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Summary

In a linear analysis for brake squeal, an unwanted type of sound in the kHz-range

produced during the braking process of vehicles, usually only the stability of the

system is examined. However, with the appearance of additional stochastic exci-

tation, the vibration of a linear system with subcritical self-excitation, i.e. having

self-excitation but due to damping still an asymptotically stable trivial solution, may

be large enough to produce a squeal sound. In this paper, this hypothesis of stochasti-

cally reinforced self-excitation is supported by a case study on a wobbling disk model

for brake squeal, which includes both circulatory and gyroscopic forces. For this

example, the Fokker-Planck equation is solved and numerical integrations are per-

formed. A short parameter study is carried out to examine the effect of damping and

gyroscopic terms on these stochastically reinforced self-excitation. The results sug-

gest that this possibility should be considered additionally to classical explanations

of brake squeal.
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1 INTRODUCTION

This special issue paper is the subsequent study of our report on a new hypothesis on the mechanism of brake squeal at the DSTA-

2019 Conference in Lodz [1] extending the therein examined linear model with gyroscopic terms and considering a minimal

model for brake squeal.

Brake squeal is an unwanted type of sound in the kHz-range produced during the braking process of vehicles. Despite the

existence of much literature discussing the cause and mechanism of brake squeal like the review papers [2,3], there has not been

any mathematical model for brake squeal that fits every realistic observation and could be used for a predictive design. Since in

experimental observations, the frequency of brake squeal is almost independent on disk speed, this type of noise is commonly

assumed to be the result of self-excited vibration, not forced vibration. This assumption has led to many linear models with self-

excitation for brake squeal [4,5,6]. Stability analysis is applied to these models to predict, when the unwanted vibration occurs.

However, when the trivial solution of a linear system is unstable, the vibration amplitude will not be restricted and will increase to

infinity as time goes on. This is not true in the reality of brake squeal, where the vibration displacement amplitudes of brake disk

and the brake pads lie in the micrometer-range. Thus, nonlinear models are derived to explain the limitation of the amplitudes,

and brake squeal is modeled as a limit cycle [7,8,9]. It is extremely hard to measure the nonlinear characteristics, especially those
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of the frictional contacts [10,11,12], so that the validities of the nonlinear models are hard to confirm. Normally, when the trivial

solution of a linear system is stable, brake squeal is considered not to happen, disregarding the transient process – the period

of time the system changes from an initial state to the steady state. The transient process is usually neglected because due to

the negative maximum real part of the eigenvalues, unwanted phenomena are not considered to be likely to happen during this

process and even if they happen, they are not expected to last long. However, if transient growth occurs and resets repeatedly,

it will affect the behavior of the system significantly. Transient growth is a phenomenon in which a growth in perturbation

happens at the beginning of the transient process before the decay ending in the steady state. Transient growth is well-known

in turbulence studies [13,14], but, to the knowledge of the authors, there has been only few publications in the field of mechanical

engineering [15,16,17]. In [1], we presented a two degree of freedom (2-DOF) system that can undergo repeatedly transient growths.

The idea and results are summarized as follows.

Firstly, a set of homogenous linear ordinary differential equations (ODE) is considered

ẍ + Dẋ + (K + N)x = 0 , (1)

where D is the symmetric positive definite damping matrix and K the symmetric and also positive definite stiffness matrix. The

N matrix is skew-symmetric and implies the appearance of non-conservative circulatory forces, which means there is possibility

for the system to exhibit self-excited vibration. Here, we consider parameter cases where the trivial fixed point is asymptotically

stable, thus the term “subcritical self-excitation” is used.

Then, to model uncertainties that may affect the real system, a stochastic excitation is added and Eq. (1) becomes

Ẍt + DẊt + (K + N)Xt = ��t . (2)

The expectation is that the stochastic excitation may continuously restart the transient process, leading to repeatedly transient

growths that maintain over time a large enough, but bounded, vibration considered as squeal sound. In this paper, this cause of

vibration is called stochastically reinforced self-excitation, since the transient growth is probably the consequence of the (sub-

critical) self-excitation. To confirm this effect, we consider two systems: system (2) and a respective system without circulatory

forces, i.e. no subcritical self-excitation, but having the same negative maximum real part of the eigenvalues. It turns out that

under an appropriate stochastic excitation, the vibration level of the system with subcritical self-excitation is much larger than

that in the no self-excitation case as described in [1].

This paper extends these results by adding a G matrix, representing the appearance of gyroscopic forces, to the considered

equations. Such equations can be derived from a minimal model for brake squeal with a wobbling disk.

Note that a linear model is usually the result of linearization from an original nonlinear model. In brake squeal, there is the

possibility that a stable limit cycle co-exists with a stable equilibrium but also stable limit cycles and unstable equilibria as

well as solely stable equilibria occur depending on parameters [7], [12], [18]. In simplified considerations, the equations linearized

with respect to the equilibrium are investigated and asymptotic stability of the equilibrium is interpreted as non-existence of

squeal, which is in the nonlinear case only true if the basin of attraction of this equilibrium is not left. One may expect that

small initial conditions (i.e. small deviations from equilibirum) are in the basin of attraction of the stable equlibrium; however,

transient growth according to self-excitation and without the help of stochastic excitation is proved to make a solution even

with small initial conditions able to finally reach a stable limit cycle [16].The actual paper describes that even in the case of non-

leaving the basin of attraction of the stable equilibrium, vibrations comparable to squeal may occur in the presence of external

noise. Nevertheless, it is possible that stochastically reinforced self-excitation may also bring the solution to the attraction of a

coexisting stable limit cycle in the nonlinear case. However, this problem is out of the scope of this paper and may be investigated

in the future.

2 A 2-DOF EDGKN SYSTEM WITH STOCHASTIC EXCITATION FOR BRAKE SQUEAL

Consider a low-DOF brake system model with wobbling disk and frictional point contacts (Fig. 1). This model includes a rigid

wobbling disk and a pair of massless pads elastically suspended along both normal (associated with out-plane vibration) and

circumferential (associated with in-plane vibration) directions with respect to the disk [12]. This model is an extension of the

minimal model introduced in [6] while such an extension with massless pads performing circumferential movement can also

already be found e.g. in [19,20]. A more complicated pad suspension system based on [6] is found in [8].
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FIGURE 1 A low-DOF brake system model with wobbling disk and frictional point contacts (Fig.5.1- [12]).

The perturbation equations are derived in [12] and read

M̄ẍ + B̄ẋ + C̄x = 0 , (3)

where

M̄ =

[
Θ 0

0 Θ

]
, (4)

B̄ =

⎡⎢⎢⎢⎣
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. (6)

In the equations, ℎ is the thickness of the brake disk and r is the effective braking radius. Θ and Φ are the moments of inertia

of the brake disk with respect to its in-plane and out-of-plane symmetry axes, respectively. The disk is elastically supported by

two rotational springs of stiffness kt and rotational dampers of damping coefficient dt. The pads are supported in the normal

direction with respective to the disk by linear springs of stiffnesses k1 and k2, and linear dampers of damping coefficients d1 and

d2. The in-plane supports of the pads are linear springs of stiffnesses kip1 and kip2 . The coefficient of kinetic friction between the

pads and the disk is �k and Ωd is the present macroscopic disk angular velocity, which is hereafter called in short as disk speed.

Eq. (3) can be rewritten as

ẍ + Bẋ + Cx = 0 , (7)

where

B =
1

Θ
B̄ , C =

1

Θ
C̄ . (8)
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Matrix B can be split into a symmetric matrix D (damping matrix) and a skew-symmetric matrix G (gyroscopic matrix),

while matrix C can be split into a symmetric matrix K (stiffness matrix) and a skew-symmetric matrix N (circulatory matrix).

Eq. (7) then reads

ẍ + (D +G)ẋ + (K + N)x = 0 , (9)

where

D =
1

2
(B + B⊤) , G =

1

2
(B − B⊤) , (10)

K =
1

2
(C + C⊤) , N =

1

2
(C − C⊤) , (11)

System (9) is correspondingly called an EDGKN system, a special case of an MDGKN system [21]. The replacement of M by

the identity matrix E eases the below-mentioned parameter study. It also marks the fact that the original mass matrix in equation

(3) is just a scaled identity matrix. Not all 2-DOF linear models for brake squeal have this property, e.g. the model described in [4].

The gyroscopic term also does not appear for some other models [4,5] and the equations of motion just form an MDKN system.

It is already known that, depending on the parameters, the considered system can be either unstable, so that self-excited

vibration predominates the damping, or stable, i.e. the self-excitation is subcritical [1]. This fact makes the system a candidate

to test the abovementioned hypothesis. For stochastically reinforced self-excitation to occur, an external stochastic excitation is

added to the model, whose equations then read as follows

Ẍt + (D +G)Ẋt + (K + N)Xt = ��t . (12)

There are several candidates for this random excitation, e.g. the roughness of the contact surfaces, the frictional behavior or

other sources from the surrounding. For simplicity for these fundamental investigations, the noise �t is assumed to be a scalar

Gaussian white noise with zero mean and the vector � contains their intensity coefficients.

3 COMPARISON OF SELF-EXCITED AND NON-SELF-EXCITED SYSTEMS IN THE
PRESENCE OF STOCHASTIC EXCITATION

To carve out the difference in the behavior of the EDGKN system and a suitable EDK system, we consider the following case.

The considered EDGKN system has subcritical self-excitation, while the EDK system has no self-excitation, provided that the

stiffness and damping matrices are both positive definite. If under the same stochastic excitation, the vibration largeness of the

EDGKN system is much higher than that of the EDK system, it might be because the stochastic excitation effectively reinforces

the self-excitation. However, this statement is not reasonable if the EDGKN system has a higher negative maximum real part

of the eigenvalues than the EDK system, because in that case one may claim that this difference might be the reason for the

difference in the vibration largeness. This is one reason why the two systems within one comparison should have the same

negative maximum real part of the eigenvalues. The systems that share the same maximum real part of the eigenvalues are

hereafter called maximum-real-part-of-the-eigenvalues-companions (MRECs). Another reason to focus on the maximum real

part of the eigenvalues is to prove that the sign of the maximum real part of the eigenvalues should not be the only concern when

considering linear mathematical brake squeal models.

Therefore we consider an EDGKN system, and a corresponding EDK system that has the same stiffness matrix and the

damping matrix is scaled from that of the EDGKN system by

ẍ + �Dẋ +Kx = 0 . (13)

Adjusting the damping scale factor �, one might get a non-circulatory non-gyroscopic MREC of the given EDGKN system,

i.e. they have the same (negative) maximum real part of the eigenvalues. Adding stochastic excitation also in this case yields

Ẍt + �DẊt +KXt = ��t . (14)
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The systems from (12) and (14) are in the following called stochastically excited maximum-real-part-of-the-eigenvalues-

companions (SEMRECs).

As a measure for the intensity of vibrations we consider the marginal probability density function (PDF) of state variables.

The larger the marginal PDF deviates from zero, the larger the intensity of the vibration of the corresponding system is.

The probability density function can either be calculated using numerical integration (Monte-Carlo simulation) or by solving

the corresponding Fokker-Planck equation which is in general a challenging task, but here comparably simple, as we have linear

systems with Gaussian excitation. In both cases, the second-order SDEs (12) and (14) are rewritten as first-order systems of the

form

dQt = AQt + gdWt , (15)

where Qt is the vector of the random state processes

Qt =

[
Xt

Ẋt

]
. (16)

Wt is the Wiener process corresponding to �t, and the other matricies are determined as follows

A =

[
0 E

−C −B

]
, (17)

g =

⎡⎢⎢⎣

0

0

�

⎤⎥⎥⎦
. (18)

The B and C matrices in both EDGKN and EDK cases can be found by rewriting the system in the form of equation (7).

The diffusion matrix is defined as

H = gg⊤ . (19)

The PDF p(q) of the stationary process Qt can be found by solving the stationary Fokker-Planck equation associated with Eq.

(12) and (14)

4∑
i=1

)

)qi

[
p(q)

4∑
j=1

aijqj

]
−

1

2

4∑
i=1

4∑
j=1

)2

)qi)qj

[
p(q)ℎij

]
= 0 , (20)

where aij and ℎij are the elements in row i and column j of matrix A and matrix H, respectively.

Since we have a linear system with Gaussian excitation, the corresponding solution is also Gaussian. Following [22], the

solution has the form

p(q) =
1

(2�)2|�| 1

2

exp
(
−
1

2
q⊤�−1q

)
, (21)

with mean value zero vector and covariance matrix �. The mean value vector is a zero vector while the covariance matrix is to

be found. Eq. (21) yields to the following algebraic equation [23]

[(E⊗ A) + (A⊗ E)] vec(�) + vec(H) = 0 , (22)

where ⊗ denotes the Kronecker product and vec(⋅) denotes vectorization operator.

Solving (22) for � and computing (21), one obtains p(q). Marginal PDFs pX1
and pX2

are also Gaussian and can be calculated

by
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pX1
(x1) = pQ1

(q1) =

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

p(q) dq2dq3dq4 , (23)

pX2
(x2) = pQ2

(q2) =

∞

∫
−∞

∞

∫
−∞

∞

∫
−∞

p(q) dq1dq3dq4 . (24)

The corresponding standard deviations of the marginal PDFs can be determined as

�1 =
√
Λ11 , �2 =

√
Λ22 , (25)

where Λ11 and Λ22 are the first two element on the main diagonal of the covariance matrix �.

The stochastic-excitation ratios between the SEMRECs are defined as

�1 =
�1−EDGKN

�1−EDK

, �2 =
�2−EDGKN

�2−EDK

. (26)

If either �1 or �2 or both are significantly higher than 1, a stochastically reinforced self-excitation is considered to be effective.

4 COMPARISON OF VIBRATIONAL BEHAVIOR OF EDGKN AND EDK SYSTEMS
SUBJECTED TO EXTERNAL STOCHASTIC EXCITATION

4.1 A case study

Consider the SDE (12) that is derived from the perturbation equation (3). The parameters are chosen as follows

ℎ = 0.05m ; r = 0.13m ; Θ = 0.16 kg m2 ; Φ = 2Θ ; kt = 1.88 × 107 Nm ; dt = 0.1Nm s ;

k1 = 6 × 106 Nm ; k2 = 6 × 106 Nm ; d1 = 5Ns/m ; d2 = 5Ns/m ; kip1 = 6 × 106 Nm ;

kip2 = 6 × 106 Nm ; �k = 0.6 ; N0 = 3000N ; Ωd = 5� rad/s

Most of the physical parameters are taken from the literature [6,12]. The obtained system matrices are

D =

[
8.5682 −0.059719

−0.059719 0.625

]
s−1 , (27)

G =

[
0 31.476

−31.476 0

]
s−1 , (28)

K =

[
1.1876 × 108 −7.3072 × 104

−7.3072 × 108 1.175 × 108

]
s−2 , (29)

N =

[
0 7.3178 × 104

−7.3178 × 104 0

]
s−2 . (30)

The corresponding trivial solution is stable with the maximum real part of the eigenvalues � = −2.1451 s−1. The EDK MREC

of the form (13) is obtained with the damping scale factor � = 6.6933. Though the two MRECs are both stable, their behaviors

are different given the same initial condition x = [1, 0]⊤ rad: the EDK system shows decaying vibration with a short transient

process (Fig. 2b) while the EDGKN shows a beating phenomenon and maintains much higher amplitudes during the same period

(Fig. 2a). Nevertheless, conventional linear analysis for brake squeal treats them equally according to the same maximum real

part of the eigenvalues. The beating phenomenon has been found also in EDKN system [15].
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FIGURE 2 Time history for the deterministic MRECs.
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FIGURE 3 Marginal PDFs pX1
and pX2

of the SEMRECs.

Performing the deviation comparison for the corresponding SEMRECs (12) and (14) with the intensity vector � =

[0, 0, 0.1, 0]⊤ s−2, one gets the stochastic-excitation ratios

�1 = 3.2271 > 1 , �2 = 6.6971 > 1 . (31)

Therefore, the stochastically reinforced self-excitation is effective for both state variables. The marginal PDF plots also confirm

that in the EDGKN case the state variables distribute in much wider ranges (Fig. 3a, 3b). To further illustrate the mechanism of

brake squeal, the time responses of the two SEMRECs to a specific excitation are calculated using the Euler-Maruyama method.

It can be seen clearly in Fig. 4 that the vibration in the EDGKN case are much larger so it is more likely to produce brake

squeal than in the EDK case. The frequency characteristic of the responses X1t and X2t for the EDGKN case is visualized by

the plot of the absolute values of corresponding transfer functions H1(f ) and H2(f ) in Fig. 5, the peaks of the plots lie in the

kHz-range, fitting the characteristic of brake squeal. The contour plot in Fig. 6 shows that the dominating frequencies are nearly

independent on the disk speed, which is a typical property of disk brake squeal [24] as illustrated by measurement results in Fig.

7 (taken from [18], Fig. 42).

This case study shows that, though still having a negative maximum real part of the eigenvalues, an EDGKN system with

stochastic excitation may exhibit a vibration that has some similar properties to a measured vibration during brake squeal. It

means stochastically reinforced self-excitation should be considered additionally to the well-known maximum real part of the

eigenvalues when analyzing brake squeal through mathematically models.
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4.2 Parameter study

It is complicated to do a full parameter study for the EDGKN system, since the number of parameters is as high as 8 and the

number of physical parameters is even higher. To simplify the problem, the number of parameters should be reduced.

Starting from the matrices (27)-(30), doing a scale in time and simplifying the numeric values, one obtains the following

dimensionless matrices

D =

[
0.0008 0

0 0.00006

]
, (32)

G =

[
0 0.003

−0.003 0

]
, (33)

K =

[
1 −0.0006

−0.0006 0.99

]
, (34)

N =

[
0 0.0006

−0.0006 0

]
. (35)

The considered intensity vector is � = [0, 0, 1, 0]⊤.

Since the gyroscopic terms are of interest, matrix G should be parameterized
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FIGURE 6 Transfer function |H1(f )| of the EDGKN system at different disk speeds.

FIGURE 7 Measured results from a brake test rig. Vibration amplitude of the disk (squeal intensity) over the frequency and

the rotational speed of the disk (taken from [18], Fig. 42)

N =

[
0 0.0008

−0.0008 0

]
, (36)

where  is defined as the ratio between the second element of the first row of G and the first element of D

 =
g12

d11
. (37)

The matrix D is also parameterized

N =

[
0.0008 0

0 0.0008�

]
, (38)

where � is defined as the ratio between the damping coefficient in the second equation and that in the first one
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� =
d22

d11
. (39)

When not otherwise indicated, the parameters are set as � = 3.7 and  = 0.075.

It can be seen in Fig. 8 that as � becomes lower, both the stochastic-excitation ratios increase significantly. Taking a look

back at (5), this means lowering dt – the rotational damping of the wobbling disk – may increase the intensity of the resulting

vibrations.

The dependence of the stochastic-excitation ratios on  is shown in Fig. 9. When  reaches 4.2, �1 peaks at 37 and �2 at 11.

Considering (5), (8), (10) and (37),  and the disk speed Ωd have a direct monotonic relationship so there is no upper bound

for ; however, if  is too high, the original EDGKN system is unstable so the deviation comparison is no longer valid. The

stochastic-excitation ratios decrease when  increases beyond 4.2 but do not drop below 6.

Fig. 10 shows the dependence of the stochastic-excitation ratios on both  and �, where � takes all positive values below 1

and  varies from 0 to 15. For all values of  , the stochastic-excitation ratios increase rapidly when � approaches 0, just similar

to the case shown in Fig. 8.

5 CONCLUSIONS AND OUTLOOK

In this paper a stochastically excited EDGKN system derived from a 2-DOF model for brake squeal has been proved to possibly

have much larger vibration than an EDK system with the same negative maximum real part of the eigenvalues and under the
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FIGURE 10 Stochastic-excitation ratios with varied  and � for a) the first state variable and b) the second state variable .

same stochastic excitation. It means that when considering brake vibrations based on linear analysis, one should consider not

only the stability of the system but also hypothesized stochastically reinforced self-excitation. A partial parameter study has

shown that the ratio between the main damping coefficients and the gyroscopic terms do affect the stochastic-excitation ratios.

Thus, future work might focus on the optimization to avoid brake squeal. Further parameter study might also be performed to

contribute more understanding to the stochastically excited EDGKN system.

Beyond stable linear systems, the combination and interaction of stochastically reinforced self-excitation, instability, and

nonlinearities might be examined in future work.
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