Advanced Ceramic Materials Series Volume 7

edited by Aleksander Gurlo

Anthony Yu-Tung Wang

Paying Attention to Materials: Transformers in the Context
of Materials Informatics

Technische '
Universitat

Berlin

Paying Attention to Materials:
Transformers in the Context of
Materials Informatics

vorgelegt von
M.Sc. RWTH, BASc.
Anthony Yu-Tung Wang
ORCID: 0000-0002-7947-0309

von der Fakultit III — Prozesswissenschaften —
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
— Dr.-Ing. —

genehmigte Dissertation

Promotionsausschuss:
Vorsitzende: Prof. Dr.-Ing. Claudia Fleck
Gutachter: Prof. Dr. Aleksander Gurlo

Gutachter: Prof. Dr. Taylor D. Sparks
Gutachter: Dr. Michael W. Gaultois

Tag der wissenschaftlichen Aussprache: 9. Dezember 2021

Berlin 2022

https://orcid.org/0000-0002-7947-0309

The scientific series Advanced Ceramic Materials of the Technische Universitit Berlin is
edited by: Prof. Dr. Aleksander Gurlo.

This manuscript is protected by copyright.

Cover image: David Karl | Segerkegel | 2017 | CC BY 4.0
https:/ / creativecommons.org/licenses/by/4.0/

Layout/Typesetting: Anthony Yu-Tung Wang

Published online on the institutional repository of the Technische Universitit Berlin:
DOI 10.14279/depositonce-14888
https:/ /dx.doi.org/10.14279/depositonce-14888

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.14279/depositonce-14888

“All models are wrong, but some are useful.”
— George E. P. Box (1987)

Abstract

The fast and affordable development of novel materials is needed in order to enable
technological advancements in application areas such as clean energy, healthcare, sus-
tainable transport, and climate-friendly consumption. However, the development of
novel materials is not a trivial task. One of the biggest challenges in materials design
and discovery is the enormous search space of possible material compositions available,

also referred to as the “chemical whitespace”.

Faced with the high risk, high reward nature of materials exploration, materials scien-
tists have increasingly moved away from traditional trial and error methods and instead
adapted new data-driven methods of materials discovery. The rapid development of
data science, machine learning (ML), and deep learning (DL) as well as the influx of
high-quality materials property datasets have led to the development of the new field
of materials informatics (MI). This new paradigm has drastically changed the way in
which materials are understood, predicted, discovered, and designed.

Despite promising developments in this relatively young field, there are several open
issues that need to be addressed. The lack of guidelines and established procedures
to ensure high quality research in MI impedes the pace of further development in this
field. Furthermore, the current techniques for representing and modeling chemical
compositions are flawed and unsuitable to be used in the search of novel materials.
Lastly, the prevalence of black-box DL models without model interpretability limits the
trust and adoption of these models in academia and industry. Accordingly, the main
aims of this work are (1) to propose a set of best practices and protocols for conducting
and reporting MI studies, and (2) to improve the state of the art in materials property
predictions by introducing interpretable DL techniques for representing and modeling
chemical compounds.

In the first work described in this thesis, the fundamental ideas and considerations of
using data-driven methods for materials science are introduced. A broad set of guide-
lines and protocols for ensuring the reliable, reproducible, and comparable reporting

of research results in MI studies is established. Common software tools, methodolo-
gies, and materials data repositories are presented. Lastly, the full procedure of an ML
study including data processing, feature engineering, model training, evaluation and
comparison is demonstrated using the prediction of heat capacity for solid inorganic

compounds as an example.

In the second work, a novel DL model named “Compositionally Restricted Attention-
Based network (CrabNet)”, based on the Transformer self-attention mechanism, is in-
troduced. CrabNet is benchmarked on 28 materials property datasets and is shown to
match or exceed state-of-the-art models in the prediction of inorganic material proper-
ties. The benefits of learning element-element interactions within chemical compounds
using the self-attention mechanism are discussed. Furthermore, a new way of represent-
ing chemical composition which overcomes some of the limitations present in current
techniques is developed. Lastly, the opportunities to study model interpretability meth-
ods in CrabNet are previewed.

Continuing in the third work described in this thesis, the model interpretability of
CrabNet is further examined. Intrinsic model interpretability methods are added to
CrabNet and used to extract additional information about the model and data repre-
sentations during the modeling process. The extracted information is processed and
visualized into static and interactive figures as well as video animations. The exami-
nation of these visualizations and additional information reveals well-known chemical
patterns about the elements and compounds, intuitively suggesting that CrabNet is
able to learn the element properties, element interactions, and how they together dic-
tate materials properties. Furthermore, the dataset quality as well as the self-attention
mechanism are also discussed for their significance towards an improved and inter-
pretable modeling of materials properties. Lastly, the potential benefits of applying
interpretable modeling methods in academia and industry are discussed.

Overall, the methods, results, and considerations discussed in this dissertation are
presented in a way to educate and empower interested materials science researchers to

undertake their own materials informatics research.

ii

Kurzfassung

Die schnelle und erschwingliche Entwicklung neuartiger Materialien wird benétigt, um
technologische Fortschritte in Anwendungsbereichen wie der sauberen Energie, dem
Gesundheitswesen, dem nachhaltiger Verkehr und dem klimafreundlichen Konsum
zu ermoglichen. Die Entwicklung neuartiger Materialien ist jedoch keine triviale Auf-
gabe. Eine der grofiten Herausforderungen bei Materialdesign und -entdeckung ist
der enorme Suchraum moglicher Materialzusammensetzungen, der auch als ,chemical

whitespace” bezeichnet wird.

Angesichts der risikointensiven aber aussichtsreichen Natur der Materialerforschung
ziehen Materialwissenschaftler zunehmend von herkdmmlichen Versuchs-und-Irrtums-
Methoden weg und adaptieren stattdessen neue datengetriebene Methoden der Mate-
rialentdeckung. Die schnelle Entwicklung von Data Science, maschinellem Lernen (ML)
und Deep Learning (DL) sowie der Zustrom hochwertiger Materialdatensidtze haben
zu der Entwicklung des neuen Gebiets der Materialinformatik (MI) gefiihrt. Dieses
neue Paradigma hat die Art und Weise mit der Materialien verstanden, vorhergesagt,

entdeckt und entworfen werden drastisch verandert.

Trotz vielversprechender Entwicklungen in diesem relativ neuen Bereich gibt es meh-
rere offene Probleme, die behoben werden miissen. Der Mangel an Richtlinien und
etablierten Verfahren zur Gewihrleistung hochwertiger Forschung in der MI behin-
dert das Tempo der Weiterentwicklung in diesem Bereich. Dartiiber hinaus sind die
derzeitigen Techniken zur Darstellung und Modellierung chemischer Zusammenset-
zungen fehlerhaft und ungeeignet, um bei der Suche nach neuartigen Materialien
verwendet zu werden. Schliefslich begrenzt die Pravalenz von Black-Box-DL-Modellen
ohne Modellinterpretierbarkeit das Vertrauen und die Akzeptanz dieser Modelle in der
Wissenschaft und Industrie. Dementsprechend sind die Hauptziele dieser Arbeit (1)
einen Satz bewahrter Verfahren und Protokolle zur Durchfiihrung und Berichterstel-
lung von MI-Studien vorzuschlagen und (2) den Stand der Technik in der Vorhersage

iii

von Materialeigenschaften durch die Einfithrung von interpretierbaren DL-Techniken
zur Darstellung und Modellierung chemischer Verbindungen zu verbessern.

In der ersten in dieser Dissertation beschriebenen Arbeit werden die grundlegenden
Ideen und Uberlegungen zur Verwendung von datengetriebenen Methoden fiir die Ma-
terialwissenschaft eingefiihrt. Eine breite Reihe von Richtlinien und Protokollen, um
die zuverldssige, reproduzierbare und vergleichbare Berichterstattung von Forschungs-
ergebnissen in MI-Studien zu gewdhrleisten, wird etabliert. Gangige Software-Tools,
Methoden und Repositorien fiir Materialdaten werden dargestellt. Schliefilich wird das
vollstindige Verfahren einer ML-Studie fiir die Vorhersage der Warmekapazitat fester
anorganischer Verbindungen, einschliefdlich Datenverarbeitung, Feature Engineering,
Modelltraining, -auswertung und -vergleich, als Beispiel gezeigt.

In der zweiten Arbeit wird ein neuartiges DL-Modell namens ,Compositionally Re-
stricted Attention-Based network” (CrabNet), basierend auf dem Transformer Self-
Attention-Mechanismus, eingefiihrt. CrabNet wird anhand von 28 Materialdatensitzen
evaluiert und kann den Stand der Technik bei der Vorhersage anorganischer Materia-
leigenschaften erreichen oder {iibertreffen. Die Vorteile, Wechselwirkungen zwischen
Elementen in chemischen Verbindungen unter Verwendung des Self-Attention Mecha-
nismus zu lernen, werden ebenfalls diskutiert. Dariiber hinaus wird eine neue Art
der Reprasentation fiir chemische Zusammensetzungen, die einige der in aktuellen
Techniken vorhandenen Einschriankungen tiberwindet, préasentiert. Schliefslich wird
eine Vorschau der Moglichkeiten Modellinterpretationsmethoden in CrabNet zu unter-
suchen gezeigt.

Fortgesetzt in der dritten Arbeit wird die Modellinterpretierbarkeit von CrabNet weiter
untersucht. Intrinsische Modellinterpretationsmethoden werden zu CrabNet hinzuge-
fiigt und verwendet, um zusatzliche Informationen tiber das Modell und die Daten-
reprasentationen wiahrend des Modellierungsprozesses zu extrahieren. Die extrahier-
ten Informationen werden in statischen und interaktiven Abbildungen sowie Video-
animationen verarbeitet und visualisiert. Die Untersuchung dieser Visualisierungen
und der zusatzlichen Informationen ergibt bekannte chemische Muster hinsichtlich der
Elemente und deren Verbindungen, die intuitiv darauf hindeuten, dass CrabNet die
Elementeigenschaften, -wechselwirkungen und deren Einfluss auf die Materialeigen-
schaften, lernen kann. Dartiber hinaus werden die Qualitidt des Datensatzes und der

iv

Self-Attention-Mechanismus hinsichtlich ihrer Bedeutung fiir eine verbesserte und in-
terpretierbare Modellierung von Materialeigenschaften diskutiert. SchliefSlich werden
die potenziellen Vorteile der Anwendung interpretierbarer Modellierungsmethoden in
der Wissenschaft und der Industrie diskutiert.

Insgesamt sind die in dieser Dissertation diskutierten Methoden, Ergebnisse und Erwa-
gungen so dargestellt, dass sie interessierte Materialwissenschaftler dazu ermachtigen
sich auf diesem Gebiet weiterzubilden, um ihre eigene Forschung in der Materialinfor-

matik durchzufiihren.

Table of contents

List of figures

List of tables

1

6

7

Introduction
1.1 Structure of thethesis
1.2 Motivationandgoals o o oo

Humanity’s material challenges

2.1 Chemical whitespace and the pace of materials research
2.2 Materials informatics: a new paradigm
2.3 Machine learning for materials science

Best practices for machine learning in materials science

3.1 The need for best practices in materials informatics

3.2 Publication 1: Machine Learning for Materials Scientists: An Introduc-
tory Guide toward Best Practices

Novel attention-based learning of materials properties

4.1 Lack of adequate composition featurization techniques

4.2 Lack of structure-agnostic deep learning

4.3 Transformers and the self-attention mechanism

4.4 Publication 2: Compositionally restricted attention-based network for
materials property predictions L.

Interpretable deep learning with CrabNet

5.1 Lack of interpretable modeling in materials science

5.2 Publication 3: CrabNet for Explainable Deep Learning in Materials Sci-
ence: Bridging the Gap Between Academia and Industry

Summary and outlook

References

List of abbreviations

Acknowledgements

Xi

oo N QW R -k

12
14

17
17
19

113
113
115
116

119

137
137

139

163

167

177

179

vii

List of figures

2.1

2.2

2.3

2.4

The combinatorial explosion resulting from the number of possible ele-
ment combinations in an n-element compound renders the brute-force
exploration of chemical whitespace impossible. Additional stoichiomet-
ric complexity and their granularity—dopants are an extreme example—
further exacerbates this already impossible task

The accelerating pace of materials science research as measured by the
number of new articles published per year for the period from 1940 to
2020, grouped by the topic keywords as shown. Data collected from the
Web of Science. Figure adapted with permission from [31]

The four paradigms of materials science. In the traditional approach
(left), new materials are discovered by experimentation, theory, or com-
putation (also referred to as the 1%, 2™ and 3rd paradigms). In the
4™ paradigm (right), all of the available materials data is collected in
accessible data infrastructures, and machine learning and data science
approaches are used to discover new materials in the paradigm of data-
driven materials science L 0oL L

A typical workflow for materials discovery, integrating materials infor-
matics, machine learning, simulation and experimentation to narrow
down a large number of potential candidate materials to a few promis-
ing candidates. Figure adapted with permission from [51]

Example of the composition-based feature vector (CBFV) featurization
of AlL,O,. The compound is featurized using the individual element
vectors of aluminum and oxygen (va; and vp), which are first weighted
by the fractional prevalence of the elements. The featurized vector vay,0,
of Al,O, is obtained by calculating the descriptive statistics (e.g., mean,
variance, and range) of the weighted element vectors. Another example
featurized vector vgic of the compound SiC is also shown

11

12

15

114

ix

List of tables

4.1 Examples of common composition-based feature vector (CBFV) feature
sets, including their source and requirements on domain knowledge and
hand-engineering L

el

1 Introduction

1.1 Structure of the thesis

The present work is a compilation of three peer-reviewed journal publications, together

covering the results obtained within this cumulative dissertation:

1)

3)

A. Y.-T. Wang, R.]J. Murdock, S. K. Kauwe, A. O. Oliynyk, A. Gurlo, J. Brgoch,
K. A. Persson, and T. D. Sparks. Machine Learning for Materials Scientists: An
Introductory Guide toward Best Practices, Chemistry of Materials, 2020, 32 (12):
4954-4965.

DOI: 10.1021/acs.chemmater.0c01907.

The published manuscript is reproduced in Chapter 3.2 of the dissertation.

A.Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks. Compositionally
restricted attention-based network for materials property predictions, npj Compu-
tational Materials, 2021, 7: 77.

DOI: 10.1038/541524-021-00545-1.

The published manuscript is reproduced in Chapter 4.4 of the dissertation.

A. Y.-T. Wang, M. S. Mahmoud, M. Czasny, and A. Gurlo. CrabNet for Explain-
able Deep Learning in Materials Science: Bridging the Gap Between Academia
and Industry, Integrating Materials and Manufacturing Innovation, 2022.

DOI: 10.1007/s40192-021-00247~y.

The published manuscript is reproduced in Chapter 5.2 of the dissertation.

In addition to the works listed above, I co-authored one publication closely related to

the topic of this thesis:

R. J. Murdock, S. K. Kauwe, A. Y.-T. Wang, and T. D. Sparks. Is Domain Knowl-
edge Necessary for Machine Learning Materials Properties?, Integrating Materials
and Manufacturing Innovation, 2020, 9 (3): 221-227.

DOI: 10.1007/s40192-020-00179-z.

https://doi.org/10.1021/acs.chemmater.0c01907
https://doi.org/10.1038/s41524-021-00545-1
https://doi.org/10.1007/s40192-021-00247-y
https://doi.org/10.1007/s40192-020-00179-z

1 INTRODUCTION

This dissertation is organized as follows:

Chapter 1 describes the motivation, the three goals of this Ph.D. work, and the approach

taken to address the goals.

Chapter 2 introduces the reader to the background of machine learning and deep learn-
ing in the context of materials science. The new paradigm of using materials informatics
for conducting materials design and discovery is also introduced. In addition, a brief
overview of the notable works in this field are presented, including the open research

questions leading up to this work.

Chapter 3 emphasizes the need for a set of fundamental guidelines and best practices to
ensure reproducible, comparable, and credible reporting of research results in materials
informatics studies involving data science or machine learning. The first peer-reviewed

publication that addresses the first goal of this thesis is also presented.

Chapter 4 highlights the advantages of the Transformer attention-based deep learn-
ing of materials properties that is used by the Compositionally Restricted Attention-
Based network (CrabNet) developed as part of this dissertation. The unique features
of CrabNet and its underlying composition featurization method are then compared
against other common methods in the literature. The results and benefits of implement-
ing attention-based methods for the learning of materials properties are presented in

the second peer-reviewed publication that addresses the second goal of this thesis.

Chapter 5 extends CrabNet by introducing additional model interpretability methods
that aim to improve the understanding of the model, the modeling process as well as the
learned chemical interactions underlying materials properties. The results of extending
model interpretability in CrabNet and their potential broader impact in increasing the
adoption of deep learning methods in materials science are discussed in the third
peer-reviewed publication that addresses the third goal of this thesis.

Chapter 6 summarizes the outcomes of this dissertation work and suggests future
research directions for the applications of Transformers, attention-based deep learning,

and interpretable models in materials informatics.

Please note that the cited references in this dissertation are displayed at the end of
the thesis (page 167). Each of the publications contain their own references, which are
shown at the end of each manuscript.

1.2 MOTIVATION AND GOALS

1.2 Motivation and goals

Ever since prehistoric times, humankind has tirelessly worked on the understanding
and improvement of materials properties. New discoveries and developments of mate-
rials with improved or unprecedented properties have profoundly changed important
aspects of past civilizations such as culture, agriculture, architecture, and even warfare.
The changes are so drastic such that entire archaeological periods of time—the Stone,

Bronze, Iron, and Silicon Ages—were named after the prominent materials used.

The necessity to discover and develop new engineering materials persists today, driven
by the need to meet society’s greatest challenges in ensuring human and environmental
well-being while retaining economic prosperity. However, the simultaneous require-

ments of developing novel materials quickly and affordably present many challenges.

Many common engineering materials we know today were discovered as a result of
scientific serendipity: on these occasions, chance played a significant role in advancing
materials science. But more often than not, new materials are discovered through incre-
mental improvements via trial and error experimentation. However, the exploration of
the materials design space is by no means trivial. The complexities of the interactions
between the material composition, structure, processing and the material properties
serve to make the understanding and modeling of materials a difficult task. The enor-
mous combinatorial space resulting from the large number of possible elements and
stoichiometries—the number of combinatorially possible materials has been estimated
to be as high as a googol (10'%°)—further complicates this issue.

Fortunately, the vast amounts of experimental and simulated materials property data ac-
cumulated through decades of research presented an ideal opportunity for a paradigm
shift towards the data-driven study of materials science—also known as “materials
informatics” (MI). Crucial to this revolution is also the development of computational
and statistical methods such as data science and artificial intelligence (AI). In particular,
machine learning (ML) and deep learning (DL) methods have been successfully applied
for the classification and prediction of materials properties, enabling groundbreaking
materials design and discovery workflows that were previously impossible.

Despite the promising results of early works in this relatively new field, there remain
several critical and open questions to be addressed in the adaptation of ML and DL

1 INTRODUCTION

methods to the materials science domain. The ease of use and access of publicly avail-
able data science tools is a double-edged sword that sometimes misguides materials
scientists who foray into the field of materials informatics. The inexperience of materi-
als scientists in conducting and documenting studies involving data science, ML and

DL often leads to misleading or incorrect results.

Furthermore, while methods of featurizing materials compositions into input data
for the ML and DL models exist and are widely used to date, these methods make
fundamentally incorrect assumptions about the underlying material systems. These
techniques work well for lower-accuracy ML predictions and for cases where data
volume is limited; however, the fundamental assumptions severely limit their usefulness
and relevance when developing strong, accurate and robust DL models using large
materials property datasets.

Additionally, there is a lack of models that can adequately capture and model the
interactions between constituent elements in a compound while simultaneously not
requiring crystal structure information—an important prerequisite for the discovery of

novel materials.

Lastly, while there is large academic interest in embracing data-driven methods for
the study of materials, the adoption of these methods in industry remains low due to
the lack of model transparency and model interpretability techniques. This is further
exacerbated by the lack of intuitive understanding of modeling and decision-making

processes, leading to low overall trust and adoption.

This thesis aims to address the aforementioned issues in three topics: (1) the estab-
lishment of best practices for current and future researchers interested in conducting
materials informatics research, (2) the introduction of novel attention-based modeling
and chemical composition featurization techniques for materials property prediction,
and (3) the introduction of model interpretability using the models developed as part

of this thesis work.

The first goal of this work is to establish a set of best practice methods and protocols
for materials scientists who are interested in performing machine learning or deep
learning research in the context of materials informatics. To this aim, guidelines and
best practices are proposed regarding the obtaining and treatment of data, feature

1.2 MOTIVATION AND GOALS

engineering, model training, validation, evaluation and comparison, model and archi-
tecture sharing, and finally publication. A selection of studies employing materials
informatics for the prediction of materials properties for a variety of applications is also
reviewed. Furthermore, popular materials data repositories are highlighted. Python
code to demonstrate the concepts and perform an example machine learning workflow
is provided as interactive Jupyter notebooks. The applicability and robustness of mate-
rials informatics methods for materials science problems are also discussed. Together,
the set of guidelines and best practices ensures that reported results from researchers
are reproducible and comparable with those from other researchers, and will improve

the overall research and manuscript quality in the field.

The second goal of this work is to introduce a new, structure-agnostic deep learning
model to learn and predict materials properties, while simultaneously improving the
state of the art in model performance. To this end, a novel model based on the Trans-
former self-attention mechanism is introduced and benchmarked against other common
models on material property regression tasks using 28 benchmark datasets. Further-
more, a featurization technique is developed to enable the attention modeling which
preserves element identity within the chemical compounds while not ignoring trace
elements. Additionally, the opportunities to explore model interpretability methods in
the newly-introduced Compositionally Restricted Attention-Based network (CrabNet)
are discussed.

The third goal of this work is to demonstrate that model interpretability methods can
be built into CrabNet and that these methods can lead to additional understanding
and intuition about the chemical behaviour in elements and compounds. Furthermore,
by examining the model training process, potential modeling or dataset errors can be
discovered, which may highlight further insights leading to a better understanding of
the phenomena governing materials properties. Lastly, the introduction of interpretable
methods to black-box models will lead to wider acceptance and adoption in industry
and academia alike.

2 Humanity’s material challenges

Traditionally, the search for new or alternative materials with desired properties or
behaviours has been a slow and difficult task. Materials scientists often dream of de-
signing or finding completely new materials with better performance at a lower cost
compared to existing materials. However, this dream is often only partially realized:
instead of discovering novel materials by pure ingenuity and hard work, scientists dis-
cover new materials only through incremental improvements in empirical, theoretical,

or computational research.

“Genius is one percent inspiration and ninety-nine percent perspiration”, according to
the famed American inventor Thomas Edison, who tested more than 6000 materials
to find a suitable candidate for the filament in an incandescent light bulb [5, 6]. Typ-
ically, the discovery of new materials arises out of a combination of solid scientific
understanding, rigorous experimentation, and the unwavering dedication to perse-
vere after numerous failures. Occasionally, a stroke of luck (commonly referred to as
“serendipity”) is also involved in the process.

Many of the world’s crucial materials were discovered through a fortunate mixture of
pure chance, ingenuity, and unbiased curiosity of the scientist. Shatterproof glass, dyna-
mite, Viagra, penicillin, quinine, insulin, artificial dyes, super glue, vulcanized rubber,
synthetic plastics including Teflon, Velcro, artificial sweeteners, shape memory alloys
and many other well-known materials were all discovered in an “Eureka” moment due

to the combination of a happy accident and an observant scientist [7—17].

This type of fortuitous materials discovery through serendipity is without doubt a
major contributor to scientific progress. However, the rapidly changing society and
technology progress has placed increasing demands on materials development and
innovation. Unfortunately, serendipities are rare and cannot be relied upon to address
the ever-changing demands and material requirements: out of the fourteen Grand
Challenges of Engineering in the 21 Century as identified by the National Academy

2 HUMANITY'S MATERIAL CHALLENGES

of Engineering, eight of the challenges will require the discovery and development of
novel materials [18]:

* Make solar energy affordable

¢ Engineer better medicines

¢ Restore and improve urban infrastructure
¢ Provide access to clean water

¢ Provide energy from fusion

* Prevent nuclear terror

* Manage the nitrogen cycle

¢ Develop carbon sequestration methods

Many excellent researchers around the world are certainly working tirelessly to meet
these challenges; however, the search for novel materials is not well-defined and is not
by any means a simple task. Considering the well-studied and -documented periodic
table of the elements as well as the wealth of materials science knowledge available in
the literature and in the collective scientific community, it may seem trivial to combine
the right expertise, theory, and praxis to design a new material which can deliver a
desired property. However, materials discovery is anything but straightforward, and
there remains one major hurdle when faced with the task of finding the next novel
material: where do we start?

2.1 Chemical whitespace and the pace of materials research

Indeed, one of the most significant hurdles for the discovery of novel or alternative
engineering materials is the massive number of possible element combinations in a
given chemical compound. This space of all possible stoichiometric combinations is
also known as the “chemical whitespace” [19]. The synthesis of novel materials requires
a large amount of dedication and trial and error processes to find the optimal chemical
composition, synthesis processes and conditions (think of Edison’s light bulb). Likewise,
the characterization of the synthesized materials is also not straightforward at times—
techniques such as diffraction, spectroscopy, and electron microscopy can require a
large amount of effort and time. Furthermore, some novel materials could contain
exotic elements, phases, or structures, which are costly to obtain and/or synthesize.

2.1 CHEMICAL WHITESPACE AND THE PACE OF MATERIALS RESEARCH

Figure 2.1 shows the number of possible compounds that can be formed given n unique
elements (out of a pool of 8o stable elements). Note that the number of possible ways
to combine n elements grows dramatically with n, and surpasses one million when
n = 4. In other words, for a compound with four elements, there are over one million

potential ways to choose and combine the elements together.

10°

108

107

>1 million

106

10°

104

103

Number of simple combinations

102

| | | | | | |
1 2 3 4 5 6 7

Number of elements

Figure 2.1: The combinatorial explosion resulting from the number of possible element
combinations in an n-element compound renders the brute-force exploration
of chemical whitespace impossible. Additional stoichiometric complexity
and their granularity—dopants are an extreme example—further exacer-
bates this already impossible task.

Furthermore, these calculations assume that each element is equally abundant in the
compound (i.e., for a compound with four elements, each element will have a 25 at%
prevalence in the compound). Thus far, the additional dimensions of varying stoichiom-
etry have not been taken into account. If we wish to introduce stoichiometry variances
in the search space, then the number of possible combinations becomes exponentially
larger. In fact, the number of combinatorially possible materials has been estimated
to be as high as a googol (10'%), which is more than the total number of atoms in the
known universe [20]. Even for simple binary and ternary compounds, it would be an
impossible task to synthesize, characterize, and study all of the elemental combinations

2 HUMANITY'S MATERIAL CHALLENGES

in search of a desired material property, given the very large combinatorial space of pos-
sible elements, stoichiometries, and the limited amount of research time and funding

available [9, 19, 21].

As a consequence of this high-risk, high-reward nature of discovering new materials,
many researchers choose instead to focus on incremental material improvements that
can be achieved by optimization and exploration within already-known chemical sys-
tems. The search for new materials is thus typically limited to educated guesses based
on known materials science phenomena or local optimizations based on known ma-
terial systems. While these methods can lead to successful and positive results, they
are “brute-force” trial and error methods for discovering new materials, in the sense
that components are progressively swapped out, or added to existing or known com-
positions, and then tested for improved performance [9, 19, 22—27]. For large materials
systems with many elements, this is predictably very costly and time-consuming.

These search methodologies can also fail—for example, if a given system is already as
optimized as it can be, no further fine-tuning or swapping out elements can improve
it more. Furthermore, some materials phenomena which rely on minute changes
in the chemical composition, structure, or other rare events such as dopant effects,
can be completely missed. Additionally, it can also be possible that entirely new
systems, with new elements or compounds, are missed entirely, since these brute-
force methods search only locally near a starting chemical composition (i.e., they are
optimizing locally instead of globally across the entire chemical space). This can be a
limitation especially for classes of materials for which there are only a small number of

known compositions.

Chemical whitespace can be navigated up to a certain degree by a scientist with proper
experience, understanding of the latest research, and intuition. Naturally, the publica-
tions made by the worldwide scientific community play a key role in the dissemination
of the latest research topics and findings in this context. It is possible to imagine that
an expert can follow the newest developments by reading all of the latest publications,
take inspiration from that, and then identify the next promising topic(s) of research. To
this end, Edison argues that “a “genius’ is often merely a talented person who has done
all of his or her homework”. However, is it actually possible for a modern-day scientist
to keep up with the ever-increasing number of publications? In Edison’s time, that may
have been possible—but it is certainly unimaginable now. Figure 2.2 shows the number

10

2.1 CHEMICAL WHITESPACE AND THE PACE OF MATERIALS RESEARCH

of new publications per year, as indexed by the Web of Science for selected topics in
materials science. We can observe that the number of scientific publications for all
topics has been steadily increasing year-over-year, and that the number of publications
doubles approximately every 10 to 15 years [28]. In the year 2020 alone, many materials
science topics accumulated over 10* new publications! In fact, this growing trend in
publications and a similar growth in the number of scientists have been observed since
the 1600s and continues to this day—go0% of all of the scientists that have ever lived are

still alive today [29, 30].

| | |

10°E —

S 103F =

> F E

w L §

[L -
0

= 10%E E

L = E

= - —— battery .

E]

101k — fuel cell i

5 photovoltaic

il —— thermoelectric]

100 L —— renewable i

E | I I I I 3

1940 1960 1980 2000 2020

Year

Figure 2.2: The accelerating pace of materials science research as measured by the
number of new articles published per year for the period from 1940 to 2020,
grouped by the topic keywords as shown. Data collected from the Web of
Science. Figure adapted with permission from [31].

It is impossible for any researcher to read tens of thousands of papers every year, and
it is just as unfeasible to expect this researcher to manually synthesize and characterize
thousands of compounds every year. But does this mean this researcher cannot do his or
her homework properly? Maybe not. Itis clear that the current approaches for materials
discovery require a major overhaul in view of the manual experimental and research
methods. There needs to be a structured, reproducible and rational method to explore
chemical whitespace, which should not only be economical, but also quick, accurate,

11

2 HUMANITY'S MATERIAL CHALLENGES

and precise [19]. Materials informatics (MI) combined with machine learning (ML)
represents this method, and provides a unique way to integrate scientific knowledge,
data, and theory for the data-driven discovery of novel materials. This could be a
solution to our researcher’s problem.

2.2 Materials informatics: a new paradigm

The development of materials science (and of materials informatics, by extension)
closely followed the breakthroughs and advancements of science and technology over
the millennia. These can be divided into four major paradigms (Figure 2.3).

Traditional approaches

it

Data-driven approaches

15t paradigm
Empirical experiments
and observations “~\
2" paradigm
Theories, laws,
generalizations,
and models

4t paradigm
Data-driven
materials science
and materials
informatics

y
Novel |n5|ghts and S @
materials o

=5 A

5

3" paradigm
Simulations, models _*
and high-performance
computing

oW

Figure 2.3: The four paradigms of materials science. In the traditional approach (left),
new materials are discovered by experimentation, theory, or computation
(also referred to as the 1%, 2", and 3™ paradigms). In the 4" paradigm
(right), all of the available materials data is collected in accessible data
infrastructures, and machine learning and data science approaches are used
to discover new materials in the paradigm of data-driven materials science.

For a long time in humankind’s history, materials science was empirical and followed
general observations and experience gathered through experimentation. This represents
the first paradigm in materials science, the paradigm of empirical observations. Then
came the age of theories and generalizations, with many laws, equations and systems
being formulated to explain complex interactions like thermodynamics—the second
paradigm of theories and generalizations. Then, when theoretical models became too

12

2.2 MATERIALS INFORMATICS: A NEW PARADIGM

complex, computational methods were used to simulate the models and to obtain their
solutions, in the third paradigm of materials science. Some well-known examples of
these first-principles computational methods are molecular dynamics (MD) and density
functional theory (DFT). Computational methods now permeate almost all scientific
fields and are used to solve a large variety of problems.

With the constant improvement of models and high-throughput computation, the
amount of data generated by model-based research—together with data from empirical
experiments—have led to the fourth paradigm in materials science in the last few years.
This is the (big-)data-driven study of materials science [32]. Data-driven materials sci-
ence combines elements from the first three paradigms (experimentation, observation,
theory, and computation) and represents a new, disruptive paradigm in which the vast
amounts of currently-available materials data can be explored to draw interesting and
novel insights [32—34].

While data-driven methodologies are already well-established in numerous fields such
as astronomy, bio(techno)logy, drug discovery, quantitative social sciences, physics,
and chemistry, the application of informatics in the domain of materials science, also
termed “materials informatics”, is still in its infancy [9, 32, 34—39]. Materials informatics
(MI), or the large-scale algorithmic analysis of materials data to gain novel insight, is
a rapidly-growing field in materials science, and represents a groundbreaking way to
integrate scientific knowledge, theory, and advanced computation for the discovery of
new materials [9, 37, 38, 40, 41]. When combined with state-of-the-art machine learning
(ML) algorithms, MI can be used to predict the properties of materials which do not
currently exist, or be used to guide materials selection and design given a set of target

material properties.

As machine learning frameworks and algorithms are developed, important advance-
ments are not only being made by those doing research in these areas, but also by those
who apply ML modeling methodologies within the materials science domain [34, 36,
40, 42, 43]. The Materials Genome Initiative (MGI), launched in 2011, is one example of
where data science and ML methods are being applied to domain-specific knowledge
in materials science. The MGI facilitates collaborations between experimental and com-
putational materials scientists, with the goal of discovering, developing, manufacturing,
and deploying new materials “twice as fast, at a fraction of the cost” [39, 44].

13

2 HUMANITY'S MATERIAL CHALLENGES

2.3 Machine learning for materials science

Machine learning (ML) is a subarea of Al with the aim of developing and using data-
driven algorithms. In doing so, knowledge from data is automatically learned by
training the model on it [45—47]. Although ML is often considered as a research area
of conventional computer science, it differs from traditional computational approaches.
In conventional computing, algorithms (explicitly programmed instructions) are used
by computers to compute and solve specific and precisely-defined problems. ML and
deep learning (DL)" algorithms, on the other hand, enable computers to train on data
and develop the ideal model using methods from statistical analysis and data science.
The trained model and the learned presentation of the data relationships can then be
used to make predictions on previously unseen input data of the same type. In this
regard, the rulesets for processing and representing input data in the trained models

are not explicitly programmed, but rather learned on the basis of the data.

The integration of ML in materials science research workflows brings many benefits.
ML models are able to recognize complex and non-linear relationships from large
amounts of data, and are thus particularly applicable if the data or data relationships are
too complex to be described or solved with conventional methods (whether analytically
or computationally). In addition, the accuracy of a ML model improves when a large
amount of representative data for model training is available. Another significant
benefit of using ML over other first-principles computational materials science methods
such as density functional theory (DFT) and molecular dynamics (MD) is the drastic
speedup that machine learning can bring. Compared to DFT methods, which may take
days or weeks to compute the property of a single material, ML methods can compute

the properties of tens of thousands of materials, within seconds to minutes [48—50].

Thus, in the search for novel materials, high-throughput ML models can be used to
screen for promising material compositions from a large number of candidate composi-
tions (Figure 2.4). Using ML, researchers can better navigate the chemical whitespace
to identify interesting candidate materials or additional directions for further research.

"Deep learning is a subset of machine learning and is based on artificial neural networks inspired by
the structure and function of the brain. In DL, multiple processing layers are used to transform
the data into different levels of abstraction (representations) that extract progressively higher-level
information. Note: since DL is a subset of ML, both ML and DL models/algorithms are meant when
ML is mentioned in the text.

14

2.3 MACHINE LEARNING FOR MATERIALS SCIENCE

For example, from a list of 10? candidates, ML models can be used to identify 103
promising compositions. Subsequently, the results of the ML screening can be com-
bined with computational or simulation methods to further narrow the number of
candidate compositions down to 102-10' compositions. At the end of this ML-assisted,
automated workflow, the large pool of candidates has already been narrowed down by
more than 7 magnitudes without the need of any manual experimentation or expert
intervention. The remaining 10? to 10! candidates can then be tested experimentally in
the laboratory, drastically reducing time and research costs compared to simple trial
and error experimentation [19, 26, 32].

Large number of potential
candidate materials, ~10° samples

Value: low/medium

Machine Learning Cost: low
Goal: predict/filter

Value: medium
Simulation Cost: medium
Goal: simulate

Feedback

loop Value: high

Experimentation Cost: high
Goal: validate

Candidate materials for intended
application, ~ 102 to 10 samples

Figure 2.4: A typical workflow for materials discovery, integrating materials informatics,
machine learning, simulation and experimentation to narrow down a large
number of potential candidate materials to a few promising candidates.
Figure adapted with permission from [51].

ML in MI has received significant attention in the academic research world and is
gaining widespread adoption in the study of many inorganic material properties such
as mechanical, electronic, thermodynamic, and transport properties. More specifically,
it has recently been studied for its use in the research and design of novel inorganic
materials in many different application areas such as photovoltaic materials [52-54],
materials for energy storage [55-59], catalysts/photocatalysts [60-66], thermoelectric
materials [21, 67—70], high-temperature superconductors [71—77], and high entropy [78,
79] and metallic glass alloys [52, 8o, 81].

15

2 HUMANITY'S MATERIAL CHALLENGES

These studies were enabled by the increasing abundance of experimental and simulated
materials property data available online through several materials data repositories as
well as the improvements in the materials informatics ecosystem (such as algorithm
and model developments, open source software, model hosting and sharing platforms).
An overview of other impactful and relevant works in MI as well as the materials
data repositories, software tools, and methodologies often used by researchers in the
field is given as part of the first publication included in this dissertation (Chapter 3.2).
Furthermore, the interested reader is encouraged to refer to the cited works as well as
other well-written reviews available in the literature regarding this exciting research
tield [26, 27, 34, 36, 37, 40—42, 82—96].

The accelerating research interest in the field of MI is encouraging. However, many open
questions and issues remain to be addressed in the adaptation of data-driven techniques
for materials science. These are discussed in detail in the upcoming chapters.

16

3 Best practices for machine learning in
materials science

3.1 The need for best practices in materials informatics

Despite the remarkable amount of interest in data-driven materials science and MI in
the past ~15 years, they remain relatively new research fields with many unanswered
questions [97]. The use and implementation of data science and ML methodologies
are unfamiliar skills that are not typically required for the materials scientist. On
the other hand, the proliferation and democratization of software packages make it
appear easy to implement basic proof of concept studies using data science and ML in
materials science. However, the inexperience with these methodologies in the materials
science field often leads to published studies which, while interesting and potentially
useful, are often misguided or incorrect’. Without a firm understanding and careful
consideration of the data processing, modeling, and model validation choices in these
studies, the interested materials scientist may be misled into believing inaccurate results

or adapting improper methodologies for follow-up works.

Oftentimes, it is apparent from the published works that inadequate attention is being
paid to the fundamental assumptions and limitations of the methodologies used for
data processing, data splitting, featurization, modeling, and evaluation. The model
results are often blindly trusted and reported without a critical examination of their
truthfulness. In other cases, modeling choices are not clearly explained—models are
sometimes taken from other domains in ML and poorly adapted to the domain of
materials science. While it is encouraging to see researchers getting inspiration and
adapting modeling methods from other domains to material science, in many occur-
rences, the models appear to be more “transplanted into”, rather than being “adapted

for” materials science.

“Garbage in, garbage out”, as a computer scientist would say.

17

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Another major roadblock is in the lack of reproducibility in the works. In many early
publications—and to an extent, still in some new publications today—the algorithms
and methodologies used in the studies are not fully published or open-sourced. For
some works, the datasets used are also not provided. Reproducibility in reporting is
a major principle in good scientific practice. Especially for studies involving computa-
tional methods such as M], it is simpler (requiring typically less specialized equipment
or materials) to demonstrate and enable the reproducibility of results.

Furthermore, in many early works where modeling techniques were introduced, the
researchers did not rely on standardized materials property datasets to evaluate the
model performance. Instead, the researchers used in-house or private datasets to bench-
mark their models against baseline models. This use of a non-standardized dataset
prevents the direct comparison of model results between different publications and
produces additional hurdles for future researchers who wish to compare against exist-
ing models. Lastly, the use of different model evaluation metrics to present the model
performance also prevents the quick comparison of model results between different
publications.

Certainly, most of these cases are unintentional or are the result of incomplete under-
standing of the methodologies used, and are not a deliberate act of omission. Neverthe-
less, it is important for the field of MI that a basic set of guidelines and best practices
is established with the goals of unifying research reporting, improving publication
quality, and facilitating collaboration in this field. This will not only lend credibility
to future publications, but also promote further research and development into this
exciting field.

The first publication resulting from this dissertation work addresses these issues. The
publication and its accompanying supplementary information (SI) are inserted in the
following pages.

18

3.2 PUBLICATION 1: BESTPRACTICES

3.2 Publication 1: Machine Learning for Materials Scientists: An

Introductory Guide toward Best Practices

Title
Authors

Journal
Publisher
Publication date
Reference

DOI

Supporting
information

My contribution

Machine Learning for Materials Scientists: An Introductory
Guide toward Best Practices

A. Y.-T. Wang, R. J. Murdock, S. K. Kauwe, A. O. Oliynyk, A.
Gurlo, J. Brgoch, K. A. Persson, and T. D. Sparks

Chemistry of Materials

American Chemical Society (ACS) Publications
May 19, 2020

Chemistry of Materials, 2020, 32 (12): 4954—4965
10.1021/acs.chemmater.0c01907

The SI can be downloaded from:
https://doi.org/10.1021/acs.chemmater.oco1907

Conceptualization (with R.J.M. and S.K.K.), Methodology, Soft-
ware, Validation, Investigation, Data Curation, Visualization,
Writing — Original Draft, Writing — Review & Editing, Project
administration.

The article is inserted in the following pages. Reprinted (adapted) with permission
from (Chemistry of Materials, 2020, 32 (12): 4954—4965). Copyright (2020) American
Chemical Society. The article can also be downloaded using the ACS Articles on
Request author-directed link: https://pubs.acs.org/articlesonrequest/AOR-
HCRBYMBIJgNMYTVKDUXX.

19

https://doi.org/10.1021/acs.chemmater.0c01907
https://pubs.acs.org/articlesonrequest/AOR-HCRBYMBIJ9NMYTVKDUXX
https://pubs.acs.org/articlesonrequest/AOR-HCRBYMBIJ9NMYTVKDUXX

Downloaded via TU BERLIN on July 2, 2020 at 07:52:41 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

E]]] MATERIALS

pubs.acs.org/cm

Methods/Protocols

Machine Learning for Materials Scientists: An Introductory Guide

toward Best Practices

Anthony Yu-Tung Wang, Ryan]. Murdock, Steven K. Kauwe, Anton O. Oliynyk, Aleksander Gurlo,
Jakoah Brgoch, Kristin A. Persson, and Taylor D. Sparks*

Cite This: Chem. Mater. 2020, 32, 49544965

I: I Read Online

ACCESS |

|l Metrics & More |

Article Recommendations |

Q Supporting Information

ABSTRACT: This Methods/Protocols article is intended for
materials scientists interested in performing machine learning-
centered research. We cover broad guidelines and best practices
regarding the obtaining and treatment of data, feature engineering,
model training, validation, evaluation and comparison, popular
repositories for materials data and benchmarking data sets, model
and architecture sharing, and finally publication. In addition, we
include interactive Jupyter notebooks with example Python code to
demonstrate some of the concepts, workflows, and best practices
discussed. Overall, the data-driven methods and machine learning
workflows and considerations are presented in a simple way, allowing
interested readers to more intelligently guide their machine learning
research using the suggested references, best practices, and their own

@

Machine
E Learning * k;}
Data v
Processing & Best Dissemination
Feature practices & availability
Engineering
Materials O 5}
<> | Property data v
—
-—

materials domain expertise.

B INTRODUCTION

Materials scientists are constantly striving to advance their
ability to understand, predict, and improve materials proper-
ties. Due to the high cost of traditional trial-and-error methods
in materials research (often in the form of repeated rounds of
material synthesis and characterization), material scientists
have increasingly relied on simulation and modeling methods
to understand and predict materials properties a priori.
Materials informatics (MI) is a resulting branch of materials
science that utilizes high-throughput computation to analyze
large databases of materials properties to gain unique insights.
More recently, data-driven methods such as machine learning
(ML) have been adopted in MI to study the wealth of existing
experimental and computational data in materials science,
leading to a paradigm shift in the way materials science
research is conducted.

However, there exist many challenges and “gotchas” when
implementing ML techniques in materials science. Further-
more, many experimental materials scientists lack the know-
how to get started in data-driven research, and there is a lack of
recommended best practices for implementing such methods
in materials science. As such, this article is designed to assist
those materials science scholars who wish to perform data-
driven materials research. We demonstrate a typical ML
project step-by-step (Figure 1), starting with loading and
processing data, splitting data, feature engineering, fitting
different ML models, evaluating model performance, compar-
ing performance across models, and visualizing the results. We

© 2020 American Chemical Society

vACS Publications

20

4954

also cover sharing and publication of the model and
architecture, with the goal of unifying research reporting and
facilitating collaboration this emerging field. Throughout this
process, we highlight some of the challenges and common
mistakes encountered during a typical ML study in materials
science, as well as approaches to overcome or address them.
Highlighting the best practices will improve the research and
manuscript quality and ensure reproducible results.

To demonstrate some of the best practices discussed
throughout this work, we have created several interactive
Jupyter notebooks with relevant Python code structured in a
tutorial format (Table 1). The sections in this article that
include accompanying notebooks are marked with an asterisk*.
The notebooks walk the readers through a basic ML study in
materials science: the prediction of heat capacity for solid
inorganic compounds. We demonstrate this by implementing
several classical machine learning as well as neural network
models from the well-known Python packages scikit-learn and
PyTorch, respectively. The Jupyter notebooks can be accessed
at the online GitHub repository: https://github.com/anthony-
wang/BestPractices. Setup, usage, further instructions, and

Received: May S, 2020
Revised: ~ May 19, 2020
Published: May 19, 2020

https://dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954-4965

Chemistry of Materials

pubs.acs.org/cm

3.2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

o A
=R |
3
—r— P (Open-source
Online Materials Other Data contribution)
\fatabases datasheets sources validation |
a A T Y
Materials Data input / Data-driven Machine
uestion | processing / + research & feature —| Learning & — Knowledge
¢ a integration) engineering Analysis)
(3 ID | Features | E [v | ... %
Qi 1y e w] 3
2| Fd |B|vw 2
Local database £ /
/ Density (kg/m?)

Figure 1. Schematic of a machine learning study in materials science.

Table 1. List of Accompanying Jupyter Notebooks and the
Topics Demonstrated

no. notebook contents
1 Loading data; examining, processing, cleaning up of data
2 Splitting data into train/validation/test data sets

3 Featurizing data; modeling with classical models, evaluating models,
effect of different train/validation/test splits

4 Modeling with neural networks, evaluating models, exporting models,
avoiding overfitting

S Visualizing results

pertinent information can also be found there. Please note, an
intermediate knowledge of the Python programming language
and general programming principles is required.

B MEANINGFUL MACHINE LEARNING

Machine learning is a powerful tool, but not every materials
science problem is a nail. It is important to delineate when to
use ML and when it may be more appropriate to use other
methods. Consider what value ML can add to your project and
whether there are more suitable approaches. Machine learning
is most useful when human learning is impossible, such as
where the data and interactions within the data are too
complex and intractable for human understanding and
conceptualization. Contrarily, machine learning often fails to
find meaningful relationships and representations from small
amounts of data, when a human mind would otherwise likely
succeed.

When developing ML tools and workflows, consider how
(and with what ease) they can be used not only by yourself but
by others in the research community. If another researcher
wants to use your method, will they be able to do so, and will it
be worth it for them? For example, if you include data from ab
initio calculations such as density functional theory (DFT), or
crystal structure as one of the input features of your ML model,
would it not be simpler for other researchers to use DFT or
other simulation methods themselves, instead of using your
ML model?

Another limitation to consider when using ML as a tool is
the model interpretability vs predictive power trade-off. If you
are looking for physical or chemical insights into your
materials, you are unlikely to find them when using powerful
and complex models such as neural networks: these models—
while they can exhibit high model performance—are usually
too complex to be easily understood. These are so-called
“black-box” models because outside of their inputs and
outputs, it is nearly impossible for a human to grasp the

inner model workings and its decision making processes. In
contrast, simpler models might be easier to understand but
tend to lack the predictive power of the more complex models.
In general, a good ML project should do one or more of the
following: screen or down-select candidate materials from a
pool of known compounds for a given application or
1-3 4,5
property, acquire and process data to gain new insights,

. . 6—10 .
conceptualize new modeling approaches, or explore ML in
materials-specific applications.”''™"* Consider these points
when you judge the applicability of ML for your project.

H MACHINE LEARNING IN MATERIALS SCIENCE

Machine learning has been applied in the study of many
inorganic material properties, such as mechanical, electronic,
thermodynamic, and transport properties. It has also been used
in many different material application areas, such as photo-
voltaic materials, materials for energy storage, catalysts/
photocatalysts, thermoelectric materials, high-temperature
superconductors, and high entropy and metallic glass alloys.
We highlight some current examples in the literature of
inorganic material properties and their application areas in
Table 2. Here, we are not attempting to summarize the
methods or results of these studies; instead, we advise the

Table 2. Examples of Using Machine Learning in the Study
of Inorganic Materials

4955

material properties refs
Mechanical properties 1, 6, 9, 25-30
Formation energy 7,9, 29, 31-34
Band gap 6,9, 29, 35-39
Density of states 40, 41
Crystal structure/stability 32, 4252
Debye temperature/heat capacity 6, 53, 54
Thermal expansion coefficient 6, 53
Thermal conductivity 6, 53, 55=57
Seebeck coefficient 56, 58

material classes refs

Photovoltaic materials 34, 59, 60
Energy storage 61—65
Catalysts/photocatalysts 2, 66—71
Thermoelectric materials 4, 13, 56, 72, 73
High-temperature superconductors 74, 74—80
High entropy alloys 81, 82
Metallic glass alloys/glass-forming ability 34, 83, 84

https://dx.doi.org/10.1021/acs.chemmater.0c01907

Chem. Mater. 2020, 32, 4954—4965

21

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Chemistry of Materials

pubs.acs.org/cm

Methods/Protocols

Table 3. Comparison of Materials Data Repositories with Predominantly Property Information

structure
information

Y

name

Materials Project Y
Open Quantum Materials Database

AFLOW for Materials Discovery

Novel Materials Discovery (NOMAD)

Open Materials Database

Citrine Informatics

Materials Platform for Data Science (MPDS)
AiiDA/Materials Cloud

NREL MatDB

NIST TRC Alloy Data

NIST TRC ThermoData

NIST JARVIS-DFT/-ML Database

MatWeb

Total Materia

Ansys Granta (MaterialUniverse repository)
MATDAT

e A R R R e
MK KRR 2 Z R R <

mechanical
properties

thermal electronic
properties properties API* data license refs

Y Y Y CC BY 4.0 85

Y Y Y CC BY 4.0 86

Y Y Y b 87

Y Y Y CC BY 4.0 88

Y Y Y CC BY 4.0 89

Y Y Y CC BY 90

Y Y Y CC BY 4.0 91

Y Y Y Varies 92,93
Y Y N Own license 94

Y N On request Free 95

Y N N NIST SRD 96

Y Y Y Public domain 97, 98
Y N N Paid 99

Y N N Paid 100
Y N N Paid 101

Y N N Paid 102

“An “application programming interface” is a set of defined functions, procedures, methods, or classes which enable a structured way of exchanging
data between programs. In the framework of a materials data repository, an API facilitates, e.g., the uploading, examining, and downloading of data
and other forms of interactions between the user and the repository. “Not specified.

interested reader to refer to the cited works as well as other
well-written reviews available in the literature.>'*>*

B WORKING WITH MATERIALS DATA

Data Source. Some of the more commonly used
repositories for materials property data are shown above in
Table 3.

Other repositories that host predominantly crystal structure
information are shown below in Table 4. While these
repositories do not necessarily host material property
information, the structure information contained within these
repositories are also valuable.

Table 4. Comparison of Materials Data Repositories with
Predominantly Structure Information

no. Data
name records” APl license ref
Cambridge Structural Database 1,055,780 Y Paid 103
(CSD)
Inorganic Crystal Structure 216,302 N Paid 104
Database (ICSD)
Pearson’s Crystal Data (PCD) 335000 N Paid 105
International Centre for Diffraction 1,004,568 N Paid 106
Data (ICDD)
Crystallography Open Database 455,714 Y Open- 107
(coDp) access
Pauling File 357,612 Y Paid 108
CrystMet database 160,000 N Paid 109

“Note: values for number of records were updated as of the
submission date (May 2020).

There is an ever-increasing number of materials informatics-
related resources and repositories; as such, only the more
commonly used repositories are mentioned above. Keep in
mind that each data set is different and may contain domain-
specific information and features that are restricted to certain
research fields or applications. There may also be differences in
the methodologies with which the data are experimentally or
computationally derived, curated, and recorded in these
databases. As a result of this, the values for material properties

22

4956

might not be directly comparable across the different
repositories. Be mindful of this when you are comparing
property data across the repositories, especially if you plan on
aggregating or merging data from different sources.

Data Set Size and Composition*. When collecting your
data set for your ML study, be mindful of your data set size.
Ensure that your data set size is large enough and includes
most examples of the combinations of material compositions in
the material space you want to study. It is also important to
consider data balance or bias in your data sets. Does your data
form clusters based on chemical formula, test condition,
structure type, or other criteria? Are some clusters greatly over-
or under-represented? Many statistical models used in ML are
frequentist in nature and will be influenced by data set
imbalance or bias. Visualization techniques such as t-
distributed stochastic neighbor embedding (t-SNE''?),
form manifold approximation and projection (UMAP""), or
even simple elemental prevalence mapping''> may be useful in
investigating data set imbalance and bias.

Lastly, if your data set is too large (a rare luxury in the
materials science field), you may find yourself having to wait a
long time to train and validate your models during the
prototyping phase of your project. In this case, you can
subsample your data set into a small-scale “toy data set” and
use that to test and adjust your models. Once you have tuned
your models to your satisfaction on the toy data set, you can
then carry on and apply them to the full data set. When
sampling the original data set to create the toy data set, be
aware that you do not introduce any data set biases through
your sampling. Also keep in mind that not all performance-
related problems can be fixed by subsampling your data. If your
model can only train successfully on the toy data set and
cannot train on the full data set (e.g, due to memory or time
constraints), you may wish to focus on improving its
performance first.

Data Version Control. Be sure to save an archival copy of
your raw data set as obtained and be sure that you can retrieve
it at any time. If you make any changes to your data set, clearly
record the steps of the changes and ensure that you are able to

uni-

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954-4965

Chemistry of Materials

3.

pubs.acs.org/cm

2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

reproduce them on the data set in the future if needed. To
simplify version control, consider using a version control
system (such as Git,""* Mercurial,""* or Subversion''®) for
your data sets.

Cleanup and Processing*. Once you have curated your
data set, examine and explore the data on a high level to see if
there are any obvious flaws or issues. These may—and often
do—include missing or unrealistic values (e.g, NaN’s, or
negative values/positive values where you do not expect them),
outliers or infinite values, badly formatted or corrupt values
(e.g, wrong text encoding, numbers stored in non-numeric
format), nonmatching data formats or data schema caused by
changes in the repository, and other irregularities. If you find
any irregularities, deal with them in an appropriate way and be
careful not to introduce any bias or irregularities of your own.
Make sure you document any data cleanup and processing
steps you performed; this is an important step in ensuring
reproducibility that is often overlooked in ML studies. In
addition, during your model prototyping stage, you may find
some additional problematic data samples which adversarially
affect your model performance. In this case, consider
performing another round of data cleanup before finalizing
your model.

Train—Validation—Test Split*. Split your data once into
three data sets: train, validation, and test. The split should be
performed in a reproducible way (e.g., by assigning a random
seed and shuffling the data set); alternatively, you can save the
split data sets as files for reuse. Make sure that no same (or
similar) data appear in the test data set, if they are already
present in the train or validation data set. For example, if you
have several measurements of a chemical compound that are
performed at different measurement conditions in the train
data set (e.g., temperature or pressure), during the testing
phase, your model would likely perform well if it is asked to
predict the property of the same compound at a different
condition. This, however, gives you an inflated estimate of how
well the model will generalize in cases where it has not seen a
particular chemical compound before. For a truly rigorous
evaluation of your model’s generalization performance, you
should take care to avoid this data leakage when you split your
data.

During the training stage, models may only be shown the
training data as part of the learning process. Validation data
may be used to assess and tune different model hyper-
parameters and may be compared with the predictions of
different model/hyperparameter combinations to evaluate a
model’s performance. In contrast, test data may only be used in
order to evaluate a model’s performance as a final step, after
the model has been finalized. Models must not be trained nor
tuned on the test data set. Use the same train, validation, and
test data sets for all modeling and model comparison/
benchmarking steps.

The training data set can be further partitioned to be used
for cross-validation (CV). CV is a method that is often
employed to estimate the true ability of a model to predict on
new unseen data and to catch model-specific problems such as
overfitting or selection bias."'® One typical method is k-fold
cross-validation. In k-fold CV, the training data set is first
randomly partitioned into K subsets (remember to note down
your partitioning details). Then, for each k of the data subsets
k=1,2,.., K, the model is trained on the combined data of the
other K — 1 subsets and then evaluated using the kth subset.
The resulting K prediction errors are then typically averaged to

4957

give a more accurate estimate of the model’s true predictive
performance compared to evaluating the model performance
on one single train/validation/test split. Typical choices for K
in the literature are S or 10. In the case of a small input data set
size, k-fold CV or other methods of cross-validation can also be
used as a data resampling technique for models that are more
robust against overfitting on the validation set (e.g., linear
regression).

B MODELING

Choosing Appropriate Models and Features®. The
data set size will almost always determine your available
choices of ML models. For smaller data set sizes, classical and
statistical ML approaches (e.g., regression, support vector
machines, k-nearest neighbors, and decision trees) are more
suitable. In contrast, neural networks require larger amounts of
data and only start becoming feasible/useful when you have
training data points on the order of thousands or more.
Typically, ML models such as regression, decision tree/
random forest, k-nearest neighbors, and support vector
machines are used on smaller data sets. These algorithms
can be further improved by applying bagging, boosting, or
stacking approaches. There are many existing Python libraries
for implementing the above, with perhaps the most well-known
being scikit-learn.'"” For larger data sets, neural networks and
deep learning methods are more commonly used. In the
scholarly community, the Python libraries PyTorch''® and
TensorFlow''” are often used to implement these architec-
tures.

Feature engineering is important for smaller data set sizes
and can contribute to a large model performance increase if the
features are well-engineered.”**'** A common way to
transform chemical compositions into usable input features
for ML studies is through the use of composition-based feature
vectors (“CBFVs”). There are numerous forms of the CBFV
available, such as]arvis,121 Magpie,34 mat2vec,’ and Oliynyk.]3
These CBFVs contain values that are either experimentally
derived, calculated through high-throughput computation, or
extracted from materials science literature using ML
techniques. Instead of featurizing your data using CBFVs,
you can also try a simple onehot-encoding of the elements.
These CBFV featurization schemes as well as the relevant
functions and code for featurizing chemical compositions are
included in the online GitHub repository associated with this
work.

For sufficiently large data sets and for more “capable”
learnin% architectures like very deep, fully connected net-
works”'>> or novel attention-based architectures such as
CrabNet,® feature engineering and the integration of domain
knowledge (such as through the use of CBFVs) in the input
data becomes irrelevant and does not contribute to a better
model performance compared to a simple onehot-encoding."'
Therefore, due to the effort required to curate and evaluate
domain knowledge-informed features specific to your research,
you may find it more beneficial to seek out additional sources
of data and already-established featurization schemes or use
learning methods that do not require domain-derived features®
instead.

Data Scaling and Normalization*. In most cases, it may
be beneficial to scale your input data (X). For a regression task,
it may also be helpful to scale the targets (y) as well. Scaling
can be done in many ways. Often, the input data is scaled to
have zero-mean and unit variance. This allows for more stable

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

23

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Chemistry of Materials

pubs.acs.org/cm

Methods/Protocols

gradients and faster model convergence, since the resulting
. . AT 123-126
feature dimensions are similar in scale.
This is done by using the transformation:

X' = (X-X)/oy (1)
where X denotes the mean and oy the standard deviation of X.
In some cases, applying the logarithm function to your values
before scaling them according to eq 1 may further improve
your model performance.

Keep in mind that the scaling operations must be conducted
using solely the statistics from the training data set (i.e, the
train/validation/test data sets are scaled using only the mean
and standard deviation values computed from the training
data) and that the validation and test data statistics must not
be used. Remember also to undo the scaling operation(s) on
the target values (if these were scaled) after loss computation
but before performance evaluation. Similar to scaling, normal-
ization of X is recommended for regression tasks. Here it is
also important to use only the training data statistics when
normalizing input data.

Scaling and normalization are not commutable: their
ordering matters. You should scale, then normalize. When
undoing this operation, the inverse is required: unnormalize
and then unscale.

Keep It Simple. Sometimes, especially in the case of small
data set sizes, simpler models can perform better than more
complex models on the held-out test data. Some simpler
models that you can try are linear (or ridge/lasso) regression,
random forest, or k-nearest neighbors.

Furthermore, consider the model complexity—explainability
trade-off. Typically, more complex models achieve higher
model performance but have the caveat that they are generally
not easily interpretable by humans. In contrast, simpler models
are typically assumed to be more easily understood by humans
and lead to better opportunities for model introspection. This
is an important consideration in materials science, since
synthesis and characterization are costly and time-consuming
and the costs must be justified.

Hyperparameter Optimization. Depending on your
choice of ML model, there may be model hyperparameters
that can be tuned. Examples of hyperparameters are the
number of neighbors (k) in k-nearest neighbors, the number
and depth of trees in a random forest, the kernel type and
coefficient in support vector machines, the maximum number
of features to consider in gradient boosting, and loss criterion,
learning rate, and optimizer type in neural networks. These
hyperparameters are properties of the models themselves and
can significantly affect your model’s performance, speed (in
training and inference), and complexity.

The hyperparameters are not learned by the model during
the training step; rather, they are selected by you when you
create the model. The recommended way to optimize your
model hyperparameters is by training numerous models (each
with a different set of hyperparameters) using the same
training set and then evaluating the models’ performance using
the same validation set. By doing this, you will be able to
identify the set of hyperparameters that generally leads to
good-performing models. This is commonly referred to as a
“grid search”. Imagine that your model has two continuous-
variable hyperparameters, h, and h,, and that there is a range of
values for each of these parameters that you wish to investigate,
(B i Mimae) and [y iy B e, respectively. You can then
define a grid that spans between (hy,p hypmin) and (A e

24

4958

hypmae)- At each point on this grid, you train a model
corresponding to that set of hyperparameters using the training
set and then evaluate its performance on the validation set.
After repeating this for every point on the grid, you obtain a
mapping that you can then use to determine the best set of
hyperparameters for your specific model and data.

Once again, we stress the importance of reserving a held-out
test data set during data set splitting. By training and
optimizing your model on the training and validation data
sets, you have effectively tuned—and possibly biased—your
model to perform exceptionally well on these data samples.
Therefore, the performance metrics of your model on these
data sets are no longer good indicators of your model’s true
generalization ability. In contrast, evaluating your model’s
performance on the held-out test data set (which your model
has never seen before) will give you a much more realistic
estimate.

Model Evaluation and Comparison. Typically, studies in
materials science will compare the performance of several ML
model and hyperparameter combinations on a given task.
Trained models are typically compared by evaluating their
performance on the held-out test data set using computed test
metrics such as accuracy, logarithmic loss, precision, recall, F1-
score, ROC (receiver operating characteristic curve), and AUC
(area under curve) for classification tasks and r* (Pearson
correlation coefficient), mean absolute error, and (root) mean
squared error for regression tasks. Also consider using cross-
validation (as discussed earlier) to give a more accurate
estimate of your model’s true performance.

Show Your Model*. If you are reporting a new model
architecture or algorithm, you must include all pertinent
information necessary to reproduce, evaluate, and apply your
models. This entails providing the complete source code for
your implementation, the hyperparameters used, the random
seeds applied (if any), and the pretrained weights of the
models themselves. In addition, clear descriptions and
schematics of your new system should be provided, as well
as instructions to reproduce your model and work. Ideally, you
can show your model and results in an interactive manner,
such as through the use of Jupyter notebooks.

B FITTING AND TESTING

Avoid Overfitting*. In an ML problem, the model is asked
to perform two contradicting tasks: (1) minimize its prediction
error on the training data set and (2) maximize its ability to
generalize on unseen data. Depending on how the model, loss
criterion, and evaluation methods are set up, the model may
end up memorizing the training data set (an unwanted
outcome) rather than learning an adequate representation of
the data (the intended outcome). This is called “overfitting”
and usually leads to decreased generalization performance of
the model. Overfitting can occur on all kinds of models,
although it typically occurs more often on complex models
such as random forests, support vector machines, and neural
networks.

During model training, observe the training metrics such as
your loss output and * score on the training and validation set.
For example, when training a neural network, you can use a
learning curve to track validation errors over each epoch during
the training process. As the model trains, the validation and
training error will ideally decrease. Your training error will
approach zero, but this is not the metric we care about! Rather,
you should closely observe the validation error. When your

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954-4965

Chemistry of Materials

3.

pubs.acs.org/cm

2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

validation error increases again while your training error
continues to decrease, you are likely memorizing your training
data and thus overfitting your data.

Overfitting can have an adverse effect on your model’s ability
to generalize (that is, returning a reasonable output prediction
for new and unseen data), thus performing poorer on the test
data set. If you notice that your model overfits your data very
easily, consider reducing the complexity of your model or using
regularization.

Beware of Random Initialization*. Many ML models
require an initial guess as a starting point for their internal
parameters. In many model implementations (e.g., in scikit-
learn’s linear regression, random forest, support vector
machines, boosting implementations), these initial internal
model parameters are provided by your system’s random
number generator. The same applies for neural network-based
models, in the initialization of the weights and biases of the
networks and some optimizer parameters. Depending on how
sensitive your model is to initialization, different initial states of
the models can lead to significant differences in your model
performance.

It is therefore important that you ensure reproducible results
across different model runs and different models (both for your
internal testing and for publication). To accomplish this, you
can choose a seed to use for the random number generator. Do
not forget to mention this seed in your publication and code.
Note that alternative ways of model initialization exist, such as
using different estimators for initial parameter guesses as well
as different initialization schemes for neural network weights
and biases; here, you should note down your changes if you
use an alternative implementation.

Avoid p-Hacking. Train your models on the training data
set only and use the validation data set for tuning your model
hyperparameters. Do not evaluate your model on the held-out
test data set until you have finished tuning your model and it is
ready for publication. Looking at the test data set multiple
times to pick ideal model hyperparameters is a form of p-
hacking and is considered cheating!"*’

Bl BENCHMARKING AND TESTING

Reproducibly Testing Various Methods*. For compar-
ison/ablation studies against other ML models and/or
architectures, make sure you use the same train/validation/
test data sets (refer to above for best practices on data set
splitting and management). For the most informative and fair
comparison between different published models, consider
running the models yourself. If you perform any additional
model-specific data manipulation steps, make sure to docu-
ment them and make them reproducible for your readers.

During the model tuning process, train your models on the
train data set and evaluate their performances on the validation
set. After you have finalized your model architecture and
hyperparameters, train the models once more on the combined
train and validation data sets and evaluate their performances
on the test data set.

Existing Benchmarks. There are some tools and software
packages online that can be used as baselines to judge the
performance of your models."”*™"*' Some of these tools can
perform automatic feature engineering and testing of several
different ML models. We suggest that you download these
tools and compare the performance of your models against
them. If your model does not perform better or does not offer

4959

any advantages over these existing tools, consider other venues
of improvement.

H MAKING PUBLICATION-READY, REPRODUCIBLE
WORK

Source Code and Documentation®. Publishing in peer-
reviewed journals relies on the foundational principle that the

1 1
200 400
Actual value (Units)

T T T T,
5 4001 ——— ideal e - 400
E=d . N ’ =
c linear fit 7 c
2300 g 4 2300
[[
2 1 2
$ 200 B g 200
o o
|2 1 |2
S 100 4 S100
]] ;
o o &
o a

0 0

200
Actual value (Units)

400

Figure 2. Example predicted vs actual material property plots, plotted
(left) without and (right) with a marginal histogram. In addition, lines
corresponding to ideal predictions (where the predicted values exactly
match the actual values) and a linear regression fit (for estimating the

correlation between the predicted and actual values) are shown.

Actual value (Units)

150 T T T T T T T

° 0.030- — kde b
= 100 g
2 0.025+ -
c
S 50 g
= 0.020 g
E 0 s
® & 0.015F 1
3 g %o 1
3 ° 0.010- -
2 °
 _ L ° 4
« ~100 deal 0.005 - 4

---- idea
-150F . hibi " 0.000 L A
100 200 300 400 : ~100 0 100

Residual error (Units)

Figure 3. Example residual error plots, plotted (left) against the actual
value and (right) as a histogram with a kernel density estimation
(kde). A lower error indicates a more accurate model prediction.

T T T T T T T T

| . |
! —e— train

H -=- validation

25

= N
w o

fury
o

Loss (Units)

0 Il L

L L
0 250 500 750 1000

Number of training epochs
Figure 4. Example loss curve plot of a neural network, showing model
performance (loss) evaluated on the train and validation data sets at

each epoch throughout the training process. A lower loss indicates a
better-performing model.

methodology be sufficiently described in order to ensure
reproducibility. Therefore, for your ML-based study, full
source code for your models and architecture (if any) must
be provided, including implementation details of data
processing, data cleanup, data splitting, model training, and

https://dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

25

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Chemistry of Materials

pubs.acs.org/cm

Methods/Protocols

I

Element Count
w
o
o

N
o
o

TTTTT

TTTTTT rTTT

Figure S. Example visualization of element prevalence in a data set, shown as a histogram.

o] z]~]5]=]=]
HEHEBHE

Element Count

[te]] <o | e SRR = | o [] o | o | - R = | -
e 5 D 6

Figure 6. Example visualization of element prevalence in a data set, shown as a heatmap on a periodic table.

model evaluation. If you can, you should also publish your
source code under a permissive or an open-source license so
that others may (re)use, img)rove, collaborate on, and
contribute further to your work.'*>

Your published source code must be complete—that is,
somebody should be able to take your source code verbatim,
execute it, and obtain the same results that you did. Required
libraries and other software dependencies (if any) must be
listed, preferably with the pertinent version numbers. Ideally,
these dependencies will be listed in an “environment file” that
others can use to directly create a working software
environment on their local system. If you use any code or
packages developed by others, make sure to adhere to their
licenses. Also consider hosting your code in an online, version-
controlled repository such as GitHub, GitLab, Bitbucket,
DLHub,"** or similar.

Make sure the source code is well-documented and follows
well-established code standards. Instead of writing additional
comments to explain your code, consider writing code in a way
such that it is self-explanatory without the need for additional
comments. This entails using clear variable names, closely
following formatting guidelines (such as PEP 8), and writing

26

4960

“explicit” code. Add a “README” file as well that provides
your readers with instructions for the installation, setup, and
usage of your code and for the reproduction of your published
results. To ensure large-scale deployability and consistency on
any infrastructure, consider also publishing your project as a
containerized application, using tools such as Docker."**

All Data Should Be Provided*. All results and data sets
reported in the manuscript should be provided with the
manuscript; alternatively, code for the users to obtain the data
themselves must be given, ideally with clear instructions of the
process. Additionally, all raw data—if their licenses allow it—
should be provided with the manuscript as well. In the case
where the data cannot be provided, due to licensing, legal and
intellectual property protection, or other insurmountable
hurdles, an explanation should be given. You are nevertheless
encouraged to find alternative solutions for providing data
within reason. Examples may be to provide a partial data set, an
anonymized data set, trained model weights, or instructions for
users on how to obtain the data set themselves. Consult with
the owner of the data before considering these approaches, and
as always, make sure you adhere to the data license.

https://dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

Chemistry of Materials

3.

pubs.acs.org/cm

2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

Trained Models and Weights*. Ideally, you should
provide a record of all model hyperparameters tested, as well as
the best hyperparameters reported. For neural network
implementations, the trained weights from the models should
also be provided. In this case, be sure to provide the necessary
code to recreate the neural network architecture and to load
the saved weights for use. Ideally, you should also offer a
friendly way to make predictions on user-supplied input data
using these saved weights.

Visualizations®. All visualizations shown in the manuscript
should be reproducible by a user who accesses your code.
Ensure that you have included the required data (and ideally
the code) used to generate the visualizations or have given the
users a way to obtain the required data themselves. If there are
additional figures, such as in the Supporting Information (SI),
ensure that they are understandable by themselves and do not
require additional explanation. If they do require explanation,
provide this in the SI along with the figures.

Some of the typical visualizations that have shown
themselves to be generally useful—and are thus commonly
shown—in MI studies are predicted property value vs actual
property value plots (Figure 2), residual error plots and
histograms of residual errors (Figure 3), loss curves throughout
the training process of a neural network (Figure 4), and
element prevalence visualizations (Figures S and 6).

B BENCHMARK DATA SETS

While there are currently several materials property data sets
online which could potentially be used as benchmark data sets
for benchmarking model performance in MI, there exist few
published train/validation/test splits of these data sets which
can be used by researchers to conduct a fair benchmark. Here,
we note that examples of such data sets are commonly found in
the fields of computer vision (e.g, CIFAR, Google Open
Images data set, CelebFaces, ImageNet) as well as in natural
language processing (e.g, Glue, decaNLP, WMT 2014 EN-
DE).

Furthermore, the data heterogeneity—in terms of the classes
of materials, the reported material properties, or the diversity
in the types of compounds and constituent elements—of the
available materials data sets are typically quite limited and vary
from data set to data set. Additionally, the methods to access
some of the data stored in the online data repositories are
sometimes restricted and, therefore, hinder potential MI
studies. This is due in part to the fact that certain data sets
are proprietary or licensed under terms that do not allow their
sharing (whether online or offline).

Another challenge is that the online material property
repositories do not offer a “checkpointed” repository state;
therefore, the repository and its data may change at any point
in time, and there is no easy way to revert or refer back to the
state of the repository at an earlier time. Therefore, current ML
researchers typically download materials data sets from the
repositories and archive them locally to run their benchmarks
internally. However, there are recent emerging works from
researchers that aim to address this issue of missing benchmark
data sets for MI and ML studies in materials science.'>"'**'3

H SUMMARY

While various machine learning methods, including classical
methods and more advanced techniques such as deep learning
and neural network-based architectures, have successfully been

4961

used for the prediction of materials properties, unique
challenges still exist for their application in the domain of
materials informatics. There are common pitfalls in the
gathering, analysis, and reporting of materials science-related
data and machine learning results and in the facilitation of
reproduction studies. This Methods/Protocols article high-
lights a large number of these issues which are found in
submitted manuscripts and published works in the field of
materials informatics. Proper observation of the recommenda-
tions given above will certainly ensure higher publication
standards and more reproducible science in this exciting

emerging field.

B ASSOCIATED CONTENT

@ Supporting Information

Online GitHub repository with the interactive Jupyter
notebook files, Python source code, and example data are
available at https://github.com/anthony-wang/BestPractices.
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c01907.

Read-only versions of the Jupyter notebook files (PDF)

H AUTHOR INFORMATION

Corresponding Author
Taylor D. Sparks — Department of Materials Science &
Engineering, University of Utah, Salt Lake City, Utah 84112,
United States; ® orcid.org/0000-0001-8020-7711;
Phone: +1-801-581-8632; Email: sparks@eng.utah.edu

Authors

Anthony Yu-Tung Wang — Fachgebiet Keramische Werkstoffe/
Chair of Advanced Ceramic Materials, Technische Universitiat
Berlin, 10623 Berlin, Germany; ® orcid.org/0000-0002-
7947-0309

Ryan J. Murdock — Department of Materials Science &
Engineering, University of Utah, Salt Lake City, Utah 84112,
United States

Steven K. Kauwe — Department of Materials Science &
Engineering, University of Utah, Salt Lake City, Utah 84112,
United States

Anton O. Oliynyk — Department of Chemistry & Biochemistry,
Manhattan College, Riverdale, New York 10471, United States;

orcid.org/0000-0003-0732-7340

Aleksander Gurlo — Fachgebiet Keramische Werkstoffe/Chair of
Advanced Ceramic Materials, Technische Universitat Berlin,
10623 Berlin, Germany; ® orcid.org/0000-0001-7047-666X

Jakoah Brgoch — Department of Chemistry, University of
Houston, Houston, Texas 77204, United States; © orcid.org/
0000-0002-1406-1352

Kristin A. Persson — Energy Storage and Distributed Resources
Division, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, United States; Department of Materials
Science, University of California Berkeley, Berkeley, California
94720, United States; © orcid.org/0000-0003-2495-5509

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.chemmater.0c01907

Notes
The authors declare no competing financial interest.

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

27

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Chemistry of Materials

pubs.acs.org/cm

Methods/Protocols

B ACKNOWLEDGMENTS

AY.-TW. and A.G. gratefully acknowledge support from the
BIMoS graduate school of the Technische Universitat Berlin,
the German Academic Exchange Service (Program No.
57438025), and the Deutsche Forschungsgemeinschaft.
T.D.S. and S.KK. are supported by the National Science
Foundation (CMMI-1562226 and DMR-1651668) as well as
the INL Laboratory Directed Research & Development
(LDRD) Program under DOE Idaho Operations Office
Contract DE-AC07-0SID145142.].B. is supported by the
National Science Foundation (DMR 18-47701 and CER 19-
11311) as well as the Welch Foundation (E-1981). K.AP. is
supported by the U.S. Department of Energy, Office of
Science, Office of Basic Energy Sciences, Materials Sciences
and Engineering Division under Contract No. DE-AC02-
0SCH11231 (Materials Project program KC23MP). A.0.O.
thanks Manhattan College for the support with start-up funds
and Kakos Center for Scientific Computing at Manhattan
College for providing computational resources.

B REFERENCES

(1) Mansouri Tehrani, A; Oliynyk, A. O.; Parry, M.; Rizvi, Z.;
Couper, S.; Lin, F.; Miyagi, L.; Sparks, T. D.; Brgoch, J. Machine
Learning Directed Search for Ultraincompressible, Superhard
Materials. J. Am. Chem. Soc. 2018, 140, 9844—9853.

(2) Singh, A. K;; Montoya, J. H; Gregoire, J. M.; Persson, K. A.
Robust and synthesizable photocatalysts for CO2 reduction: a data-
driven materials discovery. Nat. Commun. 2019, 10, 443.

(3) Tabor, D. P.; Roch, L. M.; Saikin, S. K.; Kreisbeck, C.; Sheberla,
D.; Montoya, J. H,; Dwaraknath, S. S.; Aykol, M.; Ortiz, C.; Tribukait,
H.; Amador-Bedolla, C.; Brabec, C. J.; Maruyama, B.; Persson, K. A,;
Aspuru-Guzik, A. Accelerating the discovery of materials for clean
energy in the era of smart automation. Nature Reviews Materials 2018,
3, 5-20.

(4) Tshitoyan, V.; Dagdelen, J.; Weston, L.; Dunn, A;; Rong, Z;
Kononova, O.; Persson, K. A.; Ceder, G.; Jain, A. Unsupervised word
embeddings capture latent knowledge from materials science
literature. Nature 2019, 571, 95—98.

(5) Kim, E.; Huang, K; Saunders, A.; McCallum, A; Ceder, G;
Olivetti, E. Materials Synthesis Insights from Scientific Literature via
Text Extraction and Machine Learning. Chem. Mater. 2017, 29,
9436—9444.

(6) Wang, A. Y.-T.; Kauwe, S. K; Murdock, R. J.; Sparks, T. D.
Compositionally-Restricted Attention-Based Network for Materials
Property Prediction: CrabNet. ChemRxiv, 2020. DOI: 10.26434/
chemrxiv.11869026, accessed May S, 2020.

(7) Jha, D; Ward, L; Paul, A; Liao, W.-K; Choudhary, A;
Wolverton, C.; Agrawal, A. ElemNet: Deep Learning the Chemistry of
Materials From Only Elemental Composition. Sci. Rep. 2018, 8,
17593.

(8) Schiitt, K. T.; Sauceda, H. E.; Kindermans, P.-J.; Tkatchenko, A.;
Miiller, K-R. SchNet — A deep learning architecture for molecules
and materials. J. Chem. Phys. 2018, 148, 241722.

(9) Xie, T.; Grossman,]J. C. Crystal Graph Convolutional Neural
Networks for an Accurate and Interpretable Prediction of Material
Properties. Phys. Rev. Lett. 2018, 120, 145301.

(10) Goodall, R. E. A;; Lee, A. A. Predicting materials properties
without crystal structure: Deep representation learning from
stoichiometry. arXiv, 2019. http://arxiv.org/pdf/1910.00617v2, ac-
cessed May S, 2020.

(11) Murdock, R. J.; Kauwe, S. K;; Wang, A. Y.-T.; Sparks, T. D. Is
Domain Knowledge Necessary for Machine Learning Materials
Properties? ChemRxiv, 2020. DOI: 10.26434/chemrxiv.11879193,
accessed May S, 2020.

28

4962

(12) Kauwe, S. K; Graser, J; Murdock, R. J.; Sparks, T. D. Can
machine learning find extraordinary materials? Comput. Mater. Sci.
2020, 174, 109498.

(13) Oliynyk, A. O.; Antono, E; Sparks, T. D.; Ghadbeigi, L.;
Gaultois, M. W.; Meredig, B.; Mar, A. High-Throughput Machine-
Learning-Driven Synthesis of Full-Heusler Compounds. Chem. Mater.
2016, 28, 7324—7331.

(14) Lookman, T.; Alexander, F. J.; Rajan, K. Information Science for
Materials Discovery and Design; Springer Series in Materials Science;
Springer: Cham, Switzerland, 2016; Vol. 225.

(15) Mueller, T.; Kusne, A. G.; Ramprasad, R. In Reviews in
Computational Chemistry; Parrill, A. L., Lipkowitz, K. B., Eds.; Reviews
in Computational Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ,
2016; Vol. 1; pp 186—273.

(16) Liu, Y.; Zhao, T.; Ju, W.; Shi, S. Materials discovery and design
using machine learning. Journal of Materiomics 2017, 3, 159—177.

(17) Gorai, P.; Stevanovi¢, V.; Toberer, E. S. Computationally
guided discovery of thermoelectric materials. Nature Reviews Materials
2017, 2, 17053.

(18) Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh,
A. Machine learning for molecular and materials science. Nature 2018,
559, 547-5SS.

(19) Ramakrishna, S.; Zhang, T.-Y,; Lu, W.-C.; Qian, Q; Low, J. S.
C.; Yune, J. H. R;; Tan, D. Z. L,; Bressan, S.; Sanvito, S.; Kalidindi, S.
R. Materials Informatics. Journal of Intelligent Manufacturing 2019, 30,
2307.

(20) Rickman, J. M.; Lookman, T.; Kalinin, S. V. Materials
informatics: From the atomic-level to the continuum. Acta Mater.
2019, 168, 473—510.

(21) Gomes, C. P.; Selman, B.; Gregoire,]. M. Artificial intelligence
for materials discovery. MRS Bull. 2019, 44, 538—544.

(22) Ong, S. P. Accelerating materials science with high-throughput
computations and machine learning. Comput. Mater. Sci. 2019, 161,
143—150.

(23) Schmidt, J.; Marques, M. R. G.; Botti, S.; Marques, M. A. L.
Recent advances and applications of machine learning in solid-state
materials science. npj Computational Materials 2019, S, 83.

(24) Meredig, B. Five High-Impact Research Areas in Machine
Learning for Materials Science. Chem. Mater. 2019, 31, 9579—9581.

(25) Bhadeshia, H. Computational design of advanced steels. Scr.
Mater. 2014, 70, 12—17.

(26) Agrawal, A,; Deshpande, P. D.; Cecen, A.; Basavarsuy, G. P.;
Choudhary, A. N,; Kalidindi, S. R. Exploration of data science
techniques to predict fatigue strength of steel from composition and
processing parameters. Integrating Materials and Manufacturing
Innovation 2014, 3, 90—108.

(27) Furmanchuk, A; Agrawal, A; Choudhary, A. Predictive
analytics for crystalline materials: bulk modulus. RSC Adv. 2016, 6,
95246—95251.

(28) de Jong, M.; Chen, W.; Notestine, R.; Persson, K. A.; Ceder,
G.; Jain, A.; Asta, M.; Gamst, A. A Statistical Learning Framework for
Materials Science: Application to Elastic Moduli of k-nary Inorganic
Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256.

(29) Chen, C; Ye, W,; Zuo, Y,; Zheng, C; Ong, S. P. Graph
Networks as a Universal Machine Learning Framework for Molecules
and Crystals. Chem. Mater. 2019, 31, 3564—3572.

(30) Evans, J. D; Coudert, F.-X. Predicting the Mechanical
Properties of Zeolite Frameworks by Machine Learning. Chem.
Mater. 2017, 29, 7833—7839.

(31) Meredig, B.; Agrawal, A; Kirklin, S.; Saal, J. E.; Doak, J. W,;
Thompson, A.; Zhang, K.; Choudhary, A; Wolverton, C.
Combinatorial screening for new materials in unconstrained
composition space with machine learning. Phys. Rev. B: Condens.
Matter Mater. Phys. 2014, 89, 094104.

(32) Ghiringhelli, L. M.; Vybiral, J.; Levchenko, S. V,; Draxl, C,;
Scheffler, M. Big data of materials science: critical role of the
descriptor. Phys. Rev. Lett. 2015, 114, 105503.

(33) Deml, A. M.; O'Hayre, R; Wolverton, C.; Stevanovic, V.
Predicting density functional theory total energies and enthalpies of

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954-4965

Chemistry of Materials

3.

pubs.acs.org/cm

2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

formation of metal-nonmetal compounds by linear regression. Phys.
Rev. B: Condens. Matter Mater. Phys. 2016, 93, 085142.

(34) Ward, L.; Agrawal, A.; Choudhary, A.; Wolverton, C. A general-
purpose machine learning framework for predicting properties of
inorganic materials. npj Computational Materials 2016, 2, 16028.

(35) Dey, P.; Bible, J.; Datta, S.; Broderick, S.; Jasinski, J.; Sunkara,
M.; Menon, M.; Rajan, K. Informatics-aided bandgap engineering for
solar materials. Comput. Mater. Sci. 2014, 83, 185—195.

(36) Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P,;
Ramprasad, R.; Gubernatis, J. E; Lookman, T. Machine learning
bandgaps of double perovskites. Sci. Rep. 2016, 6, 19375.

(37) Sparks, T. D.; Kauwe, S. K.; Welker, T.; Sparks, T.; Kauwe, S.
Extracting Knowledge from DFT: Experimental Band Gap Predictions
Through Ensemble Learning. ChemRxiv, 2018. DOI: 10.26434/
chemrxiv.7236029, accessed May S, 2020.

(38) Rajan, A. C,; Mishra, A.; Satsangi, S.; Vaish, R.; Mizuseki, H.;
Lee, K-R,; Singh, A. K. Machine-Learning-Assisted Accurate Band
Gap Predictions of Functionalized MXene. Chem. Mater. 2018, 30,
4031—-4038.

(39) Zhuo, Y.; Mansouri Tehrani, A.; Brgoch, J. Predicting the Band
Gaps of Inorganic Solids by Machine Learning. J. Phys. Chem. Lett.
2018, 9, 1668—1673.

(40) Schiitt, K. T.; Glawe, H.; Brockherde, F.; Sanna, A.; Miiller, K.-
R; Gross, E. K. U. How to represent crystal structures for machine
learning: Towards fast prediction of electronic properties. Phys. Rev.
B: Condens. Matter Mater. Phys. 2014, 89, 205118.

(41) Yeo, B. C; Kim, D; Kim, C; Han, S. S. Pattern Learning
Electronic Density of States. Sci. Rep. 2019, 9, 5879.

(42) Curtarolo, S.; Morgan, D.; Persson, K. A.; Rodgers, J.; Ceder,
G. Predicting crystal structures with data mining of quantum
calculations. Phys. Rev. Lett. 2003, 91, 135503.

(43) Fischer, C. C.; Tibbetts, K. J.; Morgan, D.; Ceder, G. Predicting
crystal structure by merging data mining with quantum mechanics.
Nat. Mater. 2006, 5, 641—646.

(44) Hautier, G.; Fischer, C. C.; Jain, A;; Mueller, T.; Ceder, G.
Finding Nature’s Missing Ternary Oxide Compounds Using Machine
Learning and Density Functional Theory. Chem. Mater. 2010, 22,
3762—3767.

(4S) Kong, C. S.; Luo, W.; Arapan, S.; Villars, P.; Iwata, S.; Ahuja,
R; Rajan, K. Information-theoretic approach for the discovery of
design rules for crystal chemistry. J. Chem. Inf. Model. 2012, S2,
1812—1820.

(46) Pilania, G.; Balachandran, P. V.; Gubernatis, J. E.; Lookman, T.
Classification of ABO3 perovskite solids: a machine learning study.
Acta Crystallogr,, Sect. B: Struct. Sci,, Cryst. Eng. Mater. 2018, 71, 507—
513.

(47) Oliynyk, A. O.; Adutwum, L. A; Harynuk, J. J; Mar, A.
Classifying Crystal Structures of Binary Compounds AB through
Cluster Resolution Feature Selection and Support Vector Machine
Analysis. Chem. Mater. 2016, 28, 6672—6681.

(48) Goldsmith, B. R; Boley, M. Vreeken, J.; Scheffler, M,;
Ghiringhelli, L. M. Uncovering structure-property relationships of
materials by subgroup discovery. New J. Phys. 2017, 19, 013031.

(49) Balachandran, P. V.; Young, J.; Lookman, T.; Rondinelli, J. M.
Learning from data to design functional materials without inversion
symmetry. Nat. Commun. 2017, 8, 14282.

(50) Schmidt, J.; Shi, J.; Borlido, P.; Chen, L.; Botti, S.; Marques, M.
A. L. Predicting the Thermodynamic Stability of Solids Combining
Density Functional Theory and Machine Learning. Chem. Mater.
2017, 29, 5090—-5103.

(51) Seko, A.; Hayashi, H.; Kashima, H.; Tanaka, I. Matrix- and
tensor-based recommender systems for the discovery of currently
unknown inorganic compounds. Physical Review Materials 2018, 2,
01380S.

(52) Li, W;; Jacobs, R.;; Morgan, D. Predicting the thermodynamic
stability of perovskite oxides using machine learning models. Comput.
Mater. Sci. 2018, 150, 454—463.

4963

(53) Isayev, O.; Oses, C.; Toher, C; Gossett, E.; Curtarolo, S.;
Tropsha, A. Universal fragment descriptors for predicting properties
of inorganic crystals. Nat. Commun. 2017, 8, 15679.

(54) Kauwe, S. K; Graser, J.; Vazquez, A.; Sparks, T. D. Machine
Learning Prediction of Heat Capacity for Solid Inorganics. Integrating
Materials and Manufacturing Innovation 2018, 7, 43—51.

(85) Carrete, J.; Li, W.; Mingo, N.; Wang, S.; Curtarolo, S. Finding
Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semicon-
ductors via High-Throughput Materials Modeling. Phys. Rev. X 2014,
4, 011019.

(56) Gaultois, M. W,; Oliynyk, A. O.; Mar, A; Sparks, T. D;
Mulholland, G. J.; Meredig, B. Perspective: Web-based machine
learning models for real-time screening of thermoelectric materials
properties. APL Mater. 2016, 4, 053213.

(57) Seko, A.; Hayashi, H.; Nakayama, K.; Takahashi, A.; Tanaka, L.
Representation of compounds for machine-learning prediction of
physical properties. Phys. Rev. B: Condens. Matter Mater. Phys. 2017,
95, 144110.

(58) Furmanchuk, A; Saal, J. E; Doak, J. W,; Olson, G. B;
Choudhary, A; Agrawal, A. Prediction of seebeck coefficient for
compounds without restriction to fixed stoichiometry: A machine
learning approach. J. Comput. Chem. 2018, 39, 191-202.

(59) Wei, L; Xu, X,; Gurudayal; Bullock, J.; Ager, J. W. Machine
Learning Optimization of p-Type Transparent Conducting Films.
Chem. Mater. 2019, 31, 7340—7350.

(60) Davies, D. W.; Butler, K. T.; Walsh, A. Data-Driven Discovery
of Photoactive Quaternary Oxides Using First-Principles Machine
Learning. Chem. Mater. 2019, 31, 7221-7230.

(61) Sendek, A. D.; Yang, Q.; Cubuk, E. D.; Duerloo, K.-A. N.; Cui,
Y,; Reed, E. J. Holistic computational structure screening of more
than 12000 candidates for solid lithium-ion conductor materials.
Energy Environ. Sci. 2017, 10, 306—320.

(62) Ahmad, Z.; Xie, T.; Maheshwari, C.; Grossman, J. C;
Viswanathan, V. Machine Learning Enabled Computational Screening
of Inorganic Solid Electrolytes for Suppression of Dendrite Formation
in Lithium Metal Anodes. ACS Cent. Sci. 2018, 4, 996—1006.

(63) Sendek, A. D.; Cubuk, E. D.; Antoniuk, E. R.; Cheon, G.; Cui,
Y,; Reed, E. J. Machine Learning-Assisted Discovery of Solid Li-Ion
Conducting Materials. Chem. Mater. 2019, 31, 342—352.

(64) Bobbitt, N. S.; Snurr, R. Q. Molecular modelling and machine
learning for high-throughput screening of metal-organic frameworks
for hydrogen storage. Mol. Simul. 2019, 45, 1069—1081.

(65) Gu, G. H; Noh, J,; Kim, L; Jung, Y. Machine learning for
renewable energy materials. J. Mater. Chem. A 2019, 7, 17096—17117.

(66) Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, 1;
Norskov, J. K.; Jaramillo, T. F. Combining theory and experiment in
electrocatalysis: Insights into materials design. Science 2017, 35S,
No. eaad4998.

(67) Ulissi, Z. W.; Medford, A. J.; Bligaard, T.; Nerskov, J. K. To
address surface reaction network complexity using scaling relations
machine learning and DFT calculations. Nat. Commun. 2017, 8,
14621.

(68) Kitchin, J. R. Machine learning in catalysis. Nature Catalysis
2018, 1, 230—232.

(69) Hansen, M. H.; Torres,]. A. G.; Jennings, P. C.; Wang, Z;
Boes, J. R; Mamun, O. G; Bligaard, T. An Atomistic Machine
Learning Package for Surface Science and Catalysis. arXiv, 2019.
http://arxiv.org/pdf/1904.00904v1, accessed May S, 2020.

(70) Schlexer Lamoureux, P.; Winther, K. T.; Garrido Torres, J. A;
Streibel, V.; Zhao, M.; Bajdich, M.; Abild-Pedersen, F.; Bligaard, T.
Machine Learning for Computational Heterogeneous Catalysis.
ChemCatChem 2019, 11, 3581—3601.

(71) Masood, H.; Toe, C. Y.; Teoh, W. Y.; Sethu, V.; Amal, R.
Machine Learning for Accelerated Discovery of Solar Photocatalysts.
ACS Catal. 2019, 9, 11774—11787.

(72) Gaultois, M. W.; Sparks, T. D.; Borg, C. K. H.; Seshadri, R;
Bonificio, W. D.; Clarke, D. R. Data-Driven Review of Thermoelectric
Materials: Performance and Resource Considerations. Chem. Mater.
2013, 25, 2911-2920.

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

29

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Chemistry of Materials

pubs.acs.org/cm

Methods/Protocols

(73) Sparks, T. D.; Gaultois, M. W.; Oliynyk, A. O.; Brgoch, J;
Meredig, B. Data mining our way to the next generation of
thermoelectrics. Scr. Mater. 2016, 111, 10—1S5.

(74) Stanev, V.; Oses, C.; Kusne, A. G.; Rodriguez, E.; Paglione, J.;
Curtarolo, S.; Takeuchi, I. Machine learning modeling of super-
conducting critical temperature. npj Computational Materials 2018, 4,
29.

(75) Meredig, B.; Antono, E,; Church, C.; Hutchinson, M.; Ling, J.;
Paradiso, S.; Blaiszik, B.; Foster, L; Gibbons, B.; Hattrick-Simpers, J.;
Mehta, A.; Ward, L. Can machine learning identify the next high-
temperature superconductor? Examining extrapolation performance
for materials discovery. Molecular Systems Design & Engineering 2018,
3, 819—-825.

(76) Konno, T.; Kurokawa, H.; Nabeshima, F.; Sakishita, Y.; Ogawa,
R; Hosako, I; Maeda, A. Deep Learning Model for Finding New
Superconductors. arXiv, 2018. http://arxiv.org/pdf/1812.01995v3,
accessed May 5, 2020.

(77) Hamidieh, K. A data-driven statistical model for predicting the
critical temperature of a superconductor. Comput. Mater. Sci. 2018,
154, 346—354.

(78) Dan, Y.; Dong, R; Cao, Z; Li, X; Niu, C; Li, S; Hu, J.
Computational Prediction of Critical Temperatures of Super-
conductors Based on Convolutional Gradient Boosting Decision
Trees. IEEE Access 2020, 8, 57868—57878.

(79) Matsumoto, K.; Horide, T. An acceleration search method of
higher Tc superconductors by a machine learning algorithm. Appl.
Phys. Express 2019, 12, 073003.

(80) Roter, B.; Dordevic, S. V. Predicting new superconductors and
their critical temperatures using unsupervised machine learning. arXiv,
2020. http://arxiv.org/pdf/2002.07266v1, accessed May S, 2020.

(81) Wen, C.; Zhang, Y.; Wang, C.; Xue, D.; Bai, Y.; Antonov, S.;
Dai, L.; Lookman, T.; Su, Y. Machine learning assisted design of high
entropy alloys with desired property. Acta Mater. 2019, 170, 109—
117.

(82) Chang, Y.-J; Jui, C.-Y.; Lee, W.-J; Yeh, A.-C. Prediction of the
Composition and Hardness of High-Entropy Alloys by Machine
Learning. JOM 2019, 71, 3433—3442.

(83) Ren, F.; Ward, L.; Williams, T.; Laws, K. J.; Wolverton, C.;
Hattrick-Simpers, J.; Mehta, A. Accelerated discovery of metallic
glasses through iteration of machine learning and high-throughput
experiments. Science Advances 2018, 4, No. eaaq1566.

(84) Ward, L.; O’Keeffe, S. C.; Stevick, J.; Jelbert, G. R; Aykol, M,;
Wolverton, C. A machine learning approach for engineering bulk
metallic glass alloys. Acta Mater. 2018, 159, 102—111.

(85) Jain, A; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K.
A. Commentary: The Materials Project: A materials genome approach
to accelerating materials innovation. APL Mater. 2013, 1, 011002.

(86) Saal, J. E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C.
Materials Design and Discovery with High-Throughput Density
Functional Theory: The Open Quantum Materials Database
(OQMD). JOM 2013, 65, 1501—1509.

(87) Curtarolo, S.; Setyawan, W.; Wang, S.; Xue, J.; Yang, K; Taylor,
R. H,; Nelson, L. J.; Hart, G. L,; Sanvito, S.; Buongiorno-Nardelli, M.;
Mingo, N,; Levy, O. AFLOWLIB.ORG: A distributed materials
properties repository from high-throughput ab initio calculations.
Comput. Mater. Sci. 2012, 58, 227-2385.

(88) Draxl, C.; Scheffler, M. The NOMAD laboratory: from data
sharing to artificial intelligence. Journal of Physics: Materials 2019, 2,
036001.

(89) Open Materials Database. http://openmaterialsdb.se/index.php,
accessed May S, 2020.

(90) Citrine Informatics: The Al Platform for Materials Development.
https://citrine.io/, accessed May S, 2020.

(91) Materials Platform for Data Science (MPDS). https://mpds.io/,
accessed May S, 2020.

(92) Huber, S. P; et al. AiiDA 1.0, a scalable computational
infrastructure for automated reproducible workflows and data

30

4964

provenance. arXiv, 2020. http://arxiv.org/pdf/2003.12476v1, ac-
cessed May 5, 2020.

(93) Talirz, L; et al. Materials Cloud, a platform for open
computational science. arXiv, 2020. http://arxiv.org/pdf/2003.
12510v1, accessed May S, 2020.

(94) Deml, A; Lany, S.; Peng, H.; Stevanovic, V.; Yan, J.; Zawadzki,
P.; Graf, P; Sorensen, H.; Sullivan, S. NREL MatDB. https://
materials.nrel.gov/, accessed May 5, 2020.

(95) National Institute of Standards and Technology (NIST). NIST
TRC Alloy Data. 2017. https://www.nist.gov/mml/acmd/trc/nist-
alloy-data, accessed May S, 2020.

(96) National Institute of Standards and Technology (NIST). NIST
TRC ThermoData Engine. 2005. https://www.nist.gov/mml/acmd/
trc/thermodata-engine, accessed May S, 2020.

(97) National Institute of Standards and Technology (NIST). NIST
JARVIS-DFT Database. 2017. https://www.nist.gov/programs-
projects/jarvis-dft, accessed May S, 2020.

(98) National Institute of Standards and Technology (NIST). NIST
JARVIS-ML Database. 2019. https://www.nist.gov/programs-
projects/jarvis-ml, accessed May 5, 2020.

(99) MatWeb. http://www.matweb.com/index.aspx, accessed May
5, 2020.

(100) Total Materia. https://www.totalmateria.com/, accessed May
5, 2020.

(101) Ansys Granta MaterialUniverse. https://grantadesign.com/,
accessed May S, 2020.

(102) MATDAT. https://www.matdat.com/, accessed May S, 2020.

(103) Groom, C. R;; Bruno, I J.; Lightfoot, M. P.; Ward, S. C. The
Cambridge Structural Database. Acta Crystallogr,, Sect. B: Struct. Sci,,
Cryst. Eng. Mater. 2016, 72, 171—179.

(104) Hellenbrandt, M. The Inorganic Crystal Structure Database
(ICSD)—Present and Future. Crystallogr. Rev. 2004, 10, 17—22.

(10S) Pearson’s Crystal Data: Crystal Structure Database for Inorganic
Compounds. https://www.crystalimpact.com/pcd/Defaulthtm, ac-
cessed May 5, 2020.

(106) Gates-Rector, S.; Blanton, T. The Powder Diffraction File: a
quality materials characterization database. Powder Diffr. 2019, 34,
352-360.

(107) Grazulis, S.; Chateigner, D.; Downs, R. T.; Yokochi, A. F. T.;
Quiros, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le
Bail, A. Crystallography Open Database — an open-access collection
of crystal structures. J. Appl. Crystallogr. 2009, 42, 726—729.

(108) Pauling File. https://paulingfile.com/, accessed May S, 2020.

(109) White, P. S; Rodgers, J. R; Le Page, Y. CRYSTMET: a
database of the structures and powder patterns of metals and
intermetallics. Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58, 343—348.

(110) van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE.
Journal of Machine Learning Research 2008, 9, 2579—2605.

(111) Mclnnes, L; Healy, J; Saul, N,; Groflberger, L. UMAP:
Uniform Manifold Approximation and Projection. Journal of Open
Source Software 2018, 3, 861.

(112) Kauwe, S. K; Yang, Y.; Sparks, T. D. Visualization Tool for
Atomic Models (VITAL): A Simple Visualization Tool for Materials
Predictions. ChemRxiv, 2019. DOI: 10.26434/chemrxiv.9782375,
accessed May S, 2020.

(113) Git. https://git-scm.com/, accessed May S, 2020.

(114) Mercurial. https://www.mercurial-scm.org/, accessed May S,
2020.

(115) Apache® Subversion®. https://subversion.apache.org/, ac-
cessed May S, 2020.

(116) Cawley, G. C.; Talbot, N. L. On Over-Fitting in Model
Selection and Subsequent Selection Bias in Performance Evaluation.
Journal of Machine Learning Research 2010, 11, 2079—2107.

(117) Pedregosa, F.; et al. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research 2011, 12, 2825—2830.

(118) Paszke, A; et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. arXiv, 2019. http://arxiv.org/
pdf/1912.01703v1, accessed May S, 2020.

https:/dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954-4965

Chemistry of Materials pubs.acs.org/cm

3.2 PUBLICATION 1: BESTPRACTICES

Methods/Protocols

(119) Abadi, M.; et al. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015. https://www.tensorflow.org/, accessed
May $, 2020.

(120) Graser, J.; Kauwe, S. K.; Sparks, T. D. Machine Learning and
Energy Minimization Approaches for Crystal Structure Predictions: A
Review and New Horizons. Chem. Mater. 2018, 30, 3601—3612.

(121) Choudhary, K; DeCost, B.; Tavazza, F. Machine learning with
force-field-inspired descriptors for materials: Fast screening and
mapping energy landscape. Physical Review Materials 2018, 2, 083801.

(122) Jha, D.; Ward, L.; Yang, Z.; Wolverton, C.; Foster, L; Liao, W.-
K; Choudhary, A; Agrawal, A. IRNet: A General Purpose Deep
Residual Regression Framework for Materials Discovery. Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining — KDD '19; ACM: New York, NY, US.A,
2019; pp 2385—2393.

(123) Juszczak, P.; Tax, D. M.; Duin, R. P. Feature scaling in support
vector data description. Proceedings of the Eighth Annual Conference of
the Advanced School for Computing and Imaging; AAAT: 2002; pp 95—
102.

(124) Ba, J. L; Kiros, J. R; Hinton, G. E. Layer Normalization.
arXiv, 2016. http://arxiv.org/pdf/1607.06450v1, accessed May S,
2020.

(125) Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. arXiv, 2015.
http://arxiv.org/pdf/1502.03167v3, accessed May 5, 2020.

(126) Mohamad, 1. B.; Usman, D. Standardization and Its Effects on
k-Means Clustering Algorithm. Res. J. Appl. Sci,, Eng. Technol. 2013, 6,
3299-3303.

(127) Head, M. L.; Holman, L.; Lanfear, R;; Kahn, A. T.; Jennions,
M. D. The extent and consequences of p-hacking in science. PLoS
Biol. 2015, 13, No. e1002106.

(128) Ward, L.; et al. Matminer: An open source toolkit for materials
data mining. Comput. Mater. Sci. 2018, 152, 60—69.

(129) Olson, R. S.; Bartley, N.; Urbanowicz, R. J.; Moore, J. H.
Evaluation of a Tree-based Pipeline Optimization Tool for
Automating Data Science. Proceedings of the Genetic and Evolutionary
Computation Conference — GECCO '16; ACM: New York, NY, USA,
2016; pp 485—492.

(130) Automatminer. https://github.com/hackingmaterials/
automatminer, accessed May S, 2020.

(131) Dunn, A; Wang, Q.; Ganose, A; Dopp, D. Jain, A.
Benchmarking Materials Property Prediction Methods: The Mat-
bench Test Set and Automatminer Reference Algorithm. arXiv, 2020.
http://arxiv.org/pdf/2005.00707v1, accessed May S, 2020.

(132) Barnes, N. Publish your computer code: it is good enough.
Nature 2010, 467, 753.

(133) Chard, R; Li, Z,; Chard, K;; Ward, L.; Babuji, Y.; Woodard,
A.; Tuecke, S.; Blaiszik, B.; Franklin, M. J.; Foster, I. DLHub: Model
and Data Serving for Science. arXiv, 2018. http://arxiv.org/pdf/1811.
11213v1, accessed May 5, 2020.

(134) Docker. https://www.docker.com/, accessed May S, 2020.

(135) Clement, C. L.; Kauwe, S. K; Sparks, T. D. Benchmark
AFLOW Data Sets for Machine Learning. Integrating Materials and
Manufacturing Innovation 2020, DOIL: 10.1007/s40192-020-00174-4.

(136) Clement, C. L.; Kauwe, S. K; Sparks, T. D. Benchmark
AFLOW Data Sets for Machine Learning. figshare: 2020.
DOI: 10.6084/m9.figshare.11954742, accessed May S, 2020.

4965

https://dx.doi.org/10.1021/acs.chemmater.0c01907
Chem. Mater. 2020, 32, 4954—4965

31

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Supplementary Information for the article “Machine
Learning for Materials Scientists:
An Introductory Guide toward Best Practices”

Authors: Anthony Yu-Tung Wang, Ryan J. Murdock, Steven K. Kauwe, Anton O.
Oliynyk, Aleksander Gurlo, Jakoah Brgoch, Kristin A. Persson, and Taylor D. Sparks

DOI: 10.1021/acs.chemmater.0c01907

32

3.2 PUBLICATION 1: BESTPRACTICES — SI

Overview of Notebooks

These notebooks are included to illustrate a hypothetical Machine Learning project created following best
practices.

The goal of this ML project is to predict the heat capacity of inorganic materials given the chemical composition
and condition (the measurement temperature). We will use both classical ML models as well as neural networks.

To do this, we must:

. Clean and process our dataset, removing obviously erroneous or empty values.

. Partition our data into train, validation, and test splits.

. Featurize our data, turning the chemical formulae into CBFVs.

. Train models on our data and assess the predictive power of the models.

. Compare the performance of the models fairly and reproducibly.

. Visualize the prediction results of the models.

. Share our models and enable others to reproduce your work and aid collaboration.

NOoO b ON -

If you require more information about how to use Jupyter notebooks, you can consult:

» The main README file inside this repository: https://github.com/anthony-
wang/BestPractices/blob/master/README.md (https://github.com/anthony-
wang/BestPractices/blob/master/README.md)

notebook.readthedocs.io/en/stable/notebook.html (https:/jupyter-
notebook.readthedocs.io/en/stable/notebook.html)

To read the main publication for which these notebooks are made, please see:

Wang, Anthony Yu-Tung; Murdock, Ryan J.; Kauwe, Steven K.; Oliynyk, Anton O.; Gurlo, Aleksander; Brgoch,
Jakoah; Persson, Kristin A.; Sparks, Taylor D., Machine Learning for Materials Scientists: An Introductory Guide
toward Best Practices (https://doi.org/10.1021/acs.chemmater.0c01907), Chemistry of Materials Just Accepted
Manuscript, 2020. DOI: 10.1021/acs.chemmater.0c01907 (https://doi.org/10.1021/acs.chemmater.0c01907)

Please also consider citing the work if you choose to adopt or adapt the methods and concepts shown in these
notebooks or in the publication:

@article{Wang2020bestpractices,

author = {Wang, Anthony Yu-Tung and Murdock, Ryan J. and Kauwe, Steven K. and O
liynyk, Anton 0. and Gurlo, Aleksander and Brgoch, Jakoah and Persson, Kristin A. a
nd Sparks, Taylor D.},

date = {2020},

title = {Machine Learning for Materials Scientists: An Introductory Guide towar
d Best Practices},

issn = {0897-4756},

journal = {Chemistry of Materials},

url = {https://doi.org/10.1021/acs.chemmater.0c01907},

doi = {10.1021/acs.chemmater.0c01907}

33

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Check that libraries are installed

This notebook checks to see if you have the correct version of Python as well as all necessary libraries installed.

Check the main README file (https://github.com/anthony-wang/BestPractices/blob/master/README.md) for
instructions if anything is missing.

34

In [1]:

3.2 PUBLICATION 1: BESTPRACTICES — SI

from __future__ import print_function
from distutils.version import LooseVersion as Version
import sys

try:

import curses

curses.setupterm()

assert curses.tigetnum("colors") > 2

OK = "\x1b[1;%dm[OK]\x1b[em" % (3@ + curses.COLOR_GREEN)

FAIL = "\x1b[1;%dm[FAIL]\x1b[@m" % (30 + curses.COLOR_RED)
except:

oK = '"[OK]'

FAIL = '[FAIL]"

try:
import importlib
except ImportError:
print(FAIL, "Python version 3.4 is required,"
" but %s is installed." % sys.version)

def import_version(pkg, min_ver):
mod = None
try:
mod = importlib.import_module(pkg)
if pkg in {'PIL'}:
ver = mod.VERSION
else:
ver = mod.__version__
if Version(ver) < min_ver:
print(FAIL, "%s version %s or higher required, but %s installed."
% (lib, min_ver, ver))
else:
print(OK, '%s version %s' % (pkg, ver))
except ImportError as imp_err_msg:
print(FAIL, 'Error in importing %s: %s' % (pkg, imp_err_msg))
except AttributeError as att_err_msg:
print(FAIL, 'Error in reading attribute of %s: %s' % (pkg, att_err_msg
))

return mod

first check the python version
print('Using python in', sys.prefix)
print(sys.version)
pyversion = Version(sys.version)
if pyversion >= "3":
if pyversion < "3.7":
print(FAIL, "Python version > 3.7 is required,"
" but %s is installed.\n" % sys.version)
elif pyversion < "3":
print(FAIL, "Python version > 3.7 is required,"”
" but %s is installed.\n" % sys.version)
else:
print(FAIL, "Unknown Python version: %s\n" % sys.version)

requirements = {'numpy': '1.18.0',

0
'pandas’: '1.0.0'

3

35

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

'pandas_profiling': '2.4.0°',
'matplotlib': '3.2.0',
'seaborn’: '0.10.0",
'sklearn’': '0.22.0',
'scipy': '1.4.0',
'tqdm': '4.43.0°',
t

'jupyter_clien 6.0.0",
'ipywidgets': '7.5.0',
"torch': '1.3.0',}

now check the dependencies

for 1ib, required_version in list(requirements.items()):

import_version(lib, required_version)

Using python in C:\Users\Anthony\Anaconda3\envs\bestpractices

3.7.6 | packaged by conda-forge | (default, Mar 5 2020, 14:47:50) [MSC v.191
6 64 bit (AMD64)]

OK] numpy version 1.18.1

[

[OK] pandas version 1.0.2

[OK] pandas_profiling version 2.4.0
[OK] matplotlib version 3.2.0

[OK] seaborn version 0.10.0

[OK] sklearn version ©.22.2.postl
[OK] scipy version 1.4.1

[OK] tqdm version 4.43.0

[OK] jupyter_client version 6.1.2
[OK] ipywidgets version 7.5.1

[OK] torch version 1.3.1

36

3.2 PUBLICATION 1: BESTPRACTICES — SI

Data loading, cleanup and processing

The first step to a ML project is to obtain the dataset you will be working with. There are many repositories for
materials science-specific data (whether online or offline)---consult the accompanying paper for a list of the more
commonly used ones.

Once you have identified the repository and dataset you will use for your project, you will have to download it to
your local machine, or establish a way to reliably access the dataset. Consult the documentation of the
repository for how to do this.

For this tutorial, we have collected heat capacity (Cp) data from the NIST-JANAF Thermochemical Tables
(https://doi.org/10.18434/T42S31).

In [1]:

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%»matplotlib inline

%config InlineBackend.figure_format="'retina’

from pandas_profiling import ProfileReport

Load data

Using Pandas, we read in the dataset into a DataFrame.

We also print the shape of the DataFrame, which indicates the number of rows and columns in this dataset.

In [2]:

PATH = os.getcwd()
data_path = os.path.join(PATH, '../data/cp_data_demo.csv")

df = pd.read_csv(data_path)
print(f'Original DataFrame shape: {df.shape}')

Original DataFrame shape: (4583, 3)

This means that our input dataset has 4583 data samples, each with 3 variables.

37

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Examine the data

We examine some rows and look at the data's basic statistics.

We see that the dataset contains information about the formula, measurement condition (in this case,
temperature in K), and the target property, heat capacity (in J/(mol * K)).

In [3]: df.head(10)

o FORMULA CONDITION: Temperature (K) PROPERTY: Heat Capacity (J/mol K)
0 B203 1400.0 134.306
1 B203 1300.0 131.294
2 B203 1200.0 128.072
3 B203 1100.0 124.516
4 B203 1000.0 120.625
5 B203 900.0 116.190
6 B203 800.0 111.169
7 B203 723.0 106.692
8 B203 700.0 105.228
9 B203 600.0 98.115

First thing you should notice: we have many observations of the same compound (B203) but measured at
different measurement conditions, resulting in a different property value.

We can get some simple summary statistics of the DataFrame by calling the .describe() method on the
database.

38

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [4]: df.describe()

ourlal: CONDITION: Temperature (K) PROPERTY: Heat Capacity (J/mol K)
count 4579.000000 4576.000000

mean 1170.920341 107.483627

std 741.254366 67.019055

min -2000.000000 -102.215000

25% 600.000000 61.312500

50% 1000.000000 89.497000

75% 1600.000000 135.645000

max 4700.000000 494.967000

Using the pandas-profiling library, we can generate a more in-depth report of our starting dataset. Note that
generating this profile report might take upwards of 20 seconds.

In [5]: profile = ProfileReport(df.copy(), title='Pandas Profiling Report of Cp datase
t', html={'style':{'full_width':True}})
profile.to_widgets()

Report generated with pandas-profiling_(https:/github.com/pandas-profiling/pandas-profiling).

Notice a few things from the profile report:

« We have some missing cells in the dataset ("Overview" tab)
« We have some unrealistic Temperature and Heat Capacity values in the dataset ("Variables" tab)
» We have some missing Temperature, Formula and Heat Capacity values in the dataset ("Variables" tab)

Also notice that on the "Overview" tab, there is the following warning: FORMULA has a high cardinality: 245
distinct values.

Cardinality is the number of distinct values in a column of a table, relative to the number of rows in the table. In
our dataset, we have a total of 4583 data observations, but only 245 distinct formulae. We will have to keep this
in mind later, when we process and split the dataset.

Rename the column names for brevity

In [6]: df.columns

Out[6]: Index(['FORMULA', 'CONDITION: Temperature (K)',
"PROPERTY: Heat Capacity (J3/mol K)'],
dtype='object"')

39

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [7]: rename_dict = {'"FORMULA': 'formula’,
"CONDITION: Temperature (K)': 'T',
"PROPERTY: Heat Capacity (J3/mol K)': 'Cp'}
df = df.rename(columns=rename_dict)
df.columns

Out[7]: Index(['formula', 'T', 'Cp'], dtype='object')

Check for and remove NaN values

Here we can use the built-in Pandas methods to check for NaN values in the dataset, which are missing values.
We then remove the dataset rows which contain NaN values.

In [8]: # Check for NaNs in the respective dataset columns, and get the indices
df2 = df.copy()
bool_nans_formula = df2['formula'].isnull()
bool_nans_T = df2['T'].isnull()
bool_nans_Cp = df2['Cp'].isnull()

Drop the rows of the DataFrame which contain NaNs

df2 = df2.drop(df2.loc[bool_nans_formula].index, axis=0)
df2 = df2.drop(df2.loc[bool_nans_T].index, axis=0)

df2 = df2.drop(df2.loc[bool_nans_Cp].index, axis=0)

print(f'DataFrame shape before dropping NaNs: {df.shape}')
print(f'DataFrame shape after dropping NaNs: {df2.shape}')

DataFrame shape before dropping NaNs: (4583, 3)
DataFrame shape after dropping NaNs: (4570, 3)

Pandas also includes the convenient built-in method .dropna() to check for and remove NaNs in-place:

In [9]: df3
df3

df.copy()
df3.dropna(axis=0, how="any")

print(f'DataFrame shape before dropping NaNs: {df.shape}')
print(f'DataFrame shape after dropping NaNs: {df3.shape}')

df = df3.copy()

DataFrame shape before dropping NaNs: (4583, 3)
DataFrame shape after dropping NaNs: (4570, 3)

Check for and remove unrealistic values

In some cases, you might also get data values that simply don't make sense. For our dase, this could be
negative values in the temperature or heat capacity values.

40

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [10]: bool_invalid T = df['T'] < ©
bool_invalid Cp = df['Cp'] < ©

df
df

df.drop(df.loc[bool_invalid_T].index, axis=9)
df.drop(df.loc[bool_invalid_Cp].index, axis=0)

print(f'Cleaned DataFrame shape: {df.shape}')

Cleaned DataFrame shape: (4564, 3)

Save cleaned data to csv
Finally, after cleaning and processing the data, you can save it to disk in a cleaned state for you to use later.

Pandas allows us to save our data as a comma separated value .csv file.

In [11]: out_path = os.path.join(PATH, '../data/cp_data_cleaned.csv")
df.to_csv(out_path, index=False)

Note, your data can be saved in other file formats (such as hdf5) or in databases (such as SQL), but we will not
go into the details of these formats.

Typically, the amount of data you can gather for your ML project isn't large enough to warrant these approaches.

41

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Splitting data into the train/validation/test dataset

It is important to split your full dataset into train/validation/test datasets, and reliably use the same datasets for
your modeling tasks later.

Using different train/validation/test splits can dramatically affect your model performance (as seen here by the
variance in 72 scores for 30 models which have been trained on 30 different dataset splits) [1]:

0.7

0.6+

0.5

0.4+

0.34

0.2

0.1

0.0-
0 5 10 15 20 25 30

Sorted Train-Test Splits

[1]: C. Clement, S. K. Kauwe, T. D. Sparks, Benchmark AFLOW Data Sets for Machine Learning, figshare 2020,
DOI: 10.6084/m9.figshare. 11954742 (https://dx.doi.org/10.6084/m9.figshare.11954742).

42

In [1]: dimport os

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

%»matplotlib inline
%config InlineBackend.figure_format='retina’

from sklearn.model_selection import train_test_split

Set a random seed to ensure reproducibility across runs

RNG_SEED =
np.random.seed(seed=RNG_SEED)

Load the pre-processed dataset

42

We will start with the processed dataset that we saved from the last notebook.

In [2]: PATH = os.getcwd()

data_path = os.path.join(PATH,

df = pd.read_csv(data_path)

'../data/cp_data_cleaned.csv')

print(f'Full DataFrame shape: {df.shape}")

Full DataFrame shape: (4564, 3)

In [3]: df.head(10)

Out[3]:

formula T Cp

0 B203 1400.0 134.306
1 B203 1300.0 131.294
2 B203 1200.0 128.072
3 B203 1100.0 124.516
4 B203 1000.0 120.625
5 B203 900.0 116.190
6 B203 800.0 111.169
7 B203 723.0 106.692
B203 700.0 105.228

9 B203 600.0 98.115

3.2 PUBLICATION 1: BESTPRACTICES — SI

43

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Separate the DataFrame into your input variables (X) and target
variables (y)

The X will be used as the input data, and y will be used as the prediction targets for your ML model.

If your target variables are discrete (such as metal / non-metal or types of crystal structures), then you will be
performing a classification task. In our case, since our target variables are continuous values (heat capacity), we
are performing a regression task.

In [4]: X = df[['formula', 'T']]
y = df['Cp’]

print(f'Shape of X: {X.shape}')
print(f'Shape of y: {y.shape}')

Shape of X: (4564, 2)
Shape of y: (4564,)

Splitting data (and a word of caution)

Normally, we could simply split the data with a simple sklearn function

The scikit-learn train_test_split function randomly splits a dataset into train and test datasets. Typically,
you can use train_test_split to first split your data into "train" and "test" datasets, and then use the function
again to split your "train" data into "train" and "validation" dataset splits.

As a rule of thumb, you can roughly aim for the following dataset proportions when splitting your data:

train split validation split test split

proportion
of original 50% to 70% 20% to 30% 10% to 20%
dataset

If you have copious amounts of data, it may suffice to train your models on just 50% of the data; that way, you
have a larger amount of data samples to validate and to test with. If you however have a smaller dataset and
thus very few training samples for your models, you may wish to increase your proportion of training data during
dataset splitting.

In [5]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, rand
om_state=RNG_SEED)

print(X_train.shape)
print(X_test.shape)

(3651, 2)
(913, 2)

44

3.2 PUBLICATION 1: BESTPRACTICES — SI

But wait, what's wrong here?

We have to make sure that our dataset splits contain mutually exclusive formulae (e.g., all the data samples
associated with "Al203" is either in the train, validation, or test dataset, but not in multiple)!

In [6]:

num_rows = len(X_train)
print(f'There are in total {num_rows} rows in the X_train DataFrame.')

num_unique_formulae = len(X_train['formula'].unique())
print(f'But there are only {num_unique_formulae} unique formulae!\n')

print(‘'Unique formulae and their number of occurances in the X_train DataFram
e:")

print(X_train['formula’].value_counts(), ‘\n')

print('Unique formulae and their number of occurances in the X_test DataFram
e:')

print(X_test['formula'].value_counts())

There are in total 3651 rows in the X_train DataFrame.
But there are only 244 unique formulae!

Unique formulae and their number of occurances in the X_train DataFrame:
W1 40

N1Til 38
N1Zrl 33
B1Til 33
02zr1 30
145i1 4
N204 3
K1 2
Hg101 1
14Ti1 1

Name: formula, Length: 244, dtype: int64

Unique formulae and their number of occurances in the X_test DataFrame:
Cals1l 10
N@.465V1 10
Be204Sil 10
03W1 9
W1 9

H2Mg1
02Pbl
FelH303
Hf1
I1K1
Name: formula, Length: 229, dtype: int64

R R R R R

45

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

There are in total 3651 rows in the X_train DataFrame. But there are only 244 unique formulae! In fact, you will
see that the same formulae are often present in the X_train and X_test DataFrames!

That's not good, because now we have instances of the same chemical compound appearing in both the training
and test data. Which means the model can cheat and in essence just memorize the training data, and during
testing, look up the nearby values present in the training data!

So how do we mitigate this?

Be aware of leaking data between datasets

We have to first group the data by chemical formula, then split the data according to the chemical formulae. That
way, all data points associated with each formula are either in the training dataset or in the test dataset, but not in
both at the same time.

Splitting data, cautiously (manually)

First we get a list of all of the unique formulae in the dataset.

46

In [7]:

3.2 PUBLICATION 1: BESTPRACTICES — SI

unique_formulae = X['formula'].unique()
print(f'{len(unique_formulae)} unique formulae:\n{unique_formulae}")

244 unique formulae:

['B203"' 'BelI2' 'BelF3Lil' 'Al1C14K1' 'Al2BelO4' 'B2H404' 'B2Mgl' 'BelF2'’
'B1H4Nal' 'Br2Cal' 'AL1IN1' 'Al1CléNa3' 'BalH202' 'Al1Br3' 'Br3Zrl’
'Br2Til"' 'B1Til' 'Be204Sil' 'Br2Pbl' 'All' 'Br2Hg2' 'B1H303' 'Br3Til’'
'C1CulN1' 'B1' 'Al1F6Na3' 'CalH202' 'B2Be306' 'Al1Cl4Nal’' 'Al1Cl6K3'
'C0.98Nb1" 'Br2Hgl' 'Al1C1101"' 'C11H4N104' 'BelF4Li2"' 'C1MglO03' 'BrlH4N1'
'CalI2' 'Al1F6Li3' 'Br4Mol' 'Bal’ 'Br4Til' 'BalBr2' 'Bel04S1' 'BalF2’
'BalI2' 'Cl2Fel' 'C1KIN1' 'BelH202' 'Cs1' 'Al1H4Lil1l' 'Cl1Be2' 'Crl’
'Cs204S1' 'CliCul' 'CulF2' 'Al203' 'BIN1' 'Co0104S1' ‘Cul01' 'BriNal’
'Cr203"' 'Cs1F1' 'Cr2N1' 'Cl1Lil1' 'Fe@.877S1' 'CliNal' 'F2Hgl' 'FelH202'
'Cs1H101' 'Br3Mol' 'Br2Srl' 'Cl2Hg2' 'FelO1' 'Col' 'Cl1Csl' 'CulH202'
'Al1Li102' 'ColF2' 'Br2Fel’ 'FelI2' 'Gal' 'Cl1Lil104' 'Cl2Cul' 'Fe@.94701'
'BelCl2" 'Cl1K1' 'F1Nal' 'H304P1' 'Fe304' 'H1NalOl' 'Fe2012S3' 'H1lNal'
'C11Nal104' 'B1F4K1' 'CulO4S1' 'H1Lil' 'F2H1K1' 'B1H4Lil1' 'HglO1' 'Be3N2'
'Fel' 'I2Mol' 'CulF1l' 'CriN1' 'FelH303' 'I1Lil1l' 'Al1I3" 'FelS1’
'Al12C19K3" 'I2Pbl' 'I4Zrl' 'HglI2' 'HAIIN1' 'Hf1' 'F2Hg2' 'I2Srl’
'C1K203" 'CIN1Nal' 'H204W1' 'CalSl' 'K204S1' 'I2Mgl' 'Mgl103Sil' 'Li3N1’
'I2Zr1" 'H2Mgl' 'I2Til' 'H1K1' 'Mgl04W1' 'I4Til' 'H1K101' 'I2' 'Mn1’
'F1K1' 'Li203Sil"' 'K201' 'Mgl04S1' 'Al1Nal02' 'M0102.889' 'M0102.750'
'NO.465V1' 'Mg204Til' 'K102' 'Mol103' 'C1Na203' 'K2S1' 'MolS2' 'Li203Til'
'I4Mol' 'BalS1' 'Na203Sil' 'I3Mol' 'MglS1' 'Cu205S1' 'K202' 'Mgl03Til'
'Na2s2' 'I3Til' 'Li202' 'I3Zrl' 'Al2Mg104' 'N1Til' 'N1V1' 'Nal02' 'NilS1’
'Na201' 'I4Sil' 'B1Lil02' '01Til' 'H1Lil01' 'Nbl101' 'F2Mgl' 'Nbl' '03Ti2'
'Cal’ 'Nb102" '0O3Pb1Sil' '04Pb3' 'O3W1l' '07Ti4' 'K1' '0O4V2' '02.90W1°'
'CalCl2" 'Pbl' 'Na205Si2' 'O5Ti3" 'O5V2' 'Mg3N2' 'Mg204Sil' 'Mo102.875'
'BriK1l' 'Br2Mol' 'Cl1H4N1' 'Cul' 'F1Lil1' 'FelS2' 'H202Srl1' 'I1K1' 'I1Nal’
'K203Sil' 'Li204S1' 'Li205Si2" 'Mgl' 'Mg2Sil' 'Mo2S3' 'N1Zrl' 'N204'
'N4Si3' 'N5P3' 'Na202' 'Na2S1' 'Nb205' 'Nil' 'NilS2' 'Ni3S2' 'Ni3s4’
'010P4' '0O1Pbl' '01Srl' 'O1V1l' '02.72W1"' '02.96W1' 'O2Pb1l' '02Sil’
'02Til" '02Zrl' 'O3V2' '04Pb2Sil' '04S1Znl' '04Silzrl' 'P1' 'P4S3'
'Pb1S1' 'Rb1' 'S1' 'S1Sr1' 'Sr1' 'Til' 'V1l' 'W1' 'Znl' 'Zrl']

47

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

48

In [8]:

Set a random seed to ensure reproducibility across runs
np.random.seed(seed=RNG_SEED)

Store a List of all unique formulae
all_formulae = unique_formulae.copy()

Define the proportional size of the dataset split
val_size = 0.20

test_size = 0.10

train_size = 1 - val_size - test_size

Calculate the number of samples 1in each dataset split

num_val_samples = int(round(val_size * len(unique_formulae)))

num_test_samples = int(round(test_size * len(unique_formulae)))
num_train_samples = int(round((1 - val_size - test_size) * len(unique_formulae

)))

Randomly choose the formulate for the validation dataset, and remove those f
rom the unique formulae List

val_formulae = np.random.choice(all_formulae, size=num_val_samples, replace=Fa
1se)

all_formulae = [f for f in all_formulae if f not in val_formulae]

Randomly choose the formulate for the test dataset, and remove those from th
e unique formulae Llist

test_formulae = np.random.choice(all_formulae, size=num_test_samples, replace=
False)

all formulae = [f for f in all_formulae if f not in test_formulae]

The remaining formulae will be used for the training dataset
train_formulae = all_formulae.copy()

print('Number of training formulae:', len(train_formulae))
print('Number of validation formulae:', len(val_formulae))
print('Number of testing formulae:', len(test_formulae))

Number of training formulae: 171
Number of validation formulae: 49
Number of testing formulae: 24

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [9]: # Split the original dataset into the train/validation/test datasets using the
formulae Llists above
df_train = df[df['formula'].isin(train_formulae)]
df_val = df[df['formula’'].isin(val_formulae)]
df_test = df[df['formula’'].isin(test_formulae)]

print(f'train dataset shape: {df_train.shape}")
print(f'validation dataset shape: {df_val.shape}')
print(f'test dataset shape: {df_test.shape}\n")

print(df_train.head(), '\n")
print(df_val.head(), '\n'")
print(df_test.head(), '\n')

train dataset shape: (3214, 3)
validation dataset shape: (980, 3)
test dataset shape: (370, 3)

formula T Cp
(2] B203 1400.0 134.306
1 B203 1300.0 131.294
2 B203 1200.0 128.072
3 B203 1100.0 124.516
4 B203 1000.0 120.625
formula T Cp

82 B2Mgl 1900.0 92.242
83 B2Mgl 1800.0 90.249
84 B2Mgl 1700.0 88.162
85 B2Mgl 1600.0 85.981
86 B2Mgl 1500.0 83.643

formula T Cp

192 BalH202 900.00 134.892
193 BalH202 800.00 130.834
194 BalH202 700.00 126.775
195 BalH202 681.15 126.022
196 BalH202 600.00 122.717

To be sure that we really only have mutually exclusive formulae within each of the datasets (e.g., all the data
samples associated with "Al203" is either in the train, validation, or test dataset, but not in multiple), we can do
the following to check:

49

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [10]: train_formulae = set(df_train['formula'].unique())
val_formulae = set(df_val['formula'].unique())
test_formulae = set(df_test['formula'].unique())

common_formulael = train_formulae.intersection(test_formulae)
common_formulae2 = train_formulae.intersection(val_formulae)
common_formulae3 = test_formulae.intersection(val_formulae)

print(f'# of common formulae in intersection 1: {len(common_formulael)}; commo
n formulae: {common_formulael}")
print(f'# of common formulae in intersection 2: {len(common_formulae2)}; commo
n formulae: {common_formulae2}")
print(f'# of common formulae in intersection 3: {len(common_formulae3)}; commo
n formulae: {common_formulae3}")

of common formulae in intersection 1: ©; common formulae: set()
of common formulae in intersection 2: ©; common formulae: set()
of common formulae in intersection 3: ©; common formulae: set()

Save split datasets to csv

Finally, after splitting the dataset into train/validation/test dataset splits, you can save them to disk for you to use
later.

By saving these dataset splits into files, you can then later reproducibly use these same exact splits during your
subsequent model training and comparison steps. Use the same datasets for all your models---that way, you can
ensure a fair comparison.

Also, when you publish your results, you can include these dataset splits, so that others can use the exact
datasets in their own studies.

In [11]: # saving these splits into csv files
PATH = os.getcwd()

train_path = os.path.join(PATH, '../data/cp_train.csv')
val_path = os.path.join(PATH, '../data/cp_val.csv')
test_path = os.path.join(PATH, '../data/cp_test.csv')

df_train.to_csv(train_path, index=False)

df_val.to_csv(val_path, index=False)
df_test.to_csv(test_path, index=False)

Remember, keep the test dataset locked away and forget about it until you have finalized your model! Never
look at the test dataset!!

50

3.2 PUBLICATION 1: BESTPRACTICES — SI

Data Featurization

Here, we will show some simple examples of featurizing materials composition data using so-called
"composition-based feature vectors", or CBFVs. This methods represents a single chemical formula as one
vector based on its constituent atoms' chemical properties (refer to the paper for more information and

references).

Note that the steps shown in this notebook are intended to demonstrate the best practices associated with
featurizing materials data, using one way of featurizing materials composition data as an example. Depending on
your input data and your particular modeling needs, the data featurization method and procedure you use may
be different than the example shown here.

In [1]:

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

%»matplotlib inline

%config InlineBackend.figure_format='retina’

from collections import OrderedDict
Set a random seed to ensure reproducibility across runs

RNG_SEED = 42
np.random.seed(RNG_SEED)

Loading data

We will start with the dataset splits that we saved from the last notebook.

In [2]:

PATH = os.getcwd()

train_path = os.path.join(PATH, '../data/cp_train.csv')
val_path = os.path.join(PATH, '../data/cp_val.csv')
test_path = os.path.join(PATH, '../data/cp_test.csv')

df_train = pd.read_csv(train_path)
df_val = pd.read_csv(val_path)
df_test = pd.read_csv(test_path)

print(f'df_train DataFrame shape: {df_train.shape}")
print(f'df_val DataFrame shape: {df_val.shape}')
print(f'df_test DataFrame shape: {df_test.shape}')

df_train DataFrame shape: (3214, 3)

df_val DataFrame shape: (980, 3)
df_test DataFrame shape: (370, 3)

51

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Sub-sampling your data (optional)

If your dataset is too large, you can subsample it to be a smaller size. This is useful for prototyping and for
making quick sanity tests of new models / parameters.

Just be aware that you do not introduce any bias into your data through the sampling.

In [3]: # Sub-sample the data. Set the random_state to make the sampling reproducible
every time.
df_train_sampled = df_train.sample(n=2000, random_state=RNG_SEED)
df_val_sampled = df_val.sample(n=200, random_state=RNG_SEED)
df_test_sampled = df_test.sample(n=200, random_state=RNG_SEED)

print(f'df_train_sampled DataFrame shape: {df_train_sampled.shape}")
print(f'df_val_sampled DataFrame shape: {df_val_sampled.shape}')
print(f'df_test_sampled DataFrame shape: {df_test_sampled.shape}')

df_train_sampled DataFrame shape: (2000, 3)
df_val_sampled DataFrame shape: (200, 3)
df_test_sampled DataFrame shape: (200, 3)

Generate features using the CBFV package

To featurize the chemical compositions from a chemical formula (e.g. "Al203") into a composition-based feature
vector (CBFV), we use the open-source CBFV package (https:/github.com/kaaiian/CBFV).

We have downloaded and saved a local copy of the package into this repository for your convenience. For the
most updated version, refer to the GitHub repository linked above.

In [4]: # Import the package and the generate_features function
from CBFV.cbfv.composition import generate_features

The generate_features function from the CBFV package expects an input DataFrame containing at least the
columns ['formula', 'target'] . You may also have extra feature columns (e.g., temperature or
pressure , other measurement conditions, etc.).

In our dataset, Cp represents the target variable, and T is the measurement condition. Since the
generate_features function expects the target variable column to be named target , we have to rename
the Cp column.

52

In [5]:

3.2 PUBLICATION 1: BESTPRACTICES — SI

print('DataFrame column names before renaming:')
print(df_train.columns)

print(df_val.columns)

print(df_test.columns)

rename_dict = {'Cp': 'target'}

df_train = df_train.rename(columns=rename_dict)
df_val = df_val.rename(columns=rename_dict)
df_test = df_test.rename(columns=rename_dict)

df_train_sampled = df_train_sampled.rename(columns=rename_dict)
df_val_sampled = df_val_sampled.rename(columns=rename_dict)
df_test_sampled = df_test_sampled.rename(columns=rename_dict)

print('\nDataFrame column names after renaming:')
print(df_train.columns)

print(df_val.columns)

print(df_test.columns)

DataFrame column names before renaming:

Index(['formula', 'T', 'Cp'], dtype='object")
Index(['formula', 'T', 'Cp'], dtype='object")
Index(['formula', 'T', 'Cp'], dtype='object')

DataFrame column names after renaming:

Index(['formula', 'T', 'target'], dtype='object')
Index(['formula', 'T', 'target'], dtype='object')
Index(['formula', 'T', 'target'], dtype='object')

53

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

Now we can use the generate_features function to generate the CBFVs from the input data.

Note that we have specified several keyword arguments in our call to generate_features :

elem_prop="oliynyk'
drop_duplicates=False
extend_features=True
sum_feat=True

A short explanation for the choice of keyword arguments is below:

The elem_prop parameter specifies which CBFV featurization scheme to use (there are several). For this
tutorial, we have chosen to use the oliynyk CBFYV featurization scheme.

The drop_duplicates parameter specifies whether to drop duplicate formulae during featurization. In our
case, we want to preserve duplicate formulae in our data (True), since we have multiple heat capacity
measurements (performed at different temperatures) for the same compound.

The extend_features parameter specifies whether to include extended features (features that are not
partof ['formula', 'target'])in the featurized data. In our case, this is our measurement temperature,
and we want to include this information (True), since this is pertinent information for the heat capacity
prediction.

The sum_feat parameter specifies whether to calculate the sum features when generating the CBFVs for
the chemical formulae. We do in our case (True).

For more information about the generate_features function and the CBFV featurization scheme, refer to the
GitHub repository and the accompanying paper to this notebook.

54

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [6]: X_train_unscaled, y_train, formulae_train, skipped_train = generate_features(d
f_train_sampled, elem_prop='oliynyk', drop_duplicates=False, extend_features=T
rue, sum_feat=True)

X_val_unscaled, y _val, formulae_val, skipped_val = generate_features(df_val_sa
mpled, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum_f
eat=True)

X_test_unscaled, y_test, formulae_test, skipped_test = generate_features(df_te
st_sampled, elem_prop='oliynyk', drop_duplicates=False, extend_features=True,
sum_feat=True)

Processing Input Data: 1ee | [EEEEEEEEEEEEEEEEENE

| 2000/2000 [00:00<00:00, 27852.38it/s]
Assigning Features...: 0%|
| @/2000 [00:00<?, ?it/s]

Featurizing Compositions...

Assigning Features...: 1oe% | [N

| 2000/2000 [00:00<00:00, 22532.15it/s]
Processing Input Data: 100%|

| 2900/200 [00:00<00:00, 25067.56it/s]
Assigning Features...: 100%|

| 200/200 [00:00<00:00, 22281.68it/s]
Processing Input Data: 0% |

| @/200 [@0:00<?, ?it/s]

Creating Pandas Objects...
Featurizing Compositions...
Creating Pandas Objects...

Processing Input Data: 1eo%| NN

| 200/200 [00:00<00:00, 22169.21it/s]
Assigning Features...: 100%|
| 200/200 [00:00<00:00, 20000.50it/s]

Featurizing Compositions...
Creating Pandas Objects...

To see what a featurized X matrix looks like, .head() will show us some rows:

In [7]: X_train_unscaled.head()

ouelr: sum_Atomic_Number sum_Atomic_Weight sum_Period sum_group sum_families sum_Metal
0 32.0 65.116040 8.0 30.0 15.0 1.0
1 28.0 53.491200 9.0 36.0 43.0 0.0
2 46.0 98.887792 14.0 72.0 36.0 3.0
3 20.0 41.988171 5.0 18.0 9.0 1.0
4 82.0 207.200000 6.0 14.0 5.0 1.0

5 rows x 177 columns

55

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [8]: X_train_unscaled.shape

out[8]: (2000, 177)

Note the sum features in the CBFV, which we have included by using sum_feat=True in the call to
generate_features .

Also note the temperature column T at the end of this featurized data.

What we have done above is featurize the input data. In the featurized data, each row contains a unique CBFV
that describes a given chemical composition.

Data scaling & normalization

For numerical input data, scaling and normalization of the features often improves the model performance.
Scaling can partially correct the discrepancy between the orders of magnitudes of the features (e.g., some
numerical features being much larger or smaller than others). This typically improves the model learning
performance, and in turn, improves the model performance.

We will scale then normalize our input data using scikit-learn's built-in StandardScaler class and normalize
function.

Note, in addition to StandardScaler , other scalers such as RobustScaler and MinMaxScaler are also
available in scikit-learn. Consult the documentation for the details and when to use them.

In [9]: from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import normalize

Scaling the data
First, we instantiate the scaler object.
Ina StandardScaler object:

« During the fit process, the statistics of the input data (mean and standard deviation) are computed.
« Then, during the transform process, the mean and standard deviation values calculated above are used
to scale the data to having zero-mean and unit variance.

Therefore, for the first time usage of the scaler, we call the .fit_transform() method to fit the scaler to the
input data, and then to transform the same data. For subsequent uses, since we have already computed the
statistics, we only call the .transform() method to scale data.

Note: you should only .fit() the scaler using the training dataset statistics, and then use these same
statistics from the training dataset to .transform() the other datasets (validation and train).

56

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [10]: scaler = StandardScaler()

X_train = scaler.fit_transform(X_train_unscaled)
X_val = scaler.transform(X_val_unscaled)
X_test = scaler.transform(X_test_unscaled)

Normalizing the scaled data

We repeat a similar process for normalizing the data. Here, there is no need to first fit the normalizer, since the
normalizer scales the rows of the input data to unit norm independently of other rows.

The normalizer is different to a Scaler in that the normalizer acts row-wise, whereas a Scaler acts column-wise
on the input data.

In [11]: X_train = normalize(X_train)
X_val = normalize(X_val)
X_test = normalize(X_test)

Modeling using "classical” machine learning
models

Here we implement some classical ML models from sklearn :

» Ridge regression

» Support vector machine

« Linear support vector machine

» Random forest

« Extra trees

» Adaptive boosting

« Gradient boosting

» k-nearest neighbors

» Dummy (if you can't beat this, something is wrong.)

Note: the Dummy model types from sklearn act as a good sanity check for your ML studies. If your models do
not perform significantly better than the equivalent Dummy models, then you should know that something has
gone wrong in your model implementation.

57

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [12]:

from
from
from
from
from
from
from

from

from
from

from
from
from

time import time

sklearn.dummy import DummyRegressor

sklearn.linear_model import Ridge

sklearn.ensemble
sklearn.ensemble
sklearn.ensemble
sklearn.ensemble

import AdaBoostRegressor

import GradientBoostingRegressor
import ExtraTreesRegressor
import RandomForestRegressor

sklearn.neighbors import KNeighborsRegressor

sklearn.svm import SVR
sklearn.svm import LinearSVR

sklearn.metrics import r2_score
sklearn.metrics import mean_absolute_error
sklearn.metrics import mean_squared_error

In addition, we define some helper functions.

58

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [13]: def instantiate_model(model_name):
model = model_name()
return model

def fit_model(model, X_train, y_train):
ti = time()
model = instantiate_model(model)
model.fit(X_train, y_train)
fit_time = time() - ti
return model, fit_time

def evaluate_model(model, X, y_act):
y_pred = model.predict(X)
r2 = r2_score(y_act, y_pred)
mae = mean_absolute_error(y_act, y pred)
rmse_val = mean_squared_error(y_act, y_pred, squared=False)
return r2, mae, rmse_val

def fit_evaluate_model(model, model name, X_train, y_train, X_val, y_act_val):

model, fit time = fit _model(model, X_train, y train)
r2_train, mae_train, rmse_train = evaluate_model(model, X_train, y_train)
r2_val, mae_val, rmse_val = evaluate_model(model, X val, y_act_val)
result_dict = {

'model_name': model_name,

'model_name_pretty': type(model)._name__,

'model_params': model.get_params(),

"fit_time': fit_time,

'r2_train': r2_train,

'mae_train': mae_train,

'rmse_train': rmse_train,

'r2_val': r2_val,

'mae_val': mae_val,

"rmse_val': rmse_val}
return model, result_dict

def append_result_df(df, result_dict):
df_result_appended = df.append(result_dict, ignore_index=True)
return df_result_appended

def append_model_dict(dic, model _name, model):

dic[model_name] = model
return dic

Build an empty DataFrame to store model results:

59

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [14]: df_classics = pd.DataFrame(columns=['model name"',
'model_name_pretty’,
'model_params',
‘fit_time',
'r2_train’',
'mae_train',
'rmse_train',
'r2_val',
'mae_val',
"rmse_val'])

df_classics

Out[14]:
model_name model_name_pretty model_params fit_time r2_train mae_train rmse_train r2_\

Define the models

Here, we instantiate several classical machine learning models for use. For demonstration purposes, we
instantiate the models with their default model parameters.

Some of the models listed above can perform either regression or classification tasks. Because our ML task is a
regression task (prediction of the continuous-valued target, heat capacity), we choose the regression variant of
these models.

Note: the DummyRegressor() instance acts as a good sanity check for your ML studies. If your models do not
perform significantly better than the DummyRegressor() , then you know something has gone awry.

In [15]: # Build a dictionary of model names
classic_model_names = OrderedDict({

"dumr': DummyRegressor,
'rr': Ridge,
'abr': AdaBoostRegressor,
'gbr': GradientBoostingRegressor,
'rfr': RandomForestRegressor,
‘etr': ExtraTreesRegressor,
'svr': SVR,
"lsvr': LinearSVR,
"knr': KNeighborsRegressor,

1)

60

3.2 PUBLICATION 1: BESTPRACTICES — SI

Instantiate and fit the models

Now, we can fit the ML models.

We will loop through each of the models listed above. For each of the models, we will:

« instantiate the model (with default parameters)

« fit the model using the training data

« use the fitted model to generate predictions from the validation data
» evaluate the performance of the model using the predictions

« store the results in a DataFrame for analysis

Note: this may take several minutes, depending on your hardware/software environment, dataset size and
featurization scheme (CBFV).

In [16]:

Instantiate a dictionary to store the model objects
classic_models = OrderedDict()

Keep track of elapsed time
ti = time()

Loop through each model type, fit and predict, and evaluate and store result
s
for model_name, model in classic_model_names.items():
print(f'Now fitting and evaluating model {model_name}: {model._name__}")
model, result_dict = fit_evaluate_model(model, model_name, X_train, y_trai
n, X_val, y_val)
df_classics = append_result_df(df_classics, result_dict)
classic_models = append_model_dict(classic_models, model_name, model)

dt = time() - ti
print(f'Finished fitting {len(classic_models)} models, total time: {dt:0.2f}
s')

Now fitting and evaluating model dumr: DummyRegressor

Now fitting and evaluating model rr: Ridge

Now fitting and evaluating model abr: AdaBoostRegressor

Now fitting and evaluating model gbr: GradientBoostingRegressor
Now fitting and evaluating model rfr: RandomForestRegressor

Now fitting and evaluating model etr: ExtraTreesRegressor

Now fitting and evaluating model svr: SVR

Now fitting and evaluating model 1lsvr: LinearSVR

Now fitting and evaluating model knr: KNeighborsRegressor
Finished fitting 9 models, total time: 21.38 s

Now, we can look at the results.

You will notice, that some of the models (such as RandomForestRegressor, ExtraTreesRegressor and
GradientBoostingRegressor) have completely memorized the training data, as evidenced by the very high
r2_train scores of ~1.0.

61

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [17]:

Out[17]:

Sort in order of increasing validation r2 score

df_classics = df_classics.sort_values('r2_val', ignore_index=True)

df_classics

model_name

model_name_pretty

model_params

fit_time

r2_train

mae_train

rmse

0 dumr

1 Isvr

4 abr

6 rfr

7 etr

8 gbr

DummyRegressor

LinearSVR

SVR

KNeighborsRegressor

AdaBoostRegressor

Ridge

RandomForestRegressor

ExtraTreesRegressor

GradientBoostingRegressor

{'constant": None,
'quantile”: None,
'strategy...

{'C" 1.0, 'dual':
True, 'epsilon":
0.0, fit_...

{'C" 1.0,
‘cache_size"
200, 'coef0": 0.0,
'd...

{'algorithm":
‘auto', 'leaf_size":
30, 'metric...

{'base_estimator"
None,
'learning_rate":
1.0,...

{"alpha": 1.0,
‘copy_X": True,
'fit_intercept'...

{'bootstrap": True,
‘ccp_alpha': 0.0,
‘criteri...

{'bootstrap":
False,
'ccp_alpha': 0.0,
‘criter...

{"alpha": 0.9,
‘ccp_alpha': 0.0,
‘criterion’: ...

0.000000

0.008975

0.653226

0.046875

1.740368

0.027902

8.986937

4.108041

4.803637

0.000000

0.763989

0.763306

0.981784

0.922253

0.875762

0.998316

0.999995

0.985051

47.451805

16.961421

16.726278

3.902671

14.174608

14.425002

1.216542

0.010897

5.360182

60.6(

29.4¢

29.4¢

8.1

16.8¢

21.3¢

0.12

7.4

You can now also access the full details of the models by inspecting the classic_models dictionary that we

populated.

62

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [18]: classic_models

63

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

64

Out[18]:

OrderedDict ([('dumr’,
DummyRegressor(constant=None, quantile=None, strategy='mean')),
('rr’,
Ridge(alpha=1.0, copy_ X=True, fit_intercept=True, max_iter=Non
€,
normalize=False, random_state=None, solver='auto', tol=0.
001)),
('abr',
AdaBoostRegressor(base_estimator=None, learning rate=1.0, loss
="'linear’,
n_estimators=50, random_state=None)),
('gbr’,
GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion
="'friedman_mse',
init=None, learning_rate=0.1, loss='1l
s', max_depth=3,
max_features=None, max_leaf_nodes=Non
€,
min_impurity_decrease=0.0, min_impuri
ty_split=None,
min_samples_leaf=1, min_samples_split

=2,

min_weight_fraction_leaf=0.0, n_estim
ators=100,

n_iter_no_change=None, presort='depre
cated’',

random_state=None, subsample=1.0, tol
=0.0001,

validation_fraction=0.1, verbose=0, w
arm_start=False)),
('rfr',
RandomForestRegressor(bootstrap=True, ccp_alpha=0.0, criterion
="mse',
max_depth=None, max_features="auto', max_
leaf_nodes=None,
max_samples=None, min_impurity_decrease=

0.0,
min_impurity_split=None, min_samples_leaf
=1,
min_samples_split=2, min_weight_fraction_
leaf=0.0,
n_estimators=100, n_jobs=None, oob_score=
False,
random_state=None, verbose=0, warm_start=
False)),
('etr',
ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion
='mse’,

max_depth=None, max_features="auto', max_le
af_nodes=None,
max_samples=None, min_impurity_decrease=0.

0,

min_impurity split=None, min_samples_leaf=
1,

min_samples_split=2, min_weight_fraction_le
af=0.09,

n_estimators=100, n_jobs=None, oob_score=Fa

3.2 PUBLICATION 1: BESTPRACTICES — SI

1se,
random_state=None, verbose=0, warm_start=Fa
1se)),
('svr',
SVR(C=1.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, ga
mma="'scale"’,
kernel="rbf', max_iter=-1, shrinking=True, tol=0.001, verbo
se=False)),
("lsvr',
LinearSVR(C=1.0, dual=True, epsilon=0.0, fit_intercept=True,
intercept_scaling=1.0, loss='epsilon_insensitive', ma
x_iter=1000,
random_state=None, to0l=0.0001, verbose=0)),
("knr',
KNeighborsRegressor(algorithm="auto', leaf_size=30, metric='min
kowski',
metric_params=None, n_jobs=None, n_neighbor
s=5, p=2,
weights="uniform'))])

Evaluating model performance on validation dataset
Now comes the time to evaluate the trained models on the validation set.
Remember, we use the same validation set to evaluate all models. This ensures a fair comparison.

In addition, we plot the predicted vs. actual plots using the predictions made by each trained model on the same
validation set.

In [19]: def plot_pred_act(act, pred, model, reg_line=True, label="'"):
xy_max = np.max([np.max(act), np.max(pred)])

plot = plt.figure(figsize=(6,6))
plt.plot(act, pred, 'o', ms=9, mec="k', mfc="silver', alpha=0.4)
plt.plot([@, xy_max], [0, xy_max], 'k--', label='ideal')
if reg_line:
polyfit = np.polyfit(act, pred, deg=1)
reg_ys = np.polyld(polyfit)(np.unique(act))
plt.plot(np.unique(act), reg_ys, alpha=0.8, label='linear fit'")
plt.axis('scaled")
plt.xlabel(f'Actual {label}")
plt.ylabel(f'Predicted {label}")
plt.title(f'{type(model)._name__}, r2: {r2_score(act, pred):0.4f}")
plt.legend(loc="upper left')

return plot

65

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [20]: for row in range(df_classics.shape[0]):
model_name = df_classics.iloc[row]['model_name']

model = classic_models[model_name]
y_act_val = y_val
y_pred_val = model.predict(X_val)

plot = plot_pred_act(y_act_val, y_pred_val, model, reg_line=True, label=
'C_p (3 / mol K)")

66

Predicted Cp () / mol K)

Predicted Cp (J / mol K)

3.2 PUBLICATION 1: BESTPRACTICES — SI

DummyRegressor, r2: -0.0001

400 1

300 A

200 4

100 A

=== ideal
—— linear fit

T T T
0 100 200 300
Actual Cp () / mol K)

LinearSVR, r2: 0.6697

T
400

400 A

300 A

200 A

100 A

-—-- ideal
——— linear fit

0 100 200 300
Actual Cp () / mol K)

400

67

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

SVR, r2: 0.6717

-=-=- ideal

a004 linear fit ’

300 1

200 1

Predicted Cp (J / mol K)

100 A

T T T T
0 100 200 300 400
Actual Cp () / mol K)

KNeighborsRegressor, r2: 0.7796

-—- ideal

a004 linear fit -

300 A

200 1

Predicted Cp (J / mol K)

100 1

0 100 200 300 400
Actual Cp, () / mol K)

68

Predicted Cp () / mol K)

Predicted Cp (J / mol K)

3.2 PUBLICATION 1: BESTPRACTICES — SI

AdaBoostRegressor, r2: 0.8528

=== ideal
—— linear fit .

400 1

300 A

200 4

100 A

0 100 200 300 400
Actual Cp () / mol K)

Ridge, r2: 0.8551

-—-- ideal

a004l— linear fit

300 A

200 A

100 A

0 100 200 300 400
Actual Cp () / mol K)

69

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

70

Predicted Cp (J / mol K)

Predicted Cp (J / mol K)

RandomForestRegressor, r2: 0.8941

400

300 1

200 1

100 A

-=-=- ideal
linear fit ’

T T T T
0 100 200 300 400
Actual Cp () / mol K)

ExtraTreesRegressor, r2: 0.9088

400 A

300 1

200 1

100 1

-—- ideal
linear fit ’

0 100 200 300 400
Actual Cp, () / mol K)

3.2 PUBLICATION 1: BESTPRACTICES — SI

GradientBoostingRegressor, r2: 0.9137

-=- ideal ”
= . s
400 - linear fit e
s
’
4
s
’
’
4
/
l' e
- O
_ 300 1 Vd ¢ @)
f ’// . | @)
o 4
£ RGO
= e
:)cl .
— 200 1
9
&
L2
k]
o
o
100 A
0
T T T T T
0 100 200 300 400

Actual Cp () / mol K)

Re-training the best-performing model on combined train +
validation dataset

After you have finalized your model, you can re-train your model (using the same hyperparameters) again on the
combined train + validation datasets, and finally, evaluate your model on the held-out test dataset.

By training on the combined train + validation dataset after you have finished tuning your model, you give it more
training data, which should lead to an increase in the model performance.

71

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [21]:

In [22]:

Find the best-performing model that we have tested
best_row = df_classics.iloc[-1, :].copy()

Get the model type and model parameters
model_name = best_row['model_name']
model_params = best_row['model_params"']

Instantiate the model again using the parameters
model = classic_model _names[model_name](**model_params)
print(model)

GradientBoostingRegressor(alpha=0.9, ccp_alpha=0.0, criterion='friedman_mse’,
init=None, learning_rate=0.1, loss='ls', max_depth=

3,
max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100,
n_iter_no_change=None, presort="deprecated’,
random_state=None, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=0, warm_start=Fals

e)

Concatenate the train and validation datasets together
X_train_new = np.concatenate((X_train, X_val), axis=0)
y_train_new = pd.concat((y_train, y val), axis=0)

print(X_train_new.shape)

(2200, 177)

Finally, we can fit the model on the combined train + validation dataset.

In [23]:

ti = time()
model.fit(X_train_new, y_train_new)

dt = time() - ti
print(f'Finished fitting best model, total time: {dt:0.2f} s')

Finished fitting best model, total time: 5.44 s

Testing the re-trained model on the test dataset

After re-fitting the best model on the train+validation dataset, you can finally test it on the test dataset.
Remember: you should only do this once!

72

3.2 PUBLICATION 1: BESTPRACTICES — SI

In [24]: y_act_test =y test
y_pred_test = model.predict(X_test)

r2, mae, rmse = evaluate_model(model, X test, y_test)
print(f'r2: {r2:0.4f}")

print(f'mae: {mae:0.4f}")

print(f'rmse: {rmse:0.4f}")

plot = plot_pred_act(y_act_test, y_pred_test, model, reg_line=True, label="$\m
athrm{C}_\mathrm{p}$ (3 / mol K)")

r2: 0.8442
mae: 17.1236
rmse: 31.0274

GradientBoostingRegressor, r2: 0.8442

--- ideal ,
linear fit e

400 A

< 300 1
°
£
2
[§)

T 200 A
2
o
kel
o
o

100 A

o

0 100 200 300 400
Actual Cp () / mol K)

We see that our model achieves decent performance on the held-out test dataset.

Effect of train/validation/test dataset split

Using different train/validation/test splits can dramatically affect your model performance, even for classical ML
models.

Here, we provide a little demonstration.

73

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [25]:

In [26]:

X_train_unscaled, y_train, formulae_train, skipped_train = generate_features(d
f_train, elem_prop='oliynyk', drop_duplicates=False, extend_features=True, sum
_feat=True)

X_val_unscaled, y val, formulae_val, skipped_val = generate_features(df_val, e
lem_prop="oliynyk', drop_duplicates=False, extend_features=True, sum_feat=True
)

X_test_unscaled, y_test, formulae_test, skipped_test = generate_features(df_te
st, elem_prop="oliynyk', drop_duplicates=False, extend_features=True, sum_feat
=True)

Processing Input Data: 1ee| [IEEEEEEEEEEEEEEEE

Bl 3214/3214 [00:00<00:00, 28511.32it/s]
Assigning Features...: 100%|
Bl 3214/3214 [00:00<00:00, 22850.93it/s]

Featurizing Compositions...
Creating Pandas Objects...

Processing Input Data: 100%|

Bl os0/980 [00:00<00:00, 28877.87it/s]

Assigning Features...: 1ee% || NENNEEEEEEEEEEEEEEEEREEE
| o50/980 [00:00<00:00, 29644.50it/s]

Processing Input Data: 100%|

Il 370/370 [00:00<00:00, 23672.78it/s]

Assigning Features...: 100%|

Bl 37¢2/370 [00:00<00:00, 18795.10it/s]

Featurizing Compositions...
Creating Pandas Objects...
Featurizing Compositions...
Creating Pandas Objects...

X_train_original = X_train_unscaled.copy()
X_val = X_val_unscaled.copy()
X_test = X_test_unscaled.copy()

y_train_original = y_train.copy()

We sample the training data using 10 random seeds, by using the DataFrame.sample() method with seeds
ranging from 0 to 9. We then fit 10 models, each on one of the random splits, and evaluate their performance on
the same validation dataset.

74

In [27]:

Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split
Fitting and evaluating random split

3.2 PUBLICATION 1: BESTPRACTICES — SI

splits = range(10)
df_splits = pd.DataFrame(columns=["'split’,

'r2_train’,
'mae_train',
"rmse_train’,
'r2_val',
'mae_val',
"rmse_val'])

for split in splits:

print(f'Fitting and evaluating random split {split}')
X_train = X_train_original.sample(frac=0.7, random_state=split)
y_train = y_train_original[X_train.index]

scaler = StandardScaler()

X_train = normalize(scaler.fit_transform(X_train))
X_val = normalize(scaler.transform(X_val_unscaled))
X_test = normalize(scaler.transform(X_test_unscaled))

model = AdaBoostRegressor()
model.fit(X_train, y_train)
y_act_val = y_val

y_pred_val = model.predict(X_val)

r2_train, mae_train, rmse_train = evaluate_model(model, X_train, y_train)

r2_val, mae_val, rmse_val = evaluate_model(model, X_val, y_val)
result_dict = {

'split': split,

'r2_train': r2_train,

'mae_train': mae_train,

‘rmse_train': rmse_train,

'r2_val': r2_val,

'mae_val': mae_val,

"rmse_val': rmse_val}

df_splits = append_result_df(df_splits, result_dict)

VWoONOOTUVDAWNROO

75

3 BEST PRACTICES FOR MACHINE LEARNING IN MATERIALS SCIENCE

In [28]: df_splits['split'] = df_splits['split'].astype(int)
df_splits

out[28]:
split r2_train mae_train rmse_train r2_val mae_val rmse_val

0 0 0.921647 14.237594 16.979393 0.815858 23.865538 34.461629

-
-

0.927656 13.501629 16.265329 0.808852 22.688912 35.111086
0.922515 14.448165 17.079006 0.817551 23.744004 34.302802
0.926511 13.651451 16.537507 0.831742 20.315320 32.941742
0.924336 13.983030 16.703454 0.822637 22.490512 33.821357
0.925542 13.714406 16.610536 0.811329 23.