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“All models are wrong, but some are useful.”
— George E. P. Box (1987)





Abstract

The fast and affordable development of novel materials is needed in order to enable
technological advancements in application areas such as clean energy, healthcare, sus-
tainable transport, and climate-friendly consumption. However, the development of
novel materials is not a trivial task. One of the biggest challenges in materials design
and discovery is the enormous search space of possible material compositions available,
also referred to as the “chemical whitespace”.

Faced with the high risk, high reward nature of materials exploration, materials scien-
tists have increasingly moved away from traditional trial and error methods and instead
adapted new data-driven methods of materials discovery. The rapid development of
data science, machine learning (ML), and deep learning (DL) as well as the influx of
high-quality materials property datasets have led to the development of the new field
of materials informatics (MI). This new paradigm has drastically changed the way in
which materials are understood, predicted, discovered, and designed.

Despite promising developments in this relatively young field, there are several open
issues that need to be addressed. The lack of guidelines and established procedures
to ensure high quality research in MI impedes the pace of further development in this
field. Furthermore, the current techniques for representing and modeling chemical
compositions are flawed and unsuitable to be used in the search of novel materials.
Lastly, the prevalence of black-box DL models without model interpretability limits the
trust and adoption of these models in academia and industry. Accordingly, the main
aims of this work are (1) to propose a set of best practices and protocols for conducting
and reporting MI studies, and (2) to improve the state of the art in materials property
predictions by introducing interpretable DL techniques for representing and modeling
chemical compounds.

In the first work described in this thesis, the fundamental ideas and considerations of
using data-driven methods for materials science are introduced. A broad set of guide-
lines and protocols for ensuring the reliable, reproducible, and comparable reporting
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of research results in MI studies is established. Common software tools, methodolo-
gies, and materials data repositories are presented. Lastly, the full procedure of an ML
study including data processing, feature engineering, model training, evaluation and
comparison is demonstrated using the prediction of heat capacity for solid inorganic
compounds as an example.

In the second work, a novel DL model named “Compositionally Restricted Attention-
Based network (CrabNet)”, based on the Transformer self-attention mechanism, is in-
troduced. CrabNet is benchmarked on 28 materials property datasets and is shown to
match or exceed state-of-the-art models in the prediction of inorganic material proper-
ties. The benefits of learning element-element interactions within chemical compounds
using the self-attention mechanism are discussed. Furthermore, a new way of represent-
ing chemical composition which overcomes some of the limitations present in current
techniques is developed. Lastly, the opportunities to study model interpretability meth-
ods in CrabNet are previewed.

Continuing in the third work described in this thesis, the model interpretability of
CrabNet is further examined. Intrinsic model interpretability methods are added to
CrabNet and used to extract additional information about the model and data repre-
sentations during the modeling process. The extracted information is processed and
visualized into static and interactive figures as well as video animations. The exami-
nation of these visualizations and additional information reveals well-known chemical
patterns about the elements and compounds, intuitively suggesting that CrabNet is
able to learn the element properties, element interactions, and how they together dic-
tate materials properties. Furthermore, the dataset quality as well as the self-attention
mechanism are also discussed for their significance towards an improved and inter-
pretable modeling of materials properties. Lastly, the potential benefits of applying
interpretable modeling methods in academia and industry are discussed.

Overall, the methods, results, and considerations discussed in this dissertation are
presented in a way to educate and empower interested materials science researchers to
undertake their own materials informatics research.
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Kurzfassung

Die schnelle und erschwingliche Entwicklung neuartiger Materialien wird benötigt, um
technologische Fortschritte in Anwendungsbereichen wie der sauberen Energie, dem
Gesundheitswesen, dem nachhaltiger Verkehr und dem klimafreundlichen Konsum
zu ermöglichen. Die Entwicklung neuartiger Materialien ist jedoch keine triviale Auf-
gabe. Eine der größten Herausforderungen bei Materialdesign und -entdeckung ist
der enorme Suchraum möglicher Materialzusammensetzungen, der auch als „chemical
whitespace“ bezeichnet wird.

Angesichts der risikointensiven aber aussichtsreichen Natur der Materialerforschung
ziehen Materialwissenschaftler zunehmend von herkömmlichen Versuchs-und-Irrtums-
Methoden weg und adaptieren stattdessen neue datengetriebene Methoden der Mate-
rialentdeckung. Die schnelle Entwicklung von Data Science, maschinellem Lernen (ML)
und Deep Learning (DL) sowie der Zustrom hochwertiger Materialdatensätze haben
zu der Entwicklung des neuen Gebiets der Materialinformatik (MI) geführt. Dieses
neue Paradigma hat die Art und Weise mit der Materialien verstanden, vorhergesagt,
entdeckt und entworfen werden drastisch verändert.

Trotz vielversprechender Entwicklungen in diesem relativ neuen Bereich gibt es meh-
rere offene Probleme, die behoben werden müssen. Der Mangel an Richtlinien und
etablierten Verfahren zur Gewährleistung hochwertiger Forschung in der MI behin-
dert das Tempo der Weiterentwicklung in diesem Bereich. Darüber hinaus sind die
derzeitigen Techniken zur Darstellung und Modellierung chemischer Zusammenset-
zungen fehlerhaft und ungeeignet, um bei der Suche nach neuartigen Materialien
verwendet zu werden. Schließlich begrenzt die Prävalenz von Black-Box-DL-Modellen
ohne Modellinterpretierbarkeit das Vertrauen und die Akzeptanz dieser Modelle in der
Wissenschaft und Industrie. Dementsprechend sind die Hauptziele dieser Arbeit (1)
einen Satz bewährter Verfahren und Protokolle zur Durchführung und Berichterstel-
lung von MI-Studien vorzuschlagen und (2) den Stand der Technik in der Vorhersage
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von Materialeigenschaften durch die Einführung von interpretierbaren DL-Techniken
zur Darstellung und Modellierung chemischer Verbindungen zu verbessern.

In der ersten in dieser Dissertation beschriebenen Arbeit werden die grundlegenden
Ideen und Überlegungen zur Verwendung von datengetriebenen Methoden für die Ma-
terialwissenschaft eingeführt. Eine breite Reihe von Richtlinien und Protokollen, um
die zuverlässige, reproduzierbare und vergleichbare Berichterstattung von Forschungs-
ergebnissen in MI-Studien zu gewährleisten, wird etabliert. Gängige Software-Tools,
Methoden und Repositorien für Materialdaten werden dargestellt. Schließlich wird das
vollständige Verfahren einer ML-Studie für die Vorhersage der Wärmekapazität fester
anorganischer Verbindungen, einschließlich Datenverarbeitung, Feature Engineering,
Modelltraining, -auswertung und -vergleich, als Beispiel gezeigt.

In der zweiten Arbeit wird ein neuartiges DL-Modell namens „Compositionally Re-
stricted Attention-Based network“ (CrabNet), basierend auf dem Transformer Self-
Attention-Mechanismus, eingeführt. CrabNet wird anhand von 28 Materialdatensätzen
evaluiert und kann den Stand der Technik bei der Vorhersage anorganischer Materia-
leigenschaften erreichen oder übertreffen. Die Vorteile, Wechselwirkungen zwischen
Elementen in chemischen Verbindungen unter Verwendung des Self-Attention Mecha-
nismus zu lernen, werden ebenfalls diskutiert. Darüber hinaus wird eine neue Art
der Repräsentation für chemische Zusammensetzungen, die einige der in aktuellen
Techniken vorhandenen Einschränkungen überwindet, präsentiert. Schließlich wird
eine Vorschau der Möglichkeiten Modellinterpretationsmethoden in CrabNet zu unter-
suchen gezeigt.

Fortgesetzt in der dritten Arbeit wird die Modellinterpretierbarkeit von CrabNet weiter
untersucht. Intrinsische Modellinterpretationsmethoden werden zu CrabNet hinzuge-
fügt und verwendet, um zusätzliche Informationen über das Modell und die Daten-
repräsentationen während des Modellierungsprozesses zu extrahieren. Die extrahier-
ten Informationen werden in statischen und interaktiven Abbildungen sowie Video-
animationen verarbeitet und visualisiert. Die Untersuchung dieser Visualisierungen
und der zusätzlichen Informationen ergibt bekannte chemische Muster hinsichtlich der
Elemente und deren Verbindungen, die intuitiv darauf hindeuten, dass CrabNet die
Elementeigenschaften, -wechselwirkungen und deren Einfluss auf die Materialeigen-
schaften, lernen kann. Darüber hinaus werden die Qualität des Datensatzes und der
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Self-Attention-Mechanismus hinsichtlich ihrer Bedeutung für eine verbesserte und in-
terpretierbare Modellierung von Materialeigenschaften diskutiert. Schließlich werden
die potenziellen Vorteile der Anwendung interpretierbarer Modellierungsmethoden in
der Wissenschaft und der Industrie diskutiert.

Insgesamt sind die in dieser Dissertation diskutierten Methoden, Ergebnisse und Erwä-
gungen so dargestellt, dass sie interessierte Materialwissenschaftler dazu ermächtigen
sich auf diesem Gebiet weiterzubilden, um ihre eigene Forschung in der Materialinfor-
matik durchzuführen.
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1 Introduction

1.1 Structure of the thesis

The present work is a compilation of three peer-reviewed journal publications, together
covering the results obtained within this cumulative dissertation:

1) A. Y.-T. WangA. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch,
K. A. Persson, and T. D. Sparks. Machine Learning for Materials Scientists: An
Introductory Guide toward Best Practices, Chemistry of Materials, 2020, 32 (12):
4954–4965.
DOI: 10.1021/acs.chemmater.0c01907.
The published manuscript is reproduced in Chapter 3.2 of the dissertation.

2) A. Y.-T. WangA. Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks. Compositionally
restricted attention-based network for materials property predictions, npj Compu-
tational Materials, 2021, 7: 77.
DOI: 10.1038/s41524-021-00545-1.
The published manuscript is reproduced in Chapter 4.4 of the dissertation.

3) A. Y.-T. WangA. Y.-T. Wang, M. S. Mahmoud, M. Czasny, and A. Gurlo. CrabNet for Explain-
able Deep Learning in Materials Science: Bridging the Gap Between Academia
and Industry, Integrating Materials and Manufacturing Innovation, 2022.
DOI: 10.1007/s40192-021-00247-y.
The published manuscript is reproduced in Chapter 5.2 of the dissertation.

In addition to the works listed above, I co-authored one publication closely related to
the topic of this thesis:

R. J. Murdock, S. K. Kauwe, A. Y.-T. WangA. Y.-T. Wang, and T. D. Sparks. Is Domain Knowl-
edge Necessary for Machine Learning Materials Properties?, Integrating Materials
and Manufacturing Innovation, 2020, 9 (3): 221–227.
DOI: 10.1007/s40192-020-00179-z.
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1 Introduction

This dissertation is organized as follows:

Chapter 1 describes the motivation, the three goals of this Ph.D. work, and the approach
taken to address the goals.

Chapter 2 introduces the reader to the background of machine learning and deep learn-
ing in the context of materials science. The new paradigm of using materials informatics
for conducting materials design and discovery is also introduced. In addition, a brief
overview of the notable works in this field are presented, including the open research
questions leading up to this work.

Chapter 3 emphasizes the need for a set of fundamental guidelines and best practices to
ensure reproducible, comparable, and credible reporting of research results in materials
informatics studies involving data science or machine learning. The first peer-reviewed
publication that addresses the first goal of this thesis is also presented.

Chapter 4 highlights the advantages of the Transformer attention-based deep learn-
ing of materials properties that is used by the Compositionally Restricted Attention-
Based network (CrabNet) developed as part of this dissertation. The unique features
of CrabNet and its underlying composition featurization method are then compared
against other common methods in the literature. The results and benefits of implement-
ing attention-based methods for the learning of materials properties are presented in
the second peer-reviewed publication that addresses the second goal of this thesis.

Chapter 5 extends CrabNet by introducing additional model interpretability methods
that aim to improve the understanding of the model, the modeling process as well as the
learned chemical interactions underlying materials properties. The results of extending
model interpretability in CrabNet and their potential broader impact in increasing the
adoption of deep learning methods in materials science are discussed in the third
peer-reviewed publication that addresses the third goal of this thesis.

Chapter 6 summarizes the outcomes of this dissertation work and suggests future
research directions for the applications of Transformers, attention-based deep learning,
and interpretable models in materials informatics.

Please note that the cited references in this dissertation are displayed at the end of
the thesis (page 167). Each of the publications contain their own references, which are
shown at the end of each manuscript.
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1 .2 Motivation and goals

1.2 Motivation and goals

Ever since prehistoric times, humankind has tirelessly worked on the understanding
and improvement of materials properties. New discoveries and developments of mate-
rials with improved or unprecedented properties have profoundly changed important
aspects of past civilizations such as culture, agriculture, architecture, and even warfare.
The changes are so drastic such that entire archaeological periods of time—the Stone,
Bronze, Iron, and Silicon Ages—were named after the prominent materials used.

The necessity to discover and develop new engineering materials persists today, driven
by the need to meet society’s greatest challenges in ensuring human and environmental
well-being while retaining economic prosperity. However, the simultaneous require-
ments of developing novel materials quickly and affordably present many challenges.

Many common engineering materials we know today were discovered as a result of
scientific serendipity: on these occasions, chance played a significant role in advancing
materials science. But more often than not, new materials are discovered through incre-
mental improvements via trial and error experimentation. However, the exploration of
the materials design space is by no means trivial. The complexities of the interactions
between the material composition, structure, processing and the material properties
serve to make the understanding and modeling of materials a difficult task. The enor-
mous combinatorial space resulting from the large number of possible elements and
stoichiometries—the number of combinatorially possible materials has been estimated
to be as high as a googol (10100)—further complicates this issue.

Fortunately, the vast amounts of experimental and simulated materials property data ac-
cumulated through decades of research presented an ideal opportunity for a paradigm
shift towards the data-driven study of materials science—also known as “materials
informatics” (MI). Crucial to this revolution is also the development of computational
and statistical methods such as data science and artificial intelligence (AI). In particular,
machine learning (ML) and deep learning (DL) methods have been successfully applied
for the classification and prediction of materials properties, enabling groundbreaking
materials design and discovery workflows that were previously impossible.

Despite the promising results of early works in this relatively new field, there remain
several critical and open questions to be addressed in the adaptation of ML and DL
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1 Introduction

methods to the materials science domain. The ease of use and access of publicly avail-
able data science tools is a double-edged sword that sometimes misguides materials
scientists who foray into the field of materials informatics. The inexperience of materi-
als scientists in conducting and documenting studies involving data science, ML and
DL often leads to misleading or incorrect results.

Furthermore, while methods of featurizing materials compositions into input data
for the ML and DL models exist and are widely used to date, these methods make
fundamentally incorrect assumptions about the underlying material systems. These
techniques work well for lower-accuracy ML predictions and for cases where data
volume is limited; however, the fundamental assumptions severely limit their usefulness
and relevance when developing strong, accurate and robust DL models using large
materials property datasets.

Additionally, there is a lack of models that can adequately capture and model the
interactions between constituent elements in a compound while simultaneously not
requiring crystal structure information—an important prerequisite for the discovery of
novel materials.

Lastly, while there is large academic interest in embracing data-driven methods for
the study of materials, the adoption of these methods in industry remains low due to
the lack of model transparency and model interpretability techniques. This is further
exacerbated by the lack of intuitive understanding of modeling and decision-making
processes, leading to low overall trust and adoption.

This thesis aims to address the aforementioned issues in three topics: (1) the estab-
lishment of best practices for current and future researchers interested in conducting
materials informatics research, (2) the introduction of novel attention-based modeling
and chemical composition featurization techniques for materials property prediction,
and (3) the introduction of model interpretability using the models developed as part
of this thesis work.

The first goal of this work is to establish a set of best practice methods and protocols
for materials scientists who are interested in performing machine learning or deep
learning research in the context of materials informatics. To this aim, guidelines and
best practices are proposed regarding the obtaining and treatment of data, feature
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1 .2 Motivation and goals

engineering, model training, validation, evaluation and comparison, model and archi-
tecture sharing, and finally publication. A selection of studies employing materials
informatics for the prediction of materials properties for a variety of applications is also
reviewed. Furthermore, popular materials data repositories are highlighted. Python
code to demonstrate the concepts and perform an example machine learning workflow
is provided as interactive Jupyter notebooks. The applicability and robustness of mate-
rials informatics methods for materials science problems are also discussed. Together,
the set of guidelines and best practices ensures that reported results from researchers
are reproducible and comparable with those from other researchers, and will improve
the overall research and manuscript quality in the field.

The second goal of this work is to introduce a new, structure-agnostic deep learning
model to learn and predict materials properties, while simultaneously improving the
state of the art in model performance. To this end, a novel model based on the Trans-
former self-attention mechanism is introduced and benchmarked against other common
models on material property regression tasks using 28 benchmark datasets. Further-
more, a featurization technique is developed to enable the attention modeling which
preserves element identity within the chemical compounds while not ignoring trace
elements. Additionally, the opportunities to explore model interpretability methods in
the newly-introduced Compositionally Restricted Attention-Based network (CrabNet)
are discussed.

The third goal of this work is to demonstrate that model interpretability methods can
be built into CrabNet and that these methods can lead to additional understanding
and intuition about the chemical behaviour in elements and compounds. Furthermore,
by examining the model training process, potential modeling or dataset errors can be
discovered, which may highlight further insights leading to a better understanding of
the phenomena governing materials properties. Lastly, the introduction of interpretable
methods to black-box models will lead to wider acceptance and adoption in industry
and academia alike.
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2 Humanity’s material challenges

Traditionally, the search for new or alternative materials with desired properties or
behaviours has been a slow and difficult task. Materials scientists often dream of de-
signing or finding completely new materials with better performance at a lower cost
compared to existing materials. However, this dream is often only partially realized:
instead of discovering novel materials by pure ingenuity and hard work, scientists dis-
cover new materials only through incremental improvements in empirical, theoretical,
or computational research.

“Genius is one percent inspiration and ninety-nine percent perspiration”, according to
the famed American inventor Thomas Edison, who tested more than 6000 materials
to find a suitable candidate for the filament in an incandescent light bulb [5, 6]. Typ-
ically, the discovery of new materials arises out of a combination of solid scientific
understanding, rigorous experimentation, and the unwavering dedication to perse-
vere after numerous failures. Occasionally, a stroke of luck (commonly referred to as
“serendipity”) is also involved in the process.

Many of the world’s crucial materials were discovered through a fortunate mixture of
pure chance, ingenuity, and unbiased curiosity of the scientist. Shatterproof glass, dyna-
mite, Viagra, penicillin, quinine, insulin, artificial dyes, super glue, vulcanized rubber,
synthetic plastics including Teflon, Velcro, artificial sweeteners, shape memory alloys
and many other well-known materials were all discovered in an “Eureka” moment due
to the combination of a happy accident and an observant scientist [7–17].

This type of fortuitous materials discovery through serendipity is without doubt a
major contributor to scientific progress. However, the rapidly changing society and
technology progress has placed increasing demands on materials development and
innovation. Unfortunately, serendipities are rare and cannot be relied upon to address
the ever-changing demands and material requirements: out of the fourteen Grand
Challenges of Engineering in the 21

st Century as identified by the National Academy
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2 Humanity ’s material challenges

of Engineering, eight of the challenges will require the discovery and development of
novel materials [18]:

• Make solar energy affordable
• Engineer better medicines
• Restore and improve urban infrastructure
• Provide access to clean water
• Provide energy from fusion
• Prevent nuclear terror
• Manage the nitrogen cycle
• Develop carbon sequestration methods

Many excellent researchers around the world are certainly working tirelessly to meet
these challenges; however, the search for novel materials is not well-defined and is not
by any means a simple task. Considering the well-studied and -documented periodic
table of the elements as well as the wealth of materials science knowledge available in
the literature and in the collective scientific community, it may seem trivial to combine
the right expertise, theory, and praxis to design a new material which can deliver a
desired property. However, materials discovery is anything but straightforward, and
there remains one major hurdle when faced with the task of finding the next novel
material: where do we start?

2.1 Chemical whitespace and the pace of materials research

Indeed, one of the most significant hurdles for the discovery of novel or alternative
engineering materials is the massive number of possible element combinations in a
given chemical compound. This space of all possible stoichiometric combinations is
also known as the “chemical whitespace” [19]. The synthesis of novel materials requires
a large amount of dedication and trial and error processes to find the optimal chemical
composition, synthesis processes and conditions (think of Edison’s light bulb). Likewise,
the characterization of the synthesized materials is also not straightforward at times—
techniques such as diffraction, spectroscopy, and electron microscopy can require a
large amount of effort and time. Furthermore, some novel materials could contain
exotic elements, phases, or structures, which are costly to obtain and/or synthesize.
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2 .1 Chemical whitespace and the pace of materials research

Figure 2.1 shows the number of possible compounds that can be formed given n unique
elements (out of a pool of 80 stable elements). Note that the number of possible ways
to combine n elements grows dramatically with n, and surpasses one million when
n = 4. In other words, for a compound with four elements, there are over one million
potential ways to choose and combine the elements together.
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3,160

82,160

1,581,580

Figure 2.1: The combinatorial explosion resulting from the number of possible element
combinations in an n-element compound renders the brute-force exploration
of chemical whitespace impossible. Additional stoichiometric complexity
and their granularity—dopants are an extreme example—further exacer-
bates this already impossible task.

Furthermore, these calculations assume that each element is equally abundant in the
compound (i.e., for a compound with four elements, each element will have a 25 at%
prevalence in the compound). Thus far, the additional dimensions of varying stoichiom-
etry have not been taken into account. If we wish to introduce stoichiometry variances
in the search space, then the number of possible combinations becomes exponentially
larger. In fact, the number of combinatorially possible materials has been estimated
to be as high as a googol (10100), which is more than the total number of atoms in the
known universe [20]. Even for simple binary and ternary compounds, it would be an
impossible task to synthesize, characterize, and study all of the elemental combinations
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2 Humanity ’s material challenges

in search of a desired material property, given the very large combinatorial space of pos-
sible elements, stoichiometries, and the limited amount of research time and funding
available [9, 19, 21].

As a consequence of this high-risk, high-reward nature of discovering new materials,
many researchers choose instead to focus on incremental material improvements that
can be achieved by optimization and exploration within already-known chemical sys-
tems. The search for new materials is thus typically limited to educated guesses based
on known materials science phenomena or local optimizations based on known ma-
terial systems. While these methods can lead to successful and positive results, they
are “brute-force” trial and error methods for discovering new materials, in the sense
that components are progressively swapped out, or added to existing or known com-
positions, and then tested for improved performance [9, 19, 22–27]. For large materials
systems with many elements, this is predictably very costly and time-consuming.

These search methodologies can also fail—for example, if a given system is already as
optimized as it can be, no further fine-tuning or swapping out elements can improve
it more. Furthermore, some materials phenomena which rely on minute changes
in the chemical composition, structure, or other rare events such as dopant effects,
can be completely missed. Additionally, it can also be possible that entirely new
systems, with new elements or compounds, are missed entirely, since these brute-
force methods search only locally near a starting chemical composition (i.e., they are
optimizing locally instead of globally across the entire chemical space). This can be a
limitation especially for classes of materials for which there are only a small number of
known compositions.

Chemical whitespace can be navigated up to a certain degree by a scientist with proper
experience, understanding of the latest research, and intuition. Naturally, the publica-
tions made by the worldwide scientific community play a key role in the dissemination
of the latest research topics and findings in this context. It is possible to imagine that
an expert can follow the newest developments by reading all of the latest publications,
take inspiration from that, and then identify the next promising topic(s) of research. To
this end, Edison argues that “a ‘genius’ is often merely a talented person who has done
all of his or her homework”. However, is it actually possible for a modern-day scientist
to keep up with the ever-increasing number of publications? In Edison’s time, that may
have been possible—but it is certainly unimaginable now. Figure 2.2 shows the number

10



2 .1 Chemical whitespace and the pace of materials research

of new publications per year, as indexed by the Web of Science for selected topics in
materials science. We can observe that the number of scientific publications for all
topics has been steadily increasing year-over-year, and that the number of publications
doubles approximately every 10 to 15 years [28]. In the year 2020 alone, many materials
science topics accumulated over 104 new publications! In fact, this growing trend in
publications and a similar growth in the number of scientists have been observed since
the 1600s and continues to this day—90% of all of the scientists that have ever lived are
still alive today [29, 30].
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Figure 2.2: The accelerating pace of materials science research as measured by the
number of new articles published per year for the period from 1940 to 2020,
grouped by the topic keywords as shown. Data collected from the Web of
Science. Figure adapted with permission from [31].

It is impossible for any researcher to read tens of thousands of papers every year, and
it is just as unfeasible to expect this researcher to manually synthesize and characterize
thousands of compounds every year. But does this mean this researcher cannot do his or
her homework properly? Maybe not. It is clear that the current approaches for materials
discovery require a major overhaul in view of the manual experimental and research
methods. There needs to be a structured, reproducible and rational method to explore
chemical whitespace, which should not only be economical, but also quick, accurate,
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2 Humanity ’s material challenges

and precise [19]. Materials informatics (MI) combined with machine learning (ML)
represents this method, and provides a unique way to integrate scientific knowledge,
data, and theory for the data-driven discovery of novel materials. This could be a
solution to our researcher’s problem.

2.2 Materials informatics: a new paradigm

The development of materials science (and of materials informatics, by extension)
closely followed the breakthroughs and advancements of science and technology over
the millennia. These can be divided into four major paradigms (Figure 2.3).

Figure 2.3: The four paradigms of materials science. In the traditional approach (left),
new materials are discovered by experimentation, theory, or computation
(also referred to as the 1

st, 2
nd, and 3

rd paradigms). In the 4
th paradigm

(right), all of the available materials data is collected in accessible data
infrastructures, and machine learning and data science approaches are used
to discover new materials in the paradigm of data-driven materials science.

For a long time in humankind’s history, materials science was empirical and followed
general observations and experience gathered through experimentation. This represents
the first paradigm in materials science, the paradigm of empirical observations. Then
came the age of theories and generalizations, with many laws, equations and systems
being formulated to explain complex interactions like thermodynamics—the second
paradigm of theories and generalizations. Then, when theoretical models became too
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complex, computational methods were used to simulate the models and to obtain their
solutions, in the third paradigm of materials science. Some well-known examples of
these first-principles computational methods are molecular dynamics (MD) and density
functional theory (DFT). Computational methods now permeate almost all scientific
fields and are used to solve a large variety of problems.

With the constant improvement of models and high-throughput computation, the
amount of data generated by model-based research—together with data from empirical
experiments—have led to the fourth paradigm in materials science in the last few years.
This is the (big-)data-driven study of materials science [32]. Data-driven materials sci-
ence combines elements from the first three paradigms (experimentation, observation,
theory, and computation) and represents a new, disruptive paradigm in which the vast
amounts of currently-available materials data can be explored to draw interesting and
novel insights [32–34].

While data-driven methodologies are already well-established in numerous fields such
as astronomy, bio(techno)logy, drug discovery, quantitative social sciences, physics,
and chemistry, the application of informatics in the domain of materials science, also
termed “materials informatics”, is still in its infancy [9, 32, 34–39]. Materials informatics
(MI), or the large-scale algorithmic analysis of materials data to gain novel insight, is
a rapidly-growing field in materials science, and represents a groundbreaking way to
integrate scientific knowledge, theory, and advanced computation for the discovery of
new materials [9, 37, 38, 40, 41]. When combined with state-of-the-art machine learning
(ML) algorithms, MI can be used to predict the properties of materials which do not
currently exist, or be used to guide materials selection and design given a set of target
material properties.

As machine learning frameworks and algorithms are developed, important advance-
ments are not only being made by those doing research in these areas, but also by those
who apply ML modeling methodologies within the materials science domain [34, 36,
40, 42, 43]. The Materials Genome Initiative (MGI), launched in 2011, is one example of
where data science and ML methods are being applied to domain-specific knowledge
in materials science. The MGI facilitates collaborations between experimental and com-
putational materials scientists, with the goal of discovering, developing, manufacturing,
and deploying new materials “twice as fast, at a fraction of the cost” [39, 44].
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2 Humanity ’s material challenges

2.3 Machine learning for materials science

Machine learning (ML) is a subarea of AI with the aim of developing and using data-
driven algorithms. In doing so, knowledge from data is automatically learned by
training the model on it [45–47]. Although ML is often considered as a research area
of conventional computer science, it differs from traditional computational approaches.
In conventional computing, algorithms (explicitly programmed instructions) are used
by computers to compute and solve specific and precisely-defined problems. ML and
deep learning (DL)1 algorithms, on the other hand, enable computers to train on data
and develop the ideal model using methods from statistical analysis and data science.
The trained model and the learned presentation of the data relationships can then be
used to make predictions on previously unseen input data of the same type. In this
regard, the rulesets for processing and representing input data in the trained models
are not explicitly programmed, but rather learned on the basis of the data.

The integration of ML in materials science research workflows brings many benefits.
ML models are able to recognize complex and non-linear relationships from large
amounts of data, and are thus particularly applicable if the data or data relationships are
too complex to be described or solved with conventional methods (whether analytically
or computationally). In addition, the accuracy of a ML model improves when a large
amount of representative data for model training is available. Another significant
benefit of using ML over other first-principles computational materials science methods
such as density functional theory (DFT) and molecular dynamics (MD) is the drastic
speedup that machine learning can bring. Compared to DFT methods, which may take
days or weeks to compute the property of a single material, ML methods can compute
the properties of tens of thousands of materials, within seconds to minutes [48–50].

Thus, in the search for novel materials, high-throughput ML models can be used to
screen for promising material compositions from a large number of candidate composi-
tions (Figure 2.4). Using ML, researchers can better navigate the chemical whitespace
to identify interesting candidate materials or additional directions for further research.

1Deep learning is a subset of machine learning and is based on artificial neural networks inspired by
the structure and function of the brain. In DL, multiple processing layers are used to transform
the data into different levels of abstraction (representations) that extract progressively higher-level
information. Note: since DL is a subset of ML, both ML and DL models/algorithms are meant when
ML is mentioned in the text.
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2 .3 Machine learning for materials science

For example, from a list of 109 candidates, ML models can be used to identify 103

promising compositions. Subsequently, the results of the ML screening can be com-
bined with computational or simulation methods to further narrow the number of
candidate compositions down to 102–101 compositions. At the end of this ML-assisted,
automated workflow, the large pool of candidates has already been narrowed down by
more than 7 magnitudes without the need of any manual experimentation or expert
intervention. The remaining 102 to 101 candidates can then be tested experimentally in
the laboratory, drastically reducing time and research costs compared to simple trial
and error experimentation [19, 26, 32].

Large number of poten�al 
candidate materials, ~109 samples

Candidate materials for intended
applica�on, ~ 102 to 101 samples

Machine Learning

Simula�on

Experimenta�on

Value: low/medium
Cost: low
Goal: predict/filter

Value: medium
Cost: medium
Goal: simulate

Value: high
Cost: high
Goal: validate

Feedback 
loop

Figure 2.4: A typical workflow for materials discovery, integrating materials informatics,
machine learning, simulation and experimentation to narrow down a large
number of potential candidate materials to a few promising candidates.
Figure adapted with permission from [51].

ML in MI has received significant attention in the academic research world and is
gaining widespread adoption in the study of many inorganic material properties such
as mechanical, electronic, thermodynamic, and transport properties. More specifically,
it has recently been studied for its use in the research and design of novel inorganic
materials in many different application areas such as photovoltaic materials [52–54],
materials for energy storage [55–59], catalysts/photocatalysts [60–66], thermoelectric
materials [21, 67–70], high-temperature superconductors [71–77], and high entropy [78,
79] and metallic glass alloys [52, 80, 81].
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These studies were enabled by the increasing abundance of experimental and simulated
materials property data available online through several materials data repositories as
well as the improvements in the materials informatics ecosystem (such as algorithm
and model developments, open source software, model hosting and sharing platforms).
An overview of other impactful and relevant works in MI as well as the materials
data repositories, software tools, and methodologies often used by researchers in the
field is given as part of the first publication included in this dissertation (Chapter 3.2).
Furthermore, the interested reader is encouraged to refer to the cited works as well as
other well-written reviews available in the literature regarding this exciting research
field [26, 27, 34, 36, 37, 40–42, 82–96].

The accelerating research interest in the field of MI is encouraging. However, many open
questions and issues remain to be addressed in the adaptation of data-driven techniques
for materials science. These are discussed in detail in the upcoming chapters.
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materials science

3.1 The need for best practices in materials informatics

Despite the remarkable amount of interest in data-driven materials science and MI in
the past ~15 years, they remain relatively new research fields with many unanswered
questions [97]. The use and implementation of data science and ML methodologies
are unfamiliar skills that are not typically required for the materials scientist. On
the other hand, the proliferation and democratization of software packages make it
appear easy to implement basic proof of concept studies using data science and ML in
materials science. However, the inexperience with these methodologies in the materials
science field often leads to published studies which, while interesting and potentially
useful, are often misguided or incorrect1. Without a firm understanding and careful
consideration of the data processing, modeling, and model validation choices in these
studies, the interested materials scientist may be misled into believing inaccurate results
or adapting improper methodologies for follow-up works.

Oftentimes, it is apparent from the published works that inadequate attention is being
paid to the fundamental assumptions and limitations of the methodologies used for
data processing, data splitting, featurization, modeling, and evaluation. The model
results are often blindly trusted and reported without a critical examination of their
truthfulness. In other cases, modeling choices are not clearly explained—models are
sometimes taken from other domains in ML and poorly adapted to the domain of
materials science. While it is encouraging to see researchers getting inspiration and
adapting modeling methods from other domains to material science, in many occur-
rences, the models appear to be more “transplanted into”, rather than being “adapted
for” materials science.

1“Garbage in, garbage out”, as a computer scientist would say.
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Another major roadblock is in the lack of reproducibility in the works. In many early
publications—and to an extent, still in some new publications today—the algorithms
and methodologies used in the studies are not fully published or open-sourced. For
some works, the datasets used are also not provided. Reproducibility in reporting is
a major principle in good scientific practice. Especially for studies involving computa-
tional methods such as MI, it is simpler (requiring typically less specialized equipment
or materials) to demonstrate and enable the reproducibility of results.

Furthermore, in many early works where modeling techniques were introduced, the
researchers did not rely on standardized materials property datasets to evaluate the
model performance. Instead, the researchers used in-house or private datasets to bench-
mark their models against baseline models. This use of a non-standardized dataset
prevents the direct comparison of model results between different publications and
produces additional hurdles for future researchers who wish to compare against exist-
ing models. Lastly, the use of different model evaluation metrics to present the model
performance also prevents the quick comparison of model results between different
publications.

Certainly, most of these cases are unintentional or are the result of incomplete under-
standing of the methodologies used, and are not a deliberate act of omission. Neverthe-
less, it is important for the field of MI that a basic set of guidelines and best practices
is established with the goals of unifying research reporting, improving publication
quality, and facilitating collaboration in this field. This will not only lend credibility
to future publications, but also promote further research and development into this
exciting field.

The first publication resulting from this dissertation work addresses these issues. The
publication and its accompanying supplementary information (SI) are inserted in the
following pages.
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ABSTRACT: This Methods/Protocols article is intended for
materials scientists interested in performing machine learning-
centered research. We cover broad guidelines and best practices
regarding the obtaining and treatment of data, feature engineering,
model training, validation, evaluation and comparison, popular
repositories for materials data and benchmarking data sets, model
and architecture sharing, and finally publication. In addition, we
include interactive Jupyter notebooks with example Python code to
demonstrate some of the concepts, workflows, and best practices
discussed. Overall, the data-driven methods and machine learning
workflows and considerations are presented in a simple way, allowing
interested readers to more intelligently guide their machine learning
research using the suggested references, best practices, and their own
materials domain expertise.

■ INTRODUCTION

Materials scientists are constantly striving to advance their
ability to understand, predict, and improve materials proper-
ties. Due to the high cost of traditional trial-and-error methods
in materials research (often in the form of repeated rounds of
material synthesis and characterization), material scientists
have increasingly relied on simulation and modeling methods
to understand and predict materials properties a priori.
Materials informatics (MI) is a resulting branch of materials
science that utilizes high-throughput computation to analyze
large databases of materials properties to gain unique insights.
More recently, data-driven methods such as machine learning
(ML) have been adopted in MI to study the wealth of existing
experimental and computational data in materials science,
leading to a paradigm shift in the way materials science
research is conducted.
However, there exist many challenges and “gotchas” when

implementing ML techniques in materials science. Further-
more, many experimental materials scientists lack the know-
how to get started in data-driven research, and there is a lack of
recommended best practices for implementing such methods
in materials science. As such, this article is designed to assist
those materials science scholars who wish to perform data-
driven materials research. We demonstrate a typical ML
project step-by-step (Figure 1), starting with loading and
processing data, splitting data, feature engineering, fitting
different ML models, evaluating model performance, compar-
ing performance across models, and visualizing the results. We

also cover sharing and publication of the model and
architecture, with the goal of unifying research reporting and
facilitating collaboration this emerging field. Throughout this
process, we highlight some of the challenges and common
mistakes encountered during a typical ML study in materials
science, as well as approaches to overcome or address them.
Highlighting the best practices will improve the research and
manuscript quality and ensure reproducible results.
To demonstrate some of the best practices discussed

throughout this work, we have created several interactive
Jupyter notebooks with relevant Python code structured in a
tutorial format (Table 1). The sections in this article that
include accompanying notebooks are marked with an asterisk*.
The notebooks walk the readers through a basic ML study in
materials science: the prediction of heat capacity for solid
inorganic compounds. We demonstrate this by implementing
several classical machine learning as well as neural network
models from the well-known Python packages scikit-learn and
PyTorch, respectively. The Jupyter notebooks can be accessed
at the online GitHub repository: https://github.com/anthony-
wang/BestPractices. Setup, usage, further instructions, and
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pertinent information can also be found there. Please note, an
intermediate knowledge of the Python programming language
and general programming principles is required.

■ MEANINGFUL MACHINE LEARNING
Machine learning is a powerful tool, but not every materials
science problem is a nail. It is important to delineate when to
use ML and when it may be more appropriate to use other
methods. Consider what value ML can add to your project and
whether there are more suitable approaches. Machine learning
is most useful when human learning is impossible, such as
where the data and interactions within the data are too
complex and intractable for human understanding and
conceptualization. Contrarily, machine learning often fails to
find meaningful relationships and representations from small
amounts of data, when a human mind would otherwise likely
succeed.
When developing ML tools and workflows, consider how

(and with what ease) they can be used not only by yourself but
by others in the research community. If another researcher
wants to use your method, will they be able to do so, and will it
be worth it for them? For example, if you include data from ab
initio calculations such as density functional theory (DFT), or
crystal structure as one of the input features of your ML model,
would it not be simpler for other researchers to use DFT or
other simulation methods themselves, instead of using your
ML model?
Another limitation to consider when using ML as a tool is

the model interpretability vs predictive power trade-off. If you
are looking for physical or chemical insights into your
materials, you are unlikely to find them when using powerful
and complex models such as neural networks: these models
while they can exhibit high model performanceare usually
too complex to be easily understood. These are so-called
“black-box” models because outside of their inputs and
outputs, it is nearly impossible for a human to grasp the

inner model workings and its decision making processes. In
contrast, simpler models might be easier to understand but
tend to lack the predictive power of the more complex models.
In general, a good ML project should do one or more of the

following: screen or down-select candidate materials from a
pool of known compounds for a given application or
property,1−3 acquire and process data to gain new insights,4,5

conceptualize new modeling approaches,6−10 or explore ML in
materials-specific applications.1,11−13 Consider these points
when you judge the applicability of ML for your project.

■ MACHINE LEARNING IN MATERIALS SCIENCE

Machine learning has been applied in the study of many
inorganic material properties, such as mechanical, electronic,
thermodynamic, and transport properties. It has also been used
in many different material application areas, such as photo-
voltaic materials, materials for energy storage, catalysts/
photocatalysts, thermoelectric materials, high-temperature
superconductors, and high entropy and metallic glass alloys.
We highlight some current examples in the literature of
inorganic material properties and their application areas in
Table 2. Here, we are not attempting to summarize the
methods or results of these studies; instead, we advise the

Figure 1. Schematic of a machine learning study in materials science.

Table 1. List of Accompanying Jupyter Notebooks and the
Topics Demonstrated

no. notebook contents

1 Loading data; examining, processing, cleaning up of data
2 Splitting data into train/validation/test data sets
3 Featurizing data; modeling with classical models, evaluating models,

effect of different train/validation/test splits
4 Modeling with neural networks, evaluating models, exporting models,

avoiding overfitting
5 Visualizing results

Table 2. Examples of Using Machine Learning in the Study
of Inorganic Materials

material properties refs

Mechanical properties 1, 6, 9, 25−30
Formation energy 7, 9, 29, 31−34
Band gap 6, 9, 29, 35−39
Density of states 40, 41
Crystal structure/stability 32, 42−52
Debye temperature/heat capacity 6, 53, 54
Thermal expansion coefficient 6, 53
Thermal conductivity 6, 53, 55−57
Seebeck coefficient 56, 58

material classes refs

Photovoltaic materials 34, 59, 60
Energy storage 61−65
Catalysts/photocatalysts 2, 66−71
Thermoelectric materials 4, 13, 56, 72, 73
High-temperature superconductors 74, 74−80
High entropy alloys 81, 82
Metallic glass alloys/glass-forming ability 34, 83, 84
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interested reader to refer to the cited works as well as other
well-written reviews available in the literature.3,14−24

■ WORKING WITH MATERIALS DATA
Data Source. Some of the more commonly used

repositories for materials property data are shown above in
Table 3.
Other repositories that host predominantly crystal structure

information are shown below in Table 4. While these
repositories do not necessarily host material property
information, the structure information contained within these
repositories are also valuable.

There is an ever-increasing number of materials informatics-
related resources and repositories; as such, only the more
commonly used repositories are mentioned above. Keep in
mind that each data set is different and may contain domain-
specific information and features that are restricted to certain
research fields or applications. There may also be differences in
the methodologies with which the data are experimentally or
computationally derived, curated, and recorded in these
databases. As a result of this, the values for material properties

might not be directly comparable across the different
repositories. Be mindful of this when you are comparing
property data across the repositories, especially if you plan on
aggregating or merging data from different sources.

Data Set Size and Composition*. When collecting your
data set for your ML study, be mindful of your data set size.
Ensure that your data set size is large enough and includes
most examples of the combinations of material compositions in
the material space you want to study. It is also important to
consider data balance or bias in your data sets. Does your data
form clusters based on chemical formula, test condition,
structure type, or other criteria? Are some clusters greatly over-
or under-represented? Many statistical models used in ML are
frequentist in nature and will be influenced by data set
imbalance or bias. Visualization techniques such as t-
distributed stochastic neighbor embedding (t-SNE110), uni-
form manifold approximation and projection (UMAP111), or
even simple elemental prevalence mapping112 may be useful in
investigating data set imbalance and bias.
Lastly, if your data set is too large (a rare luxury in the

materials science field), you may find yourself having to wait a
long time to train and validate your models during the
prototyping phase of your project. In this case, you can
subsample your data set into a small-scale “toy data set” and
use that to test and adjust your models. Once you have tuned
your models to your satisfaction on the toy data set, you can
then carry on and apply them to the full data set. When
sampling the original data set to create the toy data set, be
aware that you do not introduce any data set biases through
your sampling. Also keep in mind that not all performance-
related problems can be fixed by subsampling your data. If your
model can only train successfully on the toy data set and
cannot train on the full data set (e.g., due to memory or time
constraints), you may wish to focus on improving its
performance first.

Data Version Control. Be sure to save an archival copy of
your raw data set as obtained and be sure that you can retrieve
it at any time. If you make any changes to your data set, clearly
record the steps of the changes and ensure that you are able to

Table 3. Comparison of Materials Data Repositories with Predominantly Property Information

name
structure

information
mechanical
properties

thermal
properties

electronic
properties APIa data license refs

Materials Project Y Y Y Y Y CC BY 4.0 85
Open Quantum Materials Database Y N Y Y Y CC BY 4.0 86
AFLOW for Materials Discovery Y Y Y Y Y b 87
Novel Materials Discovery (NOMAD) Y Y Y Y Y CC BY 4.0 88
Open Materials Database Y N Y Y Y CC BY 4.0 89
Citrine Informatics Y Y Y Y Y CC BY 90
Materials Platform for Data Science (MPDS) Y Y Y Y Y CC BY 4.0 91
AiiDA/Materials Cloud Y Y Y Y Y Varies 92, 93
NREL MatDB Y N Y Y N Own license 94
NIST TRC Alloy Data N N Y N On request Free 95
NIST TRC ThermoData N N Y N N NIST SRD 96
NIST JARVIS-DFT/-ML Database Y Y Y Y Y Public domain 97, 98
MatWeb N Y Y N N Paid 99
Total Materia N Y Y N N Paid 100
Ansys Granta (MaterialUniverse repository) N Y Y N N Paid 101
MATDAT N Y Y N N Paid 102

aAn “application programming interface” is a set of defined functions, procedures, methods, or classes which enable a structured way of exchanging
data between programs. In the framework of a materials data repository, an API facilitates, e.g., the uploading, examining, and downloading of data
and other forms of interactions between the user and the repository. bNot specified.

Table 4. Comparison of Materials Data Repositories with
Predominantly Structure Information

name
no.

recordsa API
Data
license ref

Cambridge Structural Database
(CSD)

1,055,780 Y Paid 103

Inorganic Crystal Structure
Database (ICSD)

216,302 N Paid 104

Pearson’s Crystal Data (PCD) 335,000 N Paid 105
International Centre for Diffraction
Data (ICDD)

1,004,568 N Paid 106

Crystallography Open Database
(COD)

455,714 Y Open-
access

107

Pauling File 357,612 Y Paid 108
CrystMet database 160,000 N Paid 109
aNote: values for number of records were updated as of the
submission date (May 2020).
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reproduce them on the data set in the future if needed. To
simplify version control, consider using a version control
system (such as Git,113 Mercurial,114 or Subversion115) for
your data sets.
Cleanup and Processing*. Once you have curated your

data set, examine and explore the data on a high level to see if
there are any obvious flaws or issues. These mayand often
doinclude missing or unrealistic values (e.g., NaN’s, or
negative values/positive values where you do not expect them),
outliers or infinite values, badly formatted or corrupt values
(e.g., wrong text encoding, numbers stored in non-numeric
format), nonmatching data formats or data schema caused by
changes in the repository, and other irregularities. If you find
any irregularities, deal with them in an appropriate way and be
careful not to introduce any bias or irregularities of your own.
Make sure you document any data cleanup and processing
steps you performed; this is an important step in ensuring
reproducibility that is often overlooked in ML studies. In
addition, during your model prototyping stage, you may find
some additional problematic data samples which adversarially
affect your model performance. In this case, consider
performing another round of data cleanup before finalizing
your model.
Train−Validation−Test Split*. Split your data once into

three data sets: train, validation, and test. The split should be
performed in a reproducible way (e.g., by assigning a random
seed and shuffling the data set); alternatively, you can save the
split data sets as files for reuse. Make sure that no same (or
similar) data appear in the test data set, if they are already
present in the train or validation data set. For example, if you
have several measurements of a chemical compound that are
performed at different measurement conditions in the train
data set (e.g., temperature or pressure), during the testing
phase, your model would likely perform well if it is asked to
predict the property of the same compound at a different
condition. This, however, gives you an inflated estimate of how
well the model will generalize in cases where it has not seen a
particular chemical compound before. For a truly rigorous
evaluation of your model’s generalization performance, you
should take care to avoid this data leakage when you split your
data.
During the training stage, models may only be shown the

training data as part of the learning process. Validation data
may be used to assess and tune different model hyper-
parameters and may be compared with the predictions of
different model/hyperparameter combinations to evaluate a
model’s performance. In contrast, test data may only be used in
order to evaluate a model’s performance as a final step, after
the model has been finalized. Models must not be trained nor
tuned on the test data set. Use the same train, validation, and
test data sets for all modeling and model comparison/
benchmarking steps.
The training data set can be further partitioned to be used

for cross-validation (CV). CV is a method that is often
employed to estimate the true ability of a model to predict on
new unseen data and to catch model-specific problems such as
overfitting or selection bias.116 One typical method is k-fold
cross-validation. In k-fold CV, the training data set is first
randomly partitioned into K subsets (remember to note down
your partitioning details). Then, for each k of the data subsets
k = 1, 2, ..., K, the model is trained on the combined data of the
other K − 1 subsets and then evaluated using the kth subset.
The resulting K prediction errors are then typically averaged to

give a more accurate estimate of the model’s true predictive
performance compared to evaluating the model performance
on one single train/validation/test split. Typical choices for K
in the literature are 5 or 10. In the case of a small input data set
size, k-fold CV or other methods of cross-validation can also be
used as a data resampling technique for models that are more
robust against overfitting on the validation set (e.g., linear
regression).

■ MODELING
Choosing Appropriate Models and Features*. The

data set size will almost always determine your available
choices of ML models. For smaller data set sizes, classical and
statistical ML approaches (e.g., regression, support vector
machines, k-nearest neighbors, and decision trees) are more
suitable. In contrast, neural networks require larger amounts of
data and only start becoming feasible/useful when you have
training data points on the order of thousands or more.
Typically, ML models such as regression, decision tree/
random forest, k-nearest neighbors, and support vector
machines are used on smaller data sets. These algorithms
can be further improved by applying bagging, boosting, or
stacking approaches. There are many existing Python libraries
for implementing the above, with perhaps the most well-known
being scikit-learn.117 For larger data sets, neural networks and
deep learning methods are more commonly used. In the
scholarly community, the Python libraries PyTorch118 and
TensorFlow119 are often used to implement these architec-
tures.
Feature engineering is important for smaller data set sizes

and can contribute to a large model performance increase if the
features are well-engineered.1,54,120 A common way to
transform chemical compositions into usable input features
for ML studies is through the use of composition-based feature
vectors (“CBFVs”). There are numerous forms of the CBFV
available, such as Jarvis,121 Magpie,34 mat2vec,4 and Oliynyk.13

These CBFVs contain values that are either experimentally
derived, calculated through high-throughput computation, or
extracted from materials science literature using ML
techniques. Instead of featurizing your data using CBFVs,
you can also try a simple onehot-encoding of the elements.
These CBFV featurization schemes as well as the relevant
functions and code for featurizing chemical compositions are
included in the online GitHub repository associated with this
work.
For sufficiently large data sets and for more “capable”

learning architectures like very deep, fully connected net-
works7,122 or novel attention-based architectures such as
CrabNet,6 feature engineering and the integration of domain
knowledge (such as through the use of CBFVs) in the input
data becomes irrelevant and does not contribute to a better
model performance compared to a simple onehot-encoding.11

Therefore, due to the effort required to curate and evaluate
domain knowledge-informed features specific to your research,
you may find it more beneficial to seek out additional sources
of data and already-established featurization schemes or use
learning methods that do not require domain-derived features6

instead.
Data Scaling and Normalization*. In most cases, it may

be beneficial to scale your input data (X). For a regression task,
it may also be helpful to scale the targets (y) as well. Scaling
can be done in many ways. Often, the input data is scaled to
have zero-mean and unit variance. This allows for more stable
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gradients and faster model convergence, since the resulting
feature dimensions are similar in scale.123−126

This is done by using the transformation:

σ′ = − ̅X X X( )/ X (1)

where X denotes the mean and σX the standard deviation of X.
In some cases, applying the logarithm function to your values
before scaling them according to eq 1 may further improve
your model performance.
Keep in mind that the scaling operations must be conducted

using solely the statistics from the training data set (i.e., the
train/validation/test data sets are scaled using only the mean
and standard deviation values computed from the training
data) and that the validation and test data statistics must not
be used. Remember also to undo the scaling operation(s) on
the target values (if these were scaled) after loss computation
but before performance evaluation. Similar to scaling, normal-
ization of X is recommended for regression tasks. Here it is
also important to use only the training data statistics when
normalizing input data.
Scaling and normalization are not commutable: their

ordering matters. You should scale, then normalize. When
undoing this operation, the inverse is required: unnormalize
and then unscale.
Keep It Simple. Sometimes, especially in the case of small

data set sizes, simpler models can perform better than more
complex models on the held-out test data. Some simpler
models that you can try are linear (or ridge/lasso) regression,
random forest, or k-nearest neighbors.
Furthermore, consider the model complexity−explainability

trade-off. Typically, more complex models achieve higher
model performance but have the caveat that they are generally
not easily interpretable by humans. In contrast, simpler models
are typically assumed to be more easily understood by humans
and lead to better opportunities for model introspection. This
is an important consideration in materials science, since
synthesis and characterization are costly and time-consuming
and the costs must be justified.
Hyperparameter Optimization. Depending on your

choice of ML model, there may be model hyperparameters
that can be tuned. Examples of hyperparameters are the
number of neighbors (k) in k-nearest neighbors, the number
and depth of trees in a random forest, the kernel type and
coefficient in support vector machines, the maximum number
of features to consider in gradient boosting, and loss criterion,
learning rate, and optimizer type in neural networks. These
hyperparameters are properties of the models themselves and
can significantly affect your model’s performance, speed (in
training and inference), and complexity.
The hyperparameters are not learned by the model during

the training step; rather, they are selected by you when you
create the model. The recommended way to optimize your
model hyperparameters is by training numerous models (each
with a different set of hyperparameters) using the same
training set and then evaluating the models’ performance using
the same validation set. By doing this, you will be able to
identify the set of hyperparameters that generally leads to
good-performing models. This is commonly referred to as a
“grid search”. Imagine that your model has two continuous-
variable hyperparameters, h1 and h2, and that there is a range of
values for each of these parameters that you wish to investigate,
[h1,min, h1,max] and [h2,min, h2,max], respectively. You can then
define a grid that spans between (h1,min, h2,min) and (h1,max,

h2,max). At each point on this grid, you train a model
corresponding to that set of hyperparameters using the training
set and then evaluate its performance on the validation set.
After repeating this for every point on the grid, you obtain a
mapping that you can then use to determine the best set of
hyperparameters for your specific model and data.
Once again, we stress the importance of reserving a held-out

test data set during data set splitting. By training and
optimizing your model on the training and validation data
sets, you have effectively tunedand possibly biasedyour
model to perform exceptionally well on these data samples.
Therefore, the performance metrics of your model on these
data sets are no longer good indicators of your model’s true
generalization ability. In contrast, evaluating your model’s
performance on the held-out test data set (which your model
has never seen before) will give you a much more realistic
estimate.

Model Evaluation and Comparison. Typically, studies in
materials science will compare the performance of several ML
model and hyperparameter combinations on a given task.
Trained models are typically compared by evaluating their
performance on the held-out test data set using computed test
metrics such as accuracy, logarithmic loss, precision, recall, F1-
score, ROC (receiver operating characteristic curve), and AUC
(area under curve) for classification tasks and r2 (Pearson
correlation coefficient), mean absolute error, and (root) mean
squared error for regression tasks. Also consider using cross-
validation (as discussed earlier) to give a more accurate
estimate of your model’s true performance.

Show Your Model*. If you are reporting a new model
architecture or algorithm, you must include all pertinent
information necessary to reproduce, evaluate, and apply your
models. This entails providing the complete source code for
your implementation, the hyperparameters used, the random
seeds applied (if any), and the pretrained weights of the
models themselves. In addition, clear descriptions and
schematics of your new system should be provided, as well
as instructions to reproduce your model and work. Ideally, you
can show your model and results in an interactive manner,
such as through the use of Jupyter notebooks.

■ FITTING AND TESTING
Avoid Overfitting*. In an ML problem, the model is asked

to perform two contradicting tasks: (1) minimize its prediction
error on the training data set and (2) maximize its ability to
generalize on unseen data. Depending on how the model, loss
criterion, and evaluation methods are set up, the model may
end up memorizing the training data set (an unwanted
outcome) rather than learning an adequate representation of
the data (the intended outcome). This is called “overfitting”
and usually leads to decreased generalization performance of
the model. Overfitting can occur on all kinds of models,
although it typically occurs more often on complex models
such as random forests, support vector machines, and neural
networks.
During model training, observe the training metrics such as

your loss output and r2 score on the training and validation set.
For example, when training a neural network, you can use a
learning curve to track validation errors over each epoch during
the training process. As the model trains, the validation and
training error will ideally decrease. Your training error will
approach zero, but this is not the metric we care about! Rather,
you should closely observe the validation error. When your
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validation error increases again while your training error
continues to decrease, you are likely memorizing your training
data and thus overfitting your data.
Overfitting can have an adverse effect on your model’s ability

to generalize (that is, returning a reasonable output prediction
for new and unseen data), thus performing poorer on the test
data set. If you notice that your model overfits your data very
easily, consider reducing the complexity of your model or using
regularization.
Beware of Random Initialization*. Many ML models

require an initial guess as a starting point for their internal
parameters. In many model implementations (e.g., in scikit-
learn’s linear regression, random forest, support vector
machines, boosting implementations), these initial internal
model parameters are provided by your system’s random
number generator. The same applies for neural network-based
models, in the initialization of the weights and biases of the
networks and some optimizer parameters. Depending on how
sensitive your model is to initialization, different initial states of
the models can lead to significant differences in your model
performance.
It is therefore important that you ensure reproducible results

across different model runs and different models (both for your
internal testing and for publication). To accomplish this, you
can choose a seed to use for the random number generator. Do
not forget to mention this seed in your publication and code.
Note that alternative ways of model initialization exist, such as
using different estimators for initial parameter guesses as well
as different initialization schemes for neural network weights
and biases; here, you should note down your changes if you
use an alternative implementation.
Avoid p-Hacking. Train your models on the training data

set only and use the validation data set for tuning your model
hyperparameters. Do not evaluate your model on the held-out
test data set until you have finished tuning your model and it is
ready for publication. Looking at the test data set multiple
times to pick ideal model hyperparameters is a form of p-
hacking and is considered cheating!127

■ BENCHMARKING AND TESTING

Reproducibly Testing Various Methods*. For compar-
ison/ablation studies against other ML models and/or
architectures, make sure you use the same train/validation/
test data sets (refer to above for best practices on data set
splitting and management). For the most informative and fair
comparison between different published models, consider
running the models yourself. If you perform any additional
model-specific data manipulation steps, make sure to docu-
ment them and make them reproducible for your readers.
During the model tuning process, train your models on the

train data set and evaluate their performances on the validation
set. After you have finalized your model architecture and
hyperparameters, train the models once more on the combined
train and validation data sets and evaluate their performances
on the test data set.
Existing Benchmarks. There are some tools and software

packages online that can be used as baselines to judge the
performance of your models.128−131 Some of these tools can
perform automatic feature engineering and testing of several
different ML models. We suggest that you download these
tools and compare the performance of your models against
them. If your model does not perform better or does not offer

any advantages over these existing tools, consider other venues
of improvement.

■ MAKING PUBLICATION-READY, REPRODUCIBLE
WORK

Source Code and Documentation*. Publishing in peer-
reviewed journals relies on the foundational principle that the

methodology be sufficiently described in order to ensure
reproducibility. Therefore, for your ML-based study, full
source code for your models and architecture (if any) must
be provided, including implementation details of data
processing, data cleanup, data splitting, model training, and

Figure 2. Example predicted vs actual material property plots, plotted
(left) without and (right) with a marginal histogram. In addition, lines
corresponding to ideal predictions (where the predicted values exactly
match the actual values) and a linear regression fit (for estimating the
correlation between the predicted and actual values) are shown.

Figure 3. Example residual error plots, plotted (left) against the actual
value and (right) as a histogram with a kernel density estimation
(kde). A lower error indicates a more accurate model prediction.

Figure 4. Example loss curve plot of a neural network, showing model
performance (loss) evaluated on the train and validation data sets at
each epoch throughout the training process. A lower loss indicates a
better-performing model.
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model evaluation. If you can, you should also publish your
source code under a permissive or an open-source license so
that others may (re)use, improve, collaborate on, and
contribute further to your work.132

Your published source code must be completethat is,
somebody should be able to take your source code verbatim,
execute it, and obtain the same results that you did. Required
libraries and other software dependencies (if any) must be
listed, preferably with the pertinent version numbers. Ideally,
these dependencies will be listed in an “environment file” that
others can use to directly create a working software
environment on their local system. If you use any code or
packages developed by others, make sure to adhere to their
licenses. Also consider hosting your code in an online, version-
controlled repository such as GitHub, GitLab, Bitbucket,
DLHub,133 or similar.
Make sure the source code is well-documented and follows

well-established code standards. Instead of writing additional
comments to explain your code, consider writing code in a way
such that it is self-explanatory without the need for additional
comments. This entails using clear variable names, closely
following formatting guidelines (such as PEP 8), and writing

“explicit” code. Add a “README” file as well that provides
your readers with instructions for the installation, setup, and
usage of your code and for the reproduction of your published
results. To ensure large-scale deployability and consistency on
any infrastructure, consider also publishing your project as a
containerized application, using tools such as Docker.134

All Data Should Be Provided*. All results and data sets
reported in the manuscript should be provided with the
manuscript; alternatively, code for the users to obtain the data
themselves must be given, ideally with clear instructions of the
process. Additionally, all raw dataif their licenses allow it
should be provided with the manuscript as well. In the case
where the data cannot be provided, due to licensing, legal and
intellectual property protection, or other insurmountable
hurdles, an explanation should be given. You are nevertheless
encouraged to find alternative solutions for providing data
within reason. Examples may be to provide a partial data set, an
anonymized data set, trained model weights, or instructions for
users on how to obtain the data set themselves. Consult with
the owner of the data before considering these approaches, and
as always, make sure you adhere to the data license.

Figure 5. Example visualization of element prevalence in a data set, shown as a histogram.

Figure 6. Example visualization of element prevalence in a data set, shown as a heatmap on a periodic table.
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Trained Models and Weights*. Ideally, you should
provide a record of all model hyperparameters tested, as well as
the best hyperparameters reported. For neural network
implementations, the trained weights from the models should
also be provided. In this case, be sure to provide the necessary
code to recreate the neural network architecture and to load
the saved weights for use. Ideally, you should also offer a
friendly way to make predictions on user-supplied input data
using these saved weights.
Visualizations*. All visualizations shown in the manuscript

should be reproducible by a user who accesses your code.
Ensure that you have included the required data (and ideally
the code) used to generate the visualizations or have given the
users a way to obtain the required data themselves. If there are
additional figures, such as in the Supporting Information (SI),
ensure that they are understandable by themselves and do not
require additional explanation. If they do require explanation,
provide this in the SI along with the figures.
Some of the typical visualizations that have shown

themselves to be generally usefuland are thus commonly
shownin MI studies are predicted property value vs actual
property value plots (Figure 2), residual error plots and
histograms of residual errors (Figure 3), loss curves throughout
the training process of a neural network (Figure 4), and
element prevalence visualizations (Figures 5 and 6).

■ BENCHMARK DATA SETS

While there are currently several materials property data sets
online which could potentially be used as benchmark data sets
for benchmarking model performance in MI, there exist few
published train/validation/test splits of these data sets which
can be used by researchers to conduct a fair benchmark. Here,
we note that examples of such data sets are commonly found in
the fields of computer vision (e.g., CIFAR, Google Open
Images data set, CelebFaces, ImageNet) as well as in natural
language processing (e.g., Glue, decaNLP, WMT 2014 EN-
DE).
Furthermore, the data heterogeneityin terms of the classes

of materials, the reported material properties, or the diversity
in the types of compounds and constituent elementsof the
available materials data sets are typically quite limited and vary
from data set to data set. Additionally, the methods to access
some of the data stored in the online data repositories are
sometimes restricted and, therefore, hinder potential MI
studies. This is due in part to the fact that certain data sets
are proprietary or licensed under terms that do not allow their
sharing (whether online or offline).
Another challenge is that the online material property

repositories do not offer a “checkpointed” repository state;
therefore, the repository and its data may change at any point
in time, and there is no easy way to revert or refer back to the
state of the repository at an earlier time. Therefore, current ML
researchers typically download materials data sets from the
repositories and archive them locally to run their benchmarks
internally. However, there are recent emerging works from
researchers that aim to address this issue of missing benchmark
data sets for MI and ML studies in materials science.131,135,136

■ SUMMARY

While various machine learning methods, including classical
methods and more advanced techniques such as deep learning
and neural network-based architectures, have successfully been

used for the prediction of materials properties, unique
challenges still exist for their application in the domain of
materials informatics. There are common pitfalls in the
gathering, analysis, and reporting of materials science-related
data and machine learning results and in the facilitation of
reproduction studies. This Methods/Protocols article high-
lights a large number of these issues which are found in
submitted manuscripts and published works in the field of
materials informatics. Proper observation of the recommenda-
tions given above will certainly ensure higher publication
standards and more reproducible science in this exciting
emerging field.
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the German Academic Exchange Service (Program No.
57438025), and the Deutsche Forschungsgemeinschaft.
T.D.S. and S.K.K. are supported by the National Science
Foundation (CMMI-1562226 and DMR-1651668) as well as
the INL Laboratory Directed Research & Development
(LDRD) Program under DOE Idaho Operations Office
Contract DE-AC07-05ID145142. J.B. is supported by the
National Science Foundation (DMR 18-47701 and CER 19-
11311) as well as the Welch Foundation (E-1981). K.A.P. is
supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division under Contract No. DE-AC02-
05CH11231 (Materials Project program KC23MP). A.O.O.
thanks Manhattan College for the support with start-up funds
and Kakos Center for Scientific Computing at Manhattan
College for providing computational resources.

■ REFERENCES
(1) Mansouri Tehrani, A.; Oliynyk, A. O.; Parry, M.; Rizvi, Z.;
Couper, S.; Lin, F.; Miyagi, L.; Sparks, T. D.; Brgoch, J. Machine
Learning Directed Search for Ultraincompressible, Superhard
Materials. J. Am. Chem. Soc. 2018, 140, 9844−9853.
(2) Singh, A. K.; Montoya, J. H.; Gregoire, J. M.; Persson, K. A.
Robust and synthesizable photocatalysts for CO2 reduction: a data-
driven materials discovery. Nat. Commun. 2019, 10, 443.
(3) Tabor, D. P.; Roch, L. M.; Saikin, S. K.; Kreisbeck, C.; Sheberla,
D.; Montoya, J. H.; Dwaraknath, S. S.; Aykol, M.; Ortiz, C.; Tribukait,
H.; Amador-Bedolla, C.; Brabec, C. J.; Maruyama, B.; Persson, K. A.;
Aspuru-Guzik, A. Accelerating the discovery of materials for clean
energy in the era of smart automation. Nature Reviews Materials 2018,
3, 5−20.
(4) Tshitoyan, V.; Dagdelen, J.; Weston, L.; Dunn, A.; Rong, Z.;
Kononova, O.; Persson, K. A.; Ceder, G.; Jain, A. Unsupervised word
embeddings capture latent knowledge from materials science
literature. Nature 2019, 571, 95−98.
(5) Kim, E.; Huang, K.; Saunders, A.; McCallum, A.; Ceder, G.;
Olivetti, E. Materials Synthesis Insights from Scientific Literature via
Text Extraction and Machine Learning. Chem. Mater. 2017, 29,
9436−9444.
(6) Wang, A. Y.-T.; Kauwe, S. K.; Murdock, R. J.; Sparks, T. D.
Compositionally-Restricted Attention-Based Network for Materials
Property Prediction: CrabNet. ChemRxiv, 2020. DOI: 10.26434/
chemrxiv.11869026, accessed May 5, 2020.
(7) Jha, D.; Ward, L.; Paul, A.; Liao, W.-K.; Choudhary, A.;
Wolverton, C.; Agrawal, A. ElemNet: Deep Learning the Chemistry of
Materials From Only Elemental Composition. Sci. Rep. 2018, 8,
17593.
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(107) Grazǔlis, S.; Chateigner, D.; Downs, R. T.; Yokochi, A. F. T.;
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Overview of Notebooks
These notebooks are included to illustrate a hypothetical Machine Learning project created following best
practices.

The goal of this ML project is to predict the heat capacity of inorganic materials given the chemical composition
and condition (the measurement temperature). We will use both classical ML models as well as neural networks.

To do this, we must:

1. Clean and process our dataset, removing obviously erroneous or empty values.
2. Partition our data into train, validation, and test splits.
3. Featurize our data, turning the chemical formulae into CBFVs.
4. Train models on our data and assess the predictive power of the models.
5. Compare the performance of the models fairly and reproducibly.
6. Visualize the prediction results of the models.
7. Share our models and enable others to reproduce your work and aid collaboration.

If you require more information about how to use Jupyter notebooks, you can consult:

The main README file inside this repository: https://github.com/anthony-
wang/BestPractices/blob/master/README.md (https://github.com/anthony-
wang/BestPractices/blob/master/README.md)
The official Jupyter Notebook documentation: https://jupyter-
notebook.readthedocs.io/en/stable/notebook.html (https://jupyter-
notebook.readthedocs.io/en/stable/notebook.html)

To read the main publication for which these notebooks are made, please see:

Wang, Anthony Yu-Tung; Murdock, Ryan J.; Kauwe, Steven K.; Oliynyk, Anton O.; Gurlo, Aleksander; Brgoch,
Jakoah; Persson, Kristin A.; Sparks, Taylor D., Machine Learning for Materials Scientists: An Introductory Guide
toward Best Practices (https://doi.org/10.1021/acs.chemmater.0c01907), Chemistry of Materials Just Accepted
Manuscript, 2020. DOI: 10.1021/acs.chemmater.0c01907 (https://doi.org/10.1021/acs.chemmater.0c01907)

Please also consider citing the work if you choose to adopt or adapt the methods and concepts shown in these
notebooks or in the publication:

@article{Wang2020bestpractices, 
   author = {Wang, Anthony Yu-Tung and Murdock, Ryan J. and Kauwe, Steven K. and O
liynyk, Anton O. and Gurlo, Aleksander and Brgoch, Jakoah and Persson, Kristin A. a
nd Sparks, Taylor D.}, 
   date = {2020}, 
   title = {Machine Learning for Materials Scientists: An Introductory Guide towar
d Best Practices}, 
   issn = {0897-4756}, 
   journal = {Chemistry of Materials}, 
   url = {https://doi.org/10.1021/acs.chemmater.0c01907}, 
   doi = {10.1021/acs.chemmater.0c01907}
}
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Check that libraries are installed
This notebook checks to see if you have the correct version of Python as well as all necessary libraries installed.

Check the main README file (https://github.com/anthony-wang/BestPractices/blob/master/README.md) for
instructions if anything is missing.
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In [1]: from __future__ import print_function
from distutils.version import LooseVersion as Version
import sys 

try: 
   import curses 
   curses.setupterm() 
   assert curses.tigetnum("colors") > 2 
   OK = "\x1b[1;%dm[ OK ]\x1b[0m" % (30 + curses.COLOR_GREEN) 
   FAIL = "\x1b[1;%dm[FAIL]\x1b[0m" % (30 + curses.COLOR_RED)

except: 
   OK = '[ OK ]' 
   FAIL = '[FAIL]' 

try: 
   import importlib
except ImportError: 
   print(FAIL, "Python version 3.4 is required," 
               " but %s is installed." % sys.version) 

def import_version(pkg, min_ver): 
   mod = None 
   try: 
       mod = importlib.import_module(pkg) 
       if pkg in {'PIL'}: 
           ver = mod.VERSION 
       else: 
           ver = mod.__version__ 
       if Version(ver) < min_ver: 
           print(FAIL, "%s version %s or higher required, but %s installed." 
                 % (lib, min_ver, ver)) 
       else: 
           print(OK, '%s version %s' % (pkg, ver)) 
   except ImportError as imp_err_msg: 
       print(FAIL, 'Error in importing %s: %s' % (pkg, imp_err_msg)) 
   except AttributeError as att_err_msg: 
       print(FAIL, 'Error in reading attribute of %s: %s' % (pkg, att_err_msg
)) 
   return mod 

# first check the python version
print('Using python in', sys.prefix)
print(sys.version)
pyversion = Version(sys.version)
if pyversion >= "3": 
   if pyversion < "3.7": 
       print(FAIL, "Python version > 3.7 is required," 
                   " but %s is installed.\n" % sys.version)
elif pyversion < "3": 
   print(FAIL, "Python version > 3.7 is required," 
               " but %s is installed.\n" % sys.version)
else: 
   print(FAIL, "Unknown Python version: %s\n" % sys.version) 

requirements = {'numpy': '1.18.0', 
               'pandas': '1.0.0', 
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               'pandas_profiling': '2.4.0', 
               'matplotlib': '3.2.0', 
               'seaborn': '0.10.0', 
               'sklearn': '0.22.0', 
               'scipy': '1.4.0', 
               'tqdm': '4.43.0', 
               'jupyter_client': '6.0.0', 
               'ipywidgets': '7.5.0', 
               'torch': '1.3.0',} 

# now check the dependencies
for lib, required_version in list(requirements.items()): 
   import_version(lib, required_version)

Using python in C:\Users\Anthony\Anaconda3\envs\bestpractices 
3.7.6 | packaged by conda-forge | (default, Mar  5 2020, 14:47:50) [MSC v.191
6 64 bit (AMD64)] 
[ OK ] numpy version 1.18.1 
[ OK ] pandas version 1.0.2 
[ OK ] pandas_profiling version 2.4.0 
[ OK ] matplotlib version 3.2.0 
[ OK ] seaborn version 0.10.0 
[ OK ] sklearn version 0.22.2.post1 
[ OK ] scipy version 1.4.1 
[ OK ] tqdm version 4.43.0 
[ OK ] jupyter_client version 6.1.2 
[ OK ] ipywidgets version 7.5.1 
[ OK ] torch version 1.3.1 
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Data loading, cleanup and processing

The first step to a ML project is to obtain the dataset you will be working with. There are many repositories for
materials science-specific data (whether online or offline)---consult the accompanying paper for a list of the more
commonly used ones.

Once you have identified the repository and dataset you will use for your project, you will have to download it to
your local machine, or establish a way to reliably access the dataset. Consult the documentation of the
repository for how to do this.

For this tutorial, we have collected heat capacity ( ) data from the NIST-JANAF Thermochemical Tables
(https://doi.org/10.18434/T42S31).

Cp

In [1]: import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
%config InlineBackend.figure_format='retina' 

from pandas_profiling import ProfileReport

Load data
Using Pandas, we read in the dataset into a DataFrame.

We also print the shape of the DataFrame, which indicates the number of rows and columns in this dataset.

In [2]: PATH = os.getcwd()
data_path = os.path.join(PATH, '../data/cp_data_demo.csv') 

df = pd.read_csv(data_path)
print(f'Original DataFrame shape: {df.shape}')

This means that our input dataset has 4583 data samples, each with 3 variables.

Original DataFrame shape: (4583, 3) 
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Examine the data
We examine some rows and look at the data's basic statistics.

We see that the dataset contains information about the formula, measurement condition (in this case,
temperature in K), and the target property, heat capacity (in J/(mol * K)).

In [3]: df.head(10)

First thing you should notice: we have many observations of the same compound (B2O3) but measured at
different measurement conditions, resulting in a different property value.

We can get some simple summary statistics of the DataFrame by calling the .describe()  method on the
database.

Out[3]:
FORMULA CONDITION: Temperature (K) PROPERTY: Heat Capacity (J/mol K)

0 B2O3 1400.0 134.306

1 B2O3 1300.0 131.294

2 B2O3 1200.0 128.072

3 B2O3 1100.0 124.516

4 B2O3 1000.0 120.625

5 B2O3 900.0 116.190

6 B2O3 800.0 111.169

7 B2O3 723.0 106.692

8 B2O3 700.0 105.228

9 B2O3 600.0 98.115
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In [4]: df.describe()

Using the pandas-profiling  library, we can generate a more in-depth report of our starting dataset. Note that
generating this profile report might take upwards of 20 seconds.

In [5]: profile = ProfileReport(df.copy(), title='Pandas Profiling Report of Cp datase
t', html={'style':{'full_width':True}})
profile.to_widgets()

Notice a few things from the profile report:

We have some missing cells in the dataset ("Overview" tab)
We have some unrealistic Temperature and Heat Capacity values in the dataset ("Variables" tab)
We have some missing Temperature, Formula and Heat Capacity values in the dataset ("Variables" tab)

Also notice that on the "Overview" tab, there is the following warning: FORMULA  has a high cardinality: 245
distinct values.

Cardinality is the number of distinct values in a column of a table, relative to the number of rows in the table. In
our dataset, we have a total of 4583 data observations, but only 245 distinct formulae. We will have to keep this
in mind later, when we process and split the dataset.

Rename the column names for brevity

In [6]: df.columns

Out[4]:
CONDITION: Temperature (K) PROPERTY: Heat Capacity (J/mol K)

count 4579.000000 4576.000000

mean 1170.920341 107.483627

std 741.254366 67.019055

min -2000.000000 -102.215000

25% 600.000000 61.312500

50% 1000.000000 89.497000

75% 1600.000000 135.645000

max 4700.000000 494.967000

Report generated with pandas-profiling (https://github.com/pandas-profiling/pandas-profiling).

Out[6]: Index(['FORMULA', 'CONDITION: Temperature (K)', 
       'PROPERTY: Heat Capacity (J/mol K)'], 
      dtype='object')
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In [7]: rename_dict = {'FORMULA': 'formula', 
              'CONDITION: Temperature (K)': 'T', 
              'PROPERTY: Heat Capacity (J/mol K)': 'Cp'}
df = df.rename(columns=rename_dict)
df.columns

Check for and remove NaN  values

Here we can use the built-in Pandas methods to check for NaN  values in the dataset, which are missing values.
We then remove the dataset rows which contain NaN  values.

In [8]: # Check for NaNs in the respective dataset columns, and get the indices
df2 = df.copy()
bool_nans_formula = df2['formula'].isnull()
bool_nans_T = df2['T'].isnull()
bool_nans_Cp = df2['Cp'].isnull() 

# Drop the rows of the DataFrame which contain NaNs
df2 = df2.drop(df2.loc[bool_nans_formula].index, axis=0)
df2 = df2.drop(df2.loc[bool_nans_T].index, axis=0)
df2 = df2.drop(df2.loc[bool_nans_Cp].index, axis=0) 

print(f'DataFrame shape before dropping NaNs: {df.shape}')
print(f'DataFrame shape after dropping NaNs: {df2.shape}')

Pandas also includes the convenient built-in method .dropna()  to check for and remove NaNs  in-place:

In [9]: df3 = df.copy()
df3 = df3.dropna(axis=0, how='any') 

print(f'DataFrame shape before dropping NaNs: {df.shape}')
print(f'DataFrame shape after dropping NaNs: {df3.shape}') 

df = df3.copy()

Check for and remove unrealistic values
In some cases, you might also get data values that simply don't make sense. For our dase, this could be
negative values in the temperature or heat capacity values.

Out[7]: Index(['formula', 'T', 'Cp'], dtype='object')

DataFrame shape before dropping NaNs: (4583, 3) 
DataFrame shape after dropping NaNs: (4570, 3) 

DataFrame shape before dropping NaNs: (4583, 3) 
DataFrame shape after dropping NaNs: (4570, 3) 
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In [10]: bool_invalid_T = df['T'] < 0
bool_invalid_Cp = df['Cp'] < 0 

df = df.drop(df.loc[bool_invalid_T].index, axis=0)
df = df.drop(df.loc[bool_invalid_Cp].index, axis=0) 

print(f'Cleaned DataFrame shape: {df.shape}')

Save cleaned data to csv
Finally, after cleaning and processing the data, you can save it to disk in a cleaned state for you to use later.

Pandas allows us to save our data as a comma separated value .csv  file.

In [11]: out_path = os.path.join(PATH, '../data/cp_data_cleaned.csv')
df.to_csv(out_path, index=False)

Note, your data can be saved in other file formats (such as hdf5) or in databases (such as SQL), but we will not
go into the details of these formats.

Typically, the amount of data you can gather for your ML project isn't large enough to warrant these approaches.

Cleaned DataFrame shape: (4564, 3) 
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Splitting data into the train/validation/test dataset

It is important to split your full dataset into train/validation/test datasets, and reliably use the same datasets for
your modeling tasks later.

Using different train/validation/test splits can dramatically affect your model performance (as seen here by the
variance in  scores for 30 models which have been trained on 30 different dataset splits) [1]:

[1]: C. Clement, S. K. Kauwe, T. D. Sparks, Benchmark AFLOW Data Sets for Machine Learning, figshare 2020,
DOI: 10.6084/m9.figshare.11954742 (https://dx.doi.org/10.6084/m9.figshare.11954742).

r
2
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In [1]: import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
%config InlineBackend.figure_format='retina' 

from sklearn.model_selection import train_test_split 

# Set a random seed to ensure reproducibility across runs
RNG_SEED = 42
np.random.seed(seed=RNG_SEED)

Load the pre-processed dataset
We will start with the processed dataset that we saved from the last notebook.

In [2]: PATH = os.getcwd()
data_path = os.path.join(PATH, '../data/cp_data_cleaned.csv') 

df = pd.read_csv(data_path)
print(f'Full DataFrame shape: {df.shape}')

In [3]: df.head(10)

Full DataFrame shape: (4564, 3) 

Out[3]:
formula T Cp

0 B2O3 1400.0 134.306

1 B2O3 1300.0 131.294

2 B2O3 1200.0 128.072

3 B2O3 1100.0 124.516

4 B2O3 1000.0 120.625

5 B2O3 900.0 116.190

6 B2O3 800.0 111.169

7 B2O3 723.0 106.692

8 B2O3 700.0 105.228

9 B2O3 600.0 98.115
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Separate the DataFrame into your input variables ( ) and target
variables ( )
The  will be used as the input data, and  will be used as the prediction targets for your ML model.

If your target variables are discrete (such as metal / non-metal  or types of crystal structures), then you will be
performing a classification task. In our case, since our target variables are continuous values (heat capacity), we
are performing a regression task.

X
y

X y

In [4]: X = df[['formula', 'T']]
y = df['Cp'] 

print(f'Shape of X: {X.shape}')
print(f'Shape of y: {y.shape}')

Splitting data (and a word of caution)

Normally, we could simply split the data with a simple sklearn  function
The scikit-learn train_test_split  function randomly splits a dataset into train and test datasets. Typically,
you can use train_test_split  to first split your data into "train" and "test" datasets, and then use the function
again to split your "train" data into "train" and "validation" dataset splits.

As a rule of thumb, you can roughly aim for the following dataset proportions when splitting your data:

train split validation split test split

proportion
of original

dataset
50% to 70% 20% to 30% 10% to 20%

If you have copious amounts of data, it may suffice to train your models on just 50% of the data; that way, you
have a larger amount of data samples to validate and to test with. If you however have a smaller dataset and
thus very few training samples for your models, you may wish to increase your proportion of training data during
dataset splitting.

In [5]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, rand
om_state=RNG_SEED) 

print(X_train.shape)
print(X_test.shape)

Shape of X: (4564, 2) 
Shape of y: (4564,) 

(3651, 2) 
(913, 2) 
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But wait, what's wrong here?
We have to make sure that our dataset splits contain mutually exclusive formulae (e.g., all the data samples
associated with "Al2O3" is either in the train, validation, or test dataset, but not in multiple)!

In [6]: num_rows = len(X_train)
print(f'There are in total {num_rows} rows in the X_train DataFrame.') 

num_unique_formulae = len(X_train['formula'].unique())
print(f'But there are only {num_unique_formulae} unique formulae!\n') 

print('Unique formulae and their number of occurances in the X_train DataFram
e:')
print(X_train['formula'].value_counts(), '\n')
print('Unique formulae and their number of occurances in the X_test DataFram
e:')
print(X_test['formula'].value_counts())

There are in total 3651 rows in the X_train DataFrame. 
But there are only 244 unique formulae! 
 
Unique formulae and their number of occurances in the X_train DataFrame: 
W1       40 
N1Ti1    38 
N1Zr1    33 
B1Ti1    33 
O2Zr1    30 
         .. 
I4Si1     4 
N2O4      3 
K1        2 
Hg1O1     1 
I4Ti1     1 
Name: formula, Length: 244, dtype: int64  
 
Unique formulae and their number of occurances in the X_test DataFrame: 
Ca1S1       10 
N0.465V1    10 
Be2O4Si1    10 
O3W1         9 
W1           9 
            .. 
H2Mg1        1 
O2Pb1        1 
Fe1H3O3      1 
Hf1          1 
I1K1         1 
Name: formula, Length: 229, dtype: int64 
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There are in total 3651 rows in the X_train DataFrame. But there are only 244 unique formulae! In fact, you will
see that the same formulae are often present in the X_train and X_test DataFrames!

That's not good, because now we have instances of the same chemical compound appearing in both the training
and test data. Which means the model can cheat and in essence just memorize the training data, and during
testing, look up the nearby values present in the training data!

So how do we mitigate this?

Be aware of leaking data between datasets
We have to first group the data by chemical formula, then split the data according to the chemical formulae. That
way, all data points associated with each formula are either in the training dataset or in the test dataset, but not in
both at the same time.

Splitting data, cautiously (manually)
First we get a list of all of the unique formulae in the dataset.
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In [7]: unique_formulae = X['formula'].unique()
print(f'{len(unique_formulae)} unique formulae:\n{unique_formulae}')

244 unique formulae: 
['B2O3' 'Be1I2' 'Be1F3Li1' 'Al1Cl4K1' 'Al2Be1O4' 'B2H4O4' 'B2Mg1' 'Be1F2' 
 'B1H4Na1' 'Br2Ca1' 'Al1N1' 'Al1Cl6Na3' 'Ba1H2O2' 'Al1Br3' 'Br3Zr1' 
 'Br2Ti1' 'B1Ti1' 'Be2O4Si1' 'Br2Pb1' 'Al1' 'Br2Hg2' 'B1H3O3' 'Br3Ti1' 
 'C1Cu1N1' 'B1' 'Al1F6Na3' 'Ca1H2O2' 'B2Be3O6' 'Al1Cl4Na1' 'Al1Cl6K3' 
 'C0.98Nb1' 'Br2Hg1' 'Al1Cl1O1' 'Cl1H4N1O4' 'Be1F4Li2' 'C1Mg1O3' 'Br1H4N1' 
 'Ca1I2' 'Al1F6Li3' 'Br4Mo1' 'Ba1' 'Br4Ti1' 'Ba1Br2' 'Be1O4S1' 'Ba1F2' 
 'Ba1I2' 'Cl2Fe1' 'C1K1N1' 'Be1H2O2' 'Cs1' 'Al1H4Li1' 'C1Be2' 'Cr1' 
 'Cs2O4S1' 'Cl1Cu1' 'Cu1F2' 'Al2O3' 'B1N1' 'Co1O4S1' 'Cu1O1' 'Br1Na1' 
 'Cr2O3' 'Cs1F1' 'Cr2N1' 'Cl1Li1' 'Fe0.877S1' 'Cl1Na1' 'F2Hg1' 'Fe1H2O2' 
 'Cs1H1O1' 'Br3Mo1' 'Br2Sr1' 'Cl2Hg2' 'Fe1O1' 'Co1' 'Cl1Cs1' 'Cu1H2O2' 
 'Al1Li1O2' 'Co1F2' 'Br2Fe1' 'Fe1I2' 'Ga1' 'Cl1Li1O4' 'Cl2Cu1' 'Fe0.947O1' 
 'Be1Cl2' 'Cl1K1' 'F1Na1' 'H3O4P1' 'Fe3O4' 'H1Na1O1' 'Fe2O12S3' 'H1Na1' 
 'Cl1Na1O4' 'B1F4K1' 'Cu1O4S1' 'H1Li1' 'F2H1K1' 'B1H4Li1' 'Hg1O1' 'Be3N2' 
 'Fe1' 'I2Mo1' 'Cu1F1' 'Cr1N1' 'Fe1H3O3' 'I1Li1' 'Al1I3' 'Fe1S1' 
 'Al2Cl9K3' 'I2Pb1' 'I4Zr1' 'Hg1I2' 'H4I1N1' 'Hf1' 'F2Hg2' 'I2Sr1' 
 'C1K2O3' 'C1N1Na1' 'H2O4W1' 'Ca1S1' 'K2O4S1' 'I2Mg1' 'Mg1O3Si1' 'Li3N1' 
 'I2Zr1' 'H2Mg1' 'I2Ti1' 'H1K1' 'Mg1O4W1' 'I4Ti1' 'H1K1O1' 'I2' 'Mn1' 
 'F1K1' 'Li2O3Si1' 'K2O1' 'Mg1O4S1' 'Al1Na1O2' 'Mo1O2.889' 'Mo1O2.750' 
 'N0.465V1' 'Mg2O4Ti1' 'K1O2' 'Mo1O3' 'C1Na2O3' 'K2S1' 'Mo1S2' 'Li2O3Ti1' 
 'I4Mo1' 'Ba1S1' 'Na2O3Si1' 'I3Mo1' 'Mg1S1' 'Cu2O5S1' 'K2O2' 'Mg1O3Ti1' 
 'Na2S2' 'I3Ti1' 'Li2O2' 'I3Zr1' 'Al2Mg1O4' 'N1Ti1' 'N1V1' 'Na1O2' 'Ni1S1' 
 'Na2O1' 'I4Si1' 'B1Li1O2' 'O1Ti1' 'H1Li1O1' 'Nb1O1' 'F2Mg1' 'Nb1' 'O3Ti2' 
 'Ca1' 'Nb1O2' 'O3Pb1Si1' 'O4Pb3' 'O3W1' 'O7Ti4' 'K1' 'O4V2' 'O2.90W1' 
 'Ca1Cl2' 'Pb1' 'Na2O5Si2' 'O5Ti3' 'O5V2' 'Mg3N2' 'Mg2O4Si1' 'Mo1O2.875' 
 'Br1K1' 'Br2Mo1' 'Cl1H4N1' 'Cu1' 'F1Li1' 'Fe1S2' 'H2O2Sr1' 'I1K1' 'I1Na1' 
 'K2O3Si1' 'Li2O4S1' 'Li2O5Si2' 'Mg1' 'Mg2Si1' 'Mo2S3' 'N1Zr1' 'N2O4' 
 'N4Si3' 'N5P3' 'Na2O2' 'Na2S1' 'Nb2O5' 'Ni1' 'Ni1S2' 'Ni3S2' 'Ni3S4' 
 'O10P4' 'O1Pb1' 'O1Sr1' 'O1V1' 'O2.72W1' 'O2.96W1' 'O2Pb1' 'O2Si1' 
 'O2Ti1' 'O2Zr1' 'O3V2' 'O4Pb2Si1' 'O4S1Zn1' 'O4Si1Zr1' 'P1' 'P4S3' 
 'Pb1S1' 'Rb1' 'S1' 'S1Sr1' 'Sr1' 'Ti1' 'V1' 'W1' 'Zn1' 'Zr1'] 
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In [8]: # Set a random seed to ensure reproducibility across runs
np.random.seed(seed=RNG_SEED) 

# Store a list of all unique formulae
all_formulae = unique_formulae.copy() 

# Define the proportional size of the dataset split
val_size = 0.20
test_size = 0.10
train_size = 1 - val_size - test_size 

# Calculate the number of samples in each dataset split
num_val_samples = int(round(val_size * len(unique_formulae)))
num_test_samples = int(round(test_size * len(unique_formulae)))
num_train_samples = int(round((1 - val_size - test_size) * len(unique_formulae
))) 

# Randomly choose the formulate for the validation dataset, and remove those f
rom the unique formulae list
val_formulae = np.random.choice(all_formulae, size=num_val_samples, replace=Fa
lse)
all_formulae = [f for f in all_formulae if f not in val_formulae] 

# Randomly choose the formulate for the test dataset, and remove those from th
e unique formulae list
test_formulae = np.random.choice(all_formulae, size=num_test_samples, replace=
False)
all_formulae = [f for f in all_formulae if f not in test_formulae] 

# The remaining formulae will be used for the training dataset
train_formulae = all_formulae.copy() 

print('Number of training formulae:', len(train_formulae))
print('Number of validation formulae:', len(val_formulae))
print('Number of testing formulae:', len(test_formulae))

Number of training formulae: 171 
Number of validation formulae: 49 
Number of testing formulae: 24 
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In [9]: # Split the original dataset into the train/validation/test datasets using the 
formulae lists above
df_train = df[df['formula'].isin(train_formulae)]
df_val = df[df['formula'].isin(val_formulae)]
df_test = df[df['formula'].isin(test_formulae)] 

print(f'train dataset shape: {df_train.shape}')
print(f'validation dataset shape: {df_val.shape}')
print(f'test dataset shape: {df_test.shape}\n') 

print(df_train.head(), '\n')
print(df_val.head(), '\n')
print(df_test.head(), '\n')

To be sure that we really only have mutually exclusive formulae within each of the datasets (e.g., all the data
samples associated with "Al2O3" is either in the train, validation, or test dataset, but not in multiple), we can do
the following to check:

train dataset shape: (3214, 3) 
validation dataset shape: (980, 3) 
test dataset shape: (370, 3) 
 
  formula       T       Cp 
0    B2O3  1400.0  134.306 
1    B2O3  1300.0  131.294 
2    B2O3  1200.0  128.072 
3    B2O3  1100.0  124.516 
4    B2O3  1000.0  120.625  
 
   formula       T      Cp 
82   B2Mg1  1900.0  92.242 
83   B2Mg1  1800.0  90.249 
84   B2Mg1  1700.0  88.162 
85   B2Mg1  1600.0  85.981 
86   B2Mg1  1500.0  83.643  
 
     formula       T       Cp 
192  Ba1H2O2  900.00  134.892 
193  Ba1H2O2  800.00  130.834 
194  Ba1H2O2  700.00  126.775 
195  Ba1H2O2  681.15  126.022 
196  Ba1H2O2  600.00  122.717  
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In [10]: train_formulae = set(df_train['formula'].unique())
val_formulae = set(df_val['formula'].unique())
test_formulae = set(df_test['formula'].unique()) 

common_formulae1 = train_formulae.intersection(test_formulae)
common_formulae2 = train_formulae.intersection(val_formulae)
common_formulae3 = test_formulae.intersection(val_formulae) 

print(f'# of common formulae in intersection 1: {len(common_formulae1)}; commo
n formulae: {common_formulae1}')
print(f'# of common formulae in intersection 2: {len(common_formulae2)}; commo
n formulae: {common_formulae2}')
print(f'# of common formulae in intersection 3: {len(common_formulae3)}; commo
n formulae: {common_formulae3}')

Save split datasets to csv
Finally, after splitting the dataset into train/validation/test dataset splits, you can save them to disk for you to use
later.

By saving these dataset splits into files, you can then later reproducibly use these same exact splits during your
subsequent model training and comparison steps. Use the same datasets for all your models---that way, you can
ensure a fair comparison.

Also, when you publish your results, you can include these dataset splits, so that others can use the exact
datasets in their own studies.

In [11]: # saving these splits into csv files
PATH = os.getcwd() 

train_path = os.path.join(PATH, '../data/cp_train.csv')
val_path = os.path.join(PATH, '../data/cp_val.csv')
test_path = os.path.join(PATH, '../data/cp_test.csv') 

df_train.to_csv(train_path, index=False)
df_val.to_csv(val_path, index=False)
df_test.to_csv(test_path, index=False)

Remember, keep the test dataset locked away and forget about it until you have finalized your model! Never
look at the test dataset!!

# of common formulae in intersection 1: 0; common formulae: set() 
# of common formulae in intersection 2: 0; common formulae: set() 
# of common formulae in intersection 3: 0; common formulae: set() 
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Data Featurization

Here, we will show some simple examples of featurizing materials composition data using so-called
"composition-based feature vectors", or CBFVs. This methods represents a single chemical formula as one
vector based on its constituent atoms' chemical properties (refer to the paper for more information and
references).

Note that the steps shown in this notebook are intended to demonstrate the best practices associated with
featurizing materials data, using one way of featurizing materials composition data as an example. Depending on
your input data and your particular modeling needs, the data featurization method and procedure you use may
be different than the example shown here.

In [1]: import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
%config InlineBackend.figure_format='retina' 

from collections import OrderedDict 

# Set a random seed to ensure reproducibility across runs
RNG_SEED = 42
np.random.seed(RNG_SEED)

Loading data
We will start with the dataset splits that we saved from the last notebook.

In [2]: PATH = os.getcwd()
train_path = os.path.join(PATH, '../data/cp_train.csv')
val_path = os.path.join(PATH, '../data/cp_val.csv')
test_path = os.path.join(PATH, '../data/cp_test.csv') 

df_train = pd.read_csv(train_path)
df_val = pd.read_csv(val_path)
df_test = pd.read_csv(test_path) 

print(f'df_train DataFrame shape: {df_train.shape}')
print(f'df_val DataFrame shape: {df_val.shape}')
print(f'df_test DataFrame shape: {df_test.shape}')

df_train DataFrame shape: (3214, 3) 
df_val DataFrame shape: (980, 3) 
df_test DataFrame shape: (370, 3) 
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Sub-sampling your data (optional)
If your dataset is too large, you can subsample it to be a smaller size. This is useful for prototyping and for
making quick sanity tests of new models / parameters.

Just be aware that you do not introduce any bias into your data through the sampling.

In [3]: # Sub-sample the data. Set the random_state to make the sampling reproducible
every time.
df_train_sampled = df_train.sample(n=2000, random_state=RNG_SEED)
df_val_sampled = df_val.sample(n=200, random_state=RNG_SEED)
df_test_sampled = df_test.sample(n=200, random_state=RNG_SEED) 

print(f'df_train_sampled DataFrame shape: {df_train_sampled.shape}')
print(f'df_val_sampled DataFrame shape: {df_val_sampled.shape}')
print(f'df_test_sampled DataFrame shape: {df_test_sampled.shape}')

Generate features using the CBFV  package
To featurize the chemical compositions from a chemical formula (e.g. "Al2O3") into a composition-based feature
vector (CBFV), we use the open-source CBFV  package (https://github.com/kaaiian/CBFV).

We have downloaded and saved a local copy of the package into this repository for your convenience. For the
most updated version, refer to the GitHub repository linked above.

In [4]: # Import the package and the generate_features function
from CBFV.cbfv.composition import generate_features

The generate_features  function from the CBFV package expects an input DataFrame containing at least the
columns ['formula', 'target'] . You may also have extra feature columns (e.g., temperature  or 
pressure , other measurement conditions, etc.).

In our dataset, Cp  represents the target variable, and T  is the measurement condition. Since the 
generate_features  function expects the target variable column to be named target , we have to rename

the Cp  column.

df_train_sampled DataFrame shape: (2000, 3) 
df_val_sampled DataFrame shape: (200, 3) 
df_test_sampled DataFrame shape: (200, 3) 
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In [5]: print('DataFrame column names before renaming:')
print(df_train.columns)
print(df_val.columns)
print(df_test.columns) 

rename_dict = {'Cp': 'target'}
df_train = df_train.rename(columns=rename_dict)
df_val = df_val.rename(columns=rename_dict)
df_test = df_test.rename(columns=rename_dict) 

df_train_sampled = df_train_sampled.rename(columns=rename_dict)
df_val_sampled = df_val_sampled.rename(columns=rename_dict)
df_test_sampled = df_test_sampled.rename(columns=rename_dict) 

print('\nDataFrame column names after renaming:')
print(df_train.columns)
print(df_val.columns)
print(df_test.columns)

DataFrame column names before renaming: 
Index(['formula', 'T', 'Cp'], dtype='object') 
Index(['formula', 'T', 'Cp'], dtype='object') 
Index(['formula', 'T', 'Cp'], dtype='object') 
 
DataFrame column names after renaming: 
Index(['formula', 'T', 'target'], dtype='object') 
Index(['formula', 'T', 'target'], dtype='object') 
Index(['formula', 'T', 'target'], dtype='object') 
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Now we can use the generate_features  function to generate the CBFVs from the input data.

Note that we have specified several keyword arguments in our call to generate_features :

elem_prop='oliynyk'
drop_duplicates=False
extend_features=True
sum_feat=True

A short explanation for the choice of keyword arguments is below:

The elem_prop  parameter specifies which CBFV featurization scheme to use (there are several). For this
tutorial, we have chosen to use the oliynyk  CBFV featurization scheme.
The drop_duplicates  parameter specifies whether to drop duplicate formulae during featurization. In our
case, we want to preserve duplicate formulae in our data ( True ), since we have multiple heat capacity
measurements (performed at different temperatures) for the same compound.
The extend_features  parameter specifies whether to include extended features (features that are not
part of ['formula', 'target'] ) in the featurized data. In our case, this is our measurement temperature,
and we want to include this information ( True ), since this is pertinent information for the heat capacity
prediction.
The sum_feat  parameter specifies whether to calculate the sum features when generating the CBFVs for
the chemical formulae. We do in our case ( True ).

For more information about the generate_features  function and the CBFV featurization scheme, refer to the
GitHub repository and the accompanying paper to this notebook.
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In [6]: X_train_unscaled, y_train, formulae_train, skipped_train = generate_features(d
f_train_sampled, elem_prop='oliynyk', drop_duplicates=False, extend_features=T
rue, sum_feat=True)
X_val_unscaled, y_val, formulae_val, skipped_val = generate_features(df_val_sa
mpled, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_f
eat=True)
X_test_unscaled, y_test, formulae_test, skipped_test = generate_features(df_te
st_sampled, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, 
sum_feat=True)

To see what a featurized X matrix looks like, .head()  will show us some rows:

In [7]: X_train_unscaled.head()

Processing Input Data: 100%|█████████████████████████████████████████████████
███| 2000/2000 [00:00<00:00, 27852.38it/s] 
Assigning Features...:   0%|                                                  
| 0/2000 [00:00<?, ?it/s]

 Featurizing Compositions... 

Assigning Features...: 100%|█████████████████████████████████████████████████
███| 2000/2000 [00:00<00:00, 22532.15it/s] 
Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 200/200 [00:00<00:00, 25067.56it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 200/200 [00:00<00:00, 22281.68it/s] 
Processing Input Data:   0%|                                                  
| 0/200 [00:00<?, ?it/s]

 Creating Pandas Objects... 
 Featurizing Compositions... 
 Creating Pandas Objects... 

Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 200/200 [00:00<00:00, 22169.21it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 200/200 [00:00<00:00, 20000.50it/s]

 Featurizing Compositions... 
 Creating Pandas Objects... 

Out[7]:
sum_Atomic_Number sum_Atomic_Weight sum_Period sum_group sum_families sum_Metal

0 32.0 65.116040 8.0 30.0 15.0 1.0

1 28.0 53.491200 9.0 36.0 43.0 0.0

2 46.0 98.887792 14.0 72.0 36.0 3.0

3 20.0 41.988171 5.0 18.0 9.0 1.0

4 82.0 207.200000 6.0 14.0 5.0 1.0

5 rows × 177 columns
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In [8]: X_train_unscaled.shape

Note the sum  features in the CBFV, which we have included by using sum_feat=True  in the call to 
generate_features .

Also note the temperature column T  at the end of this featurized data.

What we have done above is featurize the input data. In the featurized data, each row contains a unique CBFV
that describes a given chemical composition.

Data scaling & normalization
For numerical input data, scaling and normalization of the features often improves the model performance.
Scaling can partially correct the discrepancy between the orders of magnitudes of the features (e.g., some
numerical features being much larger or smaller than others). This typically improves the model learning
performance, and in turn, improves the model performance.

We will scale then normalize our input data using scikit-learn's built-in StandardScaler  class and normalize
function.

Note, in addition to StandardScaler , other scalers such as RobustScaler  and MinMaxScaler  are also
available in scikit-learn. Consult the documentation for the details and when to use them.

In [9]: from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize

Scaling the data
First, we instantiate the scaler object.

In a StandardScaler  object:

During the fit  process, the statistics of the input data (mean and standard deviation) are computed.
Then, during the transform  process, the mean and standard deviation values calculated above are used
to scale the data to having zero-mean and unit variance.

Therefore, for the first time usage of the scaler, we call the .fit_transform()  method to fit the scaler to the
input data, and then to transform the same data. For subsequent uses, since we have already computed the
statistics, we only call the .transform()  method to scale data.

Note: you should only .fit()  the scaler using the training dataset statistics, and then use these same
statistics from the training dataset to .transform()  the other datasets (validation and train).

Out[8]: (2000, 177)
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In [10]: scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train_unscaled)
X_val = scaler.transform(X_val_unscaled)
X_test = scaler.transform(X_test_unscaled)

Normalizing the scaled data
We repeat a similar process for normalizing the data. Here, there is no need to first fit the normalizer, since the
normalizer scales the rows of the input data to unit norm independently of other rows.

The normalizer is different to a Scaler in that the normalizer acts row-wise, whereas a Scaler acts column-wise
on the input data.

In [11]: X_train = normalize(X_train)
X_val = normalize(X_val)
X_test = normalize(X_test)

Modeling using "classical" machine learning
models

Here we implement some classical ML models from sklearn :

Ridge regression
Support vector machine
Linear support vector machine
Random forest
Extra trees
Adaptive boosting
Gradient boosting
k-nearest neighbors
Dummy (if you can't beat this, something is wrong.)

Note: the Dummy model types from sklearn  act as a good sanity check for your ML studies. If your models do
not perform significantly better than the equivalent Dummy models, then you should know that something has
gone wrong in your model implementation.
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In [12]: from time import time 

from sklearn.dummy import DummyRegressor 

from sklearn.linear_model import Ridge 

from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import RandomForestRegressor 

from sklearn.neighbors import KNeighborsRegressor 

from sklearn.svm import SVR
from sklearn.svm import LinearSVR 

from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error

In addition, we define some helper functions.

3 Best practices for machine learning in materials science

58



In [13]: def instantiate_model(model_name): 
   model = model_name() 
   return model 

def fit_model(model, X_train, y_train): 
   ti = time() 
   model = instantiate_model(model) 
   model.fit(X_train, y_train) 
   fit_time = time() - ti 
   return model, fit_time 

def evaluate_model(model, X, y_act): 
   y_pred = model.predict(X) 
   r2 = r2_score(y_act, y_pred) 
   mae = mean_absolute_error(y_act, y_pred) 
   rmse_val = mean_squared_error(y_act, y_pred, squared=False) 
   return r2, mae, rmse_val 

def fit_evaluate_model(model, model_name, X_train, y_train, X_val, y_act_val): 
   model, fit_time = fit_model(model, X_train, y_train) 
   r2_train, mae_train, rmse_train = evaluate_model(model, X_train, y_train) 
   r2_val, mae_val, rmse_val = evaluate_model(model, X_val, y_act_val) 
   result_dict = { 
       'model_name': model_name, 
       'model_name_pretty': type(model).__name__, 
       'model_params': model.get_params(), 
       'fit_time': fit_time, 
       'r2_train': r2_train, 
       'mae_train': mae_train, 
       'rmse_train': rmse_train, 
       'r2_val': r2_val, 
       'mae_val': mae_val, 
       'rmse_val': rmse_val} 
   return model, result_dict 

def append_result_df(df, result_dict): 
   df_result_appended = df.append(result_dict, ignore_index=True) 
   return df_result_appended 

def append_model_dict(dic, model_name, model): 
   dic[model_name] = model 
   return dic

Build an empty DataFrame to store model results:

3 .2 Publication 1 : BestPractices – SI

59



In [14]: df_classics = pd.DataFrame(columns=['model_name', 
                                   'model_name_pretty', 
                                   'model_params', 
                                   'fit_time', 
                                   'r2_train', 
                                   'mae_train', 
                                   'rmse_train', 
                                   'r2_val', 
                                   'mae_val', 
                                   'rmse_val'])
df_classics

Define the models
Here, we instantiate several classical machine learning models for use. For demonstration purposes, we
instantiate the models with their default model parameters.

Some of the models listed above can perform either regression or classification tasks. Because our ML task is a
regression task (prediction of the continuous-valued target, heat capacity), we choose the regression variant of
these models.

Note: the DummyRegressor()  instance acts as a good sanity check for your ML studies. If your models do not
perform significantly better than the DummyRegressor() , then you know something has gone awry.

In [15]: # Build a dictionary of model names
classic_model_names = OrderedDict({ 
   'dumr': DummyRegressor, 
   'rr': Ridge, 
   'abr': AdaBoostRegressor, 
   'gbr': GradientBoostingRegressor, 
   'rfr': RandomForestRegressor, 
   'etr': ExtraTreesRegressor, 
   'svr': SVR, 
   'lsvr': LinearSVR, 
   'knr': KNeighborsRegressor,
})

Out[14]:
model_name model_name_pretty model_params fit_time r2_train mae_train rmse_train r2_v
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Instantiate and fit the models
Now, we can fit the ML models.

We will loop through each of the models listed above. For each of the models, we will:

instantiate the model (with default parameters)
fit the model using the training data
use the fitted model to generate predictions from the validation data
evaluate the performance of the model using the predictions
store the results in a DataFrame for analysis

Note: this may take several minutes, depending on your hardware/software environment, dataset size and
featurization scheme (CBFV).

In [16]: # Instantiate a dictionary to store the model objects
classic_models = OrderedDict() 

# Keep track of elapsed time
ti = time() 

# Loop through each model type, fit and predict, and evaluate and store result
s
for model_name, model in classic_model_names.items(): 
   print(f'Now fitting and evaluating model {model_name}: {model.__name__}') 
   model, result_dict = fit_evaluate_model(model, model_name, X_train, y_trai
n, X_val, y_val) 
   df_classics = append_result_df(df_classics, result_dict) 
   classic_models = append_model_dict(classic_models, model_name, model) 

dt = time() - ti
print(f'Finished fitting {len(classic_models)} models, total time: {dt:0.2f}
s')

Now, we can look at the results.

You will notice, that some of the models (such as RandomForestRegressor, ExtraTreesRegressor and
GradientBoostingRegressor) have completely memorized the training data, as evidenced by the very high
r2_train scores of ~1.0.

Now fitting and evaluating model dumr: DummyRegressor 
Now fitting and evaluating model rr: Ridge 
Now fitting and evaluating model abr: AdaBoostRegressor 
Now fitting and evaluating model gbr: GradientBoostingRegressor 
Now fitting and evaluating model rfr: RandomForestRegressor 
Now fitting and evaluating model etr: ExtraTreesRegressor 
Now fitting and evaluating model svr: SVR 
Now fitting and evaluating model lsvr: LinearSVR 
Now fitting and evaluating model knr: KNeighborsRegressor 
Finished fitting 9 models, total time: 21.38 s 
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In [17]: # Sort in order of increasing validation r2 score
df_classics = df_classics.sort_values('r2_val', ignore_index=True)
df_classics

You can now also access the full details of the models by inspecting the classic_models  dictionary that we
populated.

Out[17]:
model_name model_name_pretty model_params fit_time r2_train mae_train rmse_

0 dumr DummyRegressor
{'constant': None,

'quantile': None,
'strategy...

0.000000 0.000000 47.451805 60.60

1 lsvr LinearSVR
{'C': 1.0, 'dual':
True, 'epsilon':

0.0, 'fit_...
0.008975 0.763989 16.961421 29.44

2 svr SVR

{'C': 1.0,
'cache_size':

200, 'coef0': 0.0,
'd...

0.653226 0.763306 16.726278 29.48

3 knr KNeighborsRegressor
{'algorithm':

'auto', 'leaf_size':
30, 'metric...

0.046875 0.981784 3.902671 8.17

4 abr AdaBoostRegressor

{'base_estimator':
None,

'learning_rate':
1.0,...

1.740368 0.922253 14.174608 16.89

5 rr Ridge
{'alpha': 1.0,

'copy_X': True,
'fit_intercept'...

0.027902 0.875762 14.425002 21.36

6 rfr RandomForestRegressor
{'bootstrap': True,

'ccp_alpha': 0.0,
'criteri...

8.986937 0.998316 1.216542 2.48

7 etr ExtraTreesRegressor

{'bootstrap':
False,

'ccp_alpha': 0.0,
'criter...

4.108041 0.999995 0.010897 0.13

8 gbr GradientBoostingRegressor
{'alpha': 0.9,

'ccp_alpha': 0.0,
'criterion': ...

4.803637 0.985051 5.360182 7.40
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In [18]: classic_models
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Out[18]: OrderedDict([('dumr', 
             DummyRegressor(constant=None, quantile=None, strategy='mean')), 
            ('rr', 
             Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=Non
e, 
                   normalize=False, random_state=None, solver='auto', tol=0.
001)), 
            ('abr', 
             AdaBoostRegressor(base_estimator=None, learning_rate=1.0, loss
='linear', 
                               n_estimators=50, random_state=None)), 
            ('gbr', 
             GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion
='friedman_mse', 
                                       init=None, learning_rate=0.1, loss='l
s', max_depth=3, 
                                       max_features=None, max_leaf_nodes=Non
e, 
                                       min_impurity_decrease=0.0, min_impuri
ty_split=None, 
                                       min_samples_leaf=1, min_samples_split
=2, 
                                       min_weight_fraction_leaf=0.0, n_estim
ators=100, 
                                       n_iter_no_change=None, presort='depre
cated', 
                                       random_state=None, subsample=1.0, tol
=0.0001, 
                                       validation_fraction=0.1, verbose=0, w
arm_start=False)), 
            ('rfr', 
             RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion
='mse', 
                                   max_depth=None, max_features='auto', max_
leaf_nodes=None, 
                                   max_samples=None, min_impurity_decrease=
0.0, 
                                   min_impurity_split=None, min_samples_leaf
=1, 
                                   min_samples_split=2, min_weight_fraction_
leaf=0.0, 
                                   n_estimators=100, n_jobs=None, oob_score=
False, 
                                   random_state=None, verbose=0, warm_start=
False)), 
            ('etr', 
             ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion
='mse', 
                                 max_depth=None, max_features='auto', max_le
af_nodes=None, 
                                 max_samples=None, min_impurity_decrease=0.
0, 
                                 min_impurity_split=None, min_samples_leaf=
1, 
                                 min_samples_split=2, min_weight_fraction_le
af=0.0, 
                                 n_estimators=100, n_jobs=None, oob_score=Fa
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Evaluating model performance on validation dataset
Now comes the time to evaluate the trained models on the validation set.

Remember, we use the same validation set to evaluate all models. This ensures a fair comparison.

In addition, we plot the predicted vs. actual plots using the predictions made by each trained model on the same
validation set.

In [19]: def plot_pred_act(act, pred, model, reg_line=True, label=''): 
   xy_max = np.max([np.max(act), np.max(pred)]) 

   plot = plt.figure(figsize=(6,6)) 
   plt.plot(act, pred, 'o', ms=9, mec='k', mfc='silver', alpha=0.4) 
   plt.plot([0, xy_max], [0, xy_max], 'k--', label='ideal') 
   if reg_line: 
       polyfit = np.polyfit(act, pred, deg=1) 
       reg_ys = np.poly1d(polyfit)(np.unique(act)) 
       plt.plot(np.unique(act), reg_ys, alpha=0.8, label='linear fit') 
   plt.axis('scaled') 
   plt.xlabel(f'Actual {label}') 
   plt.ylabel(f'Predicted {label}') 
   plt.title(f'{type(model).__name__}, r2: {r2_score(act, pred):0.4f}') 
   plt.legend(loc='upper left') 
    
   return plot

lse, 
                                 random_state=None, verbose=0, warm_start=Fa
lse)), 
            ('svr', 
             SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, ga
mma='scale', 
                 kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbo
se=False)), 
            ('lsvr', 
             LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True, 
                       intercept_scaling=1.0, loss='epsilon_insensitive', ma
x_iter=1000, 
                       random_state=None, tol=0.0001, verbose=0)), 
            ('knr', 
             KNeighborsRegressor(algorithm='auto', leaf_size=30, metric='min
kowski', 
                                 metric_params=None, n_jobs=None, n_neighbor
s=5, p=2, 
                                 weights='uniform'))])
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In [20]: for row in range(df_classics.shape[0]): 
   model_name = df_classics.iloc[row]['model_name'] 

   model = classic_models[model_name] 
   y_act_val = y_val 
   y_pred_val = model.predict(X_val) 

   plot = plot_pred_act(y_act_val, y_pred_val, model, reg_line=True, label=
'$\mathrm{C}_\mathrm{p}$ (J / mol K)')
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Re-training the best-performing model on combined train +
validation dataset
After you have finalized your model, you can re-train your model (using the same hyperparameters) again on the
combined train + validation datasets, and finally, evaluate your model on the held-out test dataset.

By training on the combined train + validation dataset after you have finished tuning your model, you give it more
training data, which should lead to an increase in the model performance.
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In [21]: # Find the best-performing model that we have tested
best_row = df_classics.iloc[-1, :].copy() 

# Get the model type and model parameters
model_name = best_row['model_name']
model_params = best_row['model_params'] 

# Instantiate the model again using the parameters
model = classic_model_names[model_name](**model_params)
print(model)

In [22]: # Concatenate the train and validation datasets together
X_train_new = np.concatenate((X_train, X_val), axis=0)
y_train_new = pd.concat((y_train, y_val), axis=0) 

print(X_train_new.shape)

Finally, we can fit the model on the combined train + validation dataset.

In [23]: ti = time() 

model.fit(X_train_new, y_train_new) 

dt = time() - ti
print(f'Finished fitting best model, total time: {dt:0.2f} s')

Testing the re-trained model on the test dataset
After re-fitting the best model on the train+validation dataset, you can finally test it on the test dataset.
Remember: you should only do this once!

GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse', 
                         init=None, learning_rate=0.1, loss='ls', max_depth=
3, 
                         max_features=None, max_leaf_nodes=None, 
                         min_impurity_decrease=0.0, min_impurity_split=None, 
                         min_samples_leaf=1, min_samples_split=2, 
                         min_weight_fraction_leaf=0.0, n_estimators=100, 
                         n_iter_no_change=None, presort='deprecated', 
                         random_state=None, subsample=1.0, tol=0.0001, 
                         validation_fraction=0.1, verbose=0, warm_start=Fals
e) 

(2200, 177) 

Finished fitting best model, total time: 5.44 s 
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In [24]: y_act_test = y_test
y_pred_test = model.predict(X_test) 

r2, mae, rmse = evaluate_model(model, X_test, y_test)
print(f'r2: {r2:0.4f}')
print(f'mae: {mae:0.4f}')
print(f'rmse: {rmse:0.4f}') 

plot = plot_pred_act(y_act_test, y_pred_test, model, reg_line=True, label='$\m
athrm{C}_\mathrm{p}$ (J / mol K)')

We see that our model achieves decent performance on the held-out test dataset.

Effect of train/validation/test dataset split
Using different train/validation/test splits can dramatically affect your model performance, even for classical ML
models.

Here, we provide a little demonstration.

r2: 0.8442 
mae: 17.1236 
rmse: 31.0274 
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In [25]: X_train_unscaled, y_train, formulae_train, skipped_train = generate_features(d
f_train, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum
_feat=True)
X_val_unscaled, y_val, formulae_val, skipped_val = generate_features(df_val, e
lem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_feat=True
)
X_test_unscaled, y_test, formulae_test, skipped_test = generate_features(df_te
st, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_feat
=True)

In [26]: X_train_original = X_train_unscaled.copy()
X_val = X_val_unscaled.copy()
X_test = X_test_unscaled.copy() 

y_train_original = y_train.copy()

We sample the training data using 10 random seeds, by using the DataFrame.sample()  method with seeds
ranging from 0 to 9. We then fit 10 models, each on one of the random splits, and evaluate their performance on
the same validation dataset.

Processing Input Data: 100%|█████████████████████████████████████████████████
███| 3214/3214 [00:00<00:00, 28511.32it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
███| 3214/3214 [00:00<00:00, 22850.93it/s] 

 Featurizing Compositions... 
 Creating Pandas Objects... 

Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 980/980 [00:00<00:00, 28877.87it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 980/980 [00:00<00:00, 29644.50it/s] 
Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 370/370 [00:00<00:00, 23672.78it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 370/370 [00:00<00:00, 18795.10it/s]

 Featurizing Compositions... 
 Creating Pandas Objects... 
 Featurizing Compositions... 
 Creating Pandas Objects... 
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In [27]: splits = range(10)
df_splits = pd.DataFrame(columns=['split', 
                                 'r2_train', 
                                 'mae_train', 
                                 'rmse_train', 
                                 'r2_val', 
                                 'mae_val', 
                                 'rmse_val']) 

for split in splits: 
   print(f'Fitting and evaluating random split {split}') 
   X_train = X_train_original.sample(frac=0.7, random_state=split) 
   y_train = y_train_original[X_train.index] 

   scaler = StandardScaler() 
   X_train = normalize(scaler.fit_transform(X_train)) 
   X_val = normalize(scaler.transform(X_val_unscaled)) 
   X_test = normalize(scaler.transform(X_test_unscaled)) 
    
   model = AdaBoostRegressor() 
   model.fit(X_train, y_train) 
   y_act_val = y_val 
   y_pred_val = model.predict(X_val) 

   r2_train, mae_train, rmse_train = evaluate_model(model, X_train, y_train) 
   r2_val, mae_val, rmse_val = evaluate_model(model, X_val, y_val) 
   result_dict = { 
       'split': split, 
       'r2_train': r2_train, 
       'mae_train': mae_train, 
       'rmse_train': rmse_train, 
       'r2_val': r2_val, 
       'mae_val': mae_val, 
       'rmse_val': rmse_val} 
    
   df_splits = append_result_df(df_splits, result_dict)

Fitting and evaluating random split 0 
Fitting and evaluating random split 1 
Fitting and evaluating random split 2 
Fitting and evaluating random split 3 
Fitting and evaluating random split 4 
Fitting and evaluating random split 5 
Fitting and evaluating random split 6 
Fitting and evaluating random split 7 
Fitting and evaluating random split 8 
Fitting and evaluating random split 9 
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In [28]: df_splits['split'] = df_splits['split'].astype(int)
df_splits

We then plot the train and validation  scores for each of the 10 models.

Note the high variability in the r2_val score. In contrast, the variability in the r2_train score is comparatively lower.

r
2

In [29]: df_splits.plot('split', ['r2_train', 'r2_val'], kind='bar')
plt.title(f'Performance of {type(model).__name__}\nwith {len(splits)} differen
t data splits')
plt.ylim((0.5, 1.0))
plt.ylabel('$r^2$')
plt.xlabel('Split #')
plt.legend(loc='lower right', framealpha=0.9)
plt.show()

Out[28]:
split r2_train mae_train rmse_train r2_val mae_val rmse_val

0 0 0.921647 14.237594 16.979393 0.815858 23.865538 34.461629

1 1 0.927656 13.501629 16.265329 0.808852 22.688912 35.111086

2 2 0.922515 14.448165 17.079006 0.817551 23.744004 34.302802

3 3 0.926511 13.651451 16.537507 0.831742 20.315320 32.941742

4 4 0.924336 13.983030 16.703454 0.822637 22.490512 33.821357

5 5 0.925542 13.714406 16.610536 0.811329 23.408679 34.882859

6 6 0.927083 13.872571 16.567055 0.818648 23.621438 34.199530

7 7 0.921361 14.275176 16.893382 0.823097 23.931573 33.777476

8 8 0.918063 14.508259 17.281824 0.824275 23.186429 33.664755

9 9 0.919256 14.204361 16.984472 0.824302 23.008472 33.662190
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This effect is even more pronounced when we plot the mean abolute error (MAE).

In [30]: df_splits.plot('split', ['mae_train', 'mae_val'], kind='bar')
plt.title(f'Performance of {type(model).__name__}\nwith {len(splits)} differen
t data splits')
plt.ylabel('MAE in $\mathrm{C}_\mathrm{p}$ (J / mol K)')
plt.xlabel('Split #')
plt.legend(loc='lower right', framealpha=0.9)
plt.show()

Therefore, typically the average value of all the scores are reported, as this gives a much more accurate
estimate of how well the model actually performs.

In [31]: avg_r2_val = df_splits['r2_val'].mean()
avg_mae_val = df_splits['mae_val'].mean() 

print(f'Average validation r2: {avg_r2_val:0.4f}')
print(f'Average validation MAE: {avg_mae_val:0.4f}')

Average validation r2: 0.8198 
Average validation MAE: 23.0261 
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Modeling using neural network / deep learning-based
models

In this notebook, we will cover how to implement a simple neural network for the modeling of heat capacity.

We will load, prepare featurize, and scale/normalize the input datasets the same way as we did in the pervious
notebook. For more information about the individual steps, you can consult that notebook.

In [1]: import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
%config InlineBackend.figure_format='retina' 

from collections import OrderedDict 

from CBFV.cbfv.composition import generate_features 

from sklearn.preprocessing import RobustScaler
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize 

from sklearn.metrics import r2_score
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error 

import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader 

import torch.optim as optim 

# Set a random seed to ensure reproducibility across runs
RNG_SEED = 42
np.random.seed(RNG_SEED)
torch.manual_seed(RNG_SEED)

Featurizing and scaling data

Nothing new here---same steps as we've done in the previous notebook.

Out[1]: <torch._C.Generator at 0x24e8007e510>
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In [2]: PATH = os.getcwd()
train_path = os.path.join(PATH, '../data/cp_train.csv')
val_path = os.path.join(PATH, '../data/cp_val.csv')
test_path = os.path.join(PATH, '../data/cp_test.csv') 

df_train = pd.read_csv(train_path)
df_val = pd.read_csv(val_path)
df_test = pd.read_csv(test_path) 

print(f'df_train DataFrame shape: {df_train.shape}')
print(f'df_val DataFrame shape: {df_val.shape}')
print(f'df_test DataFrame shape: {df_test.shape}')

Here we do not sub-sample the datasets into smaller datasets like we did in the previous notebook. Typically, the
more data you have for neural networks, the better the networks will be able to train, and the better they will
perform (as long as they are well-conditioned).

Additionally, the performance of PyTorch  is very good for modern computers, especially if you have a modern
CUDA-capable graphics processing unit (GPU) such as an Nvidia GPU to accelerate the computations. Our
dataset is small enough to fit into almost all modern computers or CUDA-capable GPUs.

df_train DataFrame shape: (3214, 3) 
df_val DataFrame shape: (980, 3) 
df_test DataFrame shape: (370, 3) 

3 .2 Publication 1 : BestPractices – SI

79



In [3]: rename_dict = {'Cp': 'target'}
df_train = df_train.rename(columns=rename_dict)
df_val = df_val.rename(columns=rename_dict)
df_test = df_test.rename(columns=rename_dict) 

X_train_unscaled, y_train, formulae_train, skipped_train = generate_features(d
f_train, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum
_feat=True)
X_val_unscaled, y_val, formulae_val, skipped_val = generate_features(df_val, e
lem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_feat=True
)
X_test_unscaled, y_test, formulae_test, skipped_test = generate_features(df_te
st, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_feat
=True)

Processing Input Data: 100%|█████████████████████████████████████████████████
███| 3214/3214 [00:00<00:00, 28074.71it/s] 
Assigning Features...:   0%|                                                  
| 0/3214 [00:00<?, ?it/s]

 Featurizing Compositions... 

Assigning Features...: 100%|█████████████████████████████████████████████████
███| 3214/3214 [00:00<00:00, 22408.81it/s] 

 Creating Pandas Objects... 

Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 980/980 [00:00<00:00, 28050.95it/s] 
Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 980/980 [00:00<00:00, 23381.48it/s] 
Processing Input Data: 100%|█████████████████████████████████████████████████
█████| 370/370 [00:00<00:00, 28536.88it/s]

 Featurizing Compositions... 
 Creating Pandas Objects... 

Assigning Features...: 100%|█████████████████████████████████████████████████
█████| 370/370 [00:00<00:00, 21791.04it/s]

 Featurizing Compositions... 
 Creating Pandas Objects... 
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In [4]: X_train_unscaled.head()

In [5]: scaler = StandardScaler() 

X_train = scaler.fit_transform(X_train_unscaled)
X_val = scaler.transform(X_val_unscaled)
X_test = scaler.transform(X_test_unscaled) 

X_train = normalize(X_train)
X_val = normalize(X_val)
X_test = normalize(X_test)

Building a neural network

This is where you get to be the architect, and design your own neural network!

For sake of clarity (and to ensure that this tutorial runs on all the potatoes of this world), we will define a simple
dense fully-connected neural network (which we will call DenseNet ) as an example.

The input layer of DenseNet  accepts input data in the dimension of each row of the input data, which is equal to
the number of features in our CBFV featurization scheme. In our particular example, when featurized using the 
oliynyk  featurizer, the input dimension is 177 (it is the second dimension when you view X_train.shape ).

The output layer dimension of DenseNet  is 1, because we want to predict one value (heat capacity).

In addition, DenseNet  can have one or more "hidden layers" that are attached between the input and output
layers. These can be any arbitrary dimensions  you want to choose.> 1

Defining the network in PyTorch

Out[4]:
sum_Atomic_Number sum_Atomic_Weight sum_Period sum_group sum_families sum_Metal

0 34.0 69.6202 10.0 74.0 33.0 0.0

1 34.0 69.6202 10.0 74.0 33.0 0.0

2 34.0 69.6202 10.0 74.0 33.0 0.0

3 34.0 69.6202 10.0 74.0 33.0 0.0

4 34.0 69.6202 10.0 74.0 33.0 0.0

5 rows × 177 columns
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In [6]: class DenseNet(nn.Module): 
   """
   This implements a dynamically-built dense fully-connected neural network
   with leaky ReLU activation and optional dropout. 

   Parameters
   ----------
   input_dims: int
       Number of input features (required).
   hidden_dims: list of ints
       Number of hidden features, where each integer represents the number of
       hidden features in each subsequent hidden linear layer (optional,
       default=[64, 32]).
   output_dims: int
       Number of output features (optional, default=1).
   dropout: float
       the dropout value (optional, default=0.0).
   """ 
   def __init__(self, 
                input_dims, 
                hidden_dims=[64, 32], 
                output_dims=1, 
                dropout=0.0): 
       super().__init__() 

       self.input_dims = input_dims 
       self.hidden_dims = hidden_dims 
       self.output_dims = output_dims 

       self.dropout = dropout 
        
       # Build a sub-block of linear networks 
       def fc_block(in_dim, out_dim, *args, **kwargs): 
           return nn.Sequential( 
               nn.Linear(in_dim, out_dim, *args, **kwargs), 
               nn.Dropout(p=self.dropout), 
               nn.LeakyReLU() 
               ) 

       # Build overall network architecture 
       self.network = nn.ModuleList([ 
               nn.Sequential( 
                   nn.Linear(input_dims, self.hidden_dims[0]), 
                   nn.Dropout(p=self.dropout), 
                   nn.LeakyReLU()) 
               ] 
           ) 

       hidden_layer_sizes = zip(self.hidden_dims[:-1], self.hidden_dims[1:]) 
       self.network.extend([ 
           fc_block(in_dim, out_dim) for in_dim, out_dim 
           in hidden_layer_sizes] 
           ) 

       self.network.extend([ 
           nn.Linear(hidden_dims[-1], output_dims)] 
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           ) 

   def forward(self, x): 
       """
       Forward pass of the DenseNet model. 

       Parameters
       ----------
       x: torch.Tensor
           A representation of the chemical compounds in the shape
           (n_compounds, n_feats). 

       Returns
       -------
       y: torch.Tensor
           The element property prediction with the shape 1.
       """ 
       for i, subnet in enumerate(self.network): 
           x = subnet(x) 
            
       y = x 

       return y

Specifying the compute device for calculations

Before we run the neural network, we can first check if your machine has a CUDA-capable device. CUDA is a
specific set of application instructions (application programming interfaces, APIs) that PyTorch can use to
accelerate some of the calculations performed in neural networks.

Generally, a relatively recent GPU from Nvidia will support CUDA capabilities, and can be used to accelerate
neural network computations in PyTorch.

In case you do not have a CUDA-capable device, PyTorch will fall back to using the CPU. Depending on the
complexity of your model, training and predicting using a CPU can take significantly longer than using a CUDA-
capable GPU.

Consult the PyTorch (https://pytorch.org/docs/stable/torch.html) and CUDA (https://docs.nvidia.com/cuda/)
documentation for more information.
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In [7]: CUDA_available = torch.cuda.is_available()
print(f'CUDA is available: {CUDA_available}') 

if CUDA_available: 
   compute_device = torch.device('cuda')
else: 
   compute_device = torch.device('cpu') 
    
print(f'Compute device for PyTorch: {compute_device}')

Defining the data loader and dataset structure

Here we define a dataloader class specific for loading CBFV-type datasets.

We also define the CBFV dataset class that tells PyTorch how our dataset is structured, and how to grab
individual data samples from our dataset.

CUDA is available: True 
Compute device for PyTorch: cuda 
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In [8]: class CBFVDataLoader(): 
   """
   Parameters
   ----------
   train_data: np.ndarray or pd.DataFrame or pd.Series
       name of csv file containing cif and properties
   val_data: np.ndarray or pd.DataFrame or pd.Series
       name of csv file containing cif and properties
   test_data: np.ndarray or pd.DataFrame or pd.Series
       name of csv file containing cif and properties
   batch_size: float, optional (default=64)
       Step size for the Gaussian filter
   random_state: int, optional (default=42)
       Random seed for sampling the dataset. Only used if validation data is
       not given.
   shuffle: bool, optional (default=True)
       Whether to shuffle the datasets or not
   """ 
   def __init__(self, train_data, val_data, test_data, 
                batch_size=64, num_workers=1, random_state=42, 
                shuffle=True, pin_memory=True): 

       self.train_data = train_data 
       self.val_data = val_data 
       self.test_data = test_data 

       self.batch_size = batch_size 
       self.num_workers = num_workers 
       self.pin_memory = pin_memory 

       self.shuffle = shuffle 
       self.random_state = random_state 

   def get_data_loaders(self, batch_size=1): 
       '''
       Input the dataset, get train test split
       ''' 
       train_dataset = CBFVDataset(self.train_data) 
       val_dataset = CBFVDataset(self.val_data) 
       test_dataset = CBFVDataset(self.test_data) 

       train_loader = DataLoader(train_dataset, 
                                 batch_size=self.batch_size, 
                                 pin_memory=self.pin_memory, 
                                 shuffle=self.shuffle) 

       val_loader = DataLoader(val_dataset, 
                               batch_size=self.batch_size, 
                               pin_memory=self.pin_memory, 
                               shuffle=self.shuffle) 

       test_loader = DataLoader(test_dataset, 
                                batch_size=self.batch_size, 
                                pin_memory=self.pin_memory, 
                                shuffle=False) 
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       return train_loader, val_loader, test_loader 

class CBFVDataset(Dataset): 
   """
   Get X and y from CBFV-based dataset.
   """ 
   def __init__(self, dataset): 
       self.data = dataset 

       self.X = np.array(self.data[0]) 
       self.y = np.array(self.data[1]) 
       self.shape = [(self.X.shape), (self.y.shape)] 

   def __str__(self): 
       string = f'CBFVDataset with X.shape {self.X.shape}' 
       return string 

   def __len__(self): 
       return self.X.shape[0] 

   def __getitem__(self, idx): 
       X = self.X[[idx], :] 
       y = self.y[idx] 

       X = torch.as_tensor(X) 
       y = torch.as_tensor(np.array(y)) 

       return (X, y)

Here we choose a batch size for loading data, and initialize the DataLoader for loading the featurized input data.

We also get the data loaders corresponding to the train, validation, and test datasets.

In [9]: train_data = (X_train, y_train)
val_data = (X_val, y_val)
test_data = (X_test, y_test) 

# Instantiate the DataLoader
batch_size = 128
data_loaders = CBFVDataLoader(train_data, val_data, test_data, batch_size=batc
h_size)
train_loader, val_loader, test_loader = data_loaders.get_data_loaders()

Instantiating a DenseNet  model

Now, we can instantiate... an instance of the DenseNet  model.
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In [10]: # Get input dimension size from the dataset
example_data = train_loader.dataset.data[0]
input_dims = example_data.shape[-1] 

# Instantiate the model
model = DenseNet(input_dims, hidden_dims=[16], dropout=0.0)
print(model)

Defining the loss criterion & optimizer

Here, we see the model and its individual layers and components printed nicely.

We then instantiate and initialize the loss criterion and optimizer.

Note, there are many choices of loss criteria and optimizers that are provided by PyTorch, each with their
benefits and limitations, and a myriad of parameters. Consult the PyTorch documentation for further details.

In [11]: # Initialize the loss criterion
criterion = nn.L1Loss()
print('Loss criterion: ')
print(criterion) 

# Initialize the optimzer
optim_lr = 1e-2
optimizer = optim.Adam(model.parameters(), lr=optim_lr)
print('\nOptimizer: ')
print(optimizer)

DenseNet( 
  (network): ModuleList( 
    (0): Sequential( 
      (0): Linear(in_features=177, out_features=16, bias=True) 
      (1): Dropout(p=0.0, inplace=False) 
      (2): LeakyReLU(negative_slope=0.01) 
    ) 
    (1): Linear(in_features=16, out_features=1, bias=True) 
  ) 
) 

Loss criterion:  
L1Loss() 

Optimizer:  
Adam ( 
Parameter Group 0 
   amsgrad: False 
   betas: (0.9, 0.999) 
   eps: 1e-08 
   lr: 0.01 
   weight_decay: 0 
) 
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Moving the model to the compute device

Then, we can move the model and loss criterion computation to the compute device.

If you have a GPU, this will trasnfer and attach the required resources to the GPU. If you have a CPU, then
everything will remain on the CPU.

In [12]: # Move the model and criterion to the compute device
model = model.to(compute_device)
criterion = criterion.to(compute_device)

Defining some additional helper functions

We define some scaler functions and helper functions to evaluate and visualize model results.
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In [13]: class Scaler(): 
   def __init__(self, data): 
       self.data = torch.as_tensor(data) 
       self.mean = torch.mean(self.data) 
       self.std = torch.std(self.data) 

   def scale(self, data): 
       data = torch.as_tensor(data) 
       data_scaled = (data - self.mean) / self.std 
       return data_scaled 

   def unscale(self, data_scaled): 
       data_scaled = torch.as_tensor(data_scaled) 
       data = data_scaled * self.std + self.mean 
       return data 

   def state_dict(self): 
       return {'mean': self.mean, 
               'std': self.std} 

   def load_state_dict(self, state_dict): 
       self.mean = state_dict['mean'] 
       self.std = state_dict['std'] 

class MeanLogNormScaler(): 
   def __init__(self, data): 
       self.data = torch.as_tensor(data) 
       self.logdata = torch.log(self.data) 
       self.mean = torch.mean(self.logdata) 
       self.std = torch.std(self.logdata) 

   def scale(self, data): 
       data = torch.as_tensor(data) 
       data_scaled = (torch.log(data) - self.mean) / self.std 
       return data_scaled 

   def unscale(self, data_scaled): 
       data_scaled = torch.as_tensor(data_scaled) * self.std + self.mean 
       data = torch.exp(data_scaled) 
       return data 

   def state_dict(self): 
       return {'mean': self.mean, 
               'std': self.std} 

   def load_state_dict(self, state_dict): 
       self.mean = state_dict['mean'] 
       self.std = state_dict['std']
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In [14]: def predict(model, data_loader): 
   target_list = [] 
   pred_list = [] 

   model.eval() 
   with torch.no_grad(): 
       for i, data_output in enumerate(data_loader): 
           X, y_act = data_output 
           X = X.to(compute_device, 
                    dtype=data_type, 
                    non_blocking=True) 
           y_act = y_act.cpu().flatten().tolist() 
           y_pred = model.forward(X).cpu().flatten().tolist() 

           # Unscale target values 
           y_pred = target_scaler.unscale(y_pred).tolist() 

           targets = y_act 
           predictions = y_pred 
           target_list.extend(targets) 
           pred_list.extend(predictions) 
   model.train() 

   return target_list, pred_list 

def evaluate(target, pred): 
   r2 = r2_score(target, pred) 
   mae = mean_absolute_error(target, pred) 
   rmse = mean_squared_error(target, pred, squared=False) 
   output = (r2, mae, rmse) 
   return output 

def print_scores(scores, label=''): 
   r2, mae, rmse = scores 
   print(f'{label} r2: {r2:0.4f}') 
   print(f'{label} mae: {mae:0.4f}') 
   print(f'{label} rmse: {rmse:0.4f}') 
   return scores 

def plot_pred_act(act, pred, model, reg_line=True, label=''): 
   xy_max = np.max([np.max(act), np.max(pred)]) 

   plot = plt.figure(figsize=(6,6)) 
   plt.plot(act, pred, 'o', ms=9, mec='k', mfc='silver', alpha=0.4) 
   plt.plot([0, xy_max], [0, xy_max], 'k--', label='ideal') 
   if reg_line: 
       polyfit = np.polyfit(act, pred, deg=1) 
       reg_ys = np.poly1d(polyfit)(np.unique(act)) 
       plt.plot(np.unique(act), reg_ys, alpha=0.8, label='linear fit') 
   plt.axis('scaled') 
   plt.xlabel(f'Actual {label}') 
   plt.ylabel(f'Predicted {label}') 
   plt.title(f'{type(model).__name__}, r2: {r2_score(act, pred):0.4f}') 
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   plt.legend(loc='upper left') 
    
   return plot

We scale the target variables.

In [15]: y_train = [data[1].numpy().tolist() for data in train_loader]
y_train = [item for sublist in y_train for item in sublist] 

y_train = train_loader.dataset.y 

target_scaler = MeanLogNormScaler(y_train)

Training the neural network

And finally, we train the neural network.

This is the training procedure for the neural network:

for each epoch :
iterate through the train dataset using train_loader :

scale the target data
transfer input ( X ) and target ( y ) data to compute device
reset the optimizer's gradient to zero
compute the output of the model (forward pass)
calculate the loss of the model (between the predicted and true target values)
propagate the loss backwards through the model (backpropagation)
update the weights throughout the model

if epoch == print_every :
print the current epoch (to keep track of training progress)

if epoch == plot_every :
evaluate the model on the validation dataset using val_loader
plot predicted vs. actual value plots
print the train and val ,  and  scores of the model

Note: training this network may take up to tens of minutes, depending on your hardware configuration and
whether or not you have a CUDA-capable device.

r
2 MAE RMSE

3 .2 Publication 1 : BestPractices – SI

91



In [16]: data_type = torch.float
epochs = 500 

print_every = 20
plot_every = 50 

for epoch in range(epochs): 
   if epoch % print_every == 0 or epoch == epochs - 1: 
       print(f'epoch: {epoch}') 
   if epoch % plot_every == 0:         
       target_train, pred_train = predict(model, train_loader) 
       train_scores = evaluate(target_train, pred_train) 
       print_scores(train_scores, label='train') 
        
       target_val, pred_val = predict(model, val_loader) 
       val_scores = evaluate(target_val, pred_val) 
       print_scores(val_scores, label='val') 
       plot_pred_act(target_val, pred_val, model, label='$\mathrm{C}_\mathrm
{p}$ (J / mol K)') 
       plt.show() 
        
   for i, data_output in enumerate(train_loader): 
       X, y = data_output 
       y = target_scaler.scale(y) 
        
       X = X.to(compute_device, 
                dtype=data_type, 
                non_blocking=True) 
       y = y.to(compute_device, 
                dtype=data_type, 
                non_blocking=True) 
        
       optimizer.zero_grad() 
       output = model.forward(X).flatten() 
       loss = criterion(output.view(-1), y.view(-1)) 
       loss.backward() 
       optimizer.step()
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epoch: 0 
train r2: -0.1487 
train mae: 46.4704 
train rmse: 64.9909 
val r2: -0.0830 
val mae: 52.6671 
val rmse: 83.5762 

epoch: 20 
epoch: 40 
train r2: 0.9813 
train mae: 4.3085 
train rmse: 8.2817 
val r2: 0.8492 
val mae: 16.8082 
val rmse: 31.1895 
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epoch: 60 
epoch: 80 
epoch: 100 
train r2: 0.9833 
train mae: 3.9003 
train rmse: 7.8337 
val r2: 0.8583 
val mae: 16.2121 
val rmse: 30.2252 
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epoch: 120 
epoch: 140 
train r2: 0.9840 
train mae: 3.6218 
train rmse: 7.6821 
val r2: 0.8673 
val mae: 15.5079 
val rmse: 29.2527 

epoch: 160 
epoch: 180 
epoch: 200 
train r2: 0.9866 
train mae: 3.1012 
train rmse: 7.0212 
val r2: 0.8663 
val mae: 15.8610 
val rmse: 29.3698 
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epoch: 220 
epoch: 240 
train r2: 0.9861 
train mae: 3.4834 
train rmse: 7.1619 
val r2: 0.8756 
val mae: 15.2939 
val rmse: 28.3246 

3 Best practices for machine learning in materials science

96



epoch: 260 
epoch: 280 
epoch: 300 
train r2: 0.9872 
train mae: 3.0628 
train rmse: 6.8711 
val r2: 0.8720 
val mae: 15.8923 
val rmse: 28.7362 

epoch: 320 
epoch: 340 
train r2: 0.9874 
train mae: 3.0447 
train rmse: 6.8130 
val r2: 0.8812 
val mae: 15.2294 
val rmse: 27.6838 
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epoch: 360 
epoch: 380 
epoch: 400 
train r2: 0.9872 
train mae: 3.2069 
train rmse: 6.8730 
val r2: 0.8833 
val mae: 15.1164 
val rmse: 27.4352 
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Now, with our trained neural network, we can evaluate the performance of the model (at the end of the training
phase) on the validation dataset.

epoch: 420 
epoch: 440 
train r2: 0.9878 
train mae: 2.9436 
train rmse: 6.7003 
val r2: 0.8823 
val mae: 15.3402 
val rmse: 27.5488 

epoch: 460 
epoch: 480 
epoch: 499 
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In [17]: target_val, pred_val = predict(model, val_loader)
scores = evaluate(target_val, pred_val) 

print_scores(scores, label='val') 

plot = plot_pred_act(target_val, pred_val, model, label='$\mathrm{C}_\mathrm
{p}$ (J / mol K)')

Keeping track of training progress -- avoid overfitting
Note, you can keep track of the training progress by saving the train and validation metrics such as  and MAE
at every epoch. Then, you can plot so-called "loss curves" that show the loss of the model vs. epoch throughout
the training process. This gives you additional insight into your model training process, and helps you diagnose
issues such as overfitting, improper model/optimizer/loss parameters, and so on.

Once you start tracking these performance metrics during your training loop, you can also implement more
advanced training techniques such as "early stopping". In early stopping, you observe the performance metrics
(such as validation  or MAE) over the training epochs, and you stop the training process if you observe that the
metrics are not improving any more (meaning your model is fully trained), or if the metrics are increasing again
after reaching a minimum (meaning your model is overfitting the training set).

Evaluating model performance on test dataset
And finally evaluate the performance on the test dataset. Remember: you should only do this once!

r
2

r
2

val r2: 0.8833 
val mae: 15.3854 
val rmse: 27.4286 
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In [18]: target_test, pred_test = predict(model, test_loader)
scores = evaluate(target_test, pred_test) 

print_scores(scores, label='test') 

plot = plot_pred_act(target_test, pred_test, model, label='$\mathrm{C}_\mathrm
{p}$ (J / mol K)')

test r2: 0.8899 
test mae: 14.2758 
test rmse: 25.8626 
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Exporting PyTorch models
Now that we've got a (reasonably well-performing) model, we can export the weights and biases from the model
to what is referred to as a "checkpoint" file.

The advantages of exporting your model to a checkpoint file are manifold. For example, when you want to re-use
the model again later (to make further predictions, or even to continue training), you don't have to train the model
from scratch again. For our current DenseNet  model, this may not seem like a big deal, since it trains within
minutes. But once you start moving on to larger and larger models, model training time can reach hours, days---
even weeks!

Another advantage is that you can greatly enhance the reproducibility of your work. If you export your models,
other researchers can then recreate your model architecture on their system, then load your weights into the
model to get exactly the model you trained. This allows them to use your model as-is, and enables them to
reproduce your work---an important step if they are to judge the merit of your work.

With that said, we will now use PyTorch's built-in methods to export (1) our DenseNet  model, and (2) our 
target_scaler  (we need to export our target_scaler  object as well, because we need to use it to unscale

the model predictions to get back the true prediction values.

Saving the model + target scaler

In [19]: save_dict = {'weights': model.state_dict(), 
            'scaler_state': target_scaler.state_dict()}
print(save_dict)

{'weights': OrderedDict([('network.0.0.weight', tensor([[ 0.7553,  0.9386,  
0.3842,  ...,  0.0225,  0.4568,  2.6430], 
       [ 0.2389,  0.2387,  0.1926,  ..., -0.3318,  0.0269,  3.4188], 
       [-1.3899, -1.3630, -0.7993,  ...,  1.0238,  0.6904, -3.7036], 
       ..., 
       [-0.8147, -0.8653, -0.6919,  ...,  1.1902,  1.1137, -2.3598], 
       [ 0.4363,  0.4713,  0.2978,  ..., -1.2085, -0.8724,  1.3804], 
       [ 0.2154,  0.4221, -0.0204,  ..., -0.4609, -0.0218,  2.9495]], 
      device='cuda:0')), ('network.0.0.bias', tensor([-2.3551e-01, -1.4669e-
01,  1.0728e-02,  1.2264e-01, -5.2010e-01, 
       -5.2636e-01, -1.8640e-01, -2.3231e-01, -1.4808e-01,  4.8181e-02, 
        3.2689e-01, -8.2749e-02, -5.8574e-01, -1.0106e-01,  1.7105e-01, 
       -8.1883e-06], device='cuda:0')), ('network.1.weight', tensor([[ 0.227
2,  0.1508, -0.1535,  0.0698, -0.5781, -0.6211,  0.2401,  0.0881, 
         0.2408, -0.1805, -0.2659,  0.2306, -0.3568, -0.1981,  0.1904,  0.14
82]], 
      device='cuda:0')), ('network.1.bias', tensor([-0.0122], device='cuda:
0'))]), 'scaler_state': {'mean': tensor(4.5152, dtype=torch.float64), 'std': 
tensor(0.5749, dtype=torch.float64)}} 
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In [20]: pth_path = ('model_checkpoint.pth') # .pth is commonly used as the file extens
ion
torch.save(save_dict, pth_path)

Navigate to your notebooks directory. You should now find a file named 'model_checkpoint.pth'. Since the 
DenseNet  model is small, the checkpoint file weighs in relatively lightly at 13KB. Bigger models will have more

weights & biases, and will require more storage space for the checkpoint file.

Loading the model + target scaler

Of course, if you provide the facilities to save a model, you should also provide facilities to load them and to
recreate your model back.

Thankfully, PyTorch makes this also easy.

In [21]: # First, clear the variables for model and target_scaler.
# We want to start with a clean slate.
model = None
target_scaler = None
del model
del target_scaler

We start by recreating the DenseNet  model and the target_scaler  that we originally built. This model will be
initialized with random weights & biases, which we will then overload (overwrite) afterwards with the values from
the checkpoint file.

Make sure that you create the same model and target_scaler  here as the ones you saved the checkpoint file
from. Otherwise you will not be able to load the checkpoint file, or it will produce unexpected results.
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In [22]: # Instantiate the model.
# The model will be randomly initialized, but we will overwrite
# all weights and biases when we load the checkpoint.
model = DenseNet(input_dims, hidden_dims=[16], dropout=0.0)
model = model.to(compute_device)
print(model) 

# Instantiate the target_scaler.
# We initialize this target_scaler with a vector of zeros,
# but we will overwrite its internal parameters
# when we load the checkpoint.
target_scaler = MeanLogNormScaler(torch.zeros(42))

In [23]: # Load the checkpoint and map it to the compute device
pth_path = ('model_checkpoint.pth')
checkpoint = torch.load(pth_path, map_location=compute_device) 

# Load the state dictionaries back into the model and target_scaler
model.load_state_dict(checkpoint['weights'])
target_scaler.load_state_dict(checkpoint['scaler_state'])

Checking the loaded model

DenseNet( 
  (network): ModuleList( 
    (0): Sequential( 
      (0): Linear(in_features=177, out_features=16, bias=True) 
      (1): Dropout(p=0.0, inplace=False) 
      (2): LeakyReLU(negative_slope=0.01) 
    ) 
    (1): Linear(in_features=16, out_features=1, bias=True) 
  ) 
) 
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In [24]: target_test, pred_test = predict(model, test_loader)
scores = evaluate(target_test, pred_test) 

print_scores(scores, label='test') 

plot = plot_pred_act(target_test, pred_test, model, label='$\mathrm{C}_\mathrm
{p}$ (J / mol K)')

Hooray!

test r2: 0.8899 
test mae: 14.2758 
test rmse: 25.8626 
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Visualizing results
Here, we will show some typical examples of visualizations that are used often to show results in ML studies in
materials science.

We will use the open-source ML_figures  package (https://github.com/kaaiian/ML_figures) and the example
data provided by the package to generate these figures.

In [1]: import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline 
%config InlineBackend.figure_format='retina' 

# Import the ML_figures package and the figure-plotting functions
from ML_figures.figures import act_pred
from ML_figures.figures import residual, residual_hist
from ML_figures.figures import loss_curve
from ML_figures.figures import element_prevalence

Predicted vs. actual value plots
These plots, you have already seen before in the previous notebooks.
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In [2]: # Read in example act vs. pred data
df_act_pred = pd.read_csv('ML_figures/example_data/act_pred.csv')
y_act, y_pred = df_act_pred.iloc[:, 1], df_act_pred.iloc[:, 2] 

act_pred(y_act, y_pred, 
        reg_line=True, 
        save_dir='ML_figures/example_figures') 

act_pred(y_act, y_pred, 
        name='example_no_hist', 
        x_hist=False, y_hist=False, 
        reg_line=True, 
        save_dir='ML_figures/example_figures')

3 .2 Publication 1 : BestPractices – SI

107



Residual error plots
Residual error plots show how far your model's predictions deviate from the actual values. They are using the
same data used in the predicted vs. actual plots; however, instead of plotting predicted vs. actual values, residual
error plots plot (predicted - actual) vs. actual values.

This lets you visually analyze your model's prediction error on a straight horizontal line.

Alternatively, you can plot the residual errors on a histogram, and optionally with a kernel density estimation
(kde).

In [3]: residual(y_act, y_pred, 
        save_dir='ML_figures/example_figures') 

residual_hist(y_act, y_pred, 
             save_dir='ML_figures/example_figures')
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Loss curves
Loss curves show the loss of a neural network model vs. epoch throughout the training process. It is typically
evaluated using the training and validation dataset at the end of each epoch (or every  epochs, where  is a
small number, if evaluating every epoch takes too many resources).

Typically, loss curves plot the model performance (such as  score) or loss (such as ) against epoch.

n n

r
2 MAE

In [4]: # Read in loss curve data
df_lc = pd.read_csv('ML_figures/example_data/training_progress.csv')
epoch = df_lc['epoch']
train_err, val_err = df_lc['mae_train'], df_lc['mae_val'] 

loss_curve(epoch, train_err, val_err, 
          save_dir='ML_figures/example_figures')

Visualizing elemental prevalence
Depending on your dataset, what you are studying, and how the compounds/constituent elements of the
compounds in the dataset are distributed, it may be useful to visualize the elemental prevalence in your dataset.

These figures let you visualize the relative amount of certain elements vs. other elements present in your
dataset, and can help you in identifying dataset biases, imbalanced datasets, or other issues.
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In [5]: # Visualize element prevalence
formula = df_act_pred.iloc[:, 0] 

element_prevalence(formula, 
                  save_dir='ML_figures/example_figures', 
                  log_scale=False)
element_prevalence(formula, 
                  save_dir='ML_figures/example_figures', 
                  name='example_log', 
                  log_scale=True) 

plt.rcParams.update({'font.size': 12})
element_prevalence(formula, 
                  save_dir='ML_figures/example_figures', 
                  ptable_fig=False, 
                  log_scale=False)
element_prevalence(formula, 
                  save_dir='ML_figures/example_figures', 
                  name='example_log', 
                  ptable_fig=False, 
                  log_scale=True)
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4 Novel attention-based learning of materials
properties

4.1 Lack of adequate composition featurization techniques

Classical ML methods such as linear regression, random forest, and support vector
machines have been successfully used for the regression and classification of many
material properties [19, 52, 69, 98–101]. In order to train these classical ML methods,
the input chemical formulae are first transformed into numerical features that can then
be used by the models. This process is also referred to as “featurization”. Typically,
featurization of chemical formulae is achieved through the use of a composition-based
feature vector (CBFV), which uses weighted descriptive statistics (such as the mean,
variance, range, and more) of the properties of constituent elements in each chemical
compound to uniquely represent the compound [4, 37, 52, 68, 102–104]. Examples of
common CBFV feature sets for element properties are shown in Table 4.1 and include
Oliynyk, Magpie, Jarvis, Atom2Vec, ElemNet, and mat2vec.

Table 4.1: Examples of common composition-based feature vector (CBFV) feature sets,
including their source and requirements on domain knowledge and hand-
engineering.

Feature set Source Domain knowledge Hand-engineering Ref.

Oliynyk Physical High High [69]
Magpie Physical High High [52]
Jarvis Physical High High [105]
Atom2Vec Computational Medium None to low [106]
ElemNet Computational Low None to low [107]
mat2vec Computational Medium None to low [70]

Here, a distinction is made between physically-derived CBFVs (with features based
on measurable element properties) and computationally-derived CBFVs (with features
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obtained from computational or deep learning models). It is also important to note that
the use of these CBFV feature sets relies on (1) different amounts of domain knowledge
in materials science to understand the feature origins and their usage, and (2) varying
amounts of effort in hand-engineering the features to suit the ML task at hand. Further
analysis about the different CBFV feature sets and their utility for the machine learning
of materials properties can be found in [4, 104].

The CBFV-based featurization of chemical compositions has been shown to work well
for many ML tasks in materials science. However, there is one main assumption inher-
ent to this approach that ultimately limits its potential for being applied to all materials
properties. This assumption is that the chemical compounds should be featurized based
on the stoichiometric weighting of their element vectors. In the CBFV featurization ap-
proach (Figure 4.1), the vectors representing the individual elements in the compound
are typically scaled by the element’s fractional prevalence (i.e., the stoichiometry in the
compound) before being used to form the CBFV. However, this step assumes that the
stoichiometric prevalence of the element is directly related to the contribution of the
element to the compound’s CBFV (and by extension, to the material property).

𝑣Al ⋅ 0.4

𝑣O ⋅ 0.6

Element property
vectors 𝑣 for each

element

mean variance range

𝑣Al2O3 =

𝑣SiC =

Figure 4.1: Example of the composition-based feature vector (CBFV) featurization of
Al

2
O

3
. The compound is featurized using the individual element vectors

of aluminum and oxygen (νAl and νO), which are first weighted by the
fractional prevalence of the elements. The featurized vector νAl2O3 of Al

2
O

3

is obtained by calculating the descriptive statistics (e.g., mean, variance, and
range) of the weighted element vectors. Another example featurized vector
νSiC of the compound SiC is also shown.

This is not true in all cases, an example being that of semiconductor doping. In this
case, ML models using CBFV-featurized composition data cannot properly assign signif-
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4 .2 Lack of structure -agnostic deep learning

icance to the dopant elements due to the insignificant contribution the dopant element
vectors would make to the total compound vector. For example, in the CBFV featur-
ization of the compound Al

2
O

3
(Figure 4.1), the fractional prevalence of aluminum

and oxygen are 0.4 and 0.6, respectively. To form the CBFV, the vectors representing
aluminum and oxygen are scaled by a factor of 0.4 and 0.6, respectively. Descriptive
statistics of these scaled vectors are then calculated and used to finally generate the full
vector νAl2O3 representing the compound Al

2
O

3
.

In a typical doping scenario for semiconductors, however, the prevalence of dopant
elements is much smaller compared to that of the host element. As an example, for
the doping of silicon with phosphorus, changing the phosphorus concentration from
10

12 cm−3 (around 2 × 10
−9 at%) to 10

21 cm−3 (about 2 at%) increases the electrical con-
ductivity of the doped material by approximately eight orders of magnitude [108]! At
such small dopant concentrations, the phosphorus vector will not make a significant
contribution to the CBFV representing the doped compound—to the ML model, the
CBFV of the doped silicon looks almost identical to the vector of pure silicon.

Moreover, the combination of all element vectors into one vector representing the
compound decreases the expressiveness of the element vectors. For example, if the
vector νAl contains a positive value for a particular feature and the vector νO contains
a negative value for the same feature, then the corresponding sum of that particular
feature in νAl2O3 may be close to zero. While the choice of different descriptive statistics
as mentioned above partially remediates this issue, it is still possible to encounter cases
where the collapsing of multiple element vectors into one compound vector removes
valuable information.

4.2 Lack of structure-agnostic deep learning

In addition to representing chemical compounds using the chemical formulae, it is also
possible to include additional input data in the form of crystal structure information.
For example, SchNet, CGCNN, MEGNet, DimeNet++, and ALIGNN provide highly
accurate material property predictions using graph representations of the chemical
compound [109–113]. These graph-based modeling techniques incorporating structural
information drastically outperform both traditional ML models utilizing CBFV inputs
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as well as simpler DL architectures such as deep fully-connected neural networks [107,
114]. While these graph-based models are well-suited for studying and screening
known materials with accompanying structural information such as those recorded
in the Inorganic Crystal Structure Database (ICSD), Pearson’s Crystal Data (PCD), or
other crystallographic or DFT databases, the reliance on structural information as input
data severely limits the applicability of these models for novel materials discovery.

The number of crystal structures recorded in the ICSD and PCD are on the order of
106 and cover predominantly binary, ternary, and quaternary compositions with many
common and duplicated structures [50, 102, 115, 116]. This number is exceedingly
small when compared to the vast amount of possible chemical combinations in chem-
ical whitespace (Section 2.1). When screening a large number of possible candidate
compositions for a certain material property, it may be difficult to find a structural
analogue for that composition in the available data.

Furthermore and perhaps more importantly, it is not possible to know the crystal
structure of a novel material a priori when searching for novel materials, since these
materials do not exist yet and cannot be characterized. Therefore, for the purposes
of materials discovery, a “structure-agnostic” featurization approach which does not
require crystal structure information is needed.

4.3 Transformers and the self-attention mechanism

To address the aforementioned issues, an improved featurization method for chemical
compounds is required, which should (1) featurize the element properties and element
prevalence of a compound separately, (2) preserve the identities of the elements through-
out modeling, and (3) is structure-agnostic. Additionally, a new modeling technique
is needed that can accept the input data from this improved featurization and use that
data to make fast and accurate predictions for a wide range of materials properties.

These three requirements are achieved in this work by introducing the element-derived
matrix (EDM) composition featurization method and by adapting the Transformer self-
attention mechanism for the prediction of materials properties. The model implement-
ing this mechanism is named the Compositionally Restricted Attention-Based network
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(CrabNet). The Transformer self-attention mechanism as well as the novel EDM com-
position featurization method presented as part of CrabNet in this dissertation offer
several benefits:

• General and robust learning framework for materials properties
• Explicit encoding for element identity and abundance
• Permutation-invariant composition representation
• Preservation of per-element property contributions
• Explicit element-element interactions
• Multi-head attention to observe different phenomena
• Increased interpretability of the model

CrabNet was written in a way such that it can be readily used to predict different
types of materials properties for different applications. The model architecture and
hyperparameters are chosen to enable rapid training and inference even in the absence
of a graphics processing unit (GPU). Furthermore, the built-in uncertainty estimation,
robust loss function, and flexible architecture allow CrabNet to accurately learn and
predict material properties using datasets ranging from 312 to over 340 000 data records,
without the need to specifically tailor the model. Further, the model performance of
CrabNet matches or exceeds that of current state-of-the art models.

In the novel EDM composition featurization scheme implemented by CrabNet, the
encoding of an element’s identity and its fractional abundance are separately performed.
This leads to several advantages over the classical CBFV featurization:

1) Elements which exist in small amounts in chemical compositions are preserved
in the EDM featurization using the fractional embedding and are not ignored
in favour of the more abundant elements. Thus, pertinent information about
trace elements (such as dopants) in the compounds are not discarded during
featurization.

2) The element embedding can be taken from existing feature sets or learned as
part of the model training, and is independent of the fractional embedding of the
elements. This allows for more flexibility in tailoring the EDM for more specific
material prediction tasks.
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3) The constituent elements of a compound are encoded as separate embedding
vectors in the EDM and are not collapsed into one vector as is in the case of the
CBFV. This enables further modeling benefits as will be discussed in Chapter 5.

4) The use of multiple attention heads in the CrabNet architecture allows for the
capturing of multiple types of element-element interactions for a given material
property. This enables CrabNet to simultaneously capture multiple complex
chemical relationships using the EDM to model materials phenomena that would
otherwise be difficult to be learned using simpler architectures.

The second publication resulting from this thesis work discusses the aforementioned
points in more detail and introduces the Compositionally Restricted Attention-Based
network (CrabNet). The publication and its accompanying supplementary information
(SI) are inserted in the following pages.
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ARTICLE OPEN

Compositionally restricted attention-based network for
materials property predictions
Anthony Yu-Tung Wang 1,3, Steven K. Kauwe2,3, Ryan J. Murdock2 and Taylor D. Sparks 2✉

In this paper, we demonstrate an application of the Transformer self-attention mechanism in the context of materials science. Our
network, the Compositionally Restricted Attention-Based network (CrabNet), explores the area of structure-agnostic materials
property predictions when only a chemical formula is provided. Our results show that CrabNet’s performance matches or exceeds
current best-practice methods on nearly all of 28 total benchmark datasets. We also demonstrate how CrabNet’s architecture
lends itself towards model interpretability by showing different visualization approaches that are made possible by its design. We
feel confident that CrabNet and its attention-based framework will be of keen interest to future materials informatics researchers.

npj Computational Materials (2021)7:77 ; https://doi.org/10.1038/s41524-021-00545-1

INTRODUCTION
Materials scientists constantly strive to achieve better under-
standing, and therefore better predictions, of materials properties.
This began with the collection of empirical evidence through
repeated experimentation, resulting in mathematical general-
izations, theories, and laws. More recently, computational
methods have arisen to solve a large variety of problems that
were intractable to analytical approaches alone1,2.
As experimental and computational methods have become

more efficient, high-quality data has opened up a new avenue to
materials understanding. Materials informatics (MI) is the resulting
field of research that utilizes statistical and machine learning (ML)
approaches in combination with high-throughput computation to
analyze the wealth of existing materials information and gain
unique insights2–4. As this wealth has increased, practitioners of MI
have increasingly turned to deep learning techniques to model
and represent inorganic chemistry, resulting in approaches such as
ElemNet, IRNet, CGCNN, SchNet, and Roost5–9. In specific
cases including CGCNN and SchNet, the compounds are
represented using their chemical and structural information7,8,10–15.
Modeling approaches based on crystal structure are an

excellent tool for MI. Unfortunately, there are many material
property datasets that lack suitable structural information. An
example of this is the experimental band gap data gathered by
Zhou et al.16. Conversely, many databases such as the Inorganic
Crystal Structure Database (ICSD) and Pearson’s Crystal Data (PCD)
contain an abundance of structural information, but lack the
associated material properties of the recorded structures. In both
cases, the applicability of structure-based learning approaches are
limited. This limitation is particularly evident in the discovery of
novel materials, since it is not possible to know the structural
information of (currently undiscovered) chemical compounds a
priori. Therefore, the development of structure-agnostic techni-
ques is well-suited to the discovery of novel materials.
A typical approach to structure-agnostic learning is done by

representing chemistry as a composition-based feature vector
(CBFV)17. This allows for data-driven learning in the absence of
structural information. The CBFV is a common way to transform
chemical compositions into usable features for ML and is

generated from the descriptive statistics of a compound’s
constituent element properties. Researchers have effectively used
CBFV-based ML techniques to generate material property
predictions17–25.
One potential issue with the CBFV approach lies in the way the

element vectors are combined to form the vector describing the
chemical compound. Typically, the individual element vectors of
the compound are scaled by the element’s prevalence (fractional
abundance) in the composition, before being used to form the
CBFV. This step assumes that the stoichiometric prevalence of
constituent elements in a compound dictates their chemical
signal, or contribution, to the material’s property. However, this is
not true in all cases; an extreme example of this is element
doping. Dopants can be present in very small amounts in a
compound, but can have a significant impact on its electri-
cal23,26,27, mechanical20,28–30, and thermal properties31–34. In the
case of a typical CBFV approach that uses the weighted average
of element properties as a feature, the signal from dopant
elements would not significantly change the vector representa-
tion of a compound. As a result, the trained ML model would fail
to capture a portion of the relevant chemical information
available in the full composition.
It is apparent that there is no generally accepted best way to

model materials property behaviors. Different ML approaches lend
themselves towards different modeling tasks. CGCNN requires
access to structural information, ElemNet operates within the
realm of large data, and classical models excel when domain
knowledge can be exploited to overcome data scarcity35. To
address the diversity of learning challenges, in Dunn et al., the
Automatminer framework uses computationally expensive
searches to optimize classical modeling techniques. They demon-
strate effective learning on some data, but show shortcomings
when deep learning is appropriate36.
In a similar spirit, we seek to overcome general challenges in the

area of structure-agnostic learning using an approach we refer to
as the Compositionally Restricted Attention-Based network
(CrabNet). CrabNet introduces the self-attention mechanism
to the task of materials property predictions, and dynamically
learns and updates individual element representations based on
their chemical environment. To enable this, we introduce a
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University of Utah, Salt Lake City, UT, USA. 3These authors contributed equally: Anthony Yu-Tung Wang, Steven K. Kauwe. ✉email: sparks@eng.utah.edu

www.nature.com/npjcompumats

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;

4 Novel attention -based learning of materials properties

120



featurization scheme that represents and preserves individual
element identities while sharing information between elements.
Self-attention is a procedure by which a neural network learns
representations for each item in a system based on the other
items that are present. In this context, we treat the chemical
composition as the system and the elements as the items within
that system. This representation enables CrabNet to learn inter-
element interactions within a compound and use these interac-
tions to generate property predictions.
To perform self-attention, we use the Transformer architecture,

which emerged from natural language processing (NLP) and is
based on stacked self-attention layers37–42. A typical use of the
Transformer architecture in NLP is to encode the meaning of a
word given the surrounding words, sentences, and paragraphs.
Beyond NLP, other example uses of the Transformer architecture
are found in music generation43, image generation44, image and
video restoration45–49, game playing agents50,51, and drug
discovery52,53. In this work, we explore how our attention-based
architecture, CrabNet, performs in predicting materials proper-
ties relative to the common modeling techniques Roost,
ElemNet, and random forest (RF) for regression-type problems.

RESULTS
The results of this study are described in three subsections. First,
we describe the collection of materials property data used for
benchmarking CrabNet. Second, we highlight the performance
of CrabNet when compared to other current learning
approaches which rely solely on composition. Third, we briefly
outline how the self-attention mechanism in CrabNet enables
visualizations and inspectability unique to attention-based
modeling.

Data and materials properties procurement
For this work, we obtained both computational and experimental
materials data for benchmarking. Our benchmark data includes
materials properties from the Matbench dataset as provided by
Dunn et al.36. In addition, materials properties data from a number
of works6,54–57 are collected, which are referred to as the Extended
dataset. We included 28 benchmark datasets in total: 10 from the
Matbench and 18 from the Extended datasets ranging from 312 to
341,788 instances of data.
The Matbench datasets were split using fivefold cross-validation

following instructions provided in the original publication36.
Materials properties in the Extended dataset were split into train,
validation, and test datasets using a fixed random seed. For both
datasets, several steps were taken to process the original datasets
to be compatible with structure-agnostic learning using Crab-
Net. Care was taken to ensure that (1) no duplicate compositions
were present in each of the train, validation, and test datasets, and
that (2) if a composition exists in the train or validation dataset, all
compounds with the same composition are removed from the
validation and test datasets. To remain comparable with the
Automatminer publication36, we applied the data processing steps
as mentioned above after splitting the data. Please note that since
some datasets have more duplicate compositions than others,
these processing steps may affect the train/val/test ratios. For
duplicate compositions in the OQMD and MP datasets, the target
value associated with the lowest formation enthalpy was selected.
For other datasets, the mean of the target values was used. Please
see the Supplementary Methods for more details.
The full processed benchmark dataset, comprising the Mat-

bench and Extended datasets, were then used with Roost,
CrabNet, ElemNet, and RF models. The training and validation
data were used for training and hyperparameter tuning. The test
data were held-out to provide a fair evaluation of performance
metrics across all models. Model performance was only evaluated

after all training and hyperparameter tuning was completed. A
summary of the datasets is shown in Table 1. All datasets are
provided as pre-split csv files to facilitate future comparisons to
the metrics reported in this paper. Additional data processing and
cleaning details can also be seen in the code on the dataset
repository mse_datasets58. To maintain consistent and simple
benchmark comparisons, we selected data suitable for regression
tasks and ignored structural information when present.

Benchmark comparisons
With the benchmark data described above, we generated material
predictions using the publicly available code repositories for
Roost9, CrabNet59, and ElemNet5. The performance of these
benchmarked models is compared using the mean absolute error
(MAE) between n true values (y) and predicted values (ŷ) as
defined by Eq. (1):

MAE ¼ 1
n

Xn

i¼1

yi � ŷij j: (1)

This allows for consistent comparison to past works5–7,9.
Figure 1 shows the performance metrics from training and

testing the models on all the benchmark materials properties
outlined above. Here we note that the models for Roost,
CrabNet, and ElemNet were all trained using the default model
parameters provided with their respective repositories. In contrast
to Roost and ElemNet, the default parameters for CrabNet
were optimized using validation data from some of the same
datasets on which we benchmarked. Although it is possible this
offers a small advantage to CrabNet’s performance, we do not
expect this to be significant due to CrabNet’s consistently strong
performance on all benchmark tasks.
We tested two versions of CrabNet. The default CrabNet

uses a mat2vec embedding when representing elements, similar
to Roost. The second version of CrabNet (HotCrab) uses one-
hot encodings (in the form of atomic numbers) and fractional
amounts to represent each element in a composition. This is
similar to ElemNet, as both models start without any chemical
information. The random forest (RF) model utilizes a Magpie-
featurized CBFV to represent chemistry. This is included as a
performance baseline to match similar works5,9,36.
Overall, we see similar performance between Roost and the

two versions of CrabNet tested. Given the different architectures
and modeling philosophies of Roost and CrabNet, it is
promising that both approaches converge towards the same
performance metrics. We also see that Roost and both CrabNet
versions achieve consistent and significant improvements to MAE
compared to ElemNet and RF approaches. Interestingly, Fig. 1
shows that the use of mat2vec instead of one-hot with
CrabNet improves prediction performance on all materials
properties except for AFLOW thermal conductivity, MP elastic
anisotropy, and those present in the largest datasets (OQMD).
The Matbench data provided by Dunn et al.36 was bench-

marked using the Automatminer tool. These metrics are not
included in Fig. 1, since all but two (expt_gap, and steels_yield) of
Automatminer’s models use structural information. Consequently,
we focus on these two materials properties when comparing
CrabNet’s results to those from Automatminer. For these two
metrics, CrabNet’s structure-agnostic approach outperforms the
reported MAE values from Automatminer on the same tasks
(expt_gap: 0.416 eV vs. 0.338 eV for CrabNet; steels_yield:
95.2 GPa vs. 91.7 GPa for CrabNet).
The performance of CrabNet on the steels_yield task is

particularly interesting. The steels_yield dataset contains com-
pounds with small dopant amounts in large chemical systems (up
to 13 elements per composition) and only 312 total data.
CrabNet’s ability to learn on this data-poor property and
outperform all other tested models including the baseline RF
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model (which is traditionally better in the data-poor regime) is
encouraging. We expected the steels_yield task to be difficult for
all deep learning approaches. Nevertheless, repeated training and
validation of CrabNet consistently produced error metrics better
than the best result obtained by Automatminer (95.2 GPa).

Visualizing self-attention
CrabNet’s modeling and visualization capabilities are enabled by
its attention-based learning framework. In statistical ML and many
deep learning approaches akin to ElemNet, the chemical
composition of a compound is represented as a single CBFV. In
contrast, Roost and CrabNet represent a composition as a set
of element vectors. Distinct to CrabNet, however, is the
Transformer-based self-attention mechanism that learns to update
these element vectors using learned attention matrices. In Fig. 2,
we show example attention matrices for each attention head of a
CrabNet model trained on the property mp_bulk_modulus,
using Al2O3 as the example composition. These matrices contain
information regarding how each element (rows) is influenced by
all other elements in the system as well as itself (columns). The
values in these attention matrices are used in the Transformer
encoder to update the element vectors. A value of zero means
that the element in the column is completely ignored when
updating the element in that row. A value of one means that
the entire vector update is based solely on that column’s element.

Our implementation of CrabNet has three layers, each with four
attention heads, with each head using the same data to generate
its own independent attention matrix (see “Methods” for more
details).
Shifting our focus to another CrabNet model trained on

aflow__Egap data, we show that in addition to visualization of the
individual attention heads, we can also generate a global view of
attention from the perspective of individual elements. In Fig. 3, we
use four periodic tables to visualize, for each attention head, the
average attention that silicon dedicates to other elements when
they are in the same composition. The darker colored elements
can be understood as highly influential when updating silicon’s
vector representation.
Interestingly, each attention head exhibits its own behavior,

with some focusing on familiar groups and columns in the
periodic table. This behavior lends credibility to CrabNet since
there is no inherent reason that data-driven learning should
converge to chemical rules that are familiar to materials scientists.
Furthermore, the identification of unfamiliar element groupings
enabled by the attention-based visualizations may allow us to
formulate further research questions to study these inter-
elemental interactions.
The preservation of elemental identity within a compound—as

a result of the self-attention mechanism—also enables CrabNet
to generate property predictions in a way that is different to other
approaches shown in the literature. Typically, element information

Table 1. Benchmark datasets. List of all 28 material properties used to benchmark the ML models in this work, together with the dataset size and the
original training, validation, and test set proportions.

Dataset name Source Material property # Samples (Train/val/test) %

castelli Castelli et al.36,65 Formation enthalpy (perovskites) 18928 5-fold (72/8/20)

dielectric MP36,66–68 Refractive index 4764 5-fold (72/8/20)

elasticity_log10(G_VRH) MP36,66,67,69 log10(shear modulus (VRH)) 10987 5-fold (72/8/20)

elasticity_log10(K_VRH) MP36,66,67,69 log10(bulk modulus (VRH)) 10987 5-fold (72/8/20)

expt_gap Experiment16,36 Experimental band gap 4764 5-fold (72/8/20)

jdft2d Experiment36,70 Exfoliation energy 636 5-fold (72/8/20)

mp_e_form MP36,66,67 Formation energy per atom 132752 5-fold (72/8/20)

mp_gap MP36,66,67 Band gap 106113 5-fold (72/8/20)

phonons MP36,66,67,71 Phonon frequency 1265 5-fold (72/8/20)

steels_yield MP36,72 Steels yield strength 312 5-fold (72/8/20)

aflow__ael_bulk_modulus_vrh AFLOW54 Bulk modulus (VRH) 4905 (70/15/15)

aflow__ael_debye_temperature AFLOW54 Debye temperature 4905 (70/15/15)

aflow__ael_shear_modulus_vrh AFLOW54 Shear modulus (VRH) 4905 (70/15/15)

aflow__agl_thermal_conductivity_300K AFLOW54 Thermal conductivity 4896 (70/15/15)

aflow__agl_thermal_expansion_300K AFLOW54 Thermal expansion 4895 (70/15/15)

aflow__Egap AFLOW54 Band gap 27841 (70/15/15)

aflow__energy_atom AFLOW54 Energy per atom 27844 (70/15/15)

CritExam__Ed Bartel et al.55 Decomposition enthalpy 85014 (70/15/15)

CritExam__Ef Bartel et al.55 Formation enthalpy 85014 (70/15/15)

mp_bulk_modulus MP (Oct. 2018)57,66,67,69 Bulk modulus 7632 (70/15/15)

mp_elastic_anisotropy MP (Oct. 2018)57 Ratio of elastic anisotropy 7659 (70/15/15)

mp_e_hull MP (Oct. 2018)57 Energy above the convex hull 83983 (70/15/15)

mp_mu_b MP (Oct. 2018)57 Magnetization of the unit cell 83973 (70/15/15)

mp_shear_modulus MP (Oct. 2018)57,66,67,69 Shear modulus 7437 (70/15/15)

OQMD_Bandgap OQMD6 Band gap 341696 (70/15/15)

OQMD_Energy_per_atom OQMD6 Energy per atom 341788 (70/15/15)

OQMD_Formation_Enthalpy OQMD6 Formation enthalpy 341788 (70/15/15)

OQMD_Volume_per_atom OQMD6 Volume per atom 341788 (70/15/15)

The materials properties listed in the top and bottom halves are Matbench and Extended datasets, respectively.
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of a given compound is collapsed into a single vector first and
then used to generate the property prediction. In contrast,
CrabNet uses each element’s vector representation to directly
predict the element’s contribution to the property prediction.
Figure 4a shows the average contributions from each element for
a CrabNet model trained on AFLOW bulk modulus data. The
darker colored elements contribute more towards a compound’s
bulk modulus value. Alternatively, elements can be visualized
individually using their specific per-element contributions. In
Fig. 4b we show distribution plots for lithium and tungsten’s
contributions to bulk modulus. From these plots, we can see that
CrabNet expects lithium to contribute little to the overall bulk
modulus, whereas it expects tungsten to contribute largely. See
Supplementary Fig. 3 for additional examples of these element
contribution plots. The visualizations from Fig. 4 match closely—
and reinforce—expectations regarding which elements most
influence bulk modulus behavior in a compound. Exploration of
data in this manner hints at the first steps towards model
interpretability of CrabNet. We expect these types of property
visualizations to be useful for exploring and verifying model and
element behavior in detail.
Finally, with per-element contributions in mind, we can

demonstrate changes to CrabNet’s expected material property
behavior as a function of chemical composition. To do this, we
consider a normalized chemical system consisting of atoms A and
B, in the form of AxB1−x. We then generate property predictions
for all x∈ {0.0, 0.02, . . . , 1.0}. In Fig. 5, we visualize CrabNet’s
behavior when predicting band gap of the SixO1−x system using a
model trained on the aflow__Egap data.
We first observe that the expected elemental contributions for

both oxygen and silicon to band gap are similar throughout the
varied stoichiometry range, with the exception of the peak in
oxygen contribution at around x= 0.7. We also observe that the

model indicates a transition of the SixO1−x system between
conducting and semi-conducting between x= 0.5 and x= 0.7. We
note that the only available training data sample from the SixO1−x

system in the dataset was from the composition SiO2. Therefore,
we can see that the band gap trend predicted here by CrabNet is
based on the learned chemical representations and inter-
elemental interactions from other elements and systems. The
visualization of CrabNet model predictions within a given
chemical space is an alternative way to explore model learning
and prediction behavior, and may lead to an improved under-
standing of inter-elemental interactions within a chemical system.
Furthermore, we note that the ability of CrabNet in predicting

material property trends for specific chemical systems without
requiring a large amount of training data for that system is of
great benefit. For future studies, this ability may be investigated
for its application in predicting the behavior of new chemical
systems while only requiring a sparse sampling or learning of their
chemical information. Furthermore, we believe that transfer
learning of trained CrabNet models to other material properties
is possible, due to the ability of the self-attention mechanism to
accurately capture inter-elemental interactions. We are confident
that these ideas of probing and visualizing of CrabNet’s
modeling process and model predictions will open up further
interesting research directions and ultimately lead to more
insights in the pursuit of inspectable models.

DISCUSSION
Unique challenges exist when applying ML to materials science. In
this paper, we address the limitations of ML on chemical
composition by introducing CrabNet. The CrabNet architecture
uses the self-attention mechanism and the EDM representation
scheme to perform context-aware learning on materials proper-
ties. Using 28 benchmark datasets, we demonstrate CrabNet’s
performance compared to Roost, ElemNet, and RF baselines.

Fig. 1 Benchmark results. MAE scores of Roost, CrabNet, one-
hot encoded CrabNet (HotCrab), and ElemNet on the held-out
test datasets, compared with the random forest (RF) baseline for (a)
the Matbench dataset and (b) the Extended dataset. Cells are
colored according to relative MAE performance within each row
(blue is better, and red is worse). A NaN (not a number) value is
reported for instances where the models failed to converge on a
given material property. Here we present model results trained
using chemical information (Roost, CrabNet), no chemical
information (HotCrab, ElemNet), and a standard CBFV (RF).

Fig. 2 Visualization of self-attention in one compound. Displayed
are the four attention heads (a–d) from the first layer of a CrabNet
model trained on mp_bulk_modulus and evaluated on the
composition Al2O3. Each row represents an element in the system.
Each column represents an element being attended to. Each
element’s fractional amount is shown on the x-axis. The values in
the attention matrix are scores representing element-element
interactions for the compound. As an example, in head a, Al0.4
and O0.6 are attending strongly to each other, with attention scores
of 1.00 between these two elements.
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CrabNet exhibits consistent predictive accuracy across the full
range of materials properties tested. Furthermore, we show that
the self-attention-based learning technique also provides alter-
native methods for visualizing model behavior. We demonstrate
the use of attention and per-element contribution prediction
capabilities for visualizing common trends in our trained models
that match chemical expectations.
Given this application of self-attention in the context of

materials science, we expect that there can be many informative
and impactful follow-up works. Specifically, we believe these will
largely fall into three thematic categories:

1. CrabNet directly contributing to the community’s focus
towards improved property predictions.
CrabNet consistently generates good MAE scores. The

performance achieved with the use of self-attention,
combined with the innovative use of element and
composition featurization techniques, will allow researchers
to delve deeper into analyzing and predicting materials
properties. As a result, we believe that CrabNet will be
relevant in areas where other ML methods fall short (e.g.,
dopants, small data, and materials extrapolation tasks). We
also note that with minimal changes to CrabNet, it can
also perform classification tasks; we expect CrabNet to

Fig. 3 Visualization of average attention for one dataset. The average attention from each of the four attention heads (a–d) from the first
layer of a CrabNet model trained on the aflow__Egap data is shown for systems containing Si. The heatmap shows the average amount of
attention that Si dedicates to the other elements in Si-containing compounds. The darker the coloring, the more strongly Si attends to that
element. We can see that each attention head exhibits its own behavior, and attends to different groups of elements. Interestingly, head a
attends to common n-type dopants and head c attends to many transition metals, whereas heads b and d have unfamiliar element groupings.

Fig. 4 Overall element contribution to property predictions. Average contribution of all elements to bulk modulus predictions, computed
from the AFLOW bulk modulus dataset, (a) plotted on a periodic table and (b) plotted as a distribution showing the per-element contribution
amounts of Li and W, respectively, in all the compounds. The darker colored elements in the periodic table contribute more towards a
compound’s bulk modulus value.
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similarly excel at this.
2. Attention-based models allow for new ways of thinking

about materials-specific problems.
In this work, we briefly examined the attention mechan-

ism. Attention highlights important interactions and may be
used to understand which element interactions mediate
materials properties. Model explainability has thus far been
elusive to the traditional MI paradigms; the inclusion of self-
attention in this work has introduced additional methods of
model inspectability that may be a step towards this goal.

3. Augmentation of CrabNet using structural and domain-
specific knowledge.
This work intentionally used a compositionally restricted

EDM representation with no structural information. Structure-
agnostic learning is an important task in MI and CrabNet
demonstrates that accurate learning is achievable using the
self-attention mechanism. However, the prediction of materials
properties using structural information is also an important
task. Integration of structural information could be achieved by
describing elements in their structural and chemical environ-
ments. We expect that the self-attention mechanism of
CrabNet will be able to utilize this additional information to

make more accurate predictions. This application of attention-
based learning to crystal systems is an exciting and promising
direction. We also expect that materials prediction tasks
involving processing steps or other non-compositional features
could be used in this approach. Both of these changes could
easily be implemented as extensions to the EDM.

While further research is necessary to fully discern the utility of
self-attention in materials problems, we believe that this paper
highlights a major new direction in its application in MI and
suggests exciting directions for future research.

METHODS
Self-attention and the CrabNet architecture
Chemical compositions are input using the atomic numbers and fractional
amounts of their constituent elements. The atomic numbers are used to
retrieve element representations (either mat2vec or one-hot). The
fractional amounts are used to obtain fractional embeddings (described
below). An element embedding matrix is generated by applying a fully
connected network to the element representations. A fractional embed-
ding matrix is created from the fractional embeddings. These matrices are
then added together (element-wise) to generate the element-derived
matrix (EDM, see Fig. 6). Each row of the EDM (j-index) represents an
element and the columns (k-index) contain the element embeddings. We
batch each unique chemical composition onto a third dimension (the i-
index). The resulting three-dimensional tensor contains the input data for
the CrabNet architecture.
We use the mat2vec element embeddings60 as the default source of

chemical information for each element, even though there are other
choices for element properties available, such as Jarvis22, Magpie61,
Oliynyk18 or a simple one-hot encoding. The mat2vec embedding
has the advantage of being pre-scaled and normalized, and having no
missing elements nor element features. Regardless of the choice of
element representation, the representation must be reshaped to fit the
attention input dimensions of (dmodel). This is done using a learned
embedding network; the result is a matrix of size (nelements, dmodel). In
addition to the default training of CrabNet using the mat2vec
embedding, a one-hot embedding of the elements was used to train
an additional CrabNet model (HotCrab) to better facilitate comparison
with ElemNet.
The stoichiometric information for each element in the EDM is

represented by two fractional embeddings. The fractional embeddings
are inspired by the positional encoder as described in the seminal work by
Vaswani et al.37. We use sine and cosine functions of various periods to
project the fractional amounts into a high-dimensional space (dimension
d= dmodel/2) where smooth interpolation between fractional values is
preserved. The first part of the fractional embedding represents the
stoichiometry, using the normalized fractional amounts, on a linear scale
with a fractional resolution of 0.01. The second part of the embedding
maps stoichiometry using a log scale and spans from 1 × 10−6 to 1 × 10−1.
This logarithmic transformation of the fractional embedding preserves
small fractional amounts such as those present in doping. The two parts of
the fractional embedding for all elements are concatenated across the

Fig. 5 Element contribution to property prediction as a function
of composition. Model predictions over the SixO1−x system using a
model trained on the aflow__Egap data. The x-axis is the fractional
amount of Si. The y-axis shows the predicted band gap value at a
given composition. The blue and red lines are the individual
element contributions to the prediction, as predicted by CrabNet.
The gray shading represents the aleatoric uncertainty for each
prediction.

Fig. 6 EDM featurization scheme. Schematic illustration of the element-derived matrix (EDM) representation for Al2O3, where B represents the
batch, dmodel is the element features, and nelements represents the number of elements. Composition slices, when concatenated across batch
dimension i, form an EDM tensor which is then used as the model input to CrabNet. When a chemical formula has fewer elements than rows
in the EDM, the extra data rows are filled with zeros.
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embedding dimension to obtain a matrix of size (nelements, dmodel).
See Supplementary Figs. 1 and 2 for example visualizations of the EDM
embedding.
Once the element and fractional embeddings are calculated and added

together, we then batch the finished EDMs across the first dimension. This
gives the final input data of shape (ncompounds, nelements, dmodel), where
ncompounds is the total number of compounds in a given batch, nelements is
the number of rows in the EDM (inferred from the number of elements in
the largest composition in a given dataset), and dmodel is the size of the
embeddings. Here, we also note that the exact ordering of the element
rows (j) in a compound in the EDM does not influence CrabNet due to the
permutation-invariant nature of the self-attention mechanism.
CrabNet contains two primary modules with the default hyperpara-

meters as shown in Table 2. The first module is a Transformer encoder with
3 layers and 4 attention heads in each layer. The second module is a
residual network that converts element vectors into element contributions.
To understand the Transformer encoder, we first describe the self-

attention mechanism. During self-attention (Fig. 7a), the EDM is operated
on by three fully connected linear networks (FCQ, FCK, and FCV). These
networks generate the query Q, key K, and value V tensors. These tensors
can be conceptualized as a learned high-dimensional space where the
model stores chemical behavior from the training data.
The K and Q tensors contain information regarding the magnitude to

which elements interact. The V tensor stores the information that is used
to map from element to property contribution. The dot product of each Q
and KT tensor pair (where KT denotes the transpose of K) generates
the relative element importances in the system (Fig. 7b). The
importances are scaled using a constant

ffiffiffiffiffi
dk

p
and then normalized

using a softmax function. This results in the self-attention tensor,
commonly referred to as the attention map. We denote this tensor
as A. The matrix multiplication of A with V updates the element-
representations in the compound based on the importance of
each element.

Each of the four attention heads independently performs self-attention
with their own Qh, Kh, Vh, and Zh tensors, where h denotes the head index
for h= 1,…, H. As a result, the network generates four different element
representations at each layer. The individual Zh tensors are concatenated
across the last dimension to make the Z tensor (as seen in Fig. 8a). The Z
tensor is then passed into a linear FC network which combines the element
representations from each head. The output of this FC network is an
updated EDM0 (for each composition in the batch). This process of
converting an EDM into an updated EDM0 is referred to as a self-attention
block. CrabNet repeats the process of updating the EDM via the self-
attention block three times (hence, three layers) resulting in the final
updated representations, denoted EDM″. This concludes the Transformer
encoder module.
Once the Transformer encoder has updated the element representa-

tions, each EDM″ passes through a fully connected residual network with
hidden layer dimensions of noderes. The residual network then transforms
the EDMs into the shape (nelements, nelements, 3). We define these final three
vectors as the element-proto-contributions p0 , element-uncertainties u0 ,
and element-logits (see Fig. 8a). The element scaling factor s is obtained by
taking the sigmoid (σ) of the element-logits. The element-contributions are
then obtained by multiplying the element-proto-contributions p0 by their
respective scaling factor s. This results in element contributions y0 . Finally,
the mean of the element contributions is taken and output as the
predicted property value for each compound (see Fig. 8b). Similarly, the
mean of the element-uncertainties is used in the aleatoric uncertainty
prediction as described by Roost9.

Training CrabNet
After the featurization of compositions into EDMs, the dataset loading and
batching is performed with the built-in Datasets and DataLoaders
classes from PyTorch. All target values are scaled to zero-centered mean
and unit variance for training and inference. The target scaling is then
undone for performance evaluation. Batch size during training is
dynamically calculated using the training set size for faster training, and
limited to be within the range 27–212. For inference, the batch size was
fixed at 27.
Model weights are updated using the look-ahead62 and Lamb

optimizer63 with a learning rate that is cycled between 1 × 10−4 and 6 ×
10−3 every 4 epochs to achieve consistent model convergence. A robust
MAE is used as the loss criterion for model performance9. The default
parameters generalize well when predicting most of the benchmark
materials properties. Although we expect that optimization of hyperpara-
meters may improve CrabNet’s results for individual materials properties,
we believe it is more important that materials scientists be able to use
CrabNet with little or no adjustments to the underlying code.
It is a known phenomenon that random weight initialization can impact

the performance of the Transformer encoder architecture. Thus, to
mitigate variance in the performance metrics between different model
runs, we trained CrabNet using a fixed random seed of 42 for all training
runs across all materials properties. We do note that in the case of random
model initialization, the run-to-run variation between different trained
models is a feature that could be taken advantage of for determining the
epistemic uncertainty. Unfortunately, due to the sheer volume of materials
properties investigated in this work and the limited compute resources
available, we have not investigated this thus far.
Finally, we note that all model training, evaluation, and benchmarking

(for CrabNet, Roost, ElemNet, and RF) was conducted on a single

Table 2. List of default model parameters of CrabNet.

Parameter Description Default value

din (Input) dimension of element embedding 200 (mat2vec); 118 (one-hot)

dmodel Dimension for EDM and positional encoder 512

dff Feedforward dimension for self-attention mechanism 2048

dk Key dimension (equal to dq in this work) dmodel/H= 128

H Number of attention heads per attention block 4

N Number of stacked self-attention layers 3

noderes Number of nodes at each layer for residual network [1024, 512, 256, 128]

dout (Output) dimensions of residual network 3

Fig. 7 Schematic of an attention block in the CrabNet archi-
tecture. a The initial projection of the input EDM into the Q, K and V
tensors. b The scaled dot-product attention operation obtaining the
self-attention matrix and the updated Z element representation. The
batch dimension is not shown in b to improve legibility.
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workstation PC equipped with an Intel i9-9900K CPU, 32 GB of DDR4 RAM,
and two NVIDIA RTX 2080 Ti GPUs with 11 GB VRAM per GPU. The deep
learning models were trained on the GPU, while the RF models were
trained on the CPU.

Reference models
Predictions for all materials properties were generated using code from the
Roost repository9. Minor adaptations were made to the code to allow for
automated training and benchmarking. Overall, Roost generates
consistently impressive results. Roost relies on a soft-attention mechan-
ism used over a graph representation of the compound. This is in the same
spirit of CrabNet, and both seek to generate vector representations for
the elements in the system without using structure information. The
residual network and robust loss function from Roost were helpfully
adopted into our architecture9.
Predictions from ElemNet were generated using default parameters

using code from the repository5. Custom scripts were written to train and
evaluate ElemNet over all materials properties data. ElemNet consis-
tently under-performed compared to Roost and CrabNet. ElemNet
failed to converge for multiple properties resulting in NaN (not a number)
values in the model outputs. Examples of this occurring can be seen in the
phonons and steels_yield datasets. Here, we would like to note that
IRNet6 could also be benchmarked and compared in this study. However,
due to the prohibitively large computational requirements, we chose not
to train and evaluate IRNet. We do however note that the OQMD
performance reported in the IRNet publication6 is consistently lower than
both Roost and CrabNet for the same properties. These following values
show the reported performance of IRNet vs. HotCrab, respectively, for
formation enthalpy (0.048 eV vs. 0.031 eV), band gap (0.047 eV vs.
0.048 eV), energy per atom (0.070 eV vs. 0.033 eV), and volume per atom
(0.394Å3 vs. 0.277Å3).
We generate baseline RF metrics using a random forest regression with

the Magpie CBFV as defined by Matminer36. This is done using the
scikit-learn Python package. The RF models were trained with
nestimators= 500 and default parameters.

DATA AVAILABILITY
Data is provided in its cleaned and pre-split form to ensure reproducible results, and
with the hope that other researchers find it useful when benchmarking their own
approaches. The processed data that is used in this study can be found on the GitHub
repository59 at the address https://github.com/anthony-wang/CrabNet. All raw data
as well as scripts to process and split the datasets can be found in the GitHub
repository58 at the address https://github.com/kaaiian/mse_datasets.

CODE AVAILABILITY
We provide detailed instructions for the installation, training, and general usage of
the open-source CrabNet on GitHub59. In addition, pre-trained network weights
for the CrabNet models reported in this work are available for download64. The
following files are available with this publication: (1) GitHub repository with the
CrabNet source code, figures, and example property predictions: https://github.
com/anthony-wang/CrabNet, (2) pre-trained weights for the CrabNet models
reported in this work: https://doi.org/10.5281/zenodo.4633866, and (3) Supplemen-
tary Information. Finally, we recommend that interested readers consult the paper
“Machine Learning for Materials Scientists: An Introductory Guide towards Best
Practices”4 for a detailed treatment of best practices in machine learning and
justification for many of the unmentioned experimental design decisions used in
this work.
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Supplementary Methods 

As noted in the publication, we have taken additional steps to ensure that (1) no 
duplicate compositions were present in each of the train, validation, and test 
datasets, and that (2) if a composition exists in the train or validation dataset, all 
compounds with the same composition are removed from the validation and test 
datasets. Below are the details regarding the dataset processing steps. 

First, all structural information (if any) was removed from the original datasets. 

Then, the pre-split datasets for each material property were examined for any 
duplicate compositions in each of the train, validation and test splits. In our case, the 
duplicate compositions come from the fact that we have removed structural 
information from the datasets. 

Thus, compounds which may exist with multiple crystal structures (with different 
properties) are now recorded in the dataset as the same composition, having 
different target values. We remove duplicate target values of the same composition 
by taking the mean of all available target values. 

Differently, for the OQMD and MP datasets, we first sorted compounds which had 
duplicate entries by order of increasing formation enthalpy. Then, we took the 
property values associated with the lowest formation enthalpy value for each 
compound and used those as the target values for the compounds in each of the 
OQMD and MP datasets. 

Second, we examine, for each of the material properties, the compositions present 
within the train, validation, and test splits. If a composition exists in the train dataset 
and is found in the validation or test dataset, we remove that composition in the 
validation or test dataset. 

Likewise, we do the same for compositions in the validation dataset being found in 
the test dataset. This ensures that there is no leakage of chemical information 
between the dataset splits. Here we note that we use the normalized composition to 
detect matching composition, Na2Cl2 is treated as being the same composition as 
NaCl. This is comparable to the way how atomic fractional amounts are featurized 
by the CrabNet EDM featurization scheme (discussed in the publication). 

We note additionally that, in order to remain comparable with other works which use 
the datasets including the structural information (such as the Automatminer 
publication), we have elected not to re-split the dataset splits into different 
train/validation/test datasets. 

Instead, we have taken the original datasets from the publications and applied the 
data processing steps as mentioned above, to retain as much of the original dataset 
splits as possible. 
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CrabNet is composed of the following PyTorch modules. These are used to build the 
CrabNet architecture as specified in the files crabnet/{kingcrab|model}.py. 

Model architecture: out_dims, d_model, N, heads 
3, 512, 3, 4 
 
CrabNet( 
  (encoder): Encoder( 
    (embed): Embedder( 
      (fc_mat2vec): Linear(in_features=200, out_features=512, bias=True) 
      (cbfv): Embedding(119, 200) 
    ) 
    (pe): FractionalEncoder() 
    (ple): FractionalEncoder() 
    (transformer_encoder): TransformerEncoder( 
      (layers): ModuleList( 
        (0): TransformerEncoderLayer( 
          (self_attn): MultiheadAttention( 
            (out_proj): _LinearWithBias(in_features=512, 
out_features=512, bias=True) 
          ) 
          (linear1): Linear(in_features=512, out_features=2048, 
bias=True) 
          (dropout): Dropout(p=0.1, inplace=False) 
          (linear2): Linear(in_features=2048, out_features=512, 
bias=True) 
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (dropout1): Dropout(p=0.1, inplace=False) 
          (dropout2): Dropout(p=0.1, inplace=False) 
        ) 
        (1): TransformerEncoderLayer( 
          (self_attn): MultiheadAttention( 
            (out_proj): _LinearWithBias(in_features=512, 
out_features=512, bias=True) 
          ) 
          (linear1): Linear(in_features=512, out_features=2048, 
bias=True) 
          (dropout): Dropout(p=0.1, inplace=False) 
          (linear2): Linear(in_features=2048, out_features=512, 
bias=True) 
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (dropout1): Dropout(p=0.1, inplace=False) 
          (dropout2): Dropout(p=0.1, inplace=False) 
        ) 
        (2): TransformerEncoderLayer( 
          (self_attn): MultiheadAttention( 
            (out_proj): _LinearWithBias(in_features=512, 
out_features=512, bias=True) 
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          ) 
          (linear1): Linear(in_features=512, out_features=2048, 
bias=True) 
          (dropout): Dropout(p=0.1, inplace=False) 
          (linear2): Linear(in_features=2048, out_features=512, 
bias=True) 
          (norm1): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (norm2): LayerNorm((512,), eps=1e-05, elementwise_affine=True) 
          (dropout1): Dropout(p=0.1, inplace=False) 
          (dropout2): Dropout(p=0.1, inplace=False) 
        ) 
      ) 
    ) 
  ) 
  (output_nn): ResidualNetwork 
) 
 
Number of params: 11987206 
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Supplementary Figures 

 
Supplementary Figure 1. Visualization of an example EDM embedding of the 
compound Al2O3. The elements shown were featurized using the “mat2vec” element 
properties. Note that the fractional embedding has not been added to the feature 
vectors of O and Al yet. “None” refers to no element present in the EDM. 

 

 
Supplementary Figure 2. Visualization of an example EDM embedding of the 
compound Al2O3, with the fractional embedding added element-wise to the element 
property embeddings. “None” refers to no element present in the EDM.  
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Supplementary Figure 3. Selected additional examples of the per-element 
contribution plots (Figure 3b in the publication) from the CrabNet model trained using 
the AFLOW bulk modulus dataset. See the directory figures/contributions in 
the CrabNet repository for all of the plots. 
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5 Interpretable deep learning with CrabNet

5.1 Lack of interpretable modeling in materials science

Despite the excellent performance and adaptability of deep learning (DL) models for
materials informatics (MI) as seen in recent academic publications, the adoption of
these models in the industry is comparatively limited. Arguably, the major reason
for this discrepancy between the popularity of DL in academic research and the lack
of its adoption in industry is the widespread use of black-box models which are not
directly interpretable by end users. This discrepancy is termed the “interpretability-
adoption gap” and is one of the motivations for the development of explainable AI
(XAI) methods.

Although there are established mathematical and statistical methods for evaluating
model performance, it is nonetheless often desirable for users and decision-makers to
have the model metrics supplemented with an intuitive understanding of the modeling
and decision-making process. This is especially helpful for end users who are not
well-versed in the complexities of DL, model evaluation, and statistics.

In order to further increase the adoption of DL models in MI, it is not enough to simply
provide well-documented and open-source code with an accompanying publication.
Efforts should also be made to increase the interpretability of the models, either by
building in methods to inspect the modeling process in an existing model (“post-hoc
interpretability”) or by designing and building models with interpretability as a main
goal (“intrinsic interpretability”). This will not only lead to further understanding of the
model decision-making processes and additional chemical insights, but also promote
the adoption of DL modeling and MI techniques in academia and industry alike.

These requirements are achieved in this work by incorporating intrinsic model inter-
pretability in CrabNet using several methods aimed at extracting additional information
out of the modeling process. The architecture and EDM encoding scheme of CrabNet,

137



5 Interpretable deep learning with CrabNet

when combined with additional model interpretability and inspection methods as in-
troduced in this work, lead to several important advantages:

1) Since the element identity is preserved in the input EDM data throughout the
modeling process, it becomes possible to track the element representations and
how they are modified by CrabNet as they pass through the model architecture.
This enables the examination of the changing element behavior as well as the
per-element contributions to the material property throughout modeling.

2) The element vectors can be extracted from CrabNet and examined to explore the
learned element trends and relationships (such as element identity, similarity and
abundance) on a per-property basis. This can be extended to the compound level
to explore clustering and relationships between compounds in a given dataset.

3) The self-attention mechanism can be used to explicitly encode element-element
interactions within a compound, allowing CrabNet to capture both the entire
representation of a chemical compound while still being sensitive to interactions
between specific elements. These element-element interactions can be visualized
to gain additional insights about the modeling process and chemical behaviour
of the elements.

4) The EDM representation of elements and compounds as well as the attention
mechanism contain an incredible amount of model-internal information and offer
an extraordinary opportunity to increase the interpretability of CrabNet models.
Further examination and visualization of this information may bring about a
better understanding of the modeling process and additional insights about the
chemical phenomena governing materials behaviours. This may lead to increased
confidence in CrabNet and ultimately accelerate the adoption of CrabNet and
other data-driven methods in materials science.

The third publication resulting from this thesis work aims to address these issues
through the improvement of model interpretability in CrabNet. The publication and its
accompanying supplementary information (SI) are inserted in the following pages.

138



5 .2 Publication 3 : ExplainableGap

5.2 Publication 3: CrabNet for Explainable Deep Learning in

Materials Science: Bridging the Gap Between Academia and

Industry

Title CrabNet for Explainable Deep Learning in Materials Science:
Bridging the Gap Between Academia and Industry

Authors A. Y.-T. Wang, M. S. Mahmoud, M. Czasny, and A. Gurlo

Journal Integrating Materials and Manufacturing Innovation

Publisher Springer International Publishing AG

Publication date January 17, 2022

Reference Integrating Materials and Manufacturing Innovation, 2022

DOI 10.1007/s40192-021-00247-y

Supporting

information

The SI can be downloaded from:

https://doi.org/10.1007/s40192-021-00247-y

My contribution Conceptualization, Methodology, Software, Validation, Formal
analysis, Investigation, Resources, Data Curation, Visualization,
Writing – Original Draft, Writing – Review & Editing (together
with M.S.M), Project administration.

The article is inserted in the following pages. The article is reprinted under the
open access CC BY license (https://creativecommons.org/licenses/by/4.0/).

139

https://doi.org/10.1007/s40192-021-00247-y
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Vol.:(0123456789)1 3

Integrating Materials and Manufacturing Innovation 
https://doi.org/10.1007/s40192-021-00247-y

TECHNICAL ARTICLE

CrabNet for Explainable Deep Learning in Materials Science: Bridging 
the Gap Between Academia and Industry

Anthony Yu‑Tung Wang1   · Mahamad Salah Mahmoud2 · Mathias Czasny1 · Aleksander Gurlo1

Received: 22 October 2021 / Accepted: 5 December 2021 
© The Author(s) 2022

Abstract
Despite recent breakthroughs in deep learning for materials informatics, there exists a disparity between their popularity in 
academic research and their limited adoption in the industry. A significant contributor to this “interpretability-adoption gap” 
is the prevalence of black-box models and the lack of built-in methods for model interpretation. While established methods 
for evaluating model performance exist, an intuitive understanding of the modeling and decision-making processes in models 
is nonetheless desired in many cases. In this work, we demonstrate several ways of incorporating model interpretability to 
the structure-agnostic Compositionally Restricted Attention-Based network, CrabNet. We show that CrabNet learns mean-
ingful, material property-specific element representations based solely on the data with no additional supervision. These 
element representations can then be used to explore element identity, similarity, behavior, and interactions within different 
chemical environments. Chemical compounds can also be uniquely represented and examined to reveal clear structures and 
trends within the chemical space. Additionally, visualizations of the attention mechanism can be used in conjunction to 
further understand the modeling process, identify potential modeling or dataset errors, and hint at further chemical insights 
leading to a better understanding of the phenomena governing material properties. We feel confident that the interpretability 
methods introduced in this work for CrabNet will be of keen interest to materials informatics researchers as well as industrial 
practitioners alike.

Keywords  Materials informatics · Deep learning · Self-attention · Interpretability · Explainable AI · XAI

Introduction

Machine learning (ML) in materials informatics (MI) has 
received significant attention in the academic research 
world and is gaining widespread adoption [1–5]. More 
specifically, it has recently been extensively studied for its 
use in the research and design of novel inorganic materials 
[6–10]. This is enabled by three major developments: (1) 
the increasing number of material property datasets as well 
as the improvement in dataset quality and variety, (2) the 
rapid pace and development of new ML models tailored to 

addressing different challenges in materials science (e.g., 
regression, classification), supplemented by (3) the increase 
in available computing power and accessibility to ML and 
deep learning tools. The combination of these developments 
led to improved capabilities in the exploration and modeling 
of material properties in the academic world.

Classical ML methods (e.g., linear regression, random 
forest, support vector machines) have successfully been 
used for the regression and classification of many mate-
rial properties [11–17]. These methods usually rely on the 
featurization of the input chemical formulae into numeri-
cal features that are usable by the models. Typically, this 
is achieved through the use of a composition-based fea-
ture vector (CBFV), which uses descriptive statistics of 
the properties of constituent atoms in each compound to 
uniquely represent it [18]. Some common CBFV feature 
sets are Oliynyk, Magpie, Jarvis and mat2vec [11, 12, 
19, 20]. Here, a distinction is made between physically 
derived CBFVs (with features based on measurable ele-
ment properties) like Oliynyk, Magpie and Jarvis, and 
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computationally derived CBFVs (with features obtained 
from computational or deep learning models) like mat-
2vec. For some properties, additional features such as 
structural information and processing or measurement 
conditions are included to further improve model perfor-
mance [2, 16, 21, 22].

In more recent years, deep learning (DL) models have 
gained widespread popularity in MI due to numerous advan-
tages compared to classical ML methods. Some examples are 
ElemNet, CGCNN, MEGNet, DimeNet++, and ALIGNN 
[23–27]. More recently, graph neural network (GNN) mod-
els incorporating attention-based mechanisms such as Crab-
Net, Roost and H-CLMP have gained increasing popularity 
[28–30]. GNNs have shown improved performance com-
pared to other DL models, particularly in the absence of 
structural information as model inputs. Another advantage 
of GNNs is that the inductive biases built into the model and 
the input data structure are more suited to the learning of 
material properties, since the interactions between the atoms 
in the compound can be modeled as weighted interactions 
between nodes in a graph. In CrabNet, for example, the atom 
representations are either based on a CBFV feature (mat2vec 
element vectors) or a non-CBFV feature (onehot element 
vectors) [28]. For the sake of clarity, the remaining text will 
use the acronym DL to refer to both deep learning (DL) and 
graph neural network (GNN) models and methods.

Unfortunately, while DL methods show superb perfor-
mance in modeling material properties, the element features 
used by these models typically do not represent any measur-
able physical property of the elements themselves. Instead, 
the element representations are learned from the data during 
the model training process. Therefore, they do not directly 
provide useful information or insights that can be interpreted 
by humans. This is different from the CBFV representation 
typically used in classical ML, where the features represent 
properties of the elements which are known a priori, such 
as the atomic mass, first ionization energy, or number of 
valence electrons.

Despite the high performance of the DL models, there is a 
disparity between their extensive study in academic research 
and their limited adoption in the industry for the exploration 
of materials. We term this disparity the “interpretability-
adoption gap”. One significant hurdle to the widespread 
adoption of the often “black-box” models is the lack of 
built-in methods for model interpretation. While there are 
established methods of evaluating model performance in 
academia [14, 31–33], those who are less familiar with DL 
typically require more intuition into how the models function 
before they can fully trust the results. Particularly in indus-
try, where there is usually a lower risk tolerance compared 
to academia, findings based on black-box models and vague 
model evaluation criteria are not enough to justify making 
high-stakes decisions such as investing in new research [5, 

34–38]. Tangible methods of investigating and understand-
ing model decision-making processes are therefore required 
to facilitate their adoption in an industrial setting [39].

This led to the development of explainable AI (XAI), 
which aims to introduce methods for deciphering the inter-
nal workings of black-box models and thus enabling users 
to understand the modeling processes and results [39, 40]. 
Examples of XAI in research fields outside of MI include: 
visualizing word embeddings in natural language processing 
[41–43], inspecting decision-making processes in reinforce-
ment learning [44–46], visualizing pixel importances [47, 
48], or segmenting in computer vision [49, 50]. To date, 
however, XAI techniques have—with the exception of a few 
works employing classical ML—largely been underexplored 
for DL in the MI field [10, 51, 52].

Two common post-hoc model-agnostic methods for 
obtaining explainable models in classical ML are SHAP and 
LIME [39, 53–55]. Both of these methods are built on top of 
existing black-box models and use local feature perturbation 
to estimate the contributions from input features towards 
the predictions. Other models such as random forest, gradi-
ent boosting, and lasso regression inherently provide model 
interpretability via the use of internal feature importance 
metrics and (in some models) through bootstrap sampling 
and feature sampling [39, 51, 56]. Nonetheless, these tech-
niques require that the individual features of the input data 
are meaningful and represent a measurable feature or physi-
cal property. This works in the domain of classical ML and 
when using a physically derived CBFV to featurize com-
pounds; however, this is not the case for DL methods where 
the features typically do not reflect measurable values. Thus, 
these traditional ways of model interpretability fall short in 
use for the DL models.

Therefore, it is the goal of this work to explore how to 
increase model interpretability in DL models specifically for 
applications in MI. Here, we demonstrate how parts of the 
typically black-box modeling process can be communicated 
visually and in an interpretable way, using our attention-
based model, CrabNet [28]. We have extended CrabNet’s 
architecture to enable intrinsic interpretability using several 
methods to be discussed below. In this regard, we lay the 
first bricks in the bridge spanning the interpretability-adop-
tion gap between academia and industry. This will not only 
aid researchers in further developing complex models with 
interpretability in focus, but also promote the adoption of 
these modeling methods in the materials science industry.

Results and Discussion

The results of this study are described in five subsections. 
We first compare the element embeddings learned by Crab-
Net against other CBFV feature sets from the literature, 
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and show how chemical behavior and patterns in element 
properties can be learned entirely from the training data for 
each material property. We also show that the learned ele-
ment representations are comparable to physically derived 
CBFVs. Secondly, as part of this analysis, we characterize 
the element prevalence imbalance in the datasets using the 
Shannon equitability index and relate that to the quality of 
the learned element embeddings. Third, we further examine 
how the element representations are successively updated 
using information about their chemical environment in the 
compounds, and how they may be used to gain additional 
insights about element behaviors in different environments. 
Fourth, we inspect how entire chemical compounds can also 
be adequately captured using the EDMs and subsequently 
visualized. We identify interesting trends in the compound 
representations relating the bond character and number of 
elements in the compounds to the material property and pre-
diction error, and discuss how such visualizations can lead 
to additional understanding about the modeling process and 
the underlying materials chemistry. Lastly, we explore how 
the self-attention mechanism in CrabNet can be visualized 
in the form of videos and used to further examine the mod-
eling process, leading to potential new insights about the 
chemical interactions within a compound. While we use the 
OQMD_Bandgap dataset to demonstrate the analyses, we 
note that similar analyses can be also carried out with any of 
the 28 materials datasets presented in this work.

Learning Meaningful and Per‑Property Element 
Representations

Element representations were obtained as featurized 
CBFVs, which are fixed-length vectors where each element 
is uniquely described by the same set of features [12, 18]. 

For the Oliynyk, Magpie and mat2vec element property fea-
ture sets, we use the published vectors to represent the ele-
ments [18, 20]. For the CrabNet element representations, we 
extract the element vectors from the element-derived matri-
ces (EDMs) at the output of the embedding layer (please 
refer to the CrabNet publication for architecture details [28]). 
We then examine the similarity between two element vectors 
x and y by computing the Pearson correlation coefficient r 
using Equation 1:

where n is the number of features, xi and yi are the values 
of the ith feature, and x̄ and ȳ are the mean values of x and 
y, respectively.

The correlation r ranges from -1 to 1; the higher or lower 
the value of r is, the more correlated or anticorrelated are 
the features that describe the elements, respectively. A value 
of zero means that there are no correlations between the 
features of the elements. We compute the pairwise correla-
tion coefficients between the element vectors for all elements 
and for all element property representations, and show these 
as heatmaps in Fig. 1. Note that the plots are cropped to the 
range of elements of the Oliynyk heatmap to aid compari-
son; please refer to supplementary Fig. S-1 in the supple-
mentary information (SI) for the full heatmaps. In addition, 
interactive versions of the plots are provided in the SI.

Here, we can observe that element vectors based on 
the Oliynyk and Magpie CBFVs contain large regions 
of similar color in the heatmap. The regions of similar 
color indicate that the element representations are either 
highly correlated or highly anticorrelated with each other. 

(1)r =

∑n

i=1
(xi − x̄)(yi − ȳ)

�

∑n

i=1
(xi − x̄)2(yi − ȳ)2

Fig. 1   Heatmaps of Pearson correlation matrices between element 
vectors featurized using a Oliynyk, b Magpie, and c mat2vec element 
property feature sets. The x- and y-axes are labeled with the atomic 
numbers. Each cell at coordinate (x,  y) represents the correlation 
between the corresponding elements with atomic numbers x and y. 

Blue represents a high correlation and red represents a high anticor-
relation. For the interest of comparison, the heatmaps are truncated to 
the dimensions of the Oliynyk heatmap. Empty rows indicate that no 
element vector is available
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Furthermore, these regions are very similar between the 
two CBFVs. This is expected, since the CBFV features 
are based on physical properties of the elements. Thus, 
elements with similar physical properties will be more cor-
related while dissimilar elements will be more anticor-
related. Accordingly, the large colored regions typically 
correspond to similarities and dissimilarities between ele-
ments from families in the periodic table, such as alkali 
metals, alkaline earth metals, transition metals, metalloids 
and reactive nonmetals.

On the other hand, the element vectors from a DL model 
such as mat2vec do not exhibit such prominent behavior. 
Overall, the elements show less correlation with each other, 
and—with the exception of a few areas (to be discussed in 
later sections)—do not show large continuous regions of 
similar color. This is due to the fact that the starting element 
representations in DL models are randomly initialized and 
are not based on physical properties of the elements. These 
vector representations of the elements are only updated by 
the model throughout the training process using the training 
data. Thus, the correlation patterns that can be observed in 
this figure represent distinct patterns that the DL model has 
learned solely from the provided data.

We also note that a different number of element vectors 
are recorded in the feature sets. For the Oliynyk and Mag-
pie CBFVs, only the elements up to uranium and berkelium 
are reported, respectively, while vectors up to the element 
oganesson are provided by mat2vec (please refer to sup-
plementary Fig. S-1 in the SI for the uncropped heatmaps). 
Particularly for the Oliynyk CBFV, some element vectors are 
missing, as visible by the empty rows in the heatmap. This 
disparity in the availability of element vectors between dif-
ferent CBFVs can be caused by reasons such as the instabil-
ity or rarity of elements, lack of adequate information about 
the elements, or the inability to measure properties about 
the elements. The lack of element vectors in some material 
property feature sets can limit their applicability for certain 
tasks (such as when studying rare elements) and will be dis-
cussed in more detail in later sections.

In addition to learning element representations for a gen-
eral purpose in materials science, such in the case of mat-
2vec, DL methods can also learn to relate element charac-
teristics on a material property-specific basis. For example, 
element embeddings were extracted from the CrabNet and 
HotCrab models which were reproduced using the supplied 
model weights and the source code [57, 58]. The CrabNet 
and HotCrab models use mat2vec and onehot-encoded ele-
ment features as the starting element representations, respec-
tively. These features are then fine-tuned by the models for 
each of the 28 reported datasets. We extract one set of ele-
ment embeddings from each layer of the models. Then, the 
Pearson correlation between the element vectors are calcu-
lated and shown in Fig. 2.

In this work, we use the OQMD_Bandgap dataset to 
demonstrate our findings. Additional example plots for other 
properties can be found in the SI. The OQMD datasets are 
widely used by researchers to evaluate model performance. 
For detailed information about the OQMD_Bandgap dataset 
as well as information and discussion about the calculated 
values, please see the literature [59–61].

Here, we can observe that both CrabNet and HotCrab are 
able to learn embeddings for each element of the periodic 
table, and that the correlations between the elements have 
a similar pattern, irrespective of the starting element rep-
resentation (mat2vec or onehot). The observed correlation 
patterns are also similar to the mat2vec patterns as seen in 
Fig. 1c. The ability of both CrabNet and HotCrab models 
to learn similar element embeddings despite having drasti-
cally different starting representations is encouraging, and 
further suggests that domain knowledge is not necessarily 
required for element featurization if a sufficient quantity and 
quality of training data is available [18]. This finding is cor-
roborated by the similarly good performance of both models 
across a wide range of material properties [28]. Interest-
ingly, for deeper layers of the models (Fig. 2b and d), more 
intense correlation patterns between the elements emerge. 
This is likely attributed to the self-attention-based learning 
mechanism of the underlying CrabNet models. At each suc-
cessive layer within the model, information about additional 
element-element interactions within the compound (i.e., the 
chemical environment) are successively taken into account 
when updating the identity of an element within that com-
pound. As a result, the deeper the layer within the model, 
the more complex the element interactions—and the element 
representations—become.

It is also interesting to note the diagonal and horizon-
tal patterns which can be observed in all of the correlation 
matrices. For example, in Fig. 2d there is a 45-degree diag-
onal, blue line that can be seen in the correlation matrix 
starting at the coordinates (13, 31) (corresponding to the 
element pair (Al, Ga)) and continuing until (40, 58) (cor-
responding to (Zr, Ce)). This line highlights the well-known 
periodic law which states that elements with similar chemi-
cal properties fall into recurring periodic groups. Please 
refer to supplementary Fig. S-2 for the enlarged version of 
the annotated heatmap and for correlation plots for other 
material properties. Another observation is the triangular 
region of high correlation between (57, 57) and (71, 71), 
which indicates that the first-row elements of the f-block 
are highly similar to each other. A similar triangular region 
can be observed between (23, 23) and (29, 29), indicating 
similarities between some first-row elements of the d-block. 
Lastly, the vertical blue line starting at the coordinates 
(39, 57) and continuing to (39, 71) indicate the chemical 
similarities between yttrium and the first-row elements of 
the f-block. These and other patterns can also be observed in 
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the Oliynyk and Magpie CBFVs in Fig. 1 as well. The ability 
of the CrabNet and HotCrab models to learn such chemical 
relationships which are comparable to hand-curated CBFVs 
based solely on the chemical formulae is exciting, and fur-
ther reaffirms the finding that hand-engineering of features 
is not needed when training on big data [18].

Moreover, in Fig. 2c we observe a distinct “border” at 
the element plutonium (with atomic number 94), where 
the correlation coefficients between the elements sud-
denly decrease and the patterns become less pronounced. 

Additional analysis of the OQMD_Bandgap dataset showed 
that it does not contain any compounds with elements past 
plutonium. Due to the fact that the element representations 
are learned purely by the model from the dataset, their qual-
ity depends heavily on the quality of the dataset. Since the 
model performance depends on the quality of the element 
representations, by extension, it also then depends on the 
dataset quality [32].

We define element prevalence as the number of times 
a certain element has appeared as part of the compounds 

Fig. 2   Heatmaps of Pearson correlation matrices between element 
vectors extracted from CrabNet and HotCrab. These element rep-
resentations are learned entirely from data. The x- and y-axes are 
labeled with the atomic numbers. Each cell at coordinate (x, y) rep-
resents the correlation between the corresponding elements with 
atomic numbers x and y. The top row (a and b) shows the correlations 

between embeddings from CrabNet and the bottom row (c and d) 
from HotCrab. The left and right columns represent the embeddings 
extracted from the first and last layer of the models, respectively. Blue 
represents a high correlation and red represents a high anticorrelation. 
In d, some regions of interest are annotated
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in a given dataset. When examining the OQMD_Bandgap 
dataset, we note that there is an imbalance in element preva-
lence, with oxygen and copper appearing almost 1.5 times 
to twice as often, and fluorine, chlorine, bromine and iodine 
appearing only less than 0.1 times as often as the majority 
of the other elements in the dataset, respectively. This imbal-
ance in element prevalence is even stronger for other datasets 
such as the aflow__Egap, castelli, CritExam, mp_e_form 
and phonons datasets (see supplementary Fig. S-3 in the SI 
for some example element prevalence plots).

Quantifying Dataset Imbalance

The degree to which a dataset is imbalanced (otherwise 
referred to as its “evenness”) can be measured using the 
Shannon equitability index, which is a function of the Shan-
non entropy of the dataset [62–64]. Shannon entropy is 
widely used in information theory and can be used to char-
acterize the degree of imbalance in a dataset [65, 66]. The 
Shannon entropy H is defined in Equation 2 as:

where X is the set of discrete variables xi ∈ {x1, … , xn} , i 
is the class, P(xi) is the proportional abundance of xi and k is 
the total number of classes in the dataset.

For a dataset D of n data occurrences and k distinct chem-
ical elements (classes), each with counts ci , P(xi) =

ci

n
 and 

the Shannon entropy can thus also be written as Equation 3:

(2)H(X) = −

k
∑

i=1

P(xi) logP(xi)

For continuity, we note that when ci = 0 , it means that no 
data sample is related to class i in the dataset, and therefore 
the multiplicand within the summation is defined to be 0. 
Mathematically, limp→0+ p log(p) = 0 . The maximum value 
of H(D) is log(k) . This value occurs when all element classes 
in the dataset are observed at the same frequency (i.e., the 
dataset is completely balanced). Therefore, the Shannon 
entropy H(D) is scaled by log(k) to finally obtain the Shan-
non equitability index E(D) , which is defined in Equation 4 
as:

E(D) ranges between 0 for a maximally imbalanced dataset 
and 1 for a maximally balanced dataset. The Shannon equi-
tability indices are calculated for the 28 datasets examined 
in this work and are presented in Table 1. A plot showing 
the same information can be found in the SI (supplementary 
Figure S-4). For more information about the datasets, please 
refer to the CrabNet publication [28].

As can be seen in the table, the datasets studied in this 
work are not equally balanced in terms of element diversity. 
The more imbalanced a dataset is in terms of the element 
prevalence in the chemical compounds, the less likely the 
models will be able to adequately learn about the elements 
and their environments. The element embeddings learned for 
the infrequent elements will therefore be weaker and will not 

(3)H(D) = −

k
∑

i=1

ci

n
log

(ci

n

)

(4)E(D) =
H(D)

log(k)

Table 1   Shannon equitability 
indices calculated from the 
training data splits of the 28 
reported datasets. Datasets were 
taken from [28]

Material property dataset Equitability Material property dataset Equitability

castelli 0.823 aflow__ael_bulk_modulus_vrh 0.948
dielectric 0.864 aflow__ael_debye_temperature 0.948
elasticity_log10(G_VRH) 0.953 aflow__ael_shear_modulus_vrh 0.948
elasticity_log10(K_VRH) 0.953 aflow__agl_thermal_conductivity_300K 0.940
expt_gap 0.931 aflow__agl_thermal_expansion_300K 0.944
expt_is_metal 0.930 aflow__Egap 0.920
glass 0.771 aflow__energy_atom 0.917
jdft2d 0.872 CritExam__Ed 0.914
mp_e_form 0.913 CritExam__Ef 0.914
mp_gap 0.916 mp_bulk_modulus 0.923
mp_is_metal 0.916 mp_elastic_anisotropy 0.921
phonons 0.909 mp_e_hull 0.897
steels_yield 0.959 mp_mu_b 0.897

mp_shear_modulus 0.921
OQMD_Bandgap 0.976
OQMD_Energy_per_atom 0.976
OQMD_Formation_Enthalpy 0.976
OQMD_Volume_per_atom 0.976
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be able to capture as much information about these elements 
as compared to more frequently occurring elements. This 
leads to the observed weak correlation patterns between the 
less frequently seen elements beyond a certain cutoff atomic 
number in the datasets, as discussed earlier for Fig. 2.

If the weakly learned elements are then encountered dur-
ing inference time, the model will not be able to make an 
adequate prediction using the elements’ representations. 
Additionally, if certain elements or element combinations 
appear more frequently (majority classes) in the datasets 
as compared to other elements or combinations (minor-
ity classes), the model may be biased to better capture the 
behavior of majority classes at the expense of sacrificing 
performance on the minority classes. Such a dataset bias 
may appear in computational or experimental datasets due 
to the fact that some elements are more commonly studied 
for certain material applications. On the other hand, certain 
elements (e.g., rare or unstable elements) naturally occur 
less frequently and therefore are also contained in fewer 
compounds and datasets. Certain elements such as noble 
gases also rarely form compounds with other elements and 
are therefore rarely reported in materials datasets.

It is therefore important to implement data processing 
and modeling techniques to address biases as a result of 
dataset imbalance. Some example techniques include data-
set re-sampling, generating synthetic data for imbalanced 
classes, implementing weighted loss functions that penalize 
errors for minority classes more, or using alternative loss 
functions and metrics to evaluate model performance [64, 
67, 68]. Additionally, the model architecture can also be 
tailored to address dataset bias, and certain types of models 
(such as those based on self-attention or guided attention 
architectures) have an increased robustness against dataset 
bias [69, 70].

Lastly, it is worthy to note that while most DL models 
learn element representations from structured materials 
datasets, methods such as word2vec and mat2vec use text 
mining and other natural language processing (NLP) tech-
niques to learn the element embeddings from academic pub-
lications [20, 71, 72]. The data present in publications covers 
a much longer time period and contains a higher diversity in 
terms of types of compounds, material properties and appli-
cations studied. These data are in unstructured form and 
therefore cannot be used as training data for DL methods 
such as CrabNet; however, they can easily be used for word-
2vec and mat2vec. Therefore, these text mining methods are 
able to learn from a much larger corpus of materials data and 
are not restricted by the availability of structured datasets. 
Accordingly, DL models such as CrabNet can benefit by 
using the pre-trained mat2vec element embeddings and fine-
tuning them to new tasks, thereby minimizing the impact of 
missing elements in the training dataset.

Capturing the Influence of Chemical Environments 
on Element Representations

In addition to learning the representations of each element, 
CrabNet and HotCrab can also capture the behavior of the 
elements when they are present in different chemical envi-
ronments. Figure 3 shows the two-dimensional projections 
of the element vectors corresponding to the silicon atom 
from 2374 different silicon-containing compounds within 
the OQMD_Bandgap test dataset. The silicon vectors are 
extracted from the transformed EDM tensors from HotCrab 
(a onehot-featurized version of CrabNet) and show the trans-
formation of the silicon representations after they are passed 
through the three successive self-attention layers. For visu-
alization, the vectors are projected down to two dimensions 
using the uniform manifold approximation and projection 
(UMAP) method [73]. The resulting points are plotted and 
colored by three parameters: (1) the fractional abundance 
of the element silicon in the compound, (2) the predicted 
property value of the compound (in this case, band gap), and 
(3) the oxidation state of silicon as predicted by Pymatgen 
[74]. For more information, please see the Methods.

As can be seen in the plots from the first layer (first row), 
there is a large number of distinct point clusters, with one 
major cluster near the center, two medium clusters above and 
below the center cluster, and many smaller clusters consist-
ing of a few points. The larger clusters are formed because 
the initial representations of the silicon atoms are very 
similar to another (due to the learned element embedding 
of silicon). The similar silicon vectors are thus projected 
through UMAP into coordinates that lie close together, even 
though the silicon atoms are present in different chemical 
environments.

We can observe as well that the clustering in layer one 
is mostly attributable to the fractional amount, since each 
cluster consists primarily of points with the same fractional 
silicon amount. After the second layer, we observe that the 
points start to become separated into different and recogniz-
able clusters. The clusters are no longer identifiable entirely 
based on the fractional amount of silicon, and clusters based 
on the predicted band gap value of the compound and oxida-
tion state of silicon start to emerge. By the end of the third 
and last layer, we can observe four clusters that are distin-
guishable by the fractional amount of silicon, the predicted 
band gap, and the oxidation state of silicon (the clusters are 
outlined in Fig. 3, bottom left).

More specifically, we observe that the cluster at the bot-
tom-right side of the plot consists mainly of silicon with a 
fractional amount of around 0.15 to 0.3 (with a few points 
reaching 0.5), whereas the cluster near the bottom-left con-
tains almost exclusively of silicon with fractional amounts 
of 0.5 plus a few points above 0.5. The cluster near the top 
contains regions of silicon with fractional amounts between 
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0.3 to 0.4 near the left and right, and around 0.2 to 0.3 in 
the middle. Near the top of this cluster, a smaller cluster is 
highlighted which consists mainly of silicon instances with 
low abundance, between 0.2 and 0. Please note that interac-
tive versions of these plots can be found in the SI together 
with another example visualization plotted for the element 
chromium (supplementary Fig. S-5).

In the predicted value plot of the last layer, we observe 
that only the small cluster near the top contains the silicon 
element in compounds with a nonzero band gap. Similarly, 
when examining the oxidation state plot, we note that while 
most clusters contain a mixture of silicon atoms in several 
oxidation states, the same cluster near the top consists almost 

exclusively of silicon atoms in the +4 oxidation state and 
very few atoms in other oxidation states. Closer examination 
reveals that this cluster consists primarily of silicate mate-
rials such as Ca2SiO4, CaMgSiO4, MgMnSiO4, Li4SiO4, 
Sr3MgSi2O8, Li2MgSiO4, and others. Interestingly, while 
some compounds with silicon in the +4 state are visible in 
other clusters, these compounds have a zero band gap. This 
suggests that additional interactions between the elements 
were captured by HotCrab which lead to these compounds 
being correctly clustered together with other compounds 
with zero band gap.

These element behavior plots suggest that for silicon-
containing compounds in the OQMD_Bandgap dataset, 

Fig. 3   Vector representations of the silicon element in 2374 different 
chemical environments and at different layers of the HotCrab model. 
Each point shows the model-internal representation of the silicon 
atom, after the information regarding the other atoms in the chemi-
cal environment have been introduced via HotCrab through the three 
attention layers (top row to bottom row). The points are colored by: 

(left column) the fractional abundance of silicon, (center column) the 
predicted value of the compound, and (right column) the predicted 
oxidation state of silicon, where gray points indicate that the oxida-
tion state was unable to be predicted. Four clusters are outlined in the 
bottom-left plot
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the fractional amount and the oxidation state of the silicon 
atoms are important factors that together determine the band 
gap of the compounds. By cross-referencing the three plots, 
we can identify trends between the fractional amount and 
oxidation state of silicon and relate this information to the 
predicted band gap of the compounds. On the other hand, 
the clustering also suggests that there are other interactions 
between the elements in a compound which are currently 
not highlighted by the selected properties in Fig. 3. It is our 
expectation that by examining these interactions, additional 
insight about the modeling process and element representa-
tions can be gained. Moreover, the findings from examining 
internal representations of elements in this way may suggest 
additional studies to further improve the understanding of 
the underlying phenomena governing materials behaviors. 
Note that while these visualizations were generated using 
HotCrab, similar results can be obtained using the CrabNet 
model.

Capturing Globally Unique Representations 
of Chemical Compounds

In addition to examining the behavior of individual elements 
in different chemical environments, we can also visualize all 
of the compounds in a given dataset to uncover additional 
insights. We extract the internal vector representation of all 
of the 51242 compounds in the OQMD_Bandgap test dataset 
from the last self-attention layer of HotCrab, perform dimen-
sionality reduction using UMAP and finally visualize the 
compounds as shown in Fig. 4. In addition to coloring the 
plots by the predicted value, prediction error, and number of 
distinct elements for the compounds, we also highlight the 
chemical trend between ionic to covalent bonding character 
within the compounds. This trend is revealed by calculat-
ing and visualizing the standard deviation of the Pauling 
electronegativities of the constituent atoms �� in a given 
compound [75] according to Equation 5:

where �i is the Pauling electronegativity of each element i 
in the compound (totaling n elements), and 𝜒̄ is the average 
electronegativity of all elements in the compound. A higher 
�� signifies a more ionic bonding character, and a lower 
value signifies a more covalent bonding character.

Many clusters with varying sizes are visible in the fig-
ure. Some clusters are placed further apart, while some 
clusters are closer to, or are overlapping other clusters. In 
particular, the outlined cluster near the right of the figure 
is of particular interest. This is the only cluster where the 
compounds with a nonzero band gap are located, as is visible 
from Fig. 4a. Additionally, it is also within this cluster that 

(5)𝜎𝜒 =

�

∑n

i=1
(𝜒i − 𝜒̄)2

n − 1

HotCrab makes the largest errors when predicting the band 
gap value, as seen in Fig. 4b. For the other compounds, the 
prediction errors of HotCrab are close to zero. Even through 
a small proportion of model predictions have larger errors, 
the overall model performance is very good and is compa-
rable with, or better than, other state-of-the-art models [28]. 
This superior performance of CrabNet and HotCrab models 
when predicting properties with a defined cutoff (such as the 
cutoff of 0 eV in this case for band gap) is likely attributed 
to the prediction of element-logits in the modeling process. 
These element-logits are used to weight the final model 
predictions in CrabNet and HotCrab to improve the model 
accuracy [28].

Notably, we also observe from Fig. 4a, c and d that the 
band gap only partially depends on the bond nature of the 
compound and on the number of unique elements in the 
compound. While most of the compounds in the cluster of 
interest exhibit more ionic bond characters, there are also 
other clusters with similar bond character that do not have a 
nonzero band gap. Similarly, it appears that the compounds 
with a nonzero band gap mainly contain four or five unique 
elements; however, there are also other compounds with 
these numbers of unique elements which have a zero band 
gap.

Here, we do note that while UMAP can reveal structures 
and patterns within high-dimensional data, it generally 
emphasizes local structure at the expense of global struc-
ture. Therefore, for the UMAP visualizations shown in this 
work, it is more appropriate to interpret the local structure 
(e.g., the elements or compounds present within individual 
clusters in Fig. 3 and 4) than the global structure. While the 
number of local neighbors considered can be specified as 
a hyperparameter in UMAP, a trade-off is made between 
preserving local versus global structure. Therefore, the dis-
tances between elements and compounds within a single 
cluster are more meaningful than inter-cluster distances in 
the UMAP visualizations. Lastly, we note that while these 
visualizations were generated based on the test dataset using 
HotCrab, similar results can be obtained using CrabNet or 
the training dataset.

Visualizing the Training Progress

Beyond visualizing the element and compound represen-
tations from CrabNet after training, it is also possible to 
access the self-attention matrices of the CrabNet encoding 
layers to observe the model learning process during train-
ing. The attention matrices (commonly referred to as the 
attention maps) contain information regarding how each ele-
ment (rows) is influenced by all other elements in the com-
pound as well as itself (columns). The values in the attention 
maps are the attention scores and are used in the encoder to 
update the element representations. An attention score of 
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zero means that the element in the column is completely 
ignored when updating the element’s representation in that 
row. Conversely, a score of one means that the entire update 
is based solely on that column’s element.

In the CrabNet publication [28], example attention maps 
were shown for compounds after the model has finished 
training. Here, we extend this approach by visualizing the 
CrabNet attention maps during the model training process in 
the form of attention video clips (see SI files for examples). 
This is achieved by saving the attention matrices from the 
model encoder layers after every mini-step in the training 
process and generating a video to show the learning pro-
gress. Fig. 5 shows a snapshot of two example attention 

videos obtained at the end of model training. The attention 
maps from the first encoding layer of CrabNet are plotted as 
heatmaps in the left column, while the right column shows 
the predicted values from the model against the target value 
at every mini-step. This process is performed at every 
mini-step in the training process, and the resulting plots are 
merged into a video clip which shows the learning progress 
of the model throughout training.

From the attention maps, we can observe that some ele-
ments are considered less relevant in the determination of 
the material property, whereas some elements are considered 
very relevant. Also we can note that individual attention 
heads pay attention to different element-element interactions 

Fig. 4   Global representations of the 51242 compounds in the 
OQMD_Bandgap test dataset, extracted from layer three of HotCrab, 
embedded down to two dimensions using UMAP and colored by the 
parameters: a the predicted value of the compound (band gap); b the 
prediction error ( ̂y − y ); c the bond character of the compounds rang-

ing from more covalent (blue) to more ionic (red) as measured by the 
standard deviations in the Pauling electronegativities of the constitu-
ent elements; and d the number of distinct elements in the compound. 
A cluster of interest is outlined in the plot at the top-right
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in the compound, as is visible by the significantly different 
attention patterns in the plots. Throughout the training pro-
cess, the attention pattern for each head remains relatively 
fixed after a few mini-steps, indicating that the model dis-
covers a pattern for recognizing inter-element interactions 
early on in the training process, which it then continues to 
refine as more training steps are taken.

For the top compound, we can observe that while the 
model initially over- and underestimates the property value 
early on in the training, it learns to correct the error and 
finally achieves a low prediction error towards the end of 

training. Conversely, for the bottom compound, we observe 
that while the model initially correctly estimates the prop-
erty value of the compound, the predicted value decreases 
and the estimation error increases throughout training, with 
the error finally plateauing towards the end of the training. 
By examining the attention heatmaps for this compound, we 
notice that attention head 1 shows a significantly different 
behavior as compared to the other attention heads. It dedi-
cates almost all of its attention to the element iron, while 
the other attention heads capture many more inter-element 
interactions. It may be interesting to investigate further to 

Fig. 5   Snapshots of attention videos for observing the training pro-
gress of CrabNet using two example compounds a Gd

1
Mn

1
Si

1
 and b 

C
5
Ca

1
Fe

1
H

8
N

6
O

5
 from the validation data split of the aflow__Egap 

dataset. The left plots show the attention maps of the four attention 
heads at the first attention layer, where the x axis of each heatmap is 

labeled with the fractional amount of the elements and the other axes 
are labeled with the element symbol. The right plots show the model 
predictions (blue) for the compounds, evaluated after each training 
mini-step throughout the whole training process. The true property 
value (target) is represented with the red “X” and the dotted line
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find out if CrabNet is misrepresenting the interactions from 
the iron element with the other elements and thus making the 
prediction error, or if another phenomenon is contributing to 
the prediction error on this compound.

By observing the element groups and inter-elemental 
interactions that CrabNet pays attention to for each material 
property throughout the training process, we may be able to 
gain additional insight about which relevant elements and 
interactions contribute significantly to the material prop-
erty. Similarly, in the case where the model does not make a 
good property prediction or fails to learn a specific material 
property, these attention videos can be informative in show-
ing when, where, and how the model fails. Additionally, 
since the element representations in a compound are updated 
according to the attention scores, it would be interesting to 
train CrabNet on material properties where the property has 
a high sensitivity to changes in elemental prevalence. An 
example of this is in the case of dopants, where a small 
change in the dopant amount can significantly influence a 
material’s electrical [15, 76, 77], mechanical [17, 78–80], 
and thermal properties [81–84]. Finally, it may be interesting 
to expand the studied materials to include co-doped materi-
als and use the attention videos to visualize the complex 
inter-elemental interactions between the co-dopants and the 
host elements.

Conclusion

In this work, we examined the CrabNet model through the 
use of several built-in model interpretability methods in 
order to visualize the data featurization and modeling pro-
cess. We demonstrated that CrabNet can adequately capture 
the chemical behavior of compounds in a dataset by using 
the vector representations of their constituent elements. 
The element representations can be learned entirely from 
the training data on a per-property basis, and contain rich 
information about the elements and their chemical trends. 
Additionally, we examined dataset imbalance, its relation 
to the quality of learned representations, and the limitations 
that imbalanced datasets may ultimately impose on the mod-
eling processes.

The element and compound vectors can be projected 
using UMAP into distinguishable clusters which can then 
be visualized and characterized by the element stoichiom-
etry, local chemical environment and oxidation state of the 
elements, or by the bond behavior of the compounds. Lastly, 
the examination of the self-attention matrices during model 
training in the form of attention videos can be used to further 
understand the modeling process, debug potential model or 
dataset errors, or gain additional insights about chemical 
interactions within a given compound.

The model interpretability techniques presented in this 
work will enable materials science practitioners to not 
only visualize a specific element’s behavior within differ-
ent chemical environments, but also to obtain a global view 
of the chemical compounds, behaviors and trends within a 
larger dataset. The ability of CrabNet to adequately model 
and express the complex chemical behaviors and interac-
tions of elements and compounds based solely on learning 
from data is encouraging. With the addition of model inter-
pretability methods to CrabNet, the findings and intuitions 
presented in this work may lead to further insightful and 
interesting research. Specifically, we believe that follow-up 
works may fall into one of these three general directions: 

1.	 Learning and representing elements and compounds. 
Our work has shown that it is possible to visualize 
CrabNet’s internal representations of elements and 
compounds via techniques such as UMAP. However, it 
would be interesting to further investigate why Crab-
Net’s representations of some of these elements or com-
pounds lead to them being placed into the same cluster 
or not, despite the fact that these elements and com-
pounds are similar to each other in terms of identity and/
or chemical environment. This may also be combined 
with a more detailed examination of the attention vid-
eos and how the attention mechanism in CrabNet leads 
to the updating of the element representations for each 
compound.

2.	 Examination of individual attention head behaviors. 
This work used the EDM (element-derived matrix) data 
from CrabNet to examine the element and compound 
representations within CrabNet. CrabNet utilizes four 
self-attention heads to model element-element interac-
tions, the results of which are then concatenated and 
transformed back to an updated EDM matrix. As such, 
the EDM is a pooled representation of the compounds. 
It would be interesting to further examine the per-head 
modeling of the compounds, as it has been shown that 
each head can capture different types of inter-element 
interactions and thus may give additional insight to the 
modeling process within CrabNet.

3.	 Discovery of additional inter-element interactions. 
From the analyses presented in this study, it is clear 
that while some changes in the material property (e.g., 
band gap) can be explained by certain properties of the 
compounds (such as element stoichiometry, number of 
unique elements, and/or bond character), there are addi-
tional behaviors that govern the material property. These 
additional interactions are also adequately modeled by 
CrabNet, since it can predict a wide range of material 
properties with low errors. Examining the modeling 
process of these behaviors within CrabNet may lead to 
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an improved understanding of the complex phenomena 
underlying material properties.

Further research to answer these and subsequent questions 
may allow us to gain additional insights about the behav-
iors and properties of elements and materials, improve 
our understanding of models such as CrabNet, increase 
our confidence in the use of data-driven methods, and 
ultimately, accelerate the adoption of deep learning and 
machine learning in materials science.

Methods

Adaptation of CrabNet Model

The CrabNet model and material property datasets as 
originally reported were used as the basis for this study 
[28]. Fully trained model weights for both CrabNet and 
HotCrab were obtained from [57]. In order to obtain the 
EDMs containing the elements and compounds data used 
in this study, custom function hooks were implemented 
in PyTorch. These hooks were attached to the CrabNet 
model architecture to allow access to the model-internal 
data during training and inference.

The source code as well as the data that were used 
and generated in this study can be found on the updated 
CrabNet GitHub repository [58]. In addition, we provide 
detailed instructions for the use and reproduction of our 
reported results. Please note that due to the prohibitively 
large size of the stored attention matrices used in the atten-
tion videos, it is not possible to provide these for down-
load. However, instructions and scripts are provided for 
generating these matrices and videos.

All experiments, unless otherwise noted, were per-
formed on a workstation equipped with an Intel i7-8700K 
CPU, 32 GB of DDR4 RAM, and one Nvidia RTX 2080 
GPU.

Element Embeddings

Element embeddings for pure elements were generated on 
a per-property basis. To do this, an EDM consisting of all 
of the elements from hydrogen to oganesson was generated 
(with each row representing one element). Then, for each 
material property, the corresponding CrabNet or HotCrab 
model was loaded and the model hooks attached. The EDM 
was then passed through the network and the modified EDM 
at the output of the element embedding layer was obtained 
and detached from the model graph. This resulting EDM 
contains the property-specific element embeddings of all of 

the elements. Thus, each element was represented by a vec-
tor with the shape (1, dmodel) , where dmodel is the size of the 
embedding. Element embeddings for Oliynyk, Magpie, and 
mat2vec were obtained from the original publications [18].

Compound Embeddings

Compound embeddings were obtained in a similar fashion 
to element embeddings. Instead of generating an EDM 
from pure elements, the EDMs were generated from the 
actual chemical formulae from the datasets and collated 
in batches using the model data loader. Model hooks were 
then attached to the CrabNet and HotCrab models and 
enabled during model inference. The transformed EDMs 
after each of the three self-attention layers of the CrabNet 
models were then collected.

The obtained compound EDMs have the shape of 
(ncompounds, nelements, dmodel) , where ncompounds is the total 
number of compounds in the dataset, nelements is the maxi-
mum number of elements per compound, and dmodel is the 
size of the embedding. Thus, each compound in the EDM 
is represented by one tensor slice with the dimensions 
(1, nelements, dmodel) . Due to the fact that different compounds 
within the same dataset may contain a different number of 
elements, the extra rows of the EDMs were zero-filled to 
indicate no elements present. In order to ensure that the 
compound embeddings are comparable with each other 
using UMAP, the three-dimensional compound EDMs 
were collapsed to two dimensions (ncompounds, 1, dmodel) by 
calculating summary statistics (such as sum, range, vari-
ance) of the EDM columns across the elements dimension.

Dimensionality Reduction

CrabNet uses vectors with a dmodel dimension of 512 to rep-
resent chemical elements and compounds in the input data. 
It would be infeasible to try to visualize all 512 dimen-
sions. Therefore, dimensionality reduction was applied to 
the vector representations to transform the vectors into 
two-dimensional space for visualization.

Three common methods for dimensionality reduction 
were tested: principal component analysis (PCA), t-dis-
tributed stochastic neighbor embedding (t-SNE), and uni-
form manifold approximation and projection (UMAP) [73, 
85, 86]. Compared to t-SNE and PCA, UMAP revealed 
more visually distinct clusters for the data presented in 
this work. Therefore, UMAP was chosen as the dimen-
sionality reduction method. The random seed was fixed 
so that each initialization of the UMAP method produces 
the same results. For element embeddings, the rows of the 
EDMs with dimensions (1, dmodel) are transformed using 
UMAP. For the compound embeddings, the matrices 

5 Interpretable deep learning with CrabNet

152



	 Integrating Materials and Manufacturing Innovation

1 3

corresponding to each compound were first collapsed as 
described above, and the resulting representations with 
dimensions (1, dmodel) for each compound were transformed 
using UMAP.

Oxidation State Estimation

Oxidation states for elements in the compounds were esti-
mated using the Pymatgen package (version 2022.0.8) using 
the chemical formulae of the compounds. The built-in func-
tions for assigning oxidation states were used, which are 
based on charge-balancing heuristics and use the most prob-
able oxidation states as determined based on the compounds 
in the Inorganic Crystal Structure Database [74].

Attention Video Generation

Custom function hooks were programmed and attached 
to a newly-initialized CrabNet model. During training of 
CrabNet, the attention matrices of every CrabNet encoder 
layer was extracted from the model and saved into a com-
pressed Zarr array on disk. The model predictions for the 
properties were also generated and saved. This procedure is 
performed after every mini-step during the training process 
(corresponding to each mini-batch of data). The plots were 
then generated for each mini-step and merged together using 
the software FFMPEG to create the attention videos. Due to 
the large amount of storage and computing power required 
to store and process the attention matrices, these tasks were 
performed on a high-performance computing cluster.
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Figure S-1. Uncropped Pearson correlation plots for the element property feature sets 
Oliynyk, Magpie, mat2vec and Jarvis. The x- and y-axes are labeled with the atomic 
numbers. Each cell at coordinate (x, y) represents the correlation between the 
corresponding elements with atomic numbers x and y. Blue represents a high 
correlation and red represents a high anticorrelation. Empty rows indicate that no 
element vector is available. 

See the ESM1.zip file for the full-resolution correlation plots and for interactive HTML 
versions of the plots (Internet connection required). 
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Figure S-2. Annotated heatmap of the Pearson correlation matrix between element 
vectors extracted from HotCrab for the property OQMD_Bandgap. Here, some regions 
of interesting similarities between element representations are labeled. These 
representations are learned entirely from data. The x- and y-axes are labeled with the 
atomic numbers. Each cell at coordinate (x, y) represents the correlation between the 
corresponding elements with atomic numbers x and y. Blue represents a high 
correlation and red represents a high anticorrelation. 

See ESM2.zip file for more full-resolution correlation plots (including interactive 
versions) using element vectors extracted from CrabNet and HotCrab. 
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Figure S-3. Example element prevalence plots, sorted by (top) number of occurrences 
and (bottom) atomic number. See ESM3.zip file for more plots. 
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Figure S-4. Shannon equitability indices calculated from the training data splits of the 
28 reported datasets in the CrabNet publication. (top) Matbench dataset, (bottom) 
Extended dataset. 
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Figure S-5. Vector representations of the chromium element in 2800 different 
chemical environments and at different layers of the HotCrab model. Each point shows 
the model-internal representation of the chromium atom, after the information 
regarding the other atoms in the chemical environment have been introduced via 
HotCrab through the three attention layers (top row to bottom row). The points are 
colored by: (left column) the fractional abundance of chromium, (center column) the 
predicted value of the compound, and (right column) the predicted oxidation state of 
chromium, where gray points indicate that the oxidation state was unable to be 
predicted. Five clusters are outlined in the bottom-left plot. 

See the ESM4.zip file for the individual full-resolution plots and for interactive HTML 
versions of the plots, for the elements silicon and chromium (Internet connection 
required). 

 

Supplementary Videos 

The attention video files are collected and compressed in a ZIP file (ESM5.zip). Please 
find the files on the figshare website as described on the cover page of this document. 
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6 Summary and outlook

The first goal of this work was achieved through the presentation of clear and concise
information about the background of materials informatics, the considerations for the
implementation of data-driven methods in materials science, and the demonstration of a
typical machine learning project in the form of a project tutorial through Python Jupyter
notebooks. Together, the set of guidelines and best practices presented ensures that
future publications in the field of materials informatics are reliable, reproducible, and
comparable. Furthermore, a selection of materials informatics studies in the literature
was highlighted together with an overview of the common materials data repositories,
software tools and methodologies used. The methods and protocols suggested will
give the interested researcher a solid knowledge foundation and act as a starting point
for their first foray into data-driven materials science and materials informatics.

To achieve the second goal of this work, a novel, EDM-based featurization technique
for the encoding of chemical compositions was introduced, which overcomes several
of the limitations with existing featurization techniques. The EDM encodes element
identity within the chemical compounds while simultaneously preserving the chemical
resolution when featurizing trace elements. Furthermore, a novel deep learning model
based on the Transformer self-attention mechanism, named CrabNet, was developed
and introduced for the prediction of materials properties. CrabNet was benchmarked
against other common deep learning and classical machine learning models on a set of
28 benchmark datasets, and was found to either match or outperform the state of the
art in materials property regression tasks.

Crucially, CrabNet and the EDM featurization scheme require only chemical formulae
as input data and does not rely on crystal structure information, thus making CrabNet
an ideal model for materials discovery tasks. Additionally, the opportunities to explore
model interpretability were discussed and previewed. Lastly, the source code and
trained model weights of CrabNet are fully open source and made available online. The
detailed documentation provided with the code enables interested readers to adapt and

163



6 Summary and outlook

extend the functionalities of CrabNet for their own materials informatics studies, thus
promoting further research in the attention-based learning of materials properties.

Last but not least, the third goal of this work was achieved through the successful
integration of model interpretability methods into CrabNet, further continuing the
efforts of turning previously black-box or grey-box models such as CrabNet into fully
interpretable models. By extracting the model-internal representations of the featurized
elements and compounds as they pass through key CrabNet layers, it was possible
to follow the transformations of the data through various stages of modeling and
abstraction. Through additional processing of the extracted information, it was shown
that CrabNet has successfully learned to represent elements and element relationships
for a variety of materials properties, based solely on training data in the form of
chemical formulae.

Additionally, it was possible to observe the changing behaviour of individual elements
inside compositions as information about their surrounding chemical environment in-
formation was incorporated by CrabNet. Furthermore, dense, clusterable visualizations
of whole chemical compounds can be visualized and characterized by trends in ele-
ment stoichiometry, local chemical environment, oxidation state of the elements, and
bond behaviour of the compounds. Lastly, the examination of dataset imbalance and
self-attention matrices in the form of attention videos can be used to further improve
the modeling process, debug potential errors, and gain additional insights about the
chemical phenomena underlying material properties.

With the addition of model interpretability to CrabNet, the findings and intuitions
presented in this work may lead to further insightful and interesting research as well
as increased trust and adoption of CrabNet in academia and industry.

The results presented in this work also suggest future research directions which can
be broadly categorized into three thematic topics:

1) Improved compatibility and comparability of models
The best practice methods and protocols suggested in this work are a good starting
point for researchers looking to begin experimenting with data-driven methods
in materials science and materials informatics. The introduction of more ad-
vanced methods of data processing, feature engineering, modeling and results
verification as well as improvements in the materials informatics ecosystem (such
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as materials datasets, repositories, model hosting and sharing platforms) will no
doubt further expand the set of best practices available to researchers in the future.
Here, care should be taken to ensure that future works retain cross-compatibility
and comparability with each other as well as with past works (such as the ones
presented here).

2) Improved models tailored to specific materials tasks
The composition featurization and modeling techniques introduced in this work
with CrabNet have pushed the state of the art in structure-agnostic materials
property modeling. Due to its unique model architecture, CrabNet will likely
remain relevant and a top-performer for a while, especially for cases where other
methods fall short (such as for dopants, small data, and extrapolation tasks). The
flexibility of CrabNet’s architecture and the underlying self-attention mechanism
allow for the adaptation of the model to suit a variety of different tasks, such
as for the classification of materials or for the specific learning of element and
compound interactions (e.g., in catalysis).

Furthermore, integration of additional or other input data such as crystal struc-
ture or molecular connectivity may allow CrabNet to expand and improve its
predictive power in specific tasks. Additionally, the improved ability to featur-
ize compositions suggests the prospect of modeling even complexer materials
properties such as those resulting from multi-phase or disordered systems. This
development will also depend on the coordinated improvements in the quality
and quantity of specialized materials datasets in data repositories.

3) Improved model interpretability techniques
Intrinsic model interpretability methods provide crucial information in the search
of the novel materials of tomorrow. The techniques shown in this current work
to integrate and expand model interpretability in CrabNet demonstrate that it
is possible to unlock black-box modeling techniques in materials science with
deliberate and prudent model design choices. The findings in this work will likely
lead to further improvements of model interpretability techniques in CrabNet and
other models alike, with future studies developing and examining other model
architectures to better understand modeling and decision-making processes.
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6 Summary and outlook

The application of data-driven methods has the potential to address and provide in-
sights to many existing materials science challenges. In this regard, the results of this
work will lead to a stronger understanding of materials modeling and a quicker im-
provement of the crucial tools used in materials informatics. With better models and
established best practices, more researchers and industrial practitioners will adopt mate-
rials informatics as part of their materials design and discovery processes. Undoubtedly,
this will bring about additional insights into the chemical phenomena underlying ma-
terials properties, and, perhaps one day, engineered serendipity.

Computers designing compounds; materials discovering materials—imagine that!
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List of abbreviations

AI artificial intelligence

CBFV composition-based feature vector

CrabNet Compositionally Restricted Attention-Based network

DFT density functional theory

DL deep learning

EDM element-derived matrix

GPU graphics processing unit

HPC high performance computing

ICSD Inorganic Crystal Structure Database

MD molecular dynamics

MGI Materials Genome Initiative

MI materials informatics

ML machine learning

PCD Pearson’s Crystal Data

TRC Google TPU Research Cloud

XAI explainable AI
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