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Abstract

We present a data-driven realization for systems with delay, which generalizes the Loewner
framework. The realization is obtained with low computational cost directly from mea-
sured data of the transfer function. The internal delay is estimated by solving a least-
square optimization over some sample data. Our approach is validated by several exam-
ples, which indicate the need for preserving the delay structure in the reduced model.

Keywords: Data-driven model reduction, delay systems, Loewner framework, moment
matching, tangential interpolation, delay recovery, structure-preserving model reduction

AMS(MOS) subject classification: 93A30, 37M99, 34K06, 93A15

1 Introduction

Nowadays, it is common to describe a physical or chemical system by a mathematical sur-
rogate model. Such models are often given by (partial) differential equations and may be
used for analysis, control, and optimization. The demand for high fidelity models results
in large-scale dynamical systems, for which classical numerical methods may be too time
or memory consuming. In such cases, often an analytically justified and numerically stable
approximation of the input-output map is desirable leading to the field of model order re-
duction (MOR) (for an overview see [1, 3] and the references therein). Many of these MOR
methods require access to the internal dynamics of the full system in terms of a state-space
realization. This assumption can be relaxed by employing data-driven MOR techniques that
construct low-dimensional models directly from measurements. Let H(s) ∈ Cp,m denote the
transfer function of a system, where m and p are the numbers of inputs and outputs, respec-
tively. Since the input-output behavior of a system is characterized by its transfer function,
measurements of H seem appropriate to construct a low-dimensional model. We assume
measurements H(λi)ri = wi and ℓiH(µi) = vi to be given, i. e., we have

right interpolatation data {(λi, ri, wi) | λi ∈ C, ri ∈ Cm, wi ∈ Cp, i = 1, . . . , ρ} and

left interpolation data {(µi, ℓi, vi) | µi ∈ C, ℓTi ∈ Cp, vTi ∈ Cm, i = 1, . . . , ρ}.
(1.1)
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Examples of measurements yielding data in the form (1.1) are scattering parameters for fre-
quency response objects (S-parameters) and admittance parameters for interconnects, which
can be obtained by a vector network analyzer [2].

In this paper we assume that the transfer function is based on a system with (possibly
unknown) delay and study a generalized realization problem with internal delay : Given the
data (1.1), construct matrices Eρ, A1,ρ, A2,ρ, Bρ, and Cρ, such that the transfer function

Hρ(s) = Cρ

(
sEρ −A1,ρ − e−τsA2,ρ

)−1
Bρ (1.2)

with delay τ ≥ 0 interpolates the data, i. e.,

wi = H(λi)ri = Hρ(λi)ri and vi = ℓiH(µi) = ℓiHρ(µi) for i = 1, . . . , ρ.

The transfer function (1.2) corresponds to a realization Σρ = (Eρ, A1,ρ, A2,ρ, Bρ, Cρ) of the
form

Eρẋρ(t) = A1,ρxρ(t) +A2,ρxρ(t− τ) +Bρu(t), (1.3a)

yρ(t) = Cρxρ(t), (1.3b)

which serves as a low-dimensional model.
A generalized realization problem without delay for the data (1.1) is solved in [16], leading

to the Loewner framework. The resulting realization is a generalized state-space representa-
tion of the form

−Lẋ(t) = −Lσx(t) + V u(t),

y(t) =Wx(t),
(1.4)

where L and Lσ are the Loewner matrix and shifted Loewner matrix, respectively, and V and
W are matrices consisting of the data (for more details see section 2).

The rate of change of realistic models often depends not only on the current time point,
but also on the configuration at previous time instances, which leads to time-delay systems.
Popular examples are nonlinear optics, chemical reactor systems, population dynamics, and
delayed feedback control (cf. [9] and the references within). Finding a realization of a sys-
tem with delay by means of the Loewner framework results in the system (1.4), that does
not feature the delay term and hence cannot reflect the dynamics of the inherently infinite-
dimensional delay system.

In this paper, we propose a generalization of the Loewner realization to systems with
delay. The main contributions are described in the following.

• First, we present a generalization to delay systems based on extensions of the Loewner
matrix and the shifted Loewner matrix. This approach provides a realization as in (1.3)
with the coupling A2,ρ = −Eρ (see section 3).

• Since the coupling A2,ρ = −Eρ appears to be rather restrictive, we consider general
conditions for interpolating the transfer function (1.2) in section 4. For this purpose,
the moment matching framework from [4] (see also [10] for an earlier contribution) is
extended to DAE systems with delay.

• Based on the conditions for moment matching, we derive a framework to obtain a
realization (1.3) with the coupling A2,ρ = αEρ + βA1,ρ with scalar parameters α and β
(see section 5). Note that this is a more general form than the realization from section 3,
which is the special case with α = −1 and β = 0.
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• Since the delay is unknown in general, we propose a methodology to determine a delay
τκ,ρ, which is optimal in the sense that it minimizes the interpolation error for a set of
sampled test data of the transfer function (see section 6). In the same fashion, optimal
parameters ακ,ρ and βκ,ρ may be calculated.

In section 7 we apply the proposed framework to several examples. A comparison to alter-
native techniques from the literature including the original Loewner framework reveals the
necessity of preserving the delay structure in the realization.

2 Notation and Preliminary Results

Recall that the realization (1.3) is given by

Eρẋρ(t) = A1,ρxρ(t) +A2,ρxρ(t− τ) +Bρu(t), (2.1a)

yρ(t) = Cρxρ(t), (2.1b)

where xρ(t) ∈ Rr for r ≤ ρ, u(t) ∈ Rm, and yρ(t) ∈ Rp denote, respectively, the state, input,
and output of the model. As common in the delay literature, the right-hand derivative d

dt of

a piecewise smooth function f is denoted by ḟ [13]. The symbol In stands for the identity
matrix of dimension n× n. The input u is assumed to be sufficiently smooth and the system
(2.1) is equipped with the initial condition (also called history function)

x(t) = ϕ(t) for t ∈ (−τ, 0], (2.2)

which is assumed to be identically zero, i. e., ϕ ≡ 0. If det(sEρ − A1,ρ − e−τsA2,ρ) is not
vanishing identically, then the Laplace transformation of (2.1) yields the transfer function

Hρ(s) = Cρ

(
sEρ −A1,ρ − e−τsA2,ρ

)−1
Bρ. (2.3)

For convenience, we call the set {s ∈ C | det (sEρ −A1,ρ − e−τsA2,ρ) ̸= 0} the resolvent set of
sEρ − A1,ρ − e−τsA2,ρ. For τ > 0, the system Σρ as in (2.1) can be solved on consecutive
time intervals ((K − 1)τ,Kτ ], such that (2.1a) reduces to the associated differential-algebraic
equation (DAE) [12]

Eρẋρ(t) = A1,ρxρ(t) + fρ(t) (2.4)

with inhomogeneity fρ(t) = A2,ρxρ(t − τ) + Bρu(t). Note that we use the terminology DAE
here, since we allow Eρ to be singular. This procedure is known as the (Bellman) method of
steps [6, 12]. For τ = 0, (2.1a) reduces to the DAE

Eρẋρ(t) = Aρx(t) +Bρu(t) (2.5)

with Aρ := A1,ρ + A2,ρ. For convenience, we also refer to (2.5) as associated DAE. In both
cases, a unique solution of (2.4) and (2.5) is given if and only if the pencils sEρ − Aρ and
sEρ−A1,ρ, respectively are regular [14], i. e., det(sEρ−Aρ) and det(sEρ−A1,ρ) do not vanish
identically. For τ = 0, the regularity of the pencil of (2.5) directly implies the existence of
the transfer function (2.3). In the case τ > 0 the existence of the transfer function (2.3) is
guaranteed by the subsequent lemma.

Lemma 2.1 If τ > 0 and the pencil sEρ−A1,ρ is regular, then det(sEρ−A1,ρ−e−τsA2,ρ) ̸≡ 0.
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Proof. Suppose there exists v ̸= 0 such that (sEρ −A1,ρ − e−τsA2,ρ) v = 0 for all s ∈ C.
This implies (since (Eρ, A1,ρ) is regular) that

eτsv = (sEρ −A1,ρ)
−1A2,ρv

for all s not in the spectrum of (Eρ, A1,ρ). This contradicts v ̸= 0, because (sEρ −A1,ρ)
−1 is

a rational function in s.

We briefly recall the Loewner realization introduced in [16]. The Loewner matrix L
and shifted Loewner matrix Lσ are defined as solutions of the Sylvester equations

LΛ−ML = LW − V R, (2.6)

LσΛ−MLσ = LWΛ−MVR, (2.7)

respectively, where

Λ = diag(λ1, . . . , λρ), M = diag(µ1, . . . , µρ), R =
[
r1 . . . rρ

]
,

W =
[
w1 . . . wρ

]
, L =

⎡⎢⎣ℓ1...
ℓρ

⎤⎥⎦ , and V =

⎡⎢⎣v1...
vρ

⎤⎥⎦ .
Direct computation shows that if λi ̸= µj for i, j = 1, . . . , ρ, then the unique solutions of (2.6)
and (2.7), respectively, are given by

[L]i,j =
virj − ℓiwj

µi − λj
and [Lσ]i,j =

µivirj − λjℓiwj

µi − λj
. (2.8)

Remark 2.2 Both matrices can be assembled efficiently via matrix-matrix operations of size
ρ× ρ using standard tools for scalar, vector, and matrix operations (BLAS). More precisely,
the numerator is given by V R−LW for the Loewner matrix andMVR−LWΛ for the shifted
Loewner matrix. The denominator is implemented as µeT − eλT , where µ, λ ∈ Cρ are vectors
containing µi and λi and e ∈ Rρ is a vector filled with ones.

Theorem 2.3 ([16, Lemma 5.1]) Let det(s̃L − Lσ) ̸= 0 for all s̃ ∈ {λi} ∪ {µi}. Then the
system

−Lẋρ(t) = −Lσxρ(t) + V u(t),

yρ(t) =Wxρ(t)
(2.9)

is a minimal realization of an interpolant of the data, i. e., its transfer function

Hρ(s) =W (Lσ − sL)−1V

interpolates the data (1.1).

Let ε denote the machine precision. If det(s̃L − Lσ) = O(ε) for some s̃ ∈ {λi} ∪ {µi}, then
one can use the truncated singular value decomposition (SVD) [11] of sL − Lσ to truncate
the numerically vanishing singular values as in the next theorem, originally stated in [16].
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Theorem 2.4 ([16, Theorem 5.1]) Suppose that

rank (s̃L− Lσ) = rank
[
L Lσ

]
= rank

[
L
Lσ

]
=: r for all s̃ ∈ {λi} ∪ {µi}.

Then a minimal realization of an interpolant of the data is given by the system

−Y ∗LXẋr(t) = −Y ∗LσXxr(t) + Y ∗V u(t),

yr(t) =WXxr(t),
(2.10)

where Y ∈ Cρ,r and X ∈ Cρ,r are the orthogonal factors of the truncated SVD

s̃L− Lσ = Y ΣX∗

for any s̃ ∈ {λi} ∪ {µi}, where Σ ∈ Cr,r is positive definite and diagonal.

Recently, a generalization of the Loewner framework for a special class of delay systems, where
A1,ρ = 0 in (2.1), was introduced in [18]. There, the interpolant is constructed by means of
Theorem 2.3 leading to the subsequent result, written here in slightly different notation.

Theorem 2.5 ([18, Theorem 3]) Suppose that λie
τλi ̸= µje

τµj for i, j = 1, . . . , ρ. Let

L(τ) and L(τ)
σ denote the Loewner matrix and shifted Loewner matrix, respectively, associated

with the transformed data (λie
τλi , ri, e

−τλiwi) and (µie
τµi , ℓi, e

−τµivi) for i = 1, . . . , ρ. If

det
(
s̃L(τ) − e−τ s̃L(τ)

σ

)
̸= 0 for all s̃ ∈ {λi} ∪ {µi}, then the transfer function

Hρ(s) =W e−τΛ
(
e−τsL(τ)

σ − sL(τ)
)−1

e−τMV

of the system
−L(τ)ẋρ(t) = −e−τsL(τ)

σ xρ(t− τ) + e−τMV u(t)

yρ(t) =W e−τΛxρ(t)

is an interpolant of the original data (1.1).

Again, the condition det(s̃L(τ)−e−τ s̃L(τ)
σ ) ̸= 0 can be relaxed by applying the truncated SVD

as in Theorem 2.4.

3 A Loewner Framework for Systems with Delay

In this section, we aim at extending the Loewner matrix and shifted Loewner matrix to the
time delay case. Suppose that µj + e−τµj ̸= λi + e−τλi for all i, j = 1, . . . , ρ. Define the
matrices T and Tσ

[T]i,j :=
virj − ℓiwj

µi + e−τµi − (λj + e−τλj )
and

[Tσ]i,j :=
(µi + e−τµi)virj − (λj + e−τλj )ℓiwj

µi + e−τµi − (λj + e−τλj )
.

(3.1)
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Lemma 3.1 Suppose that the denominators in (3.1) are not zero. Then the matrices T and
Tσ are the unique solutions of the Sylvester equations

T(Λ+ e−τΛ)− (M + e−τM )T = LW − V R, (3.2)

Tσ(Λ+ e−τΛ)− (M + e−τM )Tσ = LW (Λ+ e−τΛ)− (M + e−τM )V R, (3.3)

respectively.

Proof. It is well known that under the stated assumptions the Sylvester equations possess
unique solutions (cf. [1]). Multiplication of (3.2) and (3.3) from the left by eTi and from the
right by ej yields the matrices as in (3.1).

Similar as in [16], we get the following identities.

Corollary 3.2 Suppose that the denominators in (3.1) are not zero. Then we have

Tσ − T(Λ+ e−τΛ) = V R and Tσ − (M + e−τM )T = LW.

Proof. Multiplying (3.2) by (Λ+ e−τΛ) from the right and subtracting it from (3.3) yields(
Tσ − T(Λ+ e−τΛ)− V R

)
(Λ+ e−τΛ)

− (M + e−τM )
(
Tσ − T(Λ+ e−τΛ)− V R

)
= 0. (3.4)

Since Λ+ e−τΛ and M + e−τM have no eigenvalues in common (by assumption), the solution
of the Sylvester equation (3.4) is zero, which yields the first equality. By the same argument,
we get the second identity if we multiply (3.2) by (M + e−τM ) from the left and subtract it
from (3.3).

Theorem 3.3 Suppose that the denominators in (3.1) are not zero and

det
(
Tσ − (s̃+ e−τ s̃)T

)
̸= 0 for all s̃ ∈ {λi} ∪ {µi}. (3.5)

Then the delay descriptor system given by Σρ = (−T,−Tσ,T, V,W ) with associated transfer

function Hρ(s) =W (Tσ − sT− e−τsT)−1
V interpolates the data, i. e.,

Hρ(λi)ri = wi and ℓiHρ(µi) = vi for i = 1, . . . , ρ.

Moreover, the pencil of the associated DAE of Σρ is regular.

Proof. Multiply (3.2) by (s+ e−τs) and subtract it from (3.3) to obtain(
Tσ − T(s+ e−τs)

)
(Λ+ e−τΛ)− (M + e−τM )

(
Tσ − T(s+ e−τs)

)
=

LW
(
(Λ+ e−τΛ)− (s+ e−τs)Iρ

)
−
(
M + e−τM − (s+ e−τs)Iρ

)
V R.

(3.6)

Multiply (3.6) from the right by the i-th unit vector ei to obtain(
Tσ − T(s+ e−τs)

)
(λi + e−τλi)ei − (M + e−τM )

(
Tσ − T(s+ e−τs)

)
ei =

LW
(
(λi + e−τλi)− (s+ e−τs)

)
ei −

(
M + e−τM − (s+ e−τs)Iρ

)
V ri,

6



which is equivalent to((
λi + e−τλi

)
Iρ −

(
M + e−τM

)) (
Tσ − T(s+ e−τs)

)
ei =

LW
(
(λi + e−τλi)− (s+ e−τs)

)
ei −

(
M + e−τM − (s+ e−τs)Iρ

)
V ri.

Setting s = λi implies((
λi + e−τλi

)
Iρ −

(
M + e−τM

))(
Tσ − T(λi + e−τλi)

)
ei

=
(
(λi + e−τλi)Iρ − (M + e−τM )

)
V ri. (3.7)

By assumption, the matrix (λi + e−τλi)Iρ − (M + e−τM ) is nonsingular. In particular, (3.7)
is equivalent to (

Tσ − T(λi + e−τλi)
)
ei = V ri

and assumption (3.5) implies

ei =
(
Tσ − T(λi + e−τλi)

)−1
V ri.

Multiplication by W from the left yields

Hρ(λi)ri = wi =Wei =W
(
Tσ − T(λi + e−τλi)

)−1
V ri.

The proof for the left interpolation conditions works analogously by multiplying (3.6) from
the left by eTi and setting s = µi. The regularity of the pencil of the associated DAE follows
directly from (3.5).

Remark 3.4 Theorem 3.3 is a generalization of Theorem 2.3 in the following sense. If τ = 0,
then system (1.3) reduces to the descriptor system

Eρẋρ(t) = Aρxρ(t) +Bρu(t),

yρ(t) = Cρxρ(t)

with Aρ = A1,ρ +A2,ρ and the realization via the matrices T and Tσ yields

[Eρ]i,j = − [T]i,j = − virj − ℓiwj

µi + 1− (λj + 1)
= − [L]i,j ,

[Aρ]i,j = [T]i,j − [Tσ]i,j =
virj − ℓiwj

µi − λj
− (µi + 1)virj − (λj + 1)ℓiwj

µi − λj
= − [Lσ]i,j ,

which are the Loewner matrix and shifted Loewner matrix, respectively.

Remark 3.5 The realization given in Theorem 3.3 is restrictive in the sense that Eρ and A2,ρ

coincide apart from a constant factor. Thus, there are delay descriptor systems whose dy-
namical behavior is not captured accurately by this approach. To circumvent this restriction,
we consider a more general framework in the next section.

7



4 Moment Matching for Linear Delay Descriptor Systems

Subsequently, we present a general framework for matching the moments of a linear time-
invariant time-delay descriptor system of the form

Eẋ(t) = A1x(t) +A2x(t− τ) +Bu(t),

y(t) = Cx(t)
(4.1)

with state-space dimension n, input dimension m, output dimension p, and matrices E, A1,
A2, B, and C of appropriate size. The transfer function of the system is given by

H(s) = C
(
sE −A1 − e−τsA2

)−1
B

and we assume that s̃E − A1 − e−τ s̃A2 is nonsingular for some s̃ ∈ C. We generalize the
moment matching approach as introduced in [4] to delay DAE systems of the form (4.1). A
similar method for delay differential equations is derived in [19].

Moment matching is a technique to reduce a large-dimensional system with given state-
space representation by interpolation of the transfer function and its derivatives. In the
next section, we revert this process to derive conditions for a data-driven realization. In the
data-driven approach, we assume that we do not have information about the derivatives of
the transfer function. This is the reason for only considering 0-moments (see Definition 4.1
below) and ignoring moments of higher order. In the case that we have multiple inputs and
multiple outputs (MIMO) the transfer function H is a matrix function we interpolate along
interpolation directions. This is known as tangential interpolation [10].

Definition 4.1 (0-moment) Consider λi, µi ∈ C in the resolvent set of sE −A1 − e−τsA2.
The right 0-moment η (λi, ri) of the system (4.1) at λi in direction ri is defined as

η (λi, ri) := C
(
λiE −A1 −A2e

−τλi

)−1
Bri = H(λi)ri.

The left 0-moment η (µi, ℓi) of the system (4.1) at µi in direction ℓi is defined as

η (µi, ℓi) := ℓiC
(
µiE −A1 −A2e

−τµi
)−1

B = ℓiH(µi).

Note that the interpolation data (1.1) consists of the interpolation points λi and µi, the
directions ri and ℓi, and the right and left 0-moments. An equivalent notion of moment is
presented in the following proposition.

Proposition 4.2 Consider system (4.1) and complex numbers λi, µi ∈ C in the resolvent set
of sE −A1 − e−τsA2.

1. The right 0-moment of system (4.1) at λi in direction ri is given by

η (λi, ri) = Cπi,

where πi is the unique solution of the linear algebraic system

λiEπi = A1πi +A2πie
−τλi +Bri. (4.2)
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2. The left 0-moment of system (4.1) at µi in direction ℓi is given by

η (µi, ℓi) = ψiB,

where ψi is the unique solution of the linear algebraic system

µiψiE = ψiA1 + ψiA2e
−τµi + ℓiC. (4.3)

Proof. Since λi is in the resolvent set, there exists a unique solution of (4.2) given by

πi =
(
λiE −A1 −A2e

−τλi
)−1

Bri and hence Cπi = η (λi, ri). The second statement follows
analogously.

Remark 4.3 As a direct consequence from Proposition 4.2, the set of right 0-moments cor-
responding to {λ1, . . . , λρ} and {r1, . . . , rρ} is given by CΠ, where Π is the unique solution
of the matrix equation

EΠΛ = A1Π +A2Πe−τΛ +BR, (4.4)

where Λ and R are defined as in section 2. Analogously, the set of left 0-moments correspond-
ing to {µ1, . . . , µρ} and {ℓ1, . . . , ℓρ} is given by ΨB, where Ψ is the unique solution of the
matrix equation

MΨE = ΨA1 + e−τMΨA2 + LC. (4.5)

With the help of (4.4) and (4.5), we can derive families of reduced order models achieving
moment matching at the given interpolation points.

Theorem 4.4 Consider the time-delay descriptor system Σρ given in (1.3) and let right and
left interpolation data of the transfer function of (4.1) be given as in (1.1), where CΠ = W
and ΨB = V (see Proposition 4.2 and Remark 4.3). Furthermore, assume that the matrix
s̃Eρ −A1,ρ − e−τ s̃A2,ρ is nonsingular for all s̃ ∈ {λ1, . . . , λρ} ∪ {µ1, . . . , µρ}.

1. System (1.3) matches the right 0-moments CΠ if and only if

CΠ = CρP ,

where Π is the unique solution of (4.4) and P is the unique solution of the matrix
equation

EρPΛ = A1,ρP +A2,ρP e
−τΛ +BρR. (4.6)

2. System (1.3) matches the left 0-moments ΨB if and only if

ΨB = PBρ,

where Ψ is the unique solution of (4.5) and P is the unique solution of the matrix
equation

MPEρ = PA1,ρ + e−τMPA2,ρ + LCρ. (4.7)
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Proof. The claim is a straightforward consequence of the notion of moments as introduced
in Proposition 4.2 and Remark 4.3. Following this, the right 0-moments of system (1.3) are
given by CρP , where P is the unique solution of the matrix equation (4.6). Likewise, the right
0-moments of the original system (4.1) are given by CΠ, where Π is the unique solution of
(4.4). Consequently, the right moments are matched if and only if CΠ = CρP . The matching
of the left 0-moments is proven analogously.

Corollary 4.5

1. The family of reduced order models

Eρẋρ(t) = (EρΛ−A2,ρe
−τΛ −BρR)xρ(t) +A2,ρxρ (t− τ) +Bρu(t),

yρ(t) = CΠxρ(t)
(4.8)

matches the right 0-moments CΠ if s̃Eρ − (EρΛ−A2,ρe
−τΛ −BρR)− e−τ s̃A2,ρ is non-

singular for all s̃ ∈ {λ1, . . . , λρ}.

2. The family of reduced order models

Eρẋρ(t) = (MEρ − e−τMA2,ρ − LCρ)xρ(t) +A2,ρxρ (t− τ) + ΨBu(t),

yρ(t) = Cρxρ(t)
(4.9)

matches the left 0-moments ΨB if s̃Eρ − (MEρ − e−τMA2,ρ − LCρ)− e−τ s̃A2,ρ is non-
singular for all s̃ ∈ {µ1, . . . , µρ}.

Proof. The assertions follow directly from Theorem 4.4 by setting P = Iρ = P . This
leads to A1,ρ = EρΛ − A2,ρe

−τΛ − BρR and Cρ = CΠ for the family matching the right
0-moments and A1,ρ = MEρ − e−τMA2,ρ − LCρ and Bρ = ΨB for the family matching the
left 0-moments.

Remark 4.6 Note that the families of reduced order models (4.8) and (4.9) are parameterized
by Eρ, A2,ρ, Bρ, and Cρ. These parameters are only restricted by the generic conditions stated
in Corollary 4.5. This freedom may be exploited in order to tailor the reduced order model to
additional requirements, e. g., preserving structures or properties of the original system (1.3).

To find a family of reduced order models that matches both, the left and right 0-moments,
we compare the coefficient matrices of (4.8) and (4.9). This results in the following theorem.

Theorem 4.7 The family of reduced order models

Eρẋρ(t) =
(
EρΛ−A2,ρe

−τΛ − ΨBR
)
xρ(t) +A2,ρxρ (t− τ) + ΨBu(t)

yρ(t) = CΠxρ(t)
(4.10)

matches the 0-moments ΨB and CΠ if the matrix s̃Eρ−
(
EρΛ−A2,ρe

−τΛ − ΨBR
)
−e−τ s̃A2,ρ

is nonsingular for all s̃ ∈ {λi} ∪ {µi} and the Sylvester equation

EρΛ−MEρ + e−τMA2,ρ −A2,ρe
−τΛ = ΨBR− LCΠ (4.11)

is satisfied.
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A more general version of Theorem 4.7 may be derived. Instead of coinciding coefficients, it
is sufficient to require that the family (4.8) also matches the left 0-moments of (4.9) or that
the family (4.9) also matches the right 0-moments of (4.8). This leads to an additional degree
of freedom, which we omit for the sake of clarity.

The Sylvester equation (4.11) does not depend on the system matrices E, A1, A2, B
and C explicitly, since we have the identities CΠ = W and ΨB = V . Thus, Theorem 4.7
allows us to construct reduced order models from data only. The obtained realization (4.10)
is parameterized by the matrices Eρ and A2,ρ, which are coupled via (4.11).

Corollary 4.8 For the special case A2,ρ = −Eρ the unique solution of the Sylvester equation
(4.11) is given by the matrix Eρ = −T. Moreover, from Lemma 3.2 we have

Aρ =
(
EρΛ−A2,ρe

−τΛ − ΨBR
)
= Eρ

(
Λ+ e−τΛ

)
− V R = −Tσ.

Hence, for the particular case A2,ρ = −Eρ, system (4.10) is equivalent to the realization in
Theorem 3.3.

Remark 4.9 By solving the equations (4.4) and (4.5) for BR and LC, respectively, and
substituting the obtained expressions into the equations (4.10) and (4.11), it is easy to show
that a reduced order model matching the left and right 0-moments is given by the projection

Eρ = ΨEΠ, A1,ρ = ΨA1Π, A2,ρ = ΨA2Π, Bρ = ΨB, and Cρ = CΠ.

Example 4.10 Consider the system[
1 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
1 1

2
0 1

] [
x1(t)
x2(t)

]
+

[
0 1

2
0 1

] [
x1(t− π)
x2(t− π)

]
+

[
0
1

]
u(t),

y(t) =
[
0 1

] [x1(t)
x2(t)

] (4.12)

with transfer function H(s) = −(1 + e−πs)−1. We choose ρ = 1, λ = 0, and µ = 1
2 . Since

(4.12) is a single-input single-output (SISO) system, we set ℓ = r = 1 for the tangential
directions. The projection matrices Ψ and Π are given by

Ψ =
[
0 −(1 + e−

τ
2 )−1

]
and Π =

[
1
2
−1

2

]
and the reduced order model is given by

0 =
1

2

(
1 + e−

τ
2

)−1
xρ(t) +

1

2

(
1 + e−

τ
2

)−1
xρ(t− τ)−

(
1 + e−

τ
2

)−1
u(t),

yρ(t) = −1

2
xρ(t).

Simple calculations show that the left and right 0-moments are matched by the transfer
function of the reduced order model.

Remark 4.11 In [18] the authors consider the special case A1,ρ = 0 (cf. Theorem 2.5 above).
In terms of Corollary 4.5 and Theorem 4.7, this implies that Eρ must satisfy the Sylvester
equation

EρΛe
τΛ − eτMMEρ = V ReτΛ − eτMLW

and A2,ρ is given by
A2,ρ = (EρΛ− V R) eτΛ = eτM (Eρ − LW ) .

Consequently, the result obtained in [18] is a special case of the realization presented in
Theorem 4.7.

11



5 Generalized Delay Loewner Framework

Recall that the reduced models (4.10) allow for choosing either Eρ or A2,ρ. Inspired by the
mass- and stiffness-proportional damping, normally referred to as Rayleigh damping [8] in
mechanical systems, we make the ansatz A2,ρ = αEρ + βA1,ρ with some constants α and β.
For the special setting α = −1 and β = 0, we recover the framework presented in section 3.

Lemma 5.1 Suppose that 1 + βe−τ s̃ ̸= 0 for all s̃ ∈ {λi} ∪ {µi}. The reduced order model

Eρẋρ(t) = A1,ρxρ(t) + (αEρ + βA1,ρ)xρ (t− τ) +Bρu(t),

yρ(t) = Cρxρ(t)
(5.1)

matches the 0-moments ΨB and CΠ if the matrix s̃Eρ − A1,ρ − e−τ s̃ (αEρ + βA1,ρ) is non-
singular for all s̃ ∈ {λi} ∪ {µi},

Cρ = CΠ, Bρ = ΨB,

A1,ρ =
(
Eρ

(
Λ− αe−τΛ

)
−BρR

) (
Iρ + βe−τΛ

)−1
,

and Eρ satisfies the Sylvester equation

Eρ(Λ− αe−τΛ)(Iρ + βe−τΛ)−1 − (Iρ + βe−τM )−1(M − αe−τM )Eρ =

BρR(Iρ + βe−τΛ)−1 − (Iρ + βe−τM )−1LCρ.
(5.2)

Proof. For the right 0-moments, from Corollary 4.5 we get the conditions Cρ = CΠ and

A1,ρ = EρΛ−A2,ρe
−τΛ −BρR = EρΛ− (αEρ + βA1,ρ)e

−τΛ −BρR,

which is equivalent to

A1,ρ =
(
Eρ(Λ− αe−τΛ)−BρR

)
(Iρ + βe−τΛ)−1. (5.3)

Analogously, to match the left 0-moments, the condition Bρ = ΨB must be satisfied and the
matrix A1,ρ is given by

A1,ρ = (Iρ + βe−τM )−1
(
(M − αe−τM )Eρ − LCρ

)
. (5.4)

By comparison of the coefficients (as in the proof of Theorem 4.7), we deduce that (5.3) and
(5.4) must coincide, which yields the Sylvester equation (5.2).

Corollary 5.2 Suppose that the assumptions of Lemma 5.1 are satisfied and the matrices

(Λ− αe−τΛ)(Iρ + βe−τΛ)−1 and (Iρ + βe−τM )−1(M − αe−τM )

have no common eigenvalues. Then the unique solution of the Sylvester equation (5.2) is
given by

[Eρ]i,j =

virj

1 + βe−τλj
− ℓiwj

1 + βe−τµi

λj − αe−τλj

1 + βe−τλj
− µi − αe−τµi

1 + βe−τµi

. (5.5)
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Proof. Using the identities

Cρ = CΠ =W and Bρ = ΨB = V

the result follows by multiplying (5.2) from the left by eTi and from the right by ej .

Lemma 5.3 Under the assumptions of Corollary 5.2, the matrix A1,ρ from Lemma 5.1 sat-
isfies the Sylvester equation

A1,ρ(Λ− αe−τΛ)(Iρ + βe−τΛ)−1 − (Iρ + βe−τM )−1(M − αe−τM )A1,ρ =

(Iρ + βe−τM )−1(M − αe−τM )V R(Iρ + βe−τΛ)−1

−(Iρ + βe−τM )−1LW (Λ− αe−τΛ)(Iρ + βe−τΛ)−1

(5.6)

and is given by

[A1,ρ]i,j =

µi − αe−τµi

1 + βe−τµi

virj

1 + βe−τλj
− ℓiwj

1 + βe−τµi

λj − αe−τλj

1 + βe−τλj

λj − αe−τλj

1 + βe−τλj
− µi − αe−τµi

1 + βe−τµi

. (5.7)

Proof. The proof proceeds analogously to the proof of Lemma 3.2. Multiplying (5.2) with
(Λ−αe−τΛ)(I+βe−τΛ)−1 and subtracting it from (5.6) results in a Sylvester equation with a
unique solution that yields (5.4). The result for equation (5.3) follows likewise. Multiplying
(5.6) by eTi from the left and ej from the right yields the representation (5.7).

Summarizing the previous discussion, we have shown the following theorem.

Theorem 5.4 Let

det
((
s̃− αe−τ s̃

)
Eρ −

(
1 + βe−τ s̃

)
A1,ρ

)
̸= 0 for all s̃ ∈ {λi} ∪ {µi}. (5.8)

Then, under the assumptions of Corollary 5.2, the system

Eρẋρ(t) = A1,ρxρ(t) + (αEρ + βA1,ρ)xρ(t− τ) + V u(t),

yρ(t) =Wxρ(t)

with Eρ and A1,ρ as in (5.5) and (5.7), respectively, is an interpolant of the data, i. e., its
transfer function

Hρ(s) =W
((
s− αe−τs

)
Eρ −

(
1 + βe−τs

)
A1,ρ

)−1
V

interpolates the data (1.1). Moreover, the pencil of the associated DAE is regular.

Remark 5.5 Following the idea of [18], we can (formally) derive the same results by only
employing the Loewner realization theorem (Theorem 2.3). Using the proportional ansatz
A2,ρ = αEρ + βA1,ρ with some constants α and β, we can rewrite the transfer function as

H(s) = Cρ

(
sEρ −A1,ρ − e−τs (αEρ + βA1,ρ)

)−1
Bρ

= Cρ

(
s− αe−τs

1 + βe−τs
Eρ −A1,ρ

)−1

Bρ
1

1 + βe−τs

= G(f(s))
1

1 + βe−τs
,

13



where G is the transfer function of a generalized state-space system without delay and f is
given by f(s) = s−αe−τs

1+βe−τs . The Loewner matrices are then constructed for the transfer function

G(s) with transformed data (f(λi), ri(1+βe
−τλi)−1, wi) and (f(µi), (1+βe

−τµi)−1ℓi, vi). Note
that this allows to efficiently implement the system matrices similar as in Remark 2.2.

With Remark 5.5 we can immediately relax assumption (5.8) in Theorem 5.4.

Theorem 5.6 Suppose that the assumptions of Corollary 5.2 are satisfied and that

rank

(
s̃− αe−τ s̃

1 + βe−τ s̃
Eρ −A1,ρ

)
= rank

[
Eρ A1,ρ

]
= rank

[
Eρ

A1,ρ

]
=: r

holds for all s̃ ∈ {λi} ∪ {µi}. Then, an interpolant of the data (1.1) is given by the system

−Y ∗EρXẋr(t) = −Y ∗A1,ρXxr(t) + Y ∗(αEρ + βA1,ρ)Xxr(t− τ) + Y ∗V u(t),

yr(t) =WXxr(t),
(5.9)

where Y ∈ Cρ,r and X ∈ Cρ,r are the orthogonal factors of the truncated SVD

s̃− αe−τ s̃

1 + βe−τ s̃
L− Lσ = Y ΣX∗

for any s̃ ∈ {λi} ∪ {µi}, where Σ ∈ Cr,r is positive definite and diagonal.

Proof. The proof follows directly from Remark 5.5 and Theorem 2.4.

6 Delay Reconstruction

So far, we have assumed that the delay τ ≥ 0 is known, which in general is not the case. In
practical applications, e. g. neuronal processing [20], only a range for the delay time is known
from experiments. Checking the moment matching conditions as stated in Theorem 4.4
implies that the reduced order model matches the moments V and W for any choice of the
delay time. We propose the following strategy to recover a delay term τκ,ρ ≈ τ . For some
κ < ρ, split the interpolation data (1.1) as

{(λi, ri, wi) | λi ∈ C, ri ∈ Cm, wi ∈ Cp, i = 1, . . . , κ, κ+ 1, . . . , ρ} and

{(µi, ℓi, vi) | µi ∈ C, ℓTi ∈ Cp, vTi ∈ Cm, i = 1, . . . , κ, κ+ 1, . . . , ρ}
(6.1)

and construct the matrices Eκ(τ), A1,κ(τ), A2,κ(τ), Bκ, and Cκ only from the data (λi, ri, wi)
and (µi, ℓi, vi) for i = 1, . . . , κ. Note that the transfer function

Hκ (s, τ) = Cκ(sEκ(τ)−A1,κ(τ)− e−τsA2,κ(τ))
−1Bκ

interpolates the data independently from τ . The remaining data (λi, ri, wi) and (µi, ℓi, vi)
for i = κ + 1, . . . , ρ, in the following called test data, is used to fit the transfer function in a
least-squares sense, i. e., we solve the minimization problem

min
τ∈[τ−,τ+]

Jκ,ρ(τ) :=
1

2

ρ∑
i=κ+1

(
∥Hκ(λi, τ)ri − wi∥2 + ∥ℓiHκ(µi, τ)− vi∥2

)
(6.2)

14



over all delay times τ in a realistic range [τ−, τ+] and denote the minimizer by τκ,ρ. With
the ‘optimal’ delay τκ,ρ, we can rebuild the realization with the complete data set as in
Theorem 5.6.

Note that the cost functional Jκ,ρ is of nonconvex type and gradient-based optimization
might yield a local instead of the global minimum. Hence, either a good choice of the ini-
tial value for the optimization is required, or global optimization methods like evolutionary
algorithms (see [21] and the references within) can be employed.

In the previous section we have introduced the additional parameters α and β. These
parameters are degrees of freedom, which can be used to tailor the realization to additional
data. Hence, the strategy used to find the delay time may be extended to determine good
values for α and β. More precisely, the cost functional Jκ,ρ is given by

Jκ,ρ(τ, α, β) :=
1

2

ρ∑
i=κ+1

(
∥Hκ(λi, τ, α, β)ri − wi∥2 + ∥ℓiHκ(µi, τ, α, β)− vi∥2

)
and the minimization in (6.2) can be performed over τ , α, and β simultaneously. Note that in
contrast to the delay time τ , there are in general no a priori known ranges for the parameters
α and β. The choice of good upper and lower bounds for α and β is not within the scope
of this paper. Instead, we propose to optimize over different intervals, which may be picked
randomly, and then use the result that yields the smallest value of Jκ,ρ.

7 Examples

In all subsequent examples, we denote the transfer function of the original model with H.
The transfer function of the Loewner realization (Theorem 2.3) is denoted by HL. By HT

we denote the transfer function based on transformed data from [18] (Theorem 2.5) and the
generalized delay Loewner realization (Theorem 5.4) is referred to as HD. For details of the

Table 7.1: Transfer functions for the different approaches

Transfer Function Reference

H(s) original model

HL(s) =W (Lσ − sL)−1V [16]

HT (s) =W e−τΛ
(
e−τsL(τ)

σ − sL(τ)
)−1

e−τMV [18]

HD(s) =W (sEρ −A1,ρ − e−τs (αEρ + βA1,ρ))
−1
V Theorem 5.4

transfer functions, see Table 7.1. Whenever necessary, the redundant parts in the realizations
are truncated by means of the truncated SVD as outlined in Theorem 2.4 and Theorem 5.6.

Example 7.1 Consider again the system from Example 4.10 given by[
1 0
0 0

] [
ẋ1(t)
ẋ2(t)

]
=

[
1 1

2
0 1

] [
x1(t)
x2(t)

]
+

[
0 1

2
0 1

] [
x1(t− π)
x2(t− π)

]
+

[
0
1

]
u(t),

y(t) =
[
0 1

] [x1(t)
x2(t)

]
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together with the interpolation data λ = 0 and µ = 1
2 . Recall that the transfer function H

is given by H(s) = −(1 + e−πs)−1 and note that A2 = A1 − E, i. e., the considered system
exhibits the structure A2 = αE + βA1. Comparison of the transfer functions

HL(s) = − 1

sπ(1− 1
e ) + 2

, HD(s) = − 1

1 + e−πs
, and HT (s) = − 1

sπ(1− 1
e ) + 2e−πs

of the different realizations shows that the transfer function HD is the only one matching the
full model exactly. This is due to the structure of the system, which can neither be captured
by HL nor by HT .

Example 7.2 For Example 7.1 we employ the methodology of section 6 to recover the delay
time τ . We use the additional interpolation point λ = 10. For the minimization of the cost
functional (6.2), we apply the optimizer fmincon (MATLAB version R2015a with standard
settings) with initial value τ0 = 5 to recover the original delay τ = π up to 8 decimal places.
This example fortifies the approach introduced in section 6.

Example 7.3 We test our approach with the delay model from [5] given by the n×nmatrices

E = θIn + T, A1 =
1

τ

(
1

ζ
+ 1

)
(T − θIn), A2 =

1

τ

(
1

ζ
− 1

)
(T − θIn),

where T is an n×n matrix with ones on the sub- and superdiagonal, in the (1, 1), and in the
(n, n) position and zeros everywhere else. We choose n = 500, τ = 1, ζ = 0.01, and θ = 5. The
input matrix B ∈ Rn has ones in the first two components and zeros everywhere else and we
choose C = BT . Note that the matrices A1 and A2 satisfy the relation A2 = (1ζ +1)/(1ζ −1)A1

and hence feature the structure A2 = αE+βA1. We pick ρ = 10 random interpolation points
λk on the imaginary axis between 10−1ı and 103ı together with their complex conjugates µk.
The realizations based on the data from k = 1, 2 (i. e., κ = 2 in (6.1)) and exact parameters
τ , α, and β are displayed in Figure 7.1. Clearly, only our framework captures the transfer
function accurately. In contrast, the Loewner realization (HL) and the realization based on
transformed data (HT ) yield poor approximations that do not capture one single peak of the
original model.

Next, the test data is used to find estimates for the parameters τ , α, and β from the data
by means of minimizing the cost functional (6.2) over the parameter set. The optimization is
performed via the global optimization algorithm particleswarm of the global optimization
toolbox [15]. This algorithm evaluates the cost functional in (6.2) at a collection of sample
points called particles at each steps. After this evaluation, every particle is moved in the
parameter range and reevaluated. This process continues until some stopping criterion is
satisfied. In this case, the algorithm terminated with

τκ,ρ = 0.999367, ακ,ρ = 0.652009, and βκ,ρ = 0.995628, (7.1)

i. e., the delay is captured accurately.
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(a) Bode plot of H, HL, HD, and HT .

(b) Error plot for HL, HD, and HT .

Figure 7.1: Example 7.3 - Realizations for κ = 2 and exact parameters τ , α, and β.

We illustrate the transfer functions of the realizations based on all interpolation points and
the parameters (7.1) in Figure 7.2. As before, the realization obtained with our methodology
is a very good approximation of the original model. It is worth to emphasize that this real-
ization is purely data-driven, i. e., is constructed from data only. Again, only our realization
approximates the qualitative behavior of the original model reasonably well.
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(a) Bode plot of H, HL, HD, and HT .

(b) Error plot for HL, HD, and HT .

Figure 7.2: Example 7.3 - Realizations for all interpolation points and parameters (7.1).
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Example 7.4 A heated rod with distributed control and homogeneous Dirichlet boundary
conditions, which is cooled by delayed feedback, can be modeled (cf. [7, 17]) via the one-
dimensional partial differential equation

∂v(ξ, t)

∂t
=
∂2v(ξ, t)

∂ξ2
+ a1(ξ)v(ξ, t) + a2(ξ)v(ξ, t− 1) + u(t) in (0, π)× (0, T ],

v(0, t) = v(π, t) = 0 in [0, T ].

(7.2)

Discretization of (7.2) via centered finite differences with step size h = π
n+1 yields a system

ẋ(t) = (Ln +A1,n)x(t) +A2,nx(t− 1) +Bu(t),

y(t) = Cx(t),

where Ln ∈ Rn,n is the discrete Laplacian and A1,n, A2,n ∈ Rn,n are discrete approximations
of the functions a1 and a2, respectively. The input matrix B ∈ Rn is a vector of ones. As
output we use the average temperature of the rod, i. e, C = 1

∥B∥B
T . For our tests we use

n = 100, κ = 3, and ρ = 8 random interpolation points λk on the imaginary axis between
10−1ı and 102ı together with their complex conjugates µk.

We distinguish two cases. First, we set a1 ≡ 1 ≡ a2, which yields E = A2, i. e., resulting
in the structure A2 = αE + βA1. The computed estimates for τ , α, and β are

τκ,ρ = 1.000196, ακ,ρ = 1.000384, βκ,ρ = −0.002923 (7.3)

and the results are illustrated in Figure 7.3. As before, the generalized Loewner realization
outperforms the other approaches. In the original model from [7, 17], the coefficients a1 and
a2 are chosen as

a1(ξ) = −2 sin(ξ) and a2(ξ) = 2 sin(ξ).

Note that in this case A2 is not a linear combination of E and A1. Comparing the results
depicted in Figure 7.4, the generalized delay Loewner approach still captures the qualitative
behavior of the full model and is the best approximation in terms of the maximal error within
the considered range of frequencies.

It is worth to note that the performance of the three approaches depends on the choice of
interpolation points. For each method we found at least one selection of interpolation points,
where this method outperforms the others. Qualitatively, only our ansatz captures the main
features of the full model for a small number of interpolation points in all our tests.

19



(a) Bode plot of H, HL, HD, and HT .

(b) Error plot for HL, HD, and HT .

Figure 7.3: Example 7.4 - Realizations for a1 ≡ 1 ≡ a2 and parameters (7.3).
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(a) Bode plot of H, HL, HD, and HT .

(b) Error plot for HL, HD, and HT .

Figure 7.4: Example 7.4 - Realizations for a1(ξ) = −2 sin(ξ), a2(ξ) = 2 sin(ξ) and recovered
τκ,ρ = 1.006960.

8 Conclusions

We have extended the Loewner realization [16] and the moment matching framework [4] to
descriptor systems with internal delay. We used the results obtained for moment matching
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to construct a realization directly from measurements of the transfer function. The system
matrices can be assembled efficiently by matrix-matrix operations of size ρ × ρ, where 2ρ
is the number of interpolation points. The internal delay is estimated by solving a least-
square optimization over some sample data. Examples show that our approach produces a
low-order model that captures the dynamics of the full model very accurately. Also, the delay
parameter τ is recovered almost exactly. Comparing our ansatz with the common Loewner
realization and an extension introduced in [18] reveals the necessity for preserving the delay
structure. Consequently, our approach yields better approximations of the transfer function,
in particular if the state dimension of the realization is small. Open problems are the optimal
choice of the interpolation points λi and µi and estimators for the output error ∥y − yρ∥,
where y and yρ denote the outputs of the original model and the realization, respectively. In
addition, the proportional ansatz A2,ρ = αEρ + βA1,ρ seems rather restrictive compared to
the overall degrees of freedom and further approaches are to be investigated. Moreover, an
extension to multiple delays and more general structures of the transfer function is currently
under investigation.
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