enantiomeric ratio of (S)-90g was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: $n h e p t a n e / \mathrm{PrOH}=$ $99.5 / 0.5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=66.8 \mathrm{~min}($ major $), t_{\mathrm{R}}=80.4 \mathrm{~min}($ minor $)$.

(S)-90h
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CINOSi}$
$\mathrm{M}=391.97 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(4-Chlorophenyl)-2-(dimethyl(phenyl)silyl)ethyl)benzoxazole [(S)-90h): Synthesized from (E)-2-(4-chlorostyryl)benzoxazole [(E)-89h, $38.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification through flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 \mathrm{~h}$ as a yellow solid $(25.9 \mathrm{mg}, 61 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $62-63^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.27-3.34(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.12$ (d, J=8.5 Hz, 2H, H-3"), 7.20-7.23 (m, 2H, Ar), 7.29-7.38 (m, 4H, Ar, H-3'" and H-4'"), 7.397.42 (m, 2H, H-2'"), 7.53-7.56 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right)$, $29.2(\mathrm{C}-1)$, $33.7(\mathrm{C}-2)$, 110.1 (Ar), 119.5 (Ar), 123.9 (Ar), 124.3 (Ar), 127.8 (C-3"'), 128.2 (C-3"), 128.9 (C-2"), 129.5 (C-4'"), 130.7 (C-4"), 134.1 (C-2'"), 135.6 (C-1'"), 139.6 (C-1"), 141.1 (C-3a or C-7a), 150.6 (C-3a or C-7a), 166.2 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.8\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CINOSi} 392.1232$, found 392.1238.

IR (ATR): $\mathfrak{v} 697,732,812,927,1091,1114,1242,1453,1564,2955,3049 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+38.9\left(c 1.1, \mathrm{CHCl}_{3}, 62 \%\right.$ ee $)$.

The enantiomeric ratio of (S)-90h was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{IPrOH}=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=72.1 \mathrm{~min}($ minor $), t_{\mathrm{S}}=76.2 \mathrm{~min}$ (major).

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(m-tolyl)ethyl)benzoxazole [(S)-90i): Synthesized from (E)-2-(3-methylstyryl)benzoxazole [(E)-89i, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv) according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = $30 / 1$ as eluent delivered (S)-90i as a brown solid ($43.0 \mathrm{mg}, 77 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $58-59^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.23(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 3.08 (dd, ${ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.27-3.40(m,2H,H-1), $6.79(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 6.84$ ($\left.\mathrm{d},{ }^{3} \mathrm{~J}_{6 ", 5 "}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 "\right), 6.87$ ($\mathrm{d},{ }^{3} \mathrm{~J}_{4,5^{\prime \prime}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{H}$), 7.04-7.09 (m, 1H, H-5'), 7.18-7.24 (m, 2H, Ar), 7.27-7.35 (m, 4H, Ar, H-3'" and H-4'"), 7.40-7.43 (m, 2H, H-2'"), 7.54-7.57 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.6\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 21.3\left(\mathrm{CH}_{3}\right), 29.4(\mathrm{C}-1)$, 33.8 (C-2), 110.1 (Ar), 119.4 (Ar), 123.8 (Ar), 124.1 (Ar), 124.6 (C-6"), 125.8 (C-4"), 127.6 (C3'"), 127.9 (C-5"), 128.6 (C-2"), 129.2 (C-4'"), 134.1 (C-2'"), 136.2 (C-1"'), 137.4 (C-3"), 141.0 (C-1"), 141.3 (C-3a or C-7a), 150.6 (C-3a or C-7a), 166.6 (C-2') ppm.

${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.0 \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOSi} 372.1778$, found 372.1782.

IR (ATR): $\tilde{v} 696,732,835,926,1031,1110,1241,1452,1564,2952,3051 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+18.1$ (c 2.1, $\left.\mathrm{CHCl}_{3}, 76 \% e e\right)$.

The enantiomeric ratio of (S)-90i was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=43.3 \mathrm{~min}($ minor $), t_{\mathrm{S}}=46.5 \mathrm{~min}$ (major).

(S)-90j
$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Si}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(3-methoxyphenyl)ethyl)benzoxazole [(S)-90j): Synthesized from (E)-2-(3-methoxystyryl)benzoxazole [(E)-89j, $37.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 j$ as a yellow oil ($40.6 \mathrm{mg}, 70 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.10\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.6 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.27-3.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.51(\mathrm{~s}, 1 \mathrm{H}$,
 7.19-7.23 (m, 2H, Ar), 7.27-7.33 (m, 3H H-3'" and H-4'"), 7.33-37.36 (m, 1H, Ar), 7.40-7.44 (m, 2H, H-2'"), 7.54-7.57 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 29.4(\mathrm{C}-1), 34.2(\mathrm{C}-2), 54.9$ $\left(\mathrm{OCH}_{3}\right), 110.1$ (Ar), 110.8 ($\mathrm{C}-4$ "), 113.3 (C-2"), 119.4 (Ar), 120.8 (C-6"), 123.8 (Ar), 124.2 (Ar), 127.7 (C-3'"), 129.0 (C-5"), 129.3 (C-4'"), 134.1 (C-2"'"), 136.2 (C-1"'), 141.2 (C-3a or C7a), 142.8 (C-1"), 150.6 (C-3a or C-7a), 159.3 (C-3"), 166.5 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{Si} 388.1727$, found 388.1731.

IR (ATR): $\tilde{v} 695,745,837,928,1025,1112,1241,1452,1571,2956,3064 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+19.1$ (c 1.0, $\mathrm{CHCl}_{3}, 75 \%$ ee).

The enantiomeric ratio of (S)-90j was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/ $\mathrm{iPrOH}=$ $99.5 / 0.5$, flow rate $0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=50.4 \mathrm{~min}$ (minor), $t_{\mathrm{s}}=52.7 \mathrm{~min}$ (major).

(S)-2-(2-(Benzothiophen-2-yl)-2-(dimethyl(phenyl)silyl)ethyl)benzoxazole [(S)-90k]: Synthesized from (E)-2-(2-(benzothiophen-2-yl)vinyl)benzoxazole $[(E)-89 \mathbf{k}, 41.6 \mathrm{mg}, 0.150$ mmol, 1.00 equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 k$ as a yellow solid $(49.4 \mathrm{mg}$, 80% yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $123-124{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.34-3.43(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-1$), 3.49 ($\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), $6.86\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3{ }^{\prime \prime}\right), 7.17-7.22$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}$), 7.23-7.27 (m, 1H, Ar), 7.30-7.37 (m, 4H, Ar, H-3'" and H-4'"), 7.50-7.53 (m, 2H, H-2'"), 7.54-7.59 (m, 2H, H-4"), 7.68 (d, J=8.0 Hz, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-3.8\left(\mathrm{SiCH}_{3}\right), 30.4(\mathrm{C}-2), 30.9(\mathrm{C}-1)$, 110.2 (Ar), 119.5 (Ar), 119.7 (C-3"), 121.8 (Ar), 122.4 (C-4"), 123.0 (Ar), 123.9 (Ar), 124.3 (Ar), 127.9 (C-3'"), 129.5 (C-4'"), 134.0 (C-2'"), 135.6 (C-1'"), 138.5 (C-3a' or C-7a'), 140.2 (C3a' or C-7a'), 141.2 (C-3a or C-7a), 145.9 (C-2"), 150.6 (C-3a or C-7a), 165.8 (C-2') ppm. A signal for carbon overlaps with others.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.4\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NOSSi} 414.1342$, found 414.1346.

IR (ATR): $\tilde{v} 696,732,839,928,1017,1114,1238,1452,1566,2962,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+56.5\left(c 1.0, \mathrm{CHCl}_{3}, 70 \% e e\right)$.

The enantiomeric ratio of (S)-90k was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $95 / 5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=10.5 \mathrm{~min}($ minor $), t_{\mathrm{S}}=12.0 \mathrm{~min}($ major $)$.

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(furan-2-yl)ethyl)benzoxazole [(S)-90I): Synthesized from (E)-2-(4-methoxystyryl)benzoxazole [(E)-891, $31.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-901$ as a brown oil ($32.2 \mathrm{mg}, 62 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.14-3.23$ (m, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{~A}$ and $\mathrm{H}-2$), 3.29 (dd, $\left.{ }^{3} \mathrm{~J}_{1 \mathrm{~B}, 2}=13.5 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{1 \mathrm{~B}, 1 \mathrm{~A}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}\right), 5.84\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3^{\prime}, 4^{\prime \prime}}=3.2\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 6.19$ (dd, $\left.{ }^{3} \mathrm{~J}_{4,3^{\prime \prime}}=3.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4} \mathrm{~F}^{\prime \prime}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}\right), 7.22-7.24$ (m, 1H, Ar), 7.24-7.25 (m, 2H, Ar and H-5"), 7.30-7.33 (m, 3H, H-3'" and H-4'"), 7.35-7.38 (m, 1H, Ar), 7.45-7.48 (m, 2H, H-2'"), 7.57-7.60 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.2\left(\mathrm{SiCH}_{3}\right),-3.8\left(\mathrm{SiCH}_{3}\right), 27.5(\mathrm{C}-2), 28.3(\mathrm{C}-1)$, 104.7 (C-3"), 110.2 (Ar), 110.3 (C-4"), 119.5 (Ar), 123.9 (Ar), 124.3 (Ar), 127.8 (C-3"'), 129.3 (C-4'"), 133.9 (C-2'"), 136.1 (C-1'"), 140.6 (C-5"), 141.3 (C-3a or C-7a), 150.7 (C-3a or C-7a), 155.3 (C-1"), 166.3 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Si} 348.1414$, found 348.1411.

IR (ATR): $\tilde{v} 697,728,833,927,1003,1114,1242,1453,1568,2954,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+25.2\left(c\right.$ 1.3, $\mathrm{CHCl}_{3}, 75 \%$ ee $)$.

The enantiomeric ratio of (S)-901 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/ $\mathrm{PrOH}=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=56.1 \mathrm{~min}($ major $), t_{\mathrm{R}}=60.6 \mathrm{~min}($ minor $)$.

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(thiophen-2-yl)ethyl)benzoxazole [(S)-90m): Synthesized from (E)-2-(2-(thiophen-2-yl)vinyl)benzoxazole [(E)-89m, $34.1 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 \mathrm{~m}$ as a brown solid ($40.7 \mathrm{mg}, 75 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $62-63^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.31$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.41 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 3.29-3.33 (m, $2 \mathrm{H}, \mathrm{H}-1$), $3.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}=9.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.62-6.64\left(\mathrm{~d},{ }^{3} J_{3^{3}, 44^{\prime \prime}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$,
 5"), 7.20-7.25 (m, 2H, Ar), 7.30-7.34 (m, 3H, H-3'" and H-4"'), 7.34-7.38 (m, 1H, Ar), 7.467.49 (m, 2H, H-2'"), 7.56-7.59 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.6\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right)$, $29.4(\mathrm{C}-2), 31.3(\mathrm{C}-1)$, 110.1 (Ar), 119.5 (Ar), 121.9 (C-5"), 123.4 (C-3"), 123.9 (Ar), 124.3 (Ar), 126.7 (C-4"), 127.7 (C-3'"), 129.4 (C-4'"), 134.0 (C-2'"), 135.9 (C-1'"), 141.2 (C-3a or C-7a), 144.5 (C-2"), 150.6 (C-3a or C-7a), 166.0 (C-2') ppm.

${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9$ ($\mathrm{SiMe}_{2} \mathrm{Ph}$) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NOSSi} 364.1186$, found 364.1189.

IR (ATR): $\tilde{v} 687,740,832,927,1000,1108,1239,1452,1568,2952,3066 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+8.10$ (c 1.9, $\left.\mathrm{CHCl}_{3}, 82 \% \mathrm{ee}\right)$.

The enantiomeric ratio of (S)-90m was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=51.9 \mathrm{~min}($ minor $), t_{\mathrm{S}}=56.0 \mathrm{~min}($ major $)$.

(S)-90n
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Si}$
$\mathrm{M}=347.49 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(furan-3-yl)ethyl)benzoxazole [(S)-90n]: Synthesized from (E)-2-(2-(furan-3-yl)vinyl)benzoxazole [(E)-89n, $31.7 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 \mathrm{n}$ as a brown oil $(40.9 \mathrm{mg}, 79 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.31$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.96\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.10-3.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{4,5 "}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 4"), 7.07 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}$), 7.21-7.25 (m, 3H, Ar and H-5"), 7.30-7.36 (m, 3H, H-3'" and H-4'"), 7.36-7.40 (m, 1H, Ar), 7.46-7.50 (m, 2H, H-2'"), 7.55-7.60 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right), 23.7(\mathrm{C}-2), 29.6(\mathrm{C}-1)$, 110.2 (Ar), 110.6 (C-4"), 119.4 (Ar), 123.9 (Ar), 124.0 (C-3"), 124.3 (Ar), 127.8 (C-3'"), 129.3 (C-4'"), 134.0 (C-2'"), 136.2 (C-1"'), 138.3 (C-2"), 141.2 (C-3a or C-7a), 142.4 (C-5"), 150.6 (C-3a or C-7a), 166.6 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.1\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Si} 348.1414$, found 348.1422.

IR (ATR): $\tilde{v} 697,739,830,931,1025,1114,1242,1453,1565,2955,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+28.3\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}, 72 \% e e\right)$.

The enantiomeric ratio of (S)-90n was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min})$: $t_{\mathrm{s}}=42.3 \mathrm{~min}($ major $), t_{\mathrm{R}}=48.2 \mathrm{~min}($ minor $)$.

(S)-900
$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NOSSi}$
$\mathrm{M}=363.55 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-(thiophen-3-yl)ethyl)benzoxazole [(S)-900): Synthesized from (E)-2-(2-(thiophen-3-yl)vinyl)benzoxazole [(E)-89o, $34.1 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ delivered $(S)-900$ as a yellow solid ($48.1 \mathrm{mg}, 88 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $74-75^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.23-3.31(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-1$ and H-2), 6.71-6.73 (dd, $\left.{ }^{4} \mathrm{~J}^{2}, 5^{\prime \prime}=3.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}^{2 \prime}, 4^{\prime \prime}=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{C}\right), 6.75-6.78$ (dd,
 7.20-7.24 (m, 2H, Ar), 7.28-7.34 (m, 3H, H-3'" and H-4'"), 7.34-7.37 (m, 1H, Ar), 7.40-7.44 (m, 2H, H-2'"), 7.54-7.58 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.1\left(\mathrm{SiCH}_{3}\right), 29.7(\mathrm{C}-2), 29.9(\mathrm{C}-1)$, 110.1 (Ar), 118.7 (C-2"), 119.5 (Ar), 123.9 (Ar), 124.2 (Ar), 124.8 (C-5"), 127.7 (C-4" and C3'"), 129.3 (C-4'"), 134.0 (C-2'"), 136.1 (C-1'"), 141.2 (C-3a or C-7a and C-3"), 150.6 (C-3a or C-7a), 166.5 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22}$ NOSSi 364.1186, found 364.1194.

IR (ATR): $\tilde{v} 694,745,824,932,1021,1115,1244,1453,1563,2949,3078 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+32.3$ (c 1.1, $\left.\mathrm{CHCl}_{3}, 90 \% \mathrm{ee}\right)$.

The enantiomeric ratio of (S)-900 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=36.7 \mathrm{~min}($ minor $), t_{\mathrm{S}}=39.0 \mathrm{~min}($ major $)$.

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-5-methylbenzoxazole [(S)-90p]: Synthesized from (E)-5-methyl-2-styrylbenzoxazole [(E)-89p, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 p$ as a yellow solid ($45.4 \mathrm{mg}, 82 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $52-53^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.29 (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 2.39 (s, 3 H , ArCH_{3}), $3.09\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}=10.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.25-3.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.98-$ $7.02\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6^{\prime}\right.$, and $\left.\mathrm{H}-2^{\prime \prime}\right), 7.02-7.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.13-7.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.20(\mathrm{~d}, \mathrm{~J}=$ 8.3 Hz, 1H, H-7'), 7.27-7.35 (m, 4H, H-4', H-3'" and H-4'"), 7.40-7.43 (m, 2H, H-2'") ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 21.3\left(\mathrm{ArCH}_{3}\right), 29.4(\mathrm{C}-1)$, 34.0 (C-2), 109.5 (C-7), 119.4 (C-4'), 125.0 (C-4"), 125.2 (C-6'), 127.6 (C-2" or C-3'"), 127.7
(C-2" or C-3'"), 128.1 (C-3"), 129.3 (C-4'"), 133.6 (C-5'), 134.1 (C-2'"), 136.2 (C-1'"), 141.1 (C1"), 141.4 (C-3a), 148.8 (C-7a), 166.6 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9$ ($\mathrm{SiMe}_{2} \mathrm{Ph}$) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOSi} 372.1778$, found 372.1784.

IR (ATR): $\mathfrak{v} 696,732,833,921,1011,1112,1258,1425,1569,2953,3055 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+21.7\left(c 1.8, \mathrm{CHCl}_{3}, 80 \% e e\right)$.

The enantiomeric ratio of (S)-90p was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $95 / 5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=9.0 \mathrm{~min}$ (major), $t_{\mathrm{R}}=10.2 \mathrm{~min}$ (minor).

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-5-phenylbenzoxazole [(S)-90q]: Synthesized from (E)-5-phenyl-2-styrylbenzoxazole [(E)-89q, $44.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 q$ as a white solid ($32.3 \mathrm{mg}, 50 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $94-95^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.12\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.8 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.30-3.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 7.02-7.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2 \mathrm{C}$ and $\mathrm{H}-$ 4"), 7.15-7.20 (m, 2H, H-3"), 7.27-7.33 (m, 4H, Ar, H-3'" and H-4'"), 7.36-7.39 (m, 1H, Ar), 7.41-7.45 (m,5H, Ar and H-2"'), 7.54-7.57 (m, 2H, C-2"" or C-3""), 7.72-7.74 (m, 1H, Ar) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.6\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 29.5(\mathrm{C}-1), 34.1(\mathrm{C}-2)$, 110.1 (Ar), 118.0 (Ar), 123.8 (Ar), 125.1 (C-4"), 127.1 (Ar), 127.4 (Ar), 127.6 (C-2""" or C-3'"), 127.7 (C-2" or C-3'"), 128.1 (C-3"), 128.8 (Ar), 129.3 (C-4'"), 134.1 (C-2'"), 136.1 (C-1"'), 137.8 (C-1"" or C-5'), 141.0 (C-1" or Ar), 141.2 (C-1" or Ar), 141.9 (Ar), 150.2 (Ar), 167.2 (C2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{NOSi} 434.1935$, found 434.1927.

IR (ATR): $\tilde{v} 697,743,833,924,1007,1114,1249,1425,1565,2954,3063 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+18.9\left(c 0.6, \mathrm{CHCl}_{3}, 70 \% e e\right)$.

The enantiomeric ratio of (S)-90q was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: $n h e p t a n e / \mathrm{PrOH}=$ $90 / 10$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=37.9 \mathrm{~min}($ minor $), t_{\mathrm{s}}=50.0 \mathrm{~min}$ (major).

(S)-90r
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNOSi}$
$\mathrm{M}=375.52 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-5-fluorobenzoxazole [(S)-90r]: Synthesized from (E)-5-fluoro-2-styrylbenzoxazole [(E)-89r, $35.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = 30/1 as eluent delivered (S)-90r as a white solid ($39.4 \mathrm{mg}, 70 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $79-80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.26-3.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.89-6.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6{ }^{\prime}\right), 7.00-$
7.03 (m, 2H, H-2"), 7.04-7.09 (m, 1H, H-4"), 7.15-7.19 (m, 2H, H-3"), 7.19-7.23 (m, 2H, H-4' and H-7'), 7.26-7.33 (m, 3H, H-3'" and H-4'"), 7.39-7.42 (m, 2H, H-2'") ppm.

```
13}\mp@subsup{}{}{13}\mathrm{ NMR (125 MHz, CDCl}3,298 K): \delta -5.7 (SiCH3), -4.0 (SiCH3), 29.5 (C-1), 34.1 (C-2)
```



```
(C-4"), 127.6 (C-2" or C-3''), 127.7 (C-2" or C-3'''), 128.1 (C-3"), 129.3 (C-4'"), 134.0 (C-2'"),
```



``` Hz, C-5'), 168.4 (C-2') ppm.
```

${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-118.9$ (ArF) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNOSi} 376.1527$, found 376.1532.

IR (ATR): ṽ 700, 834, 966, 1076, 1129, 1248, 1560, 1624, 2956, $3056 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+18.9\left(c 1.5, \mathrm{CHCl}_{3}, 76 \%\right.$ ee $)$.

The enantiomeric ratio of (S)-90r was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=31.9 \mathrm{~min}($ minor $), t_{\mathrm{S}}=34.6 \mathrm{~min}($ major $)$.

(S)-90s
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{CINOSi}$
$\mathrm{M}=391.97 \mathrm{~g} / \mathrm{mol}$
(S)-5-Chloro-2-(2-(dimethyl(phenyl)silyl)-2-phenylethyl)benzoxazole [(S)-90s]: Synthesized from (E)-5-chloro-2-styrylbenzoxazole $[(E)-89 \mathrm{~s}, 38.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90$ s as a yellow oil ($34.2 \mathrm{mg}, 58 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.07\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.8 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.26-3.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 7.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C})$, 7.04-7.08 (m, 1H, H-4"), 7.14-7.19 (m, 3H, Ar and H-3"), $7.23(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.28-$ $7.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 \mathrm{3}^{\prime \prime}\right.$ and H-4'"), 7.39-7.42 (m, 2H, H-2'"), $7.50(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.7\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 29.5(\mathrm{C}-1), 34.1(\mathrm{C}-2)$, 110.8 (Ar), 119.5 (Ar), 124.5 (Ar), 125.2 (C-4"), 127.6 (C-2" or C-3'"), 127.7 (C-2" or C-3'"), 128.2, 129.3 (C-4'"), 129.4 (Ar), 134.0 (C-2'"), 136.0 (C-1'"), 140.9 (C-1"), 142.3 (Ar), 149.1 (Ar), 168.0 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9$ ($\left.\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{CINOSi} 392.1232$, found 392.1237.

IR (ATR): $\tilde{v} 697,731,838,950,1076,1111,1249,1424,1559,2054,3064 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+16.0\left(c 0.2, \mathrm{CHCl}_{3}, 80 \% e e\right)$.

The enantiomeric ratio of (S)-90s was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH = $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=52.6 \mathrm{~min}$ (major), $t_{\mathrm{R}}=62.3 \mathrm{~min}$ (minor).

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-6-methylbenzoxazole [(S)-90t): Synthesized from (E)-6-methyl-2-styrylbenzoxazole [(E)-89t, $35.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 t$ as a white solid ($40.5 \mathrm{mg}, 73 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $63-64{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.29 (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 2.41 (s, 3 H , ArCH_{3}), 3.09 (dd, $\left.{ }^{3} J_{2,1 \mathrm{~A}}=10.9 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.25-3.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.99-$ 7.07 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-2{ }^{\prime \prime}$ and $\mathrm{H}-4 \mathrm{C}$), 7.13-7.18 (m, 3H, H-7', and H-3"), 7.27-7.36 (m, 3H, H-3'" and $\mathrm{H}-4 \mathrm{C}$), $7.39-7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4 \mathrm{l}$ and $\mathrm{H}-2 \mathrm{C}$ ') ppm.
${ }^{13}{ }^{2}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.0\left(\mathrm{SiCH}_{3}\right), 21.6\left(\mathrm{ArCH}_{3}\right), 29.3(\mathrm{C}-1)$, 34.1 (C-2), 110.3 (C-7'), 118.7 (C-4'), 124.9 (C-5' or C-4"), 125.0 (C-5' or C-4"), 127.6 (C-2" or C-3'"), 127.7 (C-2" or C-3'"), 128.1 (C-3"), 129.2 (C-4'"), 134.1 (C-2'"), 134.5 (C-6'), 136.2 (C-1'"), 139.0 (C-3a), 141.1 (C-1"), 150.9 (C-7a), 166.0 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NOSi} 372.1778$, found 372.1781.

IR (ATR): $\tilde{v} 696,731,834,939,1076,1113,1242,1426,1596,2051,3055 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+26.8$ (c 1.4, $\mathrm{CHCl}_{3}, 90 \%$ ee).

The enantiomeric ratio of (S)-90t was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH = $95 / 5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min})$: $t_{\mathrm{S}}=10.3 \mathrm{~min}($ major $), t_{\mathrm{R}}=12.5 \mathrm{~min}($ minor $)$.

(S)-90u
$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{FNOSi}$
$\mathrm{M}=375.52 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-6-fluorobenzoxazole [(S)-90u]: Synthesized from (E)-6-fluoro-2-styrylbenzoxazole [(E)-89u, $35.9 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered $(S)-90 u$ as a white solid $(43.0 \mathrm{mg}, 76 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $82-83^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.07\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~A}}\right.$ $\left.=10.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.25-3.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 6.92-6.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 6.99-$ 7.03 (m, 2H, H-2"), 7.03-7.08 (m, 2H, H-7' and H-4"), 7.15-7.20 (m, 2H, H-3"), 7.26-7.34 (m, $3 \mathrm{H}, \mathrm{H}-3$ '" and H-4'"), 7.39-7.42 (m, 2H, H-2'"), 7.44(m, 1H, H-4') ppm.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.7\left(\mathrm{SiCH}_{3}\right),-3.9\left(\mathrm{SiCH}_{3}\right), 29.4(\mathrm{C}-1), 34.1(\mathrm{C}-2), 98.2$
 4"), 127.6 (C-2" or C-3'"), 127.7 (C-2" or C-3'"), 128.1 (C-3"), 129.3 (C-4'"), 134.0 (C-2'"), 136.0 (C-1'"), 137.4 (3a), $141.0\left(\mathrm{C}-1\right.$ "), $150.4\left({ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=14.6 \mathrm{~Hz}, \mathrm{C}-7 \mathrm{a}\right), 160.1\left({ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=241.4 \mathrm{~Hz}\right)$, 167.1 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.9\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): δ-116.7 (ArF) ppm.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{FNOSi} 376.1527$, found 376.1534.

IR (ATR): $\tilde{\text { v }} 812,950,1076,1117,1249,1577,1619,3019,3063 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+16.7\left(c 0.8, \mathrm{CHCl}_{3}, 79 \% e e\right)$.

The enantiomeric ratio of (S)-90u was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $99 / 1$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=13.9 \mathrm{~min}($ minor $), t_{\mathrm{S}}=15.1 \mathrm{~min}($ major $)$.

(S)-90v
$\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NOSi}$
$\mathrm{M}=385.58 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)-5,6-dimethylbenzoxazole [(S)-90v]: Synthesized from (E)-5,6-dimethyl-2-styrylbenzoxazole $[(E)-89 \mathrm{v}, 37.4 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$
equiv] according to GP 1.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = 30/1 as eluent delivered $(S)-90 \mathrm{v}$ as a white solid ($20.1 \mathrm{mg}, 35 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc = 10/1).
M.P. $116-117^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.28(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}), 2.29 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}$), 3.07 (dd, $J=10.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23-3.37 (m, 2H), 6.98 (d, $\left.3 \mathrm{~J}^{2 \prime}, 3^{\prime \prime}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.00-7.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime \prime}\right), 7.10-7.16$ (m, 3H, H-3' or H-7', and H-3"), 7.28-7.36 (m, 4H, H-3' or H-7', H-3'" and H-4'"), 7.39-7.43 (m, 2H, H-2'") ppm.
${ }^{13}{ }^{3}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.1\left(\mathrm{SiCH}_{3}\right), 20.0\left(\mathrm{ArCH}_{3}\right), 20.3$ (ArCH_{3}), 29.3 (C-1), 34.1 (C-2), 110.5 (C-4' or C-7'), 119.5 (C-4' or C-7'), 125.0 (C-4"), 127.6 (C-2" or C-3'"), 127.7 (C-2" or C-3'"), 128.0 (C-3"), 129.3 (C-4'"), 132.4 (C-5' or C-6'), 133.1 (C-5' or C-6'), 134.1 (C-2'"), 136.2 (C-1"'), 139.4 (C-3a or C-7a), 141.1 (C-1"), 149.2 (C-3a or C-7a), 165.7 (C-2') ppm.

${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.0\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: [$\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NOSi} 386.1935$, found 386.1938.

IR (ATR): $\tilde{v} 697,734,834,931,1011,1112,1248,1426,3070,3053 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+23.1\left(c 0.6, \mathrm{CHCl}_{3}, 83 \%\right.$ ee $)$.

The enantiomeric ratio of (S)-90v was measured through HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20{ }^{\circ} \mathrm{C}$, solvent: nheptane $/ \mathrm{PrOH}=90 / 10$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{s}}=9.8 \mathrm{~min}$ (major), $t_{\mathrm{R}}=15.1 \mathrm{~min}$ (minor).

$$
\begin{gathered}
(\mathrm{S})-92 \\
\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NSSi} \\
=373.59 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

(S)-2-(2-(Dimethyl(phenyl)silyl)-2-phenylethyl)benzothiazole [(S)-92]: Synthesized from (E)-2-styrylbenzothiazole $[(E)-\mathbf{9 1}, 35.6 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4 . Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered (S)-92 as a brown oil ($16.3 \mathrm{mg}, 29 \%$ yield). All data accord with those of rac92.

The enantiomeric ratio of (S)-92 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $99.5 / 0.5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=43.4 \mathrm{~min}($ minor $), t_{\mathrm{S}}=51.0 \mathrm{~min}$ (major).

(S)-131a
$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NOSi}$
$\mathrm{M}=419.60 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(Methyldiphenylsilyl)-2-phenylethyl)benzoxazole [(S)-131a]: Synthesized from (E)-2-styryl-benzoxazole [(E)-89a, $33.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP $\mathbf{1 . 4}$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered it as a yellow oil ($25.2 \mathrm{mg}, 40 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 3.40-3.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1), 3.53$ (dd, $\left.{ }^{3} J_{2,1 \mathrm{~A}}=10.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}=5.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.93-6.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.00-7.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}^{\prime}\right)$, 7.07-7.11 (m, 2H, H-3"), 7.18-7.21 (m, 2H, Ar), 7.25-7.29 (m, 2H, H-3'"), 7.31-7.35 (m, 2H, Ar and H-4'"), 7.35-7.39 (m, 2H, H-3'"), 7.39-7.43 (m, 3H, H-2'" and H-4'"), 7.51-7.54 (m, 1H, Ar), 7.55-7.59 (m, 2H, H-2'") ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right), 30.0(\mathrm{C}-1), 32.7$ (C-2), 110.1 (Ar), 119.5 (Ar), 123.8 (Ar), 124.1 (Ar), 125.3 (C-4"), 127.7 (C-3'"), 127.9 (C-3'"), 128.0 (C-3"), 128.1 (C2"), 129.4 (C-4'"'), 129.6 (C-4'"), 133.8 (C-1'"'), 134.8 (C-1'"), 134.9 (C-2'"), 135.2 (C-2'"'), 140.4 (C-1"), 141.3 (C-3a or C-7a), 150.6 (C-3a or C-7a), 166.4 (C-2') ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-6.4\left(\mathrm{SiMePh}_{2}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{NOSi} 420.1778$, found 420.1773.

IR (ATR): $\tilde{v} 694,724,838,923,999,1105,1240,1426,1565,2956,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-7.76\left(c 0.2, \mathrm{CHCl}_{3}, 30 \% e e\right)$.

The enantiomeric ratio of (S)-131a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $95 / 5$, flow rate $=0.6 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{s}}=8.39 \mathrm{~min}($ major $), t_{\mathrm{R}}=8.94 \mathrm{~min}($ minor $)$.

(S)-133a
$\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{NOSi}$
$\mathrm{M}=481.67 \mathrm{~g} / \mathrm{mol}$
(S)-2-(2-(MethyIdiphenyIsilyl)-2-phenylethyl)benzoxazole [(S)-133a]: Synthesized from (E)-2-styryl-benzoxazole [(E)-89a, $33.2 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.00$ equiv] according to GP 1.4 . Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ delivered (S)-133a as a yellow oil ($19.5 \mathrm{mg}, 27 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.50$ ($\mathrm{dd},{ }^{2} J_{1 \mathrm{~A}, 1 \mathrm{~B}}=15.6 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~A}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~A}$), $3.65\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{~B}, 1 \mathrm{~A}}=15.6 \mathrm{~Hz},{ }^{2} J_{1 \mathrm{~B}, 2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}\right), 3.79\left(\mathrm{dd},{ }^{3} J_{2,1 \mathrm{~A}}=12.2 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~B}}=3.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 6.87-6.91 (m, 2H, H-2"), 7.03-7.06 (m, 3H, H-3" and C-4"), 7.18-7.22 (m, 2H, Ar), 7.31-7.36 (m, 7H, Ar and H-3'"), 7.39-7.46 (m, 9H, H-2'" and H-4'"), 7.52-7.55 (m, 1H, Ar) ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 31.6$ (C-1), 32.5 (C-2), 110.1 (Ar), 119.5 (Ar), 123.8 (Ar), 124.1 (Ar), 125.6 (C-4"), 127.9 (C-3'"), 128.1 (C-2"), 129.1 (C-2"), 129.7 (C-4'"), 132.8 (C-1'"), 136.3 (C-2'"), 140.1 (C-1"), 141.3 (C-3a or C-7a), 150.7 (C-3a or C-7a), 166.2 (C-2') ppm.
${ }^{1} \mathrm{H} /{ }^{29}$ Si HMQC NMR ($500 / 99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$, optimized for $J=7.0 \mathrm{~Hz}$): $\delta 3.50 /-11.6(\mathrm{H}-$ $2 / \mathrm{Si}), 3.65 /-11.6(\mathrm{H}-1 \mathrm{~A} / \mathrm{Si}), 3.79 /-11.6(\mathrm{H}-1 \mathrm{~B} / \mathrm{Si}), 7.44 /-11.6(\mathrm{H}-2 \mathrm{l} / \mathrm{Si}) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{NOSi} 482.1935$, found 482.1928.

IR (ATR): $\tilde{v} 699,735,834,948,999,1105,1240,1424,1566,2956,3048 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=0\left(c 0.3, \mathrm{CHCl}_{3},<5 \% e e\right)$.

The enantiomeric ratio of (S)-133a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ 99.7/0.3, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t=49.9 \mathrm{~min}, t=53.3 \mathrm{~min}$.

3.1.5 Experimental Detail and Characterization Data for Enantioenriched Alcohol

(S)-2-(Benzoxazol-2-yl)-1-(p-tolyl)ethan-1-ol [(S)-134b]

To a solution of (S)-2-(2-(dimethyl(phenyl)silyl)-2-(p-tolyl)ethyl)benzoxazole [(S)-90b, 74.3 $\mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added dropwise tetrafluoroboric acid diethyl ether complex ($81.0 \mathrm{mg}, 0.500 \mathrm{mmol}, 2.50$ equiv). After stirring for 1 hour at $0{ }^{\circ} \mathrm{C}$, the solvent was removed under reduced pressure. To the residue were added $\mathrm{MeOH}(1 \mathrm{~mL})$, THF (1 mL), KF ($23.2 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ equiv) and $\mathrm{KHCO}_{3}(201 \mathrm{mg}, 2.00 \mathrm{mmol}, 10.0$ equiv) in sequence at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 minutes, followed by the addition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ($272 \mathrm{mg}, 2.40 \mathrm{mmol}, 13$ equiv, 30% in water). After stirring for 12 hours at room temperature, the reaction was quenched by the addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (2 $\mathrm{M}, 10 \mathrm{~mL}$), and then the reaction mixture was poured into HCl solution ($0.5 \mathrm{M}, 2 \mathrm{~mL}$). $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was used for extraction. The organic layer was washed with brine (20 mL) and water $(20 \mathrm{~mL})$, and then the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=10 / 1$ as eluent delivered (S)-134b as a white solid $(33.9 \mathrm{mg}, 67 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.20$ (cyclohexane/EtOAc $=5 / 1$). M.P. $129-130^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 3.25-3.37$ (m, 2H, H-2), 3.83 (d, J $=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 5.30-5.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 7.19(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{l}), 7.31-7.34(\mathrm{~m}, 2 \mathrm{H}$, Ar), 7.34-7.37 (m, 2H, H-2"), 7.48-7.52 (m, 1H, Ar), 7.65-7.70 (m, 1H, Ar) ppm.
${ }^{13}$ C NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): ~ \delta 21.1\left(\mathrm{ArCH}_{3}\right), 38.1(\mathrm{C}-2), 71.1(\mathrm{C}-1), 110.4$ (Ar), 119.6 (Ar), 124.3 (Ar), 124.8 (Ar), 125.6 (C-2"), 129.3 (C-3"), 137.6 (C-4"), 139.6 (C-1"), 140.8 (C3a or C-7a), 150.5 (C-3a or C-7a), 164.8 (C-2') ppm.

HRMS (APCI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}$ 254.1176, found 254.1168.

IR (ATR): $\tilde{v} 738,834,945,1062,1154,1245,1453,1563,2915,3052,3268 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-41.5\left(c \quad 0.5, \mathrm{CHCl}_{3}, 94 \% e e\right)$.

The enantiomeric ratio of (S)-134a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $97 / 3$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=17.9 \mathrm{~min}($ minor $), t_{\mathrm{S}}=19.8 \mathrm{~min}($ major $)$.

3.2 Asymmetric Conjugate 1.4-Silyl Transfer to Enyne-Type $\alpha, \beta, \gamma, \delta$-Unsaturated Acceptors

3.2.1 Preparation of $\mathbf{S i}-\mathbf{B}$ Reagents

$\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}$ (12), $\mathrm{MePh}_{2} \mathrm{Si}-\mathrm{Bpin}$ (138), and $\mathrm{Ph}_{3} \mathrm{Si}-\mathrm{Bpin}$ (140) were prepared according to GP 2.1 (Method A). All spectroscopic data accord with those reported. ${ }^{[70 a]}$
$\mathrm{Et}_{3} \mathrm{Si}$-Bpin (142) was prepared according to GP 2.1 (Method B). All spectroscopic data accord with those reported. ${ }^{[70 b]}$

3.2.2 Experimental Details and Characterization Data for Enyne-Type $\alpha, \beta, \gamma, \delta-$ Unsaturated Acceptors

$(E)-\mathbf{1 3 5 r},{ }^{[72 e]}(E)-\mathbf{1 4 6 a},{ }^{[72 f]}$ and $(E)-148,{ }^{[729]}$ were synthesized according to known procedures and all spectroscopic data accord with those reported.

(E)-135c
$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2}$
$\mathrm{M}=200.24$

Methyl (E)-5-(m-tolyl)pent-2-en-4-ynoate [(E)-135c]: Synthesized from methyl (E)-3iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with pentane/EtOAc $=100 / 1$ as eluent delivered $(E)-135 \mathrm{c}$ as a brown solid ($500 \mathrm{mg}, 50 \%$ yield).
$\mathbf{R}_{f}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
M.P. $51-52^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=\right.$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 6.99 ($\mathrm{d}^{3}{ }^{3}{ }_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.15-7.20$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4$ '), $7.21-7.27$ (m , $\left.1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 7.27-7.36$ (m, 2H, H-5' and H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 21.1\left(\mathrm{CH}_{3}\right)$, $51.8\left(\mathrm{OCH}_{3}\right), 86.0(\mathrm{C}-4)$, $98.7(\mathrm{C}-5), 121.9$ (C-1'), 125.4 (C-3), 128.3 (C-6'), 129.0 (C-5'), 129.3 (C-2), 130.2 (C-4'), 132.5 (C-2'), 138.2 (C-3'), 166.4 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}$ 201.0910, found 201.0912.

IR (ATR): $\tilde{\text { v }} 1259,1378,1441,1479,1615,1714,2191,2951 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(o-tolyl)pent-2-en-4-ynoate [(E)-135d]: Synthesized from methyl (E)-3iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with pentane/EtOAc $=100 / 1$ as eluent delivered (E)-135d as a brown oil ($770 \mathrm{mg}, 77 \%$ yield).
$\mathbf{R}_{f}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.31\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=\right.$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 7.04 ($\mathrm{d},{ }^{3} \mathrm{~J}_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $7.14-7.19$ (m, 1H, H-5'), 7.21-7.24 (m, 1H, H-3'), 7.25-7.30 (m, 1H, H-4'), 7.43-7.46 (m, 1H, H-6') ppm.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 20.6\left(\mathrm{CH}_{3}\right), 51.9\left(\mathrm{OCH}_{3}\right), 90.1(\mathrm{C}-4), 97.5(\mathrm{C}-5), 121.9$ (C-1'), 125.5 (C-3), 125.7 (C-5'), 129.2 (C-2), 129.4 (C-4'), 129.6 (C-3'),, 132.3 (C-6'), 140.8 (C-2'), 166.4 (C-1) ppm.

HRMS (APCI) m/z: [M+H] calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}$ 201.0910, found 201.0909.

IR (ATR): $\tilde{v} 1248,1378,1435,1484,1617,1718,2194,2949 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(4-bromophenyl)pent-2-en-4-ynoate [(E)-135h]: Synthesized from methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=100 / 1$ as eluent delivered $(E)-135 \mathrm{~h}$ as a yellow solid ($1.00 \mathrm{~g}, 75 \%$ yield).
$\mathbf{R}_{f}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
M.P. $84-86^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$), $7.34\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,33^{\prime}}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{2}\right), 7.49\left(\mathrm{~d},{ }^{3} J_{3^{\prime}, 2^{\prime}}=8.4 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) \mathrm{ppm}$.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 51.9\left(\mathrm{OCH}_{3}\right), 87.3(\mathrm{C}-4), 97.1(\mathrm{C}-5), 121.1\left(\mathrm{C}-1{ }^{\prime}\right), 123.8$ (C-4'), 124.9 (C-3), 130.0 (C-2), 131.8 (C-3'), 133.3 (C-2'), 166.2 (C-1) ppm.

HRMS (APCI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{BrO}_{2}$ 264.9859, found 264.9860.

IR (ATR): $\tilde{v} 1250,1392,1435,1483,1576,1616,1710,2194,2947 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(4-(trifluoromethyl)phenyl)pent-2-en-4-ynoate [(E)-135i]: Synthesized from methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=100 / 1$ as eluent delivered $(E)-135 i$ as a yellow solid ($620 \mathrm{mg}, 49 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
M.P. $45-47^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $6.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.56-7.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and $\mathrm{H}-3$) ppm .
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 52.0\left(\mathrm{OCH}_{3}\right)$, $88.1(\mathrm{C}-4), 96.3(\mathrm{C}-5), 123.7\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=\right.$ $270.6 \mathrm{~Hz}, \mathrm{CF}_{3}$), 124.6 (C-3), 125.4 ($\left.\mathrm{q},{ }^{3}{ }^{\mathrm{J}} \mathrm{C}, \mathrm{F}=3.7 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 125.9(\mathrm{C}-1$ '), $130.7(\mathrm{C}-2), 130.9(\mathrm{q}$, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=32.5 \mathrm{~Hz}, \mathrm{C}-4$ '), 132.1 (C-2'), 166.1 (C-1) ppm.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-63.0$ (ArF) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{O}_{2} 255.0627$, found 255.0623 .

IR (ATR): $\tilde{v} 955,1104,1163,1250,1315,1616,1718,2198,2952 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(4-cyanophenyl)pent-2-en-4-ynoate $[(E)$-135j]: Synthesized from methyl (E) -3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=10 / 1$ as eluent delivered $(E)-135 \mathrm{j}$ as a white solid ($700 \mathrm{mg}, 66 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.25$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $99-101^{\circ} \mathrm{C}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.35\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $6.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.53-7.57$ (m, 2H, H-2'), 7.61-7.65 (m, 2H, H-3') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 52.0\left(\mathrm{OCH}_{3}\right), 89.8$ (C-4), 95.6 (C-5), 112.5 (C-4'), 118.1 (ArCN), 124.1 (C-3), 126.9 (C-1'), 131.2 (C-2), 132.1 (C-3'), 132.3 (C-2'), 165.8 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NO}_{2}$ 212.0706, found 212.0704.

IR (ATR): $\tilde{v} 1169,1274,1438,1501,1544,1618,1718,2199,2224,2954 \mathrm{~cm}^{-1}$.

(E)-135k
$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{4}$
$\mathrm{M}=244.25$

Methyl (E)-4-(5-methoxy-5-oxopent-3-en-1-yn-1-yl)benzoate [(E)-135k]: Synthesized from methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc =10/1 as eluent delivered (E) - $\mathbf{1 3 5 k}$ as a white solid ($642 \mathrm{mg}, 53 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.25$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $116-118{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCO}_{2} \mathrm{CH}_{3}\right), 6.35(\mathrm{~d}$, $\left.{ }^{3} J_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.99\left(\mathrm{~d},{ }^{3} J_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.54\left(\mathrm{~d},{ }^{3} J_{2,33^{\prime}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $8.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3^{\prime}, 2^{\prime}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 52.0\left(\mathrm{OCH}_{3}\right), 52.3\left(\mathrm{ArCO}_{2} \mathrm{CH}_{3}\right)$, $88.7(\mathrm{C}-4), 97.0(\mathrm{C}-5)$, 124.7 (C-3), 126.7 (C-1'), 129.6 (C-3'), 130.5 (C-4'), 130.6 (C-2), 131.8 (C-2'), 166.1 (C-1), $166.3\left(\mathrm{ArCO}_{2} \mathrm{Me}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4} 245.0808$, found 245.0806 .

IR (ATR): v $1170,1275,1433,1507,1580,1618,1715,2201,2959 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pent-2-en-4-ynoate

 [(E)-135I]: Synthesized from methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=10 / 1$ as eluent afforded $(E)-135 \mathrm{I}$ as a yellow solid ($300 \mathrm{mg}, 19 \%$ yield)$\mathbf{R}_{f}=0.30$ (cyclohexane/EtOAc = 10/1).
M.P. $113-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 1.34$ [s, 12H, $\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}$], 3.78 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.32 (d, $\left.{ }^{3} J_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.99\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.47\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3} 3^{\prime}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, $7.78\left(\mathrm{~d},{ }^{3} J_{3^{\prime}, 2^{\prime}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 24.8\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $51.9\left(\mathrm{OCH}_{3}\right), 84.0\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 87.4$ (C-4), 98.4 (C-5), 124.6 (C-1'), 125.2 (C-3), 129.8 (C-2), 131.0 (C-2' and C-4'), 134.6 (C-3'), 166.3 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BO}_{4} 313.1606$, found 313.1607.

IR (ATR): $\mathbf{v} 1165,1249,1353,1511,1614,1716,2199,2981 \mathrm{~cm}^{-1}$

Methyl (E)-5-(thiophen-2-yl)pent-2-en-4-ynoate [(E)-135m]: Synthesized from methyl (E)-3-iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification
by flash column chromatography on silica gel with npentane/EtOAc $=10 / 1$ as eluent delivered $(E)-135 \mathrm{~m}$ as a white solid ($160 \mathrm{mg}, 17 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=30 / 1$).
M.P. $61-63{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.28\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $6.98\left(\mathrm{~d},{ }^{3} J_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.02\left(\mathrm{dd},{ }^{3} J_{4^{\prime}, 5^{\prime}}=5,1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4^{\prime}, 3^{\prime}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.30(\mathrm{dd}$, $\left.{ }^{3} J_{3^{\prime}, 4^{\prime}}=3.6 \mathrm{~Hz},{ }^{4} J_{3^{\prime}, 5^{\prime}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 7.36\left(\mathrm{dd},{ }^{3} J_{5^{\prime}, 4^{\prime}}=5.1 \mathrm{~Hz},{ }^{4} J_{5^{\prime}, 3^{\prime}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 51.9\left(\mathrm{OCH}_{3}\right), 90.5(\mathrm{C}-4), 91.8(\mathrm{C}-5), 122.1(\mathrm{C}-2 '), 124.9$ (C-3), 127.4 (C-4'), 129.0 (C-2), 129.2 (C-5'), 133.6 (C-3'), 166.3 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}$ 193.0318, found 193.0316 .

IR (ATR): $\tilde{v} 712,1164,1275,1434,1508,1616,1702,2184,2946 \mathrm{~cm}^{-1}$.

Methyl (E)-5-(thiophen-3-yl)pent-2-en-4-ynoate [(E)-135n]: Synthesized from methyl (E)-3iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=10 / 1$ as eluent delivered (E)-135n as a white solid ($426 \mathrm{mg}, 44 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=30 / 1$).
M.P. $42-44{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $6.97\left(\mathrm{~d},{ }^{3} J_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.15\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{4^{\prime} 5^{\prime}}=5.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{4^{\prime}, 2^{\prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 7.30(\mathrm{dd}$,
$\left.{ }^{3} J_{5^{\prime}, 4^{\prime}}=5.0 \mathrm{~Hz},{ }^{3} J_{5^{\prime}, 2^{\prime}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 7.56\left(\mathrm{dd},{ }^{3} J_{2^{\prime}, 5^{\prime}}=3.0 \mathrm{~Hz},{ }^{3} J_{2^{\prime}, 4^{\prime}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 51.9\left(\mathrm{OCH}_{3}\right), 86.2(\mathrm{C}-4), 93.7$ (C-5), 121.4 (C-3'), 125.3 (C-3), 125.7 (C-5'), 129.3 (C-2), 129.8 (C-4'), 130.5 (C-2'), 166.4 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~S}$ 193.0318, found 193.0317.

IR (ATR): $\tilde{v} 718,1167,1277,1435,1510,1614,1706,2193,2915 \mathrm{~cm}^{-1}$.

(E)-1350
$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$
$\mathrm{M}=166.22$

Methyl (E)-6,6-dimethylhept-2-en-4-ynoate [(E)-1350]: Synthesized from methyl (E)-3iodoacrylate ($1.06 \mathrm{~g}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method B). Purification by flash column chromatography on silica gel with npentane/EtOAc $=150 / 1$ as eluent delivered (E)-135o as a colourless oil ($450 \mathrm{mg}, 54 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 1.26\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}\right.$ $=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 28.3\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 30.6\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 51.7\left(\mathrm{OCH}_{3}\right), 76.5(\mathrm{C}-$ 4), 108.7 (C-5), 126.4 (C-3), 128.5 (C-2), 166.6 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}$ 167.1067, found 167.1065.

IR (ATR): ṽ 1166, 1255, 1455, 1475, 1619, 1719, 2222, 2868, $2969 \mathrm{~cm}^{-1}$.

(E)-144a
$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}$
$\mathrm{M}=261.32 \mathrm{~g} / \mathrm{mol}$
(E)-N-methyl-N,5-diphenylpent-2-en-4-ynamide [(E)-144a]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate ($931 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method C). Purification by flash column chromatography on silica gel with cyclohexane/EtOAc =10/1 as eluent delivered (E)-144a as a brown solid ($953 \mathrm{mg}, 73 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=10 / 1$).
M.P. $104-106{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 6.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right)$, $7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.18-7.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.26-7.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right)$, 7.34-7.42 (m, 3H, H-2' and H-4"), 7.42-7.47 (m, 2H, H-3") ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 37.6\left(\mathrm{NCH}_{3}\right), 87.2(\mathrm{C}-4), 96.7(\mathrm{C}-5), 122.1(\mathrm{C}-3), 122.4$ (C-1'), 127.3 (C-2"), 127.7 (C-4"), 128.3 (C-3'), 128.9 (C-4'), 129.7 (C-3"), 130.1 (C-2), 131.7 (C-2'), 143.1 (C-1"), 164.9 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}$ 262.1226, found 262.1222.

IR (ATR): $\tilde{v} 1117,1261,1456,1587,1602,1643,2194,2928 \mathrm{~cm}^{-1}$.

(E)-144b
$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}$
$\mathrm{M}=227.31 \mathrm{~g} / \mathrm{mol}$
(E)-N,N-Diethyl-5-phenylpent-2-en-4-ynamide [(E)-144b]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate ($931 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP $\mathbf{2 . 2}$ (Method C). Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=5 / 1$ as eluent delivered $(E)-\mathbf{1 4 4 b}$ as a brown oil ($918 \mathrm{mg}, 81 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=4 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 1.17\left[\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 1.24\left[\mathrm{t},{ }^{3} \mathrm{~J}=7.1\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 3.41\left[\mathrm{q},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 3.54\left[q,{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$,
$\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$], $6.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.31-7.37$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3$ ' and $\mathrm{H}-4$ '), 7.46-7.50 (m, 2H, H-2') ppm.
${ }^{13}{ }^{2}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 13.1\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 15.1\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 41.1$ $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 42.2\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 87.4(\mathrm{C}-4), 96.1(\mathrm{C}-5), 122.6$ (C-1' and C-3), 128.4 (C-3'), 128.9 (C-4'), 129.6 (C-2), 131.8 (C-2'), 164.5 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}$ 228.1383, found 228.1383.

IR (ATR): $\tilde{v} 1137,1479,1479,1599,1632,2195,2930,2971 \mathrm{~cm}^{-1}$.

(E)-N-methyl-5-phenylpent-2-en-4-ynamide [(E)-144c]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate ($931 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method C). Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 1$ as eluent delivered $(E)-144 \mathrm{c}$ as a brown solid ($500 \mathrm{mg}, 54 \%$ yield).
$\mathbf{R}_{f}=0.15$ (cyclohexane/EtOAc $=1 / 1$).
M.P. $118-120^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 2.91$ ($\mathrm{d},{ }^{3} \mathrm{~J}=5.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NHCH}_{3}$), 5.97 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $6.33\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ' and H-4'), 7.43-7.47 (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 26.6\left(\mathrm{NHCH}_{3}\right), 86.8$ (C-4), 96.4 (C-5), 121.4 (C-3), 122.5 (C-1'), 128.5 (C-3'), 129.1 (C-4'), 131.9 (C-2'), 132.3 (C-2), 166.5 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}$ 186.0913, found 186.0907.

IR (ATR): $\tilde{v} 1162,1338,1443,1613,1645,2197,2956,3306 \mathrm{~cm}^{-1}$.

(E)-5-phenylpent-2-en-4-ynamide [(E)-144d]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate ($931 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP 2.2 (Method C). Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 2$ as eluent delivered (E) - $\mathbf{1 4 4 d}$ as a brown solid ($633 \mathrm{mg}, 74 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc = 1/3).
M.P. $157-159^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 298 \mathrm{~K}\right): \delta 6.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 6.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=\right.$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}$ and $\mathrm{H}-3$), 7.29 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}_{2}$), $7.40-7.46\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right)$, $7.49-7.54(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-2^{\prime}\right), 7.65$ (s, 1H, NH2) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 87.1$ (C-4), 95.2 (C-5), 119.2 (C-3), 121.7 (C-1'), 128.9 (C-3'), 129.5 (C-4'), 131.6 (C-2'), 134.8 (C-2), 165.3 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}$ 172.0757, found 172.0751.

IR (ATR): $\tilde{v} 1266,1387,1439,1587,1666,2195,2932,3294 \mathrm{~cm}^{-1}$.

(E)-144e
$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{3}$
$\mathrm{M}=241.25 \mathrm{~g} / \mathrm{mol}$
(E)-3-(5-phenylpent-2-en-4-ynoyl)oxazolidin-2-one [(E)-144e]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate ($931 \mathrm{mg}, 5.00 \mathrm{mmol}, 1.00$ equiv) according to GP $\mathbf{2 . 2}$. Purification by recrystallization delivered $(E)-144 \mathrm{e}$ as a yellow solid ($0.300 \mathrm{~g}, 25 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=3 / 1$).
M.P. $123-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 4.10\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.45\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, OCH_{2}), $7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3,2}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$), $7.33-7.40\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3\right.$ ' and $\left.\mathrm{H}-4{ }^{\prime}\right), 7.48-7.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2^{\prime}$), $7.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right.$) ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 42.7\left(\mathrm{NCH}_{2}\right), 62.1\left(\mathrm{OCH}_{2}\right), 87.2(\mathrm{C}-4)$, $99.8(\mathrm{C}-5)$, 122.1 (C-1'), 126.6 (C-1'), 128.0 (C-2), 128.5 (C-3'), 129.4 (C-4'), 132.1 (C-2'), 153.3 [OC(O)N], 164.4 (C-1) ppm.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NO}_{3} 242.0812$, found 242.0809.

IR (ATR): $\overline{\text { v }} 1115,1214,1473,1587,1601,1669,1771,2195,2989 \mathrm{~cm}^{-1}$.

3.2.3 Experimental Details and Characterization Data for Enantioenriched Products

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-phenylpent-4-ynoate [(R)-136a]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate [(E)-135a, $74.6 \mathrm{mg}, 0.400 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc = 80/1 as eluent delivered $(R)-136$ a as a yellow oil ($122 \mathrm{mg}, 95 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.35$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.36-2.49(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 2.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21-7.27$ (m, 3H, H-3" and H-4"), 7.30-7.34 (m, 2H, H-2"), 7.34-7.41 (m, 3H, H-3' and H-4'), 7.56-7.59 (m, 2H, H-2') ppm.
${ }^{13}{ }^{2}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.9(\mathrm{C}-3), 34.7(\mathrm{C}-2), 51.7$ $\left(\mathrm{OCH}_{3}\right), 82.1$ (C-5), 90.3 (C-4), 124.3 (C-1"), 127.3 (C-4"), 127.9 (C-3'), 128.1 (C-3"), 129.6 (C-4'), 131.5 (C-2'), 134.1 (C-2'), 135.7 (C-1'), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si} 323.1462$, found 323.1466.

IR (ATR): $\tilde{v} 691,814,1054,1113,1249,1428,1595,1735,2217,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-72.8$ (c 1.0, $\mathrm{CHCl}_{3}, 92 \%$ ee $)$.

The enantiomeric ratio of (R)-136a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=12.8 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=16.5 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(p-tolyl)pent-4-ynoate [(R)-136b]: Synthesized from methyl (E)-5-(p-tolyl)pent-2-en-4-ynoate [(E)-135b, $40.1 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=80 / 1$ as eluent delivered $(R)-136 \mathrm{~b}$ as a colourless oil $(53.8 \mathrm{mg}, 80 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.35$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}$, ArCH_{3}), 2.37-2.52 (m, 2H, H-2), $2.61\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=8.2 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.65(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.08 ($\mathrm{d},{ }^{3} \mathrm{~J}_{3^{\prime \prime}, 2^{\prime \prime}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), $7.24\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2^{\prime \prime}, 3^{\prime \prime}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.35-7.43$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-4^{\prime}$), 7.58-7.62 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.9(\mathrm{C}-3), 21.4\left(\mathrm{ArCH}_{3}\right)$, $34.8(\mathrm{C}-2), 51.7\left(\mathrm{OCH}_{3}\right), 82.1(\mathrm{C}-5), 89.4(\mathrm{C}-4), 121.2(\mathrm{C}-1 ")$, $127.9\left(\mathrm{C}-3\right.$), $128.8\left(\mathrm{C}-3^{\prime \prime}\right)$, 129.6 (C-4'), 131.4 (C-2"), 134.1 (C-2'), 135.7 (C-1'), 137.3 (C-4"), 173.0 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si} 337.1618$, found 337.1620.

IR (ATR): \tilde{v} 699, 814, 1050, 1113, 1249, 1428, 1605, 1736, 2217, $2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-66.6\left(c 1.0, \mathrm{CHCl}_{3}, 92 \%\right.$ ee $)$.

The enantiomeric ratio of (R)-136b was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=12.3 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=15.1 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(m-tolyl)pent-4-ynoate [(R)-136c]: Synthesized from methyl (E)-5-(m-tolyl)pent-2-en-4-ynoate [(E)-135c, $40.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 c$ as a yellow oil ($51.2 \mathrm{mg}, 76 \%$ yield).
$\mathbf{R}_{f}=0.20$ (cyclohexane/EtOAc $=50 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.39-2.54 (m, 2H, H-2), $2.63\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=10.1 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.66(\mathrm{~s}$, 3H, OCH ${ }_{3}$), 7.05-7.11 (m, 1H, H-4"), 7.16-7.20 (m, 3H, H-2", H-5" and H-6"), 7.36-7.45 (m, $3 \mathrm{H}, \mathrm{H}-3$ ' and $\left.\mathrm{H}-44^{\prime}\right), 7.60-7.64$ (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right)$, $16.9(\mathrm{C}-3), 21.2\left(\mathrm{CH}_{3}\right)$, 34.7 (C-2), $51.7\left(\mathrm{OCH}_{3}\right), 82.2(\mathrm{C}-5), 89.9(\mathrm{C}-4), 124.0(\mathrm{C}-1 "), 127.9\left(\mathrm{C}-3^{\prime}\right) 128.0(\mathrm{C}-6 \mathrm{C})$), 128.2 (C-4"), 128.5 (C-5"), 129.6 (C-4'), 132.1 (C-2"), 134.0 (C-2'), 135.7 (C-1'), 137.7 (C-3"), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si} 337.1618$, found 337.1621.

IR (ATR): $\mathfrak{v} 691,1112,1249,1428,1483,1599,1736,2212,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-78.8\left(c 1.0, \mathrm{CHCl}_{3}, 92 \% e e\right)$.

The enantiomeric ratio of (R)-136c was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=12.4 \mathrm{~min}($ minor $), t_{\mathrm{R}}=15.3 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(o-tolyl)pent-4-ynoate [(R)-136d]: Synthesized from methyl (E)-5-(o-tolyl)pent-2-en-4-ynoate [(E)-135d, $40.0 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 d$ as a yellow oil ($51.2 \mathrm{mg}, 76 \%$ yield).
$\mathbf{R}_{f}=0.20$ (cyclohexane/EtOAc $=50 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.37(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), 2.43-2.56 (m, 2H, H-2), $2.71\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=10.5 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.67(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 7.04-7.14 (m, 1H, H-5"), 7.14-7.19 (m, 2H, H-3" and H-4"), 7.34 (d, ${ }^{3} \mathrm{~J}_{6 ", 5 "}=7.4$ Hz, 1H, H-6"), 7.37-7.44 (m, 3H, H-3' and H-4'), 7.60-7.64 (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right)$, $17.2(\mathrm{C}-3), 20.7\left(\mathrm{CH}_{3}\right)$, 34.9 ($\mathrm{C}-2$), $51.7\left(\mathrm{OCH}_{3}\right), 80.9$ (C-5), 94.2 (C-4), 124.0 (C-1"), 125.3 (C-5") 127.3 (C-4"), 127.9 (C-3'), 129.2 (C-3"), 129.6 (C-4'), 131.8 (C-6"), 134.0 (C-2'), 135.7 (C-1'), 139.8 (C-2"), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.4\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si} 337.1618$, found 337.1621.

IR (ATR): $\mathfrak{v} 697,1112,1249,1428,1454,1597,1736,2215,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-84.3\left(c 1.0, \mathrm{CHCl}_{3}, 91 \% e e\right)$.

The enantiomeric ratio of (R)-136d was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=12.2 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=15.6 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(4-methoxyphenyl)pent-4-ynoate [(R)-136e]: Synthesized from methyl (E)-5-(4-methoxyphenyl)pent-2-en-4-ynoate [(E)-135e, $43.3 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=30 / 1$ as eluent delivered (R)-136e as a brown oil $(66.1 \mathrm{mg}$, 94\% yield).
$\mathbf{R}_{f}=0.40$ (cyclohexane/EtOAc = 10/1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.48$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.48 (s, 3H, SiCH_{3}), 2.29-2.53 (m, $2 \mathrm{H}, \mathrm{H}-2), 2.62\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=10.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}$, ArOCH_{3}), 6.81 ($\mathrm{d},{ }^{3} \mathrm{~J}_{3^{\prime \prime}, 2^{\prime \prime}}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ "), 7.30 ($\mathrm{d},{ }^{3} \mathrm{~J}_{2^{\prime \prime}} 3^{\prime \prime}=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{Z}$), 7.36-7.44 (m, $3 \mathrm{H}, \mathrm{H}-3{ }^{\prime}$ and $\left.\mathrm{H}-4 \mathrm{C}^{\prime}\right), 7.59-7.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.8(\mathrm{C}-3), 34.8(\mathrm{C}-2), 51.7$ $\left(\mathrm{OCH}_{3}\right), 55.2\left(\mathrm{ArOCH}_{3}\right), 81.7(\mathrm{C}-5), 88.5(\mathrm{C}-4), 113.7(\mathrm{C}-3 "), 116.4(\mathrm{C}-1 "), 127.8\left(\mathrm{C}-3^{\prime}\right), 129.6$ (C-4'), 132.8 (C-2"), 134.0 (C-2'), 135.7 (C-1'), 158.9 (C-4"), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.4$ ($\mathrm{SiMe}_{2} \mathrm{Ph}$) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{Si} 353.1567$, found 353.1571.

IR (ATR): $\tilde{v} 699,1109,1243,1428,1507,1603,1734,2216,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-71.8$ (c 1.0, $\left.\mathrm{CHCl}_{3}, 93 \% e e\right)$.

The enantiomeric ratio of (R)-136e was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=19.6 \mathrm{~min}($ minor $), t_{\mathrm{R}}=24.3 \mathrm{~min}($ major $)$.

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(4-fluorophenyl)pent-4-ynoate [(R)-136f]: Synthesized from methyl (E)-5-(4-fluorophenyl)pent-2-en-4-ynoate [(E)-135f, $40.9 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 \mathrm{f}$ as a colourless oil $(64.1 \mathrm{mg}$, 94\% yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=20 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.39-2.53(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2$), 2.61 (dd, ${ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=10.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.93-6.99$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{C}$), 7.28-7.34 (m, 2H, H-2"), 7.36-7.44 (m, 3H, H-3' and H-4'), 7.58-7.62 (m, 2H, $\mathrm{H}-2^{\prime}$) ppm.
${ }^{13}{ }^{\mathbf{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.8(\mathrm{C}-3), 34.6(\mathrm{C}-2), 51.7$ $\left(\mathrm{OCH}_{3}\right), 80.9(\mathrm{C}-5), 89.9(\mathrm{C}-4), 115.3\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=21.8 \mathrm{~Hz}, \mathrm{C}-3{ }^{\prime \prime}\right), 120.3\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=3.3 \mathrm{~Hz}, \mathrm{C}-\right.$ $\left.1^{\prime \prime}\right), 127.9$ (C-3'), 129.7 (C-4'), 133.2 ($\left.\mathrm{d}^{3}{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=8.2 \mathrm{~Hz}, \mathrm{C}-2{ }^{\prime \prime}\right), 134.0(\mathrm{C}-2$ '), 135.6 (C-1'), 161.9 (d, $\left.{ }^{1}{ }^{\mathrm{J}, \mathrm{F}}=246.4 \mathrm{~Hz}, \mathrm{C}-4 "\right), 172.9(\mathrm{C}-1) \mathrm{ppm}$.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.
${ }^{19}$ F NMR (471 MHz, CDCl 3 , 298 K): $\delta \mathbf{- 1 1 2 . 6 (A r F) ~ p p m . ~}$

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FO}_{2} \mathrm{Si} 341.1368$, found 341.1372.

IR (ATR): $\tilde{v} 699,1092,1249,1429,1504,1599,1736,2220,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-78.6$ (c 1.0, $\left.\mathrm{CHCl}_{3}, 92 \% \mathrm{ee}\right)$.

The enantiomeric ratio of (R)-136f was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=12.6 \mathrm{~min}($ minor $), t_{\mathrm{R}}=15.6 \mathrm{~min}($ major $)$.

Methyl (R)-5-(4-chlorophenyl)-3-(dimethyl(phenyl)silyl)pent-4-ynoate [(R)-136g]: Synthesized from methyl (E)-5-(4-chlorophenyl)pent-2-en-4-ynoate [(E)-135g, $44.1 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=80 / 1$ as eluent delivered $(R)-136 \mathrm{~g}$ as a colourless oil $(63.1 \mathrm{mg}$, 88% yield).
$\mathbf{R}_{\boldsymbol{f}}=0.35$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.46$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.46 (s, 3H, SiCH_{3}), 2.38-2.52 (m, $2 \mathrm{H}, \mathrm{H}-2$), 2.61 (dd, ${ }^{3} J_{3,2 \mathrm{~A}}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21-7.28$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-22^{\prime \prime}$ and $\mathrm{H}-3^{\prime \prime}$), $7.35-7.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 7.56-7.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right) \mathrm{ppm}$.
${ }^{13}{ }^{\mathbf{C}}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.9(\mathrm{C}-3), 34.6(\mathrm{C}-2), 51.8$ $\left(\mathrm{OCH}_{3}\right), 81.0(\mathrm{C}-5), 91.5(\mathrm{C}-4), 122.7$ (C-1"), 127.9 (C-3'), 128.4 (C-3"), 129.7 (C-4'), 132.7 (C-2"), 133.2 (C-4"), 134.0 (C-2'), 135.5 (C-1'), 172.8 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ClO}_{2} \mathrm{Si} 357.1072$, found 357.1075.

IR (ATR): $\tilde{v} 699,814,1051,1112,1249,1428,1589,1735,2218,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-87.2\left(c 1.0, \mathrm{CHCl}_{3}, 89 \% e e\right)$.

The enantiomeric ratio of $(R)-\mathbf{1 3 6} \mathbf{g}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/ $\mathrm{iPrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=12.5 \mathrm{~min}($ minor $), t_{\mathrm{R}}=15.0 \mathrm{~min}($ major $)$.

Methyl (R)-5-(4-bromophenyl)-3-(dimethyl(phenyl)silyl)pent-4-ynoate [(R)-136h]: Synthesized from methyl (E)-5-(4-bromophenyl)pent-2-en-4-ynoate [(E)-135h, $53.1 \mathrm{mg}, 0.200$ mmol, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=80 / 1$ as eluent delivered (R)-136 h as a colourless oil (55.5 mg , 69\% yield).
$\mathbf{R}_{f}=0.35$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.38-2.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 2.61\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.17-7.21$ (m, 2H, H-2"), 7.36-7.43 (m,5H, H-3', H-4' and H-3"), 7.56-7.61 (m, 2H, H-2') ppm.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 17.0(\mathrm{C}-3), 34.5(\mathrm{C}-2), 51.8$ $\left(\mathrm{OCH}_{3}\right), 81.0(\mathrm{C}-5), 91.8(\mathrm{C}-4), 121.3\left(\mathrm{C}-4{ }^{\prime \prime}\right), 123.2\left(\mathrm{C}-1^{\prime \prime}\right), 127.9\left(\mathrm{C}-3^{\prime}\right), 129.7\left(\mathrm{C}-4^{\prime}\right), 131.3$ (C-3"), 132.9 (C-2"), 134.0 (C-2'), 135.5 (C-1'), 172.8 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrO}_{2} \mathrm{Si} 401.0567$, found 401.0569.

IR (ATR): $\tilde{v} 672,698,815,1069,1112,1249,1428,1586,1735,2218,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-83.0$ (c 1.0, $\mathrm{CHCl}_{3}, 89 \%$ ee $)$.

The enantiomeric ratio of (R)-136h was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=13.3 \mathrm{~min}($ minor $), t_{\mathrm{R}}=15.6 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate [(R)136i]: Synthesized from methyl $(E)-5-(4-($ trifluoromethyl)phenyl)pent-2-en-4-ynoate $[(E)-135 i$, $50.9 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 i$ as a colourless oil ($70.7 \mathrm{mg}, 92 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.41-2.54(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 2.65\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=9.9 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.36-7.45$ (m, 5H, H-3', H-4' and H-2"), 7.52 (d, $\left.{ }^{3} J_{3^{\prime \prime}, 2^{\prime \prime}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 7.57-7.61$ (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right), 17.1(\mathrm{C}-3), 34.5(\mathrm{C}-2), 51.8$ $\left(\mathrm{OCH}_{3}\right), 81.0(\mathrm{C}-5), 93.5(\mathrm{C}-4), 124.0\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=270.3 \mathrm{~Hz}, \mathrm{CF}_{3}\right), 125.0\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=3.76 \mathrm{~Hz}, \mathrm{C}-\right.$ 3"), 127.9 (C-3'), 128.1 (C-1"), 129.0 ($\mathrm{q},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{F}}=32.5 \mathrm{~Hz}, \mathrm{C}-4$ "), 129.8 (C-4'), 131.6 (C-2"), 134.0 (C-2'), 135.3 (C-1'), 172.7 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.0\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-62.7\left(\mathrm{CF}_{3}\right) \mathrm{ppm}$.

HRMS (APCl) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Si} 391.1336$, found 391.1339.

IR (ATR): $\tilde{v} 698,1104,1118,1252,1428,1512,1613,1736,2220,2954 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-59.3\left(c ~ 1.0, \mathrm{CHCl}_{3}, 92 \% ~ e e\right)$.

The enantiomeric ratio of (R)-136i was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{IPrOH}=$ $95 / 5$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=16.2 \mathrm{~min}($ minor $), t_{\mathrm{R}}=17.3 \mathrm{~min}($ major $)$.

Methyl (R)-5-(4-cyanophenyl)-3-(dimethyl(phenyl)silyl)pent-4-ynoate [(R)-136j]: Synthesized from methyl (E)-5-(4-cyanophenyl)pent-2-en-4-ynoate [(E)-135j, $42.3 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=18 / 1$ as eluent delivered $(R)-136 \mathrm{j}$ as a colourless oil $(42.1 \mathrm{mg}$, 61\% yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.40-2.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2$), $2.64\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=9.7 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.35-7.44$ (m, 5H, H-2", H-3' and H-4'), 7.52-7.59 (m, 4H, H-2' and H-3") ppm.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.2\left(\mathrm{SiCH}_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right), 17.2(\mathrm{C}-3), 34.3(\mathrm{C}-2), 51.9$ $\left(\mathrm{OCH}_{3}\right), 80.9(\mathrm{C}-5), 96.1(\mathrm{C}-4), 110.5(\mathrm{C}-4 "), 118.7(\mathrm{CN}), 128.0\left(\mathrm{C}-3^{\prime}\right), 129.2\left(\mathrm{C}-1{ }^{\prime \prime}\right), 129.8$ (C-4'), 131.8 (C-2'), 131.9 (C-2'), 134.0 (C-3"), 135.2 (C-1'), 172.7 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{Si} 348.1414$, found 348.1418.

IR (ATR): $\tilde{\text { ṽ }} 699,1112,1249,1428,1499,1602,1734,2219,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-36.1\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}, 93 \% e e\right)$.

The enantiomeric ratio of $(R)-\mathbf{1 3 6 j}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $95 / 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=21.8 \mathrm{~min}($ minor $), t_{\mathrm{R}}=24.9 \mathrm{~min}($ major $)$.

Methyl (R)-4-(3-(dimethyl(phenyl)silyl)-5-methoxy-5-oxopent-1-yn-1-yl)benzoate [(R)136k]: Synthesized from methyl methyl (E)-4-(5-methoxy-5-oxopent-3-en-1-yn-1-yl)benzoate [(E)-135k, $48.8 \mathrm{mg}, \mathbf{0 . 2 0 0} \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=20 / 1$ as eluent delivered (R) 136k as a yellow oil ($55.0 \mathrm{mg}, 72 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.30$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.41-2.58(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 2.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=10.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 3.91(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{ArCOOCH}_{3}$), 7.35-7.44 (m,5H, H-2", H-3' and H-4'), 7.57-7.61 (m, 2H, H-2'), $7.94\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{3^{\prime \prime}, 2^{\prime \prime}}=\right.$ $\left.8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 17.2(\mathrm{C}-3), 34.5(\mathrm{C}-2), 51.8$ $\left(\mathrm{OCH}_{3}\right), 52.1\left(\mathrm{ArCO}_{2} \mathrm{CH}_{3}\right), 81.6(\mathrm{C}-5), 94.2(\mathrm{C}-4), 127.9\left(\mathrm{C}-3^{\prime}\right), 128.6(\mathrm{C}-4 \mathrm{C}), 129.1$ (C-1"), 129.3 (C-3"), 129.8 (C-4'), 131.3 (C-2"), 134.0 (C-2'), 135.4 (C-1'), 166.7 ($\mathrm{ArCO}_{2} \mathrm{Me}$), 172.8 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.0\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si} 381.1517$, found 381.1519.

IR (ATR): $\tilde{v} 696,1106,1271,1432,1505,1603,1718,2216,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-63.4\left(c 1.0, \mathrm{CHCl}_{3}, 90 \% e e\right)$.

The enantiomeric ratio of (R) - $\mathbf{1 3 6 k}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{PPrOH}=$ $95 / 5$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=15.9 \mathrm{~min}($ minor $), t_{\mathrm{R}}=18.0 \mathrm{~min}($ major $)$.

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)pent-4-ynoate [(R)-136I]: Synthesized from methyl (E)-5-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pent-2-en-4-ynoate [(E)-135I, $62.5 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=15 / 1$ as eluent delivered $(R)-136 \mathrm{l}$ as a white solid $(60.1 \mathrm{mg}, 67 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.40$ (cyclohexane/EtOAc = 10/1).
M.P. $103-105^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.34(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.37-2.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2), 2.63\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=10.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.65$ (s, 3H, OCH ${ }_{3}$), 7.33 ($\mathrm{d}^{3}{ }^{3} \mathrm{~J}^{\prime \prime} 3^{\prime \prime}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), $7.35-7.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right)$, 7.577.61 (m, 2H, H-2'), 7.71 ($\left.\mathrm{d},{ }^{3}{ }_{33^{\prime \prime}, 2^{\prime \prime}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right) \mathrm{ppm}$.
${ }^{13}{ }^{2}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 17.0(\mathrm{C}-3), 24.8$ $\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 34.6(\mathrm{C}-2), 51.7\left(\mathrm{OCH}_{3}\right), 82.3(\mathrm{C}-5), 83.8\left[\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{2}\right], 92.0(\mathrm{C}-4), 127.0(\mathrm{C}-1$ "), 127.9 (C-3'), 129.6 (C-4'), 130.6 (C-2" and C-4"), 134.0 (C-2'), 134.4 (C-3"), 135.6 (C-1'), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 0 . 2}$ (SiMe $\left.\mathrm{Si}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 449.2314, found 449.2316.

IR (ATR): $\tilde{v} 697,1086,1111,1255,1429,1605,1734,2219,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-65.2\left(c 1.0, \mathrm{CHCl}_{3}, 92 \% e e\right)$.

The enantiomeric ratio of (R)-136I was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH = $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{s}}=11.4 \mathrm{~min}($ minor $), t_{\mathrm{R}}=14.0 \mathrm{~min}($ major $)$.

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(thiophen-2-yl)pent-4-ynoate [(R)-136m]: Synthesized from methyl (E)-5-(thiophen-2-yl)pent-2-en-4-ynoate $[(E)-135 \mathrm{~m}, 38.4 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 \mathrm{~m}$ as a brown oil $(57.2 \mathrm{mg}, 87 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc = 20/1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.47$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.39-2.53$ (m, $2 \mathrm{H}, \mathrm{H}-2), 2.55\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=10.0 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right.$), 3.66 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), 6.93 (dd, $\left.{ }^{3} J_{4^{\prime \prime}, 5^{\prime \prime}}=5.2 \mathrm{~Hz},{ }^{3} J_{4^{4}, 3^{\prime \prime}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-44^{\prime \prime}\right), 7.08\left(\mathrm{dd},{ }^{3} J_{3^{\prime \prime}, 4^{\prime \prime}}=3.6 \mathrm{~Hz},{ }^{3} J_{3^{\prime}, 5^{\prime \prime}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$, $7.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{5 \text { ",4" }}=5.2 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{5 \text { " }} \mathrm{3}^{\prime \prime}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 7.36-7.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and H-4'), 7.587.62 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$) ppm.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 17.3(\mathrm{C}-3), 34.5(\mathrm{C}-2), 51.8$ $\left(\mathrm{OCH}_{3}\right), 75.0(\mathrm{C}-5), 94.5(\mathrm{C}-4), 124.4(\mathrm{C}-2 "), 125.8(\mathrm{C}-5 "), 126.7(\mathrm{C}-4 "), 127.9\left(\mathrm{C}-3^{\prime}\right), 129.7$ (C-4'), 130.8 (C-3"), 134.0 (C-2'), 135.4 (C-1'), 172.8 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{SSi} 329.1026$, found 329.1030.

IR (ATR): $\tilde{v} 695,780,1112,1250,1427,1517,1588,1735,2208,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-97.0\left(c\right.$ 1.0, $\mathrm{CHCl}_{3}, 93 \%$ ee $)$.

The enantiomeric ratio of $(R)-\mathbf{1 3 6 m}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=15.3 \mathrm{~min}($ minor $), t_{\mathrm{R}}=22.6 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(thiophen-3-yl)pent-4-ynoate [(R)-136n]: Synthesized from methyl methyl (E)-5-(thiophen-3-yl)pent-2-en-4-ynoate [(E)-135n, $38.4 \mathrm{mg}, 0.200$ mmol, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-136 \mathbf{n}$ as a brown oil $(57.8 \mathrm{mg}$, 88% yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=20 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.39-2.52(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-2), 2.61\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=10.2 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 7.03(\mathrm{dd}$,
 $7.28\left(\mathrm{dd},{ }^{3} \mathrm{~J}^{2 \prime}, 5^{\prime \prime}=3.0 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2,44^{4}}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 7.36-7.44\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right)$, 7.597.62 (m, 2H, H-2') ppm.
${ }^{13}{ }^{2}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.8(\mathrm{C}-3), 34.6(\mathrm{C}-2), 51.7$ $\left(\mathrm{OCH}_{3}\right), 76.9(\mathrm{C}-5), 89.7(\mathrm{C}-4), 123.2$ (C-3"), 124.8 (C-5"), 127.3 (C-2"), 127.8 (C-3'), 129.6 (C-4'), 130.0 (C-4"), 134.0 (C-2'), 135.6 (C-1'), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}$: calculated 329.1026, found 329.1030.

IR (ATR): $\tilde{v} 698,776,1112,1249,1428,1520,1588,1734,2215,2951 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-93.7\left(c\right.$ 1.0, $\mathrm{CHCl}_{3}, 93 \%$ ee $)$.

The enantiomeric ratio of $(R)-\mathbf{1 3 6} \mathbf{n}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/ $\mathrm{PrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=15.2 \mathrm{~min}($ minor $), t_{\mathrm{R}}=21.1 \mathrm{~min}($ major $)$.

(R)-1360
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$
$\mathrm{M}=302.49 \mathrm{~g} / \mathrm{mol}$

Methyl (R)-3-(dimethyl(phenyl)silyl)-6,6-dimethylhept-4-ynoate [(R)-1360): Synthesized from methyl (E)-5-(trimethylsilyl)pent-2-en-4-ynoate $[(E)$ - $\mathbf{1 3 5 0}, 33.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=150 / 1$ delivered $(R)-1360$ as a yellow oil ($51.1 \mathrm{mg}, 84 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.25$ (cyclohexane/EtOAc $=100 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.39$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.39 (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 1.17 (s, 9 H , $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.28-2.36(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-3), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.33-7.41(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ' and H-4'), 7.55-7.59 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 16.0(\mathrm{C}-3), 27.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right)$, $31.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 35.2(\mathrm{C}-2), 51.5\left(\mathrm{OCH}_{3}\right)\right.$, $\left.78.0(\mathrm{C}-4), 90.6(\mathrm{C}-5), 127.7(\mathrm{C}-3)^{\prime}\right), 129.4(\mathrm{C}-4)$, 134.0 (C-2'), 136.1 (C-1'), 173.2 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-1.1\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si} 303.1775$, found 303.1776.

IR (ATR): $\tilde{v} 699,1030,1112,1429,1455,1589,1738,2209,2963 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-51.9\left(c 1.0, \mathrm{CHCl}_{3}, 89 \%\right.$ ee $)$.

The enantiomeric ratio of (R) - $\mathbf{1 3 6 0}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: heptane $/ \mathrm{PrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=8.4 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=9.5 \mathrm{~min}$ (major).

Methyl (R)-3-(dimethyl(phenyl)silyl)non-4-ynoate [(R)-136p]: Synthesized from methyl (E)-non-2-en-4-ynoate $[(E) \mathbf{- 1 3 5 p}, 33.3 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP $\mathbf{2 . 4}$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=150 / 1$ as eluent delivered $(R)-136 \mathrm{p}$ as a colourless oil ($41.9 \mathrm{mg}, 69 \%$ yield).
$\mathbf{R}_{f}=0.50$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}_{9,8}=\right.$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-9$), $1.35-1.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8), 1.45-1.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7) 2.14-2.18(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6)$, 2.29-2.38 (m, 3H, H-3 and H-2), $3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ' and H-4'), 7.547.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}$) ppm.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.5\left(\mathrm{SiCH}_{3}\right), 13.6(\mathrm{C}-9), 16.1(\mathrm{C}-3), 18.6$ (C-6), 21.8 (C-8), 31.3 (C-7), 35.1 (C-2), $51.5\left(\mathrm{OCH}_{3}\right), 79.6$ (C-4), 81.8 (C-5), 127.8 (C-3'), 129.4 (C-4'), 134.0 (C-2'), 136.1 (C-1'), 173.2 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.8\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si} 303.1775$, found 303.1776.

IR (ATR): $\tilde{v} 700,814,1036,1113,1250,1429,1589,1738,2216,2954 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-34.1$ (c 1.0, $\mathrm{CHCl}_{3}, 84 \%$ ee $)$.

The enantiomeric ratio of (R) - $\mathbf{1 3 6}$ p was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: $n h e p t a n e / \mathrm{PrOH}=$ $99 / 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{S}}=13.5 \mathrm{~min}($ minor $), t_{\mathrm{R}}=14.2 \mathrm{~min}($ major $)$.

Methyl (R)-3-(dimethyl(phenyl)silyl)-5-(trimethylsilyl)pent-4-ynoate [(R)-136q]: Synthesized from methyl (E)-5-(trimethylsilyl)pent-2-en-4-ynoate $[(E)-135 q, 36.5 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=100 / 1$ delivered $(R)-136 q$ as a colourless oil ($50.9 \mathrm{mg}, 80 \%$ yield).
$\mathbf{R}_{f}=0.25$ (cyclohexane/EtOAc $=50 / 1$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.43(\mathrm{~s}, 3 \mathrm{H}$, SiCH_{3}), 2.30-2.46 (m, 3H, H-2 and H-3), $3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.34-7.42(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ ' and $\mathrm{H}-$ 4'), 7.55-7.58 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 0.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 17.6(\mathrm{C}-3)$, 34.6 ($\mathrm{C}-2$), $\left.51.6\left(\mathrm{OCH}_{3}\right), 85.9(\mathrm{C}-5), 107.4(\mathrm{C}-4), 127.8\left(\mathrm{C}-3^{\prime}\right), 129.6(\mathrm{C}-4)^{\prime}\right), 134.1\left(\mathrm{C}-2^{\prime}\right)$, 135.6 (C-1'), 172.7 (C-1) ppm.
${ }^{29}$ Si DEPT NMR (99 MHz, CDCl 3 , 298 K): δ - 0.8 (SiMe $_{2} \mathrm{Ph}$), -19.4 (SiMe_{3}) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}_{2} 319.1544$, found 319.1547.

IR (ATR): $\tilde{v} 698,813,1028,1114,1248,1428,1589,1738,2156,2955 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-59.4\left(c 1.0, \mathrm{CHCl}_{3}, 90 \%\right.$ ee $)$.

The enantiomeric ratio of (R)-136q was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{s}}=8.6 \mathrm{~min}($ minor $), t_{\mathrm{R}}=9.9 \mathrm{~min}($ major $)$.

Methyl 5-(dimethyl(phenyl)silyl)-3-methyl-5-phenylpenta-3,4-dienoate (137r): Synthesized from methyl (E)-3-methyl-5-phenylpent-2-en-4-ynoate [(E)-135r, $40.1 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=100 / 1$ as eluent delivered 137 r as a yellow oil $(33.6 \mathrm{mg}, 50 \%$ yield).
$\mathbf{R}_{f}=0.40$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.45$ (s, $3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.45 (s, 3H, SiCH_{3}), 1.85 (s, 3 H , CH_{3}), $3.02\left(\mathrm{AB}\right.$ system d, $\left.{ }^{2} \mathrm{~J}_{2 \mathrm{~A}, 2 \mathrm{~B}}=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right), 3.07\left(\mathrm{AB}\right.$ system $\mathrm{d},{ }^{2} \mathrm{~J}_{2 \mathrm{BB}, 2 \mathrm{~A}}=15.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~B}$), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.10-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4 \mathrm{C}), 7.18-7.22(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-2 "$ and $\mathrm{H}-3 ")$, $7.32-7.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4 \mathrm{4}^{\prime}\right)$, 7.57-7.60 (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-2.0\left(\mathrm{SiCH}_{3}\right),-1.8\left(\mathrm{SiCH}_{3}\right), 18.2\left(\mathrm{CH}_{3}\right), 39.4(\mathrm{C}-2)$, $\left.51.7\left(\mathrm{OCH}_{3}\right), 90.4(\mathrm{C}-3), 98.9(\mathrm{C}-5), 126.2(\mathrm{C}-4 "), 127.8(\mathrm{C}-2 "), 128.0(\mathrm{C}-3 "), 128.3(\mathrm{C}-2)^{\prime}\right)$, 129.1 (C-4'), 133.9 (C-2'), 137.3 (C-1"), 138.5 (C-1'), 171.6 (C-1), 209.0 (C-4) ppm.

${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 7 . 9}$ ($\mathrm{SiMe}_{2} \mathrm{Ph}$) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Si} 337.1618$, found 337.1619.

IR (ATR): $\tilde{v} 695,1110,1249,1429,1594,1737,1935,2196,2950 \mathrm{~cm}^{-1}$.

Methyl (R)-3-(methyldiphenylsilyl)-5-phenylpent-4-ynoate [(R)-139a]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate $[(E)-135 a, 37.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=100 / 1$ as eluent delivered (R)-139a as a yellow oil ($37.2 \mathrm{mg}, 48 \%$ yield).
$\mathbf{R}_{f}=0.20$ (cyclohexane/EtOAc =20/1).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.72$ (s, 3H, SiCHPh_{2}), 2.45-2.60 (m, 2H, H-2), 3.01 (dd, ${ }^{3} J_{3,2 \mathrm{~A}}=10.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.20-7.24\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right.$ and H-4"), 7.24-7.28 (m, 2H, H-2"), 7.34-7.44 (m, 6H, H-3' and H-4'), $7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2^{\prime}, 3^{\prime}}=6.8 \mathrm{~Hz}\right.$, $\left.2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 7.67\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{2,3^{\prime}}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.7\left(\mathrm{SiCH}_{3} \mathrm{Ph}_{2}\right)$, $15.8(\mathrm{C}-3), 35.0(\mathrm{C}-2), 51.8\left(\mathrm{OCH}_{3}\right)$, 82.8 (C-5), 90.2 (C-4), 124.2 (C-1"), 127.3 (C-4"), 127.9 (C-3'), 128.0 (C-3'), 128.0 (C-3"), 129.8 (C-4'), 129.8 (C-4'), 131.4 (C-2"), 133.9 (C-1'), 134.1 (C-1'), 135.0 (C-2', 2C), 172.8 (C1) ppm .
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-6.4\left(\mathrm{SiMePh}_{2}\right) \mathrm{ppm}$.

HRMS (LIFDI) m/z: [M] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si} 384.1546$, found 384.1537.

IR (ATR): $\tilde{v} 691,1109,1166,1252,1427,1594,1622,1735,2219,2950 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-40.3\left(c\right.$ 1.6, $\mathrm{CHCl}_{3}, 78 \%$ ee $)$.

The enantiomeric ratio of (R)-139a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=17.2 \mathrm{~min}($ minor $), t_{\mathrm{S}}=27.6 \mathrm{~min}$ (major).

Methyl (R)-5-phenyl-3-(triethylsilyl)pent-4-ynoate [(R)-143a]: Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate [(E)-135a, $39.8 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=$ $100 / 1$ as eluent delivered $(R)-143$ a as a brown oil ($43.0 \mathrm{mg}, 71 \%$ yield).
$\mathbf{R}_{f}=0.45$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.60-0.68\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 0.96\left(\mathrm{t}, 9 \mathrm{H},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz}\right.$, $\mathrm{SiCH}_{2} \mathrm{CH}_{3}$), 2.38-2.55 (m, 3H, H-2 and H-3), $3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.15-7.21(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3$ and H-4'), 7.25-7.29 (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta 2.4\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 7.4\left(\mathrm{SiCH}_{2} \mathrm{CH}_{3}\right), 13.9(\mathrm{C}-3)$, $34.8(\mathrm{C}-$ 2), $51.8\left(\mathrm{OCH}_{3}\right), 81.5(\mathrm{C}-5), 90.8(\mathrm{C}-4), 124.5\left(\mathrm{C}-1\right.$ '), $127.2\left(\mathrm{C}-4\right.$ '), $128.1\left(\mathrm{C}-3^{\prime}\right), 131.4\left(\mathrm{C}-2^{\prime}\right)$, 173.2 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 9.4\left(\mathrm{SiEt}_{3}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si} 303.1775$, found 303.1774.

IR (ATR): $\tilde{v} 690,1116,1239,1435,1596,1685,1736,2218,2952 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-28.4\left(c 0.6, \mathrm{CHCl}_{3}, 58 \% e e\right)$.

The enantiomeric ratio of (R)-143a was determined HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=9.9 \mathrm{~min}($ minor $), t_{\mathrm{R}}=11.0 \mathrm{~min}$ (major).

(R)-3-(dimethyl(phenyl)silyl)-N-methyl-N,5-diphenylpent-4-ynamide [(R)-145a): Synthesized from methyl $(E)-N$-methyl- $N, 5$-diphenylpent-2-en-4-ynamide [(E)-144a, $52.2 \mathrm{mg}, 0.200$ mmol, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=10 / 1$ as eluent delivered (R)-145a as a colourless oil (62.9 mg , 79% yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=5 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.11$ (dd, $\left.{ }^{2} J_{2 \mathrm{~A}, 2 \mathrm{~B}}=15.0 \mathrm{~Hz},{ }^{2} J_{2 \mathrm{~A}, 3}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right), 2.35\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{2 \mathrm{~B}, 2 \mathrm{~A}}=15.0 \mathrm{~Hz},{ }^{2} \mathrm{~J}_{2 \mathrm{~B}, 2 \mathrm{~A}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{~B}$), 2.76 (dd, ${ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=10.1 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~A}}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), $3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 7.10-7.14(\mathrm{~m}$, 2H, H-2'"), 7.25-7.28 (m, 3H, H-3" and H-4"), 7.28-7.36 (m, 8H, H-3', H-4', H-2", H-3'" and H4'"), 7.44-7.49 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.1\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right), 16.9(\mathrm{C}-3), 33.8(\mathrm{C}-2), 37.5$ (NCH_{3}), 81.7 (C-5), 91.5 (C-4), 124.6 (C-1"), 127.2 (C-4"), 127.5 (C-2"'), 127.6 (C-4"'), 127.7 (C-3'), 128.1 (C-3"), 129.3 (C-3'"), 129.5 (C-4'), 131.4 (C-2"), 134.0 (C-2'), 136.1 (C-1'), 143.9 (C-1"'), 171.7 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NOSi} 398.1935$, found 398.1930.

IR (ATR): $\tilde{v} 692,1112,1173,1249,1424,1592,1653,2213,2954 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+66.9$ (c $2.0, \mathrm{CHCl}_{3}, 90 \%$ ee $)$.

The enantiomeric ratio of (R)-145a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{IPrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=27.2 \mathrm{~min}($ minor $), t_{\mathrm{R}}=42.4 \mathrm{~min}$ (major).

(R)-3-(dimethyl(phenyl)silyl)-N,N-diethyl-5-phenylpent-4-ynamide [(R)-145b]: Synthesized from (E)- N, N-diethyl-5-phenylpent-2-en-4-ynamide [(E)-144b, $45.5 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=5 / 1$ as eluent delivered (R) - 145 b as a brown oil $(59.7 \mathrm{mg}, 82 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.20$ (cyclohexane/EtOAc $=8 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 1.08\left[\mathrm{t},{ }^{3} \mathrm{~J}=7.2\right.$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 1.09\left[\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 2.28\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{2 \mathrm{AA}, 2 \mathrm{~B}}=14.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2 \mathrm{~A}, 3}\right.$ $=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}), 2.60\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{2 \mathrm{~B}, 2 \mathrm{~A}}=14.7 \mathrm{~Hz},{ }^{3} J_{2 \mathrm{~B}, 3}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~B}\right), 2.84\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~B}}=\right.$ $\left.9.8 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~A}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.10-3.22\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 3.27-3.37[\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}$], 3.37-3.45 [m, 1H, N($\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 7.20-7.27(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 "$ and $\mathrm{H}-4 "), 7.30-7.33$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), $7.33-7.41\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 7.61-7.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-4.7\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right), 13.1\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 14.3$ $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 17.0(\mathrm{C}-3), 32.7(\mathrm{C}-2), 40.5\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 42.1\left[\mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}\right], 81.6(\mathrm{C}-5), 91.4$ (C-4), 124.8 (C-1"), 127.1 (C-4"), 127.7 (C-3'), 128.0 (C-3"), 129.4 (C-4'), 131.3 (C-2"), 134.1 (C-2'), 136.2 (C-1'), 170.8 (C-1) ppm.

[^9]HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{NOSi} 364.2091$, found 364.2097.

IR (ATR): $\tilde{v} 691,812,1069,1111,1249,1425,1596,1636,2215,2967 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-67.6\left(c\right.$ 1.0, $\mathrm{CHCl}_{3}, 92 \%$ ee $)$.

The enantiomeric ratio of (R) - $\mathbf{1 4 5 b}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralce/ OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: heptane $/ \mathrm{PrOH}=$ $98 / 2$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{S}}=24.1 \mathrm{~min}($ minor $), t_{\mathrm{R}}=34.0 \mathrm{~min}($ major $)$.

(R)-3-(dimethyl(phenyl)silyl)-N-methyl-5-phenylpent-4-ynamide [(R)-145c]: Synthesized from methyl (E)-N-methyl-5-phenylpent-2-en-4-ynamide [(E)-144c, $37.1 \mathrm{mg}, 0.200 \mathrm{mmol}$, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=2 / 1$ as eluent delivered $(R)-145 c$ as a colourless oil $(18.1 \mathrm{mg}, 28 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.20$ (cyclohexane/EtOAc $=2 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.17$ (dd, $\left.{ }^{2} J_{2 A, 2 B}=14.7 \mathrm{~Hz},{ }^{3} J_{2 \mathrm{~A}, 3}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right), 2.28\left(\mathrm{dd},{ }^{2} J_{2 \mathrm{BB}, 2 \mathrm{~A}}=14.7 \mathrm{~Hz},{ }^{3} J_{2 B, 3}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-2 \mathrm{~B}), 2.47\left(\mathrm{dd},{ }^{3} J_{3,2 \mathrm{~A}}=11.4 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~B}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right)$, $5.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}_{2}\right), 7.18-7.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right.$ and $\left.\mathrm{H}-4 \mathrm{C}\right), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 7.29-7.34(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{H}-3^{\prime}$ and $\mathrm{H}-4 \mathrm{4}^{\prime}$), 7.51-7.54 (m, 2H, H-2') ppm.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.0\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 17.4(\mathrm{C}-3), 26.4\left(\mathrm{NCH}_{3}\right)$, 36.7 (C-2), 82.9 (C-5), 90.6 (C-4), 123.9 (C-1"), 127.6 (C-4"), 127.9 (C-3'), 128.2 (C-3"), 129.7 (C-4'), 131.4 (C-2"), 134.1 (C-2'), 135.5 (C-1'), 172.6 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (APCI) m/z: [M+H] ${ }^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NOSi} 322.1622$, found 322.1615.

IR (ATR): $\tilde{v} 691,1112,1157,1249,1426,1544,1642,2215,2954 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-68.9\left(c \quad 0.5, \mathrm{CHCl}_{3}, 73 \% e e\right)$.

The enantiomeric ratio of (R) - $\mathbf{1 4 5 c}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{iPrOH}=$ $90 / 10$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{s}}=54.8 \mathrm{~min}$ (minor), $t_{\mathrm{R}}=74.7 \mathrm{~min}$ (major).

(R)-3-(dimethyl(phenyl)silyl)-5-phenylpent-4-ynamide [(R)-145d]: Synthesized from (E)-5-phenylpent-2-en-4-ynamide [(E)-144d, $34.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 1$ as eluent delivered (R)-145d as a colourless oil ($15.6 \mathrm{mg}, 25 \%$ yield).
$\mathbf{R}_{f}=0.20$ (cyclohexane/EtOAc = 1/1).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.17-2.28(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-2), 2.46\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=10.6 \mathrm{H},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})_{2}\right), 5.89(\mathrm{~s}, 1 \mathrm{H}$, NH_{2}), 7.18-7.22 (m, 3H, H-3" and H-4"), 7.25-7.30 (m, 2H, H-2"), 7.30-7.35 (m, 3H, H-3' and H-4'), 7.51-7.54 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.1\left(\mathrm{SiCH}_{3}\right),-4.6\left(\mathrm{SiCH}_{3}\right), 17.4(\mathrm{C}-3), 36.2(\mathrm{C}-2), 82.9$ (C-5), 90.4 (C-4), 123.8 (C-1"), 127.6 (C-4"), 127.9 (C-3'), 128.2 (C-3"), 129.7 (C-4'), 131.4 (C-2"), 134.1 (C-2'), 135.4 (C-1'), 174.6 (C-1) ppm.

[^10]HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NOSi} 308.1465$, found 308.1462.

IR (ATR): $\tilde{v} 691,1112,1189,1249,1425,1595,1655,2215,2956 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-62.0\left(c 0.8, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$.

The enantiomeric ratio of (R)-145d was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AS-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/ $\mathrm{PrOH}=$ $70 / 30$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=57.6 \mathrm{~min}($ major $), t_{\mathrm{S}}=77.9 \mathrm{~min}($ minor $)$.

(R)-145e
$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Si}$
$\mathrm{M}=377.52 \mathrm{~g} / \mathrm{mol}$
(R)-3-(3-(dimethyl(phenyl)silyl)-5-phenylpent-4-ynoyl)oxazolidin-2-one [(R)-145e]: Synthesized from (E)-3-(5-phenylpent-2-en-4-ynoyl)oxazolidin-2-one [(E)-144e, $48.2 \mathrm{mg}, 0.200$ mmol, 1.00 equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=5 / 1$ as eluent delivered (R)-145e as a brown oil $(67.4 \mathrm{mg}, 82 \%$ yield).
$\mathbf{R}_{f}=0.30$ (cyclohexane/EtOAc $=3 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.41$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 0.43 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), 2.65 (dd, ${ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}$ $\left.=10.7 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~A}}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.92\left(\mathrm{dd},{ }^{2} J_{2 \mathrm{~A}, 2 \mathrm{~B}}=16.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2 \mathrm{~A}, 3}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right)$, $2.84\left(\mathrm{dd},{ }^{2} J_{2 \mathrm{~B}, 2 \mathrm{~A}}=16.3 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{2 \mathrm{~B}, 3}=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~B}\right), 3.75-3.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.84-3.91$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), $4.23\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right.$), $7.15-7.20\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right.$ and $\left.\mathrm{H}-4 \mathrm{C}\right), 7.24-7.27$ (m, 2H, H-2'), 7.27-7.34 (m, 3H, H-3' and H-4'), 7.51-7.55 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.4\left(\mathrm{SiCH}_{3}\right),-4.3\left(\mathrm{SiCH}_{3}\right), 16.2(\mathrm{C}-3), 35.4(\mathrm{C}-2), 42.5$ $\left(\mathrm{NCH}_{2}\right), 62.0\left(\mathrm{OCH}_{2}\right), 82.0(\mathrm{C}-5), 90.5(\mathrm{C}-4), 124.2\left(\mathrm{C}-1{ }^{\prime \prime}\right), 127.3(\mathrm{C}-4 \mathrm{C}), 127.8\left(\mathrm{C}-3^{\prime}\right), 128.1$ (C-3"), 129.6 (C-4'), 131.4 (C-2"), 134.1 (C-2'), 135.8 (C-1'), 153.4 (OC(O)N), 171.9 (C-1) ppm.

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{Si} 378.1520$, found 378.1513.

IR (ATR): $\tilde{v} 692,811,1094,1111,1248,1426,1595,1697,1773,2215,2955 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-23.6\left(c 0.5, \mathrm{CHCl}_{3}, 30 \%\right.$ ee $)$.

The enantiomeric ratio of (R)-145e was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel OD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane/iPrOH $=$ $96 / 4$, flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=212.9 \mathrm{~min}($ major $), t_{\mathrm{S}}=252.9 \mathrm{~min}($ minor $)$.

(R)-147a
$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OSi}$
$\mathrm{M}=368.55 \mathrm{~g} / \mathrm{mol}$
(R)-3-(dimethyl(phenyl)silyl)-1,5-diphenylpent-4-yn-1-one [(R)-147a]: Synthesized from (E)-1,5-diphenylpent-2-en-4-yn-1-one [(E)-146a, $46.5 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP 2.4. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=60 / 1$ as eluent delivered $(R)-147 \mathrm{a}$ as a brown oil ($45.2 \mathrm{mg}, 61 \%$ yield).
$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=10 / 1$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.51\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.87\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}\right.$ $\left.=9.8 \mathrm{~Hz},{ }^{3} J_{3,2 \mathrm{~A}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 2.96\left(\mathrm{dd},{ }^{2} J_{2 \mathrm{~A}, 2 \mathrm{~B}}=16.5 \mathrm{~Hz},{ }^{3} J_{2 \mathrm{~A}, 3}=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~A}\right), 3.26$ (dd, $\left.{ }^{2} J_{2 B, 2 A}=16.5 \mathrm{~Hz},{ }^{3} J_{2 B, 3}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~B}\right), 7.22-7.26(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3 "$ and $\mathrm{H}-4 \mathrm{C}$), $7.26-$ 7.31 (m, 2H, H-2"), 7.39-7.46 (m,5H, H-3', H-4' and H-3"'), 7.52-7.57 (m, 1H, H-4"'), 7.637.68 (m, 2H, H-2'), 7.88-7.92 (m, 2H, H-2"') ppm.
${ }^{13}{ }^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-4.9\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right), 15.7(\mathrm{C}-3), 38.7(\mathrm{C}-2), 81.8$ (C-5), 91.2 (C-4), 124.3 (C-1"), 127.2 (C-4"), 127.9 (C-3'), 128.0 (C-3"'), 128.2 (C-2"'), 128.5 (C-3"), 129.6 (C-4'), 131.4 (C-2"), 132.9 (C-4"'), 134.1 (C-2'), 136.0 (C-1'), 136.9 (C-1"'), 198.5 (C-1) ppm.
${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta \mathbf{- 0 . 2}$ (SiMe $\left.\mathrm{Si}_{2} \mathrm{Ph}\right) \mathrm{ppm}$.

HRMS (LIFDI) m/z: [M] ${ }^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{OSi} 368.1596$, found 368.1561 .

IR (ATR): $\tilde{v} 687,1111,1178,1249,1425,1543,1684,1772,2214,2956 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=-46.1$ (c 1.9, $\left.\mathrm{CHCl}_{3}, 71 \% e e\right)$.

The enantiomeric ratio of (R)-147a was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane $/ \mathrm{PrOH}=$ $99 / 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}): t_{\mathrm{R}}=28.5 \mathrm{~min}($ major $), t_{\mathrm{S}}=32.9 \mathrm{~min}($ minor $)$.

Methyl (3R)-3-(dimethyl(phenyl)silyl)-5-phenylpent-4-ynoate [(R)-136a- d_{1}): Synthesized from methyl (E)-5-phenylpent-2-en-4-ynoate [(E)-135a, $37.2 \mathrm{mg}, 0.200 \mathrm{mmol}, 1.00$ equiv] according to GP $2.4\left(\mathrm{CD}_{3} \mathrm{OD}\right.$ was used instead of $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$. Purification by flash column chromatography on silica gel with cyclohexane/EtOAc $=80 / 1$ as eluent delivered (R)-136a- d_{1} as a yellow oil ($60.0 \mathrm{mg}, 93 \%$ yield).
$\mathbf{R}_{f}=0.35$ (cyclohexane/EtOAc $=30 / 1$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta 0.44$ (s, 3H, SiCH_{3}), $0.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.36-2.49(\mathrm{~m}$, $1.05 \mathrm{H}, \mathrm{H}-2), 2.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~A}}=7.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{3,2 \mathrm{~B}}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3\right), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.21-7.27$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3$ " and $\mathrm{H}-4 \mathrm{4}$), $7.30-7.34$ (m, 2H, H-2"), 7.34-7.41 (m, 3H, H-3' and H-4'), 7.56-7.59 (m, 2H, H-2') ppm.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-5.3\left(\mathrm{SiCH}_{3}\right),-4.4\left(\mathrm{SiCH}_{3}\right), 16.8(\mathrm{C}-3), 34.4\left(\mathrm{t},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{D}}=\right.$ $80.6 \mathrm{~Hz}, \mathrm{C}-2), 51.7\left(\mathrm{OCH}_{3}\right), 82.0(\mathrm{C}-5), 90.3(\mathrm{C}-4), 124.2$ (C-1"), 127.3 (C-4"), 127.9 (C-3'), 128.1 (C-3"), 129.6 (C-4'), 131.4 (C-2"), 134.0 (C-2'), 135.6 (C-1'), 172.9 (C-1) ppm.
${ }^{29}$ Si DEPT NMR (99 MHz, $\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta-0.3\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

HRMS (APCI) m/z: $[M+H]+$ calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{DO}_{2} \mathrm{Si}^{+}$324.1525; found 324.1529.

3.3 Asymmetric Conjugate 1.4-Silyl Transfer to α, β-Unsaturated Sulfones

3.3.1 Procedure for $(E)-150$

To a solution of 2-mercaptopyridine ($2.22 \mathrm{~g}, 20 \mathrm{mmol}$) in a mixture solvent of $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ and dry THF (40 mL) at $0^{\circ} \mathrm{C}$, was added 1,8 -Diazabicyclo[5.4.0]undec-7-ene (DBU, 3.35 g , $22.0 \mathrm{mmol}, 1.1$ equiv). After stirring at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, $\mathrm{Mel}(3.12 \mathrm{~g}, 22.0 \mathrm{mmol}, 1.10$ equiv) was added slowly. Then the reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched by water (30 mL) and extracted by EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=20 / 1$ as eluent delivered the desired methyl 2-pyridyl sulfide as a colorless oil ($2.23 \mathrm{~g}, 90 \%$) and all spectroscopic data accord with those reported. ${ }^{[74]}$.

To a solution of methyl 2-pyridyl sulfide ($1.25 \mathrm{~g}, 10 \mathrm{mmol}$) in a mixture solvent of EtOAc (20 mL) and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$, was added $\mathrm{Na}_{2} \mathrm{WO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ ($329 \mathrm{mg}, 1.00 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$). A aq. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution ($30 \%, 1.143 \mathrm{~g}, 30.0 \mathrm{mmol}, 3.00$ equiv) was added to the reaction mixture at 0 ${ }^{\circ} \mathrm{C}$. After stirring at this temperature for 30 minutes, the reaction mixture was allowed to warm to room temperature, and then stirred at this temperature for an hour. The reaction was quenched by slow addition of sat. aq. $\mathrm{NaHSO}_{3}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and then extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 2$ as eluent delivered the 2-(methylsulfonyl)pyridine as a colorless oil ($1.32 \mathrm{~g}, 84 \%$) and all spectroscopic data accord with those reported. ${ }^{[74]}$

A heat gun-dried three-neck round-bottom flask equipped with a magnetic stir bar and a septum is purged with N_{2}, followed by the addition of 2-(methylsulfonyl)pyridine ($1.57 \mathrm{~g}, 10.0$ mmol) and dry THF (20 mL). After cooling to $-78^{\circ} \mathrm{C}$ in a dry ice/acetone bath, a solution of
[74] P. H. Bos, A. J. Minnaard, B. L. Feringa, Org. Lett. 2008, 10, 4219-4222.
n BuLi in hexane ($2.5 \mathrm{M}, 4.4 \mathrm{~mL}, 11.0 \mathrm{mmol}, 1.10$ equiv) was added slowly. After stirring at $78{ }^{\circ} \mathrm{C}$ for 30 minutes, benzaldehyde ($2.33 \mathrm{~g}, 11.0 \mathrm{mmol}, 1.10$ equiv) was added to the reaction mixture and then it was allowed to warm to room temperature. The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=2 / 1$ as eluent delivered a crude 2 pyridylsulfonylalcohol, which was used in the next step without any further purification.

To a solution of crude 2-pyridylsulfonylalcohol and 4-Dimethylaminopyridine (DMAP, 4.89 g , 40.0 mmol, 4.00 equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added methanesulfonyl chloride ($\mathrm{MsCl}, 2.29 \mathrm{~g}$, $20.0 \mathrm{mmol}, 2.00$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to room temperature slowly and then stirred overnight. The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (25 mL) and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over anhydrous MgSO_{4}, filtered and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=3 / 1$ as eluent delivered the target 150 as a white solid ($1.66 \mathrm{~g}, 68 \%$) and all spectroscopic data accord with those reported. ${ }^{[74]}$

3.3.2 Procedure for Enantioenriched Product 151

A heat gun-dried Schlenk tube equipped with a magnetic stir bar and a septum was purged with N_{2}, followed by the addition of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}(3.73 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%),(S, R)-$ L75 ($2.86 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 12.0 \mathrm{~mol} \%$) and LiOtBu ($1.60 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20.0 \mathrm{~mol} \%$). The tube was evacuated and backfilled with N_{2} and then $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added. After stirring at room temperature for an hour, $\mathrm{Me}_{2} \mathrm{PhSi}-\mathrm{Bpin}(12,39.3 \mathrm{mg}, 0.150 \mathrm{mmol}, 1.50$ equiv) was added. α, β-Unsaturated sulfone 150 ($24.5 \mathrm{mg}, 0.100 \mathrm{mmol}, 1.00$ equiv) and methanol (6.48 mg , $0.200 \mathrm{mmol}, 2.00$ equiv) were added successively in 20 minutes. The reaction mixture was stirred at room temperature overnight, and then concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=3 / 1$ as eluent delivered the corresponding product 151 as a white solid ($34.7 \mathrm{mg}, 91 \%$).

3.3.3 Characterization Data for 151

151
$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{SSi}$
$\mathrm{M}=381.57 \mathrm{~g} / \mathrm{mol}$

2-\{[2-(Dimethylphenylsilyl)-2-phenylethyl]sul-fonyl\}pyridine

$\mathbf{R}_{\boldsymbol{f}}=0.50$ (cyclohexane/EtOAc $=1 / 1$).
M.P. $113-114{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 0.21$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.93$ (dd, ${ }^{3} \mathrm{~J}_{2,1 \mathrm{~B}}$ $\left.=13.1 \mathrm{~Hz},{ }^{3} J_{2,1 \mathrm{~A}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right), 3.41\left(\mathrm{dd},{ }^{2} J_{1 \mathrm{~A}, 1 \mathrm{~B}}=15.1 \mathrm{~Hz},{ }^{3} J_{1 \mathrm{~A}, 2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~A}\right)$, $4.16\left(\mathrm{dd},{ }^{2} \mathrm{~J}_{1 \mathrm{~B}, 1 \mathrm{~A}}=15.1 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{1 \mathrm{~B}, 2}=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~B}\right), 6.59-6.63(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2 \mathrm{C}), 6.80-6.87$ ($\mathrm{m}, 3 \mathrm{H}, \mathrm{H}-3$ " and H-4"), 7.20-7.24 (m, 1H, H-5'), 7.32-7.37 (m, 4H, H-2'", H-3'"), 7.37-7.42 (m, 1H, 4'"), $7.43-7.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$, and H-4'), $8.47\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right)$ ppm.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-5.6\left(\mathrm{SiCH}_{3}\right),-4.2\left(\mathrm{SiCH}_{3}\right), 31.8(\mathrm{C}-2), 53.3(\mathrm{C}-1), 122.7$ (C-3'), 125.0 ($\mathrm{C}-4 "$), 126.5 (C-5'), 127.7 (C-3"), 127.9 (C-2" or $\left.\mathrm{C}-3^{\prime \prime \prime}\right), 128.0$ (C-2" or $\mathrm{C}-3^{\prime \prime}$), 129.8 (C-4'"), 134.1 (C-2'"), 135.0 (C-1'"), 137.3 (C-4'), 137.9 (C-1"), 149.7 (C-6'), 157.6 (C2') ppm.
${ }^{29}$ Si dept $\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-0.5\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{SSi}$ 382.1292, found 382.1296.

IR (ATR): $\tilde{v} 698,729,807,991,1033,1107,1244,1426,1596,2955,3065 \mathrm{~cm}^{-1}$.

Optical rotation: $[\alpha]_{D}^{20}=+5.86$ (c 1.0, $\left.\mathrm{CHCl}_{3}, 83 \% e e\right)$.

The enantiomeric ratio of $\mathbf{1 5 1}$ was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel IB column, column temperature $20^{\circ} \mathrm{C}$, solvent: nheptane/iPrOH $=90 / 10$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$): $t=15.8 \mathrm{~min}$ (minor), $t=17.4 \mathrm{~min}$ (major).

3.4 Asymmetric Conjugate 1.4-Silyl Transfer to α, β-Unsaturated Phosphine Oxides

3.4.1 Procedure for (E)-152

(E)-152

To a solution of chlorodiphenylphosphine ($2.21 \mathrm{~g}, 10.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, was added dropwise distilled water (6 mL). After stirring at $40^{\circ} \mathrm{C}$ in an oil bath for 3 hours, the reaction mixture was allowed to cool to room temperature, and then extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ 10 mL). The combined organic phases were washed by sat. aq. NaHCO_{3} solution (2×10 mL) and sat. aq. NaCl solution ($2 \times 10 \mathrm{~mL}$), dried over anhydrous MgSO_{4}, filtered, and concentrated under reduced pressure to afford the crude diphenylphosphine oxide, ${ }^{[75]}$ which was used directly in the next step without any further purification.

To a solution of the crude diphenylphosphine oxide in DMSO (25 mL), were added phenylacetylene ($1.53 \mathrm{~g}, 15.0 \mathrm{mmol}, 1.50$ equiv), Cul ($190 \mathrm{mg}, 1.00 \mathrm{mmol}, 10.0 \mathrm{~mol} \%$) and ethylenediamine (EDA, $90.2 \mathrm{mg}, 1.50 \mathrm{mmol}, 15.0 \mathrm{~mol} \%$). After stirring at $60^{\circ} \mathrm{C}$ in an oil bath for 3 hours, the reaction mixture was allowed to cool to room temperature. The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. The organic phase was washed by $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 3$ as eluent delivered the target (E)-152 as a white solid (2.58 g , 85%) and all spectroscopic data accord with those reported. ${ }^{[76]}$

3.4.2 Procedure for Product 153

[^11]A heat gun-dried Schlenk tube equipped with a magnetic stir bar and a septum was purged with N_{2}, followed by the addition of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{CuBH}_{4}(3.73 \mathrm{mg}, 10.0 \mu \mathrm{~mol}, 10.0 \mathrm{~mol} \%)$, (R, R, R, R)-L57 ($6.08 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 12.0 \mathrm{~mol} \%$) and LiOtBu ($1.60 \mathrm{mg}, 20.0 \mu \mathrm{~mol}, 20.0$ $\mathrm{mol} \%$). The tube was evacuated and backfilled with N_{2}, followed by the addition of THF (1 mL). After stirring at room temperature for an hour, Me ${ }_{2} \mathrm{PhSi}-\mathrm{Bpin}(12,39.3 \mathrm{mg}, 0.150 \mathrm{mmol}$, 1.50 equiv) was added. α, β-Unsaturated phosphine oxide (E)-152 ($30.4 \mathrm{mg}, 0.100 \mathrm{mmol}$, 1.00 equiv) and methanol ($6.48 \mathrm{mg}, 0.200 \mathrm{mmol}, 2.00$ equiv) were added successively in 20 minutes. The reaction mixture was stirred at room temperature overnight, and then concentrated under reduced pressure. Purifying the residue by flash column chromatography on silica gel with cyclohexane/EtOAc $=1 / 3$ as eluent delivered the corresponding product 153 as a white solid ($20.7 \mathrm{mg}, 47 \%$).

3.4.3 Characterization Data for 153

\{2-[Dimethyl(phenyl)silyl]-2-phenylethyl\}diphenyl-phosphine oxide

$\mathbf{R}_{f}=0.20$ (cyclohexane/EtOAc $=1 / 1$).
M.P. $191-192^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta 0.21$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}$), $0.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.58-2.75$ (m, $2 \mathrm{H}, \mathrm{H}-1$), 2.82-2.90 (m, 1H, H-1, H-2), 6.70-6.74 (m, 2H, H-2"), 6.87-6.95 (m,3H, H-3" and H-4"), 7.11-7.16 (m, 2H, H-2'), 7.24-7.28 (m, 1H, H-4'), 7.31-7.42 (m, 9H, H-2', H-3' H-2'", $\mathrm{H}-3$ '" and H-4'"), 7.42-7.46 (m, 1H, H-4'), 7.52-7.58 (m, 2H, H-3') ppm.
${ }^{13}{ }^{3}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-5.5\left(\mathrm{SiCH}_{3}\right),-4.1\left(\mathrm{SiCH}_{3}\right), 28.6\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=6.0 \mathrm{~Hz}, \mathrm{C}-2\right)$, 30.2 ($\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=66.9 \mathrm{~Hz}, \mathrm{C}-1$), 124.7 (C-4"), 127.7 (C-2"), 127.8 (C-3'"), 127.9 ($\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.5$ $\mathrm{Hz}, \mathrm{C}-2$ '), 128.1 (C-3"), 128.4 ($\left.\mathrm{d},{ }^{2} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=11.5 \mathrm{~Hz}, \mathrm{C}-2^{\prime}\right), 129.3$ (C-4'"), 130.6 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.1 \mathrm{~Hz}$, $\left.\mathrm{C}-3^{3}\right), 130.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=9.1 \mathrm{~Hz}, \mathrm{C}-3^{\prime}\right), 130.9\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}, \mathrm{C}-4\right.$ '), $131.4\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=2.8 \mathrm{~Hz}\right.$,

C-4'), 132.6 ($\left.\mathrm{d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=96.3 \mathrm{~Hz}, \mathrm{C}-1^{\prime}\right), 134.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}, \mathrm{P}}=96.3 \mathrm{~Hz}, \mathrm{C}-1\right.$ '), 134.3 (C-2'"), 136.3 (C1'"), 141.0 (C-1") ppm.
${ }^{29}$ Si dept $\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-0.1\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{S}, \mathrm{P}}=20.7 \mathrm{~Hz}, \mathrm{SiMe}_{2} \mathrm{Ph}\right) \mathrm{ppm}$
${ }^{31}$ P NMR $\left(202 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 31.5(P=\mathrm{O}) \mathrm{ppm}$

HRMS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{OPSi} 441.1798$, found 441.1795.

IR (ATR): $\tilde{v} 698,733,809,995,1069,1174,1248,1434,1594,2959,3057 \mathrm{~cm}^{-1}$.

The enantiomeric ratio of 153 was determined by HPLC analysis on a chiral stationary phase (Daicel Chiralcel AD-H column, column temperature $20^{\circ} \mathrm{C}$, solvent: n heptane: $\mathrm{PrOH}=90: 10$, flow rate $=0.8 \mathrm{~mL} / \mathrm{min}$): $t=15.8 \mathrm{~min}, t=24.2 \mathrm{~min}$.

Appendix

A1 X-Ray Structure Data

A1.1 Molecular Structure of (S)-90a

Cambridge structural data CCDC
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.48^{\circ}$
Absorption correction
Max. and min. transmission

1913584
$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NOSi}$
357.51
150.00(10) K
1.54184 A

Monoclinic
P21
$a=6.2273(2) \AA \quad \alpha=90^{\circ}$.
$b=18.9912(7) \AA \quad \beta=95.272(4)^{\circ}$.
$c=8.2297(4) \AA \quad \gamma=90^{\circ}$.
969.16(7) \AA^{3}

2
$1.225 \mathrm{Mg} / \mathrm{m}^{3}$
$1.141 \mathrm{~mm}^{-1}$ 380
$0.16 \times 0.10 \times 0.04 \mathrm{~mm}^{3}$
4.66 to 67.48°.
$-7<=h<=5,-18<=k<=22,-8<=1<=9$
3351
$2563[R($ int $)=0.0208]$
99.8 \%

Semi-empirical from equivalents
0.9515 and 0.8421

Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2$ sigma(I]]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
2563 / 1/237
1.037
$R 1=0.0413, w R 2=0.1059$
$R 1=0.0444, w R 2=0.1093$
0.06(3)
0.266 and -0.285 e. \AA^{-3}

A1.2 Molecular Structure of (S)-134b

Cambridge structural data CCDC
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000) 268
Crystal size
Theta range for data collection
Index ranges
Reflections collected

1913585
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$
253.29
150.00(10) K
$1.54184 \AA$
Monoclinic
P21
$a=5.6833(5) \AA \quad \alpha=90^{\circ}$.
$b=7.8915(6) \AA \quad \beta=90.324(5)^{\circ}$.
$c=14.9791(13) \AA \quad \gamma=90^{\circ}$.
671.80(9) A ${ }^{3}$

2
$1.252 \mathrm{Mg} / \mathrm{m}^{3}$
$0.664 \mathrm{~mm}^{-1}$
$0.27 \times 0.23 \times 0.04 \mathrm{~mm}^{3}$
2.95 to 67.43°.
$-6<=h<=6,-8<=k<=9,-17<=\mid<=9$
2317

Independent reflections
Completeness to theta $=67.43^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [l>2sigma(I]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
$1795[\mathrm{R}(\mathrm{int})=0.0224]$
99.7 \%

Semi-empirical from equivalents
0.9739 and 0.8401

Full-matrix least-squares on F^{2}
1795/1/175
1.067
$R 1=0.0362, w R 2=0.0945$
$R 1=0.0385, w R 2=0.0991$
0.1(3)
0.134 and -0.178 e. \AA^{-3}

A1.3 Molecular Structure of (R)-136I

Cambridge structural data CCDC
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

2025553
$\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{BO}_{4} \mathrm{Si}$
448.42
150.01(10) K
$1.54184 \AA$
Orthorhombic
P212121
$\begin{array}{ll}a=9.0375(4) \AA & \alpha=90^{\circ} \\ b=15.2924(9) \AA & \beta=90^{\circ} \\ c=18.4289(10) \AA & \gamma=90^{\circ}\end{array}$
Volume

Z

Density (calculated)
Absorption coefficient
F(000) 960
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.45^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F2
Final R indices [$\mathrm{I}>2$ sigma(I]]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole

4
$1.169 \mathrm{Mg} / \mathrm{m} 3$
$1.034 \mathrm{~mm}-1$
$0.11 \times 0.06 \times 0.03 \mathrm{~mm} 3$
3.76 to 67.45°.
$-10<=h<=10,-11<=k<=18,-21<=\mid<=22$
9922
$4556[\mathrm{R}(\mathrm{int})=0.0491]$
100.0 \%

Semi-empirical from equivalents
0.9696 and 0.8929

Full-matrix least-squares on F2
4556 / 0 / 296
1.009
$R 1=0.0433, w R 2=0.0862$
$R 1=0.0632, w R 2=0.0973$
-0.09 (3)
0.154 and -0.199 e. Å-3

A2 AbBREVIATION

Δ
\wedge
v
δ
A

Ac
acac
$t \mathrm{AmOH}$
APCI
Ar
ATR

Bn
Boc
br
nBu
iBu
tBu
Bz
Bpnd*
Bpin
${ }^{\circ} \mathrm{C}$
Cbz
cm
cod
conc.
Conv.
COSY
Cp
m CPBA

Cy

$\mathrm{Cu}(\mathrm{CHB})_{2}$
chemical shift
wavelength
wavenumber
chemical shift
angstrom
acetyl
acetylacetone
tert-amyl alcohol
atmospheric pressure chemical ionization
aryl
Attenuated Total Reflection
benzyl
tert-butoxycarbonyl
broad signal
nbuty
iso-butyl
tert-butyl
Benzoate
pure optical pinanediolatoboron
pinacolatoboron.
degree Celsius
benzyloxycarbonyl
centimeter
1,5-cyclooctadiene
Concentrated
Conversion
Correlation Spectroscopy
cyclopentadienyl
3-chloroperbenzoic acid
Cyclohexyl
copper bis(4-cyclohexylbutyrate)
d
dba
DBU
DCE
DFT
DIBAL-H
DIPEA
DMAP
DMF
DMSO
d.r.
dtbpy

EDA

ee
ent
ESI
Et
equiv
EWG

g

GC-MS
GLC
Glyme
GP
h
Hal
HCl
hept
hex
HMBC
HMQC
HRMS
$\mathrm{H}_{2} \mathrm{O}$
doublet
dibenzylideneacetone
1,8-diazabicyclo[5.4.0]undec-7-ene
1,2-dichloroethane
density functional theory
diisobutylaluminium hydride
N, N-diiso-propylethylamine
4-Dimethylaminopyridine
N, N-dimethylformamide
dimethyl sulfoxide
diastereomeric Ratio
4,4'-di-tert-butyl-2,2'-dipyridyl
ethylenediamine
enantiomeric excess
enantiomer
electron spray ionization
ethyl
equivalent
electron-withdrawing group
gram
gas chromatography-mass spectrometry
gas-liquid chromatography
1,2-dimethoxyethane
general procedure
hour
halogen
hydrogen chloride
heptyl
hexyl
heteronuclear multiple bond coherence
heteronuclear multiple quantum coherence
high resolution mass spectra
water

Hz	hertz
IR	infrared spectroscopy
IUPAC	International Union of Pure and Applied Chemistry
J	coupling constant
L	ligand or liter
LIFDI	Liquid Injection Field Desorption Ionization
M	molecular mass or metal
M	molarity
M	multiplet or medium or milli or meter
Me	methyl
MeOH	methanol
Mes	mesityl
2-MeTHF	2-methyltetrahysrofuran
min	minute
mol	molar
mol\%	mole percent
M.p.	melting point
MS	mass spectrometr
MsCl	methanesulfonyl chloride
n	number of units
NMR	nuclear magnetic resonance
\bigcirc	ortho
OTf	triflate
p	para
Ph	phenyl
pin	pinacolato
ppm	parts per million
iPr	isopropyl

q

R
Rf
rac
RT
s
Si
t
tAmOH
TBME
TC
THF
TLC
TM
TMP
TMS
Ts

UV
w

X

Ligand

BINAP
BOX bis(oxazoline)
NHC N-heterocyclic carbene

Xantphos
TADDOL

BDPP 2,4-Bis-(diphenylphosphino)-pentane

Ph-BPE 1,2-Bis-(2,5-diphenylphospholano)-ethane
QuinoxP 2,3-Bis(tert-butylmethylphosphino)quinoxaline
SEGPHOS 5,5'-Bis(diphenylphosphino)-4,4'-bi-1,3-benzodioxole
quartet
organic rest or as defined in the text
retention factor
racemic
room temperature
singlet or strong
triorganosilyl group
triplet
tert-amyl alcohol
tert-butyl methyl ether
thiophene-2-carboxylate
tetrahydrofuran
thin-layer chromatography
transition metal
2,2,6,6-tetramethylpiperidine
trimethylsilyl
tosyl
ultraviolet
weak
heteroatom

2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(diphenylphosphane)
$\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetraaryl-2,2-disubstituted 1,3-dioxolane-4,5-dimethanol

A3 BIBLIOGRAPHY

[1] For selected reviews, see: a) R. Ramesh, D. S. Reddy, J. Med. Chem. 2018, 61, 37793798; b) S. Fujii, Y. Hashimoto, Future Med. Chem. 2017, 9, 485-505; c) A. K. Franz, S. O. Wilson, J. Med. Chem. 2013, 56, 388-405; d) S. Gately, R. West, Drug Dev. Res. 2007, 68, 156-163; e) G. A. Showell, J. S. Mills, Drug Discovery Today 2003, 8, 551556.
[2] For selected examples, see:a) W. K. Moberg, G. S. Basarab, J. Cuomo, P. H. Liang, Syn. Chem. Agrochem. 1987, 355, 288-301; b) S. M. Sieburth, C. N. Langevine, D. M. Dardaris, Pestic. Sci. 1990, 28, 289-307; c) S. M. Sieburth, C. N. Langevine, D. M. Dardaris, Pestic. Sci. 1990, 28, 309-319.
[3] For selected reviews, see: a) T. Asefa, Z. Tao, Can. J. Chem. 2012, 90, 1015-1031; b) N. Mizoshita, T. Tani, S. Inagaki, Chem. Soc. Rev. 2011, 40, 789-800; c) N. Auner, J, Weis in Organosilicon Chemistry V: From Molecules to Materials (Eds.: N. Auner, J. Weis), Wiley-VCH, Weinheim, 2003.
[4] For selected reviews, see: a) T. Hiyama, M. Oestreich in Organosilicon ChemistryNovel Approaches and reactions (Eds.: T. Hiyama, M. Oestreich), wilely-VCH, Weinheim, 2019; b) T. Komiyama, Y. Minami, T. Hiyama, ACS Catal. 2017, 7, 631651; c) S. E. Denmark, J. H.-C. Liu, Angew. Chem. Int. Ed. 2010, 49, 2987-2986; Angew. Chem. 2010, 122, 3040-3049; d) B. Marciniec, Hydrosilylation in Advances in Silicon Science (Ed.: B. Marciniec), Springer, Barlin, 2009.
[5] For a representative review, see: a) G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 7599-7662; for original works, see: a) K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120-2122; b) I. Fleming, R. Henning, H. Plaut, J. Chem. Soc. Chem. Commun. 1984, 29-31.
[6] For selected reviews about silylboronic esters, see: a) J.-J. Feng, W. Mao, L. Zhang, M. Oestreich, Chem. Soc. Rev. 2021, 50, 2010-2073; b) W. Xue, M. Oestreich, ACS Cent. Sci. 2020, 6, 1070-1081; M. Oestreich, E. Hartmann, M. Mewald, Chem. Rev. 2013, 113, 402-441; for a recent review about asymmetric hydrosilylation, see: d) M. Zaranek, P. Pawluc, ACS Catal. 2018, 8, 9865-9876.
[7] For selected reviews, see: a) L. D. de Almeida, H. Wang, K. Junge, X. Cui, M. Beller, Angew. Chem. Int. Ed. 2021, 60, 550-565; Angew. Chem. 2021, 133, 558-573; b) T. Hayashi, Catal. Today, 2000, 62, 3-15; for mechanism, see: c) A. J. Chalk, J. F. Harrod, J. Am. Chem. Soc. 1965, 87, 16-21; d) A. M. LaPointe, F. C. Rix, M. Brookhart, J. Am. Chem. Soc. 1997, 119, 906-917.
[8] For reviews, see: Refs 4d, 6d, 7a, 7b; for seminal works, see: a) Y. Uozumi, T. Hayashi, J. Am. Chem. Soc. 1991, 113, 9887-9888; b) T. Naito, T. Yoneda, J. Ito, H.

Nishiyama, Synlett 2012, 23, 2957-2960; c) M. W. Gribble, Jr., M. T. Pirnot, J. S. Bandar, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2017, 139, 2192-2195; c) B. Cheng, P. Lu, H.-Y. Zhang, X.-P. Cheng, Z. Lu, J. Am. Chem. Soc. 2017, 139, 94399442; d) B. Cheng, W.-B. Liu, Z. Lu, J. Am. Chem. Soc. 2018, 140, 5014-5017.
[9] Examples about strained-ring compounds, see: a) T. Hayashi, K. Tamao, Y. Katsuro, I. Nakae, M. Kumada, Tetrahedron Lett. 1980, 21, 1871-1874; b) Y. Uozumi, S.-Y. Lee, T. Hayashi, Tetrahedron Lett. 1992, 33, 7185-7188; c) Y. Uozumi, T. Hayashi, Tetrahedron Lett. 1993, 34, 2335-2338; d) T. I. Gountchev, T. D. Tilley, Organometallics 1999, 18, 5661-5667; e) M. Oestreich, S. Rendler, Angew. Chem. Int. Ed. 2005, 44, 1661-1664; Angew, Chem. 2005, 117, 1688-1691; f) S. Rendler, M. Oestreich, C. P. Butts, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2007, 129, 502-503; g) Z.-Y. Zhao, Y.-X. Nie, R.-H. Tang, G.-W. Yin, J. Cao, Z. Xu, Y.-M. Cui, Z.-J. Zheng, L.W. Xu, ACS Catal. 2019, 9, 9110-9116; an example about internal alkene, see: h) J. F. Jensen, B. Y. Svendsen, T. V. la Cour, H. L. Pedersen, M. Johannsen, J. Am. Chem. Soc. 2002, 124, 4558-4559; examples about alkenylboronic esters, see: i) A. A. Szymaniak, C. Zhang, J. R. Coombs, J. P. Morken, ACS Catal. 2018, 8, 2897-2901; examples about alkenylsilanes, see: j) Z. Cheng, S. Xing, J. Guo, B. Cheng, L.-F. Hu, X.-H. Zhang, Z. Lu, Chin. J. Chem. 2019, 37, 457-461.
[10] a) M. Suginome, T. Ohmura, Y. Miyake, S. Mitani, Y. Ito, M. Murakami, J. Am. Chem. Soc. 2003, 125, 11174-11175; b) T. Ohmura, M. Suginome, Org. Lett. 2006, 8, $2503-$ 2506; c) T. Ohmura, H. Taniguchi, M. Suginome, J. Am. Chem. Soc. 2006, 128, 13682-13683.
[11] L. Zhang, M. Oestreich, Chem. Eur. J. 2019, 25, 14304-14307.
[12] M. Cui, M. Oestreich, Org. Lett. 2020, 22, 3684-3687.
[13] Reviews, see: a) J. W. Han, T. Hayashi, Tetrahydron: Asymmetry 2010, 21, 21932197; b) T. Hayashi, Acc. Chem. Res. 2000, 33, 354-362; c) T. Hayashi, Acta Chem. Scand. 1996, 50, 259-266; selected examples for cyclic dienes, see: d) T. Hayashi, J. W. Han, A. Takeda, J. Tang, K. Nohmi, K. Mukaide, H. Tsuji, Y. Uozumi, Adv. Synth. Catal. 2001, 343, 279-283; e) J. W. Han, T. Hayashi, Tetrahedron: Asymmetry 2002, 13, 325-331; a selected example for acyclic dienes, see: f) J. W. Han, N. Tokunaga, T. Hayashi, Helv. Chim. Acta 2002, 85, 3848-3854.
$[14]$ a) M. Gerdin, C. Moberg, Adv. Synth. Catal. 2005, 347, 749-753; b) G. Durieux, M. Gerdin, C. Moberg, A. Jutand, Eur. J. Inorg. Chem. 2008, 4236-4241; c) M. Gerdin, M. Penhoat, R. Zalubovskis, C. Pétermann, C. Moberg, J. Organomet. Chem. 2008, 693, 3519-3526.
[15] N. Saito, A. Kobayashi, Y. Sato, Angew. Chem. Int. Ed. 2012, 51, 1228-1231, Angew. Chem. 2012, 124, 1254-1257.
[16] A recent review, see: L. Fu, S. Greßies, P. Chen, G. Liu, Chin. J. Chem. 2020, 38, 91100.
[17] J. W. Han, N. Tokunaga, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 12915-12916.
[18] M. Ogasawara, A. Ito, K. Yoshida, T. Hayashi, Organometallics 2006, 25, 2715-2718.
[19] X.-W. Gu, Y.-L. Sun, J.-L. Xie, X.-B. Wang, Z. Xu, G.-W. Yin, L. Li, K.-F. Yang, L.-W. Xu, Nat. Commun. 2020, 11, 2904.
[20] I. Ibrahem, S. Santoro, F. Himo, A. Córdova, Adv. Synth. Catal. 2011, 353, 245-252.
[21] a) C. Walter, G. Auer, M. Oestreich, Angew. Chem. Int. Ed. 2006, 45, 5675-5677; Angew. Chem. 2006, 118, 5803-5805; b) C. Walter, R. Fröhlich, M. Oestreich, Tetrahedron 2009, 65, 5513-5520.
[22] C. Walter, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 3818-3820; Angew. Chem. 2008, 120, 3878-3880.
[23] E. Hartmann, M. Oestreich, Angew. Chem. Int. Ed. 2010, 49, 6195-6198; Angew. Chem. 2010, 122, 6331-6334.
[24] E. Hartmann, M. Oestreich, Org. Lett. 2012, 14, 2406-2409.
[25] L. Zhang, M. Oestreich, ACS Catal. 2021, 11, 3516-3522.
[26] K.-s. Lee, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 2898-2900.
[27] L. F. Teitze, N. Tölle, D. Kratzert, D. Stalke, Org. Lett. 2009, 11, 5230-5233.
[28] K.-s. Lee, H. Wu, F. Haeffner, A. H. Hoveyda, Organometallics 2012, 31, 7823-7826.
[29] a) H. Y. Harb, K. D. Collins, J. V. G. Altur, S. Bowker, L. Campbell, D. J. Procter, Org. Lett. 2010, 12, 5446-5449; b) V. Pace, J. P. Rae, H. Y. Harb, D. J. Procter, Chem. Commun. 2013, 49, 5150-5152.
[30] a) J. M. O'Brien, A. H. Hoveyda, J. Am. Chem. Soc. 2011, 133, 7712-7715; b) H. Wu, J. M. Garcia, F. Haeffner, S. Radomkit, A. R. Zhugralin, A. H. Hoveyda, J. Am. Chem. Soc. 2015, 137, 10585-10602.
[31] Y. Shi, Q. Gao, S. Xu, J. Org. Chem. 2018, 83, 14758-14767.
[32] T. Kitanosono, L. Zhu, C. Liu, P. Xu, S. Kobayashi, J. Am. Chem. Soc. 2015, 137, 15422-15425.
[33] V. Pace, J. P. Rae, D. J. Procter, Org. Lett. 2014, 16, 476-479.
[34] B.-C. Da, Q.-J. Liang, Y.-C. Luo, T. Ahmad, Y.-H. Xu, T.-P. Loh, ACS Catal. 2018, 8, 6239-6245.
[35] W. Mao, W. Xue, E. Irran, M. Oestreich, Angew. Chem. Int. Ed. 2019, 58, 1072310726; Angew. Chem. 2019, 131, 10833-10836.
[36] Y.-L. Zeng, B. Chen, Y.-T. Wang, C.-Y. He, Z.-Y. Mu, J.-Y. Du, L. He, W.-D. Chu, Q.-Z. Liu, Chem. Commun. 2020, 56, 1693-1696.
[37] X.-L. Wang, X.-H. Yin, J.-Z. Xiao, X.-S. Jia, L. Yin, Chin. J. Chem. 2021, 39, 19161922.
[38] M. Wang, Z.-L. Liu, X. Zhang, P.-P. Tian, Y.-H. Xu, T.-P. Loh, J. Am. Chem. Soc. 2015, 137, 14830-14833.
[39] A recent review, see: Z. Cheng, J. Guo, Z. Lu, Chem. Commun. 2020, 56, 2229-2239.
[40] T. Shimada, K. Mukaide, A. Shinohara, J. W. Han, T. Hayashi, J. Am. Chem. Soc. 124, 1584-1585.
[41] J. Guo, H. Wang, S. Xing, X Hong, Z. Lu, Chem 2019, 5, 881-895.
[42] F.-F. Meng, J.-H. Xie, Y.-H. Xu, T.-P. Loh, ACS Catal. 2018, 8, 5306-5312.
[43] M.-Y. Huang, J.-M. Yang, Y.-T. Zhao, S.-F. Zhu, ACS Catal. 2019, 9, 5353-5357.
[44] a) M. Lautens, A. Roy, K. Fukuoka, K. Fagnou, B. Martín-Matute, J. Am. Chem. Soc. 2001, 123, 5358-5359; b) R. Amengual, V. Michelet, J.-P. Genêt, Tetrahedron Lett. 2002, 43, 5905-5908.
[45] L. Rupnicki, A. Saxena, H. W. Lam, J. Am. Chem. Soc. 2009, 131, 10386-10387.
$[46]$ a) G. Pattison, G. Piraux, H. W. Lam, J. Am. Chem. Soc. 2010, 132, 14373-14375; b) A. Saxena, H. W. Lam, Chem. Sci. 2011, 2, 2326-2331; c) I. D. Roy, A. R. Burns, G. Pattison, B. Michel, A. J. Parkerc, H. W. Lam, Chem. Commun. 2014, 50, 2865-2868.
[47] A. A. Friedman, J. Panteleev, J. Tsoung, V. Huynh, M. Lautens, Angew. Chem. Int. Ed. 2013, 52, 9755-9758; Angew. Chem. 2013, 125, 9937-9940.
[48] a) R. P. Jumde, F. Lanza, M. J. Veenstra, S. R. Harutyunyan, Science 2016, 352, 433437; b) R. P. Jumde, F. Lanza, T. Pellegrini, S. R. Harutyunyan, Nat. Commun. 2017, 8, 2058.
[49] L. Wen, Z. Yue, H. Zhang, Q. Chong, F. Meng, Org. Lett. 2017, 19, 6610-6613.
[50] Y.-Y. Wang, K. Kanomata, T. Korenaga, M. Terada, Angew. Chem. Int. Ed. 2016, 55, 927-931; Angew. Chem. 2016, 128, 939-943.
[51] M. Formica, G. Sorin, A. J. M. Farley, J. Díaz, R. S. Paton, D. J. Dixon, Chem. Sci. 2018, 9, 6969-6974.
[52] D. Best, H. W. Lam, J. Org. Chem. 2014, 79, 831-845.
[53] T. Robert, J. Velder, H. G. Schmalz, Angew. Chem. Int. Ed. 2008, 47, 7718-7721; Angew. Chem. 2008, 120, 7832-7835.
[54] J. Dambacher, M. Bergdahl, J. Org. Chem. 2005, 70, 580-589.
[55] W. Mao, M. Oestreich, Org. Lett. 2020, 22, 8096-8100.
[56] For selected reviews, see: a) M. Mauduit, O. Baslé, H. Clavier, C. Crévisy, A. Denicourt-Nowicki, in Comprehensive Organic Synthesis, 2nd ed.; (Eds: G. A. Molander, P. Knochel), Elsevier: Oxford, 2014, Vol. 4, pp. 189-341; b) A. Alexakis, N. Krause, S. Woodward, in Copper-Catalyzed Asymmetric Synthesis, (Eds.: A. Alexakis, N. Krause, S. Woodward), Wiley-VCH, Weinheim, 2014, pp. 33-68.
[57] Selected examples for asymmetric hydrogenation, see: a) J.-N. Desrosiers, A. B. Charette, Angew. Chem. Int. Ed. 2007, 46, 5955-5957; Angew. Chem. 2007, 119,

6059-6061; b) Y. Sun, J. Jiang, X. Guo, J. Wen, X. Zhang, Org. Chem. Front. 2019, 6, 1438-1441.
[58] Selected examples for C-C bond formation, see: a) H. Li, J. Song, L. Deng, Tetrahedron 2009, 65, 3139-3148; b) J. J. Murphy, A. Quintard, P. McArdle, A. Alexakis, J. C. Stephen, Angew. Chem. Int. Ed. 2011, 50, 5095 -5098; Angew. Chem. 2011, 123, 5201-5204; c) T. Nishimura, Y. Takiguchi, T. Hayashi, J. Am. Chem. Soc. 2012, 134, 9086-9089; d) K. M.-H. Lim, T. Hayashi, J. Am. Chem. Soc. 2015, 137, 3201-3204; e) R. Takechi, T. Nishimura, Chem. Commun. 2015, 51, 8528-8531;
[59] D. Enders, S. F. Müller, G. Raabe, J. Runsink, Eur. J. Org. Chem. 2000, 879-892.
[60] X. Yang, F. Cheng, Y.-D. Kou, S. Pang, Y.-C. Shen, Y.-Y. Huang, N. Shibata, Angew. Chem. Int. Ed. 2017, 56,1510-1514; Angew. Chem. 2017, 129, 1-6.
[61] a) J. Lu, J. Ye, W.-L. Duan, Org. Lett. 2013, 15, 5016-5019; b) J. Lu, J. Yeb, W.-L. Duan, Chem. Commun. 2014, 50, 698-700.
[62] S. C. Cullen, T. Rovis, Org. Lett. 2008, 10, 3141-3144.
[63] V. Hornillos, C. Vila, E. Otten, B. L. Feringa, Angew. Chem. Int. Ed. 2015, 54, 78677871; Angew. Chem. 2015, 127, 7978-7982.
[64] A. Kondoh, S. Ishikawa, M. Terada, Org. Biomol. Chem. 2020, 18, 7814-7817.
[65] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes; R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795-1818.
[66] http://chemsearch.kovsky.net/
[67] W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. 2018, 57, 12141-12145; Angew. Chem. 2018, 130, 12318-12322.
[68] A. Krasovskiy, P. Knochel, Synthesis 2006, 890-891.
[69] a) G. Evindar, R. A. Batey, J. Org. Chem. 2006, 71, 1802-1808; b) R. D. Viirre, G. Evindar, R. A. Batey, J. Org. Chem. 2008, 73, 3452-3459; c) L. Meng, Y. Kamada, K. Muto, J. Yamaguchi, K. Itami, Angew. Chem. Int. Ed. 2013, 52, 10048-10051; Angew. Chem. 2013, 125, 10232-10235; d) W.-C. Lee, T.-H. Wang, T.-G. Ong, Chem. Commun. 2014, 50, 3671-3673; e) A. A. Aleksandrov, E. V. Illenyeer, M. M. El'chaninov, Russ. J. Org. Chem. 2015, 51, 1111-1113; f) H. B. Hepburn, P. Melchiorre, Chem. Commun. 2016, 52, 3520-3523; g) R. P. Jumde, F. Lanza, M. J. Veenstra, S. R. Harutyunyan, Science 2016, 352, 433-437; h) R. Sharma, M. Abdullaha, S. B. Bharate, J. Org. Chem. 2017, 82, 9786-9793; i) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, Angew. Chem. Int. Ed. 2018, 57, 9131-9135; Angew. Chem. 2018, 130, 9269-9273.
[70] a) M. Suginome, T. Matsuda, Y. Ito, Organometallics 2000, 19, 4647-4649; b) T. A. Boebel, J. F. Hartwig, Organometallics 2008, 27, 6013-6019.
[71] P. Koukal, J. Ulč, D. Nečas, M. Kotora, Eur. J. Org. Chem. 2016, 2110-2114.
[72] a) R. Takeuchi, K. Tanabe, S. Tanaka, J. Org. Chem. 2000, 65, 1558-1561; b) B. C. Ranu, K. Chattopadhyay, Org. Lett. 2007, 9, 2409-2412; c) P.-Y. Tseng, S.-C. Chuang, Adv. Synth. Catal. 2013, 355, 2165-2171; d) B. Schmidt, S. Audörsch, Org. Lett. 2016, 18, 1162-1165; e) L. Chen, C.-J. Li, Tetrahedron Lett. 2004, 45, 2771-2774; f) A. A. Golovanov, D. R. Latypova, V. V. Bekin, V. S. Pisareva, A.V. Vologzhanina, V. A. Dokichev, Russ. J. Org. Chem. 2013, 49, 1264-1269; g) Z. Zhu, T. Li, X. Qu, P. Sun, H. Yang, J. Mao, Org. Biomol. Chem. 2011, 9, 7309-7312.
[73] Y. Guo, J. Kootstra, S. R. Harutyunyan, Angew. Chem., Int. Ed. 2018, 57, 1354713550; Angew. Chem. 2018, 130, 13735-13738.
[74] P. H. Bos, A. J. Minnaard, B. L. Feringa, Org. Lett. 2008, 10, 4219-4222.
[75] L. Noël-Duchesneau, E. Lagadic, F. Morlet-Savary, J.-F. Lohier, I. Chataigner, M. Breugst, J. Lalevée, A.-C. Gaumont, S. Lakhdar, Org. Lett. 2016, 18, 5900-5903.
[76] J.-S. Zhang, J.-Q Zhang, T. Chen, L.-B. Han, Org. Biomol. Chem. 2017, 15, 54625467.

[^0]: [15] N. Saito, A. Kobayashi, Y. Sato, Angew. Chem. Int. Ed. 2012, 51, 1228-1231, Angew. Chem. 2012, 124, 1254-1257.
 [16] For a recent review, see: L. Fu, S. Greßies, P. Chen, G. Liu, Chin. J. Chem. 2020, 38, 91-100.
 [17] J. W. Han, N. Tokunaga, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 12915-12916.

[^1]: [18] M. Ogasawara, A. Ito, K. Yoshida, T. Hayashi, Organometallics 2006, 25, 2715-2718.
 [19] X.-W. Gu, Y.-L. Sun, J.-L. Xie, X.-B. Wang, Z. Xu, G.-W. Yin, L. Li, K.-F. Yang, L.-W. Xu, Nat. Commun. 2020, 11, 2904.

[^2]: [21] a) C. Walter, G. Auer, M. Oestreich, Angew. Chem. Int. Ed. 2006, 45, 5675-5677; Angew. Chem. 2006, 118, 5803-5805; b) C. Walter, R. Fröhlich, M. Oestreich, Tetrahedron 2009, 65, 5513-5520.

[^3]: [41] J. Guo, H. Wang, S. Xing, X Hong, Z. Lu, Chem 2019, 5, 881-895.

[^4]: [62] S. C. Cullen, T. Rovis, Org. Lett. 2008, 10, 3141-3144.
 [63] V. Hornillos, C. Vila, E. Otten, B. L. Feringa, Angew. Chem. Int. Ed. 2015, 54, 7867-7871; Angew. Chem. 2015, 127, 7978-7982.
 [64] A. Kondoh, S. Ishikawa, M. Terada, Org. Biomol. Chem. 2020, 18, 7814-7817.

[^5]: [65] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes; R. Goodfellow, P. Granger, Pure Appl. Chem. 2001, 73, 1795-1818.

[^6]: [67] W. Xue, R. Shishido, M. Oestreich, Angew. Chem. Int. Ed. 2018, 57, 12141-12145; Angew. Chem. 2018, 130, 12318-12322.

[^7]: [70] a) M. Suginome, T. Matsuda, Y. Ito, Organometallics 2000, 19, 4647-4649; b) T. A. Boebel, J. F. Hartwig, Organometallics 2008, 27, 6013-6019.

[^8]: [73] Y. Guo, J. Kootstra, S. R. Harutyunyan, Angew. Chem., Int. Ed. 2018, 57, 13547-13550; Angew. Chem. 2018, 130, 13735-13738.

[^9]: ${ }^{29}$ Si DEPT NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta-0.2\left(\mathrm{SiMe}_{2} \mathrm{Ph}\right)$ ppm.

[^10]: ${ }^{29}$ Si DEPT NMR (99 MHz, CDCl $\left.3,298 \mathrm{~K}\right): \delta 0.0$ (SiMe $\left.{ }_{2} \mathrm{Ph}\right)$ ppm.

[^11]: [75] L. Noël-Duchesneau, E. Lagadic, F. Morlet-Savary, J.-F. Lohier, I. Chataigner, M. Breugst, J. Lalevée, A.-C. Gaumont, S. Lakhdar, Org. Lett. 2016, 18, 5900-5903.
 [76] J.-S. Zhang, J.-Q Zhang, T. Chen, L.-B. Han, Org. Biomol. Chem. 2017, 15, 5462-5467.

