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Chapter 1

Introduction

The present work arose from investigations of hydrodynamic instabilities
which may occur in the melt flow during Czochralski crystal growth of high
melting point oxides. It was supported by the German-Israeli Foundation
and prepared at the Leibniz Institute for Crystal Growth in Berlin (Ger-
man group). The analyzed problems of the hydrodynamic instability in a
Czochralski crucible were investigated partly by two groups applying two
independent numerical techniques. The second group is the Israeli group of
Prof. Dr. A. Y. Gelfgat at Tel-Aviv University.

1.1 Motivation
Many processes arising in scientific and industrial applications require a non-
trivial or time and cost intensive analysis. Often this analysis cannot be done
experimentally. Therefore mathematical models are necessary, which can be
used in numerical simulations. The fast progress in computer performance al-
lows for applying very complex numerical models and solving many scientific
and technological questions.
In crystal growth numerical simulations play an important role. Since 1950’s
the growth of crystals is applied industrially using different methods [2–4].
Crystals can be grown from gas phase epitaxially (e.g. chemical vapour depo-
sition - CVD), from solution (e.g. top seeded solution growth - TSSG) or from
the melt (e.g. Bridgman, Czochralski or floating zone method). This way
crystals with one crystallographic direction (single), many crystallographic
directions (poly) or solids without any characteristic geometry (amorphous)
can be grown. For the best crystallographic perfection the Czochralski (Cz)
and floating zone (FZ) method has been established producing bulk crystals
with high quality and excellent physical properties and chemical stability.

2
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Single bulk crystals grown by the Cz method have a wide application field in
science and industry. Semiconductive crystals (e.g. Ge, Si) mainly are used
in microelectronic and photovoltaic applications. The second large segment
of industrially grown single crystals are oxides, which are used in optoelec-
tronic, laser or sensor applications or as substrates in epitaxial crystal growth.
The range of oxide single crystals is huge and they are designed to satisfy
the demands of upcoming applications. Important examples are rare earth
scandates (ReScO3,Re=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb and Dy), which can
be used as substrates in epitaxial crystal growth. From the crystallographic
point of view rare earth scandates are very interesting, because nearly all
ranges of lattice constants are adjustable by selecting the proper rare earth
type and therefore it can be used in almost all epitaxial applications (strain
engineering of perovskite thin films [5]). From the technological side the very
high melting temperature which is about 2100◦C requires special conditions
for rare earth scandates. Difficulties occur during finding the optimal techno-
logical parameters and often symmetry breaking of the axisymmetric crystal
growth arises (see fig. 1.1 (A-C)). This symmetry breaking is called spiral

A B C D

Figure 1.1: Rare-earth scandate crystals grown at the Leibniz Institute for
Crystal Growth (IKZ) using the Czochralski method (A: dysprosium scan-
date (DyScO3), B: neodymium scandate (NdScO3), C: samarium scandate
(SmScO3), D: gadolinium scandate (GdScO3)).

growth or spiral pattern and it leads to decreased yield of the usable single
crystal. The high operating temperatures require a very compact and good
insulated Cz setup, thus an experimental investigation of the spiral growth
is non-trivial. Therefore numerical methods were used to clarify the initia-
tion process of spiral patterns during growth of rare earth scandates. The
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complex interaction of flow generated by buoyancy, rotation and surface ten-
sion leads to the hypothesis, that heat and momentum changes in the melt
initiate the unwanted occurrence of spiral patterns when growing rare earth
scandate crystals. It must be noted, that not all rare earth scandates show
a spiral pattern (see fig. 1.1 (D)). Apparently, the heat transport, especially
via internal radiation, in the crystal during the growth plays a role in the
spiral growth mechanism [6].

1.2 Czochralski crystal growth
During the last century scientists like Kossel [7], Stranski [8], Volmer [9]
and other made their contribution to crystal growth. Many crystal growth
techniques have been developed, e.g. the Verneuil method, Bridgman method
or Czochralski (Cz) method [2–4]. In the present work bulk oxide crystals
grown from melt using the Cz method [10, 11] were investigated.
The Cz method is one of the most important techniques in crystal growth
which is named after the Polish scientist Jan Czochralski (b1885; d1953) [12].
Using the Cz technology single crystals of metals, semiconductors, oxides,
fluorides and other multicomponent materials can be grown [4, 13, 14]. The
basic idea is to dip a small seed crystal into the melt and pull out a single
crystal of defined diameter. The temperature differences cause a crystalliza-
tion of the melt and the crystal grows. Better results can be obtained, if the
crystal is being rotated, additionally [11]. This is because rotational forces
compete against the thermal forces, so that the crystal growth becomes more
stable. The second effect of rotation is the influence on the distribution of
dopants, which are added if the physical properties of the crystal should be
changed, e.g. in crystals for laser application [15, 16]. Applying this simple
procedure in connection with a certain temperature field, which is control-
lable by the position of the heat source, cylindrical single crystals with a
high degree of structural perfection are the result. However, it should be
noticed, that the Cz crystal growth technology is steadily being improved
and developed, even today [4, 14, 17–23].
Fig. 1.2 shows the principle sketch of a state-of-the-art Cz crystal growth
facility. The whole Cz apparatus is located in a water cooled steel vessel,
which is evacuated and filled with an quasi inert gas, e.g. nitrogen or ar-
gon. The crucible contains the melt. Therefore it has to be chemically and
physically stable up to very high temperatures (e.g. rare earth scandates
melt around 2100◦C). Usually platinum (up to ≈ 1650◦C) or iridium (up
to ≈ 2300◦C) crucibles are used, because of their good chemical stability
in oxide environments. For heating graphite heaters can be used achieving
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Figure 1.2: The principle sketch of a Czochralski (Cz) crystal growth facility.
(Ir: iridium, DyScO3: dysprosium scandate, RF: radio frequency)

very high temperatures, but they are unsuitable in oxide environments. For
oxides/scandates an inductive heating is suitable, only (see chapter 4). In
fig. 1.2 the radio frequency (RF) coils are shown. Their relative position
to the crucible and the gap height between the windings are controlling the
temperature field in the system. Of course, the used amount of generator
power determines the absolute temperature. Additionally, the temperature
distribution in the upper part above the melt is controlled by an active after-
heater. This affects directly the temperature field in the crystal and is used
to avoid mechanical crackings in the grown crystal. In contrast to the active
afterheater, a passive afterheater has no corresponding RF coils. The whole
system must be insulated by ceramics in order to keep the heat losses as min-
imal as possible and to be able to melt the oxide substances, without local
overheating of the crucible. However, an observation window is necessary,
which is an unwanted heat sink.
A seed holder is connected to the rotating and weighing facility. It fixes the
seed and has to be centre aligned as good as possible. This is not trivial in
practice, and is necessary to avoid unbalances. The weighing facility gener-
ates a weight signal which is used in connection with the generator power
signal for the automatic computer-assisted crystal growth control. The crys-
tal rotation typically ranges between 5-20 rpm. In fig. 1.2 an iridium baffle
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above the melt is shown, also. It can be inclined and reflects the heat from
the melt surface. It affects the temperature field and stabilizes the flow in
the melt, additionally. More about the Cz setup can be found in [24].
A typical Cz crystal growth run consists of 6 steps. Fig. 1.3 shows the first
three steps. Before starting the crystal growth the basic oxide substances
have to be molten (fig. 1.3, a). In the case of dysprosium scandate (DyScO3)
these are dysprosium oxide (Dy2O3) and scandium oxide (Sc2O3). Often,
because of smaller density of the raw substances, it is not possible to produce
enough melt at once. Therefore the first step must be applied several times
unless enough melt is produced.

(a) melting process (b) seeding process (c) crowning process

Figure 1.3: Sketch of first three principle steps in a Cz crystal growth run.

The next step needs a small single crystal for the seeding process (fig. 1.3,
b). The seed is cut out of another single crystal with certain crystallo-
graphic alignment. The seeding process is the most sensitive step in Cz
crystal growth, because the right temperature has to be found. Is the tem-
perature too high, the seed melts away, and is the temperature too low, the
melt surface starts to solidify. This process is done manually by the crystal
grower while observing the seed and the melt surface through the observa-
tion window (see fig. 1.2). After the melt has reached the melting point, it is
slightly overheated. Then the single crystal seed with the desired orientation
(e.g. 〈100〉 or 〈010〉), which is connected to the seed holder and the pulling
rod, is being moved down until it touches the melt surface. Afterwards, it
needs some experimental experience to adjust the temperature in order to get
a thermal equilibrium at the melt-crystal interface. Under suitable thermal
conditions, e.g. slightly undercooled melt, crystallization occurs around the
single crystal seed [24–26]. The crystal grows in the same crystallographic
direction as the single crystal seed. After this sensitive process the crystal
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can be lifted up with a certain pulling rate. Only a successful seeding process
will guarantee that further steps will result in a cylindrically formed crystal.
A meniscus is formed around the crystals edge at the melt-crystal interface
as the result of the balance of the surface tension against gravity.
In fig. 1.4 a shape of the liquid meniscus with a cylindrical crystal is shown.
Thereby, r1(t) and r2(t) are the time dependent radii of the meniscus curva-
ture, h(t) is the meniscus height and α is the contact angle.

α

h(
t)

r1(t)

r2(t)

solid (crystal)

liquid (melt)

Figure 1.4: Shape of the meniscus with a cylindrical crystal.

In the case of incomplete wetting the contact angle is α 6= 0 and is charac-
teristic for any substance. α depends mainly on the surface tension of the
melt and on the density difference between melt and crystal. Therefore, the
shape of the meniscus is determined mainly by the magnitude of the surface
tension of the melt and external forces (e.g. gravity). The meniscus shape is
a function of the contact angle α and the external forces and is described by
the solution of the Young-Laplace differential equation 1.1 (see also [20]).

∆p = σ

(
1

r1(t) + 1
r2(t)

)
(1.1)

Thereby, ∆p is the pressure difference across the phase interface (solid/melt)
and σ is the surface tension of the melt. Changing the crystal radius, the
meniscus shape changes, also. Therefore the crystal diameter control is very
important during crystal growth.
After a successful seeding process the crystal is grown with a very small
diameter, even smaller than the seed diameter, for a certain crystal length.
This is called necking and reduces the dislocation density in the crystal core
by forcing the dislocations to "grow out" to the surface of the crystal.
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Figure 1.5: RF generator power signal and weight signal example during a
DyScO3 automatic crystal growth run.

After the necking process the next steps are done automatically by the
computer-assisted software using the weight signal and the RF generator
power signal (see fig. 1.5). The crowning process (fig. 1.3, c) sets the desired
diameter of the resulting single crystal and is usually not critical.
The last three steps are shown in fig. 1.6. The main step of the Cz method
is the growth process (fig. 1.6, a). It takes about one week for a DyScO3
crystal and is done automatically. Normally this step is not critical, but
especially the rare earth scandates show sometimes unwanted spiral growth.
If this happens the crystal growth process has to be stopped.
After the crystal is grown completely almost all melt is consumed and the
crystal has to be moved slowly away from the melt. This process is called
tailing (fig. 1.6, b). The crystal is pulled faster and the diameter is becoming
smaller. In the last step the crystal is being removed and the system has to
be cooled down slowly (fig. 1.6, c).
From the physical point of view the fluid flow in the melt and the resulting
heat transport is the most important phenomenon in the Cz crystal growth
process. Fig. 1.7 illustrates the available flows in the melt, i.e. buoyancy
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(a) growing process (b) tailing process (c) removing and cooling process

Figure 1.6: Sketch of last three principle steps in a Cz crystal growth run.

driven flow, flow caused by rotational forces and the thermocapillary flow
(Marangoni flow) [27] at the melt surface caused by the temperature de-
pendence of the surface tension and the temperature differences at the melt
surface.
The electromagnetic field of the RF coils (see fig. 1.2) induces heat in the
metalic parts, i.e. iridium crucible and afterheater. Due to the non-uniform
heating of the crucible and the melt, there is a temperature difference across
the melt. The hot melt is lighter than cold melt with the consequence of
different fluid densities. According to the Archimedian principle, this leads
to buoyancy, which induces a convection. This type of convection is called
free, natural or buoyancy driven convection/flow (fig. 1.7, a).

(a) flow due to buoyancy (b) flow due to rotation (c) Marangoni flow

Figure 1.7: Cz melt flow mechanisms.

Due to the melt viscosity, the crystal rotation generates shear forces in the



10

melt, so that the melt is forced to move in the azimuthal direction (azimuthal
flow). Additionally, the rotation induces centrifugal forces, which drive the
melt radially outward. This is called forced convection (fig. 1.7, b).
Along the free melt surface (interface between melt and gas) a fluid motion
exists caused by the Marangoni effect [27], which occur due to a surface
tension gradient. Since the melt with higher surface tension exerts a higher
force to its surrounding than the melt with lower surface tension, the surface
tension gradient causes a flow away from regions of lower surface tension.
This gradient can be caused by concentration or temperature differences.
The latter dominates for the surface tension of crystal melts. The resulting
flow is called Marangoni convection (fig. 1.7, c). However, the flow pattern
near the free melt surface is more complex, since the melt-gas interface is not
planar and additionally there are heat losses.
The mass and heat transfer in the melt is affected by a combination of these
mechanisms and is characterized by the melt flow pattern. This pattern in-
fluences directly the quality of the crystal, its shape, size and the growth
rate [28, 29]. Therefore the hydrodynamic flow in the melt is very important
and is under intensive research since many years [30–32]. Also for semicon-
ductors, especially silicon, melt flow has been investigated, but can be very
different from oxide melt flow [33, 34].
Beside the arrangement of the crystal growth setup, applied temperature dis-
tributions and the flow pattern, also the shape of the melt-crystal interface
influences significantly the quality of the grown single crystal [35–38]. A de-
flected interface, convex or concave, can generate dislocations and other crys-
tal defects as well as thermal stresses in the crystal during cooling, which lead
to cracks and facets. Almost flat melt-crystal interfaces lead to best quality
single crystals grown by the Cz technique, therefore it is important for crys-
tal growers to find the corresponding operating conditions [39]. Sometimes
the crystal suddenly changes its shape and forms a spiral. Spiral growth can
take place on microscopic level [40–44] and on macroscopic level [45–49].
Rare earth scandates like DyScO3 are often affected by such spiral growth
[1, 5, 6, 30, 50], which is called cork screw growth also. The research in the
present work has been concentrated mainly on the analysis of the onset of
such spiral patterns during the growth of rare earth scandates.
The economy and the technological requirements of the industry force the
crystal growers to find the best operating conditions resulting in single crys-
tals of large size and best physical properties for a certain application. Using
the Cz technique the adjustable parameters are the rotation rate of the crys-
tal/crucible, pulling rate, temperature distribution, pressure, dopant profiles
and of course the geometry of the Cz arrangement, especially the shape and
the relative height of the RF coils and the setup of the insulation.
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1.3 Numerical simulation in crystal growth
A very complex interaction of different fluid flow phenomena (free convection,
forced convection and Marangoni convection) in the Cz melt strongly affect
the quality and size of the grown crystal [17, 27]. Especially the physical
behaviour close to the solidification interface, i.e. melt-crystal interface is
complicated, since there the incorporation of atoms in the lattice of the
crystal takes place (see fig. 1.8).

Figure 1.8: Crystal growth model after Kossel and Stranski [7, 8].

Therefore, the understanding of thermal conditions in the melt, crystal and
gas atmosphere and the heat and mass transport in the melt is absolutely
necessary for the optimization of the Cz crystal growth process. Good sin-
gle crystal quality means avoiding crystal stresses, a high degree of lattice
perfection, an uniformity of dopant distribution in the lattice as well as low
defect and impurity density. These all depends strongly on the melt fluid
flow and the thermal field in the Cz system. Since the transport of heat,
mass and impurities is determined by the melt convection, it is important to
be understood by the crystal grower. An interaction of crystal growers and
scientists doing numerical simulation is a prerequisite for an optimization of
the Cz crystal growth process. The crystal grower should have a good under-
standing of the fluid flow and other physical phenomena in the melt and the
computational analyst should have a good understanding of the technological
part of the Cz process.
Since it is a non-trivial task to perform experimental in-situ observations of
the fluid flow and other physical phenomena during a real Cz crystal growth
process, it is mandatory to use the methods of numerical simulation. Fig.
1.9 shows an example of calculated isotherms in a DyScO3 melt. Under low
temperature operating conditions (≤ 500◦C) it is possible to use small parti-
cles (tracers) of almost identical density as the melt in order to visualize the
melt flow [51–53]. For high melting temperatures as for rare earth scandates
(≈ 2100◦C) this is impossible. Beside the high temperatures, which reduce
drastically the range of available materials for experimental utilities, the ob-
servation of the Cz process is difficult because of the good thermal insulation
(ceramics) of the Cz crucible (see fig. 1.2), which is necessary for an uniform
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Figure 1.9: Example of isotherms in a dysprosium scandate (DyScO3) melt
with deformed melt-crystal interface as well as deformed free melt surface.

temperature distribution. The consequence is that despite of a large number
of experiments carried out to understand the transport phenomena during
the last decades [16, 30, 32, 54–60], the knowledge about the involved physi-
cal mechanisms during the melt convection is still insufficient, especially for
state-of-the-art crystal melts like rare earth scandates.
The economy motivates the science to present quick solutions for current
problems and to deliver single crystals of best crystallographic perfection
and largest size, since the demand for single crystals is increasing steadily.
The hope of solving the energy crisis using photovoltaic facilities based on
semiconductors and reducing the power consumption of light emitting devices
as well as the need for special oxide crystals for sensor and optoelectronics
and for epitaxial application is actual more than ever. Therefore for the
prediction and understanding of transport phenomena during crystal growth
the numerical simulation must be used to support the crystal growers. The
experimental difficulties at high temperatures, the large amount of parame-
ter combinations and the costs of an unsuccessful growth process force the
crystal grower to use results of numerical simulation. It can provide detailed
information about the melt flow, heat generation and mass transfer and lead
so to an improvement of the Cz process. This information can be partly
qualitative and partly quantitative. Therefore accurate modelling is neces-
sary and is a challenging problem due to the enormous complexity of the
Cz process. Furthermore, the lack of accurate physical properties of special
novice materials like rare earth scandates makes the simulation of its Cz
process more difficult. During the simulation of melt fluid flow and temper-
ature distribution the global mathematical problem, which determines the
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Cz mechanism, contains variables which are partly or at all interdependent.
They represent the temperature, pressure, melt flow velocity, heat quantity
and other variables. Furthermore the simulation is determined by crystal ro-
tation, pulling rate, different system geometries and other parameters, as well
as by boundary conditions like heat radiation and temperatures at different
model locations. The state-of-the-art numerical simulation of the Cz process
must incorporate all these dependencies. The task is the optimization of Cz
crystal growth enhancing the quality of the grown crystal.
Since there are several parameters in the simulation process the computa-
tional efforts can be very large for a realistic simulation [61, 62]. Therefore,
in this work bifurcation theories [63–66] were used in order to reduce the
range of possible parameter values. This way the parameter spaces, which
are physically and technologically not meaningful, were excluded. This re-
duces the computational time considerably. As far as known, the analysis of
the spiralling process of rare earth scandates by applying the hydrodynamic
stability analysis is new in this field.

1.4 Heat and mass transfer
1.4.1 Heat Transfer
A temperature difference between two points causes heat transport. There
are three important heat transfer mechanisms, which are conduction, con-
vection and radiation [67, 68]. Conduction and convection are corresponding
to a temperature in a medium (e.g. fluid). Thereby, heat transport due to
conduction occurs across a stationary fluid. By contrast, convection occurs
in a fluid, which is in motion. Thermal radiation is heat transfer by electro-
magnetic waves. There is external and internal thermal radiation. The latter
is important in materials with very high melting point, especially (e.g. rare
earth scandates) [6, 69, 70]. In general a mixture of all three heat transfer
mechanisms occur at the same time.

Heat radiation

Radiative heat transfer is based on energy transport through electromagnetic
waves. Every body whose temperature exceeds the absolute zero irradiates
heat. The Stefan-Boltzmann law (1.2) describes this emission of electromag-
netic waves, which carry energy away from an emitting body.

q = σε(T 4 − T 4
a ) (1.2)
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Here, ε is the emissivity, σ = 5.67 · 10−8W/m2K4 is the Stefan-Boltzmann
constant, T is the body temperature and Ta is the surrounding temperature.
A body can irradiate as well as receive radiation energy, so that net transfer
of energy is given from higher to lower temperatures. Since the growth of
rare earth scandates is done at a temperature around 2000 ◦ C, the portion
of transferred energy by radiation is very high (q ∝ T 4).

Heat conduction

Conductive heat transfer is based on the transfer of energy by vibrations at
atomic level. In a medium with a temperature gradient, there is a flow of
heat energy from regions of high temperature to regions of low temperature.
This is known as conduction heat transfer and is described by Fourier’s law
1.3.

q = −κ∇T (1.3)

(1.3) describes the heat flux vector ~q for a given temperature T and thermal
conductivity κ, which is an important material property during the simula-
tion of crystal growth processes. In heat transfer analysis of incompressible
fluids κ is often expressed as thermal diffusivity χ, which is the thermal con-
ductivity divided by the volumetric heat capacity. (1.4) gives this relation,
where c is the specific heat and ρ is the density.

χ = κ

ρc
(1.4)

Convective heat transfer

Convective heat transfer is a mechanism of heat transfer, which occurs due
to the motion of a fluid. For a fluid at constant pressure and density, the
heat transfer equation is given as

χ∇2T − ~v · ∇T = 0 . (1.5)

Two types of convection are mainly distinguished. Free convection is charac-
terised by a fluid motion driven by buoyancy. Forced convection takes place
when external forces (e.g. rotational forces) cause a fluid motion. In general
both types of convection occur at the same time (mixed convection). Con-
vective heat transfer is always connected with mass transfer, since there is
always fluid motion.
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1.4.2 Navier-Stokes equations
Navier-Stokes equations (1.6) describe the motion of a fluid element [68, 71,
72].

unsteady acceleration︷ ︸︸ ︷
ρ
∂~v

∂t
+

convective acceleration︷ ︸︸ ︷
ρ~v · ∇~v︸ ︷︷ ︸

momentum changes per element

= ρ~f︸︷︷︸
other external

forces

−
pressure gradient︷︸︸︷
∇p +

viscous forces︷ ︸︸ ︷
∇(µ∇~v)︸ ︷︷ ︸

stress divergence

(1.6)

Equation (1.6) is valid for incompressible flow of Newtonian fluids with cer-
tain viscosity and gives the equilibrium between accelerated unit mass (left-
hand side) and external forces acting on this unit (right-hand side). The
vector ~f represents external forces, such as gravity and centrifugal forces,
but also electromagnetic Lorentz forces, if the fluid contains charge carriers.
Gravitational forces cause natural convection, which is driven by buoyancy
and damped by the viscous forces in the moving fluid. Thereby, the viscosity
dissipates kinetic energy and the buoyancy force releases internal energy.
The Boussinesq approximation of (1.6) is commonly used in numerical anal-
ysis of fluid flow. It neglects the effects of density differences ∆ρ in fluids due
to spatial temperature differences. This is only allowed, if ∆ρ is sufficiently
small (max. 1%) compared to the overall density of the fluid, which is given
for many flows arising in nature and engineering [71]. In all terms of equation
(1.6) a mean density ρ0 is applied, except where in the term multiplied by
the gravitational vector g (buoyancy term) [68]. The gravity amplifies the
density differences, so that they cannot be neglected. In the gravity term
the state equation (1.7) for density is applied. T0 is a reference temperature
at which ρ0 is measured, βT is the thermal expansion coefficient and g is the
gravitational constant.

ρ = ρ0(1− βT (T − T0)) (1.7)

Based on (1.7) non-dimensional quantities are defined describing external
forces on fluid elements. The Rayleigh number Ra is a measure for the
buoyancy driven convection and is defined in (1.8).

Ra = Gr Pr = gβ

νχ
TmR

3 (1.8)

R is the characteristic length, χ is the thermal diffusivity and ν is the kine-
matic viscosity. Ra can be expressed as the product of the dimensionless
numbers Gr and Pr. The Grashof number Gr (1.9) describes the ratio of
buoyancy to viscous forces acting on the fluid.

Gr = gβTmR
3

ν2 (1.9)
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The Prandtl number Pr = ν/χ is the ratio of kinematic viscosity to thermal
diffusivity. It is a measure for heat transport in the fluid.

1.4.3 Continuity equation
The continuity equation describes the mass conservation and its differential
form is given as 1.10.

∂ρ

∂t
+∇ · (ρ~v) = 0 (1.10)

Here, ρ is the density of the fluid, t is the time and ~v is the fluid velocity. The
continuity equation simplifies for the incompressible fluid (ρ = constant) to
1.11.

∇ · ~v = 0 (1.11)

1.4.4 Marangoni convection
This convection type depends strongly on surface tension γ of a medium and
therefore occurs mainly in a thin layer close to the interface of two media
(e.g. crystal melt / gas). Concretely, it occurs when a gradient of fluid surface
tension exists. This gradient can be caused by concentration or temperature
differences. The Marangoni effect [27] due to temperature differences is called
thermocapillary convection, also. It is based on the shear stress balance at
the media interface as shown in (1.12).

µ1
∂u1

∂z
− µ2

∂u2

∂z
= ∂γ

∂x
= ∂γ

∂T

∂T

∂x
(1.12)

For the majority of pure liquids the temperature dependence of γ is negative
[73]. The Marangoni convection causes a fluid flow (mass transfer) from
regions of low γ (hot fluid) to regions of high γ (colder fluid).

1.4.5 Stream function and streamline
Streamlines are used as geometrical utility for the visualization of fluid flow
in 2D. Thereby, the velocity vector ~v = (u, v) of the velocity field is tangential
to the streamlines [66–68]. Therefore, they show the travelling direction of a
flow element at any point in time. Fig. 1.10 shows two competing eddies in
a Cz melt and illustrates how streamlines are plotted.
It can be seen, that

v

u
= dy

dx
(1.13)

is the slope of a streamline.
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Figure 1.10: Example of a streamline field of a melt flow in the Czochralski
(Cz) crucible and a velocity vector along a streamline.

A scalar function whose contour lines define the stream lines is called the
stream function ψ. It is defined in order to meet the physical phenomena. It
was defined as

u = ∂ψ

∂y
, v = −∂ψ

∂x
, so that dψ = ∂ψ

∂x
dx+ ∂ψ

∂y
dy = −vdx+ udy . (1.14)

Streamlines are paths of constant ψ. The difference between ψ values at any
two points is the volumetric flow rate (flux) through a line connecting these
two points and fulfills the 2D continuity condition (1.10, 1.11).

1.5 Numerical analysis
Numerical analysis is dealing with the study and construction of algorithms
for problems of continuous mathematics. This science predates the invention
of modern computers by many centuries, e.g. linear interpolation has been
used BC [74, 75]. Many important algorithms [76] like Newton’s method,
Gaussian elimination or Euler’s method remind one that many great math-
ematicians of the past had used numerical analysis.
Computations were performed by hand, thus value tables were generated
and stored in large books containing important formulas and other numeri-
cal data. Since the invention of powerful computers the numerical analysis
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has strengthened its position in all fields of engineering, physical and math-
ematical sciences.
Closed analytical solutions are available for simple mathematical problems.
More complicated problems, which arise in crystal growth, like the heat trans-
port equation or Navier-Stokes equations do not have in general an analytical
solution, and therefore only a numerical solution can be obtained.
Numerical analysis distinguishes between direct and iterative methods for
solving systems of equations. Direct methods are supposed to compute the
solution in a finite number of steps, while iterative methods do not terminate
the computation in a finite number of steps. The main difference between
these two methods is that the first would compute the exact solution if it
is applied in infinite precision arithmetic, while the iterative method only
converges to the exact solution in an infinite number of steps. Gaussian
elimination or the QR factorization for solving linear equation systems are
examples for direct methods [76]. Iterative methods like Newton’s method,
the Jacobi iteration or the Cholesky decomposition are applied to very large
problems [76, 77]. The generalized minimum residual method (GMRES)
or the conjugate gradient method (CGM) are direct methods in principle,
because after a very large number of steps the exact solution can be obtained.
However, practically these methods are used as iterative methods, because
the approximation of the solution is acceptable after several iterations [68,
76].
Practically, continuous problems must be discretized in such a way that the
solution of the discretized problem finally approaches the solution of the con-
tinuous problem. Thereby, the discretization is applied to the time and space
domain. A good example is the solution of ordinary differential equations and
more complicated partial differential equations, which always lead to solving
a large system of linear equations [78, 79] For example, the Navier-Stokes
equations are first discretized and then transformed into a finite dimensional
subspace (e.g. Krylov subspace). This process can be performed by the fi-
nite difference (FDM), finite volume (FVM) or finite element (FEM) method
[76, 77, 79].
In the process of solving a numerical problem many difficulties can arise and
influence the solution. Therefore the study of the generation and propagation
of errors in a numerical system is important. Roundoff, truncation as well
as discretization errors can influence drastically the solution. The applied
method must be numerically robust and stable, and the solution is supposed
to be discretization independent [76]. Therefore it is important to understand
the internals of the applied numerical method for an effective interpretation
of the obtained numerical solution.
Numerical analysis is a great help for modelling systems, for which simple
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analytic solutions are not available. Thereby, the verification and model
validation of applied numerical methods are of crucial importance.
The solution structure of the fluid flow in a Czochralski (Cz) melt can be
very complicated. Multiple solutions (see fig. 1.11) are possible and are not
simple to detect [1, 30]. This solutions can be stable, unstable or oscillatory
(see also fig. 2.5 in subsection 2.1.3). The latter is assumed to trigger the
crystal spiral growth.

Re

Ekin

Figure 1.11: Example of multiple solutions (rotational Reynolds number Re
vs. kinetic energy Ekin of the Cz melt flow).

Conventional software packages for modelling and simulation of fluid flow
processes contain generic modules, which often perform direct numerical sim-
ulation only, detecting steady states, which may not reflect realistic solutions.
Additionally, often such packages introduce special stabilizing elements (e.g.
numerical viscosity, upwinding) [78, 79], which make the whole method nu-
merically more robust, but applicable only for weak non-linearities. Both is
dangerous, because important information of the solution space can get lost,
thus the results of numerical simulation, especially of generic software pack-
ages, must be considered critically. Multiple solutions can be detected by
a deep analysis of the solution structure only. Thereby, bifurcation analysis
and path following algorithms can help considerably [63, 65, 66].

1.5.1 Finite difference vs. finite element method
The finite element method (FEM) [76, 78, 79] is applied for solving partial
differential equations (PDE) approximately. The approximation replaces the
PDE by simpler functions (interpolation functions) over used finite elements
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(e.g. 1st or 2nd order polynomials). FEM is applied in many disciplines
including fluid dynamics [68].
Another method for solving ordinary and partial differential equations is the
method of finite differences (FDM) [76, 79], which is the most simple numer-
ical method. The problem domain is discretized in a finite number of grid
points. At each grid point the derivatives are approximated by differences,
so that the PDE equations are replaced by a system of difference equations.
The FDM method can be applied to almost all problems, but the main re-
strictions of this method encounter when modelling irregular geometries or
setting special boundary conditions [68, 79].

Figure 1.12: Finite difference (left) and finite element (right) discretization
of the Czochralski (Cz) phase interface melt/crystal.

In contrast to the FDM method, which arranges the domain as an array
of grid points, the FEM method [78] is modelling the problem domain with
many subregions (elements) of any size, which are interconnected at interface
points (nodes, nodal points or boundary points). This allows for representing
very complex shapes. Fig. 1.12 shows a cutout of the Czochralski (Cz) melt-
crystal phase interface comparing FDM and FEM grids.
The main problem with finite difference grids occurs on deformed boundaries
(see fig. 1.12 (left)), so that the grid cannot modell the domain boundary
exactly (aliasing effect) [79]. The big advantage of the FEM grid is that it can
help itself with a wide variety of elements (e.g. triangle or rectangle), which
can be assembled user-defined, so that the approximation is much better
then with the FDM grid (see fig. 1.12 (right)). Therefore in the current
work the FEM method was used for approximation of the Cz process under
consideration. The degree of approximation depends on the size and number
of elements in the grid and on the used interpolations functions, which at
least have to satisfy the requirement for continuity of the function itself and
its derivatives across adjoining element boundaries. The main procedure
steps of applying the FEM-method is given in the following [78].
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1. Continuum discretization
First, the continuous domain describing a problem is divided into ele-
ments. The type of the elements (e.g. L3/2, T6/3 or Q9/4) and the
number of elements depend on the degree of the geometrical deforma-
tion and on the physical processes, which have to be analysed. Different
element types may be mixed. The resolution of the numerical analysis
depends strongly on the grid size. Wrong grid size can cause wrong
results. On the other hand the solution has to be grid independent.
Especially, when the solution changes rapidly in a domain, the number
of finite elements has to be increased in order to resolve this part of the
domain. Thus, the analyst has to balance the grid properties with the
demanded solution precision. In the present work the advanced FEM
package ENTWIFE [80] was used for numerical simulations. It allows
for a very flexible discretization with more than 50 different element
types.

2. Assignment of interpolation functions
Depending on the type of the used element certain interpolation func-
tions are applied, which are usually polynomials, because of their sim-
ple integration and differentiation, respectively. The polynomial degree
depends on the used element types. In ENTWIFE the interpolation
functions for each element type are predefined, but can be also user
defined.

3. Generation of local matrix equations
The matrix equations for each element have to be determined explor-
ing the properties of each element. For this purposes the direct, the
variational or the weighted residuals approach can be used [79]. In the
present work the latter approach has been applied, since it averages
the variation from the solution, so that the approximation is better on
average then that of the first two approaches.

4. Assembling the global system matrix
All the local matrix equations of each element have to be assembled to a
global matrix describing the behaviour of the overall system. Thereby,
the nodal values at the boundary nodes (element interfaces) must be
the same.

5. Setting constraints
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For completing the global matrix, boundary conditions must be set.
Boundary conditions can be described by functions, distributions, gen-
eralized fluxes, nodal laws and other user defined types. The EN-
TWIFE package supports many possibilities for setting the boundary
conditions [81]. Results of previous computations can be used as initial
values.

6. Invoking the solver
In this step the unknowns of the steady state or time dependent prob-
lem, which are part of the global linear equation system are deter-
mined by solving this equation system. Usually iterative solvers (e.g.
Newton-method, CGM) are applied [68, 76]. ENTWIFE supports a it-
erative Newton-Raphson solver. Thereby, the iterations can be solved
with the direct solver MUMPS (MUltifrontal Massively Parallel Solver)
[82]), which is very fast, but needs a huge main memory. In contrast,
iterative methods need less main memory.

1.5.2 Galerkin method and weak form
There are many Galerkin class methods [76, 79], which differ in the applied
approximation method, and are used to convert a continuous operator prob-
lem to a discrete problem. In the present work this are partial differential
equations (e.g. Navier-Stokes equations). The Galerkin method is the basis
for the finite element method and is used to transform a strong form formula-
tion into a weak form formulation of a PDE. This is needed by the ENTWIFE
preprocessor called ENTCODE (see. subsection 1.5.4). For sufficient often
differentiable function f defined on the open set S the strong form would be
(1.15).

L(x, ∂)f(x) = 0, ∀x ∈ S (1.15)

After multiplication with every smooth test function φ with compact support
in S and integration a weak solution (1.16) would be the result.∫

S
f(x)L(x, ∂)φ(x)dx = 0, ∀x ∈ S (1.16)

For the axisymmetric case, which was considered for calculations in chapter
2 and 4, all variables are independent of the azimuthal coordinate, i.e. ϕ (see
(1.17)).

f = f(r, z), f = ~v, T, p (1.17)



23

For the transition from the strong form to the weak form, first the governing
equations and boundary conditions have to be written in cylindrical coordi-
nates (r, ϕ, z). In case of the fluid flow these are the Navier-Stokes equations
(1.18, 1.19) with the Boussinesq approximation (1.20).

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν(∆u− u

r2 ) (1.18)

u
∂v

∂r
+ w

∂v

∂z
− uv

r
= ν(∆v − v

r2 ) (1.19)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν∆w + gβ(T − T0) (1.20)

Here, ∆ = ∇2 = 1
r
∂
∂r

(r ∂
∂r

) + 1
r2

∂2

∂ϕ2 + ∂2

∂z2 is the Laplacian operator, u,v,w
are flow velocity components, p is the hydrodynamic pressure, ρ is the den-
sity, g the gravitational accelleration, ν is the kinematic viscosity, T is the
temperature and T0 is the reference temperature, respectively.
By integration of (1.18−1.20) and multiplying with weighting function Φ the
weak form becomes (1.21).

∫ ∫ [
u
∂u

∂r
+ w

∂u

∂z
− v2

r
+ 1
ρ

∂p

∂r
+ ν(∆u− u

r2 )
]
Φurdrdz

+
∫ ∫ [

u
∂v

∂r
+ w

∂v

∂z
− uv

r
− ν(∆v − v

r2 )
]
Φvrdrdz

+
∫ ∫ [

u
∂w

∂r
+ w

∂w

∂z
+ 1
ρ

∂p

∂z
+ ν∆w + gβ(T − T0)

]
Φwrdrdz = 0

(1.21)

1.5.3 Approaches in bifurcation methods
From a graphical point of view bifurcation means a branching of a struc-
ture (see. fig. 1.13). But why is it suggestive to apply the bifurcation in
mathematics, which describes physical problems arising in crystal growth?
In systems, which can be described using linear dynamics (e.g. ordinary
differential equations), all solutions can be built from fundamental solutions.
But, there are no fundamental solutions in non-linear dynamics. In most
cases no analytic solution is possible and thus there is no a-priori knowledge
about the solution structure. In fact dynamic systems often show a complex
solution manifold and ambiguity. Therefore it is not reasonable to obtain
an overview of the global solution of a non-linear system using the direct
numerical simulation [30]. Additionally, the direct numerical simulation can
miss important solution branches of the non-linear dynamic system. So,
before starting a deep analysis of a system it is important to detect parameter
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Figure 1.13: Sketch of a bifurcation example.

values, which lead to system instability, in order to decrease computational
efforts. This analysis can be performed using bifurcation methods [63, 65,
66, 83] and should help to answer the following questions:

• What is the qualitative solution behaviour of the system?
• Which and how many invariant sets do occur?
• Which of them are un/stable?
• How behave invariant sets while changing the control parameter(s) of

the system?

Bifurcation and branching processes correspond to a qualitative change of
the system [84]. Further examples are the electrical membrane potential of
nerves or fluttering of a flag, but the undesired spiral patterns during crystal
growth [1, 30], also.
The mathematics behind bifurcation analysis is very complex and compli-
cated [63, 65, 85]. There are different types of local bifurcation, which are
listed below:

• saddle node bifurcation / fold bifurcation
• transcritical bifurcation
• pitchfork bifurcation
• period doubling bifurcation / flip bifurcation
• Hopf bifurcation
• Neimark bifurcation / secondary Hopf bifurcation.

Local bifurcations can be analysed entirely by changes of the local stability
properties, i.e. changes of equilibria/fixed points, periodic orbits or other
invariant sets of parameters which exceed critical thresholds. By contrast,
the global bifurcations occur when larger invariant solution sets of the system
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compete with each other [83]. They cannot be detected purely through a
stability analysis of the fixed points. This work was mainly dealing with the
analysis of Hopf bifurcation, fixed points and limit cycles [63, 65, 85, 86] in
chapters 2 and 4. There are two types of Hopf bifurcation, supercritical (fig.
1.14) and subcritical bifurcation (fig. 1.15).
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Figure 1.14: Sketch of different supercritical Hopf bifurcations [87].

y is representing the solution of the dynamical system (e.g. the kinetic energy
of the Cz melt flow) and λ is the control parameter (e.g. the rotational
Reynolds number Re). λ0 is a critical threshold value of the system. The type
of the bifurcation depends on the change direction of the control parameter
[83]. Defining an increasing control parameter λ "supercritical" means that
the solution orbits occur after the onset of bifurcation and "subcritical" means
that the solution orbits occur before the onset of bifurcation.
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Figure 1.15: Sketch of different subcritical Hopf bifurcations [87].

In fig. 1.14 (A) the branch of stationary solutions extends itself beyond the
critical value λ0, which is not stable for λ > λ0. The point for λ = λ0
is called Hopf bifurcation point. Applying an analysis of the stability of
systems equilibrium, which leads to an extensive eigenvalue problem, the
bifurcation point and its type is found [30, 31, 65]. At this point the Jacobian
has at least one pair of eigenvalues with a zero real part [65]. At the Hopf
point a branch of periodic solutions arises, i.e. periodic orbits. These are
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illustrated as vertical lines in fig. 1.14 (B). In the phase space the periodic
orbits form a paraboloidal similar shape. Decreasing the control parameter
λ both branches merge at the Hopf point to one stationary solution and the
amplitude of the periodic orbits vanishes.
Fig. 1.15 (A) shows the subcritical case for which locally no stable solution
exist for λ < λ0. But, globally this local situation of fig. 1.15 (A) often
extends itself to the case in fig. 1.15 (B). The branches of unstable periodic
orbits bend back and so boost the stability for λ > λ1. For λ1 < λ < λ0 the
system is even "bistable". The analysis of such multiple solutions occurring
during the Cz crystal growth was done in chapters 2 and 4.

Methodology for computing continuation diagrams

The ENTWIFE software package (see section 1.5.4) allows for calculating
solution paths using the pseudo-arclength method introduced in [88]. Con-
sidering the nonlinear system

F h (xh, λ) = 0 x ∈ RN , λ ∈ R, (1.22)

where is assumed, that F h is the result of the discretization of a nonlin-
ear partial differential equation (PDE). The subscript h which denotes the
discretization of a system is not used in the following for easier reading of
equations. A solution set S given by

S :=
{

(x, λ) ∈ RN+1 : F (x, λ) = 0
}

(1.23)

is calculated by finding a discrete set of points on S. Taking (x0, λ0) as
an initial guess, a point close to (x0, λ0) can be computed by the Newton’s
method, if Fx0 = Fx (x0, λ0) is nonsingular. In this case F (x, λ1) = 0 is
solved, where λ1 = λ0 + ∆λ with a steplength ∆λ. According to the implicit
function theorem the Newton’s method will converge for sufficiently small
∆λ. At a fold point on S this simple method will fail [65]. This is the
reason why the pseudo-arclength method is introduced in [88]. Considering
an arc on S (see fig. 1.16) smooth and containing either regular points or fold
points, there is an unique tangent vector τ at each point of this arc. Letting
t be a parameter describing the arc with (x(t), λ(t)) ∈ S, the unit tangent
at (x0, λ0) is denoted by τ 0 =

(
dx
dt

(0), dλ
dt

(0)
)

:=
[
cT , d

]T
. The differentiation

of F (x(t), λ(t)) = 0 with respect to t results in 1.24.

Fx (x(t), λ(t)) dx
dt

(t) + F λ (x(t), λ(t)) dλ
dt

(t) = 0 (1.24)
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Figure 1.16: Solution set S with a tangent.

Using the unit tangent vector τ 0 and 1.24 an extended system can be defined
as

H (y, t) =
[
F (x, λ)
G(x, λ, t)

]
= 0, (1.25)

where is y = (x, λ) ∈ RN+1 and G(x, λ, t) = cT (x−x0)+d(λ−λ0)−∆t is a
plane perpendicular to the unit tangent vector τ 0 in a distance ∆t = (t− t0)
from t0 (see fig. 1.16). 1.25 is a projection of (x, λ) onto the tangent vector

τ 0 at y0 = (x0, λ0), so that Hy(y0, t0) =
[
Fx

0 F 0
λ

cT d

]
. Since τ 0 ⊥ G

and τ 0 ⊥
[
Fx

0,F 0
λ

]
, Hy(y0, t0) is nonsingular and according to the implicit

function theorem there exist solutions for H(y, t) = 0 for t close to t0. For
sufficiently small ∆t the Newton’s method will converge resulting in results
which are points in the plane G. Because this solution path method is
taking the length along the tangent vector τ 0 at the point (x0, λ0) as a
parameter, it is called pseudo-arclength continuation [88]. In summary it is
a "predictor/corrector-method" approaching along the tangent vector τ with
steps of the length ∆t to predict a point (x, λ), which is corrected by solving
1.25 by Newton’s method. The applied pseudo-arclength continuation is
described more detailed in [65] and in references cited therein.
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The fig. 1.17 is used to explain the methodology for computing continua-
tion diagrams with the ENTWIFE software package. It plots the solution of
the system (e.g. Czochralski melt flow) against values of a control parameter.
Typically, for Czochralski melt flow it is the rotational Reynolds number cor-
responding to the crystal rotation rate and the temperature difference over
the free melt surface corresponding to the thermal gradients in the melt.
Due to the strong non-linearity of a Czochralski melt flow system, usually
it is not possible to compute a continuation diagram with a single run of
ENTWIFE. The solution "a" is carried out for a very small control parameter,
where the system is slightly non-linear, only. The subsequent solutions are
then computed with a fixed parameter step size ending the first software
run in the solution "b". There the solver fail to converge for higher values
indicating either a too large parameter step or a limit point.
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Figure 1.17: Sketch of computing a continuation diagram.

In the second software run the solution "b" is recomputed using the pseudo-
arclength continuation [65, 89, 90]. The parameter step size is adjusted
automatically. In this way the solutions "b" to "e" are obtained. The Jacobian
determinant was positive for solutions "a" to "c", but it changes its sign to
negative for solutions "d" to "e". This indicates a change in the stability of
the solution, i.e. a limit point is located between solutions "c" and "d".
During the third run the solution at "e" is restarted with the pseudo-arclength
continuation algorithm and solutions "e" to "j" are obtained. The sign of the
Jacobian determinant changes from negative to positive between "f" and "g".
This is corresponded with a change of stability and a limit point close to "f".
Further change in sign of the Jacobian determinant occures between "h" and
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"i", which is connected to a possible bifurcation of a new branch of solutions.
Therefore the solution "p" is used as initial guess for the ENTWIFE algorithm
for locating bifurcation points. This converges at the bifurcation point at "k".
In the last software run the solution is restarted at "k" and the solution "l" is
found. Subsequently, the continuation algorithm computes the solutions "l"
to "m".

1.5.4 The ENTWIFE software package
In the present work ENTWIFE [80, 81, 91] was used for numerical calcu-
lations. It is a finite-element (FEM) software package for solving systems
of second-order differential equations (problems of laminar fluid flow and
heat transfer) and is written in FORTRAN. In addition to a built-in equa-
tion library relating to fluid flow and heat transfer processes, ENTWIFE
accepts user defined equations, which allow for solving any set of user sup-
plied equations of the above mentioned type. This is an important advantage
in contrast to other similar software packages, which can only solve built-in
equations.
ENTWIFE supports the analysis of nonlinear problems that may show bifur-
cation phenomena. Different solution branches, various bifurcation points,
and paths of bifurcation points can be computed. The stability of previously
computed solutions using eigenvalue techniques can be examined. The main
features of the ENTWIFE package are listed below:

• mixed physics modelling of non-linear systems in one, two or three
dimensions

• grid generation includes local refinement, deletion, redistribution,
bisection, element re-numbering and matching to complicated bound-
aries

• over 50 different finite element types
• different time-stepping algorithms including Crank-Nicolson and Gear’s

method
• bifurcation algorithms including the determination of Hopf-Points (pe-

riodic orbits)
• many output options including plots of vectors, tensors, contours,

streamlines and pathlines in 2D and 3D as PostScript files.

ENTWIFE is used in connection with the pre-processor ENTCODE, which
provides an interface to algebra packages (Mathematica [92] and Maple [93]).
It allows to work with almost any set of equations written as weak form.
The external algebra package helps for generating FORTRAN subroutines,
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which determine the corresponding Jacobian, which is needed by the Newton-
Raphson iteration within the ENTWIFE package. Fig. 1.18 shows the prin-
ciple procedure for application of the ENTWIFE package.

ENTWIFE step

ENTCODE step

• FEM equation per element
• generation of FORTRAN subroutines

• FEM grid generation
• element assembling

• post-processing of results

• incorporation of boundary conditions
• solving the non-linear equation system
by a Newton-Raphson iteration (every
iteration requires the solution of a
sparse linear equation system)

differential
equation

L(x) = 0

formulation

user input

Galerkin method
∫
Ω

L(x)Φ(x)dx = 0

weak form

Φ(x): weighting function

Figure 1.18: Principle ENTWIFE procedure.

ENTWIFE (release 7.3) runs under different UNIX based operating systems,
e.g. Solaris or Linux. After copying and uncompressing the ENTWIFE
package, it has to be recompiled for the target platform. For this purpose
the best compiler optimization switches should be set, because this way the
performance can be increased considerably. This depends strongly on the
used hardware, especially the kind of cache and main memory management.
Setting proper compiler switches about 3-5 times faster simulation runs could
be performed. Detailed installation instructions of ENTWIFE can be found
in [91].
ENTWIFE is controlled by an input data file, which has a logical tree-like
structure using the special free-format structured input language TGIN [94].
The input data is divided into commands and keyword data. Commands
correspond to options and keyword data correspond to numerical data input
for a given option. Thereby, the command may have subcommands and the



31

order of commands is important.
Very detailed description of all ENTWIFE features can be found in [81]. Be-
side many advantages the main disadvantage of ENTWIFE is the missing
graphical user interface, which makes the modelling step as well as the inter-
pretation step of calculated results uncomfortable. The input data files can
be very large, especially for complex geometries and if a deep interpretation
of results is needed. But the fact, that all names of commands and keywords
are self-explanatory makes the generation of input files easier. The main ad-
vantage of ENTWIFE is the extension possibility. So, it is extended with an
interface to the MUMPS solver (MUltifrontal Massively Parallel Solver) [82],
which makes the solution of large problems very efficient. The disadvantage
of this solver is the need of very large main memory size, which increases
rapidly with the grid size and number of processors.
In this work ENTWIFE was used for the calculation of all governing equa-
tions of the modelled problems. The discretized equations were solved using a
Newton-Raphson method [79] in connection with the direct solver MUMPS.
For time dependent equations the Crank-Nicolson algorithm [79] as well as
Gear’s method [95], which provides adaptive time-stepping, was used.



Chapter 2

Numerical analysis of a
simplified crystal growth
process

2.1 Verification of the applied numerical code
Before modelling a real Czochralski (Cz) system using DyScO3 properties,
the applied numerical code had to be verified. For the studies performed
in this work the influence of a baffle, of the solid/liquid interface form, of
the free surface form or of other parts of a real Czochralski setup (see fig.
1.2 in chapter 1) are important. However, for verifying the applied numeri-

Figure 2.1: Simplification of the Czochralski (Cz) process by exploiting the
axial symmetry.

32
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cal code the model was simplified. Fig. 2.1 shows the simplification of the
Cz process. Only the melt domain was considered. By exploiting the axial
symmetry of the setup only one half of this domain had to be taken into
account (green marked domain in fig. 2.1). Furthermore, the melt has been
considered as a rectangle. The simulated hydrodynamic model of the Cz
melt flow is shown in fig. 2.2. It considers flow in a non-uniformly heated
cylindrical crucible, driven by buoyancy convection, thermocapillary convec-
tion and crystal rotation, governed by the Navier-Stokes equations in the
Boussinesq approximation, the continuity and the temperature equation, re-
spectively (see [30, 96]). Boundary conditions were set for the symmetry
axis, the melt-crystal interface, the free melt surface, the crucible wall and
the crucible bottom as well. The right part of fig. 2.2 shows an example
of the applied grid containing 24x24 Q9/4 elements. However, grids with
up to 200 elements of the same type in each direction were applied. Using
non-equidistant distribution the density of elements was higher at the sym-
metry axis, at the crucible bottom, at the melt/crystal interface and at the
free melt surface in order to increase the spatial accuracy there. Further
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Figure 2.2: Simplified Cz model with corresponding boundary conditions and
applied grid (right).

simplifications of the model were flat solid/liquid interface and flat free melt
surface. Effects of radiative heat transfer were not considered in this model.
The parabolic boundary condition of the temperature at the bottom of the
crucible was derived from experimental measurements [35]. The used dimen-
sionless parameters were the Grashof number Gr (2.1), the Prandtl number
Pr (2.2), the modified Marangoni number Ma (2.3), the Marangoni number
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Mn 2.4, the rotational Reynolds number Re (2.5), the Biot number Bi (2.6)
and the aspect ratio Ar (2.7) of the crucible height H to its radius R.

Gr = gβ∆TR3

ν2 (2.1)

Pr = ν

χ
(2.2)

Ma =

∣∣∣ dσ
dT

∣∣∣∆TR
ην

(2.3)

Mn = MaPr (2.4)

Re = ωR2

ν
(2.5)

Bi = hR

λm
(2.6)

Ar = H

R
(2.7)

The model in fig. 2.2 considers a melt flow with kinematic viscosity ν,
density ρ and thermal diffusivity χ in a cylindrical crucible 0 ≤ r ≤ R,
0 ≤ z ≤ H, where r,z are cylindrical coordinates. The temperature de-
pendence of the surface tension γ = dσ

dT
was assumed to be linear. For the

non-dimensionalization scalings of (2.8) were applied. Additional scalings
R2/ν and ρ(νR)2 for time and pressure, respectively, were used.

r := r

R
z := z

R
u := uR

ν
T := T − Tm

Tc − Tm
= T − Tm

∆T (2.8)

The Grashof and Marangoni number were defined using the temperature dif-
ference ∆T (measured in K) between the crucible wall and the crystal with
the crucible radius chosen as the characteristic length (see (2.8)). This way
it was easier to alter the crystal radius as was done in the recent experiments
of Teitel, Schwabe and Gelfgat [97]. For each model boundary certain con-
ditions for the flow velocity and the melt temperature have to be fulfilled.
At the symmetry axis the r-component and at the melt free surface the z-
component of the velocity vector vanishes. At other boundaries the r- and
the z-component were zero. At the liquid/solid interface, i.e. melt/crystal in-
terface, the crystal, which was vertical to the melt surface, was being rotated
and has influenced the melt flow velocity in the ϕ-direction. At this bound-
ary the condition for the temperature was normalized to zero, while their
maximum was located at the crucibles wall (r = 1). For the crucible bot-
tom an experimentally determined parabolic temperature distribution was
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set. The influence of the thermocapillary convection at the free melt sur-
face was modelled by the Marangoni number. All other influences which are
available at the free melt surface, such as gas convection and other energy
dissipative influences were described comprehensively by the Biot number.
This boundary condition ∂T

∂z
= Bi T at the free melt surface assumes that

the ambient temperature is equal to the temperature at the melt/crystal in-
terface. This assumption is wrong for real crystal growth conditions, but it
corresponds to the model experiments done in [35]. For the verification of
the numerical code properties of a sodium nitrate (NaNO3) melt, which are
well known [35], were used (see tab. 2.1). Defining ∆T = Tc − Tm as the
temperature difference between the crystal and the crucible wall, and using
the material and geometric data given in [35], the governing parameters were
Pr = 9.2, Ar = 0.92, Rc = 0.5 (crystal to crucible radii ratio), Bi = 0.1,
Gr = 1.90476·105 ∆T andMa = 5.8571·102 ∆T (see tab. 2.1). Here ∆T was
measured in K. In the following calculations the dimensional temperature
difference ∆T was considered as a critical parameter, since both important
parameters, Grashof and Marangoni number, depend on ∆T (see (2.1) and
(2.3)). An additional critical parameter was the rotational Reynolds number
Re, which corresponds to the crystal rotation rate Ω. The applied numerical

Property Symbol Value Units
melting point Tm 307 K
density ρ 1.904 g cm−3

temperature dependence of ρ dρ/dT −1.25 · 10−3 g cm−3K−1

dynamic viscosity η 2.78 · 10−2 g cm−1 s−1

kinematic viscosity ν 1.46 · 10−2 cm2 s−1

surface tension σ 119 g s−2

temperature dependence of σ γ = dσ
dT −5.1 · 10−2 g s−2K−1

specific heat capacity cp 1.88 J g−1K−1

thermal diffusivity χ 1.58 · 10−3 cm2 s−1

vol. expansion coefficient β 6.6 · 10−4 K−1

thermal conductivity (melt) λm 5.65 · 10−3 W cm−1K−1

thermal cond. (solid ≈ 200°C) λs 7.5 · 10−3 W cm−1K−1

Prandtl number Pr 9.2 −
Marangoni number Ma 5.8571 · 102 ∆T −
Grashof number Gr 1.90476 ·105 ∆T −
Biot number Bi 0.1 −

Table 2.1: Sodium nitrate (NaNO3) melt properties taken from [35].

approach was based on a finite element discretization containing up to 200
x 200 nonuniform quadrilateral elements with biquadratic interpolation for
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the velocity and temperature field and bilinear interpolation for the pressure
(Q9/4 elements). The advanced FEM package ENTWIFE [80] has been used
for solving this problem. The calculated results were compared with results
of the Israeli research group for the same model problem, but using another
numerical code (see [1]). This approach uses a finite volume code, which was
also of second order accuracy and had used staggered and stretched grids
with up to 1000x1000 nodes. Both codes allows for direct calculation of
steady flow states and time-dependent solutions. For the following calcula-
tions the parameters listed in table 2.2 and the simple grid shown in fig. 2.2
were used.

Description Symbol Value Units
crucible radius r 38 mm
crucible height h 60 mm
crystal radius rc 19 mm
melt height hm 55.2 mm
normalized melt height H 0.92 −
normalized crucible radius R 1.0 −
crucible aspect ratio Ar 0.92 −
crystal to crucible radii ratio Rc 0.5 −
gravity g 9.81 m/s2

crystal rotation Ω 0..30 1/min
angular frequency ω = 2π·Ω 0..188 1/min
rotational Reynolds number ≈ 100 · Ω 0..3000 −

Table 2.2: Operating parameters used for calculations of the sodium nitrate
(NaNO3) melt flow.

2.1.1 Steady state simulations
The parameters temperature difference across the free melt surface ∆T ,
which is incorporated into the Grashof and Marangoni number, and the ro-
tational Reynolds number Re influence the driving forces of the melt flow.
Therefore these parameters were varied during the following calculations.
Fig. 2.3 shows calculated steady state melt flows for ∆T = 1.0K and Re = 0
(a), Re = 1000 (b) and Re = 5000 (c). The frames in the left column of
fig. 2.3 are contour plots of the stream function. The frames in the middle
column show the isotherms in the melt and the frames in the right column
show the distribution of the azimuthal velocity. The left border of each frame
corresponds to the symmetry axis. All lines are equidistant between the max-
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imum and minimum values. These steady state results were also calculated
by the Israeli research group (see [1]) applying the finite volume method on
a 200x200 streched grid. The results shown in fig. 2.3 are qualitatively the

stream function isotherms azimuthal velocity

(a)

(b)

(c)

Figure 2.3: Streamlines, isotherms and azimuthal velocity for ∆T = 1K and
(a) Re = 0, (b) Re = 1000 and (c) Re = 5000.

same compared to the results of the Israeli research group [1], which indicate
that the two independent codes (FVM, FEM) deliver the same results for the
same problem. Tab. 2.3 is showing a quantitative comparison of the charac-
teristic melt flow properties. These are the minimum and maximum values of
the stream function at their locations Ψmin/max(r, z), the minimum and maxi-
mum values of the radial velocity at the cross section r = 0.5, i.e. at locations
umin/max(r = 0.5, z), the minimum and maximum values of the axial velocity
at the cross section z = 0.5Ar at their locations wmin/max(r, z = 0.5 , Ar),
the total kinetic energy of the melt flow Ekin (2.9), the Nusselt numbers at
all boundaries Nubottom (2.10), Nuwall (2.11), Nucrystal (2.12) and Nusurface
(2.13). Here, H is the melt height, R the crucible radius and Rc the radius
of the crystal. The maximum and minimum values of the temperature are 0
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and 1 and of the azimuthal velocity are 0 and Re, respectively.

Ekin = 2π
H∫

0

R∫
0

(
u2 + v2 + w2

)
rdrdz (2.9)

Nubottom =
R∫

0

[
∂T

∂z

]
z=0

rdr (2.10)

Nuwall =
H∫

0

[
∂T

∂r

]
r=1

dz (2.11)

Nucrystal =
Rc∫
0

[
∂T

∂z

]
z=H

rdr (2.12)

Nusurface =
R∫

R−Rc

[
∂T

∂z

]
z=H

rdr (2.13)

Nubottom +Nuwall +Nucrystal +Nusurface = 0 (2.14)
It is seen that results obtained by the two codes are reasonably close. How-
ever, they did not coincided even within the second decimal digit. This in-
dicates the influence of different discretization types, which also has affected
the stability results shown later. When the crystal has not been rotated
(Re = 0, fig. 2.3 (a)) the flow was driven by buoyancy and thermocapillary
forces, which created an anti-clockwise convection. This anti-clockwise mo-
tion would be created by each of the two forces separately, so that the two
driving mechanisms enhance each other. This flow pattern was characterized
by an intensive descending flow near the axis. This region is interpreted some-
times as a "cold jet" and is a source of the experimentally observed so-called
"cold plumes" and "cold jet" instabilities [35, 97]. There is also a velocity
boundary layer near the crucible wall. These two regions with rapid varia-
tion in the velocity and temperature made the calculations very demanding
with respect to the numerical accuracy. With the increase of crystal rotation
the action of centrifugal forces could be observed, which had the tendency
to create a circulation in the clockwise direction, opposite to the thermally
induced convective circulation (fig. 2.3 (b)). With Re = 1000 the domain
was splitted into two parts, the clockwise one located below the crystal,
which was driven mainly by the centrifugal force, and the anti-clockwise one
located below the free surface, which was driven mainly by buoyancy and
thermocapillary forces. In this case the total kinetic energy and the total
heat transfer through the crucible were both reduced compared to the case
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of a non-rotating crystal (see tab. 2.3). Regions of a rapid variation of the
velocity and temperature also have disappeared, which made the numerical
calculations less demanding. It follows from tab. 2.3 that results obtained by
the two codes were closer at Re = 1000 and Re = 5000 than at Re = 0. This
seemingly surprising result was a consequence of a smearing of the bound-

Finite volume code (Israeli research group), stretched grid 200x200
Re 0 1000 5000
Ψmin −1.510 −2.070 −1.206
(rmin, zmin) (0.8100, 0.3263) (0.6900, 0.6797) (0.8652, 0.1610)
Ψmax 0.0 0.7079 26.71
(rmax, zmax) − (0.1770, 0.4600) (0.7500, 0.6087)
umin(r = 0.5)/zmin −36.55/0.9183 −33.94/0.9183 −145.8/0.05774
umax(z = 0.5)/zmax 14.63/0.08736 11.83/0.08736 475.5/0.9075
wmin(z = 0.5)/rmin −231.8/0.0 −35.52/0.2631 −157.5/0.8577
wmax(z = 0.5)/rmax 15.76/0.9477 124.4/0.0 192.9/0.4039
Ekin 80.92 54.83 4262.0
Nubottom 1.575 1.499 0.7685
Nuwall 1.246 1.185 7.306
Nucrystal −2.784 −2.647 −8.053
Nusurface −0.036 −0.037 −0.0215

Finite element code (German research group), 120x120 biquadratic elements
Re 0 1000 5000
Ψmin −1.502 −2.130 −1.203
(rmin, zmin) (0.7904, 0.3246) (0.6701, 0.6802) (0.8696, 0.1597)
Ψmax 0.0 0.7102 24.85
(rmax, zmax) − (0.1798, 0.4501) (0.7450, 0.6195)
umin(r = 0.5)/zmin −36.61/0.9013 −33.10/0.9104 −146.3/0.0611
umax(z = 0.5)/zmax 15.02/0.0842 11.88/0.0860 478.3/0.9092
wmin(z = 0.5)/rmin −232.2/0.0 −35.40/0.2603 −155.5/0.8595
wmax(z = 0.5)/rmax 15.78/0.9502 126.4/0.0 193.7/0.4014
Ekin 83.92 55.89 4280.1
Nubottom 1.580 1.502 0.757
Nuwall 1.231 1.155 7.352
Nucrystal −2.785 −2.634 −8.093
Nusurface −0.026 −0.023 −0.016

Table 2.3: Characteristic values for steady state flows at ∆T = 1K and different
rotational Reynolds numbers Re.
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ary layer and the "cold jet" region by rotation. At a very large Reynolds
number the centrifugal force was dominant and the circulation has rotated
clockwise (fig. 2.3 (c)). The flow pattern was similar to a so-called rotating
disk − cylinder flow [98, 99]. At large rotation rates a dramatic change could
be also observed in the shape of the isotherms caused by the strong effect
of thermal convection. The total kinetic energy and the total heat transfer
through the melt volume were dramatically increased. Obviously, this case
should be considered as an extremum for the usual parameter values of ox-
ide crystal growth. However, it is important for understanding the stability
properties of the flow, as well as being another representative case for numer-
ical benchmarking. Note also that the boundary layers developing near the
crucible wall (2.3 (c)) again have required greater demands on the numerical
computations.

2.1.2 Stability diagram by direct numerical simulation
Fig. 2.4 shows an example of the grid dependence study. With the help of
the direct numerical simulation (DNS starts from an initial guess in order to
obtain a steady state or time-dependent solution), which is very time con-
suming, two stability diagrams of the NaNO3 melt flow in the Cz crucible
were calculated for two different FEM grids. Every point on this curves shows
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Figure 2.4: Grid dependence of the numerical solution for NaNO3 melt flow
applying a 80x80 and a 120x120 FEM grid, respectively.
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the last converged steady state solution for a certain parameter combination
on a given grid. It can be seen that for small rotational Reynolds numbers
Re the numerical simulations of this kind are strongly grid dependent. Ap-
parently, this is the effect of steep velocity and temperature gradients near
the crucible axis and the boundary layer close to the crucible wall. To re-
tain the numerical accuracy finer grids have to be used for small Re. The
calculations for larger Re converge at coarser grids because the boundary
layers smear due to the influence of the larger centrifugal force inhibiting the
thermal flow.

2.1.3 Path following and multiplicity
The calculation of stability diagrams applying the direct numerical simulation
is very time consuming. The main problem is, that it can happen that
important information about the solution structure can be missed. However,
it can give the first overview of the possible solutions. More reliable and
much faster can be the introduction of path following techniques (see [65,
96]). Fig. 2.5 shows the comparison of path following results for the control
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0.27K.

parameter rotational Reynolds number Re. As solution the kinetic energy
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norm (2.9) is plotted. The steady flows at melt free surface temperature
difference ∆T = 0.27K and Re varied between 0 and 2000 were compared.
The value of ∆T = 0.27K has been chosen, because there has been observed
an oscillatory solution. Furthermore, also in [100] was shown experimentally,
that oscillatory melt flow is possible for low ∆T . The first observation of
fig. 2.5 shows that the path following curve is in very good agreement with
the curve of the Israeli Group (see [1]). For Re < 1200 and Re > 1600 a
single steady state solution exists. In the interval 1200 ≤ Re ≤ 1600 two
turning (limit) points can be observed. Within this interval the solution
was not unique. Thus, for Re = 1375 (shown by a vertical line in fig. 2.5)
the first solution with the smallest kinetic energy was stable, the next one
was unstable and the third solution belonges to a Hopf bifurcation point,
i.e. onset of an oscillatory instability, which we assume to be responsible
for the onset of crystal spiral growth. It should be mentioned that multiple
solutions appear for the values of Re characteristic for real crystal growth
process (10 .. 20 rpm). For instance, Re = 1375 corresponds to the crystal
rotation with the rotation rate of approximately 12 rpm (see eq. (2.5)). It
should also be mentioned that the value of ∆T = 0.27K was much smaller
than that applied during the oxide crystal growth, since the thermal gradients
are much higher (e.g. melting point of DyScO3 ≈ 2000 ◦C). Finally, it is
stressed that the existence of multiple steady states and the dependence of the
final state on the initial conditions is well-known for model fluid convection
and rotating flow. Several examples can be found in the review paper [101].
To the best of our knowledge, the multiplicity of flow solutions of the CZ
configuration has been reported for the first time.
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2.1.4 Stability limits and unsteady flows
Stability curves corresponding to the oscillatory instability of steady state
flows with respect to the axisymmetric perturbations are shown in fig. 2.6.
The results (red curve) of the stability study were compared with results
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Figure 2.6: Stability curves for the critical temperature difference ∆T vs.
rotational Reynolds number Re (published in [1]).

(blue curve) of the Israeli research group (published in [1]). Results corre-
sponding to the three-dimensional perturbations can be found in [96]. Here
the focus has been set mainly on the comparison exercise, which was started
from the axisymmetric instability. The stability diagram in fig. 2.6 shows the
critical temperature difference ∆Tcr for different rotational Reynolds num-
bers Re. Below the stability curve the melt flow was linearly stable and was
unstable above the curve. The curves were plotted through calculated Hopf
bifurcation points in which the leading eigenvalues of the linearized stability
problem have appeared as conjugate complex pairs having zero real parts.
Hopf bifurcation points are origins of oscillatory solution branches (periodic
orbits). Good agreement could be obtained for Re > 400, which is very im-
portant since these Re are close to the real oxide crystal growth conditions,
where crystal rotation rates vary between 5 and 25 rpm (Re = 5000 corre-
sponds to ≈ 50 rpm, see eq. (2.5)). For small Re (< 400) the results disagree.
In [1], the reasons for this disagreement were not completely resolved. It was
stressed that calculations at zero and small Re are more difficult, which was
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Figure 2.7: Stability curves for the critical temperature difference ∆T vs.
rotational Reynolds number Re.

also reflected in the disagreement at that time. Possible reasons for the dis-
agreement were grid dependence of different numerical approaches (FVM vs.
FEM) or missing the most dangerous eigenvalues. The latter can occur, if the
numerical approach does not find the eigenvalue λ with the largest real part
Real [λ(k)], where k is the wavenumber of the linear stability eigenproblem
[96], e.g. if not enough wavenumbers k has been considered or approximative
methods for eigenvalue analysis (e.g. Arnoldi method) has been used. It has
been carried out that during the computation of the red curve the most dan-
gerous eigenvalues were not found for small rotational Reynolds number Re,
which was the main problem for the disagreement of results shown in fig. 2.6.
Fig. 2.7 shows the new results (red curve), which are now in good agreement
with the results of the Israeli group (blue curve) for Re < 400 (additional
red curve), also. The red curve was calculated in two steps. The right part
of the red curve (Re > 400) was computed decreasing the parameter Re.
The left part of this curve (Re < 400) is calculated increasing the parameter
Re. The intersecting set of both parts results in the red curve, which only
disagree from the blue curve near Re = 400 and close to the axis. We assume
that different grid dependence of different discretization types is the reason
for this local disagreement. Especially, close to the axis, where the boundary
layer flow is strong, grids have to be very fine.
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2.1.5 Comparison of transient simulations

time [s]

0 10 20 30

ki
ne

tic
 e

ne
rg

y

0.0428

0.0429

0.0430

0.0431

0.0432

0.0433

0.0434
Re=1500

Figure 2.8: Transient simulation for Re = 1500 and constant ∆T = 0.27K.
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Figure 2.10: Transient simulations for Re = 500 and constant ∆T = 0.27K.

In carrying out time dependent calculations one also has to consider the time
step dependence. The Israeli group applied constant time steps [1]. Possible
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effects of a too large time step were shown in [1], also. A too large time
step leads to a time-asymptotical periodic solution that overestimates the
oscillation amplitude and also affects its period.
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Figure 2.11: Phase plots for different rotational Reynolds numbers (Re) at a
position close to the solid liquid interface (r = 0.13, z = 0.8) for ∆T = 0.27K.

With the increase of ∆T or Re it is necessary to reduce the time step further.
In the present work an automatic time stepping algorithm (Gear scheme [95])
has been applied instead of constant time steps. This algorithm starts with
an initial time step which depends on how "good" the previous steady state
solution was from which the transient calculations is supposed to be started.
During the calculation this algorithm adapts the applied time step to the
extrapolated development of the solution in time. If a calculation failes, the
algorithm reduces the time step and repeats the calculation until the tran-
sient solution converges. Figures 2.8−2.10 show the results of time dependent
simulations. Starting from oscillatory unstable state at the rotational Reyn-
olds number Re = 1500, Re was reduced to the values 1000 and 500. For
Re = 1500 and ∆T = 0.27K (fig. 2.8) the oscillations became sinusoidal
after a certain period of time. With the decrease of Re to 1000 (fig. 2.9) si-
nusoidal oscillations could be still observed. In spite of the visible decrease in
the total kinetic energy, the relative amplitude of oscillations has remained
almost unchanged. Further decrease of Re to the value of 500 (fig. 2.10)
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again has led to a decrease in the total kinetic energy.
In order to compare time dependent results phase plots were used. They show
changes of the temperature and the axial velocity at a certain point over sev-
eral oscillation periods (fig. 2.11). The phase plots of both research groups
coincided for Re = 1000, and have agreed only qualitatively for Re = 500 and
Re = 1500. It shows again that the grid dependence issue should be carefully
checked when governing parameters are varied in large intervals. The Israeli
research group have used FVM elements, which have only linear approxima-
tion and the German research group have used FEM elements with quadratic
approximation. Another interesting observation was the oscillatory state at
Re = 500, which stood in conflict with the predicted stability diagram in fig.
2.6 (red curve) [1]. But, it supports the updated results of fig. 2.7. However,
as shown in [30], this happens because of the simultaneous existence of sta-
ble steady state along with the oscillatory one. Therefore it is important to
search for the most dangerous eigenvalue during bifurcation studies.

2.2 Deeper analysis of the solution nature
After verifying the applied numerical tools, a deeper analysis of possible so-
lutions had been done. When dealing with fluid dynamics in crystal growth,
it is unavoidable to deal with very strong non-linear effects. The operat-
ing conditions in crystal growth of high melting temperature oxides (e.g.
rare earth scandates) resulting in a melt flow caused by large driving forces
(forced, natural and Marangoni convection) are mainly responsible for that
high non-linearity. Different phenomena like spiral growth could be con-
nected to melt flow instabilities. Therefore it is important to understand the
nature of the solution structure of the melt flow. During the code verifica-
tion process some results concerning the melt flow instability were carried
out, already (see 2.1). Fig. 2.12 shows a diagram containing steady state
solutions calculated in a direct numerical simulation (DNS). This solutions
were supposed to be the last steady state solutions for a given parameter set
(Re, ∆T ), because there was no convergence when increasing the parameters.
It had been found that the domain with the highest tendency to hydrody-
namical instabilities for the NaNO3 melt (see fig. 2.2) was located between
rotational Reynolds numbers Re 500 and 1500. These values correspond to
real crystal rotation rates of 5 rpm and 15 rpm, respectively. From the ex-
perimental point of view this parameter interval is critical, especially during
the seeding process. For Re < 500 thermal forces are dominant and for
Re > 1500 rotational forces dominate the melt flow. In between both forces
are in competition and made the solution structure more complex. Therefore
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Figure 2.12: Direct numerical simulation of NaNO3 melt flow in a CZ-
crucible.

the tendency to melt flow instabilities was higher there. One would think
that the curve in fig. 2.12 shows clearly the border between stable (below
the curve) and unstable regions (above the curve). But, it had been found
that below this curve the solution was not unambiguous. For parameters
Re = 1500 and ∆T = 0.27 a 2D oscillatory solution had been detected, also.
Consequently, every steady state solution should be checked against its sta-
bility. Conventional DNS can miss such solutions and let one believe that the
diagram in fig. 2.12 is globally valid. Branch following techniques can help
to find such solutions much faster and more reliably [65]. Fig. 2.13 shows a
Hopf bifurcation diagram for the control parameter Re. As solution the tem-
perature difference along the melt free surface ∆T is plotted. The approach
[65] used to calculate this bifurcation diagram has much better convergence
properties than a Newtonian solver. For the latter usually |Rh −R| ≤ ch2

holds, where h is the size of the largest element in the applied mesh. In the
applied Hopf bifurcation algorithm one expects the solution to converge with
order of h2, but at bifurcation points it shows a superconvergence [65] for
the critical parameter with the order of |Rh −R| ≤ ch4. Superconvergence
can occur at fold points and other symmetry breaking bifurcation points
[65, 102, 103], also. Every Hopf bifurcation point on the green curve in fig.
2.13 can be the origin of periodic orbits. These are domains where oscilla-
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Figure 2.13: Bifurcation diagram after detecting Hopf points.

tory solutions can occur. For example, such a Hopf point had been found
for parameters Re = 1549 and ∆T = 0.27. The red paraboloid starting at
Re = 1549 should indicate that there was the origin of a periodic orbit. This
example of bifurcation was of subcritical type. The phase portrait in fig. 2.14
had confirmed that the oscillatory solution amplitude was decreasing if one
is closer to the Hopf bifurcation point, where the periodic orbit may start. In
the Hopf bifurcation diagram (fig. 2.13) several solutions had been analysed
for ∆T = 0.27K and it had been found, that for decreasing Re the ampli-
tude of the oscillation was increasing, which was confirmed by the shape of
periodic orbits. This correlation is shown in fig. 2.11, where three phase
maps were plotted for Re = 500, 1000, 1500 and ∆T = 0.27K. These results
were obtained from transient calculations at a point close to the solid/liquid
interface. For increasing Re the amplitude decreased. Diagrams in fig.
2.12 and 2.13 predict more unstable melt flow for high ∆T values. In fact,
increasing the temperature difference ∆T for Re = 1500 the system is less
stable. The phase diagram (fig. 2.15) for Re = 1500 and ∆T = 0.79K has
shown that more than one frequency is present. Fig. 2.16 has confirmed this
fact. The oscillations of the vertical velocity component were periodic, but
exhibits more than one frequency. Fig. 2.17 shows results of the frequency
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Re

Figure 2.14: Phase portraits for ∆T = 0.27K at v, T (0.13, 0.8) while varying
Re.
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Figure 2.15: Phase diagram for a less stable melt flow.

analysis of transient simulation results for different ∆T and Re = 1500. For
∆T = 0.171K the oscillation was periodically stable. Increasing ∆T to 0.5K
the oscillation was still periodically stable, but there was a first indication for
an additional frequency. Further increase of ∆T has led finally to an unsta-
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Figure 2.16: Oscillation diagram showing mixed frequencies of the vertical
velocity.
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Figure 2.17: Transient simulation for different ∆T and frequency analysis.

ble state, whose oscillation was not periodic anymore. Therefore the onset of
hydrodynamical instability for Re = 1500 must happen between ∆T = 0.5K
and 0.6K. Fig. 2.18 shows a path following diagram for ∆T = 1.0K. The
control parameter was Re and for the solution the total kinetic energy Ekin
was plotted. Obviously, for negative Re the solutions were symmetric with
respect to the zero axis. This shows that the governing equations were imple-
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Figure 2.18: Continuation diagram for control parameter Re for ∆T = 1.0K.

A B

Figure 2.19: DyScO3 crystals grown with opposite rotation directions. The
formed spirals show opposite turns.

mented correctly, since the problem was axially symmetric. It corresponds
to an opposite crystal rotation direction during the growth process. Experi-
ments in which the crystal rotation direction has been changed confirm this
behaviour. Fig. 2.19 shows two crystals grown with opposite crystal rota-
tion direction. The crystal (fig. 2.19 (A)) has been rotated clockwise. The
other crystal (fig. 2.19 (B)) has been rotated anti-clockwise. Obviously, the
change of the crystal rotation direction has caused a change of the spiral turn.
Beside the solution symmetry in fig. 2.18 the curve shows a S-like shape be-
tween Re ≈ 1500 and Re ≈ 2500. This solution range shows limiting points,
where the solution behaviour has changed. In fig. 2.20 and fig. 2.21 it is
shown more detailed. The path following diagram in fig. 2.20 was calculated
for ∆T = 0.27K and in fig. 2.21 for ∆T = 0.5K. Between the LLP and
RLP 3 solutions exist and outside this interval one solution, only. Exactly on
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Figure 2.21: Multiplicity of solutions for ∆T = 0.5K. (LLP: left limiting
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both limiting points two solutions exist for the same value of Re. Comparing
the path following diagrams for ∆T = 0.27K (fig. 2.20) with diagrams for
∆T = 0.5K (fig. 2.21) and ∆T = 1.0K (fig. 2.18) it can be seen that the
S-like solution branch was shifted to the right, i.e. to higher Re. Because
of the solution multiplicity, this region is interesting, since there melt flow
instability can occur. So, for increasing ∆T unstable solution branches are
shifted to regions of higher Re. A further result is, that the interval with
multiple solutions had expanded for higher ∆T . For ∆T = 0.27K the region
between LLP and RLP was about Re = [870, 1070], for ∆T = 0.5K it was
about Re = [1200, 1500], and for ∆T = 1.0K it was about Re = [1700, 2300],
i.e. the unstable interval becomes wider.
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2.3 Summary and concluding remarks
Before analysing a real Czochralski crystal growth process in chapter 4 the
numerical tools were verified using a simplified crystal growth model in this
chapter. It has only been considered the rectangular melt domain as the ax-
isymmetric case. The material properties of a well-known material (NaNO3)
has been taken from literature [35]. The melt flow was simulated using a
hydrodynamic model. It considers a flow, driven by buoyancy convection,
thermocapillary convection and crystal rotation, governed by the Navier-
Stokes equations in the Boussinesq approximation, the continuity equation
and the temperature equation, respectively. Steady state simulations have
been performed for different rotational Reynolds numbers and ∆T = 1.0K.
They have been compared quantitatively with results carried out in [1]. A
first indication for an unstable flow could be observed and it has been car-
ried out a stability diagram by direct numerical simulation. However, this
is not reliable, because it is strongly grid dependent especially for low ro-
tational Reynolds numbers and it can miss important solutions. Therefore,
more complex continuation and bifurcation techniques have been applied for
a deeper analysis of the melt flow solution structure. It could be shown that
multiple solutions can occur for the same control parameter. Thereby, un-
stable solutions and stable steady states are possible. However, also stable
oscillatory solutions are possible, which could be missed by the direct nu-
merical simulation. Hopf-Bifurcation results have been carried out, which
show possible origins of periodic orbits. Also, transient simulation results
have shown that oscillatory solutions exists, but also solutions with mixed
frequencies, which are more complex.



Chapter 3

Gaining important physical
properties of the DyScO3 melt

Rare earth scandate crystals ReScO3 (Re=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb
and Dy) can be grown from the melt at temperatures of about 2100 °C. The
needs of thermal insulation of the whole system are very high in order to reach
the melting point and to control the thermal gradients, which are required
by the Czochralski (Cz) method. The consequence is that in-situ system
observations are practically almost impossible or very hard to perform (see
fig. 3.1). Therefore numerical investigations using a mathematical model of
the real system can be very helpful. However, numerical models need some
physical properties of the considered real system (e.g. density, viscosity, ther-
mal expansion coefficients, thermal conductivity). Most material properties
of high melting oxides are not referenced in the literature or they are incom-
plete and inaccurate. Because the accuracy of qualitative and quantitative
results of numerical simulations depend on the used physical properties, cor-
responding measurements were performed in an adapted Cz configuration at
a temperature around the melting point of DyScO3 (2060 °C).

3.1 Measurement setup
For the measurements the IKZ Cz-equipment (Cyberstar - OXYPULLER
20-03, [104]) was used. Fig. 3.1 shows a sketch of the principle measurement
setup. The system was heated inductively at f=10 kHz with a RF generator
(Hüttinger - STG 50/10 [105]). Due to the high melting temperature an irid-
ium crucible was used. However, it was operated at the upper thermal limits
of this material. It was important to control the temperature distribution
in the crucible in order to melt the material homogeneously, without local
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overheating of the crucible. Therefore the whole system was insulated within
an enclosure.

Figure 3.1: Sketch of the typical Czochralski (Cz) crystal growth arrange-
ment, which was adopted for the measurements of physical properties of the
DyScO3 melt. (Ir: iridium, DyScO3: dysprosium scandate)

Fig. 3.1 also shows an iridium baffle and active afterheater, which were used
to control the temperature gradients during the crystal growth process. The
crystal seed was fixed by the crystal seed holder. Depending on the type of
measurement the crystal seed was replaced (see fig. 3.1) by tools needed for
the measurement. The principle setup arrangement was the same and was
located in a water cooled steel chamber, which was evacuated and filled with
a quasi inert gas (e.g. N2 or Ar). The chamber allows for leading through
6 wires used to connect the thermocouples inside to the digital recorder
outside with built-in measurement unit for voltage (LOGOSCREEN™ cf /
6 Channels [106]). During the measurements the melt surface was observed
with a camera system through a 8x12 mm window in the insulation and
afterheater, respectively.
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3.2 Temperature measurement outside and
inside the iridium crucible

The setup arrangement of fig. 3.1 was used for measuring the temperature
distribution outside the iridium crucible at 3 equidistant positions. The
measurement was performed during the whole Cz crystal growth process
(growth rate was about 1 mm/h) using Ir / Ir40%Rh thermocouples (see fig.
3.2).

Figure 3.2: Temperature measurement during a Czochralski (Cz) crystal
growth process, the dysprosium scandate (DyScO3) melt is visible through
the observation window.

This thermocouples have smaller thermovoltage (10.74 mV at 2000 °C) than
W5%Re / W26%Re thermocouples (33.67 mV at 2000 °C) [107], but the
latter were not chemically stable in the environment applied. Although, the
chamber was evacuated and filled with N2 or Ar, respectively, these thermo-
couples have oxidized during the measurement. Apparently, there was still
a small O2 portion in the atmosphere. Probably, the porous insulation ce-
ramic has freed small portions of O2 and the evaporating gas from the melt
contained oxygen, too. Beside the smaller thermovoltage, another disadvan-
tage of Ir-based thermocouples was its mechanical instability, especially after
the heating up and cooling down process they become very brittle. In this
case minimal vibrations can lead to cracking the thermocouples making the
experimental handling difficult. The temperature outside the crucible at the
bottom was about 90 K smaller than the melt temperature (see fig. 3.5).
The main problem during temperature measurement was the bad thermo-
mechanical connection between the thermocouples and crucible wall.
The results of the temperature measurement at the outer crucible wall during
a Cz growth of DyScO3 are shown in fig. 3.3. As expected, the temperature
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Figure 3.3: Temperature measurement at the outer crucible wall during Cz
growth of DyScO3.

is lowest at the top of the crucible and highest at about 10 mm above its
bottom, which is in agreement with the calculations presented in [108]. It was
impossible to measure internal melt temperature changes from outside the
crucible, because the crucibles thermal conductivity smoothes the relatively
small thermal changes in the melt. The axial temperature gradient at the
outer crucible wall was about 25 K/cm.
Furthermore, the result in fig. 3.3 can be split into 3 parts. These are
heating up and melting process of the oxide substances, the growth process
and the cooling down process. The automatic growth control has reduced
the generator power during the growth process, because the melt level was
dropping (less melt had to be heated) and the grown crystal has closed the
baffle hole (less heat loss at the free melt surface).
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Figure 3.4: Sketch of the 4-hole alumina pipe carrying the 4 thermocouple
wires for 2 thermocouples (A). Installed and connected thermocouples (B)
with detailed view (C).
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After measuring the temperature outside the crucible the vertical tempera-
ture distribution was measured inside the DyScO3 melt. Two self made Ir
/ Ir40%Rh thermocouples (see fig. 3.4) were deployed and moved down to
the melt surface. After touching the melt surface, it was further immersed
into the melt. The main problem here was the insulating holder for the ther-
mocouples, which should be stable at high temperatures (around 2000 °C).
Due to thermal expansion of the thermocouple wires it could short-circuit
and it could not be guaranteed that the thermocouples were immersed ab-
solutely vertical. Fig. 3.5 shows the measured temperature distribution at
the outer crucible wall at three different fixed locations (three black curves)
and the temperature distribution during the vertical translation process of
the two inner thermocouples (blue and magenta curve). In fig. 3.5 sections
A and B corresponded to the heating up process, but in A a steeper ramp
was applied. In sections A and B all thermocouples are fixed. In C could
be observed that DyScO3 was molten completely, thus the generator power
was fixed and the two inner thermocouples (blue and magenta curve) were
moved down (starting from afterheater top position). The inner thermocou-
ple translation process was continued in sections D and E. The three outside
thermocouples (black curves) are fixed in sections D-E, also. In section D
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Figure 3.5: Temporal temperature distribution at three fixed locations at
outer crucible wall and at two variable locations inside the afterheater and
melt, respectively. (A, B: heating up process, C: melting point exceeded /
start of the thermocouple translation, D: thermocouples touched the melt
surface, E: thermocouples about 10 mm above the crucible bottom
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the thermocouples touched the melt surface. Because the melt is coldest at
the free surface, the temperature measured there was assigned to the melting
point of DyScO3, which is about 2060 °C. In [109] the proposed phase dia-
gram for the system Sc2O3 −Dy2O3 predicts a melting point of about 2100
°C. The thermocouples were immersed into the melt to a position about 10
mm above the crucible bottom (fig. 3.5, E). The difference between the val-
ues measured by the two inner thermocouples was a consequence of slightly
different height of the thermocouples and thermocouple junction surfaces.
A possible non-symmetric immersion of the thermocouple (due to thermal
expansion of Ir wires) could be another reason.
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Figure 3.6: Vertical temperature profile starting from top of the afterheater
(depth=0.0 mm) and ending at (A) in the melt about 10 mm above the
iridium crucible bottom (generator power was fixed).

Fig. 3.6 shows the vertical temperature profile in the melt. The temperature
distribution in the afterheater inner space was approximately linear. Around
the thermocouple depth of about 100 mm the baffle was reached and the
vertical temperature gradient became steeper. After immersion into the melt
the temperature has increased up to a maximum value (at about 15 mm above
the crucible bottom) and has decreased then, because of the heat loss of the
crucible bottom. This results are in agreement with the calculations done in
literature [108]. The temperature profiles were strongly coupled to the coil
geometry. A small change of the coil geometry (e.g. coil height related to the
crucible) changed the electromagnetical coupling and generated a different
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modulation of the generator for different coil geometries. Therefore it was
impossible to work with absolute temperatures. This is also the reason why
the "liquid" state of the melt must be identified through the observation
window for each new crystal growth process.

3.3 Electrical conductivity
The same setup as in section 3.2 for vertical temperature distribution in-
side the DyScO3 melt was used to measure the electrical conductivity of the
DyScO3 melt. The thermocouple wires were connected with a voltage and
current controlled source assuming a constant DC electrical current I and
measuring the voltage drop V across the "internal resistor" Ri at the melt
surface (see fig 3.7). Usually the 4-electrode method [110] is much more reli-
able than the used two point method. This could not be applied, because of
the restrictions of the measurement setup and the very high operating tem-
peratures (about 2100 °C). The electrical conductivity of the DyScO3 melt

"internal resistor" at the
melt surface

V

I

l

Ri

I

V

Ri

iridium crucible

DyScO3 melt

insulation

current controlled source

voltage drop across Ri

Figure 3.7: Setup for measuring the electrical conductivity of the DyScO3
melt.

was measured close to the melting point at the melt surface (tab. 3.1). While
neglecting side effects (e.g. parasitic resistivities, thermo-electric voltage) the
electrical conductivity κ = ρ−1, considering the specific resistance ρ = R · l
of the one dimensional melt of length l between the two thermocouples, of
the DyScO3 melt was of order 10−7Ω−1cm−1. Thereby, a combination of
electronic and ionic charge transport was assumed, which has to be analysed
in future. The averaged electrical conductivity was 2.1 · 10−7Ω−1cm−1, with
an error of about 5 %.
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Current [µA] Voltage [V] Resistance [MΩ]
1.15 2.63 2.29
1.23 2.92 2.37
1.52 4.08 2.68
2.04 5.04 2.47
2.52 5.68 2.25
5.03 12.36 2.46

Table 3.1: Measured electrical resistivity of the DyScO3 melt at the melt surface.

3.4 Surface tension
For measuring the surface tension of the DyScO3 melt the Wilhelmy plate
method [73] was applied. The wetting property of the melt was used for
measuring a weight force during pulling a small plate out of the melt. A
small iridium plate with defined dimensions (20x10x1 mm) was deployed
and connected to the crystal seed holder. Then the plate was immersed into
the melt slowly (1mm/min.). After the plate was completely immersed into
the melt, the plate temperature had to be adjusted to the melt temperature.
Then, the plate was pulled slowly out of the melt and the weight force was
measured, which is maximum when the melt disconnects from the plate (fig.
3.8). Fig. 3.8 also shows a photo of the Wilhelmy plate above the solidified

gas

l iquid

Lwet t ed

Fpul l

α

I r plateA B

Figure 3.8: Principles of the Wilhelmy plate method (A). Installed Wilhelmy
plate above the "frozen" melt (B).

melt. The surface tension of the melt was calculated as, σ = Fg · (Lw ·
cosα)−1 = m·g ·(Lw ·cosα)−1, wherem is the mass of the melt attached to the
plate, g is the gravitational acceleration, Lw is the length of the wetted plate
area and α is the contact angle. The iridium plate was wetted completely
and the contact angle α was about zero, thus the cos(α) term could be
neglected. Lw = 21.0mm resulted from twice Lwetted plus the thickness of the
iridium plate, which was about 1.0mm. The surface tension was measured for
three different temperatures and the values for several measurements could
be reproduced at constant temperature. The results are shown in tab. 3.2.
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m [g] ∆m [g] PRF [%] Tout [°C] Tmelt [°C] σ [N/m]
3.043 0.015 40.8 1980.0 2070.0 1.421
3.034 0.015 41.0 1990.0 2080.0 1.417
3.025 0.01 41.2 2003.0 2093.0 1.413

Table 3.2: Measured values using the Wilhelmy plate method. m: mass, ∆m:
standard deviation of m, PRF : generator power, Tout: temperature at the outer
crucible wall, σ: calculated surface tension of DyScO3.

The temperature in the melt was not measured during the surface tension
experiment, because of the restrictions in the measurement setup (see fig.
3.1), but only the temperature at the outer iridium crucible wall. In section
3.2 the temperature in the melt was measured, which was about 90 K larger
than outside the crucible. Because the geometry has not been changed,
i.e. the relative height of the crucible to the RF coils, the generator power
PRF represents the same heat generation in the crucible and so the same
temperature in the melt. The relative change of the temperature with the
RF power has been reproduced around the melting temperature of DyScO3,
which was about 2060 °C. The temperature dependence of the surface tension
was about −3.48 · 10−4N/m · K in the measured temperature range. The

IKZ-measurements
Property Units DyScO3 GGG Nd:YAG LiNbO3

σ N/m 1.421 1.285 0.709 0.317
Tσ °C 2070 1753 1975 1283

dσ/dT N/m ·K −3.48 ·10−4 −2.76 ·10−4 −7.5 · 10−5 −8.05 · 10−5

Trange °C 2070-2093 1753-1840 1975-2035 1283-1519
Data taken from literature

Property Units Al2O3[111] GGG[16] YAG[112] LiNbO3[113]
σ N/m 0.7 0.7 0.781 0.297
Tσ °C 2043 1750 1970 1300

dσ/dT N/m ·K −6 · 10−5 – −3.5 · 10−5 −7.85 · 10−5

Trange °C – – 1970-2070 1275-1345

Table 3.3: Comparison of measured surface tension σ and its temperature de-
pendence dσ/dT with corresponding values of other oxide melts taken from the
literature. The error bound for the IKZ measurements was about 1 %. (DyScO3:
dysprosium scandate, GGG: gadolinium gallium garnet, Nd : Y AG: neodymium
doped yttrium aluminium garnet, LiNbO3: lithium niobate, Al2O3: sapphire,
Y AG yttrium aluminium garnet)
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surface tension of DyScO3 at 2070 °C was 1.421N/m, about 2 times larger
than the surface tension of sapphire, which is known to be 0.7N/m [111].
The temperature dependence of the surface tension of DyScO3 melt was one
order of magnitude larger than corresponding values of other high melting
oxide substances, which are known from literature (see tab. 3.3). Thus the
measurements had to be verified by measuring the surface tension of another
high melting oxide, i.e. gadolinium gallium garnet (GGG) (see tab. 3.4).
Although GGG had an about 300 K lower melting point, the observations

m [g] ∆m [g] PRF [%] Tout [°C] Tmelt [°C] σ [N/m]
2.75 0.015 56.9 1663.0 1753.0 1.285
2.72 0.01 57.9 1706.0 1796.0 1.271
2.70 0.015 58.9 1750.0 1840.0 1.261

Table 3.4: Measured values using the Wilhelmy plate method. m: mass, ∆m:
standard deviation of m, PRF : generator power, Tout: temperature at the outer
crucible wall, σ: calculated surface tension of GGG.

have shown that it has a very similar flow pattern on the melt surface (see
fig. 3.9) caused by the Marangoni convection. Obviously, it has a very

A B

Figure 3.9: Photos of a typical surface tension driven flow pattern at the
melt surface of dysprosium scandate DyScO3 (A) and gadolinium gallium
garnet GGG (B) close to the melting point. The scaling of the photos is the
same.

similar sensitivity of the surface tension with respect to temperature changes
compared to the DyScO3 melt. Therefore the surface tension dependence
of GGG and DyScO3 melt on temperature should be of the same order of
magnitude. Tab. 3.3 allows for a comparison of the surface tension and its
temperature dependence of some other oxide melts referenced in the literature
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[16, 111–113]. The measured surface tension of lithium niobate (LiNbO3)
melt was similar to that in the literature and also its temperature dependence
was close to the referenced in [113]. It must be noted that the yttrium
aluminium garnet (Y AG) melt in IKZ measurements was neodymium (Nd)
doped. However, the surface tension value was close to the value of undoped
Y AG melt referenced in [112]. Also, the thermocapillary coefficient of Nd :
Y AG was of the same order as published in [112]. The surface tension of
the gadolinium gallium garnet (GGG) melt was about 70% larger than the
published value in [16]. However, it must be noted, that the GGG melt
surface tension in [16] is estimated from Al2O3 melt. Unfortunately, no value
for comparison could be found for the thermocapillary coefficient. Also, no
comparison value from the literature could be found for the DyScO3 melt.
Because of similar melting point the measured surface tension of the DyScO3
melt has been compared with surface tension properties of a sapphire melt
referenced in [111].

3.5 Viscosity
Viscometry offers many methods for measuring the viscosity of fluids, e.g.
glass capillary, U-tube, rotational, vibrational/oscillating or bubble viscome-
ter [73, 114, 115]. However, at very high temperatures (≈ 2000 ◦C) the range
of applicable materials is very restricted. Therefore the dynamic viscosity
of the DyScO3 melt was measured using an industrial rotary viscosimeter
(Rheotest® RN 3.1 [116]) equipped with a special adapter for the IKZ Cz
crystal puller. The basic method of measuring the dynamic viscosity using a
rotary viscosimeter is to rotate a body with well defined geometry (e.g. coned
cylinder [116]) in a fluid. The rotation rate and the torque were measured.
This allows for a calculation of the dynamic viscosity by detecting the shear
stress and the shear gradients [115]. Standardized rotary bodies do not exist
for very high temperatures (around 2000 °C). Therefore a body made from
iridium was used, i.e. an used iridium crucible with a diameter of 40 mm,
a height of 36 mm and a wall thickness of 1.5 mm. At the bottom of this
crucible a long iridium rod was welded. This rotary body was connected via
the seed rod to the viscosimeter. The main problem here was the centring
and vertical alignment of the rotary body. Fig. 3.10 shows a sketch (A)
and a photo (B) of the self made rotary body and the corresponding setup
arrangement (C). Two holes of 1 mm diameter in the rotary body are for
letting out the gas during immersion into the melt. Another problem was
the relatively large mass of the rotary body, which had to be warmed up to
the same temperature as the melt, otherwise the melt would be "freezing"
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Figure 3.10: Sketch (A) and photo (B) of the self made iridium rotary body.
Setup arrangement with installed viscosimeter (C).

during immersion into the melt. However, the aim was to measure the dy-
namic viscosity as close as possible to the melting point of DyScO3. At the
same time the measurement was operating at the upper thermal limits of the
iridium parts in the setup. Especially the mechanical stability of the crucible
containing the melt was critical because it became more and more "soften"
and porous with increasing temperature > 2000 °C and could leak or crack at
all. This was dangerous, especially when rotating the body within the melt.
Because a rotary body with a well defined geometry was not available, it was
impossible to calculate the dynamic viscosity directly. But the relation of
the measured torque to the rotation rate is proportional to a constant value
SC (system constant), which represents the relationship of the shear stress
and velocity gradient. Therefore the SC had to be determined for applied
geometry using a fluid with known density and dynamic viscosity, which was
in the range expected for the crystal melt. This calibration was the first step
adapting the setup to the applied geometry (rotary body, crucible contain-
ing the fluid). The iridium crucible should not be contaminated with the

0 60 360 420
0

Nend

N [rpm]

t [s]

Figure 3.11: Temporal signal ramp of the applied rotation rate of the rotary
body with end rotation rate Nend = 10, 30 rpm.

calibration fluid (special mineral oil [116]), therefore the same crucible made
from aluminium was used. The SC was determined for two selected rotation
rates of the rotary body (Nend = 10, 30 rpm) applying a temporal signal
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ramp shown in fig. 3.11. After the calibration process the dynamic viscosity
of the DyScO3 melt was measured. The values for torque M and rotation
rate N were measured every 0.2 seconds during a period of time as shown
in fig. 3.11. Tab. 3.5 contains the averaged values of the measurements in
the time interval [80s; 350s]. The temperature was measured simultaneously

ID [m] SC [1/m3] M [mNm] Nend [1/min] η [mPas] error [%]

1/3 · hrb 35286.8176 0.0146 10.0082 51.4765 2.5
1/3 · hrb 35286.8176 0.0211 10.0078 74.3972 2.4
1/3 · hrb 35286.8176 0.0157 10.0030 55.3837 2.6
1/3 · hrb 35286.82 0.017 10.006 59.952 2.5
1/2 · hrb 30282.5605 0.0190 9.9992 57.5415 2.8
1/2 · hrb 30282.5605 0.0194 9.9923 58.7934 2.4
1/2 · hrb 30282.5605 0.0194 10.0075 58.7041 2.6
1/2 · hrb 30282.56 0.019 9.999 57.543 2.6
2/3 · hrb 25301.7035 0.0203 10.0082 51.3204 2.4
2/3 · hrb 25301.7035 0.0203 10.0082 51.3204 2.6
2/3 · hrb 25301.7035 0.0204 1.0119 51.5541 2.5
2/3 · hrb 25301.70 0.020 10.009 50.558 2.5
1/3 · hrb 45966.7797 0.0326 29.9953 49.9584 1.7
1/3 · hrb 45966.7797 0.0344 29.9967 52.7144 1.3
1/3 · hrb 45966.7797 0.0347 30.0029 53.1631 1.5
1/3 · hrb 45966.78 0.034 29.998 52.099 1.5
1/2 · hrb 37847.5888 0.0385 30.0043 48.5641 1.6
1/2 · hrb 37847.5888 0.0376 30.0135 47.4143 1.4
1/2 · hrb 37847.5888 0.0401 30.0004 50.5889 1.5
1/2 · hrb 37847.59 0.039 30.006 49.192 1.5
2/3 · hrb 30124.4307 0.0487 29.9912 48.9163 1.5
2/3 · hrb 30124.4307 0.0472 29.9378 47.4942 1.6
2/3 · hrb 30124.4307 0.0472 29.8794 47.5871 1.1
2/3 · hrb 30124.43 0.048 29.936 48.302 1.4

Table 3.5: Measured and averaged torque M and rotation rate Nend of the rotary
body for immersion depths ID=1/3, 1/2 and 2/3, related to the height of the
rotary body hrb = 36mm (η: dynamic viscosity).

outside the crucible close to the crucible wall. The system was heated up in
approx. 5 h to a temperature close to the melting temperature. The used
generator was power controlled and could be modulated from 0 to 100% in
0.1% steps. The generated heat in the iridium parts of the system depends
strongly on the used setup (e.g. number of RF coil windings, position of
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the RF coil), therefore it is impossible to heat up the system to a certain
temperature setpoint. Thus the generator power PRF had to be fine tuned
by observing the DyScO3 surface through a small window. The observation
window is a heat sink and cools the surface. Therefore the coldest loca-
tion in the melt is the surface close to the observation window. This way
it could be assured that the substance was completely molten when the last
solid "island" on the surface disappeared. At this point the melt tempera-
ture was a few K above the melting point, and the rotary body was moved
down slowly (about 1 mm/min.) and was stopped close above the melt sur-
face letting it adapt to a temperature close to the melting temperature of
DyScO3. Then one third (immersion depth ID = 1/3 · hrb) of the rotary
body was dipped slowly (1mm/min.) into the melt. The rotary body had a
relatively large heat capacity and it transferred heat away, so the melt was
"freezing". Again, the generator power PRF had to be increased. The body
was rotated with Nend = 10, 30 rpm (see fig. 3.10, left) and the torque was
measured. This process was repeated for immersion depth ID = 1/2 · hrb
and ID = 2/3 · hrb. The rotary body has conducted more heat for larger
ID, because the interaction surface was larger. Therefore with increasing
ID also PRF had to be increased to prevent the melt from solidifying. The
complete immersion of the used rotary body was impossible, because the
melt was "freezing" in spite of increasing PRF . For each end rotation rate
Nend and for each ID the torque M and rotation rate Nend were measured
three times. The dynamic viscosity η was calculated as η = M · N−1 · SC,
where M is the measured torque, N = Nend is the measured rotation rate
and SC is the calculated system constant from calibration with an oil with
known η (ηoil = 77.61mPa · s = 77.61 g/m · s). In tab. 3.5 the measured

IKZ-measurements
Property Units DyScO3 GGG Nd:YAG LiNbO3

η mPas 49.86 – 62.0 42.5
Data taken from literature

Property Units Al2O3[16] GGG[16] YAG[55, 112] LiNbO3[113]
η mPas 2.72 40.0 46.0 38.0

Table 3.6: Comparison of the dynamic viscosities η measured at IKZ with values
taken from literature.

values were averaged. The values were much more reliable (the variation
was smaller) for larger ID. This is reasonable, because the interaction area
became larger. Also, they were more reliable for higher N, because the used
viscosimeter was more accurate at higher N. The calculated η became smaller
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with larger ID, because PRF had to be increased to prevent the melt from
freezing and thus the melt temperature has increased as indicated by the
thermocouples outside the crucible. Additionally, η was influenced by the
melt meniscus (3− 4mm high), which has increased the effective immersion
depth of the rotary body. However, this influence was smaller for larger ID
and could be neglected, because it was compensated by the system constant
SC, which was determined in a system with similar meniscus height. The
measurement of η was performed about 10 − 30K above the melting point
of DyScO3. Because of the large variation of values for Nend = 10 rpm, for
the calculation of an averaged η = η only the mean values of tab. 3.5 (bold
values) for Nend = 30 rpm were taken into account. This was compared in
tab. 3.6 to dynamic viscosities of other oxide melts taken from the literature
[16, 55, 112, 113].

3.6 Density
The melt density is very important for the real crystal growth (automatic
crystal growth control), but also for numerical simulations of the melt flow.
Therefore the DyScO3 melt density was determined.
The density ρs ≈ 6.79g/cm3 of the solid phase was calculated from the
measured weight of a defined volume. This result had been confirmed by
other measurements (ρs ≈ 6.922g/cm3) [117] using a more accurate method.
Due to the very high temperature, especially the melt density measurement
is not trivial. No special density measuring equipment (e.g. pycnometer or
oscillating U-tube [73, 118]) was available. Therefore the density of the liquid
phase was determined from the decrease of the melt level, which was visible
after solidification (see fig. 3.12), and the meniscus height where the melt
was sticking to the crucible inner wall. Assuming the mass of DyScO3 had
not changed after the melting process (i.e. no evaporation or other mass
exchange), the density ρl of the liquid phase was estimated as

ρl = ρs
Vs
Vl

= m

Vl
, (3.1)

where subscript l denotes liquid and s the solid phase of DyScO3. m is the
mass of the solid phase, which was assumed to be the same as the mass of
the liquid phase. Vs and Vl are the volumes of the solid and liquid phase,
respectively. Five DyScO3 melts were analysed and it could be found that
ρl ≈ 6.12g/cm3, which is about 10 % lower than ρs.



70

Figure 3.12: Solidified DyScO3 melt with visible meniscus depth.

3.7 Summary and concluding remarks
The lack of physical properties for oxide materials with high melting point
(≈ 2000 °C) and the importance of these properties for numerical simulations
were the motivation to perform measurements for obtaining some of these
properties for a DyScO3 melt. The IKZ Cz-equipment for growing oxide
single crystals had been used for this experiments. The temperature on
the melt surface could not be reliably measured using optical measuring
equipment, i.e. pyrometer and/or IR camera system. The main problem was
the evaporation of substances from the oxide melt, which condensed on the
observing window and/or the fibre optics of the IR camera system, so that the
heat radiation has been falsified. Therefore the temperature measurements
had been done using self made Ir/Ir40%Rh thermocouples. Temperature
measurement close to the outer crucible wall could not detect temperature
fluctuations in the melt, but a vertical temperature gradient of 25 K/cm was
measured during a real Cz crystal growth process outside the crucible wall.
The measurement inside the DyScO3 melt yielded the vertical temperature
profile in the melt showing that the maximum melt temperature was located
about 15 mm above the crucible bottom. The temperature measurement
inside the melt had not been done during a real crystal growth process.
The same setup was used to measure the electrical conductivity of the melt.
This yielded a value in the order of 10−7Ω−1cm−1, but should be analysed
more detailed because of the simple measurement setup used.
The Wilhelmy plate method had been applied for measuring the surface
tension σ of DyScO3 melt. The result was σ ≈ 1.421 N/m measured at about
10 K above the melting temperature ofDyScO3. Its temperature dependence
was approx. −3.48 · 10−4N/m ·K in the temperature range 2070− 2093 °C,
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which was larger than values of other oxide melts referenced in the literature
[16, 111–113]. For comparison also σ measurements were made for a GGG
melt. The surface tension of the GGG melt close to the melting point of
about 1750 °C was 1.285 N/m with a temperature dependence of about
−2.76·10−4N/m·K in the temperature range 1753-1840 °C. These values were
similar to those of theDyScO3 melt and that seems to be reasonable, because
the flow pattern at the melt surface caused by the Marangoni convection was
very similar and therefore the sensitivity for changes of σ must be about the
same.
The dynamic viscosity ofDyScO3 melt had been measured using a rotary vis-
cosimeter. This measurement yielded an averaged dynamic viscosity of about
49.86 mPa · s, which was similar to the values of other oxide melts published
in the literature [16, 16, 55, 112, 113]. For the viscosity measurement a rotary
body was used with relatively large heat capacity, which caused "freezing"
during its immersion into the melt. Therefore, in the future a smaller rotary
body should be used. The density of the DyScO3 solid phase was determined
to be about ρs ≈ 6.79g/cm3, and was about 10 % larger than the density
of the liquid phase ρl ≈ 6.12g/cm3. This was estimated using the melt level
decrease inside the crucible, which was visible after solidification of the melt.
The presented measurements had not been performed using special high pre-
cision equipment. However, the obtained physical properties of DyScO3
melt should help getting more accurate numerical simulation results during
the analysis of spiral crystal growth.
Finally one has to recognise that taking data of material properties from
literature should be done with care. Some of them are only estimated and
there are different values available for the same material. A collection of
such data from literature together with those presented in the current work
is given in tab. 3.7. Measurements for other important physical properties
of DyScO3 (e.g. thermal conductivity or heat capacity) should be done
in the future. Nevertheless, these properties are needed for the numerical
simulations, and are estimated for it (see tab. 3.7).
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IKZ-measurements
Property Units DyScO3 GGG Nd:YAG LiNbO3
Tmelt °C 2060 – – –
ρs g/cm3 6.79 – – –
ρl g/cm3 6.12 – – –
σ N/m 1.421 1.285 0.709 0.317
Tσ °C 2070 1753 1975 1283
dσ
dT

N/mK −3.48 · 10−4 −2.76·10−4 −7.5 · 10−5 −8.05 · 10−5

η mPas 49.86 – 62.0 42.5
α 1/K 8.4 · 10−6

[5] – – –
β 1/K 4.0 · 10−5

(E) – – –
λl W/cmK 0.04(E) – – –
λs W/cmK 0.3(E) – – –
clp J/gK 0.5(E) – – –
csp J/gK 0.65(E) – – –
εl – 0.4(E) – – –
εs – 0.3(E) – – –
κ 1/Ωcm 2.1 · 10−7 – – –

Data taken from literature
Property Units Al2O3[111] GGG[16] YAG[55] LiNbO3[113]
Tmelt °C 2043 1750 1969[112] 1253
ρs g/cm3 3.97[58] 7.09[119] 4.3 4.63[120]

ρl g/cm3 3.05 5.65[119] 3.6 3.631
σ N/m 0.7 – 0.781[112] 0.297
Tσ °C 2043 1750 1970[112] 1300
dσ
dT

N/mK −6.0 · 10−5 – −3.5 ·10−5
[112] −7.85 · 10−5

η mPas 2.72 40.0 46.0[112] 38.0
α 1/K 1.185 ·10−5

[121] – – –
β 1/K 3.0 · 10−5 2.7·10−5

[122] 1.8 · 10−5 1.7 · 10−4

λl W/cmK 0.1 0.05 0.04 0.0309[120]

λs W/cmK 0.058[58] 0.2 0.08 –
clp J/gK 1.26 0.586 0.8 1.02[120]

csp J/gK 1.43[58] 0.586 0.8 –
εl – 0.33 0.3 0.3 0.3[120]

εs – 0.33 0.3 0.3 –
κ 1/Ωcm – – – –

Table 3.7: Measured and estimated (E) phys. properties compared to literature
values (melting point Tmelt, density ρ, surface tension σ, thermocap. coef. dσ/dT ,
σ-meas. temp. Tσ, dyn. visc. η, th. exp. coef. of crystal α and melt β, th. cond.
λ, heat cap. cp, emissivity ε, el. cond. κ) of some oxides, (s=solid, l=liquid).



Chapter 4

Numerical simulation of a real
Cz crystal growth

The subject of chapter 2 of the current work was the analysis of the hydro-
dynamic stability of a sodium nitrate (NaNO3) melt flow. This material was
chosen, because its physical parameters are well known and it was studied
extensively in the literature [35]. On the other hand it was a good reference
for testing the two independent numerical tools of the German and Israeli
research groups, respectively.
This chapter deals with the analysis of realistic Cz crystal growth concerning
the hydrodynamic instability.

A B C D

Figure 4.1: A: dysprosium scandate (DyScO3) crystal showing extreme spiral
growth, B: DyScO3 crystal with later onset of spiral growth, C: samarium
scandate (SmScO3) with very distinctive spiral growth, D: SmScO3 crystal
with later onset of spiral growth.
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In Fig. 4.1 examples of two state of the art materials can be seen having very
high melting point (≈ 2100 ◦C) exhibiting spiral growth. It shows two rare
earth scandate crystal materials, i.e. dysprosium scandate (DyScO3) (A and
B) and samarium scandate (SmScO3) (C and D). Crystals A and C show an
extreme and distinctive spiral growth, which were generated deliberately by
growing with higher pulling rates. The two other crystals B and D also show
spiral growth, but with later onset. Obviously, this onset must be connected
with disturbances in the melt flow.
In order to simulate numerically realistic crystal growth of high melting point
rare earth scandates appropriate physical parameters are needed. In chapter
3 the most important physical properties of DyScO3 were determined ex-
perimentally, because no properties could be found in the literature or the
physical properties of rare earth scandates were inaccurate or just estimated
from other materials.

4.1 Simulation of Cz crystal growth including
the RF induction heating

Here, the numerical analysis of the influence of the RF-heating configuration
on the DyScO3 melt flow is described. The term "configuration" means the
variation of the RF-coil geometry, i.e. the relative height related to the
crucible. Thereby, the electric parameters (current and frequency) are still
controlled by the automatic growth unit of the crystal pulling machine.
The numerical simulation is done using the FEM package ENTWIFE [80]
in three steps. In the first step the electromagnetic field has been calcu-
lated. Thereby, the in- and out-of-phase components C(r, z) and S(r, z) of
the magnetic stream function ψB had to be calculated (see eq. (4.1)). This
allows for a calculation of the generated heat density Q in metallic parts, i.e.
iridium crucible and afterheater, in the next step. And in the last step the
generated heat density Q(r, z) (see eq. (4.2)) was used as a heat source in
order to calculate temperature distribution and the melt flow. As long as the
geometry is not changed, i.e. the geometry of coil and metallic parts (cruci-
ble and afterheater), the Q-distribution needs not to be recalculated. Other
parameters like Grashof and Marangoni numbers or the Prandtl number can
be changed, because they do not affect the initial heat source density Q. Fig.
4.2 shows the three steps applied in the following calculations. The steady
states of the melt flow for different RF-heating configurations and different
melt heights have been compared. Thereby, the focus was set on the analysis
of possible hydrodynamic instabilities of the melt flow.
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Temperature  distribution T in crystal and melt Stream function ψ in melt

In-phase component
C(r,z) of ψB in air

Out-of-phase component
S(r,z) of ψB in air

Q in metallic parts

(zoomed crucibles bottom)

Figure 4.2: Principle steps of radio frequency (RF) coupling during the sim-
ulation of the melt flow. Calculating the in- and out-of-phase components
C(r, z) and S(r, z) of ψB the heat density Q(r, z) is computed. This is used
in further calculations of temperature T and the stream function ψ.
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4.1.1 Model problem and numerical method
The applied numerical model for the melt domain uses the same assumptions
as the simple model in chapter 2. The model is axisymmetric and quasi steady
state. It does not include internal and wall to wall radiation, but radiation
boundary conditions at outside walls.
The induced heat density Q(r, z) in the metallic parts, i.e. crucible and
afterheater is calculated via the magnetic stream function ψB [54, 123–125]
applying equation (4.1) and calculating the in-phase component C(r, z) and
out-of-phase component S(r, z) of ψB.

∂

∂r

(
1
r

∂ψB
∂r

)
+ ∂

∂z

(
1
r

∂ψB
∂z

)
= µJ (4.1)

where J =


J0 cosωt in the coil

− σc

r
∂ψB

∂t
in the conductors

with ψB = C(r, z)cos(ωt) + S(r, z)sin(ωt)

Thus, Q(r, z) in the metallic parts is calculated using both components S(r, z)
and C(r, z) (4.2).

Q = σcω
2

2r2 (C2 + S2) (4.2)

The flow in the melt and gas domain is governed by the Navier-Stokes equa-
tions applying the Boussinesq approximation (4.3). Conductive and convec-
tive heat transfer are described by (4.4) and (4.5). For the velocity compo-
nents the continuity equation (4.6) holds .

ρ~V · ∇~v = −∇p+ µ∇2~v + ρ~g(T − T0)β (4.3)

k∇2Ts +Qs = 0 s = solid regions (4.4)
k

ρcp
∇2T − ~v · ∇T = 0 in melt and gas (4.5)

∇ · ~v = 0 (4.6)

The thermocapillary convection at the free melt surface (melt/gas interface)
is described by equation (4.7).

µl
∂ul
∂n̂
− µg

∂ug
∂n̂

= ∂γ

∂τ̂
= ∂γ

∂T

∂T

∂τ̂
(4.7)
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The relation between the dimensionless melt flow velocity and the fluid
stream function is given by eq. (4.8). This definition of the stream func-
tion is used for visualization of the melt flow. The non-dimensionalization of
eq. (4.8) is done with (U, V ) = (u, v)/Uc, where Uc = νl/R.

U = 1
R

∂ψ

∂Z
V = − 1

R

∂ψ

∂R
(4.8)

Furthermore, boundary conditions are set for the radiation heat loss from
outer insulation surfaces using the Biot number Bi (4.13) and the radiation
number Radi (4.14). Radiation heat loss on the melt surface is described
by Radl (4.15). Heat transport at the melt/gas interface is described by the
equations for the melt and gas flow. Internal radiation is not considered. At
the afterheater top hole the temperature is set to the measured ambient tem-
perature Ta. At crystal surfaces the radial and vertical velocity component
vanishes (u = v = 0). The crystal rotation appears as boundary condition
in the azimuthal velocity component (w = r ωcrystal).
Fig. 4.3 on the right-hand side shows a sketch of the applied model geometry
for calculating Q. The source of energy is the external generator, which
supplies the RF coil with energy, i.e. electrical current with certain amplitude
and a typical frequency of about f = 10 kHz.
The electrical current is described by its density J (see equation (4.1)). The
RF coil generates an electromagnetic field, which affects all metallic parts in
the model. It mainly induces heat in the iridium crucible and afterheater,
but also in the coil itself and in the steel chamber, which contains the Cz
setup, via the strayed field. The gas (nitrogen) has no influence on the elec-
tromagnetic field due to its very small dielectric constant. The induced heat
is calculated by solving the equation (4.1) and applying equation (4.2). For
the calculation of Q the model does not contain melt, since the interaction of
the electromagnetic field with the DyScO3 melt can be neglected due to very
bad electrical conductivity of the DyScO3 melt. The simple measurement
of the electrical conductivity of the DyScO3 melt in chapter 3 confirms this
(see tab. 3.1).
On the left-hand side of fig. 4.3 the applied FEM grid for calculating Q is
shown. It contains up to 50000 T6/3 elements. The grid is coarse in the
gas domain of the chamber, because the density of the electromagnetic field
is relatively small there. On the other hand, around the iridium crucible
and afterheater the grid has to be refined. Beside T6/3 elements with 6
triangle nodes, i.e. 6 quadratic and 3 linear nodes, also, Q9/4 elements with
9 quadratic nodes and 4 linear nodes has been used. An mapping algorithm is
applied to fit the used elements to the complex geometry. Simulation results
has shown, that for sufficient fine grid size the convergence of the solution
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Figure 4.3: Sketch of the model geometry for calculating the heat density Q
in metallic parts and the applied FEM grid.

was good enough with sufficient small residual values in both cases.
A sketch of the model geometry for calculating temperature distribution and
flow in the melt and the gas is shown in fig. 4.4 (B). This axisymmetric
model contains the crystal, the melt, the gas, the insulation and the metallic
parts, i.e. iridium crucible and afterheater. The RF coil is shown in order to
remember that this is the energy source for driving the Cz process. However,
heat density Q was calculated first (see fig. 4.2) and then it was imported as
boundary condition Q in the iridium crucible and the afterheater.
In fig. 4.4 (A) the applied FEM grid for calculating temperature distribution
and flow in the melt and the gas is shown. It contains up to 65000 T6/3
elements. The grid is coarse in the insulation domain, but especially at
interfaces (gas/liquid/solid) the grid has to be refined in order to resolve
the boundary layers. Beside T6/3 elements with 6 triangle nodes, i.e. 6
quadratic and 3 linear nodes, also, Q9/4 elements with 9 quadratic nodes
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Figure 4.4: Sketch of the model geometry for calculating the temperature
field and melt flow and the applied FEM grid (CH: relative coil height).

and 4 linear nodes has been used. Simulation results has shown, that for
sufficient fine grid size the convergence of the solution was good enough with
sufficient small residual values.
The advanced FEM package ENTWIFE [3] has been applied for numerical
simulation. It uses a Newton-Raphson method combined with the direct
solver MUMPS [82]).
Tab. 4.1 gives an overview about the applied operating parameters in the
following simulations. The crucible radius r = 29.25mm has been cho-
sen as length scale and the DyScO3 melting temperature as temperature
scale. Another important parameter is the dimensionless rotational Reyn-
olds number Re (4.12). For the DyScO3 Cz process holds Re ≈ 0 − 330
(Re = 100 ≈ 10 rpm).
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Description Symbol Value Units
crucible radius r 29.25 mm
crucible height h 58.0 mm
crucible wall thickness w 1.5 mm
afterheater radius rah 29.25 mm
afterheater height hah 80.0 mm
afterheater wall thickness wah 1.5 mm
afterheater top hole radius rah 19.0 mm
chamber height hch 800.0 mm
crystal radius rc 14.625 mm
melt height hm 10.0-54.0 mm
coil height relative to hm hc 0-54.0 mm
crystal to crucible radii ratio CCr 0.5 −
gravity g 9.81 m/s2

crystal rotation Ω 0..30 1/min
angular frequency ω = 2π · Ω 0..188 1/min
rotational Reynolds number Re ≈ 11 · Ω 0..330 −

Table 4.1: Operating parameters used for calculations of geometry cases 1 − 5.

The applied physical properties of the DyScO3 melt and crystal, of the gas
(N2), of the metallic parts (crucible and afterheater) and of the insulation
(ZrO2 ceramic) are listed in tab. 4.2. The physical properties of the DyScO3
melt are measured (see chapter 3) and some of them were estimated, because
no corresponding values could be found in the literature. Other physical
properties were taken from the literature (given in tab. 4.2). The main
property is the melting temperature Tm = 2060◦C. Other important proper-
ties like the kinematic viscosity ν (2.11) or the temperature dependence of the
surface tension dσ/dT are used implicitly through the parameters Grashof
number Gr (4.9) and the Marangoni number Ma (4.11), respectively. The
Prandtl number is given by the eq. (4.10).

Gr = gβTmR
3

ν2 (4.9)

Pr = ν

χ
, χ = k

ρcp
(4.10)

Ma =

∣∣∣ dσ
dT

∣∣∣TmR
ην

(4.11)

Re = ωR2

ν
(4.12)
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Property Symbol Value Units
melting point Tm 2333 K
density (crystal) ρs 6.79 g cm−3

density (melt) ρl 6.12 g cm−3

density (gas) ρg 3.5 · 10−4 [126] g cm−3

dynamic viscosity (melt) η 4.986 · 10−1 g cm−1 s−1

dynamic viscosity (gas) η 4.0 · 10−4 [126] g cm−1 s−1

kinematic viscosity (melt) ν 8.147 · 10−2 cm2 s−1

kinematic viscosity (gas) ν 1.14 [126] cm2 s−1

surface tension σ 1.421 N m−1

temperature dependence of σ γ = dσ
dT

−3.48 · 10−4 N m−1 K−1

specific heat capacity (crystal) csp 0.5 (E) J g−1 K−1

specific heat capacity (melt) clp 0.65 (E) J g−1 K−1

specific heat capacity (gas) cgp 1.14 [126] J g−1 K−1

thermal diffusivity (crystal) χs 1.3 · 10−2 cm2 s−1

thermal diffusivity (melt) χl 6.8 · 10−2 cm2 s−1

thermal diffusivity (gas) χg 2.7 [126] cm2 s−1

vol. exp. coefficient (crystal) α 8.4 · 10−6 [5] K−1

vol. exp. coefficient (melt) β 4.0 · 10−5 (E) K−1

vol. exp. coefficient (gas) βg 2.7 · 10−3 [126] K−1

thermal conductivity (crystal) λs 3.0 · 10−1 (E) Wcm−1K−1

thermal cond. (melt) λm 4.0 · 10−2 (E) Wcm−1K−1

thermal cond. (gas) λg 1.1 · 10−3 [126] Wcm−1K−1

thermal cond. (insulation) λi 2.1 · 10−2 [126] Wcm−1K−1

thermal cond. (crucible) λc 1.47 [126] Wcm−1K−1

heat transfer coef. (insulation) hi 20.0 [126] Wcm−2K−1

emissivity (crystal) εs 0.3 (E) −
emissivity (melt) εl 0.4 (E) −
emissivity (insulation) εi 0.2 [126] −
Prandtl number Pr 6.23 −
Marangoni number Ma 2.506 · 101 Tm −
Grashof number Gr 1.4795 · 102 Tm −

Table 4.2: Measured and estimated (E) DyScO3 crystal and melt properties
(see tab. 3.7) and properties of iridium parts (crucible / afterheater), insulation
(ZrO2) and gas (N2).
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Bi = hiR

λi
(4.13)

Radi = εiT
3R/λi (4.14)

Radl = εlT
3R/λl (4.15)

The measured temperature difference across the free melt surface (melt/gas
interface) is between 100K and 200K (see chapter 3) during the Cz process.

4.1.2 Results and discussion
The DyScO3 melt height MH has been changed (1.0, 2.7, 5.4 cm) while the
relative coil height to the melt level is fixed (CH = 0). Then, also CH
has been changed (2.7, 4.4 cm) in order to match to the corresponding MH.
Fig. 4.5 shows a sketch of all investigated configurations of theMH and CH.
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Figure 4.5: Different geometry configurations of melt height MH and RF-coils
(cases 1− 5)

There was no significant influence of the variation of RF-heating configura-
tion on the flow in the gas domain and on the temperature distribution in
the crystal domain. Therefore, these results are not relevant and will not be
discussed detailed here.

Geometry case 1
The model of case 1 has the melt height MH = 5.4 cm and the coil height
relative to the melt height is CH = 0. The RF-coil generates an electro-
magnetic field, which induces heat in the iridium crucible and afterheater,
respectively. The simulation results are shown in fig. 4.6. The Q values are
shown in the crucible wall and bottom and in the afterheater wall. This wall
has a thickness of about 1.5 mm and a height of about 140 mm (see tab.
4.1). Because of this inappropriate ratio, only the crucible and afterheater
wall is shown detailed. The maximum heat density Qmax was located about
15 mm above the bottom of the crucible [108]. This is reasonable because
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of the good insulation and a good RF coupling. On the other hand the heat
density value is smallest at top of the afterheater, because there is the top
hole of the afterheater and the insulation is poor. So, in this region the
temperature is smallest.

Figure 4.6: From left to right: stream function (ψmin = −0.413; ψmax =
0.558), melt isotherms (Tmin = 1.0; Tmax = 1.0517) and heat density
(Qmin = 8.59W/cm3; Qmax = 163.23W/cm3) in the crucible and afterheater
wall computed for case 1 (equidistant value distribution).

In the inductively heated crucible the DyScO3 material melts. The temper-
ature field in the melt is shown in fig. 4.6 (middle). The isotherms show
that the temperature is highest at the crucible wall and becomes colder at
the centre of the melt domain.
The thermal differences and the gravity cause a mass transport in the melt.
This is visualized by the streamlines in fig. 4.6 (left-hand side). Beside
the large eddy caused by thermal convection, there is also an eddy caused by
forced convection via the crystal rotation. There is an interaction between the
two eddies resulting in an exchange of energy. Especially at high temperature
difference (∆T ) between the crucible wall and the crystal as well as around
the equilibrium between thermal and rotational forces, the solution structure
of the flow becomes more complex. The flow is characterized by a clockwise
eddy, generated by the rotational forces and an anti-clockwise eddy generated
by thermal forces.
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Geometry case 2
The geometry of the RF coil is unchanged compared to case 1, i.e. the coil
height relative to the melt height is CH = −2.7 cm. This value is negative,
because the MH was decreased from 5.4 to 2.7 cm. So, the melt surface
and the three junction point (interface gas/liquid/solid) is now in a more
homogeneously heated region.

Figure 4.7: From left to right: stream function (ψmin = −0.0218; ψmax =
0.3207), melt isotherms (Tmin = 1.0; Tmax = 1.0481) and heat density
(Qmin = 101.66W/cm3; Qmax = 152.49W/cm3) in the crucible and after-
heater wall computed for case 2 (equidistant value distribution).

The inductively heated crucible and afterheater, respectively, have a volu-
metric heat density shown in fig. 4.7. The initial location of its maximum
valueQmax is the same as in case 1, since the RF coil geometry is not changed.
The whole melt is now in a homogeneously heated region, which is shown
by the isotherms in fig. 4.7. In case 2 the free melt surface and the three
junction point, respectively, is now located where the maximum temperature
is. Also, a change in the structure of the melt flow can be observed, because
the height of the flow domain is now smaller (MH = 2.7 cm). The clockwise
eddy, generated by the rotational forces, has moved below the crystal and
is now much smaller than the anti-clockwise eddy, which occupies most of
the melt domain. So, the stagnation point moves below the crystal. This
stagnation point shift influences the hydrodynamical stability [6].

Geometry case 3
The geometry of the RF coil is unchanged compared to case 2 (CH =
−4.4 cm). This value is negative, because the MH was decreased from
5.4 to 1.0 cm. So, the melt surface and the three junction point (interface
gas/liquid/solid) are closer to the crucible bottom.
Fig. 4.8 (right) shows the heat density Q in the inductively heated crucible
and afterheater, respectively. The initial location of its maximum value Qmax
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Figure 4.8: From left to right: stream function (ψmin = −0.0559; ψmax =
0.2556), melt isotherms (Tmin = 1.0; Tmax = 1.0442) and heat density
(Qmin = 101.73W ; Qmax = 152.59W ) in the crucible and afterheater wall
computed for case 3 (equidistant value distribution).

is the same as in case 2, since the RF coil geometry has not changed.
The melt is now in a very shallow domain (MH = 1.0 cm). The highest
temperature is located at the top right corner of the melt domain at the
crucible wall, where the maximum value of the volumetric heat density in the
crucible wall is located. The temperature changes in the melt are marginal,
which is shown by the isotherms in fig. 4.8.
Compared to the case 1 and case 2 the melt flow structure is qualitatively dif-
ferent, because the height of the flow domain is much smaller (MH = 1.0 cm).
The clockwise eddy, generated by the rotational forces, completely has moved
to a position below the crystal. The anti-clockwise eddy is completely located
below the free melt surface. The stagnation point slightly moves to the right,
but it is still below the crystal.

Geometry case 4
Compared to the cases 1, 2 and 3 the geometry of the RF coil is now shifted
down proportionally to the down shifting of the MH. Here, the MH is 2.7
cm, so that the CH is 0. So, the height of the melt surface and that of the
three junction point (interface gas/liquid/solid) are about the same as the
height of the RF coil gap, like in case 1.
On the right-hand side in fig. 4.9 a cutout of Q in the inductively heated
crucible and afterheater is shown, respectively. Due to the fact that the
RF coil is shifted down, the initial location of Qmax is about 5 mm shifted
down compared to case 1-3. The crucible parts are located less in the main
electromagnetic field, so that the RF coupling is weaker.
The highest temperature is located in the middle of the melt domain at the
crucible wall, near the maximum value of the volumetric heat density in the
crucible wall (see isotherms in fig. 4.7).
Compared to the case 1-3 the melt flow structure is qualitatively different.
The clockwise eddy, generated by the rotational forces, is very weak and
completely in the melt domain below the crystal. The anti-clockwise eddy is
completely below the free melt surface, but also extends to the melt domain
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Figure 4.9: From left to right: stream function (ψmin = −0.0147; ψmax =
0.3045), melt isotherms (Tmin = 1.0; Tmax = 1.0483) and heat density
(Qmin = 99.35W/cm3; Qmax = 188.77W/cm3) in the crucible and after-
heater wall computed for case 4 (equidistant value distribution).

below the crystal, where it weakens the flow induced by the rotational forces.
So, the stagnation point is completely in the melt domain below the crystal.

Geometry case 5
Compared to the cases 4 the geometry of the RF coil is further shifted down
proportionally to the down shifting of the MH. In case 5 the MH is 1.0
cm, so that CH is 0. So, the height of the melt surface and that of the three
junction point (interface gas/liquid/solid) are about the same as the height
of the RF coil gap, like in case 1.

Figure 4.10: From left to right: stream function (ψmin = −0.0594; ψmax =
0.2508), melt isotherms (Tmin = 1.0; Tmax = 1.0453) and heat density
(Qmin = 119.91W/cm3; Qmax = 179.87W/cm3) in the crucible and after-
heater wall computed for case 5 (equidistant value distribution).

On the right-hand side in fig. 4.10 a cutout of Q in the inductively heated
crucible and afterheater is shown, respectively. Due to the fact that the
RF coil is shifted down, the initial location of Qmax is shifted down to the
crucibles bottom corner (about 10 mm under the location of Qmax in case 3
(see 4.8)). The crucible parts are located less in the main electromagnetic
field, so that the RF coupling is weaker.
The melt is in a very shallow domain (MH = 1.0 cm), like in case 3. The
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highest temperature is located at the top right corner of the melt domain at
the crucible wall, about at the same height as the afterheater RF-coil. (see
isotherms in fig. 4.10).
Compared to the case 1 and case 2 the melt flow structure is qualitatively
different, because the height of the flow domain is much smaller (MH =
1.0 cm), but very similar to the flow in case 3. The clockwise eddy, generated
by the rotational forces, completely has moved to a position below the crystal.
The anti-clockwise eddy is completely below the free melt surface and only
slightly extended to the melt domain below the crystal. So, the stagnation
point slightly moves to the right, but it is still below the crystal.

Concluding remarks
There was no significant influence of the variation of the RF-heating config-
uration on the flow in the gas domain and on the heat transfer in the solid
domain (crystal). While taking the relative height of the RF-coil related
to the crucible constant and changing the melt height from MH = 5.4 via
MH = 2.7 toMH = 1.0 cm, it can be seen that a decrease of the melt height
changes the position of the eddies (rotational and thermal forces), i.e. the
interaction between the forces in the melt is being influenced.
Changing the geometry of the RF coil in the same proportions like the melt
height causes a small shift of the stagnation point, which could influence the
stability properties of the melt ([6]). The mean heat density in the metallic
parts is in case 2 and case 3 about 10% larger than in case 4 and case 5.
The values of the stream function are similar in corresponding cases. There-
fore, the conclusion is, that a matching of RF coil geometry to the melt
height level has no significant effect on the melt flow.

4.2 Bifurcation analysis and continuation us-
ing DyScO3 melt properties

In the previous section the influence of the RF coil configuration has been
analysed in a few selected examples. Here, the focus is set on the analysis of
the global melt flow solution structure applying bifurcation and continuation
techniques [65].
For continuation the geometry model in fig. 4.4 has been simplified. Only
the melt domain is considered, because the subject of this subsection is the
hydrodynamic stability of the melt flow. In contrast to T6/3 elements Q9/4
elements have better approximation with 9 quadratic nodes and 4 linear
nodes, so that the latter have shown a better convergence of the solution.
Simulating the melt flow the grid size has to be refined for larger rotational
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Reynolds numbers, which one can expect. The accuracy is shown by the fast
convergence of the solution.
Physical properties of the DyScO3 melt have been used (see tab. 4.2).
Path following uses a pseudo arclength algorithm (see [65]) to calculate so-
lutions of the melt flow for a wide range of values of one parameter while all
other parameters are fixed.
Two technologically important cases are considered. First the control pa-
rameter rotational Reynolds number Re (equivalent to the crystal rotation
rate) is varied for fixed temperature difference along the free melt surface
(gas/melt interface) ∆T (see section 2.1, eqs. (2.5) and (2.8)). In the second
case the control parameter is ∆T (influenced by the modulation of the RF
generator) and Re is held fixed. In both cases the continuation diagrams are
plots of Re and ∆T vs. the total kinetic energy of the melt flow Ekin in the
melt domain, which is determined by the dimensionless melt height H and
crucible radius R (see eq.(4.16). This is a global measure for the melt flow
solution behaviour, which is defined for comparison reasons.

Ekin = 2π
H∫

0

R∫
0

(
u2 + v2 + w2

)
rdrdz (4.16)

4.2.1 Continuation with control parameter Re
Taking the rotational Reynolds number Re as the control parameter four
continuation diagrams have been computed using the FEM software package
ENTWIFE [80].

Case ∆T = 50 K
The first continuation diagram is done for ∆T = 50K. The result is shown
in fig. 4.11. Using the physical properties of the DyScO3 melt (see tab. 4.2),
Re = 100 is equivalent to a crystal rotation rate of about 10 rpm. The curve
in fig. 4.11 starts from Re = 0, where no rotational forces are acting and only
thermal forces are present. Thus, the first value corresponds to the initial
value of the temperature difference across the melt surface (here ∆T = 50K).
Increasing the rotational forces, the thermally induced convection becomes
weaker, so that the curve decreases to a global minimum at about Re = 145.
This is the most sensitive region with respect to the hydrodynamic stability
of the melt flow, since there is a strong competition between rotational forces
induced by the external crystal rotation and thermal forces determined by
the heat generation in the crucible. This can be seen in fig. 4.12, where
streamlines of typical points in the region of multiple solutions are shown
(A: lower branch at Re = 135, B: upper branch at Re = 135).
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Figure 4.11: Path following diagram for the dysprosium scandate (DyScO3)
melt with ∆T = 50K. (Re: rotational Reynolds number, Ekin: total kinetic
energy of the melt flow, ∆T : temperature difference across the free melt
surface)

A B

Figure 4.12: Streamlines of typical points in the region of multiple solutions
for ∆T = 50K. (A: lower branch at Re = 135, B: upper branch at Re = 135)

Fig. 4.11 also shows a detailed view of this region, which is delimited by the
left limiting point (LLP) at Re ≈ 130 and by the right limiting point (RLP)
at Re ≈ 145. For Re > 145 the total kinetic energy Ekin is rising and the
rotational forces dominate the melt flow.
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Case ∆T = 100 K
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Figure 4.13: Path following diagram for the DyScO3 melt with ∆T = 100K.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

In fig. 4.13 results of the path following for ∆T = 100K are shown. The
control parameter is Re, which is varied from 0 to 400. The most sensitive
region, where thermal and rotational forces are in strong competition, is
located between Re ≈ 170 and Re ≈ 210 (see cutout in fig. 4.13). This
region has expanded compared to the previous study for ∆T = 50K. This is
reasonable, because the thermal forces are stronger. This is also the reason
for the shift of the multiplicity region to higher Re.
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Case ∆T = 150 K
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Figure 4.14: Path following diagram for the DyScO3 melt with ∆T = 150K.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

In the continuation diagram of fig. 4.14 the control parameter Re has been
varied from 0 to 400. For Re = 0 the total kinetic energy is already very
high, since the continuation study is done for large ∆T = 150K.
The region with multiple solutions is located between Re ≈ 200 and Re ≈
260. This interval is wider than in the previous continuation study for ∆T =
100K. There melt flow instabilities are likely.
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Case ∆T = 200 K
Fig. 4.15 shows the fourth continuation diagram done for the control pa-
rameter Re and fixed ∆T = 200K. Because of the high thermal forces it
starts at Re = 0 with a high value of the total kinetic energy Ekin in the
melt flow. With increasing Re the curve is falling rapidly into the region of
multiplicities. This region containing multiple solutions is located between
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Figure 4.15: Path following diagram for the DyScO3 melt with ∆T = 200K.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

Re ≈ 235 and Re ≈ 310. This interval is wider than in the prior study made
for ∆T = 150K. The cutout in fig. 4.15 shows more detailed the qualitative
change of the curve shape compared to the previous continuation diagram in
fig. 4.14. Here the shape of the solution curve in the multiplicity region be-
comes more apparent. Solutions on the middle branch are linearly unstable.
The global minimum of the diagram in fig. 4.15 is located at Re ≈ 260.
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4.2.2 Continuation with control parameter ∆T
Four path following diagrams have been computed for fixed rotational Reyn-
olds number Re using the FEM package ENTWIFE [80]. Thereby, the tem-
perature difference across the free melt surface ∆T has been chosen as control
parameter, which is the driving force for the thermally induced flow.

Case Re=50
The first path following diagram is done for Re = 50 (fig. 4.16).
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Figure 4.16: Path following diagram for the DyScO3 melt with Re = 50.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

The physical parameters ofDyScO3 melt were used. During the Cz growth of
DyScO3 single crystals, typical temperature differences across the free melt
surface (gas/melt interface) are between ∆T = 100K and ∆T = 200K (see.
4.2). So, typical temperature gradients between the crucible side wall and
the crystal are between 70K/cm and 140K/cm. The curve in fig. 4.16 starts
from ∆T = 0K, where the total kinetic energy of the melt flow is almost
0, because of the slow crystal rotation. Increasing the control parameter
∆T the curve exhibits a minimum for low ∆T (see the detailed cutout in
fig. 4.16). For larger ∆T the curve is monotonically increasing without any
solution multiplicities, so that the melt flow should be stable.
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Case Re=100
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Figure 4.17: Path following diagram for the DyScO3 melt with Re = 100.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

In fig. 4.17 the rotational forces have been increased to Re = 100. Therefore
the curve starts with a certain total kinetic energy Ekin in the melt flow for
∆T = 0K.
Increasing ∆T the forced convection induced by the rotational forces is being
weakened by the thermally induced convection. At about ∆T = 3K the curve
exhibits a minimum of the total kinetic energy. Apparently, for higher ∆T
the melt flow becomes more complex. Solution multiplicity occurs between
the left limiting point (LLP) at ∆T ≈ 23K and the right limiting point
(RLP) at ∆T ≈ 26K (see the cutout in fig. 4.17).
The multiplicity region is sensitive in terms of melt flow stability, because
linearly unstable solutions are possible. During the Cz process of theDyScO3
single crystal Re = 100 (≈ 10 rpm) is realistic, but the ∆T at which the
multiple solutions occur is not. It could be realistic for the seeding process,
so that the melt flow could become unstable.
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Case Re=150
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Figure 4.18: Path following diagram for the DyScO3 melt with Re = 150.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

Fig. 4.18 shows a path following diagram for the control parameter ∆T for
Re = 150. For ∆T = 0K the total kinetic energy Ekin in melt flow is slightly
larger than in the previous study for Re = 100, because the rotational forces
are larger. Again, Ekin first decreases for increasing ∆T to a global minimum
and then it is rising for increasing ∆T .
The most sensitive region with multiple solutions occurs in the interval
≈ 55K ≤ ∆T ≤≈ 75K . It became wider compared to the multiplicity re-
gion in the continuation diagram for Re = 100 (see fig. 4.17).
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Case Re=200
In the last continuation diagram (fig. 4.19) the rotational Reynolds number
is increased to Re = 200. So, the curve starts at ∆T = 0K with a larger
Ekin than in the prior study for Re = 150. Also here, the curve exhibits a
global minimum at ∆T ≈ 5K.
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Figure 4.19: Path following diagram for the DyScO3 melt with Re = 200.
(Re: rotational Reynolds number, Ekin: total kinetic energy of the melt flow,
∆T : temperature difference across the free melt surface)

The multiplicity region became wider than in the prior study (fig. 4.18),
and it has been shifted to higher ∆T values. This is reasonable, since the
rotational forces are stronger and the competition with thermal forces is
stronger, too.

4.3 Summary and concluding remarks
Continuation diagrams have been calculated in order to obtain an overview
of the global solution behaviour in the DyScO3 melt flow. Two cases have
been considered. First the control parameter rotational Reynolds number
Re has been varied, while the temperature difference across the free melt
surface (gas/melt interface) ∆T was fixed (∆T = 50, 100, 150, 200K). In
the second case ∆T was the control parameter, which has been varied, and
Re was fixed (Re = 50, 100, 150, 200).
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In both cases there is a strong interaction between the flow induced by ro-
tational forces and the thermally induced flow. Every continuation diagram
has a region of multiple solutions, except the first path following diagram of
the second case (Re = 50). This parameter combination seems to be stable
for all analyzed ∆T intervals. In both cases there is the phenomenon, that
the region of multiple solutions is shifted to higher values of the control pa-
rameter, when the fixed parameter has been increased. Also, the multiplicity
interval becomes wider for larger control parameter, i.e. the melt flow is
instability sensitive for a larger interval of parameter values.
The solution multiplicity region is enclosed by the limiting points. Outside
this region an unique and linearly stable solution exists. Exactly at the
limiting points two solutions exist, and in between three solutions. The
multiplicity of solutions, which can be linearly stable or unstable, can be
the prerequisite of melt flow instabilities, which could initiate spiral crystal
growth.
In both cases there is a global minimum, which is connected to the interaction
of thermally and rotationally induced melt flows. The difference is, that in
the first case (control parameter Re) the global minimum is located in the
region of solution multiplicities (see fig. 4.11−4.15) and in the second case
(control parameter ∆T ) the global minimum occurred in all four continuation
diagrams (see fig. 4.16−4.19) very close to the symmetry axis (∆T = 0K).
The region of multiplicities is very sensitive in terms of melt flow instability.
Especially when steep gradients (see detailed cutouts in fig. 4.11 − 4.19) are
present in the solution, the numerical demands on the FEM grid accuracy
and the computation times increase. For the crystal growth of the rare earth
scandate DyScO3 single crystal, it could be a problem during the seeding
process at lower rotation rates, because a possible melt flow instability, which
apparently can occur (see fig. 4.11), will produce a symmetry breaking at
the very beginning of the crystal growth process.
During the regular crystal growth process, especially the step from one solu-
tion branch onto another, can be a source of symmetry breaking and spiral
growth, because this branch could be linearly unstable. This change from
one solution branch onto another could occur due to melt flow disturbances,
e.g. disturbances of the heat transfer. Also, heat accumulation in the grown
crystal, because of bad transparency properties, can disturb the heat trans-
fer in the melt flow and lead to an unstable solution branch. Therefore, the
most sensitive region in the continuation diagram is that where the distance
between the solution branches is small, since it needs smaller disturbance
amplitudes to produce a branch change, i.e. the invariance of the melt flow
stability against disturbances becomes weaker.
Finally, it can be concluded that unstable parameter intervals do not occur
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when either rotational or thermal forces dominate the melt flow, but will
occur when the flow energies resulting from thermal and rotational forces,
respectively, are of about equal order of magnitude.



Chapter 5

Summary and final remarks

Since a whole century material sciences and solid state physics are making
enormous contributions to the technological progress in industry. Especially,
since the invention of the transistor based on semiconductors about 60 years
ago crystal growth gained rapidly on importance in industry and science.
Semiconductor materials cover about 90% of industry demand on single bulk
crystals and about 10% is covered by oxide materials. Nevertheless, oxides
are not replaceable for many applications, e.g. optoelectronics, sensor tech-
nologies or substrates for epitaxial growth. Especially, the demand on special
oxides, i.e. rare earth scandates (ReScO3), is growing during the last years,
mainly for memory technologies (strain engineering). Rare earth substances
can be Re = La,Ce, Pr,Nd, Sm,Eu,Gd, Tb,Dy. A very high melting point
with Tm > 2000 ◦C is common for all rare earth scandates. This implies a
non-trivial handling and requires for special operating conditions during the
crystal growth, e.g. very good insulation. Bulk single rare earth scandate
crystals are mainly used as substrates in epitaxial growth. Choosing a proper
rare earth type crystals with a wide range of lattice constants can be grown
[5, 6].
Beside the experimental challenges due to high operating temperatures and
other problems like thermal stresses and chemical purity, the main problem
during the Czochralski (Cz) growth of rare earth scandates is the tendency
to spiral growth. The consequence is a premature stop of the growth process,
i.e. a decrease of the yield.

In the present work reasons for the initiation process of the spiral crystal
growth had to be investigated. Due to a very high melting point of rare
earth scandates, the Cz setup requires an optimal insulation leading to bad
observability of the growth process. Consequently, the reasons for spiral
growth cannot be found applying experimental approaches. Therefore, it is

99
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mandatory to apply numerical analysis of hydrodynamical instabilities in the
melt.
The main hypothesis is that heat and momentum changes in the melt are
initiating this unwanted process of spiral growth. In order to numerically
model the realistic crystal growth of rare earth scandates the most important
physical properties of theDyScO3 melt had to be determined experimentally,
because almost no properties could be found in the literature.
In chapter 2 the focus has been set on numerical analysis of a model melt
with well known physical properties, i.e. NaNO3. The melt temperature
Tm ≈ 306 ◦C is much smaller than the melt temperature of DyScO3, but for
the verification of the applied numerical code this has no influence. Since the
hydrodynamical instability of the melt flow was under consideration only the
melt domain as simple rectangle has been analysed. The realistic geometry
like the shape of the liquid / solid interface has been neglected. The model
describes the heat transfer and the melt flow by applying the Navier-Stokes-
equations under Boussinesq approximation, the continuity equation and the
energy equation. The temperature distribution was calculated and the melt
flow has been simulated varying the main parameters. These are the rota-
tional Reynolds number Re, which describes the forced convection induced
by the rotation of the crystal and the temperature difference across the free
melt surface ∆T , which describes the thermally induced convection in the
melt.
Direct numerical Simulation (DNS) has been applied and "stability diagrams"
have been calculated by looking for the last possible parameter combination
(Re / ∆T ) where the simulation algorithm is still converging. Also, transient
simulation has been performed for different parameter sets. On one hand
this is a very time consuming procedure and on the other hand it is not
reliable, but this is the only way using generic FEM software packages. Why
it is not reliable? Because, it could be shown, that in a region where the
DNS only results in steady state solutions, also oscillatory solutions can
occur. That means, that multiple solutions are possible. Therefore, the
solution structure has been analysed intensively applying continuation and
bifurcation techniques, respectively, which is novice in numerical simulation
of the Czochralski crystal growth processes. These numerical tools allow for
a much faster simulation than DNS, when the global solution overview is
under consideration. Whereas a conventional Newton algorithm converges
with order O(h)2 the Hopf-bifurcation algorithm shows a super convergence
with O(h)4. The applied code is fully parallelized and could be run on a super
computer with a total performance of 10 Tflops. Continuation diagrams show
often a S-like shape, which is determined by limiting points. Outside this
region the solution is unique and linearly stable, exactly on these points two
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solutions exist and in between three solutions exist. Deeper analysis of the
solutions applying eigenvalue analysis and calculation of Hopf bifurcation
points only can decide about the solution stability. Hopf points are origins of
oscillatory solution branches, i.e. periodic orbits. All results which are gained
during the analysis of the NaNO3 model were reproduced by an independent
research group of Tel-Aviv University who used a FVM discretization instead
of a FEM grid.
After the verification of the numerical tools using the simple NaNO3 model
a more comprehensive and realistic model of the DyScO3 crystal growth has
been implemented. For that the main physical properties of the DyScO3
had to be measured, which is reported in chapter 3. This is a consequence
of a lack of physical properties for oxide materials with high melting point
(≈ 2000 ◦C). The IKZ Cz-equipment for growing oxide single crystals has
been used for these experiments.
The temperature on the melt surface could not be reliably measured using
optical measuring equipment, i.e. pyrometer and/or an IR camera system.
The main problem came from evaporated substances from the oxide melt
which condensed on the observation window and/or the fibre optics of the
IR camera system, so that the heat radiation had been falsified. Therefore
the temperature measurements have been done using self made Ir/Ir40%Rh
thermocouples. Temperature measurement close to the outer crucible wall
can not detect temperature fluctuations in the melt, but a vertical temper-
ature gradient of 25 K/cm was measured during a real Cz crystal growth
process outside the crucible wall. The measurement inside the DyScO3 melt
yielded the vertical temperature profile in the melt showing that the maxi-
mum melt temperature is located about 15 mm above the crucible bottom.
The temperature measurement inside the melt has not been done during a
real crystal growth process.
The same setup was used to measure the electrical conductivity of the melt.
This yielded a value in the order of 10−7Ω−1cm−1, but has to be analysed
more detailed because of the simple measurement setup used.
The Wilhelmy plate method has been applied for measuring the surface ten-
sion σ of DyScO3 melt. The result was σ ≈ 1.421 N/m measured at about 10
K above the melting temperature of DyScO3. Its temperature dependence
is approx. −3.48 · 10−4N/m · K in the temperature range 2070 − 2093 ◦C,
which is larger than values of other oxide melts referenced in the literature.
For comparison also σ measurements were made for a GGG melt. The sur-
face tension of the GGG melt close to the melting point of about 1750 ◦C is
1.285 N/m with a temperature dependence of about −2.76 · 10−4N/m ·K in
the temperature range 1753− 1840 ◦C. These values are similar to those of
the DyScO3 melt and that seems to be reasonable, because the flow pattern
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at the melt surface caused by the Marangoni convection is very similar and
therefore the sensitivity for changes of σ must be about the same.
The dynamic viscosity of DyScO3 melt has been measured using a rotary
viscosimeter. This measurement yielded an averaged dynamic viscosity of
about 49.86 mPa · s, which is similar to the values of other oxide melts
published in the literature.
The density of the DyScO3 solid phase is determined to be about ρs ≈
6.79g/cm3, and is about 10 % larger than the density of the liquid phase
ρl ≈ 6.12g/cm3. This is estimated using the melt level decrease inside the
crucible which is visible after solidification of the melt.
For the viscosity measurement a rotary body was used with relatively large
heat capacity which caused "freezing" during its immersion into the melt.
This required higher power rates for remelting. Therefore, in the future
a smaller rotary body should be used. The presented measurements have
not been performed using special high precision equipment. However, the
obtained physical properties of DyScO3 melt should help getting more accu-
rate numerical simulation results during the analysis of spiral crystal growth
which is still the goal of the presented work.
One has to recognise that taking data of material properties from literature
should be done with care. Some of them are only estimated and there are
different values available for the same material. Nevertheless, using the IKZ
equipment it was not possible to carry out all properties needed for the
numerical simulations, so that estimated values were used also (e.g. thermal
conductivity or heat capacity).
After the measurements of important physical properties of the DyScO3
melt a more comprehensive model has been implemented in chapter 4, which
should take into account a more realistic geometry and the RF induction
heating. The geometry describes beside the melt domain, a rounded crucible
bottom, an afterheater with a flat baffle, the crystal, the gas domain, the
insulation and the RF coils.
The influence of the height of the RF coils relative to the melt height on
the melt flow has been analysed. Five different geometry cases have been
considered. Each simulation has been performed in two steps. First, the
components of the electromagnetic field generated by the RF coils have been
calculated. This field induces heat in metallic parts, i.e. crucible and after-
heater, which is then used in the second step to calculate the temperature
distribution and the melt flow. There was no significant influence of the
change of the RF coil height on the melt flow stability.
Considering only the melt flow domain path following diagrams have been
calculated in order to get a qualitative overview about the solution structure.
This has been done like in chapter 2 but now for a real oxide crystal (DyScO3)
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melting at about 2000 ◦C. First the control parameter Re has been varied for
fixed ∆T = 50K, 100K, 150K, and 200K and then continuation diagrams with
control parameter ∆T has been varied for fixed Re =50, 100, 150, and 200.
In both cases regions of solution multiplicity could be localized, where also
unstable solutions are possible. Outside these regions the solution is unique
and stable and inside three solutions are possible, from which at least one is
linearly unstable, which can be proved applying a linear stability analysis.
This model in combination with the bifurcation techniques cannot predict
quantitatively exact parameter sets, which a crystal grower should use to
avoid possible spiral growth, because the model still does not use all exact
physical properties of the DyScO3 melt. Also, not all important effects,
especially the internal radiation in the crystal, which is apparently very im-
portant, are not considered. Experiments had shown that the spiral growth
tendency is stronger for rare earth scandates with lower transparency at oper-
ating temperatures (e.g. NdScO3) than for rare earth scandates with higher
transparency at operating temperatures (e.g. GdScO3) [6]. This means a
realistic modelling will require a global 3D simulation of the entire Cz setup,
which should be the goal for the future. However, the continuation diagrams
had shown a multiplicity for realistic crystal rotation rates (Ω = 10..20 rpm)
and this knowledge can be useful for the crystal grower.
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