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Abstract 

Drag finishing is a machining process that is used to improve the surface topology of workpieces. Workpieces are moved through a bulk of 
differently shaped abrasives, the so called media. Material removal is caused by the relative motion between workpiece and media. The 
material removal rate is mainly depending on the contact intensity between workpiece and media. Up to now there is no viable way to 
determine the intensity of single contacts empirically. However, a sound understanding of single contacts with respect to impact forces and 
velocities could greatly improve process comprehension and reduce trial and error process design efforts. For that reason the movement of 
media and workpiece is modelled using the Discrete Element Method (DEM). In this paper a comprehensive approach is presented covering 
formulation, calibration, validation and utilization of the DEM. Media is considered as an aggregation of elastic particles that are subject to 
contact, damping and gravitational forces causing particle movement. Geometric boundary conditions, i.e. workpiece and drag finishing bowl, 
are implemented as elastic facets. Contact forces are calculated according to a non-linear, simplified Hertz-Mindlin contact force model. Energy 
is dissipated by viscous damping and friction at contacts. Necessary parameters of the model are determined experimentally. The validation of 
the model’s behaviour shows good agreement with experimental data. Finally the model is used to determine local contact intensities on the 
workpiece surface and between particles. By analysing simulated contact forces, the formation of dominant contact chains between particles is 
observed and investigated. 

© 2015 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Drag finishing is a versatile machining process that is used 
to improve the surface topology of workpieces. These are 
moved in a bulk of abrasives, the so called media. Caused by 
the relative motion of workpiece and media, material of the 
workpiece is removed. In contrast to other mass finishing 
processes, like vibratory or centrifugal disc finishing, 
workpieces are fixed by a clamping device and media is not 
agitated in drag finishing. Industrial drag finishing processes 
are usually carried out with a fixed track setup that guides the 
workpieces through the media on a set or only slightly 
adaptable trajectory. A major benefit of the fixed workpiece 
setup is that workpieces cannot collide. Typical applications 
of drag finishing include medical implants, gear components, 
turbine blades or rounding of cutting tool edges [1,2,3]. A 
newly developed and patented setup is robot guided drag 

finishing [4], where an industrial 6-axes robot is used to guide 
workpieces through media, resulting in versatile trajectories 
and precise setting of workpiece velocities [5]. By increasing 
workpiece velocities higher pressure than in vibratory 
finishing processes can be achieved resulting in increasing 
material removal rates and quicker processing. In addition the 
defined trajectories of the workpieces allow for enhanced 
machining of certain features at complex workpieces.  

A lot of researchers have presented models for mass 
finishing processes so far. Most of them are descriptive 
models for vibratory finishing that correlate process 
parameters with surface quality for certain workpieces. 
MATSUNAGA [6] investigated contact mechanisms and 
velocity fields in vibratory finishing, but did not establish a 
correlation between processing results and measured or 
observed process characteristics. Additionally HASHIMOTOS 
findings [7] are of high relevance to the field of mass 
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finishing. Based on empirical studies he established basic 
rules for mass finishing processes that were confirmed in 
large parts by a recent investigation of UHLMANN ET AL. [8]. 
SPELT’S group [9,10,11,12,13] established a correlation 
between process forces, contact mechanisms and reachable 
surface quality in vibratory finishing. An important finding of 
SPELT’S group is the identification of three major contact 
modes that occur when spherical media is used in vibratory 
finishing: single impact, free rolling of single spheres and 
rolling of spheres in packages [13]. 

 
Nomenclature 

 empirical constant 
cn damping coefficient in normal direction 
ct damping coefficient in tangential direction 
ds submersion depth  
en coefficient of restitution in normal direction  
et coefficient of restitution in tangential direction 
E Young’s modulus 
Fn normal force  
Ft tangential force 
G shear modulus 
hf height of filling 
kn contact stiffness in normal direction 
kt contact stiffness in tangential direction 

ij friction coefficient of material combination i, j  
m mass 
nb number of balls 
Rb radius of balls 
Ri radius of particle i 

i density of material i 
n displacement in tangential direction 

t displacement in normal direction  
 time step 

tp process time 
i Poisson’s ratio of material i 

vt contact tangential velocity 
vw workpiece velocity 

 
The significance of contact forces and mechanisms in mass 

finishing processes has been emphasized by many researchers 
[9,14,15,16]. It has been shown that contact forces and impact 
velocities have great influence on process outcome in terms of 
material removal, roughness and hardness of the workpiece. 
As a consequence there have been many investigations on 
how to measure forces and impact velocities on the 
workpiece. Most of them make use of in situ measurement of 
contact forces. Costly measurement devices with high 
sampling rates have to be used to record maximum impact 
forces [9]. Furthermore a major handicap of this approach is 
the dependence of force magnitudes on sensor surface 
compliance [9,17]. CIAMPINI ET AL. [14] proposed to extract 
normal impact velocity from measured forces instead. Based 
on the determined impact velocities, energy imparted to 
arbitrary workpieces can be inferred, disregarding 
compliances. Nevertheless forces have to be measured for all 
considered machine settings and workpiece geometries. 
Directly obtaining impact velocities in mass finishing 
processes is also challenging, as measuring devices have to be 

placed appropriately in the bulk media. HASHEMNIA ET AL. 
[18] have developed a laser displacement probe that is able to 
measure impact and bulk flow velocities in vibrationally 
fluidized beds. Other reported approaches concentrate on 
measuring workpiece or bulk flow velocity, e. g. using spatial 
and time-based analyses of photographs [19]. Instead of force 
or velocity based approaches CIAMPINI ET AL. [11] used an 
almen strip system, common in shot peening applications, to 
characterise the effect of different process parameters on the 
aggressiveness of a vibratory finishing process. Having 
simulated the occurring impacts with an electromagnetic 
apparatus they found that normal impacts are dominating in 
vibratory finishing. Because in situ force and impact velocity 
measurement is a complex task susceptible to disturbances in 
the measuring chain, a different approach is presented, that 
allows for modelling of contact intensities for arbitrary 
workpiece geometries and materials using the Discrete 
Element Method (DEM). 

Up to now results from two different approaches towards a 
deterministic numerical process model for mass finishing 
have been reported: 

 Modelling of the motion of spherical media with the DEM 
[20,21,22,23,24] 

 Modelling of the media’s velocity fields using 
Computational Fluid Dynamics (CFD) for centrifugal disk 
finishing [19] and vibratory finishing of immobilized 
cylinders [25] 

Notably, only CARIAPA [19] and UHLMANN ET AL. [20] 
look at the three-dimensional movement of abrasive media in 
their models. All other approaches consider mass finishing 
processes with spherical steel or glass media or are restricted 
to two dimensions. CARIAPA’S approach allows for 
a qualitative prediction of material removal. The work of 
UHLMANN ET AL. on a comprehensive process model [20] 
combines an empirical geometry based model for surface 
roughness prediction [8] with contact intensity simulation 
using DEM. Using this comprehensive process model a 
quantitative prediction of material removal and roughness 
should be possible. 

2. Discrete Element Method (DEM) 

In the following a model to numerically simulate contacts 
between abrasive media and workpieces using DEM will be 
presented. The goal is to simulate the number, type and 
intensity of contacts between workpieces and abrasive media 
for finite areas of any workpiece. The DEM-model is used to 
simulate a small-scale drag finishing process. Findings from 
the model are utilized to broaden process comprehension. 

The approach presented in this paper is based on the work 
of UHLMANN ET AL. [8], in which bulk motion is modelled 
using the open source framework Yade [26]. Media is 
considered as a bulk of discrete, elastic, spherical particles 
that overlap depending on contact forces, the so called soft-
particle approach. In contrast to the hard-particle approach, 
that is based on instantaneous exchange of momentum when 
contact occurs, the soft-particle approach allows for multiple 
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particle contacts, which are common for dense granular 
media, at the cost of smaller time steps, resulting in higher 
computation times [27]. Most soft-particle models make use 
of an artificial increase in time step by allowing softer 
interaction. This is usually done by setting particle stiffnesses 
lower than physically observable [28].  

Geometric boundary conditions, i. e. bowl and workpieces, 
are implemented as facets. As a first step, spherical media is 
considered. In that case only point-contacts occur, which 
reduces the effort for collision detection and contact 
calculation considerably. In order to simulate the number, 
type and intensity of contacts for finite areas of any 
workpiece, a suitable model for particle-particle and particle-
facet contacts has to be chosen. This is presented in the next 
section. 

3. Model formulation 

In the presented approach, contact forces between two 
bodies are calculated according to the non-linear viscoelastic 
simplified Hertz-Mindlin contact force model, see Fig. 1. It is 
generally accepted that the Hertz-Mindlin contact force model 
is suitable to model contact between two elastic spheres or 
one sphere and a half space [29,30].  

 

 
Fig. 1. Spring dash-pot slider contact model for two spheres in contact. 

The model is based on Hertzian contact equations [31] in 
normal direction and the Mindlin no-slip approach [32,33] in 
tangential direction. The non-linear correlation between 
normal force Fn and normal displacement n is given by 

2/3
nnn kF .                           (1)

Contact stiffness kn is expressed by 

eqeqn REk
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,                             (2) 

where Eeq is the equivalent Young’s modulus expressed by 
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with E1 and E2 being the Young’s moduli and 1 and 2 
Poisson ratios of particles in contact. Req is the equivalent 
radius of the contact which is given by 
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where R1 and R2 are radii of particles in contact. According to 
MINDLIN [32] and MINDLIN AND DERESIEWICZ [33] the 
relation between the tangential force Ft and tangential 
displacement t is depending on the normal displacement n. 
They proposed equations that constitute this relationship for 
several contact configurations. If a contact surface is allowed 
to slip, equations become complicated because the history of 
the contact has to be considered. To reduce computing time a 
non-slipping contact surface is assumed in this paper. I. e. the 
equation for tangential contact stiffness kt is given by 

n
m

m
eqt

GRk
2

4 ,                             (5) 

where Gm is the mean shear modulus and m is the mean 
Poisson’s ratio of the particles in contact. In general shear 
modulus G can be expressed by  

)1(2
EG .                             (6) 

Note that tangential contact stiffness kt is a function of the 
normal displacement n. In Yade, tangential contact force Ft is 
calculated incrementally by 

tttt kFF v1, ,                             (7) 

where Ft, -1 is the tangential contact force at the previous time 
step, vt is the contact tangential velocity and  is the time 
step. 

3.1. Damping 

Energy of the particulate media in the system is dissipated 
through friction and viscous damping at the contacts. Force 
transmitted in tangential direction between two particles is 
limited by the Mohr-Coulomb friction law. It should be noted 
that in the original DEM-formulation by CUNDALL AND 
STRACK [34] a global damping was introduced. I. e. damping 
forces were part of the equations of motions. This does not 
represent a physical phenomenon but is an artificial numerical 
damping. In this work non-linear viscous damping at the 
contacts (also known as local damping), represented by the 
dash-pots in Fig. 1, is used. It has been shown by ZHANG AND 
WHITEN [35] that non-linear contact damping is more suitable 
to resemble experimental results than linear contact damping. 
Damping force in normal direction Fn,d is calculated by 

nnndn vcF )(, ,                             (8) 

where the damping coefficient cn is a function of normal 
displacement n. TSUJI ET AL. [36] derived a formulation for 
the damping coefficient cn 
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4/1)( nneqnn kmc ,                             (9) 

where  is an empirical constant related to the coefficient of 
restitution in normal direction en and meq is the equivalent 
mass, calculated in analogous manner as (4). ANTYPOV AND 
ELLIOTT [37] mapped the Hertzian contact model onto the 
linear spring dash-pot model. They provided an analytical 
relationship between the empirical constant  from (9) and the 
coefficient of restitution in normal direction en, i. e. 

²)²(log
)log(5)(

n

n
n e

ee .                             (10) 

Conforming to the work of TSUJI ET AL. [36] the damping 
coefficient in tangential direction ct is assumed to be equal to 
the damping coefficient in normal direction cn. 

4. Model setup 

A large number of abrasive particles are used in usual drag 
finishing processes, see Fig. 2a. This results in immense 
calculation times for setups modelled exactly according to 
these processes. For that reason a smaller bowl and rod are 
considered as a first step, see Fig. 2b. This reduces the 
number of particles to 1422. Geometric boundary conditions 
of the modelled setup can be found in Fig. 3.  

 

bowl

workpiece

media

vW

60 mm

vw

workpiece

25 mm

a) b)  
Fig. 2. Drag finishing setup (a) real process, (b) DEM-model. 

Calibration approaches for modelling of granular material 
can roughly be divided into two groups: physical and 
phenomenological approaches. In physical calibration 
approaches, direct correlations between model parameters and 
experimental results are used to calibrate the model. Thus 
model parameters are determined on a per-particle base 
(micro-scale) according to well-known mechanical 
relationships. Typical setups comprise sphere drop, tensile or 
compression tests [38,39]. Because bulk materials often 
consist of randomly shaped particles, physical calibration is 
not always feasible. In such cases, phenomenological 
calibration, which is focused on the macro-scale bulk 
behaviour of particles, can be used [30]. Thereby, model 
parameters are varied until certain macroscopic behaviour of 
granular media is observed. Hereby particle stiffness is 
usually set at considerably lower values than real stiffness, 
resulting in larger time steps and hence faster 
calculation [27,38]. By calibrating the bulk behaviour of soft 
particles it is supposed that, disregarding unrealistic 

stiffnesses, simulation results can be transferred to real 
granular media. Examples for corresponding calibration 
experiments are triaxial tests, shear tests and bulk 
compression tests. If micro-scale behaviour, e. g. magnitude 
of contact forces, is of interest, as it is the case for modelling 
of drag finishing, physical calibration is necessary. 

 

40 mm
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Ft

bowl

circlepath

workpiece

 
Fig. 3. Geometries of modelled small-scale process. 

The input parameters for the contact model are Young’s 
modulus Ei, Poisson’s ratio i, density i, coefficient of 
restitution in normal direction en and friction coefficient ij for 
all materials i and material combinations i, j (i, j  , i  j 
with number of materials ).  

Young’s modulus Ec of the spherical ceramic-bond media 
that was used for this paper was determined by considering 
the media as a multiphase material. Using micro indentation 
tests and photo analyses of microscope images of cross-
section polished media, Young’s moduli of the single phases 
were calculated. The overall Young’s modulus of media was 
estimated at Ec = 77 GPa, the overall Poisson ratio at 

c = 0.19, respectively, both using the approaches presented 
by HASHIN AND SHTRIKMAN [40] and ONDRACEK [41]. 
Friction coefficients ij for all material combinations were 
obtained in a scratch test, i. e. the friction coefficient for 
ceramic sphere scratching on another one cc = 0.34 and 
ceramic sphere scratching on a bearing steel (1.3505) plate 

cs = 0.28. The density of the ceramic media was determined 
at c = 2656 kg/m³, for bearing steel (1.3505) it was taken 
from a data sheet with s = 7610 kg/m³. 

Damping behaviour of colliding particles is often 
investigated using a sphere drop setup [29,39]. In this paper 
the coefficient of restitution in normal direction en is 
determined by iteratively comparing experimental with 
simulated forces for varying coefficients of restitution in 
normal direction en in simulation. This means, a sphere 
(ceramic-bond media FSG 6MM BALLS, Walther Trowal) 
which is released from a height of 10 mm hits a horizontal 
plate (bearing steel 1.3505), that is mounted on a force sensor, 
multiple times. For the calibration of the damping behaviour 
the first three impacts are considered. The change in the 
magnitude of the maximum impact forces and the time since 
the first impact were used to fit the coefficient of restitution in 
normal direction en. Doing so a coefficient of restitution in 
normal direction for ceramic-steel contact en,cs = 0.68 was 
estimated. Due to FSG media is not available as a plate the 
coefficient of restitution in normal direction for 
ceramic-ceramic contact en,cc could not be determined with the 
described setup. Instead it is taken from similar investigations 
done by KUMAR AND SATHYAN [39] who obtained en,cc = 0.86. 
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5. Validation 

The model was verified using the described small-scale 
bowl that was filled with ceramic media and an exemplary set 
of process parameters. In the experimental setup, the total 
force acting on the workpiece during a drag finishing process 
was measured using a KISTLER model 9273 dynamometer. 
Normal force Fn from the experiment is shown in Fig. 4a.  
The mean experimental normal force is 
Fn,exp,mean = -2.59 N ± 0.66 N (± indicates standard deviation). 
The base level of the force is caused by static bulk pressure. 
In addition there are some peculiar peaks of the normal force 
Fn, e. g. at process times tp = 6.250; 10.055 s. 

In the simulation the total force acting on the rod is 
measured in a workpiece aligned coordinate system, i. e. 
normal force Fn is always pointing in the direction of the 
workpiece velocities vw and the tangential force Ft is 
perpendicular to it, see Fig. 3. Fig. 4a shows the total 
simulated forces in normal and tangential direction with 
spherical ceramic media and a steel rod for one revolution of 
the workpiece for a small scale process with geometries as 
described in Fig. 3. For simplicity reasons bowl and rod are 
made of the same material. This reduces the number of 
occurring material combinations which results in less 
parameters that have to be determined experimentally 
beforehand. Mean simulated normal force is  
Fn,sim,mean = -1.99 N ± 0.63 N, i. e. it deviates from the mean 
experimental normal force by about 23.17 %. However, 
simulated forces show comparable amplitudes and variation 
as well as some distinct peaks as it was the case for 
experimental forces. Using new means of contact intensity 
analysis, the so called interaction network, it can be shown 
that these peaks are caused by the formation of contact chains. 
In Fig. 4b-c interaction networks after 4.5 s of process time 
are shown. They are coloured according to the magnitude of 
the normal contact force of the corresponding interaction, 
ranging from green for no contact force to red for highest 
overall contact force. The radius of each cylinder is also 
scaled by normal contact force, i. e. the cylinder of the 
interaction with the maximum contact force has a radius equal 
to the mean radius of the balls Rb = 3.27 mm whereas 
cylinders of interactions with lower contact forces have 
smaller radii. It can be seen that contact forces in direction of 
workpiece velocity vW are considerably higher than in other 
directions. Furthermore in the region behind the workpiece 
the smallest contact forces can be observed. Interestingly the 
active zone inside the bulk reaches far ahead of the 
workpiece. Additionally, Fig. 4b confirms that contact forces 
tend to increase with depth, as expected because of the 
increasing pressure caused by the weight of media. 

The most important finding from Fig. 4b-c is the formation 
of dominant contact chains between rod and bowl. Contact 
chains with comparable orientations in xy-plane, see Fig. 4b, 
were observed after various process times and typically go in 
hand with distinct peaks in simulated normal forces. The 
altitude in the bowl and orientation in xz-plane  
varies, see Fig. 4c. This phenomenon will be subject to further 
investigations, in which a correlation with known contact 
mechanisms will be checked. First analyses of microscope 

pictures reveal that on some workpiece surfaces deep 
scratches can be found on regions pointing in the direction of 
the bowls boundary. This is considered as a first indication for 
presence of contact chains. It is noted that further efforts have 
to be made using other process parameter sets for validation.  
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Fig. 4. Simulation results for small-scale process (a) normal forces for 

simulation and experiment (b, c) interaction networks. 
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6. Conclusion and outlook 

After validation of the presented model, it was shown, how 
such a model can be used to broaden the understanding of 
process fundamentals. For the first time contact chains were 
identified by the evaluation of interaction networks. Now it is 
possible to determine the number, type and intensity of 
contacts between workpieces and abrasive media for finite 
areas of any workpiece. This will be subject to further 
investigations. As a next step several tests consisting of single 
and multi-contact, quasi-static and dynamic scenarios will be 
carried out, in which forces, measured in experiments and 
calculated in simulations will be compared. Furthermore the 
laser displacement probe introduced by HASHEMNIA ET AL. 
[18] could be used to validate DEM predictions of impact 
velocities on the workpiece surface. Finally contact intensities 
calculated with the DEM-model described in this paper 
should be linked to the output of the material removal model, 
mentioned above [8,20], thus creating a comprehensive 
process model.
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