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Introduction

Every year, in every field, the research introduces many novelties to contribute
to the improvement of the state-of-the-art technologies. Under this context,
the upgrade in terms of hardware capabilities and functionalities necessitates
a constantly updated definition of the software, to be able to exploit all the
possibilities owned by each single equipment. By mostly focusing on commu-
nication, i.e., the capability to send useful information from a source to a
destination, the research looks forward to the definition of new communica-
tion standards, to break the limits imposed by outdated mechanisms and rules.
Under this context, the upcoming technology for wireless and digital commu-
nications is the 5G standard, which brings improvements in both hardware
equipment and software definition. Differently from its predecessor, i.e., the
LTE (4G) standard, many new use cases and scenarios will be introduced. For
instance, the improvements move towards the maximization of the data rate,
to support the growing and massive amount of traffic data (especially from
mobile users), the minimization of the latency, to enable new delay-intolerant
services, and to optimize the energy consumption of any device, together with
its cost.

From a more technical point of view and of relevant interest for this dis-
sertation, new vehicular communication (V2V, V2X) scenarios are going to
be studied, by mostly focusing on millimeter wave frequency bands, strictly
linked to the definition of massive MIMO antenna systems exploiting huge
antenna gains through beamforming, necessary to contrast the high propaga-
tion loss typical of that frequencies. Under this context, against common and
well known radar systems, able to efficiently detect and locate a target within
the range-velocity plane, new joint radar and communications techniques are
taking part of the current literature. These system are mainly focused on the
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2 Introduction

transmission of useful information towards the targets, which are, thus, not
only “passively” detected, and a single equipment is able to perform both
operational modes, avoiding to split the functionalities between two distinct
subsystems (with increased cost and complexity). Hence, there are mainly two
approaches to solve the aforementioned problem. The first one considers the
application of common radar waveforms, adapted to carry useful information
with them. The second one, which is the one explored in this dissertation, takes
into account typical communication waveforms (single- or multi-carrier), and,
while communication tasks come naturally, the radar processing is performed
with novel methods exploiting the knowledge of the transmitted information
(known by both transmitter and receiver, if physically colocated), thus differs
from a more direct, or “radar-like”, threshold analysis of the backscattered
power from the target. The choice of the communication waveform is subject
to a non trivial tradeoff. On one hand, the system aims the maximization of
the communication achievable rate, i.e., the amount of information sent in a
time-frequency window. On the other hand, radar tasks have to be performed
with as much precision as possible, in order to correctly localize a target in
all dimensions, i.e., range, velocity, and space (angular) location. Typically,
pure radar tasks are performed with chirp-like pulses, i.e., short single-carrier
impulses with large bandwidth, such that the total energy delivered towards
the targets is compensated by the band occupation of the signal. Thus, the
joint definition of a short pulse, together with large bandwidth, leads to a
very precise localization of the target over the three aforementioned domains.
However, the amount of (possible) useful information, impressed on top of
such chirp, is poor. A solution to improve the communication rate is the use
of multi-carrier digital waveforms, modulating information symbols not only
in time domain (as single-carrier) but also in the frequency band, split in
many subcarriers each occupied by a different modulation symbol. However,
limitations are linked to the definition of the symbol time and the subcarrier
spacing, which are in a one-to-one relation, and a good localization is not
only challenging, for instance, in terms of signal processing algorithms, but
also definitely sub-optimal with respect to single-carrier solutions, but this is
the cost to pay in order to bring communication features together with radar
tasks. In conclusion, the current literature is moving towards the definition of
new multi-carrier schemes able to break the limits, in terms on communica-
tion rate, imposed by classical radar waveforms, and the optimization of the
tradeoff between the two different tasks is an open problem, whose optimal
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solutions have not been defined yet.
The choice of the multi-carrier modulation for joint radar and communica-

tion falls into two distinct waveforms, i.e., orthogonal frequency-division mul-
tiplexing (OFDM) modulation and orthogonal time frequency space (OTFS)
modulation. OFDM is the most popular multi-carrier modulation of recent
years, widely studied and standardized in most of the current communica-
tion standards, including 5G. The motivation of this choice is simple: thanks
to the application of a cyclic prefix between symbols, i.e., a guard interval
to prevent inter-symbol interference, and under the assumption of absence of
inter-carrier interference, which holds under reasonable amount of the Doppler
effect and subcarrier spacing, the communication channel can be diagonalized
and symbol-by-symbol detection performed. Clearly, the appealing simplicity
of detection makes OFDM the best choice for modern digital communications.
On the other hand, OTFS is a modulation waveform with two big differences
with respect to its direct competitor. First, it does not necessitate the inser-
tion of the cyclic prefix, achieving a better communications rate, i.e., more
information is sent over a time-frequency window, but at the cost of a more
complex detection approach, working blockwise and not symbol-by-symbol.
Second, OTFS is not sensitive to delay and Doppler shifts, meaning that its
performance is kept constant whatever the distance and the speed between
transmitter and (target) receiver. This feature is very appealing for joint radar
and communication tasks, being the scenario very dynamical, with possible re-
markable Doppler shifts and delays, increased by considering the round-trip
time between radar transmitter and target. Based on the aforementioned anal-
ysis, in this dissertation we take care of a fair comparison between the two
digital modulation formats, from the point of view of radar, parameter esti-
mation, achievable communication rate, channel estimation, and more other
tasks, to determine their positive and negative aspects, such that a system
designer is able to choose the most suitable waveform for a given scenario or
application.





State of the Art

By extending the introduction, some details are provided here, with the corre-
sponding references to literature, but some other are left to the introductions
of chapters.

The 5G communication standard will bring some novelties to overcome
outdated and old techniques [1]. By mostly focusing on multi-carrier modula-
tion formats, in particular OFDM [2, 3] and OTFS [4, 5, 6], this dissertation
provides a complete analysis and performance comparison under different sce-
narios, with the common denominator of the sparse description of the com-
munication channel [7], whose characteristics depend on the surrounding envi-
ronment. Under this context, typical channels are characterized by few reflec-
tors with their relative line-of-sight and small number of additional multi-path
components (ground reflection and some other reflections from, e.g., metal sur-
faces) [8, 9]. Motivated by emerging vehicular applications (V2X) [10], joint
radar and communication systems have been studied, in such a configuration
the two functions share the same physical resources [11, 12]. Thus, differ-
ently from pure radar tasks, which aim to detect targets with high resolution
[12, 13], also an active communication, i.e., the transmission of useful data,
is considered, such that both functionalities might work together to jointly
improve the performance. Note that this differs from typical beacon-based
initial acquisition of communication standards [14, 15, 16, 17, 18], where the
alignment between transmitter and receiver is achieved through a sort of hand-
shake, i.e., the two entities talk together to achieve the common task. Given
the appealing of joint radar and communication systems for future vehicle-to-
everything (V2X) communications, the recent literature provides many differ-
ent and detailed solutions [19, 20, 21, 11, 22, 23, 24, 25, 26], basically divided
into two classes: information-embedded radar waveforms [11, 27, 24] and com-
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munication waveforms applied to radar detection and parameter estimation
[11, 19, 21, 26, 28, 29]. Moreover, note that the jointly approach could break
the limits imposed by separated, or resource sharing, methods [30]. This disser-
tation, as said before, studies the case of communication waveforms applied to
radar, by reviewing some well-known signal processing for OFDM (see [26, 21]
and references therein), while exploiting new methods for OTFS, whose base-
lines are shared by other works in the literature, but in different shapes (see,
e.g., [28, 29, 15]). In order to demonstrate that the joint approach is supe-
rior (not always but given some system setups) with respect to the physical
resources split to one or the other task, the comparison will also take into
account typical radar waveforms [13, 20].

When a communication waveform is employed, the problems of radar de-
tection and parameter estimation are based on the knowledge of the informa-
tion transmitted and backscattered from a target, which results to be known
if radar transmitter and receiver are colocated. Note that this is also pos-
sible thanks to full-duplex configurations [31, 32, 33], which limits the self-
interference of the system, which results, on the other hand, unable to properly
work if this condition is not fulfilled. Thus, information symbols are treated
as known in the conditioning of probability density functions during digital
signal processing operations, as, e.g., in [15], rather than unknown as in typi-
cal detection problems [34]. Hence, the joint radar sensing and communication
paradigm results similar to classical channel estimation schemes, because the
final goal is equivalent, i.e., the characterization of the surrounding channel.
Being the channel state information, i.e., the knowledge of the communication
channel, required to perform coherent detection in any scenario, the litera-
ture treating its estimation is wide [34]. Generally, this information is ac-
cessed through symbols, i.e., pilots, known at both transmitter and receiver
[35, 36, 37]. It is straightforward to understand that, by taking into account
a full block of symbols backscattered from a target, in a joint radar and com-
munication scheme, all symbols take the role of pilots. Many techniques to
solve the channel estimation problem are present in literature. By taking into
account the sparse channel representation in the Doppler-delay domain (see,
e.g., [7, 5]), for OFDM, these techniques might use concepts from compressed
sensing literature, e.g., [38, 39, 40, 41, 42, 35, 43], while OTFS propose a vari-
ety of solutions, based on minimum-mean square error estimation, maximum
likelihood, compressed sensing, and others [37, 44, 45, 46, 47, 48].

At last, by taking into account the additional spatial dimension, multi an-
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tenna systems are studied. The choice of considering multiple-input multiple-
output (MIMO) configurations for radar is fundamental [49]. In fact, other
than opening to angle of arrival (or, equivalently, space) estimation of the
target, it allows, through a careful design of the beam pattern [50], to sep-
arately track different objects or targets [51, 52], while improving the power
delivered towards a direction, thanks to the additional antenna gain, which
is very relevant in V2X radars [20] and opens to transmission over millimeter
wave frequency bands [50]. By considering the problem of radar detection, a
non trivial tradeoff appears with respect to the angular coverage of the beam
pattern. On one hand, a wider angular sector coverage enables to detect poten-
tially more targets simultaneously, if the received backscattered power is high
enough. On the other hand, a more directional allocation of the power towards
a narrower angular sector, grants a higher received signal-to-noise ratio, at the
cost of a time-consuming search (as classical radar successively swapping ad-
jacent regions, see, e.g.,[13]). Different solutions can be found in the literature
(see, e.g., [52, 53, 15, 54]). Moreover, this dissertation will treat the problem
of mismatch between the number of antennas and the number of radio fre-
quency chains. In fact, by considering MIMO configurations over millimeter
wave frequency bands, it is difficult to implement a fully digital beamforming,
or, equivalently, to associate one radio frequency chain per antenna (includ-
ing A/D conversion, modulation, and amplification) in a small form factor
and highly integrated technology over a large signal bandwidth. Therefore,
for millimeter wave automotive applications, we study hybrid digital-analog
beamforming schemes (see, e.g., [55, 56] and references therein), thus, without
relying on optimal full-duplex configurations as generally done in literature
[49, 52, 54].

More details about the state-of-the-art will be given within the following
chapters.





Chapter 1

Multi Carrier Modulations

1.1 The Communication Channel

The communication channel describes how the transmitted signal is modified
when traveling through the communication medium (e.g., an optical fiber,
the air, a copper line, etc.). Different impairments and effects characterize
each different scenario, and the associated channel is completely described
by its channel impulse response (CIR). These effects, including, for instance,
fading fluctuations, shadowing, delay, frequency shifts, phase noise, etc., are
described by mathematical models, exploited during the algorithmic design
of detectors, estimators, and any other digital signal processing (DSP) which
could be performed by the communication receiver (Rx).

The channel considered in this dissertation is time-frequency varying, i.e.,
its behavior changes with respect to (w.r.t.) the time instant and the car-
rier (or subcarrier) frequency considered. In order to simplify its treatment,
the channel can be represented in distinct domains, each owning its different
(but behaviorally equivalent) description function. In fact, clearly, the channel
behavior must remain the same while its representation changes. In order to
switch between different domains, a direct or inverse Fourier transform (i.e., F
or F−1, respectively) has to be applied [7]. Fig. 1.1 shows all the domains and
the relative Fourier transforms. In the top right position of Fig. 1.1 we find the
time-frequency domain, with function H (t, f). Considering only direct Fourier
transforms, i.e., F , we first move to the Doppler-frequency domain (Γ(ν, f)),

9



10 Chapter 1. Multi Carrier Modulations

γ(t, τ) H(t, f)

Γ(ν, f)h(ν, τ)

F

F−1

FF−1F−1F

F−1

F

Figure 1.1: Channel domains.

then to the Doppler-delay domain (h (ν, τ)), and finally to the time-delay do-
main (γ(t, τ)).

It is interesting to note that the channel description in the Doppler-delay
domain relies in its physical representation, or geometry, which simplifies the
overall mathematical analysis [4, 5, 7]. In fact, typically, only a small number
of reflectors (or propagation paths) takes part of a channel, which is thus
sparse and can be modeled with few parameters. Moreover, the geometry of the
surrounding environment slowly changes in time (w.r.t. the frame duration),
behavior which could be exploited during the algorithmic design. The sparse
representation of the channel h (ν, τ) can be given as [7]

h (ν, τ) =

P−1∑

p=0

hpδ (τ − τp) δ (ν − νp) , (1.1)

where P is the number of propagation paths, hp, τp, and νp represent the path
gain, delay, and Doppler shift associated to the p-th path. The key point is
that the channel behavior is discrete in the number of paths. In other words,
a single symbol transmitted over the channel is shifted in the delay domain,
i.e., is received with a delay of τp, and its frequency is shifted of νp (Doppler
effect).

An extension of the (1.1) taking into account MIMO antenna systems can
be found in Chapter 3 and in [7].
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1.2 Orthogonal Frequency Division Multiplexing

(OFDM) Modulation

Before entering into the details of OFDM signal processing, for radar and
communication purposes, we will briefly describe the basics of this modula-
tion technique, to better understand things to come. This pretends to be an
overview of mainly aspects which are relevant for our analysis, while a more
in-depth description can be found in many different digital communication
books (see, e.g., [2, 3]) and works in literature [2, 57, 58].

As the name suggests, OFDM is a multiplexing scheme which modulates
data (information symbols) on distinct parallel orthogonal frequencies (see also
the pioneering work [58]). In general, OFDM uses a certain number of sub-
carriers, to equally split the available bandwidth, and some time slots, which,
together, identify an OFDM frame. The dimension of such frame depends
on the particular application, which could aim at low-latency systems, i.e.,
smaller frames in time, or necessitates larger dimensions to cope and estimate
unknown channel impairments. As a notation, a set of modulation symbols
transmitted over different subcarriers at the same time is called OFDM sym-
bol, while more OFDM symbols (in time) form the OFDM frame.

The orthogonality of the frequency division is achieved by choosing a con-
stant subcarrier spacing ∆f , generally defined as the inverse of the symbol
duration T , i.e., ∆f = 1/T , in order to avoid data loss during filtering oper-
ations. Thus, by assuming a rectangular shaping pulse of duration T to mod-
ulate constellation symbols at the transmitter (Tx) side, whose expression is
given by

rect(t) =





1 if |t| ≤ T/2
0 otherwise

, (1.2)

the transmitted pulse, when a generic modulation symbol xn,m is sent, with n
and m the time and frequency indexes, respectively, results to be

sn,m(t) = rect(t− nTo)ej2πm∆ftxn,m , (1.3)

where To = T + Tcp is the OFDM symbol duration, including the presence
of a cyclic prefix (CP), necessary to avoid inter-symbol interference (ISI) as
explained afterwords. The orthogonality condition, which remarkably simpli-
fies the OFDM input-output relation, as we will see next, hold both in time,



12 Chapter 1. Multi Carrier Modulations

thanks to the insertion of the CP, and in frequency, through the Fourier trans-
form of the rectangular pulse, which is a sinc function with peaks and zeros
jointly located (absence of interference). The orthogonality condition, in both
domains, can be written as

∫ ∞

−∞
sn,m(t)s∗n′,m′(t)dt =





constant if n = n′,m = m′

0 otherwise
. (1.4)

Proof. To prove the result for time, assume that n 6= n′. Thus, the product
rect(t − nTo)rect(t − n′To) is always zero, and this simply prove what stated
in (1.4). Next, assume n = n′ but m 6= m′ and solve (1.4), i.e.,

∫ ∞

−∞
sn,m(t)s∗n′,m′(t)dt =

∫ T

0
ej2π(m−m′)∆ftdt

=
1

2π(m−m′)∆f
[
ej2π(m−m′)∆ft

]T
0

= 0 , (1.5)

where the last equality hold since ∆fT = 1. Thus, only for n = n′ and m = m′,
the previous equation becomes

∫ T

0
ej2π(m−m′)∆ftdt =

∫ T

0
1dt = T . (1.6)

�

Another key aspect of OFDM modulation is the insertion of a CP, nec-
essary to avoid ISI between OFDM symbols. The CP duration depends on
the maximum delay introduced by the channel, and has to be defined ad hoc
for any particular scenario. Typically, it is chosen to be an integer fraction of
the symbol duration, and some common values are, for instance, Tcp = T/4 or
Tcp = T/8. As anticipated before, this increases the total OFDM symbol dura-
tion to To = T+Tcp. However, without this guard interval, any time-dispersive
channel (time-frequency varying) would leak energy from one OFDM symbol
into the adjacent one(s), causing significant ISI. Thus, the CP prevents the
loss of orthogonality between symbols, allowing to perform symbol-by-symbol
detection, relying on the diagonal representation of the channel [2, 3]. Gener-
ally, the CP results to be a copy of the last Tcp/T part of every OFDM symbol
(see [2, 3] for more details).
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The last two parameters of interest are the sampling rate and the inverse
fast Fourier transform (IFFT) length, specifying the bandwidth of the OFDM
signal. As a well-known approach, the modulation of an OFDM signal can
be efficiently performed by computing an IFFT. For instance, consider the
discrete-time representation of the sum of modulation symbols {xn,m} for any
OFDM symbol at time n and subcarrier m, sampled at time intervals Ts (the
sampling time)

s(kTs) =
N−1∑

n=0

xn,mrect (kTs) e
j2πn∆fkTs =

N−1∑

n=0

xn,me
j2πn∆fkTs . (1.7)

Thus, by setting Ts = T/N = 1/(∆fN), we get

s(nTs) =
N−1∑

k=0

xk,ie
j2π nk

N , (1.8)

which clearly shows that the discrete-time signal for any OFDM symbol is
given by the IFFT of the modulation symbols at a sampling rate fs = 1/Ts =
N∆f .

These are the fundamental ingredients of OFDM modulation, which help
understanding the following treatment.

1.2.1 Input Output Relation

Based on the previous discussion, consider a standard OFDM modulation
with CP, necessary, as said before, to avoid ISI to admit symbol-by-symbol
detection. The resulting OFDM symbol duration is To = Tcp + T , where Tcp

and T denote the duration of CP and data symbols, respectively. Provided
the maximum delay introduced by the communication channel is τmax, we
typically choose Tcp = d τmax

T/M e · TM , where d·e is the rounding-up operation,
selecting the smallest integer greater than or equal to the function argument.
The OFDM frame duration is thus T ofdm

f = NTo.

Based on the aforementioned analysis (see (1.8)), the continuous-time
OFDM transmitted signal with CP is given by

s(t) =
N−1∑

n=0

M−1∑

m=0

xn,mrect(t− nTo)ej2πm∆f(t−Tcp−nTo) , (1.9)



14 Chapter 1. Multi Carrier Modulations

where rect(t) is defined in (1.2) and {xn,m} are symbols belonging to any
constellation format. By ignoring the noise for the sake of simplicity, the signal
received after the time-frequency selective channel (1.1) (or any equivalent
representation in another domain) is

y′(t) =

∫
γ(t, τ)s(t− τ)dτ =

P−1∑

p=0

hps(t− τp)ej2πνpt . (1.10)

By sampling y′(t) every T/M seconds and discarding the CP samples in each
OFDM symbol (such that the ISI is completely removed), we obtain

y′n,m = y′(t)|t=nTo+Tcp+mT/M

=
P−1∑

p=0

hpe
j2πnToνp

M−1∑

m′=0

xn,m′e
j2π m

M

(
νp
∆f

+m′
)
e−j2πm

′∆fτp . (1.11)

As said, the CP duration has to be chosen accordly to the maximum delay
introduced by the channel, i.e., Tcp ≥ τmax. Applying the discrete Fourier
transform (DFT) and using the orthogonal property, the output is given by

yn,m =
1

M

M−1∑

i=0

y′n,ie
−j2πmi

M

=
1

M

P−1∑

p=0

hpe
j2πνpnTo

M−1∑

m′=0

xn,m′e
−j2πm′∆fτp

M−1∑

i=0

e
j2π i

M

νp
∆f ej2π

i(m′−m)
M

≈ 1

M

P−1∑

p=0

hpe
j2πnToνp

M−1∑

m′=0

xn,m′e
−j2πm′∆fτp

M−1∑

i=0

ej2π
i(m′−m)

M

≈
P−1∑

p=0

hpe
j2πnToνpe−j2πm∆fτpxn,m , (1.12)

where the first approximation follows by letting νmax � ∆f and the last
step exploits the orthogonality condition.1 Under the approximated channel

1Note that this approximation can be justified in a number of scenarios. For example,

consider a scenario inspired by IEEE 802.11p with fc = 5.89 GHz and the subcarrier spacing

∆f = 156.25 KHz. This yields vmax � 14325 [km/h], which is reasonable even for a relative

speed of 400 [km/h]. The same holds for IEEE 802.11ad with fc = 60 GHz and ∆f = 5.15625

MHz [59].
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ISFFT
Heisenberg
Transform

Channel
γ (τ, ν)

Wigner
Transform

SFFT
x [k, l] X [n,m] s (t) r (t) Y [n,m] y [k, l]

Time-Frequency Domain

Doppler-Delay Domain

Figure 1.2: OTFS system model

input-output relation (1.12), it readily follows that the Doppler shift and the
delay are decoupled, which makes simple any possible DSP operation (see, e.g.,
[26, 19]). Moreover, note that each received sample depends only on the corre-
sponding transmitted symbols, and (1.12) confirms the possibility of perform-
ing symbol-by-symbol detection. Thus, at the cost of a CP insertion, whose
length and the consequent loss in data rate could be remarkable, and with
some limitations on the maximum supportable Doppler shift, OFDM results
to be treatable with easy handling.

1.3 Orthogonal Time Frequency Space (OTFS)

Modulation

The recently proposed OTFS modulation pretends to be a candidate alterna-
tive to OFDM [4, 5]. The basic idea behind this new waveform is to exploit
the sparse properties of the channel described in the Doppler-delay domain
(see Sec. 1.1). By removing the CP and losing the orthogonality condition
owned by OFDM, i.e., allowing ISI and inter-carrier interference (ICI), OTFS
increases the communication rate by handling such interference, which can
be considered time and frequency limited under some constraints. Moreover,
OTFS results to be not sensitive to Doppler and delay shifts, opening its ap-
plication to many different scenarios, as depicted throughout this section.

1.3.1 System Model and Definitions

OTFS modulation is produced by a cascade of a pair of two-dimensional trans-
forms, at both Tx and Rx. The general system model of OTFS is depicted in
Fig. 1.2. The modulator, through the application of the inverse symplectic
finite Fourier transform (ISFFT), first maps the information symbols x [k, l],
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for k = 0, . . . , N − 1 and l = 0, . . . ,M − 1, belonging to any complex alpha-
bet and represented in the Doppler-delay domain, to symbols X [n,m] in the
time-frequency domain (in line with Sec. 1.1). Next, the Heisenberg transform
is applied to symbols X [n,m] to build the time domain signal s (t), succes-
sively transmitted over the communication channel. At the Rx, the signal r (t)
is mapped to the time-frequency domain through the Wigner transform (the
inverse of the Heisenberg transform), and then, applying the symplectic finite
Fourier transform (SFFT), to the Doppler-delay domain. In the following, by
points, we give some more details.

� The Doppler-delay plane is discretized to a grid

Γ =

{(
k

NT
,

l

M∆f

)}
, (1.13)

for k = 0, . . . N − 1 and l = 0, . . .M − 1, in which 1/M∆f = T/M
and 1/NT = ∆f/N represent the quantization steps of the delay and of
the Doppler axes, respectively, in which T is the symbol time and ∆f
the subcarrier spacing. We set T = 1/∆f , as for OFDM, choice better
justified when deriving the OTFS input-output relation. This Doppler-
delay plane representation is very useful for successive analysis and is a
key point for OTFS performance.

� The time-frequency discretization is linked to the Doppler-delay repre-
sentation, given the duality of the time-frequency and the Doppler-delay
domains through the application of the Fourier transform. Thus, the
sampling occurs at intervals of T and ∆f , which defines a grid

Λ = {(nT,m∆f)} , (1.14)

for n = 0, . . . N − 1 and m = 0, . . .M − 1.

� The OTFS frame has a total duration TOTFS
f = NT and occupies a total

bandwidth B = M∆f . Note that, unlike OFDM, it is not necessary to
introduce a CP, resulting in a shorter total frame duration and a better
communication rate (i.e., the amount of information sent in a given time-
frequency window).

� Transmit and receive pulses (used within matched filtering operations)
are denoted by gtx(t) and grx(t). For convenience, we define here the
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cross-ambiguity function (CAF) between the two pulses, useful for suc-
cessive considerations, i.e.,

Cgtx,grx (t, f) ,
∫
g∗rx(t′ − t)gtx(t′)e−j2πft

′
dt′ . (1.15)

We adopted the definition of [13], while other expressions might be found
in literature (with no significant changes on the final results and system
behavior).

� Consider a time-varying channel where the maximum delay and Doppler
shift over all multipath components are given by τmax and νmax, respec-
tively. The parameters T and ∆f determine the maximum tolerable
delay and Doppler, respectively, such that νmax < ∆f and τmax < T .

We will now look into a detailed derivation of the OTFS input-output relation,
which is the base of any signal processing applied afterwords.

1.3.2 Modulation and Transmission over the Channel

The OTFS Tx first maps symbols x [k, l] to samplesX [n,m], from the Doppler-
delay domain to the time-frequency domain, according to grids Γ and Λ, using
the ISFFT, i.e.,

X [n,m] =
1√
NM

N−1∑

k=0

M−1∑

l=0

x [k, l] ej2π(
nk
N
−ml
M ) , (1.16)

for n = 0, . . . N − 1,m = 0, . . .M − 1.2 Eq. (1.16) shows that each informa-
tion symbol x [k, l], belonging to any complex constellation alphabet, is mod-
ulated by a two-dimensional basis function in the time-frequency domain, i.e.,
exp

(
j2π

(
nk
N − ml

M

))
. Next, the time-frequency modulator converts the sam-

ples X [n,m] to a continuous-time waveform s (t), by the use of the transmit
(shaping) pulse gtx(t), i.e.,

s (t) =
N−1∑

n=0

M−1∑

m=0

X [n,m] gtx(t− nT )ej2πm∆f(t−nT ) . (1.17)

2Note that, since the ISFFT is a Fourier transformation between two-dimensional do-

mains, a normalization factor has to be taken into account. The normalization factor

1/ (NM) could be at both direct and inverse transformation, with a square root, of just

at one side, without the square root.
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Eq. (1.17) can be seen as a discrete Heisenberg transform parameterized by
gtx(t) [5, 4]. The pulse s (t) is the product of the superposition of delay-and-
modulate operations on the pulse waveform gtx(t), shifted in time and in fre-
quency. Note that it is useful to express s (t) through an Heisenberg transform
since the cascade of two Heisenberg transforms, one for the modulator and one
for the channel, can be expressed as a unique function. Note that the equality
∆fT = 1 implies

ej2πm∆f(t−nT ) = ej2πm∆ft , (1.18)

which simplifies (1.17) leading to the equivalent signal model

s (t) =
N−1∑

n=0

M−1∑

m=0

X [n,m] gtx(t− nT )ej2πm∆ft , (1.19)

which can be found, e.g., in [26, Page 13, Equation (3.4)].
The signal s (t) is transmitted over the time-frequency varying channel

with complex baseband CIR h (ν, τ) specified in (1.1). The received signal,
neglecting for simplicity the noise, is

r (t) =

∫∫
h (ν, τ) s(t− τ)ej2πνtdτdν , (1.20)

which is a continuous Heisenberg transform parameterized in h (ν, τ). Note
that, by substituting (1.1) into (1.20), the double integration is valid only
where the two deltas are equal to one, simplifying in a single summation over
p = 0, . . . , P − 1. This substitution is done in subsequent calculus.

1.3.3 Demodulation

At the Rx, a matched filter computes the CAF (see (1.15)) in the following
way

Y (t, f) = Agrx,r (t, f) =

∫
g∗rx
(
t′ − t

)
r
(
t′
)
e−j2πft

′
dt′ . (1.21)

By substituting (1.20) in (1.21), we obtain

Y (t, f) =

∫
g∗rx
(
t′ − t

) [∫∫
h (ν, τ) s

(
t′ − τ

)
ej2πνt

′
dτdν

]
e−j2πft

′
dt′ ,

(1.22)
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and, by using (1.17)

Y (t, f) =

∫
g∗rx
(
t′ − t

)
[ ∫∫ N−1∑

n′=0

M−1∑

m′=0

h (ν, τ)X
[
n′,m′

]
gtx

(
t′ − τ − n′T

)

ej2πm
′∆f(t′−τ−n′T )ej2πνt

′
dτdν

]
e−j2πft

′
dt′ , (1.23)

while, by reordering terms

Y (t, f) =
N−1∑

n′=0

M−1∑

m′=0

X
[
n′,m′

]
[ ∫∫

h (ν, τ)

{∫
g∗rx
(
t′ − t

)
gtx

(
t′ − τ − n′T

)

ej2πm
′∆f(t′−τ−n′T )ej2πνt

′
e−j2πft

′
dt′
}
dτdν

]
. (1.24)

The matched filter output is obtained by sampling Y (t, f) as

Y [n,m] = Y (t, f)
∣∣
t=nT,f=m∆f

. (1.25)

Now, by recalling the function inside the square brackets and sampling, we
define

Hn,m

[
n′,m′

]
=

∫∫
h (ν, τ)

[∫
g∗rx
(
t′ − nT

)
gtx

(
t′ − τ − n′T

)

ej2πm
′∆f(t′−τ−n′T )ej2π(ν−m∆f)t′dt′

]
dτdν . (1.26)
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By substituting t′′ = t′ − τ − n′T , we get

Hn,m

[
n′,m′

]
=

∫∫
h (ν, τ)

[∫
g∗rx
(
t′′ −

(
n− n′

)
T + τ

)
gtx

(
t′′
)

ej2πm
′∆ft′′ej2π(ν−m∆f)(t′′+n′T+τ)dt′′

]
dτdν

=

∫∫ [∫
g∗rx
(
t′′ −

(
n− n′

)
T + τ

)
gtx

(
t′′
)

e−j2π((m−m′)∆f−ν)t′′dt′′
]
h (ν, τ) ej2π(ν−m∆f)(n′T+τ)dτdν

=

∫∫
h (ν, τ)Agrx,gtx

((
n− n′

)
T − τ,

(
m−m′

)
∆f − ν

)

ej2πνn
′T ej2πντe−j2πm∆fτdτdν , (1.27)

and, by considering the channel specified in (1.1), it becomes

Hn,m

[
n′,m′

]
=

P−1∑

p=0

hpAgrx,gtx

((
n− n′

)
T − τp,

(
m−m′

)
∆f − νp

)

ej2πνpn
′T ej2πνpτpe−j2πm∆fτp . (1.28)

It is straightforward to obtain the input-output relation of OTFS, given by

Y [n,m] =
N−1∑

n′=0

M−1∑

m′=0

Hn,m

[
n′,m′

]
X
[
n′,m′

]
. (1.29)

Note that Eq.(1.29) can be split to directly and separately show the parts
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involved in (Doppler-delay) ISI and ICI, thus

Y [n,m] =

N−1∑

n′=0

M−1∑

m′=0

Hn,m

[
n′,m′

]
X
[
n′,m′

]

= Hn,m [n,m]X [n,m] +

M−1∑

m′=0
m′ 6=m

Hn,m

[
n,m′

]
X
[
n,m′

]

+
N−1∑

n′=0
n′ 6=n

M−1∑

m′=0

Hn,m

[
n′,m′

]
X
[
n′,m′

]
, (1.30)

in which the first term indicates the current symbol X [n,m], with the associ-
ated channel response, the second term is the ICI, i.e., the total interference
at different frequencies m′ 6= m but within the same time slot n of the current
symbol X [n,m], and, at last, the third term is the ISI. Note that, at this
point, the shape of the pulses is unknown, so there are possibly infinite (past
and future) interfering terms.

Proceeding further, starting from (1.30) and exploiting (1.16), we obtain

Y [n,m] =
N−1∑

n′=0

M−1∑

m′=0

Hn,m

[
n′,m′

]
X
[
n′,m′

]

=
N−1∑

n′=0

M−1∑

m′=0

Hn,m

[
n′,m′

]
[
N−1∑

k′=0

M−1∑

l′=0

x [k′, l′]√
NM

e
j2π

(
n′k′
N
−m′l′

M

)]
. (1.31)

By applying the ISFFT (from now on, for the sake of brevity, we remove the
summation subscripts and superscripts, which are, however, in accord to the
aforementioned treatment)

y [k, l] =
∑

n,m

∑

n′,m′

∑

k′,l′

Hn,m

[
n′,m′

] x [k′, l′]
NM

e
j2π

(
n′k′
N
−m′l′

M

)
e−j2π(

nk
N
−ml
M )

=
∑

k′,l′

x [k′, l′]
NM


∑

n,m

∑

n′,m′

Hn,m

[
n′,m′

]
e
j2π

(
n′k′
N
−m′l′

M

)
e−j2π(

nk
N
−ml
M )




=
∑

k′

∑

l′

x [k′, l′]
NM

hk,l
[
k′, l′

]
, (1.32)
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in which, by using the definition in (1.28), including the CIR in (1.1), we get

hk,l
[
k′, l′

]
=
∑

N,M

∑

n′,M ′

P−1∑

p=0

hpAgrx,gtx

((
n− n′

)
T − τp,

(
m−m′

)
∆f − νp

)

ej2πνpn
′T ej2πνpτpe−j2πm∆fτpe

j2π
(
n′k′
N
−m′l′

M

)
e−j2π(

nk
N
−ml
M ) . (1.33)

Note that

Agtx,grx

((
n− n′

)
T − τ,

(
m−m′

)
∆f − ν

)
=

∫
g∗rx
(
t′ −

(
n− n′

)
T + τ

)
gtx

(
t′
)
e−j2π[(m−m′)∆f−νp]t′dt′ , (1.34)

and since the received signal r (t) is sampled at time intervals t′ = 1/ (M∆f)
or equivalently t′ = T/M , we get

Agtx,grx =
T

M

i=∞∑

i=−∞
g∗rx

(
i
T

M
−
(
n− n′

)
T + τp

)
gtx

(
i
T

M

)

e
−j2π[(m−m′)∆f−νp] i

M∆f . (1.35)
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So, by reordering terms (note that ∆fT = 1) and defining h′i = hie
j2πντ

hk,l
[
k′, l′

]
=
T

M

P−1∑

p=0

h′p

{∑

n

e−j2π(
k
N )n

[∑

n′

e
j2π

(
k′+νpNT

N

)
n′

i=∞∑

i=−∞
g∗rx

(
i
T

M
−
(
n− n′

)
T + τp

)
gtx

(
i
T

M

)

∑

m

e
j2π

(
−∆f

(
i

M∆f
+τp

)
+ l
M

)
m
∑

m′

e
−j2π

(
l′
M
− i
M

)
m′
e
j2πνp

i
M∆f

]}

=
T

M

P−1∑

p=0

h′p

{∑

n

e−j2π(
k
N )n

[∑

n′

e
j2π

(
k′+νpNT

N

)
n′

i=∞∑

i=−∞
g∗rx

(
i
T

M
−
(
n− n′

)
T + τp

)
gtx

(
i
T

M

)

{∑

m

ej2π(−i−M∆fτp+l)m
M

}{∑

m′

e−j2π(−i+l′)m′
M

}
e
j2πνp

i
M∆f

]}
.

(1.36)

At this point, it is useful to define the Dirichlet kernel function, that is

Dir (φ,Z) ,
Z−1∑

z=0

ej2πφ
z
Z =

ej2πφ − 1

ej2πφ/Z − 1
=

ejπφ
(
ejπφ − e−jπφ

)

ejπφ/Z
(
ejπφ/Z − e−jπφ/Z

)

= ejπφ(Z−1)/Z sin (πφ)

sin (πφ/Z)
. (1.37)

A plot of the function is given in Fig. 1.3. The value of the function is equal
to Z (or −Z depending if Z is even or odd) when φ is a multiple of Z, and
is equal to zero for all others integer values of φ. Moreover, note that the
Dirichlet kernel has the following property

sin (πφ)

sin
(
π
Zφ
) =

sin (π (φ+ Z))

sin
(
π
Z (φ+ Z)

) . (1.38)

which could be useful for successive analysis.
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Figure 1.3: Example of Dirichlet functions Dir (φ,Z) = sin(πφ)
sin(πφ/Z) .

Thus, the expression for y [k, l] becomes

y [k, l] =
∑

k′,l′

x [k′, l′]
NM

T

M

P−1∑

p=0

h′p

{∑

n

e−j2πk
n
N

∑

n′

[ ∞∑

i=−∞
gtx

(
i
T

M

)

g∗rx

(
i
T

M
−
(
n− n′

)
T + τp

)
Dir (l − i− τpM∆f,M)

Dir
(
l′ − i,M

)
e
j2πνp

i
M∆f

]
ej2π(k′+νpNT )n

′
N

}

=
∑

k′,l′

x [k′, l′]
NM

T
P−1∑

p=0

h′p

{∑

n

∑

n′

g∗rx

(
l′
T

M
−
(
n− n′

)
T + τp

)

gtx

(
l′
T

M

)
Dir

(
l − l′ − τpM∆f,M

)
e−j2πk

n
N e

j2πνp
l′

M∆f

ej2π(k′+νpNT )n
′
N

}
. (1.39)

1.3.4 Special Case: Rectangular Waveforms

As a practical special case, consider a rectangular waveform of duration T and
amplitude 1/

√
T , i.e., gtx(t) = grx(t) = rect(t), as defined in (1.2). If τmax < T ,

only the signal of the first preceding slot is involved in the ISI calculation, i.e.,
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n′ = n− 1. In this case

g∗rx

(
p
T

M
− T + τp

)
gtx

(
p
T

M

)
=

1√
T

1√
T

=
1

T
, (1.40)

for the values of p where the product of the two pulses is nonzero. Thus, for
rectangular pulses, the sum

∑
n′ takes into account only two terms, i.e., n′ = n

and n′ = n− 1. By using these results, starting from (1.39), we obtain

yrect [k, l] =
∑

k′,l′

x [k′, l′]
NM

P−1∑

p=0

h′p

({∑

n

e−j2π(k−k′−νpNT ) n
N e

j2πνp
l′

M∆f

Dir
(
l − l′ − τpM∆f,M

)
}

+

{∑

n

e−j2π(k−k′−νpNT ) n
N

Dir
(
l − l′ − τpM∆f,M

)
e
j2πνp

l′
M∆f e−j2π

(k′+νpNT)
N

})

=
∑

k′,l′

x [k′, l′]
NM

P−1∑

p=0

h′pDir
(
νpNT − k + k′, N

)
e
j2πνp

l′
M∆f

Dir
(
l − l′ − τpM∆f,M

)(
1 + e−j2π

k′+νpNT
N

)
. (1.41)

However, note that, having considered the multiplication between the two
rectangular pulses gtx(t) and grx(t), the l′ involved in the two terms inside
the curly brackets is different, since it considers the pulses overlap within the
interval [0,M − 1− dτp/ (T/M)e] and [M − 1− bτp/ (T/M)c,M − 1], where
d·e and b·c indicates the nearest upper and lower integer, respectively. We
finally get

y [k, l] =
P−1∑

p=0

h′p
∑

k′

Dir
(
νpNT − k + k′, N

)∑

l′

Dir
(
l − l′ − τpM∆f,M

)

e
j2πνp

(
l′

M∆f

)
x [k′, l′]
NM

×





1 if l′ ∈ l′ISI

e
−j2π

(
νpT+ k′

N

)
if l′ ∈ l′ICI

, (1.42)

where we used 



l′ISI ,
{

0,M − 1− d τp
T/M e

}

l′ICI ,
{
M − 1− b τp

T/M c,M − 1
} . (1.43)
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Thus, the channel matrix expression for the p-th path becomes

Ψp
k,k′
[
l, l′
]

=
1

NM
Dir

(
νpNT − k + k′, N

)
Dir

(
l − l′ − τpM∆f,M

)

e
j2πνp

(
l′

M∆f

)
×





1 l′ ∈ l′ICI

e
−j2π

(
νpT+ k′

N

)
l′ ∈ l′ISI

. (1.44)

The input output relation becomes

y [k, l] =
∑

k′,l′

P−1∑

p=0

h′pΨ
p
k,k′
[
l, l′
]
x
[
k′, l′

]
, (1.45)

which can be represented in matrix form as

y =



P−1∑

p=0

h′pΨ
p


x , (1.46)

with y and x vectors of dimension NM × 1 obtained by stacking the received
samples and information symbols, respectively, and Ψp matrix of dimension
MN ×MN , whose {k, k′, l, l′} element is defined in (1.44).

1.3.5 Considerations on matrix Ψ

We now consider some special cases of matrix Ψp, for any single path p.

� Zero delay — Zero Doppler: τp = νp = 0.

Ψp
k,k′
[
l, l′
]

=





1 if (l = l′, k = k′)

0 else
. (1.47)

When both delay and Doppler are zero, Ψp results to be the identity ma-
trix. The channel does not modify the transmitted symbols, the received
signal is simply y = x + noise.

� Non-zero delay — Zero Doppler: τp 6= 0, νp = 0.

Ψp
k,k′
[
l, l′
]

=
1

M
Dir

(
l − l′ − τpM∆f,M

)
×





1 if (k = k′)

0 else
.

(1.48)
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Let us describe the delay τp using its integer and fractional parts, i.e., lτp
and κτp respectively, such that τp = lτp + κτp . Matrix Ψp is structured
such that there are N2 equal M ×M delay submatrices, arranged in a
N×N structure describing the Dirichlet function behavior associated to
the Doppler shift. The integer part lτp of the delay determines the row of
the M ×M submatrix whose highest value (in magnitude) is on the first
position (first column). On the other hand, the fractional part affects
the spreading around the peak value, according to the delay Dirichlet
function. For instance, with M = 4, by defining

ψ
τp
l−l′ ,

1

M
Dir

(
l − l′ − τpM∆f,M

)
, (1.49)

the M ×M matrices are (peak coefficients are in bold)

lτ = 0 :




ψ
τp
0 ψ

τp
−1 ψ

τp
−2 ψ

τp
−3

ψ
τp
1 ψ

τp
0 ψ

τp
−1 ψ

τp
−2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
−1

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0




lτ = 1 :




ψ
τp
0 ψ

τp
−1 ψ

τp
−2 ψ

τp
−3

ψ
τp
1 ψ

τp
0 ψ

τp
−1 ψ

τp
−2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
−1

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0




...

lτ = M − 1 :




ψ
τp
0 ψ

τp
−1 ψ

τp
−2 ψ

τp
−3

ψ
τp
1 ψ

τp
0 ψ

τp
−1 ψ

τp
−2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
−1

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0



,

and, by taking into account the modulo operations such that

l − l′ → mod
(
l − l′,M

)
, k − k′ → mod

(
k − k′, N

)
, (1.50)
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we obtain

lτ = 0 :




ψ
τp
0 ψ

τp
3 ψ

τp
2 ψ

τp
1

ψ
τp
1 ψ

τp
0 ψ

τp
3 ψ

τp
2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
3

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0




lτ = 1 :




ψ
τp
0 ψ

τp
3 ψ

τp
2 ψ

τp
3

ψ
τp
1 ψ

τp
0 ψ

τp
3 ψ

τp
2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
1

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0




...

lτ = M − 1 :




ψ
τp
0 ψ

τp
3 ψ

τp
2 ψ

τp
1

ψ
τp
1 ψ

τp
0 ψ

τp
3 ψ

τp
2

ψ
τp
2 ψ

τp
1 ψ

τp
0 ψ

τp
3

ψ
τp
3 ψ

τp
2 ψ

τp
1 ψ

τp
0



,

where it is clearly visible that each row is a circular shift of the previous
one.

� Zero delay — Non-zero Doppler: τp = 0, νp 6= 0

Ψi
k,k′
[
l, l′
]

=
1

N
Dir

(
−νpNT − k + k′, N

)
e
j2πνp

(
l′

M∆f

)
×





1 if l = l′

0 else
.

(1.51)
In case of zero delay there is no ISI. Since τp = 0, the contribution of the
delay Dirichlet function leads to ψl,l′ = 1, for l = l′, i.e., the coefficients
on the main diagonal of the M×M matrices. However, in this case, there

is an additional exponential term, i.e., e
j2πνp

(
l′

M∆f

)
, which modifies the

ψ coefficients depending on the position l′. Moreover, as said before, the
non-zero Dirichlet function related to (k, k′, ν) involves duplicates of the
reference M ×M matrix for different couples (k, k′).

For example, with M = 2 and N = 3, by defining

λ
νp
k−k′ , Dir

(
−νpNT − k + k′, N

)
, (1.52)
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with

λx , λmod(x,N) , ∀x ∈ Z , (1.53)

and

ψ
τp
l−l′,l′ ,

1

M
Dir

(
l − l′ − τpM∆f,M

)
e
j2πνp

(
l′

M∆f

)
= ψ

τp
0,l , (1.54)

matrix Ψp is

Ψp =




(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
0

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
2

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
1(

ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
1

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
0

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
2(

ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
2

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
1

(
ψ
τp
0,0 0

0 ψ
τp
0,1

)
λ
νp
0



.

� Non-zero delay — Non-zero Doppler: τp 6= 0, νp 6= 0

Ψp
k,k′
[
l, l′
]

=
1

NM
Dir

(
−νpNT − k + k′, N

)
Dir

(
l − l′ − τpM∆f,M

)

e
j2πνp

(
l′

M∆f

)
×





1 l′ICI

e
−j2π

(
νpT+ k′

N

)
l′ISI

. (1.55)

This is the most general case, where the channel matrix is described
as in (1.44). For instance, for M = 4, N = 3, and ISI of one symbol
(rectangular pulses), every M ×M matrix looks like







ψ
τp
0,0 ψ

τp
3,1 ψ

τp
2,2 ψ

′τp
1,3 (k′)

ψ
τp
1,0 ψ

τp
0,1 ψ

τp
3,2 ψ

′τp
2,3 (k′)

ψ
τp
2,0 ψ

τp
1,1 ψ

τp
0,2 ψ

′τp
3,3 (k′)

ψ
τp
3,0 ψ

τp
2,1 ψ

τp
1,2 ψ

′τp
0,3 (k′)



λ
νp
k−k′



, (1.56)

in which

ψ
τp
l−l′,l′ = Dir

(
l − l′ − τpM∆f,M

)
e
j2πνp

(
l′

M∆f

)
,

ψ
′τp
l−l′,l′

(
k′
)

= Dir
(
l − l′,M − τpM∆f,M

)
e
j2πνp

(
l′

M∆f

)
e
−j2π

(
νpT+ k′

N

)
,
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λ
νp
k−k′ = Dir

(
k′ − k,N − νpNT,N

)
.

Note that the circular shift property is lost, because only a subset of
columns depends on k′.

Note: the function involved in the ISI term, i.e., ψ (k′), takes into ac-
count the term

e−j2π
k′
N , (1.57)

which is a phasor moving on the unit complex circle. For high enough
N , since the complex circle is divided in N equal angular steps, values
within a certain range are similar to each other. In fact, by taking a
reference k′, values of the phasor around k′ are just slightly different
from the reference point. Hence:

– For large enough N , e−j2π
k′
N ≈ e−j2π

k′±ε
N , for small ε ∈ N. Using

this approximation, each row can be seen as circular shifts of the
previous one. However, each row is a circular shift of the previous
one and not of the first one. Circular properties are anyway lost.

Note: to simplify the expression of matrix Ψp, the dependency on k′ has
to be removed. In order to have equal M×M matrices, i.e., independent
of k′, the ISI must be canceled, e.g., by inserting a CP, but leading to
an OFDM-like scheme.

General Matrix Ψp Example: Suppose to have M = 6, N = 5, and to
consider only off-one peak value (left and right) for both Dirichlet functions.
For lτp = 0, such maximum value of the delay Dirichlet function is in position
(0, 0) and then in successive circular shifts, the M ×M matrix is

ψ
(
k, k′

)
=







ψ
τp
0 ψ

τp
2 0 0 0 ψ

′τp
1 (k′)

ψ
τp
1 ψ

τp
0 ψ

τp
2 0 0 0

0 ψ
τp
1 ψ

τp
0 ψ

′τp
2 0 0

0 0 ψ
τp
1 ψ

τp
0 ψ

′τp
2 0

0 0 0 ψ
τp
1 ψ

τp
0 ψ

′τp
2 (k′)

ψ
τp
2 0 0 0 ψ

τp
1 ψ

′τp
0 (k′)




λ
νp
k−k′




, (1.58)
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(a) (b)
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(c)

Figure 1.4: Symbol (magnitude) shift in the Doppler-delay domain. (a) Trans-

mitted symbol. (b) Received samples. (c) Heatmap (magnitude).

and matrix Ψp is

Ψp =




ψ (0, 0) ψ (0, 1) 0 0 ψ (0, 4)

ψ (1, 0) ψ (1, 1) ψ (1, 2) 0 0

0 ψ (2, 1) ψ (2, 2) ψ (2, 3) 0

0 0 ψ (3, 2) ψ (3, 3) ψ (3, 4)

ψ (4, 0) 0 0 ψ (4, 3) ψ (4, 4)



. (1.59)

1.3.6 Symbols shift within the Doppler-delay grid

Given the channel representation in the Doppler-delay domain, each symbol
x ∈ Γ is shifted both in delay and in Doppler. From the above description of the
channel matrix Ψ, focus the attention on the multiplication Ψx: the channel
effect on a given symbol xi, for any i, is completely described by the i-th
column of Ψ, i.e., the one multiplying xi. It is easy to see that all subcolumns,
i.e., each column belonging to one of the N submatrices of dimension M ×M ,
are equal, and they describe the shift in the delay domain. Moreover, for
any shift in the Doppler domain, governed by the coefficient λ for any of
the N submatrices, the shift in the delay domain is equal. As a result, each
transmitted symbol reflects in a received sample showing one peak value on the
Doppler-delay received grid surrounded by interfering terms, in accord with
the Dirichlet functions behavior.

A visual example, depicted in Fig. 1.4, is useful. The black square in Fig.
1.4 (a) represents the transmitted symbol magnitude (just one, for simplicity).
The received samples magnitude are shown in Fig. 1.4 (b), such that gray
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Figure 1.5: Two dimensions visual example of Dirichlet functions in both do-

mains, where |A| is the normalized amplitude value, in accord to the heatmap

of Fig. 1.4.

shades exploits the Dirichlet behavior causing ISI and ICI in the Doppler-delay
domain. Fig. 1.4 is just a toy example but provides an idea of the Dirichlet
functions effect on off-peak points. Moreover, to complete the analysis, Fig. 1.5
depicts another visual example showing the Dirichlet behavior (in magnitude)
in two dimensions, which is the accurate description of the qualitative example
of Fig. 1.4.

1.3.7 General Waveforms

The choice of pulses gtx(t) and grx(t) implies different behaviors in the time-
frequency domain, which are described by the CAF, first appearing in (1.21)
and then within the derivation of the OTFS input-output relation. The choice
of such waveforms is directly linked to the inter-pulse interference in the time-
frequency domain, which implies ISI and ICI.

Consider general pulses with any support, e.g., not limited to [0, T ].3 By

3The occupied band in the frequency domain depends only on the definition of the pulse

in time domain. To be consistent, we suppose that the support in frequency domain is also

not limited.
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keeping the maximum channel delay condition w.r.t. the symbol time as τmax <
T , the number of pulses involved in the ISI clearly depends on the pulse
support. By starting from (1.39) and defining q , (n− n′), we get

y [k, l] =
T

NM

∑

k′,l′

x
[
k′, l′

] P−1∑

p=0

h′p

{∑

n

e−j2πk
n
N

∑

n′

ej2π(k′+νpNT )n
′
N e

j2πνp
l′

M∆f

g∗rx

(
l′
T

M
−
(
n− n′

)
T + τp

)
gtx

(
l′
T

M

)
Dir

(
l − l′ − τpM∆f,M

)
}

=
∑

k′,l′

x [k′, l′]T
NM

P−1∑

p=0

h′p

{∑

n

e−j2πk
n
N

∞∑

q=−∞
ej2π(k′+νpNT )n−q

N e
j2πνp

l′
M∆f

g∗rx

(
l′
T

M
− qT + τp

)
gtx

(
l′
T

M

)
Dir

(
l − l′ − τpM∆f,M

)
}

=
x [k′, l′]T
NM

∑

k′,l′

P−1∑

p=0

h′pgtx

(
l′
T

M

)
Dir

(
l − l′ − τpM∆f,M

)
e
j2πνp

l′
M∆f

(∑

n

ej2π(k′+νpNT−k) n
N

) ∞∑

q=−∞
e−j2π(k′+νpNT ) q

N g∗rx

(
l′
T

M
− qT + τp

)
.

(1.60)

Note that only the term in brackets depends on n, and it is a Dirichlet function

∑

n

ej2π(k′+νpNT−k) n
N , Dir

(
νpNT − k + k′, N

)
. (1.61)

Hence

y [k, l] =
∑

k′,l′

x [k′, l′]T
NM

P−1∑

p=0

h′pDir
(
l − l′ − τpM∆f,M

)
Dir

(
νpNT − k + k′, N

)

gtx

(
l′
T

M

){ ∞∑

q=−∞
e−j2π(k′+νpNT ) q

N g∗rx

(
l′
T

M
− qT + τp

)}

e
j2πνp

l′
M∆f . (1.62)

The term under curly brackets takes into account interfering pulses shifted of
multiples of T w.r.t. the summation index q. Depending on the support of the
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pulses, i.e., when the energy is above a certain threshold if the pulse support
is infinite, only a fixed number of interferes appears (to left and to right),
indicated by Ip. The summation over q can be thus limited to [−Ip, Ip]. We
finally get

y [k, l] =
∑

k′,l′

x [k′, l′]T
NM

P−1∑

p=0

h′pDir
(
l − l′ − τpM∆f,M

)
Dir

(
νpNT − k + k′, N

)

e
j2πνp

l′
M∆f gtx

(
l′
T

M

){ Ip∑

q=−Ip
e−j2π(k′+νpNT ) q

N g∗rx

(
l′
T

M
− qT + τp

)}
.

(1.63)

Note that a pulse not satisfying the Nyquist condition, i.e., flat frequency
representation, changes the noise properties. The noise associated to the re-
ceived samples is not white anymore, and changes within the pulse definition.
This fact must be considered in the mathematical and simulation model.

What is the role of the shaping pulses in the construction of the channel
matrix Ψ? The structure of Ψ is dominated by the Dirichlet function values,
w.r.t. the integer/fractional delay and Doppler shifts and the indices l, l′, k, k′.
The ISI and ICI effects caused by the shaping pulses add to the Dirichlet be-
havior, but how? One can think that optimized “well-known” pulses having
limited CAF in time-frequency domain should be adopted [60], but the effect
in the dual Doppler-delay domain remains not clear. In fact, the Doppler-delay
ISI and ICI weakly depend on the adopted shaping pulse, and are dominated
by the Dirichlet functions, whose expressions appear from the particular trans-
formations performed by modulator and demodulator, and not from the choice
of the transmitted and received pulses (see Sec. 1.3.1). For these reasons, once
common well-confined time-frequency pulses are adopted [60], it is not guar-
anteed to achieve good performance also in the Doppler-delay domain. This
fact is also confirmed in [61].

The conclusion could be that, whatever the chosen pulse (also different
between transmitter and Rx), there are no performance guarantees. For com-
pleteness, the next section will present some known pulses and the associated
CAFs, together with final considerations on the adopted pulses.



1.3. Orthogonal Time Frequency Space (OTFS) Modulation 35

1.3.8 The Cross-Ambiguity Function

In radar scenarios, the CAF is a two-dimensional function of delay and Doppler
showing the distortion of a returned pulse at the Rx matched filter due to delay
and Doppler shift of the moving target (see, e.g., [13, 60]). The ambiguity func-
tion description is only determined by the properties of the transmitted pulse
and the matched filter (received pulse). By taking into account the definition
of CAF in (1.15) [13], recalled here for convenience

Cgtx,grx (t, f) ,
∫
g∗rx(t′ − t)gtx(t′)e−j2πft

′
dt′ , (1.64)

we show its behavior when different pulses gtx(t) and gtx(t) are used.

Fig. 1.6 shows that different pulses achieve distinct performance in terms
of spreading in time and in frequency of the CAF. For instance, as shown in
Fig. 1.6 (a), since rectangular pulses have infinite support in the frequency
domain, the projection of the CAF on the frequency plane slowly decays and
necessitates some time to reach the zero “floor”, while values near the peak
point have remarkable magnitude. A different behavior is shown when two
Gaussian pulses are adopted (Fig. 1.6 (b)). In fact, having Gaussian pulses
finite support in the frequency domain, they exhibit a rapid decay to zero
around peak point. A similar consideration occurs in the time domain, which
is confirmed by looking at the projection on the time plane. At last, compare
Fig. 1.6 (b) and 1.6 (c) to have an idea on how Gaussian pulses with different
variances change the behavior of the projections over the time and frequency
planes. The definition of good shaping pulses, with the corresponding CAF, is
a problem of primary interest in typical radar systems. For more details, for
instance, refer to the analysis carried on in [60], suggesting the use of pulses
well localized in the time-frequency domain.

Regarding OTFS, pioneering works [4, 5] are based on the assumption of
ideal bi-orthogonal pulses satisfying perfect interference properties, i.e., re-
sulting to be deltas in both time and frequency planes. However, these pulses
cannot be created in real electronic circuits, and different solutions must be
adopted. Thus, it is possible to find in literature many examples of OTFS mod-
ulation based on rectangular pulses [62, 46], whose CAF spreads in frequency,
according to Fig. 1.6, but it easier to handle (mathematically speaking) within
the derivation of the OTFS input-output relation. An in-depth numerical anal-
ysis comparing the performance of OTFS with different pulses (rectangular,
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root-raised cosine, Gaussian) has been carried on, resulting in similar perfor-
mance, and thus not shown here for the sake of brevity. This fact has been
also confirmed in [61]. Thus, we took advantage of the simplicity in terms of
mathematical treating of rectangular pulses, as generally done in literature,
by keeping in mind that a different treatment is possible, but does not lead to
remarkable performance improvement, at least in the considered scenarios.
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Figure 1.6: Cross-ambiguity function for different pulses.





Chapter 2

ML Methods for Radar

Parameter Estimation

2.1 Joint State Sensing and Communication

2.1.1 OFDM

2.1.1.1 Maximum Likelihood Estimator

Starting from the aforementioned analysis, by focusing for simplicity on a
single-target case (P = 1), we neglect the p-path subscript for the following
derivations based on OFDM. Since data symbols are known by the radar Rx
(which could be colocated with the Tx (monostatic radar) or not (bistatic
radar)), and the noise is i.i.d. Gaussian circularly symmetric, the radar Rx
can shift the data symbol phase without changing the noise statistics. There-
fore, the radar observation, including the noise and symbol-by-symbol phase
rotation, can be written as

zn,m = An,mhe
j2πnToνe−j2πm∆fτ + wn,m , (2.1)

where An,m = |xn,m| denotes the amplitude of the transmitted symbol and
wn,m is the additive white Gaussian noise (AWGN) with zero mean and unit
variance.

39
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The maximum likelihood (ML) estimator of channel gain, range, and veloc-
ity for the observation model in (2.1) is obtained by generalizing the approach
in [26, Chapter 3.3.3] to the case of arbitrarily amplitude A symbols, with
A being the matrix collecting the time-frequency entries {An,m}. For the set
of parameters θ = (h, ν, τ), we wish to find the estimator minimizing the
likelihood function

l(z|θ,A) =
∑

n

∑

m

∣∣∣zn,m−hAn,mej2π(νnTo−m∆fτ)
∣∣∣
2
. (2.2)

Assuming that the pair (ν, τ) is known, by letting the derivative of l(z|θ,A)
w.r.t. h equal to zero, we obtain the estimation ĥ of the complex channel gain
h, which is

ĥ =
Z(ν, τ)∑
n,mA

2
n,m

, (2.3)

where the DFT/inverse discrete Fourier transform (IDFT) operation is defined
as

Z(ν, τ) ,
M−1∑

m=0

N−1∑

n=0

zn,mAn,me
−j2πνnToej2πm∆fτ , (2.4)

which is a two-dimensional periodogram. By plugging (2.3) into (2.2) and
following similar steps as [13, Chapter 7.2.2]), the estimator of the remaining
unknown parameters in given by

(ν̂, τ̂) = arg max
(ν,τ)∈Γ′

|Z(ν, τ)|2 , (2.5)

where we considered a discretized set Γ′ of delay and Doppler frequency axes
with step sizes 1/ (M ′∆f) and 1/ (N ′To), respectively, with N ′ ≥ N and M ′ ≥
M . Note that Γ′ is in line with the definition in (1.13), but with greater
granularity to achieve an higher accuracy within the estimation process.

In summary, to compute the joint ML estimator of the set of unknown
parameters (h, τ, ν) the following steps are done:

1. Compute the DFT/IDFT output Z(ν, τ). This step which can be effi-
ciently implemented by using fast Fourier transform (FFT)-based design.

2. Choose (ν̂, τ̂) maximizing |Z(ν, τ)|2 over Γ′, for some N ′ and M ′ (de-
pending to the target accuracy level).
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3. Let the channel gain be ĥ = Z(ν̂, τ̂)/
(∑

n,mA
2
n,m

)
.

Clearly, starting from the delay and Doppler estimations, it is possible to
derive the corresponding range and velocity estimations, respectively given by
r̂ = τ̂ c/2 and v̂ = ν̂c/(2fc).

2.1.1.2 Crameŕ-Rao lower bound (CRLB)

It is well known that the Crameŕ-Rao lower bound (CRLB) provides a theo-
retical lower bound on the variance of any estimator [3, 34]. The derivation
of the CRLB depends on the particular system setting, but it is always based
on a common denominator, i.e., the construction of the Fisher information
matrix.

Suppose we have only one path, i.e., P = 1, to simplify the notation. For
the calculation of the CRLB consider a vector of unknown parameters θ to be
estimated. Given f (y|θ), which is the conditional distribution of the channel
output y given the set of unknown parameters θ, if the regularity condition is
satisfied

Ey

[
∂

∂θ
ln f (y|θ)

]
=




Ey

[
∂
∂h ln f (y|θ)

]

Ey

[
∂
∂τ ln f (y|θ)

]

Ey

[
∂
∂ν ln f (y|θ)

]


 =




0

0

0


 , (2.6)

then, any unbiased estimator providing θ̂ has covariance matrix

C θ̂ = E
[(
θ̂ − E

[
θ̂
])(

θ̂ − E
[
θ̂
])∗]

, (2.7)

which satisfies (
C θ̂ − I (θ)−1

)
≥ 0 ∀θ . (2.8)

The matrix I (θ) is the Fisher information matrix, whose (i, j) element is

[I (θ)]i,j = −Ey

[
∂2 ln f (y|θ)

∂θi∂θj

]
, (2.9)

where indexes (i, j) select the unknown parameters within the vector θ. More-
over, (2.8) implies that diagonal elements of Cθ dominates those of I (θ)−1,
hence

Var
[
θ̂i

]
≥
[
I (θ)−1

]
ii
≥ 1

[I (θ)]ii
. (2.10)
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Consider the vector of unknown parameters θ = (α,ϕ, f, t), where α = |h|,
ϕ = ∠(h), f = Toν, and t = ∆fτ , from (2.1) we obtain

zn,m = An,mαe
jϕej2πnfe−j2πmt + wn,m . (2.11)

By letting sn,m = An,mαe
jϕej2πnfe−j2πmt, we derive the 4× 4 Fisher informa-

tion matrix defined as

[I(θ,A)]i,j = 2PavgRe

{∑

n,m

[
∂sn,m
∂θi

]∗ [∂sn,m
∂θj

]}
, (2.12)

where Pavg takes into account any possible power constraint on transmitted
symbols. We thus have

∂sn,m
∂α

= An,me
jϕe+j2πnfe−j2πmt (2.13a)

∂sn,m
∂ϕ

= jαAn,me
jϕe+j2πnfe−j2πmt (2.13b)

∂sn,m
∂f

= (j2πn)αAn,me
jϕe+j2πnfe−j2πmt (2.13c)

∂sn,m
∂t

= (−j2πm)αAn,me
jϕe+j2πnfe−j2πmt . (2.13d)

For a model given in (2.11), the MMSE of f and t is lower bounded by

σ2
f̂
≥ N0

2|h|2
ef(A)

d(A)
(2.14a)

σ2
t̂ ≥

N0

2|h|2
et(A)

d(A)
, (2.14b)
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where ef(A), et(A), d(A) are given by

ef(A) = (2π)2

{∑

n,m

(A2
n,m) ·

∑

n,m

(m2A2
n,m)−

[∑

n,m

mA2
n,m

]2
}
, (2.15a)

et(A) = (2π)2

{∑

n,m

(A2
n,m) ·

∑

n,m

(n2A2
n,m)−

[∑

n,m

nA2
n,m

]2
}
, (2.15b)

d(A) = (2π)4
{∑

n,m

(A2
n,m)

[∑

n,m

n2A2
n,m

][∑

n,m

m2A2
n,m

]

+ 2
[∑

n,m

nA2
n,m

][∑

n,m

mA2
n,m

][∑

n,m

nmA2
n,m

]
−
∑

n,m

(A2
n,m)

[∑

n,m

nmA2
n,m

]2

−
[∑

n,m

n2A2
n,m

][∑

n,m

mA2
n,m

]2
−
[∑

n,m

m2A2
n,m

][∑

n,m

nA2
n,m

]2}
. (2.15c)

In the regime of large M and N , the CRLB of f and t are given by

σ2
f̂
≥ 6

|h|2Pavg(2π)2MN(N2 − 1)
, (2.16a)

σ2
t̂ ≥

6

|h|2Pavg(2π)2MN(M2 − 1)
. (2.16b)

For a special case of constant envelope (An,m =
√
Pavg for all n,m), the above

expressions coincide with those in [26, Section 3.3].

2.1.2 OTFS

2.1.2.1 Maximum Likelihood Estimator

Based of the results of Chapter 1 and Sec. 1.3.1, the vectorized input-output
relation is

y =
P−1∑

p=0

hpΨ
p(τp, νp)x + w . (2.17)

We wish to estimate the set of unknown parameters θ = (h̄, τ̄ , ν̄), with
h̄ = [h0, . . . , hP−1], τ̄ = [τ0, . . . , τP−1], and ν̄ = [ν0, . . . , νP−1], where the
bar indicates the true channel parameter value.

Let us first focus on the single path case (i.e., getting rid of subscript 0
after the following equation) while deriving the ML solution for parameter
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estimation; the multiple path case will be discussed afterwords. The likelihood
function to maximize w.r.t. θ is given by

l(y|θ,x) = exp
(
−|y − h0Ψ

0(τ0, ν0)x|2
)
, (2.18)

or, equivalently, applying the logarithm, we minimize the following

l(y|θ,x) = |y − hΨ(τ, ν)x|2 = (y − hΨ(τ, ν)x)(y − hΨ(τ, ν)x)∗

= |y|2 − 2Re{hyHΨ(τ, ν)x}+ |h|2xHΨHΨx , (2.19)

where symbols x are known at the radar Rx, which could be colocated with
the Tx (monostatic radar) or not (bistatic radar), but shares the information
about transmitted symbols. Therefore, these symbols are treated as known (in
the conditioning of the likelihood function), and not as nuisance as for classical
estimators (for timing, frequency, etc.), and the receiver performs coherent
processing. Assuming that the pair (τ, ν) is completely known, the aim is to
minimize l(y|θ,x) w.r.t. the real part hR of h (and then the imaginary)

∂l

∂hR
= −Ψ(τ, ν)x(y − hΨ(τ, ν)x)∗ − (y − hΨ(τ, ν)x)(Ψ(τ, ν)x)∗ . (2.20)

By letting ∂l/∂hR = 0, we obtain

ĥR =
Re{xHΨHy}

xHΨHΨx
, (2.21)

where the hat (̂·) indicates an estimate of the parameter, and, combining with
∂l/∂hI = 0, we get

ĥ =
xHΨHy

xHΨHΨx
. (2.22)

At this point, by using ĥ, it is possible to estimate (τ, ν) based on the updated
likelihood function

l(y|θ,x) = (y − ĥΨ(τ, ν)x)H(y − ĥΨ(τ, ν)x)

= |y|2 − ĥyHΨ(τ, ν)x− ĥ∗xHΨHy + |ĥ|2xHΨHΨx

= |y|2 − |ĥ|2xHΨHΨx

= |y|2 − |x
HΨHy|2

xHΨHΨx
. (2.23)
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By ignoring the first term which is constant and irrelevant in any detec-
tion/estimation scheme, it is clear that l(y|θ,x) is minimized by maximizing
the second term. Namely, we have

(τ̂ , ν̂) = arg max
(τ,ν)

|xHΨH(τ, ν)y|2
xHΨ(τ, ν)HΨ(τ, ν)x

. (2.24)

Given the fact that the search for parameter (τ, ν) ∈ R × R maximizing the
likelihood function is an extremely complex problem, whose solution might be
very difficult to find since there are no constraints on the variables (simply
belonging to R), practically, as for OFDM, we consider a discretized set Γ′ of
delay and Doppler axes, based on Γ in (1.13), i.e.,

Γ′ =
{(

n

M ′∆f
,
m

N ′T

)}
, (2.25)

for n = 0, . . . , N ′ − 1 and m = 0, . . . ,M ′ − 1, where N ′ ≥ N and M ′ ≥ M .
Thus, the estimation is performed over this set

(τ̂ , ν̂) = arg max
(τ,ν)∈Γ′

|xHΨH(τ, ν)y|2
xHΨ(τ, ν)HΨ(τ, ν)x

. (2.26)

Clearly, the finer the granularity of the set Γ′, the better the estimation per-
formance, at the cost of an increased computational complexity. Moreover, in
order to keep the maximization computationally feasible, one can first use a
coarse Γ′, and then refine the estimation by successively increase the granu-
larity of Γ′ and search only around the previously estimated values.

After having found the ML solution for the single path case, we now con-
sider multiple paths. The aim is to find the ML estimator for the set of 3P
unknown parameters θ = (h̄, τ̄ , ν̄). In this case, the log-likelihood function to
be minimized is given by

l (y|θ,x) =

∣∣∣∣∣∣
y −

P−1∑

p=0

h′pΨpx

∣∣∣∣∣∣

2

, (2.27)

for which, as before, symbols x are known at the radar detector. The ML
estimator is thus given by

θ̂ = arg min
θ∈CP×RP×RP

l (y|θ,x) . (2.28)
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A brute-force search for the maximum in a 3P -dimensional continuous domain
is generally unfeasible. Thus, a viable method approximating the ML solution
with low complexity is presented in the following.

The log-likelihood function in (2.27) is quadratic in the complex amplitudes
(h′p) for given (τp, νp). Hence, the minimization of (2.27) w.r.t. (h′p) for fixed
(τp, νp) is readily given as the solution of the linear system of equations

P−1∑

q=0

h′qx
HΨH

pΨqx = xHΨH
py , (2.29)

for p = 0, . . . , P − 1. Expanding (2.27) and using the equality (2.29), after
some long but relatively simple algebra, mostly including derivatives (as for the
single path case), not given explicitly for the sake of brevity, the minimization
w.r.t. (τp, νp) reduces to maximizing the function

l2(y|θ,x) =
P−1∑

p=0

{
Sp(τp,νp)︷ ︸︸ ︷
|xHΨH

py|2
xHΨH

pΨpx
−

(∑
q 6=p h

′
qx

HΨH
pΨqx

)
yHΨpx

xHΨH
pΨpx︸ ︷︷ ︸

Ip({h′q}q 6=p,τ ,ν)

}
, (2.30)

where Sp(τp, νp) and Ip
(
{h′q}q 6=p, τ ,ν

)
denote the useful signal and the inter-

ference term for path p, respectively. Clearly, since the channel coefficients (h′p)
are unknown, it is impossible to directly maximize l2 (y|θ,x) w.r.t. (τp, νp),
as the interference term cannot be computed. Furthermore, even for known
coefficients (h′p), the function l2 (y|θ,x) is not separable in the pairs of pa-
rameters (τp, νp) for different values of p because of the dependency of the
interference terms Ip on all (τq, νq) for q 6= p. Nevertheless, this dependency
appears through the “cross-term” coefficients of the type xHΨH

pΨqx, which
tend to be weak for typically sparse multipath channels. Therefore, we resort
to an iterative block-wise estimation method, described in Algorithm 1, that
alternates the optimization of each pair (τp, νp) by keeping fixed the other
parameter pairs and the channel complex coefficients and, after a round of
updates for the delay and Doppler parameters, it re-evaluates the estimates of
the channel coefficients by solving (2.29).

Algorithm 1 describes the steps and the iterative process necessary to ob-
tain the estimation of all channel parameters. The iteration stops when the
values of (τ̂p[n

it], ν̂p[n
it]) do not show a significant change w.r.t. the previous
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Algorithm 1: Multipath Parameters Estimation

Result: The set (ĥ′p, τ̂p, ν̂p), for p = 0, . . . , P − 1.

It: Let i = 0, 1, 2, . . . be the iteration number;

Initialization: For i = 0, initialize ĥ′p[0] = 0;

for i = 1, 2, . . . do
• Delay and Doppler update : For each p = 1, . . . , |P|, find the

estimates τ̂p[i], ν̂p[i] by solving the two-dimensional maximization

(τ̂p[i], ν̂p[i]) = arg max
(τ,ν)

{
Sp − Ip

}
, (2.31)

with Sp and Ip calculated for (ĥ′p[i], τ, ν, φ̂p[i]);

• Complex channel coefficients update : Solve the linear

system (5.34) with channel matrices Ψp with parameters

(ĥ′p[i], τ̂p[i], ν̂p[i], and let the solution be denoted by ĥ′p[i].

end

iteration, or if a maximum number of iterations is reached. In practice, we
find the maximizer in (2.30) first by searching on the “integer” Doppler-delay
grid Γ of (1.13), for which the channel matrices can be pre-computed and
stored (drastically reducing the computational complexity), then by search-
ing on a finely discretized grid Γ′ on the delay and Doppler domains, around
the rough estimated value of the first phase (as described after (2.26)). This
multiple-step maximization search allows to reduce the overall computational
complexity, allowing to adopt the proposed algorithm even with increasing
block dimensions NM (up to a certain limit). Furthermore, in all our simu-
lations we noticed that the algorithm converges in just a few iterations (2 to
5, at most). Note that the case P = 1, which corresponds to the presence of
the term S0(τ0, ν0) only, i.e., with no interfering terms Ip, is a straightforward
particular case of Algorithm 1, and results to be the adaptive matched filter
introduced in [63].



48 Chapter 2. ML Methods for Radar Parameter Estimation

2.1.2.2 Cramér-Rao Lower Bound (CRLB)

By starting from the general consideration about the CRLB done for OFDM,
the derivation of the CRLB for OTFS is based on the channel matrix expres-
sion in (1.44). By letting

sp[k, l] =
∣∣h′p
∣∣ ej∠h′p

N−1∑

k′=0

M−1∑

l′=0

Ψp
k,k′
[
l, l′
]
xk′,l , (2.32)

and considering separately the amplitude and the phase of the complex channel
coefficients (h′p), the (i, j) element of the 4P × 4P Fisher information matrix
is given by

[I(θ,x)]i,j =
2Pavg

σ2
w

Re

{∑

n,m

[
∂sp[n,m]

∂θi

]∗ ∂sp[n,m]

∂θj

}
, (2.33)

in which θ =
(∣∣h′

∣∣ ,∠h′, τ ,ν
)

is the set of 4P channel unknown parameters.
The partial derivatives w.r.t. the magnitude and phase of h′p are straight-

forward and are omitted for the sake of brevity. The derivatives w.r.t. τp and
w.r.t. νp are more cumbersome and, after some algebra, can be obtained as

∂Ψk,k′ [l, l
′]

∂τp
=

1

NM

∑

n,m

ej2π(νpNT−k+k′) n
N ej2π(l−l′−τpM∆f)m

M (j2πm∆f)

e
j2πνp

(
l′

M∆f

)
×





1 if l′ ∈ LICI

e
−j2π

(
k′
N

+νpT
)

if l′ ∈ LISI

, (2.34)

for the delay, and

∂Ψk,k′ [l, l
′]

∂νp
=

j2π

NM

∑

m

ej2π(l−l′−τpM∆f)m
M e

j2πνp
(

l′
M∆f

)

×





∑
n e

j2π(νpNT−k+k′) n
N

l′

M∆f +
∑

n nTe
j2π(νpNT−k+k′) n

N if l′ ∈ LICI

e
−j2π

(
k′
N

+νpT
)[∑

n e
j2π(νpNT−k+k′) n

N

(
l′

M∆f − T
)

+
∑

n nTe
j2π(νpNT−k+k′) n

N

]
if l′ ∈ LISI

,

(2.35)
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for the Doppler shift.

The desired CRLB follows by filling the Fisher information matrix in (2.33)
with the derivatives computed above, and obtaining the diagonal elements of
the inverse Fisher information matrix. In particular, we are interested in the
CRLB for the parameters τ0 and ν0, related to the target range and velocity.

2.1.2.3 ML Waterfall Analysis for Single Path

It is well-known that ML estimators typically exhibit a threshold effect, i.e.,
a rapid deterioration of the estimation mean square error (MSE) when the
signal-to-noise ratio (SNR) falls below a certain threshold (that generally de-
pends on the problem and on the sample size). In contrast, for high SNR,
i.e., larger than such threshold, the ML estimator yields MSE typically very
close to the CRLB, i.e., the tightest lower bound for MSE performance. This
waterfall behavior is caused by the “outliers” in the search of the maximum
in any ML estimator (see, e.g., (2.28) or any aforementioned minimization or
maximization based estimator in this dissertation): namely, when the noise
dominates the useful signal, the maxima of the likelihood functions tend to be
randomly placed anywhere on the search grid.

In the following, we analyze the waterfall effect, or transition, for the single
path case P = 1, i.e., we search and study the region around the threshold
SNR value where the rapid deterioration occurs. Moreover, simulations results
show that the provided waterfall prediction for P = 1 is also very accurate for
the multipath case P > 1.1 This also confirms the evidence that the proposed
approximated iterative ML estimation described in Algorithm 1 is effectively
very good, and performs very close to the true ML.2

Following the reasoning of [64, 65], we define as “outlier” the event that a
maximum of the likelihood function is randomly placed on the grid Γ, rather
than within the cluster of points surrounding the true value (τ̄0, ν̄0). Let α ∈
{τ, ν} be the unknown parameter to be estimated, i.e., τ or ν indifferently. By
the law of total probability over the discretized grid Γ (where we calculate the

1This is also true because the MSE performance between the single path and the multipath

case are very similar.
2Obviously, the CRLB for P = 1 yields also a lower bound for the case P > 1, in the

case where we simply add more multipath components with independent statistics, and the

presence of more unknown parameters does not generally help the estimation of each single

target parameters.
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ML estimator), we can express the estimation MSE as

MSE = E
[
(α̂− ᾱ)2

]
=
∑

i∈Γ

Pr (ε (i)) (α̂i − ᾱ)2

≤
∑

i∈Γ

Pr (ε̃ (i)) (α̂i − ᾱ)2 . (2.36)

where ᾱ is the true value of the parameter, α̂ is an estimation of such param-
eter, and Pr (ε (i)) denotes the probability of error of choosing αi rather than
ᾱ. While evaluating Pr (ε (i)) may be extremely difficult, also because the true
parameter ᾱ ∈ R, we obtain an upper bound by considering pairwise error
probabilities, i.e., replacing Pr (ε (i)) with the probability that the detector
chooses αi rather than ᾱ when these are the only two alternatives. Since the
pairwise error event ε̃ (i) contains the true error event ε(i), it follows that the
inequality of (2.36) provides an upper bound.

Thus, the definition of the pairwise error probability is

Pr (ε̃ (i)) , Pr
{
l (y|θi,x) > l

(
y|θ̄,x

)}
, (2.37)

where l (y|θi,x) and l
(
y|θ̄,x

)
are the values obtained from the evaluation

of the likelihood function at grid point i, with parameter θi, and when the
set of true parameters θ̄ is taken into account, respectively. At this point,
the problem is reduced to the computation of the pairwise error probabilities
Pr (ε (i)), for i ∈ Γ, which can be derived as follows. We notice that, taking
into account the useful signal appearing in (2.28)

Pr (ε̃ (i)) ≈ Pr
{
|xHΨH

i y|2 > |xHΨ̄
H
y|2
}
, (2.38)

with Ψ̄ the channel matrix computed with the true set of parameters, and
where we exploit ΨH

iΨi=I, ∀i, for P = 1. Defining the jointly conditionally
Gaussian random variables

zi , xHΨH
i y = xHΨH

i Ψ̄x+ xHΨH
iw , (2.39)

z̄ , xHΨ̄
H
y=xHx+ xHΨ̄

H
w , (2.40)

with first and second order moments




E [z̄] = ‖x‖2 , Var [z̄] = σ2
w ‖x‖2

E [zi] = xHΨH
i Ψ̄x, Var [zi] = σ2

w ‖x‖2
, (2.41)
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Figure 2.1: Waterfall behavior example w.r.t. other bounds.

and

Cov [z̄, zi] = σ2
wx

HΨ̄
H
Ψix , (2.42)

a good approximation for Pr (ε̃ (i)) is given by [64]

Pr (ε̃ (i)) ≈ 1

2
exp

{
−‖x‖4

2σ2
wNM

}
I0

(∣∣xHΨH
i Ψ̄x

∣∣ · ‖x‖2
2σ2

wNM

)
, (2.43)

where I0 is the modified Bessel function of the first kind of order 0. The MSE
estimation can be thus computed by substituting (2.43) into (2.36), using the
above definitions.

The resulting (approximated) upper bound tends to be loose at low SNR,
where the outliers are likely to occur and the associated error probabilities
are high, but becomes more accurate moving towards the ML waterfall region,
thus, when the outlier probability decreases. Furthermore, the MSE strictly
depends on the grid resolution and may or may not reach the CRLB for increas-
ing SNR depending on the systematic error incurred by the grid discretization.
As a matter of fact, in our numerical results we took care of using a search
grid fine enough such that the discretization systematic error is not visible in
the explored range of SNRs, and, particularly, when the waterfall falls to the
CRLB.
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Moreover, to contrast the looseness of the MSE upper bound obtained in
(2.36) at low SNR, we define the trivial upper bound

MSE ≤ 1

|Γ|
∑

i∈Γ

(α̂i − ᾱ)2 , (2.44)

that corresponds to estimate by choosing random grid points, i.e., completely
disregarding the received signal.

Then, putting together (2.36) (with the pairwise error probability approx-
imation in (2.43)) and the above “random estimation” bound in (2.44), we
finally obtain the approximated MSE upper bound as

MSE . min

{∑

i∈Γ

Pr (ε̃ (i)) (α̂i − ᾱ)2 ,
∑

i∈Γ

(α̂i − ᾱ)2

|Γ|

}
, (2.45)

whose behavior is shown in Fig. 2.1, together with the CRLB introduced here-
after. Thus, the ML performance of the estimator stands on the random es-
timation straight line for low SNR, follows the CRLB for high SNR, and the
transition between these two extremes occurs around the waterfall estimation.

Simulation results show that the aforementioned analysis is able to accu-
rately predict the waterfall behavior of the ML estimator.

2.2 Radar Resolution and Multi-Target Detection

Under the assumption of the point target model [17, 66], until now we have an-
alyzed a single target scenario. Radar operations can be essentially performed
with two different approaches. The first one, considers a radar periodically
scanning angular sectors, as typical naval or airplane radars. In this context,
by making the beam as directive as possible, i.e., assuming a very narrow beam
and angular coverage, it is reasonable to assume the presence of just one target
in any direction (or multiple targets sharing the same direction and assuming
no blockage of the signal propagation). As an alternative, the second approach
is based on a wider angular sector coverage. In such a case, since the target
location is not a priori known, a joint estimation of Doppler, delay, and angle
of arrival (AoA) should be performed at the radar Rx. In both approaches, the
radar range and velocity resolutions acquire a central role, providing the min-
imum distance and velocity at which two different targets can be separately
detected, i.e., such that they are not seen as a single entity.
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Consider the transmitted symbols to be arranged within the Doppler-delay
grid in (1.13). The definition of N , M , B (bandwidth), T , and fc (carrier fre-
quency) is very important. By following the continuous time signal expression
in (1.17), symbols are spaced by T (seconds) in time and ∆f (Hertz) in fre-
quency. The radar resolutions are computed in the following. Starting from
the definition of Doppler shift we get

ν ,
2vfc
c
⇒ v ,

νc

2fc
, (2.46)

and since the minimum Doppler step is ∆f/N , the velocity resolution results
to be

νstep =
∆f

N
⇒ vres ,

νstepc

2Nfc
=

∆fc

2Nfc
. (2.47)

Equivalently, starting from the definition of delay we get

τ ,
2r

c
⇒ r ,

τc

2
, (2.48)

and since the minimum delay step is T/M , the range resolution is

τstep =
T

M
⇒ rres ,

τstepc

2M
=

Tc

2M
. (2.49)

If we impose, as generally done in multi-carrier systems, the equality ∆f ,
1/T , together with B = M∆f , previous formulas become





rres = Tc/2 = c/(2B)

vres = ∆fc/(2f) = Bc/(2NMfc)
. (2.50)

This analysis provides the limits of a radar system based on a multi-carrier
communication waveform. Even if the range resolution strictly depends on
the bandwidth B, and this is valid for any radar system, the only way to
reduce the velocity resolution, having imposed ∆f = 1/T , is to increase the
dimension of the transmitted block of data, through N and M . However, this
translates in increasing the total signal duration and decreasing the subcarriers
spacing, which could lead to an increase of the computational complexity (if
blockwise operations have to be computed), or increased interference effects
(for instance for OFDM). This is the cost of the proposed joint radar parameter
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estimation and communication setup using OFDM and/or OTFS, which allows
the simultaneous transmission of useful information and radar sensing without
any tradeoff, but requires complex signal processing operations (to contrast
the block dimension or the interference).

On the other hand, one can bypass the aforementioned problem by con-
sidering the additional spatial dimension, i.e, with a multi antenna system,
such that distinct targets can be identified in three different domains: range
(delay), velocity (Doppler), and angular position. As we will see, our proposed
method is able to correctly detect targets which are separable in at least one
domain out of three (delay, Doppler, and angle).

2.3 Simulation Results

2.3.1 Joint State Sensing and Communication

The radar (backscattered) and forward communication SNRs are defined as

SNRrad =
λ2σrcsG

2

(4π)3 r4

Pavg

σ2
w

, (2.51)

SNRcom =
λ2G2

(4π)2 r2

Pavg

σ2
w

, (2.52)

respectively, where λ = c/fc is the wavelength, σrcs is the radar cross-section
in m2, G is the antenna gain, and r is the distance between Tx and Rx. In
the case of multipath, we fix SNRcom to be the SNR of the line of sight (LoS)
component, and we add multipath components with progressively lower SNRs,
such that the sum SNR of the channel increases with the number of paths P .
This corresponds to the physically meaningful case that a richer propagation
environment conveys more signal power. Table 2.1 summarizes the relevant
simulation parameters inspired by the automotive communication standard
IEEE 802.11p [21], where r and v denote the target range and velocity taken
into account.3

By briefly reviewing OFDM modulation, we introduce a widely used radar
waveform known as frequency modulated continuous wave (FMCW) [13, Chap-
ter 4.6], in order to understand the gain of the proposed methods against

3Note that, if the conditions τmax < T and νmax < ∆f are satisfied, the numerical results

are independent of the choice of r and v.
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Table 2.1: Simulation parameters

fc = 5.89 GHz M = 64

B = 10 MHz N = 50

∆f = B/M = 156.25 kHz T = 1/∆f = 6.4µs

σrcs = 1 m2 G = 100

r = 20 m v = 80 km/h

well-known and currently used approaches for radar vehicular applications.
For both OFDM and FMCW we consider a symbol length of To = TGI + T ,
i.e., including the possible presence of a guard interval denoted by TGI, gener-
ally longer than the maximum path delay τmax. In OFDM the guard interval
results to be the CP, extensively discussed in Sec. 1.2.

In FMCW, the radar transmitter sends a sequence of identical “chirp”
pulses of duration T , each followed by a guard interval of length TGI to avoid
inter-pulse interference. By denoting with φ(t) = (fc+ B

2T t)t the phase at time
t, the transmit signal is given by

s (t) =
N−1∑

i=0

ej2πφ(t−iT0)rect

(
t− iT0

T

)
, (2.53)

where N is the number of consecutive pulses. Transmitting (2.53) over the
channel in (1.1), we get the received signal r(t), whose expression, by neglecting
the noise, is given in (1.20), but with the current s(t). After some algebra, it
is easy to show that the product of the received and the transmit signals gives

y(t) = r(t)s∗(t) =

P−1∑

p=0

hpe
j2πνpte−j2πfcτp

N−1∑

i=0

e−j2πfb,p(t−iT0−τp/2) , (2.54)

where fb,p = B
T τp denotes the so-called beating frequency of path p. The

receiver samples y(t) every T/M for each pulse, i.e., for t = iTo + l TM where i
denotes the pulse index and l denotes the sample index. By letting L = M+C
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denotes the number of samples per pulse, the sampled received signal can be
rewritten as

y[i, l] = y

(
iT0 +

l

fs

)
=
∑

p

hpe
j2π(fb,p+νp) l

fs ej2πνpiT0 , (2.55)

for i = 0, . . . , N − 1 and l = 0, . . . , L − 1, where hp absorbs a constant phase
term independent of the indices i, l.

The estimation of the 2P unknown parameters {τp, νp} is thus obtained
by selecting the peak of the range-Doppler map found by applying a two-
dimensional DFT to the noisy samples in (2.55) as proposed in [26, 20]. The
range and velocity of the target are obtained by the estimates of {τ0, ν0}.

2.3.2 Joint Radar and Communication Performance

The first two subfigures of Fig. 2.2 show the velocity and range estimation
root MSE (RMSE) versus SNRrad for a pure LoS channel (P = 1) and for
OTFS, OFDM, and FMCW. We notice that both digital modulation formats
provide as accurate radar performance as FMCW, while transmitting useful
information to any possible Rx.

In addition, the third subfigure of Fig. 2.2 shows the achievable rate of
OFDM and OTFS, for simplicity of derivation, when Gaussian independent
and independent and identically distributed (i.i.d.) symbols CGauss are sent
through the channel. This provides an achievable rate in the case of joint de-
tection and decoding, with unconstrained complexity, as a function of SNRcom,
giving a qualitative idea of performance curves. A more accurate model should
consider only detection, i.e., separated from decoding, calculating the achiev-
able communication rate in terms of pragmatic capacity, as extensively done
in Chapter 4.

Given the fact that we can model the block input-output relation of OTFS
as a MIMO channel, the mutual information with Gaussian inputs and perfect
channel state information (CSI) at the receiver is given by [67]

COTFS
Gauss =

NT

NT + TGI

1

NM
log2 det

(
I + SNRcomΨΨH

)
. (2.56)

A similar expression for OFDM, owing to the fact that the channel matrix in
OFDM is diagonal, with consequent symbol-by-symbol detection, yields

COFDM
Gauss =

T

T + TGI
log2 (1 + SNRcom) . (2.57)
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v̂ vs SNRrad, the RMSE of the target range estimation r̂ vs SNRrad, and the

Gaussian capacity CGauss vs. SNRcom, for the curves indicated in the different
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The factors NT/(NT + TGI) and T/(T + TGI) for OTFS and OFDM, respec-
tively, are introduced in order to take into account the (possible) insertion of
a guard interval. In OTFS, a guard interval of duration TGI is inserted at the
end of each frame, whose duration is TOTFS

f = NT , comprising N consecutive
symbols in the time domain (see Chapter 1). In contrast, in OFDM, the guard
interval takes the form of a CP, inserted for each OFDM symbol of duration
T . The frame size is thus TOFDM

f = NTo = N(T + Tcp).

It is clear that for practical values of the OTFS frame length N , the over-
head paid by OTFS is much less than the CP overhead paid by OFDM (in
these results we used TGI = T/4, which is typical in the IEEE 802.11 family of
standards). On the other hand, the larger overhead incurred by OFDM yields
a particularly simple receiver structure, allowing symbol-by-symbol detection
thanks to the diagonalization of the channel. In contrast, OTFS requires block-
wise detection over the whole frame, which can be very computationally in-
tensive, especially for large N and M . This is why the proposed soft-output
symbol detector presented in Section 4.2.1 is of particular interest.

Next, we present a second set of results where we consider only OTFS
but in the presence of a multipath channels (P > 1, up to P = 4), showing
the effectiveness of the proposed approximated ML parameter estimator in
Algorithm 1 (with at most 5 iterations), under the assumption that paths are
spaced enough in the Doppler-delay grid, i.e., there is no “inter-path interfer-
ence”, meaning that the same symbol is shifted over the received samples grid
by distinct quantity (a behavioral idea comes naturally from Fig. 1.4). In our
analysis, we suppose that the number of paths is known at the radar receiver,
hypothesis that sums up with the knowledge of the target presence within the
beam sector analyzed. In Fig. 2.3 we show the range and velocity RMSE in
a multipath scenario. As expected, the performance slightly degrades as the
number of paths increases, but such degradation is very mild, showing the
robustness of the proposed joint parameter estimation method. Notice that
the CRLB is plotted for the case P = 1 only, being a lower bound for the case
of P > 1 as already said.

2.3.3 Self-Interference

In a real word scenario, the beam pattern of the antenna is not only composed
by a single main lobe, but presents several side lobes, whose strength and
number is generally variable. Moreover, if the waveform is continuously trans-
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Figure 2.3: RMSE of the target velocity estimation v̂ vs SNRrad and range
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Figure 2.4: RMSE vs. Self-Interference power at SNR=10 dB.

mitted over time, considering a co-located radar Tx and Rx, the transmitted
beam acts as interference to the backscattered signal from the target. Since
this is a self-caused impairment, it is called self-interference. Typical radar
systems makes use of full-duplex operations in order to eliminate, or at least
mitigate, the self-interference [31, 32]. However, the cancellation could be not
perfect, causing some extra noisy effects or uncertainty at the radar Rx.

By considering a possible (remaining) self-interference and a single path
P = 1 scenario, the signal model becomes

y = Ψx + w +
√
αsixe

j2πφ , (2.58)

where φ is a random unknown phase, αsi is the self-interference power, and x
are the transmitted symbols. Since τmax < T , each symbol acts as interference
for the corresponding received sample. Figure 2.4 shows the OTFS estimation
RMSE for fixed SNR = 0 [dB], by varying the self-interference power. Note
that when αsi = 0 [dB] the radar SNR and the self-interference power are
equal. Starting from (2.58), we can equivalently write

y = Ψx + w +
√
αsixe

j2πφ =
(
Ψ +

√
αsie

j2πφ
)

x + w . (2.59)
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The channel matrix Ψ describes the channel behavior, which is almost sparse
and depends on the Dirichlet functions. The self-interference acts by filling
the holes of the matrix, i.e., adding a dependency between y and symbols x,
independently of the channel effect. It is straightforward to understand that
the filling of matrix Ψ does not act as additional noise, but has a strong
destructive effect on the received samples. Note that this behavior is mostly
related to the magnitude of the coefficient αsi rather than the random phase
factor.

On the other hand, if the self-interference is modeled as the addition of ran-
dom Gaussian symbols with a certain phase and power, the received samples
expression becomes

y = Ψx + w +
√
αsine

j2πφ = Ψx + w +
√
αsin , (2.60)

with n ∼ CN (0, 1). In this case there is just the addition of more white noise,
moving the estimation performance, together with the waterfall effect, back
left on the CRLB w.r.t. Fig. 2.2. However, this model is not reliable to describe
the self-interference effect.





Chapter 3

ML Radar Methods in MIMO

Configurations

3.1 Introduction

The concept of MIMO radar has been extensively studied in literature in
recent years and has been shown to improve the resolution, i.e., the ability
to distinguish multiple targets, thanks to the additional spatial dimension
(see, e.g., [49, 52]). With the possibility of boosting the transmitted power
towards a chosen direction through a careful design of beamforming (BF),
multiple-antenna systems are able to enhance the performance of classical
single-antenna schemes, allowing the coverage of a wide spectrum of frequen-
cies. This is particularly relevant in automotive radar systems [20] operat-
ing over millimeter wave (mmWave) frequency bands, as the high propaga-
tion loss is compensated through the antenna BF gain [68, 69]. Moreover,
the radar Tx might change in time, or adapt, its BF, depending on differ-
ent operating phases (see e.g., [51, 52] and references therein). Namely, the
transmitted power shall be allocated to wide angular sectors during a target
detection/acquisition/search phase, while narrow and distinct beams focused
on a detected target, maximizing the BF gain and the received SNR, shall be
used to minimize “multi-target” interference during a possible tracking and
communication phase [49, 13, 70]. Clearly, within the target detection phase,

63
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a non-trivial tradeoff appears. On one hand, wider angular sectors coverage
enable the detection of multiple targets if the received backscattered power
is high enough. On the other hand, a more directional BF grants a higher
received SNR, and thus longer detectable target distance, at the cost of a
time-consuming search over narrower angular sectors (as classical radar suc-
cessively swapping adjacent regions, see, e.g., [13]). Different solutions to the
aforementioned problem can be found in literature (see, e.g., [52, 53, 15, 54]).

As an extension of [71] and of the concepts introduced in the previous
parts, this chapter studies the joint target detection and parameter estima-
tion problem with a mono-static MIMO radar adopting OTFS, and extends
the literature results on MIMO configurations (see, e.g., [44, 72]). The use of
communication waveforms for MIMO radar has been motivated by the joint
radar and communication paradigm (as showed in Sec. 2.1), where two func-
tions are implemented by sharing the same resources and the same waveform
(see e.g. [24, 27, 25] and references therein). Contrary to the existing works
on radar sensing using OTFS [46, 71, 28], this use case considers a MIMO
radar under a practical mmWave system architecture, such that the number
of radio frequency (RF) chains (Nrf) is much smaller than the number of an-
tennas (Na). In fact, the difficulties related to the implementation of a fully
digital BF, or, equivalently, associate one RF chain per antenna (including
A/D conversion, modulation, and amplification) in a small form factor and
highly integrated technology over a large signal bandwidth, are well known.
Therefore, focusing on mmWave automotive applications, we consider hybrid
digital-analog (HDA) BF schemes as typically considered in literature (see,
e.g., [55, 56] and references therein). We will study two different scenarios,
exploring the aforementioned BF tradeoff. The first scenario considers a Tx
BF design with beam covering a wide angular sector, to jointly perform target
detection, parameter estimation, and multicasting of a common message to
all possible active users (see Fig. 3.1a). A possible application of this model
is, for instance, a base station mounted near a highway able to collect traf-
fic information through radar capabilities while communicating its knowledge
to active Rx.1 Assuming the communication phase established, i.e., detection
already performed, the second scenario considers a Tx BF with directed nar-

1It is clear that, getting rid of the message sent, radar tasks can be performed by using any

well known radar waveform [13], and the use of a digital communication format is pointless

(the transmission of information could start in a second communication phase, e.g., within

a time division protocol).
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row beams, such that individual information streams are sent to the detected
users, or groups of users, as depicted in Fig. 3.1b. It is important to stress
the fact that the radar Rx uses a wide beam pattern consisting of Nrf beams,
as illustrated in Fig. 3.2, in order to obtain a meaningful vector observation,
necessary for AoA estimation, regardless of the operating phase. This is in a
sharp contrast to the hybrid beam alignment considered in a typical communi-
cation system, where the Rx also applies BF and obtains a scalar observation
precluding the estimation of the AoA (see, e.g., [55, 50] and references therein).

Under this setup, we propose an efficient ML-based scheme combined with
HDA BF to jointly perform target detection and parameter estimation. More
precisely, our scheme first performs target detection and super-resolution es-
timation of delay, Doppler shift, and AoA using a wide angular beam along
which a single data stream is sent. Then, once the targets are detected, the
subsequent tracking phase performs the parameter estimation using multiple
narrow beams along which multiple data streams can be sent. Our numeri-
cal results demonstrate that the proposed scheme is able to reliably detect
multiple targets while essentially achieving the CRLB for radar parameter es-
timation. Furthermore we investigate various scenarios of near-far effects of
targets, showing that a successive interference cancellation (SIC) mechanism
is able to efficiently remove the masking effect between targets located at dif-
ferent ranges from the radar, and we provide an in-depth analysis of the two
scenarios of interest, showing their limits and advantages.

We remark here the used notation. (·)T denotes the transpose operation.
(·)H denotes the Hermitian (conjugate and transpose) operation. Operator |·|
denotes the absolute value |x| if x ∈ R, or the cardinality (number of elements)
of a discrete set, i.e., |F|, if F is a discrete set.

3.2 Physical model

We consider a joint radar detection and parameter estimation system oper-
ating over a channel bandwidth B and at the carrier frequency fc. The Tx
is equipped with a mono-static MIMO radar with Na antennas and Nrf RF
chains, operating in full-duplex mode.2 The radar Rx (colocated with the Tx,

2Full-duplex operations can be achieved with sufficient isolation between the Tx and the

(radar) detector and possibly interference analog pre-cancellation in order to prevent the

(radar) detector saturation [31, 73, 32].
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Figure 3.1: Two scenarios with two different Tx beam patterns. In (a), a Tx (a

base station or a car) broadcasts a common message exploring a wide angular

sector. In (b), we consider directional BF towards the detected targets. The
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Figure 3.2: Beam configuration at the radar Rx for the two scenarios depicted

in Fig. 3.1. Nrf beams cover a wide angular sector.
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i.e., mono-static assumption) processes the backscattered signal to identify the
presence of targets within the beam, while estimating parameters of interest
such as range, velocity, and AoA. A point target model is taken into account,
such that each target can be represented through its LoS path only [17, 21, 15].
By letting the steering angle φ ∈ [−π

2 ,
π
2 ], by considering an antenna array with

λ/2 spacing (where λ is the wavelength), the Tx and Rx arrays are given by
a(φ) and b(φ) respectively, where a(φ) = (a1(φ), . . . , aNa(φ))T ∈ CNa , denotes
the uniform linear array response vector of the radar Rx with

an(φ) = ej(n−1)π sin(φ), n = 1, . . . , Na, (3.1)

and bn(φ) = an(φ). In fact, given the mono-static radar, the same steering
angle φ is both at radar Tx and Rx, thus, vectors a and b result to be equal.
The channel is modeled as an extension of the P -tap time-frequency selective
channel in (1.1) including the addition spatial dimension, which is given by [7]

H(t, τ) =

P−1∑

p=0

hpb(φp)a
H(φp)δ(τ − τp)ej2πνpt , (3.2)

whose dimension is Na×Na, where P is the number of targets, hp is a complex

channel gain including the pathloss, νp =
2vpfc
c and τp =

2rp
c are the round-trip

Doppler shift and delay, while φp denotes the AoA, each corresponding to the
p-th target, respectively.

3.2.1 OTFS Input Output Relation

We consider OTFS with M subcarriers of bandwidth ∆f each, such that the
total frequency band is given by B = M∆f . As already written in many
previous chapters, T denotes the symbol time, and the OTFS frame duration
is NT . The Doppler-delay dimensions, according to (1.13), are N and M ,
while the equation T∆f = 1 is always valid (see Chapter 1 and Sec. 1.3 for
more details). In order to consider the aforementioned different operational
modes, i.e., detection and tracking phases, we let Ns denote the number of data
streams to be sent in each time-frequency slot, such that Ns = 1 corresponds to
the multicasting of a single data stream (in a possible detection phase where
a base station wants to share a common information while detecting active
targets) and Ns ≤ Nrf corresponds to the broadcasting of individual data
streams (towards the active targets already detected in the previous phase).
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Following the standard derivation of the input-output relation of OTFS
(see Sec. 1.3), here we extend the equations to also consider the additional
spatial dimension. Let us deal with Ns-dimensional data symbols {xk,l}, for
k = 0, . . . , N−1, l = 0, . . . ,M−1, belonging to any constellation, and arranged
in the N ×M two-dimensional Doppler-delay grid Γ = {(k/NT , l/M∆f)} in
(1.13). The Tx first applies the ISFFT to convert data symbols {xk,l} into a
Ns × 1 block {X[n,m]} in the time-frequency domain

X[n,m] =
N−1∑

k=0

M−1∑

l=0

xk,le
j2π(nkN −

ml
M ), (3.3)

for n = 0, . . . , N−1, m = 0, . . . ,M−1, satisfying the average power constraint
E[X[n,m]HX[n,m]] = Pavg/(NMNa)INa , where INs denotes an identity matrix
of dimension Ns and Pavg some total maximum power allowed by the system.
After assigning Ns streams to Nrf RF chains through a mapping matrix V ∈
CNrf×Ns (since generally Ns ≤ Nrf , thus a mapping is necessary), the Tx
generates the Nrf -dimensional continuous-time signal

s(t) = V
N−1∑

n=0

M−1∑

m=0

X[n,m]gtx(t− nT )ej2πm∆f(t−nT ) , (3.4)

in which gtx(t) is the shaping pulse applied in transmission (see Chapter 1 for
more details and Sec. 1.3.8). Since the number of RF chains is typically much
smaller than the number of antennas, different types of HDA architectures
between RF chains and antennas have been considered in the literature (see
e.g. [55]). In this paper, we focus on the fully-connected HDA scheme of [55].
For any HDA architecture, the Tx applies the hybrid BF matrix denoted
by F ∈ CNa×Nrf that captures both baseband and RF analog BF (see [51,
54]), while the Rx sees the received signal of a reduced dimension through a
projection matrix denoted by U ∈ CNrf×Na . By imposing tr(FVVHFH) = Na,
the total power constraint Pavg is satisfied. In other words, the Rx cannot
access to each antenna element, but obtains only a projection of the received
signal.

By transmitting the signal (3.4) over the channel (3.2), the Nrf -dimensional
continuous-time received signal is given by

r(t) =

P−1∑

p=0

hpUb(φp)a
H(φp)Fs(t− τp)ej2πνpt , (3.5)
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where we omitted the noise for simplicity. It is interesting here to compare
these equations with the single spatial dimensional ones presented in Sec. 1.3.
The output of the Rx filter-bank adopting a generic receive shaping pulse
grx(t) is

y(t, f) =

∫
r(t′)g∗rx(t′ − t)e−j2πft′dt′

=

∫

t′
g∗rx(t′ − t)

P−1∑

p=0

hpUb(φp)a
H(φp)Fs(t′ − τp)ej2πνpt

′
e−j2πft

′
dt′

=
∑

p,n′,m′

hpUb(φp)a
H(φp)FVX[n′,m′]

∫

t′
g∗rx(t′ − t)gtx(t′ − τp − n′T )

ej2πm
′∆f(t′−τp−n′T )ej2π(νp−f)t′dt′ . (3.6)

By sampling at t = nT and f = m∆f , we obtain

y[n,m] = y(t, f)|t=nT,f=m∆f =
N−1∑

n′=0

M−1∑

m′=0

hn,m[n′,m′] , (3.7)

where the time-frequency domain input-output relation hn,m[n′,m′] is

hn,m[n′,m′] =

P−1∑

p=0

h′pUb(φp)a
H(φp)FVX[n′,m′]ej2πn

′Tνp

Cgtx,grx((n− n′)T − τp, (m−m′)∆f − νp)e−j2πm∆fτp , (3.8)

where Cu,v(τ, ν) denotes the CAF, we let h′p = hpe
j2πνpτp , and imposed the

term e−j2πmn
′∆fT = 1, ∀n′,m, under the hypothesis T∆f = 1. Since each

Xi[n,m] is generated via ISFFT, the received signal in the delay-Doppler do-
main is obtained by the application of the SFFT

y[k, l] =
∑

n,m

y[n,m]

NM
ej2π(

ml
M
−nk
N ) =

∑

k′,l′

gk,k′
[
l, l′
]
, (3.9)

where the ISI coefficient of the Doppler-delay pair [k′, l′] seen by sample [k, l]
is given by

gk,k′
[
l, l′
]

=
∑

p

h′pUb(φp)a
H(φp)FVxk′,l′Ψ

p
k,k′ [l, l

′] , (3.10)
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Figure 3.3: BF design for different angular coverage. Clearly, wider the beam,

less the BF gain.

with Ψp
k,k′ [l, l

′] defined as

Ψp
k,k′ [l, l

′] =
∑

n,n′,m,m′

Cgrx,gtx((n− n′)T − τp, (m−m′)∆f − νp)
NM

ej2πn
′Tνp

e−j2πm∆fτpe
j2π

(
n′k′
N
−m′l′

M

)
e−j2π(

nk
N
−ml
M ) , (3.11)

while simplified version of Ψp
k,k′ [l, l

′] obtained by approximating the CAF can
be found in Sec. 1.3.

3.2.2 Beamforming matrices

The design of the BF matrix F at the radar Tx depends on the operating phase,
and anyway F is chosen such that Tx and Rx are aligned towards the same
wide angular sector. Following [51, Section III.C], we construct F ∈ CNa×Nrf

to cover a wide angular sector [−θ, θ] as follows. By representing this angular
sector by a discrete set of Nrf angles, denoted by Θ = {± (θ/(2Nrf) + kθ/Nrf)},



3.3. Joint Detection and Parameters Estimation 71

for k = 0, . . . , Nrf/2− 1, each column of F = [f1, . . . , fNrf
] takes the form

fi =
a(θi)

|a(θi)|
, i = 1, . . . , Nrf , (3.12)

where a(θi) is defined in (3.1) and taking into account a suitable normalization.
An example on how the BF beams, w.r.t. the associated gain, look like is shown
in Fig. 3.3, for different angular coverage.

During the target tracking phase, we form multiple narrow beams corre-
sponding to the estimated AoA of the detected targets. This is illustrated with
red and blue beams, corresponding to two different AoA, in Fig. 3.1b. Assum-
ing that P targets are detected and their respective AoA are estimated, we
construct F by replacing θi by φ̂p for the first P columns in (3.12) [51, Section
III.B]. In such a case, the BF gain towards a single target is approximately
' Na, while decreases for each other considered target, i.e., ' Na/P .

Contrary to the transmit beamforming matrix, the reduction matrix U at
the radar Rx remains the same for both detection and tracking phases. Namely,
we set U = FH, where each column is given in (3.12). This is illustrated in
Fig. 3.2. This choice of an isotropic receive beam enables to obtain a multi-
dimensional signal for AoA estimation in both detection and tracking phases.

3.3 Joint Detection and Parameters Estimation

We wish to estimate the set of four parameters θ = {h′p, φp, τp, νp} ∈ T P , with
T = C× R× R× R. By defining

Gp(τp, νp, φp) , (Ub (φp) aH(φp)FV)⊗Ψp , (3.13)

where ⊗ is the Kronecker product,3 as the NrfNM ×NsNM matrix obtained
by multiplying Ψp by a different coefficient of (Ub (φp) aH(φp)FV). Thus, by
stacking X into a NsNM -dimensional vector x and defining an output vector
y of dimension NMNrf × 1, the received signal in the presence of noise is

y =
P−1∑

p=0

[
h′pGp(τp, νp, φp)

]
x + w , (3.14)

3Note that AX×Y ⊗BZ×K = CXZ×YK .
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where w denotes the AWGN vector with independent and identically dis-
tributed entries of zero mean and variance σ2

w. The problem consists, first, of
the detection of the P targets (in case of a first acquisition phase), together
with the estimation of the associated 4P parameters (complex channel coeffi-
cient, Doppler, delay, and angle) from the NrfMN -dimensional received signal.
To this end, we define the ML function as

l(y|θ,x) =

∣∣∣∣∣y −
∑

p

h′pGpx

∣∣∣∣∣

2

,

= yHy − yH
∑

p

h′pGx−
∑

p

h′∗p xHGHy

+ xH

(∑

p

h′pG

)H(∑

q

h′qGq

)
x , (3.15)

where we use the short hand notation Gp , G(τp, νp, φp). Note the similarities
and differences w.r.t. (2.27). The ML solution is given by

θ̂ = arg min
θ∈T P

l(y|θ,x). (3.16)

For a fixed set of {φp, τp, νp}, the ML estimator of {h′p} is given by solving the
following set of equations

xHGH
p



P−1∑

q=0

h′qGq


x = xHGH

py, p = 0, . . . , P − 1. (3.17)

By plugging (5.34) into (5.32), it readily follows that minimizing l(y|θ,x)
reduces to maximize the following function

l2(y|θ,x) =
∑

p

h′py
HGpx =

∑

p

Sp(τp, νp, φp)− Ip({h′q}q 6=p,θ) , (3.18)

where Sp(τp, νp, φp) and Ip({h′q}q 6=p,θ) (Sp and Ip in short hand notation) de-
note the useful signal and the interference term for target p, given respectively
by

Sp =
|yHGpx|2
|Gpx|2

, (3.19)
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Ip =
(yHGpx) xH

(
GH
p

∑
q 6=p h

′
qGq

)
x

|Gpx|2
. (3.20)

Notice that we have Ip = 0 if there is only one target.

3.3.1 Successive Interference Cancellation (SIC) and Joint

Target Detection and Parameters Estimation

Algorithm

The use of OTFS for radar tasks introduces some limitations. In particular, by
looking at the assumption T∆f = 1, the CAF Cgtx,grx(τ, ν) incurs significant
side-lobes in the Doppler-delay domain. As a result, our simulations show that
the magnitude of the useful signal, i.e., max(τ,ν) Sp(τ, ν, φ), has a main lobe
around the (true) angle φp of target p and non-negligible side-lobes in the
angular domain. Since the signal magnitude strictly depends on the received
backscattered power, the sidelobes of a strong target, closer to the radar,
may completely mask (having greater magnitude) the main lobe of weaker
targets, far from the radar. Therefore, situations of near-far effect among the
targets, causing large power imbalance in the backscattered waves, must be
handled explicitly by some additional signal processing. This motivates us to
incorporate a SIC mechanism our ML-based target detection.

Given the received signal in (3.14), once a strong target is detected and
its radar parameters are estimated, its contribution, and thus the masking
effect, can be removed from the received signal (see (3.24) in Algorithm 2).
This process can be run iteratively to cancel the contributions of new detected
targets, until a given condition or stopping criteria is satisfied (e.g., a target
is found in an angular sector already explored, or the magnitude of the useful
signal goes below a certain value). Algorithm 2 describes the steps to perform
joint detection and radar parameters estimation. Some remarks on Algorithm
2 are in order:

Remark: Equation (3.21)
In (3.21), Tr is the detection threshold, to be properly optimized, Γ is the
Doppler-delay grid described in Section 3.2.1 and Ω is defined as a discretized
set of angles. The p-th target is associated to a coarse estimation (φ̂p, τ̂p, ν̂p),

such that Sp(φ̂p, τ̂p, ν̂p) is above the threshold and is a local maximum.
Remark: Target Detection

Equation (3.21) presents a threshold test requiring the search over a three
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dimensional grids composed of |Ω| slices of the N ×M Doppler-delay grid. In
order to keep the complexity low, we consider the Doppler-delay grid Γ defined
in Section 3.2.1 and a coarse Ω.4 Even if this assumption is rather restrictive,
it provides a computationally feasible and fast coarse estimation (step 1 of
Algorithm 2), to be used as a baseline for the successive super-resolution ML-
based parameter estimation (step 2 of Algorithm 2).

Remark: Fine AoA Estimation
Since Sp is a convex function in φ for a fixed pair (τp, νp), the result of (3.22)
can be exactly computed using common convex solvers. Therefore, the angle
can be estimated with super-resolution far beyond the discrete grid Ω.

Remark: The magnitude of Sp strictly depends on the target range (and
pathloss). Thus, in order to keep a fixed threshold Tr for all iterations, the ar-
gument max(τ,ν) Sp(τ, ν, φ) has to be normalized at each iteration, for instance,
w.r.t. its mean computed over all possible angles.

3.3.2 Reduced-Complexity Parameter Estimation

In the target tracking phase, the matrix Gp in (3.13) shall be updated dynam-
ically as the BF matrix F of dimension Na ×Nrf and the channel matrix Ψp

of NM ×NM change in time. The following solution can be adopted in order
to reduce the computational complexity related to the dynamically changing
matrices. Namely, we compute Gp for target p by selecting only the column
of F corresponding to target p, already detected in Step 1 of Algorithm 2.
Assuming that targets are located with different ranges from the radar, this
low-complexity method does not affect the parameter estimation performance.
If there are few targets located with similar ranges from the radar, they can
be grouped together within the same narrow beam.

3.3.3 Cramér-Rao Lower Bound (CRLB)

We consider the CRLB as a theoretical benchmark. In order to estimate a
complex channel coefficient, we let Ap = |h′p| and ψp = ∠(h′p) denote the
amplitude and the phase of h′p, respectively. Thus, 5P real variables have
to be estimated, i.e., θ = {Ap, ψp, τp, νp, φp}. We form the 5P × 5P Fisher

4For instance, with an angular sector covering of 60 degrees divided in 4 equally spaced

parts, the set of angles results to be (supposing the center of the beam to be at 0 degree)

Ω = {[−30,−15], [−15, 0], [0, 15], [15, 30]}.
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Algorithm 2: Joint Detection and Radar Parameters Estimation

Result: Target detection and radar parameter estimation.

Initialization: Set y′ = y; Detected targets Ndt = 0;

Repeat
1) Detection / (AOA, Doppler, Delay) Coarse Estimation:

Given y′, search a possible set of targets

P =

{
max
(τ,ν)

Sp(τ, ν, φ) > Tr

}
, s.t.

{
∀ (τ, ν, φ) ∈ Γ× Ω

}
. (3.21)

2) Super-Resolution Parameter Estimation:

2.1) Fine AOA:

φ̂p = arg max
φ

Sp(τ̂p, ν̂p, φ) , p = 1, . . . , |P| . (3.22)

2.2) Fine Doppler-delay Estimation :

Initialization: Iteration i = 0, initialize ĥ′p[0] = 0.

For Iteration i = 1, 2, . . . do
• Delay and Doppler update : Find the estimates τ̂p[i], ν̂p[i]

by solving the two-dimensional maximization

(τ̂p[i], ν̂p[i]) = arg max
(τ,ν)

{
Sp − Ip

}
, (3.23)

with Sp and Ip computed for (ĥ′p[i], τ, ν, φ̂p[i]);

• Complex channel coefficients update : Solve the lin-

ear system (5.34) using channel matrices Gp with parameters

(ĥ′p[i], τ̂p[i], ν̂p[i], φ̂p), and let the solution be denoted by ĥ′p[i];

End

3) Re-Fine AOA: Compute (3.22) using (τ̂p, ν̂p) obtained in (3.23);

4) SIC: Compute

y′ = y −
|P|∑

p=0

[
ĥ′pGp(τ̂p, ν̂p, φ̂p)

]
x , (3.24)

increase targets counter Ndt = Ndt + |P|;
Until Stopping Criterion;
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information matrix whose (i, j) element is

[I(θ)]i,j =
2

N0
Re

{∑

n,m,t

[
∂s

[n,m,t]
p

∂θi

]∗ [
∂s

[n,m,t]
q

∂θj

]}
, (3.25)

where p = [i]P , q = [j]P , and

s[n,m,t]
p = Ape

jψpbt(φp)a
∗
t (φp)ft

∑

k,l

Ψp
n,k[m, l]xk,l , (3.26)

where (n,m, t) denote time, subcarrier, and antenna, respectively, while ft
is the t-th entry of the BF vector of any RF chain.5 Note that, even if not
explicitly indicated for the sake of simplicity, the summations w.r.t. k and l
extend from 0 to N−1 and M−1, respectively, as in all previous analysis. The
desired CRLB is obtained taking the diagonal elements of the inverse Fisher
information matrix, filled with the corresponding derivatives.

3.4 Numerical Results

We set the number of RF chains to Nrf = 8, such that a single equipment
is able to jointly track and communicate to Nrf distinct targets (or groups of
targets), while Nrf � Na. Table 3.1 provides all system parameters.

In our simulations, we rely on the following assumptions:

� Given the choice of a mmWave communication, we assume a single LoS
path between the Tx and the radar target [17, 21, 15]. This is motivated
by the fact that any possible scattering component different from the
LoS generally brings much lower power, given the additional reflections
of the echo signal.

� Any backscattered power to the radar Rx is considered as a possible
target. The objective is to sense the surrounding environment, and the
differentiation between active targets and obstacles is a post-processing
decision. Clearly, in a second phase, communication is established only
towards active targets.

5Here we assume that, given a proper BF design, the beam patterns directed to different

targets do not interfere. Hence, we completely neglect beam interference, and only a BF

vector entry ft appears at a time.
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Table 3.1: System parameters

N = 6 M = 512

fc = 24.25 [GHz] B = 150 [MHz]

vres ' 440 [km/h] rres ' 1 [m]

vmax = N · vres rmax = M · rres

Pavg = 40 [mW] σrcs = 1 [m2]

Noise Figure = 3 [dB] Noise PSD = 2 · 10−21 [W/Hz]

Na = 16, 32, 64, 128 Nrf = 8

� We consider the complete blockage of the signal propagation to the first
object hit. This assumption is completely fulfilled in mmWave commu-
nication scenarios.6

Note that the aforementioned assumption are shared by many works in liter-
ature (see, e.g., [15] and references therein).

The radar two-way pathloss is defined as [13, Chapter 2]

PL =
(4π)3r4

λ2
, (3.27)

and the definition of the radar SNR becomes

SNR =
λ2σrcsGTxGRx

(4π)3 r4

Pavg

σ2
w

, (3.28)

where λ = c/fc is the wavelength, c is the speed of light, σrcs is the radar
cross-section of the target in m2, GTx and GRx are the antenna gains at the
Tx and Rx respectively, r is the distance between Tx and Rx, and σ2

w is
the variance of the AWGN noise with noise power spectral density (PSD) of
2 ·10−21 [W/Hz]. We choose σrcs = 1 [m2], while different choices can be found

6Note that the proposed algorithm could be able to correctly distinguish more targets

sharing the same angular direction, if separated in at least one other domain (Doppler or

delay) [71].
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in literature [74, 75]. Note that, while GTx can change with the operational
mode, GRx is kept constant (within the angular sector of interest) in order
to allow isotropic reception, as already explained. Information about antenna
gains, beam patterns, two-way (Tx and Rx) beamwidth, and more antenna
basics (also for mono-static radars) can be found, for instance, in [76, 51]. The
detection threshold Tr in Algorithm 2 has been numerical evaluated in order
to have a fixed false alarm probability of 10−4 (as done, e.g., in [15]).

While two distinct targets in the angle domain can be identified if the
angular resolution meets some conditions (depending on the number of an-
tennas, the angular distance between the two targets, and the antenna array
properties) [13]. The velocity and the range resolution is determined by the
system parameters in Table 3.1 and given by

vres =
Bc

2NMfc
[m/s] , rres =

c

2B
[m] . (3.29)

In order to get a reasonable range resolution, e.g., < 1 [m], a large bandwidth
has to be considered.7 Since the velocity resolution is directly proportional to
B, for a fixed fc, the only way to obtain lower values is to increase the block
size NM , leading to a remarkable increase in computational complexity, which
could be not affordable. For this reason, we set the system parameters by focus-
ing on a reasonable range resolution (and theoretical maximum range) under
a feasible computational complexity. Note that the maximum range could not
be achieved if the backscattered power is below the noise floor. However, the
chosen system setup leads to an unavoidable very large velocity resolution.
Under the aforementioned assumptions, taken at the beginning of Section 5.4,
the problem of targets identifiability appears only in the angular domain. How-
ever, this only happens at mmWave, thus, range and velocity resolutions are
reported here for completeness, since the proposed scheme could target lower
frequencies, where the aforementioned assumption might not be satisfied.

Remark: The parameter estimation performance of the proposed ML-
based algorithm, in particular range and velocity estimation, strictly depends
on the dimension of the block of data sent, i.e., the product N · M . Thus,
the system parameters of Tab. 3.1 can be easily tuned to achieve the desired
levels of radar resolutions (modifying the bandwidth), acquisition time (based

7Note that a tradeoff appears. Larger bandwidths mean more precise resolution, but lower

theoretical maximum range (with the same N ×M grid). We remark that our algorithm is

completely independent of these choices.
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on the length of the OTFS frame in time), maximum range, etc. Clearly, the
CRLB changes accordingly. Moreover, note that this is also possible thanks to
OTFS modulation, which is not sensitive to Doppler and delay effects.

Remark: The (radar) range and velocity resolution in (3.29) indicates
the minimum necessary targets spacing, in one of the two domains, such that
both of them are distinguishable at the radar Rx. This is not linked to the
performance of our ML-based detector, which is able to accurately estimate the
parameters far beyond the resolution in (3.29). Thus, there is a huge difference
between targets identifiability and estimation performance.

3.4.1 Simulation Results

Fig. 3.4 shows the radar performance in terms of probability of detection (PD),
range/velocity/AoA estimation during the detection phase (Fig. 3.1a). When
more than one target is considered within the simulation scenario, the PD Pd

is averaged w.r.t. all P targets, i.e.,

Pd =

∑P−1
p=0 Pd(p)

P
, (3.30)

where Pd(p) denoted the PD of the p-th target.

First, note that, by considering an angular coverage of 10 degrees (blue
line), the maximum range to correctly identify a target, limited by the pathloss
and thus different from the theoretical limit indicated in Table 3.1, is about
110 m. For any distance between Tx and target, the estimation performance of
radar parameters of interest (range, velocity, and AoA) follows the correspond-
ing CRLB. More in details, note that at the limit range of 110 m, the RMSE
for range, velocity, and angle are respectively, ' 4 · 10−2 [m], ' 1.6 · 101 [m/s],
' 4 · 10−2 [degree]. As expected, given the system parameters, the velocity
RMSE is quite poor, while the other estimation performances are satisfactory.
However, a proper BF design towards targets, in a subsequent tracking phase,
could improve the estimation performance maximizing the received SNR, as
showed in next results. As seen from Fig. 3.4, by increasing the angle sector
from 10◦ to 30◦, the backscattered power gets smaller (less BF gain), hence
the maximum range significantly decreases. There exists a non-trivial tradeoff
between the width of beams and radar performance. Wider angular sectors al-
low to explore the environment in less time, but with limited maximum range,
while narrower sectors maximize the received power and the maximum target
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Figure 3.4: Detection phase. Single target at a different distance within the

illuminated angular sector of specified coverage. RMSE performance with as-

sociated CRLB and detection performance. Na = 128.
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range, at the cost of a time consuming beam sweeping search. Clearly, RMSE
performance can not be computed if the PD is equal to 0, i.e., the target is
not detected, thus RMSE curves may stop at certain ranges, as visible in Fig.
3.4.

Fig. 3.5 shows the performance of the SIC technique presented in Algorithm
2 during the detection phase in the scenario depicted in Fig. 3.6. Namely, the
Tx wishes to detect two targets, one at fixed distance of 10 [m], the other
moving w.r.t. the x-axis, i.e., from 20 to 150 [m] (see Fig. 3.6). SIC is necessary
because the closer target (black car) will mask the further target (blue car)
so that the latter cannot be detected. First, the first plot of Fig. 3.5, referred
to the PD, shows that, when the moving target is located at ranges greater
than 90 [m], corresponding to the relative range beyond 80 [m], the masking
effect is not removed efficiently by the SIC technique (the residual interference
is remarkable), and the target at longer distance is not detected correctly.
In fact, at the extreme point, the curve flats to Pd = 0.5, because only one
target out of two (clearly, the closest to the radar Rx, i.e., the one fixed at
10 [m]) is correctly detected. As clearly visible, the performance in terms
of RMSE, which considers in this case the estimation performance averaged
w.r.t. the detected targets (note that the target located at 10 [m] is always
detected correctly), slightly changes while considering one or two targets, as
a confirmation of the effectiveness of the proposed algorithm. Note that the
blue curves of Fig. 3.5 correspond to the blue ones of Fig. 3.4.

Now we consider the tracking phase corresponding to Fig. 3.1b. The sce-
nario takes into account one Tx and three targets within an angular sector of
10◦, as shown in Fig. 3.7. Fig. 3.8 shows the RMSE performance of the refer-
ence target (black car), in the presence of other two targets (blue cars), Note
that distance, velocity, and angular position of all three targets are randomly
chosen at every Monte Carlo iteration, in such a way the complete masking
effect presented in Fig. 3.5 does not occur, and an average of RMSE results is
finally computed. From Fig. 3.8, we observe that the RMSE critically depends
on the number of antennas. This is because the BF gain grows proportionally
with the number of antennas and increases the backscattered signal power.
Moreover, note that a (reversed) “waterfall” behavior is shown for range and
velocity estimation. This is because, even if the presence of the target is given
for granted, low SNR values might still lead to a large error during the Doppler-
delay ML maximization (see Algorithm 2). The waterfall behavior is typical
of ML estimators and has been extensively analyzed in Sec. 2.1.2.3. Also note
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performance. Na = 128.
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black) masks the moving target, in blue, which changes its location within the

illuminated angular sector.

Reference 
Target

Tx 
/ Radar Rx Interference 

Target

Interference 
Target

Rx BF Pattern

Figure 3.7: Example of scenario depicted in Fig. 3.8. The goal is to correctly
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with the black shape in this figure).
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that the AoA RMSE performance is upper limited by the 3-dB beamwidth
of the beam pattern (see, e.g., [51, 76]). In fact, supposing that the target
position lies within the 3-dB beamwidth, also the initial AoA estimation (the
upper and lower limit of matrix Ω in (3.21)) is limited to that width. As a
consequence, the RMSE does not exceed a systematic error, indicated as εBW,
calculated by averaging over random AoA estimation realizations within the
range of possibilities, i.e., between the upper and lower limit set by the 3-dB
beamwidth of the beam pattern, equivalently of the analysis related to (2.44),
which can be also applied to range and velocity estimations.





Chapter 4

OTFS Detection

4.1 Introduction

We will now focus on the OTFS data detection at the Rx side. By considering
the communication-oriented channel model in (1.1), i.e., taking into account
one-way Doppler and delay shift (modeling a forward communication channel,
against the radar two-way scenario), in line with most of the current literature
on OTFS detection (e.g., [62, 4]) we assume perfect CSI at the Rx, i.e., the
knowledge of channel matrix Ψ. The acquisition of such CSI is a distinct
problem of independent interest, that will be analyzed in 5 and has been
studied in literature in recent years (see, e.g., [37, 44, 45]).

In this chapter, we consider separate detection and decoding, where the
Rx consists of the concatenation of a soft-output symbol detector, producing
soft-estimates of the coded symbols x, and a (separate) decoder that takes
such estimates as the output of a virtual channel that incorporates also the
detector. Thus, we do not consider “turbo equalization” schemes, in which
detection and decoding are jointly performed through successive iterations in-
volving feedback loops (as, e.g., in [77]). This choice is justified by the fact that
the presence of a forward error correction scheme, together with the specific
definition of the channel model, could obscure the real performance of the de-
tection scheme, which could result optimal in a turbo equalization paradigm,
but not when detection and decoding are separated (scheme motivated by
practical complexity considerations). It follows that the relevant performance
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measure is the pragmatic capacity, i.e., the mutual information computed be-
tween the input constellation symbols, used with uniform probability, and the
corresponding detector soft-output [78, 79]. In our opinion, for the aforemen-
tioned discussion, this kind of performance metric is more meaningful w.r.t.,
e.g., bit error rate (BER) analysis, generally used in the current literature
[62, 4, 5].

We build an efficient low-complexity message passing (MP)-based soft-
output detector, obtained by constructing a factor graph (FG) (see [80]) for
the joint posterior probability of the transmitted symbols x given the received
samples y in (2.17), while applying the standard sum-product algorithm (SPA)
computation rules to compute its marginals probabilities (see [80]). The FG
is constructed according to the general approach of [81] (applicable to any
linear-Gaussian model such as (2.17)), for which the graph girth, i.e., minimum
length of cycles, (see, e.g., [82]) is guaranteed to be at least 6, thus eliminating
destructive length-4 loops (see, e.g., [77, 81, 80]), and the degree of the function
nodes is at most 2. This allows the application of the exact SPA computation
at the nodes and a high degree of parallelization (nodes operations can be
performed independently), such that the resulting MP-based detector is very
computationally efficient.1 Furthermore, the absence of cycles of length less
than 6 yields good convergence properties of the SPA iterations.

For numerical results, the low-complexity MP-based detector is compared
to three other soft-output detectors proposed in the literature, namely: i) a
different MP-based detector recently proposed in [62], based on an alternative
way to construct the FG, but under some simplifying assumptions (see Sec-
tion 4.2.2); ii) a standard linear minimum mean square error (MMSE) block
equalizer, which offers very good performance at the impractical cost of a very
large-dimensional matrix inversion (see [4, 5]); iii) a low-complexity MMSE
block equalizer recently proposed in [47] that uses drastic simplifying assump-
tions (in particular, the bi-orthogonality of OTFS gtx(t) and grx(t) pulses and
the assumption that the delay and Doppler shifts are integer multiples of the
Doppler-delay grid) such that the resulting nominal channel matrices Ψp are
block-circulant with circulant blocks and the matrix inversion in linear MMSE
estimation can be efficiently implemented. As we shall see, since these simpli-
fying assumptions are not verified in practice (shifts are not on a quantized

1Note that this is what is generally done in low-density parity check (LDPC) decoding,

for which check nodes operations are performed in parallel by independent signal processing

entities, drastically reducing the computational time [83].



4.2. The Detectors 89

grid and bi-orthogonal pulses with unit time-frequency product cannot exist
[84]), the performance of this low-complexity linear detector is quite poor,
when applied to a realistic channel and pulse scenario.

4.2 The Detectors

4.2.1 Proposed MP-based detector (“Matrix G algorithm”

— MPG)

From (2.17), recalled here for convenience

y =

P−1∑

p=0

hpΨ
p(τp, νp)x + w , (4.1)

when Ψ is known (perfect CSI) and w is composed of complex Gaussian i.i.d.
samples with variance σ2

w, the conditional probability density function (pdf)
of the received samples y given the modulation symbols x is given by

p (y|x) =
1

(2πσ2
w)−NM

exp

(
−‖y −Ψx‖2

2σ2
w

)
∝ exp

(
−‖y −Ψx‖2

2σ2
w

)
, (4.2)

where the proportionality operator removes an irrelevant constant factor in-
dependent of symbols x. By following the FG construction approach of [81],
we expand the `2-norm inside the exponential as

‖y −Ψx‖2 = yHy − 2Re {xHΨHy}+ xHΨHΨx. (4.3)

Defining z , ΨHy and G , ΨHΨ, the conditional pdf can be written as

p (y|x) ∝ exp

(
2Re {xHz} − xHGz

2σ2
w

)
. (4.4)

Note that the sequence z is a sufficient statistic for symbol detection. By
expressing the matrix operations explicitly in terms of their components, we
define the functions

Fi (xi), exp

[
1

σ2
w

Re

{
zix
∗
i −

Gi,i
2
|xi|2

}]
, (4.5)
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Ii,j (xi, xj) , exp

[
− 1

σ2
w

Re {Gi,jxjx∗i }
]
, (4.6)

and we use the Bayes rule in order to express the a-posteriori probability of x
given y in the following factored form

P (x|y) ∝ P (x) p (y|x) ∝
NM∏

i=1


P (xi)Fi (xi)

∏

j<i

Ii,j (xi, xj)


 , (4.7)

where we used the fact that the modulation symbols xi take on values in
some signal constellation C and are treated by the detector as i.i.d. with given
(typically uniform) a-priori probability mass function {P (x) : x ∈ C}.

In the proposed approach, the FG corresponds to the factorization in (4.7)
(see the example shown in Fig. 4.1). At this point, the resulting MP-based
soft-output detector follows immediately by applying the standard SPA com-
putation rules [80]. The detailed derivation of the message computation at the
function and variable nodes of the FG is given in [81], and applies directly to
our setting. Here, for the sake of completeness, we just summarize the result-
ing algorithm. First, define Vi (xi) as the product of all messages incoming to
the variable node xi, namely

Vi (xi) , Pi (xi)Fi (xi)
∏

j 6=i
νi,j (xj) , (4.8)

which is proportional to the (estimated) a-posteriori probability P (xi|y) and
thus provides the soft-output of this detector. Then, the application of the
SPA leads to the following rules for message exchange and update:

1. Computation at the variable nodes: each node xi sends to each adjacent
function node Ii,j the message

µi,j (xi) = Vi (xi) /νi,j (xi) . (4.9)

2. Computation at the function nodes: each function node Ii,j sends to each
adjacent variable node xi the message

νi,j (xi) =
∑

xj∈C
Ii,j (xi, xj)µi,j (xj) . (4.10)
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Figure 4.1: Partial structure of the FG for the MPG algorithm.

Notice that all the variable nodes and the function nodes can be activated in
alternative rounds and, in each round, all the nodes of the same type can be
activated independently and in parallel, e.g., adopting the same flooding sched-
ule used for LDPC decoding [83]. Moreover, messages can be implemented in
the logarithmic domain [80].

With the help of Fig. 4.1, we can illustrate some important features of the
proposed approach:

i) FG of girth 6: the FG constructed as above is guaranteed to have girth
equal to 6 (highlighted in bold in Fig. 4.1). It is well-known that the
SPA yields exact posterior marginalization for cycle-free FGs, and the
rationale behind the use of the SPA paradigm on loopy graphs is that if
the FG has large girth, the local neighborhood of each node is “tree-like”
[80, 82]. In particular, cycles of length 4 should be avoided. Hence, the
proposed construction following the general method of [81] yields indeed
a FG better suited to the application of the iterative SPA.

ii) Computational complexity: notice that the computation in (4.6) involves
the summation w.r.t. only a single discrete variable over the constella-
tion C. Therefore, this computation has always linear complexity in the
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Ψ
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Q1 (x) Q2 (x) Q3 (x) . . . QNM (x)

Figure 4.2: Structure of the FG for the MPΨ algorithm.

constellation size, irrespectively on the sparsity of the channel matrix
Ψ. This allows the use of the exact SPA at fixed complexity per node,
unlike the approach in [62] (see comments in Section 4.2.2).

iii) High degree of parallelization: the number of nodes of type Ii,j depends
on the number of non-zero elements in the rows of the upper triangular
part of the matrix G (the existence of edges is evidenced by the shad-
owed elliptic area in Fig. 4.1). Nevertheless, as said before, these degree-2
nodes Ii,j can be all activated in parallel. Hence, for a sufficiently large
degree of parallelization, the computational time complexity is indepen-
dent of the sparsity of the multipath channel. Notice that in modern
LDPC decoding is not unlikely to find implementations with degree of
parallelization of the order of 1000, which is much larger than what
needed in our detector [83]. Hence, we claim that the proposed detector
is very attractive from a practical implementation viewpoint.
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4.2.2 Another MP-based algorithm (“Matrix Ψ algorithm”

— MPΨ)

The MP-based algorithm of [62] builds its FG from the more “direct” factor-
ization of the a-posteriori probability

P (x|y) ∝ P (x) p (y|x) =
N×M∏

i=1

p (yi|x)
N×M∏

i=1

P (xi) . (4.11)

Defining the function nodes

Qi (x) , p (yi|x) = exp

(
‖yi −Ψix‖2

2σ2
w

)
, (4.12)

where Ψi is the i-th row of Ψ, the resulting FG is shown in Fig. 4.2. Since
any received sample yi depends on the entire vector of symbols x, the FG
has necessarily length-4 cycles (highlighted in bold in Fig. 4.2). The edges
evidenced by the shadowed elliptic area in the figure correspond to the non-
zero elements of the matrix Ψ. In particular, the degree di of the function node
Qi(x) is equal to the number of non-zero elements in the i-th row Ψi. The
exact SPA computation at such function nodes requires summing over di − 1
discrete variables taking values in C. Therefore, it has a complexity equal to
|C|di−1, where |·| indicates the cardinality of the set, which may be prohibitively
large for large constellations and, above all, it depends on the sparsity of the
channel. Therefore, the exact application of the SPA computation rules to
the FG obtained directly from the matrix Ψ is highly impractical. For this
reason, the authors of [62] propose to use a Gaussian approximation of the
interfering symbols in the computation at nodes Qi (x), which effectively relies
to a soft interference cancellation approach, as already widely used in turbo
equalization and in the context of multiuser detection in [39, 85]. The details
of the resulting MP algorithm can be found in [62].

It should be also mentioned that, for the sake of simplicity and in order
to increase the sparsity of the FG in Fig. 4.2, the detector proposed in [62]
constructs the nominal matrix Ψ by rounding the delay shifts to integers on
receiver sampling grid. Under this condition, the channel matrix is very sparse
since many coefficients corresponding to sampling at non-integer delay shifts
are identically to zero, and the number of connections for each node is re-
duced, while preserving the length-4 cycles problem, unavoidable with this
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approach. Nevertheless, since the assumption is generally not satisfied by real-
world channels, such approximation of the channel matrix results in neglecting
a significant component of the ISI. We shall verify that when such integer de-
lay shift rounding is applied to the construction of the nominal matrix Ψ used
by the detector but the actual delay shifts have a fractional component (as
it is always the case in practice), the mismatch yields a significant perfor-
mance degradation. This shows that neglecting the fractional part of delays
and Doppler shifts, as routinely done in the literature of OTFS, may be indeed
quite misleading.

4.2.3 Linear block-wise MMSE equalization

As a further term of comparison we consider also the standard linear MMSE
block equalizer, applied to the channel model (2.17). In this case, the soft-
output is simply the linear MMSE estimate of symbols x from the observation
y, given by

x̂LMMSE = ΨH
(
ΨΨH + σ2

wI
)−1

y . (4.13)

The complexity of this approach is proportional to O
(

(NM)3 ), so it becomes
quickly unfeasible for typical values of N and M . A low-complexity (mis-
matched) linear minimum mean square error (LMMSE) approach was recently
proposed in [47], relying on the cyclic properties of channel matrix Ψ under
perfect bi-orthogonality of shaping pulses gtx(t) and grx(t), together with the
assumption of on-grid Doppler and delay shifts (with Doppler-delay grid Γ).
In real channel conditions, i.e., in the presence of practical rectangular pulses
and non-integer delay and Doppler shifts, the performance of this approach
visibly degrades.

4.3 Performance of Separated Detection and

Decoding

As already mentioned, we characterize the performance of separated detection
and decoding schemes in terms of pragmatic capacity, i.e., the mutual informa-
tion of the virtual channel with input the constellation symbols, assumed with
uniform probability, and output provided by the soft-output of the detector.
This mutual information provides an achievable rate for separated detection
and decoding, for any given detection scheme [78, 79].
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Let us consider a sequence of symbols {xk} belonging to the signal con-
stellation C, and let Vk(xk) denotes the detector soft-output. In the case of
MP-based detectors, Vk(xk) is given in the form of a posterior probability
distribution on xk ∈ C, while in the case of linear equalizers (e.g., the linear
MMSE estimator in (4.13)), this is given as the noisy estimate x̂k which is
treated as the output of a (virtual) AWGN channel. In any case, the prag-
matic capacity is simply defined as the symbol-by-symbol mutual information
IPC (xk;V (xk)). When V (xk) takes on the form of a posterior probability dis-
tribution, this can be easily calculated as

IPC(xk;V (xk)) , H(xk)−H(xk|V (xk))

= log2 C −
∑

xk∈C
V (xk) log2

1

V (xk)
, (4.14)

and, by considering a Monte Carlo simulation over K different realizations

IPC =

K−1∑

k=0

H(xk)−H(xk|V (xk))

= log2 C −
1

K

K−1∑

k=0




∑

xk∈C
V (xk) log2

1

V (xk)



 . (4.15)

In the case of linear equalization (i.e., V (xk) = x̂k), the pragmatic capacity is
simply given by the symmetric capacity (i.e., with symbols used with uniform
probability) of the signal constellation C, for an AWGN channel with SNR
equal to the output signal-to-interference noise ratio (SINR) of the equalizer
[67]. For the sake of comparison, we also show the symmetric capacity of the
signal constellation in an AWGN channel with SNR equal to SNRcom (i.e., the
SNR of the LoS path), denoted by Csym

AWGN, and the mutual information with
Gaussian inputs COTFS

Gauss , for the case P = 1.

Fig. 4.3 and Fig. 4.4 show the performance of the various methods for
OTFS soft-output detection for a 16-quadrature amplitude modulation (QAM)
and system parameters listed in Tab. 2.1. Fig. 4.3 shows the results for the
(unrealistic) case where the channel Doppler shifts and delays are exactly on
the discrete Doppler-delay grid Γ used by the receiver sampling. In contrast,
Fig. 4.4 shows the results when the actual channel has arbitrary Doppler and
delay shifts (with a random uniformly distributed fractional part), while cer-
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tain algorithms still assume such integer grid when constructing the nominal
channel matrix Ψ used by the detector (as advocated for example in [62, 47]).

We notice that the proposed MP-based approach based on the definition
of matrix G outperforms the one in [62] in both scenarios. In particular, it
suffers from almost no degradation due to the non-integer Doppler and de-
lay shifts, unlike the method of [62], which has been derived based on these
strong assumptions. The LMMSE equalizer (4.13) with full complexity yields
very good performance, paying only a small SNR penalty w.r.t. the proposed
MP-based scheme for P = 1, 2, and outperforming the MP-based scheme for
richer scattering P = 3, 4. However, as said before, its complexity is cubic
in the frame dimension NM , which is unaffordable in practical implementa-
tions. Unfortunately, the low-complexity LMMSE estimator (curves indicated
by LMMSELC in the figures), proposed in [47] and exploiting a specific struc-
ture of the channel matrix Ψ, which requires doubly block circulant feature
of the OTFS channel matrix, is satisfied only when gtx(t) and grx(t) are bi-
orthogonal. Under such condition, as demonstrated in [47], this scheme coin-
cides with the MMSE block equalizer, but without the need of a large matrix
inversion. However, by adopting physically realizable and realistic rectangular
pulses, which clearly do not satisfy the bi-orthogonal condition the doubly
block circulant feature is lost. Thus, our simulations show that the approach
[47] is not competitive when applied to a channel model using rectangular
pulses, as intuitively expected. It should be noticed that bi-orthogonality for
pulses with time-frequency product equal to 1 is mathematically impossible
[84], and relaying on such assumption may be very misleading.

Note that we only treat a 16-QAM modulation. However, the results are
very clear and plots with different modulation formats would have only been
a confirmation of what we stated above.
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Figure 4.3: Symbols detection performance in terms of pragmatic capacity for

16-QAM modulation. The curves show the behavior of matrix G based MP

algorithm and MP algorithm of [62] under approximated channel conditions,

i.e., with delay and Doppler shifts on the Doppler-delay grid, for a multipath

channel with different number of components P .
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Chapter 5

Channel Estimation

5.1 Introduction

In a given communication scenario, the CSI, i.e., the knowledge of the commu-
nication channel, is required at the Rx to perform coherent detection [34], i.e.,
to correctly demodulate the transmitted symbols based on the (known) chan-
nel transformation. The most common approach to acquire the CSI is through
the transmission of known symbols, usually called pilots [34]. Generally, these
pilots are arranged within the block of information symbols, following a chosen
fixed pattern known to both Tx and Rx (see e.g, [35, 36, 86]), in such a way
when a complete block is received, the Rx is able to instantly perform coherent
detection, for instance, without waiting for some other side information from
another source.1 It is also well-known that, subject to the meaningful and
widely used assumption of block fading (i.e., the propagation channel remains
constant over blocks of consecutive time-domain symbols, while it may change
independently from block to block), pilot-aided schemes are indeed nearly
information-theoretically optimal in terms of the capacity scaling in the high
spectral efficiency / high SNR regime (see, e.g., [87, 88, 89, 90]). Clearly, de-

1In some communication scenarios (or standard) the Tx could send an entire block of

pilot symbols, i.e., without information data, followed by blocks with no pilots. Under the

assumption of slowly varying channel statistics, the symbol detection is based on the esti-

mation made from the first block. This case has not bee considered, by focusing on a per

block channel estimation, with associated benefits and losses.
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pending on the particular application and communication scenario, both the
pilot pattern and the channel estimation algorithm should be optimized. As
typical electronic systems are affected by thermal noise, the estimated CSI is
not perfect but afflicted by an estimation error, whose magnitude depends on
different parameters, e.g., the channel SNR, the number of pilots per block, the
estimation algorithm (with related convergence speed, complexity, accuracy).
The estimated communication channel expression is thus used to perform co-
herent detection at the Rx side. By taking the achievable communication rate
as the most relevant and meaningful performance metric, which is a measure of
the amount of useful information sent in a block of symbols, a tradeoff appears
between the number of pilots per block, dedicated to the CSI estimation, and
the number of information-bearing symbols. The optimization of this tradeoff
is generally not trivial, depending on the modulation format and on the chan-
nel propagation characteristics, and its optimization is usually performed by
trials, given the difficulty to find closed-form optimization criteria, as done in
our successive analysis.

Given the aforementioned system setup and related problems and chal-
lenges, we analyse the symbol detection performance in terms of pragmatic
capacity, i.e., the achievable rate of the channel induced by the signal con-
stellation and the detector soft-output [78, 79], of OTFS and OFDM, both
designed to handle time-frequency selective channels as (1.1). This is equiva-
lent to what is done in Chapter 4, recalled here for the sake of completeness. In
general, a soft-output detector at the Rx side produces an estimate of the pos-
terior probability of the transmitted symbols given the received signal block
(pilots and data). This estimated posterior probability (e.g., in the form of
log-likelihood ratios) is then passed to a decoder, that treats the sequence of
soft-output symbols as the output of a virtual channel. The pragmatic capacity
is the capacity of such virtual channel, with discrete input represented by the
modulation symbols, and soft-output generated by the detector. Hence, the
pragmatic capacity is representative of the achievable rate under the assump-
tion of separated detection and decoding, i.e., without “turbo” reprocessing of
the channel output once the decoder output is available (see, e.g., [91, 92]
and references therein). In practice, iterative “turbo” detection is very hard
to implement since often the detector is implemented in hardware (e.g., in an
integrated circuit) and the decoder is implemented in software, and maybe
even in a different location (as for example in the so-called 7.2 split between
hardware and software, enabling cloud-based processing of the signals from
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remote radio heads [93]). For this reason, we believe that pragmatic capacity
for separated detection and decoding is a very meaningful performance metric
to compare different modulation formats and the associated pilot schemes and
soft-output detectors.

In order to make a fair comparison between the two modulation formats
in terms of achievable communication rate, the pilot overhead necessary to
achieve a satisfactory estimation of the CSI has been taken into account. Since
the loss (no useful information is transmitted) associated to the presence of
pilots cannot be neglected, the achievable communication rate inevitably devi-
ates from the corresponding upper bound, depicted by the AWGN symmetric
capacity. Moreover, together with the pilot overhead, we also consider the
(likely) presence of a guard interval (GI) or CP, which additionally reduces
the achievable rate. A per-block GI is used in OTFS to avoid inter-block in-
terference (IBI) [61], while a CP is used for every OFDM symbol to avoid ISI
and to make symbols orthogonal, thanks to the diagonalization of the channel
matrix, under the assumption of low ICI, condition which is not hard to be
satisfied. Here a first significant difference between the two modulation formats
evidently appears. In fact, especially when the channel delay is significant, the
CP length tends to be a large fraction (e.g., 25%) of the symbol time, leading
to a remarkable loss in terms of capacity. On the other hand, OTFS does not
need a per symbol separation, but this comes at the cost of a non-negligible in-
crease in signal processing complexity caused by the remarkable Doppler-delay
ISI, as depicted in Chapter 1 and [46].2

Based on the different modulation formats, distinct estimation algorithms
have been adopted. For OTFS, the pilot scheme follows a similar configu-
ration to the one proposed in [86], which considers, within the transmitted
two-dimensional (Doppler-delay domain) block of symbols, a high energy cen-
ter pilot (or a cluster of pilots [44], to contrast eventual destructive non-linear
amplification effects over the single pilot) surrounded by pilots with magnitude
sets equal to zero. This configuration of pilots and information symbols is a
natural consequence of the input-output relation of OTFS, since the channel
effect is a cyclic shift of the transmitted symbols of a quantity proportional to
the delay and Doppler associated to each channel path. The proposed channel
estimation algorithm is an extension of the ML approach of [46], also de-

2There exist OFDM-based OTFS systems, e.g., [44], which consider “OTFS-like” opera-

tions as precoding and equalization of an inner OFDM system. We will not consider such a

type of systems, which deviate from the scope of this work.
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scribed in Chapter 1, with some improvements to reach the desired level of
estimation accuracy. The idea of exploiting the channel sparsity is shared by
other estimation techniques in the current literature, which generally applies
concepts from compressed sensing (CS), e.g., [44, 45], but deviates from the
scenario adopted in this dissertation and widely described in previous chap-
ters. On the other hand, for OFDM we adopt a CS-based estimation algorithm.
The idea of applying CS for channel estimation in multi-carrier systems is by
now well established and appeared in a large number of previous work (e.g.,
see [38, 94, 40, 41, 42]). Here we adopt the least-absolute shrinkage and se-
lection operator (LASSO) problem setting [95], or, equivalently, the l1-norm
regularized least squares minimization. We define a novel sensing matrix ex-
ploiting the channel sparsity, while making use of a soft-thresholding iterative
algorithm [96], optimized to efficiently work in our system setup [97, 98, 99].
Because the aim of this work is the comparison between the two digital mod-
ulation formats, we are not interested in comparing the performance of the
adopted estimation algorithms w.r.t. the related literature. Since every CS
problem has its own definition in terms of cost function, sensing matrix, al-
gorithm adopted, and involved parameters, the comparison between different
algorithms in literature could be not straightforward. Moreover, applied to our
scenario, we do not have the certainty that algorithms in literature produce
correct results, which could lead to a waste of time for a not necessary work.

It is now clear that the concept of channel sparsity is fundamental for
the entire analysis. Since the properties of the communication channel repre-
sented in the Doppler-delay domain depend on the physical geometry of the
environment, the scattering components are sparse in the Doppler-delay plane.
Estimation algorithms built over this concept exhibit very good tradeoffs be-
tween pilot overhead, complexity, and estimation error. The cases of interest
consider time-frequency varying channels, mainly targeting outdoor scenarios
where the Doppler spreads are remarkable and where there are few reflectors
(or group of reflectors with similar properties), and thus a small number of
multipath components [4].

5.2 OFDM Modulation and the CS Algorithm

We consider OFDM modulation with CP, as described in Chapter 1, trans-
mitted over a time-frequency selective channel, assuming perfect orthogonality
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and absence of ICI. The CIR in time-frequency domain, derived in Sec. 1.1
and given here for the sake of convenience, is

H (t, f) =
P−1∑

p=0

hpe
j2πνpte−j2πτpf , (5.1)

where P is the number of multipath scattering components and hp, νp, and
τp are the complex channel gain including the pathloss, the Doppler shift, and
the delay, associated to the p-th scattering component, respectively. Note that,
also in this configuration, we set the maximum channel delay and Doppler shift
to be

τmax < T , νmax < ∆f , (5.2)

where T is the symbol time and ∆f is the subcarrier spacing. By discretizing
the time axis at steps nT , for n = 0, . . . , N−1, and the frequency axis at steps
m∆f , for m = 0, . . . ,M −1, i.e., emulating standard sampling operations (see
Sec. 1.2), the discrete channel representation becomes

H =

P−1∑

p=0

hpa (τp) bH (νp) , (5.3)

in which

a (τp) =
[
1, ej2πτp∆f , . . . , ej2πτp(M−1)∆f

]T
, (5.4)

b (νp) =
[
1, ej2πνpT , . . . , ej2πνp(N−1)T

]T
, (5.5)

where (·)T and (·)H denote the transpose and the conjugate transpose (Hermi-
tian) operation, respectively. By representing the information symbols {xn,m},
belonging to any complex modulation alphabet, arranged in a N×M grid, i.e.,
in matrix form X, the expression of the received samples after transmission
over the discrete channel in (5.3) is

Y = X�H + Z , (5.6)

where � is the element-wise multiplication and Z is the AWGN with zero
mean and covariance matrix σ2INM .
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At this point, let us represent the channel in a different form. Suppose to
define a Doppler-delay grid Γ,3 with some grid steps (both in the Doppler and
delay domain) and total dimension G, given by the product between Doppler
and delay axis dimensions. For each grid point γi ∈ Γ, for i = 0, . . . , G − 1,
by neglecting the complex gain and the multipath components, which will be
inserted later in another form, the channel can be expressed, similarly to (5.3),
as

H̃ (γi) = a (τ (γi)) bH (ν (γi)) , (5.7)

in which τ (γi) and ν (γi) are two fixed values of delay and Doppler depending
on the discretization point γi. By stacking the N × M matrices H̃ (γi) to
column vectors for all points γi ∈ Γ (vec(·) operator) and concatenating the
obtained vectors, we create

D =
[
vec
(
H̃ (γ0)

)
, . . . , vec

(
H̃ (γG−1)

)]
, (5.8)

of dimension NM ×G. Now, the complex gain and the multipath components
omitted in (5.7) should be somehow inserted. For this purpose, we make use of
a vector, namely hsp (read: “h-sparse”), representing the channel gains spread
over the dimension G. Thus, the approximated channel matrix in vector form
h̄ takes the form

h̄ ' Dhsp , (5.9)

in which hsp is a sparse vector of the form

hsp =
[
0, . . . , 0, h̄0, 0, . . . , 0, h̄1, 0, . . . , 0, h̄2, 0, . . .

]T
, (5.10)

where the positions of the approximated (to the nearest grid step of grid Γ)
channel coefficients h̄i select the columns of D with the channel coefficients pair
(τ (γi) , ν (γi)), to overall represent the triplet

(
τ (γi) , ν (γi) , h̄p

)
emulating the

true channel parameters (τp, νp, hp). Thus, the approximated received samples
expression, by stacking the N ×M matrices to column vectors of length NM ,
can be written as

ȳ = x�Dhsp + z , (5.11)

where x = vec (X) and z = vec (Z). Moreover, by defining a selection matrix
S, of dimension |P| × NM , to choose |P| symbols (pilots) among the total

3Here, the Doppler-delay grid Γ corresponds to the one defined in (1.13), for the sake of

simplicity of treatment, but that definition is not mandatory.
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NM (P is the set of pilots and |·| indicates its cardinality), the transmitted
vector of pilots xpl,OFDM (read: “x-pilot”) takes the form

xpl,OFDM = Sx , (5.12)

and

ȳpl = xpl,OFDM � SDhsp + z . (5.13)

The estimation of the channel coefficients can be carried on by solving the
problem known as LASSO [95], i.e.,

ĥ = arg min
h
‖ypl − xpl,OFDM � SDh‖22 + λ ‖h‖1 , (5.14)

where SD, under this configuration, takes the role of the sensing matrix of
the CS configuration, and λ is the LASSO regularizer (see Sec. 5.2.1 for more
details). Notice that ypl is obtained through the transmission over the actual
channel, as pointed out afterwords, and thus differs from ȳpl of (5.13), ob-
tained through the process of approximation of the channel matrix described
before. The goal is to keep the incurred estimation (and approximation) error
between ĥ and hsp as small as possible, by choosing appropriately the grid
Γ with sufficiently fine discretization. However, on the other hand, increasing
the granularity of the grid Γ could lead to a remarkable increase of computa-
tional complexity. As a preview of things to come, this problem will be solved
through an iterative discretization refinement, which keep the computational
cost limited. In any case, the residual approximation error between ypl and ȳpl

is automatically included in the minimization or the overall quadratic error
term ‖ypl − xpl,OFDM � SDh‖22 in (5.14).

The LASSO minimization problem has been extensively studied in litera-
ture. It can be solved using many different algorithms and strategies [99, 96,
97], also adopted for the specific case of channel estimation [38]. As a final out-
come, the estimated channel matrix resulting from the minimization of (5.14),
used to perform coherent detection, is

Ĥ = Dĥ . (5.15)

For completeness and for the sake of results reproducibility, the details of the
used LASSO solver, together with an analysis on its complexity, are described
in Sec. 5.2.1.
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5.2.1 The LASSO Solver

We here give the details of the algorithm used to solve the LASSO minimiza-
tion problem in (5.14).

0) Initialization: By defining the known support matrix A , Xpl � SD, in
which Xpl is a matrix of dimension |P|×G composed of G equal vectors
xpl, i.e., Xpl , [xpl, . . . ,xpl], let Λ , AHA and initialize the step size ε
as [96]

ε ,
1

‖ΛHΛ‖F
=

1√
trace (ΛHΛ)

, (5.16)

in which ‖·‖F indicates the Frobenius norm and the trace(·) operation
takes the sum of the matrix main diagonal elements. The threshold t is
set as t = λε, where λ is the LASSO regularizer appearing in (5.14). The
vector of estimated values ĥ is initialized to all zeros.

1) Iterations i = 1, 2, . . .

(a) Soft Thresholding : with ψst (·, t) soft thresholding operator with
threshold t (see [96] and Appendix 5.2.1.2), computes

βi+1 = ψst

(
ĥi + εAH

(
y −Aĥ

)
, t
)
. (5.17)

(b) Nesterov’s Acceleration Factor (Optional) [96]: Introduce a tuning
coefficient αi ∈ [0, 1], which can be fixed or variable in t, and com-
putes

ĥi+1 = βi+1 + αi

(
βi+1 − ĥi

)
, (5.18)

with αi defined, e.g., in [96, 97, 98].

(c) Shrink : Remove the entries of y and β, the columns of A, and the
entries of ĥ, corresponding to the zero entries of ĥ.

2) Restoring : Restore the estimated vector ĥ to its full dimension (this op-
eration is necessary after the shrink of the vectors during the iterations).

We used as stopping criterion the maximum number of iterations. Note that
the shrinking operation is allowed because zero entries of vector ĥ at iteration
i cannot assume a value 6= 0 at iteration i′ > i [99]. From a complexity point
of view, the first iterations are the most costly, while the algorithm can run
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> 106 times keeping the complexity almost constant and the computational
time linear (when the number of iterations is large enough, i.e., far away from
starting costly ones).

5.2.1.1 Complexity of the LASSO Solver and Step Size

Refinement

The sensing matrix D is composed of G columns of length NM . While the
dimensions N and M depends on system settings and can be somehow con-
trolled or tuned, the dimension G takes into account the estimation precision,
or granularity, of the searching grid Γ. Hence, the larger the dimension G, the
more reliable the result. Using some examples:

� If Γ is equivalent to the Doppler-delay grid (delay and Doppler shifts
integer multiple of the grid), G = NM and D is a NM ×NM matrix.
Blockwise operations adopted by any LASSO solver are feasible in this
framework.

� If the step size for both Doppler and delay axis is a fraction 1/ρ of the
Doppler-delay grid step, G ' O

(
NM · ρ2

)
and D is approximately a

NM ×
(
NM · ρ2

)
matrix. Clearly, increasing the granularity of the grid

quickly increases the complexity.

In order to overcome the complexity induced by searching grid with fine
granularity, it is possible to refine the step size in successive phases, rather
than directly defining a low fractional value for the entire grid. The proposed
refinement scheme is illustrated in Algorithm 3. During the Peak Selection
step, if the number of multipath components P is not available at the receiver,
instead select all local maxima or peaks (of the groups of estimates) whose
magnitude is above a certain threshold (to be defined).

Note that during the Coarse Estimation step, i.e., when D is an NM ×
NM matrix, it is possible to adopt the approach proposed in [100] to solve
the LASSO minimization in (5.14). The algorithm of [100], benefiting of the
hierarchical structure of vector h, is able to provide a first coarse and reliable
estimation optimizing the computational complexity. However, if h takes off-
grid values, the approach of [100] becomes inappropriate, as confirmed by the
presented simulation results. For this reason, after a Coarse Estimation, i.e.,
within the Iteration step, another LASSO solver must be chosen to obtain the
best performance in terms of channel estimation.
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Algorithm 3: Refinement of the Granularity

Result: Fine estimation ĥ for LASSO problem (5.14).

Coarse Estimation: For any LASSO solver, get a first coarse

estimation ĥ such that the searching grid Γ is equivalent to the

Doppler-delay grid (i.e., delay and Doppler shifts integer multiple of the

grid). In this case G = NM and D is a NM ×NM matrix;

For Iteration i = 1, 2, . . . do

• Peak Selection : Select the first P local maxima of ĥ;

• Step Refinement Around Maxima : Build a new sensing matrix

based on an extension of matrix D such that the step size around

the peaks is decreased (i.e., the granularity and the precision are

increased);

• Finer Estimation : For any LASSO solver, get a finer estimation

ĥ.
End

5.2.1.2 Soft-Thresholding Operator

In order to solve the LASSO minimization problem, a soft thresholding oper-
ator is used in (5.17). The choice of this function is justified in the following.
By starting from the input-output relation in matrix form

y = x� SDh + z , Ah + z , (5.19)

the residual sum of squares (RSS) for the LASSO solver is given by

RSS (h) =
1

2

NM−1∑

i=0


yi −

G−1∑

j=0

hjAi,j




2

+ λ
G−1∑

j=0

|hj | . (5.20)
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By taking the derivative of the first and second terms of the RSS w.r.t. θk we
get

∂

∂hk





1

2

NM−1∑

i=0


yi −

G−1∑

j=0

hjAi,j




2


= −
NM−1∑

i=0

Ai,k


yi −

G−1∑

j=0
j 6=k

hjAi,j


+ hk

NM−1∑

i=0

Ai,k

, −ρk + hkηk , (5.21)

∂

∂hk



λ

G−1∑

j=0

|hj |



 =





−λ if hk < 0

[−λ, λ] if hk = 0

λ if hk > 0

, (5.22)

in which the derivative at hk = 0 can assume two different values. By putting
things together

∂RSS (h)

∂hk
= −ρk + hkηk +

∂

∂hk
λ |hk| , (5.23)

and, by setting the derivative equal to zero (since we are trying to minimize
the LASSO cost function)

∂RSS (h)

∂hk
= 0 =





−ρk + hkηk − λ if hk < 0

[−ρk − λ, −ρk + λ] if hk = 0

−ρk + hkηk − λ if hk > 0

. (5.24)

We must ensure that the closed interval [−ρk − λ, −ρk + λ] contains the zero
such that hk is a global minimum, i.e.,

0 ∈ [−ρk − λ, −ρk + λ]⇒ −λ ≤ ρk ≤ λ . (5.25)

Thus, finally

ψst (hk, λ) =





(ρk + λ)/ηk if ρk < −λ
0 if − λ ≤ ρk ≤ λ
(ρk − λ)/ηk if ρk > λ

, (5.26)
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which is the soft thresholding operator ψst (hk, λ) with normalization constant
1/ηk.

5.2.1.3 Nesterov’s Acceleration Factor

The Nesterov’s acceleration factor governs the dependency between two suc-
cessive estimations, while remarkably reducing the convergence time of the
algorithm [97]. The choice of the optimization coefficient αi is not mandatory.
By following the pioneering work [98], which inspired many other works, e.g.,
[96], αi can be recursively defined as

ξi+i =
1 +

√
4ξ2
i + 1

2
, (5.27)

αi =
ξi − 1

ξi+i
, (5.28)

with ξ0 = 1. Another choice simply based on the iteration index i is αi =
(i− 1)/(i+ 2) [97, 98]. Both solutions describe a curve growing from an initial
value (“far” from 1) up to 1. The associated plots, with their similar behaviors,
can be seen in Fig. 5.1. The most conservative choice is αi = 1, for which the
dependency from the previous estimated values is maximized, while the less
conservative choice is αi = 0, completely forgetting the previous estimated
values. Intuitively, a small value of αi is preferable for the first noisy iterations,
while a parameter αi near to one should be chosen when the reliability of the
estimation increases.

5.2.2 Pilot Scheme

The optimization of a deterministic sensing matrix for CS configurations, such
as LASSO, is up to now one of the most studied open problems in CS the-
ory. In fact, the typical performance guarantees of CS require properties such
as the restricted isometry property [101, 38], for which explicit constructions
are not available and even checking the property for a given randomly gen-
erated matrix is exponentially complex [102]. On the other hand, ensembles
of randomly generated matrices have the property of satisfying these prop-
erties with high probability [38]. Hence, here we resort to a pseudo-random
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Figure 5.1: The evolution of αi over iterations i for different approaches.

pilot placement on the 2-dimensional time-frequency grid of transmitted sym-
bols. Simulation results have shown that such random placement achieves with
high probability the best performance w.r.t. regular “lattice” placements (e.g.,
equally spaced combinations of subcarriers or time slots), as usually specified
in wireless standards [36]. An example of a random pilot scheme is depicted
in Fig. 5.2. Moreover, generally, distinct configurations of a fixed number of
pilots, randomly placed within the 2-dimensional grid, provides similar per-
formance in terms of channel estimation. If pilots are not placed randomly
but follow some periodic pattern, the algorithm for solving the LASSO pro-
duces far inferior results. This behavior is caused by the periodic sampling of
a random Fourier matrix (i.e., H or Dhsp). This is the reason why commonly
used pilot schemes (see, e.g., [36] and references therein), generally structured
or periodic, are not suitable for the CS-based estimation of OFDM systems
(assuming that the OFDM channel is represented by a Fourier matrix). Over-
all, the aim it to maximize the overall achievable rate under random pilot
placement. Hence, we can optimize the number of pilots per block to seek the
optimal tradeoff between CSI estimation quality and pilot overhead (see (5.41)
in the following and numerical results in Sec. 5.4).
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Figure 5.2: Example of a random pilot scheme for OFDM modulation.

5.2.3 Received Samples Expression — Real and

Approximated Channel Conditions

Without entering into details of the complete input-output derivation of a CP
OFDM system which can be found in Section 1.2, we only provide the received
sample expression, which is

y [n,m] =
1

M

P−1∑

p=0

hpe
j2πνpnT

M−1∑

m′=0

x
[
n,m′

]
e−j2πm

′∆fτp
M−1∑

i=0

e
j2π i

M

νp
∆f ej2π

i(m′−m)
M

(5.29)

≈ 1

M

P−1∑

p=0

hpe
j2πνpnT

M−1∑

m′=0

x
[
n,m′

]
e−j2πm

′∆fτp
M−1∑

i=0

ej2π
i(m′−m)

M

=
P−1∑

p=0

hpe
j2πνpnT e−j2πτpm∆fx [n,m] . (5.30)

By considering real and approximated channel conditions, the received samples
at time instant n and subcarrier m are respectively given by (5.29) and (5.30),
in which the ICI-free approximation follows the assumption νmax/∆f � 1,
and the last equality follows by using the orthogonality property. Note that the
expression (5.30) is equivalent to (5.6), meaning that the ICI-free assumption
has been taken into account for the algorithmic design. When comparing OTFS
and OFDM, the channel model in (5.30) is considered, such that the absence
of ICI assumption holds. However, by focusing the attention on OFDM only,
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the performance comparison is extended to the case of real channel conditions,
i.e., with input-output relation (5.29), showing the performance degradation
when the ICI-free assumption is far to be satisfied. Clearly, a similar analysis
for OTFS is meaningless, being the waveform not sensitive to the magnitude
of delay and Doppler shifts.

5.3 OTFS Modulation and the Proposed

Estimation Algorithm

By neglecting, but keeping in mind, the complete derivation of the OTFS
input-output relation, which can be found in Chapter 1, we can proceed further
describing the channel estimation procedure, which is inspired by [86]. The
input-output relation expressed in matrix, shown the first time in (1.44), is
reported here for convenience

y =



P−1∑

p=0

hpΨp


x + z , (5.31)

where z denotes the AWGN with zero mean and covariance matrix σ2INM .
Note that Ψp implicitly takes into account a Doppler-delay pair (τp, νp), i.e.,
Ψp , Ψp(τp, νp). Without entering into mathematical details which can be
found in Sec. 1.3, the effect of the channel to symbols arranged in blocks is
shortly described in the following.

Consider a block composed by all zero magnitude symbols but one non-
zero, having enough energy to be well distinguishable, w.r.t. to the noise floor,
and positioned anywhere within the block. Note that the position of the sym-
bol does not influence the result, since the channel shift effect is circular within
the block, as proved by the results of Sec. 1.3. This block is thus transmit-
ted over the time-frequency selective channel in (5.3). At the Rx, most of the
energy concentrates in a point of the block (or, more precisely, a point per mul-
tipath component), while dissipating to the surrounding positions, according
to Fig. 1.4, where and example of blocks of transmitted symbols and received
samples blocks are depicted. The intuitive estimation of the pairs (τp, νp), for
each multipath component, follows by searching the peaks within the received
samples grid, successively associated to an estimate (τ̂p, ν̂p) (as suggested in
[86]). However, this intuitive estimation procedure is only able to provide the
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Figure 5.3: Example of a pilot scheme for OTFS modulation. Within the block

of dimension N × M the centered pilot with high energy ε is well distin-

guishable, and surrounded first by zero pilots (the hollow zone) and after by

information symbols (here, for convenience, with unit energy).

integer parts of the Doppler and delay shifts, associated to the Doppler-delay
grid point, where a peak is detected, collecting enough energy. The fractional
parts of delay and Doppler shifts are, instead, associated to the dissipation of
the energy around the peak points (see Fig. 1.4), and have to be treated and
analyzed separately.

The approximation of the channel behavior to integer Doppler and delay
shifts, as done in [86], allows this intuitive estimation procedure to work cor-
rectly, but only under such non-realistic channel conditions. Thus, based on
the ML estimator proposed in Sec. 1.3, the idea of [86] is extended, and a
reliable estimation algorithm working under realistic channels is provided.

5.3.1 Pilot Scheme

A block of N × M transmitted symbols contains both information bearing
symbols and pilots. The arrangement of pilots consists of a rectangular region
placed within the block (not necessarily in the middle, since the channel effect
is circular) containing two types of symbols (see Fig. 5.3):

� Zero Pilots : Placed between information symbols and non-zero pilots
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Figure 5.4: Example of a pilot scheme for OTFS modulation. Within the block

of dimension N ×M the plateau of pilots with high energy ε is well distin-

guishable, and surrounded first by zero pilots (the hollow zone) and after by

information symbols (here, for convenience, with unit energy).

to guarantee as less interference as possible between them. The Dirich-
let kernel functions appearing in the OTFS input-output relation (see
Sec. 1.3 and in particular (1.44)) are rapidly decreasing non-negative
functions (see Fig. 1.3 and 1.5), hence, perfect orthogonality between
information symbols and pilots cannot be achieved, but, at least, the
Doppler-delay ISI can be reduced.

� Peak Pilot : A single pilot symbol with high energy, collecting the energy
of all zero pilots, is placed at the grid center. Its shifts in the Doppler-
delay grid are used to provide the initial coarse estimation of the Doppler-
delay pairs, which results to be fast and simple.

Given this pilot arrangement, the number of pilot symbols has to be optimized
to match the optimal performance-overhead tradeoff, while keeping constant
the total block energy.

Given some particular system setups, such as communication including
non-linear amplifier not constant channel behaviours over block symbols in
time, basing the estimation algorithm on just one symbol (the peak pilot)
could not be a safe approach. In such cases, the pilot scheme can be extended,
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for instance, by considering a rectangular region composed of zero pilots and
a plateau on non-zero pilots (see Fig. 5.4), instead of just the peak pilot. We
would like to stress the fact that the successive algorithm design is not only
suitable for the aforementioned pilot configuration, but is able to provide reli-
able and remarkable performance under any other pilot configuration. Clearly,
this necessitates test scenarios and simulation results, which are omitted in
this work.

Note that in OFDM, symbols are independent, i.e., ISI and ICI free for
modulation definition, and the pilot vector xpl,OFDM, defined in (5.12) through
a selection matrix S, results to be a subset of symbols x. Differently, in OTFS,
since the channel, as depicted in Fig. 1.4, behaves per block and not per symbol
as in OFDM, the processing at the Rx could not be based on a subset of
samples but must take into account the entire block. As a results, the vector
of pilots xpl,OTFS has dimension NM × 1 and is composed of all zero entries
(the positions of unknown data symbols are set to zero) but one, i.e., the peak
pilot (Fig. 5.3).

5.3.2 Channel Estimation

The proposed channel estimation scheme is based on the ML approach of Sec.
2.1.2 and presented in [46],4 providing a parameter estimation of Doppler,
delay, and complex channel gain associated to each multipath component.

The following ML derivation is basically what has been already derived in
Sec. 2.1.2, but with some new details and modifications. The objective is to
estimate the set of parameters θ = {h′p, τp, νp} ∈ T P , with T = C × R × R.
By defining the ML function as

l(y|θ,xpl,OTFS) =

∣∣∣∣∣y −
∑

p

h′pΨpxpl,OTFS

∣∣∣∣∣

2

, (5.32)

4In [46] a ML method to estimate the Doppler shift and delay of the main path has been

proposed, by assuming LoS in the backscattered wave for a joint radar and communication

application with OTFS modulation format. Since in [46] the estimation of the radar param-

eters is performed at the Tx side (colocated with the Rx), all modulation symbols in the

block are known (see Sec. 2.1.2). Therefore, they can be all treated as pilot symbols. Here

we use the same ML approach, but applied to a specific pilot pattern.
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the ML solution becomes

θ̂ = arg min
θ∈T P

l(y|θ,xpl,OTFS). (5.33)

For a fixed set of {τp, νp}, the ML estimator of {h′p} is given by solving the
following set of equations

xH
pl,OTFSΨH

p



P−1∑

q=0

h′qΨq


xpl,OTFS = xH

pl,OTFSΨH
py . (5.34)

By plugging (5.34) into (5.32), it readily follows that minimizing l(y|θ,xpl,OTFS)
reduces to maximize

l2(y|θ,xpl,OTFS) =
∑

p

h′py
HΨpxpl,OTFS

=
∑

p

S(τp, νp)− Ip({h′q}q 6=p,θ) , (5.35)

where S(τp, νp, φp) and Ip({h′q}q 6=p,θ) (Sp and Ip in short hand notation) de-
note the useful signal and the interference term for the multipath component
p, given respectively by

Sp =
|yHΨpxpl,OTFS|2
|Ψpxpl,OTFS|2

, (5.36)

Ip =
(yHΨpxpl,OTFS) xH

pl,OTFS

(
ΨH
p

∑
q 6=p h

′
qΨq

)
xpl,OTFS

|Ψpxpl,OTFS|2
. (5.37)

Alg. 4 is used to obtain the estimation of Doppler, delay, and complex
channel coefficient of each multipath component, i.e., the complete CSI, and
it is described in the following. Note that, as for OFDM, if the number of
multipath components P is not available at the receiver, we instead select all
local maxima or peaks (of the groups of estimates) whose magnitude is above
a certain threshold (to be defined).

The iterative process allows to refine the estimation through iterations,
while keeping the computational cost limited and speeding-up the minimiza-
tion of the estimation error. The definition of the refinement interval and grid
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Algorithm 4: CSI Estimation

Result: The set (ĥ′p, τ̂p, ν̂p), for p = 0, . . . , P − 1.

Coarse Estimation: By analyzing on-grid Doppler and delay shifts, get

the first coarse estimation of the pairs (τ̂p, ν̂p) through the shifts of the

peak pilot w.r.t. the Doppler-delay grid, by selecting the first P local

maxima;

It: Let i = 0, 1, 2, . . . be the iteration number;

For i = 1, 2, . . . do
• Grid step and interval refinement: Refine the granularity of

the step around the estimated values within a refinement interval.

The finer the step size and the larger the interval, the greater the

computational complexity;

• Use the ML approach described in Alg. 1 to get a finer estimation

of the unknown parameters;

• Select the first P local maxima.
End
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step is not mandatory and depends on the signal processing capabilities of the
system.

Note that, by considering the pilot scheme of Fig. 5.3 (and also the defini-
tion of xpl,OTFS), the multiplication between the channel matrix Ψp and the
pilot vector xpl,OTFS is just a column selection of matrix Ψp, which significantly
simplifies all the equations involved. We did not explicitly take advantage of
this aspect, by keeping the treatment as general as possible, but note that
the reduction in terms of computational complexity could be remarkable. In
fact, under the pilot configuration depicted in Fig. 5.4, the aforementioned
assumption does not hold. However, also in that case, it is possible to reduce
the computational complexity, taking into account that only a limited num-
ber of non-zero elements constitute the pilot vector xpl,OTFS. Once a pilot
pattern has been defined or standardized, all these considerations are useful
to improve the overall computational complexity, also by specifying ad hoc
(hardware) signal processing.

5.4 Comparison in Terms of Pragramatic Capacity

Before proceeding further to numerical results, note that for both OFDM and
OTFS, during the channel estimation process, a “peak selection” has to be
performed. In a genie-aided scenario where the number of propagation paths
P is a-priori known, this results in the search of the P local maxima of the
objective, i.e., ĥ. However, this information may not be available at the Rx
and, in such a case, the algorithms should select all local maxima above a
certain threshold (to be defined). By considering scattering components with
decreasing power, which is generally the case, once the pathloss brings the
power below the threshold, the corresponding component is neglected in the
construction of the (estimated) channel matrix. Clearly, this results in a less
accurate CSI, but, at the same time, the contribution of low- or very-low-
energy paths has minor incidence in the estimated channel. In our simulation
results we consider the genie-aided case where P is known, while the threshold-
based analysis is a straightforward extension.

In this section, we characterize the performance in terms of pragmatic ca-
pacity, i.e., the mutual information between the constellation symbols trans-
mitted and the soft-output estimates of the detector, for the case of separated
detection and decoding [78, 79]. By considering a sequence of NM symbols
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{xk} belonging to any constellation C (for the sake of consistency, being NM
the dimension of the transmitted block), let {x̂k} be the noisy (soft) estimates
of the transmitted symbol. The pragmatic capacity is simply defined as the
symbol-by-symbol mutual information (see [79, 78, 46] for more details), which
can be easily calculated by Monte Carlo simulations via the formula

IPC = log2 |C| −
1

NM

∑

k∈D

∑

xk∈C
P (xk|x̂k) log2

1

P (xk|x̂k)
, (5.38)

where P (xk|x̂k) is the a posteriori probability mass function of symbols xk ∈ C
given the detector soft-output x̂k, while D is the set of information symbols,
i.e., excluding the pilots. Note that, since the numerator sums |D| ≤ NM terms
(being |·| the cardinality of the set), while the denominator takes into account
the block size NM , the pilot overhead emerges naturally. An indication of the
minimum length of the sequence to obtain reliable pragmatic capacity results
is given in [103].

We adopt the LMMSE detector for both modulations, whose soft-output
under non-perfect CSI, i.e., employing the estimated channel matrix Ĥ,5 is
given by

x̂ = ĤH

(
ĤĤH + σ2I

)−1
y . (5.39)

Note that for OFDM, whose (estimated) channel matrix is diagonal, the
LMMSE detector reduces to the symbol-by-symbol detection given by

x̂k =
H∗k,k

|Hk,k|2 + σ2
yk , (5.40)

which significantly simplify the detection computational complexity of OFDM.
On the other hand, in order to avoid the costly matrix inversion in (5.39)
for OTFS modulation, different solutions have been proposed in literature
[46, 62, 104, 47]. However, some of these approaches rely on non-realistic model
or channel assumptions (e.g., Doppler shifts and delays integer multiples of the
symbol grid) and therefore their performance degrades significantly when ap-
plied to realistic channel conditions, as shown in Chapter 4 ([46]). For this
reason, beyond the very high complexity block-based LMMSE detector (5.39)
for OTFS, we also consider the low-complexity MP soft-output algorithm pro-
posed in [46] and analyzed in Chapter 4, which achieves linear complexity per

5Note that, always for fairness, both modulations use the same estimation grid granularity.
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block (i.e., constant complexity per symbol, comparable with the symbol-by-
symbol MMSE detector for OFDM).

Note that the LMMSE detector is almost capacity achieving. For this rea-
son, the gap between pragmatic capacity curves and AWGN capacity, taken
as benchmark, at high SNR, where the estimation error is supposed to be
small, is only due to the presence of the overhead of pilot symbols within the
transmitted block. Asymptotically, the achievable rate loss (R`) is given by

R` =
P
NM

× 100 [%] . (5.41)

and the rate simply becomes the AWGN capacity multiplied by the fraction
of data symbols per block, i.e., |D| /NM = 1−|P| /NM . Moreover, as already
said, in order to make a fair comparison, the overhead introduced by a CP
for OFDM and by a generic GI (between blocks) for OTFS must be taken
into account. While a GI interposed between two OTFS blocks, to avoid IBI,
introduces a small-to-negligible overhead (especially when the dimension of
the block increases), the CP overhead of OFDM is kept constant within the
entire block (whatever its dimension), introducing a considerable loss in terms
of pragmatic capacity. For instance, by considering a CP of length T/4, being
T the symbol time, the loss is

T

T + T/4
=

T

5T/4
=

4

5
= 0.8 = 20% . (5.42)

This means that, with a modulation of cardinality C, while the maximum
achievable rate is log2 C bits/symbol, OFDM saturates at 0.8·log2 C bits/symbol.
The overall loss takes into account both the pilot overhead and the presence
of a CP and/or GI (also of length T/4, for consistency).

Another important aspect is the definition of the number of pilots |P|
w.r.t. the ambient dimension G. Many features are influenced by this choice.
Consider first OFDM modulation. It is well known in the CS literature that the
minimum number of pilots (or measurements, from CS literature) to recover
a sparse signal is given by the logarithmic scaling factor [105]

|P| ≥ P log
G

P
, (5.43)

where P here represent the number of non-zero components of the vector to be
estimated. Thus, given a multipath channel with P paths and a sensing matrix
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of dimension G (defined in (5.7)), the (asymptotically) minimum number of
pilot symbols necessary to solve the minimization problem in (5.14) is given by
(5.43). Due to the logarithmic scaling, the function is slowly increasing, even
if the granularity of the sensing matrix and its dimension grows (see Section
5.2.1.1). However, while (5.43) provides a lower bound on the dimension, the
optimal performance might be achieved for a number of pilots different from
the minimum. For this reason, if the number of pilots used for a given setup
(i.e., for fixed P and G) is well above the lower limit, we can state that while
increasing the dimension G, the optimal number of pilots slightly changes.
Hence, the pilot loss in (5.41) tends to zero, while increasing the ambient
dimension G, which is directly linked to the block size NM (assuming, for
simplicity, on-grid paths shifts and neglecting the refinement solution depicted
in Alg. 3), and OFDM benefits from large blocks. Note that this is not a
precise quantitative analysis but it just gives a qualitative idea or intuition
on how large the number of pilots per block should be, knowing that the
aforementioned CS-based conditions are always given up to constant factors
that depend on the specific problem, SNR, shape of the sensing matrix, and
other variables.

For OTFS modulation, the pilot scheme presented in Sec. 5.3.1 and its
estimation algorithm are independent of the block dimension, since the shift
of the peak pilot, and so the rough estimation, is only associated to the maxi-
mum Doppler and delay of the channel defined in (5.2). Hence, it follows that
the pilot overhead tends to zero while increasing the block dimension, hence,
as for OFDM, also OTFS benefits from large blocks. Moreover, if the dimen-
sion of the block increases, one can set more pilots to zero to raise the power
of the peak pilot, allowing the detection of low power scattering components
in the threshold-based approach (as explained at the beginning of Sec. 5.4).
However, limits on the block dimension comes, first, from important restric-
tions on OTFS detection computational complexity (as seen in Chapter 4 and
[46]), and then from the block fading assumption, which breaks down if the
block becomes too large (see Chapter 1). Thus, realistic block sizes have to be
considered in both directions.

Moreover, as anticipated in Sec. 5.2, in order to restrict to the classical
low-complexity symbol-by-symbol MMSE estimation for OFDM we have ne-
glected the ICI. As already seen in (5.29), the ICI depends on the ratio between
the subcarrier spacing ∆f and the maximum Doppler shift introduced by the
channel. In order to have negligible ICI the necessary condition is ∆f � νmax,
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Table 5.1: System parameters

fc = 5.89 [GHz] M = 64

B = 10 [MHz] N = 50

∆f = B/M = 156.25 [kHz] T = 1/∆f = 6.4 [µs]

or, equivalently, νmax/∆f � 1. Since ∆f = B/M , with B total bandwidth,
the condition may not be satisfied when the number of subcarriers M be-
comes too large, even for moderate Doppler. Here, we insist on neglecting ICI
and consider the range of system parameters for which this assumption is in-
deed virtually exact. Furthermore, we notice that while OFDM incurs in this
additional limitation, OTFS remains not sensitive to the Doppler shift.

5.4.1 Simulation Results

In the following figures, we plot the pragmatic capacity vs. SNR for OTFS and
OFDM modulations with quadrature phase-shift keying (QPSK) modulated
symbols, for a time-frequency multipath channel with P components affected
by AWGN, and under non-perfect CSI. The channel estimation has been per-
formed with the pilot schemes and the algorithms of Sec. 5.2 for OFDM and
Sec. 5.3 for OTFS. As a reference benchmark, we plot the AWGN (symmetric)
capacity Csym

AWGN for QPSK modulation, which results to be not achievable due
to the pilot overhead. The system parameters are listed in Table 5.1.

Fig. 5.5 shows the performance of OFDM for a different number of pilot
symbols. For the case P = 1, it easy to note that the performance slightly
changes for different pilot overheads, whose percentage is indicated in the
legend. On the other hand, as suggested by (5.43) and associated discussion,
if the number of non-zero components to be estimated increases, i.e., with
P > 1, the channel estimation algorithm needs more pilots to work efficiently.
Given these results, from now on, we will consider a pilot overhead of 3.125%,
achieving, in our setup, the best tradeoff between estimation accuracy and
achievable pragmatic capacity (for any number of scattering components).

Fig. 5.6 shows the performance of OTFS with different detection algo-
rithms. The MP soft-output detection approach of [46] is able to almost achieve
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Figure 5.5: Pragmatic Capacity vs. SNR for OFDM modulation with multipath

components P and different pilot overhead (whose percentage is indicated in

the legend).
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Figure 5.6: Pragmatic Capacity vs. SNR for OTFS modulation with multipath

components P , different detection algorithms, i.e., LMMSE and MP approach

of [46], for a fixed pilot overhead, in percentage 5.28%.
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the AWGN capacity under non-perfect CSI for a low number of scattering
components, together with a remarkable reduction of the computational com-
plexity [46]. However, in line with the results of [46] and Chapter 4, the detec-
tor performance decreases with increasing multipath. Note that the small loss
w.r.t. Csym

AWGN under non-perfect CSI is an indicator of the performance of the
channel estimation algorithm, which results to be very accurate (otherwise the
curve would have deviated from the benchmark). In light of these results, we
see that there is no reason to adopt the LMMSE estimator for OTFS, which
results in higher complexity and worse performance (see Chapter 4 and [46]
for a more detailed analysis). Hence, from now on, for the comparison with
OFDM modulation, we consider the MP “Matrix-G” approach of Chapter 4.

In Fig. 5.7, we plot the pragmatic capacity vs. SNR for OFDM and OTFS
under the configurations mentioned above. First of all, it is possible to note
that performance slightly decrease while increasing the number of multipath
components, proving the robustness of the pilot schemes and the algorithms
proposed. The pilot overhead has been chosen ad hoc for both modulations.
For OTFS, as said in Sec. 5.3.1, the peak centered pilot collects all the energy
of surrounding zero pilots, and the percentage of overhead (indicated in the
figures) is also an indicator of the peak pilot energy. For OFDM, as pointed
out before, the optimal tradeoff between estimation performance and pilot
overhead has been found by brute-force search over a suitable set of possibilities
(some of them are visible in Fig. 5.5). While the performance of the two
modulations is similar, the presence of a per symbol CP for OFDM remarkably
deteriorates the pragmatic capacity, while a per block GI for OTFS introduces
a negligible loss.

In Fig. 5.8, we plot the pragmatic capacity of OFDM for a fixed value
of SNR, i.e., 18 dB, while changing the ratio between the maximum Doppler
shift and the subcarrier spacing, i.e., νmax/∆f , taking into account a different
number of subcarriers M (N = 50 for all cases). In this case, the received
samples are obtained by considering a real channel taking into account the
ICI, i.e., (5.29), while the channel estimation works under the hypothesis of an
ideal interference-free channel. Intuitively, the performance degrades when the
ICI becomes significant. Note that the estimation performance of the LASSO
solver is independent of the number of subcarrier M and, for this reason,
whatever the choice of νmax and M , the performance of OFDM depends only
on their ratio. Fig. 5.8 shows that the pragmatic capacity performance starts
decreasing significantly for νmax/∆f ' 0.15. Almost the same behavior is
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Figure 5.8: Pragmatic Capacity vs. νmax/∆f ratio for OFDM modulation with

P = 1, at SNR = 18 dB.

shown for different number of subcarriers M (not reported here for the sake
of space limitation), except for the percentage of pilot loss due to different
block dimensions, supporting what stated above. However, as pointed out in
Table 5.2, while the performance is almost constant, the maximum tolerable
Doppler (or velocity), inversely proportional to M , is not. For these reasons,
as expected, OFDM is not independent of the block dimension and the system
has to be defined properly to operate in the range where the ICI is negligible.

5.5 Conclusions

We carried out a fair comparison between OFDM and OTFS modulation for-
mats in terms of maximum achievable rate for practical separated detection
and decoding, quantified by the pragmatic capacity measured at the soft-
detector output.

We considered two pilot schemes and channel estimation algorithms each
one specifically suited for the given modulation scheme. Both pilot and CSI
estimation schemes are able to achieve very good performance (near genie-
aided) under time-varying communication channel in the sparsity regime of
a small number of number of multipath components. This conclusion is fully
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νmax/∆f

0.1 0.15 0.2

M

64 1431 [km/h] 2147 [km/h] 2863 [km/h]

128 715 [km/h] 1073 [km/h] 1431 [km/h]

256 357 [km/h] 536 [km/h] 715 [km/h]

512 178 [km/h] 268 [km/h] 357 [km/h]

Table 5.2: Maximum supportable velocity w.r.t. the ratio νmax/∆f for OFDM

modulation with subcarrier spacing ∆f = B/M and carrier frequency fc =

5.89 GHz. The velocity is given by v = c · νmax/ (2fc).

supported by numerical results, where simulation curves achieve the theoret-
ical benchmark under non-perfect CSI, proving the quality of the proposed
approaches.

OTFS achieves a better communication rate mainly because of the presence
of a per block guard interval rather than a per symbol cyclic prefix as in OFDM.
This of course comes at the cost of a more complex channel estimation scheme,
working on large block-wise operations.

In terms of soft-output data detection, the use of the message passing
soft-output detector of Chapter 4 yields constant per symbol complexity for
OTFS, which is the same scaling law of symbol-by-symbol MMSE detection
for OFDM. Although we do not claim that the complexity of the two detectors
is identical, in fact the actual complexity differ for some implementation-based
constant.

Finally, we can observe that OTFS is indeed very insensitive to the mag-
nitude of the Doppler shifts, while the performance of OFDM degrades sig-
nificantly even under small-to-moderate Doppler values if the number of sub-
carriers increases. Therefore, OTFS is effectively a good candidate for high-
mobility systems in rural environments (e.g., high speed trains [106]) or aerial
environments (e.g., UAVs [107]), where Doppler shifts may be large, and the
propagation channel contains typically the line-of-sight and a few other re-
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flection components (e.g., ground reflection, hills, large buildings), and it is
therefore sparse in the Doppler-delay domain.



Conclusions

In this thesis, we studied multi-carrier modulation formats, in particular or-
thogonal frequency division multiplexing (OFDM) and orthogonal time fre-
quency space modulation (OTFS), in some different communication scenar-
ios exploiting the channel sparsity. In fact, by describing the communication
channel in the Doppler-delay domain, the channel impulse response is directly
linked to the physical representation of the surrounding environment, showing
few and strong multipath components slowly changing in time.

Under this configuration, we explore the joint radar sensing and commu-
nication problem, which is of relevant interest in recent literature. In this
context, first, we derive, analyze, and compare radar parameter estimation
methods based on maximum likelihood functions, exploring the tradeoff be-
tween computational complexity and estimation performance. We thus prove
that it is not necessary to implement radar and communication tasks with two
different equipment, while a single full-duplex enabled radar system based on
communication waveforms, such as OFDM or OTFS, is able to provide re-
markable radar estimation performance, comparable to typical radar systems
nowadays standardized for vehicular applications, while transmitting at its full
achievable rate. Thus, the joint definition of the system avoids tradeoff com-
ing from splitting the two functionalities, making this technology very promis-
ing for future applications. The aforementioned analysis has been carried out
also taking into account the additional spatial dimension when multiple an-
tenna systems are employed. Under these configurations, we extend the basic
maximum likelihood algorithms to cope with multiple-input multiple-output
systems, also over millimeter wave frequency bands, carrying on additional
complications and limits.

Finally, in order to close the circle on the comparison between the two
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modulation formats, we have considered the channel estimation problem, treat-
ing all the related aspects, i.e., the pilot placement, the estimation algorithm
(together with a complexity analysis), the overall loss (taking into account
possible insertions of guard intervals within the transmitted signal), and the
performance. We conclude that, by exploiting the channel sparsity, the per-
formance, both in terms of overall achievable rate taking into account the
pilot loss and in terms of computational complexity, of the two modulations
is comparable and remarkable with respect to theoretical limits. However, the
insertion of a per symbol cyclic prefix in OFDM, in order to prevent inter-
symbol-interference and allows symbol-by-symbol detection, dramatically re-
duces the overall achievable rate, while a per block guard interval for OTFS
has a small-to-negligible effect on communication performance.

The aim of the overall work is not to find or prove the optimality of one
waveform against the other, as sometimes done in the current literature, but
provides the baseline to properly define a multi-carrier system with the given
constraints and target performance.
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