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Introduction

The title “Geometric and Combinatorial Structures on Graphs” of this thesis is
quite general. The reason is that we treat four main topics that are hard to
summarize by a single keyword. The four topics are treated in Chapters 2-5, and
although they are rather different a number of connections exist. We first sketch
each of these four topics as well as the content of Chapter 1. We will then be
able to explain how the different chapters are connected. The following chapter
outlines are meant to give a succinct overview of the thesis. Each chapter starts
with an introduction that includes more context and references.

Chapter 1: Introduction to Schnyder Woods. In this chapter we define
Schnyder woods and summarize facts about them that we use in the rest of the
thesis. We also present some results about the number of edge splits and edge
merges that can be applied to a Schnyder wood. Furthermore, we characterize all
planar maps with a unique Schnyder wood.

Chapter 2: Schnyder Woods and Orthogonal Surfaces. In this chapter
we present joint work with Stefan Felsner. Parts of this chapter can be found
in [45, 48].

Schnyder woods and orthogonal surfaces are closely related, and their con-
nections yield fruitful insights about both objects. We exploit these connections
for a new proof of the Brightwell-Trotter Theorem about the dimension of pla-
nar graphs. Our proof follows a very intuitive approach for the construction of a
rigid orthogonal surface and can be translated into an efficient algorithm for the
construction of a Brightwell-Trotter realizer. We also propose two types of effi-
cient representations for orthogonal surfaces. Both representations use a Schnyder
wood to encode the combinatorics of the surface and a small set of real numbers to
encode the geometry of the surface. The first representation is restricted to copla-
nar orthogonal surfaces and generalizes the well known face-counting method by
assigning a weight to each face. The second representation can also be used for
non-coplanar surfaces and therefore needs a value, the so-called height, for every
face and every vertex of the Schnyder wood. In this chapter we also show that the
Schnyder wood shown on the title page cannot be embedded on a coplanar and
simultaneously rigid orthogonal surface.

Chapter 3: The Number of Planar Orientations with Prescribed Out-
Degrees. In this chapter we present joint work with Stefan Felsner. Parts of this
chapter can be found in [46, 47].

vii



viii Introduction

The concept of orientations with prescribed out-degrees can be used to describe
many well-known structures on planar maps. The use of this unifying description
enables us to determine bounds for the maximum number of orientations for several
out-degree functions and classes of planar maps. Besides proving bounds that are
valid for every map and out-degree function we consider the numbers of Eulerian
orientations, Schnyder woods, 2-orientations, and bipolar orientations in more
detail. For each structure we present an infinite family of graphs to obtain a
lower bound. These families are all close relatives of the grid graph. We obtain
the upper bounds for Eulerian orientations, Schnyder woods, and 2-orientations as
specializations of a rather general technique. This technique makes use of spanning
trees whose leaves contain a big independent set. We conclude the chapter with a
few results about the complexity of counting planar orientations with prescribed
out-degrees.

Chapter 4: Spanning Trees with Many Leaves. In this chapter we present
joint work with Paul Bonsma. Parts of this chapter can be found in [17].

We are concerned with the maximization of the number of leaves of spanning
trees. This problem is known to be NP-hard. We prove for different graph classes
that a certain fraction of the number of vertices of the graph can be guaranteed to
be leaves. Let n6=2(G) denote the number of vertices of a graph G that do not have
degree 2 and n≥3(G) the number of vertices that have degree at least 3. The main
result of the chapter is that every graph without certain subgraphs called necklaces
and blossoms has a spanning tree with n≥3(G)/3 + 4/3 leaves. We also discuss a
few corollaries of this main result and some other bounds. For example we prove
that every graph G has a spanning tree with at least n6=2(G)/4 + 3/2 leaves. And
if G contains no triangles, then it has a spanning tree with at least n6=2(G)/3+2/3
leaves. Our results strengthen and generalize several known ones by extending an
established proof method. This method iteratively extends a partial tree until it
becomes spanning and guarantees that the number of leaves of every intermediate
tree satisfies an inequality closely related to the bound that is to be proved.

Chapter 5: Small Integer Realizations of Stacked Polytopes. In this
chapter we present joint work with Günter M. Ziegler.

We discuss realizations of stacked polytopes with integral vertex coordinates.
We give polynomial bounds for the absolute value of the vertex coordinates for
three subclasses of stacked polytopes. The first subclass are linear stacked poly-
topes and we construct realizations by explicitly defining a lifting function for
tailored drawings of the skeleton graph. The second subclass are balanced stacked
polytopes. We construct special Tutte embeddings for the skeleton graph and then
use a known lifting framework for Tutte embeddings to construct the realizations.
We then show how linear and balanced stacked polytopes can be glued together
to form so-called brooms with small integer coordinates.



ix

We use the remainder of this introduction to explain the connections between
the individual chapters. One link between the chapters is the use of Schnyder
woods. While Chapter 1 gives an introduction to these objects, all of Chapter 2
is concerned with Schnyder woods and their connections with orthogonal surfaces.
The interest in the number of Schnyder woods was the starting point for the re-
search that we present in Chapter 3. In Section 3.2 we study the maximum number
of Schnyder woods that a planar map can have. While we studied bounds for the
number of Schnyder woods it turned out that their encodings as 3-orientations
are well suited for this problem. Furthermore, the methods that can be applied
for 3-orientations are also useful for other interesting orientations with prescribed
out-degrees that we consider in Chapter 3.

As mentioned above, spanning trees with a large independent set among their
leaves play an important role in Chapter 3. In Section 3.3 we are concerned with
2-orientations of quadrangulations. In these bipartite graphs a spanning tree with
k leaves automatically has an independent set of size k/2 among its leaves. We can
therefore use the results from Chapter 4 which imply that every quadrangulation
has a spanning tree with at least n/3 leaves to obtain a spanning tree with an
independent set of leaves of size at least n/6.

Stacked triangulations also appear in several contexts throughout the thesis.
Chapter 5 discusses small integer realization of polytopes whose skeleton is a
stacked triangulation. Furthermore, stacked triangulations are exactly the triangu-
lations with a unique Schnyder wood. We use this fact for example in Section 1.4,
and in Section 1.5 we generalize it by giving a characterization of all planar maps
with a unique Schnyder wood. Moreover, the unique Schnyder wood of a stacked
triangulation T with n vertices can be used to show that T has a spanning tree
with at least 2n/3 + 1/3 leaves, see Section 4.5. We also show that the number
of bipolar orientations of stacked triangulations can be determined exactly in Sec-
tion 3.4. Bipolar orientations in turn also appear in Section 2.3 where we discuss
the height representations of orthogonal surfaces.

We conclude with a few remarks about the interdependence of the chapters.
The understanding of Chapter 2 requires that the reader is familiar with all aspects
of the theory of Schnyder woods that we present in Sections 1.1–1.4 of Chapter 1.
Section 3.2 relies on the encoding of Schnyder woods as orientations with pre-
scribed out-degrees which is introduced in Section 1.3. The rest of Chapter 3 is
self-contained and Chapter 4 can be read independently except for Section 4.5
which uses Schnyder woods. Although graph drawings using Schnyder woods are
mentioned in Chapter 5 this chapter can be read independently of the rest of the
thesis.





Chapter 1

Introduction to Schnyder Woods

In two fundamental papers [82, 83] Walter Schnyder developed a theory of Schnyder
woods and Schnyder labelings for planar triangulations. In [82], he presented a
characterization of planar graphs in terms of order dimension which has stimulated
subsequent research, see e.g. [19, 20, 38]. Section 2.1 of this thesis is concerned
with this aspect of the theory of Schnyder woods. In [83] Schnyder deals with grid
drawings of planar graphs and gives the first of numerous applications of Schnyder
woods in the area of graph drawing. The results in [66, 7, 13] are other examples of
such applications and the topic of Section 2.2 is related to this aspect of Schnyder
woods. More references related to Schnyder woods can be found in [37].

We make extensive use of known results about Schnyder woods in Chapter 2
and in Section 3.2. Therefore we introduce the necessary background in this chap-
ter and complement it with a few new results in Sections 1.4 and 1.5. The chapter
is organized as follows. We start with the definition and the essential properties of
Schnyder woods in Section 1.1. In Section 1.2 we explain their connections with
orthogonal surfaces. The encoding of Schnyder woods as graph orientations with
prescribed out-degrees that we introduce in Section 1.3 will be used in Sections 2.3
and 3.2. In Section 1.4, we introduce the so-called edge split and edge merge oper-
ations. We also consider the minimum and maximum number of such operations
that can be applied to a Schnyder wood. Finally, in Section 1.5 we present a
constructive characterization of all graphs with a unique Schnyder wood.

In [40] Felsner gives a comprehensive introduction to Schnyder woods which
also contains many of the proofs that we omit here. The omitted proofs of results
that are not in [40] can be found in one of [38, 39, 41].

1.1 Basics on Schnyder Woods

A planar map M is a simple planar graph together with a fixed crossing-free planar map

embedding in the plane. In particular, M has a designated outer (unbounded) face.
We denote the sets of vertices, edges and faces of a given planar map by V (M), V (M), E(M), F(M)

E(M), and F(M), and their respective cardinalities by n(M), m(M), and f(M). n(M), m(M), f(M)

The degree of a vertex v will be denoted by d(v). If it is clear from the context d(v)

which map we refer to, we simply write V instead of V (M), and similarly for the
other parameters.

1



2 Introduction to Schnyder Woods

Let a1, a2, a3 be three vertices occurring in clockwise order on the outer facespecial/suspension

vertex of M . We call ai a special vertex or a suspension vertex of M . A suspended map Mσ

suspended map Mσ is obtained by attaching a half-edge that reaches into the outer face to each of the
special vertices.

Let Mσ be a suspended 3-connected planar map. A Schnyder wood rooted atSchnyder wood

a1, a2, a3 is an orientation and coloring of the edges of Mσ with the colors 1, 2, 3
(alternatively: red, green, blue) satisfying the following rules. We assume a cyclic
structure on the labels so that i + 1 and i − 1 are always defined.

(W1) Every edge e is oriented in one direction or in two opposite directions. If e
is bidirected, then the two directions have different colors.

(W2) The half-edge at ai is directed outwards and colored i.

(W3) Every vertex v has out-degree 1 in each color. The edges e1, e2, e3 leaving v
in colors 1, 2, 3 occur in clockwise order. Each incoming edge of v in color i
enters v in the clockwise sector between ei+1 and ei−1, see Figure 1.1 (a).

(W4) The boundary of an interior face is not a monochromatic directed cycle.

1

2

2

2
1

3

3

2

(a) (b)

3

1

3
3

2

1 1

3

3
3

1
1

2

Figure 1.1. Part (a): Rule (W3). The numbers indicate the edge colors. Part (b):
Rules (A2) and (A3). The numbers indicate the angle colors.

An existence proof for Schnyder woods on 3-connected planar maps can be
found for example in [40]. We now also introduce Schnyder labelings, since they
are useful for proving some facts about Schnyder woods. Let Mσ be a suspended
3-connected planar map. A Schnyder labeling with respect to a1, a2, a3 is a labelingSchnyder labeling

of the angles of Mσ with the labels 1, 2, 3 satisfying three rules.

(A1) The two angles at the half-edge of the special vertex ai have labels i + 1 and
i − 1 in clockwise order.

(A2) The labels of the angles at each vertex form, in clockwise order, nonempty
intervals of 1’s, 2’s, and 3’s, see Figure 1.1 (b).

(A3) The labels of the angles at each face form, in clockwise order, nonempty
intervals of 1’s, 2’s, and 3’s, see Figure 1.1 (b).



1.1 Basics on Schnyder Woods 3

We want to point out a subtlety related to (A3). When Mσ endowed with a
Schnyder labeling is embedded in the plane R2, then the labels of the outer face
form non-empty intervals of 1’s, 2’s, 3’s in clockwise order. When Mσ is embedded
on the sphere, then the labels of the outer face form non-empty intervals of 1’s,
2’s, 3’s in counterclockwise order.

The next theorem shows that Schnyder labelings and Schnyder woods are,
essentially, the same. A proof can be found in [40].

Theorem 1.1. Let Mσ be a suspended 3-connected planar map. The correspon-
dence indicated in Figure 1.2 is a bijection between the Schnyder labelings and
Schnyder woods of Mσ.

i − 1 i + 1

i

i i

i + 1 i − 1

i i + 1

i i − 1

Figure 1.2. The correspondence between angle labels at an edge and the colored
orientation of the edge.

Henceforth, when working with a Schnyder wood or a Schnyder labeling we
may be sloppy and refer to properties of the corresponding other structure. We
will also refer to the Schnyder wood of a planar map without choosing the special
vertices explicitly.

Let Mσ be a planar map with a Schnyder wood. Let Ti denote the digraph
induced by the directed edges of color i. Every inner vertex has out-degree 1 in Ti.
Therefore, every vertex v is the starting vertex of a unique i-path Pi(v) in Ti. The
next lemma implies that each of the digraphs Ti is acyclic, and hence the Pi(v) are
simple paths. A proof can be found in [38] or [40].

Lemma 1.2. Let M be a planar map with a Schnyder wood (T1, T2, T3). Let T−1
i

be obtained by reversing all edges from Ti. Then the digraph

Di = Ti ∪ T−1
i−1 ∪ T−1

i+1

is acyclic for i = 1, 2, 3.

By Rule (W3), every vertex has out-degree 1 in Ti. Disregarding the half-edge
at ai, this makes ai the unique sink of Ti. Since Ti is acyclic and has n − 1 edges
we obtain the following statement.

Corollary 1.3. Ti is a directed spanning tree rooted at ai, for i = 1, 2, 3.



4 Introduction to Schnyder Woods

The i-path Pi(v) of a vertex v is the unique path in Ti from v to the root ai.
Lemma 1.2 implies that for i 6= j, the paths Pi(v) and Pj(v) have v as the only
common vertex. Therefore, P1(v), P2(v), P3(v) divide the bounded faces of Mσ into
three regions R1(v), R2(v), and R3(v), where Ri(v) denotes the region boundedRi(v)

by and including the two paths Pi−1(v) and Pi+1(v), see Figure 1.3.

v
R3(v)

1

1

2

1

3
3

2

13

23

3 2

1
3

1
3

2 3
2

1
2

32

R2(v)

R1(v)

1

2

1

Figure 1.3. A Schnyder wood and the regions of the vertex v. The numbers
indicate the edge colors.

Lemma 1.4. If u and v are vertices with u ∈ Ri(v), then Ri(u) ⊆ Ri(v). The
inclusion is proper if u ∈ Ri(v) \ (Pi−1(v) ∪ Pi+1(v)).

Lemma 1.5. If the directed edge e = (u, v) is colored i, then Ri(u) ⊂ Ri(v),
Ri−1(u) ⊇ Ri−1(v) and Ri+1(u) ⊇ Ri+1(v). At least one of the latter two inclusions
is proper.

We remark that the equalities Ri−1(u) = Ri−1(v) and Ri+1(u) = Ri+1(v) hold
if and only if e is bidirected in colors i, i+1 respectively i, i−1. The above lemmas
are crucial for the applications of the face-count vector (v1, v2, v3) of a vertex v of
a Schnyder wood S. The face-count vector is defined asface-count vector

vi = the number of faces of Mσ contained in region Ri(v) with respect to S.

The classic application of the face-count vector is in graph drawing. Let three
non-collinear points α1, α2, and α3 in the plane be given. These points and the
region vectors can be used to define an embedding of M in the plane. A vertex v
is mapped to the point

µ : v → v1α1 + v2α2 + v3α3.



1.2 Schnyder Woods and Orthogonal Surfaces 5

An edge {u, v} is mapped by µ to the line segment connecting µ(u) and µ(v).
A grid drawing of a planar graph is a crossing-free straight line embedding with grid drawing

integral vertex coordinates and convex faces.

Theorem 1.6. For every 3-connected planar map M the drawing µ(M) is a grid
drawing.

The face-count vectors cannot only be used to obtain 2-dimensional grid draw-
ings of graphs, but also 3-dimensional orthogonal surfaces. We explain in the next
section what orthogonal surfaces are and how they are related to Schnyder woods.

1.2 Schnyder Woods and Orthogonal Surfaces

Consider R3 equipped with the dominance order. In the dominance order we have dominance order

that u ≤ v if and only if ui ≤ vi holds for each component i. We write u∨v to u∨v

denote the join, i.e. the component-wise maximum, of u, v ∈ R3. Let V ⊂ R3 be join

an antichain, that is, a set of pairwise incomparable elements. The filter generated
by V in R3 is the set

〈V〉 = {α ∈ R3 | α ≥ v for some v ∈ V}.

The boundary SV of 〈V〉 is the orthogonal surface generated by V, Figure 1.4 orthogonal surface SV

shows an example.

v9

v3

v5

v1

v4

v6 v7

v2

v8

Figure 1.4. The orthogonal surface generated by v1 = (7, 0, 0), v2 = (0, 6, 0),
v3 = (0, 0, 6), v4 = (5, 3, 0), v5 = (5,−1, 5), v6 = (4, 1, 2), v7 = (4, 2, 1), v8 =
(2, 4, 2) and v9 = (1, 2, 4).



6 Introduction to Schnyder Woods

The flats of the surface are basically the connected regions of constant gray-flat

value in our drawings of orthogonal surfaces. To make this precise, let H be the
plane xi = κ and F̃1, . . . , F̃ℓ, the connected components of the interior of H ∩SV .
The topological closures F1, . . . , Fℓ of these components are the i-flats of SV at
xi = κ, see Figure 1.5. The i-flat of v ∈ V is denoted by Fi(v). In [44, 60] anotheri-flat Fi(v)

definition of flats is given which captures interesting phenomena that appear in
dimension 4 and higher.

We define the characteristic points of an orthogonal surface SV as those pointscharacteristic points

of SV that are adjacent to an i-flat for every i = 1, 2, 3. We distinguish three
different kinds of characteristic points. The first type are the local minima that
generate the surface, see the point v in Figure 1.5. The second type are the local
maxima of SV , see the point w in Figure 1.5. All other characteristic points are
of the third type and we call them the edge-points of SV , see the point ve inedge-point

Figure 1.5. The name edge-point will be justified, since Theorem 1.7 shows that
they are in bijection with the edges of a geodesically embedded map M →֒ SV .
See also property (G2) of a geodesic embedding and Figure 1.7 (b). One can also
think of the edge-points as those characteristic points, that can be obtained as the
join u∨v of two minima u, v ∈ V of SV .

Fi(v)

v + λe3

v

ve

w

Figure 1.5. Two i-flats with the same i-coordinate.

If u, v ∈ V ⊂ SV and u∨v ∈ SV , then SV contains the union of the two line
segments joining u and v to u∨v. We refer to such arcs as elbow geodesics of SV .elbow geodesic

The orthogonal arc of v ∈ V in direction of the standard basis vector ei is the partorthogonal arc

of the ray v + λei, λ ≥ 0 that lies on at least two flats of SV . In Figure 1.5 the
part of the ray v + λe3 that forms the orthogonal arc is indicated by a bold line.
Clearly every point v ∈ V has exactly three orthogonal arcs, one parallel to each
coordinate axis. Some orthogonal arcs are unbounded while others are bounded,
see Figure 1.4. Observe that u∨v shares two coordinates with at least one and
possibly both of u and v, so every elbow geodesic contains at least one bounded
orthogonal arc.

Let M be a planar map. A drawing M →֒ SV is a geodesic embedding of Mgeodesic embedding

into SV , if the following axioms are satisfied.
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(G1) There is a bijection between V (M) and V.

(G2) There is a bijection between E(M) and the edge-points of SV and every edge
is drawn as an elbow geodesic of SV .

(G3) There are no crossing edges in the embedding of M on SV .

An orthogonal surface SV ⊂ R3 is called axial if it contains exactly three un- axial

bounded orthogonal arcs. The example from Figure 1.4 is not axial. However,
removing the point v5 from the set V leads to an axial surface, see Figure 1.6 (a).
These definitions have been proposed by Miller [72] who, essentially, also observed
the following theorem. We give a proof sketch, since the connections between
Schnyder woods and orthogonal surfaces are crucial for the understanding of Chap-
ter 2. The complete proof can be found in [40].

Theorem 1.7. Let SV be axial and M →֒ SV be a geodesic embedding. Then
the embedding induces a Schnyder wood of Mσ that is suspended at the unbounded
orthogonal rays. Conversely, every Schnyder wood of a suspended map Mσ induces
an axial geodesic embedding of Mσ.

Proof sketch. Let M →֒ SV be an axial geodesic embedding. The edges of M
are colored with the direction of the orthogonal arc contained in the edge, that
is arcs parallel to the xi-axis are colored i. The orientation of an edge is chosen
in accordance with the axis used to color the edge, Figure 1.6 shows an example.
It can be verified that this rule for coloring and orienting edges yields a Schnyder
wood on Mσ.

Conversely, given a Schnyder wood of Mσ, we embed every vertex v at its
face-count vector (v1, v2, v3) ∈ N3 ⊂ R3, that is

V = {(v1, v2, v3) | v is a vertex of M}.

It can be verified that the canonical map M →֒ SV is a geodesic embedding.
The orthogonal surface in Figure 1.6 (a) can be constructed by this rule from the
Schnyder wood in Figure 1.6 (b). �

The orthogonal surfaces constructed in the proof sketch for Theorem 1.7 have
the additional property of being coplanar. A coplanar orthogonal surface is gener- coplanar orthogonal

surfaceated by vertices that all lie on a plane of the form x1 +x2 +x3 = c, for some c ∈ R.
With an axial geodesic embedding Mσ →֒ SV we can also associate a Schnyder

labeling. Since every orthogonal arc leaving a vertex is occupied by an edge, every Schnyder labeling

angle is completely contained in a flat. In the Schnyder labeling the angle ϕ at
a vertex v is labeled i, if it is contained in Fi(v). It is easy to verify (A1), (A2),
and (A3) for this angle labeling.

Given Theorem 1.7 it is natural to ask whether there exists a geodesically
embedded map on every orthogonal surface and whether this map is unique.
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(a) (b)

2

1

1

11 1

11
1

2

2

2

2

2

2

2

3

3

3

3 3

3
3

3

Figure 1.6. A geodesic embedding and the induced Schnyder wood. The numbers
indicate edge colors.

As for the existence the answer is negative since a surface with three orthogonal
arcs meeting in a single point does not support a Schnyder wood, see Figure 1.7 (a).
We call a surface degenerate if such a pattern occurs. We omit the proof that everydegenerate

non-degenerate axial orthogonal surface SV supports a Schnyder wood.

From now on this thesis only deals with non-degenerate and axial orthogonalnon-degenerate, axial

surfaces. For the sake of brevity we will usually omit these predicates.

(a) (b)

wv

u

Figure 1.7. (a) A degenerate pattern, and (b) a non-rigid edge (u, v), where the
edge-point u ∨ v dominates w.

As for the question about the uniqueness of geodesic embeddings, the answer
is negative as well. For example in the situation shown in Figure 1.7 (b), the edge
(u, v) can be replaced by the edge (u,w). Hence the surface supports two different
graphs and also two different Schnyder woods. The reason for this ambiguity is a
non-rigidity in the sense of the following definition. An elbow geodesic connecting
vertices u and v is a rigid elbow geodesic, if u and v are the only vertices in Vrigid elbow geodesic

dominated by u ∨ v. We will also call the edge of a geodesic embedding on SV a
rigid edge if the corresponding elbow geodesic is rigid. An orthogonal surface SVrigid edge

is a rigid orthogonal surface if all its elbow geodesics are rigid.rigid orthogonal surface
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1.3 Schnyder Woods and
Orientations with Prescribed Out-Degrees

The purpose of this section is to show how orientations with prescribed out-degrees orientation with

prescribed out-degreescan be used to encode Schnyder woods. Given a planar map M , and a function
α : V → N, an edge orientation X of M is called an α-orientation if for all α-orientation

v ∈ V exactly α(v) edges are directed away from v in X. We call α an out-degree
function. For the sake of brevity we will also use the term α-orientation to refer out-degree function

to orientations with prescribed out-degrees in general.
In a Schnyder wood on a triangulation only the three outer edges are bidirected.

The reason is that the three spanning trees have to cover all 3n − 6 edges of the
triangulation and the edges of the outer triangle must be bidirected because of
Rule (W3). Theorem 1.8 says that not all edge colors are needed to encode a
Schnyder wood. The edge orientations together with the colors of the half-edges
at the special vertices are sufficient, the other edge colors can be deduced. For a
proof see [31].

Theorem 1.8. Let T be a plane triangulation, with vertices a1, a2, a3 occuring
in clockwise order on the outer face. Let αT (v) := 3 if v is an inner vertex and
αT (ai) := 0 for i = 1, 2, 3. Then there is a bijection between the Schnyder woods
of T and the αT -orientations of the inner edges of T .

In the sequel we refer to an αT -orientation of a triangulation T simply as a
3-orientation. Schnyder woods on 3-connected planar maps are in general not 3-orientation

uniquely determined by the edge orientations, see Figure 1.8.

2

1

2

1

3

3
2

3 1

1 1

3 2

3 2

11

2
3 2

3
2

1

2

1

3

3
1 1

3 2

3 2

11

2
3 2

3

3

1 2

Figure 1.8. Two different Schnyder woods with the same underlying orientation.
The numbers indicate edge colors.

Nevertheless Felsner describes a bijection between the Schnyder woods of a 3-
connected planar map M and certain α-orientations on a related map M̃ , in [41].
In order to explain this bijection precisely, we first define the suspension dual Mσ∗ suspension dual Mσ

∗

of Mσ which is obtained from the dual M ∗ of M as follows, see Figure 1.9. Replace
the vertex v∗

∞ that represents the unbounded face of M in M ∗ by a triangle on
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three new vertices b1, b2, b3. Let Pi be the path from ai−1 to ai+1 on the outer
face of M that avoids ai. In Mσ∗ the edges dual to those on Pi are incident to bi

instead of v∗
∞. Adding a ray to each of the bi yields Mσ∗. It is also nicely visible

in Figure 1.9 that the maxima of an orthogonal surface are in bijection with the
bounded faces of a geodesically embedded map, see also Proposition 2.4. The next
proposition explains how the Schnyder woods on a graph and its suspension dual
are related.

a2

a1

a3

b2 b3

b1

Figure 1.9. The Schnyder wood on the suspension dual of the map in Figure 1.6.

Proposition 1.9. Let Mσ be a suspended planar map. There is a bijection between
the Schnyder woods of Mσ and the Schnyder woods of the suspension dual Mσ∗.

Proof sketch. We work with Schnyder labelings instead of Schnyder woods. TheSchnyder labeling

inner angles of Mσ∗ are in bijection with the angles of Mσ, see Figure 1.11. The
inner angles of Mσ∗ receive the same color as their counterparts in Mσ and for
the outer angles the colors are prescribed by (A1). Using that (A2) holds for Mσ,
it is easy to see that (A3) holds for the labeling of Mσ∗. Similarly (A3) for Mσ

implies (A2) for Mσ∗. �

Figure 1.10 illustrates how the coloring and orientation of a pair of a primal
and a dual edge are related.

2 3

1

21 3

3 2

1

Figure 1.10. The three possible oriented colorings of a pair of a primal and a
dual edge. The numbers indicate edge colors.
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Figure 1.11. The primal-dual completion of the Schnyder woods shown in Fig-
ures 1.6 and 1.9.

The completion M̃ ′ of Mσ and Mσ∗ is obtained by superimposing the two
graphs such that exactly the primal dual pairs of edges cross, see Figure 1.11.

In the primal dual completion map M̃ the common subdivision of each crossing primal dual completion

map fMpair of edges of M̃ ′ is replaced by a new edge-vertex. The rays emanating from
edge-vertexthe three special vertices of Mσ cross the three edges of the triangle induced by

b1, b2, b3 and thus produce edge-vertices. Note that all edge-vertices but these three
correspond to edge-points of the orthogonal surface S with Mσ →֒ S. The six
rays emanating into the unbounded face of M̃ ′ end at a new vertex v∞ of M̃ that
is placed in this unbounded face. A pair of corresponding Schnyder woods on Mσ

and Mσ∗ induces an orientation of M̃ . We call this orientation an αS-orientation αS-orientation

and αS can be defined as follows.

αS(v) =





3 for primal and dual vertices
1 for edge-vertices
0 for v∞

For the sake of simpler notation we write αS although the out-degree function
depends on M̃ . Note that a pair of a primal and a dual edge always consists of
a unidirected and a bidirected edge, as shown in Figure 1.10. This explains why
αS(ve) = 1 is the right choice for an edge vertex ve. Theorem 1.10 says that the

choice of the special vertices and the edge orientations of M̃ are sufficient to encode
a Schnyder wood of Mσ. For a proof see [41].

Theorem 1.10. The Schnyder woods of a suspended planar map Mσ are in bijec-
tion with the αS-orientations of M̃ .
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1.4 Edge Splits and Edge Merges on Schnyder Woods

In Section 2.1 we will need another tool from the theory of Schnyder woods, the
edge split. In this section we introduce the edge split and the reverse operation,
the edge merge. We start with a lemma from [13] about the generic appearance of
a face in a Schnyder wood. This lemma will be used frequently in Chapter 2 and
Section 3.2.

Lemma 1.11. Given a Schnyder wood S, let F be an interior face. The edges
on the boundary of F can be partitioned into six sets occurring in clockwise order
around F . As illustrated in Figure 1.12, the sets are defined as follows (in case of
bidirected edges the clockwise color is noted first).

• One edge from the set {red-cw, blue-ccw, red-blue}

• Any number (possibly 0) of edges green-blue

• One edge from the set {green-cw, red-ccw, green-red}

• Any number of edges blue-red

• One edge from the set {blue-cw, green-ccw, blue-green}

• Any number of edges red-green

Each of three edges from the first, third, and fifth set is called a special edge ofspecial edge

the face F .

3

3
1

1
2 3

2 2
2

32
2

3
1 2

2 3 23 2 3 2 3

2

111 1

2 3

2
1

1

3
1

Figure 1.12. The generic appearance of a face as described by Lemma 1.11 and
two concrete instances. The numbers indicate edge colors.

Proof sketch for Lemma 1.11. Recall part (A3) of the definition of Schnyder
labelings. Applying the rule depicted in Figure 1.2 for converting a SchnyderSchnyder labeling

labeling into a Schnyder wood yields the claim of the lemma. �

We now introduce the operations edge split and edge merge. Given a Schnyderedge split/merge

wood S, let e be a bidirected edge such that one of its directions is colored j,
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v

F2
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F2

v

u

F
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3 33
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1
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3

3

3
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F1

1

w′

w

w′

w

w′

w

Figure 1.13. The two possible types of splits of a non-special bidirected red-green

edge in F . The numbers indicate angle colors.

and let F be the incident face for that e is not special. Choose a vertex w of
F such that the angle of w in F is labeled j. To split e towards w is to divide split e towards w

the bidirected edge e into two uni-directed copies and to move the head of the
j-colored copy to connect to w. Figure 1.13 illustrates the operation. Note that
{w, v} and {w′, u} may be special edges of F . Furthermore, we observe that each
direction of a bidirected edge e can be split into the face for which e is not special
in at least one way, by part (A3) of the definition of Schnyder labelings.

The reverse operation to an edge split is an edge merge. Given a Schnyder
wood S, let e1 and e2 be two unidirected edges. Then, e1 and e2 form a knee at v knee at v, knee at F

if they form an angle at v and e1 = (u, v) is incoming at v while e2 = (v, w) is
outgoing at v, see Figure 1.14. If the angle of e1 and e2 at v lies in the face F ,
then we also speak of the knee at F . To merge edges e1, e2 means to delete the merge edges

edge e2 from S and to make {u, v} a bidirected edge. The direction (u, v) has the
same color as e1 and the direction (v, u) inherits the color of e2.

v v

u

2

u

2

e1
3

33

3

e2 21

w w

Figure 1.14. Merging the edges e1 and e2. The numbers indicate angle colors.

Lemma 1.12. Let S be a Schnyder wood and S ′ obtained from S by an edge split
or edge merge. Then S ′ is a Schnyder wood as well.

Proof. Figures 1.13 and 1.14 show the Schnyder labelings. It is obvious that the Schnyder labeling

labels at the angles of u, v, w, w′, F1, and F2 obey (A2) respectively (A3). �
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In the rest of this section we will not distinguish between a Schnyder wood
and the graph on which it is defined, but regard a Schnyder wood as a graph
endowed with a colored orientation. Let S(n) denote the set of all Schnyder woodsS(n)

on n vertices with a triangular outer face. We define the split-merge transition
graph on S(n) by saying that two Schnyder woods are adjacent if they can besplit-merge transition

graph obtained from each other by a single split or merge operation. We denote the
transition graph by S(n) as well. That the transition graph is connected can be
seen as follows. In [14] Bonichon et al. introduce colored diagonal flips of edges
for Schnyder woods on triangulations. In the spirit of Wagner’s Theorem [97] they
show that the transition graph of these colored flips on the set of all Schnyder
woods of triangulations with n vertices is connected. Since a colored diagonal flip
is an edge merge followed by an edge split, this implies that the triangulations
with n vertices are all in the same connected component of S(n). Every Schnyder
wood that is not a triangulation has a bidirected inner edge and such an edge
is splittable. Thus, every graph is connected to some triangulation in S(n) and
therefore S(n) is connected.

Let S ∈ S(n) be a Schnyder Wood. By D(S) we denote the degree of S inD(S)

the transition graph S(n). We now present a few results about the minimum and
maximum degree of S(n). These results will not be needed in the rest of the
thesis. Nevertheless we include them, since we think that the transition graph is
interesting in its own right. For example it would be useful to obtain a random
sampler for Schnyder woods using S(n).

Proposition 1.13. Let S ∈ S(n) be a Schnyder wood and S∗ be the suspension
dual of S. Then,

D(S) + D(S∗) ≥ 2(m(S) − 3) ≥ 3n(S) − 6.

Proof. Every edge e that does not lie on the boundary of the outer face is bidirected
and thus splittable in either S or S∗. Every splittable edge contributes at least
two to the split-merge degree. Since S is 3-connected we have 2m(S) ≥ 3n(S),
and the result follows. �

Proposition 1.14. For S ∈ S(n) we have that D(S) ≥ f(S) − 4.

Proof. Let F0 be a face of S that is not incident to an outer edge of S. We prove
the statement by showing that D(S) suffices to distribute a charge of 1 to every
such face. We first treat the case that |F0| ≥ 4. Then there is at least one edge e0

that can be split into F0. We charge this face with 1.
Now, we treat the case |F0| = 3. If all the edges on the boundary of F0 are

undirected, then at least one of the three angles is a knee. We charge 1 to this
face for the possible merge operation. If there is a bidirected edge e0, then it splits
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into the face F1 6= F0 on the boundary of that it lies, since F1 is not the outer
face. Since at most 1 has been charged from e0 to F1, we can charge 1 to F0 as
well, because there are at least two possible splits of e0 into F1. Thus, all faces
not incident with an outer edge can be charged with 1 and the total charge does
not exceed D(S). �

(d)(c)(b)(a)

Figure 1.15. Schnyder woods with degree f − 4 in S(n)

Proposition 1.14 is tight, as the examples in Figure 1.15 show. The graphs in
Figures 1.15 (a) and (c) are stacked triangulations. We now define this family of
triangulations which we encounter several times throughout the thesis, see Chap-
ter 5, Section 1.5, Proposition 3.26, and Section 4.5. Stacked triangulations can
often be easily handled due to the inductive structure which is exhibited in the
next definition.

• K3 is a stacked triangulation. stacked triangulation

• Let T = (V,E) be a stacked triangulation and {u, v, w} a bounded face of T .
Then, for a vertex v′ 6∈ V ,

T ′ =
(
V ∪ {v′}, E ∪

{
{v′u}, {v′v}, {v′w}

})

is a stacked triangulation.

The height of the outer vertices of a stacked triangulation is defined as −1. For height

an inner vertex v′ stacked into a triangle {u, v, w} we define its height as h(v) =
max{h(u), h(v), h(w)} + 1. Similarly, the height of a face F = {u, v, w} is h(F ) =
max{h(u), h(v), h(w)} + 1.

The Schnyder woods depicted in Figures 1.15 (a) and (c) are stacked trian-
gulations. Since every stacked triangulation has a unique Schnyder wood, see
Section 1.5, this Schnyder wood has no cycles, see Theorem 1.8. Therefore every
Schnyder wood of a stacked triangulation has only one knee per triangle, and the
proposition is tight for all stacked triangulations.
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The Schnyder woods from Figures 1.15 (b) and (d) are obtained from those
in Figures 1.15 (a) respectively (c) by edge merges. These Schnyder woods allow
for two edge splits into every quadrangular face. But the triangles for which the
bidirected edges are special have no knee, and thus the proposition is tight for these
graphs as well. The figure suggests how an infinite family of such non-triangular
examples can be obtained.

Proposition 1.15. For S ∈ S(n) we have that D(S) ≥ 4n(S)/3 − 6.

Proof. If f(S) ≥ 4n(S)/3 − 1, the claim follows from Proposition 1.14. If f(S) <
4n(S)/3−1, then there are at least 2n(S)/3−3 bidirected inner edges, and thus at
least 4n(S)/3−6 splits are possible. The lower bound for the number of bidirected
edges can be obtained as follows. The inner vertices have in total exactly 3n − 9
outgoing edges. Furthermore, f(S) < 4n(S)/3 − 1 implies that the number of
inner edges is m − 3 = n + f − 5 < 7n/3 − 6. Together this implies that at least
2n/3 − 3 edges are bidirected. �

We would like to point out that for triangulations Proposition 1.14 implies

D(S) ≥ f(S) − 4 ≥ 2(n(S) − 4).

In contrast to that the family of examples that we present now shows that the
factor of 4/3 in Proposition 1.15 is best possible. This family was found by Stefan
Felsner.

(b)(a)

Figure 1.16. Schnyder woods with degree 4n/3 − 4 in S(n).

We define an infinite family of Schnyder woods Sk. The first Schnyder wood
of the family is S1 as shown in Figure 1.16 (a), and S2 is shown in Figure 1.16 (b).
In general we denote by Sk the graph of this family with k levels of three vertices
connected by green-blue edges. Since Sk admits no merges, two splits into every
4-face and four splits into the 5-face, we obtain

lim
k→∞

D(Sk)

n(Sk)
=

4

3
.



1.4 Edge Splits and Edge Merges on Schnyder Woods 17

Now we consider upper bounds for D(S) for S ∈ S(n). We define an infinite
family of Schnyder woods S ′

k. The first Schnyder wood of the family is S ′
1 as

shown in Figure 1.17 (a), and S ′
2 is shown in Figure 1.17 (b). In general we denote

by S ′
k the graph of this family in which the big central face has cardinality 3k + 3.

Then, S ′
k has n(S ′

k) = 3k + 6 vertices and D(S ′
k) ≥ 6k2, since every non-special

edge of the central face can be split in 2k different ways. Thus, D(S) can be of
order Ω(n2) for S ∈ S(n).

(a) (b)

Figure 1.17. Schnyder woods with degree 6k2 + 6 in S(3k + 6).

We now give a more restricted definition of an edge split which we call a short
split. An edge e can now only split towards two vertices of the face F for that short split

it is not special. A direction with color i of an edge e can split towards the first
angle of color i that is encountered when walking around the face in this direction.
It can be observed using Lemma 1.11 that the short splits suffice to generate all
splits. We denote the transition graph produced by the merges and the short splits
by S ′(n) and the degree of S ∈ S ′(n) by D′(S). With this definition the degree S′(n), D′(S)

of S ′
k is D(S ′

k) = 6k + 6. Note that Propositions 1.13, 1.14, and 1.15 all hold for
this more restricted notion of an edge split.

Proposition 1.16. For S ∈ S ′(n), we have that D′(S) ≤ 6n.

Proof. For v ∈ V (S) let

D′(v) = (number of knees at v) + (number of bidirected edges incident to v).

Then we have

D′(S) =
∑

v∈V (S)

D′(v),

and it is easy to see that D′(v) ≤ 6. �

The family of augmented triangular grids T ∗
k,ℓ, see Figure 1.18, shows that triangular grid

Proposition 1.16 is essentially tight. A precise definition of this graph family is
given in Section 3.1.2.
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Figure 1.18. The triangular grid T ∗
4,5 with a canonical Schnyder wood.

All vertices of T ∗
k,ℓ that are not adjacent to an outer vertex have D′(v) = 6.

Thus, the canonical Schnyder woods on T ∗
k,k satisfy

lim
k→∞

D′(T ∗
k,k)

n(T ∗
k,k)

= 6.

1.5 Planar Maps with a Unique Schnyder Wood

The purpose of this section is to prove a constructive characterization of all 3-
connected planar maps that have a unique Schnyder wood.

It is a well-known fact that the stacked triangulations are exactly the planestacked triangulation

triangulations that have a unique Schnyder wood. We include the proof since it
exemplifies our approach for proving Theorem 1.18.

Proposition 1.17. A triangulation has a unique Schnyder wood if and only if it
is a stacked triangulation.

Proof. The proof uses the bijection between Schnyder woods and 3-orientations,
see Theorem 1.8. It also uses that a triangulation has a unique 3-orientation if and
only if it has an acyclic 3-orientation, see Theorem 3.1. Clearly, K3 has a unique
3-orientations. Since every stacked triangulation T has a degree 3 vertex, it is easy
to prove by induction that a 3-orientation of T must be acyclic, i.e. unique.

It remains to show that a 3-orientation of a non-stacked triangulation T is not
acyclic. We remove degree 3 vertices from T until a triangulation T ′ of minimum
degree 4 remains. Then, every vertex of T ′ has at least one incoming edge. This
implies that there is an infinite sequence vi, i ∈ N of inner vertices of T ′ such
that (vi+1, vi) is a directed edge of T ′. Since T ′ is finite, there must be a vertex
repetition in this sequence, and this yields a directed cycle. �
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Theorem 1.18. All 3-connected planar maps with a unique Schnyder wood can be
constructed from the unique Schnyder wood on the triangle by the six operations
shown in Figure 1.19 read from left to right.

Figure 1.19. Every graph with a unique Schnyder wood can be constructed using
the three primal operations in the first row and their duals in the second row.

Proof of Theorem 1.18. The proof uses the bijection with αS-orientations from αS-orientation

Theorem 1.10 and the primal dual completion map M̃ of Mσ. One advantage of this primal dual completion

mapapproach is that we only have to consider the three cases shown in Figure 1.20.
In this figure, the square vertices represent edge-vertices and the circular ones
represent the vertices of the primal map Mσ respectively the dual map Mσ∗.

In each of the three parts of Figure 1.20 two operations on Mσ are indicated.
One operation is obtained by choosing the black circular vertices as those of Mσ

and the white circular vertices as those of Mσ∗. The other operation is obtained
by choosing the white circular vertices as the primal vertices and the black ones
as the dual vertices. Since Figure 1.20 shows how M̃ can be reduced, not how Mσ

can be constructed, left and right are switched with respect to the depiction of
the operations in 1.19. Figure 1.21 shows how the two leftmost operations from
Figure 1.19 are related to the topmost operation shown in Figure 1.20.

Observe that for each of the three operations from Figure 1.20, the six vertices
whose incidences change are marked by a red circle. Every pair of such vertices
is joined by a directed path in the graph on the left if and only if it is joined by
such a path in the graph on the right. Thus, these operations cannot introduce a
directed cycle in either direction. If M̃ ′ is a planar map obtained from M̃ by one
of the operations from Figure 1.20, then M̃ ′ has a directed cycle if and only if M̃
does.

It remains to show that for a planar map Mσ with a unique Schnyder wood
one of the operations from Figure 1.20 read from left to right can be applied to M̃ .
We claim that M̃ must have an edge-vertex ve such that all three incoming edges



20 Introduction to Schnyder Woods

vbva w

ve

vbva w

ve

vbva w

ve

Figure 1.20. The three operations on M̃ that can be used to reduce every planar
map with a unique Schnyder wood to K3.

at ve start at a degree 3 vertex. Assume for the sake of contradiction that there is
no such edge-vertex. Then we can construct an infinite sequence (vi)i∈N of vertices
such that there is an edge from vi+1 to vi for every i. Choose some edge-vertex to
be v1. By assumption, v1 has one incoming edge that starts at a primal or dual
vertex of degree at least 4 that we choose as v2. As v2 has degree at least 4 it
has an incoming edge that starts at an edge-vertex. We choose this edge-vertex
as v3. This process can be continued infinitely, yielding the desired sequence. But
as M̃ is a finite graph, some vertex in (vi)i∈N has to be repeated and the first such

repetition shows that there is a directed cycle in M̃ . Reversing the direction of
all edges of this directed cycle yields another αS-orientation. This orientation also
corresponds to a Schnyder wood. This contradicts the assumption that M has a
unique Schnyder wood. Thus, there must be an edge-vertex ve such that all three
incoming edges at ve start at a degree 3 vertex.
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Figure 1.21. Translation of the operations from Figure 1.19 into the primal-dual
completion map used in Figure 1.20.

We argue now that such an edge vertex ve forces one of the three subgraphs
highlighted by the gray edges in Figure 1.20. As indicated in Figure 1.20, let va

and vb be the two edge-vertices that are adjacent to two of the neighbors of ve, and
let w be the common neighbor of va and vb. The three operations correspond to the
cases where none, one, or both of the edges between va respectively vb and w are
directed towards w. Note that in the first case shown in Figure 1.20, the vertex w
must have degree 3, otherwise there would be a directed 4-cycle. Hence, at least
one of the three operations is applicable for every graph with a unique Schnyder
wood that is not a triangle. This shows that every graph with a unique Schnyder
wood can be reduced to a triangle with the six operations from Figure 1.19. �

Remark 1.19. The fact that the stacked triangulations are exactly the plane
triangulations with a unique Schnyder wood is a special case of Theorem 1.18.
The first operation shown in Figure 1.19 is exactly the operation used to construct
stacked triangulations.

1.6 Conclusions

In this chapter we have introduced Schnyder woods. In Sections 1.1, 1.2, and 1.3
we have discussed the properties of Schnyder woods that we need in Chapter 2
and Section 3.2. In Section 1.5 we have given a constructive characterization of
all planar maps with a unique Schnyder wood.

We have also introduced the operations edge split and edge merge in Section 1.4.
We have studied the minimum and maximum degree of the split-merge transition
graph S(n), and given examples that show that these bounds are essentially tight.
We think that a better understanding of this transition graph and its structural
properties could yield progress towards solving the following problem.

Problem 1.20. Can the transition graph S(n) be used to define a rapidly mixing
Markov chain that yields a uniform random sampler for Schnyder woods?





Chapter 2

Schnyder Woods and Orthogonal Surfaces

In Chapter 1 we have introduced Schnyder woods and some of their properties. Schnyder wood

In this chapter we use many of these properties, since we are concerned with the
connections of Schnyder woods and orthogonal surfaces. orthogonal surface

This chapter is organized as follows. In Section 2.1 we are concerned with
rigid orthogonal surfaces. We give a new proof of a theorem by Felsner [39] which
says that every Schnyder wood can be geodesically embedded on a rigid orthogonal
surface. Our proof uses the following very intuitive idea. The proof of Theorem 1.7
shows that every Schnyder wood can be geodesically embedded on some orthogonal
surface. If this surface is not rigid, then we show that it can be transformed into a
rigid surface by shifting some of its flats, as indicated in Figure 2.1. In Section 2.1
we also explain how the Brightwell-Trotter Theorem can be deduced from Felsner’s
result [39] and how our new proof can be used to design a simple algorithm that
constructs a Brightwell-Trotter realizer for every 3-connected planar map.

Figure 2.1. An orthogonal surface and an associated rigid surface

We recall from Section 1.2 that an orthogonal surface is coplanar if all its gen-
erating minima lie in the same plane. Section 2.2 is concerned with these coplanar
surfaces. The interest in these surfaces originates from their close connection to
planar straight line drawings that we have also pointed out after Theorem 1.7.
Connecting the minima of a coplanar surface by straight line segments yields a
plane and convex straight line drawing of the graph. We show in Section 2.2.1

23
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that all coplanar surfaces supporting S can be obtained using Schnyder’s origi-
nal construction with appropriately weighted faces. An example of a Schnyder
wood which has no supporting orthogonal surface that is simultaneously rigid and
coplanar is the topic of Section 2.2.2.

In Section 2.3 we discuss height representations of orthogonal surfaces. These
representations have a similar flavor as the face weight representations for copla-
nar surfaces, but they are not restricted to coplanar surfaces. For an orthogonal
surface S, the height of a point p ∈ S is the sum of its coordinates, that is
h(p) = p1 + p2 + p3 and the height-vector h(S) records the height of every min-
imum and maximum of S. We show in Section 2.3 that a Schnyder wood S
supported by S in conjunction with h(S) uniquely determines S.

2.1 Rigid Orthogonal Surfaces via Flat Shifting

In [82], Schnyder presented a characterization of planar graphs in terms of order
dimension. We briefly introduce the terminology needed for the statement of this
result. With a graph G = (V,E) we associate an order PG of height 2 on the set
V ∪ E. The order relation is defined by setting x < e in PG if x ∈ V , e ∈ E and
x ∈ e. The order PG is called the incidence order of G.incidence order

The order dimension of an order P is the least k such that P admits an orderorder dimension

preserving embedding in Rk equipped with the dominance order. We recall that
in the dominance order we have that u ≤ v if and only if ui ≤ vi holds for eachdominance order

component i. For more on order dimension see [91, 92, 19, 38].

Theorem 2.1 (Schnyder’s Theorem). A graph is planar if and only if the dimen-
sion of its incidence order is at most 3.

In the same paper Schnyder also shows that the incidence poset of vertices,
edges, and faces of a planar triangulation has dimension 4, but the dimension
drops to 3 upon removal of a face. Brightwell and Trotter [20] extended Schnyder’s
Theorem to the general case of embedded planar multigraphs. The main building
block for the proof is the case of 3-connected planar graphs from [19].

Theorem 2.2 (Brightwell-Trotter Theorem). The incidence order of the vertices,
edges, and faces of a 3-connected planar graph G has dimension 4. Moreover, if F
is a face of G, then the incidence order of the vertices, edges, and all faces of G
except F has dimension 3.

Note that by Steinitz’s Theorem, see Theorem 5.1 and [86, 87], the incidence
poset of vertices, edges and faces of a 3-connected planar graph is the face lattice
of a 3-polytope with 0 and 1 removed.
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The original proof of Theorem 2.2 in [19] was long and technical and Felsner
gave a simpler proof in [38]. Miller [72] observed that a rigid orthogonal surface rigid orthogonal surface

induces a unique Schnyder wood and he proved the following two statements which
also imply Theorem 2.2. Recall that an orthogonal surface is called rigid if it
supports a unique graph, see Figure 1.7 (b).

Theorem 2.3. Every suspended 3-connected planar map Mσ has a geodesic em-
bedding Mσ →֒ S on some rigid orthogonal surface S.

Proposition 2.4. Let SV be a rigid orthogonal surface. Let Mσ →֒ SV be a
geodesic embedding and F a bounded face of M . If αF is the join of the vertices join

of F , then w ∈ F ⇔ w ≤ αF .

Note that αF as defined above lies on SV and is a maximum of the surface
with respect to the dominance order. In fact, for any set W ⊆ V of vertices the dominance order

join lies on SV if and only if they all lie on a common face of Mσ. It is crucial
here, that SV is a rigid surface. If W contains a vertex from each of the three
sides of the face F , as shown in Figure 1.12, then the join is a maximum of SV .

In [39] Felsner proved the following theorem thereby answering a question by
Miller [72] and strengthening Theorem 2.3.

Theorem 2.5. If S is a Schnyder wood of a map Mσ, then there is an axial rigid
orthogonal surface S and a geodesic embedding Mσ →֒ S such that S is the unique
Schnyder wood supported by S.

In this section we present an intuitive proof of Theorem 2.5 which leads to a
simple linear time algorithm for the computation of the rigid surface. The idea
is to start with the orthogonal surface S obtained from a Schnyder wood S by
face-counting, see Theorem 1.7. If this surface is non-rigid it is possible to make
some local adjustments at a non-rigid edge by moving some of the flats up or down
in the direction of their normal vector, see Figure 2.1. The nontrivial point is to
show that these adjustments can be combined in such a way that the whole surface
becomes rigid.

Lemma 2.6 and Lemma 2.7 are part of our proof of Theorem 2.5. Let S be
a Schnyder wood on a 3-connected planar map M = (V,E) and let S be the
orthogonal surface obtained from S by face-counting, see Theorem 1.7. Let Fi

be the set of i-flats of S. On the set Fi we define a relation Γi by three rules, i-flat

Figure 2.2 shows an example.

(a) If (u, v) is an edge of color i, then Fi(u) < Fi(v) in Γi.

(p) If (v, u) is unidirected in color i − 1 or i + 1, then Fi(u) < Fi(v) in Γi.

(r) If (v, u) is unidirected in color j 6= i and there is a w ∈ V such that Fj(w) =
Fj(u) and wi > ui, then Fi(v) < Fi(w) in Γi.
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Figure 2.2. On the left a non-rigid surface with a Schnyder wood. On the right
the corresponding relation Γ1.

The pairs in Γi are classified as a-relations (arc), p-relations (preserve) and r-
relations (repel). Lemma 2.6 is the heart of the proof of Theorem 2.5 as it justifies
why the flat shifts (i.e. r-relations) can be combined to obtain a rigid surface.

Lemma 2.6. The relation Γi defined on Fi is acyclic, for i = 1, 2, 3.

Proof. By symmetry it is enough to prove the case i = 1. Recall that we identify
the colors 1, 2, 3 with red, green, and blue in our figures. We identify the a-
and p-relations with edges of the Schnyder wood S. We define a surjective map
from the set of red edges in S to the set of a-relations by mapping an edge (u, v)
to the relation F (u) < F (v). Similarly, there is a surjective map from the blue
and green unidirected edges in S to the p-relations (if (v, u) is such an edge, then
F (u) < F (v) is in Γ1).

In order to deal with the r-relations we construct a Schnyder wood S ′ from S
using edge splits, see Section 1.4. Let e = (v, u) ∈ S be a unidirected blue edgeedge split

and F (u) < F (v) the corresponding p-relation. Let F (uk) > . . . > F (u1) be the
set of flats that have an r-relation F (v) < F (uj) related to e. The order on this set
comes from the red a-relations, since the edges {u, u1} and {uj−1, uj} are bidirected
in red and green in S. Construct S ′ by splitting the edges {u, u1}, {u1, u2}, . . .,
{uk−1, uk} towards v. This is legal since the angle of v in the face in question has
label 2 (green), see Lemma 1.12. We repeat this operation for other r-relations
in Γ1 that come from unidirected blue edges. A symmetric operation is used to
introduce edges for all r-relations in Γ1 that come from unidirected green edges in
the Schnyder wood S.
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In the Schnyder wood S ′ we associate an edge with every relation in Γ1. With
an a-relation F (u) < F (v) we associate the red edge (u, v), and with a p-relation
F (u) < F (v) the blue or green edge (v, u). With an r-relation F (u) < F (v) we
associate the blue or green edge (v, u) that was introduced into S ′ by a split.

Now assume that C is a cycle in the relation Γ1 on F1. The idea is to show
that C induces a cycle C ′ in T1 ∪ T−1

2 ∪ T−1
3 , where the Ti, i ∈ {1, 2, 3}, are the

respective trees of S ′. This yields a contradiction to Lemma 1.2.
The relations in C are associated with some edges in T1 ∪T−1

2 ∪T−1
3 . However,

consecutive relations F (u) < F (v) and F (u′) < F (v′) in C, i.e., F (v) = F (u′),
may correspond to different vertices v 6= u′ from the flat F (v). This yields gaps
in the intended cycle C ′. Note that the set of vertices lying on a common 1-flat is
strongly connected in S ′ via bidirected green-blue edges. Therefore S ′ contains a
path of bidirected green-blue edges connecting v and u′, hence, the directed path
required to close the gap in C ′ can be found in T1 ∪ T−1

2 ∪ T−1
3 .

The contradiction shows that Γi is acyclic. �

Let S be the orthogonal surface supporting S that is generated by the face-
count vectors, see Theorem 1.7. The transitive closure Γ∗

i of Γi is an order on Fi

by Lemma 2.6. Let Li be a linear extension of Γ∗
i . An i-flat Fi of S is mapped to

its position in Li, more formally to

αFi
= |{F ′

i ∈ Fi : F ′
i < Fi in Li}|.

With a vertex v ∈ V we associate the point

v′ = (αF1(v), αF2(v), αF3(v)) ∈ R3.

To complete the proof of Theorem 2.5 it remains to verify that the orthogonal
surface SVα

generated by Vα = {v′ : v ∈ V} is rigid and supports the Schnyder
wood S. The key for proving this is the following lemma.

Lemma 2.7. If Ri(u) = Ri(v), then u′
i = v′

i, and if Ri(u) ⊂ Ri(v), then u′
i < v′

i.

Proof. The first statement is immediate: From Ri(u) = Ri(v) it follows that
Fi(u) = Fi(v) and hence u′

i = v′
i. For the proof of the second statement note that

there exists an index j 6= i such that Rj(u) ⊃ Rj(v). Therefore, the j-path of v
and the i-path of u have to cross in a vertex w. The edges of Pi(u) imply that
Fi(w) > Fi(u) in Γ∗

i and hence in Li. Let (x, y) be an edge of color j on Pj(v). We
distinguish the following three cases for the type of e = {x, y}.

(1) e is bidirected and the color of (y, x) is i.

(2) e is bidirected and the color of (y, x) is not i.

(3) e is unidirected.
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In Case (1) we find the a-relation Fi(y) < Fi(x) in Γi. In Case (2) vertices x and y
are on the same i-flat, i.e. Fi(y) = Fi(x). In Case (3) the relation Fi(y) < Fi(x) is
a p-relation in Γi. Transitivity yields Fi(u) < Fi(w) < Fi(v) in Γ∗

i and hence in Li.
This implies u′

i < v′
i. �

Claim 1. Vα is an antichain in R3.

Proof. This follows from Lemma 2.7 and the observation that for any two vertices
u, v ∈ S, there are colors i and j with Ri(u) ⊂ Ri(v) and Rj(v) ⊂ Rj(u). △

Claim 2. SVα
is non-degenerate.

Proof. The linear extension Li assigns different positions to different flats, therefore
the situation from Figure 1.7 (a) cannot occur. △

Claim 3. SVα
supports the Schnyder wood S.

Proof. Let e = {u, v} be an edge of S and x 6∈ e a vertex. For some i the edge e
is contained in region Ri(x). This implies Ri(u) ⊆ Ri(x) and Ri(v) ⊆ Ri(x).

From Lemma 2.7 it follows that in the above setting u′
i ≤ x′

i and v′
i ≤ x′

i.
This shows that with e = {u, v} the join u′∨v′ and hence the elbow geodesic that
connects u and v is on the surface SVα

.
If the edge e = (u, v) is directed in color i from u to v, then by Lemma 1.5

together with Lemma 2.7, we have u′
i < v′

i, u′
i+1 ≥ v′

i+1 and u′
i−1 ≥ v′

i−1 . Therefore,
the orthogonal arc of v in direction ei is used by this edge. Since the orthogonal
arcs of all vertices are already occupied by edges of S, there are no additional
edges on SVα

. △

Claim 4. SVα
is rigid.

Proof. Suppose not, then there is a unidirected edge (v, u) of color j and a vertex w
such that, w′ ≤ u′∨v′, and Fj(u) = Fj(w). There is a bidirected path in colors i
and k joining u and w. We may assume that w ∈ Pi(u) and u ∈ Pk(w). It follows
that Ri(w) ⊃ Ri(u), hence, wi > ui and the relation Fi(v) < Fi(w) is an r-relation
in Γi. The unidirected edge (v, u) in color j induces the p-relation Fi(u) < Fi(v)
in Γi. Therefore, u′

i < v′
i < w′

i, in contradiction to w′ ≤ u′∨v′. △
This completes the proof of Theorem 2.5. �

Next, we present a simple algorithm which, given a Schnyder wood S, computes
a rigid orthogonal surface S inducing S.

Corollary 2.8. There is an O(n) algorithm computing a rigid orthogonal surface
for a given Schnyder wood S.
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Proof. We assume that S is given in the form of adjacency lists ordered clockwise
around each vertex. With each edge in the adjacency list of a vertex v, the infor-
mation about the coloring and orientation of that edge is given by its type relative
to v. There are twelve such types, three outgoing types in each color (two of them
for bidirected edges) and the unidirected incoming edges.

By symmetry it is sufficient to show how to obtain the first coordinate for
all vertices of S in linear time. We produce a copy of the vertex set and build
a digraph Dr on this copy. For every red edge there is an edge pointing in the
same direction in Dr and for all blue and green unidirected edges there is an edge
pointing in the opposite direction. We then check at each original vertex if its
red outgoing edge is green in the reverse direction and if it has a unidirected blue
incoming edge. If so, there is an edge from the start of the blue edge to the end
of the red outgoing edge. This single repel edge is sufficient since other repel
relations associated to the same unidirected blue edge are implied by transitivity.
Analogously, check at each original vertex if its red outgoing edge is blue in the
reverse direction and if it has a unidirected green incoming edge. If so, there is
a repel edge from the start of the green edge to the end of the red outgoing edge
in Dr. Finally, contract all blue-green edges from S in Dr, maintaining a pointer
from the original vertices to their representatives in Dr.

Then, we compute a topological sorting of Dr and assign each vertex the
topsort-number of its flat as first coordinate. All this can be done in O(n) time.
Three runs of this procedure, one for each coordinate are required. The correctness
of the algorithm follows from Theorem 2.5. �

In the following theorem we assume that the 3-polytope P is given as a com- 3-polytope

binatorial 3-polytope, that is as a planar map. For a geometric 3-polytope given combinatorial/geometric

3-polytopeby a set of points in R3, convex hull algorithms of the beneath-and-beyond type
compute the combinatorial 3-polytope in O(n log n), see for example [76, 77].

Theorem 2.9. Let P be a combinatorial 3-polytope with n vertices. Then, a
Brightwell-Trotter realizer for P can be computed in O(n) time.

Proof. As shown by Fusy et al. in [52] a Schnyder wood S for P can be computed
in O(n) time. With little translational effort this also follows from algorithms
for computing orderly spanning trees [23] or canonical orderings [25] which are
based on Kant’s algorithm [59, 24]. By Corollary 2.8 a rigid orthogonal surface
that induces S can be computed in time O(n). By Proposition 2.4 and Steinitz’s
Theorem, see Theorem 5.1 such an orthogonal surface yields a Brightwell-Trotter
realizer of P . �
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2.2 Coplanar Surfaces

Recall that an orthogonal surface is a coplanar orthogonal surface if there existscoplanar surface

a constant c ∈ R such that every minimum v of the surface fulfills the equation
v1+v2+v3 = c. Schnyder’s classic approach of drawing graphs using the face-count
vectors {(v1, v2, v3) | v ∈ V } yields a subclass of all coplanar surfaces, as describedface-count vector

in the proof sketch of Theorem 1.7. Geodesic embeddings on coplanar surfaces
have the pleasant property that the positions of the vertices in the plane yield a
grid drawing of the embedded graph.grid drawing

u1

u4

u3 u2

u5

Figure 2.3. An orthogonal surface generated by u1 = (5, 0, 0), u2 = (0, 5, 0),
u3 = (0, 0, 5), u4 = (4, 3, 2), and u5 = (4, 4, 1).

Similar approaches for non-coplanar surfaces, where the points are projected
orthogonally to the plane x + y + z = 1, fail. This is because crossings between
edges may be produced, see Figure 2.3 for an example. The coordinates of the
orthogonally projected points are

u′
1 = (11,−4,−4)/3, u′

2 = (−4, 11,−4)/3,

u′
4 = (4, 1,−2)/3, u′

5 = (4, 4,−5)/3.

This implies that 8u′
1/15+7u′

2/15 = u′
4/3+2u′

5/3, that is the straight line segments
representing the edges u1u2 and u4u5 cross.

A representation of all coplanar surfaces using Schnyder woods and edge weights
is given in Section 2.2.1. In Section 2.2.2 we present an example of a Schnyder
wood that has no geodesic embedding on a surface that is rigid and simultaneously
coplanar.
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2.2.1 Coplanar Surfaces and Face Weights

We now generalize the classic approach of counting every bounded face with
weight 1 (see Theorem 1.7) by allowing more general face weights. We then use co-
ordinate vectors recording the sum of weights in the regions of a vertex. We show
that this construction essentially yields all coplanar surfaces supporting a given
Schnyder wood, and thus all non-degenerate coplanar surfaces can be obtained
from some Schnyder wood in this way.

Theorem 2.10. Let S be a coplanar orthogonal surface generated by V supporting
a Schnyder wood S on the vertex set V (S) ≡ V. Then there is a unique weight
function w : F (S) → R on the set of bounded faces of S and a unique translation
t ∈ R3 such that for all v ∈ V (S) and i ∈ {1, 2, 3} the coordinates are given by

vi = ti +
∑

F∈Ri(v)

w(F ).

Remark 2.11. A Schnyder wood S and a weight function w define an orthogonal
surface SS,w. This surface, however, does not have to support the initial Schnyder
wood. From the proof of Theorem 1.7 it follows that a necessary and sufficient
condition for an embedding S →֒ SS,w is that

Ri(u) ⊆ Ri(v) =⇒
∑

F∈Ri(u)

w(F ) ≤
∑

F∈Ri(v)

w(F )

with strict inequality whenever Ri(u) ⊂ Ri(v).

Proof of Theorem 2.10. Let S be a coplanar orthogonal surface and S a Schnyder
wood induced by S. Note that Fi(aj) = Fi(ak) for the suspension vertices a1, a2, a3

of S, where {i, j, k} = {1, 2, 3}. Let ti be the ith coordinate of aj for j 6= i.
Subtracting t = (t1, t2, t3) from all generating vectors v ∈ V yields a normalized
orthogonal surface in the sense that the suspension vertices now have coordinates normalized orthogonal

surface(c, 0, 0), (0, c, 0), (0, 0, c) and v1 + v2 + v3 = c for all v ∈ V. In the following we
assume that S is normalized in this sense.

Let f be the number of faces of S. With the region Ri(v) of a vertex v we
associate a row vector ri(v) of length f − 1 with a component for each bounded
face of F . The vector ri(v) is defined by

ri(v)F =

{
1 if F ∈ Ri(v)
0 otherwise.

The existence of a weight assignment to the faces realizing the normalized surface S

is equivalent to finding a vector w ∈ Rf−1 such that

∀v ∈ V,∀i ∈ {1, 2, 3} : ri(v) · w = vi (2.1)
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Claim 1. The rank of the linear system (2.1) is at most f − 1.

Proof. The vectors ri(v) have dimension f − 1, and we show that the matrix with
rows (ri(v), vi) of length f has at most f − 1 linearly independent rows. First
suppose that S is the Schnyder wood of a triangulation. For the three special
vertices, we only need the single equation 1 · w = c, where 1 denotes the vector
whose components are all 1. This equation together with the three equations of
an inner vertex v is a dependent system, since 1 = r1(v) + r2(v) + r3(v) and
c = v1 + v2 + v3. Therefore, we have at most

1 + 2(n − 3) = 2n − 5 = f − 1

linearly independent row vectors.
Let S be a Schnyder wood on a 3-connected planar map. If S has k + 3

bidirected edges, then it has f − 1 = 2n − 5 − k bounded faces. If e = {v, w} is a
bidirected edge in colors i−1 and i+1, then ri(v) = ri(w) and vi = wi. Therefore,
among the 2n − 5 potentially independent vectors, there are at most 2n − 5 − k
different ones. Hence, there are at most f − 1 linearly independent row vectors.

△
We now show, that (2.1) has rank f − 1 and therefore a unique solution.

Let eF be the (f − 1)-dimensional row vector with a single one at the position
corresponding to the bounded face F .

Claim 2. The vector eF is in the linear span of the region-face incidence vec-
tors ri(v), where v ∈ V and i ∈ {1, 2, 3}.

Proof. Lemma 1.11 implies that it suffices to distinguish the following three cases.

Case 1. The boundary of F is a directed cycle C, where bidirected edges are
allowed on C. From Lemma 1.11 or more directly from Rule (A3), see Section 1.1,
it follows that the cycle C consists of three directed paths Pi in the three colors
i = 1, 2, 3.

If C is clockwise, the order of the paths is P1, P2, P3 and if C is counterclockwise
the order of the paths is P1, P3, P2, see Figure 2.4. Let vi be the first vertex of
path Pi. In the clockwise case consider the regions R2(v1), R3(v2) and R1(v3), they
are disjoint and cover the bounded area B except the face F . Hence1− (r2(v1) + r3(v2) + r1(v3)) = eF .

In the counterclockwise case, the regions in question are R3(v1), R1(v2) and R2(v3)
and the equation is 1− (r3(v1) + r1(v2) + r2(v3)) = eF .
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v2

v3v1

R2(v1) R3(v2)

R1(v3)

v3

v2

R1(v2)

v1

R2(v3)

R3(v1)

(b)(a)

Figure 2.4. Faces with a directed cycle on the boundary.

Case 2. We assume that the boundary of F is not a directed cycle and that there
are two unidirected special edges of the same color i.

We may assume that the three special edges e1, e2, e3 have endvertices v1, w1,
v2, w2, v3, w3 clockwise in this order on the boundary of F where wj−1 = vj is
possible for every j ∈ {1, 2, 3}. By symmetry we may assume that i = 1 and
e1 = (v1, w1), e2 = (w2, v2).

Subcase w1 = v2. We first treat the case that e3 is directed as (w3, v3). This
includes the case that e3 is bidirected. Figure 2.5 (a) shows the situation with i = 1.

v1

v2

R1(v1)

R2(v1)

R3(v3) v1 w2

v3

R1(w2)

R3(w2)

R2(w3)w2

v3

w3

w3

w1 w1 v2

(a) (b)

Figure 2.5. Faces without a directed cycle, and with unidirected edges of the
same color.

As illustrated in the figure, R1(v1), R2(v1) and R3(v3) partition B \ F , hence1− (r1(v1) + r2(v1) + r3(v3)) = eF .

If e3 is directed as (v3, w3), then, as shown in Figure 2.5 (b):1− (r1(w2) + r3(w2) + r2(w3)) = eF .

Subcase w1 6= v2. In this case the boundary of F between w1 and w2 consists
of edges bidirected in colors 2, 3. Let R be the region enclosed by this bidirected
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path, P1(w1), and P1(v2), and r the corresponding vector. As shown in Figure 2.6,
R1(w1), R2(w1) and R3(v2) partition B \ R, hence1− (r1(w1) + r2(w1) + r3(v2)) = r.

To represent the vector eF we can now use the representations found in Sub-
case w1 = v2, we only have to add r on the right side.

R2(w1) R3(v2)
v2

R

F

w1

R1(w1)

Figure 2.6. The region R in the case i = 1.

Case 3. We assume that the boundary of F is not a directed cycle and that
there are no two unidirected special edges of the same color. Then, there are two
unidirected special edges of different colors i− 1, i + 1, and the third special edge
is bidirected in colors i − 1, i + 1. We assume that the two unidirected special
edges are e1 = (v1, w1), e2 = (w2, v2) and that i = 1.

Subcase w1 = v2. Figure 2.7 (a) shows the situation with i = 1.

v2w1

v3

w2

w3

v1

R2(w1)
R3(v2)

R1(w2)
R1(v1)

R1(w3)

(a)

v3

w2

w3

v1

R2(w1)
R3(v2)

R1(w2)
R1(v1)

R1(w3)

v2

w1

(b)

Figure 2.7. Faces without a directed cycle, and with unidirected edges of different
colors.
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As illustrated in the figure R3(v2), R1(w2), R1(v1) and R2(w1) cover B \ F , and
exactly the faces in R1(w3) are covered twice. Hence,1− (r3(v2) + r1(w2) + r1(v1) + r2(w1) − r1(w3)) = eF .

Subcase w1 6= v2. This is analogous to Case 2, Subcase w1 6= v2, Figure 2.7 (b)
shows the situation. △

The dimension of the span of the face vectors eF is f−1 and Claim 2 implies that
the span of the face vectors has dimension f−1 as well. By Claim 1 the system (2.1)
has at most f − 1 linearly independent equations. Altogether, this implies that
there exists a selection r1, . . . , rf−1 of linearly independent rows of (2.1). Note
that in the proof of Claim 1 one such selection is explicitly given. Solving this
subsystem with f − 1 equations yields the unique solution of (2.1). �

Next we show how to obtain an efficient algorithm that computes the face
weight representation from Theorem 2.10 for a given orthogonal surface S.

Theorem 2.12. Let S be a non-degenerate, axial, coplanar orthogonal surface
generated by n minima. A Schnyder wood S for S can be computed in O(n log n)
time. Given S, the translation vector and the face weights can be computed in O(n)
time.
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s1w1

w2

w3

s5
s2

s3

s4

Figure 2.8. Projection of the explored part of S onto the sweep plane. The
dotted lines represent the new edges when v is added, the other colored lines the
sweep front. The gray lines and vertices are the part of the surface that was already
explored.

Proof. We will first describe how to extract the Schnyder wood S from S. The
algorithm scans S from bottom to top with a sweep plane orthogonal to the
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x1-axis. Figure 2.8 shows a snapshot of the intersection of P with S. For the
sweep algorithm we need a data structure that maintains a finite ordered set of
real numbers and allows us to insert and delete elements. Furthermore, we need
access to the predecessor and successor of a given query value. Dynamic search
trees perform all these operations in logarithmic time, for example the red-black
trees presented in [26].

The algorithm builds a Schnyder wood S in the form of clockwise adjacency
lists for the vertices, where we also store the information about the type of each
edge relative to this vertex, see also the proof of Corollary 2.8. The correctness of
the algorithm will follow from the invariant (∗).

(∗)
Having seen a subset W ⊂ V of the generators of S the algo-
rithm has constructed all colored and directed edges of S that
are induced by W .

We give a description of the algorithm. A priority queue Q ordered lexicograph-
ically with respect to (x1, x2) and a dynamic tree P (the sweep front) ordered
lexicographically with respect to (x2,−x3) are the data structures used. Initial-
ize S as a path of green-blue bidirected edges between the vertices with minimum
x1-coordinate which are ordered by increasing x2-coordinate. Then, P is also ini-
tialized with these vertices, Q with all other vertices.

A step of the algorithm takes the first element v of Q, adds it to P and creates
a representative for v in S. The blue outgoing edge of v to its predecessor p in P
is added. If p1 = v1 the edge is green-blue bidirected, if p2 = v2 it is red-blue
bidirected, otherwise it is unidirected. Let s1, . . . , sℓ be the successors of v in P ,
where sℓ is the first one with smaller or equal x3-coordinate than v. Remove
s1, . . . , sℓ−1 from P adding a red unidirected edge from si to v in S for those si

which do not yet have a red outgoing edge. Finally, check if u, the vertex to be
added next, lies on the same x1-flat as v. In this case u and v will be joined
by a green-blue edge when u is considered. If not, add the green outgoing edge
of v which ends at sℓ. If (sℓ)3 = v3 this edge is green-red bidirected, otherwise
it is green unidirected. This is done for all vertices in Q and the invariant (∗)
guarantees that the result is a Schnyder wood S induced by S.

So we turn to proving that the invariant (∗) indeed holds. It is easy to see that it
holds after the initialization. So we assume by induction, that only edges incident
to the new vertex v have to be checked. There can be no incoming unidirected
green or blue edges at v in S at this time, because their starting point has bigger
x1-coordinate than v. The red outgoing edge of v cannot be in S either. It is easy
to check that the blue outgoing edge of v and its red incoming edges are geodesic
arcs on S. If the green edge is added, it also corresponds to a geodesic arc. If the
vertex u that is to be added next is the endvertex of the green outgoing edge of v,
this edge is not induced by W yet. We have thus shown, that all edges added to S
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belong to a Schnyder wood induced by S. Also, the induced orthogonal arcs are
all used by an edge. In the case where the green outgoing edge of v is not added,
this orthogonal arc is not induced by the explored part of the surface yet. This
proves that the invariant (∗) holds.

We now show the O(n log n) complexity bound for the above algorithm. We
access the predecessor of a vertex only when it is inserted and its successor only
when it is inserted or deleted. As we insert and delete every vertex at most once,
this proves the time bound of O(n log n). Edges can be added in constant time
maintaining the clockwise ordering of the adjacency lists. This is possible since
new adjacencies always can be added in front of or behind the so far newest vertex
in an existing partial list.

The second part of the algorithm is the computation of the face weights. The
translation (t1, t2, t3) can be read off the coordinates of the three special vertices.
We normalize all vertex coordinates by subtracting the translation. The faces are
now considered one by one. When considering a face F , we first determine of
which of the possible twenty types F is. As indicated in the proof of Theorem 2.10
there are two cases where the boundary of F is a clockwise or counterclockwise
directed cycle. The other eighteen cases correspond to the four subcases of Case 2
and the two subcases of Case 3 in the proof, multiplied with the number of colors.
These six cases are:

• F has two unidirected edges of the same color, w1 = v2, e3 is directed (w3, v3)

• F has two unidirected edges of the same color, w1 = v2, e3 is directed (v3, w3)

• F has two unidirected edges of the same color, w1 6= v2, e3 is directed (w3, v3)

• F has two unidirected edges of the same color, w1 6= v2, e3 is directed (v3, w3)

• F has two unidirected edges of different color, w1 = v2

• F has two unidirected edges of different color, w1 6= v2

We determine the vertices v1, v2, v3 respectively, v1, w1, v2, w2, v3, w3. As all coordi-
nates are normalized, the coordinates of the vertices correspond to the respective
regions’ weights and the weight of F can be calculated as in the proof of Theo-
rem 2.10. For example, in the case shown in Figure 2.5 on the right, the weight
of F is c − (w2)1 − (w3)2 − (w2)3 where x + y + z = c is the plane on which the
minima lie after the translation.

The runtime of the procedure for one face F cannot be bounded by a constant,
because the boundary of F has to be scanned. But every edge has to be considered
only a constant number of times when calculating the weight of F , and every edge
lies on at most two inner faces. Since the number of edges is linear in the number
of vertices for planar graphs, this yields a linear runtime. �
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2.2.2 Rigidity and Coplanarity

The face-counting produces a coplanar orthogonal surface for a given Schnydercoplanar surface

wood and in Section 2.1 we have discussed how a rigid orthogonal surface for arigid surface

given Schnyder wood can be constructed. Coplanarity and rigidity are both useful
concepts in the realm of orthogonal surfaces. It is therefore natural to ask whether
for every Schnyder wood there is an orthogonal surface that is rigid and coplanar.
In this section we present an example of a Schnyder wood for which a geodesic
embedding can be either rigid or coplanar, but not both.

b

a

f

e

cg

b c

e

a

f d
g

d

Figure 2.9. A Schnyder wood on a rigid, but not coplanar surface

Proposition 2.13. The Schnyder wood shown in Figure 2.9 cannot be embedded
on a rigid and simultaneously coplanar surface.

Proof. Assume for the sake of contradiction that there is such an embedding.
Coplanarity means that v1 + v2 + v3 = c = w1 + w2 + w3 for all v, w ∈ V , hence,
vi = wi implies vi−1 − wi−1 = wi+1 − vi+1. In the Schnyder wood from Figure 2.9
rigidity requires f1 > g1, b2 > g2 and d3 > g3. We use the symbol ≺ to highlight
the use of rigidity in the following calculation.

c3 < b3 < a3 < g3 ≺ d3 ⇒ a3 − b3 < d3 − c3

d3 − c3 = c1 − d1

e1 < d1 < c1 < g1 ≺ f1 ⇒ c1 − d1 < f1 − e1

f1 − e1 = e2 − f2

a2 < f2 < e2 < g2 ≺ b2 ⇒ e2 − f2 < b2 − a2

b2 − a2 = a3 − b3

Concatenating the inequalities from the right column of the calculation we obtain
the contradiction a3 − b3 < a3 − b3. �



2.3 Height Representations of Orthogonal Surfaces 39

2.3 Height Representations of Orthogonal Surfaces

In Theorem 2.10 we have shown that a coplanar orthogonal surface S can be
represented by a Schnyder wood S and a vector (wF )F∈F of weights for the bounded
faces of S. This section is concerned with height representations of orthogonal
surfaces. Throughout this section S is assumed to be a normalized orthogonal normalized surface

surface, that is the suspension vertices are

a1 = (α1, 0, 0), a2 = (0, α2, 0), a3 = (0, 0, α3).

Let S be generated by the set of minima V. Let W denote the set of maxima V,W, E
of S and E the set of edge-points, see Section 1.2 for the definitions of the char-
acteristic points. Furthermore F denotes the set of bounded flats of S. We fix characteristic points

a geodesically embedded map Mσ on S. By Theorem 1.7 S induces a Schnyder
wood on Mσ, and we denote this Schnyder wood by S. The dual map of Mσ is
denoted by Mσ∗, the dual Schnyder wood by S∗, and the primal dual completion primal dual completion

mapmap by M̃ .
Let n = |V|, m = |E|, f = |W| + 1, and note that n, m, f are the number

of vertices, edges, and faces of Mσ, respectively. The components of the height-
vector h(S) which has dimension n + f − 1 = m + 1, are indexed by the elements height-vector h(S)

of V ∪W, and defined as h(S)x = x1 + x2 + x3. The purpose of this section is to
prove the following theorem.

Theorem 2.14. Let S be a normalized orthogonal surface with Schnyder wood S
and height-vector h(S). Then, S and h(S) uniquely determine S.

It is well known that S uniquely determines the combinatorial type of S, that is
the incidences between the characteristic points. What we prove here is that, under
the assumption that the combinatorics of S are known, h(S) uniquely determines
the geometry of S. In other words h(S) uniquely determines the coordinates of
all flats of S.

The heart of the proof of Theorem 2.14 is Lemma 2.19. The idea for the proof
of Lemma 2.19 is due to Stefan Felsner, who used it in the context of triangle
contact representations, see [6] for more on this topic. Before we come to this part
of the proof we need some preparation.

Lemma 2.18 will show that it suffices to prove Theorem 2.14 for surfaces where
only the three suspension vertices of Mσ are incident to the unbounded flats.
Therefore, we do not give the following definitions in full generality but restrict
ourselves to such surfaces. We call the three bounded flats on which the suspension
vertices lie the outer flats of S, and the other bounded flats are the inner flats outer/inner flat

of S.
We now introduce the skeleton R(S) of an orthogonal surface, which is an skeleton R(S)

important tool for the proof of Theorem 2.14. Recall from Section 1.3 that the
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Schnyder wood S corresponds to an αS-orientation of the primal-dual completionαS-orientation

map M̃ in which the primal and dual vertices have out-degree 3 and the edge-
vertices have out-degree 1. Let M̃ ′ be obtained from M̃ by deleting v∞, its six
neighbors, and all edges incident to these seven vertices. The skeleton is the graph
obtained from M̃ ′ by deleting all edges that are outgoing at an edge-vertex of M̃ ′

in the orientation corresponding to S. It will be convenient in this section to refer
to a primal vertex of R(S) as a white vertex and to a dual vertex as a gray vertex,white/gray vertex

see Figure 2.10 (b) for an example. Note that in particular the suspension vertices
are colored white. We do not assign a color to the edge-vertices of R(S).

a2a3

a1

a3 a2

a1
(b) (c)(a)

Figure 2.10. An orthogonal surface S with a Schnyder wood, the skeleton R(S)
and the graph B(S).

We regard R(S) as an embedded graph. More precisely we use the embed-
ding that is obtained by projecting S orthogonally to the plane x1 + x2 + x3 = 1.
Then, the characteristic points and orthogonal arcs of S are the vertices respec-
tively edges of R(S). Furthermore, the bounded faces of R(S) correspond to the
bounded flats of S and we refer to them as the flats of R(S). It can be easily
checked, that R(S) has the following properties.

(P1) Every edge-vertex is adjacent to a white and a gray vertex.

(P2) Every flat has exactly two white-gray color changes on its boundary.

We call each of the two edge-vertices that are incident to a white as well as a
gray vertex of a flat F a special edge-vertex of F . We will use the fact that, byspecial edge-vertex

property (P1), every edge-vertex ve is special for exactly two of the three flats on
which it lies. The three edge-vertices incident to the unbounded flats are special
for their two bounded flats, not for the unbounded one. Hence, every bounded flat
is special for two edge-vertices and every edge-vertex is special for two bounded
flats. This implies that the number of flats of R(S) is |F| = |E| = m. We need
the following lemma for the proof of Theorem 2.14.

Lemma 2.15. Every recoloring of the gray and white non-suspension vertices
of R(S) that satisfies (P1) and (P2) is the skeleton of some surface S

′.
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Remark 2.16. Note that the recoloring itself is not the crucial part of the above
statement. Essentially, every graph with the structural properties of a skeleton
graph and a coloring that satisfies (P1) and (P2) is the skeleton graph of some
orthogonal surface. But the chosen formulation is more compact and suffices for
our purposes.

Proof of Lemma 2.15. On every bounded flat F ∈ F we choose a vertex w(F )
that is white and adjacent to one of the special edge-vertices. We also choose
a gray vertex g(F ) that is adjacent to the other special edge-vertex of F . We
now construct an oriented graph as follows. All edges of the skeleton are directed
towards the incident edge-vertex. We add a directed edge from every edge-vertex
which is adjacent to two gray vertices on some flat F to w(F ). Similarly directed
edges are added from edge-vertices that are adjacent to two white vertices on F
to g(F ). By construction none of these edges cross, see Figure 2.11.

Figure 2.11. Constructing a primal dual completion map by adding directed
edges.

The resulting graph can be augmented to a primal-dual completion map Ñ by
adding the seven vertices and oriented edges that have been deleted to obtain M̃ ′

from M̃ . In this orientation of Ñ the white and gray vertices have out-degree 3 and
the edge-vertices have out-degree 1. Thus, this orientation yields a primal-dual
pair of Schnyder woods. The surface that is obtained by face-counting from the
primal Schnyder wood is S

′, see the proof sketch of Theorem 1.7. �

We need another fact about the skeleton graph. Let R∗(S) denote the dual R∗(S)

of R(S). Let B(S) be the subgraph of R∗(S) induced by the vertices representing B(S)

bounded 1-flats and 2-flats. An edge of B(S) is oriented from the 1-flat to the
2-flat if the dual edge in R(S) is incident to a minimum and from the 2-flat to the
1-flat otherwise, see Figure 2.10 (c). An edge orientation of a graph is a bipolar
orientation with source s and sink t if it is a acyclic and every vertex but s and t bipolar orientation

has incoming as well as outgoing edges. More about properties of planar bipolar
orientations can be found in Section 3.4, where we study the number of bipolar
orientations of planar maps.

Lemma 2.17. The orientation of B(S) is bipolar. The source is the outer 2-flat,
the sink is the outer 1-flat.



42 Schnyder Woods and Orthogonal Surfaces

Proof. It is obvious that the vertices v1 and v2 representing the outer 1-flat and the
outer 2-flat have only incoming respectively outgoing edges. Furthermore, every
vertex of B(S) other than v1, v2 has incoming as well as outgoing edges. Thus,
we only have to show that the orientation is acyclic.

Note that all edges of R(S) dual to those of B(S) are orthogonal arcs thatorthogonal arc

are part of a blue edge either in S or in S∗. If e is an edge from a 1-flat to a
2-flat, then the dual edge e∗ is a blue edge of S that crosses e from right to left.
If e goes from a 2-flat to a 1-flat, then the dual edge is a blue edge of S∗ crossing
it from left to right. Now suppose for the sake of contradiction that B(S) has a
directed cycle C. The plane embedding of R(S) allows us to classify a directed
simple cycle as clockwise (cw-cycle) if the interior, Int(C), is to the right of C orcw-cycle

as counterclockwise (ccw-cycle) if Int(C) is to the left of C. We may assume thatccw-cycle

C is a ccw-cycle. Then, the blue edges of S that are dual to the edges of C all
point into Int(C). Since no blue unidirected edges of S cross 1-flats or 2-flats, no
blue edge of S points from the interior to the exterior of C. Thus, the blue special
vertex of S must be in the interior of C. But this is impossible since this vertex is
not surrounded by bounded 1-flats and 2-flats. �

We need to introduce one more tool before we start with the proof of The-
orem 2.14. We endow every flat F of R(S) with a linear order L(F ) on theL(F )

edge-vertices of F as follows. The outgoing edges of the edge-vertices of M̃ parti-
tion F into quadrangles, and each of these quadrangles consists of a white vertex,
a gray vertex and two edge-vertices. Choose one of the special edge-vertices as
the first element v1 of L(F ), and the other edge-vertex on its quadrangle as v2,
see Figure 2.12. The third element v3 of L(F ) is the edge-vertex from the other
quadrangle of v2 and so on. Thus, the last element of L(F ) is the other special
edge-vertex. We refer to the inverse order as L−1(F ). Note that L−1(F ) is obtained
by the same procedure starting with the other special edge-vertex.

10

7
6

2

9
8543

1

Figure 2.12. The order L(F ) of the edge-vertices of a flat F .

We now sketch the proof of Theorem 2.14 for which we use the 0-1-matrix H(S).H(S)

The rows of H(S) are indexed by V ∪ W and its columns by F . Hence, H(S)
has m + 1 rows and m columns. An entry (H(S))x,y is 1 if x lies on the flat y
and 0 otherwise. Table 2.1 shows the matrix H(S) and others matrices that will
be introduced later for the surface S0 depicted in Figure 2.13.
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w1

w3

v

F1

F2F3 F4

w2 F6F5

a3 a2

a1

Figure 2.13. A small orthogonal surface S0 for the illustration of the matrices
H(S0), H ′(S0), C(S0), and C ′(S0), see Table 2.1.

H(S0) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 0 1 0
1 1 0 0 0 1




a1

a2

a3

v
w1

w2

w3

, C(S0) =




−1 1 0 0
−1 0 1 0
−1 0 0 1




F4

F5

F6

,

H ′(S0) =




1 1 1
1 0 0
0 1 0
0 0 1




v
w1

w2

w3

, C ′(S0) =




0 0 1 1
−1 1 0 0
−1 0 1 0
−1 0 0 1




~a
F4

F5

F6

Table 2.1. The matrices H(S0), H ′(S0), C(S0), and C ′(S0) for the orthogonal
surface S0 from Figure 2.13

We aim to prove that H(S) has full rank. This implies Theorem 2.14 since
then the coordinates of the flats of S are the unique solution of the linear equation
system

H(S) · x = h(S). (2.2)

The first step in the proof is to show that we may work with orthogonal surfaces
that have only three minima on the unbounded flats, see Lemma 2.18. We then
work with the balance matrix C(S) to show that H(S) has full rank. We explain
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below how exactly C(S) is obtained from H(S), and content ourselves for the
moment with the following explanation. A solution to the system

C(S) · y = 0 (2.3)

is an assignment of weights to the gray and white vertices of R(S) other than the
three suspension vertices. This assignment has the property that the weights of the
white vertices sum up to the same value as the weights of the gray vertices for every
inner flat. The System (2.3) is a homogenous system and we will see later that it
has one more variable than equations. Hence, (2.3) has a non-trivial solution y0.
The crucial step in the proof of Theorem 2.14 is showing the following statement,
see Lemma 2.19. By exchanging the colors white and gray for all vertices of R(S)
to which y0 assigns negative weight we obtain another orthogonal surface S

′ such
that C(S′) · |y0| = 0. Here |y0| denotes the componentwise absolute value of y0

and we will verify this statement with the help of Lemma 2.15. This combinatorial
interpretation subsequently helps us to argue that C(S) and H(S) have full rank.

This concludes the proof sketch and Lemma 2.18 is the first part of the proof
of Theorem 2.14.

Lemma 2.18. If Theorem 2.14 holds for orthogonal surfaces which have exactly
three minima incident to the unbounded flats, then it holds for all orthogonal sur-
faces.

Proof. Let S be an orthogonal surface with more than three minima on the outer
face. We construct a surface S

′ with three minima on the outer face from S

and show that if Theorem 2.14 holds for S
′ then it also holds for S. Since S is

normalized, the coordinates of its suspension vertices can be read off the height-
vector h(S). We use these coordinates to define three new vertices.

a′
1 = (0, α2 + 1, α3 + 1), a′

2 = (α1 + 1, 0, α3 + 1), a′
3 = (α1 + 1, α2 + 1, 0)

The surface S
′ is the normalization of the surface S

′ generated by the set
−W ∪ {−a′

1,−a′
2,−a′

3}, see Figure 2.14.
The translation that normalizes the surface is ~n = (α1 +1, α2 +1, α3 +1). The

generating minima of S
′ other than the three new suspension vertices −a′

1,−a′
2,−a′

3

are in bijection with the maxima of S. Hence, the maxima of S
′ are the points in

−V + ~n. Note that h(S′) can also be calculated from h(S) and ~n.
The Schnyder wood associated with S

′ is S∗ and −a′
1,−a′

2,−a′
3 form the outer

face of the underlying suspension map Mσ∗. The matrix H(S′) has three more rows
and three more columns than H(S), corresponding to the three additional vertices
respectively three new bounded flats. Furthermore, H(S) is a minor of H(S′) and
the three new rows corresponding to the suspension vertices −a′

i +~n have non-zero
entries only in the three new columns. Thus, if the m columns of H(S) have a



2.3 Height Representations of Orthogonal Surfaces 45

a′
2

a′
1

a′
3

a′
1

a1

a3 a2

a′
3a′

2
a3a2
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Figure 2.14. A surface S and the associated surface S
′ as described in

Lemma 2.18.

non-trivial linear dependence, then the columns of H(S′) also have a non-trivial
linear dependence. This implies that if H(S′) has full rank, then so does H(S).

�

We now introduce the balance matrix that we need for the proof of Theo-
rem 2.14, as we have mentioned in the proof sketch. For the definition of the
balance matrix, we use the auxiliary matrix H ′(S). This is a submatrix of H(S)
of dimensions (m−2)×(m−3) which is obtained from H(S) by deleting the three
rows corresponding to the outer vertices of S and the three columns corresponding
to the outer flats, see Table 2.1. The three deleted column vectors each have an
entry 1 in a row which is otherwise 0, since it belongs to an outer vertex. It follows
that if H ′(S) has full rank, then so does H(S). It remains to prove that H ′(S)
indeed has full rank and we define the balance matrix C(S) for this purpose.

The balance matrix C(S) is obtained from H ′(S)T by multiplying all columns balance matrix C(S)

corresponding to minima of S by −1, see Table 2.1. A solution of (2.3) corresponds
to an assignment of weights to the inner white and gray vertices of R(S) such that
for every inner flat of the skeleton the sum of weights of its white vertices equals
the sum of weights of its gray vertices. Since this is a homogeneous system with
m−3 equations and m−2 variables it has a non-trivial solution y0. We define Σ(y0)
to be the diagonal matrix which has ith diagonal entry −1 if the ith component
of y0 is negative and 1 otherwise. Thus, |y0| is a solution of the system

C(S) · Σ(y0) · y = 0. (2.4)

We call a vertex of R(S) positive/negative if the corresponding component of y0 positive/negative vertex

is positive or negative. The next claim is the core of the proof of Theorem 2.14.
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Lemma 2.19. Let y0 be a non-trivial solution of (2.3).

(i) All gray vertices lying on an outer flat have the same sign with respect to y0.

(ii) There exists a surface Ŝ such that

C(Ŝ) = C(S) · Σ(y0) or C(Ŝ) = C(S) · Σ(−y0).

Figure 2.15 shows an orthogonal surface, and the surface Ŝ, obtained by
switching the color of the encircled vertex from gray to white. Since the proof
of Lemma 2.19 is rather long we first show how it can be used to prove Theo-
rem 2.14.

ŜS

Figure 2.15. A surface S and the corresponding surface Ŝ, as described in
Lemma 2.19.

Proof of Theorem 2.14. Consider the indicator vector ~a of the maxima that lie
on the outer 1-flat of S. Let the augmented balance matrix C ′(S) denote theaugmented balance

matrix C′(S) (m − 2) × (m − 2) matrix obtained from C(S) by adding ~a as the first row, see
Table 2.1. We aim to show that C ′(S) has full rank. This implies that C(S) also
has full rank and thus suffices to prove the theorem. We first show that the system

C ′(S) · y = ~e1 (2.5)

has a solution, where ~e1 has first component 1 and all other components are 0.
Let y0 be a non-trivial solution of (2.3). By Lemma 2.19 there is a surface Ŝ with
C(Ŝ) = C(S) · Σ(y0) or C(Ŝ) = C(S) · Σ(−y0). Since −y0 also is a non-trivial
solution of (2.3), we may assume that C(Ŝ) = C(S) · Σ(y0).

We show that scaling y0 yields a solution of (2.5). The suspension vertices
of Ŝ are white and cannot change their color and all gray vertices of the outer
flats have the same sign in y0. Since no flat of Ŝ can have only white vertices
because of (P2) these gray vertices must all be non-negative with respect to y0.
Thus, we have that ~a · Σ(y0) = ~a and we aim to show that 〈~a, |y0|〉 > 0.
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Some component of |y0| has positive value α0. We use Lemma 2.17 to show that
〈~a, |y0|〉 ≥ α0. We may assume without loss of generality that some gray vertex v0

of R(Ŝ) has value α0. Then the sum of the values of the white vertices incident
to F1(v0), the 1-flat of v0, must be at least α0, since |y0| is non-negative. Each of
these white vertices is the minimum of some 2-flat that shares an orthogonal arc of
Ŝ with F1(v0). Thus, the sum of the maxima of these 2-flats must be at least α0,
and these maxima in turn lie on 1-flats. This illustrates that the value α0 is passed
on from flat to flat in accordance with the edge directions of the graph B(Ŝ) from
Lemma 2.17. Since B(Ŝ) is bipolar it follows that the values of the gray vertices
of the outer 1-flat sum up to at least α0. This implies 〈~a, |y0|〉 = α ≥ α0 > 0.
Thus,

C ′(S) · y0 = C ′(S)Σ(y0) · |y0| = C ′(Ŝ) · |y0| = α · ~e1

and scaling yields the desired solution of (2.5).
Now, let z0 be some non-trivial solution of (2.5). Lemma 2.19 shows that there

is a surface S(z0) with C(S(z0)) = C(S) · Σ(z0) or C(S(z0)) = C(S) · Σ(−z0).
Thus, |z0| is a solution of C ′(S(z0)) · y = ~e1. Using Lemma 2.17, this implies that
the absolute value of every component of z0 is bounded by 1.

We are ready to conclude that C ′(S) has full rank. Otherwise the kernel of

C ′(S) would be a non-trivial vector space ~V that of course contains vectors of

arbitrary length. Since all vectors in z0 + ~V are solutions of C ′(S) · y = ~e1 this
contradicts that all solutions have components of absolute value at most 1. This
concludes the proof of Theorem 2.14 based on Lemma 2.19. �

Proof of Lemma 2.19. If all components of y0 are non-positive or all components
of y0 are non-negative, then we can simply choose Ŝ = S. So we may assume
that y0 has negative and positive components. We work with a signing of R(S)
where negative vertices are signed − and non-negative vertices are signed +. Then
there is an edge-vertex v0 that has a neighbor signed − and a neighbor signed +.
The first step in the proof is to construct a closed Jordan curve J(v0) through v0

that intersects the embedding of R(S) only in edge-vertices that have negative and
non-negative neighbors. Moreover, the negative neighbors of every edge-vertex
on J(v0) are separated from the non-negative ones by J(v0). This construction
will imply Part (i) of the lemma. We then proceed by showing that if there is
an edge-vertex v′

0 6∈ J(v0) with negative and non-negative neighbors, then the
closed Jordan curve J(v′

0) through v′
0 cannot intersect J(v0). In conjunction with

Lemma 2.15 this enables us to prove that switching the color of all negative vertices,
with respect to y0 or with respect to −y0, yields the surface Ŝ. The following
observation is essential for the construction of the Jordan curve J(v0).

Observation 1. It is not possible that all gray vertices of a flat are negative,
while all white ones are non-negative or vice versa, since this would imply that a
negative number equals a non-negative one.
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Claim 1. There is a simple, closed Jordan curve J(v0) through a sequence of
edge-vertices vi and flats Fi

v0, F0, v1, F1, v2, . . . , Fk−1, vk = v0.

This sequence has the following properties. The vertex vi is a special vertex of the
flat Fi and a non-special vertex of Fi−1. Furthermore, the clockwise predecessor
of vi on Fi, denoted ui, is signed − and the clockwise successor wi is signed +, or
vice versa. Thus, either all neighbors of the vi in the interior of J(v0) are negative
and the neighbors in the exterior are non-negative or vice versa.

As above, let v0 be an edge-vertex that is adjacent to a non-negative and a
negative vertex. This vertex v0 cannot lie on an unbounded face, since these edge-
vertices have only one signed neighbor, the suspension vertices are not signed.
Since there are two sign changes around v0 and it is special for two flats, one of
them, call it F0, must have a vertex u0 signed − and a vertex w0 signed +, both
adjacent to v0. We may assume that u0 is the predecessor of v0 on a clockwise
walk on the boundary of F0 and w0 the successor. We may furthermore assume
that v0 is the minimum of the linear order L(F0).
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Figure 2.16. The curve J(v0) separating a positive and a negative region.

We define v1 to be the smallest edge-vertex in L(F0) which has differently
signed neighbors on F0. Then, v1 cannot be the other special vertex of F0, since
this would contradict Observation 1. Let F1 be the flat other than F0 on which v1

has differently signed neighbors.
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By construction v1 is special for F1, and since we assumed that u0 is signed −
we have that u1 is signed − and w1 is signed +. Thus, we can repeat the same
construction as for v1 and F1 to obtain a vertex v2 on F1 and a flat F2 that have
the desired properties. In this way we find a sequence of the form

v0, F0, v1, F1, v2, . . . vk−1, Fk−1.

Note that every flat can appear in this sequence at most twice if there are no
vertex repetitions, since it is entered through one of its two special vertices. When
we enter a flat Fi = Fj for the second time from the vertex vj we consider the
edge-vertices in the inverse order L−1(Fi). Since uj, the clockwise predecessor of vj

on Fi, is negative a sign change must occur on both boundary paths between vi

and vj . Since vi+1 is the largest edge-vertex on the boundary of Fi with respect
to L−1(Fi), at which a sign change occurs, we know that vj+1 6= vi+1. Since the
skeleton is finite the sequence must finally end with a vertex repetition

v0, F0, v1, F1, v2, . . . , Fk−1, vk

where vk = vi for some i ∈ {0, . . . , k−1}. Note that vi is not special for Fi−1, that
is we enter each vertex from a flat for which it is not special. The only vertex,
whose non-special flat is not among F0, . . . , Fk−1 is v0. Thus, the sequence is of
the form v0, F0, v1, . . . , Fk−1, v0.

The sequence v0, F0, v1, F1, v2, . . . , Fk−1, v0 is now used to obtain J(v0) as an-
nounced at the beginning of the proof. The closed Jordan curve J(v0), connects
the edge-vertices vi and vi+1 within Fi. From the above considerations it follows
that J(v0) can be drawn without self-intersection also on flats which appear twice
in the sequence, that is J(v0) is simple, see Figure 2.16. Note that either the ui

lie in the interior of J(v0) and the wi in the exterior, or vice versa. △
We are now ready to prove Part (i) of the lemma. The special edge vertices

of the outer flats are special for two outer flats and non-special for an unbounded
flat. Thus, by the construction from Claim 1 the curve J(v0) cannot pass through
an outer flat. Therefore every edge-vertex on an outer flat has neighbors with the
same sign on this outer flat. Part (i) follows since any two outer flats share a gray
vertex. We may therefore assume from now on that all gray vertices on the outer
flats are non-negative with respect to y0, otherwise we may work with −y0 instead
of y0.

We now proceed to prove Part (ii) of the lemma. Suppose there is an edge-
vertex v′

0 that does not lie on J(v0). Then, by Claim 1 there exists a closed
curve J(v′

0) through edge-vertices and flats

v′
0, F

′
0, v

′
1, F

′
1, v

′
2, . . . , F

′
ℓ−1, v

′
0.
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Claim 2. Two Jordan curves J(v0) and J(v′
0) with v′

0 6∈ J(v0) do not intersect.

We show below, that if J(v0) and J(v′
0) enter the same flat from different

edge-vertices, then they continue on different flats. Since v′
0 does not lie on J(v0),

this implies, that if both curves enter a flat Fj = F ′
i , then they do so from flats

Fj−1 6= F ′
i−1, and thus from the two different special vertices of Fj .

An argument similar to the one that J(v0) does not self-intersect when it enters
the same flat Fj twice shows that J(v′

0) leaves Fj = F ′
i through an edge-vertex on

the same side of J(v0) as v′
i. We may assume that the uk are signed −. If the u′

k are
also negative, the argument is the same as in Claim 1. The other case is that u′

i,
the clockwise predecessor of v′

i on F ′
i , is signed +. In this situation both vj-v

′
i-paths

on Fj start and end with the same sign. Since there is an exit vertex vj+1 on one
of these paths, there has to be another non-special edge-vertex on the same path
with differently signed neighbors. Thus, v′

i+1 6= vj+1 which implies that vi+1 lies
on the same side of J(v0) as v′

i, and thus J(v0) and J(v′
0) do not intersect.

△
We now show Part (ii) of the lemma. We claim that switching the colors

of all negative vertices does not violate properties (P1) and (P2). We observe
that for every edge-vertex we on some J(ve) we enter we from a flat on which
it has neighbors of the same color, and that these two neighbors are separated
by J(ve). Thus, the two neighbors of we which lie on the same side of J(ve)
have different colors and this implies (P1). Property (P2) still holds, since a color
change only involves one or two consecutive segments of monochromatic vertices
on the boundary of a flat F . Since both these segments start at a special vertex
of F they do not introduce new changes of color on the boundary of F , but only
shift the old ones. Thus, we have obtained a surface S

′ with skeleton R(S′), such
that C(S′) = C(S)Σ(y0) if the gray vertices of the outer flats are signed + and
C(S′) = C(S)Σ(−y0) otherwise. �

2.4 Conclusions

In this chapter we have studied connections of orthogonal surfaces and Schnyder
woods. In Section 2.1, we presented a new proof of the Brightwell-Trotter Theorem.
This approach uses facts about Schnyder woods to prove that the intuitive method
of shifting flats can be used to obtain a rigid surface in time O(n).

In Section 2.2 we have presented a generalization of the face-counting approach
for the generation of coplanar surfaces from Schnyder woods. We have shown that
every coplanar surface can be obtained by generalized face-counting. We also gave
an example of a Schnyder wood that cannot be geodesically embedded on a rigid
and simultaneously coplanar surface.
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Figure 2.17. An orthogonal surface with geodesically embedded stacked trian-
gulation.

In Section 2.3 we have discussed height representations of orthogonal surfaces.
The proof that orthogonal surfaces are uniquely determined by a Schnyder wood
plus the heights of all minima and maxima uses the augmented balance mat-
rix C ′(S). We show that C ′(S) has full rank and thus (2.5) has a unique solution.
In order to simplify the proof of Theorem 2.14, it would be useful to understand
this solution from a combinatorial point of view.

In the case that Mσ is a stacked triangulation we are able to give an inter-
pretation of this solution. Let the solution α of (2.5) be given for some stacked
triangulation T . It is easy to check that the solution for T +v′ obtained from T by
stacking the vertex v′ into face F is obtained as follows. The value of v′ is defined
as α(F )/2 and the values for the three new faces as α(F )/2. All other values are
kept except α(F ). A solution for the K3 simply assigns 1 to the unique bounded
face. Then, the above method yields that every vertex v and bounded face F of
height h, has value 2−r, see Figure 2.17.

In general we do not have a combinatorial interpretation for the solution
of (2.5), and therefore we need to reinterprete it in Lemma 2.19. Hence, solv-
ing the following problem could potentially simplify the proof of Theorem 2.14.

Problem 2.20. What is the combinatorial interpretation of the solution of (2.5)?

As we have mentioned above, Felsner proved Lemma 2.19 when working on
triangle contact representations, see [6]. Progress on Problem 2.20 could conversely
help to answer open questions related to triangle contact representations.





Chapter 3

The Number of Planar Orientations with
Prescribed Out-Degrees

Many different combinatorial structures on planar maps have attracted the atten- planar map

tion of researchers. Among them are spanning trees, bipartite perfect matchings
(or more generally bipartite f -factors), Eulerian orientations, Schnyder woods,
bipolar orientations and 2-orientations of quadrangulations. Orientations with pre-
scribed out-degrees are a quite general concept. Remarkably, all the above struc- orientation with

prescribed out-degreestures can be encoded as orientations with prescribed out-degrees. Let a planar
map M with vertex set V and a function α : V → N be given. An orientation X
of the edges of M is an α-orientation if every vertex v has out-degree α(v). For α-orientation

the sake of brevity, we refer to orientations with prescribed out-degrees simply as
α-orientations in the rest of this chapter.

For some of the above mentioned structures it is not obvious how to encode
them as α-orientations. For Schnyder woods on triangulations the encoding by
3-orientations goes back to de Fraysseix and de Mendez [31], see Theorem 1.8. We
have seen in Section 1.3 that encoding Schnyder woods on 3-connected planar maps
as α-orientations requires the use of an auxiliary map, the primal dual completion
map M̃ . Similarly, the encoding for bipolar orientations proposed by Woods [98]

and independently by Tamassia and Tollis [88] uses the angle graph M̂ as an
auxiliary map. For bipartite f -factors and spanning trees Felsner [41] describes
encodings as α-orientations.

Given the existence of a combinatorial structure on a class Mn of planar maps
with n vertices, one of the questions of interest is how many instances of this
structure there are for a given map M ∈ Mn. Especially, one is interested in the
minimum and maximum that this number attains on Mn. This question has been
treated quite successfully for spanning trees and bipartite perfect matchings. For
spanning trees the Kirchhoff Matrix Tree Theorem allows to bound the maximum
number of spanning trees of a planar graph with n vertices between 5.02n and 5.34n,
see [81, 73]. Pfaffian orientations can be used to efficiently calculate the number of
bipartite perfect matchings in the planar case, see for example [69]. Kasteleyn [61]
has shown that the k × ℓ square grid has asymptotically e0.29·kℓ ≈ 1.34kℓ perfect
matchings. The number of Eulerian orientations is studied in statistical physics
under the name of ice models, see [9] for an overview. In particular Lieb [65] has

53
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shown that the k × ℓ square grid on the torus has asymptotically (8
√

3/9)kℓ ≈
1.53kℓ Eulerian orientations and Baxter [8] has worked out the asymptotics for the
triangular grid on the torus as (3

√
3/2)kℓ ≈ 2.598kℓ.

In many cases it is relatively easy to see which maps in a class Mn carry a
unique object of a certain type, while the question about the maximum number is
rather intricate. Therefore, we focus on finding the asymptotics for the maximum
number of α-orientations that a map from Mn can carry. Table 3.1 gives an
overview of the results of this chapter for different instances of Mn and α. The
entry c in the “Upper Bound” column is to be read as O(cn), in the “Lower Bound”
column as Ω(cn) and for the “≈ c” entries the asymptotics are known.

Graph class and orientation type Lower bound Upper bound

α-orientations on planar maps 2.59 3.73

Eulerian orientations 2.59 3.73

Schnyder woods on triangulations 2.37 3.56

Schnyder woods on the square grid ≈ 3.209

Schnyder woods on planar maps 3.209 8

2-orientations on quadrangulations 1.53 1.91

bipolar or. on stacked triangulations ≈ 2

bipolar orientations on outerplanar maps ≈ 1.618

bipolar orientations on the square grid 2.18 2.62

bipolar orientations on planar maps 2.91 3.97

Table 3.1. An overview of the results presented in Chapter 3.

The chapter is organized as follows. In Section 3.1 we treat the most general
case, where Mn is the class of all planar maps with n vertices and α can be any
integer valued function. We prove an upper bound that applies to every map and
every α and in Section 3.1.3 we prove a lower bound for the number of Eulerian
orientations. In Section 3.2.1 we consider Schnyder woods on plane triangulations
and in Section 3.2.2 the more general case of Schnyder woods on 3-connected
planar maps is discussed. We split the treatment of Schnyder woods because
the more direct encoding of Schnyder woods on triangulations as α-orientations
yields stronger bounds. In Section 3.2.2 we also discuss the asymptotic number of
Schnyder woods on the square grid. Section 3.3 is dedicated to 2-orientations of
quadrangulations. In Section 3.4, we study bipolar orientations. The square grid is
treated in Section 3.4.1 while stacked triangulations, outerplanar maps and planar
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maps are studied in Section 3.4.2. The upper bound for planar maps relies on a
new encoding of bipolar orientations of inner triangulations by +/− vectors. In
Section 3.4.3 we characterize the +/− vectors that induce a bipolar orientation. In
Section 3.5.1 we discuss the complexity of counting α-orientations. In Section 3.5.2
we show how counting α-orientations can be reduced to counting (not necessarily
planar) bipartite perfect matchings and the consequences of this connection are
explained as well. We conclude with some open problems.

3.1 The Number of α-Orientations

For convenience, we remind the reader of the following definitions from Section 1.1.
A planar map M is a simple planar graph G together with a fixed crossing-free
embedding of G in the Euclidean plane. In particular, M has a designated outer
(unbounded) face. Recall that we denote the sets of vertices, edges and faces of
a given planar map M by V (M), E(M), and F(M), and their respective cardi-
nalities by n(M), m(M) and f(M). If ambiguities can be excluded we omit the
parameter M . The degree of a vertex v will be denoted by d(v).

Let M be a planar map and α : V → N. An orientation X of the edges of M
is an α-orientation if every v ∈ V has out-degree α(v) in X. α-orientation

Let X be an α-orientation of M and let C be a directed cycle in X. Define XC

as the orientation obtained from X by reversing all edges of C. Since the reversal
of a directed cycle does not affect out-degrees, the orientation XC is also an α-
orientation of M . In the sequel we refer to such a reorientation of a directed
cycle as a cycle flip. The plane embedding of M allows us to classify a directed flip

simple cycle as clockwise (cw-cycle) if the interior, Int(C), is to the right of C or cw-cycle

as counterclockwise (ccw-cycle) if Int(C) is to the left of C. If C is a ccw-cycle ccw-cycle

of X then we say that XC is left of X and X is right of XC . Felsner proved the
following theorem in [41].

Theorem 3.1. Let M be a planar map and α : V → N. The set of α-orientations
of M endowed with the transitive closure of the ‘left of ’ relation is a distributive
lattice.

Theorem 3.1 found applications in drawing algorithms in [50, 13], and for enu-
meration and random sampling of graphs in [52]. In [64] Knauer studies the
structure of the set of α-orientations on non-planar graphs and other aspects of
α-orientations.

The following observation is easy but useful. Let M and α : V → N be given,
let W ⊂ V , and let EW be the edges of M with one endpoint in W and the other
endpoint in V \ W . Suppose all edges of EW are directed away from W in some
α-orientation X0 of M . The demand of W for

∑
w∈W α(w) outgoing edges forces
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all edges in EW to be directed away from W in every α-orientation of M . Such
an edge with the same direction in every α-orientation is a rigid edge of M . Noterigid edge

that the rigidity of an edge in this sense is not related to the notion of an rigid
edge on an orthogonal surface, as defined at the end of Section 1.2.

We denote the number of α-orientations of M by rα(M). Let M be a family ofrα(M)

pairs (M,α) of a planar map and an out-degree function. Most of this chapter is
concerned with lower and upper bounds for max(M,α)∈M rα(M) for some family M.
In Sections 3.1.1 and 3.1.3, we deal with bounds that apply to all M and α, while
later sections will be concerned with special instances.

3.1.1 An Upper Bound for the Number of α-Orientations

A trivial upper bound for the number of α-orientations on M is 2m as any edge
can be directed in two ways. The following easy but useful lemma improves the
trivial bound.

Lemma 3.2. Let M be a planar map, A ⊂ E a cycle free subset of edges of M ,
and α a function α : V → N. Then, there are at most 2m−|A| α-orientations of M .
Furthermore, M has less than 4n α-orientations.

Proof. Let X be an arbitrary but fixed orientation out of the 2m−|A| orientations of
the edges of E \A. It suffices to show that X can be extended to an α-orientation
of M in at most one way. We proceed by induction on |A|. The base case |A| = 0
is trivial. If |A| > 0, then, as A is cycle free, there is a vertex v that is incident
to exactly one edge e ∈ A. If v has out-degree α(v) respectively α(v) − 1 in X,
then e must be directed towards v respectively away from v in every α-orientation
of M extending X. In either case the direction of e is determined by X, and by
induction there is at most one way to extend the resulting orientation of E\(A−e)
to an α-orientation of M . If v does not have out-degree α(v) or α(v) − 1 in X,
then there is no extension of X to an α-orientation of M . The bound 2m−n+1 < 4n

follows by choosing A to be a spanning forest and applying Euler’s formula. �

A bound that improves Lemma 3.2 will be given in Proposition 3.5. The
following lemma is needed for the proof.

Lemma 3.3. Let M be a planar map with n vertices that has an independent set I2

of n2 vertices that have degree 2 in M . Then, M has at most (3n − 6) − (n2 − 1)
edges.

Proof. Consider a triangulation T extending M and let B be the set of additional
edges, i.e., of edges of T that are not in M . If n = 3, then the conclusion of the
lemma is true and we may thus assume n > 3 for the rest of the proof. Hence,
there are no vertices of degree 2 in T , and every vertex of I2 must be incident to
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at least one edge from B. If there is a vertex v ∈ I2 that is incident to exactly one
edge from B, then v and its incident edges can be deleted from I2, from M and
from T , whereby the result follows by induction. The last case is that all vertices
of I2 have at least two incident edges in B. Since every edge in B is incident to at
most two vertices from I2 it follows that |I2| ≤ |B|. Therefore,

|E(M)| = |E(T )| − |B| ≤ |E(T )| − |I2| = (3n − 6) − n2.

�

Remark 3.4. It can be seen from the above proof that K2,n2 plus the edge between
the two vertices of degree n2 is the unique graph to that only n2 − 1 edges can be
added. For every other graph at least n2 edges can be added.

Proposition 3.5. Let M be a planar map, α : V → N, and I = I1 ∪ I2 an
independent set of M , where I2 is the subset of vertices of I that have degree 2
in M . Then the number of α-orientations of M is at most

22n−4−|I2| ·
∏

v∈I1

(
1

2d(v)−1

(
d(v)

α(v)

))
. (3.1)

Proof. We may assume that M is connected and has minimum degree 2. Let Mi,
for i = 1, . . . c, be the components of M − I. We claim that M has at most
(3n− 6)− (c− 1)− (|I2| − 1) edges. Note that every component C of M − I must
be connected to some other component C ′ via a vertex v ∈ I such that the edges
vw and vw′ with w ∈ C and w′ ∈ C ′ form an angle at v. Since w and w′ are
in different connected components the edge ww′ is not in M and we can add it
without destroying planarity. We can add at least c− 1 edges not incident to I in
this fashion. Thus, by Lemma 3.3 we have that m + (c− 1) ≤ 3n− 6 − (|I2| − 1).

Let S ′ be a spanning forest of M − I, and let S be obtained from S ′ by adding
one edge incident to every v ∈ I. Then, S is a forest with n − c edges. By
Lemma 3.2, M has at most 2m−|S| α-orientations and by Lemma 3.3

m − |S| ≤ (3n − 6) − (c − 1) − (|I2| − 1) − (n − c) = 2n − 4 − |I2|.
For every vertex v ∈ I1 there are 2d(v)−1 possible orientations of the edges of

M − S at v. Only the orientations with α(v) or α(v) − 1 outgoing edges at v can
potentially be completed to an α-orientation of M . Since I1 is an independent set
it follows that M has at most

2m−|S| ·
∏

v∈I1

(
d(v)−1
α(v)

)
+
(

d(v)−1
α(v)−1

)

2d(v)−1
≤ 22n−4−|I2| ·

∏

v∈I1

(
d(v)
α(v)

)

2d(v)−1
(3.2)

α-orientations. �
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Corollary 3.6. Let M be a planar map and α : V → N. Then, M has at most
3.73n α-orientations.

Proof. Since M is planar, the Four Color Theorem implies that it has an inde-
pendent set I of size |I| ≥ n/4. Let I1, I2 be as in Proposition 3.5. Note that for
d(v) ≥ 3

1

2d(v)−1

(
d(v)

α(v)

)
≤ 1

2d(v)−1

(
d(v)

⌊d(v)/2⌋

)
≤ 3

4
. (3.3)

Thus, the result follows from Proposition 3.5.

22n−4−|I2|
(

3

4

)|I1|
≤ 22n−4

(
3

4

)n
4

≤ 3.73n.

�

The best lower bound for general α and M that we can prove, uses Eulerian
orientations of the triangular grid, see Section 3.1.3.

3.1.2 Grid Graphs

Enumeration and counting of different combinatorial structures on grid graphs
have received a lot of attention in the literature, see e.g. [9, 65, 21]. In Section 3.1.3
we present a family of graphs that have asymptotically at least 2.598n Eulerian
orientations. This family is closely related to the grid graph, and throughout this
chapter we will use different relatives of the grid graph to obtain lower bounds.
We collect the definitions of these related families in this section.

The square grid or grid graph Gk,ℓ with k rows and ℓ columns is defined assquare grid Gk,ℓ

follows. The vertex set is

Vk,ℓ = {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}.

The edge set Ek,ℓ = EH
k,ℓ ∪ EV

k,ℓ consists of horizontal edges

EH
k,ℓ =

{
{(i, j), (i, j + 1)} | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ − 1

}

and vertical edges

EV
k,ℓ =

{
{(i, j), (i + 1, j)} | 1 ≤ i ≤ k − 1, 1 ≤ j ≤ ℓ

}
.

We denote the ith vertex row by V R
i = {(i, j) | 1 ≤ j ≤ ℓ} and the jth vertexV R

i , V C
j , EC

j

column by V C
j = {(i, j) | 1 ≤ i ≤ k}. The jth edge column EC

j is defined as
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EC
j = {{(i, j), (i, j + 1)} | 1 ≤ i ≤ k}. The number of bipolar orientations of Gk,ℓ

is the topic of Section 3.4.1.

The grid on the torus GT
k,ℓ is obtained from Gk+1,ℓ+1 as follows. We identify the GT

k,ℓ

vertices (1, i) and (k + 1, i) as well as (j, 1) and (j, ℓ + 1) for all i and j and delete
parallel edges that these identifications create, see Figures 3.1 (a) and (b). Edges
of the form {(i, 1), (i, ℓ)} are called horizontal wrap-around edges while those of wrap-around edge

the form {(1, j), (k, j)} are the vertical wrap-around edges. Note that Gk,ℓ can be
obtained from GT

k,ℓ by deleting the k horizontal and the ℓ vertical wrap-around
edges.

Lieb [65] shows that GT
k,ℓ has asymptotically (8

√
3/9)kℓ Eulerian orientations. Eulerian orientation

His analysis involves the calculation of the dominant eigenvalue of a so-called
transfer matrix. In Section 3.3 we also use this technique.

(1, 1)

(4, 1)

(4, 1) (4, 4)

(c) (d)
a1

a2
a3

v∞

(1, 1)

G∗
4,4 G�

4,4

(a) (b)

GT
4,4 GT

4,4

Figure 3.1. The graph GT
4,4 and the planar maps G∗

4,4 and G�
4,4.

We consider the number of Schnyder woods on the augmented grid G∗
k,ℓ in G∗

k,ℓ

Section 3.2.2. The augmented grid is obtained from Gk,ℓ by adding a triangle with
vertices {a1, a2, a3} to the outer face, see Figure 3.1 (c). The triangle is connected
to the boundary vertices of the grid as follows. The vertex a1 is adjacent to
all vertices of V R

1 , a2 is adjacent the vertices from V C
ℓ and a3 to the vertices

from V R
k ∪ V C

1 .

When we consider 2-orientations in Section 3.3 we use the quadrangulation G�
k,ℓ, G�

k,ℓ

see Figure 3.1 (d). A quadrangulation is a planar map such that all faces have
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cardinality 4. This quadrangulation is obtained from the grid Gk,ℓ by adding a
vertex v∞ to the outer face that is adjacent to every other vertex of the boundary
such that (1, 1) is not adjacent to v∞. When k and ℓ are even, this graph is closely
related to the torus grid GT

k,ℓ which can be obtained from G�
k,ℓ by reassigning end

vertices of edge as follows, see Figures 3.1 (a) and (d).

{(1, j), v∞} → {(1, j), (k, j)}, {(k, j), v∞} → {(k, j), (1, j)} for 2 ≤ j ≤ ℓ
{(i, 1), v∞} → {(i, 1), (i, ℓ)}, {(i, ℓ), v∞} → {(i, ℓ), (i, 1)} for 2 ≤ i ≤ k

Since k, ℓ are even, this does not create parallel edges and the resulting graph
is GT

k,ℓ minus the edges e1 = {(1, 1), (1, ℓ)} and e2 = {(1, 1), (k, 1)}.
In Sections 3.1.3 and 3.4.2 we use the triangular grid Tk,ℓ which we have alreadytriangular grid Tk,ℓ

encountered in Section 1.3. It is obtained from Gk,ℓ by adding the diagonal edges
{(i, j), (i − 1, j + 1)} for 2 ≤ i ≤ k and 1 ≤ j ≤ ℓ − 1, see Figure 3.2 (a). The
augmented triangular grid T ∗

k,ℓ which we need in Section 3.2.1 is obtained in theT ∗
k,ℓ

same way from G∗
k,ℓ, see Figure 3.3.

The terms vertex row, vertex column, and edge column are used for the trian-
gular grid analogously to the definition above for Gk,ℓ.

T T
3,4

(3, 1) (3, 2) (3, 3) (3, 4)

(2, 1)

(1, 1)

(1, 1)

(3, 1)

(3, 1)

(3, 1) (3, 2) (3, 3) (3, 4)

(2, 1)

(1, 1)

(2, 1)

(b)(a)

T4,5

Figure 3.2. The triangular grid T4,5, and the torus grid T T
3,4. The labels indicate

the vertices respectively the end vertices of the pending edges.

We also use the triangular grid on the torus T T
k,ℓ, see Figure 3.2 (b). We adoptT T

k,ℓ

the definition from [8], therefore it differs slightly from that of the square grid on
the torus. More precisely, instead of identifying vertices (i, ℓ + 1) and (i, 1), we
identify vertices (i, ℓ + 1) and (i − 1, 1) (and (1, ℓ + 1) with (k, 1)) to obtain T T

k,ℓ

from Tk,ℓ. Baxter [8] calls this boundary condition helical. The wrap-around edges
are defined analogously to the square grid case.

In [8] Baxter has determined the asymptotic growth of the number of Eulerian
orientations of T T

k,ℓ as k, ℓ → ∞. Baxter’s analysis uses similar techniques asEulerian orientation

Lieb’s [65] and yields an asymptotic growth rate of (3
√

3/2)kℓ.
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3.1.3 A Lower Bound Using Eulerian Orientations

Let M be a planar map such that every v ∈ V has even degree and let α be
defined as α(v) = d(v)/2, ∀v ∈ V . Such an α-orientation of M is better known
as a Eulerian orientation. Eulerian orientations are exactly the orientations that Eulerian orientation

maximize the binomial coefficients in Equation (3.1). The lower bound in the next
theorem follows easily from a result by Baxter [8], as we explain below. It is the
best lower bound that we have for max(M,α)∈Mn

rα(M), where Mn is the set of all
planar maps with n vertices and no restrictions are imposed on α.

Theorem 3.7. Let E(M) the set of Eulerian orientations of M ∈ Mn. Then, the E(M)

following bounds hold for n big enough.

2.59n ≤ (3
√

3/2)kℓ ≤ max
M∈Mn

|E(M)| ≤ 3.73n

Proof. The upper bound is the one from Corollary 3.6. For the lower bound con-
sider the triangular grid on the torus T T

k,ℓ. As mentioned above, Baxter [8] was triangular grid

able to determine the exponential growth factor of Eulerian orientations of T T
k,ℓ

as k, ℓ → ∞. Baxter’s analysis uses eigenvector calculations and yields an asymp-
totic growth rate of (3

√
3/2)kℓ. From this graph a planar map T+

k,ℓ can be con-
structed by introducing a new vertex v∞ that subdivides every wrap-around edge.
Thus, all crossings between wrap-around edges can be substituted by v∞. As ev-
ery Eulerian orientation of T T

k,ℓ yields a Eulerian orientation of T+
k,ℓ this graph has

at least (3
√

3/2)kℓ ≥ 2.598kℓ Eulerian orientations for k, ℓ big enough. Note that
T+

k,ℓ has parallel edges. It can be transformed into a simple graph by subdividing

O(
√

kℓ) edges. Thus, the claimed bound also holds for simple planar maps. �

3.2 The Number of Schnyder Woods

In this section we give asymptotic bounds for the maximum number of Schnyder Schnyder wood

woods on planar triangulations and 3-connected planar maps. We use definitions
and facts from Chapter 1, in particular those from Section 1.3.

We treat triangulations and 3-connected planar maps separately because the
more direct bijection from Theorem 1.8 allows us to obtain a better upper bound
for Schnyder woods on triangulations than for the general case. We also have a
better lower bound for the general case of Schnyder woods on 3-connected planar
maps than for the restriction to triangulations.
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3.2.1 Schnyder Woods on Triangulations

Bonichon [12] found a bijection between Schnyder woods on triangulations with
n vertices and pairs of non-crossing Dyck-paths. This bijection implies that there
are Cn+2Cn − C2

n+1 Schnyder woods on triangulations with n vertices. By Cn we
denote the nth Catalan number Cn =

(
2n
n

)
/(n + 1). Hence, asymptotically there

are about 16n Schnyder woods on triangulations with n vertices. Tutte’s classic
result [95] yields that there are asymptotically about 9.48n plane triangulations
on n vertices. See [75] for a proof of Tutte’s formula using Schnyder woods. The
two results together imply that a triangulation with n vertices has on average
about 1.68n Schnyder woods. The next theorem is concerned with the maximum
number of Schnyder woods on triangulations.

Theorem 3.8. Let Tn denote the set of all plane triangulations with n vertices
and S(T ) the set of Schnyder woods of T ∈ Tn. Then,S(T )

2.37n ≤ max
T∈Tn

|S(T )| ≤ 3.56n.

Recall that the Schnyder woods of a triangulation are in bijection with its 3-
orientations, see Theorem 1.8. The upper bound follows from Proposition 3.5 by3-orientation

using that for d(v) ≥ 3 it holds that
(

d(v)
3

)
· 21−d(v) ≤ 5/8.

For the proof of the lower bound we use the augmented triangular grid T ∗
k,ℓ.triangular grid

Figure 3.3 shows a canonical Schnyder wood on T ∗
k,ℓ in which the vertical edges

Figure 3.3. The augmented triangular grid T ∗
4,5 with a canonical Schnyder wood.

are directed upwards, the horizontal edges to the right and the diagonal ones
downwards. We work with α∗-orientations of Tk,ℓ instead of 3-orientations of T ∗

k,ℓ,
where

α∗(i, j) =





3 if 2 ≤ i ≤ k − 1 and 2 ≤ j ≤ ℓ − 1
1 if (i, j) ∈ {(1, 1), (1, ℓ), (k, ℓ)}
2 otherwise.

For the sake of simplicity, we refer to α∗-orientations of Tk,ℓ as 3-orientations.
Intuitively, Tk,ℓ promises to be a good candidate for a lower bound because the

canonical orientation shown in Figure 3.3 has many directed cycles. We formalize
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this intuition in the next proposition which we restrict to the case k = ℓ to keep
the notation simple.

Proposition 3.9. The graph T ∗
k,k has at least 25(k−1)2/4 Schnyder woods, and for

k big enough we have

2.37k2+3 ≤ |S(T ∗
k,k)| ≤ 2.599k2+3.

Proof. The face boundaries of the triangles of Tk,k can be partitioned into two
classes C and C ′ of directed cycles, such that each class has cardinality (k − 1)2

and no two cycles from the same class share an edge. Thus, a cycle C ′ ∈ C ′ shares
an edge with three cycles from C if it does not share an edge with the outer face
of Tk,k and otherwise C ′ shares an edge with one or two cycles from C.

For any subset D of C flipping all the cycles in D yields a 3-orientation of flip

Tk,k, and we can encode this orientation as a 0-1-sequence of length (k − 1)2 that
records which cycles have been flipped. After performing the flips of a given 0-1-
sequence a, an inner cycle C ′ ∈ C ′ is directed if and only if either all or none of the
three cycles sharing an edge with C ′ have been reversed. If C ′ ∈ C ′ is a boundary
cycle, then it is directed if and only if none of the adjacent cycles from C has been
reversed. Thus, the number of different cycle flip sets is bounded from below by

∑

a∈{0,1}(k−1)2

2
P

C′∈C′ XC′ (a).

Here XC′(a) is an indicator function that takes value 1 if C ′ is directed after
performing the flips of a and 0 otherwise.

We now assume that every a ∈ {0, 1}(k−1)2 is chosen uniformly at random. The
expected value of the above function is then

E[2
P

XC′ ] =
1

2(k−1)2

∑

a∈{0,1}(k−1)2

2
P

C′∈C′ XC′ (a).

Jensen’s inequality E[ϕ(X)] ≥ ϕ(E[X]) holds for a random variable X and a Jensen’s inequality

convex function ϕ. Using this we derive that

E[2
P

XC′ ] ≥ 2E[
P

XC′ ] = 2
P

P[C′ flippable].

The probability that C ′ ∈ C ′ is flippable is at least 1/4. For a cycle C ′ that does
not include a boundary edge, the probability depends only on the three cycles from
C that share an edge with C ′. Two out of the eight flip vectors for these three
cycles make C ′ flippable. A similar reasoning applies if C ′ includes a boundary
edge. Altogether this yields that

∑

a∈{0,1}(k−1)2

2
P

C′∈C′ XC′ (a) ≥ 2(k−1)2 · E[2
P

XC′ ] ≥ 2(k−1)2 · 2(k−1)2/4.
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It remains to argue that different cycle flip sequences yield different Schnyder
woods. The orientation of an edge is easily determined. The edge direction is
reversed with respect to the canonical orientation if and only if exactly one of the
two cycles on which it lies has been flipped. We can tell a flip sequence apart from
its complement by comparing the boundary edges.

(4, 1)

(4, 1)

(3, 1)

(1, 1)

(1, 1)

(2, 1)

(2, 1)

(3, 1)

(4, 2) (4, 3) (4, 4)(4, 1)

(4, 2) (4, 3) (4, 4)

(3, 1)

(2, 1)

(1, 1)

(4, 1)

Figure 3.4. The graph T4,4 with the additional edges simulating Baxter’s bound-
ary conditions for T T

4,4.

For the upper bound we use Baxter’s result for Eulerian orientations on the
torus T T

k,k, see Sections 3.1.2 and 3.1.3. Every 3-orientation of Tk,k plus the wrap-
around edges, oriented as shown in Figure 3.4, yields a Eulerian orientation of T T

k,k.
We deduce that T ∗

k,k has at most 2.599n Schnyder woods. �

Remark 3.10. Let us briefly come back to the number of Eulerian orientations of
T T

k,ℓ which was mentioned in Sections 3.1.2 and 3.1.3 and in the above proof. There

are only 22(k+ℓ)−1 different orientations of the wrap-around edges, one of them is
shown in Figure 3.4. By the pigeon hole principle there is an orientation of these
edges which can be extended to a Eulerian orientation of T T

k,ℓ in asymptotically

(3
√

3/2)kℓ ways. Thus, there are out-degree functions αk,ℓ for Tk,ℓ such that there
are asymptotically 2.598kℓ αk,ℓ-orientations. Note, however, that directing all the
wrap-around edges away from the vertex to which they are attached in Figure 3.3
induces a unique Eulerian orientation of Tk,ℓ.

We have not been able to specify orientations of the wrap-around edges which
allow to conclude that Tk,ℓ has (3

√
3/2)kℓ 3-orientations with these boundary con-

ditions. In particular we have no proof that Baxter’s result also gives a lower
bound for the number of 3-orientations.
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3.2.2 Schnyder Woods on the Grid and 3-Connected Planar Maps

In this section we discuss bounds on the number of Schnyder woods for all 3-
connected planar maps. The lower bound comes from the grid. The upper bound
for this case is much larger than the one for triangulations. This is due to the
encoding of Schnyder woods by αS-orientations on the primal dual completion αS-orientation

map M̃ which has more vertices than M . We summarize the results of this section primal dual completion

mapin the following theorem.

Theorem 3.11. Let M3
n be the set of 3-connected planar maps with n vertices

and S(M) denote the set of Schnyder woods of M ∈ M3
n. Then

3.209n ≤ max
M∈M3

n

|S(M)| ≤ 8n.

The example used for the proof of the lower bound is the augmented square
grid G∗

k,ℓ. square grid

Theorem 3.12. The number of Schnyder woods of the augmented grid G∗
k,ℓ is

asymptotically |S(G∗
k,ℓ)| ≈ 3.209kℓ.

Proof. The graph induced by the non-rigid edges in the primal dual completion
map G̃∗

k,ℓ of G∗
k,ℓ is G2k−1,2ℓ−1 − (2k − 1, 1), see Figure 3.5. This is a square grid

of roughly twice the size as the original and with the lower left corner removed.
The rigid edges can be identified using the fact that αS(v∞) = 0, and deleting
them induces α′

S on G2k−1,2ℓ−1 − (2k − 1, 1). The new α′
S only differs from αS

for vertices that are incident to an outgoing rigid edge, and it turns out that
α′

S(v) = d(v)− 1 for all primal or dual vertices and α′
S(v) = 1 for all edge-vertices

of G2k−1,2ℓ−1 − (2k − 1, 1). Thus, a bijection between α′
S-orientations and perfect

matchings of G2k−1,2k−ℓ − (2k − 1, 1) is established by identifying matching edges
with edges directed away from edge-vertices. The closed form expression for the
number of perfect matchings of G2k−1,2k−ℓ − (2k − 1, 1) is known (see [62]) to be

k∏

i=1

ℓ∏

j=1

(
4 − 2 cos

πi

k
− 2 cos

πj

ℓ

)
.

The number of perfect matchings of G2k−1,2ℓ−1 − (2k − 1, 1) is sandwiched
between that of G2k−2,2ℓ−2 and that of G2k,2ℓ. Therefore the asymptotic behavior
is the same and in [69], the limit of the number of perfect matchings of G2k,2ℓ,
denoted as Φ(2k, 2ℓ), is calculated to be

lim
k,ℓ→∞

log Φ(2k, 2ℓ)

2k · 2ℓ =
log 2

2
+

1

4π2

∫ π

0

∫ π

0

log(cos2(x) + cos2(y))dxdy ≈ 0.29.

This implies that G∗
k,ℓ has asymptotically e4·0.29·kℓ ≈ 3.209kℓ Schnyder woods. �
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Figure 3.5. A Schnyder wood on G∗
4,4, the reduced primal dual completion map

G7,7 − (7, 1) with the corresponding α′
S-orientation and the associated spanning

tree.

Remark 3.13. In [89] Temperley describes a bijection between spanning trees of
Gk,ℓ and perfect matchings of G2k−1,2ℓ−1 − (2k − 1, 1). Thus, Schnyder woods of
G∗

k,ℓ are in bijection with spanning trees of Gk,ℓ, see Figure 3.5. This bijection can
be read off directly from the Schnyder wood: the unidirected edges not incident
to a special vertex form exactly the related spanning tree. Encoding both, the
Schnyder woods and the spanning trees, as α-orientations also gives an immediate
proof of this bijection.

Proof of Theorem 3.11. It remains to prove the upper bound stated in Theo-
rem 3.11. For this we use the upper bound for Schnyder woods on plane trian-
gulations, see Theorem 3.8. We define a triangulation TM such that there is an
injective mapping of the Schnyder woods of M to the Schnyder woods of TM . We
use the generic structure of the faces of a Schnyder wood, see Lemma 1.11.

We may assume that M has a triangular outer face. Otherwise we may continue
to work with a map M ′ that is obtained from M by triangulating the outer face
with the help of one additional vertex.

The triangulation TM is obtained from M by adding a vertex vF to every face F
of M with |F | ≥ 4, see Figure 3.6. A vertex vF is adjacent to all the vertices of F .
A Schnyder wood of M can be mapped to a Schnyder wood of TM using the
generic structure of the bounded faces as shown in Figure 3.6. The green-blue
non-special edges of F become green unidirected. Their blue parts are substituted
by unidirected blue edges pointing from their original start-vertex towards vF .
Similarly the blue-red non-special edges become blue unidirected and the red-
green ones red unidirected. Three of the edges incident to vF are still undirected
at this point. We orient them away from vF and assign colors in accordance with
Rule (W3), see Section 1.1.

Let two different Schnyder woods be given that have different directions or
colors on an edge e. That the map is injective can be verified by comparing the
edges on the boundary of the two triangles on which the edge e lies in TM .
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Figure 3.6. A Schnyder wood on a map Mσ induces a Schnyder wood on TMσ .
The three special edges of a face are those that do not lie on the black triangle.

Thus, it suffices to bound the number of Schnyder woods of TM in order to
prove Theorem 3.11. We do this by specializing Proposition 3.5. We denote the
set of vertices of TM that correspond to faces of size 4 in M by F4 and its size by f4

and similarly F≥5 and f≥5 are defined. Note that I = F4 ∪ F≥5 is an independent
set and that TM has a spanning tree in which all the vertices from I are leaves.
Let nT denote the number of vertices of TM . Then, TM has at most

23nT−6−(nT−1) ·
∏

v∈I

( (
d(v)
3

)

2d(v)−1

)
≤ 4n+f4+f≥5 ·

(
1

2

)f4

·
(

5

8

)f≥5

= 4n · 2f4 ·
(

5

2

)f≥5

(3.4)

Schnyder woods. Note that n + f4 + f≥5 + f4 + 2f≥5 ≤ m + 1 + f4 + 2f≥5 ≤ 3n− 5
which implies that f4 + 3

2
f≥5 ≤ n. Maximizing the right hand side of (3.4) under

this condition yields that the maximum 8n is attained when f4 = n. Thus, M has
no more than 8n Schnyder woods. �

The proof of the lower bound 3.209n uses knowledge about the number of
perfect matchings of the square grid which is obtained using non-combinatorial
methods. Therefore, we complement this bound with a result for another graph
family that uses a straight-forward analysis, but still yields that these graphs have
more Schnyder woods than the triangular grid, see Proposition 3.9.

The graph we consider is the filled hexagonal grid Hk,ℓ, see Figure 3.7 (a). filled hexagonal grid

Hk,ℓ
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Neglecting boundary effects, the hexagonal grid has twice as many vertices as
hexagons. This can be seen by associating with every hexagon the vertices of its
northwestern edge. Thus, neglecting boundary effects, the filled hexagonal grid
has five vertices per hexagon. The boundary effects will not hurt our analysis
because Hk,ℓ has only 2(k + ℓ) boundary vertices but 5 · kℓ + 2(k + l) vertices in
total.

Proposition 3.14. For k, ℓ big enough the number of Schnyder woods of the filled
hexagonal grid Hk,ℓ can be bounded as follows.

2.63n ≤ |S(Hk,ℓ)| ≤ 6.07n

C2 C1

C4C3

(c)(b)(a)

Figure 3.7. The filled hexagonal grid H3,3, a Schnyder wood on this grid and the
primal-dual suspension of a hexagonal building block of Hk,ℓ. Primal vertices are
black, face vertices grey and edge-vertices white.

Proof. Using Theorem 1.10 it suffices to count how many different αS-orientations
a filled hexagon has. Figure 3.7 (c) shows an αS-orientation of a filled hexagon.
Note that this orientation is feasible on the boundary when we glue together the
filled hexagons to a grid Hk,ℓ and add a triangle of three special vertices around
the grid, see Figure 3.7 (b). We flip only boundary edges of a hexagon that belong
to a 4-face in this hexagon. As these edges belong to a triangle in the hexagon
on their other side, the cycle flips in any two filled hexagons can be performed
independently.

Let us now count how many orientations a filled hexagon admits, see Fig-
ure 3.7 (c) for the definition of the cycles C1, C2, C3 and C4. If the 6-cycle induced
by the central triangle of a filled hexagon is directed as shown in Figure 3.7 (c),
then we can flip either C1 or C2 and if C2 is flipped, C3 can be flipped as well.
This yields 43 orientations, as the situation is the same at the other two 4-faces
of the hexagon. If the 6-cycle is flipped the same calculation can be done with C3

replaced by C4. This makes a total of 2 · 43 = 128 orientations per filled hexagon.
That is, there are at least 128k·ℓ ≥ 2.6395·k·ℓ orientations of Hk,ℓ.
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We start the proof of the upper bound by collecting some statistics about Hk,ℓ,
where we neglect summands of the form κ · k and κ · ℓ since they are not relevant
asymptotically. As mentioned above, Hk,ℓ has n = 5 · kℓ interior vertices, 12 · kℓ
edges and 7 · kℓ faces. Thus, the primal-dual completion has 48 · kℓ edges.

There is no choice for the orientation of the 3 ·4/7 ·f = 12 ·kℓ edges incident to
the face vertices of triangles. We can choose a spanning tree T on the remaining
5 · kℓ+12 · kℓ+3 · kℓ vertices such that all face vertices are leafs and proceed as in
the proof of Proposition 3.5, using that we know the exact number of edges. Since
in the independent set of the remaining face vertices, all of them have degree 4
and required out-degree 3, they contribute a factor of

(
4
3

)
2−3 = 1/2 each. Thus,

there are at most 2(48−12−20)kℓ · 2−3·kℓ = 213·kℓ ≤ 6.07n Schnyder woods on Hk,ℓ. �

3.3 The Number of 2-Orientations

Felsner et al. [43] present a theory of 2-orientations of plane quadrangulations
which shows many similarities with Schnyder woods of triangulations. Recall that
a quadrangulation is a planar map such that all faces have cardinality 4. A 2-
orientation of a quadrangulation Q is an orientation of the edges such that all 2-orientation of a

quadrangulationvertices but two non-adjacent ones on the outer face have out-degree 2.

In [42] it is shown that 2-orientations of quadrangulations with f−1 inner quad-
rangles are counted by the Baxter-number Bf . Hence the number of 2-orientations
on quadrangulations with n vertices is asymptotically 8n, since f = n − 2 for
quadrangulations. Tutte gave an explicit formula for the number of rooted quad-
rangulations. A bijective proof of Tutte’s formula is contained in the thesis of
Fusy [51]. The formula implies that asymptotically there are about 6.75n quad-
rangulations on n vertices. The two results together yield that a quadrangulation
with n vertices has on average about 1.19n 2-orientations. Figure 3.8 (a) shows
a 2-orientation of G�

6,6, and we will show that the G�
k,ℓ have considerably more

2-orientations than the average quadrangulation.

We now give a lower bound for the number of 2-orientations of the quadrangu-
lation G�

k,ℓ that is obtained from the square grid. The proof method via transfer square grid

matrices and eigenvalue estimates comes from Calkin and Wilf [21]. There it is
used for asymptotic enumeration of independent sets of the grid graph. Let Z(Q) Z(Q)

denote the set of all 2-orientations of a quadrangulation Q with fixed sinks.

Proposition 3.15. For k, ℓ big enough the number of 2-orientations of G�
k,ℓ can

be bounded as follows.

1.537kℓ ≤ |Z(G�

k,ℓ)| ≤ (8 ·
√

3/9)kℓ ≤ 1.5397kℓ
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e1

e2

(a) (b) (c)

Figure 3.8. A 2-orientation of G�
6,6, the corresponding Eulerian orientation X

of GT
6,6 and an alternating orientation of GT

4,4 that can be extended to X.

Proof. We consider 2-orientations of G�
k,ℓ with sinks (1, 1) and v∞, see Figure 3.8 (a).

These 2-orientations induce Eulerian orientations of GT
k,ℓ when k and ℓ are even.

The wrap-around edges inherit the direction of the respective edges incident to
v∞ (see Section 3.1.2) and e1, e2 are directed away from (1, 1), see Figure 3.8 (b).
Therefore G�

k,ℓ has at most as many 2-orientations as GT
k,ℓ has Eulerian orientations,

which implies the claimed upper bound.

Conversely a Eulerian orientation of GT
k,ℓ in which the wrap-around edges have

these prescribed orientations induces a 2-orientation of G�
k,ℓ. Such Eulerian orien-

tations are called almost alternating orientations in the sequel, see Figures 3.8 (b)
and (c). Proving a lower bound for the number of almost alternating Eulerian
orientations yields a lower bound for the number of 2-orientations of G�

k,ℓ.

For the sake of simplicity we will work with alternating orientations of GT
k−2,ℓ−2

instead of almost alternating ones of GT
k,ℓ. In these Eulerian orientations of GT

k−2,ℓ−2,
the wrap-around edges are directed alternatingly up and down respectively left and
right. It is easy to see that this gives a lower bound for the number of almost alter-
nating orientations of GT

k,ℓ. The solid edges in Figure 3.8 (c) show an alternating
orientation and the dashed ones how it can be augmented to an almost alternating
orientation. Since we are interested in an asymptotic lower bound, there is no
difference in counting alternating orientations of GT

k−2,ℓ−2 and GT
k,ℓ from our point

of view. Therefore, we will continue working with alternating orientations of GT
k,ℓ

to keep the notation simple.

Consider a vertex column V C
j of GT

k,ℓ and the edge columns EC
j−1 and EC

j .
Let X1 and X2 be orientations of EC

j−1 respectively EC
j . Let δ(X1, X2) = 1 if and

only if the edges induced by V C
j can be oriented such that all the vertices of V C

j

have out-degree 2. Let δU(X1, X2) = 1 respectively δD(X1, X2) = 1 if and only
if δ(X1, X2) = 1 and the wrap-around edge induced by V C

j is directed upwards
respectively downwards.
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Note that

δU (X1, X1) = 1 = δD(X1, X1)

and

δU (X1, X2) = 1 ⇐⇒ δD(X2, X1) = 1.

We define two transfer matrices TU (2k) and TD(2k). These are square 0-1-
matrices with the rows and columns indexed by the

(
2k
k

)
orientations of an edge

column of size 2k, that have k edges directed to the right. The transfer matrices are
defined by (TU (2k))X1,X2 = δU(X1, X2) and (TD(2k))X1,X2 = δD(X1, X2). Hence
TU(2k) = TD(2k)T and T2k = TU(2k) · TD(2k) is a real symmetric non-negative
matrix with positive diagonal entries, see Figure 3.9.

(TU(4))X1,X1 = 1

(TD(4))X1,X1 = 1

(TU(4))X1,X3 = 0

(TD(4))X1,X3 = 0

(T4)X1,X3 ≥ 1(TU(4))X1,X2 = 1

Figure 3.9. An illustration of the different transfer matrices.

From the combinatorial interpretation, it can be seen that T2k is primitive,
that is there is an integer ℓ ≥ 1 such that all entries of T ℓ

2k are positive and thus
the Perron-Frobenius Theorem can be applied, see [57]. Hence, T2k has a unique
eigenvalue Λ2k with largest absolute value, its eigenspace is 1-dimensional and the
corresponding eigenvector is positive.

Let XA be one of the two edge column orientations that have alternating edge
directions and eA the vector of dimension

(
2k
k

)
that has all entries 0 except the one

that stands for XA, which is 1. The number cA(2k, 2ℓ) of alternating orientations
of GT

2k,2ℓ is
(
T ℓ

2k

)
XA,XA

= 〈eA, T ℓ
2keA〉. Since the eigenvector belonging to Λk is

positive, it is not orthogonal to any column of T2k, and we obtain

lim
ℓ→∞

cA(2k, 2ℓ)1/ℓ = lim
ℓ→∞

((
T ℓ

2k

)
XA,XA

)1/ℓ

= Λ2k.

The last equality is justified by an argument known as the power method. It follows
from [65] that the limit limk→∞ Λ

1/k
2k exists, but for the sake of completeness we

provide an argument from [21]. We use that Λp
2k ≥ 〈v, T p

2kv〉/〈v, v〉 for any vector
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v and that 〈eA, T p
2keA〉 = 〈eA, T k

2peA〉 since both expressions count the number of
alternating orientations of GT

2k,2p.

(
Λ

1/k
2k

)p

=
(
Λp

2k

)1/k

≥
(
〈eA, T p

2keA〉
)1/k

=
(
〈eA, T k

2peA〉
)1/k

Taking limits with respect to k on both sides yields

(
lim inf

k→∞
Λ

1/k
2k

)p

≥ lim inf
k→∞

(
〈eA, T k

2peA〉
)1/k

= Λ2p,

which implies lim inf
k→∞

Λ
1/k
2k ≥ lim sup

p→∞
Λ

1/p
2p . It follows that lim

k→∞
Λ

1/k
2k exists. Similar

arguments as above yield the following.

Λp
2k ≥ 〈eAT q

2k, T
p
2kT

q
2keA〉

〈T q
2keA, T q

2keA〉
=

〈eA, T p+2q
2k eA〉

〈eA, T 2q
2k eA〉

=
〈eA, T k

2p+4qeA〉
〈eA, T k

4qeA〉

Taking limits with respect to k on both sides yields

lim
k→∞

Λ
1/k
2k ≥

(
Λ4q+2p

Λ4q

)1/p

.

We are interested in lim
k→∞

lim
ℓ→∞

cA(2k, 2ℓ)1/4kℓ = lim
k→∞

Λ
1/4k
2k since 4kℓ is the number

of vertices of GT
2k,2ℓ. Using a Mathematica program we have computed Λ10 and Λ8

with the result that

(
Λ10

Λ8

)1/4

≥
(

2335.8714

418.2717

)1/4

≥ 1.537.

�

Remark 3.16. We return to the correspondence between 2-orientations of G�
k,ℓ

and Eulerian orientations of GT
k,ℓ, that was mentioned at the beginning of the last

proof. By the pigeon hole principle, there must be a sequence of orientations Xk,ℓ

of the wrap-around edges that extends asymptotically to (8 ·
√

3/9)kℓ Eulerian ori-
entations of GT

k,ℓ. This implies that for k, ℓ big enough, there is an αk,ℓ on Gk,ℓ such

that there are (8 ·
√

3/9)kℓ αk,ℓ-orientations of Gk,ℓ. This αk,ℓ satisfies αk,ℓ(v) = 2
for every inner vertex v and αk,ℓ(w) ∈ {0, 1, 2} for every boundary vertex w. We
call α-orientations that have α(v) = 2 for every inner vertex v inner 2-orientations.inner 2-orientation

We think that G�
k,ℓ has asymptotically (8 ·

√
3/9)kℓ 2-orientations. But we were

not able to show this, see also Remark 3.10.
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Theorem 3.17. Let Qn denote the set of all plane quadrangulations with n vertices
and Z(Q) the set of 2-orientations of Q ∈ Qn. Then for n big enough

1.53n ≤ max
Q∈Qn

|Z(Q)| ≤ 1.91n.

Proof. The lower bound is that from Proposition 3.15. An upper bound of 2n

follows immediately from Lemma 3.2. Note that we may assume that Q does not
have vertices of degree 2, because their incident edges would be rigid. We use
Theorem 4.8 to conclude that Q has a spanning tree T with at least n/3 leaves.
As Q is bipartite, T has a set I of at least n/6 leafs that is an independent set of
Q. As in Proposition 3.5, this yields that there are at most 2n · (3/4)n/6 ≤ 1.91n

2-orientations of Q. �

3.4 The Number of Bipolar Orientations

We first give an overview of facts about bipolar orientations that we need in this
section. A good starting point for further reading about bipolar orientations is [32].

Let G be a connected graph and s, t two distinguished vertices of G. An
orientation X of the edges of G is a bipolar orientation of G if it is acyclic, s is bipolar orientation

the only vertex without incoming edges, and t is the only vertex without outgoing
edges. We call s and t the source respectively sink of X. There are many equivalent
definitions of bipolar orientations, see [32]. The following characterization of plane
bipolar orientations will be useful to keep some proofs in the sequel short. When
working with bipolar orientations, we always assume that s and t lie on the outer
face.

Proposition 3.18. An orientation X of a planar map M with two special outer
vertices s and t is a bipolar orientation if and only if it has the following properties.

(1) Every vertex other than the source s and the sink t has incoming as well as
outgoing edges.

(2) There is no directed facial cycle.

Furthermore, the following stronger versions of the above properties hold for every
bipolar orientation.

(1’) At every vertex other than the source and the sink, the incoming and outgoing
edges form two non-empty bundles of consecutive edges.

(2’) The boundary of every face has exactly one sink and one source, i.e. consists
of two directed paths.
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We omit the proof that Properties (1) and (2) imply that X is a bipolar orien-
tation. The proof that every bipolar orientation has Properties (1′) and (2′) (and
thus Properties (1) and (2) as well) can be found in [98, 88].

Given a planar map M , two bipolar orientations of M can have different out-
degree sequences as the example from Figure 3.10 shows.

s s

t t

Figure 3.10. Two bipolar orientations of the same graph with different out-degree
sequences.

Nevertheless, the bipolar orientations of a map M are in bijection with α-
orientations of the angle graph M̂ of M . Let F be the set of faces of M . The angleangle graph cM
graph M̂ is the bipartite graph on the vertex set V ∪ F where two vertices v ∈ V
and F ∈ F are adjacent if and only if v lies on the boundary of F in M . The
following theorem is due to Rosenstiehl [80]. A proof can also be found in [32],

where the α-orientation of M̂ comes in the disguise of an “e-angle colouration”.

Figure 3.11. A bipolar orientation and the corresponding α̂-orientation of the
angle graph. The vertex for the unbounded face of the angle graph is omitted.

Theorem 3.19. Let M be a planar map and M̂ its angle graph. Let α̂ : V ∪F → N
be defined as follows. All F ∈ F and v ∈ V \ {s, t} have α̂(F ) = 2 respectively
α̂(v) = 2. The source s and sink t have α̂(s) = α̂(t) = 0. Then, the bipolar

orientations of M are in bijection with the α̂-orientations of M̂ .
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Figure 3.11 illustrates Theorem 3.19. Below in Theorem 3.31 we give another
encoding of bipolar orientations which will turn out to be useful for approximate
counting.

Note that the angle graph M̂ is a quadrangulation. If the edge {s, t} is in the
planar map M , then the α̂-orientations are the same as the 2-orientations defined
in Section 3.3. Since bipolar orientations and 2-orientations of quadrangulations
are in bijection, we explain now why none of the bounds from Theorems 3.17
and 3.23 are redundant. A triangulation with n vertices has an angle graph with
roughly 3n vertices. Hence the upper bound of 1.913n, that Theorem 3.17 yields
for the number of bipolar orientation, is worse than the upper bound 3.97n from
Theorem 3.23. Conversely, every quadrangulation Q with n vertices is the angle
graph of a map Q′. One of the partition classes of Q is the vertex set of Q′ and
two vertices of Q′ are adjacent if and only if they lie on a common 4-face of Q.
This might yield a multi-graph if Q has degree 2 vertices. But we may neglect
this, since parallel edges must have the same direction in every bipolar orientation.
One of the partition classes of Q has size at most n/2, and thus the upper bound
from Theorem 3.23 yields that Q has at most 3.97n/2 2-orientations, which is
worse than the bound 1.91n from Theorem 3.17. The grid graphs G�

k,ℓ, which
have asymptotically 1.53n 2-orientations are angle graphs of graphs with roughly
n/2 =: n′ vertices. Therefore this yields only an example with 1.532n′

bipolar
orientations, which is far away from the lower bound 2.91n given in Theorem 3.23.
Conversely, the triangular grid Tk,ℓ, which has at least 2.91n bipolar orientations,
has an angle graph with roughly 3n = n′ vertices. This yields a quadrangulation
with 2.91n′/3 2-orientations which is worse than the bound 1.53n for the number
of 2-orientations that we obtained in Proposition 3.15.

3.4.1 Bipolar Orientations of the Grid

We now turn to analyzing the number of bipolar orientations of Gk,ℓ, with source
(1, 1) and sink (k, ℓ) if k is odd and sink (k, 1) if k is even. For the proof of the
Theorem, we need sparse sequences. A sparse sequence is a 0-1-sequences without sparse sequence

consecutive 1s and it is well known that there are Fn+2 such sequences of length n, Fn+2

where Fn+2 denotes the (n + 2)th Fibonacci number. Let B(M) denote the set of Fibonacci number

B(M)bipolar orientations of the map M .

Theorem 3.20. For k, ℓ big enough, the number of bipolar orientations of the
square grid Gk,ℓ is bounded by square grid

2.18kℓ ≤ |B(Gk,ℓ)| ≤ 2.619kℓ.

Proof. We first prove the lower bound with an argument using directed cycles in
a canonical orientation, as in Proposition 3.9. Therefore we do not spell out all
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the details of the proof but only sketch it. We work on the angle graph Ĝk,ℓ and

use the bijection from Theorem 3.19. The graph Ĝk,ℓ has 2kℓ− 3(k + ℓ)+4 square

faces not incident to v∞. Figure 3.12 shows the angle graph Ĝ4,5. All edges that
are dotted in Figure 3.12 (b) are rigid, just like the four edges which are adjacent
to a degree 2 vertex. Therefore, we may neglect all these edges in the rest of the
proof and work with graphs like the one in Figure 3.12 (c).

(a) (b) (c)

Figure 3.12. Part (a): The grid G4,5 with its angle graph in gray. Part (b):

A canonical 2-orientation on Ĝ4,5, the dotted edges all connect to an additional
vertex v∞ and the dots mark an edge disjoint set of directed cycles. Part (c): The
central part of Ĝ6,9 and the traversal used in the proof of the upper bound.

The set I of edge disjoint directed cycles in the canonical orientation is marked
by black dots in Figure 3.12 (b) and includes approximately half of all squares.
The set I ′ consists of all squares that are not in I. Members of I ′ can be flipped
if either the two cycles of I above it, or the two cycles of I below it are flipped,
that is in 2 out of 16 cases (1 out of 4 for boundary squares). Roughly half of all
squares are in I ′. Thus, there are at least 2|I|+|I′|/8 bipolar orientations of Gk,ℓ,
which leads to an asymptotic lower bound of 29kℓ/8 ≈ 2.18kℓ.

For the proof of the upper bound we use a bijection that Lieb describes
in [65]. The bijection relates face 3-colorings where no two squares sharing anface 3-coloring

edge have the same color and inner 2-orientations of the square grid as shown ininner 2-orientation

Figure 3.13 (a). Figure 3.13 (b) shows the face 3-coloring corresponding to the
canonical 2-orientation, that we used for the proof of the lower bound.

(a) (b) (c)

0 0
0

0
1

0

0

Figure 3.13. Part (a): Lieb’s bijection between inner 2-orientations and face
3-colorings on the grid. The face 3-coloring for a particular orientation in Part (b)
and its encoding in Part (c).
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Here we use Lieb’s bijection on Ĝk,ℓ and prove an upper bound for the number

of face 3-colorings of Ĝk,ℓ. Figure 3.12 (c) shows the central part of Ĝk,ℓ bounded
by a thick polygon. We will encode the 3-coloring on the faces of the central part
of Ĝk,ℓ as a sparse sequence a, where ai represents the ith square on the path P
indicated by the arrows in Figure 3.12 (c). The idea for this encoding is due to
Graham Brightwell [18].

The set D of faces that are not in the central part has less than 3|D| 3-colorings.
In the encoding described next, the code for the ith face of the path P depends
only on faces in D and faces of P with index smaller than i. Figure 3.14 shows how
the color of the highlighted face is encoded by a 0 or a 1 and Figure 3.13 (c) shows
an example. The arrows indicate the direction in which we traverse the central
part of the graph. There are three cases, one for a face where the path makes
no turn and two for the two different types of turn faces. The variables X,Y, Z
represent an arbitrary permutation of R,G,B.

X

Y
Y

X

X

Y

X

X

X

Y

X

X

Y X X

Y X

Y

X

0 Y=0
Z=1

0 Y=0
Z=1 0 Y=0

Z=10

(a) (b) (c)

Figure 3.14. Encoding a 3-coloring by a sparse 0-1−sequence. In Part (a) the
encoding for a square where the path makes no turn, in Parts (b) and (c) for the
two different kinds of turn faces.

Concerning the decoding it is implied by Figure 3.14 that the faces marked
with an X or Y plus the 0-1 encoding uniquely determine the color of the face in
question. Thus, the encoding of a 3-face coloring using the colors of the squares
from D and the 0-1 sequence for the central part of the grid is injective. It remains
to show that there cannot be consecutive 1s in this sequence. This follows from
the observation that writing a 1 means that the two faces that will be used for the
encoding of the next face on the path have different colors. Thus, this face will be
encoded by a 0.

We bound the number of such encodings from above. The set D can be covered
by four horizontal plus four vertical rows of faces, thus |D| ≤ 4(k+ℓ). The length of
the path is bounded by the number of bounded faces of Ĝk,ℓ which is less than 2kℓ.
Therefore, there are at most 34(k+ℓ) · F2kℓ+2 encodings. Using the asymptotics for
the Fibonacci numbers this implies that there are at most 2.619kℓ encodings for
k, ℓ big enough. �
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Lieb’s analysis of the number of Eulerian orientations of GT
k,ℓ, see Proposi-

tion 3.15 and Remark 3.16, is of interest in this case as well. It allows to improve
the upper bound for grids with side lengths ratio one to two.

Proposition 3.21. For k big enough, the number of bipolar orientations of the
grid Gk,2k is bounded by

2.182k2 ≤ |B(Gk,2k)| ≤ 2.382k2

.
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Figure 3.15. Obtaining the tilted grid Ĝ5,3 from GT
4,4 with two cuts. The numbers

in the first three drawings indicate vertex labels, in the last one they indicate α̂.

Proof. By Ĝ′
k,ℓ we denote the graph obtained from Ĝk,ℓ by deleting v∞ and all

incident edges. These edges are dotted in Figure 3.12. Figure 3.15 shows how
to cut GT

4,4 in two steps such that the grid looks like Ĝ′
3,5 (if we do not identify

vertices). The last drawing shows that every α̂-orientation of Ĝ′
3,5 yields a Eu-

lerian orientation of GT
4,4 when we do the appropriate identifications. In general,

this approach yields an injection from the bipolar orientations of Gk+1,2k+1 to the
Eulerian orientations of GT

2k,2k. As Lieb [65] has shown that GT
2k,2k has asymptoti-

cally (8 ·
√

3/9)4k2
Eulerian orientations, this yields an upper bound of (64/27)2k2

for the number of Eulerian orientations of Gk+1,2k+1. Every bipolar orientation of
Gk,2k can be complemented to a bipolar orientation of Gk+1,2k+1, thus Gk,2k has
at most as many bipolar orientation as Gk+1,2k+1. The lower bound follows from
Theorem 3.20. �
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Remark 3.22. The same problems as described in Remarks 3.10 and 3.16 arise
here when trying to show that Gk,2k actually has (64/27)2k2

bipolar orientations
by using Lieb’s result for the torus.

3.4.2 Bipolar Orientations of Planar Maps

Note that adding edges to the faces of size at least 4 of a planar map M can only
increase the number of bipolar orientations by Proposition 3.18. Thus, we can
restrict our considerations to plane inner triangulations in this section.

Theorem 3.23. Let Mn denote the set of all planar maps with n vertices and B(M)
the set of all bipolar orientations of M ∈ Mn. Then for n big enough

2.91n ≤ max
M∈Mn

|B(M)| ≤ 3.97n.

For the proof we need a couple of facts about Fibonacci numbers which are Fibonacci number

summarized in the following lemmas. The Fibonacci numbers are the integer
series defined by the recursion

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

Let φ = 1+
√

5
2

be the Golden Ratio. The first two formulas in the next lemma
are standard results from the vast theory of Fibonacci numbers, the last one is
attributed to Shiwalkar and Deshpande in [84, A001629].

Lemma 3.24. The Fibonacci numbers have the following properties.

• Fn = (φn − (1 − φ)n)/
√

5

• limn→∞
(
Fn − φn/

√
5
)

= 0

• ∑n
i=0 FiFn−i = (n(Fn+1 + Fn−1) − Fn) /5

The next lemma summarizes facts about sparse sequences. sparse sequence

Lemma 3.25. The number of sparse sequences of length n is Fn+2. Let rn(i) be
the number of sparse sequences of length n whose ith entry is 1. Then

• rn(i) = Fi · Fn+1−i

• ∑n
i=1 rn(i) = (2(n + 1)Fn + nFn+1) /5

• limn→∞
Pn

i=1 rn(i)

nFn+2
= (

√
5φ)−1 ≈ 0.2764
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The first identity follows from a construction of sparse sequences of length n
from sparse sequences of length n − 1 plus the string “0” and sparse sequences of
length n − 2 plus “01”. The second and third identity then follow using the facts
from Lemma 3.24.

Before proving Theorem 3.23 we give two results for the number of bipolar
orientations of special classes of planar maps.

Proposition 3.26. A stacked triangulation with n vertices has 2n−3 bipolar ori-stacked triangulation

entations.

Proof. The K4 has two bipolar orientations for fixed source and sink. We proceed
by induction and assume that a stacked triangulation with n vertices has 2n−3

bipolar orientations. Now let T be a stacked triangulation with n + 1 vertices
and v a vertex of degree 3 in T . Then, T − v has 2n−3 bipolar orientations by
induction. Now stacking v into T again, there are exactly two ways to complete
a given bipolar orientation on T − v without violating Properties (1) or (2) from
Proposition 3.18. Thus, there are 2(n+1)−3 bipolar orientations of T . �

Proposition 3.27. Let On be the set of all outerplanar maps with n vertices.
Then

max
M∈On

|B(M)| = Fn−1 ≈ 1.618n−1.

Proof. We show first that there are indeed outerplanar maps with Fn−1 bipolar
orientations. Let T := T2,ℓ be the triangular grid with two rows. We considertriangular grid

bipolar orientations of T with source (1, 1) and sink (2, ℓ). In every such bipo-
lar orientation the boundary edges form two directed paths from (1, 1) to (2, ℓ).
We start by defining the standard bipolar orientation B0 of T that is shown in
Figure 3.16.

(2, ℓ)

(1, 1)

Figure 3.16. The standard bipolar orientation B0 on T2,ℓ.

In B0 the vertical inner edges are directed downwards and the diagonal ones
upwards. Now we encode any other orientation of the inner edges by a sequence
(ai)i=1...n′ of length n′ = n − 3, where ai = 1 if the corresponding edge has the
opposite direction as in B0 and ai = 0 otherwise. The entries come in the natural
left to right order in (ai)i=1...n′. We show that all sparse sequences of length n′

produce bipolar orientations. In a sparse sequence there are no consecutive 1s,
thus out of the two inner edges incident to a vertex, at most one is reversed with
respect to B0. This guarantees that there is no directed facial 3-cycle. As all
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vertices except (1, 1) and (2, ℓ) have an incoming and an outgoing outer edge, the
resulting orientation is bipolar, according to Proposition 3.18.

It remains to show that Fn−1 is an upper bound for the number of bipolar
orientations of any outerplanar map M with n vertices. We may assume that M
is a plane inner triangulation. The proof uses induction on the number of vertices
and the claim is trivial for n = 3. Now, let M have n + 1 vertices and let s be
the source vertex. If M has a vertex x 6= s, t of degree 2 with neighbors v, w,
then the direction of the edge {v, w} determines the directions of the edges {x, v}
and {x,w}. Therefore, M has at most as many bipolar orientations as M −x, that
is at most Fn−1. If all vertices but s and t have degree at least 3, then s and t have
degree 2 and the vertices of every inner edge of M are separated by s and t on the
outer cycle. This is because the interior of the boundary cycle on n + 1 vertices
is partitioned into n − 1 triangles, and thus two of these triangles must share two
edges with the boundary, which yields two degree 2 vertices.

So s is incident to only two vertices v and w, and we may assume that v has
degree 3 in M , that is the inner edge e = {v, w} is the only inner edge incident
to v. Now, let X be some bipolar orientation of M in which e is directed from v
to w. Then, the orientation of M − s induced by X is a bipolar orientation with
source v. For a bipolar orientation Y in which e is oriented from w to v, the
orientation of M − s induced by X is a bipolar orientation with source w and v
is a vertex of degree 2 in M − s. This mapping is injective, and thus M has
at most as many bipolar orientations as M − s and M − {s, v} together, that is
Fn−1 + Fn−2 = Fn. �

Remark 3.28. From the above proof it also follows that T2,ℓ is the only outerpla-
nar map on 2ℓ vertices that has F2ℓ−1 bipolar orientations.

The example that gives the lower bound for the number of bipolar orientations
of planar maps is the triangular grid Tk,k with source (1, 1) and sink (k, k). triangular grid

Proposition 3.29. Let Tk,k be the triangular grid and k big enough. Then,

|B(Tk,k)| ≥ 2.91n.

Proof. We first show that Tk,k has at least 2.618k2
bipolar orientations. To see

this we glue together k − 1 copies of T2,k with bipolar orientations. Every bipolar
orientation of Tk,k obtained in this way corresponds to a concatenation of k − 1
sparse sequences of length 2k − 3, as the proof of Proposition 3.27 shows. We call
such a concatenation of sparse sequences an almost sparse sequence. We denote
the set of all such sequences of length 2k2−5k +3 by S(k), the cardinality of S(k)
is F k−1

2k−1 which is bounded from below by F2k2−5k+3 ≥ 2.618k2
for k big enough.

That each s ∈ S(k) corresponds to a bipolar orientation of Tk,k can be checked
using Proposition 3.18.
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Now we improve this to the claimed bound of 2.91n. The horizontal edge
ei,j := (i, j) → (i, j + 1) lies on the boundary of two triangles for 2 ≤ i ≤ k − 1.
As Figure 3.17 (a) shows, the other four edges of these triangles are

{(i, j), (i − 1, j + 1)}, {(i, j + 1), (i − 1, j + 1)},
{(i, j), (i + 1, j)}, {(i, j + 1), (i + 1, j)}.

The crucial observation for improving the above bound is that we can reorient ei,j

if and only if the entries belonging to these four edges show one of the two patterns
10 . . . 01 or 01 . . . 10, see Figures 3.17 (b) and (c).

(i, j + 1)(i, j)(i, j + 1)(i, j)(i, j + 1)(i, j)

(a) (b) (c)

(i − 1, j + 1) (i − 1, j + 1) (i − 1, j + 1)

(i + 1, j)(i + 1, j)(i + 1, j)

Figure 3.17. The standard bipolar orientation on the triangles incident to ei,j

and the two orientations that allow to reorient ei,j .

We now choose k−1 sparse sequences of length 2k−3 independently uniformly
at random. We then concatenate them to obtain a random almost sparse se-
quence s ∈ S(k). It follows from the first identity from Lemma 3.25 with n = 2k−3
and i = 2j − 1 that for {(i, j), (i, j + 1)} there are F2j−1F2k−2j−1F

k−2
2k−1 sequences

that have {(i, j), (i − 1, j + 1)} marked 1 out of the total F k−1
2k−1 sequences. This

and the second identity from Lemma 3.24 are used to calculate the probability
that the entry for {(i, j), (i − 1, j + 1)} is 1 as

lim
k→∞

F2j−1F2k−2j−1F
k−2
2k−1

F k−1
2k−1

= lim
k→∞

1√
5
· φ2j−1 · φ2k−2j−1 · φ−2k+1

=
1√
5φ

. (3.5)

Taking the limit is only justifiable if (2j − 1) → ∞ and (2k − 2j − 1) → ∞
for k → ∞. Therefore we introduce δ > 0 and denote the set of horizontal
edges with δ(k − 1) ≤ j ≤ (1 − δ)(k − 1) and 2 ≤ i ≤ k − 1 by Eδ. Taking
the limit in Equation (3.5) is justified for all ei,j ∈ Eδ. The size of this set is
|Eδ| = (1 − 2δ)(k − 1)2 .

Analogously we can calculate the probability that the edge {(i, j+1), (i+1, j)}
is flipped and these events are independent. Thus, the probability of the pattern
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10 . . . 01 is (5φ2)−1 in the limit. The pattern 01 . . . 10 has the same probability and
the patterns mutually exclude each other. Thus, for every ǫ > 0 the probability
that the edge {(i, j), (i, j + 1)} ∈ Eδ can be flipped is

P[1i,j(s) = 1] ≥ 2

5φ2
− ǫ

for k big enough.
We now analyze how many of the flip-patterns we expect for a sparse sequence s.

Let Q(s) =
∑

i,j 1i,j(s) be a random variable counting the number of flippable
edges in s. We use Jensen’s inequality to estimate the number of orientations Jensen’s inequality

which is

|S(k)| · Es∈S [2Q(s)] ≥ F2k2−5k+3 · 2Es∈S [Q(s)] ≥ 2.618k2 · 2(1−2δ)(k−1)2
“

2
5φ2 −ǫ

”
≥ 2.91k2

for k big enough. �

Remark 3.30. We have included the third identity of Lemma 3.25 because it
emphasizes in conjunction with Equation (3.5) that the expected number of 1s at
a fixed entry of a sparse sequence does not depend strongly on the choice of the
entry.

The following relation is useful to prove an upper bound for the number of
bipolar orientations of plane inner triangulations. It has been presented with a
different proof in [70]. Let Fb be the set of bounded faces of M and B(M) the set
of bipolar orientations of M . Fix a bipolar orientation B. The boundary of every
triangle ∆ ∈ Fb consists of a path of length 2 and a direct edge from the source
to the sink of ∆. We say that ∆ is a + triangle of B if looking along the direct + triangle

source-sink edge the triangle is on the left. Otherwise, if the triangle is on the
right of the edge we speak of a − triangle, see Figure 3.18. We use this notation − triangle

to define a function GB : Fb → {−,+}.
Theorem 3.31. Let M be a plane inner triangulation and B a bipolar orientation
of M . Given s, t, and GB, i.e. the signs of bounded faces, it is possible to
recover B. In other words the function B → GB is injective on B(M).

Proof. Given GB we construct B. We start by orienting all edges on the boundary
of the outer face such that s and t are the unique source and sink of this face.
We extend this partial orientation Y with two rules. The vertex rule is applied
to a vertex v that already has incoming and outgoing edges. It takes a bundle
of consecutive edges of v that is bounded by two outgoing edges. It orients all
the edges of the bundle such that they are outgoing at v. Note that these edge
orientations are forced by Property (1′) of bipolar orientations in Proposition 3.18.
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Figure 3.18. A bipolar orientation, the corresponding +/− encoding and an
illustration of the decoding algorithm.

The face rule is applied to a facial triangle ∆ that has two oriented edges. The
sign GB(∆) is used to deduce the orientation of the third edge.

Note that these two rules preserve the property that every vertex v that is
incident to an oriented edge in Y can be reached from s along an oriented path.
In particular, v has an incoming edge.

Let AY be the union of all faces that have all boundary edges oriented. Initially,
AY consists of the outer face. Since B is acyclic, the boundary of AY is acyclic as
well. Consequently, as long as there are faces that do not belong to AY , there is
a vertex v on the boundary of AY that has two outgoing edges that belong to the
boundary of AY . Either v is a candidate to extend the orientation using the vertex
rule or there is a face incident to v that becomes an element of AY by applying
the face rule to it.

We have thus shown that the rules can be applied until AY is the whole plane,
i.e., all edges are oriented. They have to be oriented as in B, by construction. �
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The next theorem gives a necessary and sufficient condition for a vector in
{−,+}|Fb| to induce a bipolar orientation. For the sake of simplicity we state it
only for triangulations, but the generalization to inner triangulations is straight
forward. In order to obtain a more elegant formulation, we adopt the convention
that the unbounded face is signed + if the bounded face adjacent to sink and
source is signed −. Otherwise the unbounded face is signed −. Thus, we work
now with signings of the set F of all faces. We say that a + triangle is the right
knee of the vertex at which it has an incoming and an outgoing edge. Similarly a right knee

− triangle is the left knee of exactly one of its vertices. For a vertex v of an inner left knee

triangulation T we denote by ∆+(v) and ∆−(v) the triangles that are the right ∆+(v), ∆−(v)

respectively left knee of v.

Theorem 3.32. Let T be a triangulation, x ∈ {−,+}|F|, and F− and F+ the sets

of faces that have negative respectively positive sign in x. Let M̂(T )+ and M̂(T )−

denote the subgraphs of the reduced angle graph M̂(T )− {s, t} induced by V ∪F−

respectively V ∪ F+.
Then x induces a bipolar orientation on T if and only if both M̂(T )+ and M̂(T )−

have a unique perfect matching.

+
+

+
+

M̂(T ) − {s, t}T

M̂(T )−

M̂(T )+

-
- -

-

Figure 3.19. The two perfect matchings induced by a bipolar orientation.

Theorem 3.32 is illustrated in Figure 3.19. It implies that every vertex of T
other than s, t must be adjacent to at least one + triangle and one − triangle.
This fact can be proved with less effort than Theorem 3.32. Therefore we delay
the rather long proof of Theorem 3.32 to Section 3.4.3.

Proposition 3.33. Let T be a plane inner triangulation. Then, T has at most
3.97n bipolar orientations.

Proof. By Euler’s formula, there are 2f−1 ≤ 22n−2−f∞ = 4n−1 · 2−f∞ many binary
vectors of length f − 1. By the bijection from Theorem 3.31, 4n−1 · 2−f∞ is also an
upper bound for the number of bipolar orientations of T .
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To squeeze the bound below 4n we use the above observation that every vertex
of T must be adjacent to at least one + triangle and at least one − triangle. Thus,
out of the 2d(v) possible +/− vectors at a vertex v at least two are not feasible.
Similarly, at an outer vertex v 6= s, t, there is exactly one angle forming a knee
at v. The sign of this angle depends on which of the two oriented paths of the outer
boundary v lies on, but it is fixed either way. Thus, out of the 2d(v)−1 possible sign
patterns at v at least one is not feasible. We summarize, that at most a fraction
of (1 − 21−d(v)) of all sign vectors is potentially feasible at every vertex but s and
t. We denote the set V \ {s, t} by V ′ and its cardinality by n′, i.e. n′ = n − 2.

We apply Jensen’s inequality which says that for a concave function ϕ theJensen’s inequality

inequality ϕ (
∑

xi/n) ≥ (
∑

ϕ(xi)) /n holds. As log x is concave we obtain

log



(
∏

v∈V ′

(1 − 21−d(v))

)1/n′

 =

1

n′

∑

v∈V ′

log
(
1 − 21−d(v)

)

≤ log

(
1

n′

∑

v∈V ′

(
1 − 21−d(v)

)
)

.

By the monotonicity of the logarithm this implies

∏

v∈V ′

(1 − 21−d(v)) ≤
(

1

n′

∑

v∈V ′

(
1 − 21−d(v)

)
)n′

.

The function 1 − 21−x is concave and we apply Jensen’s inequality again which
yields

1

n′

∑

v∈V ′

(
1 − 21−d(v)

)
≤ 1 − 21−

P
v∈V ′ d(v)/n′

.

Since we deal with simple planar maps,
∑

v∈V ′ d(v) ≤ 2(3n − 6) = 6n′ and we
conclude

∏

v∈V ′

(1 − 21−d(v)) ≤
(
1 − 21−6

)n′

=

(
31

32

)n′

.

By the Four Color Theorem T can be partitioned into at most four independent
sets Ik, k = 1, . . . , 4. Thus,

(
31

32

)n′

≥
∏

v∈V ′

(1 − 21−d(v)) =
4∏

k=1

∏

v∈Ik

(1 − 21−d(v))

and for at least one of the independent sets it must hold that
(

31

32

)n′/4

≥
∏

v∈Ik

(1 − 21−d(v)).
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We are ready to conclude that there are at most

4n−1 · 2−f∞ ·
(

31

32

)(n−2)/4

< 3.97n · 2−f∞ ·
(

32

31

)1/2

< 3.97n

bipolar orientations of T . �

3.4.3 Bipolar Orientations and Face Signings

This section is devoted to the proof of Theorem 3.32 which we repeat here for
convenience.

Theorem 3.32. Let T be a triangulation, x ∈ {−,+}|F|, and F− and F+ the sets

of faces that have negative respectively positive sign in x. Let M̂(T )+ and M̂(T )−

denote the subgraphs of the reduced angle graph M̂(T )− {s, t} induced by V ∪F−

respectively V ∪ F+.
Then x induces a bipolar orientation on T if and only if both M̂(T )+ and M̂(T )−

have a unique perfect matching.

Proof. We may assume that the outer face F∞ is signed + and that the bounded
face F0 that is incident to both s and t is signed −. It is easy to see that F∞ is
the only degree 1 vertex of M̂+(T ) and F0 is the only degree 1 vertex of M̂−(T ).
The degree 2 vertices of both graphs correspond to triangles that are incident to
either s or t.

We first show that if x indeed induces a bipolar orientation B, then the graphs
M̂+(T ) and M̂−(T ) both have a unique perfect matching. By symmetry it suffices

to show this for M̂+(T ). Clearly, M̂+(T ) must have a perfect matching Σ+(T ),
since every vertex v 6= s, t has a right knee in B and every + triangle is a right knee
for exactly one vertex. We now show that Σ+(T ) is the unique perfect matching

of M̂+(T ). We use the well known fact, that a perfect matching is unique if and
only if it has no alternating cycle.

Since B is a bipolar orientation, v lies on a directed s-t-path Pv in B that uses
the two edges incident to v which lie on ∆+(v). This path forms two bounded
regions R1 and R2 with the boundary of the outer face F∞, and we may assume
that R1 is the region that contains ∆+(v) and no other triangle incident to v.
We observe that all inner vertices of Pv also have their right knee in R1. An
alternating cycle of Σ+(T ) in M̂+(T ) through v corresponds to a sequence of
vertices and triangles v = v1, T1, . . . , vk, Tk, vk+1 = v, such that Ti is the right knee
of vi and Ti−1 is not a knee of vi. By the above observation all Ti lie in R1. The
only face from R1 incident to v is T1. This is a contradiction since v must be
reentered from Tk 6∈ R1.
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We have thus shown that if x induces a bipolar orientation, then M̂+(T )

and M̂−(T ) have unique perfect matchings, since no vertex lies on an alternat-
ing cycle.

We now prove that if M̂+(T ) and M̂−(T ) each have a unique perfect matching
Σ+(T ) respectively Σ−(T ), then x induces a bipolar orientation. The proof uses
induction and the two reduction rules shown in Figure 3.20.

4

(R1) (R2)

Figure 3.20. The reductions used for the induction step. A black arrow indicates
a + triangle and a gray arrow indicates a − triangle.

Reduction (R1) is applicable if there is an edge such that the corresponding 4-

cycle in M̂(T )−{s, t} contains one edge from every matching and these two edges
do not share a vertex. Reduction (R2) is applicable if there is an edge such that

the corresponding 4-cycle in M̂ − {s, t} contains one edge from every matching
and these two edge do share a vertex.

We first describe how one would intuitively build an orientation of T from
Σ+(T ) and Σ−(T ). Since T is embedded, we have a clockwise adjacency list L(v) of
incident edges at every vertex v. In a bipolar orientation, the edges that lie between
the angle of the edge e−(v) ∈ Σ−(T ) and the angle of the edge e+(v) ∈ Σ+(T ) in
L(v) are directed away from v and those which lie between e+(v) and e−(v) are
directed towards v. We have to show that this is well defined, that is if an edge
e = {v, w} lies between e−(v) and e+(v) then it lies between e+(w) and e−(w). An
edge is called a good edge if it satisfies this condition and bad otherwise. In the
above situation e is called an out-edge of v and an in-edge of w. Thus, an edge
is bad if it is an out-edge of both its end vertices or an in-edge of both its end
vertices. A reduction is admissible if it is applicable and the resulting triangulation
T ′ satisfies the following conditions.

(i) The graph M̂+(T ′) has a unique perfect matching if and only if M̂+(T ) does.

(ii) The graph M̂−(T ′) has a unique perfect matching if and only if M̂−(T ) does.

(iii) The triangulation T ′ has bad edges if and only if T has bad edges.

We will show that if T has at least four vertices and unique perfect matchings
Σ+(T ) and Σ−(T ), then one of the reductions (R1), (R2) is admissible. We then
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apply admissible reductions until T is reduced to just one triangle. A triangle
with given source s and sink t has a unique bipolar orientation and no inner edge,
in particular no bad edge. This implies that T cannot have bad edges, since the
presence of bad edges is preserved by the admissible reductions. We then explain
how to construct a bipolar orientation of T by reversing the reductions, where we
use that all edges of T are good.

We now show that if T has at least four vertices and Σ+(T ) and Σ−(T ) are

unique, then there is quadrangle in M̂(T )−{s, t} such that two of its four edges are
matching edges. Since two edges from the same matching on a 4-cycle would form
an alternating cycle, this implies that (R1) or (R2) is applicable. We will then show
that if (R1) or (R2) is applicable, then there is also a reduction which is admissible.
To show that some reduction is applicable we use a counting argument. Let n
denote the number of vertices of T . Then, M̂(T )−{s, t} has 3n−6−(d(s)+d(t)−1)
quadrangular faces, one for every edge of T that is neither incident to s nor to t.
There are 2n−4 matching edges. Two of these matching edges lie on no quadrangle,
namely those incident to F0 and F∞. There are d(s)− 2+ d(t)− 2 matching edges
that lie on one quadrangle, namely those at faces that are incident to either s or t.
All 2n − 4 − 2 − (d(s) + d(t) − 4) other matching edges lie on two quadrangles.
Thus, there are

2(2n − d(s) − d(t) − 2) + d(s) + d(t) − 4 = 4n − d(s) − d(t) − 8

incidences between matching edges and quadrangles. Since

4n − d(s) − d(t) − 8 > 3n − d(s) − d(t) − 5

for n ≥ 4, the pigeon hole principle implies that at least one quadrangle must have
two matching edges, and thus some reduction is applicable.

(a)

v

w u w

(b)

v

u

Figure 3.21. Reductions of good edges.

We now show that if there is an applicable reduction, then there also is an
admissible one. Suppose (R1) is applicable to contract the edge e = {v, w} and
denote the new vertex of T ′ by u, see Figure 3.21 (a). It is easy to see that if Σ+(T )
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has an alternating cycle, then so does Σ+(T ′). The converse is also true, since v is

reachable from w in M̂+(T ) on an alternating path of Σ+(T ). Since w is reachable

from v in M̂−(T ) on an alternating path of Σ−(T ) it follows that M̂−(T ′) has

an alternating cycle if and only if M̂−(T ′) has an alternating cycle. Furthermore
every out-edge of v or w is an out-edge of u and the same is true for in-edges. Since
e is a good edge, and no other edges change their in-edge respectively out-edge
status at any vertex, we conclude that T ′ has bad edges if and only T does.

Next, suppose that (R2) is applicable to an edge e = {v, w} and let u be defined
as above. If e is a good edge, then proof is analogous to that of the case when
(R1) is applicable, see Figure 3.21 (b).

v

w u

h h′
x x

Figure 3.22. Reduction of a bad edge, when v is incident to a good edge h.

Now suppose that e is a bad edge. Out-edges of v become in-edges of u and in-
edges of v become out-edges of u. Thus, if v is incident to a good edge h = {v, x},
then the edge h′ = {u, x} of T ′ will be a bad edge, see Figure 3.22. It is again
easy to see that Σ+(T ′) respectively Σ−(T ′) has an alternating cycle if and only if
Σ+(T ) respectively Σ−(T ) does.

a

v

b
a b

u

v

a b
w w

c c

Figure 3.23. Reduction of a bad edge, when all edges incident to v are bad.

It remains to consider the case that all edges incident to v are bad, see Fig-
ure 3.23. Let a and b be the vertices that form the triangles incident to e together
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with v and w. Since {v, a} and {v, b} are bad, and Σ+(T ) and Σ−(T ) do not have
alternating cycles, none of a, b can have a knee at a face incident to v. There
are d(v) − 2 triangles incident to v that are not a knee of v and only d(v) − 3
neighbors of v for which these triangles can be a knee. Hence, there must be one
neighbor c of v that has both its knees at triangles incident to v, see Figure 3.23.
We contract the edge {v, c} with an (R2) reduction. Then, the edge e remains
bad and thus T ′ satisfies the third condition for admissibility. It is again easy to
see that Σ+(T ′) respectively Σ−(T ′) has an alternating cycle if and only if Σ+(T )
respectively Σ−(T ) does.

Thus, we have shown that (R1) or (R2) is always admissible. Since the reduc-
tion process yields a triangulation that has no bad edges, T does not have bad
edges either, i.e. we have only been performing reductions as shown in Figure 3.21.

u

(R1)

v

w u

(R2)

w

v

Figure 3.24. Constructing a bipolar orientation by reversing the reductions.

Figure 3.24 shows how to construct an orientation of T from a given orientation
of T ′ by reversing an (R1) respectively (R2) reduction of a good edge. Using
Proposition 3.18 it is easy to see that if the original orientation of T ′ is bipolar,
then so is the resulting one of T . It is also immediate that the face signing GB of
the constructed bipolar orientation B of T is indeed x. This concludes the proof
of the theorem. �

Remark 3.34. Let M̂+(T ) and M̂−(T ) be given along with perfect matchings
Σ+(T ) and Σ−(T ) and the information that all edges of T are good. It is then easy
to show that both matchings are the unique perfect matchings of the respective
graph. That is, the conditions that the matchings are unique and that all edges
are good are equivalent.

3.5 The Complexity of Counting α-Orientations

Given a planar map M and a function α : V → N, what is the complexity of
computing the number of α-orientations of M?
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The class #P plays a prominent role in the complexity theory of counting
problems. For the sake of completeness we briefly introduce the class #P . Loosely
speaking, #P is the class of counting problems naturally associated with the deci-
sion problems from NP . We now give a formal definition. Let Σ be a finite alpha-
bet and R ⊆ Σ∗×Σ∗ a relation. Furthermore, we assume that there exists a poly-
nomial p with 〈x, y〉 ∈ R ⇒ |y| ≤ p(|x|) and that the language L = {〈x, y〉 ∈ R}
is decidable in polynomial time. Let R(x) = {y | 〈x, y〉 ∈ L}. Then, problem of
deciding for x ∈ X whether R(x) is nonempty is in NP and the counting problem
to determine |R(x)| is in #P . A counting problem is #P -complete if it is in #P#P -complete

and every problem in #P can be polynomially reduced to it.

In some instances the number of α-orientations can be computed efficiently,
e.g. for perfect matchings and spanning trees of planar maps. In Section 3.5.1 we
show that counting is #P -complete for other α-orientations, and in Section 3.5.2
we discuss how to take advantage of an existing fully polynomial randomized ap-
proximation scheme by applying it to α-orientations.

3.5.1 #P -Completeness

Recently, Creed [29] has proved Theorem 3.35. As already mentioned, Eulerian
orientations are α-orientations, and hence Theorem 3.35 says that counting α-Eulerian orientation

orientations is #P -complete. Since we use Creed’s proof technique in the sequel,
we sketch the proof here. It uses a reduction from counting Eulerian orientations
which has been proven to be #P -complete by Mihail and Winkler in [71].

Theorem 3.35. It is #P -complete to count Eulerian orientations of planar graphs.

Proof. We aim to show that the number of Eulerian orientations of a graph G can
be computed in polynomial time with the aid of polynomially many calls to an
oracle for the number of Eulerian orientations of a planar graph.

In order to count the Eulerian orientations of a graph G with n vertices, a
drawing of this graph in the plane with ℓ crossings is produced. We may assume
that no three edges cross in the same point and that ℓ is of order O(n4).

From this drawing a family of graphs Gk for k = 0, . . . , ℓ is produced. In Gk

every crossing of two edges {u, v} and {x, y} is replaced by the crossover box Hk

on 4k + 1 vertices, see Figure 3.25. In G0 for example every crossing is simply
replaced by a vertex. We call the edges {u,wu

k}, {v, wv
k}, {x,wx

k}, {y, wy
k} the

connection edges of Hk.

Every Eulerian orientation of G induces a Eulerian orientation of G0, but there
are Eulerian orientations of G0 that do not come from a Eulerian orientation of G.
Given a Eulerian orientation of G0, we call the orientation of the edges incident to a
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vertex w0 that replaces a crossing valid if exactly one of the edges {v, w0}, {u,w0}
is directed away from w0, and invalid otherwise.

v

ux

y

H0
y

ux

Hk
vy

ux

v
H1

w0

wy
1

wu
1wx

1

wv
1 wv

k

wx
k wu

k

wy
k

Hk−1

Figure 3.25. The crossover boxes defined in [29].

We call a configuration of the connection edges of Hk valid if exactly one
of the edges {u,wu

k}, {v, wv
k} is directed towards {u, v} and exactly one of the

edges {x,wx
k}, {y, wy

k} is directed towards {x, y}. We call a configuration of the
connection edges of Hk invalid if exactly two of the connection edges are directed
towards {u, v, x, y}, but it is not a valid configuration. By xk respectively yk we
denote the number of ways that a valid respectively invalid configuration of the
connection edges of Hk can be extended to an orientation of the edges of Hk, such
that all vertices of Hk have out-degree 2.

It is clear that x0 = 1 = y0 and Creed observes the following recursion

xk+1 = 4xk + 2yk

yk+1 = 4xk + 3yk.

This recursion formula can be verified by a simple enumeration. In [29] a lemma
from [96] is used to argue that the sequence xk/yk is non-repeating. In Lemma 3.36
we provide an easy argument to show from first principles that xk/yk is strictly
monotonically decreasing.

Let Ni denote the number of Eulerian orientations of G0 which have i valid
cross over boxes, that is Nℓ is the number of Eulerian orientations of G. The
number of Eulerian orientations of Gk is

EO(Gk) =
ℓ∑

i=0

Nix
i
ky

ℓ−i
k .

Hence the number EO(Gk)/y
ℓ
k is the value of the polynomial p(z) =

∑ℓ
i=0 Niz

i at
the point z = xk/yk. Since computing yℓ

k is easy, the polynomial p of degree ℓ can be
evaluated at ℓ+1 different points with ℓ+1 calls to an oracle for counting Eulerian
orientations of planar graphs. Hence the coefficients of p can be determined using
polynomial interpolation. In particular this yields a way to compute Nℓ. �
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Lemma 3.36. Let x0 = 1 = y0 and xk+1 = 4xk + 2yk while yk+1 = 4xk + 3yk.
Then the sequence xk/yk is strictly monotonically decreasing.

Proof. It follows directly from the recursion that xk+1 = yk+1−yk and yk+1 = 7yk−
4yk−1. In order to show that xk+1/yk+1 < xk/yk we use the following equivalence.

xk+1

yk+1
=

4xk + 2yk

4xk + 3yk
<

xk

yk
⇐⇒ 4

(
xk

yk

)2

− xk

yk
− 2 > 0

Since xk/yk > 0 this inequality is satisfied if and only if xk/yk > (1+
√

33)/8 =: c.
Note that 1/(1 − c) = 3 + 4c can be easily derived since c solves 4t2 − t − 2 = 0.

It remains to show that xk/yk = 1 − (yk−1/yk) > c which we do by induction.
Since x0/y0 = 1 and x1/y1 = 6/7 > c the induction base holds and the induction
hypothesis guarantees that 1 − c > yk−2/yk−1 for k ≥ 2. We have

xk

yk
= 1 − yk−1

yk
> c ⇐⇒ yk

yk−1
>

1

1 − c
.

Using the induction hypothesis we obtain

yk

yk−1

=
7yk−1 − 4yk−2

yk−1

= 7 − 4
yk−2

yk−1

> 3 + 4c =
1

1 − c

�

In [71] counting perfect matchings in bipartite graphs is reduced to counting
Eulerian orientations. This reduction creates vertex degrees that grow linearly with
the number of vertices of the reduced graph. It remains open whether counting
Eulerian orientations of graphs with bounded maximum degree is #P-complete.
We could not settle this question, but the next theorem shows that counting α-
orientations is #P-complete even when the vertex degrees are restricted.

Theorem 3.37. For the following graph classes and out-degree functions α the
counting of α-orientations is #P-complete.

1. Planar maps with d(v) = 4 and α(v) ∈ {1, 2, 3} for all v ∈ V .

2. Planar maps with d(v) ∈ {3, 4, 5} and α(v) = 2 for all v ∈ V .

The proof uses the planarization method from the proof of Theorem 3.35 in
conjunction with the following theorem from [30].

Theorem 3.38. For k ≥ 3 counting perfect matchings of k-regular bipartite graphs
is #P-complete.
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Proof of Theorem 3.37. Perfect matchings of a bipartite graph G with vertex set
V = A ∪ B are in bijection with α-orientations of G with α(v) = 1 for v ∈ A
and α(v) = d(v) − 1 for v ∈ B. This bijection is established by identifying
matchings edges with edges directed from A to B. Hence in k-regular bipartite
graphs counting perfect matchings is equivalent to counting what we call 1-(k−1)-
orientations in the sequel.

We observe that the planarization method from the proof of Theorem 3.35 can
be used in a more general setting. Let GD be the set of all graphs with vertex
degrees in D ⊂ N and PD the set of all planar graphs with degrees in D. Let
I ⊂ N and associate with every G ∈ GD an out-degree function αG whose image
is contained in I. Then, the proof of Theorem 3.35 shows that counting the αG-
orientations of graphs in GD can be reduced to counting α′

G-orientations of the
graphs in PD∪{4} where the image of α′

G is contained in I ∪{2} for all G′ ∈ PD∪{4}.

When we apply this to 4-regular bipartite graphs with 1-3-orientations, that is
perfect matchings, it yields the first claim of the theorem since counting perfect
matchings of bipartite 4-regular graphs is #P -complete by Theorem 3.38.

G1

(a)

G2

(b) (c)

G3

Figure 3.26. The gadgets that translate (a) α(v) = 1 to α ≡ 2 for d(v) = 3,
(b) α(v) = 1 to α ≡ 2 for d(v) = 4, and (c) α(v) = 3 to α ≡ 2 for d(v) = 4.

We give two different proofs for the second claim. Let G be a graph with
a degree 3 vertex v and αG an associated out-degree function with αG(v) = 1.
We substitute v by the gadget G1 from Figure 3.26 (a) to obtain a graph G′.
The gadget has five vertices that induce nine edges and 3 edges connect it with
the neighbors of v in G. Let αG′ = αG on V (G) − v and be αG′(u) = 2 for
u ∈ V (G1). Exactly one of the connection edges must be directed away from G1

in every αG′-orientation of G′. Note that G1 is symmetric in the three connection
vertices. It is easy to check that G1 has ten orientations with out-degree 2 at
every vertex once the outgoing connection edge has been chosen. Thus, every αG-
orientation is associated with ten α′

G-orientations of G′ and since the underlying
αG-orientation can be reconstructed from every αG′-orientation, we obtain that
rαG′ (G

′) = 10 · rαG
(G).
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Let a 3-regular bipartite graph G with vertex set V = A ∪ B be given and
G′ be obtained from G by substituting every vertex v ∈ A by a copy of G1.
The number of 1-2-orientations of G is 10−|A| · rαG′ (G

′). Using the planarization
method this yields that counting orientations with αG′ ≡ 2 for graphs from P{3,4,5}
is #P -complete.

Similarly counting perfect matchings of 4-regular bipartite graphs can be re-
duced to counting 2-orientations of graphs from P{3,4,5}. We mention this second
proof since it uses planar gadgets. More precisely G′ is obtained from G by sub-
stituting the vertices of one partition class of a 4-regular bipartite graph G by the
gadget G2 shown in Figure 3.26 (b) and the vertices from the other partition class
by the gadget G3 shown in Figure 3.26 (c). Using a similar reasoning as above
one obtains that the number of 1-3-orientations of G is (26 · 6)−|A|rαG′ (G

′), where
αG′ ≡ 2, since G2 and G3 give a blow-up factor 26 respectively 6. �

Having proved Theorem 3.37 it is natural to ask whether it is #P -complete
to count α-orientations for k-regular planar graphs and constant α. This setting
implies that α ≡ k/2. Planar graphs have average degree less than 6. Furthermore,
a 2-regular, connected graph is a cycle and therefore has two Eulerian orientations.
Hence the above question should be asked for k = 4. Note that the planarization
method yields vertices with d(v) = 4 and α(v) = 2, so we do not need to restrict
our considerations to planar graphs when trying to answer the following question.
Is it #P -complete to count Eulerian orientations of 4-regular graphs? To the best
of our knowledge the following problem is also open. Is it #P -complete to count
Eulerian orientations of graphs with degrees in {1, . . . , k}, for some arbitrary but
fixed k ∈ N?

We present one more #P -completeness result since it has a nice connection
with the first question stated above. On every 4-regular bipartite graph there is
a bijection between 2-factors and Eulerian orientations. For 3-regular bipartite
graphs 2-factors are in bijection with their complements the 1-factors, i.e. per-
fect matchings. Hence it is #P -complete to count 2-factors of 3-regular bipartite
graphs. The next theorem generalizes this observation.

Theorem 3.39. For every i ≥ 3, i 6= 4 counting 2-factors of i-regular bipartite
graphs is #P -complete.

Proof. The case i = 3 follows from Theorem 3.38 as explained above. The proof
for i ≥ 5 is a reduction from counting 2-factors of 3-regular bipartite graphs, i.e.
the case i = 3. The method comes from the proof of Theorem 3.38 in [30].

The following preliminary considerations will be needed later. We fix some
edge e0 of the complete bipartite graph Ki,i on 2i vertices. This graph has i2

edges and every 2-factor of Ki,i has 2i edges. Let ci be the number of 2-factors
of Ki,i. We want to find the ratio between 2-factors of Ki,i that contain e0 and
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2-factors that do not contain e0. Consider pairs of 2-factors and edges (F, e).
Obviously, there are i2 · ci such pairs and we have |{(F, e) | e ∈ F}| = 2i · ci while
|{(F, e) | e 6∈ F}| = (i2 − 2i) · ci. It is obvious that

{(F, e) | e ∈ F} =
i2⋃

j=1

{(F, ej) | ej ∈ F}

and symmetry implies that all sets {(F, ej) | ej ∈ F} have the same cardinality.
We conclude that there are ai = 2ci/i 2-factors including e0. It follows similarly
that there are bi = (1 − 2/i)ci 2-factors not including e0. We infer that ai/bi =
2/(i − 2) ≤ 2/3 for i ≥ 5.

The bridge gadget Pi(k) is a concatenation of k disjoint copies of Ki,i−e0, with
k − 1 connection edges as shown in Figure 3.27 for i = 5 and k = 4. The gadget
is connected to the rest of the graph via two edges at the degree i − 1 vertices.

Figure 3.27. The bridge gadget P5(4)

Let G be a 3-regular bipartite graph with 2n vertices and G′(k) be obtained
from G by augmenting it with n(i−3) disjoint bridge gadgets Pi(k) such that G′(k)
is i-regular and bipartite. Let P be some fixed bridge. Note that every 2-factor
of G′(k) includes all or none of the connection edges of P . This is because a 2-factor
is a partition into cycles and therefore intersects every edge cut of cardinality 2 in
either none or both of the edges.

Let cG be the number of 2-factors of G. Among the 2-factors of G′(k) let S
denote the set of those that induce a 2-factor of G, and let Sc be the complement
of S. We have |S| = cG · b

k·n(i−3)
i since the 2-factors in S cannot include any

connection edges and thus can be partitioned into a 2-factor of G that is augmented
by one of the bk

i possible 2-factors on every bridge.

Next we want an upper bound for |Sc|. Every 2-factor in Sc includes the
connection edges of at least one bridge P . Since 23n is the number of subsets of
E(G) each of which can be augmented to a 2-factor in at most ak

i ways on P , we

have that |Sc| ≤ ak
i b

k·(n(i−3)−1)
i 23n. The number of 2-factors of G′(k) is cG′(k) =

|S| + |Sc| and we can bound it as follows.
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cG · bk·n(i−3)
i ≤ cG′(k) ≤ cG · bk·n(i−3)

i + ak
i b

k·(n(i−3)−1)
i 23n

⇐⇒ cG ≤ cG′(k)b
−k·n(i−3)
i ≤ cG + 23n

(
ai

bi

)k

Since ai/bi ≤ 2/3 we conclude that k > (3n + 1)/(log 3 − 1) implies 23n(ai/bi)
k <

1/2. Note that this bound for k is linear in n. We finally conclude that cG =

⌊cG′(k)b
−k·n(i−3)
i ⌋ for k large enough. Since b

−k·n(i−3)
i is easy to compute and G′(k)

has size polynomial in n, this proves the theorem. �

Remark 3.40. We would like to point out that the missing case k = 4 in Theo-
rem 3.39 cannot be fixed by substituting the bridge gadget by another gadget. It
is crucial that ai/bi < 1 and symmetry implies that in every 4-regular graph the
number of 2-factors including a fixed edge e0 is equal to the number of 2-factors
not containing e0.

3.5.2 Approximation

Counting α-orientations can be reduced to counting f -factors in bipartite planar
graphs and to counting perfect matchings in bipartite graphs. We next describe
these transformations. They are useful because bipartite perfect matchings have
been the subject of extensive research, see for example [69, 79, 58].

First, note that the α-orientations of M are in bijection with the α′-orientations
of the bipartite planar map M ′. This map M ′ is obtained from M by subdividing
every edge once and we define α′(v) = α(v) for the original vertices of M and
α′(v) = 1 for all subdivision vertices. The α′-orientations of M ′ are in bijection
with the f -factors of M ′ where f(v) = α′(v) for all vertices of M ′. The bijection
identifies factor edges with edges directed from a vertex of M to an edge-vertex.

The idea for the next transformation is due to Tutte [94]. The graph M ′ is
blown up to a graph M ′′ such that M ′′ has

∏
v∈M(d(v) − f(v))! times as many

perfect matchings, i.e. 1-factors, as there are f -factors of M ′. To obtain M ′′

from M ′ substitute v ∈ V (M) by a Kd(v),d(v)−f(v), such that each of the d(v) edges
incident to v in M ′ connects to one of the vertices from the partition class of
cardinality d(v).

In [58] Jerrum, Sinclair, and Vigoda give a fully polynomial randomized ap-
proximation scheme for counting perfect matchings of bipartite graphs. Thus, the
above transformation yields a fully polynomial randomized approximation scheme
for α-orientations as well.

The number of perfect matchings of a bipartite graph with a Pfaffian orientation
can be computed in polynomial time. Little [68] gives a complete characterization
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of graphs with a Pfaffian orientation and in [79] a polynomial time algorithm to
test whether a given graph is Pfaffian is introduced. Little characterizes Pfaffian
graphs as those graphs with no central even subdivision of a K3,3. In an even
subdivision every edge is subdivided by an even number of vertices. An induced
subgraph of a graph is central if the rest of the graph has a perfect matching.

As a special case of Little’s characterization it follows that all planar graphs
are Pfaffian. Hence, in all cases where M ′′ is planar the counting is easy. For
spanning trees the above transformations yields planar graphs, while for Eulerian
orientations it does not, as Theorem 3.35 implies. Although we do not have a
hardness result for Schnyder woods or bipolar orientations on planar maps, there
are in both cases instances for which the transformation yields a non-Pfaffian
graph. One such example is the augmented triangular grid from Section 3.2.1. triangular grid

M M̂ M̂ ′ M̂ ′′

Figure 3.28. An oriented subgraph of a triangulation with a bipolar orientation
that induces a central and even subdivision of K3,3.

With respect to bipolar orientations Figure 3.28 shows a subgraph of a map M
with five vertices and four faces that implies that M̂ ′′ cannot be Pfaffian. The
figure shows simplified versions of M̂ ′ and M̂ ′′. We can choose M̂ ′ = M̂ since the
angle graph is bipartite. The Tutte transformation substitutes face vertices by
K1,3 and primal vertices of degree d by K2,d. Instead one can simply create a copy
of every primal vertex with the same neighborhood as the original and leave the
face vertices unchanged to obtain a simplified version of M̂ ′′.

3.6 Conclusions

In this chapter we have studied the maximum number of α-orientations for different
classes of planar maps and different α. In most cases we have proved exponential
upper and lower bounds cn

L and cn
U for this number.

The obvious problem is to improve on the constants cL and cU for the different
classes. We think that in particular improving the upper bound of 8n for the
number of Schnyder woods on 3-connected planar maps is worth further efforts.
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For bipolar orientations the more efficient encoding from Theorem 3.31 helps to
improve the upper bound. We think that finding a more efficient encoding for
Schnyder woods might be needed to substantially improve on the 8n bound.

Problem 3.41. Improve the upper bound of 8n for the number of Schnyder woods
of a planar map with n vertices.

Results by Lieb [65] and Baxter [8] yield the exact asymptotic behavior of the
number of Eulerian orientations for the square and triangular grid on the torus.
We have used Baxter’s result in Section 3.1.3 to construct a family of planar maps
with asymptotically 2.59n Eulerian orientations. We have also shown that Lieb’s
and Baxter’s results yield upper bounds for the number of 2-orientations on the
square grid respectively the number of Schnyder woods on the triangular grid.
We have not been able to take advantage of these results for improving the lower
bounds for the number of 2-orientations respectively Schnyder woods.

Problem 3.42. Show that the quadrangulation of the grid G�
k,ℓ has asymptotically

(8 ·
√

3/9)kℓ 2-orientations.

Problem 3.43. Show that the augmented triangular grid T ∗
k,ℓ has asymptotically

(3
√

3/2)kℓ Schnyder woods.

For some instances of α-orientations there are #P -completeness results. This
contrasts with spanning trees and planar bipartite perfect matchings for which
polynomial algorithms are known. It remains open to determine the complexity of
counting Schnyder woods and bipolar orientations on planar maps and of counting
Eulerian orientations of graphs with bounded maximum degree.

Problem 3.44. Is it #P -complete to count

(i) Schnyder woods?

(ii) bipolar orientations of planar maps?

(iii) Eulerian orientations of graphs with degrees in {1, . . . , k}, for some arbitrary
but fixed k ∈ N?

(iv) Eulerian orientations of 4-regular graphs?



Chapter 4

Spanning Trees with Many Leaves

Spanning trees are one of the topics that appear in every textbook about graph
theory. Nevertheless, there are still interesting open problems related to spanning
trees and one such problem is the topic of this chapter. We are concerned with
finding a spanning tree with the maximum number of leaves for a given graph.
The precise formulation as a decision problem is the following.

Max-Leaves Spanning Tree (MaxLeaf): MaxLeaf

INSTANCE: A graph G and an integer k.
QUESTION: Does G have a spanning tree T with at least k leaves?

Different approaches have been proposed for the problem MaxLeaf which is
known to be NP-complete, see [53]. One method yields constructive lower bounds
for the number of leaves that guarantee a certain fraction of the vertices to become
leaves. This method has been applied to various graph classes, see [54, 63, 15].
The results from [54, 63, 15] all yield extremal lower bounds, in the sense that
examples exist which show that the bounds are tight. When choosing k as a
parameter, an algorithm for MaxLeaf is called an FPT algorithm (short for fixed
parameter tractable) if its complexity is bounded by f(k)g(n), where g(n) is a
polynomial in the number of vertices of G. FPT algorithms for MaxLeaf have
received much attention, see [11, 16, 35, 15]. In [11] Bodlaender gave the first FPT
algorithm with a parameter function f(k) of roughly (17k4)!. In [16, 35, 15] the
abovementioned extremal lower bounds are used to improve Bodlaender’s result.
The third approach for MaxLeaf that should be mentioned are approximation
algorithms. A 2-approximation is given in [85], and when the input is restricted
to cubic graphs, the current best approximation is a 5/3-approximation [27]. Our
main contribution in this chapter is a new constructive and extremal lower bound
for a very broad graph class. This result can be used to improve the best known
time complexity for an FPT algorithm.

We now discuss previous work on finding extremal lower bounds in more detail
and explain our contribution. Throughout this chapter all graphs are assumed
to be simple unless otherwise stated. In fact the only multi-graph that we use
is the K2 plus one additional edge. The minimum vertex degree of a graph G is
denoted by δ(G). A vertex of degree 1 is called a leaf. Since we do not work with δ(G)

leafedge orientations in this chapter we use the simpler notation uv instead of {u, v} to
denote an edge between vertices u and v. Throughout this chapter we will denote

101



102 Spanning Trees with Many Leaves

the number of vertices of a graph G by n instead of n(G) whenever it is clear from
the context which graph is meant.

Let G be a connected graph with at least two vertices. Linial and Sturte-
vant [67] and Kleitman and West [63] have shown that every graph G with δ(G) ≥ 3
has a spanning tree with at least n(G)/4 + 2 leaves, and that this bound is best
possible. In [63] Kleitman and West also improve on this bound for graphs of
higher minimum degree.

The examples showing that the bound n/4 + 2 is best possible for graphs of
minimum degree 3 all consist of a cycle in which every vertex is replaced by a cubic
diamond. A diamond is the graph K4 minus one edge, and an induced diamonddiamond

subgraph of a graph G is a cubic diamond if its four vertices all have degree 3 incubic diamond

G, see Figure 4.1 (a).

(a) (b) (c)

Figure 4.1. A cubic diamond, and concatenations of two respectively three dia-
monds forming a 2-necklace.

Since these examples are very restricted it is natural to ask if better bounds
can be obtained when diamonds are forbidden as subgraphs. This question was
answered by Griggs, Kleitman and Shastri [54] for cubic graphs, that is graphscubic graph

where every vertex has degree 3. They show that a cubic graph G without dia-
monds always admits a spanning tree with at least n/3 + 4/3 leaves. This result
is best possible, as we will see in Section 4.4.

For minimum degree 3 Bonsma [15] obtains the following bound. A graph G
with δ(G) ≥ 3, without cubic diamonds, contains a spanning tree with at least
2n/7 + 12/7 leaves. This bound is also best possible and the examples showing
that the linear factor cannot be improved are very similar to those for the n/4 + 2
bound. More precisely these examples can be obtained by replacing every vertex
of a cycle by the graph shown in Figure 4.1 (b).

With regard to these latter two results, the following conjecture from [15] seems
natural. Every graph G with δ(G) ≥ 3 and without 2-necklaces contains a span-
ning tree with at least n/3 + 4/3 leaves. Informally speaking, a 2-necklace is a2-necklace

concatenation of k ≥ 1 diamonds with only two outgoing edges, see Figure 4.1. If
true, this conjecture would improve the bound 2n/7+12/7 with only a minor extra
restriction, and would also generalize the result for cubic graphs from [54]. In Sec-
tion 4.1 we disprove this conjecture by constructing graphs with δ(G) = 3 without
2-necklaces that do not admit spanning trees with more than 4n/13+24/13 leaves.



103

On the positive side, we prove that the statement is true after only excluding
one more very specific structure, called a 2-blossom, see Figure 4.2 (a). Precise 2-blossom

definitions of 2-necklaces and 2-blossoms are given in Section 4.1. Our result is
more general than the above mentioned results from [63, 54, 15] since it does not
need any restriction on the minimum degree. The exact statement is given in
Theorem 4.1.

Let V≥3(G) denote the set of vertices in G with degree at least 3 and n≥3(G) V≥3(G), n≥3(G)

its cardinality. Let ℓ(T ) be the number of leaves of a graph T . By Q3 we denote ℓ(T )

Q3, G7the graph of the 3-dimensional cube, see Figure 4.2 (b). Furthermore, G7 is the
graph on seven vertices shown in Figure 4.2 (c).

(a)

G7

(c)

Q3

(b)

Figure 4.2. A 2-blossom and the graphs Q3 and G7.

Theorem 4.1. Let G be a simple, connected graph on at least two vertices which
contains neither 2-necklaces nor 2-blossoms. Then, G has a spanning tree T with

ℓ(T ) ≥ n≥3(G)/3 +





4/3 if G = Q3,
5/3 if G = G7 or G 6= Q3 is cubic,
2 otherwise.

At the beginning of Section 4.4 we show that Theorem 4.1 is best possible.
The proof of Theorem 4.1 in Section 4.4 is constructive and can be turned into
a polynomial time algorithm for the construction of a spanning tree. Our proof
methods extends that of Griggs et al. [54] and makes use of their results. This
enables us to strengthen and streamline known results and to shorten the proof of
Theorem 4.1 by incorporating a lemma from [54] into our proof. In Section 4.4.2
we argue that the long case study in [54] actually proves this strong new lemma,
which we then use as an important step in the proof of Theorem 4.1. We share
the opinion expressed in [54] that a shorter proof for the bound for cubic graphs
might not exist. Therefore using that result in order to prove the more general
statement seems appropriate.
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Graph class Bound Reference

δ(G) ≥ 3 n/4 + 2 [63]

δ(G) ≥ 4 2n/5 + 8/5 [63]

δ(G) ≥ 5 n/2 + 2 [55]

unrestricted n6=2/4 + 3/2 Theorem 4.7

δ(G) ≥ 3, no triangles n/3 + 4/3 [15]

no triangles n6=2/3 + 2/3 Theorem 4.8

δ(G) ≥ 3, no cubic diamonds 2n/7 + 12/7 [15]

no cubic diamonds 2n≥3/7 + 12/7 Theorem 4.9

cubic graphs, no cubic diamonds n/3 + 4/3 [54]

no 2-necklaces 4n≥3/13 + 20/13 Theorem 4.5

no 2-necklaces, no 2-blossoms n≥3/3 + 4/3 Theorem 4.1

Table 4.1. An overview of known lower bounds for different graph classes.

Table 4 shows an overview of known extremal results and the new bounds that
we prove in this chapter. We denote by n6=2(G) the number of vertices of G that don 6=2(G)

not have degree 2. With regard to the first three result from Table 4 we mention
a conjecture which is attributed to N. Linial in [54]. For every k ≥ 3 and every
graph G with δ(G) ≥ k there is a spanning tree T with ℓ(T ) ≥ (k−2)n/(k+1)+d
for some d ≥ 0 ∈ R. In [22] it is remarked that a result obtained by Alon [5] with
probabilistic methods disproves this conjecture for large k.

We explain the basic proof method that we use to prove Theorem 4.1 in Sec-
tion 4.2 and demonstrate it by proving a generalization of the n/4 + 2 bound
from [63]. Similarly we generalize a bound from [15] for graphs without triangles.

In Section 4.3 we give a new proof of Bonsma’s abovementioned 2n/7 + 12/7
result from [15]. This result can also be obtained as a corollary of Theorem 4.1, see
Section 4.4.4. We include Section 4.3 to demonstrate the use of graph reductions
in a relatively simple setting by giving a short self-contained proof of this bound.
Graph reductions will also be used to prove Theorem 4.1.

Section 4.4 is devoted to the proof of Theorem 4.1. In Section 4.4.4 we show
how Theorem 4.1 can be strengthened, in the sense that we do not ask for the
graph to have no 2-necklaces and no 2-blossoms, but the bound becomes weaker
depending on the number of 2-necklaces and 2-blossoms. We also show that every
graph G without 2-necklaces, but possibly with 2-blossoms, has a spanning tree
with at least 4n≥3(G)/13 + 20/13 leaves.
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We have mentioned above that Theorem 4.1 can be applied to obtain a fast
FPT algorithm for MaxLeaf. We now provide some background and state the
result. However we omit the details and instead refer the reader to [17]. Recall that
an algorithm for MaxLeaf with k as a parameter, is called an FPT algorithm
if its complexity is bounded by f(k)g(n), where g(n) is a polynomial. See [49]
and [34] for introductions to FPT algorithms. The function f(k) is called the pa-
rameter function of the algorithm. Usually, g(n) will turn out to be a low degree
polynomial. Hence, to assess the speed of the algorithm it is mainly important
to consider the growth rate of f(k). Since MaxLeaf is NP-complete, we con-
tent ourselves with exponential bounds for f(k). Bodlaender [11] constructed the
first FPT algorithm for MaxLeaf with a parameter function of roughly (17k4)!.
Since then, considerable effort has been put in finding fast FPT algorithms for this
problem, see e.g. [33, 36, 16, 35, 15]. In [16, 35, 15] a strong connection between
extremal graph-theoretic results and fast FPT algorithms is established. In [16],
the bound of n/4 + 2 from [63] mentioned above is used to find an FPT algorithm
with parameter function O∗(

(
4k
k

)
) ⊂ O∗(9.49k). Here the O∗ notation ignores poly-

nomial factors. With the same techniques the bound of 2n/7+12/7 is turned into
the so far fastest algorithm, with a parameter function in O∗(

(
3.5k

k

)
) ⊂ O∗(8.12k),

see [15]. Similarly Theorem 4.1 yields a new FPT algorithm for MaxLeaf.

Theorem 4.2. There is an O(m) + O∗(6.75k) FPT algorithm for MaxLeaf,
where m denotes the size of the input graph and k the desired number of leaves.

This algorithm is the fastest FPT algorithm for MaxLeaf at the moment,
both optimizing the dependency on the input size and the parameter function. It
simplifies the ideas introduced by Bonsma, Brueggemann and Woeginger [16] and
is also significantly simpler than the other recent fast FPT algorithms. Hardly any
preprocessing of the input graph is needed, since Theorem 4.1 is already formulated
for a very broad graph class. For further details concerning Theorem 4.2 we refer
the reader to [17].

4.1 Obstructions for Spanning Trees with Many Leaves

As mentioned above, 2-necklaces have been identified as an obstruction for the
existence of spanning trees with n/3 + c leaves in graphs with minimum degree 3,
see [63] and [15]. In this section we show that they are not the only such obstruc-
tion. We start by precisely defining 2-necklaces and 2-blossoms.

In order to avoid confusion we sometimes denote the degree of a vertex v in a
graph G by dG(v) in this chapter. If ambiguities can be excluded we use d(v) as dG(v)

in earlier chapters. A vertex v of a subgraph H of G with dH(v) < dG(v) is called
a terminal of H. terminal
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As mentioned above, the graph K4 minus one edge is called a diamond anddiamond

denoted by N1. For k ≥ 2 the diamond necklace Nk is obtained from the graph Nk−1diamond necklace Nk

and a vertex disjoint N1 by identifying a degree 2 vertex of N1 with a degree 2
vertex of Nk−1. The connection vertices of the graph Nk are its two degree 2connection vertex

vertices. A vertex of degree 3 or 4 is an inner vertex of Nk. Diamond necklacesinner vertex of Nk

will also be called necklaces for short.

An Nk subgraph of G is a 2-necklace if only its connection vertices are terminals,2-necklace

and they both have degree 3 in G, see Figure 4.1. We have already mentioned that
if G contains an N1 this way, then this N1 subgraph is also called a cubic diamondcubic diamond

of G.

In the course of studying the leafy tree problem we found that the subgraphs
that we define next are also an obstacle for the existence of spanning trees with
n/3 + c leaves. The graph B on seven vertices shown in Figure 4.3 (a) is the
blossom graph.blossom graph

a4

c1

a1 a2

a3

c2
b

(b)(a)

Figure 4.3. A blossom graph and a 2-blossom.

The vertices named c1 and c2 in the figure are the connection vertices of B.connection vertex

A blossom subgraph B of G is a 2-blossom if the connection vertices are its only2-blossom

terminals, and they both have degree 3 in G, see Figure 4.3 (b). If G contains a
2-blossom B, only the vertex b has degree 4 in G, and the remaining vertices of B
have degree 3 in G.

The two outgoing edges of a 2-necklace respectively a 2-blossom may in fact be
the same edge. In that case G is just a 2-necklace respectively 2-blossom plus one
additional edge. The next lemma shows how many leaves can be gained within a
blossom.

c2 c2c1c1

(b)(a)

Figure 4.4. Spanning trees restricted to a blossom.
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Lemma 4.3. Let G be a graph with a blossom subgraph B that has c1 and c2 as
its only terminals, see Figure 4.3 (a). Then, a spanning tree T of G with the
maximum number of leaves exists, such that E(T ) ∩ E(B) has one of the forms
shown in Figure 4.4.

Proof. Consider a spanning tree T of G with maximum number of leaves. We may
distinguish the following two cases for E(T ) ∩ E(B), since c1 and c2 are the only
terminals of B. Either E(T )∩E(B) induces a tree, or it induces a forest with two
components, one containing c1 and the other containing c2.

In the first case, at most three non-terminal vertices of B can be leaves of T ,
since a path from c1 to c2 contains at least two internal vertices. In addition, if one
of c1 and c2 is a leaf of T , then T can be seen to have at most two non-terminal
vertices of B among its leaves. Since c1 and c2 together form a vertex cut of G,
one of them is not a leaf in T . It follows that replacing E(T ) ∩ E(B) by the edge
set in Figure 4.4 (a) does not decrease the number of leaves. Since this edge set
forms again a spanning tree of B, the resulting graph is a spanning tree of G.

Now suppose E(T ) ∩ E(B) has two components. At most four non-terminal
vertices of B can be leaves of T . If one of c1 and c2 is a leaf of T , then T can have
at most three non-terminal vertices of B among its leaves. One of c1 and c2 is
not a leaf in T , and thus it follows again that replacing E(T ) ∩E(B) by the edge
set in Figure 4.4 (b) does not decrease the number of leaves, while maintaining a
spanning tree of G. �

We now present a family of graphs with minimum degree 3 that do not contain
2-necklaces but do not have spanning trees with n/3 + c leaves.

The flower graph is the graph on ten vertices shown in Figure 4.5 (a). A flower flower graph

subgraph F of G is a 1-flower if c is its only terminal and dG(c) = 3 in G, see 1-flower

Figure 4.5 (b). From every ternary tree we can obtain a flower tree by substituting flower tree

every inner vertex by a cubic triangle and every leaf by a 1-flower. Figure 4.5 (c)
shows a flowertree and the solid edges form a spanning tree with 4n/13 + 24/13
leaves which we will show to be optimal.

Proposition 4.4. A flowertree G with n vertices has no spanning tree with more
than 4n/13 + 24/13 leaves.

Proof. Let F be a 1-flower in G containing a 2-blossom B, and f1, f2, c the other
three vertices of F , see Figure 4.5 (b). We will argue that no spanning tree T of G
has more than four leaves among V (B) ∪ {f1, f2}.

Using Lemma 4.3 we may assume without loss of generality that E(T )∩E(B)
has one of the two forms in Figure 4.4. If it has the first form, then either f1 or f2

may be a leaf of T , but not both since together they form a vertex cut of G. If
E(T ) ∩ E(B) has the second form, then f1 and f2 are both cut vertices of T , so
neither can be a leaf.
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c

(a) (c)

(b)
c

f1

f2

Figure 4.5. A flower graph, a 1-flower, and a flower tree with six 1-flowers. The
solid edges show a tree with maximum number of leaves.

Note that the connection vertices of the 1-flowers and all vertices of G that are
not part of a 1-flower are cut vertices of G. Hence, none of them can be a leaf
of T . Thus, T has no more than 4i leaves, where i is the number of leaves of the
ternary tree corresponding to G. Since a ternary tree with i leaves has i− 2 inner
vertices, G has n = 10i + 3(i − 2) = 13i − 6 vertices. This proves the claim since
4i = 4(n + 6)/13. �

The following theorem shows that every graph without 2-necklaces has a span-
ning tree with at least 4/13n + 20/13 leaves. We will prove it in Section 4.4.4 as
a corollary of Theorem 4.1.

Theorem 4.5. Let G be a simple, connected graph on at least two vertices, which
contains no 2-necklaces. Then, G has a spanning tree T with

ℓ(T ) ≥ 4n≥3(G)/13 +

{
20/13 if G is cubic
24/13 otherwise.

4.2 Introduction to the Proof Method

The purpose of this section is to introduce the proof method that we use throughout
this chapter. Theorem 4.6 is proven for cubic graphs by Griggs, Kleitman and
Shastri in [54]. The stronger statement given in Theorem 4.6 was proved by
Kleitman and West in [63].
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Theorem 4.6. Every graph G with minimum degree 3 has a spanning tree T with

ℓ(T ) ≥ n(G)/4 + 2.

The proofs in [54] and in [63] both use the same method. Our proofs of Theo-
rems 4.1, 4.7, 4.8, and 4.9 are extensions of this method. These extensions enable
us to obtain some new results and strengthen some old ones. For example, Theo-
rem 4.6 can be strengthened to the following claim, using the method we describe
below.

Theorem 4.7. Every graph G with at least two vertices has a spanning tree T
with

ℓ(T ) ≥ n(G) 6=2/4 + 3/2.

(a) (b)

Figure 4.6. Examples for the tightness of Theorems 4.6 and 4.7.

The example from Figure 4.6 (a) shows that the bound from Theorem 4.6
is tight. Infinitely many examples can be obtained by replacing every vertex of
a cycle by a cubic diamond. The additive term in Theorem 4.7 is worse than
that in Theorem 4.6. The example in Figure 4.6 (b) shows that an additive term
better than 3/2 cannot be achieved in the setting of Theorem 4.7. Infinitely many
examples can be obtained by replacing every inner vertex of a ternary tree by a
triangle with three degree 3 vertices.

We now describe the generic proof method which we use for many proofs in
this chapter, and then demonstrate it by giving a proof for Theorem 4.7. The
description we give now is meant to explain the unifying idea behind the proofs in
this section and thereby help the reader navigate through the proofs, since some of
them are rather long and technical. But since this is only a sketch of the method,
each proof will need some additional tricks and techniques which we neglect here.

Let G be a graph family and let Gn the graphs in G that have n vertices. In the
instances we consider later the graph families will be defined by excluding certain
subgraphs. For a finite set of integers I we define

NI(G) = {v ∈ V (G) | dG(v) 6∈ I}. NI(G)
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The cardinality of NI(G) is denoted by nI(G) = |NI(G)|. We will use two differentnI(G)

instances of the set I in this chapter, namely I = {2} and I = {1, 2}. For n{2}(G)
we also use the notation n6=2(G), and n{1,2}(G) we denote by n≥3(G). Let a, c > 0
be constants. The theorems we prove in this chapter are of the following form.

Every G ∈ Gn has a spanning tree T with ℓ(T ) ≥ nI(G)/a + c.

Before we give a generic proof outline for a theorem of this type, we introduce the
terminology that we use in the proofs throughout the chapter.

When F and G are graphs, F ⊆ G and F ⊂ G denote the subgraph and properF ⊆ G, F ⊂ G

subgraph relation, respectively. We denote the set of vertices of G which are not
in F by

V (F ) = V (G) \ V (F ).V (F )

For a subgraph F ⊆ G we define the subgraph of G outside of F as an edge induced
subgraph

FC = G[{uv ∈ E(G) : u 6∈ V (F )}].F C

The boundary of a graph F is V (F ) ∩ V (FC). Note that no edges between twoboundary

vertices that are both in V (F ) are included in FC . If G is clear from the context
we call FC the graph outside F . Figure 4.7 shows an example, the subgraph Fgraph outside F

of the Petersen graph P is indicated by solid edges. The encircled vertices are in
V (F ) and the boxed ones are on the boundary of F .

FCF ⊆ P

Figure 4.7. An example of a subgraph F ⊆ P with a dead leaf marked by a cross
and FC the graph outside F .

A leaf of F is a dead leaf if it has no neighbor in V (F ), and the number of deaddead leaf

leaves of F is denoted by ℓd(F ). The subgraph F of P in Figure 4.7 has one deadℓd(F )

leaf which is indicated by a cross. We denote the number of vertices of F which
are in NI(G) by nI,G(F ), e.g. in Figure 4.7 n{1},P (F ) = 8 since no vertex of FnI,G(F )

has degree 1 in P . By cc(G) we denote the number of connected components of acc(G)

graph G.
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We now start the actual description of our proof method and choose constants
a1, a2 ≥ 0 with a1 + a2 = a. The leaf potential of F is defined as leaf potential

P(F,G) = a1ℓ(F ) + a2ℓd(F ) − nI,G(F ) − 2a · cc(F ). P(F, G)

In the context of the proofs it will always be clear what the values of a1 and a2

are. Counting the fraction a2 of the total weight a of a leaf not until it has no
more neighbors in V (F ) can be interpreted as an amortization technique. This
amortized counting was used in [54] and it is one of the main advantages of this
proof method.

The subgraph F of G is extendible if there exists another subgraph F ′ with extendible

F ⊂ F ′ ⊆ G and P(F ′, G) ≥ P(F,G). Given F ⊂ F ′ ⊆ G we denote by ∆nI,G

the difference nI,G(F ′) − nI,G(F ) and similarly ∆ℓ and ∆ℓd are defined. ∆nI,G, ∆ℓ, ∆ℓd

We now sketch the proof method. First we find an initial subgraph F ⊂ G
with P(F,G) ≥ a(c−2). Then, we show that every subgraph F of G is extendible.
It will be convenient to use the following abbreviation.

∆(x, y, z) = a1y + a2z − x ∆(x, y, z)

In order to show that F is extendible we explicitly construct F ′ such that

∆(∆nI,G,∆ℓ,∆ℓd) ≥ 0 if cc(F ′) = cc(F ) and

∆(∆nI,G,∆ℓ,∆ℓd) ≥ 2a if cc(F ′) = cc(F ) + 1.

This implies P(F ′, G) ≥ P(F,G). The constructions for F ′ are the technical part
of the proofs and typically require the most work. Using these constructions, we
extend F until we obtain a spanning subgraph F ⊆ G. In a spanning subgraph
we have ℓ(F ) = ℓd(F ), and since P(F ) ≥ a(c − 2) we obtain

a · ℓ(F ) ≥ nI,G(F ) + 2a · cc(F ) + a(c − 2).

A spanning subgraph with cc(F ) components can be turned into a connected
spanning subgraph by adding cc(F ) − 1 edges. Each edge addition destroys at
most two leaves. We may transform the resulting graph into a spanning tree T ,
since any cycles can be broken by edge deletions without destroying leaves. Thus,
we have obtained a spanning tree T with

a · ℓ(T ) ≥ nI,G(F ) + 2a · cc(F ) + a(c − 2) − 2a(cc(F ) − 1)

⇒ ℓ(T ) ≥ nI,G(F )/a + c.

We want to apply this method to prove Theorem 4.7. Before we do so, we introduce
some more notation. The statement ‘a is adjacent to b’ is denoted by a ∼ b. We a ∼ b, a ∼ F

write a ∼ F if there exists b ∈ F with a ∼ b.
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The neighborhood N(v) of a vertex v is the set of all vertices adjacent to v, andN(v), N [v]

the closed neighborhood of v is N [v]= N(v) ∪ {v}. The operation of expanding a
vertex v ∈ V (G) is defined on a subgraph F ⊂ G and yields a new subgraph withexpanding a vertex

vertex set V (F )∪N [v], and edge set E(F )∪{uv : u ∈ N(v) \V (F )}. So all newly
added neighbors of v become leaves, and v may lose leaf status. The number of
components increases by one if and only if v 6∈ V (F ). Expanding a list of vertices
means expanding the vertices in the given order.

In order to keep the notation in the proofs simple, instead of writing for example
∆(∆nI,G,∆ℓ,∆ℓd) ≥ ∆(4, 3, 1) = 4, we will simply write ∆(4, 3, 1) = 4. Hence
the three parameter values need not be exactly ∆nI,G, ∆ℓ and ∆ℓd but reflect the
worst case scenario. That is, the change in the leaf potential that we prove is to
be read as a lower bound for the actual change.

Proof of Theorem 4.7. The proof is based on that of Theorem 4.6 in [63]. The
theorem obviously holds for graph with maximum degree 2, that is paths and
cycles, and the K4. So we may assume that the graph G has maximum degree at
least 3 and is not the K4.

In the theorem we have a = 4, c = 3/2 and I = {2}. We choose a1 = 3 and
a2 = 1, thus the definition of the leaf potential that we use here isleaf potential

P(F,G) = 3ℓ(F ) + ℓd(F ) − n6=2,G(F ) − 8cc(F )

and we define ∆(x, y, z) = 3y + z − x.
We now construct the initial graph F which must have P(F,G) ≥ −2, i.e.

∆(n6=2,G(F ), ℓ(F ), ℓd(F )) ≥ 6. First assume that G has a vertex v of degree 1. If v
has a neighbor of degree 2, then expanding v yields ∆(1, 2, 1) = 6, which suffices.
If v has a neighbor w of degree at least 3, then expanding w yields ∆(4, 3, 1) = 6.
Thus, we may assume that δ(G) ≥ 2. If δ(G) = 2, then there is a vertex v
with d(v) = 2 that has a neighbor w with d(w) ≥ 3. Thus, expanding w yields
∆(3, 3, 0) = 6. We may therefore assume that δ(G) ≥ 3. If there is a vertex v with
d(v) ≥ 4, then expanding it yields ∆(5, 4, 0) = 7, so the remaining case is that G
is cubic. Since G 6= K4, it has an edge e = uv that is in no triangle. Expanding
u, v yields ∆(6, 4, 0) = 6. This concludes the initialization phase.

We now show that every non-empty subgraph F of G is extendible. If F has
a non-leaf vertex v that is adjacent to a vertex from V (F ), then expanding v
implies ∆(1, 1, 0) = 2. Thus, we may assume that all vertices on the boundary
of F are leaves of F . First assume that there exists v ∈ V (F ) with v ∼ F and
d(v) ≥ 3. We show that in this case one of the three operations from the proof
in [63] can be applied to extend F . If there is u ∈ F with two neighbors in V (F ),
then expanding u yields ∆(2, 1, 0) = 1. So now we assume that every v ∈ F
has at most one neighbor in V (F ). If there is v ∈ V (F ) with two neighbors
in F , then expanding one of those neighbors yields ∆(1, 0, 1) = 0. If v ∈ V (F )
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has one neighbor u in F and two neighbors in V (F ), then expanding u, v yields
∆(3, 1, 0) = 0. One of these operations must be applicable if there is v ∈ V (F )
with v ∼ F and d(v) ≥ 3.

Now assume that there is v ∈ V (F ) with d(v) = 2 and v ∼ u ∈ F . Since v is
the only neighbor of u in V (F ), expanding u yields ∆(0, 0, 0) = 0. Finally, if there
is v ∈ V (F ) with d(v) = 1 and v ∼ u ∈ F , then expanding u yields ∆(1, 0, 1) = 0.

Thus, we have shown that every non-empty F ⊆ G is extendible. This yields
the existence of a spanning subgraph F of G with P(F,G) ≥ −2. The rest of the
proof proceeds as described above. �

Theorem 4.8 is a version of a theorem from Bonsma’s thesis [15]. He applies
a completely different proof method which uses connected dominating sets. Note
that the non-leaf vertices of every spanning tree form a connected dominating set
and vice versa. For more about connected dominating sets, we refer the reader
to [22, 56]. Our proof of Theorem 4.8 is substantially shorter than that in [15].

Theorem 4.8. Let G be a connected graph without triangles. Then, G has a
spanning tree T with

ℓ(T ) ≥ n6=2(G)/3 + 2/3.

Bonsma’s result is that every graph without triangles and with minimum vertex
degree 3 has a spanning tree with at least n/3 + 4/3 leaves. Thus, Theorem 4.8
generalizes it in a similar way that Theorem 4.7 generalizes Theorem 4.6.

The additive term 4/3 that Bonsma proves is best possible. The additive term
that we prove is weaker, and in this case we do not have an example which shows
that it is not possible to improve it to 4/3. Indeed we think, that n6=2(G)/3 + 4/3
might be the right bound. Besides the examples that Bonsma gives, there are
others which show that the bound n6=2(G)/3 + 4/3 would be best possible. They
can be obtained from quaternary trees by substituting every inner vertex by a
4-cycle. The reason that we cannot prove an additive constant of 4/3 might be
that we use a1 = 2 and a2 = 1 in the definition of the leaf potential. The small
value of a1 makes it harder to obtain a good initial graph. On the other hand
choosing a2 = 1 enables us to prove a bound in terms of n6=2 instead of n≥3. We
explain now, why we think that this strengthening of the bound is interesting.

Theorem 4.1 shows that for graphs of minimum degree 3 not all triangles have
to be forbidden in order to obtain a bound of the form n≥3/3+4/3. Only triangles
that appear in 2-necklaces and 2-blossoms have to be forbidden. In contrast to
that consider the example from Figure 4.6 (b) which shows that Theorem 4.7 is
tight. Since this example contains no 2-necklaces and 2-blossoms, it shows that it
is not sufficient to exclude these structures in order to obtain a bound of the form
n6=2/3 + c.
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Proof of Theorem 4.8. We may assume that G is neither a path nor a cycle,
since then the statement is obviously true. The theorem uses a = 3, c = 2/3,
and I = {2}.

We choose a1 = 2 and a2 = 1, thus the definition of the leaf potential that weleaf potential

use here is

P(F,G) = 2ℓ(F ) + ℓd(F ) − n6=2,G(F ) − 6cc(F )

and we define ∆(x, y, z) = 2y + z − x.

The construction of the initial graph F with P(F,G) ≥ −4 is easy. Since G
has at least one vertex v with d(v) ≥ 3, expanding v yields ∆(4, 3, 0) = 2.

We now show that every non-empty F ⊂ G is extendible. If F has a non-
leaf vertex v that is adjacent to a vertex from V (F ), then expanding v gives
∆(1, 1, 0) = 1. Thus, we may assume that all vertices on the boundary of F are
leaves of F . Each of the augmentation rules (A1)–(A9) from Figure 4.8 shows
a possibility of extending F with ∆(∆n6=2,G,∆ℓ,∆ℓd) ≥ 0. White vertices have
degree 2, vertices marked with a cross are dead leaves. For all other vertices
the shown degrees are to be understood as lower bounds. The encircled vertices
already belong to F , the solid edges show how F is extended, while dashed edges
are not in the tree.

We assume from now on, that none of (A1) – (A9) is applicable. Hence, every
v ∈ F has at most one neighbor that is not in F by rule (A3). Using the rules
(A1) – (A5), we deduce that every v ∈ V (F ), v ∼ F has degree 3 and one
neighbor in F and two neighbors in V (F ). Furthermore, the rules (A6) – (A9)
imply that the neighbors u,w ∈ V (F ) of v ∼ F , both have degree 3 and are not
adjacent to F . Since G is triangle free u 6∼ w and both vertices have two neighbors
outside {u, v, w}.

We now explain the intuition behind the rest of the proof. Suppose v, u, w are
as defined above and v ∼ s ∈ F . Then we may expand s, v thereby obtaining a
graph F1 that has P(F1, G) = P(F,G)−1. If u has a neighbor of degree 2, then we
expand u as well and thereby obtain F2 with P(F2, G) ≥ P(F,G). The expansion
of u very much resembles (A1) above, and similar considerations can be made for
the other rules. In this way it can be shown that P(F2, G) ≥ P(F,G), unless u has
two neighbors other than v in V (F ) that have degree 3 and are not adjacent to F .
And in the remaining case we have that P(F2, G) = P(F1, G) = P(F,G)− 1, that
is F2 has the same leaf potential as F1. In this fashion we may continue expanding
vertices without further decreasing the leaf potential, and since G is finite we
must eventually terminate with some Fi. Then, either P(Fi, G) ≥ P(F,G), or
P(Fi, G) = P(F,G) − 1 and, since G is triangle-free, there are additional edges
between the vertices of V (Fi). We will then use these edges to show that we
can obtain a graph F ′ with P(F ′, G) ≥ P(F,G). We now express this idea more
formally, and include the necessary case distinctions.



4.2 Introduction to the Proof Method 115

(A7) (A8) (A9)

∆(2, 1, 0) ≥ 0

∆(4, 2, 0) ≥ 0∆(1, 0, 1) ≥ 0

∆(0, 0, 0) ≥ 0 ∆(1, 0, 1) ≥ 0

∆(3, 1, 1) ≥ 0

∆(6, 3, 0) ≥ 0∆(2, 1, 0) ≥ 0∆(3, 1, 1) ≥ 0

(A1) (A2) (A3)

(A4) (A5) (A6)

Figure 4.8. The augmentation rules for the proof of Theorem 4.8.

In the rest of the proof we use the notation Vi = {v1, . . . , vi}, V +
i = {v0} ∪ Vi

and Wi = {w1, . . . , wi}. Let P = v1, . . . vk+1 be a path in FC with v1, . . . , vk+1 6∈ F
and v1 ∼ v0 ∈ F that is maximal under the condition that it has the following
properties. The vertex v1 has a neighbor w1 6∈ V (F )∪Vk+1, and vi has a neighbor
wi 6∈ V (F )∪Vk+1∪Wi−1 for all i = 1, . . . , k. Since none of (A1) – (A9) is applicable
such a path exists, and k ≥ 2. Since the path is maximal, vk+1 and wk both have
at most one neighbor that is not in V (F ) ∪ Vk+1 ∪ Wk.

If some vi has a neighbor w 6∈ V (F ) ∪ Vi+1 ∪ Wi, then we can expand v0, . . . vi

to obtain ∆(2i + 2, i + 1, 0) = 0. We will say in the sequel, that we expand V +
i ,

instead of giving the list v0, . . . vi. If some wi or vk+1 has degree 2, we obtain
∆(2k, k, 0) = 0 by expanding V +

k . If some wi has at least three neighbors not in
V (F )∪Vi+1∪Wi when we expand V +

i , wi to obtain ∆(2i+4, i+2, 0) ≥ 0. If some
vi ∈ Vk+1\{v1} or some wi ∈ Wk is adjacent to F , then we obtain ∆(2k+1, k, 1) ≥ 0
by expanding V +

k . This is also possible if some wi ∈ Wk or vk+1 has no neighbor
outside V (F ) ∪ Vk+1 ∪ Wk. Hence, no vertex from (Vk+1 \ {v1}) ∪ Wk is adjacent
to F . The vertices vi with i ≤ k have no neighbor outside Vk+1 ∪ Wk and all wi

have one or two neighbors outside V (F ) ∪ Vk+1 ∪ Wk.
From the considerations in the last paragraph it also follows that vk+1 and wk

each have one neighbor z respectively z′ that is not in Vk+1 ∪ Wk. Throughout
the rest of the proof z = z′ is allowed. Since G is triangle-free vk+1 6∼ wk and the
vertices vk+1 and wk must each have at least one neighbor in Wk−1. Suppose vk+1

has at least two neighbors ws, wt ∈ Wk−1, where s < t. As mentioned above ws has
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a neighbor us 6∈ V (F ) ∪ Vk+1 ∪ Wk. If us 6= z, then expanding V +
s , ws, vk+1 yields

∆(2s+6, s+3, 0) = 0, see Figure 4.9 (a). If us = z, then expanding V +
k−1, ws yields

∆(2k+1, k, 1) = 0, since vk+1 becomes a dead leaf, see Figure 4.9 (b). Hence, vk+1

and wk each have exactly one neighbor in Wk−1. We may assume that vk+1 ∼ wt

and wk ∼ ws with s ≤ t.

We first treat the case s = t, i.e. we assume that vk+1 and wk have a common
neighbor ws = wt. We have seen that ws has a neighbor us outside V (F )∪ Vk+1 ∪
Wk, thus expanding V +

s , ws yields ∆(2s + 4, s + 2, 0), see Figure 4.10 (a). We may
therefore assume s < t.
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Figure 4.10.

As mentioned above ws has a neighbor us 6∈ V (F ) ∪ Vk+1 ∪ Wk and wt has a
neighbor ut 6∈ V (F ) ∪ Vk+1 ∪ Wk. Then, us is the only neighbor of ws which is
not in V (F )∪ Vk+1 ∪Wk since we have already considered the case that ws has at
least three neighbors not in V (F ) ∪ Vs+1 ∪ Ws. Similarly ut is the only neighbor
of wt which is not in V (F ) ∪ Vk+1 ∪ Wk. Assume first, that us 6= ut. Then, we
expand V +

k−1, ws, wt and obtain ∆(2k + 3, k + 1, 1) = 0, since vk is a dead leaf, see
Figure 4.10 (b).
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Thus, we may assume that us = ut. If d(us) = 2, then expanding Vk, ws yields
∆(2k + 1, k, 1) = 0, since wt is a dead leaf. If us has a neighbor that is not in
V (F ) ∪ Vk+1 ∪ Wk ∪ {z′}, then we expand

V +
t−1, ws, us, wk, vk, vk−1, vk−2 . . . vt+2

and obtain ∆(2k +3, k +1, 1), since vt becomes a dead leaf, see Figure 4.11 (a). If
t = k− 1 we expand V +

t−1, ws, us, wk to obtain the same result, see Figure 4.11 (b).
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Figure 4.12.

Finally, we may assume that us has a third neighbor in Wk∪{z′}. If this neigh-
bor is some wj then expanding V +

k , wj yields ∆(2k +2, k, 3) = 1 since us, ws, wt all
become dead leaves, see Figure 4.12 (a). If us ∼ z′, we expand V +

k , wk, z
′ and ob-

tain ∆(2k+3, k, 3) = 0 since us, ws, wt all become dead leaves, see Figure 4.12 (b).
�

4.3 Leafy Trees in Graphs without Cubic Diamonds

In this section we introduce another ingredient, that is essential for the proof of
Theorem 4.1, the main result of this chapter. This ingredient is the technique of
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graph reductions which help us to cope with the case distinctions in the construc-
tions of F ′. Theorem 4.9 can be obtained without much effort as a corollary of
Theorem 4.1, as we explain in Section 4.4.4. In this section we give an independ-
ent, relatively short and simple proof of Theorem 4.9 to demonstrate the use of
graph reductions.

Theorem 4.9. Let G be a connected graph without cubic diamonds on at least twocubic diamond

vertices. Then, G has a spanning tree T with

ℓ(T ) ≥ 2n≥3(G)/7 +

{
12/7 if G is cubic ,
2 otherwise.

Bonsma’s main result about spanning trees with many leaves in [15] is the
following. Let D be the number of cubic diamonds, that a graph G of minimum
degree 3 contains. Then G has a spanning tree T with

ℓ(T ) ≥ (2n − D + 12)/7.

As for his proof of Theorem 4.8, Bonsma’s uses an approach via connected domi-
nating sets. It is easy to generalize Theorem 4.9 such that it also incorporates the
variable D that counts the number of cubic diamonds. We simply substitute each
of the D ≥ 1 cubic diamonds of G by a vertex of degree 2 which yields a graph G′

with n≥3(G
′) = n≥3(G) − 4D. Now we take advantage of the fact that our proof

technique does not need assumptions about the minimum degree.

G′G

Figure 4.13. Substituting cubic diamonds by degree 2 vertices.

We apply Theorem 4.9 to conclude that G′ has a spanning tree T ′ with ℓ(T ′) ≥
2n≥3(G

′)/7 + 2. The tree T ′ can be extended to a spanning tree of G with ℓ(T ) =
ℓ(T ′) + D. This is illustrated in Figure 4.13 where the dashed edge is in T if and
only if it is in T ′. Thus, we have that

ℓ(T ) ≥ 2n≥3(G
′)/7 + 2 + D

= (2n≥3(G) − 8D)/7 + 2 + D = (2n≥3(G) − D)/7 + 2.

Theorem 4.9 is tight for the cube Q3. That the linear factor cannot be improved is
shown by the graphs obtained from a cycle by replacing every vertex with an N2

2-necklace. The bound n6=2/4 + 3/2 from Theorem 4.7 is tight for the graphs
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obtained from ternary trees by replacing every inner vertex by a cubic triangle,
see Figure 4.6 (b). These graphs do not contain cubic diamonds. Thus it is not
possible to strengthen Theorem 4.9 by replacing n≥3(G) by n6=2(G).

Besides demonstrating the use of graph reductions, the proof of Theorem 4.9
that we present has the advantage of being considerably shorter than that in [15].
As in the last section, we introduce some notation and conventions which are also
needed for the proof of Theorem 4.1, and we exemplify the use of graph reductions
in the proof of Theorem 4.9.

Just like Theorem 4.9, the results in the rest of this chapter are bounds in terms
of nI(G) for I = {1, 2}. It is therefore convenient to introduce a name for vertices
which have degree at most 2 and we call them goobers. We adopt this notion goober

from [54], although there it is defined in a slightly different way. This difference is
irrelevant for the proof of Theorem 4.9, and we discuss this issue in more detail in
Section 4.4.2, when we introduce Theorem 4.16.

Ignoring that the reductions may disconnect the graph, the main idea behind
them is the following. A graph G is reduced to a graph G′ with n≥3(G)−n≥3(G

′) =
k, such that every spanning tree of G′ can be turned into a spanning tree of G with
at least k/3 additional leaves. This preserves the desired leaf ratio, see Lemma 4.10
for more details. The main advantage of the reductions is that we can exclude
certain cases in the construction of the extension F ′ for some F ⊂ G.

The proof of Theorem 4.9 uses the three graph reductions that are shown in
Figure 4.14. The numbers above the arrows indicate the decrease in n≥3, and the
numbers below the arrows indicate the number of leaves that can be gained in
a spanning tree when reversing the reduction. How these leaves can be gained
is described in the proof of Lemma 4.10. The white vertices are goobers, black
vertices have degree 3. Dashed edges are present in the reduced graph if and only
if they are present in the original graph.

(3) 3

1

0
0

(2)(1) 6
2

Figure 4.14. Reductions for the proof of Theorem 4.9.

Each of the reductions may be applied if it does not introduce a cubic diamond
and no multiple edges incident to a vertex of degree at least 3. A reduction is
admissible for a graph G if it can be applied without violating this condition. admissible
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A graph G is reducible if one of the three reduction rules is admissible, andreducible/irreducible

irreducibleotherwise. We will prove Theorem 4.9 for irreducible graphs using the
method introduced in Section 4.2 and then the following lemma is used to deduce
the statement of Theorem 4.9.

A forest F of G is a maximal forest if G has no forest F ′ that is a strictmaximal forest

supergraph of F . Hence F is a maximal forest of G if and only if it consists of a
spanning tree for every component of G. Components with only one vertex will
be called trivial components in the sequel.trivial component

Lemma 4.10. Let G′ be the result of applying one of the Reductions (1)–(3) to a
connected graph G and let k be the number of non-trivial components of G′. If G′

has a maximal forest F with at least n≥3(G
′)/3+2k leaves, then G has a spanning

tree T with at least n≥3(G)/3 + 2 leaves.

Proof. Clearly, G′ has one or two connected components and k ∈ {1, 2}. A re-
duction that creates i new goobers, decreases n≥3(G) by 3i, see Figure 4.14. Fig-
ure 4.15 shows for k ≥ 1 how a spanning forest of G with k non-trivial components
and i new leaves can be gained for Reductions (1)–(3). Dotted edges are in the
forest on the right, if and only if they are in the forest on the left.

(1)

(3) (3)

(2)

Figure 4.15. Reversing the reductions for the proof of Theorem 4.9.

For k = 1 we obtain the following by using the constructions from Figure 4.15.

ℓ(T ) ≥ ℓ(F ) + 2 + i ≥ n≥3(G)/3 − i + i + 2 = n≥3(G)/3 + 2.

If k = 2, then the two trees which form the maximal forest F must be connected
at the cost of two leaves and we obtain

ℓ(T ) ≥ ℓ(F ) + 4 + i − 2 ≥ n≥3(G)/3 + 2.

If k = 0, then the applied reduction was Reduction (2), and G = K2. Thus, G has
a spanning tree with two leaves which suffices. �

We will show next, how Theorem 4.9 can be deduced from Lemma 4.10 in
conjunction with Lemma 4.11. We then also give the proof of Lemma 4.11.
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Lemma 4.11. Let G be a connected, irreducible graph without cubic diamonds on
at least two vertices. Then, G has a spanning tree T with

ℓ(T ) ≥ 2n≥3(G)/7 +

{
12/7 if G is cubic
2 otherwise.

Proof of Theorem 4.9. If G is irreducible, then the claim follows directly from
Lemma 4.11, otherwise, one of the Reductions (1)–(3) is applicable. If G is re-
ducible, then no component of the reduced graph is cubic. We may therefore
assume by induction over the number of edges that the reduced graph has a maxi-
mal forest with 2n≥3/7+2k leaves. Lemma 4.10 then implies that G has a spanning
tree T with ℓ(T ) ≥ 2n≥3(G)/7 + 2. �

Proof of Lemma 4.11. The theorem uses a = 7/2, c = 12/7 for cubic graphs, c = 2
for non-cubic graphs, and I = {1, 2}.

We choose a1 = 3 and a2 = 1/2, thus the definition of the leaf potential that leaf potential

we use here is

P(F,G) = 3ℓ(F ) + ℓd(F )/2 − n6=2,G(F ) − 7cc(F ),

and we define ∆(x, y, z) = 3y + z/2 − x.
If G is cubic, then the initial subgraph F with P(F,G) ≥ −1 is easily obtained.

Let v a vertex of G. Since G has no cubic diamonds, v has a neighbor w, such
that the edge {v, w} is in no triangle. Thus, expanding v, w yields ∆(6, 4, 0) = 6.
In the case that G is not cubic Claim 1 shows that there is an initial graph which
satisfies P(F,G) ≥ 0.

If F has a non-leaf vertex v that is adjacent to a vertex from V (F ), then
expanding v implies ∆(1, 1, 0) = 2. Thus, we may assume that all vertices on
the boundary of F are leaves of F . Figure 4.16 shows four simple operations, that
extend a non-spanning subgraph F . The following conventions apply for all figures
in this proof. White vertices have degree at most 2, vertices marked with a cross
are dead leaves. For all other vertices the shown degrees are to be understood as
lower bounds, unless otherwise stated. The encircled vertices already belong to F ,
the solid edges show how the tree is extended, while dashed edges are not in the
tree.

∆(1, 0, 2) ≥ 0∆(2, 1, 0) ≥ 1

(A2) (A3)

∆(3, 1, 0) ≥ 0

(A4)(A1)

∆(0, 0, 0) ≥ 0

Figure 4.16. Extensions for the proof of Theorem 4.9.
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We assume from now on, that none of the operations (A1) – (A4) is applicable.
This implies, that every v ∈ F has at most one neighbor in FC , i.e. dF C (v) ≤ 1
and that every v ∈ V (F ), v ∼ F has two neighbors in F and one neighbor in
V (F ). Thus, all v ∈ V (F ), v ∼ F have d(v) = 3. We split the rest of the proof
into two claims.

Claim 1. Let F ⊂ G be a, possibly empty, subgraph of G, such that not all
vertices in V (F ) have degree 3. Then, F is extendible.

First, suppose that there is a vertex v ∈ V (F ) with d(v) ≥ 4. Then expanding v
yields at least ∆(5, 4, 0) = 7. Thus, we may assume that d(v) ≤ 3 for all v ∈ FC .

Thus, there is v with d(v) ≤ 2. Let w be a neighbor of v which must have
d(w) = 3 since otherwise Reduction (2) would be applicable. If w ∼ x ∈ F we
obtain ∆(1, 0, 2) if d(v) = 1. If d(v) = 2, then we may proceed with the other
neighbor w′ of v, unless w′ ∼ F . If w,w′ ∼ F we obtain ∆(2, 0, 4) = 0 by
expanding x,w, v.

Thus, we may assume that w 6∼ F , and we denote the two neighbors of w
by x and y. If x or y is a goober, then we obtain ∆(2, 3, 0) = 7 by expanding w.
Since dG(v) ≤ 2, we may assume that x has a neighbor z other than v, w, y. If
x ∼ y, then z is adjacent to y as well and not a goober, since Reduction (3) is not
admissible. Furthermore, z must have degree at least 4, since there are no cubic
diamonds in G. Since we assumed that the vertices in V (F ) have degree at most 3,
we have that z ∈ F . But z has two neighbors x, y ∈ V (F ) which contradicts
the assumption that (A2) is not applicable. Thus, x 6∼ y and therefore x has
|N(x) \ N [w]| = 2. If x 6∼ F , then expanding w, x yields ∆(5, 4, 0) = 7. If
x ∼ z ∈ F , then expanding z, x, w yields ∆(3, 1, 1) = 0.5. △

Claim 2. Let F ⊂ G be a non-empty subgraph of G, such that all vertices of
V (F ) have degree 3. Then, F is extendible.

(a) (b) (c)x

y y

v w v w

x

v w

Figure 4.17.

Let v ∈ V (F ) have neighbors s, t ∈ F and w ∈ V (F ). If w ∼ F , then ex-
panding s, v yields ∆(2, 0, 4) = 0, see Figure 4.17 (a). Thus, w has two neighbors
x, y ∈ V (F ). If x ∼ F , then expanding s, v, w yields ∆(4, 1, 4) = 1, see Fig-
ure 4.17 (b). If |N(x)\{w, y}| = 2, then expanding s, v, w, x yields ∆(6, 2, 1) ≥ 0.5,
see Figure 4.17 (c).
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Thus, x ∼ y and x has a neighbor z 6= w, y. If z ∼ F then expanding s, v, w, x
yields ∆(5, 1, 4) = 0, see Figure 4.18 (a). If y ∼ z, then, since G has no cubic
diamonds d(z) ≥ 4 which contradicts that x 6∼ F . Thus, z has two neighbors
a, b 6∈ F ∪ {x}. If a ∼ y, then expanding s, v, w, x, z yields ∆(7, 2, 2) = 0, see
Figure 4.18 (b).

y

x z

v w v w

azx

y
b

(b)

v w

x

y

az

b

(c)(a)

Figure 4.18.

If a ∼ F , then we obtain ∆(7, 2, 4) = 1 by expanding s, v, w, x, z, see Fig-
ure 4.18 (c), and if a has two neighbors which are not in {b, y, z}, then expanding
s, v, w, x, z, a yields ∆(9, 3, 1) = 0.5, see Figure 4.19 (a). Thus, a ∼ b and since
Reduction (1) is not applicable, see Figure 4.19 (b), a, b must have a common
neighbor c 6= z. Since G has no cubic diamonds, d(c) 6= 3 and therefore c ∈ F .
But this is a contradiction to the assumption a 6∼ F , and therefore the proof of
the claim is complete. △

v wv w

aazx zx

y
b

y
b

(b)(a)

Figure 4.19.

Claims 1 and 2 in conjunction with the construction of the initial tree for cubic
graphs yield a spanning subgraph F with sufficient leaf potential. The lemma now
follows as described in Section 4.2 �

4.4 Leafy Trees in Graphs without Necklaces and Blossoms

This section is devoted to the proof of the main theorem of this chapter which we
repeat here for convenience. We will then sketch the proof and give an overview
of the different ingredients that it uses.
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Theorem 4.1. Let G be a simple, connected graph on at least two vertices which
contains neither 2-necklaces nor 2-blossoms. Then, G has a spanning tree T with

ℓ(T ) ≥ n≥3(G)/3 +





4/3 if G = Q3,
5/3 if G = G7 or G 6= Q3 is cubic,
2 otherwise.

We introduce a number of reduction rules in Section 4.4.1. These reduction
rules are applied to the graph G until an irreducible graph G′ is obtained. The
rules maintain an invariant which guarantees that if Theorem 4.1 holds for ev-
ery component of G′, it also holds for G. When we show how to construct an
extension F ′ for a subgraph F ⊂ G′, we can therefore restrict our attention to
irreducible graphs.

In Section 4.4.2 we formulate the lemmas that take care of the construction
of F ′. We argue that the central part of the proof of Theorem 4.16 in [54] in fact
can be used in our setting as well when the graph FC has maximum degree 3.
We then formulate a lemma that enables us to obtain a forest F that covers all
vertices of degree at least 4 and also has enough leaves. This lemma is the core of
our proof and also its most technical part. In Section 4.4.3 we combine the tools
from Sections 4.4.1 and 4.4.2 to prove Theorem 4.1.

In Section 4.4.4 we discuss two theorems which follow from Theorem 4.1. One
of them is a generalization of Theorem 4.1 that does not require a graph without
2-necklaces and 2-blossoms. Instead it incorporates the number of 2-necklaces and
2-blossoms that a graph has into the bound. The second theorem that we prove
in Section 4.4.4 gives a bound for the number of leaves that can be obtained in
graphs without 2-necklaces when 2-blossom subgraphs are allowed. The bound in
this theorem is tight for the flower trees introduced in Section 4.1.

In Section 4.4.5 we prove two lemmas that are needed for the proof of Theo-
rem 4.1 in Section 4.4.3. We delay these proofs until the end of Section 4.4 since
they are rather long and technical.

Before we start the preparations for the proof of Theorem 4.1 we now discuss
the tightness of the bounds that it states. The bound n/3 + 4/3 for cubic graphs
is shown to be tight in [54] and it is mentioned that there exists only one graph for
which the additive term 4/3 cannot be increased. This graph is the 3-dimensional
cube Q3, see Figure 4.20 (a). Furthermore two examples of cubic graphs are given
for which only an additive term of 5/3 can be achieved, Figure 4.20 (b) shows one of
them, the other one contains a triangle. From this latter example an infinite family
of graphs can be constructed for which only 5/3 can be achieved with the help of
Reduction (7) from Figure 4.21. Furthermore, in [54] infinitely many examples are
given with no more than n/3 + 2 leaves.

The bounds from Theorem 4.1 for non-cubic graphs are best possible as well.
Infinitely many graphs with arbitrarily many vertices of higher and lower degree
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can be constructed that do not admit more than n≥3/3 + 2 leaves. Figure 4.20 (c)
shows such an example with many degree 2 and degree 4 vertices. This example
is closely related to one of the examples from [54].

The reason that the additive term in Theorem 4.1 cannot be increased to 2
for all graphs with maximum degree at least 4 is again only one example. Fig-
ure 4.20 (d) shows a graph on n = 7 vertices that only admits 4 = n≥3/3 + 5/3
leaves. This graph will be called G7 in the remainder. This graph is in fact a
blossom plus two edges; deleting any edge between two degree 4 vertices yields a
2-blossom.

Q3

(a) (b) (c)

G7

(d)

Figure 4.20. Four graphs for which Theorem 4.1 is tight.

4.4.1 Reducible Structures

We have used three graph reductions for the proof of Theorem 4.9 and in this
section we introduce further reductions that we need for the proof of Theorem 4.1.

The proof of Theorem 4.1 follows the method that we introduced and exempli-
fied in Section 4.2. That is, it relies on locally extending a forest until it becomes
spanning while guaranteeing a certain number of leaves for every intermediate
forest. The reductions help to delay the treatment of some substructures which
cannot be readily handled during the extension process and they also simplify the
case study in the proof of Lemma 4.19.

We first repeat the seven reduction rules defined in [54], and then introduce
five new rules which are designed to handle structures containing degree 4 vertices.
While the first seven rules are defined in [54] for graphs with maximum degree 3
we define them for arbitrary graphs, but the vertices on which they act must have
the same degrees as in the original definition. Reductions (1) – (3) have already
been used in the proof of Theorem 4.9 in this way.

The seven reduction rules from [54] consist of graph operations on certain
structures, and conditions on when they may be applied. Figure 4.21 shows the
operations. The black vertices all have degree 3, and goobers are shown as white
vertices. Dashed edges are present in the resulting graph if and only if they exist
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in the original graph. The numbers above the arrows indicate the decrease in n≥3,
and the numbers below the arrows indicate the number of leaves that can be
gained in a spanning tree when reversing the reduction. The following restrictions
are imposed on the application of these rules, see Section 3 of [54].

(1) 6 (2) 0
2 0

(3) 3 (4) 6
1 2

(7) 12
4

(6) 6
2

(5) 6
2

Figure 4.21. The seven low-degree reduction rules.

• Reductions (1), (3), (4), and (5) may not be applied if the two outgoing
edges from the left side, or the two outgoing edges from the right side, share
a non-goober end vertex. (An outgoing edge from the left and an outgoing
edge from the right may share a non-goober end vertex.)

• Reduction (7) may not be applied if any pair of outgoing edges shares a
non-goober end vertex.

In other words, a rule may not be applied if it would introduce multi-edges incident
with non-goobers, or if it would introduce a diamond. These seven reduction rules
will be called the low-degree reduction rules.low-degree reduction

rules We define an invariant that exhibits the properties which should be maintained
while applying graph reductions. These properties ensure that induction can be
applied in the proof of Theorem 4.1. We denote the graph consisting of two vertices
connected by two parallel edges as K2+e. A graph H is said to satisfy the invariantK2 + e

satisfy the invariant if it fulfills the following conditions.
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(i) The graph H is connected, or every component of H contains a goober, and

(ii) every component of H is either simple or it is a K2 + e, and

(iii) H contains neither 2-necklaces nor 2-blossoms.

Lemma 4.12. Let G′ be obtained from G by the application of a low-degree reduc-
tion rule. If G satisfies the invariant then so does G′. Furthermore, if G contains
a goober, then so does G′.

Proof. Property (i) obviously holds for all seven low-degree reduction rules by
definition. Note that the Rules (1)–(6) only introduce goobers as new vertices and
the only new edges are incident to these goobers. Furthermore all other vertex
degrees remain unchanged. In conjunction with the applicability conditions, this
implies (ii) and (iii) for these six rules. We can also deduce that δ(G′) ≤ 2 whenever
δ(G) ≤ 2. It remains to consider Rule (7).

Rule (7) obviously cannot create parallel edges, that is (ii) holds. Furthermore,
Rule (7) cannot introduce a 2-blossom since a 2-blossom cannot share a vertex with
a triangle induced by three vertices of degree 3. This is not true for 2-necklaces,
but if Rule (7) introduces a 2-necklace, two of the outgoing edges share an end
vertex, contradicting the condition for applying Rule (7). Finally, Rule (7) does
not remove goobers by definition, so the proof of the lemma is complete. �

We now introduce five new reduction rules which we call the high-degree re- high-degree reduction

rulesduction rules. Each rule again consists of a graph operation and conditions on the
applicability.

Figure 4.22 shows the graph operations for the five rules. The encircled vertices
are the terminals and may have further incidences, unlike the other vertices. None
of the vertices in the figures may coincide, but there are no restrictions on outgoing
edges sharing end vertices, unless this yields parallel edges incident to non-goobers.
The numbers above the arrows indicate the decrease in n≥3, and the numbers below
the arrows indicate the number of leaves that can be gained in a spanning tree when
reversing the reduction. Since (R4) must disconnect a component, this notion is
not relevant for (R4); this rule will be treated separately in the sequel.

Observe that in particular, (R5) seems counterproductive when the goal is to
find spanning trees with many leaves, but it is useful to keep the case analysis in
the proof of Lemma 4.19 simple.

The following restrictions are imposed on the applicability of the operations
from Figure 4.22 to a graph G. First, none of the reduction rules may be applied if
it introduces a new 2-necklace or 2-blossom. In addition, the following rule-specific
restrictions are imposed. A bridge is an edge whose deletion increases the number bridge

of components.
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Figure 4.22. The five high-degree reduction rules.

(R1) dG(v) ≥ 4.

(R2) dG(u) ≥ 4 and dG(v) ≥ 4.

(R3) cc(G′) = cc(G), the edge uw is not in G, and in addition dG′(v) ≥ 3, or
dG′(w) ≥ 3, or both.

(R4) cc(G′) > cc(G), that is G′ is not connected.

(R5) dG(u) ≥ 4, dG(v) ≥ 4, uv may not be a bridge, and G − uv is not cubic.

We generalize the definition from Section 4.3 and call each of the twelve re-
duction rules admissible if it can be applied without violating one of the imposedadmissible

conditions. In particular the condition that no 2-necklaces or 2-blossoms are intro-
duced will be important later and it also implies that the following lemma holds.

Lemma 4.13. Let G′ be obtained from G by the application of a high-degree reduc-
tion rule. If G satisfies the invariant then so does G′. Furthermore, if G contains
a goober, then so does G′.

We extend the definition of reducibility from Section 4.3. A graph G is re-
ducible if one of the low-degree or high-degree reduction rules can be applied, andreducible/irreducible

irreducible otherwise. Griggs et al. [54] call a graph irreducible if none of the
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low-degree reduction rules can be applied. Clearly, a graph that is irreducible ac-
cording to our definition is also irreducible according to their definition. We use
this in Section 4.4.2, when Lemma 4.18 is introduced.

Note that irreducible graphs satisfying the invariant are simple because of
Rule (2). The following property of irreducible graphs substantially simplifies
subsequent proofs. Here G7 denotes the graph from Figure 4.20 (d). We delay the
proof of Lemma 4.14 to Section 4.4.5, since it is rather long and technical.

Lemma 4.14 (Edge Deletion). Let G be an irreducible graph not equal to G7 with
adjacent vertices u and v. If d(u) = d(v) = 4, then uv is a bridge, or G − uv is
cubic, or one of u, v becomes an inner vertex of a cubic diamond upon deletion of
the edge uv.

We now show that we can reverse all the reduction rules while maintaining
spanning trees with a sufficient number of leaves for every component. For the low-
degree reduction rules this lemma was implicitly proved in [54] and we have seen
how the reconstructions work for Reductions (1)–(3) in the proof of Lemma 4.10.
We refer to [54] for the detailed tree reconstructions, but we do repeat the main
idea behind the proof here.

Lemma 4.15 (Reconstruction Lemma). Let G′ be the result of applying a reduc-
tion rule to a connected graph G, and let k be the number of non-trivial components
of G′, and α ≥ 0 ∈ R. If G′ has a maximal forest with at least n≥3(G

′)/3+ 2k−α
leaves, then G has a spanning tree with at least n≥3(G)/3 + 2 − α leaves.

Proof. We prove the statement only for α = 0, the reasoning is the same for other
values of α.

Case 1. The applied rule was a low-degree reduction rule. Note that cc(G′) is
either 1 or 2. If G′ is connected, that is cc(G′) = 1, then its maximal forest
is a spanning tree and can be turned into a spanning tree of G with (n≥3(G) −
n≥3(G

′))/3 more leaves. To prove this, it is shown in Section 3 of [54] for every
rule how to adapt the tree of G′ for G (tree reconstructions). So now we assume
that cc(G′) = 2. If k = 2 then applying the same tree reconstructions yields a
spanning forest of G consisting of two trees, with again (n≥3(G)−n≥3(G

′))/3 more
leaves in total. These two trees of G can be connected to one spanning tree T by
adding one edge which destroys at most two leaves, and we obtain

ℓ(T ) ≥ n≥3(G
′)/3 + 2k + (n≥3(G) − n≥3(G

′))/3 − 2 = n≥3(G)/3 + 2.

If exactly one of the two components is trivial (k = 1) then the applied rule must
be Rule (2) or (3). In this case, it can be checked that after the tree reconstruction
for the non-trivial component, the trivial component can be attached to the tree
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without decreasing the number of leaves. One leaf is lost but the isolated vertex
becomes a leaf, and this yields

ℓ(T ) ≥ n≥3(G
′)/3 + 2 + (n≥3(G) − n≥3(G

′))/3 = n≥3(G)/3 + 2.

If both components of G′ are trivial (k = 0), then Rule (2) was applied, and
G = K2, for which the statement holds. This proves the lemma when a low-degree
reduction rule is applied.

v

v u v
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Figure 4.23. Tree constructions for reversing the high-degree reduction rules.

Case 2. The applied rule was a high-degree reduction rule. Note that Rules
(R1), (R2), (R3), and (R5) do not increase the number of components, that is
k = 1 = cc(G′). So for (R5) we do not have to change the spanning tree of G′. For
(R1), (R2), and (R3), Figure 4.23 shows how to gain at least one additional leaf in
every case. This suffices since each of these rules decreases n≥3 by at most 3. Here
it is essential that (R3) is admissible only if it creates at most one goober. Dashed
edges in the figure are present on the right if and only if they are present on the
left. Symmetric cases are omitted in the figure. Note that none of the terminals of
the operations can lose leaf status, except w in the second reconstruction for (R3).
This is compensated by gaining two new leaves here. So in every case enough
leaves are gained to maintain the ratio.

Recall that (R4) is only admissible if it disconnects G into two components that
are non-trivial, so k = 2 = cc(G′). Figure 4.23 shows how to construct a spanning
tree for G from the two spanning trees for the components, without decreasing the
total number of leaves. Hence the number of leaves of the resulting tree is at least

ℓ(T ) ≥ n≥3(G
′)/3 + 2k = n≥3(G)/3 − 5/3 + 4 > n≥3(G)/3 + 2.

This proves the lemma for all reduction rules.
�
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4.4.2 Extension Lemmas

Recall that the proof method introduced in Section 4.2 relies on the construction
of a graph F ′ for every non-spanning subgraph F of G, with F ⊂ F ′ ⊆ G and
P(F ′, G) ≥ P(F,G). In this section we summarize the three lemmas that take
care of the construction of this extension F ′ in the proof of Theorem 4.1.

As announced in Section 4.3, we now explain how the definition of goobers
in [54] differs from our definition. In [54] Griggs et al. define goobers as vertices goober

of degree at most 2 resulting from a (low-degree) reduction rule. Considering the
reduction rules, it can be seen that this extra condition adds no information (for
instance about the possible neighborhoods of goobers). Indeed, no such informa-
tion is used in the proofs in [54], and thus goobers may simply be defined as we do,
i.e. as vertices of degree at most 2. We can therefore restate Theorem 3 from [54]
as follows.

Theorem 4.16. Every irreducible graph G of maximum degree exactly 3 and with-
out cubic diamonds has a spanning tree T with

ℓ(T ) ≥ n≥3(G)/3 +





4/3 if G = Q3,
5/3 if G is cubic,
2 otherwise.

We give a short overview of the proof of this statement, as it appears in [54].
The proof method that we have introduced in Section 4.2 was mainly developed
in [54] and Theorem 4.16 is proved in [54] with this method. The choice of the
parameters is a = 3, I = {1, 2} and c ∈ {4/3, 5/3, 2}, depending on the graph
under consideration. In [54] the parameters a1 and a2 are chosen as a1 = 5/2 and
a2 = 1/2 and we adopt this setting for our proof of Theorem 4.1. Thus, the leaf
potential is defined as leaf potential

P(F,G) = 2.5ℓ(F ) + 0.5ℓd(F ) − n≥3,G(F ) − 6cc(F ),

in the rest of Section 4.4 and we also use the short hand

∆(x, y, z) = 2.5y + 0.5z − x.

The main building block of the proof of Theorem 4.16 in [54] is the case study
in Section 4 of [54]. The case study proves the following statement that we express
using our notation.

Lemma 4.17. Let G be a graph with maximum degree 3, without diamonds, that
is irreducible with respect to the low-degree reduction rules. Let F be a non-empty
tree subgraph of G. Then there exists a tree F ′ with F ⊂ F ′ ⊆ G and

2.5(ℓ(F ′) − ℓ(F )) + 0.5(ℓd(F
′) − ℓd(F )) − (n≥3,G(F ′) − n≥3,G(F )) ≥ 0.
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We now argue that the case study in [54] in fact proves Lemma 4.18 which we
need for the proof of Theorem 4.1.

Lemma 4.18 (Extension Lemma). Let G be a connected irreducible graph, and
let F ⊂ G such that FC has maximum degree 3 and contains no 2-necklaces. Then
F is extendible.

The most important observation is that the case study that proves Lemma 4.17
does not take advantage of any information about the current tree F . Only in-
formation about what we defined as FC is used. In particular, the fact that F is
connected is never used in the proof, and neither are upper bounds on degrees of
vertices already included in F . So the maximum degree 3 condition only has to be
stated for FC , and the condition that F is a tree may be removed. Furthermore,
an irreducible graph with maximum degree 3 that contains no 2-necklaces does not
contain any diamonds as subgraphs. So we may replace the ‘without diamonds’
condition by the ‘no 2-necklace’ condition. Our definition of irreducible implies
irreducibility with respect to the low-degree reduction rules, so this change neither
is a problem. Finally, the resulting graph F ′ has the same number of components
as F , so the expression in Lemma 4.17 simply means that P(F ′, G) ≥ P(F,G).
This yields Lemma 4.18.

While Lemma 4.18 takes care of the construction of F ′ in the case that FC has
maximum degree 3, Lemma 4.19 grows trees around vertices of degree at least 4 and
yields a graph satisfying the assumptions of Lemma 4.18. Lemma 4.19 is the core
of our proof of Theorem 4.1. We delay the proof of Lemma 4.19 to Section 4.4.5,
since it is rather long and technical.

Lemma 4.19 (Start Lemma). Let G be an irreducible graph that is not G7 and
does not have an edge e such that G − e is cubic. Let F be a (possibly empty)
subgraph of G, such that FC contains at least one vertex of degree at least 4, and
contains neither 2-necklaces nor 2-blossoms. Then, F is extendible.

The case that there is an edge e such that G − e is cubic requires additional
attention. This is needed in order to preserve the additive term 2 for non-cubic
graphs other than G7 in the induction step. The following lemma guarantees a
sufficient leaf potential for the initial subgraph of such an almost cubic graph.

Lemma 4.20. Let G be an irreducible graph, that contains neither 2-necklaces or
2-blossoms. If G has an edge e such that G− e is cubic, then G has a subgraph F
such that P(F,G) ≥ −0.5 and FC has maximum degree 3.

Proof. Let u, v be the degree 4 vertices incident to e. If u, v have at most one
common neighbor, then expanding u, v yields ∆(7, 5, 0) = 5.5. If u, v have three
common neighbors, then expanding u yields ∆(5, 4, 1) = 5.5, since v becomes a
dead leaf. So we may assume that u, v have two common neighbors x, y.
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If z, the fourth neighbor of u, has |N(z) \ {u, v, x, y}| = 2, then expanding
u, z yields ∆(7, 5, 0) = 5.5. Otherwise, we may assume that z is adjacent to x.
Expanding u then gives ∆(5, 4, 1) = 5.5, since x becomes a dead leaf. �

4.4.3 Proof of the Main Theorem

This section is devoted to combining the tools introduced in Sections 4.4.1 and 4.4.2
in order to prove Theorem 4.1 which we repeat here for convenience.

Theorem 4.1. Let G be a simple, connected graph on at least two vertices which
contains neither 2-necklaces nor 2-blossoms. Then, G has a spanning tree T with

ℓ(T ) ≥ n≥3(G)/3 +





4/3 if G = Q3,
5/3 if G = G7 or G 6= Q3 is cubic,
2 otherwise.

Proof. If G has maximum degree exactly 3, then Theorem 4.1 follows immediately
from Theorem 4.16. If G has maximum degree at most 2, G has a spanning
tree with two leaves, since we assumed that G is not K1. For all other graphs
we prove the statement by induction over the number of edges. For our induction
hypothesis we show that the above statement holds for every irreducible, connected
graph which satisfies the invariant.

Induction base. The induction base is the case that G is irreducible. If G = G7,
then a spanning tree with 4 = n≥3(G)/3 + 5/3 leaves can be obtained. So we may
now assume that G contains at least one vertex of degree at least 4, and is not
equal to G7.

If G has an edge e such that G−e is cubic, then Lemma 4.20 yields a subgraph F
with P(F,G) ≥ −0.5, such that FC has maximum degree 3. Then, the Extension
Lemma (Lemma 4.18) can be applied iteratively until a spanning subgraph F ′ is
obtained with P(F ′, G) ≥ −0.5. In a spanning graph all leaves are dead, therefore
we must have P(F ′, G) ≥ 0, since PG(F ′, G) is integral.

In the remaining case, G fulfills the assumptions of Lemma 4.19 and we start
the construction process with an empty subgraph F of G which has P(F,G) = 0.
The Start Lemma (Lemma 4.19) shows that, as long as there is at least one vertex
of degree at least 4 not in F , we can extend F while maintaining P(F,G) ≥ 0.
When all vertices of degree at least 4 are included in F , Lemma 4.18 can be applied
iteratively until a spanning subgraph F ′ is obtained with P(F ′, G) ≥ 0.

We may assume that F ′ is a forest because cycles can be broken by edge
deletions without decreasing the number of leaves.
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Since all leaves of a spanning subgraph are dead we deduce

0 ≤ P(F ′, G) = 3ℓ(F ′) − n≥3(G) − 6cc(F ′)

⇒ ℓ(F ′) ≥ n≥3(G)/3 + 2cc(F ′).

We can now add cc(F ′) − 1 edges to F ′ to obtain a spanning tree, losing at most
2(cc(F ′) − 1) leaves, so the resulting tree has at least n≥3(G)/3 + 2 leaves.

Induction step. Now, we assume that G is reducible. Then, some reduction
rule is admissible, and the reduced graph G′ again satisfies the invariant, by Lem-
mas 4.12 and 4.13. These lemmas also imply that if G contains a goober, then so
does G′.

First suppose the reduction rule yields a disconnected graph G′. Then, every
resulting component has a goober. So by induction, every non-trivial component C
of G′ has a spanning tree with at least n≥3(C)/3 + 2 leaves. Thus, Lemma 4.15
(the Reconstruction Lemma) implies that G has a spanning tree with at least
n≥3(G)/3 + 2 leaves.

Now we suppose that G′ is connected. If G′ has a spanning tree with at least
n≥3(G

′)/3 + 2 leaves, then Lemma 4.15 implies that G has a spanning tree with
at least n≥3(G)/3 + 2 leaves. By induction, such a spanning tree for G′ can be
guaranteed whenever G′ is not cubic and G′ 6= G7. So now we may assume that G′

is cubic or G′ = G7. It follows that the applied reduction rule was (7), (R3)
or (R5), since all other reduction rules introduce goobers. If (R3) was applied,
then in addition it follows that n≥3(G) = n≥3(G

′) + 2. We consider three cases
for G′.

If G′ is cubic but not equal to Q3, then by induction it has a spanning tree T ′

with ℓ(T ′) ≥ n≥3(G
′)/3 + 5/3 leaves. When this inequality is not tight, then

since both ℓ(T ′) and n≥3(G
′) are integral, we have ℓ(T ′) ≥ n≥3(G

′)/3 + 2, so
the statement for G follows. So now assume ℓ(T ′) = n≥3(G

′)/3 + 5/3. If G is
cubic as well, then Lemma 4.15 yields that G has a spanning tree with at least
n≥3(G)/3 + 5/3 leaves, which is good enough. If G is not cubic, then the applied
reduction rule must be (R3), since (7) cannot yield a cubic graph G′ if G is not
cubic, and (R5) by definition may not yield a cubic graph. In that case, G has a
spanning tree T with

ℓ(T ) = ℓ(T ′) + 1 = n≥3(G
′)/3 + 5/3 + 1

= n≥3(G)/3 − 2/3 + 5/3 + 1 = n≥3(G)/3 + 2.

Now suppose G′ = Q3. The applied rule is not (R5) by definition, and not (7)
since Q3 contains no triangles. So G′ is obtained by applying (R3) to G, and it
follows without loss of generality that G is the graph shown in Figure 4.24. There
are different possibilities for the other end vertex of the edge e that is drawn as a
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half edge here. But regardless of this choice, the solid edges show a spanning tree
for G with 6 = n≥3(G)/3 + 8/3 leaves, which suffices.

e

Figure 4.24. An (R3) operation yields a Q3.

Finally, suppose G′ = G7. Then G′ contains no triangle induced by three ver-
tices of degree 3, so we may exclude Rule (7). If (R3) was applied, then Lemma 4.15
proves that a spanning tree T of G exists with ℓ(T ) ≥ n≥3(G)/3 + 5/3. Since in
addition n≥3(G) = 9, rounding gives ℓ(T ) ≥ ⌈n≥3(G)/3+5/3⌉ = 5 = n≥3(G)/3+2.
If (R5) was applied, then Figure 4.25 shows all the possibilities for G, since there
are only three ways to add an edge to G7 such that a simple graph is obtained,
when ignoring symmetric cases. For all of these cases, the solid edges in Figure 4.25
show a spanning tree with 5 = n≥3(G)/3 + 8/3 leaves, which suffices. �

Figure 4.25. An (R5) operation yields a G7.

4.4.4 Consequences of the Main Theorem

We now show how an even stronger version of Theorem 4.1 can be easily derived,
from what we have proven so far. Let H be a 2-blossom or 2-necklace of G. If
there exists a non-goober vertex in V (G)\V (H) that is adjacent to both terminals
of H, then H is called a leaf 2-blossom or a leaf 2-necklace respectively. leaf 2-blossom/

2-necklace
Theorem 4.21. Let G be a simple, connected graph on at least two vertices and
let x be the number of non-leaf 2-necklaces in G, and y the number of non-leaf
2-blossoms of G. Then G has a spanning tree T with

ℓ(T ) ≥ (n≥3(G) − x − y)/3 +





4/3 if G = Q3,
5/3 if G = G7 or G 6= Q3 is cubic,
2 otherwise.
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Before we prove this theorem, we remark that Theorems 4.6 and 4.9 can be
obtained as corollaries. In order to prove Theorem 4.6 note that 4x+7y ≤ n≥3(G)
for every graph G. Theorem 4.9 follows since for graphs without cubic diamonds
we have 7x + 7y ≤ n≥3(G).

Proof of Theorem 4.21. If G contains no 2-necklaces or 2-blossoms, then the
statement follows directly from Theorem 4.1. Let H be a 2-blossom of G. If
|V (G) \ V (H)| ≤ 1, then n≥3(G) = 7, and a spanning tree T exists with ℓ(T ) =
4 = (n≥3(G) − 1)/3 + 2, so the statement holds. Now let H be a 2-necklace of G
consisting of k diamonds. If |V (G) \ V (H)| ≤ 1, then a spanning tree T exists
with ℓ(T ) = k + 2 = (3k + 1 − 1)/3 + 2 = (n≥3(G) − 1)/3 + 2 which proves the
statement.

In the remaining case, G contains at least one 2-necklace or 2-blossom H, and
|V (G) \ V (H)| ≥ 2. Let H be a 2-necklace or 2-blossom of G with terminals u
and v. Since G is connected it follows that, the set (N(u)∪N(v))\V (H) contains
either two vertices, or contains one non-goober vertex. So in the second case H is
a leaf 2-necklace or leaf 2-blossom. Let x′ denote the number of leaf 2-necklaces
in G, and y′ denote the number of leaf 2-blossoms in G.

u v

vu

u v

u

u

G: G′: G: G′:

u

Figure 4.26. Reducing 2-blossoms and 2-necklaces.

We iteratively reduce every 2-necklace or 2-blossom H of G as follows, see
Figure 4.26. We contract H into a single vertex w that becomes a goober in the
reduced graph. If this yields two parallel edges incident with w, that is when H is
a leaf 2-necklace or leaf 2-blossom, then we delete one of the parallel edges. This
may turn one other vertex into a goober. Call the resulting graph G′, and let d
be the number of diamonds that are part of 2-necklaces of G. Note that every
diamond necklace Nk that is a 2-necklace of G contributes k to the number of
diamonds d. Then we have

n≥3(G
′) ≥ n≥3(G) − 3d − x − 2x′ − 7y − 8y′.
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The graph G′ is connected, simple, contains at least two vertices, and at least
one goober. Therefore Theorem 4.1 implies that G′ has a spanning tree T ′ with
ℓ(T ′) ≥ n≥3(G

′)/3+2. Figure 4.27 now illustrates how to extend T ′ iteratively for
each of the four cases to obtain a spanning tree T of G.

T : T ′: T :T ′:

u
u

u

Figure 4.27. Reconstructing trees for 2-blossoms and 2-necklaces.

The dashed lines represent edges that are in T if and only if they are in T ′.
For every 2-necklace consisting of k diamonds we gain k + 1 leaves if it is a leaf
2-necklace, and at least k leaves otherwise. In the case of a leaf 2-necklace, it is
essential that the vertex u in Figure 4.27 cannot be a leaf of T ′. Similarly, for
every 2-blossom we gain three leaves if it is a leaf 2-blossom, and at least two
leaves otherwise. So we have

ℓ(T ) ≥ ℓ(T ′) + d + x′ + 3y′ + 2y.

From these inequalities it follows that

ℓ(T ) ≥ ℓ(T ′) +d + x′ + 3y′ + 2y ≥
n≥3(G

′)/3 + 2 +d + x′ + 3y′ + 2y ≥
(n≥3(G) − 3d − x − 2x′ − 7y − 8y′)/3 + 2 +d + x′ + 3y′ + 2y ≥
(n≥3(G) − x − y)/3 + 2.

�

The next theorem shows, that every graph without 2-necklaces has a spanning
tree with 4n/13 + c leaves. We have formulated this theorem in Section 4.1 and
repeat it here for convenience. The bound 4n≥3(G)/13 + 20/13 is tight for the
cube Q3 and we have seen in Section 4.1 that the bound 4n≥3(G)/13 + 24/13 is
tight for all flower trees. flower tree

Theorem 4.5. Let G be a simple, connected graph on at least two vertices that
contains no 2-necklaces. Then, G has a spanning tree T with

ℓ(T ) ≥ 4n≥3(G)/13 +

{
20/13 if G is cubic,
24/13 otherwise.
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G G′

u v u v

G G′

g

u u

g

Figure 4.28. Blossom reductions.

Proof. The proof idea is to reduce all 2-blossoms of the graph using the reductions
shown in Figure 4.28. Theorem 4.1 is then applied to the resulting graph G′, and
we obtain a spanning tree T ′ of G′. The reduction reversals then yield a spanning
tree T of G with a sufficient number of leaves.

The bound follows from Theorem 4.1 for graphs without 2-blossoms. Both, Q3

and G7 have a spanning tree with four leaves, thus the claim holds for these two
graphs. For every other cubic graph or non-cubic graph without 2-blossoms, the
claim from Theorem 4.1 is obviously stronger than the claim from Theorem 4.5.

Note that graphs with maximum degree 3 have no 2-blossoms. We may thus
assume that G has maximum degree at least 4 and at least one 2-blossom. We
reduce all 2-blossoms of G by the reductions shown in Figure 4.28. The reduction
shown on the left is for non-leaf 2-blossoms, while the reduction on the right is for
leaf 2-blossoms. This yields a graph G′ without 2-blossoms and 2-necklaces. We
denote the number of non-leaf 2-blossoms by y and the number of leaf 2-blossoms
by y′. Then, since the vertex u may become a goober when a leaf 2-blossom is
reduced, we have

n≥3(G
′) ≥ n≥3(G) − 7y − 8y′.

Since G′ has at least one goober Theorem 4.1 shows that G′ has a spanning tree T ′

with

3ℓ(T ′) ≥ n≥3(G
′) + 6.

We build a spanning tree T of G from T ′ = T0 by iteratively using the extensions
shown in Figure 4.29 in an arbitrary order. Dashed edges are in T if and only if
they are in T ′.

u v

T

u v

T ′ T ′ T

g

u

g

u

Figure 4.29. Blossom reconstructions.
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We denote the intermediate trees by Ti and we have that Ty+y′ =: T is a
spanning tree of G. Let y1 be the number of extensions reversing the reductions
of a non-leaf 2-blossom where u or v is a leaf of T ′, see Figure 4.29. Then, it holds
that

ℓ(T ′) ≥ 2y1 + y′.

First note, that in T ′ obviously all the degree 1 goobers created by the reduction
of a leaf 2-blossom are leaves. Furthermore, if u or v is a leaf of T ′ then so is g,
see Figure 4.29. The extension of Ti that reverses the reduction of a non-leaf 2-
blossom makes u and v inner vertices of Ti+1. Thus, if u or v is adjacent to another
goober created by the reductions of a non-leaf 2-blossom, then the reversal of that
reduction is not counted by y1. Hence, with every extension counted by y1 we can
associate two leaves of T ′.

Let y2 count the extensions reversing the reduction of a non-leaf 2-blossom
that are not counted by y1, i.e. y1 + y2 = y. Note that the extensions counted
by y1 create two additional leaves, while all other extensions create three additional
leaves. This implies that

13

4
ℓ(T ) =

13

4

(
ℓ(T ′) + 2y1 + 3(y2 + y′)

)

≥ 3ℓ(T ′) +
1

4
ℓ(T ′) +

13

2
y1 +

39

4
(y2 + y′)

≥ n≥3(G
′) + 6 +

1

4
(2y1 + y′) +

13

2
y1 +

39

4
(y2 + y′)

= n≥3(G
′) + 6 + 7y1 +

39

4
y2 + 10y′

≥ n≥3(G) + 6.

We conclude that ℓ(T ) ≥ (4n≥3(G) + 24)/13. Note that this bound is tight if
y1 = y + y′ and that this is true for flower trees. �

4.4.5 Dealing with High Degree Vertices

In this section we complete the proof of Theorem 4.1 by presenting the proofs for
Lemmas 4.14 and 4.19 which we omitted earlier.

Lemma 4.14 (Edge Deletion). Let G be an irreducible graph not equal to G7 with
adjacent vertices u and v. If d(u) = d(v) = 4, then uv is a bridge, G−uv is cubic,
or one of u, v becomes an inner vertex of a cubic diamond upon deletion of the
edge uv.

Proof. Suppose for the sake of contradiction that a non-bridge edge uv exists,
between vertices of degree 4, such that G − uv is not cubic and none of u, v
becomes an inner vertex of a diamond upon deletion of uv.
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Since G is irreducible, no reduction rule is admissible. Clearly, this must mean
that a 2-necklace or 2-blossom is introduced when uv is deleted, that is when (R5)
is applied to uv. In either case, we will derive a contradiction to the irreducibility
of G.

Claim 1. The graph G − uv does not contain a 2-necklace N .

Suppose for the sake of contradiction that G − uv does contain a 2-necklace N .
Consider N as a subgraph of G, that is uv is counted towards the degrees of u
and v.

We first treat the case that N consists of at least two diamonds. If one of
the diamonds in N contains three vertices of degree 3, we can use rule (R1), see
Figure 4.30 (a). So now we may assume that one diamond on the end of the
necklace contains u as one of the three vertices not shared with the next diamond,
and the diamond on the other end of the necklace contains v this way.

If u is a connection vertex of N , then (R2) can be applied, see Figure 4.30 (b).
This does not introduce a 2-necklace since the degree 4 vertex v is part of N on the
other end. Because v is part of a diamond, this can also not introduce a 2-blossom.

(R1) (R2)

u

(b) (c)(a)
u u v u v

Figure 4.30. Reductions when a long 2-necklace is created.

In the remaining case, both u and v are internal vertices of their respective
diamonds. Now it is admissible to apply (R5) to a different edge incident with u,
see Figure 4.30 (c), where the dashed edge is the deleted one. This does not
introduce a 2-necklace or 2-blossom. Note that u becomes part of a triangle that
is induced by degree 3 vertices, for which all outgoing edges have different end
vertices. Such a triangle cannot be part of a 2-blossom or 2-necklace. The other
end vertex of the deleted edge is still part of a diamond after deletion, and thus is
not part of a 2-blossom. It is not part of a 2-necklace since v is in this part of the
necklace. This concludes the case where N consists of at least two diamonds.

Now suppose N consists of a single diamond. If u is an inner vertex of this dia-
mond, then v cannot be part of the same diamond since we are dealing with simple
graphs. This is then the case we excluded by assumption, see Figure 4.31 (a). So
without loss of generality u is one of the connection vertices of the diamond.

Now rule (R1) or (R2) is admissible, depending on whether v is also in the
diamond, see Figures 4.31 (b) and (c). This does not introduce a 2-blossom or
2-necklace, since in the case in Figure 4.31 (b), a triangle containing a goober is
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(a) (c)(b)

(R2) (R1)

vv u

vv

u uu

Figure 4.31. Reductions when a cubic diamond is created.

introduced, and in the case in Figure 4.31 (c), v has degree 4 and a goober at
distance 2. Note that also no parallel edges are introduced. In the case shown
in Figure 4.31 (c) the edges leaving the diamond are distinct, that is deleting uv
does not yield a K4. Otherwise uv would have been a bridge. This shows that it is
admissible to apply either (R1) or (R2), which contradicts the irreducibility of G.

△

Claim 2. The graph G − uv does not contain a 2-blossom B.

Suppose for the sake of contradiction that G−uv does contain a 2-blossom B.
For B we use the vertex labels from Figure 4.32 (a). The degree 4 vertex of B is
labeled b, its terminals are called c-vertices, and the remaining four vertices are
called its a-vertices. Now consider B as a subgraph of G, that is uv is counted
towards the vertex degrees. Since dG(u) = 4 = dG(v) neither of them is equal to b,
since b has degree 4 even after the deletion of uv.

(a) (b)
u

a4

c1

a1 a2

a3

c2
b b

Figure 4.32. The blossom B after deleting uv.

If u is an a-vertex, say without loss of generality u = a1, then it is admissible to
delete the edge connecting u to b instead, see Figure 4.32 (b). We argue next that
this does not introduce a 2-blossom or 2-necklace. Figure 4.33 shows the possible
results of deleting ub in more detail, depending on the position of v.

First suppose v 6= a4, that is we are in one of the situations show in Fig-
ures 4.33 (a) – (d). After deleting ub, b becomes part of a triangle that does not
share a vertex with another triangle, since we assumed v 6= a4. It follows that b
is neither part of a 2-necklace, nor of a 2-blossom. The vertex u may be part of a
triangle, these cases are shown in Figures 4.33 (c) and (d). But such a triangle is
not part of a diamond, hence u is not part of a 2-necklace. Finally we argue that
u is not part of a 2-blossom. Since b is not part of a 2-blossom, its neighbor a2 is
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v

(c)

v

(b)

v

(d)

(a) v

(e)

v

Figure 4.33. Possible results of deleting ub.

not part of a 2-blossom B′ unless it is a terminal of B′. In that case it is not part
of a triangle, but its neighbor c2 is, which is impossible. Hence a2 is not part of a
2-blossom. Thus, if u is part of a 2-blossom B′, then it must be a terminal of B′,
and therefore not part of a triangle, but its neighbor c1 must be part of a triangle.
This is again not possible. This concludes the proof that if v 6= a4, deleting ub is
an admissible application of (R5).

u
b

u

v bv

Figure 4.34. Deleting ub yields a blossom if G = G7.

Now we need to consider the case that u = a1 and v = a4, see Figure 4.33 (e).
Deleting ub does not introduce a 2-necklace, but there is exactly one way in which
it may introduce a 2-blossom that has v as its central degree 4 vertex. Figure 4.34
shows this case, the black edges indicate the new blossom. But now it can be
seen that the original graph which includes ub is exactly G7. This contradicts the
assumptions of the lemma. We conclude that if u is an a-vertex and G 6= G7, in
every case the edge ub can be deleted by an admissible application of (R5).

u

(b)
(R3)

(a) (R3)

v vu

u u

v v

Figure 4.35. More reductions if a 2-blossom is created.
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It remains to consider the case that u is a c-vertex. Then, (R3) could be used,
see Figures 4.35 (a) and (b). The solid edges indicate the structure reduced by
(R3). If in the first case a 2-necklace is introduced, v would be an inner vertex of
one of its diamonds, but that is not possible since d(v) = 4. In the second case no
2-necklace can be introduced, since v is part of at most one triangle. In neither
case a 2-blossom is introduced. △

We have thus derived a contradiction to the irreducibility of the graph for all
cases where deleting uv would not be an admissible application of (R5) and this
proves the lemma. �

Lemma 4.19 shows how to construct an extension F ′ for F when there is a
vertex of degree at least 4 in FC . Recall that when F and F ′ have the same number
of components, the extension is valid if and only if ∆(∆n≥3,G,∆ℓ,∆ℓd) ≥ 0, and
if a new component is introduced we need ∆(∆n≥3,G,∆ℓ,∆ℓd) ≥ 6.

Lemma 4.19 (Start Lemma). Let G be an irreducible graph that is not G7 and
does not have an edge e such that G − e is cubic. Let F be a (possibly empty)
subgraph of G, such that FC contains at least one vertex of degree at least 4, and
contains neither 2-necklaces nor 2-blossoms. Then, F is extendible.

Proof. First suppose F is not the empty graph. If there is a non-leaf vertex v
on the boundary of F , then F ′ can be obtained by expanding v. There is no
leaf lost since v was not a leaf, and the newly added vertices are leaves. So the
augmentation inequality is satisfied: ∆(k, k, 0) ≥ 0. Hence, we may assume in the
remainder that only leaves of F have neighbors in V (F ), or in other words, all
vertices on the boundary of F are leaves of F .

The next step is the attempt to augment F using the operations (A1) – (A7),
see Figure 4.36. The conventions for the figures in this proof are that encircled
vertices belong to V (F ) and solid edges show the expansion. White vertices are
goobers and other vertex degrees shown are to be understood as lower bounds,
except when stated otherwise. Dead leaves are marked with a cross. All of the
expansions in Figure 4.36 extend F without creating a new connected component,
and satisfy ∆(∆n≥3,G,∆ℓ,∆ℓd) ≥ 0. Thus, the resulting graph F ′ is an extension
as claimed in the lemma. Together these augmentation rules yield the following
claim.

Claim 1. The subgraph F is extendible, if a vertex in V (F ) has a goober neighbor
in V (F ) or at least two neighbors in V (F ), or if there is a vertex v ∈ V (F ) with
dG(v) ≥ 4 at distance at most 2 from F .

If a goober from V (F ) is adjacent to F then (A1) can be applied. If a vertex
in V (F ) has at least two neighbors in V (F ), (A2) can be applied. So from now
on we will assume every vertex in V (F ) has at most one neighbor in V (F ), and
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∆(1, 0, i) ≥ 0 if i ≥ 2

∆(i + 3, i, 0) ≥ 0 if i ≥ 2 ∆(i + 3, i, 1) ≥ 0.5 if i ≥ 2

∆(i + 2, i, j) ≥ 0 if i, j ≥ 1 ∆(i + 2, i, 0) ≥ 1 if i ≥ 2

∆(0, 0, 0) = 0 ∆(i + 1, i, 0) ≥ 0.5 if i ≥ 1

(A1)

(A4)

(A6)

(A5)

(A7)

(A2) (A3)

Figure 4.36. Simple augmentations of an existing subgraph.

this neighbor is not a goober. If a vertex v ∈ V (F ) with dG(v) ≥ 4 is adjacent
to a vertex in V (F ), then (A3), (A4) or (A5) can be applied. The creation of the
dead leaves in (A3) and (A4) follows from the fact that (A2) cannot be applied
anymore. If a vertex of degree at least 4 in V (F ) has distance 2 from a vertex in
V (F ), then (A6) or (A7) can be applied. △

The rest of the proof will handle the more complicated cases when F is the
empty graph, or the only vertices of degree higher than 4 in V (F ) are at a larger
distance from V (F ). We then introduce a new component of F . This is more
complicated because adding a further component comes at a certain cost, more
precisely we need that the new component satisfies ∆(∆n≥3,G,∆ℓ,∆ℓd) ≥ 6.

The rest of the proof is divided into three more claims. The first one handles
the easiest cases, and the second one handles all remaining cases except those
where every degree 4 vertex is the common vertex of two edge-disjoint triangles.
This final case is then taken care of in the third claim. Throughout the proof we
assume, sometimes implicitly, that none of the situations that have been handled
earlier can occur.

Claim 2. Let v ∈ V (F ), d(v) ≥ 4, and w ∈ N(v). In the following four situations
F is extendible: d(v) ≥ 5, or d(v) = 4 and w is a goober, or d(v) = d(w) = 4, or
d(v) = 4 and N [w] ⊂ N [v].

First note that no vertex in N [v] or N [w] is part of F by Claim 1. If d(v) ≥ 5,
expanding v yields ∆(k +1, k, 0) ≥ 6.5, since k ≥ 5. For d(v) = 4 and w a goober,
expanding v gives ∆(4, 4, 0) = 6.
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Now suppose d(v) = d(w) = 4. If vw is a bridge, expanding v and w yields
∆(8, 6, 0) = 7. Note that we assumed G 6= G7 and that G − uv is not cubic.
Therefore, Lemma 4.14 shows that either v or w, say v, becomes the inner vertex of
a cubic diamond upon deletion of the edge vw. If w has two neighbors not in N [v],
then expanding v, w yields ∆(7, 5, 1) = 6, see Figure 4.37 (a). Otherwise w shares
two neighbors with v and expanding v yields ∆(5, 4, 3) = 6.5, see Figure 4.37 (b).

So now we may assume that all neighbors of v have degree 3. If N [w] ⊂ N [v]
then either the unique vertex u ∈ N [v] \ N [w] has two neighbors not in N [v],
in which case expanding u, v gives ∆(7, 5, 1) = 6, see Figure 4.37 (c), or there
is another vertex x ∈ N(v) − w with N [x] ⊂ N [v], and v is expanded to obtain
∆(5, 4, 2) = 6, see Figure 4.37 (d). △

w v
w

v
v v

(a) (b) (c) (d)
w w

u

x

Figure 4.37.

Summarizing, we may now assume that FC contains no vertices of degree at
least 5, and if it contains a vertex v of degree 4, all neighbors of v have degree 3
and have either one or two neighbors not in N [v].

Claim 3. If V (F ) contains a vertex v with d(v) = 4 and a vertex w ∈ N(v) which
has two neighbors a, b 6∈ N [v], then F is extendible.

We denote the other three neighbors of v by x, y, z. If one of a, b, x, y, z has all
of its neighbors in {a, b} ∪ N [v], we have ∆(7, 5, 1) = 6 by expanding v, w, see
Figure 4.38 (a).

If a or b is a goober we obtain ∆(6, 5, 0) ≥ 6.5, see Figure 4.38 (b). If a or b
is adjacent to a vertex c ∈ V (F ), then expanding v, w will make c a dead leaf
and yields ∆(7, 5, 1) ≥ 6, see Figure 4.38 (c). If one of a, b, x, y, z has at least two
neighbors not in N [v]∪{a, b}, we obtain ∆(9, 6, 0) = 6 by expanding v, w and this
vertex, see Figure 4.38 (d).

Hence we may assume that a, b, x, y, z each have exactly one neighbor outside
N [v] ∪ {a, b}, and that this neighbor is not in F . Since they all have degree at
least 3, the vertices a, b, x, y, z must induce three edges. This implies that one
of a, b has degree 4 since we already know that x, y, z have degree 3. We may
assume without loss of generality that d(a) = 4 and d(b) = 3. We distinguish two
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a b a b b a b

x(a) (b) (c) (d)
v

w

v

a

w

v v

ww

c

y

Figure 4.38.

cases depending on whether a is adjacent to b or not. We denote the neighbor of x
outside of N [v] ∪ {a, b} by x′, and similarly a′, b′, y′, z′ are defined.

Case 1. a is adjacent to x and y while b is adjacent to z.

Consider expanding v, x, z. All vertices in {a, b, w, y, x′, z′} are adjacent to at
least one of v, x, z, thus we have ∆(9, 6, 1) = 6.5 unless x′ = z′, see Figure 4.39 (a).
By an analogous argument with y in the place of x we may now assume that
x′ = z′ = y′. Then, expanding v, x yields ∆(7, 5, 1) = 6, since y becomes a dead
leaf, see Figure 4.39 (b).

y

a

x

y

a

x (b)(a)

b
w

x′

z′
z′

b
w

zz

Figure 4.39.

Case 2. a is adjacent to b and x while y is adjacent to z.

If x′ 6= a′, expanding v, x, a yields ∆(9, 6, 1) = 6.5, see Figure 4.40 (a), so we
may assume that x′ = a′ =: c, and this creates a situation symmetric in b and c.
By Claim 2 we have that b 6∼ c. Now first suppose b′ ∼ c. Then expanding
b′, c, x, v yields ∆(10, 6, 3) = 6.5, provided b′ has a neighbor d other than y, z, see
Figure 4.40 (b). Note that d ∈ V (F ) is not possible since augmentation (A6) could
have been applied instead.

(c)(a)

a

xz

a′

x′
y

z
c

a

(b) y
z

c
a

x

a
w

w

x

b

y

b
w

y

b
wb b′

z(R3)

d
b′ b′

Figure 4.40.
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If N(b′) = {b, c, y}, then (R3) is admissible, see Figure 4.40 (c). Since b′

becomes a goober this cannot introduce a 2-necklace. Hence it must be that
b′ ∼ y, z and the graph has ∆(9, 5, 5) = 6, see Figure 4.41 (a). This concludes the
cases with b′ ∼ c.

z
c

x
(a)

z
c

x

b′

z
c

x

b′

(b)
(R3)

yy

a
b

a

b

a

y

Figure 4.41.

The case b′ 6∼ c can be excluded because then (R3) would be admissible, see
Figure 4.41 (b). Note that this cannot create a 2-necklace involving y, z since then
(R2) would have been admissible. This concludes the proof of Claim 3. △

Summarizing Claims 1–3, we may now assume that all neighbors of a degree 4
vertex v ∈ V (F ) have degree 3, and have exactly one neighbor not in N [v]. In
other words, v is the common vertex of two edge-disjoint triangles, see Figure 4.42.

v
p′ s′

q′ r′

s

r

p

q

Figure 4.42. The bow tie subgraph

Claim 4. If the graph outside F contains a vertex v with d(v) = 4 such that all
its neighbors have degree 3 and one neighbor outside N [v], then F is extendible.

We denote the neighbors of v by p′, q′, r′, s′ and assume that p′ ∼ q′ and r′ ∼ s′.
The neighbor of p′ outside N [v] is denoted by p and similarly q, r, s are defined,
see Figure 4.42. We split the proof of the claim into three cases.

Case 1. We assume that p = q. If p has degree 2, then we expand v, p′ to obtain
∆(5, 4, 2) = 6. If p has degree 3, then we can apply (R1), see Figure 4.43 (a). So
now without loss of generality p has degree 4. Then by Claim 3, p is also part
of two edge-disjoint triangles. So if p = r then also p = s. In that case we can
expand v, p′ to obtain ∆(6, 4, 4) = 6, see Figure 4.43 (b). So now p 6= r, p 6= s.
Consider applying (R2) to the diamond consisting of p, p′, q′, v, see Figure 4.43 (c).
If this introduces a 2-necklace, (R1) could have been applied to the diamond on
the other end of this necklace. It cannot introduce a 2-blossom since the triangles
of a 2-blossom contain a degree 4 vertex.
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p

p

(b)

(R1)

p
(R2)

p

(a)

(c)

Figure 4.43.

Case 2. We assume that p = r. If p has degree 2, then we expand v, p′ to obtain
∆(5, 4, 2) = 6. Now we may assume that d(p) = 3 by Claim 3. Also q 6= s since
the graph does not contain 2-blossoms and the case that d(q = s) = 4 is again
excluded by Claim 3. Thus, (R3) is admissible, see Figure 4.44.

s

p pq q

s

Figure 4.44.

Case 3. We assume that p, q, r, s pairwise different. In this case either (R4)
or (R3) is admissible. If v is a cut vertex, (R4) may be used since it increases
the number of components. Otherwise, we may assume without loss of generality
that p and s are in same connected component of G−v minus the edge sr, and (R3)
can be applied without disconnecting the graph. See Figures 4.45 (a) and (b).

△

p s

rq

p

q r

s (R4)

(a)

rr

s s(R3)

q

p

q

p

(b)

Figure 4.45.

This concludes all possible cases. Whenever the subgraph of G outside of F
contains a vertex of degree at least 4, we have shown that G is either reducible,
or F is extendible. �
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4.5 Conclusions

In Section 4.4 we have proven the main result of this chapter. Graphs without
2-necklaces and 2-blossoms have spanning trees with n/3 + 4/3 leaves. This result
generalizes the main results from [54, 15] and can be used to obtain the fastest FPT
algorithm for the decision problem MaxLeaf. With respect to Theomem 4.1, the
following question remains open.

Problem 4.22. Is there an infinite family of irreducible graphs without 2-necklaces
and 2-blossoms that has no spanning tree with more than n6=2/3 + 5/3 leaves?

We have also given new proofs for several results of the same type for other
graph classes. Our proof method also enabled us give more compact proofs and
strengthen some known results.

In Section 4.2 we have improved the result that every graph without triangles
with minimum degree at least 3 has a spanning tree with at least n/3+4/3 leaves.
We prove that every graph without triangles has n6=2/3 + 2/3 leaves. It remains
open to improve the additive constant in this result.

Problem 4.23. Show that every graph without triangles has a spanning tree with
at least n≥3/3 + 4/3 leaves.

In discussions with Stefan Felsner and Eric Fusy we have realized that every
stacked triangulation has a spanning tree with at least 2n/3 + 1/3 leaves. This stacked triangulation

bound is tight for the K4. An easy proof of this fact uses Schnyder woods. A Schnyder wood

stacked triangulation has a unique Schnyder wood S = (T1, T2, T3) that is the
corresponding 3-orientation is acyclic. Therefore, each face F is incident to an 3-orientation

inner vertex v such that both edges incident to F and v are outgoing at v. Hence,
there is a color i in which v has no incoming edges, and thus v is a leaf of Ti.
Furthermore, the outgoing edges of v in colors i − 1 and i + 1 lie on at most one
common face, i.e. v is counted in this way as a leaf of Ti at most once. Therefore
the three trees have at least 2n − 5 leaves altogether and there must be one tree
which has (2n− 5)/3 leaves among the inner vertices of the stacked triangulation.
This tree can be augmented to a spanning tree such that two of the outer vertices
also become leaves. All triangulations are 3-connected and stacked triangulations
have many 3-cuts. Intuitively, higher connectivity should favor spanning trees with
many leaves. Therefore, we propose the following problem.

Problem 4.24. Does every triangulation with n vertices have a spanning tree
with at least 2n/3 + 1/3 leaves?





Chapter 5

Small Integer Realizations of
Stacked Polytopes

In this chapter we are concerned with polytopes, a central topic of discrete ge-
ometry. We focus on 3-polytopes (that is 3-dimensional polytopes) which have 3-polytope

especially kindled the interest of researchers for “obvious” reasons. One of the
outstanding results in the theory of 3-polytopes is Steinitz’s Theorem [86, 87].
It exhibits a beautiful connection between 3-polytopes and 3-connected planar
graphs.

Theorem 5.1 (Steinitz’s Theorem). The edge graphs of 3-polytopes are in bijection
with the 3-connected planar graphs.

This result completely characterizes all the combinatorial types of 3-polytopes
and justifies to use the term of a combinatorial 3-polytope, that is a 3-connected combinatorial/geometric

3-polytopeplanar graph. A geometric 3-polytope, that is a convex hull of a point set in R3, can
be seen as a realization of a combinatorial polytope. Of course every combinatorial realization

3-polytope P has infinitely many realizations. The question whether there exist
realizations such that all vertices of P are realized with integral coordinates has
been answered in the affirmative. Given the existence of such integer realizations,
the next thing to ask for is a bound B(n) such that every combinatorial 3-polytope
with n vertices has an integer realization with vertex coordinates of absolute value
at most B(n). This question is interesting because the bound B(n) allows to
bound the ratio of the longest to the shortest edge length, which in turn is useful
for efficient visualization of 3-polytopes. To the best of our knowledge the current
records for the best bounds are held by Ribo, Rote, and Schulz [73, 74] and we
summarize their results in the following theorem.

Theorem 5.2. Let P be a combinatorial 3-polytope with n vertices. If P contains
a triangle (not necessarily a face), then it can be realized with integral coordinates
smaller than 29n. If P contains no triangle, but at least one quadrangle, then it can
be realized with integral coordinates smaller than 47n. Without further assumptions
P can be realized with integral coordinates of absolute value less than 188n.

These upper bounds are accompanied by a lower bound of Ω(n3/2). This bound
is based on the fact that a strictly convex grid drawing of an n-gon needs Ω(n3/2) grid drawing

space, see [1, 90, 2]. A grid drawing of a planar graph is a crossing-free straight
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line embedding with integral vertex coordinates and convex faces. In general the
faces of a grid drawing do not have to be strictly convex, but of course every grid
drawing of a triangulation has strictly convex faces. Note that it is not even known
whether the right upper bound for the size of integer realizations of 3-polytopes is
polynomial or exponential in n.

In this chapter we focus on realizations of stacked triangulations. We postpone
to give a formal definition and content ourselves for the moment with the intuition
that realizations of stacked triangulations can be obtained by glueing together
simplices. This special structure allows for inductive methods to be used when
dealing with stacked triangulations. Another advantage of this class is that every
grid drawing of a stacked triangulation in the plane can be lifted to a corresponding
stacked polytope. A lifting of a grid drawing of a 3-connected planar graph G is anstacked polytope

lifting assignment of a third coordinate to every vertex position, such that the resulting
polytope is a realization of G. Even the smallest non-stacked triangulation, which
has six vertices, has non-liftable grid drawings, see [99].

There are basically three types of proofs of Steinitz’s Theorem. A modern
version of Steinitz’s own approach can be found in [99]. From this proof it can also
be seen that every 3-polytope has an integer realization. A quantitative analysis
of the method yields doubly exponential bounds because realizing a polytope with
this approach involves going back and forth between a polytope and its polar
polytope. The second approach uses the Koebe-Andreev-Thurston Circle Packing
Theorem, see [10, 100]. As this may yield irrational coordinates we follow the
third approach which uses Tutte’s Theorem, see Theorem 5.7 below and [93].
A good exposition of this approach is given by Richter-Gebert in [78] where he
also develops a lifting method that we use in this chapter. This lifting method
uses grid drawings with associated edge weights such that the so-called equilibrium
condition is satisfied at every vertex. To produce small realizations one needs small
grid drawings that also allow for small edge weights. This is the approach that we
take to produce polynomial integer realizations of balanced stacked triangulationsbalanced/linear stacked

triangulation which have the maximum possible number of vertices of every height. Linear
stacked triangulations have the minimum possible number of vertices of every
height, i.e. they have one vertex of every height. For linear stacked triangulations
we give grid drawings accompanied by an explicit lifting function. This leads to
the following results.

Theorem 5.3. Every linear stacked triangulation with n vertices has an integer
realization with coordinates of order O(n4). Balanced stacked triangulations haverealization

integer realizations of order O(n2.47) and this implies that every stacked triangula-
tion can be realized with coordinates of order 15n.

Small grid drawings of 3-connected planar graphs are interesting in their own
right and, as opposed to 3-polytopes, good bounds have been obtained. The best
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known bound for the grid size is (n−2)×(n−2) and it can be obtained by a variant
of the face-counting approach using Schnyder woods, see Theorem 1.6 and [83, 38]. Schnyder wood

The other approach to obtain drawings of size (n − 2) × (n − 2) was developed
by Chrobak and Kant and extends a partial drawing vertex by vertex, see [24]. A
natural idea is to try to lift these efficient drawings. As mentioned above, every grid
drawing of a stacked triangulation can be lifted and thus, by the Maxwell-Cremona
Theorem (see [28]), admits edge weights satisfying the equilibrium conditions. The
task is then to find good upper bounds for admissible edge weights. We have tried
to analyze the edge weights for drawings produced by the Schnyder wood method.
They did not appear to yield polynomially bounded weights even for balanced
stacked triangulations. Due to its iterative nature, the approach of Chrobak and
Kant does not seem suitable for being used within this lifting framework.

In the next section we introduce the facts about stacked triangulations that
we need in this chapter. In Section 5.2 we discuss polynomial liftings of linear
stacked triangulations and in Section 5.3 we treat the case of balanced stacked
triangulations. In Section 5.4 we give bounds for integer realizations of brooms,
i.e. polytopes that arise from glueing a balanced with a linear stacked polytope.

5.1 Preliminaries

We start by recalling the definition of stacked triangulations which we have already
seen in Section 1.4. When working with a stacked triangulation T we always
assume that one face is marked, and that this face is the outer face when we use
an embedding of T . We define the class of stacked triangulations inductively. We
do not need edge orientations in this chapter, and we use the simpler notation uv
instead of {u, v} to denote an edge between vertices u and v.

• K3 is a stacked triangulation. stacked triangulation

• Let T = (V,E) be a stacked triangulation and {u, v, w} an unmarked face
of T . Then, for a vertex v′ 6∈ V , T ′ = (V ∪ {v′}, E ∪ {v′u, v′v, v′w}) is a
stacked triangulation.

The height of the outer vertices is defined to be −1. For an inner vertex v′ stacked height

into a triangle {u, v, w} its height is h(v) = max{h(u), h(v), h(w)}+1. The height
of a face F = {u, v, w} is h(F ) = max{h(u), h(v), h(w)} + 1.

With a stacked triangulation T we associate a rooted ternary tree T , see Fig-
ure 5.1. Let a crossing-free embedding of T be given. The vertices of T represent
the triangles of T and there is an edge vw in T if and only if w represents the
smallest triangle ∆w that contains ∆v in the given embedding. Note that the
containment relation only depends on the choice of the outer face, which is fixed



154 Small Integer Realizations of Stacked Polytopes

by assumption. In order to work with T it is useful to observe that the leaves
of T are in bijection with the inner faces of T and the inner vertices of T are in
bijection with the inner vertices of T .

• With K3 we associate a singleton as its tree.

• Let T = (V,E) be a stacked triangulation and T its tree. Let T ′ be obtained
from T by stacking a vertex v′ 6∈ V , into the triangle ∆. The tree T ′

associated with T ′ is obtained from T by adding three new leaves to the leaf
of T representing ∆.

For every vertex v its height in T is the number of edges on the shortest path from
v to the root. Hence, the height of a vertex or face in T is the same as its height
in T . We say that a stacked triangulation has height h if its associated tree has
height h.

We work with three subclasses of stacked triangulations. A stacked triangu-
lation is a balanced stacked triangulation if its associated tree is complete, seebalanced/linear stacked

triangulation Figure 5.1 (a). A stacked triangulation is a linear stacked triangulation if its asso-
ciated tree is a caterpillar, that is a path plus leaves, see Figure 5.1 (b). A stacked
triangulation is a broom if the associated tree can be obtained from a caterpillarbroom

by substituting a leaf of maximum height by a complete ternary tree. For exam-
ple a broom can be obtained by identifying the outer face of the triangulation in
Figure 5.1 (a) with the shaded face of the triangulation in Figure 5.1 (b).

(b)(a)

Figure 5.1. A balanced and a linear stacked triangulation with the respective
trees.

We collect some easy statistics for these classes of stacked triangulations. A
linear stacked triangulation of height h has h+3 vertices, 3h+3 edges, and 2h+1
bounded faces. A balanced stacked triangulation of height h has 3 +

∑h−1
i=0 3i =

(3h + 5)/2 vertices, 3(3h + 1)/2 edges, and 3h bounded faces. A balanced stacked
triangulation of height h has 3h−1 vertices on level h − 1, and thus about 2/3 of
its vertices have height h − 1.
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5.2 Realization of Linear Stacked Triangulations

We first study the structure of linear stacked triangulations in more detail. For
the rest of this section, T shall be a linear stacked triangulation with n vertices
and T its associated tree.

Lemma 5.4. Let T be a linear stacked triangulation with height h ≥ 1 and outer linear stacked

triangulationface a1, a2, a3. Then, there is a permutation (i, j, k) of (1, 2, 3) such that ai has
degree 3 and T − ai is a linear stacked triangulation. The outer face of T − ai is
{aj, ak, v} where v is the third vertex incident to ai.

Proof. Let v be the unique vertex of T of height 0. Then, because T is a caterpillar,
at most one of the triangles F3 = {a1, a2, v}, F2 = {a1, a3, v}, F1 = {a2, a3, v}
contains further vertices. We may assume that this triangle is F3, and thus the
only neighbors of a3 are a1, a2, and v. Furthermore, v is the root of the tree T
associated with T , and it is adjacent to the two leaves of T that represent F1

and F2. Let T ′ be the tree obtained from T by deleting v, F1, and F2. The root
of T ′ is the unique non-leaf vertex of height 1 of T . The triangulation T − a3 can
be obtained by starting with the triangle {a1, a2, v} and then stacking vertices as
encoded in T ′. �

We use Lemma 5.4 inductively to remove vertices from T until only a facial
triangle remains which we call the central triangle. Using the order of removals, central triangle

we define a shelling order s on T . The three vertices of the central triangle receive shelling order

the numbers 1, 2, 3. If the vertex v was removed as the ith vertex, we define
s(v) = n − i + 1, see Figure 5.2. Furthermore, we call an edge a spine edge if it is spine edge

the unique edge incident to a removed vertex that is not incident to the outer face
when this vertex is removed. The three outer vertices of T are each incident to one
spine edge and the same is true for the three vertices of the central triangle. Every
other vertex is incident to two spine edges and the subgraph induced by the spine
edges is cycle-free. Thus, this induced subgraph consists of three disjoint paths,
the spines Si, i = 1, 2, 3 of T which connect the outer triangle with the central spine Si

triangle. We will denote the triangle that constitutes the outer face before v is
removed as ∆s(v) and the central triangle as ∆3. This yields a sequence of n − 2
triangles.

We now define the embedding MT of T that will be lifted. For v ∈ Si let si(v) be
the number of vertices that lie on Si and come before v in the shelling order s, see
Figure 5.2. We define MT as

MT (v) =





(s1(v) + 1, 0) if v ∈ S1

(0, s2(v) + 1) if v ∈ S2

(−s3(v) − 1,−s3(v) − 1) if v ∈ S3
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and connect adjacent vertices by straight line segments, see Figure 5.2. It is easy
to see that this yields a grid embedding. Furthermore, the whole embedding is
contained in a square of side length n, and ∆3, . . . ,∆n is a sequence of geometric
triangles of the form {(i, 0), (0, j), (−k,−k)}.

s(v) = n − 1, s2(v) + 1 = 5

s(u) = n − 2, s1(u) + 1 = 4

s(w) = n, s3(w) + 1 = 3

Figure 5.2. A grid embedding MT of a linear stacked triangulation T . The thick
edges are the spine edges of MT .

We lift MT by defining a piecewise linear convex function fT : R2 → R+
0 that

produces creases for all inner edges of T . Note that every non-spine edge lies in
some triangle ∆α. We define fT as a sum of piecewise linear functions.

fT (x, y) =
n∑

α=3

f∆α(x, y)

Let ∆α be embedded as {(i, 0), (0, j), (−k,−k)}. Then, f∆α is a piecewise linear
convex function that produces creases exactly on the line segments connecting the
vertices of ∆α and the rays

{(t, 0)|t ≥ i}, {(0, t)|t ≥ j}, {(−t,−t)|t ≥ k}.

We define and study the functions f∆α in Lemma 5.5 and illustrate them in Fig-
ure 5.3.
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Lemma 5.5. Let ∆α be a triangle with vertices u = (i, 0), v = (0, j) and w =
(−k,−k). For (x, y) ∈ R2 we define f∆α = f ijk : R2 → R+

0

f ijk(x, y) =





f ijk
1 (x, y) if x ≥ 0, y ≥ 0, y ≥ − j

i
x + j

f ijk
2 (x, y) if x ≥ y, y ≤ 0, y ≤ k

k+i
x − ik

k+i

f ijk
3 (x, y) if x ≤ 0, y ≥ x, y ≥ j+k

k
x + j

f ijk
4 (x, y) otherwise

where

f ijk
1 (x, y) = k · (i · y + j · x − i · j),

f ijk
2 (x, y) = j · (−(i + k) · y + k · x − i · k),

f ijk
3 (x, y) = i · (k · y − (j + k) · x − j · k),

f ijk
4 (x, y) = 0.

Then, f ijk is a well defined, piecewise linear, continuous, convex function that
maps grid points to integer values. Furthermore, f ijk is not differentiable exactly
on the set (i.e. f ijk forms creases on),

A = {(x, y)|y = − j
i
x + j, 0 ≤ x ≤ i}∪

{(x, y)|y = k
k+i

x − ik
k+i

,−k ≤ x ≤ i}∪
{(x, y)|y = j+k

k
x + j,−k ≤ x ≤ 0}∪

{(x, y)|y = 0, x ≥ i} ∪ {(x, y)|y ≥ j, x = 0} ∪ {(x, y)|y = x, x ≤ −k}.

v = (0, j)

u = (i, 0)

f ijk
4 (x, y) = 0

f ijk
1 (x, y) = k(iy + jx − ij)

f ijk
2 (x, y) = j(−(i + k)y + kx − ik)

f ijk
3 (x, y) = i(ky − (j + k)x − jk)

w = (−k,−k)

Figure 5.3. The lifting function f ijk.
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Proof. We omit the index ijk in the proof and show that

f(x, y) = max{fq(x, y)|q = 1, . . . , 4}. (5.1)

The calculations for the proof of (5.1) are not hard and we only show that for
(x, y) ∈ {(x, y)|x ≥ y, y ≤ 0, y ≤ k

k+i
x − ik

k+i
} the maximum is attained by f2.

f2(x, y) − f1(x, y) = −ijy − jky − iky + (jkx − jkx) + (ijk − ijk) ≥ 0

f2(x, y) − f3(x, y) = (x − y)(ij + ik + jk) ≥ 0

f2(x, y) − f4(x, y) = −j(i + k)y + jkx − ijk ≥ −jkx + ijk + jkx − ijk = 0

This proves that f is a well defined, piecewise linear, continuous, convex, func-
tion that maps grid points to integer values. It is easy to see from the definitions
of the fq that the four planes of the form Hq = (x, y, fq(x, y)), are given by the
equations below. For example z = f2(x, y) = −j(i + k)y + jkx − ijk and this
verifies the description of H2 below.

−jkx − iky + z = −ijk for q = 1,
−jkx + j(i + k)y + z = −ijk for q = 2,

i(j + k)x − iky + z = −ijk for q = 3,
z = 0 for q = 4.

Since the normal vectors are not parallel this shows that the planes Hi are not
parallel either and it follows that f produces creases exactly on A. �

We now formulate the main result of this section and conclude that linear
stacked polytopes can be realized with polynomially bounded integer coordinates.

Theorem 5.6. Let T be a linear stacked triangulation. Then, T has a realizationrealization

with integer coordinates of absolute value bounded by n × n × 3n4.

Proof. We embed T with the embedding MT and define the lifting for (x, y) ∈ R2
lifting

as fT (x, y). If f and g are continuous, piecewise linear and convex functions not
differentiable on Af and Ag respectively, then f + g is continuous, piecewise linear
and convex as well. Furthermore, the set Af+g on which f + g has no derivative is
exactly Af+g = Af ∪ Ag. Thus fT is continuous, piecewise linear and convex and
produces creases exactly on the line segments representing the non-spine edges of
T and the three rays {(t, 0)|t ≥ 1}, {(0, t)|t ≥ 1}, {(−t,−t)|t ≥ 1}. Let H be the
plane defined by the images of the vertices of ∆n and H+ the halfspace of H that
contains the origin. Then, the set

H+ ∩ {(x, y, z) ∈ R3|z ≥ fT (x, y)}
is a realization of T . The bounds for the x- and y-coordinate follow from the
embedding MT . Each of the functions f∆α is bounded on the square [0, n]× [0, n]
by 3n3 and fT is a sum of n − 4 of these functions. This shows the bound for the
z-coordinate. �
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5.3 Realization of Balanced Stacked Triangulations

We denote the balanced stacked triangulation of height h by Bh. We first explain the balanced stacked

triangulation Bhlifting framework that we use for the realization of balanced stacked triangulations.
We then show how balanced stacked polytopes can be realized efficiently.

In the introduction of this chapter we have mentioned that good grid drawings
of stacked triangulations exist, that every such drawing is liftable and also that
this is not sufficient to obtain small integer realizations. We now sketch how
the edge weights come into play in Richter-Gebert’s lifting method [78] and what
further ingredient is needed to obtain good liftings with this approach. Let M be
a planar map, that is a crossing-free embedding of a planar graph into R2. The
cells of M are the connected regions of R2 \M . We denote the bounded cells by ci cell

for i = 1, . . . , f − 1 and by c0 the unbounded outer cell. Given an embedding of a
graph with vertex positions p(v1), . . . , p(vn) and edge weights wvi,vj

we say that a
vertex u is in equilibrium if

∑

vi:viu∈E

wvi,u(p(vi) − p(u)) = 0.

Theorem 5.7. [Tutte’s Theorem] Let G = ({1, . . . , n}, E) be a 3-connected planar
graph that has a cell c0 with vertices (k+1, . . . , n) for some k < n. Let pk+1, . . . , pn

be the vertices (in this order) of a convex (n− k)-gon and E ′ the set of edges that
are not in c0. Let w : E ′ 7→ R+ be an assignment of positive weights to the edges
from E ′.

1. There are unique positions p1, . . . , pk ∈ R2 for the interior vertices such that
all interior vertices are in equilibrium.

2. The bounded cells of this embedding of G are then realized as non-overlapping
strictly convex polygons.

We call an embedding as described in the theorem a Tutte embedding. Next, we Tutte embedding

briefly outline how Richter-Gebert [78] defines a lifting function for a given Tutte
embedding P = (p1, . . . , pn) of a graph G with edge-weights wu,v for uv ∈ E.
This lifting function is used to define a realization of a polytope P (G) with edge
graph G. We assume that R2 is embedded into R3 at the plane z = 1 and each pi

has homogenized coordinates (xi, yi, 1). homogenized

coordinatesFor an oriented edge (b, t) of G there is a unique adjacent cell L to the left of
it and a unique adjacent cell R to the right of it. We call the ordered quadruple
(b, t | L,R) an oriented patch of (G,P ). If (b, t|L,R) is an oriented patch, then oriented patch

(b, t | L, R)(t, b | R,L) is as well. For every interior cell ci we define a lifting vector qi∈ R3 as
lifting vector qifollows.
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• q1 = (0, 0, 0)

• qL = wb,t(pb × pt) + qR if (b, t|L,R) is an oriented patch of (G,P ).

In [78] it is shown that the equilibrium condition of the Tutte embedding implies
that the qi are well-defined.

Let ci0 = c1, and let ci0, ci1 , . . . , ciℓ be a sequence of cells such that (tij , bij |cij−1
, cij)

is a patch of (G,P ) for j = 1, . . . , ℓ. We define the lifting function fP with domain
conv(pn−k, . . . , pn) for p = (x, y, 1) ∈ ciℓ as

fP(p) = 〈p, qiℓ〉 = 〈p,
ℓ∑

j=1

wbij
,tij

(pbij
× ptij

)〉 =
ℓ∑

j=1

wbij
,tij

det(p, pbij
, ptij

).

In [78] this approach is used to prove upper bounds for the size of integer
realizations of 43n if there is a triangular face and 213n2

in general. Our fo-
cus is on realizing stacked triangulations, which have only triangular cells. The
next lemma follows from the definition of fP , and the observation that the de-
terminant det(p, pbij

, ptij
) corresponds to twice the area of the triangle spanned

by p, pbij
, and ptij

.

Lemma 5.8. Let P be a Tutte embedding of a triangulation with non-negative
integral vertex coordinates no larger than c1 · np and integral edge weights bounded
by c2 ·nq. Then there is a realization of P with integral vertex coordinates bounded
by c2

1 · c2 · n2p+q+1.

We now present an embedding Mh of Bh that can be lifted with non-negative
integral vertex coordinates bounded by 4n/3 × 4n/3 × 16n3/9. This follows from
Lemma 5.8 since Mh can be translated to a Tutte embedding with non-negative
integral vertex coordinates no larger than 4n/3 and all edge weights equal to 1. In
Theorem 5.10 we show that a better bound can be obtained.

Lemma 5.9. Let Bh be the balanced stacked triangulation of height h.

• Let M1 be the straight line embedding of K4 into R2 with vertex coordinates
(−1,−1), (1, 0), (0, 1), (0, 0).

• Let Mh+1 be the straight line embedding obtained from Mh by multiplying all
vertex coordinates by 3 and adding a new vertex into the barycenter of every
bounded face.

Then Mh is a Tutte embedding of Bh with integral vertex coordinates and edge
weights all equal to 1 for all h ∈ N. Furthermore, all vertices have coordinates in
{−3h−1, . . . , 3h−1}2 ⊂ {⌈−2n/3⌉, . . . , ⌊2n/3⌋}2.
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w

v0

v4

f1

f4

Figure 5.4. The embedding M2 of the balanced stacked triangulation B2.

Proof. The claims obviously hold for M1, so we proceed by induction. For an
example see Figure 5.4. Say the claim holds for all 1 ≤ i ≤ h. In Mh+1 all vertices
of height i ≤ h−1 have integer coordinates by the induction hypothesis. A vertex p
of height h has coordinates of the form 1/3 · (3p1 + 3p2 + 3p3) where the pi are
vertices of height at most h− 1. As the pi all are integral, so is p. With regard to
the edge weights, we know that Mh is in equilibrium with edge weights 1.

Thus, 3 · Mh is in equilibrium as well and we only have to show that the
map M ′

h+1 induced by the edges incident to vertices of height h is in equilibrium
when all edge weights are chosen to be 1. The vertices of height h lie in the
barycenter of their neighbors and are therefore in equilibrium. Let p be a vertex
of height 1 ≤ i ≤ h − 1 and p1, . . . , pr its neighbors in M ′

h+1, i.e. its neighbors of
height h. Furthermore, let u1, . . . ur be the neighbors of p of height at most h− 1.
Then,

r∑

i=1

(pi − p) = (1/3(u1 + ur + p) − p) +
r−1∑

i=1

(1/3(ui + ui+1 + p) − p)

= 1/3

(
(u1 − p) + (ur − p) +

r−1∑

i=1

(ui − p) +
r∑

i=2

(ui − p)

)
= 0.

The last equality uses the induction hypothesis. We have seen in Section 5.1
that Bh has (3h + 5)/2 vertices which proves the last claim. �

Theorem 5.10. There is a realization Ph of Bh with non-negative integral vertex realization

coordinates bounded by 4n/3 × 4n/3 × O(n2.47).

Proof. We consider the embedding Mh of Bh embedded in R3 at z = 1. Let w(h) =
(3h−1, 0, 1), and let its neighbors in counterclockwise order starting with (0, 3h−1, 1)
be labeled v0(h), . . . , v2h(h), that is (−3h−1,−3h−1, 1) = v2h(h), see Figure 5.4.
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The bounded faces incident to w are labeled f1, . . . , f2h in counterclockwise order
starting with the face incident to v0(h). If we fix q1, the lifting vector associated
with f1 to be (0, 0, 0) then v2h(h) will have the largest z-coordinate in the resulting
lifting of Bh and we will calculate this value now. For the following calculationslifting

we use the definition of the lifting vectors and the fact that the vi(h) are convex
combinations of v0(h), v2h(h) and w(h) for 1 ≤ i ≤ 2h − 1.

q2h =
2h−1∑

i=1

w(h) × vi(h)

= w(h) ×




2h−1∑

i=1

vi(h)


 = w(h) × (αhv0(h) + βhw(h) + γhv2h(h))

= αhw(h) × (v0(h) + v2h(h))

where αh, γh ∈ R and we used for the last equality that αh = γh by symmetry.

Let vΣ(h) denote the sum
(∑2h−1

i=1 vi(h)
)
.

We will now calculate αh. Since v1 = (v0(1)+v2(1)+w(1))/3 we obviously have
α1 = 1/3. We explain how αh+1 can be obtained from αh. Note that the value of
αh+1 is not affected by scaling all z-coordinates of the embedding by a factor 3.
Therefore, we may work with an embedding M ′

h+1 that is obtained from Mh+1 by
placing all vertices at height z = 3.

Every vertex of height h that is adjacent to w(h+1) in M ′
h+1 is in the barycenter

of w(h + 1) and two vertices that are adjacent to w(h) in Mh. In M ′
h+1 the points

of height at most h − 1 incident to w(h + 1) contribute three times as much to
vΣ(h + 1) as they contribute to vΣ(h). In addition every such vertex contributes
twice to vΣ(h+1) via its two neighbors of height h that are also adjacent to w(h+1).
This implies that

vΣ(h + 1) = 5vΣ(h) + v0(h) + v2h(h)

because v0(h) and v2h(h) are contributed additionally through v1(h + 1) and
v2h+1−1(h + 1), respectively. Since we expressed vΣ(h + 1) with respect to Mh

we have to scale by a factor 1/3, and obtain

αh+1 =
5

3
· αh +

1

3
=

1

3
·

h∑

i=0

(
5

3

)i

=
1

2

((
5

3

)h+1

− 1

)
.

The last calculation implies that the z-coordinate of v2h(h) is (15h − 9h)/6.

〈v2h , αhw × (v0 + v2h)〉 = −3h−1 · 1

2

((
5

3

)h

− 1

)
·
(
−3h

)
= (15h − 9h)/6

The claim follows by expressing h in terms of n. �



5.4 Realization of Brooms 163

Corollary 5.11. Let α ∈ (1, 3] and P be a stacked polytope such that its edge
graph T has height h and n ≥ αh vertices. Then, there is a realization of P with
integral vertex coordinates of absolute value bounded by nlogα 15.

Proof. In the proof of Theorem 5.10 we show that Ph can be realized with coordi-
nates of absolute value less than 15h. If F is a face of P but not of Ph we truncate
it off Ph by intersecting Ph with a halfspace defined by the points representing the
vertices of F . Thus, we obtain a realization of P from that of Ph. Expressing 15h

in terms of the number of vertices of P we obtain

15h = αh logα 15 ≤ nlogα 15.

�

Corollary 5.12. Every stacked polytope has an integer realization with vertex
coordinates of absolute value bounded by 15n.

Proof. This follows from the fact that n ≥ h + 3 for every stacked triangulation.
�

5.4 Realization of Brooms

As mentioned in the introduction stacked polytopes can be obtained by glueing
together simplices or other stacked polytopes. We show a way to gain some control
over the coordinates during such a glueing operation. This should be seen as a
further step towards a polynomial bound for stacked polytopes which are not
covered by the results from Sections 5.2 and 5.3

Theorem 5.13. A broom T has a realization with integral vertex coordinates of broom

realizationabsolute value bounded by O(n7.93)

Proof. Let a balanced stacked polytope Bh and a linear stacked polytope L of
height h′ be given. We glue these polytopes to obtain a polytope P that is a
realization of the broom T .

We use the embeddings and realizations of balanced and linear stacked poly-
topes that we presented in Sections 5.2 and 5.3. We denote the vertices of the
outer face ∆ of the embedding of Bh by a1, a2, a3. The vertices of the central
triangle ∆′ of L are denoted by a′

1, a
′
2, a

′
3.

We aim to use an affine transformation in order to map the face ∆′ to the
face ∆ and simultaneously stretch L such that the resulting object is convex.
In order to guarantee this, we need to consider the faces adjacent to ∆ and ∆′

in Bh respectively L. Let b1 be the vertex other than a1 which forms a face of Bh
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H1

c2

a1

a2

a3

b2

Bh L

H3

H2

b1
b3

a′
2

a′
1

c1

a′
3

Figure 5.5. Glueing a balanced stacked polytope Bh and a linear stacked poly-
tope L.

with a2 and a3, see Figure 5.5. Similarly b2 and b3 are defined, and for L we define
c1 and c2 in this way. We may assume without loss of generality that the first
vertex in the shelling order of L is c1 and the first one on another spine, is c2, as
shown in Figure 5.5. We now describe the details of the realizations of Bh and L
that we need.

For the realization of Bh we start with a K4 embedded with vertex coordinates
(−3,−3, 1), (3, 0, 1), (0, 3, 1) and (0, 0, 1). We use this embedding to keep the no-
tation simpler. As in the proof of Theorem 5.10 we can calculate the coordinates
of vertices of Bh that we need as

a1 = (3h, 0, 0), b1 = (−1
2
(3h − 3), 0, ℓ),

a2 = (0, 3h, 0), b2 = (0,−1
2
(3h − 3), ℓ),

a3 = (−3h,−3h, k), b3 = (1
2
(3h − 3), 1

2
(3h − 3), 0),

with

k = 3
2
(15h − 9h), and ℓ = 3

4
(15h − 9h) − 9

4
(5h − 3h).

The normal vector of the plane defined by the ai in Bh is (k3h, k3h, 32h+1). The
coordinates in the lifting of L are

a′
1 = (1, 0, 0), c1 = (2, 0, 1),

a′
2 = (0, 1, 0), c2 = (0, 2, i(i+1)

2
),

a′
3 = (−1,−1, 0),

for some 1 ≤ i ≤ n. We use the following affine transformation A to glue the two
polytopes, by applying it to L, that is A · a′

i = ai. Here, α is the stretching factor
that we use to guarantee convexity. We will have to bound α in order prove the
claimed bound for the vertex coordinates.
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A(x, y, z) =




3h 0 αk3h

0 3h αk3h

−k
3

−k
3

α32h+1






x
y
z


+




0
0
k
3




=




3hx
3hy

k
3
(1 − x − y)


+ zα




k3h

k3h

32h+1




It is easy to check, that A has full rank for α > 0 and k, h ≥ 0. Let H1 be the plane
spanned by a2, a3, A · c2, let H2 be spanned by a1, a3, A · c1, and H3 by a1, a2, A · c1,
see Figure 5.5. In order to check the convexity conditions we describe the planes
Hi in the form 〈ni, (x, y, z)〉 = hi with

n1 =
(
A · c2 − a2

)
×
(
a3 − a2

)
,

n2 =
(
A · c1 − a1

)
×
(
a3 − a1

)
,

n3 =
(
a2 − a1

)
×
(
A · c1 − a1

)
.

To obtain convexity we determine α such that 〈ni, bi〉 < hi for i = 1, 2, 3. We omit
the calculations since they are lengthy but straightforward. The calculations imply
that it suffices to choose α > 1 to satisfy 〈n1, b1〉 < h1 as well as 〈n2, b2〉 < h2. The
inequality 〈n3, b3〉 < h3 implies the condition

α >
1

6

((
5

3

)h

− 1

)
.

We can thus choose α = (5/3)h which yields that

A(x, y, z) =




3hx + 5hkz
3hy + 5hkz

k
3
(1 − x − y) + 3 · 15hz


 =




3hx + 3
2
5h(15h − 9h)z

3hy + 3
2
5h(15h − 9h)z

k
3
(1 − x − y) + 3 · 15hz


 .

The polytope P has n = (3h + 5)/2 + h′ vertices. Theorem 5.10 implies that the
z-coordinates of L are of order O(n4) and 75h = O(n3.93). Therefore we obtain a
realization of P of order O(n7.93). �

5.5 Conclusions

In this chapter we have shown that linear and balanced stacked triangulations
have realizations with integral vertex coordinates of polynomially bounded abso-
lute value. Let ǫ > 0 and consider the set of all stacked triangulations with n
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vertices and height h, such that n ≤ (1 + ǫ)h. From Corollary 5.11 it follows
that if all these stacked triangulations can be lifted with integral vertex coordi-
nates of absolute value bounded by a polynomial in n, then this will imply that
all stacked triangulations can be lifted with integral vertex coordinates of abso-
lute value bounded by a polynomial. The main open question that remains is the
following.

Problem 5.14. Do all stacked polytopes have realizations with integral vertex
coordinates of absolute value bounded by a polynomial?



Conclusions

The four main topics of this thesis are the connections of orthogonal surfaces and
Schnyder woods, bounds for the number of planar orientations with prescribed
out-degrees, spanning trees with many leaves, and small integer realizations of
stacked polytopes. We have given a summary of the main results of each chapter
in the Introduction. We now give a collection of interesting open problems from
the various chapters. This collection is not complete and more open problems can
be found in the concluding sections of the respective chapters.

In Section 1.4 we have introduced the operations edge split and edge merge
for Schnyder woods. Besides other applications in [12, 13], these operations have
proven to be useful to give a new and simple proof of the Brightwell-Trotter Theo-
rem, see Section 2.1. In the split merge transition graph S(n) two Schnyder woods
are adjacent if they can be obtained from each other by a single split respectively
merge operation. In Section 1.4 we have proved a few results about the degrees of
the transition graph S(n). In this context we think that the following question is
worth further efforts, see Problem 1.20.

Problem 1. Can the transition graph S(n) be used to define a rapidly mixing
Markov chain that yields a uniform random sampler for Schnyder woods?

In Chapter 2 we have studied the connections of orthogonal surfaces and Schny-
der woods. In Section 2.3 we have shown how every normalized orthogonal sur-
face S can be encoded by a Schnyder wood plus a so-called height value for every
minimum and maximum of the surface. The core of the rather complicated proof
uses the augmented balance matrix C ′(S). This matrix is invertible and we think
that a better understanding of the following problem could help to simplify the
proof of Theorem 2.14, see Problem 2.20.

Problem 2. What is the combinatorial interpretation of the solution of the fol-
lowing linear equation system?

C ′(S) · y = ~e1

The key for the proof of Theorem 2.14 is a result that Felsner obtained when
working on triangle contact representations, see [6] for more on this topic. Progress
on Problem 2 could conversely help to answer open questions related to triangle
contact representations.

In Chapter 3 we give upper and lower bounds for the maximum number of
planar orientations with prescribed out-degrees for different out-degree functions.

167
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In most cases the lower and the upper bound are different, and thus there remain
many possibilities for improvement. Among these, the following is particularly
interesting, see Problem 3.41.

Problem 3. Improve the upper bound of 8n for the number of Schnyder woods of
a planar map with n vertices.

In [29], Páid́ı Creed shows that counting Eulerian orientations of planar maps
is #P -complete. We have shown for some more restricted instances of out-degree
functions that counting the number of orientations is #P -complete. For other
instances, this question remains open, see Problem 3.44.

Problem 4. Is it #P -complete to count Eulerian orientations of 4-regular graphs?

The topic of Chapter 4 are lower bounds for the maximum number of leaves of a
spanning tree for a given graph. We give tight lower bounds for some graph classes
that are defined by exclusion of certain subgraphs. Planar triangulations are a far
more restricted graph class than those that we have considered in Chapter 4. A
simple argument using Schnyder woods shows that every stacked triangulation
with n vertices has a spanning tree with at least 2n/3 + 1/3 leaves. This trig-
gered the question if a similar bound can be obtained for all triangulations, see
Problem 4.24.

Problem 5. Does every triangulation on n vertices have a spanning tree with at
least 2n/3 + 1/3 leaves?

The topic of Chapter 5 are small integer realizations of stacked polytopes.
We have shown that some subclasses of stacked polytopes have realizations with
polynomially bounded integral coordinates. The question whether this is possible
for all stacked polytopes remains open, see Problem 5.14.

Problem 6. Do all stacked polytopes have realizations with integral vertex coordi-
nates of absolute value bounded by a polynomial?

This concludes our selection of open problems related to this thesis.
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[14] N. Bonichon, B. Le Saëc, and M. Mosbah, Wagner’s theorem on realizers, in
Proc. 29th Int. Col. on Autom., Lang., and Prog., ICALP 02, vol. 2380 of LNCS,
2002, pp. 1043–1053. 14

[15] P. S. Bonsma, Sparse cuts, matching-cuts and leafy trees in graphs, PhD thesis,
University of Twente, Enschede, the Netherlands, 2006. 101, 102, 103, 104, 105,
113, 118, 119, 149

[16] P. S. Bonsma, T. Brueggemann, and G. J. Woeginger, A faster FPT
algorithm for finding spanning trees with many leaves, in Proc. 28th Int. Symp.
Math. Found. Computer Science, MFCS 03, vol. 2747 of LNCS, 2003, pp. 259–268.
101, 105

[17] P. S. Bonsma and F. Zickfeld, Spanning trees with many leaves in graphs
without diamonds and blossoms. arXiv: 0707.2760v1, 2007. Accepted for 8th
Latin American Theoretical Informatics, 2008. viii, 105

[18] G. R. Brightwell, Personal communication with S. Felsner, 2006. 77

[19] G. R. Brightwell and W. T. Trotter, The order dimension of convex poly-
topes, SIAM J. Discrete Math., 6 (1993), pp. 230–245. 1, 24, 25

[20] G. R. Brightwell and W. T. Trotter, The order dimension of planar maps,
SIAM J. Discrete Math., 10 (1997), pp. 515–528. 1, 24

[21] N. J. Calkin and H. S. Wilf, The number of independent sets in a grid graph,
SIAM J. Discrete Math., 11 (1998), pp. 54–60. 58, 69, 71

[22] Y. Caro, D. B. West, and R. Yuster, Connected domination and spanning
trees with many leaves, SIAM J. Discrete Math., 13 (2000), pp. 202–211 (elec-
tronic). 104, 113

[23] Y. Chiang, C. Lin, and H. Lu, Orderly spanning trees with applications, SIAM
J. Comput., 34 (2005), pp. 924–945. 29

[24] M. Chrobak and G. Kant, Convex grid drawings of 3-connected planar graphs,
Internat. J. Comput. Geom. Appl., 7 (1997), pp. 211–223. 29, 153

[25] R. Chuang, A. Garg, X. He, M. Kao, and H. Lu, Compact encodings of
planar graphs via canonical orderings and multiple parentheses, in Proc. 25th Int.
Col. on Autom., Lang., and Prog., ICALP 98, vol. 1443 of LNCS, 1998, pp. 118–
129. 29

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms, MIT Press, Cambridge, MA, second ed., 2001. 36



Bibliography 171

[27] J. R. Correa, C. Fernandes, M. Matamala, and Y. Wakabayashi, A 5/3-
approximation for finding spanning trees with many leaves in cubic graphs, in 5th
W. Approximation and Online Algorithms, 2007. 101

[28] H. Crapo and W. Whiteley, Plane self stresses and projected polyhedra I: the
basic pattern, Structural Topology, 20 (1993), pp. 55–78. 153

[29] P. Creed, Sampling Eulerian orientations of triangular lattice graphs, 2007.
arXiv:cs/0703031v1. 92, 93, 168

[30] P. Dagum and M. Luby, Approximating the permanent of graphs with large
factors, Theoretical Computer Science, 102 (1992), pp. 283–305. 94, 96

[31] H. de Fraysseix and P. O. de Mendez, On topological aspects of orientations,
Discr. Math., 229 (2001), pp. 57–72. 9, 53

[32] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl, Bipolar orienta-
tions revisited, Discr. Appl. Math., 56 (1995), pp. 157–179. 73, 74

[33] R. G. Downey and M. R. Fellows, Parameterized computational feasibility,
in Feasible mathematics, II (1992), vol. 13 of Progr. Comput. Sci. Appl. Logic,
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