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Abstract. We study a passively mode-locked semiconductor ring laser subject
to optical feedback from an external mirror. Using a delay differential equation
model for the mode-locked laser, we are able to systematically investigate the
resonance effects of the inter-spike interval time of the laser and the roundtrip
time of the light in the external cavity (delay time) for intermediate and long
delay times. We observe synchronization plateaus following the ordering of
the well-known Farey sequence. Our results show that in agreement with the
experimental results a reduction of the timing jitter is possible if the delay time
is chosen close to an integer multiple of the inter-spike interval time of the laser
without external feedback. Outside the main resonant regimes the timing jitter is
drastically increased by the feedback.
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1. Introduction

Passively mode-locked (ML) semiconductor lasers are of broad interest as sources of ultrashort
picosecond and sub-picosecond optical pulses with high repetition rates. These sources are
among other applications needed for data communication, optical clocking, high-speed optical
sampling, all-optical clock recovery and microscopy [1–3]. Compared to actively [4] and hybrid
ML lasers they are simpler to fabricate and to handle. However, their major drawback is their
relatively large timing jitter due to the absence of an external reference clock [5]. Since timing
fluctuations degrade the performance of the laser, a great deal of efforts have been made to
reduce them. An efficient and inexpensive method for timing jitter reduction based on the use
of all-optical feedback from an external cavity will be discussed in this paper.

One basic timescale of the passively ML laser is the inter-spike interval time TISI,0, which
is the inverse of the pulse repetition frequency. The optical feedback introduces an additional
timescale into the system, namely the roundtrip time of the light in the external cavity τ . By
measuring the radio frequency linewidth of a passively ML quantum well laser as done already
in 1993 by Solgaard and Lau [6], it was shown that optical feedback can have a stabilizing or
a destabilizing effect on the laser dynamics depending on the ratio of τ and TISI,0. Further, the
authors observed a pulling of the repetition rate of the pulses by the variation of τ . Both effects
have recently been observed in experiments with quantum dot lasers [7–10]. In addition, the
dependence of the timing jitter on the pump current and the feedback strength has been studied
for a fixed ratio of τ and TISI,0 [8, 11] and for variable τ [12].

In contrast to the wealth of experimental results, only a few theoretical works have been
published on this subject. The bifurcation scenarios of a free-running quantum dot laser with
optical feedback have been studied in [13–15]. In [16] the authors studied the amplitude and
timing jitter of a quantum dot ML laser subject to optical feedback with τ = 5TISI,0 (intermediate
feedback delay time). In [17] the authors discuss the impact of a variation of the ratio τ/TISI,0

on the dynamics of an ML quantum well laser for τ -values ranging from τ ≈ 0.3TISI,0 to
τ ≈ 3.1TISI,0 (short feedback delay time). They identify different dynamical regimes of ML
laser operation: main resonances are found when τ is an integer multiple of TISI,0, higher order
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resonances take place when τ/TISI,0 is a rational number and nonresonant regimes are detected
for the values of τ/TISI,0 in between two resonant regimes. The dynamics in each regime will be
discussed in detail in section 4 of this paper. For a short external cavity, the impact of different
ratios of τ/TISI,0 on the pulse characteristics of a quantum dot ML laser model has recently been
studied in [18].

In the theoretical studies mentioned above, finite-difference traveling wave models have
been used. Our study is based on a delay differential equations (DDE) mode-locking model,
which has the advantage of a strongly reduced computational cost. On the one hand, this
permits us to study the regime of longer external cavities with τ up to 70TISI,0. This is of
experimental interest, because in experiments optical feedback is often realized by long optical
fiber loops [12]. On the other hand, it enables us to continuously study the dependence of
the timing jitter on feedback strength and delay time in intervals around the exact resonance
condition and not only for the exact resonance discussed in [16].

The paper is organized as follows. In section 2, an extension of the DDE model that takes
into account feedback from an external mirror is discussed. The dynamics of the laser without
feedback is reviewed in section 3 and the impact of the optical feedback is studied in section 4.
Finally, in section 5 the reduction of the timing jitter by optical feedback is discussed, and
concluding remarks are made in section 6.

2. Delay model for a mode-locked laser

We consider the DDE model for a passively ML ring cavity laser proposed in [19–21]. This
model generalizes the model of Haus [22, 23] to the case of large gain and loss per cavity
roundtrip, which is typical of semiconductor ML lasers. The model has been extended to take
into account a quantum dot material model [24, 25], hybrid mode-locking [26, 27] and external
optical injection [28]. Further, for a quantum dot model with ground- and excited state lasing,
a multi-section modification of the DDE model was proposed, which permits us to take into
account more symmetric cavity designs and tapered waveguides [29–31] (see also [32], where
a multi-section model for a linear-cavity ML laser was developed).

In this paper we extend the DDE model to study delayed optical feedback from a passive
external cavity. A sketch of the model setup is shown in figure 1(a), while figure 1(b) depicts
a sketch of the corresponding configuration for a linear-cavity Fabry–Perot ML two-section
laser that is often considered in experimental setups. The passively ML ring laser consists of an
actively pumped gain section (GAIN) and a saturable absorber section (SA). Spectral filtering
is taken into account within a lumped element approach [33] by an infinitely thin Lorentzian
filter (red bar in figure 1(a)). At the interface between the gain section and the absorber section,
a part of the light is coupled out into an external ring cavity. The model assumes unidirectional
lasing and the same group velocity of the light v in all sections. The carrier dynamics in the gain
section is described by the saturable gain G(t), which is proportional to the inversion in the gain
section. The carrier dynamics in the slow saturable absorber is described by the saturable loss
Q(t), which is anti-proportional to the inversion in the absorber section (see the appendix for
the exact definitions). The term ‘saturable’ is used in this context to describe that G and Q are
strongly varied during one roundtrip of the pulse in the cavity due to light–matter interactions.
Thus, at the arrival of the pulse the saturable gain G is depleted due to induced emission and the
saturable absorption Q is decreased due to induced absorption, i.e. the absorber is bleached.
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Figure 1. (a) Sketch of the ring cavity laser with external optical feedback. The
laser consists of four sections: a saturable absorber section (SA), a gain section
(GAIN), an external cavity (EC) and a Lorentzian filter (red bar). The roundtrip
time of the light in the laser is T , and τ is the delay time per roundtrip in the
external cavity. The strength of the feedback is denoted by K , and κ is the
attenuation factor modeling accumulative nonresonant and out-coupling loss per
cavity roundtrip. (b) Sketch of a linear-cavity Fabry–Perot ML two-section laser
considered in experiments that we aim to describe with the DDE model.

The final set of three coupled delay differential equations for the slowly varying field
amplitude E , the dimensionless saturable gain G and the dimensionless saturable loss Q reads

γ −1Ė(t) + E(t) = R(t − T ) e−i1�TE(t − T )

+
∞∑

l=1

Kl e−ilC R(t − T − lτ) e−i1�(T +lτ)E(t − T − lτ) + Dξ(t), (1a)

Ġ(t) = Jg − γgG(t) − e−Q(t)
(
eG(t)

− 1
)
|E(t)|2, (1b)

Q̇(t) = Jq − γq Q(t) − rs e−Q(t)
(
eQ(t)

− 1
)
|E(t)|2, (1c)

where

R(t) ≡
√

κ e
1
2((1−iαg)G(t)−(1−iαq )Q(t)) (2)

describes amplification and losses of the field E during one roundtrip in the ring cavity. The
linewidth enhancement factors (α-factors) in the gain and absorber sections are denoted by αg

and αq , respectively. Out-coupling and internal losses at the interfaces between the different
sections are lumped together with the intensity transmission coefficient of the interface between
the gain section and the external cavity into the attenuation factor κ (see the appendix for
details). The frequency spacing of the cavity modes is 1/T , where T ≡ v/L is the cold-cavity
roundtrip time of the light given by the ratio of the group velocity v and the cavity length L .
The finite width of the gain spectrum is taken into account by a bandwidth-limiting element,
which is described by a Lorentzian-shaped filter function f (t) ≡ γ e(−γ +i1�)t of full-width
at half-maximum γ . It is centered at the frequency 1� ≡ �max − �0 taking into account a
possible detuning of the frequency of the gain maximum �max from the optical frequency of
the closest cavity mode �0. In the following, we assume zero detuning 1� = 0. The sum in the
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Table 1. Parameter values used in numerical simulations.

Symbol Value Symbol Value

γ 2.5 ps−1 T 25 ps
γg 1 ns−1 TISI,0 1.015T
γq 75 ns−1 αg 0
rs 25.0 αq 0
Jg 4.8 ps−1 1�0 0
Jq 2.5 ps−1 C 0
κ 0.1 l 1

second line in equation (1a) sums up the contribution of the field after l = 1, . . . ,∞ roundtrips
in the external cavity. During each roundtrip in the external cavity, the field is delayed by the
delay time τ . This is modeled by the terms R(t − T − lτ) in equation (1a). The phase C ≡ �0τ

describes the phase shift of the light due to the finite delay time. Since the optical frequency
�0 is large (THz) a tiny variation of τ causes a variation of C over its full range [0, 2π ], while
the variation of τ in the delayed terms R(t − T − lτ) and E(t − T − lτ) has only a negligible
effect on the solution for E(t). This is why we consider C and τ as independent parameters.
The feedback strength is given by Kl ≡ r(1 − rec)

l/2(1 − r)l/2−1, with the intensity reflection
coefficients of the interface between the gain section and the external cavity r and of the
interface in the external cavity rec (see figure A.1 in the appendix). In the following, we assume
the feedback to be small and neglect all but one roundtrip in the external cavity, i.e. we keep
only the term with l = 1 in the sum of equation (1a) and define K ≡ K1. Spontaneous emission
noise of strength D is modeled by a complex Gaussian white noise term ξ(t), i.e.

ξ(t) = ξ1(t) + iξ2(t), 〈ξi(t)〉 = 0,

〈ξi(t)ξ j(t
′)〉 = δi, jδ(t − t ′), for ξi(t) ∈ R, i ∈ {1, 2}.

In the carrier equations, equations (1b) and (1c), G is pumped with the pump rate Jg, which
is proportional to the injection current in the gain section and Jq is the unsaturated absorption
parameter, which models carrier losses due to a reverse bias that is applied to the absorber sec-
tion (see the appendix for the exact definition). The carrier decay rates in the gain and absorber
sections are denoted by γg and γq , respectively. For semiconductor materials typically the
inequality γg � γq holds [34]. The last terms in equations (1b) and (1c) model the light–matter
interactions. They describe how G and Q are depleted by the pulse that travels in the cavity.
The factor rs is proportional to the ratio of the linear gain coefficients of the absorber and gain
sections (see the appendix for the exact definition).

3. Dynamics of a solitary mode-locked laser

In this section the dynamics of the laser without feedback (K = 0) and without noise (D = 0)
is discussed. The parameters for the simulations are given in table 1, unless stated otherwise.
In a passively ML laser, the interplay of saturable gain G and saturable loss Q leads to a fixed
phase relation, i.e. phase locking, of many cavity modes resulting in narrow pulses with large
intensity. The number of locked modes can be roughly estimated by the ratio of the bandwidth
of the spectral filter γ and the frequency spacing of the cavity modes 1/T . This means that
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Figure 2. Mode-locking dynamics of the laser without feedback (K = 0). (a)
Time traces of the absolute value of the amplitude |E|, gain G, total loss Qt and
net gain G. TISI,0 is the inter-spike interval time. (b) Blowup of the black rectangle
in (a). The net gain window where G > 0 is highlighted in gray. (c) Projection of
trajectory onto the (G, |E|)-plane. (d) Power spectrum. Parameter values are as
in table 1.

the number of modes participating in the ML process usually increases with γ , which results
in a shorter pulse width τp ∝ γ −1 [20]. If γ is large compared to the decay times of gain
and loss media γg and γq , respectively, the dynamics of the electrical field amplitude E is
much faster than the dynamics of the carriers (equations (1b) and (1c)), due to the presence
of the small factor γ −1

� 1 in the left-hand side of equation (1a). This means that the ML
laser acts in this regime as a typical slow–fast system [35]. In the ML regime a regular pulse
train is obtained. The width τp of the pulses is short compared to the inter-spike interval time
TISI,0 ≈ T + O(γ −1) [19], which is close to the cold-cavity roundtrip time T . Figure 2(a) shows
time traces of the absolute value of the amplitude |E| (red solid line), the saturable gain G
(blue dashed line), the total loss Qt ≡ Q + |ln κ| (green dash-dotted line), which is the sum of
saturable and nonresonant losses per cavity roundtrip, and the net gain G ≡ G − Qt (thin black
dash-dot-dotted line). The latter is the difference of the overall gain and total loss per cavity
roundtrip. It is illustrative to calculate the net gain in the simplest case of a real-valued field
equation αg = αq = 0 for a continuous wave (cw) solution of the model equations. Inserting
the ansatz (E(t), G(t), Q(t)) = (Es, Gs, Qs) with |Es| 6= 0 into equations (1a)–(1c), we see from
equation (1a) that above the linear laser threshold Gs ≡ Gs − (Qs + ln κ) = 0 holds. Thus G = 0
corresponds to the gain-clamping above threshold observed in single-mode one-section laser
models with only one carrier type [35]. A bifurcation analysis of the rotating wave solutions
of equations (1a)–(1c) (cw emission) with complex E , i.e. nonzero α-factors, and K = 0 was
performed in [36].

New Journal of Physics 14 (2012) 113033 (http://www.njp.org/)

http://www.njp.org/


7

In phase space the system evolves on a stable limit cycle as one can see in figure 2(c) in
a projection onto the (G, |E|)-plane. From the power spectrum in figure 2(d) we see that the
pulse repetition rate νISI,0 ≡ 1/TISI,0 is close to 40 GHz. Figures 2(a) and (c) illustrate that the
dynamics can be divided into a slow evolution close to the slow manifold E ≡ 0 in between
the pulses (slow stage) and a fast and short excursion through the phase space during the pulse
(fast stage). In each of the two stages, approximate analytical solutions for the dynamical system
(equations (1a)–(1c)) can be found [20]. During the slow stage G and Q recover after the
passage of the previous pulse. Throughout the recovery process the total losses predominate
the gain, thus G is negative. This can be seen in figure 2(a) where Qt > G holds in the slow
stage. The pulses have stable background, i.e. the pulse train remains stable with respect to
perturbations as long as the perturbations are too weak to open a net gain window during the
slow stage. This means that New’s stability criterion [37] is fulfilled [20]. The leading edge of a
pulse depletes G and Q on the fast timescales of the light–matter interaction given by vgg and
vgq for the gain and absorber sections, respectively, where gg is the linear gain coefficient for
the gain section and gq is that for the absorber section (see the appendix for details). For rs > 1
the depletion of Q is faster than the depletion of G, which leads to a short net gain window
with G > 0 triggering the pulse (gray shaded region in figure 2(b)). The condition rs > 1 means
that the saturation energy of the absorber section is smaller than that of the gain section (see
the appendix for details); thus the absorber bleaches first opening the net gain window. The
faster decay of Q can also be seen from equations (1b) and (1c). In the fast stage the linear
terms Jg − γgG and Jq − γq Q can be neglected [20]. Since rs > 1 and Q > G > 0 hold at the
beginning of the fast stage, the saturation term in equation (1c) that is proportional to |E|2 is
larger than the corresponding term in equation (1b). During the net gain window the center part
of the pulse is amplified.

4. Dynamics of a mode-locked laser subject to optical feedback

In the previous section we have seen that an important timescale of the solitary laser is the
inter-spike interval time TISI,0. By including external feedback a new timescale is introduced,
namely the delay time τ . The facet between the ring laser and the external cavity splits the
pulse stream into two parts: one part propagating in the ring laser and another part propagating
through the external cavity. The latter is, after one roundtrip in the delay line, coupled back into
the internal cavity multiplied by the feedback strength K < 1 and a phase shift e−iC . The delay
time τ and phase C determine the relative temporal position and the phase relation of the pulses
coupled back from the external cavity to the pulses in the laser. We first describe the resonances
of the system for the case C = 0, before discussing the influence of the feedback phase C on
the dynamics. Throughout this study we concentrate on the case αg = αq = 0, which shows
the clearest resonance structure. In combination with the assumption 1� = 0 this yields a real
field equation. For simplicity, we use constant initial conditions Re (E(t)) = 0.4, Im (E(t)) = 0,
G(t) = 4 and Q(t) = 1 for t ∈ [−τ, 0], unless stated otherwise. Here Re and Im denote the real
and imaginary parts, respectively.

Synchronization effects can be observed if an integer multiple of τ matches an integer
multiple of TISI,0, i.e.

pτ = qTISI,0, for p, q ∈ N, (3)

where the relation p < q holds in the regimes of intermediate and long delays discussed here.
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The resonances described by equation (3) can be further sub-classified into the main and higher
order resonances. In the main resonances (p = 1), the pulses traveling in the external cavity
match perfectly with the pulses in the laser cavity, and only one pulse per laser cavity roundtrip
is present. In the higher order resonances (p > 1), p pulses may travel in the cavity, i.e. p pulses
are found in an interval of length TISI,0: one main pulse stemming from the solitary laser and
p − 1 secondary pulses with smaller amplitudes that are induced by the feedback.

Note that in [17] the main and higher order resonances are referred to as the integer and
fractional resonant cases, respectively. Here the notion of the main and higher order resonances
is preferred to emphasize the ordering of the corresponding fractions p/q in a Farey tree, which
will be discussed in section 4.1.

The maximum number of pulses in the cavity is limited by the cold cavity roundtrip
time T and the width of the pulses, which is determined by γ . The longer the cavity and the
smaller the pulse width the larger the number of pulses that can fit into the cavity. For the
set of parameter values given in table 1, we find up to five pulses in the cavity, i.e. p 6 5. At
the exact resonances, the main pulses and the feedback-induced pulses are well separated by
low values of the intensity. Furthermore, the pulses are almost evenly spaced over the inter-
spike interval. That is, if we have p pulses and the main pulse is located at t = 0, the p − 1
feedback-induced pulses are located close to lTISI,0/p for l = 1, . . . , p − 1. Figures 3(a)–(d)
depict time traces of |E|, G, Qt and G (left column), phase space projections onto the (G,
|E|)-plane (middle column) and power spectra of |E|2 (right column) for p = 1–4 pulses in
the cavity and small feedback strength K = 0.12. Periodic pulse trains with p = 5 different
pulses have also been found, but the intensities of the smallest pulses are too low to be visible
in the scale of figure 3. In the main resonances the feedback reduces the width of the pulses
and increases their peak intensities. This can be seen by comparing the peak values of |E| for
τ/TISI = 7 (corresponding to p/q = 1/7) in figure 3(a) (left) with those for the solitary laser in
figure 2(a) (see also figure 10(a) in section 4.2). In simulations with spontaneous emission noise
(D 6= 0), we found that in the main resonances the stability of the pulse train with respect to
noise is enhanced (see also section 5). At the higher order resonances, the peak intensities of the
dominant pulses decrease in the presence of delay, because the total energy of the pulse stream
is now divided between the p pulses in the cavity.

Figure 4(a) depicts a one-parameter bifurcation diagram of the local maxima of the time
trace of |E(t)| for exactly resonant optical feedback τ = 7TISI,0 and K varies over its full range
from 0 to 1. For each K -value the dynamic equations (1a)–(1c) have been integrated over
5 × 104 time units to avoid transient effects and then the local maxima of the time trace of |E|
were collected for 100 time units. The bifurcation diagram has been obtained by up-sweeping
(orange dots) and down-sweeping (black dots) K taking the last τ -interval of the previous
run as the initial conditions. (For the first runs of each sweep direction the constant initial
conditions mentioned above were chosen.) At the critical feedback strength Kcrit = 0.55 the
system becomes bistable (gray shaded region). For K > Kcrit and up-sweeping K the system
remains in the fundamental mode-locked (FML) regime with period TISI,0. The upper inset
shows a time trace of |E(t)| in this regime for K = 0.8. However, for the constant initial
conditions and the highest possible K -value of K = 1, the system exhibits harmonic mode-
locking (HML) with period TISI,0/2. For down-sweeping K , the HML branch of solutions
remains stable until K = Kcrit, where the system abruptly jumps back to the FML branch. The
lower inset in figure 4(a) depicts a time trace of |E(t)| for the HML solution and K = 0.8. This
bistability could be introduced into the systems by a saddle-node bifurcation of limit cycles
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Figure 3. Feedback-induced deformations of the periodic orbit for a small
feedback strength of K = 0.12. The ratios of the delay time τ to the inter-spike
interval TISI,0 are chosen to fulfill the resonance condition of equation (3) for
p/q = 1/7, 2/15, 3/23 and 4/29 from panels (a)–(d), respectively. Left column:
time traces of the absolute value of the amplitude |E| (red solid line), saturable
gain G (blue dashed line), total loss Qt (green dash-dotted line) and net gain
G (black dash-dot-doted line). Middle column: phase space projection onto the
(|E|,G)-plane. Right column: power spectra. Other parameter values are as in
table 1.

(fold bifurcation) close to K = Kcrit, which creates a pair of new solutions: a stable node branch,
which corresponds to the HML solution in the simulations, and an unstable saddle branch.

Figure 4(b) depicts the dependence of Kcrit on the feedback phase C as observed by down-
sweeping K starting with constant initial conditions from K = 1. As seen from equation (1a)
the system is 2π -symmetric with respect to C . The lowest value of Kcrit is observed for C = 0
and Kcrit increases strongly with C . In a symmetrical interval around C = π , the system remains
in the FML regime and no bistability is observed (blue shaded region). For a shorter external
delay time of τ = 3TISI,0 (not shown), we find an additional interval symmetric around C = π , in
which a secondary Andronov–Hopf (Neimark–Sacker) bifurcation introduces a new frequency
into the system that is noncommensurate with 1/TISI,0. This leads to a quasiperiodic motion in
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Figure 4. (a) One-parameter bifurcation diagram of the maxima of |E| versus
feedback strength K for a stepwise increase of K (up-sweep, orange diamonds)
and stepwise decrease of K (down-sweep, black circles) in the exact main
resonance with τ = 7TISI,0 and for fixed feedback phase C = 0. The gray shaded
area for K > Kcrit marks the region of bistability between fundamental mode-
locking (FML) and harmonic mode-locking (HML). The insets show time traces
of |E| for the FML and the HML branch, respectively. (b) Kcrit as a function of
C (blue dots) obtained by down-sweeping K . Inside the rectangular blue-shaded
region, FML is observed over the full range (K ∈ [0, 1]) of K . Parameter values
are as in table 1.

phase space and thus to unstable pulse trains. For higher feedback strength the FML solution
is stabilized again. Thus for short, exactly resonant feedback the dynamics of the ML laser is
similar to the dynamics of a single-frequency semiconductor laser subject to external optical
feedback described by the Lang–Kobayashi equations [13, 38, 39] as already observed by
Avrutin et al in [17] using a finite difference traveling wave modeling approach.

To present a more complete picture of the feedback-induced dynamics away from the exact
resonances, figure 5 shows the number of pulses in the cavity (color code) as a function of the
delay time τ (intermediate values) and feedback strength K for C = 0. For each pair of (τ ,K )-
values the system was integrated over 3 × 104 time units and then the number of maxima with
different peak heights is counted for 25 time units.

For up-sweeping τ (figure 5(a)) for each K and the lowest value of τ the same constant
initial conditions mentioned in the beginning of this section were chosen. Then, τ was increased
stepwise from its lowest value taking an interval of length τ from the end of the time series of
the previous run as the initial condition in each step. To catch bistability, the same procedure
was performed by down-sweeping τ from its maximum to its lowest value (figure 5(b)). For
the case of intermediate delay times presented in figure 5, bistability is observed only for high
K & 0.5. (This becomes obvious by comparing the right boundaries of the white ‘cones’ with
the blue regions in figures 5(a) and (b).) However, for larger delay times τ ∼ 70TISI,0 bistability
was also found for small K by varying τ (see section 4.2).
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Figure 5. Two-parameter bifurcation diagram of the dynamics of the ML laser
subject to external optical feedback in terms of delay time τ (in units of the inter-
spike interval of the solitary laser TISI,0) and feedback strength K obtained by up-
sweeping (a) and by down-sweeping (b) τ stepwise. The color code provides the
number of pulses in the cavity (compare with figure 3). White regions indicate
quasiperiodic pulse trains as depicted in figure 7. Parameters are as in table 1.

The contour plot shown in figure 5 is almost periodic in τ with the period TISI,0

corresponding to the distance between the vertical, white, dashed lines within the large cone-like
blue areas around the main resonances τ = 7TISI,0, 8TISI,0 and 9TISI,0. Within these blue areas we
find complete synchronization, i.e. only one pulse travels in the cavity. In the following we call
these intervals the main resonant regimes. For increasing K the resonant regimes broaden and
the laser synchronizes also for larger deviations from the exact main resonances. The increase of
their width is not linear in K ; instead a sudden broadening is observed for K ≈ 0.15, which we
interpret as a transition from small to intermediate values of K . Away from the main resonant
regimes, this transition is marked by the appearance of quasiperiodic pulse forms (white region)
to be discussed below.
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Figure 6. Time traces of the absolute value of the amplitude |E| (red solid
line), saturable gain G (blue dashed line), total loss Qt (green dash-dotted
line) and net gain G (black dash-dot-doted line) in the nonresonant regimes
between the second-order resonant regime around τ/TISI,0 = 15/2 and the fifth-
order resonant regimes around τ/TISI,0 = 37/5 (a) and τ/TISI,0 = 38/5 (b),
respectively. Other parameter values are as in table 1.

For small K we find that the periodic orbit is deformed by the feedback in a nonlinear way
(see figure 3 (middle column)). These deformations lead to τ -intervals around the exact higher
order resonances (equation (3) with 26 p 6 5), where we find p pulses in the cavity that are
well separated by low values of the intensity. They appear as red and green regions in figure 5
and in the following they are denoted as higher order resonant regimes. For very small values of
K and p = 5, the smallest pulse cannot be detected numerically. This is why the brown regions
indicating the presence of five pulses in the cavity do not reach down to the lowest K -value
(K = 0.08 for τ/TISI,0 = 37/5 and 38/5, as well as for τ/TISI,0 = 42/5 and 43/5).

In between the resonant regimes the mismatch of the two timescales τ and TISI,0 leads
to overlapping pulses that are not well separated by low values of the intensity. We find
broad (main) pulses that are not unimodal but have one to three side peaks. In the following,
we call these τ -intervals between two adjacent resonant regimes nonresonant regimes. In the
nonresonant regime in between the main resonant regime around τ/TISI,0 = 7 and the fifth-
order resonant regime around τ/TISI,0 = 36/5, a broadened pulse with one to three sidepeaks
is observed leading to the regions with two (red), three (light-green) and four maxima (dark-
green), respectively. (The same holds for τ values in between the main resonant regimes around
τ/TISI,0 = 8 and 9 and the adjacent fifth-order resonant regimes, respectively.) Also between
adjacent higher order resonances, nonresonant regimes are observed, which are for example
responsible for the light-green (p = 3) and dark-green (p = 4) colored regions between the
second-order resonance regimes around τ/TISI,0 = 15/2 and 17/2 (red) and the adjacent fifth-
order regimes (brown), respectively. For K = 0.12, figure 6 shows time traces of |E|, G, Qt and
G in the nonresonant regimes to the left (see figure 6(a)) and to the right (see figure 6(b)) of
the second-order resonant regime around τ/TISI,0 = 15/2, respectively. We observe broadened
main pulses with shoulders at the leading (see figure 6(a)) and the trailing edge (see figure 6(b))
of the main pulse, respectively. The pulses in the nonresonant regimes have relatively low peak
intensities compared to the pulses in the resonant regimes (compare figures 6 and 3 (left panel)).
In addition the net gain G (dash-dot-dotted line) shows a broad shoulder with only slightly
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Figure 7. Quasiperiodic pulse trains found in the white regions of figure 5. Left
column: local maxima of the time trace of |E|. Competing pulse trains are labeled
by A (blue circles), B (red circles) and C (green diamonds), respectively. Middle
column: phase space projections onto the (G, |E|)-plane (red orbit). The black-
dashed orbits indicate projections of an TISI,0-interval of the time series (TISI,0 is
the inter-spike interval time). Right column: power spectra. Panel (a): second-
order resonance p = 2 (τ/TISI,0 = 15/2). Panel (b): third-order resonance p = 3
(τ/TISI,0 = 22/3). Other parameter values are as in table 1.

negative values between the small pulse and the leading edge of the next larger pulse. This is
why the pulses in the nonresonant regimes are more easily destabilized by noise than the pulses
in the resonant regimes (see section 5).

The resonance structure observed for small feedback strengths K . 0.15 is robust under
changes of the feedback phase C . However, in the regions of the (τ ,K )-plane where bistability
is observed (compare figures 5(a) and (b)) the trajectory can switch from one attractor to the
other if C is changed. As a consequence, the regions in the (τ ,K )-plane, where quasiperiodic
motion is observed, depend on C .

Examples of the quasiperiodic behavior that is observed away from the main resonant
regimes for intermediate and high values of K (white regions in figure 5) are depicted in figure 7
for K = 0.25. Figures 7(a) and (b) depict the dynamics at the second- and third-order resonance
with τ/TISI,0 = 15/2 and 22/3, respectively. We find two and three competing pulse trains,
respectively, leading to a periodic modulation of the peak amplitude of the pulses. Like in
the periodic regime for small K , at the exact resonances the inter-pulse temporal distance is
given by approximately TISI,0/2 and TISI,0/3 resulting in dominant frequencies of 2νISI,0 and
3νISI,0, respectively (see figure 7 (right panel)). The lowest frequency in the power spectra is the
competition frequency νc of neighboring pulse trains, which is small (∼ 1–3GHz) compared to
the pulse repetition frequency νISI,0 ≡ 1/TISI,0. Thus, we plot only the maxima of the competing
pulse trains in figures 7(a) and (b) (left column). For the second-order resonance (see figure 7(a))
two competing pulse trains appear that are labeled A and B. Their competition frequency
νc = 2.38 GHz corresponds to the temporal distance between the largest maximum of pulse train
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Figure 8. One-parameter bifurcation diagram across the quasiperiodic region
showing the amplitude maxima of the pulses as a function of feedback strength
K for a delay time of τ/TISI,0 = 15/2. Insets show time traces of |E| for K = 0.12
(fundamental ML regime) and K = 0.9 (harmonic ML regime).

A and the largest maximum of pulse train B. For the third-order resonance (figure 7(b) (left)),
we find three competing pulse trains A, B and C with a competition frequency of νc = 2.55 GHz.
The two (three) competing pulses can also be seen in the phase space projection onto the (G,
|E|)-plane in figure 7(a) (middle) that shows projections of the trajectories for one competition
period Tc ≡ 1/νc. The black dashed parts of the trajectory are the projection of one TISI,0-interval
of the limit cycle. For high K > 0.73 we find HML in the second-order resonance, which results
in a pulse train with pulse repetition rate 2νISI,0.

In figure 8 the transition to quasiperiodic motion is shown in a one-parameter bifurcation
diagram depicting the local maxima of the time trace of |E| for fixed τ/TISI,0 = 15/2 and K
varying from 0 to 1. The diagram has been obtained by up-sweeping (orange diamonds) and
down-sweeping (black dots) K as described for figure 4(a). For small K we retrieve the periodic
pulse train with p = 2 pulses in the cavity (see figure 3(b) and left inset of figure 8). At a
feedback strength of K = 0.19 a new noncommensurate frequency is introduced by a secondary
Andronov–Hopf (Neimark–Sacker) bifurcation leading to a quasiperiodic motion on a torus in
phase space (compare with figure 7(a)). Eventually, at K = 0.865 a transition to a harmonic
ML state with period TISI,0/2 takes place. In the right blowup of figure 8, a time trace of the
amplitude in the harmonic ML state is shown for K = 0.9. For decreasing K this state persists
down to K = 0.73.

For nonzero α-factors and αg < αq the resonance regimes discussed in this section subsist,
but in certain main resonances we find bifurcation cascades leading to chaotic pulse trains as
already mentioned by Avrutin and Russell [17]. For sufficiently large αg > αq , the laser without
feedback already exhibits unstable pulse trains. A detailed discussion of the additional effects
introduced by finite α-factors is beyond the scope of this paper.

4.1. Farey tree

The pulse trains found in the ML laser subject to feedback can be further classified by comparing
them with the locking dynamics of externally driven dynamical systems. A generic example of
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Figure 9. (a) Farey tree. The fractions p/q for p, q ∈ N are the resonance
conditions for the delay time τ and the inter-spike interval time TISI,0 given by
equation (3). Resonances found in the laser model are highlighted in dark blue.
(b) Plateaus with a given number of well-separated pulses (see section 4.1) of
ML laser for small K = 0.1 (red circles) and intermediate K = 0.25 feedback
strength (open and filled diamonds) as a function of the delay time τ . The
fractions denote the resonance condition p/q . Their ordering from the bottom to
top corresponds to the ordering in the Farey tree. Filled colored symbols depict
time periodic solutions, while open black diamonds correspond to quasiperiodic
(QP) solutions.

such a system is the circle map with an external forcing [40], where the forcing introduces
an additional frequency into the system and leads to dynamic evolution on a torus in phase
space. We now briefly recall the concept of Farey tree ordering in these systems before we show
that this concept can also be applied to the ML laser with delay. In general, the frequency of the
external signal and the resulting resonance frequency of the system itself are noncommensurate,
which results in a quasiperiodic motion on the surface of the torus. Locking takes place if the
ratio of the frequency of the external signal and the resonance frequency of the system is a
rational number p/q with p, q ∈ N. The fractions p/q are called winding numbers and can
be ordered in a Farey tree by applying the Farey-sum operation [41]. This means that the
denominators and the numerators of two neighboring fractions p/q and p′/q ′ are added up
separately yielding a new fraction (p + p′)/(q + q ′) in the next higher level of the tree (see
figure 9(a)). With increasing injection strength the intervals around the exact p/q-resonances,
at which locking takes place, increase, forming the well-known Arnold tongues. For fixed
injection strength, one finds a hierarchy of the sizes of the locking plateaus according to their
ordering in the Farey tree, i.e. the plateau sizes decrease from lower to upper levels, resulting
in a self-similar pattern. This generic type of frequency locking has been found in a wealth
of nonlinear dynamical systems, for instance, modulated external cavity semiconductor lasers
[42, 43].

In the case of an ML laser the τ -intervals of the resonant regimes form plateaus with
p well-separated pulses in the cavity (compare with figures 3(b)–(d) (left column)), where p
defines the level of the plateau in the Farey tree. In the numerical simulations we consider
two subsequent pulses to be well separated if between the pulses a time point tmin exists with
|E(tmin)| < 1 × 10−3. Figure 9(a) shows a Farey tree where the resonances present in the ML
laser model are highlighted in dark blue. (Solutions with p > 5 pulses in the fifth level of the tree
are not found in the laser model, because only up to p = 5 well-separated pulses can propagate
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in the cavity as discussed in section 3.) In figure 9(b) p is plotted in terms of the delay time τ for
small K = 0.1 (filled red circles) and intermediate K = 0.25 (filled yellow diamonds and open
diamonds). It can be seen that plateaus similar to the locking plateaus in the Farey tree form.
The width of the plateaus shrinks with increasing the number of pulses p, i.e, with increasing
the tree level, as one would expect from the study of the generic circle map. A similar scenario
has also been observed for a pair of delay-coupled oscillators [44].

For a higher feedback strength of K = 0.25 the width of the plateaus increases, which is
similar to the broadening of the Arnold tongues for increasing control parameters in the case
of externally driven systems. As already discussed in figures 5 and 7 quasiperiodic motion
is observed away from the main resonances for the higher feedback strength (K = 0.25).
Nevertheless, we still find p = 2 and 3 well-separated-pulses in the cavity in the second-
and third-order resonant regimes, respectively. They are indicated by open black diamonds in
figure 9(b).

4.2. Long delay

In this section we study a feedback loop that is ten times longer than that discussed in
the previous sections. This regime of long delays is of experimental interest, because in
experimental setups optical feedback is often provided by a long optical fiber loop [6, 12].
Figure 10(a) shows a bifurcation diagram of the maxima of the time trace of |E| versus
delay time τ (τ ranging from 66.8TISI,0 to 69.2TISI,0) for small K = 0.12. (It corresponds to a
horizontal section of figure 5 for long delay.) Orange diamonds and black circles depict maxima
of the time trace of |E| for stepwise increasing τ (up-sweep) and stepwise decreasing τ (down-
sweep), respectively. The horizontal blue dash-dotted line marks the maxima of the time trace of
|E| for the solitary laser. The main resonant regimes, where only one pulse travels in the cavity
(one maximum), are broadened in comparison to the case of intermediate delay (compare to
blue regions in figure 5). In the gray shaded parts of the main resonant regimes in figure 10(a),
the peak values of the time trace of |E| are higher and the pulse width is shorter than for the
solitary laser. Simulations with white noise (D 6= 0) reveal that in these regions the stability of
the pulses with respect to fluctuations is increased. In contrast to the case of intermediate delay
times discussed in the previous subsection, bistability of periodic orbits is now detected also for
small feedback strengths.

In addition to bistability between FML and HML solutions (compare with figure 8)
bistability is now also observed between solutions with one pulse in the cavity and solutions
with two, three or four pulses in the cavity for τ -values ranging from 67.25TISI,0 to 67.47TISI,0

(shaded blue in figure 10(a)). In figure 10(b) exemplary time traces of |E| are plotted for two
periodic orbits that are bistable for τ = 67.45TISI,0 (vertical gray dashed line in figure 10(a)).
By up-sweeping τ , a pulse train with only one pulse traveling in the cavity (p = 1) is observed
(orange dashed line), while by down-sweeping τ a pulse train with two pulses in the cavity
(p = 2) is detected (black solid line). Figure 10(c) depicts phase space projections of the
trajectories onto the (G, |E|)-plane.

4.3. Delay-induced frequency pulling

In general, the inter-spike interval time TISI differs for finite k and τ from the inter-spike
interval time TISI,0 of the laser without feedback, except for τ -values fulfilling exactly the main
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Figure 10. Bistability of periodic orbits for long delay time τ . (a) Hysteresis
of amplitude maxima of time traces of |E| versus τ (in units of the inter-spike
interval time TISI,0 of the solitary laser) for a stepwise increase (up-sweep, orange
diamonds) and stepwise decrease of τ (down-sweep, black circles). The blue
dash-dotted line marks the maxima of the time trace of |E| for the solitary laser. In
the gray shaded areas the stability of the pulse train with respect to white noise is
increased by the feedback. In the blue shaded area bistability is observed. (b) and
(c) Bistability of periodic orbits obtained by an up-sweep of τ (orange-dashed
line) and by a down-sweep of τ (black solid line) for τ = 67.45TISI,0 (vertical
gray dashed line in (a)); (b) time traces of |E|; (c) projections of the trajectories
on the (G, |E|)-plane. Parameters: K = 0.12; other parameters are as in table 1.

resonance condition (p = 1 in equation (3)). This dependence of TISI on τ results in a delay-
induced variation of the pulse repetition frequency νISI(τ, K ) ≡ 1/TISI(τ, K ), which is known
as frequency pulling and has been observed experimentally in quantum well lasers [6] and more
recently in quantum dot lasers [7–10, 12, 45].

Figure 11 depicts the deviations

1νISI(τ, K ) ≡ νISI(τ, K ) − νISI,0

of νISI from the pulse repetition frequency in a laser without feedback νISI,0 ≡ 1/TISI,0 as a
function of the delay time τ for small feedback strength, K = 0.03 (red crosses), intermediate,
K = 0.25 (white diamonds), and strong, K = 0.5 (orange circles), respectively. We only discuss
the frequency pulling in the main resonant regime where one pulse travels in the cavity (blue
regions in figure 5 and the two largest plateaus in figure 9(b)).

In the main resonant regimes, we have synchronization if the inter-spike interval time
TISI adapts to the external delay time τ according to qTISI(q, τ ) = τ leading to a frequency
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Figure 11. Deviations 1νISI of the pulse repetition frequency νISI(τ, K ) of the
laser with feedback from its solitary laser value νISI,0 in terms of delay time τ for
three different feedback strengths K . Black dash-dotted lines denote complete
frequency locking and vertical gray dashed lines mark exact main resonances.
(a) Intermediate delay times τ . (b) Large delay times τ . Other parameters are as
in table 1.

deviation of

1ν
syn
ISI (q, τ ) = q/τ − νISI,0. (4)

Figures 11(a) and (b) show the frequency pulling 1νISI in the main resonant regime for
intermediate (q = 7) and large τ (q = 67–69), respectively, together with the synchronization
condition of equation (4) (black dash-dotted lines). For intermediate delay times, we see from
figure 11(a) that the main resonant regimes broaden and the frequency deviations 1νISI increase
with K (see also figure 5). For small values of K the frequency detuning is very small and a
nearly horizontal line is found (red) that reaches zero detuning (horizontal gray dashed line)
when τ approaches the borders of the main resonant regime. Instead, for intermediate and large
K (white diamonds and orange circles, respectively) 1νISI increases nearly linearly with the
distance from the exact resonance, but remains below the detuning expected for synchronization
(dash-dotted black lines in figure 11).

From figure 11(b) it can be seen that the width of the main resonant regimes is increased
for longer delay (note the different scales of the τ -axis in figures 11(a) and (b)). For small
values of K (red crosses) we find a similar behavior of 1νISI as for intermediate delay. An
increase of K (white diamonds), however, leads to a frequency entrainment that stays close to
its value for synchronization (see equation (4)) over nearly the whole interval length of TISI,0

(compare the slope of the white diamonds and the black dash-dotted line). Further, jumps of
1νISI take place close to the exact resonance conditions. In figure 11(b) such a jump is observed
at τ = 67.85TISI,0 when the system switches from the main resonant regime with q = 67 to the
main resonant regime with q = 68 at τ = 67.9TISI,0. In between two subsequent main resonant
regimes a short interval with more complex dynamics is found. The sawtooth-like shape of 1νISI

in terms of τ corresponds well to the experimental findings for long delay lines [6, 9, 12]. For
large values of K (orange circles) we find a different behavior. Now the system remains in one
main resonant regime for τ -intervals larger than TISI,0. In figure 11(b) the laser stays in the main
resonance with q = 67 from τ = 67TISI,0 up to τ = 68.3TISI,0.
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Figure 11 has been obtained by stepwise increasing the τ -values (up-sweep). This explains
the asymmetry of 1νISI with respect to zero detuning (horizontal gray dashed line) for long delay
(figure 11(b)). For down-sweeping τ we obtain qualitatively the same resonance behavior, but
in this case the larger absolute values of 1νISI are observed for positive detunings. This means
that for intermediate and large K -values, we have bistability between periodic orbits from the
neighboring main resonant regimes (here q = 67 and 68). These orbits have the simple shape of
the one depicted in figure 3(a) (left) (only one pulse in the cavity) and a frequency difference of
1ν = 1/τ , which is the vertical distance of neighboring black dash-dotted lines in figure 11(b).
When the length of the delay line is increased even further, these bistabilities become more
pronounced and appear at lower values of the feedback strength.

5. Reduction of timing jitter by optical feedback

In this section we study the parameter dependence of the timing jitter for intermediate
delay times near a main resonance. The dynamics of the ML laser with delay given by
equations (1a)–(1c) is simulated with a noise strength of D = 0.05. To characterize the tim-
ing jitter we use the procedure proposed in [16] to determine the root-mean-square (rms) timing
jitter. The specific value of the noise strength has been chosen to obtain values of the timing jitter
that are comparable with those stated in [16]. However, simulations with larger noise strengths
reveal that the reduction of the jitter in the main resonant regimes is robust against changes of
the noise strength.

The timing fluctuations {1t} j are extracted from the time series for each realization j of
the noise and j ∈ 1, . . . , M for M ∈ N. These timing fluctuations are determined by measuring
a set of timing deviations tl − l〈TISI〉 of the pulse train from an ideal clock with repetition period
〈TISI〉, where tl is the sum of the first l 6 N , inter-spike intervals (N ∈ N). The repetition period
〈TISI〉 is obtained by firstly averaging TISI over the number N of pulses in the pulse train and
subsequently averaging over M different noise realizations. In figure 12(a) different realizations
of the timing fluctuations are depicted versus the number of roundtrips of the light in the cavity.
The gray dashed horizontal line marks the ideal clock (no fluctuations). The variance of the
timing fluctuations increases with N , while the mean of the timing fluctuations remains zero.
This means that the timing fluctuations can be modeled by a nonstationary random process. The
reason is that in contrast with active and hybrid mode-locking there is no external reference
clock in the modeled passively ML laser. Thus the white noise applied to the field equation
yields in good approximation a discrete Lévy–Wiener process, i.e. a random walk, of the timing
fluctuations [16].

For the simulations pulse trains containing N = 3 × 104 pulses are used. By applying a
discrete Fourier transform to each realization of the timing fluctuations {1t} j and subsequently
averaging over M noise realization, we obtain the timing spectral density

〈|1̂t (ν)|2〉 ≡
1

M

M∑
j=1

1T

∣∣∣∣∣ 1

N

N∑
l=1

{1t} j e−i2πνl〈TISI〉

∣∣∣∣∣
2

, (5)

where we have introduced the time span 1T ≡ N 〈TISI〉. Now a phase that expresses the position
of the pulses in the pulse train with respect to the clock can be introduced in such a way that
a temporal deviation of the pulse center from the ideal clock by 〈TISI〉 results in a phase shift
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Figure 12. (a) Different realization of the timing fluctuations {1t} j for the laser
without feedback (K = 0). The ideal clock is given by the gray dashed horizontal
line. (b) Phase-noise spectra L(ν) for a single realization (red diamonds) and
averaged over 50 realizations (blue crosses) as used for the calculation of the
rms timing jitter. The gray highlighted region marks the integration range for the
calculation of the timing jitter depicted in figure 13. The noise strength D = 0.05
and other parameter values are as in table 1.

of 2π [46]. The timing spectral density is proportional to the phase noise spectrum

L(ν) ≡

(
2π

〈TISI〉

)2

〈|1̂t (ν)|2〉. (6)

The rms timing jitter is obtained by integrating the phase noise spectrum L(ν) over the
frequency range from νlow to νhigh

σrms(νlow, νhigh) ≡
〈TISI〉

2π

√∫ νhigh

νlow

2L(ν) dν, (7)

where νlow and νhigh are the minimal and the maximal frequency offset from the repetition
frequency of the ideal clock 1/〈TISI〉 (carrier frequency). The factor of 2 in equation (6) takes
into account that under the assumption of a symmetric spectrum the full timing jitter can be
calculated from the phase noise of a single side band, i.e. by integrating only over positive
offset frequencies. In figure 12(b) a phase noise spectrum of a single set of timing fluctuations
(M = 1) (red diamonds) and a phase noise spectrum obtained by averaging over M = 50 noise
realizations (blue crosses) are shown. The gray shaded region corresponds to the frequency
range used for the integration of the jitter. In simulations we integrated over a sideband ranging
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Figure 13. The rms timing jitter σrms as a function of the delay time τ in
an interval around the main resonance with τ = 7TISI,0 for a noise strength of
D = 0.05. (TISI,0 is the inter-spike interval time for the solitary laser.) (a) σrms for
various feedback strengths K . (b) Density plot of σrms (color code) as a function
of τ and K . (c) Density plot of σrms (color code) normalized to the rms-timing
jitter of the solitary laser (σrms(K = 0)).

from νlow = 1.5 MHz to νhigh = 5 GHz. The results for the rms timing jitter σrms are plotted as a
color code in figure 13(b) as a function of the delay time τ and feedback strength K for τ -values
in an interval of ±0.15TISI,0 around the main resonance with τ = 7TISI,0. Figure 13(c) shows the
timing jitter normalized to its value at K = 0. Here black corresponds to an increase and lighter
colors to a decrease of σrms with respect to σrms at K = 0, thus underlining the regions where a
jitter reduction by the external feedback is possible. Figure 13(a) shows several one-dimensional
sections of figure 13(b) for different fixed values of the feedback strength K .

The results of section 4 suggest that the stability of the pulses with respect to noise is
increased in the main resonances. Indeed, in the density plot of figure 13(b) one sees that
the lowest values of the timing jitter σrms < 100 fs are found in a cone around the exact
resonant condition (black dashed line). Thus, the cone-shaped main resonant regime (blue
area in figure 5) is qualitatively reproduced. For τ -values away from the exact resonance and
intermediate feedback strengths 0.08 < K < 0.16, we find a dramatic increase of the jitter (see
dark-red and black regions in figure 13 for τ > 7.1TISI,0 and for τ < 6.9TISI,0, respectively).
Comparing this result with those of figure 5 it becomes clear that in this regime the transition
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to quasiperiodic motion takes place, leading to less stable dynamics. For higher K the main
resonant regimes are already relatively broad and the jitter decreases nearly over the full length
of the studied τ -interval.

For longer delay times the τ -intervals in which the jitter is reduced broaden. This makes
it easier to access these regions experimentally. Our findings are in good agreement with
recent experimental results [12] showing that a reduction of the timing jitter is possible for
a large range of τ -values. In our terminology this corresponds to broad main resonant regimes,
which we found for long delay (see figure 11(b) and K = 0.25 (white diamonds)). In between
these intervals a sudden increase of the timing jitter above the value of the solitary laser was
observed experimentally [12]. This is in agreement with the results of our numerical simu-
lations indicating the existence of complex dynamics between two neighboring main resonant
regimes.

6. Conclusion

In conclusion, we have extended the DDE model for a passively ML semiconductor laser to
study the influence of external optical feedback on the laser dynamics. We find resonances
between the inter-spike interval time TISI,0 and the delay time τ that follow the ordering of the
Farey sequence. If τ is close to an integer multiple of TISI,0 only one pulse travels in the cavity
(main resonant regime), while p pulses are found (higher order resonant regimes) if the ratio
of τ and TISI,0 is close to a rational number (pτ ≈ qTISI,0). In between the resonant regimes
the mismatch of τ and TISI,0 leads to pulse trains of broad and less stable pulses (nonresonant
regime).

For small feedback strengths, the periodic orbit of the pulse train is deformed in a nonlinear
way, but remains stable. For intermediate feedback strengths the main resonant regimes broaden,
while quasiperiodic motion is observed outside of this regime. For high feedback strengths HML
is found in the second-order resonant regimes.

By increasing the delay time we find, on the one hand, a broadening of the width of the
main resonant regimes and, on the other hand, for long delay, bistability between pulse trains
with different numbers of pulses in the cavity is observed.

Further, we have shown that the pulse repetition frequency is entrained by the external
feedback in the main resonant regimes. For long delay and intermediate feedback strengths, a
sawtooth-like shape of the frequency detuning as a function of the delay time τ is found as also
observed in experiments. Moreover, we find a reduction of the rms timing jitter in the main
resonant regimes, which is in good agreement with experimental results.
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Appendix. Derivation of the delay differential equations model with feedback

In this section we briefly derive the DDE model with external feedback. For a detailed derivation
and discussion of the DDE model without feedback, see [20, 21]. To derive the dynamical
equations we consider a standard traveling wave model for a quantum well semiconductor
laser [47, 48]

±∂zE±

r (t ′, z) +
1

v
∂t ′E±

r (t ′, z) =
gr0r

2
(1 − iαr)[nr(t

′, z) − ntr
r ]E±

r (t ′, z), (A.1a)

∂t ′nr(t
′, z) = jr(t) − γr nr(t

′, z) − vgr0r [nr(t
′, z) − ntr

r ]
∑

±

|E±

r (t ′, z)|2. (A.1b)

In this model the longitudinal spatial dependence of the electric field

E(t ′, z) ≡

(
E+

r (t ′, z) e−ikz + E−

r (t ′, z) e+ikz
)

ei�0t ′ (A.2)

is expressed as the superposition of two counter-propagating waves in slowly varying envelope
approximation, where E+

r and E−

r denote the dimensionless slowly varying amplitudes of
the forward and backward traveling waves, respectively. The partial derivatives with respect
to the (longitudinal) z-coordinate and time t ′ are denoted by ∂z and ∂t ′ , respectively. The
index r ∈ {g, q, p} labels the gain section (g), saturable absorber (q) and passive section (p),
respectively. The reference propagation constant fulfills the linear dispersion relation k ≡ �0/v

with the (optical) carrier frequency �0 and the group velocity v. The latter is assumed to be the
same in all sections. The linear gain (loss) coefficients are denoted by gr ; 0r are the transverse
confinement factors and αr are the linewidth enhancement factors. The carrier densities are
denoted by nr , and ntr

r are the transparency densities of the corresponding sections. The pump
parameters jr are proportional to the pump current densities, where only the gain section is
electrically pumped, i.e. jr = 0 for r ∈ {q, p}.

One main assumption of the DDE model is that the light propagates only in one direction
and the other direction is suppressed (unidirectional lasing). Without loss of generality, a
clockwise propagation is assumed, i.e. Er ≡ E+

r and E−

r ≡ 0. The ring cavity design implies a
periodic boundary condition

Er(t
′, z) = Er(t

′, z + L), (A.3)

where L is the length of the laser. This boundary condition fixes the possible propagation
constants of the cavity modes and the frequency of the carrier wave to

k ≡ n
2π

L
and �0 ≡ n

2π

T
for n = ±1, ±2, . . . ,

where we have introduced the cold-cavity roundtrip time T ≡ L/v. Nonresonant and out-
coupling losses at the interface between the gain and absorber sections (z = z2) are taken into
account by the boundary condition

Eg(t
′, z2) =

√
κ2Eq(t

′, z2). (A.4)

The finite gain spectral bandwidth of the semiconductor material is taken into account in a
lumped element approach [33] by a bandwidth-limiting element, i.e. a filtering function that is
located between z1 and z4 (see figure A.1). In the following the filter is assumed to be infinitely
thin, i.e. z1 = z4. In the frequency domain the filter can be expressed as

Êg(ω, z1 + L) =
√

κ1 f̂ (ω)Êp(ω, z4), (A.5)
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Figure A.1. Sketch of the ring cavity laser with external optical feedback as
used for the derivation of the DDE model. The laser consists of five sections: a
saturable absorber section (SA), a gain section (GAIN), an external cavity (EC),
a passive section (P) and a Lorentzian filter (red bar). The field amplitudes in
the saturable absorber, in the gain section and in the passive section, are denoted
by Eq , Eg and Ep, respectively. The facets between the sections are located at
zi for i = 1, . . . , 4. κ1 and κ2 are attenuation factors modeling nonresonant and
out-coupling losses located at z1 and z2, respectively. t , r and tec, rec are intensity
transmission and reflection coefficients at the interface between the gain section
and the external cavity and at the interface in the external cavity, respectively.

where Êg,p denote the Fourier transformed field amplitudes, out-coupling losses at the facet
z = z1 are taken into account by κ1 and f̂ is the filtering function in the frequency domain.

The passive external cavity is taken into account by an additional boundary condition at
the facet at z = z3

E p(t
′, z3) =

√
1 − r

{
Eg(t

′, z3) +
∞∑

l=1

Kl Eg(t
′
− lτ, z3)

}
,

where Kl ≡ r(1 − rec)
l
2 (1 − r)

l
2 −1. In terms of the slowly varying amplitudes Ep,g this can be

rewritten as

Ep(t
′, z3) =

√
1 − r

{
Eg(t

′, z3) +
∞∑

l=1

KlEg(t
′
− lτ, z3) e−ilC

}
. (A.6)

The wave equation for the field amplitudes (equation (A.1a)) is solved by every function
that depends only on the reduced coordinate t ≡ t ′

− z/v, which motivates the following
transformation to a co-moving frame:

φ : R2
→ R2, (t ′, z) 7→ (t, ζ ) ≡

(
t ′

−
z

v
,

z

v

)
. (A.7)
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Rewriting equations (A.1a) and (A.1b) in the coordinates (t, ζ ), we obtain the following
set of ordinary differential equations:

∂ζ Ar(t, ζ ) =
1
2(1 − iαr)Nr(t, ζ )Ar(t, ζ ), (A.8a)

∂t Ng(t, ζ ) = Jg(t) − γg Ng(t, ζ )− Ng(t, ζ )|Ag(t, ζ )|
2
, (A.8b)

∂t Nq(t, ζ ) = −Jq(t) − γq Nq(t, ζ )− r̃s Nq(t, ζ )|Aq(t, ζ )|
2
, (A.8c)

where we have introduced the rescaled amplitudes of the electric field Ar ≡
√

vgg0gEr ,
rescaled carrier densities Nr ≡ vgr0r [nr − ntr

r ] that are proportional to the carrier inversion in
the corresponding section, rescaled pump rates Jg ≡ vgg0g( jg − γgntr

g) and Jq ≡ vgqγq0qntr
q .

Further, r̃s ≡ gq0q/gg0g = Esat,g/Esat,q , where Esat,g ≡ (v0ggg)
−1 and Esat,q ≡ (v0q gq)

−1

define the saturation energies of the gain and absorber sections, respectively, ε0 is the vacuum
permittivity and εbg is the background permittivity. (The saturation energy is the energy of a
short pulse that decreases the inversion to 1/e of its initial value.)

The evolution of the field in the gain and absorber sections is obtained by integrating
equation (A.8a) over these sections

Ag(t, ζ2) = e
1
2 (1−iαg)G(t) Ag(t, ζ3), Aq(t, ζ1) = e−

1
2 (1−iαq )Q(t) Aq(t, ζ2), (A.9)

where dimensionless carrier densities

G(t) ≡

∫ ζ3

ζ2

Ng(t, ζ ) dζ and Q(t) ≡ −

∫ ζ2

ζ1

Nq(t, ζ ) dζ (A.10)

have been introduced that are integrated over the gain and absorber sections, respectively.
The passive section is transparent to the laser light resulting in Np ≡ 0. Thus integrating
equation (A.8a) over the passive section yields

Ap(t, ζ3) = Ap(t, ζ4). (A.11)

To derive differential equations for G and Q equations (A.8b) and (A.8c) are integrated with
respect to ζ over the gain and absorber sections, respectively. The last terms on the right-hand
sides of the resulting equations can be rewritten in terms of the field intensities at the facets∫ ζ2,ζ3

ζ1,ζ2

Nq,g(t, ζ )|Aq,g(t, ζ )|
2 dζ = |Aq,g(t, ζ2,3)|

2
− |Aq,g(t, ζ1,2)|

2
. (A.12)

This can be seen by multiplying equation (A.8a) by Ar and the complex conjugate of
equation (A.8a) by the complex conjugated field amplitude A∗

r . Adding up the resulting
equations, one obtains

∂ζ Ar(t, ζ ) = Nr(t, ζ )|Ar(t, ζ )|
2
, for r ∈ {g, q}. (A.13)

Integrating equation (A.13) with respect to ζ over the gain and absorber sections yields
equation (A.12). By plugging equations (A.9) into (A.12) the carrier equations (equations (A.8b)
and (A.8c)) can be rewritten in terms of G and Q

∂t G(t) = Jg − γgG(t) − κ2 e−Q(t)
(
eG(t)

− 1
)
|A(t)|2, (A.14a)

∂t Q(t) = Jq − γq Q(t) − r̃s e−Q(t)
(
eQ(t)

− 1
)
|A(t)|2, (A.14b)
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where we have introduced the averaged pump parameters

Jg ≡

∫ ζ3

ζ2

Jg(ζ ) dζ, Jq ≡

∫ ζ2

ζ1

Jq(ζ ) dζ,

and A(t) ≡ Aq(t, ζ1).
Next an integral equation for the evolution of the field amplitude during one round-trip

is derived. Rewriting equation (A.5) in the time domain, we obtain from the right-hand side a
convolution product (?) of the filtering function in the time domain f and Ep

Eq(t
′, z1 + L) =

√
κ1( f ? Ep)(t

′, z4). (A.15)

Applying the coordinate transformation of equation (A.7), we can rewrite equation (A.15) in
terms of (t, ζ ) and the rescaled field amplitudes Aq and Ap

Aq(t − T, ζ1 + T ) =
√

κ1

∫ t−T

−∞

f (t − T − 2)Ap(2, ζ4)d2, (A.16)

where we have assumed that Aq(θ, ζ4) = 0 holds for 2 > t − T to preserve causality. That
is why we obtain t − T instead of infinity as the upper limit of the integration. Now we can
rewrite the left-hand side of equation (A.16) in terms of A(t) ≡ Aq(t, ζ1) by employing the
boundary conditions of equations (A.4) and (A.6), which have to be rewritten in terms of
the coordinates (t, ζ ), and by using the evolution of the field given by equations (A.9). The
right-hand side of equation (A.16) can be rewritten in terms of A(t) by employing the periodic
boundary condition of equation (A.3), which expressed in terms of the coordinates (t, ζ ) reads
Aq(t, ζ1) = Aq(t − T, ζ1 + T ). Thus we obtain for the evolution of the field amplitude after one
roundtrip

A(t) =

∫ t−T

−∞

f (t − T − 2)R(2)A(2) d2

+
∞∑

l=1

Kl e−ilC

∫ t−T

−∞

f (t − T − 2)R(2 − lτ)A(2 − lτ) d2, (A.17)

where

R(2) ≡
√

κ e
1
2 (1−iαg)G(2)− 1

2 (1−iαq )Q(2) and κ ≡ (1 − r)κ1κ2. (A.18)

The integrals in the second term of equation (A.17) can be expressed (by applying coordinate
transformations 2 → 2 + lτ for each l) as convolution integrals similar to the first term of
equation (A.17), but with t − T − τ as the upper limit for the integration. Assuming a Lorentzian
filter function f (t) ≡ γ e(−γ +i1�)t , a DDE can be derived by differentiating equation (A.17) with
respect to t [20, 49]

Ȧ(t) + (γ − i1�)A(t) = γ R(t − T )A(t − T ) + γ

∞∑
l=1

Kl e−ilC R(t − T − τ)A(t − T − τ).

(A.19)
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By transforming equation (A.19) to a co-moving frame A(t) =
1

√
κ2
E(t) ei1�t , the final set of

DDEs is obtained:

γ −1Ė(t) + E(t) = R(t − T ) e−i1�TE(t − T )

+
∞∑

l=1

Kl e−ilC R(t − T − τ) e−i1�(T +lτ)E(t − T − τ),

∂t G(t) = Jg − γgG(t) − e−Q(t)
(
eG(t)

− 1
)
|E(t)|2,

∂t Q(t) = Jq − γq Q(t) − rs e−Q(t)
(
eQ(t)

− 1
)
|E(t)|2,

where the rescaled ratio of saturation intensities in the gain and absorber sections rs ≡ r̃s/κ2 has
been introduced [21]. In all simulations κ2 is set to unity.
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