
Martin Beckmann, Andreas Vogelsang

What is a good textual representation of
activity diagrams in requirements
documents?

Postprint
This version is available at https://doi.org/10.14279/depositonce-6737.

Suggested Citation
Beckmann, Martin; Vogelsang, Andreas: What is a good textual representation of activity diagrams in
requirements documents? - In: Requirements Engineering Conference Workshops (REW), 2017 IEEE
25th International. - New York: IEEE, 2017. ISBN: 978-1-5386-3488-2. - S. 56-63. - DOI:
10.1109/REW.2017.19. (Postprint version is cited, page numbers may differ.)

Terms of Use
© © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

Powered by TCPDF (www.tcpdf.org)

1 / 9

http://www.tcpdf.org

What is a Good Textual Representation of Activity

Diagrams in Requirements Documents?

Martin Beckmann

Technische Universität Berlin, Germany

martin.beckmann@tu-berlin.de

Andreas Vogelsang

Technische Universität Berlin, Germany

andreas.vogelsang@tu-berlin.de

Abstract—The use of graphical models has become a widely
adopted approach to specify requirements of complex systems.
Still, in practice, graphical models are often accompanied by
textual descriptions to provide more detail, because of legal
considerations, and to enable stakeholders with different back-
grounds to understand a requirements document. One of our
industry partners (Daimler AG) uses activity diagrams to specify
vehicle functions in combination with a textual representation
thereof in their requirements documents. Since graphical and
textual representations serve different purposes, it is not obvious
how textual representations of activity diagrams should be struc-
tured. In this paper, we present different textual representations
of activity diagrams for use in requirements documents. The
representation currently in use is presented as well as four
alternatives. For each representation, we discuss advantages
and disadvantages. To evaluate the representations, we asked
five stakeholders of one system to create a preference ranking
of the representations. The resulting ranking showed that the
currently used representation is not considered to be the best
possible option. The stakeholders’ favorite textual representation
emphasizes structural similarity with the activity diagram, which
however does not resemble the diagram’s structure exactly.

I. INTRODUCTION

Complex software systems, which, for example, can be

found in distributed embedded systems in automotive elec-

tronics, require model-based and system-oriented development

approaches [1]. Using graphical models for specification

manages complexity and improves reusability and analytical

capabilities [2], [3]. Although graphical models provide suitable

means to specify and understand dependencies and procedural

behavior of a system, in industry they are usually accompanied

by textual representations. Related work has shown the need for

a continuous systems engineering environment, where referring

or constitutive documents are essential to work on complex

software systems [4]. Also, the combined use of graphical

diagrams and textual descriptions is considered beneficial for

the requirements management process [5], [6]. In addition, for

industrial applications, model exchange for graphical models

is still not properly supported by tool vendors. As a result,

the handover between manufacturers and suppliers is still per-

formed based on textual documents. This is especially important

since these textual documents often serve as the basis for legal

considerations between the contractors [6], [7]. Another reason

why graphical models are usually accompanied by textual

descriptions is the background of different stakeholders—not

everyone is capable of understanding the graphical models [8],

[9]. Thus, the information contained in a model needs to be

written in words to be appropriately reviewable [10]. A textual

representation also allows making implicit information of a

model explicit [7] and hence more accessible.

The Daimler AG uses a specification approach, where, as

a first step, a UML activity diagram [11] is created for each

function of a vehicle system to describe the function’s activation

and deactivation by triggers and conditions. This kind of

description is also known in literature to formulate textual

natural language requirements [12]. A textual representation

of each activity diagram along with the diagram itself is

then transferred into a requirements document for everyone to

understand and for ongoing development. The transformation

of the activity diagrams into textual representations is done

manually (i.e., not generated by a tool). This manual process

is error-prone and labor intensive on the one hand [13] but,

on the other hand, provides some flexibility to create a textual

representation that best fits its purpose. Since graphical and

textual representations serve different purposes, it is not obvious

how textual representations of activity diagrams should be

structured.

In this paper, we present the currently used textual repre-

sentation and four alternative textual representations of the

sort of activity diagrams our industry partner uses. We explain

what aspects of an activity diagram the textual representations

describe and discuss their advantages and disadvantages. To

assess which of the textual representations is most suitable to

describe a function’s behavior, we asked five stakeholders of

one particular system to rank these representations. Although

the currently used representation is among the best in the

ranking, all stakeholders but one preferred a different textual

representation. In comparison this textual representation has a

more refined structure, which is realized by using additional

textual objects.

The paper is structured as following: The next section

presents how Daimler uses activity diagrams in their specifica-

tion process and shows the currently used textual representation.

Section III presents related work on the topic of deriving

textual requirements documents or parts thereof from graphical

models. In the fourth section, we present alternative textual

representations and discuss their advantages and disadvantages.

In Section V, we explain the details of our evaluation and

present its results. The last section concludes this work.

2 / 9

(a) Activity diagram of the function Drive Inhibit

ID Text Level Type

1000 Drive Inhibit 2 Function

1236 State of connector "unknown" OR
State of connector "defect" OR

3 Trigger

1237 Vehicle Gear Selector is in position "P" 4 Check

1111 State of connector "plugged on vehicle side" ("VEH_PLUGGED") OR
"plugged on vehicle and EVSE side" ("PLUGGED"). OR

3 Trigger

1112 Vehicle velocity is below 5 km/h AND 4 Check

1113 Engine Cranking inactive 4 Check

1114 Vehicle Gear selector is in position "P" OR 3 Trigger

1232 Vehicle velocity is below 5 km/h 4 Check

1233 State of connector "plugged on vehicle side" OR
State of connector "plugged on vehicle and EVSE side" OR
State of connector "unknown" AND

3 Trigger

1238 Vehicle velocity is below 5 km/h 4 Check

(b) Textual representation of the function Drive Inhibit

Fig. 1: Activity diagram and the specification text of a function

II. BACKGROUND

Daimler uses UML activity diagrams to specify functions

of a system. Creating an activity diagram is the first step

of specifying a new function. Activity diagrams are used to

provide an early overview of the desired function behavior

with a special focus on the function’s activation, execution

conditions, functional paths, and deactivation. The information

contained in the activity diagram as well as the activity diagram

itself is then transferred to a textual requirements document.

This transfer is necessary since this textual requirements

document is the central artifact for further development (e.g., it

is the basis for creating test cases or handing over requirements

to suppliers). Besides, the textual document contains additional

and more detailed information as well as statements about its

context, which relates this approach to Literate Modelling [8].

Fig. 1 shows an exemplar specification as we have found it

at Daimler. The example consists of an activity diagram and

its textual representation in the requirements document.

Fig. 1a shows the activity diagram of the function Drive

Inhibit. The actual behavior of the activated function is

described in the Action node labeled with Drive Inhibit (bottom

of the diagram). The function’s activation is described by

a combination of triggers and checks for conditions. For

triggers, the AcceptEventAction element is used. The checks

are modeled as Action elements. If the condition of a check

is not fulfilled, the flow ends (FlowFinal). The triggers and

checks are connected by ControlNodes such as JoinNodes and

MergeNodes. JoinNodes act as synchronization points and can

be interpreted as AND operators in terms of propositional

logic. MergeNodes represent OR operators. Once the actual

functionality of the function is executed, ActivityFinal elements

designate the end of an activity.

The currently used textual representation of the activity is

shown in Fig. 1b. Each row in the document represents an

object, which is described by a set of attributes (columns). The

ID attribute contains a unique identifier of the object. The Text

attribute is a textual description of the object and is supposed to

be equal to the text of the corresponding element in the activity

diagram. The Level is an attribute to structure the document

hierarchically. It is derived from the structure of the activity

diagram. The Type attribute of each text object is supposed to

be equal to the type of its corresponding element in the diagram.

These attributes are needed to display the relevant information

of the activity diagram in the requirements document. Besides

3 / 9

the given attributes, the textual document contains additional

attributes used for further development, which are not shown

in our example.

Propositional logic operators such as OR and AND are used

as strings in the Text attributes of the objects to describe the

logic statements of the activity diagram. The operators at the

end of an object’s text connect the object with the following

object on the same level of the document hierarchy. For instance,

in Fig. 1b, the object with ID 1236 is connected via an OR with

the object with ID 1111 because it is the next object on the

same hierarchical level. Besides the description of propositional

logic relations, the different levels of the document are used to

indicate the order of the elements within the activity diagram.

For example, the check Vehicle Gear selector is in position

“P” (ID 1237) is executed after one of the triggers contained in

the object with the ID 1236 occurred. Hence, it appears one

level below. There might be more than one check associated

with a set of triggers (e.g., text object with ID 1112 and ID

1113). In this case, they appear on the same level.

The current textual representation puts a focus on the

logic relations between the individual elements by adding

them explicitly in their texts. By using different levels of the

document, it is possible to see which checks belong to which

group of triggers. This also reflects different paths through the

diagram and thus focuses on necessary elements in the activity

that lead to the function’s execution.

The currently employed manual transition process from

activity diagrams to textual representations poses the risk of

introducing a number of inconsistency issues. A number of

these issues can be seen in Fig. 1. In a former study, we

investigated these issues in detail [13]. While some of these

issues can be resolved [14], some of the other issues originate

from the currently used textual representation. Alternative

representations might mitigate the consequences or resolve

these issues altogether.

III. RELATED WORK

Creating human-usable textual notations of MOF models has

been addressed by the OMG HUTN Specification [15]. Since

the notation is generically applicable to all MOF models, it does

not take into account certain aspects of activity diagrams or

behavioral models sufficiently. The focus on certain features of

a diagram type is necessary because generic notations are harder

to understand and thus not suitable to derive understandable

requirements.

Deriving requirements and structures for requirements docu-

ments from graphical models is an established approach [16].

Especially UML/SysML diagrams have received attention.

Class diagrams, as the most used UML diagram type [17]

of the UML, have been used to generate natural language

specifications [18]. Robinson-Mallett shows how Statecharts

and Block Diagrams can be used to create a structure for a

requirements document [19]. Berenbach introduces an algo-

rithm that derives a structure for a requirements document

from use case diagrams [20]. Using activities as a source for

requirements has already been addressed by Drusinsky [21],

however, only for UML-1. Additionally, only the generation of

requirements is addressed but not the creation of a requirements

document structure. Besides creating textual representations

from activities in the context of requirements engineering,

there has been work on rendering all aspects of an activity as a

text [22]. Whether this approach is applicable in requirements

engineering is also part of this paper. In addition the Action

Language for Foundational UML (Alf) can also be used as an

alternative textual notation of a model [23].

IV. TEXTUAL REPRESENTATIONS OF ACTIVITIES

Just like models themselves, their textual representations

may emphasize specific aspects of a model. Depending on the

purpose, a good textual representation should focus on different

aspects of the model. For activity diagrams these are (but not

limited to): propositional logic relations, order of execution,

number of executions of actions, asynchronous events, possible

paths in an activity, and parallel processing of actions. In the

following, we present four textual representations that may be

used as alternatives to the currently used (original) style of

transforming activity diagrams into textual representations at

Daimler. As the description of propositional logic relations is

very important for the Daimler specification approach, there is

an emphasis on propositional logic in all of the representations.

Although these textual representations may potentially be

processed by stakeholders without in-depth knowledge of

activity diagram notations, it can still be assumed that the

stakeholders have some general background on concepts and

models used in computer science.

A. Grouping

In Fig. 2, an alternative textual representation of the activity

in Fig. 1a is displayed. We call this textual representation

grouping because it introduces additional GROUP elements in

the text. These elements are used to group elements that are

connected by the same logic connector. The elements belonging

to one group are placed one level below the GROUP element.

The curly brackets are used to make it easier to perceive,

which elements belong together. Since the relations between

the elements are already achieved by using different levels in the

document, the brackets are optional. The groups themselves can

be connected to other groups or elements via logical operators.

In contrast to the original representation, the grouping avoids

the repetition of elements and ensures that the propositional

logic of the activity is correctly reproduced in the requirements

document. Another advantage is that the representation still

resembles the structure of the activity diagram as the paths are

still recognizable. Besides, its structure is closely related to

the original representation and thus it is easy for stakeholders

at Daimler to adapt to this new textual representation.

We additionally introduce a THEN operator that describes

that Actions are executed consecutively. This means, that every

Action only starts executing, when its predecessors have suc-

cessfully finished their executions. This way, it is also possible

to represent the order of executions of actions in the paths of

the activity. An AND operator on the other hand represents a

4 / 9

Text Level Type

Drive Inhibit 2 Function

GROUP { 3 -

GROUP { 4 -

Vehicle is in "P" AND 5 Trigger

GROUP { 5 -

State of connector "plugged" OR 6 Trigger

State of connector "vehicle_plugged" OR 6 Trigger

State of connector "unknown" 6 Trigger

} 5 -

} THEN 4 -

V < 5 km/h 4 Check

} OR 3 -

GROUP { 3 -

GROUP { 4 -

State of connector "plugged" OR 5 Trigger

State of connector "vehicle_plugged" 5 Trigger

} THEN 4 -

V < 5 km/h THEN 4 Check

Engine Cranking inactive 4 Check

} OR 3 -

GROUP { 3 -

GROUP { 4 -

State of connector "defect" OR 5 Trigger

State of connector "unknown" 5 Trigger

} THEN 4 -

Gearshift is in "P" 4 Check

} 3 -

Fig. 2: Grouping Representation

JoinNode and thus indicates that all connected elements can be

executed independently. A drawback of this representation is

that it needs additional grouping elements to correctly describe

the activity’s structure. As these elements are not requirements

per se, the description becomes longer and also needs additional

levels. This may impede the understandability of the function

execution.

B. Normal Form

In Fig. 3, another textual representation of the activity in

Fig. 1a is shown. We call this textual representation normal

form because it represents a disjunctive normal form of the

propositional logic statement underlying the activity diagram.

Therefore, this presentation solely describes the aspect of

propositional logic in activities and refrains from describing

the execution order or parallel processing. In contrast to the

original representation, this ensures that the propositional

logic of the activity is correctly reproduced. Additionally, the

conversion into a normal form simplifies the representation of

the underlying propositional formula.

Similar to the grouping representation, elements are struc-

tured into groups by inserting an object in the text, denoted

with the string GROUP. All elements of a group are placed

one level below that GROUP element. The elements of a

group are logically connected by an AND operator (omitted

in the example), while all the groups are connected by an OR

operator.

Due to the OR connections between groups, an execution of

all elements in any group results in the activation of the whole

function. Therefore, this representation emphasizes distinct

combinations of elements that cause a function’s activation. In

Text Level Type

Drive Inhibit 2 Function

GROUP OR 3 -

State of connector "plugged" 4 Trigger

Vehicle is in "P" 4 Trigger

V < 5 km/h 4 Check

GROUP OR 3 -

State of connector "vehicle_plugged" 4 Trigger

Vehicle is in "P" 4 Trigger

V < 5 km/h 4 Check

GROUP OR 3 -

State of connector "unknown" 4 Trigger

Vehicle is in "P" 4 Trigger

V < 5 km/h 4 Check

GROUP OR 3 -

State of connector "vehicle_plugged" 4 Trigger

V < 5 km/h 4 Check

Engine Cranking inactive 4 Check

GROUP OR 3 -

State of connector "plugged" 4 Trigger

V < 5 km/h 4 Check

Engine Cranking inactive 4 Check

GROUP OR 3 -

State of connector "unknown" 4 Trigger

Gearshift is in "P" 4 Check

GROUP 3 -

State of connector "defect" 4 Trigger

Gearshift is in "P" 4 Check

Fig. 3: Normal Form Representation

the normal form, only two hierarchical levels are needed to

display the representation in the requirements document.

One of the disadvantages of this representation is that its

structure does not resemble the structure of the activity diagram.

Additionally, the generation of the normal form suppresses the

order of execution of the elements. Hence, the sequence, in

which the elements need to be executed, is not part of the

representation. This drawback may be mitigated by using the

order of appearance beneath a grouping element as an indicator

for execution sequences. However, a group might also contain

elements that are independently executable; an information

that gets lost if order of appearance is interpreted as execution

order. Additional structural elements would be necessary to

express the independence of certain elements.

C. Tree

In Fig. 4, a third textual representation of the activity in

Fig. 1a is displayed. We call this textual representation tree

because it uses the hierarchical document structure to display

the expression tree [24] of the propositional logic statements

in the diagram. In this representation, the logic operators AND

and OR are distinct objects in the requirements document. All

elements that are one level below an operator are logically

connected by that operator. An operator element might contain

further operators as elements. This ensures that logic relations

between the elements of the diagram are correctly reproduced

in the textual representation. The tree representation reflects

the logical statement as it appears in the diagram (i.e., no

simplifications or transformations are done).

This representation has the drawback that its structure does

not resemble the structure of the original activity diagram,

5 / 9

Text Level Type

Drive Inhibit 2 Function

OR 3 -

AND 4 -

Vehicle is in "P" 5 Trigger

OR 5 -

State of connector "plugged" 6 Trigger

State of connector "vehicle_plugged" 6 Trigger

State of connector "unknown" 6 Trigger

V < 5 km/h 5 Check

AND 4 -

OR 5 -

State of connector "plugged" 6 Trigger

State of connector "vehicle_plugged" 6 Trigger

V < 5 km/h 5 Check

Engine Cranking inactive 5 Check

AND 4 -

OR 5 -

State of connector "defect" 6 Trigger

State of connector "unknown" 6 Trigger

Gearshift is in "P" 5 Check

Fig. 4: Tree Representation

which makes it harder to recognize the relations between the

two artifacts. Also, a basic understanding of expression trees

may be necessary to comprehend the connections between the

elements. As tree structures are suitable to express all kinds

of formulas, it is also possible to add more operators aside

from the propositional logic operators (e.g., including a THEN

operator for expressing sequences of actions).

D. Exact Equivalent Representation

This textual representation of activities was suggested by

Flater et al. [22]. Their idea is to convert the complete

activity into human-readable text. We call this Exact Equivalent

Representation because it maps each visual element of an

activity to a textual string. Hence, the resulting text includes

every aspect of the original activity. Elements of activities

are represented by symbols such as parenthesis (as actions

nodes) and square brackets (as object nodes). ActivityEdges

are depicted by ASCII arrows (<- and ->). Elements that are

used multiple times contain the name of the elements followed

by an asterisk and a variable name, which is used as reference.

Since the referenced work did not include AcceptEventActions,

we use a greater-than sign and a square bracket (> ElementText

]) to denote these elements.

The resulting textual representation for the example in Fig. 1a

is shown in Fig. 5. Since the textual notation is a serialization

of the activity, the multiple levels of a hierarchically structured

document are not necessary and the transformation is placed in

a single entry. This representation has no loss of information

besides the layout of the activity diagram. Hence, it is applicable

to all sorts of activity diagrams. The authors also mention

that using this textual representation instead of graphical

representations does not require special tooling and reduces

effort when implementing prototypes [22]. Not using special

tooling, on the other hand, allows for the construction of invalid

expressions.

A major drawback of this representation is that it is difficult

to get a quick overview of the function and to grasp the relations

Text Level Type

Drive Inhibit 2 Function

>Trigger: Vehicle is in "P"] -> <JoinNode *jn1> ->
(Check: V < 5 km/h) -> <MergeNode *mn1> ->
(Function: Drive Inhibit) -> <ActivityFinal>
>Trigger: State of connector "vehicle_plugged"] ->
<MergeNode *mn2> -> <*jn1>
>Trigger: State of connector "plugged"] -> <*mn2>
>Trigger: State of connector "unknown"] -> <*mn2>

>Trigger: State of connector "vehicle_plugged"] ->
<MergeNode *mn3> -> (Check: V < 5 km/h) ->
(Check: Engine Cranking inactive) -> <*mn1>
>Trigger: State of connector "plugged"] ->
<MergeNode *mn3>

>Trigger: State of connector "defect"] ->
<MergeNode *mn4> -> (Check: Gearshift is in "P") ->
<*mn1>
>Trigger: State of connector "unknown"] ->
<MergeNode *mn4>

3 -

Fig. 5: Exact Equivalent Representation

between elements. In addition, stakeholders not familiar with

activity diagrams have no advantage in understanding this type

of text better than an activity diagram itself.

E. Other Possible Representations

In the context of the Daimler specification approach, parallel

processing of actions is not relevant. Therefore, the presented

representations do not incorporate this aspect specifically.

However, OR operators, which are derived from MergeNodes in

an activity, connect elements that are independently executable.

The normal form representation may be complemented by

additional key words that group elements that are independently

executable. However, this makes the textual representation

harder to understand because it requires an additional grouping

object and thus an additional level in the document structure.

Expressing parallelism as text is also possible by using

parbegin/parend or join/fork statements. Though, we doubt that

these options satisfy the need that these statements are easier

to understand than activities.

V. EVALUATION

To assess how practitioners perceive the usefulness of the

presented representations and to learn more about preferences

they have, we performed a survey, in which we asked

stakeholders of one particular system to create a ranking of

the representations.

The survey consists of three parts: At first, the survey

document presents an original activity diagram of a function

of the system the participants are involved in. The function

is the same as in Fig. 1a, however, we presented the activity

diagram as it looks like in the tool used (Enterprise Architect)

by the participants. The one in their tool and the one displayed

in Fig. 1a differ slightly in terms of color and layout.

Following the activity diagram, the different textual represen-

tations of the diagram are presented. Again, they are presented

as they would look like in the tool used (IBM DOORS) by

the participants. Each representation is accompanied by an

explaining text and a listing of its advantages and disadvantages.

The last part of the survey document contains a pairwise

comparison of the textual representations. Since we examine

6 / 9

5 different textual representations, the pairwise comparison

consists of 10 comparisons to cover all combinations. For

each comparison, the participants had to provide which

representation they perceive as more useful or whether both are

equally useful. Each time a representation surpasses another

representation it is accredited with 1 point, while the losing

representation is accredited with -1 point. In case of a tie both

representations receive 0 points. The ranking results from the

sum of the points. Besides, the participants had the chance to

leave comments as a freely written text.

We asked 12 stakeholders of the system to participate in the

survey. These stakeholders were mainly internal stakeholders

involved in the specification and development of the system.

Eventually, 5 out of the 12 stakeholders we asked participated

in the survey.

A. Results

The rankings of the individual participants are shown in

Table I. The entries in the table are sorted in descending order

of the participants preferences. If two representations are not

separated by a horizontal line, the representations were ranked

equally. Next to the name of the representation in the brackets

are the decisions the participants made for the representation.

The first number stands for the amount of times it was preferred,

the second number for the amount of ties and the last number

for the amount it was considered less useful.

The grouping representation is among the highest ranked

as it appears three times at the top position. The normal form

appears at the top position once and is ranked in the lower half

by the rest of the participants. The original (currently used)

representation is ranked first by one participant, second by

another participant, and third by all other participants. The tree

representation is once ranked first and twice on each the second

and the third rank. Without exception, the participants all ranked

the exact equivalent representation as the least preferable textual

representation.

Table II shows the aggregated results for all participants. The

first column shows the aggregated ranking by combining all the

decisions taken by the participants. The number in the brackets

next to the representation is the result of the computation

mentioned for the individual participants applied to all decisions.

The second column shows an aggregation based on an assigning

of points for the individual ranks. A textual representation on

the first rank receives five points, while the one on the last rank

receives one. If two representations have the same rank, the

points of the respective ranks are summed up and divided by the

number of representations of the same rank. For example, for

Participant 1, the representation on the third rank would receive

three points and the representation on the fourth rank would

receive two points. As there are two representations on the same

rank both receive 2.5 points (the average). The resulting points

are shown in the brackets next to the name of the representation.

The resulting rankings for both ways of aggregating the

decisions are the same. Nonetheless, the separations of the

representations differ between the aggregations. While the

ranking by points is close together, the representations in the

combined ranking are farther apart. Especially, the grouping

representation is far ahead in the combined aggregation, due

to the fact, that it was preferred in most pairwise decisions.

Besides the pairwise comparisons, one participant used the

opportunity to leave a comment. Participant 2 mentioned

that the grouping representation improves readability since

confusing repetitions of elements are avoided.

B. Discussion

Based on the high ranking that the grouping representation

achieved in both the individual and the aggregated rankings,

we conclude that this is the most appropriate representation

for the participants we asked. The high acceptance of this

representation may have resulted from the fact that it resembles

the structure of the currently used (original) representation

and is thus familiar to the participants. On the other hand, it

mitigates some of the weaknesses of the original representation

such as non-atomic entries and unclear logic relations between

the entries. Due to the similarity with the original represen-

tation, it is easy for participants to comprehend the grouping

representation. As such, the grouping representation was most

likely perceived as an improved version of the currently used

representation.

The exact equivalent representation was ranked as the least

preferable. We conclude, that a mere transformation of an

activity into text is not suitable in a requirements document.

This is most likely caused by the reduced readability, which

makes the document harder to understand. This is also in

accordance with the fact that graphical models are used to

improve understandability in the first place.

Nevertheless, both the normal form and the tree representa-

tion, achieved good rankings for individual participants. As a

consequence, as long as all representations are kept consistent

with each other, the representations could exist side by side

as views of the same function. This approach also has the

advantage that implicit information in the models can be made

explicit depending on the individual needs and the background

of each stakeholder.

Based on the survey results, we clearly see that textual and

graphical representations of models serve different purposes

and thus, it is reasonable to perform research with the goal

to assess how “good” textual representations of requirements

models look like.

C. Threats to Validity

Our findings can only give a first impression on how an

appropriate textual representation should look like.

In our survey, we considered only internal stakeholders

within one company that are involved in the specification

and development of one particular system. However, the

textual representations must also be read and understood

by stakeholders outside the company (e.g., legal authorities,

contractors, customers), who may have different preferences

with respect to textual representations. Also we received only

a relatively small number of answers.

7 / 9

TABLE I: Ranking of textual representations for each participant in descending order

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

Normal Form (4:0:0) Grouping (4:0:0) Grouping (4:0:0) Grouping (3:1:0) Original (4:0:0)

Grouping (3:0:1) Tree (3:0:1) Original (3:0:1) Tree (3:1:0) Tree (3:0:1)

Original (1:1:2) Original (1:1:2) Tree (1:1:2) Original (2:0:2) Grouping (2:0:2)

Tree (1:1:2) Normal Form (0:2:2) Normal Form (1:0:3) Normal Form (0:1:3) Normal Form (1:0:3)

Exact Equivalent (0:0:4) Exact Equivalent (0:1:3) Exact Equivalent (0:1:3) Exact Equivalent (0:1:3) Exact Equivalent (0:0:4)

TABLE II: Aggregated ranking of textual representations for

all participants

Rank Combined Points

1 Grouping (13) Grouping (21.5)

2 Tree (5) Tree (18)

3 Original (4) Original (17.5)

4 Normal Form (-5) Normal Form (12.5)

5 Exact Equivalent (-17) Exact Equivalent (5.5)

We combined our survey with another study on quality

issues that arise from using activity diagrams and their textual

representations side by side [13]. Thus, all participants of this

survey also participated in the previous study. Since some of

the identified quality issues are linked to the currently used

textual representation, the participants may be biased towards

their opinion to the original textual representation. On the

other hand, the participants are also familiar with the original

representation form, which may also have an impact on its

perception.

We did not consider the layout of the textual descriptions

explicitly. There may be multiple layouts for the representations.

For example, the grouping representation uses curly brackets,

although they are not necessarily required to structure the

document. Still, the representations are implemented in the

requirements management tool that the participants use.

The purpose of the activity diagrams as used at Daimler

is mainly for describing logical conditions that must hold in

order to activate a function. The focus on propositional logic

is based on that purpose. We do not know whether the choice

of textual representation would be similar for activity diagrams

that are used in other contexts. Thus, the generalizability of

our findings is limited.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented the textual representation of the

sort of activity diagrams that is currently used by Daimler in

requirements documents. Additionally, we presented four more

textual representations as possible alternatives. We show on

which aspects of an activity the different textual representations

focus and their advantages and disadvantages. In a compar-

ative survey, the textual representations were ranked by five

stakeholders. Although the currently used textual representation

reached high agreement, a majority of the participants prefer

another textual representation. The representation that mitigates

some of the weaknesses of the currently used representation

yielded the best results, although it requires a more complicated

document structure and thus might be harder to understand.

To validate the results, it is necessary to repeat the survey

with more participants and in different contexts. It would also

provide additional insight if we elicit qualitative feedback

on why the respondents preferred one option over the other.

A follow-up investigation on the reasons is planned. Besides,

there are countless of imaginable representations in terms of the

considered aspect and the used layout. As a result the presented

representations only cover a fraction of the possibilities. There

might be use cases in requirements engineering, in which

the focus on other aspects is more important. Hence, more

investigation is needed to develop a greater variety of textual

representations.

REFERENCES

[1] M. Broy, “Challenges in automotive software engineering,” in Proceed-

ings of the 28th international conference on Software engineering (ICSE).
New York, NY, USA: ACM, 2006.

[2] L. Apfelbaum and J. Doyle, “Model based testing,” in Software Quality

Week Conference, 1997.

[3] A. Vogelsang, S. Eder, G. Hackenberg, M. Junker, and S. Teufl,
“Supporting concurrent development of requirements and architecture:
A model-based approach,” in Proceedings of the 2nd International

Conference on Model-Driven Engineering and Software Development

(MODELSWARD), 2014.

[4] C. Reuter, “Variant Management as a Cross-Sectional Approach for a
Continuous Systems Engineering Environment,” in Proceedings of the

8th Grazer Symposium Virtual Vehicle, 2015.

[5] A. M. Davis, Just Enough Requirements Management: Where Software

Development Meets Marketing. New York, NY, USA: Dorset House
Publishing Co., Inc., 2005.

[6] E. Sikora, B. Tenbergen, and K. Pohl, “Industry needs and research direc-
tions in requirements engineering for embedded systems,” Requirements

Engineering, vol. 17, no. 1, 2012.

[7] N. A. Maiden, S. Manning, S. Jones, and J. Greenwood, “Generating
requirements from systems models using patterns: a case study,” Require-

ments Engineering, vol. 10, no. 4, 2005.

[8] J. Arlow, W. Emmerich, and J. Quinn, “Literate Modelling — Capturing
Business Knowledge with the UML,” in International Conference on the

Unified Modeling Language. Springer, 1998.

[9] J. Arlow and I. Neustadt, Enterprise patterns and MDA: Building

better software with archetype patterns and UML. Addison-Wesley
Professional, 2004.

[10] R. F. Goldsmith, Discovering Real Business Requirements for Software

Project Success. Artech House, 2004.

[11] Object Management Group (OMG), “OMG Unified Modeling Language
(OMG UML), Version 2.5,” OMG Document Number formal/2015-03-01
(http://www.omg.org/spec/UML/2.5/), 2015.

[12] D. Firesmith, “Generating Complete, Unambiguous, and Verifiable
Requirements from Stories, Scenarios, and Use Cases.” Journal of Object

Technology, vol. 3, no. 10, 2004.

8 / 9

[13] M. Beckmann, A. Vogelsang, and C. Reuter, “A Case Study on
a Specification Approach using Activity Diagrams in Requirements
Documents,” in 25th IEEE International Requirements Engineering

Conference (RE), 2017.
[14] M. Beckmann, V. Michalke, A. Vogelsang, and A. Schlutter, “Removal

of Redundant Elements within UML Activity Diagrams,” in ACM/IEEE

20th International Conference on Model Driven Engineering Languages

and Systems (MODELS), 2017.
[15] Object Management Group (OMG), “OMG Human-Usable Textual

Notation (HUTN) Specification, Version 1.0,” OMG Document Number
formal/04-08-01 (http://www.omg.org/spec/HUTN/1.0), 2004.

[16] J. Nicolás and A. Toval, “On the generation of requirements specifications
from software engineering models: A systematic literature review,”
Information and Software Technology, vol. 51, no. 9, 2009.

[17] T. Mens, G. Taentzer, and D. Müller, “Model-Driven Software Refactor-
ing,” Model-Driven Software Development: Integrating Quality Assur-

ance, 2008.
[18] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating Natural

Language specifications from UML class diagrams,” Requirements

Engineering, vol. 13, no. 1, 2008.

[19] C. Robinson-Mallett, “An Approach on Integrating Models and Tex-
tual Specifications,” in 2nd International Model-Driven Requirements

Engineering Workshop (MoDRE), 2012.

[20] B. Berenbach, “The Automated Extraction of Requirements from
UML Models,” in 11th IEEE International Requirements Engineering

Conference (RE), 2003.

[21] D. Drusinsky, “From UML Activity Diagrams to Specification Re-
quirements,” in IEEE International Conference on System of Systems

Engineering (SoSE), 2008.

[22] D. Flater, P. Martin, and M. Crane, “Rendering UML activity diagrams
as human-readable text.” NISTIR 7469, National Institute of Standards
and Technology, Tech. Rep., 2009.

[23] Object Management Group (OMG), “OMG Action Language for
Foundational UML (Alf) Specification, Version 1.0.1,” OMG Document
Number formal/13-09-01 (http://www.omg.org/spec/ALF/1.0.1), 2013.

[24] R. Gilberg and B. Forouzan, Data Structures: A pseudocode approach

with C. Nelson Education, 2004.

9 / 9

