
Decentralized Sensor Fusion

using Periodic Peer-to-Peer

Hypercube Gossiping

vorgelegt von
Dipl.-Ing. Tech. Inf.
Philipp Berndt
aus Berlin

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
� Dr.-Ing. �

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Adam Wolisz
Gutachter: Prof. Dr. Odej Kao

Prof. Dr.-Ing. Reinhard German
Prof. Dr.-Ing. Peter Gober

Tag der wissenschaftlichen Aussprache: 29. Oktober 2012

Berlin 2012

D 83

Acknowledgments

This thesis would not have been possible without the help of many people. Above all,
I want to thank my supervisor Odej Kao for providing me with support and guidance
whenever I needed it most and for giving me the chance to work with the great people at
the CIT. Also, I would like to express my gratitude towards Reinhard German and Peter
Gober for agreeing to review my thesis.

I am grateful for many fruitful discussions, especially to Paul McCabe for starting me o�
on this endeavor, and Felix Heine and Dominic Battré for priming me on P2P systems and
warmly welcoming me to the CIT. I thank the entire working group for all the great time
together, particularly Daniel Warneke, Andre Höing, Björn Lohrmann, Andreas Kliem,
and Alexander Stanik, who have also been so kind as to proofread my thesis.

Many thanks go to Scene, LLC d/b/a Ookla and Hanna Lane for kindly providing me
with global speedtest.net raw data.

Especially, I thank my girlfriend Saskia and my family for their great love, support,
patience, and food.

Also, I want to thank the creators of all the excellent open source tools that helped
me in compiling this thesis, particularly Linux, gcc, LATEX, LYX, R, and Xfig. Finally, I
want to thank Rob Hubbard and Martin Galway for creating indelible dreams, and Markus
Behlau, Marcel Donné, Visa Röster, mind.in.a.box and many others for keeping them alive
and my spirit up on my way through that endless maze.

speedtest.net

Zusammenfassung

Unter Datenfusion versteht man das Aggregieren von Informationen aus mehreren Quel-
len mit dem Ziel, ein Ergebnis zu erhalten, welches aussagekräftiger ist als Informationen
von einer einzelnen Datenquelle. Die Fusion von Sensordaten-Livestreams ist durch die
fortlaufende Aggregation von Messdatenreihen gekennzeichnet. Ihre Anwendungen reichen
von Audiokommunikation über die Überwachung von Geschäftsprozessen und das Verfol-
gen von Objekten bis hin zu gemeinsam nutzbaren haptischen virtuellen Umgebungen.
Alle diese Anwendungen erfordern eine extrem niedrige Latenz. Dementsprechend ist die
e�ziente Skalierung bei begrenzter Datenbandbreite von entscheidender Bedeutung. Dar-
über hinaus fällt in Disseminationsnetzen ein erheblicher Latenzanteil auf Wartezeiten, die
ihrerseits von der algorithmischen Implementierung des abstrakten Kommunikationssche-
mas abhängen. Vorhandene Aggregationsnetze sind entweder zentralisiert, vernachlässigen
die Latenz oder setzen eine homogene Infrastruktur voraus. Dementsprechend wird die
Komplexität von Kommunikationsalgorithmen allgemeinhin nur in Form von synchronen
Kommunikationsrunden gezählt. Genauere Abschätzungen der Latenz oder Querzeiten sind
schwer zu bestimmen.

Im Rahmen dieser Dissertation präsentiere ich einen neuen Ansatz zur dezentralisier-
ten, bandbreitene�zienten und latenzarmen periodischen Messdatenaggregation in hete-
rogenen Umgebungen. Durch den Einsatz von Radix-r-Dezimation unter P2P-Knoten, die
zu einem hyperkubischen Netz verbunden sind, wird in Bezug auf die Anzahl der Kno-
ten ein logarithmischer Berechnungs- und Kommunikationsaufwand erzielt. Begleitet wird
der Ansatz durch mehrere Methoden zur Reduzierung von Wartezeiten und zur analyti-
schen Berechnung von Grenzen, Erwartungswerten sowie Verteilungen von Latenzen und
Querzeiten. Die Leistungsfähigkeit der vorgestellten Methoden wird mithilfe von Simula-
tionen untermauert. Das den Simulationen zugrunde liegende Netzwerkmodell basiert auf
umfangreichen Netzwerkmessungen, unterstützt durch zwei neue Ansätze: zum einen zur
repräsentativen und doch e�zienten Latenzmodellierung in P2P-Netzen und zum anderen
zur stationären Emulation periodischer Kommunikation. Komplettiert werden die Ansätze
durch die Erörterung der Implementierung zweier beispielhafter Sensordatenfusionsanwen-
dungen, nämlich skalierbare Audiokommunikation für virtuelle Umgebungen mit vielen
Teilnehmern und skalierbare Datenfusion zur Objektverfolgung.

Abstract

Fusion marks the aggregation of information from multiple sources, yielding a result that is
more valuable than information from any source alone. The fusion of live sensor streaming
data is characterized by the ongoing aggregation of series of measurements. It has applica-
tions in areas ranging from audio communications, to business process monitoring, to live
object tracking to shared haptic virtual environments. All of these applications require ex-
tremely low-latency, so e�cient scaling becomes an issue in the face of limited bandwidth.
Moreover, in dissemination networks, a considerable portion of latency can be traced back
to sojourn times, which depend on the algorithmic implementation of the high-level com-
munication scheme. Existing aggregation networks are centralized, latency insensitive, or
assume a homogeneous infrastructure. Accordingly, complexity of communication algo-
rithms is commonly only considered as the number of synchronous communication rounds.
Accurate estimates for the latency or traversal time to be expected are hard to come by.

In this dissertation I will present a novel approach to the decentralized, bandwidth-
e�cient and low-latency aggregation of high-frequency periodic measurements in heteroge-
neous environments. By employing radix-r-decimation among peers interconnected into a
hypercube network, a logarithmic computation and communication e�ort is achieved with
regard to the number of nodes. The approach is accompanied by several methods for the
reduction of wait latency as well as the analytical computation of bounds, expectations,
and distributions of latency and traversal time. The performance of the presented methods
is corroborated by simulations. The network model underlying the simulations is based on
large-scale network measurements, aided by two new approaches for the representative yet
e�cient modeling of latency in peer-to-peer networks as well as the steady-state emulation
of periodic communication. The approaches are supplemented by detailed considerations
of two exemplary sensor fusion applications, namely scalable audio communication for
massively multi-user virtual environments and scalable decentralized data fusion for object
tracking.

vi

Contents

1 Introduction 1
1.1 Problem Brief . 2
1.2 Contribution . 3
1.3 Outline of the Thesis . 5

2 Background and Problem De�nition 6
2.1 Information Dissemination . 8

2.1.1 Broadcasting . 9
2.1.2 Accumulation . 9
2.1.3 Gossiping . 9
2.1.4 Communication Modes . 9

2.2 Live Streaming . 10
2.3 Aggregation . 11
2.4 Peer-to-Peer Systems . 13

2.4.1 Characterization . 13
2.4.2 Advantages . 13
2.4.3 Applications . 14
2.4.4 Mode of Operation . 14
2.4.5 Challenges . 15

2.5 Hypercubes . 16
2.5.1 De�nition . 16
2.5.2 Properties . 17
2.5.3 Gossiping on the Hypercube . 17
2.5.4 Variations on the Hypercube . 17

2.6 Exemplary Applications . 18
2.6.1 Scalable Audio Communication for MMVEs 18
2.6.2 Decentralized Data Fusion for Object Tracking 20

2.7 Problem De�nition . 21

3 Periodic Peer-to-Peer Hypercube Gossiping 22
3.1 Nomenclature . 23
3.2 Assumptions and Requirements . 24

3.2.1 Assumptions . 24
3.2.2 Requirements . 24

3.3 Network Topology . 25
3.3.1 Finding the Right One . 25
3.3.2 Presenting the Hypercube . 26

vii

viii CONTENTS

3.3.3 Deformation . 30
3.3.4 Dynamics . 30
3.3.5 Generalization . 36

3.4 Communication and Aggregation Scheme . 38
3.4.1 Periodicity . 39
3.4.2 Implications . 41

3.5 Latency Overview . 48
3.5.1 Network Delay . 48
3.5.2 Wait Delay . 49
3.5.3 Input Delay . 49
3.5.4 Output Delay . 49
3.5.5 Local Processing Delay . 49

3.6 Related Work . 49
3.6.1 Other Gossip Topologies . 50
3.6.2 Other Communication Tasks . 51
3.6.3 Other Communication Modes . 52

4 Modeling Latency in Peer-to-Peer Networks 53
4.1 The Need for Realistic, E�cient, and Usable Network Models 55
4.2 Characterizing Internet Delay . 56

4.2.1 Internet Structure . 56
4.2.2 Delay Components . 57
4.2.3 Observations . 57

4.3 Related Work . 58
4.3.1 Statistical Models . 59
4.3.2 Global Network Positioning (GNP) . 59
4.3.3 Network Simulators . 60
4.3.4 Topology Generators . 60

4.4 DELFOI�A Hybrid Modeling Approach . 60
4.4.1 Assumptions . 60
4.4.2 Implementation . 61
4.4.3 Evaluation . 62

4.5 Parametrizing DELFOI from HTTP-Measurements 65
4.5.1 Measurement Methodology . 65
4.5.2 Parametrization Methodology . 66
4.5.3 Results . 67

4.6 Conclusion . 70

5 Emulating and Visualizing Periodic Communication 71
5.1 Scienti�c Discovery Learning using Interactive Modeling 72
5.2 Emulation . 73
5.3 Modeling . 74
5.4 Visualization . 75
5.5 The REEL Tool . 77

5.5.1 Sequence View . 77
5.5.2 Phase Parametrization . 78
5.5.3 Network Delay Parametrization . 78
5.5.4 Results and Statistics . 78
5.5.5 Problems View . 78

CONTENTS ix

5.5.6 Geometrical Solution View . 79
5.5.7 Visualizing Real Application Measurements 80

5.6 Summary . 80

6 Minimizing Latency 81
6.1 Foundations . 82

6.1.1 Latency Sources . 82
6.1.2 Latency Measures . 87

6.2 Timing Modes . 89
6.2.1 Random Mode . 89
6.2.2 Sync Mode . 91
6.2.3 Spliced Mode . 93
6.2.4 Chained Mode . 95
6.2.5 Crossing Mode . 98

6.3 Evaluation . 110
6.3.1 Random, Sync, Spliced, Chained Mode 110
6.3.2 Crossing Mode . 110

6.4 Summary and Conclusion . 114
6.4.1 Local Modes . 115
6.4.2 Global Optimization . 115

7 Implementation 117
7.1 Architecture . 118

7.1.1 Layers . 118
7.1.2 Components . 119

7.2 Protocol . 126
7.3 Limitations . 129

8 App. 1: Scalable Audio Communication for MMVEs 130
8.1 Background and Problem De�nition . 131

8.1.1 Conventional Audio Conferencing . 131
8.1.2 Auditory Virtual Environments . 133
8.1.3 Problem De�nition . 133

8.2 Related Work . 134
8.3 Mapping the Virtual Environment to the Hypercube 136

8.3.1 Continuity . 136
8.3.2 Adapted Aggregation Scheme . 137
8.3.3 Mapping Algorithm . 137

8.4 Implementation Considerations . 140
8.5 Evaluation . 141

8.5.1 Mapping . 141
8.5.2 Mouth-to-Ear Latency . 143

8.6 Conclusion . 143

9 App. 2: Decentralized Data Fusion for Object Tracking 146
9.1 Distributed Data Fusion . 148

9.1.1 Finite Set Statistics (FISST) . 148
9.1.2 First Moments . 148
9.1.3 Double Counting . 149

9.2 Related Work . 149

x CONTENTS

9.3 DDF on Hypercubes . 150
9.3.1 Assumptions . 150
9.3.2 The DDF Problem . 150
9.3.3 Hypercube Gossiping . 150
9.3.4 Degeneration . 152

9.4 Optimization . 153
9.4.1 Coping with Scarce Bandwidth . 154

9.5 Summary . 155

10 Conclusion 156

Bibliography 159

Chapter 1

Introduction

Contents
1.1 Problem Brief . 2

1.2 Contribution . 3

1.3 Outline of the Thesis . 5

One of the key tasks in time-sensitive information processing is the e�cient aggregation
of data from multiple sources: Apart from the problem of transferring all information to
one place, the information must ultimately be summarized to be of practical use. Any
decision making process relying on multiple information sources comprises the derivation
of some sort of aggregate or Entscheidungsvorlage1. Depending on the application, the
summary or aggregation operation di�ers. Simple generic aggregation functions include
total sum, arithmetic mean, minimum, maximum, median and other quantiles.

For non-trivial amounts of data or more complex aggregation functions, the computa-
tion of the aggregate can be costly. Fortuitously, many aggregation functions lend them-
selves to parallelization naturally; so performing the aggregation in a parallel fashion can in
fact decimate execution time. Given that the information sources are distributed already,
it stands to reason to include the computing nodes where the information originates in the
aggregation process�coupled with the likely availability of processing power and commu-
nication capability in sensor nodes [69]. [98] demonstrates how such in-network-execution
can yield an order of magnitude reduction in communication compared to centralized ap-
proaches. The authors propose an aggregation tree, a tree rooted at some base station,
wherein every node aggregates data it receives from its children and passes the partial result
up to its parent. As data �ows up this tree, it is aggregated according to the aggregation
function and �ows out at the root.

If, however, the �nal result is needed at the source nodes, it must, again, be dis-
seminated (broadcast) to all interested recipients. Obviously, such a two-stage scheme is
non-optimal. Apart from the doubled path lengths, which lead to increased latency, all
communication relies on the root node as a central component. If this root node fails,
the provision of the aggregate is disrupted for all nodes. Furthermore, the communica-
tion scheme is asymmetric or �unfair�, as some nodes have longer paths than others and
thus will always receive the aggregate later. As postulated in [57], completely decentral-
ized execution bears several advantages: The abolishment of central components such as

1Executive summary of all information relevant for making a decision

1

2 CHAPTER 1. INTRODUCTION

central nodes, common communication facilities, or total knowledge of network topology
ensures scalability by absence of central bottlenecks as well as modularity and �exibility
by obviating the need for knowledge of the network. E�ectively hyped around the turn of
the millennium, this communication paradigm of decentralization has since then received
much attention under the name of peer-to-peer (P2P) communication. In P2P aggregation
there is no distinguished root node. Instead, every node's contributing information is to
be communicated to all other nodes. This elemental information dissemination problem
is referred to as gossiping, also known as total exchange. It is distinct from broadcasting,
where content is disseminated from only one source to all consumers. Gossiping is inher-
ent to symmetric distributed systems and parallel and distributed computing and has thus
received due attention [9].

The classic gossip problem, formulated in Subsection 2.1.3, describes a one-time dis-
semination. In typical sensor applications, however, data is sampled continuously, peri-
odically. Consequently, the required communication is also not singular but comprises
periodic sending of data packets, usually containing several measurements or samples, to
reduce the packet overhead. This recurring communication task of live streaming between
peers will be the focus of this thesis and is subsequently referred to as periodic gossiping.

The applications for distributed aggregation of live streaming data are multifarious.
One intuitive example is audio conferencing (Subsection 2.6.1), where the sensors are mi-
crophones, the streams are series of audio samples and the aggregation function is the
sum over all sources. However, live streaming is not limited to media streaming. Another
featured application is scalable decentralized data fusion for live object tracking (Subsec-
tion 2.6.2). Further possibilities include real-time business intelligence [20], agent based
management for smart grids [55], and shared haptic virtual environments2.

1.1 Problem Brief

Most applications comprising real-time fusion of live streaming data from multiple sources
have demanding latency requirements. Scalability becomes an issue in the face of scarce
bandwidth. Consequently, an e�cient dissemination network and communication scheme
is called for.

In dissemination networks, a considerable portion of latency can be traced back to
sojourn or bide time [96], denoting the time information spends waiting after arriving at
one node and before being relayed to another. The algorithmic implementation of the
high-level communication scheme has a strong impact on this wait delay and should be
constituted as so to keep it to a minimum. Whereas great e�orts have been made to reduce
the gossip complexity, the communication schemes generally do not consider wait latency.

Moreover, accurate estimates for the latency or traversal time to be expected are rarely
available. Prevalent complexity measures [27], communication schemes [82], or schedulers
[66] only regard time as integer number of rounds. Multiplying this number with the sum
of the maximum network delay and the period of a round only yields a trivial upper bound
on the total latency. Although gossiping belongs to the most investigated communication
problems [9], no more accurate time bounds have been published.

2The goal of haptic rendering is to enable a user to touch, feel, and manipulate virtual objects through
a haptic interface [7]. Shared haptic virtual environments (SHVE) enable multiple users to collaboratively
perform tasks in environments considered inaccessible, dangerous or even of incompatible scaled, such as
underwater and on-orbit servicing, bomb disarming, radioactive material manipulation, microsurgeries and
minimally invasive medical procedures [31, 24].

1.2. CONTRIBUTION 3

Using simulations to derive results is problematic, too. Prevalent latency models are
either overly simplistic, require sophisticated con�guration, or are prohibitively ine�cient
for simulating streaming communication, where every node spouts packets with high fre-
quency.

The problem addressed by this thesis can thus be summarized as the problem of pro-
viding decentralized bandwidth-e�cient low-latency aggregation of high-frequency periodic
measurements in heterogeneous environments and with predictable latency, along with a
faithful yet e�cient means for simulation.

1.2 Contribution

The contribution of this dissertation is divided into two major contributions, two auxiliary
contributions, and several minor practical contributions:

The �rst major contribution is a novel approach to the scalable aggregation and dis-
semination of streaming data. This approach, presented in Chapter 3, makes use of radix-
r-decimation among peers interconnected into a hypercube network and exhibits a loga-
rithmic computation and communication e�ort with regard to the number of nodes.

On this basis, the second major contribution, presented in Chapter 6, comprises several
methods for the reduction of wait latency as well as the analytical computation of bounds,
expected values, and distributions of wait latency and traversal time.

As auxiliary contributions that were needed for the evaluation of the latter but are
also of independent use, I present approaches and methods for the e�cient modeling of
latency in P2P networks (Chapter 4) as well as for emulating and visualizing periodic
communication (Chapter 5).

These contributions are supplemented by practical considerations regarding the imple-
mentation of two exemplary sensor fusion applications, namely scalable audio for massively
multi-user virtual environments in Chapter 8 and scalable decentralized data fusion for ob-
ject tracking in Chapter 9.

Parts of this thesis have been published in the following publications:

1. Philipp Berndt
Minimizing Wait Latency in Periodic P2P Hypercube Gossiping
In: Proceedings of the 20th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Computing (PDP 2012), IEEE Computer Society, pp.
341�345, 2012

2. Philipp Berndt, Matthias Hovestadt, Odej Kao
Characterizing Latency in Periodic P2P Hypercube Gossiping
In: Proceedings of the Fourth International Conference on Communications Systems
and Networks (COMSNETS 2012), IEEE, pp. 1�8, 2012

3. Philipp Berndt, Alexander Stanik
Scalable Decentralised Data Fusion using Hypercube Gossiping
In: Proceedings of the Seventh International Conference on Intelligent Sensors, Sensor
Networks and Information Processing (ISSNIP 2011),
IEEE, pp. 502�507, 2011

4. Philipp Berndt, Odej Kao
Time Bounds for Periodic Hypercube Gossiping

4 CHAPTER 1. INTRODUCTION

In: Proceedings of the 1st International Workshop on Worst-Case Traversal Time
(WCTT 2011), ACM, pp. 19�26, 2011

5. Philipp Berndt, Matthias Hovestadt, Odej Kao
Crowd Buzz: Scalable Audio Communication for MMVEs using Latency Optimized
Hypercube Gossiping
In: Proceedings of the IEEE International Symposium on Audio-Visual Environments
and Games (HAVE 2011), IEEE, pp. 182�187, 2011

6. Philipp Berndt, Matthias Hovestadt, Odej Kao
REEL: Modeling, Simulating and Visualizing Periodic Peer-to-Peer Communication
In: Proceedings of the 2nd International Conference on Computer Modelling and
Simulation (CSSim 2011), FIT, Brno University of Technology, pp. 19�26, 2011

7. Philipp Berndt, Martin Raack, Odej Kao
Spanning a Global Delay Model from HTTP-Measurements
In: Proceedings of the Annual International Conference on Network Technologies &
Communications (NTC 2010), Global Science and Technology Forum (GSTF), pp.
N77�N82, 2010

8. Philipp Berndt, Dominic Battré, Odej Kao
A Hybrid Approach to Modeling End-to-End Delay in P2P Networks
In: Proceedings of the 2010 ACM Workshop on Advanced Video Streaming Tech-
niques for Peer-to-Peer Networks and Social Networking (AVSTP2P 2010), ACM,
pp. 37�42, 2010

9. Philipp Berndt
Using Symmetric Distributed Processing for Peer-to-Peer VoIP Conferencing in Au-
ditory Virtual Environments
In: Proceedings of the 7th International Workshop on Peer-to-Peer Systems (IPTPS
2008), USENIX Association Berkeley, pp. 1�6, 2008

1.3. OUTLINE OF THE THESIS 5

1.3 Outline of the Thesis

The remainder of this thesis is structured as follows:

Chapter 2: Background and Problem De�nition provides some theoretical back-
ground on information dissemination, live streaming, aggregation, the principal of
P2P systems, hypercubes and related topologies, and the exemplary applications.
On this basis, the problem statement is re�ned.

Chapter 3: Periodic Peer-to-Peer Hypercube Gossiping develops, on the basis
of some assumptions and requirements, �rstly, the network topology and dynamics,
and secondly, the communication and aggregation schemes for periodic hypercube
gossiping. The former part deals with the structural properties of the network, the
problem of dynamically assigning nodes to network positions, subject to speci�c
constraints, as well as deviations from the perfect hypercube. The latter part de�nes
which nodes exchange messages, the contents of these messages, and the computation
of the aggregate.

Chapter 4: Modeling Latency in Peer-to-Peer Networks develops and parame-
trizes an e�cient latency model with due regard to the Internet anatomy, as will be
required for the evaluations that follow.

Chapter 5: Emulating and Visualizing Periodic Communication demonstrates
how timing and latencies of the network can be modeled and visualized in a way that
allows for quick apprehension and presents the tools used to interactively manipulate
the model, study interdependencies, and e�ciently conduct experiments.

Chapter 6: Minimizing Latency points out the need, potential, and means to min-
imize latency in periodic hypercube gossiping. It examines wait latency and presents
�ve timing modes along with maximum and expected latencies. Analytic measures
are corroborated with simulation results.

Chapter 7: Implementation presents a realization of the approach, including a �ex-
ible yet e�cient architecture and an extensible protocol.

Chapter 8: App. 1: Scalable Audio Communication for MMVEs shows how
periodic P2P hypercube gossiping can be used to facilitate auditory virtual environ-
ments (AVE), i. e. virtual environments where people can hear each other more or
less like in real environments, particularly massively multiuser virtual environments
(MMVE) that accommodate a high number of participants.

Chapter 9: App. 2: Decentralized Data Fusion for Object Tracking demon-
strates how periodic P2P hypercube gossiping allows for scalable decentralized data
fusion as is required for live object tracking.

Chapter 10: Conclusion concludes the thesis with a summary of the contributions
and potential extensions.

Chapter 2

Background and Problem

De�nition

Contents
2.1 Information Dissemination . 8

2.1.1 Broadcasting . 9

2.1.2 Accumulation . 9

2.1.3 Gossiping . 9

2.1.4 Communication Modes . 9

2.2 Live Streaming . 10

2.3 Aggregation . 11

2.4 Peer-to-Peer Systems . 13

2.4.1 Characterization . 13

2.4.2 Advantages . 13

2.4.3 Applications . 14

2.4.4 Mode of Operation . 14

2.4.5 Challenges . 15

2.5 Hypercubes . 16

2.5.1 De�nition . 16

2.5.2 Properties . 17

2.5.3 Gossiping on the Hypercube . 17

2.5.4 Variations on the Hypercube . 17

2.6 Exemplary Applications . 18

2.6.1 Scalable Audio Communication for MMVEs 18

2.6.2 Decentralized Data Fusion for Object Tracking 20

2.7 Problem De�nition . 21

The goal pursued in this thesis, as laid out in the previous chapter, is to �nd a so-
lution for the e�cient fusion of streaming data from multiple sources. �E�cient fusion�,
is to describe a solution that for a high number of nodes with �nite bandwidth fuses the
information in minimal time. In this sense, a naïve solution would have all nodes send
their data to one node that does the aggregation. Obviously, neither the reception of data
from all other nodes nor the computation of the aggregate on one node scales: The e�ort

6

7

of the former is O(n) and the e�ort of the latter may be even higher, depending on the
aggregation function.

As a second, ine�cient example consider arranging all nodes in a line, i. e. path topology,
and have them pass the information from node to node. Obviously, this solution does not
scale either, as the time complexity until all information reaches the last node is O(n).

E�cient computation schemes that recursively break a problem into two or more parts
until it is easily solvable may have been known as long as since 300 bc1 and are today
subsumed under the term divide-and-conquer algorithm2. In [109] the divide-and-conquer

Figure 2.0.1: Butter�y Graph BF3

approach is called �one of the most successful programming paradigms. Especially in
the �eld of parallel processing one of the most natural methods to solve problems is to
divide them into subproblems (divide-step), solve these in parallel (recursion), and then
recombine the solutions to a solution of the given problem instance (conquer-step).� For
those divide-and-conquer problems for which the total size of the subproblems on any level
of the recursion does not exceed the parent problem size an optimal generic implementation
on hypercubes is presented.

Early hardware realizations of the hypercube topology in the form of expensive parallel
computers were undertaken in the 1980s. One of the �rst notable systems was the Caltech
Cosmic Cube [136]. Development started with a 4-node, Intel 8086 CPU, 8087 �oating-
point coprocessor, 128KB RAM based prototype in 1981 and culminated 1989 in theMark
IIIfp, employing 128 nodes à two Motorola 68020 CPUs, a Weitek XL �oating point
chipset, 4MB RAM and delivering 500MFLOPS [53]. The 64-node was soon followed
by the commercial hypercube systems, such as the Intel iPSC/1 introduced in 1985, and
consisting of 32 to 128 nodes with each a 80286 CPU with 80287 math coprocessor and

1The Inakibit-Anu Babylonian tablet contained a list of roughly 500 sorted reciprocals and is the
earliest known example of a large �le that is in lexicographic order. �And this is one of the reasons his
work is so impressive, as anyone who has tried to sort 500 cards by hand will attest. To get some idea of
the immensity of this task, consider that it takes many hours to sort 500 large numbers by hand nowadays;
image how di�cult it must have been to do this job in ancient times. Yet Inakibit is likely to have done
it, since there is no obvious way to generate such a table in order.� [83]

2One particularly notable specimen is an algorithm for the e�cient evaluation of coe�cients of Fourier
series that was discovered in an unpublished manuscript dated 1805 ad and written by Carl Friedrich
Gauss, who has applied it to interpolate the trajectories of the asteroids Pallas and Juno. The algorithm
had gone mostly unrecognized until it was one century later rediscovered by J.W. Cooley and J.W.

Tukey [62] and is ever since known as the Cooley-Tukey Fast Fourier Transform (FFT) algorithm [37].
The structure of the algorithm's data �ow resembles the shape of a butter�y and is hence called butter�y
graph. It is shown in Figure 2.0.1. This data �ow, embedded in a hypercube network, is also exploited in
the course of this work to facilitate e�cient sensor fusion through parallelization.

8 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

512K of RAM [75] and the nCube 10 [61], designed by Intel employees and released in
1985, supporting 1024 nodes with custom modules à 128KByte RAM and 2MIPS.

The advent of commodity PCs in conjunction with a�ordable Internet connectivity
has paved the way for a new reality of interconnected computers that everyone could
be part of. Although peer-to-peer (P2P) computing, as it was hyped about the turn
of the millennium, was in public mostly known for �le-sharing and the distribution of
copyrighted material, it has, all the same, created a new paradigm of distributed and
decentralized computing in heterogeneous networks that revolves around communication,
cooperation, and collaboration. Increased robustness, scalability, and �exibility are some of
its advantages. Several P2P networks employ hypercube organization or routing strategies
[134, 121, 131, 153, 95, 97].

Since the conquer-step already comprises the aggregation of partial results into a �nal
result, it stands to reason that also fusion applications can bene�t from this approach. As
will be shown below, even the harder problem of producing the aggregate at each node can
be solved optimally on a hypercube topology. However, to make the P2P hypercube fusion
approach viable, several problems related to restricted connectivity, bandwidth, latency,
unreliable networks, node �uctuations, and data hygiene must be solved.

The remainder of this chapter covers some basic concepts that are used throughout
this work, starting with the foundations of information dissemination to live streaming to
data aggregation, the principles of P2P systems, the hypercube topology to two exemplary
applications. Based on these foundations and terminatory to this chapter, the problem
statement is de�ned.

2.1 Information Dissemination

Information dissemination denotes a process by which information is spread to many recip-
ients and without feedback or response [120]. In communications, it is used as a superor-
dinate concept and describes several communication modes between multiple participants,
namely broadcasting, accumulation, and gossiping. Throughout this work I use the terms
and concepts de�ned in [65] and summarized below:

The structure or topology of an interconnection network is de�ned as a connected undi-
rected graph G = (V,E) where V is a �nite set of vertices (nodes) corresponding to the
processors and the edges in E ⊆ {{u, v} ∣u, v ∈ V,u ≠ v} corresponding to the communication
links of the network.

A communication algorithm or communication scheme is a sequence of elementary
communication steps called communication rounds.

2.1. INFORMATION DISSEMINATION 9

2.1.1 Broadcasting

Broadcast problem for a graph G and a node v of G Let
G = (V,E) be a graph and let v ∈ V be a node of G. Let v
know a piece of information I (v) which is unknown to all nodes
in V ∖{v}. The problem is to �nd a communication strategy such
that all nodes in G learn the piece of information I (v). In other
words, the broadcast problem refers to the problem of spread-
ing the knowledge of one processor to all other processors in the
network.

2.1.2 Accumulation

Accumulation problem for a graph G and a node v of G
Let G = (V,E) be a graph and let v ∈ V be a node of G. Let each
node u ∈ V know a piece of information I (u), and let, for any
x, y ∈ V , the pieces of information I (x) and I (y) be �disjoined�
(independent). The set I (G) = {I (w) ∣w ∈ V } is called the cu-
mulative message of G. The problem is to �nd a communication
strategy such that the node v learns the cumulative message of
G. In other words, the accumulation problem is the problem of
accumulating the knowledge of all processors in one given processor.

2.1.3 Gossiping

Gossip problem for a graph G Let G = (V,E) be a graph and
let, for all v ∈ V , I (v) be a piece of information residing in v. The
problem is to �nd a communication strategy such that each node
from V learns the cumulative message. In other words, the gossip
problem describes the problem of accumulating the knowledge of
all processors in each processor of the network.

The term gossip complexity denotes the necessary and su�-
cient number of communication rounds to complete the gossip
problem, subject to one of the communication modes below.

2.1.4 Communication Modes

In the context of information dissemination, the communication mode de�nes the con-
straints of communication on a graph, i. e. the allowed concurrent communication oper-
ations within one round. In [86] modes are categorized according to degree of a feasible
communication step and the duplex mode of communication channels. The degree describes
the maximal number of simultaneous communication activities allowed at each node. It is
commonly assumed to be either one or unrestricted. The corresponding modes are called
pairwise or simultaneous, respectively. The duplex describes whether between a pair of
connected nodes, the nodes can send and receive at the same time. If this is the case, the
link is called full-duplex, otherwise half-duplex.

10 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

Full-duplex Simultaneous, aka. F* Mode

In this most powerful mode, in a single round, each node may both send and receive via
all of its adjacent edges. A two-way simultaneous communication algorithm for a graph
G = (V,E) is de�ned as a sequence E1,E2, ...,Er of some sets Ei ⊆ E of active edges. For
every i ∈ {1, . . . , r}, Ei is called a round in the two-way simultaneous mode.

Half-duplex Simultaneous, aka. H* Mode

In this mode, in a single round, each node may communicate with all of its neighbors, how-
ever, via each link it may either send or receive. A one-way simultaneous communication
algorithm for a graph G = (V,E) is de�ned as a sequence E1,E2, ...,Er of sets Ei ⊆ E,
where E = {(v → u) , (u→ v) ∣ (u, v) ∈ E} and (x→ y) ∈ Ei for some i ∈ {1, . . . , r} implies
(y → x) ∉ Ei. For every i ∈ {1, . . . , r}, Ei is called a round in the one-way simultaneous
mode.

Full-duplex Pairwise, aka. F1, Two-way, or Telephone Mode

In this mode, in a single round, each node may both send and receive via one of its adjacent
edges. In [65], a two-way [pairwise] communication algorithm for a graph G = (V,E)
is de�ned as a sequence E1,E2, ...,Er of some sets (matchings) Ei ⊆ E where, for each
i ∈ {1, . . . , r} and all (x1, y1) , (x2, y2) ∈ Ei, {x1, y1} ≠ {x2, y2} implies {x1, y1}∩{x2, y2} = ∅.
For every i ∈ {1, . . . , r}, Ei is called a round in the two-way [pairwise] communication mode.

Half-duplex Pairwise, aka. H1, One-way, or Telegraph Mode

In this mode, in a single round, each node may either send or receive via one of its adjacent
edges. In [65], a one-way [pairwise] communication algorithm for a graph G = (V,E) is
de�ned as a sequence E1,E2, ...,Er of sets Ei ⊆ E, where E = {(v → u) , (u→ v) ∣ (u, v) ∈ E}
and if {(x1 → y1) , (x2 → y2)} are two distinct elements of Ei for some i ∈ {1, . . . , r}, then
{x1, y1}∩{x2, y2} = ∅. For every i ∈ {1, . . . , r}, Ei is called a round in the one-way [pairwise]
mode.

Systolic Modes

Based on the notion of systolic systems [87], in which data is pumped rhythmically and
synchronously through a hard-wired processor network, more or less like blood through
the body, [65] de�nes a p-systolic algorithm as a communication algorithm E1,E2, ...,Em
where Ei = Ei+p for all 1 ≤ i ≤m − p. E1,E2, . . . ,Ep is called the period/cycle of algorithm
and p the period length.

Periodic Modes

A p-systolic algorithm is said to be p-periodic if, for every edge e ∈ E, e is active in at most
one round [65].

2.2 Live Streaming

Live streaming is often thought of as being all about video or audio. Rather, live streaming
can be more generally thought of as a process in which one or more sensors are used

2.3. AGGREGATION 11

to repeatedly obtain readings that are transported step-by-step over a communication
network to one or more receivers. This includes all kinds of sensor applications. But also
in monitoring applications, to give another example, a stream of values is often more useful
than a single isolated value [98].

One precursory application to live streaming is analog telephony: Using microphones,
sound waves, i. e. variations in air pressure, are transformed into variations in voltage,
ampli�ed and conducted via wires to the speaker on the receiving side, which transforms
them back into sound waves. In analog telephony, however, there is no stream of samples
but rather a continuous signal that changes over time.

By contrast, in digital telephony, such as ISDN [70, 71], a quantization is done in time
and displacement. An analog-to-digital converter (ADC) converts the continuous signal
into a discrete time digital representation. The samples are encoded and streamed across
the network.

To stream samples across packet switched networks, such as the Internet, the sample
values must be enveloped in various packet structures such as UDP and IP. Thus, the
transmission of each packet induces a data overhead due to various headers as well as asso-
ciated processing e�ort for labeling and checksumming. For high sampling rates, sending
data packets with these sampling rates would in many cases overload both the processing
node and the network link. As a consequence, high frequency streaming data is usually
not sent as separate samples but in chunks of many consecutive samples. This chunking
also facilitates the use of more e�cient compression, such as quantization in the frequency
domain or, for instance, with the aid of psycho-acoustic models in the case of audio data.
The rate with which packets are sent by one node to each of its neighbors will be called
send rate; its reciprocal is called (send) period T . The send rate is usually chosen to be a
divisor of the sampling frequency to yield an integer number of samples per data packet.
Thus, the case in which packets containing just one sample each are sent with fsamp is a
special case.

To summarize, the periodic transmission of data packets containing a time series of sam-
ples is a common characteristic for streaming applications. As this has strong implications
on latency, it will be regarded extensively in Chapter 6 of this work.

2.3 Aggregation

The capability to quickly extract useful information from large amounts of data has been
a vital cognitive task since primeval times. Accordingly, most fast moving animals possess
dedicated neural networks that preprocess visual data and produce useful aggregates, i. e.
visual patterns such as edges or movements. It is the aggregates, not the raw data, that
are eventually used to control and plan action [25]. But also for mankind the deliberate
aggregation of measurements soon became important. Data acquisition and book-keeping
date back to the Uruk period (ca. 4000 to 3100 bc), along with the invention of writing
and thus history itself [135]. Since then the amount of data has grown vastly, acceler-
ated by inventions such as the printing press, computers, and the Internet. In the year
2007 ad, the digital universe, i. e. the amount of information that was created, captured,
or replicated, exceeded 281 exabytes [54]. With the amount of digital information now
roughly quadrupling every three years, it is apparent that e�cient aggregation will remain
an important issue in the future.

In Section 2.1 the basic communication tasks, broadcasting, accumulation, and gossip-
ing were stated. For the tasks of accumulation (2.1.2) and gossiping (2.1.3) the cumulative

12 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

message does not necessarily comprise all the raw sensor readings. In fact, the communica-
tion of the entirety of measurements is often completely unfeasible. Many times, however,
a summary of the information is all that is needed. By way of in-network aggregation,
data volume can be reduced in the �eld. Instead of raw measurement data, the nodes
communicate partial aggregates.

[98] proposes an approach to in-network stream aggregation in low-power wireless sensor
networks using an aggregation tree. Every node combines the data it receives from its
children with its own and sends the partial aggregate to its parent. The �nal aggregate
�ows out at the root node.

In order to generically support a wide variety of aggregates, aggregation is typically
broken into three abstract functions, as stated in [98]:

� a merging function f ,

� an initializer i, and

� an evaluator e.

In general, f has the following structure:

< z >= f(< x >,< y >)

where < x > and < y > are multi-valued partial state records, computed over one
or more sensor values, representing the intermediate state over those values
that will be required to compute an aggregate. < z > is the partial state record
resulting from the application of function f to < x > and < y >. For example, if
f is the merging function for average, each partial state record will consist of
a pair of values: sum and count, and f is speci�ed as follows, given two state
records < S1,C1 > and < S2,C2 >:

f (< S1,C1 >,< S2,C2 >) =< S1 + S2,C1 +C2 >

The initializer i is needed to specify how to instantiate a state record for a
single sensor value; for an average over a sensor value of x, the initializer i(x)
returns the tuple < x,1 >. Finally, the evaluator e takes a partial state record
and computes the actual value of the aggregate. For average, the evaluator
e(< S,C >) simply returns S/C.

In [98, 56] aggregates are classi�ed according to their tolerance of loss, duplicate sensitivity,
monotonicity, and particularly, amount of state3 required for each partial state record:

For example, a partial average record consists of a pair of values, while a
partial count record constitutes only a single value. . . .

� In Distributive aggregates, the partial state is simply the aggregate for
the partition of data over which they are computed. Hence the size of the
partial state records is the same as the size of the �nal aggregate.

� In Algebraic aggregates, the partial state records are not themselves ag-
gregates for the partitions, but are of constant size.

� In Holistic aggregates, the partial state records are proportional in size
to the set of data in the partition. In essence, for holistic aggregates no
useful partial aggregation can be done, and all the data must be brought
together to be aggregated by the evaluator.

3i. e. data volume to be transmitted

2.4. PEER-TO-PEER SYSTEMS 13

� Unique aggregates are similar to holistic aggregates, except that the amount
of state that must be propagated is proportional to the number of distinct
values in the partition.

� In Content-Sensitive aggregates, the partial state records are proportional
in size to some (perhaps statistical) property of the data values in the
partition. Many approximate aggregates proposed recently in the database
literature are content-sensitive. Examples of such aggregates include �xed-
width histograms, wavelets, and so on; see [6] for an overview of such
functions.

All but the holistic aggregates yield a reduction in data volume, particularly distributive
and algebraic aggregates, resulting in signi�cantly lower bandwidth requirements compared
to centralized aggregation.

2.4 Peer-to-Peer Systems

2.4.1 Characterization

Peer-to-peer (P2P) systems are characterized as distributed systems in which nodes of
equal roles and capabilities exchange information and services directly with each other
[151]. In contrast to the conventional client-server model, all nodes perform the same
functions cooperatively but autarkically. Among the nodes, there is no distinction between
clients and servers.

2.4.2 Advantages

The main advantages of P2P systems are robustness, scalability, adaptiveness, and cost
e�ectiveness.

A centralized system is very brittle, as the destruction of just one node, a single point
of failure, can knock out the whole system. As opposed to this, depending on the speci�c
topology, it takes the destruction of a considerable number of nodes to completely disable
a decentralized system [5].

But a central component does not even have to fail to cause system dysfunction. If the
number of requests rises, either because of actual demand or because it is being targeted by
a DOS attack4, the central component will easily become a bottleneck and may e�ectively
grind the whole system to a halt. In consideration thereof, to attain scalable data fusion in
sensor networks, [57] stipulates the abolishment of central components such as single fusion
centers, central nodes, common communication facilities, or total knowledge of network
topology, thus laying the foundations for scalable P2P systems.

Whereas conventional client-server systems are static and changes to the system gen-
erally incur service downtime, P2P systems are highly dynamic and adaptively scale by
simply adding more nodes to the network. All the same, individual nodes can be removed
from the network without causing a disruption of the system.

Finally, P2P approaches are often cheaper because cheap and unreliable equipment can
be used [5] or costs are even carried entirely by the public running the nodes.

4A Denial Of Service attack comprises sending a high number of requests to a server in order to overload
it.

14 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

2.4.3 Applications

P2P systems are used for multifarious applications. The most popular domain is that
of content distribution with applications such as �le sharing, content delivery networks
(CDNs), software distribution, and media streaming.

In contrast, the applications relevant to this work are in the �elds of real-time commu-
nications and distributed computing. Since the 1980s, interest in parallel and distributive
computing has been growing rapidly. While it was initially concerned with the design of
parallel architectures, parallel algorithms, and expensive parallel computers, it has since
then moved more and more to the world of interconnected computers, namely grid com-
puting, cloud computing, and P2P computing. Especially, the last-named enables us to
construct distributed supercomputers exceeding the computing power of any single super-
computer or computing center [10]. Notable P2P or public resource computing platforms
include BOINC [3] and GTapestry/P2HP-2 [73], which are used, for instance, in search
for extraterrestrial intelligence5, climate studies, astrophysics, epidemiology, and protein
structure prediction.

2.4.4 Mode of Operation

Setup

In P2P systems, not only the operation but also the setup of the distributed network
is to take place without reliance on central components. A P2P system con�gures itself
dynamically using self-organization. Nodes may join or leave the network at any time. An
arriving node must �nd a suitable position in the network with just a little6 help from its
initial contacts.

Communications

In so-called systolic computations, commonly used for parallel computing in VLSI archi-
tectures, the whole network works synchronously and data is pulsed through the network
like blood through the human body. The processors are Moore machines, where the output
is driven by registers. In Half-systolic computations, the processors are Mealy machines,
where the output emanates from either registers or arithmetic-logic units (ALUs).

By contrast, P2P systems feature neither systolic nor half-systolic communications.
Not only the lack of a global clock but also asymmetric network delays, which vary greatly
for di�erent source/destination pairs, render synchronous communication if not impossible
then at least undesirable, as we will see in Chapter 6.

One essential characteristic of typical P2P systems is the obligatory capability to cope
with typical consumer Internet access links. These are characterized by a considerable
access delay and a low bandwidth in the upstream direction. Disregarding this fact in
either design or evaluation will yield poor performance or false results, respectively. For this
reason Chapter 4 is devoted to faithfully and e�ciently modeling delay in P2P networks.

Topologies

Regarding their topology, two fundamental kinds of P2P systems are discerned, unstruc-
tured and structured networks.

5http://setiathome.ssl.berkeley.edu/
6i. e. using just a small, e. g. logarithmic, number of messages with regard to total number of nodes

http://setiathome.ssl.berkeley.edu/

2.4. PEER-TO-PEER SYSTEMS 15

The �rst publicly received decentralized P2P network was Gnutella [130], an un-
structured network, commonly used for �le sharing. New nodes would attach to so-called
supernodes, having extended responsibilities. This resulted in few nodes having connec-
tions to many nodes, i. e. a power-law distribution of node degree. Locating a node with
a particular item had to be done ine�ciently and unreliably by �ooding the neighborhood
with search queries.

Today's P2P networks are predominantly structured networks. In these, every node
has an overlay ID, thus facilitating addressing on the application layer. Messages can be
routed e�ciently to any named node. Additionally, content is organized in such a way as
to be found e�ciently, usually in the order of O (logN), e. g. by using distributed hash
tables (DHT) or search trees. The node degree is commonly expected to be in between
O (logN) and O (1).

Routing

Two disparate algorithms can be used for routing a message to a destination, recursive
routing and iterative routing. In recursive routing the message is forwarded from node
to node until it reaches the destination node. In iterative routing, the source node asks
every intermediate node for directions until it can contact the �nal node. In an error-free
environment, recursive routing is faster because it needs just half as many messages as
iterative routing. However, the originator is kept in the dark regarding routing progress or
whether the message has been lost on the way. As a compromise, in [88], hybrid routing is
proposed, whereby at every step an additional message is sent back to the originator.

2.4.5 Challenges

Obviously, the advantages of P2P systems do not come without complications. P2P net-
works are complex distributed systems and their programming is non-trivial. As nodes
may leave the network unforeseen, probabilistic assumptions must be used in many places
where reliability is assumed ordinarily. Structural damage caused by churned nodes must
be repaired and the system must be secured against (at least a minority of) malicious
nodes.

NAT / Hole Punching One particular problem arises from the widespread use of net-
work address translation (NAT). Whereas the original addressing scheme intended globally
unique and addressable identi�ers for every hosts connected to the Internet, the rapid ex-
pansion of the Internet has led to a scarcity of IP addresses that has made it attractive to
share IP addresses among several hosts. At this, the public IP address is held by a NAT
router to which the hosts are connected via a local area network with private addresses.
Any in such a way �natted � or ��rewalled � host wishing to communicate with a server sends
its request packet to the NAT router. The NAT router replaces the packet's source address
with its own and the source port with an arbitrary unused port number before forwarding
the packet to the server. When it receives the reply from the server it re-substitutes its own
socket address by that of the original host before delivering the packet. Any unsolicited
packets arriving at the NAT router cannot be mapped to a particular host and are re-
jected. As a consequence, one natted host cannot contact another directly. To nevertheless
establish a communication between the two of them, the hosts need to be introduced to
each other by a third party that is already in contact with both of them. This procedure is
referred to as �hole punching� [52]. At this, the third party informs each of the hosts about

16 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

the other's public socket address. Thereupon, both hosts attempt to contact the other
using the communicated public socket addresses. It is only after the attempt of the local
host that the attempt of the remote host can be put through. This complication needs to
be regarded in all P2P communication.

Testability and Evaluation Another problem springs from the fact that design tests,
debugging, and evaluation can generally only be performed using simulators. Running
the simulations can cost a lot of time. Consequently, diligence should be exercised to
employ an e�cient underlay network model (such as the one presented in Chapter 4) and,
where possible, use network emulation (as presented in Chapter 5) instead of discrete event
simulation.

2.5 Hypercubes

In parallel and distributed computing, the performance of systems stands and falls with
their ability to e�ectively distribute data between their nodes [65]. The hypercube is not
only one of the most versatile and most e�cient network topologies known, its regular
structure also allows for very simple and e�cient algorithms [17]. This makes it an excep-
tional choice for the architecture of a massively parallel system [92].

Dim. 0

D
im

.
1

110

010

111

100

011

000

D
im
. 2

001

101

Figure 2.5.1: Binary hypercube H3

2.5.1 De�nition

A (binary) hypercube of dimension m, denoted Hm, is the graph whose nodes are all
(binary) strings of length m and whose edges connect those strings that di�er in exactly
one position, called the dimension i of the edge. This way, the edges of a hypercube are
partitioned in a natural way according to the dimension they traverse.

2.5. HYPERCUBES 17

2.5.2 Properties

Hm has 2m nodes, m ⋅ 2m−1 edges and diameter m. Each node has exactly degree m [66].
Figure 2.5.1 shows an illustration of the binary hypercube H3, also called 3-cube, along
with binary node numbering.

Robustness

The hypercube has a high bisection width of N/2, i. e. it requires a removal of N/2 edges
to split the hypercube into two disjunct networks. Alternatively, the hypercube can be
bisected by removing a number of nodes in the order of N/

√
logN , e. g. all nodes of

Hamming weights ⌊ logN
2

⌋ and ⌈ logN
2

⌉ [92].

Symmetry

The hypercube is both node- and edge-symmetric. This means that any node can be
mapped to any other by simply re-numbering the nodes. The same is true for the edges.

2.5.3 Gossiping on the Hypercube

For a hypercube of N nodes, all three of the fundamental communication problems (Sec-
tion 2.1), namely broadcasting, accumulation and gossiping, can be solved in log2N com-
munication rounds.

A two-way gossiping communication scheme according to Subsection 2.1.4 is the se-
quence

{(0,1) , (2,3) ,⋯, (2m − 2,2m − 1)} ,⋯,{(0,2m−1) ,⋯, (2m−1 − 1,2m − 1)} ,

e. g. for H3 it consists of the three rounds (node IDs in binary notation)

{(000,001) , (010,011) , (100,101) , (110,111)},
{(000,010) , (001,011) , (100,110) , (101,111)},
{(000,100) , (001,101) , (010,110) , (011,111)}.

Since there exists no graph on which the two-way gossip problem can be solved in less
than ⌈log2N⌉ rounds, the scheme is optimal and Hm is a minimal gossip graph [66].

2.5.4 Variations on the Hypercube

Despite its many advantages, for some applications the hypercube is, in its original form,
inapplicable. Therefore some variations of the hypercube were devised that pertain most of
its favorable traits and give up a few others to make it more practical. Notable variations
are presented below.

Incomplete and Compact Hypercubes

Sizes of ordinary hypercubes are restricted to powers of two. In [77] the construction of
incomplete hypercubes is proposed for any number of nodes. In [17], using the de�nition of
a compact set of nodes, the incomplete hypercube is generalized to that of n-node compact
hypercubes.

18 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

Cube Connected Cycles

The degree of the hypercube Hm equals m, i. e. it grows with the size of the hypercube.
This is problematic for the construction of arbitrary sized supercomputers from processors
that will form nodes of the hypercube, as the number of links of the processors will have to
be �xed beforehand. The cube connected cycle (CCC) graph [123] can be constructed from
a hypercube by replacing each node with a cycle of length m. Thereby, the node degree
becomes �xed to three.

Hierarchical Hypercubes

The hierarchical hypercube [107] forms a compromise between a hypercube and a cube
connected cycles graph. The (perfect) hierarchical hypercube HHCm can be constructed
from a Hk with k = 2m by replacing each node by a hypercube Hm. It has 22m ⋅2m = 22m+m

nodes.

Generalized Hypercubes and Hamming Graphs

The original hypercube is also called binary hypercube because the nodes are binary strings.
In [12] and [111] the constant boolean radix of two is replaced by arbitrary radices, po-
tentially di�erent for each dimension. The resulting graph is called generalized hypercube
(GHC) or Hamming graph. It will be regarded in Subsection 3.3.5.

2.6 Exemplary P2P Hypercube Gossiping Applications

Two utterly di�erent applications demonstrate the universal appropriability of periodic
peer-to-peer hypercube gossiping. They di�er in the kind of utilized hardware, the type
and complexity of the aggregation function, the disposition of samples, and the statefulness
and signi�cance of past samples.

2.6.1 Scalable Audio Communication for Massively Multiuser Vir-
tual Environments

In auditory virtual environments (AVEs), the participants' auditory perceptions correspond
as closely as possible to their virtual surroundings [15]. With the advent of shared virtual
environments came the desire to not only hear the background sounds of the environment
but also talk naturally, that is, with an audio model conforming to the virtual environment.
Just as in conferencing, each participant must be provided with a composition of the other
participants' audio streams. Every participant's own samples are only played to the other
participants and not to himself. Several audio streams are combined into one by digitally
summing the corresponding audio samples from the incoming streams. At this, only the
latest samples are of interest; older samples hold no value and, accordingly, nodes hold no
state except for the samples currently being recorded or played back. However, whereas
in classical audio conferencing only one or two people speak at a time and the conference
size is limited to few tens of participants, in AVEs all participants are allowed to speak
at once. Each one hears those who are in his virtual vicinity, with their audio volumes
attenuated according to their virtual distance. As a consequence, participants can form
conversing subgroups, while overhearing more distant conversations. With the rise of a new
generation of massively multiplayer online games (MMOGs), massively multiuser virtual

2.6. EXEMPLARY APPLICATIONS 19

environments (MMVEs) are now experiencing hundreds of thousands of concurrent users
with an upward trend. Audiences and crowds of spectators at performances and sports
events constitute extreme examples, whereat thousands of peoples engage in activities such
as cheering, chanting and singing together. Hence the audio service must be designed as
to cope with many simultaneous audio streams [126]. Whereas in the past MMOGs had
distinct locations or rooms and each user was located in one or another, now MMVEs
develop towards continuous spaces wherein users can move seamlessly.

The problem of providing audio communication to such environments can be regarded
as a special case of sensor fusion, where the sensors are microphones, the streams are series
of audio samples, and the aggregation function is the sum over all sources. Despite this
seemingly straightforward reduction, the task poses several challenges:

Audio streaming is a real-time process. From the recording to the encoding, sending,
receiving, decoding, aggregating to the playback, all operations need to complete within
time bounds to avoid loss of streaming. On real-time operating systems, this is ensured
by guaranteeing periodic CPU time slices to real-time processes. In a heterogeneous P2P
environment, however, the employed hardware usually is of commodity class, the operating
system generally does not support real-time scheduling and the application competes with
other processes for CPU and network bandwidth.

For each listener the audio volumes of each speaker need to be attenuated accord-
ing to the listener's distance to them. To this end, the virtual avatar locations must be
transformed into node positions in the network. A clustering algorithm is responsible for
mapping a given scene with the virtual locations of the participants onto a hypercube net-
work topology, thereby assigning all participants their neighbors. At this, several criteria
must be considered:

Scene Accuracy In particular, the algorithm should perform the clustering in an
intuitive way, so that the participants' expectations (e. g. who will hear them) are approx-
imated as closely as possible. For instance, two participants standing closest to each other
should experience a low latency between them and hear each other loud and clear and with
a high scene accuracy.

Bandwidth/Degree To keep network degree and bandwidth requirements as low as
possible, the algorithm should minimize the number of hypercube dimensions.

Latency In voice communication, excessive latency a�ects conversation adversely in
various ways. Hence, the solution must keep latency between conversation partners at a
minimum.

Stability Furthermore, the algorithm should be stable to avoid drastic dynamic
changes of cluster memberships. For instance, a single person walking around in the vir-
tual environment should only have local e�ects and should not a�ect the whole network
structure.

To summarize, audio communication for MMVEs comprises the provision of a large
number of users with their personal, position dependent compositions of audio streams, in
real-time, at low latency, using non-realtime components connected through a heteroge-
neous network with diversely limited bandwidths and varying delays.

Numerous architectures have been considered for audio delivery in conventional confer-
ences as well as virtual environments. They di�er greatly in their assumptions regarding
network topology, features, and available bandwidths. Although some of the games provide
audio systems already, these still have problems coping with dense crowds created by large
numbers of users gathered at the same virtual location, e. g. attending the same events or

20 CHAPTER 2. BACKGROUND AND PROBLEM DEFINITION

activities such as New Years Eve's countdown or popular sports events. In lack of function-
ing comprehensive solutions, unsatis�ed users resort to detached and limited conferencing
tools such as TeamSpeak, Mumble, Ventrilo, or Skype for �critical� communication.

In Chapter 8, a periodic peer-to-peer hypercube gossiping based approach towards scal-
able audio communication for MMVEs will be proposed. It comprises some considerations
for the implementation as well as a prototypical mapping algorithm that clusters all par-
ticipants standing in general position into a minimum diameter network graph.

2.6.2 Decentralized Data Fusion for Object Tracking

Decentralized data fusion (DDF) is an instance of the general distributed inference problem
in which there is a single common state of interest�often a geographical area with an
initially unknown number of physical objects (targets), their locations and velocities�that
is observed by a number of distributed nodes, each equipped with one or more sensors,
and connected by some (heterogeneous) network [106]. Each node periodically obtains
observations from its sensors by which it estimates the state of interest. All nodes' estimates
are merged (fused), along with previous estimates, to form a condensed estimate at each
node that is more con�dent than one that any node could produce alone. Thus, in object
tracking applications, past measurements matter: Each node holds a state comprising the
objects' probability densities conditioned on all prior observations. In contrast to audio
conferencing, every node's own measurements are included in its local aggregate. The
employed hardware is likely dedicated and hosts a real-time operating system.

In recent years, the decentralization of data fusion techniques to combine data from
multiple sensors has received increasing attention. It coincides with the emergence of a
new driving paradigm of Network Centrics, e. g. Architectures or Operations (NCO) that
scatter responsibility across the network. In 1994, guiding principles were postulated [57],
amounting to the abolishment of central components such as single fusion centers, central
nodes, common communication facilities, or total knowledge of network topology. The
rationale behind it is to ensure scalability by absence of central bottlenecks as well as
modularity and �exibility by obviating the need for knowledge of the network. Apparently
however, adherence to these principles is necessary but not su�cient to ensure scalability.

Scaling DDF networks in a heterogeneous environment presents several challenges:
Bandwidth limits the number of neighbors to which each node may send state estimates,
whereas excessive latency vitiates the value of state estimates; particularly estimates of
targets that behave in a non-linear way may decay quickly. As a consequence, latency
must be kept to a minimum. In [30], the necessity to spread information �as fast and as
e�cient as possible� and the need for analytical performance models and metrics to predict
latency and reliability is emphasized.

Another challenge generally encountered in DDF networks is the necessity to eliminate
common past information resulting from the fusion of estimates that were descended from
the same data. To avoid double-counting, this correlated information from past fusion
events must be identi�ed and removed, which requires the availability of the original data
sets. Although the theoretic fundamentals have been well documented and studied for
about twenty years now, the removal of common information while minimizing the amount
of data exchanged still remains one of the main di�culties in distributed information
fusion [29]. Numerous methods for DDF have been proposed, handling correlated data in
diverse ways. Yet all in all, current approaches compensate this so-called data incest by
approximations, have scalability issues with regard to latency or bandwidth, are fragile
regarding single node failures, or resort to central components.

2.7. PROBLEM DEFINITION 21

In Chapter 9, a periodic peer-to-peer hypercube gossiping based DDF approach will be
proposed. The basic hierarchical structure of the hypercube permits e�cient aggregation
and dissemination of information with logarithmic time and bandwidth requirements while
ruling out the possibility of double counting. In contrast to 1-trees, such as star and
chain topologies, the dense structure of a hypercube sustains connectivity in the event of
single node failures. The responsibilities of all nodes are fully determined by their position
in the hypercube, thus obviating the need to negotiate communication schemes or carry
information pedigree logs.

2.7 Problem De�nition

The general task addressed by this thesis could be called aggregation-gossiping or fusion-
dissemination. It is the combined problem of computing an aggregate from multiple dis-
tributed live measurements while distributing the result. The measurements are performed
periodically and are repeated inde�nitely. Each node needs, at all times, an aggregate that
is fused from all nodes' as-current-as-possible information. Possibly, this task could be
viewed as a specialization of the classic gossip problem, whereat each node's single piece of
information is communicated to all other nodes; however, because of its distinctive periodic
nature and the practical signi�cance of in-network aggregation, it may well be considered
a fundamental problem of its own. Undoubtedly, a solution should embrace the speci�c
problem as well as potential optimizations.

Clearly, the solution should be scalable with regard to the number of nodes. Addition-
ally, it should be robust and present no single point of failure. As a consequence, I regard a
decentralized mode of operation: The task is to be performed symmetrically among equal
peers with mostly identical qualities and responsibilities, particularly, without relying on
any kind of distinguished node with special abilities.

Regarding the nodes' connectivity, I universally assume that every node is somehow
connected to the Internet via a link of �nite bandwidth. Since most of today's network
interfaces are full-duplex, I assume that a node can send and receive data at the same time.
All in all, this means that each node may communicate with any other, or several ones,
but generally not with all of them during a given time interval.

In some parts of this work I furthermore assume that the sampling frequency exceeds
the frequency with which datagrams can be sent to several neighbors. An obvious example
of this is audio streaming.

Since real-time applications require a low latency, I look for solutions that exhibit a low
average latency between measurement and consumption of information.

Finally, because live deployments of networks with non-trivial numbers of nodes are
costly, I demand that the performance of the solution is assessable by means of both
e�cient and faithful simulation, or, even better, analytically.

The problem addressed by this thesis can thus be summarized as the problem of pro-
viding decentralized, bandwidth-e�cient, low-latency fusion-dissemination of distributed
(high-frequency) periodic measurements in heterogeneous environments, with predictable
performance.

Chapter 3

Periodic Peer-to-Peer Hypercube

Gossiping

Contents
3.1 Nomenclature . 23

3.2 Assumptions and Requirements 24

3.2.1 Assumptions . 24

3.2.2 Requirements . 24

3.3 Network Topology . 25

3.3.1 Finding the Right One . 25

3.3.2 Presenting the Hypercube . 26

3.3.3 Deformation . 30

3.3.4 Dynamics . 30

3.3.5 Generalization . 36

3.4 Communication and Aggregation Scheme 38

3.4.1 Periodicity . 39

3.4.2 Implications . 41

3.5 Latency Overview . 48

3.5.1 Network Delay . 48

3.5.2 Wait Delay . 49

3.5.3 Input Delay . 49

3.5.4 Output Delay . 49

3.5.5 Local Processing Delay . 49

3.6 Related Work . 49

3.6.1 Other Gossip Topologies . 50

3.6.2 Other Communication Tasks . 51

3.6.3 Other Communication Modes . 52

This chapter presents periodic peer-to-peer hypercube gossiping as a means for e�cient
decentralized data fusion. It starts with the de�nition of terms, followed by the expli-
cation of the assumptions and requirements. Based on these, the network topology of
the approach is established, and some notable properties are pointed out. Subsequently,

22

3.1. NOMENCLATURE 23

structural changes as a result of adding or removing nodes, deviations of the network from
its fully allocated state, as well as a possible extension of the approach to generalized
hypercubes are discussed. The subsequent section develops the communication and aggre-
gation scheme whilst taking into account the periodic nature that is inherent to streaming
communication. The section that follows gives an outlook on the composition of latency
in a peer-to-peer context which will be examined in detail in Chapter 6. The chapter is
concluded by a survey and classi�cation of related work.

3.1 Nomenclature

m dimension of the hypercube topology

b base or radix of the hypercube, b = 2 for common (binary) hypercubes

d degree of a node, d = (b − 1)m

N the number of nodes, N = bm for the fully allocated hypercube

L the number of levels or communication rounds equaling the dimension of the hypercube

�` level ` of the communication scheme, with ` ∈ [0..L − 1]

�`1⋯�`2 set of levels {�` ∣ ` ∈ [`1..`2]},

I (�`) cumulative information received on �`.

fsamp sampling rate or sampling frequency of the nodes' sensors

g generator or initializer (see Section 2.3)

f fusion or merging function (see Section 2.3)

e evaluator (see Section 2.3)

T send period, i. e. time between consecutive packet transmissions

cb(m,h) number of nodes being h nodes away from an arbitrary node n, of a b-ary hyper-
cube of dimension m

χn1,n2 probability distribution of the delay it takes to send a datagram from node n1 across
the underlay network to node n2

χn1,n2,q q-quantile of χn1,n2 , i. e. delay that will, with probability q, not be exceeded

nbb(n, `, i) ith neighbor of node n on �` on a b-ary hypercube

nb(n, `) ∶= nb2(n, `,0), the (sole) neighbor of node n on �` on a binary hypercube

û summit of node u, denotes a node's largest complete containing hypercube (see Subsec-
tion 3.4.2)

u maxlevel of node u, denotes the highest level ` for that nb (u, `) exists (see Subsec-
tion 3.4.2)

24 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

3.2 Assumptions and Requirements

3.2.1 Assumptions

The approach presented in this dissertation rests on the following assumptions:

� Sensor data becomes available periodically at each node n, at times tn+i/fsamp, i ∈ N0.

� Each node is connected to the Internet through some sort of Internet access link.
Every node's access link may have di�erent latencies and bandwidths associated that
may also di�er between upstream and downstream direction.

� The transmission of data incurs an overhead. As a consequence, each node can
communicate only with a limited number of nodes per time interval.

� Some nodes may be located behind NAT routers or �rewalls rejecting unsolicited
messages from the outside, hold no public IP address of their own, or may not even
know the outgoing public IP address of their router.

� Backbone network delay may vary for di�erent sender/receiver pairs (u, v) (local-
ity) and may even be di�erent for each consecutive message (jitter). Particularly,
messages may arrive out of order. Moreover, messages may not arrive at all (packet
loss). Apart from that, the interconnection network (Internet) is assumed to have
unlimited capacity, i. e. there is no limit to the global number of transmissions per
time interval. Also, all backbone communication links are deemed independent, i. e.
for any four distinct nodes u, v,w, and x, communications between u and v have no
noticeable e�ect on communications between w and x.

� Every node has a clock, but the clocks are not guaranteed to be synchronized. There
is no universal synchronization signal.

� Nodes may not be able to hold, process, and/or communicate the measurements,
underlay addresses, or possibly not even the overlay IDs of the entirety of nodes.

� The local sensor and the network link are the only sources of information available
to each node, particularly, no node has total knowledge about the system.

� Nodes may deteriorate or fail at any time without prior notice.

� There are no malicious nodes.

3.2.2 Requirements

� The system shall provide decentralized bandwidth-e�cient low-latency gossiping of
high-frequency periodic measurements in heterogeneous environments.

� Wait latency (see Subsection 3.5.2 on page 49) shall be reduced as far as reasonable
and practicable.

� The network shall not be limited to distinct sizes such as powers of two.

� The network con�guration (bootstrapping) must be accomplished without the coor-
dination of a central authority.

3.3. NETWORK TOPOLOGY 25

� A newly arrived node must be able to join the network given only the underlay
address of an arbitrary contact node that is already part of network.

� The number and volume of the messages required to integrate the new node shall
be well below O(N). The additional work load exerted on nodes contriving the
accommodation shall be small in relation to their aggregation workload.

� The network shall be able to cope with a high node arrival rate, e. g. one that is
proportional to the size of the network.

� The placement scheme must respect available bandwidth and shall be able to accom-
modate a small portion of bandwidth impaired nodes.

3.3 Network Topology

3.3.1 Finding the Right One

In Subsection 2.1.3 the gossip problem was presented as the task of �nding a communication
strategy such that every node learns all other nodes' information. For real-time stream
gossiping, the challenge lies in �nding a feasible network topology and communication
strategy such that, in the face of limited bandwidth per node, each node learns from every
nodes' measurement in as little time as possible.

Let us �rst assume an equal �nite bandwidth for all nodes. For a time interval of any
�nite size, each node can communicate with a �nite number of nodes. In a typical peer-
to-peer context, with full-duplex Internet access paths, receiving and sending can happen
at the same time.

We let t denote the smallest time such that, for an arbitrary number x ∈ N, a node can
both receive from x nodes and send to x nodes in the time x ⋅ t. t then corresponds to the
time in which one round of a two-way communication algorithm (2.1.4) can be executed.
In full-duplex scenarios, t is determined by the lesser of the upstream and the downstream
bandwidths, which for consumer links usually is the upstream one.

Our goal is thus to �nd a network topology and communication strategy for that the
gossip problem can be solved for a high number of nodes in a small number of communi-
cation rounds in two-way mode: a network topology and communication strategy with a
low gossip complexity.

Comparison of Gossip Graphs

In [65], several topologies are surveyed with regard to their two-way gossip complexity.
Table 3.3.1 shows gossip times for common networks in two-way mode. In Figure 3.3.1
the lower and upper bounds on gossip time of these topologies are plotted for networks of
di�erent sizes (log). Several things can be observed at once:

� The Path and Cycle topologies have linear e�ort and are obviously poor choices for
scalable gossiping.

� The Hypercube and its variations Cube Connected Cycles CCCk, Shu�e-Exchange
SEk, Butter�y BFk, and DeBruijn network DBk, form a family of networks whose
performance di�ers roughly by constant factors.

� Only the hypercube matches the (optimal) performance of a complete graph. Adding
further edges to a hypercube graph will not improve gossiping performance.

26 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

Table 3.3.1: Gossip times for common networks in two-way mode [65]

Graph Nodes Diameter Lower Bound Upper Bound

Complete Kn n 1 ⌈log2 n⌉ + odd(n) ⌈log2 n⌉ + odd(n)

Hypercube

Hk
2k k k k

Path Pn n n − 1 n − even(n) n − even(n)

Cycle Cn n ⌊n/2⌋ ⌈n/2⌉ + odd(n) ⌈n/2⌉ + odd(n)

Cube

Connected

Cycles CCCk

k ⋅ 2k ⌊5k/2⌋ − 2 ⌈5k/2⌉ − 2

⎧
⎪⎪
⎨
⎪⎪
⎩

⌈5k/2⌉ − 2 k even

⌈5k/2⌉ + 1 k odd

Shu�e-

Exchange

SEk

2k 2k − 1 2k − 1 2k + 5

Butter�y

BFk
k ⋅ 2k ⌊3k/2⌋ − 2 1.9770k 2.25k + o(k) a

DeBruijn

DBk
2k k 1.5965k 2k + 5

af(N) = o(g(N)) denotes the fact that for an arbitrary number c > 0 a value N0 exists such that
∀N > N0 ∶ f(N) < c ⋅ g(N) [92].

� The hypercube's relatives not only perform worse but also have distinct upper and
lower bounds. This hints at the complexity of �nding or proving an optimal algorithm
for these topologies.

� The hypercube related graphs and communication schemes are de�ned only for dis-
tinct network sizes that are powers of two.

The following subsection will examine the hypercube as the �prime candidate with issues�
in greater detail.

3.3.2 Presenting the Hypercube

By using a hypercube topology, the gossip problem can be solved optimally, i. e. in log2N
communication rounds with regard to the total number of nodes N . Furthermore the
hypercube-based solution is simple and straight-forward as we will see in Section 3.4.

As particularized in Section 2.5, a (binary) hypercube of dimension m, denoted Hm,
is de�ned as the graph whose nodes are all binary strings of length m and whose edges
connect those strings that di�er in exactly one place.

Hm has 2m nodes, m ⋅ 2m−1 edges and diameter m. Each node has exactly degree
m [66]. Figure 2.5.1 on page 16 shows the network topology and node numbering for a
binary hypercube network with m = 3, also called 3-cube. The edges of a hypercube can be
partitioned in a natural way according to the dimension they traverse. An edge is called
edge of dimension k if it connects two nodes di�ering in the kth bit [92].

✸✳✸✳ ◆❊❚❲❖❘❑❚❖❖▲❖●❨ ✷✼

◆♦❞❡

❘♦
✉
♥
❞

✵
✶✵

✷✵
✸✵

✹
✵

♥
❈♥
❙❊❦
❉❇❦
❈❈❈❦
❇❋❦
❍❦
❑♥

✹ ✶✻ ✻✹ ✷✺✻ ✶✵✷✹ ✹✵✾✻ ✶✻✸✽✹ ✻✺✺✸✻

❋✐❣✉❡✸✳✸✳✶✿▲♦✇❡❛♥❞✉♣♣❡❜♦✉♥❞ ♦♥❣♦✐♣✐♠❡❢♦❝♦♠♠♦♥♥❡✇♦❦ ✐♥✇♦✲✇❛②
♠♦❞❡

■♥❛♥❡✇♦❦✇✐❤N♥♦❞❡❡❛❝❤♥♦❞❡n✐❝♦♥♥❡❝❡❞♦m♥❡✐❣❤❜♦♥♦❞❡✱✐✳❡✳♦♥❡♣❡
❞✐♠❡♥✐♦♥✳❚❤❡♥♦❞❡■❉♦❢❤❡ ❤♥❡✐❣❤❜♦❝❛♥❜❡♦❜❛✐♥❡❞❜②✐♠♣❧②✢✐♣♣✐♥❣❤❡ ❤❜✐
♦❢n✬♥♦❞❡■❉✿

nb(n,l)=nxor2

✇❤❡❡xor❞❡♥♦❡ ❤❡❜✐✇✐❡❡①❝❧✉✐✈❡❞✐❥✉♥❝✐♦♥✳
❘♦❜✉ ♥❡ ❛♥❞②♠♠❡ ②♣♦♣❡✐❡❛❡ ❛❡❞✐♥❙✉❜❡❝✐♦♥✷✳✺✳✷✳

■♥❝♦♠♣❧❡❡❆❧❧♦❝❛✐♦♥

❚❤❡❤②♣❡❝✉❜❡✐❞❡✜♥❡❞♦♥❧②❢♦ ✐③❡ ❤❛ ❛❡❛♣♦✇❡♦❢✇♦✳ ❖❜✈✐♦✉❧②✱❢♦❛♣❡❡✲
♦✲♣❡❡♥❡✇♦❦✱❛ ♦❧✉✐♦♥✐ ❡✉✐❡❞❤❛ ✇♦❦ ❢♦❛♥②♥✉♠❜❡♦❢♥♦❞❡✳■♥❬✼✼❪❤✐
❣❛♣✇❛❜✐❞❣❡❞❜②❤❡♣♦♣♦❡❞❝♦♥ ✉❝✐♦♥♦❢♦❝❛❧❧❡❞✐♥❝♦♠♣❧❡❡❤②♣❡❝✉❜❡❢♦♠❛♥
❛❜✐ ❛②♥✉♠❜❡♦❢♥♦❞❡✱✇❤✐❝❤✇✐❧❧❜❡✉❡❞❤❡♥❝❡❢♦❤✳
❆♥✐♥❝♦♠♣❧❡❡❛❧❧♦❝❛✐♦♥♦❢N♥♦❞❡❝❛♥❜❡✈✐❡✇❡❞❛❛❞❡❝❡♥❞✐♥❣❡✐❡♦❢❝♦♠♣❧❡❡

❤②♣❡❝✉❜❡✇✐❤❞✐♠❡♥✐♦♥❝♦❡♣♦♥❞✐♥❣♦❤❡♣♦✐✐♦♥♦❢❡❜✐ ✐♥❤❡❜✐♥❛②❡♣❡✲
❡♥❛✐♦♥♦❢N✳❋♦❡①❛♠♣❧❡✱❛♥❡✇♦❦♦❢❡❧❡✈❡♥♥♦❞❡❝❛♥❜❡❝♦♥ ✉❝❡❞❜②❝♦♥♥❡❝✐♥❣

28 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 3 3 3 3 3 3 3 1 1 0

3 3 3 2 2 2 2 2 3 3 3

H3

�0

�1

�2

�3

H1
H0

u

u
û

Figure 3.3.2: Incomplete allocation: Network of eleven nodes

a hypercube of eight nodes (H3) with one of two nodes (H1) and the zero-dimensional
hypercube (H0) of one node, as shown in Figure 3.3.2. Alternatively, the incomplete allo-
cation can be thought of as the next higher complete allocation with the ID-wise topmost
nodes and their connections removed. The corresponding network graph is shown in Fig-
ure 3.3.3. For some theoretical considerations that follow, we will nevertheless only regard

7

3

5

10

4

6

2

10

98

Figure 3.3.3: Network graph for eleven nodes

3.3. NETWORK TOPOLOGY 29

the fully allocated hypercube so as not to unnecessarily complicate the formulas. As a
matter of course, in the implementation presented in Chapter 7, all incomplete allocations
are accounted for.

Overlay Distance

The overlay distance h between two nodes denotes the number of overlay hops a packet
travels from one node to the other. The network diameter is de�ned as the maximum value
of h over all node pairs, i. e. the greatest distance between any two nodes.

In Subsection 2.1.3, Gossip complexity was introduced as the necessary and su�cient
number of rounds to complete the gossiping problem. Obviously, the diameter is a lower
bound of the gossip complexity; the gossiping scheme must have at least this many com-
munication rounds. For the hypercube topology, it is also the upper bound. That is, the
longest overlay path, called maximum path, is determined by the gossip complexity and
amounts to exactly m hops.

For deriving traversal time and wait latency estimates, it is obligatory to not only
consider maximum paths but also to investigate the distribution of hop distance. We
de�ne cb(m,h) as the number of nodes being h nodes away from an arbitrary node n in a
binary hypercube with dimension m:

Theorem 3.3.1.

c2(m,h) = (m
h

) with h ∈ [1,m] (3.3.1)

Proof. To reach a position that has a (Hamming) distance of h, h dimensions must be
traversed. Since h dimensions are chosen fromm possible ones, the number of combinations
is given by the binomial coe�cient.

E. g. the number of nodes that can be reached within one hop equals the network degree:

cb(m,1) =m

Table 3.3.2: Overlay hop count distribution c2(m,h) = (m
h
)

c2 (m,h)
m ↓, h→ 0 1 2 3 4 5 6 7 8
1 1 1 0 0 0 0 0 0 0
2 1 2 1 0 0 0 0 0 0
3 1 3 3 1 0 0 0 0 0
4 1 4 6 4 1 0 0 0 0
5 1 5 10 10 5 1 0 0 0
6 1 6 15 20 15 6 1 0 0
7 1 7 21 35 35 21 7 1 0
8 1 8 28 56 70 56 28 8 1

Table 3.3.2 shows the hop distance distribution for binary hypercubes H1 to H8. The
values in the columns equal those of the diagonals of Pascal's triangle. From each row, the
cardinality of nodes at a certain distance can be read. The fourth row, for instance, shows
the distribution for a network of size m = 4, i. e. 16 nodes: Each node has 4, 6, 4, and 1
peers at a hop distance of 1, 2, 3, 4, respectively. As can be observed on the diagonal of the
table, the maximum path length m occurs for only one destination per source (equivalent
to one source per destination).

30 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

3.3.3 Deformation

In some cases the perfect hypercube topology is in fact undesirable. One such case when
to deviate from this topology is when accommodating bandwidth impaired nodes. The
perfect hypercube is fully symmetric. For every node, the bandwidth required in each
direction grows in the order of logN . While this is a moderate requirement in general,
it may be too much for some nodes1. This minority of nodes with insu�cient bandwidth
can be accommodated by relocating them up in ID space, into the sparser regions of the
incomplete hypercube, described above, where they will have fewer neighbors. This is
shown in Figure 3.3.4 by example of node 111. This scheme allows to �exibly scale down

Dim. 0

D
im

.
1

110

010

111

100

011

000

D
im
. 2

001

101

Dim. 0

D
im

.
1

110

010

100

011

000

D
im
. 2

001

101

D
im
. k

1⋯110

Figure 3.3.4: Deformation: Bandwidth impaired node 111 is relocated into sparse region
where it has only one neighbor.

single nodes to just one connection per direction without in�icting additional latency on
the rest of the network.

Insu�cient bandwidth in general would have to be handled di�erently, e. g. by appli-
cation speci�c solutions shown in Chapters 8 and 9 or by resorting to a constant degree
network, such as the butter�y or cube connected cycles topologies, albeit at the cost of
longer paths, consequently resulting in an increased latency.

3.3.4 Dynamics

Until now we have only regarded properties of an already con�gured, static network. In a
peer-to-peer context, however, not only the initial construction (bootstrapping) of an overlay
network, unaided by any central authority, must be considered but also the continual
dynamic addition and removal of nodes. Below, we will regard such changes to the network
topology, henceforth subsumed as node dynamics.

1Figure 4.5.2 on page 68 shows the distribution of upstream bandwidth, measured worldwide in March,
2010. About 15% of all hosts in the data set exhibit an upstream bandwidth of less than 200 kbps

3.3. NETWORK TOPOLOGY 31

Node Arrival

Arriving nodes must be assigned an overlay ID and be introduced to their prospective
neighbors. In order to ensure scalability, this must be accomplished without the coordi-
nation of a central authority. An arrival shall be able to contact any node that is already
part of the network. As stated in Subsection 3.2.2, the number and volume of the messages
required to integrate the new node shall be well below O(N). The network shall be able to
cope with a high arrival rate. The placement of the nodes must respect the available band-
width and shall lead to a highly e�cient overall topology. Also, in peer-to-peer contexts, a
considerable portion of the nodes may be behind NAT routers and hold no public IP ad-
dress of their own. The conjunction of these constraints makes network bootstrapping and
node accommodation no trivial task. Fortunately, with a hypercube gossiping network, we
have a system at hand that allows for e�cient aggregation. By leveraging the network's
powerful gossiping and aggregation facilities we can actually reach a solution that satis�es
all of these requirements.

Since gossiping allows us to disseminate all management information to all nodes, we
can design a network that can be joined from an arbitrary contact node. For small networks
we can disseminate the whole network topology. In fact, this information is contained in
every �nal aggregate at all nodes if the sensor data is tagged with the node's ID and these
tag sets are fused along with the data. With the complete topology at hand, the perfect
location for a new arrival can be determined by every node and the placement can be
communicated to the whole network.

For large networks, however, we may not assume that the whole network structure can
be disseminated as this would likely result in tra�c and memory requirements in the order
of O(N). Thus, joining the network must not require knowledge of the network as a whole.

To join the network, an arrival contacts a random network node, called the contact
node, by sending a message to its socket address2. Upon reception of the message, the
contact node tries to accommodate the arrival by �rst determining, with the help of the
network, a vacant overlay ID, called join address, and a host, that will become the lowest
level neighbor of the new node. Depending on the available bandwidth of the joining node,
the placement strategy di�ers, as expatiated below.

Placement of Regular Nodes To attain a perfect hypercube, the join address should
be chosen as the minimum node ID that is not already part of the network. A naïve solution
might just determine and disseminate this ID by the aggregation network and simply assign
this ID to every arrival. However, for high arrival rates, this will cause congestion near
that node when many nodes try to join the network at the same time. Also, growth would
be limited by the re-computation of the new minimum.

The proposed solution borrows from the natural phenomenon of crystallization, a self-
organizing process resulting in the formation of solid crystals precipitating from a solution,
melt or gas. At this, molecules of the solute attach to the crystal in a stochastic but orga-
nized fashion. Information about the entirety of the crystal is nowhere required. Molecules
can attach to the crystal simultaneously and independently. Yet the result exhibits a highly
regular structure. Whereas the creation of a perfect crystal may take a very long time, the
growth process can be accelerated by further supersaturating the solute. This results in
fast growth at the hazard of some imperfections.

2The contact node's socket address may be obtained, e. g. from a list of past addresses, some service or
by sending packets to a well known port at random IP addresses.

32 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

Similar principles can be applied to guide the growth of the hypercube network. A
relaxation of the node placement discipline facilitates a faster growth but leads to bloat,
resulting in a topology that is not as compact as it could be. Hence, the proposed strategy
is a dynamic one, subject to the arrival rate, which is easily observable for every node:
For low arrival rates, the network growth should result in a perfect hypercube, for high
arrival rates the algorithm should allow for rapid growth at the expense of some regularity.
Instead of using only the minimum node ID as a single docking location for arrivals, sets of
feasible locations, referred to as holes, are collected all over the network. A subset thereof
is passed to neighbors. The target location is chosen randomly from the set union of local
and remote options. At this, closer target locations are preferred. The selection of the
subset acts as a regulating screw that is in turn adjusted as a function of the current node
arrival rate. For very low arrival rates (less than one arrival per d rounds), the subset
is chosen as the minimum vacant node ID. This leads to a perfectly compact hypercube
with minimum communication overhead. For medium rates (k up to kmax arrivals per d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PTMY

PTMY

a)

b)

c)

d)

Vacant Position Host Prospective Neighbors Contact

Arrival

Direct/Underlay Msg.
Routed/Overlay Msg.

A,B!

A,B!

3xA,B!PTMY

B,A!
B,A!

B,A!
B,A!

B,A!
B,A!

HOST
RQID

ACMD
ACMD

RQID

HOST

RFR2

A,B!

PTMY

Figure 3.3.5: A new node gets to know its neighbors. a) Arrival requests ID from contact.
Contact routes accommodation request towards 3, being the lowest level neighbor of 2. So
does 5. b) 3 accepts host status and routes acknowledgment to contact. Contact refers
arrival to host. Arrival requests ID from host. Host welcomes arrival. c) Host introduces
arrival to arrival's neighbors. d) Introductions are returned to arrival. Arrival and its
neighbors welcome each other. All black messages are routed piggy-back with application
payload.

3.3. NETWORK TOPOLOGY 33

rounds), the bottom-k holes are propagated, resulting still in perfectly compact hypercubes
at a k times higher communication overhead. For still higher rates, instead of bottom-kmax,
kmax random holes having IDs smaller than a threshold consisting of the total number of
nodes multiplied by a constant factor w are chosen. Note that since the resulting sets of
holes are di�erent for each contact, the number of nodes that can join within d rounds is
not limited by kmax but by the threshold. The communication overhead is bounded by
kmax and the bloat is bounded by w. As soon as the growth rate is decreasing to medium
rate, new arrivals �ll the accrued holes and the network is becoming compact again. kmax
should be chosen with respect to application speci�c payload size, so that the management
overhead of communicating the holes is small in relation to the total packet. The choice of
w determines the bandwidth e�ciency of the network during continuing high growth rates.
A sensible choice is 1 < w < 2.

After having determined a candidate host, the contact node routes the accommodation
request in the direction of that host, i. e. a neighbor node of the current node is chosen
whose node ID has a smaller Hamming distance to the prospective host than the current
node's ID. At the neighbor the request is re-evaluated. Since a host with minimal distance
was chosen, and that distance has now been decreased by one hop, the neighbor is likely
to choose the same target host or one that is in equal distance. As as consequence, the
distance to the target node decreases with each hop the request travels as long as the
information is consistent.

Figure 3.3.5 shows the arrival of a new node (red) at node 13 of the hypercube network.
The smallest ID not present in the latest aggregate of node 13 is 2, and is given to the
arrival as its prospective address (destination). The existing neighbors of node 2 are 3, 0,
6 and 10, the lowest level neighbor is 3.

Placement of Bandwidth Impaired Nodes Nodes with insu�cient bandwidth for
d full-duplex connections cannot be integrated into the dense portion of the ID space.
Instead, they need to be placed in the sparse regions and linked via higher dimension
connections to hosts in the dense region, as described in Subsection 3.3.3. These additional
high-dimension links should be spread evenly among the nodes in the dense region. For this,
we cannot rely on the random allotment of contact nodes, as the choice of contact nodes
may be biased. One obvious reason for this is that contact nodes cannot be �rewalled.
Also, if contact addresses are retrieved from a service, this service may know only a small
portion of all nodes. On that account, a random host needs to be determined explicitly.
But also the direct computation of a random host ID is problematic since the contact node
generally cannot know whether the target host exists. Rather, the proposed solution is to
route the accommodation request along a random walk. By constraining the routing steps
to those that increase the Hamming distance to the contact node, cycles can be avoided
without the need to record the route. At every node, the walk may end. The alternative is
to continue the walk by traversing one of the feasible edges, that increase the distance to
the contact node. Clearly, if all hosts are to be favored equally, the probability to stop the
walk needs to increase with the distance to the contact node. After having taken d steps,
each feasible edge is chosen with the probability t (d); we let s (d) denote the (remaining)
probability with which to stop there. The probabilities of all options obviously must sum
to one, so at every node the following applies:

s (d) +∑ t (d) = 1.

In Figure 3.3.6, the stop and traverse probabilities for a random walk on H3 are illustrated.
The walk starts at node 111. With a probability of 1/8 the walk ends right at the start. This

34 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

110

010

100

011

000
001

101

111

t(0) s(0) = 1
8

t(0)
t(0) = 7

8 ⋅
1
3 =

7
24

s(1) = 3
7t(1)

t(1) = 1
2 ⋅

4
7 =

2
7

s(2) = 1
8 ⋅

6
1 =

3
4t(2) = 1

4
s(3) = 1

Figure 3.3.6: Stop and traverse probabilities for random walk on H3

is intuitive if one considers that each node should be reached with exactly this probability.
The outgoing edges are chosen with 7

8
⋅ 1

3
= 7

24
. The probability to end our path at the

next node is determined by 1/8 divided by the probability for having reached this node.
When the walk has reached the most distant node there are no feasible paths left and the
probability to end the walk equals 1.

Theorem 3.3.2.

s (d) = 1

N ⋅ d! ⋅∏d−1
h=0 t(h)

(3.3.2)

t (d) = 1 − s (d)
m − d (3.3.3)

Proof. The product represents the probability of a path leading to the current node, and
d! accounts for multiple paths leading to the same current node. m − d equals the number
of outbound edges at the current node.

3.3. NETWORK TOPOLOGY 35

Corollary 3.3.3. Substituting (3.3.3) into (3.3.2) gives

s (d) = 1

N ⋅ d!∏d−1
h=0

1−s(h)
m−h

= 1

N ⋅ d!m−d!
m! ∏

d−1
h=0 (1 − s (h))

=
(m
d
)

N∏d−1
h=0 (1 − s (h))

Introduction and Hole Punching As particularized in Subsection 2.4.5, �rewalled
nodes cannot start communicating with each other without having been introduced to
each other �rst. A connection between two �rewalled nodes needs to be initiated from
both sides. This must be regarded in all initial communication. On this account, once a
host has been found, word is sent on two di�erent paths back to the applicant: directly
by the host, using the applicant's underlay address, and by routing the message through
the contact node. Likewise, the new node is introduced to all higher level neighbors by the
host.

Neighbor Discovery If the introduction fails for any reason, nodes may not know all
of their neighbors. They will then advertise their missing neighbors as holes, as described
in Paragraph �Placement of Regular Nodes� above. A node receiving a set of holes can use
this information in several ways: If it �nds itself or any of its neighbors in the set of holes,
it informs the respective host and neighbor. Likewise, if it �nds a host that happens to be
one of its own missing neighbors. This way, missing edges are completed.

Con�ict Resolution If both introduction and neighbor discovery have failed, it may
happen that missing neighbor locations are �lled up by new arrivals. This leads to a
situation where one node ID is occupied by multiple nodes. This con�ict is likely discovered
during the following introductions when two nodes claim to be some other node's neighbors,
if not, during the exchange of the hole sets. When any node learns of two di�erent nodes
(underlay addresses) that claim to be associated with the same overlay ID, it introduces
them to each other. The con�icting nodes then engage in a battle for the ID. In the current
implementation, premising the absence of malicious nodes, the battle is won by whichever
node claims to be part of the greater network. The loser forfeits the ID and requests a
new ID from the winner. Additionally, both nodes' neighbors are introduced to each other.
Thereby con�ict resolution is propagated and the lesser of the two con�icting hypercubes
shatters on the greater one, the shards further adding to the greater one's size.

Node Failure

Well-behaved nodes will send a termination message before going o�ine so that neigh-
bors may immediately recon�gure their connections. Even so, robustness requirements
of decentralized fusion networks demand that systems remain functional in the event of
unforeseen node failures. For singly-connected or 1-tree networks, such as star and chain
topologies, the failure of any non-leaf node will separate the network in two components
[143]. In denser networks without redundant paths, like the proposed hypercube topology,
node failures will result in the non-appearance of information sources at other nodes but
not break the network.

As will be shown in Theorem 3.4.11, an instantaneous node failure in a previously
complete hypercube network will, until corrective action is taken, result in the loss of
some streaming sources. This will reduce the accuracy of the result of some nodes until
recon�guration, but no node will become isolated. When not receiving any messages from a
neighbor for some time, a node assumes its neighbor gone, recon�gures its connections, and

36 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

starts advertising the vacant position, just like it does after having received a termination
message.

If ping time for just one neighbor keeps increasing, this indicates congestion on its link.
The node will notify the neighbor of this fact. If the neighbor receives several congestion
messages or notices increasing ping times for the majority of its neighbors, it will terminate
its connections and request a bandwidth reduced position.

3.3.5 Generalization

The original hypercube, also called binary hypercube, is de�ned through the notion of bi-
nary strings. In [12] and [111] the constant boolean radix of two is generalized to arbitrary
radices. The resulting graph is called generalized hypercube (GHC) or Hamming graph.
This generalization is also applicable to the gossiping network. For real-time gossiping
applications, the choice of radix is a trade-o� between bandwidth and latency. Abundant
bandwidth provided, higher radices will, for a given number of nodes, result in fewer dimen-
sions m and communication rounds L. Depending on the composition of network delay3,
this can reduce latency. Figure 3.3.7 shows a three-dimensional generalized hypercube of

221

020

220

102

002

222

010

001

212

000

202

120

Figure 3.3.7: Generalized hypercube b = 3,m = 3, node IDs in ternary notation

radix three. Whereas in H3 each node has just one neighbor per dimension, here each node
has two. Speci�cally, each node has b − 1 neighbors on each of m dimensions, resulting
in a degree of d = (b − 1) ⋅m. Two nodes, numbered i and j, with i, j ∈ [0,N), are now

3particularly for high bandwidths and high propagation delays

3.3. NETWORK TOPOLOGY 37

neighbors on dimension k i� their base-b representations di�er exactly in the kth digit, or
alternatively, i�

∣j − i∣ mod b` = 0 ∧ ⌊ i

b`+1
⌋ = ⌊ j

b`+1
⌋.

Accordingly, for generalized hypercubes, the overlay distance, introduced in Subsec-
tion 3.3.2, becomes

cb(m,h) = (b − 1)h (m
h

) withh ∈ [1..m]

because, again, h hop-levels are chosen from m possible ones and each hop is now to one
of b − 1 neighbors.

For generalized hypercubes we regard the communication problem as an instance of the
F-(b− 1) gossip problem (see Section 2.1), where in every communication round each node
communicates with b−1 neighbors, i. e. messages to several neighbors on the same dimension
are sent within the same logical round of the communication scheme, as explained in the
next section.

Given a certain bandwidth limit, resulting in a maximum degree, several network con-
�gurations with regard to the radix b are possible. Figure 3.3.8 shows the cumulative
hop-count distribution for all possible con�gurations having a degree less than or equal to
5. The height of a (sub-)column represents the number of nodes from which a node has a
distance corresponding to its color, e. g. the degree d = cb(m,1) can be read from the light
bars at the bottom. As expected, the graph shows that for small networks (N ≤ 6), by

5
4

3
2

1 2
3

4
5

6

0

5

10

15

20

25

30

bm

nodes

1 hop

2 hops

4 hops

5 hops

3 hops

2 hops

2 hops

3 hops

3 hops

4 hops

1 hop

Figure 3.3.8: Hop-count distance distribution for feasible generalized hypercube network
con�gurations with a maximum node degree of d = 5. The number of peers that are 1 hop
away from any node is indicated by the light bar at the bottom, peers that are 5 hops away
medium gray at the very top.

setting m = 1, all nodes can communicate directly with each other, i. e. over a distance of
just one hop. In this case the network topology is that of a complete graph. For network

38 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

sizes of 7 to 9 nodes, the con�guration b = 3, m = 2 yields the lowest hop-count. For larger
networks the most bandwidth e�cient con�gurations with b = 2, m ≥ 4 need to be used.
Note that in this case the maximum hop-count occurs for just one peer of each node.

3.4 Communication and Aggregation Scheme

The network should support various kinds of aggregation, from simple count and maximum
queries to audio conferencing to the aggregation of multidimensional probability densities.
In order to abstractly formulate aggregation, we follow the concept described in [98] and
recapitulated in Section 2.3. We de�ne three functions:

� An initializer or generator g,

� a merging or fusion function f , and

� an evaluator e.

The total aggregate is computed by the function composition of e, f, and g:

agg = e
⎛
⎝
f(⋯f(f(g () , g ()), f(g () , g ()))⋯)

⎞
⎠

The generator g takes raw sensor data and prepares it to be fused by function f . The
recursive invocation of f , also denoted as functional powerfk, accomplishes the merging of
information. Although the result of the last invocation of f already contains all required
information, it may not be the answer to the query. Therefore a terminal invocation of e is
needed to produce the �nal aggregation result. Where f is commutative and associative,
the fusion of a set S = {x0, . . . , xn} of pieces of information is de�ned as

f(S) ∶= f(f(⋯f(f(f(x0, x1), x2), x3)⋯), xn).

Tags Optionally, the generator g may tag the sensor data with metadata, e. g. the ID
of the originating node, a timestamp, information on the measurement or sensor, or even
a digital signature. The fusion function f would then tag its result with the set union
of the tags of its arguments. The use of tags serves several purposes: For one thing, it
gives information on the signi�cance of the �nal result, e. g. a result obtained from the
fusion of 300 sources may be more meaningful than one from 3. Also, the tags may contain
signatures, by which the authorities of the individual information sources can be asserted.
In [28] various bene�ts of tagging sensor data with metadata are particularized.

Apart from application speci�c bene�ts, the metadata can provide an up-to-date status
on the aggregation network itself, that may be used for network management, e. g. to
initiate structural repairs or determine target locations for joining nodes. For this, the
node ID of each contributing source is su�cient. Due to the regular fusion scheme of the
hypercube, such tag sets can be encoded very e�ciently4. Still, for very large networks,
the communication of tags may be infeasible. It is important to note that whereas the
network can make use of such metadata for optimizations, the proposed approach does not
depend on this information for network management.

4As a simple coding consider converting the ID set into a bit set representation and then encoding run
lengths of zeros and ones using, e. g. Elias coding [48]. This could be further improved by taking into
account the fusion scheme and resulting probabilities for possible resulting ID sets.

3.4. COMMUNICATION AND AGGREGATION SCHEME 39

Conventional Communication Scheme In Subsection 2.1.4, the pairwise two-way
communication scheme was de�ned as the sequence of sets (matchings) Ei ⊆ E, where for
each i ∈ {1, . . . , r}, all (x1, y1), (x2, y2) ∈ Ei

{x1, y1} ≠ {x2, y2} implies {x1, y1} ∩ {x2, y2} = ∅.

The declarative communication scheme for one-shot gossiping on the hypercube was shown
in Subsection 2.5.3. It is the solution to the problem of gossiping one piece of information
per node to all other nodes. Performance is measured in rounds to complete the scheme. By
contrast, the problem addressed by this dissertation is that of inde�nitely gossiping a stream
of information per node to all other nodes. Performance is measured by the currentness of
information upon its arrival. Obviously, prerequisites as well as requirements are utterly
di�erent. So, before de�ning the communication scheme for periodic hypercube gossiping,
we must �rst take a closer look at the characteristic periodicity that is inherent to all
streaming communication.

3.4.1 Periodicity

In customary streaming applications, all communication takes place repeatedly, with a
constant time interval that we refer to as period, denoted T = const . If, for instance, at
time tx node 5 sends data to node 7, it is assumed to also do so at all times tx + kT, k∈Z.
The data may be di�erent every time, the transmission event is not. If node 7 receives
the data at time ty, it also does so at ty + kT. The reception may be subject to variable
network delay. This, however, is regarded by ty which is, in fact, a random variable. On
this account, the constantly repeating course of events can be regarded as a single, static
state. Since all events that happen at instant t also happen at instant t + T , we disregard
time spans greater than T and instead use phases ϕ ∈ R ∣0 ≤ ϕ < T , representing the time
displacements of periodic events to some (also periodic) reference event. Note that the
domain of operations on ϕ wraps around, e. g. ϕ + T ∼ ϕ. It can also be viewed as a circle
S1 with radius T/τ with τ = 2π denoting the circle constant. Chapter 6 will deal with
parameter spaces that involve several phases and generalizes S1 to an n-torus Tn. For a
visualization refer to Figure 5.4.2 on page 76.

In order to facilitate a terse formulation of expressions in this modulo5 space we de�ne
two operators6,

b⊖
T
a ∶= (b − a) mod T , and (3.4.1)

a⊕
T
ϕ ∶= (a + ϕ) mod T. (3.4.2)

(3.4.1) is used to denote the phase o�set between two events A and B occurring at times
or phases a and b. Accordingly, (3.4.2) denotes the modulo addition of a time or phase a
and a phase o�set ϕ. Where it is clear from the context, the subscript T is omitted.

Proposition 3.4.1.
b⊖
T
a = 0⊖

T
(a⊖

T
b)

5Throughout this work mod denotes the Euclidean de�nition of the modulo operation according to [22],
which always yields non-negative results; it is plotted in Figure 3.4.1.

6Alternatively, this wrapping could be expressed in terms of equivalence relations on residue classes.
However, instead of using a mixture of equivalence classes and regular variables, I found it less ambiguous
and clearer to explicitly state the modulo operation where appropriate.

✹✵ ❈❍❆ ❚❊❘✸✳ ❊❘■❖❉■❈ ❊❊❘✲❚❖✲ ❊❊❘❍❨ ❊❘❈❯❇❊●❖❙❙■ ■◆●

2∣d∣ D∣d∣−2∣d∣−∣d∣

∣d∣

Dmodd

❋✐❣✉❡✸✳✹✳✶✿❚❤❡❊✉❝❧✐❞❡❛♥❞❡✜♥✐✐♦♥♦❢♠♦❞❬✷✷❪

■♥❡✈❛❧

❋♦ ♦✐❡♥❛✐♦♥✐♥✉❝❤❛♠♦❞✉❧♦♣❛❝❡✇❡♥❡❡❞❛✉❡❢✉❧♥♦❛✐♦♥✳●✐✈❡♥✇♦❡✈❡♥ A❛♥❞
B ❤❛❛❡♣❡✐♦❞✐❝❛❧❧②❡❝✉✐♥❣❛a❛♥❞b✱❤❡ ❛❡♠❡♥✏A❝♦♠❡❜❡❢♦❡B✑✐♦❢❧✐❧❡
✉❡✱❛ ❤✐ ✐♠♣❧✐❡❛❧♦❤❡❝♦♠♠✉❛✐♦♥✏B❝♦♠❡❜❡❢♦❡A✑✳❍♦✇❡✈❡✱A❛♥❞B❞❡✜♥❡
✇♦❞✐ ✐♥❣✉✐❤❡❞✐♥❡✈❛❧✐♥S1♥❛♠❡❧②♦♥❡❢♦♠A ♦B❛♥❞♦♥❡❢♦♠B ♦A✱❡❛❝❤✐♥
❤❡❞✐❡❝✐♦♥♦❢✐♥❝❡❛✐♥❣✐♠❡✿

[a,b[T∶=

⎧⎪⎪
⎨
⎪⎪⎩

[a,b[❢♦a≤b

[0,b[∪[a,T[❢♦a>b
✇✐❤a,b∈[0,T[

◆♦❡❤❛[a,a[❛♥❞❤❡♥❝❡❛❧♦[a,a[T ❡♣❡❡♥ ❤❡❡♠♣②❡✳❚❤❡❝♦♠♣❧❡♠❡♥[a,b[T
✐ ❤❡ ❡♠❛✐♥❞❡♦❢❤❡❞♦♠❛✐♥❛♥❞✱❢♦ a≠b✱❡✉❛❧ ❤❡♦✐❣✐♥❛❧✐♥❡✈❛❧✇✐❤❡♥❞♣♦✐♥
✇❛♣♣❡❞✿

[a,b[T∶=[0,T[∖[a,b[T=[b,a[T

❙✉❝❤✐♥❡✈❛❧❝❛♥❜❡✈✐❡✇❡❞❛❛❝♦♥❤❡❞♦♠❛✐♥❝✐❝❧❡✱❛ ❤♦✇♥✐♥❋✐❣✉❡✸✳✹✳✷✳

b

[a,b[T

b−a

a

0=TmodT

[a,b[T

❋✐❣✉❡✸✳✹✳✷✿■♥❡✈❛❧✐♥♠♦❞✉❧♦♣❛❝❡

3.4. COMMUNICATION AND AGGREGATION SCHEME 41

At some points it will be useful to formulate inclusion in an interval in S1 using a
system of inequalities. For x ∈ [a, b]T , two cases need to be considered whilst taking into
account the de�nition of [a, b[T :

Case a ≤ b ∶ x ≥ a
x < b

Case a > b ∶ x ≥ a ∨ x < b
This disjunction can be modeled with a binary case variable i that levers out one of

the inequalities:

x + iT ≥ a
x + iT < b + T

Unsynchronized Events

We let Ω denote a random variable that is distributed according to a uniform distribution
across the whole period T . Its probability density function is

pdf (Ω, x) = 1

T
, x ∈ [0, T [.

It will be used in Chapter 6. Accordingly, we call an eventX that takes place at an arbitrary
phase ϕ ∈ [0, T [an independent or unsynchronized event . In a statistical context, its phase
is a uniformly distributed random variable in D.

pdf(ϕ,x) = pdf (Ω, x) = 1

T

Lemma 3.4.2. Let δ be the di�erence between two phases ϕ and θ at which the unsyn-
chronized events X and Y occur . Then δ is also uniformly distributed 7.

pdf(θ − ϕ,x) = 1

T

3.4.2 Implications

As we have seen in the previous subsection, in streaming communications, the order of
communication events is unde�ned. This has strong implications on the communication
scheme.

7 Proof. If ϕ and θ are two independent random variables with probability distributions f and g,
respectively, then the probability distribution of the di�erence ϕ−θ is given by the cross-correlation

f ⋆ g(x) = ∫
∞

−∞
f∗(τ)g(x + τ)dτ

where f∗ denotes the complex conjugate of f .In modulo space, pdf(ϕ,x) and pdf(θ, x) are constant
functions over the whole domain

pdf(ϕ,x) = pdf(θ, x) = 1

T
, x ∈ [0, T [

so their cross correlation δ is

pdf(δ, x) = pdf(ϕ,x) ⋆ pdf(θ, x) =

∫ T
0 pdf(ϕ, τ)∗ pdf(θ, x + τ)dτ = ∫ T

0
1
T
⋅ 1
T
dτ = 1

T

42 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

Periodic Communication Schemes in Two-Way Mode

In [65] a two-way p-periodic communication algorithm of length m for a graph G = (V,E) is
de�ned as a sequence E1,E2, ...,Em of some sets (matchings) Ei ⊆ E, with Ei = Ei+p for all
1 ≤ i ≤m− p where, for all e ∈ E, e ∈ Ei ∩Ej implies i = j and where, for each i ∈ {1, . . . ,m}
and all (x1, y1) , (x2, y2) ∈ Ei, {x1, y1} ≠ {x2, y2} implies {x1, y1} ∩ {x2, y2} = ∅.

This de�nes an algorithm suitable for execution on a systolic system [87], in which data
is pumped rhythmically and synchronously through a hard-wired processor network, more
or less like blood through the body.

In a common peer-to-peer system, communication is inherently asynchronous. This is
true not only for di�erent host pairs, but also for individual communication links: Even
though the links are full-duplex, sending and receiving need not happen at the same time.
A more adequate communication mode could be called full-duplex node mode, whereat,
during each round, each node may send to one node and receive from one node, possibly
but not necessarily the same one. To account for asymmetric links it would furthermore
be possible to generalize this to a mode whereat, during each round, each node may send
to q nodes and receive from p nodes, akin to the (pR, qS) mode regarded in [50], in which,
however, sending and receiving is mutually exclusive. Even so, this modeling approach
would be impractical: Using it in a real-life scenario would require not only the knowledge
of p and q, that may even be di�erent for every node, but also the network delays for
all host pairs because node u sending data to node v will result in node v receiving data
from u only after the generally unknown network delay. Also, it is clear that a symmetric
gossiping solution is determined by the minimum of p and q alone.

I will therefore disregard constraints at this detail level and only require ordinary full-
duplex constraints to hold for the entirety of the period of the communication scheme.
Within the period, I will treat transmissions as transmission events, singular in time, and
disregard, until Chapter 6, the time of reception. Since we seek a solution to the perpetual
streaming problem, I will also disregard above margin treatment.

De�nition 3.4.3. We let com(C, I) denote the multiset of one-way transmission events
[(u→ v) ∣ (u, v) ⊆ E] that are initiated during time interval I.

De�nition 3.4.4. We de�ne a periodic communication scheme of period T in two-way
mode as the unordered set C = {E0,E1, ...,Er−1} of some sets (matchings) Ei ⊆ E, where,
for each i ∈ [0..r − 1] and all (u1, v1) , (u2, v2) ∈ Ei, {u1, v1} ≠ {u2, v2} implies {u1, v1} ∩
{u2, v2} = ∅, and for all e ∈ E, e ∈ Ei ∩Ej implies i = j, and, for every interval I of length
T ,

r−1

⊎
i=0

[(u→ v), (v → u)∣(u, v) ∈ Ei] = com (C, I) .

For every i ∈ [0..r − 1], Ei is called a logical round in the two-way communication mode.

It is important to note that the chronology of transmission events (u→ v) is completely
unde�ned, i. e. the rounds may be executed in any order, even interleaved. Since every node
can communicate with a di�erent neighbor in each logical round, the scheme is equivalent
to a 1-periodic Fr scheme, i. e. a periodic scheme of a single round in which every node may
communicate in a full-duplex way with r neighbors. The grouping into logical rounds, which
originally served to express adherence to F1 communication constraints, is not strictly
necessary. However, since the actual communication scheme will attach further meaning
to each logical round, we will retain this notation.

3.4. COMMUNICATION AND AGGREGATION SCHEME 43

Communicated Payload

The communication scheme according to De�nition 3.4.4 only de�nes who communicates
with whom; so far, the content of the communication was left open. To this regard, we
de�ne the four symbols Φ,Θ,Ψ and Υ, which we will need later on to de�ne the actual
aggregation scheme.

De�nition 3.4.5. We let Φ (u, v) denote the set of information sources that are included in
messages sent from u to v . For vertex pairs (u, v) that are not part of the communication
scheme, it is de�ned as the empty set:

(u, v) ∉ C ⇒ Φ (u, v) = ∅

De�nition 3.4.6. We let Θ (u, v) denote the set of information sources received by node
u from node v. Plainly, it equals the set of information sources sent by node v to node u.

Θ (u, v) = Φ (v, u) (3.4.3)

De�nition 3.4.7. Analogous to Φ and Θ, which are sets of symbols, we de�ne Ψ (u, v)
and Υ (u, v) to denote, the aggregated information sent/received by node u to/from node
v, respectively.

Υ (u, v) = Ψ (v, u) (3.4.4)

Periodic Gossiping Communication Scheme in Two-Way Mode for the Fully
Allocated Hypercube

De�nition 3.4.8. In accordance with De�nition 3.4.4 we de�ne the periodic gossip-
ing communication scheme for the fully allocated hypercube as the unordered set C =
{E0,E1, . . . ,EL−1} of sets of vertex pairs that exchange information with

E` = {(u, v) ∣v = nb (u, `)}

being regarded as the communications corresponding to logical communication round ` or,
equivalently, network level `, denoted �`.

Hypercube Dissemination Scheme

The exchange of information sources is expressed in terms of Φ:

De�nition 3.4.9. For gossiping on the fully allocated hypercube we de�ne the set of
information sources that are included in messages sent from u to v = nb2 (u, `) as

Φ (u,nb (u, `)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{u} ∪ {Θ (u, s) ∣ s = nb (u, r)
∧ r ∈ [0..` − 1] }

(u,nb (u, `)) ∈ E`

∅ otherwise

Hypercube Aggregation Scheme

Analogous to Φ, the actual information from which the aggregate is formed is de�ned as
follows:

44 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

De�nition 3.4.10. For gossiping on the fully allocated hypercube we de�ne the informa-
tion sent by node u to node v = nb2 (u, `)

Ψ(u,nb (u, `))=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

f({g()} ∪

{Υ(u, s)∣s = nb (u, r) ∧ r∈[0..` − 1]})
(u,nb(u, `))∈E`

� otherwise

The �nal aggregation result is evaluated at all nodes u from all received information
along with the node's own sensor data:

agg = e(f({g()} ∪ {Υ (u, r) ∣r ∈ [0..` − 1]})) (3.4.5)

Some applications require an aggregate that excludes the node's own sensor data. This
applies, for instance, to audio conferencing (2.6.1), where each participant wants to hear
everybody else but not his own voice:

agg′ = e(f({Υ (u, r) ∣r ∈ [0..` − 1]})) (3.4.6)

The hypercube aggregation scheme is illustrated in Figure 3.4.3. The schematic �gure
shows how each node's preprocessed information, represented by a �lled rectangle in the
leftmost column, is aggregated and disseminated to all other nodes. The eight rows, de-
noted n0 to n7, represent the eight nodes of the network. Performing of the merging
function f is symbolized by the �+� operator.

The overall aggregation scheme constitutes a directed acyclic graph (DAG), with each
node forming a disjoint subgraph thereof. Figure 3.4.4 shows the dissemination DAG for
a regular network of 4 nodes.

Within each period, each node needs to perform the tasks shown in Figure 3.4.5. The use
case representation expresses freedom in the execution order of the node's tasks. Whereas
for one-shot gossiping at least the order of send operations is de�ned through causality (i. e.
each node can only send information it has previously received), for continuous gossiping
in modulo-time it is not: All information is potentially available from the previous period.
The resulting freedom of interpretation and its implications on overall latency are the
subject of Chapter 6.

Periodic Gossiping Communication Scheme in Two-Way Mode for the Incom-
plete Hypercube

Above we have only considered the case of periodic gossiping on the fully allocated hyper-
cube, where the communication links correspond directly to the edges of the hypercube and
the communication scheme is straightforward. But what happens when nodes are removed
from the hypercube?

Theorem 3.4.11. An instantaneous node failure in a previously complete L-level network
with 2L nodes will, until corrective action is taken, result for 2i nodes in the loss of 2L−i−1

sources with i ∈ [0..L − 1].
Proof. Let u denote the failing node. Let j = L − i − 1. Then i = L − j − 1. According to
De�nition 3.4.9, every neighbor v = nb(u, j) has obtained information from 2j sources via
u and disseminated to further 2L−j−1 − 1 nodes via �j+1⋯�L−1, i. e. 2L−j−1 including itself.
Substituting j for i yields the proposition.

3.4. COMMUNICATION AND AGGREGATION SCHEME 45

+ + + += = =+

+ + + += = =+

+ + + += = =+

+ + + += = =+

+ + + += = =+

+ + + += = =+

+ + + += = =+

+ + + += = =+

n0

n2

n3

n4

n5

n6

n7

n1

�0 �1 �2

Figure 3.4.3: Hypercube aggregation scheme for m = 3. Each open (�lled) rectangle repre-
sents one piece of information that is missing (present).

How can the gossip scheme be repaired without re-adding a node? When removing one
or more nodes from a fully allocated hypercube, two cases can be distinguished:

� If one or more nodes are removed from the top of the ID space, the result is an
incomplete but compact hypercube.

� If the nodes being removed are not at the top of the ID space, the resulting ID space
will have holes or gaps; the hypercube will be called porous.

Although the proposed scheme works equally for both cases, we begin by regarding the
more intuitive �rst case. The incomplete but compact hypercube was characterized in Sub-
section 3.3.2 as a series of complete hypercubes of descending sizes. It stands to reason that
within each of the hypercubes, the gossip scheme according to (3.4.8) can be applied to fa-
cilitate gossiping within the respective hypercubes. Consider nodes 8 and 9 of Figure 3.3.2,
which form a complete hypercube of size 2. In addition to their mutual �0-connection,
they are connected to �3-neighbors 0 and 1, respectively, to whom they both send their
H1 aggregation result. Nodes 0 and 1 will include this data from 8 and 9 in transmissions
to their �1 and �2-neighbors, but not �0-neighbors. (If node 0 would send data from node

46 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

#0

source to #1

to #2from #1

sinkfrom #2

#1

from #0 to #3

sink

source to #0

from #3

#2

from #0

sinksource

to #3

to #0from #3

#3

from #1 sink

from #2 to #1

source to #2

Figure 3.4.4: Dissemination DAG for a regular network of four nodes

Receive I(�`) from neighbor on �`

Combine I(�`) with I(n) and {I(�i)∣0 ≤ i < `}

Sample I(n)

Send I(n) to neighbor on �0

...and send it to neighbor on �`+1

Output total aggregate

∀` ∈ [0..L − 2]

Node n

Figure 3.4.5: Activities performed by each node in each period

8 to node 1, it would be duplicated because node 1 receives the data from node 9, too.)
Likewise, the data that nodes 0 and 1 receive from their �1 and �2-neighbors (but, again,
not �0-neighbors), they send to nodes 8 and 9, respectively. The corresponding dissemina-
tion graph is shown in Figure 3.4.6. Note that although nodes 8 and 10 are neighbors with
regard to the network topology, shown in Figure 3.3.3, they do not exchange information.

To generalize this scheme to the more general second case of porous hypercubes, two
per-node attributes are introduced:

� The summit of node u (written û) denotes a node's largest complete containing

3.4. COMMUNICATION AND AGGREGATION SCHEME 47

#0

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

source

to #1

to #2

to #4

to #8

from #0

from #1

sink

from #8

from #0

from #2

from #0

from #4

from #0

to #3

to #5

to #9

sink

to #6

to #10

sink

sink

sink

source

to #0from #9

from #1

from #3

from #1

from #5

from #1

to #7

sink

sink

sink

source

to #3

to #0

from #10

from #2

from #3

from #2

from #6

from #2

to #1

sink

sink

source to #2

from #3

from #7

sink

source to #5

to #6

to #0

from #4

from #5

from #4

from #6

to #7

to #1

to #2

source to #4

from #5

from #7

to #3

source

to #7

to #4

from #6

from #7

to #5

source to #6

source to #9

to #0

from #8

from #9

to #1

source to #8

source to #2

Figure 3.4.6: Dissemination DAG for incomplete allocation of 11 nodes

48 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

hypercube. The term becomes obvious from Figure 3.3.2.

� The maxlevel of node u (written u) denotes the highest level ` for that nb (u, `) exists.

With these, it is possible to de�ne the scheme as follows:

De�nition 3.4.12. We de�ne the periodic gossiping communication scheme for the in-
complete hypercube as the unordered set C = {E0,E1, . . . ,EL−1} of sets of vertex pairs
that exchange information with

E` = {(u, v) ∣v = nb (u, `) ∧ (` ≤ min (û, v̂) ∨ ` = u ∨ ` = v)}

being regarded as communications that correspond to logical communication round ` or,
equivalently, network level `, denoted �`.

De�nition 3.4.13. Accordingly, for gossiping on the incomplete hypercube we de�ne the
set of information sources that are included in messages sent from u to v = nb2 (u, `) as

Φ (u,nb (u, `)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{u} ∪ {s∣s = nb (u, r) ∧ r ≠ `
∧ ` ≥ min (r + 1, ŝ) }

(u,nb (u, `)) ∈ E`

∅ otherwise

Naturally, û and u are unknown to node v. Hence, each message from node u to
node v = nb (u, `) is annotated with u and min (` + 1, û), called the disposition level. The
recipient node v will use received information only for messages it sends on levels greater
or equal to the disposition level. In no case it will return the information to the original
sender. This ensures proper dissemination in incomplete hypercubes whilst preventing
redundant information paths. An imperative formulation of this scheme can be found in
Algorithm 7.1 on page 122.

3.5 Latency Overview

On its way from its source to its destination, each data packet experiences various delays,
summing up to the total latency8. This section provides a brief outlook on the more
detailed considerations of latency that follow in the subsequent chapters.

In overlay networks that use packet switched communication, delay falls into di�erent
classes, which are described below.

3.5.1 Network Delay

The time span between the commencement of sending of a packet by one node and the
instant it becomes available at its neighbor node is called single hop network delay or
simply hop delay. It consists of transmission delay, propagation delay, processing delay,
and queueing delay [124, 18, 72]. Due to network locality, hop delay di�ers across host
pairs and usually is not even symmetric.

In the following chapter, the source of network delay is explained in detail, along with
its main characteristics in the context of peer-to-peer networks, and how these can be
modeled and simulated.

8Throughout literature delay and latency are used with slightly di�erent connotations though generally
synonymously. In the remainder of this work, I will use the term delay, when referring to a contiguous
time span that I treat as atomic, whereas by latency I mean an aggregated sum of delays.

3.6. RELATED WORK 49

Important from an application's perspective is the time by which a packet will have
arrived with a high probability. We let χn1,n2,q denote the q-quantile of the delay it takes
to send a (�xed-sized) packet of samples from node n1 to node n2, that is, including all
network and processing delay. The choice of p determines the size of the network jitter
bu�ers used to compensate belated data packets. The size of those bu�ers is a compromise
because it de�nes the maximum lateness the bu�er can compensate and the additional
delay it causes.

The sum of all hop delays along an overlay path is referred to as multi-hop network
latency. Note that overlay paths have di�erent lengths as described in Subsection 3.3.2.
Hence, across di�erent pairs of overlay hosts, multi-hop network latency exhibits an even
greater variance. It is regarded in Subsection 6.1.1.

3.5.2 Wait Delay

The sojourn or bide time [96] of a packet, i. e. the time spent waiting, e. g. after arriving
at one node and before being relayed to another, is called wait delay. The sum of all wait
delays along an overlay path is referred to as wait latency. Overall wait latency strongly
depends on the nodes' timing mode accounting for the times at which each node sends
each packet. It is examined in detail throughout Chapter 6.

3.5.3 Input Delay

Sampling one packet length of consecutive samples on the source node obviously adds a
delay of one packet length: By the time the last sample of one packet is sampled, the �rst
sample is one packet length old.

3.5.4 Output Delay

In some applications the destination node will serialize and output (stream) the received
data one sample after another, e. g. playback audio data. This does not per se add addi-
tional delay: Admittedly, by the time the last sample of a packet is played, it has indeed
aged for one packet length in the output bu�er. However, this delay is already accounted
for with the input delay because the last sample did not age in the input bu�er. Still, the
output system (e. g. sound system) may add extra delay for mixing, re-sampling, digital-
to-analog conversion, etc.

3.5.5 Local Processing Delay

The local processing delay comprises time needed for any transport compression/decom-
pression, encryption/decryption and the performing of the data aggregation functions
e, f, g (see Section 2.3). Commonly, it is proportional to the data packet's size and inversely
proportional to the nodes' processing power.

3.6 Related Work

In the spirit of the hypercube or Hamming metric, I will below consider a piece of work
related i� it di�ers from the proposed approach in exactly one dimension, with the di-
mensions being topology, communication task, communication mode; and the proposed
approach being the vector (hypercube, gossiping, full-duplex/peer-to-peer).

50 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

3.6.1 Other Gossip Topologies

For a comprehensive theoretical discussion of gossiping on other network topologies, the
reader is referred to [65], summarized in Subsection 2.5.3. Also for practical applications
various topologies have been proposed:

Complete Graph

The complete graph topology is popular for its simplicity and robustness. At this, the
usual gossiping scheme employed with the complete graph is not the optimal F1 scheme
(for which a hypercube topology would really be su�cient) but rather a F* scheme where
every node sends to every node. While this incurs an e�ort of O (n), for some applications,
particularly with very small network sizes, it may be a viable alternative.

In the context of audio conferencing, it was �rst proposed as full-mesh conferencing by
[93]. In [76] the approach was lifted to an auditory virtual environment and �new voice
communication medium, which the author calls voiscape�. Because the complete graph
is only feasible for a few number of nodes, in MutualCast [94] only a small number of
super nodes form a fully connected mesh that the other nodes connect to. In Ravitas, �a
Realistic Voice Chat Framework for Cooperative Virtual Spaces� [152], a complete graph
is established only for participants whose avatars are within the same hexagonal cell.

Bus / Multicast

Where multicast is available, each node needs only to send to the multicast channel. This
is for instance used by MiMaze [19], a multiplayer game developed at INRIA. Because of
the general unavailability of multicast, it has so far played a subordinated role.

Tree

When it comes to more substantial network sizes, the manageable tree topology achieves
acceptable gossip performance despite being suboptimal.

In [126, 127] a periodic gossiping approach called Distributed Partial Mixing is pre-
sented. The approach comprises combining only some of the streams and transporting
other streams separately where bandwidth permits. Their single tree approach, however,
seems to be aimed at scenarios with peers behind mixer network components at network
boundaries, e. g. corporate gateways or dial-up servers rather than mesh networks like the
Internet and individual peers.

peerTalk, in an approach called decoupled distributed processing [58], splits the au-
dio stream processing into two phases, an aggregation phase that mixes audio stream of
all active speakers into a single stream via a mixing tree and a distribution phase that
distributes the mixed audio stream to all listeners via a distribution tree.

The tree topology is of especial importance to decentralized data fusion because it allows
to overcome data incest, i. e. the fusion of estimates that were descended from the same data
and are therefore not conditionally independent any more. In [57], the problem of double
counting is �rst considered for di�erent topologies (fully connected, tree connected and
networks with multiple paths), and the concept of Channel Filters (CF) for the removal of
common information in tree connected topologies is developed.

3.6. RELATED WORK 51

2-Tree

[143] proposes a 2-tree topology, that is more resilient to node failures, which in 1-tree or
singly connected networks cause a separation of the network. While latency-wise not as
e�cient as the hypercube topology, the mesh topology of the 2-tree network appears to
be a particular �t for wireless (ad-hoc) sensor networks, where each node can contact only
those of the others that are in its vicinity.

Path

[137] proposes two methods based on independent cliques whereas �each clique receives
a partial estimate from its preceding clique, and updates the partial estimate with local
observations made within the clique. Then, it forwards the updated estimate to the next
clique�. This pipelined distribution is scalable with regard to bandwidth but leads to a
high latency. The authors' second algorithm entails forwarding the estimates to a fusion
center to obtain the �nal output.

3.6.2 Other Communication Tasks

The related solutions to the broadcast problem and the accumulation problem in two way
mode on the hypercube can be derived as trivial special cases of the solution to the gossip
problem. For both of these lesser problems a tree topology would be su�cient. Using a
hypercube topology anyway may, however, present some advantages, as pointed out below.

Broadcasting

HyperCuP [134] is a hypercube shaped decentralized peer-to-peer network that o�ers
optimal times for multipoint search or broadcast queries. Any node can be the origin of a
broadcast in the network. Node failures are countered by neighboring nodes covering for
failed nodes.

A noteworthy approach is taken by the Julia content distribution network [14, 13] that
solves the broadcasting problem by �rst splitting the �le to be distributed into pieces and
sending one piece to each consumer, followed by a hypercube gossiping phase where all
consumers exchange the pieces they have received.

In [43] degree and time bounded broadcast networks are examined. For broadcast time
equaling degree, the hypercube topology is optimal.

Accumulation

Accumulation is a dissemination problem frequently encountered in sensor networks when
the information of all sensors needs to be accumulated at one node, usually some sort of
base station. An important scenario being regarded is that of wireless ad-hoc sensor net-
works. At this, communication between arbitrary nodes is, if not impossible, oftentimes
uneconomic. According to Frii's transmission equation, transmission power requirements
increase quadratically with distance between sender and receiver. For this reason, most
approaches employ localized path, tree or mesh topologies instead of assuming free commu-
nication between arbitrary nodes. Although for accumulation a tree topology is su�cient,
a hypercube can provide fault tolerance and load balancing, which is of especial impor-
tance for battery powered sensor nodes. The hypercube based approach presented in [33]
employs variable subsets of the full gossiping scheme exercised in this dissertation in order
to reduce energy consumption and latency.

52 CHAPTER 3. PERIODIC PEER-TO-PEER HYPERCUBE GOSSIPING

3.6.3 Other Communication Modes

Before the emergence of communication-centric, asynchronous distributed computing and
peer-to-peer systems, one of the main topics in computer science was the study of parallel
algorithms and architectures [65]. In [87] algorithms and architectures suitable for Very
Large Scale Integration (VLSI) are characterized. The regarded communication mode is
that of systolic communication. At this, data is pumped rhythmically through a proces-
sor network similar to the pulsed �ow of blood through the body. In one-way pipeline
mode, data may �ow in only one direction, whereas in two-way pipeline mode it �ows in
both directions simultaneously. The networks considered are linear, square, and hexagonal
arrays, as well as trees and shu�e-exchange networks. [65] restricts systolic schemes by
allowing an edge to be active only once per cycle of length p, at which the scheme is called
p-periodic.

The actual design, building and utilization of hypercube based parallel computers began
in the early 1980s. Notable specimen, described in Chapter 2, were the Caltech Cosmic
Cube [136], the Intel IPSc [75], and the nCube [61].

In such a distributed memory multiprocessor, a communication transaction is an inter-
play of both hardware and software activity. The H1 model, described in Subsection 2.1.4,
makes the weakest assumptions about both hardware and software capabilities, whereas
the full-duplex simultaneous or F* mode corresponds to the use of two-way pipeline pro-
cessors as described in [87]. In [50] the gossip problem is considered for the (pR, qS)
communication mode, whereat during each round each node can receive information from
at most p nodes or can send information to at most q nodes. Speci�cally, for (1R, 1S), i. e.
H1 mode, the lower bound of 1.44 log2N rounds is proven for hypercubes and complete
graphs alike. The same is independently proven by [86]. Furthermore, the H1, F1, and F*
bounds are compared with the actual performance of algorithms on the nCube, which is
shown to lie somewhere in between the H1 and the F1 mode. In [85] hypercube gossiping
is regarded in the half-duplex simultaneous or H* communication mode, where each node
can participate in an unlimited number of half-duplex communication activities at each
time step, and in the H1 mode, also called half-duplex pairwise model, whereat each node
can participate in just one half-duplex communication event at each time step. For H1 the
upper bound of 1.88k rounds for k-dimensional hypercubes is proven.

[96] introduces perpetual gossiping as a new information dissemination problem in which
gossiping is to occur continuously but with restricted use of the network. The communica-
tions used by the gossip process are limited to k concurrent full-duplex calls per time unit
to allow the network to be used for other purposes.

More recently, in [51] a family of half-duplex gossiping algorithms is presented. Its
members share the same structure but di�er�as a function of a combinatorial parameter�
in the strategy used to discipline the right to transmit. Gossip complexity can thus be tuned
in between quadratic and linear time.

Chapter 4

Modeling Latency in Peer-to-Peer

Networks

Contents
4.1 The Need for Realistic, E�cient, and Usable Network Models 55

4.2 Characterizing Internet Delay . 56

4.2.1 Internet Structure . 56

4.2.2 Delay Components . 57

4.2.3 Observations . 57

4.3 Related Work . 58

4.3.1 Statistical Models . 59

4.3.2 Global Network Positioning (GNP) 59

4.3.3 Network Simulators . 60

4.3.4 Topology Generators . 60

4.4 DELFOI�A Hybrid Modeling Approach 60

4.4.1 Assumptions . 60

4.4.2 Implementation . 61

4.4.3 Evaluation . 62

4.5 Parametrizing DELFOI from HTTP-Measurements 65

4.5.1 Measurement Methodology . 65

4.5.2 Parametrization Methodology . 66

4.5.3 Results . 67

4.6 Conclusion . 70

One of the main contributions of this dissertation is the characterization and mini-
mization of latency in periodic hypercube gossiping, presented in Chapter 6. Subsequent
chapters attend to the implementation and application of these methods. The performance
evaluation of these contributions clearly requires a network model that is, on the one hand,
an admissible simpli�cation of the true behavior of the Internet and, on the other hand,
e�cient enough to facilitate extensive simulations with regard to the number of hosts and
to simulation time.

Performance evaluation of peer-to-peer (P2P) systems can usually only be achieved by
means of simulation. At this, network simulators employ network models to reproduce the

53

54 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

characteristics of the network, which are being regarded as a given. When designing and
evaluating large scale distributed systems, the behavior of the network needs to be care-
fully taken into account, especially for P2P streaming applications, which revolve around
communication. A network model that does not honor fundamental characteristics of the
network will likely lead to misleading simulation results. However, there is a limit to the
accuracy of the model. The simulation of typical P2P systems involves a considerable num-
ber of nodes and exchanged messages, especially for streaming applications. Hence, due
regard must be given to the e�ciency of the model. Finally, an underlay network model
should lend itself to convenient con�guration and parametrization from data that can be
obtained in representative amounts.

All in all, e�cient, realistic, and usable network models are fundamental to simulating
distributed systems and protocols. A network model used for simulation and evaluation
of P2P streaming systems should account for proximity, queueing delay, and jitter, yet
compute in little time, scale well with respect to the number of hosts, and require no
elaborate con�guration of parameters.

In this chapter I present an e�cient network model as a hybrid approach in the sweet
spot between mere analytics and extensive simulation. It is based on measured data and
exhibits realistic network behavior by providing location- and load-dependent latency, jit-
ter and packet loss samples for connections between arbitrary hosts world-wide. This
makes it especially well suited for the simulation and evaluation of P2P streaming systems.
The model features only linear computation and memory requirements with respect to the
number of hosts. It bene�ts from the �nding that network delay loss can be conveniently
divided into a core network part and a stateful local Internet access part: The former is
location- and distance-dependent but from the user's perspective stateless, whereas the
latter is stateful. The core network characteristics are modeled using global network posi-
tioning (GNP), i. e. by embedding all hosts into an n-dimensional delay space and interpo-
lating delays from their distance before adding regional jitter. The local characteristics are
obtained from two queues modeling the send bu�ers within the local uplink1 and down-
link. The evaluation shows that the simulated delay behavior under varying load much
closer approximates real network delay measurements than other models without topology
modeling, such as OverSim's Simple-Underlay [8], while still requiring only moderate
resources.

The parametrization of the model is established from co-operative HTTP delay mea-
surements, exhibiting a broad range of network performance observations. The GNP co-
ordinates are computed using a novel parallelized relaxation algorithm based on Vivaldi
[38] that facilitates the computation of GNP coordinates without depending on explicit
landmarks.

The remainder of this chapter is organized as follows: Section 4.1 points out the need
for realistic, e�cient and usable network models. Section 4.2 illustrates the structure of
the Internet and its e�ect on the composition of network delay. Section 4.3 outlines various
approaches to modeling the Internet and end-to-end delay. In Section 4.4, the DELFOI
network model is developed. Section 4.5 shows how the model is parametrized from large
scale HTTP measurements. Section 4.6 concludes the chapter with a summary and a cue
to possible future extensions.

1The term uplink denotes the connection from data communications equipment toward the network
core. It is also known as an upstream connection. The inverse is called downlink.

4.1. THE NEED FOR REALISTIC, EFFICIENT, AND USABLE NETWORKMODELS55

4.1 The Need for Realistic, E�cient, and Usable Net-

work Models

With increasing complexity, simulation becomes more and more crucial for the evaluation
of large scale distributed systems and protocols. Even though testbeds such as Planet-
Lab are available, they may not represent the Internet well enough: With most of their
hosts connected to well-provisioned research networks, they may lack the heterogeneity
and characteristics of access networks present in the commercial Internet [44]. But also
the large scale and consequent setup e�ort of P2P systems often makes simulation the only
choice. At this, overlay networks are instantiated on discrete event (network) simulators,
which in turn employ (underlay) network models to reproduce the characteristics of the
network.

A network model suited for the simulation of P2P networks should realistically repro-
duce typical network characteristics, be e�cient enough to enable simulations with a high
number of nodes, and should be easy to parametrize, con�gure and use.

Realism

When designing and evaluating distributed systems, particular regard must be given to
the behavior of the network. Obviously, a simulation result can only be as meaningful
as the assumptions that were �xed�knowingly or naïvely�with the choice of network
model. Particularly, when evaluating P2P networks, the following characteristics should
be considered:

The fact that some peers (e. g. ones that are geographically closer to each other) may
experience smaller latency between themselves, is referred to as network locality and re-
garded in several P2P networks [129, 131, 125]. Yet, bandwidth and latency not only di�er
between pairs of peers but, due to the asymmetry of residential broadband connections,
also between directions. But even for a given path, latency is not constant but varies over
time�a �uctuation known as jitter. Depending on the state of development of the public
infrastructure delay, jitter, and packet loss di�er drastically for di�erent parts of the world,
whereas in turn, within each region, bandwidth varies greatly. Due to queueing e�ects,
latency may also depend on past transmissions.

A network model that disregards these characteristics of the network will likely lead to
misleading simulation results, especially for streaming applications with real-time require-
ments.

E�ciency

Although all of above features can be reproduced with network simulators, for the simula-
tion of large scale P2P networks, the associated e�ort is prohibitive.

Already, the measurement and parametrization of a su�ciently large portion of the
Internet means a considerable e�ort, let alone the computational complexity and memory
requirements for the simulation [59, 78]. The problem is multiplied in the case of P2P
streaming applications, whereat every node emits packets with high frequency.

Consequently, the network model in question ought to use shortcuts and optimizations
in order to emulate network behavior without simulating it in every detail.

56 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

Usability

Besides its computational complexity and memory requirements, a suitable model's con-
�guration and parametrization with realistic data may be non-trivial, too. Tedious con�g-
uration and parametrization lead to researchers still choosing rather simple models.

Samples for network parameters may be hard to obtain, even for a small number of
hosts [78]. Firewalls that come enabled with access routers nowadays prevent obtaining
measurements in representative amounts, e. g. by ping probing random hosts.

A network model should lend itself to convenient con�guration without the need to
hand-tune parameters. The required measurement data should be obtainable in represen-
tative amounts su�cient for large scale simulations.

4.2 Characterizing Internet Delay

We de�ne (single) hop (Internet) delay as the time span between the commencement of
sending a packet at one node and the instant it becomes fully available at the neighbor
node.

To understand the characteristics of this hop delay, it is obligatory to �rst regard the
structure of the Internet.

4.2.1 Internet Structure

Illustrated in Figure 4.2.1, the Internet is composed of many autonomous systems (AS),
such as networks of enterprises, Internet service providers or universities, that are connected
to one or more other AS by boundary routers [141, 124].

An IP packet sent from a typical endpoint with consumer Internet access is �rst mod-
ulated by the DSL or cable modem, traverses an uplink (e. g. ADSL or cable) to the
network of the �rst endpoint's ISP, and is then separated and demodulated by the digital
subscriber line access multiplexer (DSLAM) or cable modem termination system (CMTS).
The packet then passes through a broadband remote access server (BRAS), that enforces
quality of service policies, before it crosses several routers of autonomous systems. At the
receiver's access provider, the packet passes again through BRAS and CMTS or DSLAM
and is delivered via the downlink to the receiving modem and host.

4.2. CHARACTERIZING INTERNET DELAY 57

Cable ModemDSL Router

DSLAM
CMTSBRAS

AS Boundary Routers

Core Network

Access Network

Autonomous Systems

HostHost

Backbone

ISP1:
Telco

ISP2:
Cable Operator

BRAS

Figure 4.2.1: Structure of the Internet

4.2.2 Delay Components

Given this structure, the causal and spatial composition of delay can be itemized:
Causally, hop delay consists of

� transmission delay (i. e. packet size divided by link speed),

� propagation delay (i. e. physical distance divided by propagation speed of medium),

� processing delay, and

� queueing delay [18, 72].

Spatially, at least three sections with di�erent delay characteristics can be discerned along
a consumer-to-consumer network path:

� uplink, i. e. consumer host to ISP (source access network),

� ISP-to-ISP (core network), and

� downlink, i. e. ISP to consumer host (destination access network).

4.2.3 Observations

Spatially, a substantial amount of delay originates in the access network, such as in the
case of typical consumer ADSL lines. ADSL (�Asymmetric Digital Subscriber Line�), as
the name implies, is characterized by a bidirectional data channel that is asymmetric: The
downstream bandwidth is greater than the upstream one. This design is based on the

58 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

assumption that the typical consumer in fact basically consumes information and the up-
stream is mainly used to request downstream data. However, with the adoption of P2P
systems, this assumption no longer holds. The communication is now among peers; conse-
quently each participant receives and sends data in more or less equal parts. The uplinks
of endpoints usually form the bandwidth bottlenecks with noticeable send delay whereas
paths within and between AS provide relatively high bandwidths. Transmission delay (i. e.
packet size divided by link speed) is de�ned by this bottleneck, i. e. the minimum band-
width along the path. Moreover, increased amounts of sent data easily cause congestion
before the upstream link of the modem, i. e. queueing delay is built-up by dispatching data
packets faster than they can be transmitted through the connection's bottleneck. This can
lead to considerable queueing delays in P2P systems. Finally, DSL providers often employ
interleaving as part of their forward error correction. At this, the data is rearranged prior
to being sent in order to increase the chance of reconstructing the data in the case of bursts
of line noise. According to [81], this accounts for another 20�40ms of delay. As for the core
network, the remaining queueing delay obviously also depends on the level of congestion,
but is, at least for fully developed regions, considerably smaller and e�ectively indepen-
dent from the clients past transmissions. With regard to propagation delay, [78] shows
that round trip times are indeed largely proportional to the geographical distance between
the hosts. Processing delay on a network path is roughly constant because, independent of
packet size, it takes almost the same number of machine instructions to process a packet
[72]. E�ectively, the resulting end-to-end delay between two hosts, and for packets of a
certain size, is characterized by a constant, minimum delay augmented by a variable, sup-
plemental component. The constant portion is determined by transmission, propagation
and processing delay. The supplemental component is determined by queueing and media
layer retransmissions and commonly referred to as jitter.

Figure 4.5.7 shows an estimate of minimal hop delay for packets of 400 bytes between
arbitrary hosts in Germany, March 2010. The estimate was obtained using the DELFOI
model, developed in the course of this chapter and parametrized with measurement data
obtained from speedtest.net.

Worst Case Delay

Due to the Internet's heterogeneous nature, end-to-end delay is long tailed [64]. Hence,
considering maximum network latency, either over time or over host pairs, is of little use.
In theory, IPv4 packets include a time-to-live (TTL) �eld, denoting the number of seconds
after which the packet should be destroyed [68]. As the �eld is 8 bit large, this allows for
a maximum hop delay of 255 seconds. �In practice, very few, if any, IPv4 implementations
conform to the requirement that they limit packet lifetime� [42]. In any case, the practical
value of this time value is limited. Accordingly, it has been replaced by a �Hop Limit� �eld
in IPv6. Experiments in Subsection 4.4.3 show that several seconds of hop delay can easily
be provoked by saturating Internet access links.

4.3 Related Work

Internet delay can be modeled on various layers of abstraction and levels of detail, as
realized by the related work summarized below.

speedtest.net

4.3. RELATED WORK 59

4.3.1 Statistical Models

Statistical models condense the behavior of the Internet into a formula. Their advantages
are simplicity, minimal computational e�ort, and virtually no memory costs. In fact,
[113] shows that end-to-end round trip times (RTT) can be adequately approximated by a
constant plus gamma distribution as long as the time interval over which the distribution
is estimated is kept short. Remarkably, this is found to be true for all network paths
studied (regional, backbone, and cross-country) and for all observed loads, although the
parameters and the accuracy of the approximation vary.

In [63] the use of a single probability distribution together with parametric modeling
is generalized into a K-bin histogram feeding a Support Vector Machine (SVM) which is
then sampled using the Slice Sampling algorithm.

Statistical models may be well su�cient if the system under evaluation uses a ho-
mogeneous portion of the net and relationships between individual network hosts (e. g.
proximity) and stochastic dependence of consecutive values are irrelevant. However, it is
unsuitable if the system under test depends on locality or (region dependent) jitter.

4.3.2 Global Network Positioning (GNP)

Global Network Positioning [115] uses distance in some Euclidean space to compute delay.
The overlay network simulation framework OverSim as described in [8] features a network
model called Simple-Underlay that uses the geographical distance between two Earth
locations to estimate network delay:

�For this, each node is placed into a two-dimensional Euclidean space. In addi-
tion the node is assigned to a logical access network characterized by bandwidth
bn, access delay dn and packet loss, so that heterogeneous access networks can
be simulated. The end-to-end packet delay de of packet P with length lP be-
tween overlay nodes A and B is then calculated as follows

de = d1 +
lP
b1

+ c ⋅ ∥A −B∥2 + d2 +
lP
b2

(4.3.1)

where c is constant.�2

In [78] the validity of using geographical distance to determine delay is evaluated. It is
shown that there is a proportionality of the RTT to the length of the transmission medium,
however, for some regions (e. g. Africa, South Asia) the observed delay is much higher than
the mere distance suggests. As a consequence, the authors provide a synthetic, higher
dimensional distance model that better models the observed delays. To this end, the simu-
lation hosts are placed into the space in such a way that the computed minimum round trip
times approximate the measured distance as accurately as possible, based on the approach
of [114]. The authors provide both models in their discrete event based P2P simulator
PeerfactSim.KOM that allows for simulation of P2P protocols and applications.

The Vivaldi coordinate system [38] augments each (2-dimensional) Euclidean coordi-
nate with an additional positive, directionless �height� value to accommodate access link
delays: The Euclidean distance based end-to-end delay estimation is increased by a delay
value proportional to the sum of both nodes' height values. While this approach notably
increases prediction accuracy over simple 2-D or 3-D coordinates, it does not account for
jitter, access link queueing, or delay dependence on packet size.

2A more recent version of OverSim now also includes access link queueing as well as �exible GNP
dimensions.

60 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

4.3.3 Network Simulators

While statistical models try to mimic some statistical aspects of the Internet as a black
box from the outside, network simulators model the inner workings of the Internet, includ-
ing backbone networks and routing protocols. Network simulators operate on a network
graph including bandwidth and capacity of links and routers, commonly called topology.
Notable examples are ns-2/ns-33 and OMNeT++ [145] in conjunction with the INET
Framework 4.

Obviously, a detailed model exhibits a behavior that resembles much closer the behavior
of the real Internet and can be used to reproduce various phenomenons (e. g. packet-
reordering, asymmetric routes, packet compression, triangle inequality violations) and, for
instance, analyze bene�ts of access network aware overlay networks [8]. However, the
Internet router level topology is very hard to capture because of its huge size and its
dynamic changes. Also, the associated simulation e�ort is considerable [100].

4.3.4 Topology Generators

In many cases the actual topology of the Internet is irrelevant to the evaluation. Instead
of simulating the real Internet, topology generators attempt to generate a network graph
whose structure resembles the one of the Internet [99]. This obviates the need for huge
Internet maps but still leaves the simulation e�ort. Notable specimen include GT-ITM
[26], BRITE [110] and Inet [149].

4.4 DELFOI�A Hybrid Modeling Approach

To answer a question of delay between two arbitrary Internet hosts in the absence of
total knowledge is an oracle's task. DELFOI5 takes an educated guess by combining
PeerfactSim.KOM's GNP-based delay and jitter estimation [78] with a simulation model
of a local Internet access link.

4.4.1 Assumptions

The DELFOI model rests on the following assumptions in particular:

� The bulk of nodes in large scale P2P systems is comprised of (home) computers
connected to the Internet via some kind of access link, e. g. DSL, cable or dial-up
modem.

� The access link is the bottleneck in such an end-to-end Internet connection.

� The core network congestion caused by an individual user is negligible.

From these assumptions follows that the delay of an end-to-end connection can be be
divided into two characteristic classes:

1. When there is only little load on the access links, the delay is characterized by the
sum of the deterministic upstream transmission delay, the stochastic core network
delay, and the deterministic downlink transmission delay on the receiving side. This

3http://www.isi.edu/nsnam/ns/
4http://inet.omnetpp.org/
5Delay Estimation Localized For OMNeT++/INET

http://www.isi.edu/nsnam/ns/
http://inet.omnetpp.org/

4.4. DELFOI�A HYBRID MODELING APPROACH 61

agrees with the analysis of [72] and the delay models of OverSim Simple-Underlay
[8] and PeerfactSim.KOM.

2. When the access link is under full load, however, signi�cant additional delay can
result from packets queueing before the uplink. In this case, end-to-end delay is
easily dominated by this queuing delay.

The PeerfactSim.KOM simulator uses the following estimation to model Internet delay:

delay (H1,H2) =
RTTmin

2
+ jitter (4.4.1)

The minimum round trip time RTTmin is determined by the Euclidean distance in the
D-dimensional delay space:

RTTmin =

¿
ÁÁÀ D

∑
i=1

(cH1,i − cH2,i)
2

Jitter is sampled from a log-normal distribution f (x;µ,σ) with the probability distribution
function:

f (x;µ,σ) =
⎧⎪⎪⎨⎪⎪⎩

1√
2πσx

exp (− 1
2
(lnx−µ

σ
)2) ifx > 0

0 otherwise
(4.4.2)

The parameters µ and σ are adjusted in such a way that both the expectation and the
inter-quartile-range value match the target (e. g. measured values).

DELFOI extends this PeerfactSim.KOM estimation (4.4.1) by models of each end's
Internet access link. The one-way end-to-end delay for a packet of size lP thus becomes:

delay (H1,H2, lP , S) = accessuplinkH1
(lP , SuplinkH1

) + RTTmin

2

+ jitter + accessdownlinkH2
(lP , SdownlinkH2

) (4.4.3)

Each of the two access links is modeled as two, currently in�nite, queues�one for the
uplink, one for the downlink�with a speci�c service bandwidth (bandwidthx) that is pro-
portional to the size of the current packet as well as a host speci�c constant access network
delay (andzx). The delay of access link x takes the queue �ll level queuelevelx (Sx) into
account which depends on the current state Sx of the queue.

accessx (lP , Sx) =
queuelevelx(Sx) + lP

bandwidthx
+ andzx

4.4.2 Implementation

Figure 4.4.1 shows the architectural overview of the DELFOI model. The overall im-
plementation is based on the discrete event simulation environment OMNeT++ [145].
Within OMNeT++ one particularly notable model/extension is the communication net-
works simulation package called INET Framework4, that contains models for various
Internet protocols. DELFOI extends the INET Framework by an abstraction�a mod-
ule called InternetCloud�to which any number of StandardHosts can be connected by
their PPP interfaces. InternetCloud routes all packets between connected hosts, after de-
laying them by an amount depending on source and destination address, subject to the

62 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

delay model described in Section 4.4. The GNP and jitter delay computation code is based
on PeerfactSim.KOM [119] which is a discrete event based P2P simulator written in
JAVA. In order to make the PeerfactSim.KOM model usable within OMNeT++, the
delay related code portions had to be ported from JAVA to C++ �rst. The resulting li-
brary gnplib6 can read measurement data �les in PeerfactSim.KOM's XML-based �le
format and provides delay data through the module GeoLocationOracle.

de
it
us

de it us

+ + + + +

gnplib

OMNeT++

DELFOI

Figure 4.4.1: DELFOI architectural overview

4.4.3 Evaluation

In the following experiments, the accuracy and performance of DELFOI is evaluated. In
the experimental setup, one �rst host, subsequently called Sender, that has high speed
Internet access, sends ICMP probe packets (�pings�) of varying size to a second host,
subsequently called Recipient, with lower speed Internet access, that sends them back to
the �rst. The packet sizes were chosen arbitrarily but contrasting, without exceeding the
MTU. To send the ICMP packets, the ping program from iputils [90] was modi�ed to
send these di�erently sized packets consecutively without additional intermittent delay. At
Sender, all packet send and receive events are recorded with the capture tool and packet
analyzer tcpdump.

Parametrization for this evaluation was done using the results of real-world measure-
ments on reference hosts in Germany having no �rewall in the DSL modem. Each host's
Internet access speed was measured using the free service provided at www.speedtest.net.
The measurements produced 93,990Kbps downstream, 55,958Kbps upstream for Sender
and 2,954Kbps downstream, 373Kbps upstream for Recipient. The constant portion of
the access link delay for Recipient was determined by measuring the round-trip times of
two di�erently sized ICMP packets sent to the broadband remote access server (BRAS)
and extrapolating the time for a zero-sized packet, yielding 44ms.

6http://sourceforge.net/projects/gnplib

www.speedtest.net
http://sourceforge.net/projects/gnplib

✹✳✹✳ ❉❊▲❋❖■✖❆❍❨❇❘■❉▼❖❉❊▲■◆●❆ ❘❖❆❈❍ ✻✸

❆❢❡❝♦♥❝❧✉❞✐♥❣❤❡❡❛❧✲✇♦❧❞♠❡❛✉❡♠❡♥✱❤❡♠♦❞❡❧✇❛❝♦♥✜❣✉❡❞✇✐❤❤❡❛❜♦✈❡
✈❛❧✉❡✳ ❚❤❡❡♠❛✐♥✐♥❣ ♠♦❞❡❧♣❛❛♠❡❡ ✇❡❡♦❜❛✐♥❡❞❢♦♠ ❤❡❢♦❧❧♦✇✐♥❣ ❡❛❧✇♦❧❞
♠❡❛✉❡♠❡♥✿

❼❚❤❡❤♦ ❧✐ ❛♥❞❤❡●◆ ❝♦♦❞✐♥❛❡✇❡❡❞❡✐✈❡❞❢♦♠❘❚❚♠❡❛✉❡♠❡♥ ♣❡✲
❢♦♠❡❞❢♦♠❆✉❣✉ ✷✵✵✼❜② ❤❡❈❆■❉❆ ▼❛❝ ♦❝♦♣✐❝❚♦♣♦❧♦❣② ▼❡❛✉❡✲
♠❡♥ ♦❥❡❝ ✼❛❞❡❝✐❜❡❞✐♥❬✼✽❪✳

❼❚❤❡ ❡❣✐♦♥♣❡❝✐✜❝❥✐ ❡♠❡❛✉❡♠❡♥ ✇❡❡♦❜❛✐♥❡❞❢♦♠❤❡ ✐♥❣❊❘ ♦❥❡❝ ✽

❛❞❡❝✐❜❡❞✐♥❬✼✽❪✳

❍♦ ❙❡♥❞❡ ❛♥❞❘❡❝✐♣✐❡♥✇❡❡❝♦♥♥❡❝❡❞✈✐❛❤❡❉❊▲❋❖■■♥❡♥❡❈❧♦✉❞✳ ❚❤❡
●♥♣◆❡✇♦❦❈♦♥❢✐❣✉❛♦ ❛✐❣♥ ❛♥❞♦♠■ ❛❞❞❡❡ ♦ ❤❡❤♦ ❢♦♠❛♣♦♦❧♦❢■
❛❞❞❡❡❛♥♥♦❛❡❞✇✐❤●◆ ♣♦✐✐♦♥✳ ❆❝❝♦❞✐♥❣ ♦ ✐♥❣❊❘✱❘❚❚❥✐❡❢♦♣❛❝❦❡
❢♦♠❛♥❞♦●❡♠❛♥②✐ ❞✐ ✐❜✉❡❞✇✐❤❛♥❡①♣❡❝❡❞✈❛❧✉❡♦❢✶✳✻✽♠❛♥❞❛♥✐♥❡✲✉❛ ✐❧❡
❛♥❣❡♦❢✷✳✷✺♠✳ ❆❧♦❣✲♥♦♠❛❧❞✐ ✐❜✉✐♦♥✇❛✜ ❡❞❛✉♦♠❛✐❝❛❧❧②♦❤❡❡✈❛❧✉❡❛♥❞
✉❡❞❛ ♦✉❝❡❢♦ ❛♥❞♦♠❥✐❡✈❛❧✉❡✳ ❚❤❡●♥♣◆❡✇♦❦❈♦♥❢✐❣✉❛♦ ❛♥❞♦♠❧②❝❤♦❡
❤❡♣❡✉❞♦■ ❛❞❞❡ ✶✾✹✳✾✺✳✷✺✵✳✻✾❢♦❙❡♥❞❡❛♥❞✶✸✹✳✾✻✳✷✻✳✶❢♦❘❡❝✐♣✐❡♥ ❢♦♠❤❡❞❛❛
❡✳❚❤❡♠✐♥✐♠✉♠♦✉♥❞✲✐♣✐♠❡❛❞❡❡♠✐♥❡❞❜② ❤❡●♥♣▲❛❡♥❝②▼♦❞❡❧❜❛❡❞♦♥❤❡
❈❆■❉❆❞❛❛✇❛✼✳✹✸♠✳

✵ ✶ ✷ ✸ ✹ ✺

✵✳
✵✵

✵✳
✵
✷

✵✳
✵
✹

✵✳
✵
✻

✵✳
✵
✽

✵✳
✶
✵

■♥❛♥♦❢■❈▼ ❡✉❡ ❛♥♠✐ ✐♦♥❬❪

❘
❚
❚
❬
❪

✐③❡❂✻✹ ✐③❡❂✶✵✷✹

♠❡❛✉❡❞
✐♠✉❧❛❡❞✿❉❡❧❢♦✐
✐♠✉❧❛❡❞✿❙✐♠♣❧❡✲❯♥❞❡❧❛②

❋✐❣✉❡✹✳✹✳✷✿❘♦✉♥❞✲✐♣✐♠❡❢♦✶✵✵✰✶✵✵■❈▼ ♣❛❝❦❡ ♦❢✐③❡✻✹✱✶✵✷✹❜②❡✱❡♥❛
❛♥✐♥❡✈❛❧♦❢✷✺♠

■♥❤❡✜ ✉♥✱✶✵✵■❈▼ ♣❛❝❦❡ ✇✐❤❛ ✐③❡♦❢✻✹❜②❡ ✇❡❡ ❡♥✱❢♦❧❧♦✇❡❞❜②
✶✵✵♣❛❝❦❡ ✇✐❤❛ ✐③❡♦❢✶✵✷✹❜②❡✳ ❚❤❡❡♥❞✐♥❡✈❛❧✇❛ ✷✺♠✳ ❋✐❣✉❡✹✳✹✳✷❤♦✇
❡❛❝❤♣♦❜❡✬ ♦✉♥❞✲✐♣✐♠❡♣❧♦❡❞♦✐ ■❈▼ ❡✉❡ ♣❛❝❦❡ ❡♥❞✐♥❛♥✳❚❤❡❜❧❛❝❦

✼❤ ♣✿✴✴✇✇✇✳❝❛✐❞❛✳♦❣✴♣♦❥❡❝ ✴♠❛❝♦❝♦♣✐❝✴
✽❤ ♣✿✴✴✇✇✇✲✐❡♣♠✳❧❛❝✳ ❛♥❢♦❞✳❡❞✉✴♣✐♥❣❡✴

http://www.caida.org/projects/macroscopic/
http://www-iepm.slac.stanford.edu/pinger/

64 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

circles show the reference measurements, while red triangles and blue squares represent
delays simulated by DELFOI according to (4.4.3) and Simple-Underlay, i. e. (4.3.1)
according to [8], respectively. The simulated values of both models adequately approximate
the reference values. The constant o�set does not surprise, since the hosts were chosen
randomly from a pool of hosts in that region. As expected, the increase in packet size at
time 2.5 s leads to a corresponding increase in delay. The measured jitter was approximately
twice as high as the jitter predicted by PingER and simulated by DELFOI and more
uniformly distributed. The constant delay of the Simple-Underlay model disregards
jitter altogether.

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

size=64 size=1464 size=64

instant of ICMP request transmission [s]

R
T

T
 [

s
]

measured

simulated: Delfoi

simulated: Simple−Underlay

Figure 4.4.3: Round-trip time for 50+100+200 ICMP packets of sizes 64, 1464, 64 bytes,
sent at an interval of 15ms

In the second run, 50 ICMP packets with a size of 64 bytes were sent, followed by 100
packets with a larger size of 1464 bytes, followed by 200 again with a size of 64 bytes. The
send interval was lowered to 15ms. Figure 4.4.3 shows how the measured delay begins to
rise rapidly as soon as the packet size is switched to 1464 bytes. The DELFOI model
takes this queueing at Recipient's uplink into account and adjusts the delays of the follow-
ing packets accordingly. Apparently, the uplink bandwidth measured by speedtest.net is
somewhat too low, causing a slight overestimation of the buildup. The Simple-Underlay
model (4.3.1) takes into account the increased transmission time, noticeable by the step-like
increase in delay, but disregards the congestion.

The computational performance of DELFOI was evaluated using the basic �routerperf�
example of the INET Framework, in which 1000 packets from each of three source hosts
are sent to three destination hosts. When the single router was replaced by DELFOI's
InternetCloud, the simulation time on an Intel® Core�2 Duo CPU T7500 @ 2.20GHz

4.5. PARAMETRIZING DELFOI FROM HTTP-MEASUREMENTS 65

increased by only 30%.

4.5 Parametrizing the DELFOI Model

from HTTP-Measurements

Having established the model structure, we now focus on its parametrization from large-
scale measured Internet speed data. For the evaluation in the previous section, the host list
and the GNP coordinates were derived from CAIDA RTT measurements and the region
speci�c jitter, from the PingER Project. Internet access link speed parametrizations
for the model were limited to a few manual measurements, most of which were severely
hindered by �rewalls that come with Internet access routers.

The failure to probe these hosts, leaves measurements projects no other choice than to
skip these hosts. Because routers are shipped by the Internet providers with �rewalls en-
abled, omitting these hosts results in excluding whole classes of networks with characteristic
qualities. Therefore, in order to gain a representative view that includes these customer
classes, whose characteristics are of eminent signi�cance to P2P networks in particular, we
have no other choice than to rely on the co-operation of Internet users.

4.5.1 Measurement Methodology

The website www.speedtest.net o�ers a free service to measure one's own Internet con-
nection, including upstream and downstream bandwidth and latency. For this, the user's
web browser downloads and executes an Adobe Flash program that initiates HTTP
connections with one of over 500 speedtest.net servers located all around the globe. The
geographically closest server is chosen per default. Speedtest.net uses GeoIP data from
MaxMind9 to determine the user's position and the speedtest.net server closest to her.
Because the probing is performed with regular HTTP requests, initiated by the client,
probe packets pass through most users' �rewalls unhindered.

Round trip time is measured by downloading ten byte documents for ten times, with
the lowest value determining the �nal result. This di�ers from the standard procedure to
�ping� hosts, as TCP/IP is used instead of ICMP. The sizes of the IP packets are roughly
477 and 453 bytes for HTTP GET request and HTTP response, respectively, whereas ping
defaults to 86 byte ICMP packets. The use of TCP does not pose a problem as both HTTP
messages �t into one segment each. Flow control should not intervene, as the connection is
idle before. Finally, the time it takes an Apache web server to serve that 10 byte document
may be somewhat higher than the time it takes the operating system to reply to a ICMP
echo request but not by much if it is served from memory.

Downstream bandwidth is measured by �rst downloading some small �les from the
server to estimate the connection speed. Based on this result, one of several �le sizes is
selected for the real download test. Presumably this is done to keep the duration of the test
roughly constant. The actual download test is then started on several TCP connections at
once. We presume, this is to fully saturate the line, as one TCP connection alone usually
leaves some �air� due to TCP �ow control. According to Ookla, throughput samples are
taken at up to 30 times per second and then aggregated into 20 slices (each being 5% of
the samples). The fastest 10% and slowest 30% of the slices are then discarded:

9http://www.maxmind.com/

www.speedtest.net
http://www.maxmind.com/

66 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

�Since we are measuring data transported over HTTP via Flash there is
potential protocol overhead, bu�ering due to the many layers between our ap-
plication and the raw data transfer and throughput bursting due primarily to
CPU usage. This accounts largely for dropping the top 10% and bottom 10% of
the samples. We also keep our default test length short for the user experience,
and compared to this duration the ramp-up period is fairly signi�cant driving
us to eliminate another 20% of the bottom result samples.� [1]

The remaining slices are averaged together to determine the �nal result.
For measuring the upstream bandwidth, again, the connection speed is �rst estimated

and an appropriate data size is chosen. The upstream test is performed via HTTP POST
in several chunks and several TCP connections. The fastest half of the measurements is
chosen and averaged to eliminate anomalies.

Note that the bandwidth measured this way represents a HTTP payload or �net� band-
width and does not consider HTTP, TCP, or IP headers. This is perfectly consistent
with the latency measurement; however, when using speedtest.net's data for parametrizing
IP-level network simulators, appropriate conversion factors must be regarded.

4.5.2 Parametrization Methodology

Recall that the model is split into an access network part and a core network part. Prefer-
ably, parametrizations for both parts should be obtained from the same measurement
source to avoid mismatches. For the parametrization of the access network part we need
measurement connections to servers that are as close as possible to the Internet provider's
broadband remote access server (BRAS), so propagation delay, AS routing and queueing
delay do not overly distort the access network model. Fortunately, such measurements
should be abundant, since speedtest.net selects the geographically closest server by de-
fault. For the arranging of the hosts in D-dimensional delay space we need measurement
connections to at least D + 1 di�erent reference servers per host. This requires a certain
amount of curiosity from the users, since speed tests with di�erent servers need to be se-
lected manually and may not be in the users' primary focus, at least if they just want to
check whether �their Internet is slow�. But even if a su�cient amount of users initiated
connections to a su�cient amount of reference servers, we also needed the latencies between
all reference servers to establish a set of landmarks [114]. In lack thereof, we shall resort to
determining the host arrangement in delay space by a modi�ed version of the (centralized)
Vivaldi algorithm [38]. Vivaldi models network nodes as points in delay space that are
connected by springs, with the spring lengths at rest equaling the measured delay values.
The Vivaldi algorithm iteratively iterates over all nodes and moves them some fraction in
direction of the total force, thus minimizing the sum of all springs' squared errors equaling
the energy of the spring network.

For the parametrization of the upstream and downstream bandwidths of a hosts access
link the maximum measured bandwidth values for that host are chosen, as these approx-
imate the physical channel most closely. Deviances from this value originate from either
bit errors, resulting in re-transmission, or link utilization by the user, e. g. his operating
system or mail program checking for updates or mails, automated attacks by malware from
the out- or inside, etc. [105]. For the parametrization I assume all bandwidth fall-o�s to be
caused by link utilization�a kind of vitiation that can be well reproduced by the DELFOI
model.

Figure 4.5.1 illustrates how the measured latencies (represented as distances on the
number line) between one client host C and two servers S1, S2 are split into access network

4.5. PARAMETRIZING DELFOI FROM HTTP-MEASUREMENTS 67

t

C

C ′ S1 S2

C ′

S1

S2

Core Network ModelAccess Network Model

andzC

2dC,S1
cfiber

bReq

bwup

bResp

bwdown

C

C ′

andC

Figure 4.5.1: Separation of delay

and core network portions. We select the client's minimum round trip time to its closest
server (S1 in this case). From this we subtract twice the distance between host and reference
server, divided by the speed of light in �ber, as this portion is the lower bound for the delay
between BRAS and reference server. The remaining delay portion is considered position
independent (but host speci�c) access network delay andC :

andC = rttC,S1 −
2dC,S1

cfiber

It is subtracted from all client/servers delays before applying the Vivaldi algorithm to
the remaining (distance dependent) delays ∥C ′S1∥ , ∥C ′S2∥.

For the parametrization of the access network model, the access network delay andC
is decremented by delay due to the size of the probe packets, which depends on the band-
widths, yielding the constant time required to send a (hypothetical) zero-sized packet to
the BRAS and back:

andzCuplink
+ andzCdownlink

= andzC = andC −
bytesrequest

bandwidthuplink
−

bytesresponse

bandwidthdownlink

4.5.3 Results

Our data set from speedtest.net consists of 2.9 million measurements collected between
March 26th�28th, 2010. Of the one million users in the data set, 60,000 users initiated a
total of 270,000 connections to at least three di�erent servers, of which the 230,000 unique
user�server combinations were selected.

Figure 4.5.2 shows the cumulative distribution of the maximum measured upstream
bandwidth. Half of the users, demarked by Q1 and Q3, have a sharply de�ned upstream
bandwidth between 300 and 1100 kbps.

✻✽ ❈❍❆ ❚❊❘✹✳ ▼❖❉❊▲■◆●▲❆❚❊◆❈❨■◆ ✷ ◆❊❚❲❖❘❑❙

❯♣❧♦❛❞❇❛♥❞✇✐❞❤✭❦❜♣✮

❈
✉
♠
✉❧
❛
✐
✈❡
❋
❛❝
✐♦
♥
♦❢
❯
❡

✶✵ ✷✵ ✺✵ ✶✵✵ ✺✵✵ ✷✵✵✵ ✺✵✵✵ ✷✵✵✵✵

✵✳
✵

✵✳
✷

✵✳
✹

✵✳
✻

✵✳
✽

✶✳
✵

❋✐❣✉❡✹✳✺✳✷✿❈✉♠✉❧❛✐✈❡❞✐ ✐❜✉✐♦♥♦❢✉♣ ❡❛♠❜❛♥❞✇✐❞❤✳ ▼❛❦❡ ❛✶✵❛♥❞✶✺✪✱
◗✶✱♠❡❞✐❛♥✱◗✸✱✽✺❛♥❞✾✵✪

✵ ✺✵✵✵ ✶✵✵✵✵ ✶✺✵✵✵ ✷✵✵✵✵

✶❡
✲✵
✷

✶❡
✲✵
✶

✶❡
✰✵
✵
✶❡
✰✵
✶
✶❡
✰✵
✷

❁✶✶✵✵❦❜♣
✶✶✵✵✳✳✳✷✶✺✵❦❜♣
✷✶✺✵✳✳✳✹✻✺✵❦❜♣
❃❂✹✻✺✵❦❜♣

❉✐ ❛♥❝❡✭❦♠✮❜❡②♦♥❞♥❡❛❡ ❡✈❡

❇❛
♥
❞
✇✐
❞
❤
❡❧
❛
✐
✈❡
♦
♥❡
❛
❡
❡
✈❡
❜❛
♥
❞
✇✐
❞
❤

❋✐❣✉❡✹✳✺✳✸✿❇❛♥❞✇✐❞❤❝❤❛♥❣❡✉❜❥❡❝ ♦✐♥❝❡❛❡❞❞✐❛♥❝❡

✹✳✺✳ ❆❘❆▼❊❚❘■❩■◆●❉❊▲❋❖■❋❘❖▼❍❚❚ ✲▼❊❆❙❯❘❊▼❊◆❚❙

−
1
5
0

−
1
0
0

−
5
0

0
5
0

1
0
0

1
5
0
−40−200 20 40 60

l
o
n
gi
t
u
d
e

latitude

✻✾

❋✐
❣
✉
❡
✹✳
✺✳
✹✿
❍♦

❧♦
❝❛
✐♦
♥

❋✐
❣
✉
❡
✹✳
✺✳
✺✿
●
◆
❞❡
❧❛
②
♣❛
❝❡

❘❡
❧❛
✐
✈❡
❊
♦

❈✉♠✉❧❛✐✈❡❋❛❝✐♦♥♦❢❛✐

✶❡
✲✵
✷

✶❡
✲✵
✶
✶❡
✰✵
✵
✶❡
✰✵
✶
✶❡
✰✵
✷

✵✳✵✵✳✷✵✳✹✵✳✻✵✳✽✶✳✵

✷
❉
✸
❉

❋✐
❣
✉
❡
✹✳
✺✳
✻✿
❈
✉
♠
✉❧
❛
✐
✈❡
❡
♦
❞✐

✐
❜
✉
✐♦
♥

◆❡
✇♦
❦
❉❡
❧❛
②
❬
♠
❪

❉❡♥✐②

♠❡
❞✐
❛
♥
✿
✹✺
♠

♠❡
❛
♥
✿
✻✶
♠

✵
✺✵

✶✵
✵
✶✺
✵
✷✵
✵
✷✺
✵
✸✵
✵
✸✺
✵
✹✵
✵

✵✳✵✵✵✵✳✵✶✵✵✳✵✷✵

❋✐
❣
✉
❡
✹✳
✺✳
✼✿
❍✐
♦❣
❛
♠
♦❢
❤♦
♣
❞❡
❧❛
②
❞✐
✐
❜
✉
✐♦
♥
✐
♥
●❡
♠
❛
♥
②

70 CHAPTER 4. MODELING LATENCY IN P2P NETWORKS

Figure 4.5.3 shows for each user how the measured upstream bandwidth changes with
server distance, relative to the closest server. LOWESS [35] regression curves are drawn for
di�erent maximum bandwidth ranges. For three-fourth of the users, average bandwidth
only decreases slightly with increased connection length, i. e. their access link is indeed the
bottleneck in their end-to-end Internet connections. In fact, this assumption seems to hold
reasonably well for the domestic connections of 90% of the users. Only for connections
with upstream bandwidths larger than 4650 kbps the bandwidth drops signi�cantly on the
�rst 1000 km.

The locations of the nodes, according toMaxMind's GeoIP are shown in Figure 4.5.4.
After separating the delays as described in Section 4.5.2, we inserted the hosts into a

2-dimensional delay space, using their geographical locations as initial hint for the Vivaldi
optimizer. After about 10,000 iterations the algorithm converged to the con�guration
shown in Figure 4.5.5. The red dots represent the reference servers, pulled in-place by their
neighbors. The cumulative distribution of the relative error between the measured latencies
and the �nal distance in delay space is shown in Figure 4.5.6. Interestingly, increasing the
dimensionality of the delay space to three did not lead to a signi�cant reduction of relative
error, this is consistent with observations of [38]. Latency-wise, as it seems, the earth is
still rather �at.

Figure 4.5.7 shows the resulting probability density estimate of end-to-end delay for
packets of 400 bytes between arbitrary hosts in Germany. Although half of the delays are
less than 45ms, the long tail is clearly visible.

4.6 Conclusion

It was shown that end-to-end delay of packets passing through consumer Internet access
links exhibits jitter and is very sensitive to congestion. This fact is disregarded by exist-
ing statistical and GNP models. Until now, its simulation required potentially complex
topology models. The DELFOI delay simulator for OMNeT++ presents a hybrid ap-
proach that is already capable of simulating these end-to-end delays much more realistically
than existing Internet delay models without topology modeling, yet requires only moderate
resources.

End-to-end delay matrices are unfeasible to obtain for a non-trivial number of hosts.
We have presented a reasonable parametrization for a global network delay model from
co-operative HTTP delay measurements, exhibiting a broad range of network performance
observations. The model converges even in the absence of landmarks, though the relative
�tting errors are notedly higher than those in, e. g. [38]. Clearly, speedtest.net's data set
exhibits much more heterogeneity, e. g. triangle inequality violations, than that of Plan-
etLab with mostly university hosts [44].

The modeling of the Internet access link could be further enhanced by taking, e. g.
network interface queue length and delay caused by DSL interleaving and cable access
control into account [45]. Optimally, the jitter model should be parametrized from the
same data source as the others. The jitter data provided by the PingER Project consists
of an average/expectation value and the inter-quartile-range (IQR). Currently these values
are used to �t a log-normal distribution (4.4.2) that is used as a source for random jitter
values. A more detailed jitter source, e. g. a fractal model that accounts for burstiness and
correlation of jitter, would make these delay variations more realistic.

Currently, the server nodes are only �pushed� in place by connected client nodes. The
use of a set of landmarks may speed up the convergence and improve overall accuracy.

Chapter 5

Emulating and Visualizing

Periodic Communication

I hear and I forget; I see and I remember; I do and I understand.
Chinese Proverb1

Contents
5.1 Scienti�c Discovery Learning using Interactive Modeling . . 72

5.2 Emulation . 73

5.3 Modeling . 74

5.4 Visualization . 75

5.5 The REEL Tool . 77

5.5.1 Sequence View . 77

5.5.2 Phase Parametrization . 78

5.5.3 Network Delay Parametrization . 78

5.5.4 Results and Statistics . 78

5.5.5 Problems View . 78

5.5.6 Geometrical Solution View . 79

5.5.7 Visualizing Real Application Measurements 80

5.6 Summary . 80

Modeling, simulation as well as visualization are essential tools for interactive concept
discovery, as well as researching and evaluating the behavior of complex distributed sys-
tems. However, the simulation of large scale peer-to-peer streaming applications, which
send packets at high frequencies, is associated with a considerable computational e�ort,
that makes simulation-based interactive exploration unfeasible.

By employing steady state emulation instead of discrete event simulation, resulting
overall latencies can be computed directly as a function of transmission timing and net-
work delay. In this chapter, I present REEL2, a Java tool that facilitates the conceptual
and operational modeling, emulation, visualization, and interactive exploration of com-
munication in periodic peer-to-peer hypercube gossiping, especially its timing behavior

1after Confucian philosopher Xún Z��, ca. 310 bc-237 bc
2Reel-time Explorer Emulating Latencies

71

72 CHAPTER 5. SIMULATING PERIODIC COMMUNICATION

and latencies. The tool's interactive and experiment modes proved helpful in the analysis
of the magnitude and composition of latency of the communication scheme presented in
Section 3.4. Particularly, it helped me to study the timing interrelations of this overlay net-
work, derive analytical latency bounds, perform simulations with realistic network delays,
and assess latency minimization algorithms, presented in Chapter 6. Last but not least,
it helped to verify the behavior of the implementation of periodic peer-to-peer hypercube
gossiping, presented in Chapter 7.

5.1 Scienti�c Discovery Learning using Interactive Mod-

eling

A system comprised of relatively simple parts may exhibit surprisingly complex behav-
ior where small changes to its input may have grave e�ects on its output, according to
some non-obvious pattern. Most fast moving animals, including humans, have developed
a strong ability to quickly detect patterns visually [25]. As a consequence, the successful
detection of patterns motivates the development of adequate visualization methodologies
that make them easily perceptible. One application is the detection of patterns in output
from pseudo random generators which in turn utilize chaotic models to hide their inevitable
determinism [108, 128]. Figure 5.1.1 shows two random bitmaps, one created from the true
random source Random.org3 that uses unpredictable physical measurements and one
from the pseudo random generator behind PHP rand() function on Microsoft Windows.
Simple visualization renders the deterministic pattern of the pseudo-random generator
easily perceptible [2].

Figure 5.1.1: Random bitmaps created from random.org (left) and PHP rand() on Microsoft
Windows (right) [2]. The intentionally complex but deterministic behavior of the PRNG
is exposed by means of simple visualization.

In order to wield a complex system, one has to gain a profound understanding of its
behavior. Knowing its elementary operations may be necessary but is certainly not suf-

3http://www.random.org/

http://www.random.org/

5.2. EMULATION 73

�cient, just as knowing the rules by which to move the pieces in a board game is a long
way from mastering the game; mastery usually requires practical experience best gained
by either watching or, even better, playing the game. The essential task of �nding and
representing patterns and regularities and developing and verifying hypotheses about a
system previously unknown is known as concept discovery [36]. In scienti�c discovery
learning with simulations, the learner infers characteristics by changing input variables
and observing the resulting changes in the values of the output variables [41]. Interactive
models with three-dimensional visualizations greatly support conceptualization of abstract
scienti�c phenomena: Noteworthy examples include the use of three-dimensional computer
modeling (�Virtual Solar System�) to deepen undergraduate students' understanding of
astronomy concepts [79], visual molecular modeling in conjunction with multiple simulta-
neous representations in eleventh grade chemistry [150], or even the use of the computer
game Civilization III to teach complex interplay of world history, geography, politics,
and economics in select world history education classes [139].

These successful examples, however, describe the use of interactive modeling in ed-
ucation. The simulators were designed beforehand by or according to the instructions
of persons already possessing profound knowledge of the domain; the learners were mere
users, unable to modify the simulator. Here, by contrast, the simulator is developed by
the learner (me) and re�ned in the course of subsequent knowledge acquisition.

The domain regarded in the following Chapter 6 comprises the in�uence of timing in
periodic peer-to-peer hypercube communication on the resulting overall latency. Since
real-time/live streaming applications require most current data, excessive latency is to
be reduced as much as possible. As Chapter 6 will show, a considerable fraction of this
latency is caused by data sojourning at intermediate overlay nodes. While the wait latency
obviously depends on the time instants at which packets are sent by nodes of the overlay
network, the speci�c interrelations are not obvious. To facilitate concept discovery, gain
essential initial ideas, develop and verify hypotheses, and infer characteristics of these
interrelations, an interactive exploratory simulation tool is needed. It should allow natural
manipulation of the model and provide intuitive interpretation of simulation results in a
way that they can be easily grasped.

5.2 Emulation

The e�ort associated with the simulation of large scale peer-to-peer streaming application
is immense because every node spouts packets with high frequency. Consequently, for
interactive exploration, it is necessary to emulate network behavior instead of simulating
it in every detail. Once the network has completed con�guration and parameter tuning,
it reaches a steady state where, apart from minor �uctuations, faithfully produced by
underlay network model, all communication repeats itself. Streaming applications employ
jitter bu�ers that compute quantiles of the jitter distribution. Although the application
may process incoming packets as soon as they arrive, the timing and latencies are fully
determined by these quantiles, and thus, static. For the exploration and evaluation of
timing behavior and latencies, it is hence su�cient to regard the delay quantiles and treat
the repeating sequence of events as single steady state. This approach is utilized by the
REEL tool: By employing steady state emulation instead of discrete event simulation,
resulting network and wait latencies for all source/destination pairs, as well as overall
latencies can be computed directly as a function of the transmission timing and network
delay. This is done by tracing all data paths and accumulating latencies on the way.

74 CHAPTER 5. SIMULATING PERIODIC COMMUNICATION

5.3 Modeling

Models are di�erentiated into two kinds: conceptual models and operational models. Con-
ceptual models hold principles, concepts and facts governing (constraining) the system,
whereas operational models include sequences of operations (procedures) that can be ap-
plied to the system [41]. This concept is illustrated in Figure 5.3.1. The conceptual model

Principles

Concepts

Facts

Operational Model System Conceptual Model

Procedures State

apply to govern

Figure 5.3.1: Model kinds

could, for instance, hold the laws of physics, and the operational model, the navigational
control sequence of a space craft. However, the distinction is not in all cases an obvious
one. Both the conceptual and the operational model narrow the state space of the sys-
tem on the basis of rules. One could also consider the conceptual model as comprising
the internal, system inherent rules and the operational model as comprising the external
stimuli. An alternate view is to simply regard the conceptual model as �xed invariant and
the operational model as replaceable strategy.

Periodic

Hypercube

Gossiping

Communication

Scheme

Operational Model System State Conceptual Model

apply to govern

Delay Parameters

Timing Modes

Transmission Times

Wait Latencies

Network Latencies

Arrival Times

Network Delays

Figure 5.3.2: REEL models

Following this view, the REEL models are shown in Figure 5.3.2 and explained below:

System State

The system state of the REEL model holds the instants of time at which each node
transmits a packet to a neighbor node, the network delays between all such neighboring
nodes, the times at which the packets are received, and the overall network and wait
latencies.

The system state contains no logic of its own. All values are determined by the opera-
tional and the conceptual model.

5.4. VISUALIZATION 75

Conceptual Model

The conceptual model binds each arrival time to the sum of its corresponding precedent
transmission time and network delay. It also binds network and wait latencies to the sums
of the individual delays by tracing all network paths according to the periodic hypercube
gossiping communication scheme (Section 3.4).

Operational Model

The operational model will, when applied to the system state, alter the nodes' transmission
times and network delays.

Transmission times may be either simply uniformly randomized, synchronized, or ma-
nipulated by various algorithms, called timing modes, presented in Chapter 6. In the most
basic timing mode, called Random Phase Mode, the transmissions occur at arbitrary times.
All other timing modes constrain the timing in some way, thereby further reducing the free-
dom (slack) of the system state. For instance, I/O Splicing Mode constrains each node's
transmission times to integer multiples of a slot time, thus turning the afore continuous
model into a discrete one.

Also part of the operational model are the network delay models and parameters. These
are used to con�gure the network delay variables of the system state from miscellaneous
sources, such as various synthetic probability distributions (e. g. rectangular or truncated
normal distributions) or PeerfactSim.KOM's [119] more realistic network delay model, de-
scribed in Subsection 4.3.2. This facilitates the use of Global Network Positioning [115] to
generate realistic delays between nodes belonging to a particular group such as a particu-
lar city, country or continental region. PeerfactSim's network delay model also supports
inter-region-speci�c jitter and was in the course of this work specially extended to support
node speci�c access delays. Besides the use of timing modes, that manipulate the trans-
mission times in some particular, explicit way, REEL o�ers a domain model agnostic,
simulated annealing [80] driven latency optimization feature. Before some of the interrela-
tions were discovered and the advanced timing modes developed, this early feature proved
especially helpful to compare favorable and unfavorable con�gurations and thereby gener-
ate ideas about the model, like well designed experiments can do in the lack of a hypothesis
[41].

5.4 Visualization

To illustrate delays, I propose the use of timed sequence graphs (TSGs) as the one shown
in Figure 5.4.1 and belonging to a communication scheme for 16 nodes, naïve transmission
timing and constant network delays. Each (black) horizontal line represents one node. The
abscissal arrow to the bottom indicates the �ow of time. From the end points of the line
segments between one node and another, the time instances at which data packets are
sent and received can be observed. Thus, the horizontal component of each line segment
represents the network hop delay for that particular sender/receiver pair. In the �gure, the
network delays are all the same, in general they are not. The widths of TSGs correspond
to one period T . For illustration purposes, the send events are synchronized. The colors
of the arrows represent the di�erent levels of the communication scheme (Section 3.4) and
are mapped as follows (from left to right): �0:red, �1:green, �2:blue, �3:yellow.

As indicated in Subsection 3.4.1, in streaming all communication recurs periodically
and events are characterized by phases ϕ ∈D. The domain D = {R/0 ≤ ϕ < T} of ϕ can be

76 CHAPTER 5. SIMULATING PERIODIC COMMUNICATION

n
o
d
e

0

1

2

3

4

5

6

7

8

9

10

11

13

14

15

t

T

�3�2�1�0

12

Figure 5.4.1: Timed sequence graph for a communication scheme of 16 nodes, trivial trans-
mission timing, and constant network delays

viewed as a circle S1 with radius T/τ with τ = 2π. Accordingly, Figure 5.4.2b shows the
timed sequence graph of Figure 5.4.1 in cylindrical representation.

0
1
2
3
4
5
6

8
9
10
11
12
13
14
15

7

t

Figure 5.4.2: Timed sequence graph (cylindrical representation)

5.5. THE REEL TOOL 77

5.5 The REEL Tool

To facilitate running many simulations in an automated fashion and performing experi-
ments, the REEL tool may be started from the command line in non-interactive mode,
whereupon it performs simulations with varying parametrizations and writes simulation
results for each iteration.

When launched in interactive mode, REEL shows a Java-Swing-based [140] graph-
ical user interface (main view) produced in Figure 5.5.1. The main view is roughly di-
vided into four columns, from left to right: Sequence view (the �reel�), Transmission phase
parametrization, Network delay parametrization, and Results and statistics.

Sequence View

Reel Controls

Lat. Dist.

Method Selection Network Delay Generator Statistics

Phase Controls Delay Controls

Figure 5.5.1: REEL main view

5.5.1 Sequence View

The sequence view visualizes the timing of the periodic peer-to-peer communication model,
using timed sequence graphs, as described in the previous Section 5.4.

78 CHAPTER 5. SIMULATING PERIODIC COMMUNICATION

The reel controls at the bottom of REEL's main view drive the reel's rotation and
allow to switch between 2-D (�at) and 3-D (cylindrical) view.

Changes to the model are re�ected in reel-time4. An export function allows to save
snapshots of the sequence view in the vector-based xfig format.

5.5.2 Phase Parametrization

The phase sliders allow to adjust each node's transmission times to each of its neighbors,
as well as the I/O (e. g. record, playback) phases, i. e. the times at which a chunk of
data becomes available at a node or can be consumed, respectively. Depending on the
timing mode in e�ect, the choices are constrained. In Source/Drain Sync Mode, the source
(e. g. record) event is used to trigger the sending of all transmissions. Consequently, the
individual transmission phase sliders are disabled and follow the I/O phase sliders. In I/O
Splicing Mode, transmissions are only possible at certain equidistant phases, their relative
o�sets being given by the I/O phase sliders. Consequently, in this discrete timing mode
the phase sliders snap to the ticks, which are also shifted along, following the I/O sliders.

5.5.3 Network Delay Parametrization

The network delay sliders allow to parametrize network delay from each node to each of
its neighbors. While con�guring network delays individually is not feasible for most simu-
lations, it allows, on the one hand, to interactively observe the overall e�ects of delaying
just one transmission, and on the other hand, to fabricate pathological (e. g. worst-case)
scenarios that can be very insightful in studying system behavior. The network delay gen-
erator controls at the bottom allow to sample from aforementioned synthetic distributions
(rectangular or truncated normal distribution) or the GNP-based global delay model, all
part of the operational model.

5.5.4 Results and Statistics

The rightmost column shows the simulation results, i. e. the distribution and composition
of latency for all ordered pairs of nodes. Each node's bar chart shows by what amount each
other node's piece of information is delayed, with the positions of the bars corresponding
to the sources. The yellow bottom part of each bar represents network latency (i. e. sum of
network delays) whereas the blue top portion represents wait latency (i. e. sum of wait de-
lays) on the respective path from the particular source to the destination node in question.
The bar charts allow for an instant, intuitive apprehension of resultant wait latency in
relation to (more or less inevitable) network latency. The statistics display at the bottom
provides information about the maximum, average and total latency.

5.5.5 Problems View

As will be particularized in Subsection 6.2.5, one particularly noteworthy discovery with
regard to total wait latency was made in Chained Mode (Subsection 6.2.4), at which packets
to higher level neighbors are sent promptly after the reception of packets from lower level
neighbors: The sums of some wait delays were found to be periodic rectangular functions
and the global latency minimum not a point but a plateau. Using the REEL tool, I was

4i. e. the next time the reel is drawn. If the reel is currently not rotating, a timely redraw is scheduled.
To the human beholder, the change appears to happen instantaneously, i. e. in real-time.

5.5. THE REEL TOOL 79

able to further investigate this particularity and to formulate conditions for favorable sub-
con�gurations. In a tabular problems view, produced in Figure 5.5.2, REEL displays the
conditions for which each sum of complementary wait delays is minimal and whether these
conditions are currently met.

Figure 5.5.2: Problems view

5.5.6 Geometrical Solution View

For four-dimensional hypercube (4-cube) based networks, the minimum latency solution
set to each of the sub-problems, described in previous Subsection 5.5.5, is rendered as an
animated graphical projection and displayed in the geometrical problem views, produced in
Figure 5.5.3. The red polytope demarks the solution set, i. e. the set of points in parameter
space for which the sum of latencies corresponding to the sub-problem is minimal. The
mathematical derivation of this solution is expatiated in Subsection 6.2.5. A green sphere
is inscribed into the largest polytope where multiple disjunct solutions exist.

The problems view and the solution view basically show the same information albeit in
di�erent representations, following the ideas of [84], who proposes the use of multiple linked
representations of chemical experiments in teaching to e�ect deep conceptual understanding
that exceeds super�cial understanding gained from observing individual surface features
alone.

Figure 5.5.3: Geometrical solution view

80 CHAPTER 5. SIMULATING PERIODIC COMMUNICATION

5.5.7 Visualizing Real Application Measurements

In addition to visualizing simulation results from the REEL model, the tool also allows
to load measured timing data from external simulators or real application runs. While
the �rst constitute a static model, the latter are characterized by slight changes between
communications rounds due to inaccurate or dynamically modi�ed timing and �uctuations
in network delay. Using the long slider at the very bottom of the main view, it is possible
to reel through the recorded data in order to retrace log �les and analyze system state
properties and invariants.

5.6 Summary

The use of interactive modeling facilitates successful knowledge discovery, not only for stu-
dents in well-established areas but also on new terrain. Using easy programming languages
such as JAVA enables quick prototyping and speci�cally to adjust and extend the modeling
tool on demand as new domain knowledge is acquired.

While the cylindrical sequence view best conveys the modulo concept of the periodic
communication it proved less practical than the �at view in day to day use. This corre-
sponds to the common use of terrestrial globes vs. maps.

The ability to use the same established representation for replaying measurements from
application runs recorded in log �les helped to bridge the usual gap between analytical
modeling(�theory�) and simulation (�practice�).

Chapter 6

Minimizing Latency

in Periodic Hypercube Gossiping

Contents
6.1 Foundations . 82

6.1.1 Latency Sources . 82

6.1.2 Latency Measures . 87

6.2 Timing Modes . 89

6.2.1 Random Mode . 89

6.2.2 Sync Mode . 91

6.2.3 Spliced Mode . 93

6.2.4 Chained Mode . 95

6.2.5 Crossing Mode . 98

6.3 Evaluation . 110

6.3.1 Random, Sync, Spliced, Chained Mode 110

6.3.2 Crossing Mode . 110

6.4 Summary and Conclusion . 114

6.4.1 Local Modes . 115

6.4.2 Global Optimization . 115

Applications of periodic hypercube gossiping range from scalable audio communication
for massively multi-user virtual environments to decentralized data fusion for live object
tracking to real-time business intelligence to shared haptic virtual environments. Despite
their diversity, these applications share a common trait, namely their demand for the very
latest data.

In most live streaming applications, latency reduces the value of received data or de-
grades overall service quality1. Consequently, it should be reduced as far as possible.

Moreover, in such real-time applications, not only the reduction of latency but also the
ability to estimate and bound latency is of vital importance. In this context, worst-case
traversal time (wctt) denotes the total time needed to transport a piece of information
across the overlay network to its destination, including all network, wait and processing

1In audio conferencing, for instance, excessive latency disrupts conversation, as portrayed in Subsec-
tion 8.1.1. In live object tracking, regarded in Chapter 9, latency vitiates the value of state estimates.

81

82 CHAPTER 6. MINIMIZING LATENCY

delays. In periodic gossiping, it depends on the abstract communication complexity of the
network topology, the physical properties of the underlay network, and the sojourn time
of information at intermediate nodes.

Although gossiping belongs to the most investigated communication problems [9], preva-
lent complexity measures [27, 82, 66, 96] only consider one-shot dissemination, assume
di�erent communication constraints, or just regard abstract complexity, i. e. an integer
number of communication rounds. Beyond that, communication schemes are downright
latency agnostic and disregard diverse network delay or wait latency. Moreover, to my
best knowledge, no time bounds for periodic hypercube gossiping have been published.

In this chapter, I present an analysis of latency for periodic gossiping in F1 mode on a
regular binary hypercube overlay network. As will be shown, due to wait delay caused by
data sojourning at intermediate overlay nodes, latency is highly dependent on the timing
or synchronization of the communication, and thus, to considerable extent under direct
control by the application. I will present �ve di�erent disciplines governing node behavior,
referred to as timing modes, and demonstrate how networks operating in di�erent timing
modes�though obeying the same communication scheme�bear considerably dissimilar
traversal times.

Aforementioned abstract communication complexity will be complemented by a more
detailed calculus and time bound that takes into account how long information is delayed
by network- and wait-delays and derive analytical expressions for worst case and expected
wait latency as well as multi-hop traversal time distributions. Finally, these analytical
solutions will be corroborated with results from a steady state emulation using the REEL
tool of Chapter 5 in conjunction with the GNP underlay network model, described in
Chapter 4.

The rest of this chapter is structured as follows: Section 6.1 extends the hypercube
gossiping nomenclature of Section 3.1 by variables and latency measures required for eval-
uating the performance of the subsequent timing modes. Section 6.2 presents �ve timing
modes along with worst-case and expected wait latency as well as traversal time bounds.
Section 6.3 compares the analytical solutions to results obtained by steady state emulation
whereas Section 6.4 summarizes the �ndings and concludes this chapter.

For the theoretical foundations on gossiping, communication modes, and hypercubes
refer to Chapter 2. The general hypercube gossiping communication scheme is introduced
in Chapter 3. The analysis and evaluation was greatly aided by the REEL tool, portrayed
in Chapter 5. Assumptions regarding network delay and an accordant model used for the
simulations were laid out in Chapter 4.

6.1 Foundations

6.1.1 Latency Sources

In Subsection 3.5 various sources of latency are pointed out. In general, the two most
signi�cant ones are network delay and wait delay:

Network delay is the time, from the commencement of the sending of a data packet to
the complete reception at a di�erent node.

Wait delay is the time data sojourns at one node before it is used or passed on to another.

6.1. FOUNDATIONS 83

Delay Related Variables

Since both reception and transmission events take place periodically, each intermediate
node or �relay� in the data path contributes up to one period T of wait delay. The delays
depend on the o�set of the send times of the nodes involved.

In addition to the nomenclature of Section 3.1, we de�ne the following delay related
variables, using the modulo notation introduced in Subsection 3.4.1:

ϕn,` the phase (time instant within the period) when node n sends a packet to its neighbor
on �`

χn0,n1 the time (single hop underlay network delay) it takes to transfer a packet from node
n0 to node n1

θn,` the phase when node n receives a packet from its neighbor on �` with

θnb(n,`),` = ϕn,` ⊕
T
χn,nb(n,`)

δn,r,` the wait delay, i. e. the time data sojourns or ages in node n after having been
received from n's neighbor on �` and before being sent to n's neighbor on �r

δn,r,` = ϕn,r ⊖
T
θn,`

e traversal time, i. e. the total time it takes information originating from a source node to
reach a destination node, including network latency and wait latency.

k divisor of period T in Spliced and subsequent modes.

Tslot data procurement slot size Tslot ∶= T/k, i. e. minimum time interval between succes-
sively retrieving samples from the sensor.

ω random variable uniformly distributed between 0 and Tslot

Ω random variable uniformly distributed between 0 and T

Network Latency

Single-Hop Network Delay We de�ne single overlay hop network delay, short hop de-
lay, as the time span between the commencement of sending of a packet by one node and
the instant it becomes fully available at its neighbor node. It is particularized in Section 4.2.
The bold curve in Figure 6.1.1 shows a probability density estimate of minimal end-to-end
delay for packets of 400 bytes between arbitrary hosts in Germany, March 2010. The esti-
mate was obtained using the DELFOI model, developed in Section 4.4 and parametrized
with measurement data obtained from speedtest.net as laid out in Section 4.5.

Since the distribution of Internet delay is long tailed [64], worst case hop delay may
be considered in�nite, tantamount to the loss of the packet. Instead of �xed worst-case
times, live streaming applications employ timeouts that optimally conform to quantiles
characterizing the time by which a packet will have arrived with a high probability. The
choice of this quantile is a trade-o� between the percentage of accommodated packets and
the additional latency caused by jitter bu�ers. In latency critical applications, processing
the majority of packets with low latency may be of higher value than accommodating for

speedtest.net

✽✹ ❈❍❆ ❚❊❘✻✳ ▼■◆■▼■❩■◆●▲❆❚❊◆❈❨

❛❡♣❛❝❦❡❞❡❧❛② ♦❢❡✈❡❛❧❡❝♦♥❞✳❚❤❡❜♦❧❞❝✉✈❡✐♥❋✐❣✉❡✻✳✶✳✷❞❡♣✐❝ ❤❡ ✉❛♥✐❧❡
❢✉♥❝✐♦♥♦❢✐♥❣❧❡❤♦♣❞❡❧❛②✳
■♠♣♦❛♥✱❢♦♠❛♥❛♣♣❧✐❝❛✐♦♥✬♣❡ ♣❡❝✐✈❡✱✐ ❤❡ ✐♠❡❜②✇❤✐❝❤❛♣❛❝❦❡✇✐❧❧❤❛✈❡

❛✐✈❡❞✇✐❤❛❤✐❣❤♣♦❜❛❜✐❧✐②✳χn1,n2,q❞❡♥♦❡ ❤❡✐♠❡❜②✇❤✐❝❤❛✭✜①❡❞✲✐③❡❞✮♣❛❝❦❡
♦❢❛♠♣❧❡ ❡♥❢♦♠♥♦❞❡n1✇✐❧❧❤❛✈❡❛ ✐✈❡❞❛n2✇✐❤♣♦❜❛❜✐❧✐②q✳

◆❡✇♦❦❉❡❧❛②❬♠❪

❉❡
♥
✐
②

✵ ✷✵✵ ✹✵✵ ✻✵✵ ✽✵✵ ✶✵✵✵

✵✳
✵✵
✵

✵✳
✵✵
✺

✵✳
✵✶
✵

✵✳
✵✶
✺

✵✳
✵✷
✵

❋✐❣✉❡✻✳✶✳✶✿ ♦❜❛❜✐❧✐②❞❡♥✐②♦❢✭♠✉❧✐✮❤♦♣❞❡❧❛②❢♦✹✵✵✲❜②❡♣❛❝❦❡ ✐♥●❡♠❛♥②✳
❇♦❧❞❝✉✈❡✿ ✐♥❣❧❡❤♦♣❞❡❧❛②

▼✉❧ ✐✲❍♦♣ ◆❡✇♦ ❦▲❛❡♥❝② ❋♦ ♠✉❧✐✲❤♦♣♦✈❡❧❛②♣❛❤✱♥❡✇♦❦❧❛❡♥❝②←→χ❝♦♠✲
♣✐❡ ❤❡ ✉♠♦❢ ❤❡✐♥❞✐✈✐❞✉❛❧❤♦♣❞❡❧❛②✳ ♦✈✐❞❡❞❤❡✐♥❞✐✈✐❞✉❛❧❤♦♣❞❡❧❛② ❛❡ ❛✲
✐✐❝❛❧❧②✐♥❞❡♣❡♥❞❡♥✱❤❡❞✐ ✐❜✉✐♦♥♦❢❤❡ ♦❛❧♣❛❤❧❛❡♥❝②❝❛♥❜❡❝♦♠♣✉❡❞❜②❤❡
❝♦♥✈♦❧✉✐♦♥♦❢❤❡✐❞✐ ✐❜✉✐♦♥✷✳❋✉❤❡❛✉♠✐♥❣❛❝♦♠♠♦♥❤♦♣❞❡❧❛②❞✐ ✐❜✉✐♦♥χ
❢♦❛❧❧❤♦ ♣❛✐ ✱❤❡❞✐ ✐❜✉✐♦♥♦❢♥❡✇♦❦❧❛❡♥❝②❢♦❛♣❛❤♦❢L❤♦♣ ❡✉❛❧ ❤❡L❤

❝♦♥✈♦❧✉✐♦♥♣♦✇❡♦❢χ✳❚❤❛✐✱❤❡♣♦❜❛❜❧❡❜♦✉♥❞←→χL,q❞❡♥♦✐♥❣❤❡❧❛❡♥❝②✈❛❧✉❡❤❛✱
✇✐❤♣♦❜❛❜✐❧✐②q✱✇✐❧❧♥♦❜❡❡①❝❡❡❞❡❞❜②❤❡✉♠♦❢L❤♦♣❞❡❧❛②✐❣✐✈❡♥❜②

P(
L

∑
h=1

χh≤
←→χL,q)≥q⇔

←→χL,q=

q

∫
−∞

χ∗L(x)dx ✭✻✳✶✳✶✮

✇❤❡❡χ∗L❞❡♥♦❡ ❤❡L✲❢♦❧❞❝♦♥✈♦❧✉✐♦♥♦❢χ✬♣♦❜❛❜✐❧✐②❞❡♥✐②❢✉♥❝✐♦♥✭❉❋✮✳❚❤❡
❤✐♥♥❡❝✉✈❡♦❢❋✐❣✉❡✻✳✶✳✶❤♦✇❝♦♥✈♦❧✉✐♦♥♣♦✇❡ ✷♦✽✳◆♦❡❤♦✇❢♦❡❛❝❤❛❞❞✐✐♦♥❛❧
❤♦♣✱❧❛❡♥❝②♥♦♦♥❧②✐♥❝❡❛❡❜✉❜❡❝♦♠❡❧❡ ♣❡❞✐❝❛❜❧❡✳❋✐❣✉❡✻✳✶✳✷❞❡♣✐❝ ←→χL,q❢♦
L∈[1..8]✳

✷❉❡♣❡♥❞✐♥❣♦♥ ❤❡ ❝❡♥❛✐♦✱ ❛✐✐❝❛❧✐♥❞❡♣❡♥❞❡♥❝❡♠❛②❜❡❛✐♠♣❧✐❢②✐♥❣❛✉♠♣✐♦♥✳❚❤❡✐♥❞✐✈✐❞✉❛❧
❤♦♣❞❡❧❛② ❝♦✉❧❞❜❡❝♦ ❡❧❛❡❞❜♦❤❛❧♦♥❣ ❤❡♣❛❤❞✉❡ ♦♥❡✇♦❦❧♦❝❛❧✐②❛♥❞♦✈❡ ✐♠❡❞✉❡♦ ❤❡
❝♦♥❣❡ ✐♦♥ ❛❡♦❢♥♦❞❡✳

✻✳✶✳ ❋❖❯◆❉❆❚■❖◆❙ ✽✺

♦❜❛❜✐❧✐②

◆❡
✇♦
❦
❉❡
❧❛
②
❬
♠
❪

✵✳✵ ✵✳✷ ✵✳✹ ✵✳✻ ✵✳✽ ✶✳✵

✵
✷✵
✵

✹✵
✵

✻✵
✵

✽✵
✵

✶
✵
✵
✵

❋✐❣✉❡✻✳✶✳✷✿◗✉❛♥✐❧❡❢✉♥❝✐♦♥♦❢✭♠✉❧✐✮❤♦♣❞❡❧❛②❢♦✹✵✵✲❜②❡♣❛❝❦❡ ✐♥●❡♠❛♥②✳❇♦❧❞
❝✉✈❡✿ ✐♥❣❧❡❤♦♣❞❡❧❛②

❋♦ ❛❤②♣❡❝✉❜❡♥❡✇♦❦♦❢L❧❡✈❡❧✱❤❡❡①♣❡❝❡❞♥❡✇♦❦❧❛❡♥❝②❢♦❧❧♦✇❢♦♠ ❤❡
❤♦♣✲❝♦✉♥❞✐ ✐❜✉✐♦♥✭✸✳✸✳✶✮✿

E[←→χ](L)=
∑
L
h=1(

L
h
)h

2L−1
χ=Lχ ✭✻✳✶✳✷✮

▲♦❝❛❧✐② ❙♦♠❡♣❡❡✲♦✲♣❡❡♥❡✇♦❦❝❛♥✉✐❧✐③❡❤❡❢❛❝ ❤❛ ❤♦♣❞❡❧❛②❜❡✇❡❡♥ ♦♠❡
♥♦❞❡✐❧❡ ❤❛♥❜❡✇❡❡♥♦❤❡ ♦❡❞✉❝❡❧❛❡♥❝②✳❚❤✐❡①♣❧♦✐❛✐♦♥♦❢❧♦❝❛❧✐②✐❦♥♦✇♥
❛ ♦①✐♠✐②◆❡✐❣❤❜♦❙❡❧❡❝✐♦♥✭◆❙✮✿❲❤❡♥❛♥♦❞❡❤❛ ♠✉❧✐♣❧❡❝❤♦✐❝❡♦❢❡❧❡❝✐♥❣✐
♥❡✐❣❤❜♦ ✱✐ ❡❧❡❝ ❤♦❡❤❛❛❡❝❧♦❡✐♥❡♠ ♦❢❧❛❡♥❝②❬✶✷✾❪✳❋♦ ♦♠❡❛♣♣❧✐❝❛✐♦♥
✭✉❝❤❛ ❤❡♦♥❡♣♦ ❛②❡❞✐♥❈❤❛♣❡✽✮✱❤❡❝❤♦✐❝❡♦❢♥❡✐❣❤❜♦ ✐❞❡❡♠✐♥❡❞❜②♦❤❡
❝♦♥ ❛✐♥ ❛♥❞ ◆❙✐ ♥♦❛♥♦♣✐♦♥✳❆❝❝♦❞✐♥❣❧②✱✐♥❤✐❝❤❛♣❡ ❤❡♥♦❞❡♥✉♠❜❡✐♥❣❛♥❞
❡✉❧✐♥❣♥❡✇♦❦❞❡❧❛②❛❡❜❡✐♥❣❡❣❛❞❡❞❛❣✐✈❡♥✱✇❤❡❡❛ ❤❡❢♦❝✉✐♦♥❤❡❡❞✉❝✐♦♥
♦❢✇❛✐❧❛❡♥❝②✳❙✐❧❧✱♥❡✇♦❦❧❛❡♥❝②✐❛❝❝♦✉♥❡❞❢♦✐♥❤❡❡ ✐♠❛✐♦♥♦❢ ❛✈❡❛❧✐♠❡✱
❛✐❧♦❝❛❧✐②✐♥❤❡✉♥❞❡❧❛②♥❡✇♦❦♠♦❞❡❧✉❡❞✐♥❤❡✐♠✉❧❛✐♦♥✳

❲❛✐ ▲❛❡♥❝②

❲❛✐ ❉❡❧❛② ❲❛✐ ❞❡❧❛②δ❞❡♥♦❡ ❤❡✐♠❡❞❛❛♦❥♦✉♥❛♦♥❡♥♦❞❡❜❡❢♦❡✐✐♣❛ ❡❞
♦♥♦❛♥♦❤❡✳

▲❡♠♠❛✻✳✶✳✶✳■♥❤❡❛❜❡♥❝❡♦❢✐♥❡✲♥♦❞❡✲②♥❝❤♦♥✐③❛✐♦♥✱δ✐✉♥✐❢♦♠❧②❞✐ ✐❜✉❡❞
❜❡✇❡❡♥✵❛♥❞♦♥❡♣❡✐♦❞✿

♦♦❢✳❆ ❤❡❛ ✐✈❛❧❛♥❞❡♥❞♣❤❛❡ θ ❡♣✳ ϕ❛❡✉♥✐❢♦♠❧②❞✐ ✐❜✉❡❞✱ ♦✐ ❤❡✐
❞✐✛❡❡♥❝❡δ❛ ❤♦✇♥✐♥▲❡♠♠❛✸✳✹✳✷✳

86 CHAPTER 6. MINIMIZING LATENCY

Wait Latency The sum of these delays (e. g. along an overlay path) is called wait latency.

I/O Levels Beside wait delay in between the receiving and the sending, data also so-
journs after having been measured (and before being sent) and before being used (after
having been received). By treating input and output as additional neighbors, these delays
can be treated along with the other wait delays. Regard Figure 3.4.3 on page 45, showing
a hypercube gossip communication scheme with L levels. Pertaining to wait latency, the
same scheme plus an input and an output stage can be viewed as a scheme with L + 2
levels, as shown in Figure 6.1.3. The depicted scheme is used for audio conferencing, and

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

�3�−1 �0 �1 �2

n0

n2

n3

n4

n5

n6

n7

n1

Figure 6.1.3: Hypercube gossip communication scheme for b = 2, m = 3 with extra levels
�−1 and �L

thus, the �nal result does not contain each node's own source. In the remainder of this
chapter, the input and output related virtual network levels will be denoted �−1 and �L,
respectively. Accordingly, θn,−1 denotes the sampling data procurement phase and ϕn,L,
the data output phase.

6.1. FOUNDATIONS 87

Paths For the construction of latency distribution and traversal time quantiles we also
need to consider individual source/destination combinations, or paths, and the frequencies
of certain path lengths. Starting from an arbitrary node, the data paths to all other nodes
may be represented as binary sequences of length L whereat the `th digit corresponds to
the �` link, that can be either taken (�1�) or not taken (�0�). For an example refer to
Figure 6.1.4. Starting from node 6, the path %1010 (read from right to left) will contain

n
o
d
e

0

1

0

1

0

1

2

3

4

6

7

8

9

10

11

13

14

15

t

T

�3�2�1�0

12

5

Figure 6.1.4: Timed sequence graph with path (6,%1010), from node 6 to node 12, high-
lighted

the following links: (6→7 not taken), 6→4, (4→0 not taken), 4→12, and will thus lead to
node 12.

6.1.2 Latency Measures

Path Wait Latency

We let the path wait latency ∆i,j denote the wait latency for source j observed at node i.

Least Upper Bound on Wait Latency

The wait latency bound ∆̂ ∶= sup
ϕ,χ,i,j

(∆i,j) denotes the wait latency that will not be exceeded

for all parametrizations of ϕ and χ and all host/destination pairs. Note, however, that ∆̂
may, in some cases, not contribute to worst-case traversal time if hop delay exceeds wait
delay, as shown below.

88 CHAPTER 6. MINIMIZING LATENCY

Overall Wait Latency

We let ∆̆ denote the overall wait latency, i. e. the total sum of all wait delays experienced
by all nodes. Just as ∆i,j , it depends on the parametrizations of ϕ and χ.

∆̆ =
N−1

∑
i=0

N−1

∑
j=0,j≠i

∆i,j

Mean Wait Latency

Each node receives information from all other nodes via overlay paths of di�erent lengths
according to the hop count distribution (3.3.1), consequently incurring di�erent wait la-
tencies. ∆i denotes the mean wait latency of all sources as experienced by node i:

∆i ∶=
∑N−1
j=0,j≠i∆i,j

(N − 1)

The mean wait latency for all nodes of the network is de�ned as

∆ ∶= ∆̆

N ⋅ (N − 1)

Least Upper Bound on Mean Wait Latency

The least upper bound on mean wait latency is de�ned as

sup (∆) = sup
ϕ,χ,i

(∆i)

It is not so much used as a latency measure of its own but rather as a vehicle for proving
expected wait latency, de�ned below.

Expected Wait Latency

In conjunction with ∆̂, the expectation E [∆] = E [∆] of wait latency is the most signi�cant
moment for the evaluation of the timing modes below.

Traversal Time

Traversal time denotes the total time it takes information originating from a source node to
reach a destination node. Particularly, it comprises both network latency and wait latency.
Of practical importance is the construction of some quantile of traversal time. Being the
sum of individual delays, the probability distribution of traversal time can be computed
from the convolution of the components' PDFs, their availability provided. The PDF of the
overall traversal time distribution is the arithmetic mean of the individual paths' PDFs.
In the equations below, all occurrences of the random variables ω, Ω, χ, and e are to be
understood as to denote their respective PDFs.

6.2. TIMING MODES 89

6.2 Timing Modes

In this section we embrace the reduction of wait latency, which is inherent to periodic
gossiping and to considerable extent under direct control by the application. Accordingly,
we will develop several timing modes and compare them with regard to resulting latency.
Unless noted otherwise we assume all ϕ, χ mod T , and hence, θ to be uniformly distributed
between 0 and T .

6.2.1 Random Mode

We �rst consider the general case, i. e. the implementation of the communication scheme as
given in Section 3.4 without further constraints, called Random Mode. Figure 6.2.1 shows
the timing of periodic gossiping on a hypercube network of eight nodes in Random Mode.
�−1 and �L are not shown. All transmissions are completely independent from each other.

0

1

2

3

4

5

6

7

t

Figure 6.2.1: TSG for H3 in Random Mode

∆̂Random denotes the supremum of wait latency in Random Mode.

Theorem 6.2.1.

∆̂Random = (L + 1)T.

Proof. The network considered has L + 2 levels (network+I/O), resulting in L + 1 (inter-
level) wait delays, each of which contributing up to one period T of wait delay and thus
rendering the maximum wait latency.

In other words, every node both receives and sends data packets at arbitrary times.
Also data procurement and data output happen at random phases. Every node receives
data from the most distant node via L overlay hops, experiencing wait delay L − 1 times.
Because the �rst transmission happens at an arbitrary phase after measurement and data
usage happens at an also arbitrary phase after the last reception, each packet is additionally
delayed at the input and at the output stage, accounting for two additional wait delays.
Each wait delay is of length T at worst.

90 CHAPTER 6. MINIMIZING LATENCY

Lemma 6.2.2. The least upper bound on mean latency in Random Mode is given by

sup (∆Random) = (2L−1L + 2L − 1) T

2L − 1

Proof. We assume the worst-case parametrization of ϕ and χ (i. e. wait delays of T at every
possible position) and average over all paths:

sup (∆Random) =
sup
ϕ,χ

(∑2L−1
j=0,j≠i∆i,j)

2L − 1
=

(∑Lh=1 (c2(L,h)⋅ (h − 1)) + 2 (2L − 1))T
2L − 1

= (
L

∑
h=1

((L
h
)⋅ (h − 1)) + 2 (2L − 1)) T

2L − 1

= (((1

2
L − 1)2L + 1) + 2 (2L − 1)) T

2L − 1

= ((1

2
L + 1)2L − 1) T

2L − 1

The bounds for Random Mode are of particular importance: In Random Mode, all send
times ϕ are free variables, considered random. For worst case considerations they take on
worst-case parametrizations. Because Random Mode is the most general case and includes
all other modes, worst case wait latency of all other modes must also be less than or equal
to that of Random Mode:

Proposition 6.2.3.

∆̂ ≤ ∆̂Random, sup (∆) ≤ sup (∆Random)

Theorem 6.2.4. Expected mean latency in Random Mode is given by

E [∆Random] = 1

2
sup (∆Random) = (2L−1L + 2L − 1) T

2 (2L − 1)

Proof. With the receive and send times being uniformly distributed random variables, the
expected sojourn time for each relay is T/2 which is half of the maximum sojourn time.

Theorem 6.2.5. The distribution of traversal time in Random Mode is given by

eRandom =
L

∑
h=1

(L
h

)

2L − 1
Ω∗(h+1) ∗ χ∗h (6.2.1)

Proof. For the individual data paths leading to one destination node, traversal time is
comprised of di�erent combinations of wait and network delays. These paths are shown
in Table 6.2.1 for a network of eight nodes. Ω and χ are random variables denoting
wait delay, uniformly distributed between 0 and T , and single hop delay according to
Subsection 6.1.1 respectively. The frequencies of occurrences of Ω and χ are de�ned by the
binomial distribution.

6.2. TIMING MODES 91

Table 6.2.1: Path traversal times for H3 in Random Mode

1. Ω + χ + Ω
2. Ω + χ + Ω
3. Ω + χ + Ω + χ + Ω
4. Ω + χ + Ω
5. Ω + χ + Ω + χ + Ω
6. Ω + χ + Ω + χ + Ω
7. Ω + χ + Ω + χ + Ω + χ + Ω

In Random Mode the overall delay ∆̆ is a function of the o�sets of the sampling data
procurement phases θn,−1, the o�sets of the send phases of all nodes on all levels ϕn,` and
the o�sets of the data output phases ϕn,L :

∆̆(θ0,−1, ⋯, θN−1,−1,

ϕ0,0, ⋯, ϕN−1,0,

⋮ (6.2.2)

ϕ0,L−1, ⋯, ϕN−1,L−1,

ϕ0,L, ⋯, ϕN−1,L)

Assuming sampling data procurement phases θn,−1 and data output phases ϕn,L as given,
the minimization of overall wait latency is a problem of 2L ⋅L variables. Below we will use
RandomMode as a benchmark: Each of the methods intended to reduce wait latency should
yield results smaller than the expectation for Random Mode. We start out improving upon
Random Mode by attending to obviously avoidable delays.

6.2.2 Sync Mode

Sending data at completely arbitrary phases, regardless of the phases of reception, is not
a natural choice. Normally, data is sent as a reaction to some kind of event. An obvious
event choice is the reception of data. As an example, consider an audio application. When
recording audio, the audio system either calls some audio handler whenever a new bu�er
of recorded audio data is available or some kind of read() or select() call on the audio
stream �le-handle returns. In either case, the control �ow proceeds at certain periodic
times.

In this timing mode, we use said record or source event to trigger the sending of all
outgoing packets. Furthermore, we assume that the output or drain phase, i. e. the time
at which the aggregated data can be used, e. g. played by a sound-card, is equal to the
source phase. This assumption is not unsubstantiated; for instance, many sound-cards
synchronize input and output this way. Thus, within each node, all transmissions are
triggered at the same time:

ϕn,` = θn,−1 , with 0 ≤ ` ≤ L

Figure 6.2.2 shows periodic hypercube gossiping in Sync Mode. Note how all of every
node's transmissions take place at the same time, subsequent to reception of data from �−1

(denoted by black tick marks) at an arbitrary phase.

92 CHAPTER 6. MINIMIZING LATENCY

0

1

2

3

4

5

6

7

t

Figure 6.2.2: TSG for H3 in Sync Mode

Table 6.2.2: Path traversal times for H3 in Sync Mode

1. χ + Ω
2. χ + Ω
3. χ + Ω + χ + Ω
4. χ + Ω
5. χ + Ω + χ + Ω
6. χ + Ω + χ + Ω
7. χ + Ω + χ + Ω + χ + Ω

Consequently, Sync Mode prevents, on each node n, the aging of original sensor data
I(n) prior to its transmission:

δn,`,−1 = 0

Theorem 6.2.6.

∆̂Sync = L ⋅ T

Proof. Synchronizing send phases to procurement phases reduces maximum wait latency
by one period because in Random Mode the unsynchronized data source (input) �−1 con-
tributed one period of wait delay that is now eliminated.

Corollary 6.2.7.

sup (∆Sync) = (2L−1L − 1) T

2L − 1

Corollary 6.2.8.

E [∆Sync] =
1

2
sup (∆Sync) = (2L−1L − 1) T

2 (2L − 1) (6.2.3)

6.2. TIMING MODES 93

All paths, shown in Table 6.2.2, are relieved of their foremost wait delay and traversal
time becomes

eSync =
L

∑
h=1

(L
h

)

2L − 1
Ω∗h ∗ χ∗h (6.2.4)

Note that Sync Mode is�albeit not the best�a completely determined solution, i. e. all
send times are speci�ed.

6.2.3 Spliced Mode

Sending all of a node's outgoing packets at the same time is impractical. In a peer-to-peer
context, the packets will likely queue up on the Internet uplink and thus increase network
latency. Instead of synchronizing the network operations to the source events, Spliced
Mode synchronizes all input and output operations to the network. Technically this can
be achieved by either

(a) using a separate phase-shifted sensor and sink data stream for each of the node's
neighbors if supported by the hardware/device drivers; or at least approximated
by

(b) using a sampling period Tslot that is a fraction 1/k of T and assembling the
resulting small packets of sampling data into bigger chunks that will be sent
across the network.

If we disregard sub-sample o�sets, (a) can be considered a special case of (b) with k = fsamp.
Each node has no single sample procurement time θn,−1 but one θn,−1,` for each level `,

with their phases being apart by integer multiples of Tslot = T/k:

θn,−1,v − θn,−1,u = i ⋅ Tslot, 0 ≤ u, v < L, i ∈ Z.

Theorem 6.2.9.

∆̂Spliced = (L − 1 + 1

k
)T

Proof. Whenever a source node needs to send its recorded samples to any neighbor, it
always uses the last packet length of freshly recorded samples. Thereby input related wait
delay is eliminated completely:

ϕn,` = θn,−1,` , 0 ≤ ` < L
δn,`,−1 = 0

Likewise, if the data needs to be output at the destination nodes, the node does not wait
until the packets from all levels have arrived but instead uses separate output streams for
the di�erent levels, thus permitting to output all received data with little or no additional
latency:

δn,L,` ≤
1

k
T

Consequently, maximum wait latency is reduced by (2−1/k) periods over RandomMode.

Corollary 6.2.10.

sup (∆Spliced) = ((L
2
− 1 + 1

k
)2L − 1) T

2L − 1

94 CHAPTER 6. MINIMIZING LATENCY

Corollary 6.2.11.

E [∆Spliced] =
1

2
sup (∆Spliced) = ((L

2
− 1 + 1

k
)2L − 1) T

2 (2L − 1)

0

1

2

3

4

5

6

7

t

Figure 6.2.3: TSG for H3 in Spliced Mode, k = 4

Table 6.2.3: Path traversal times for H3 in Spliced Mode

1. χ + ω
2. χ + ω
3. χ + Ω + χ + ω
4. χ + ω
5. χ + Ω + χ + ω
6. χ + Ω + χ + ω
7. χ + Ω + χ + Ω + χ + ω

Figure 6.2.3 shows the communication scheme in Spliced Mode with k = 4. Note how
for each node the send events occur only at four distinct, equidistant phases, denoted by
ticks. In contrast to Source/Drain Sync Mode, transmissions are spread out more evenly
and the chance of congesting the uplink is decreased.

Comparing Spliced Mode to Sync Mode, it is obvious that Spliced Mode is already
a better solution with regard to minimizing overall wait latency. Also, in contrast to
Sync Mode, which is a completely determined solution, Spliced Mode still has 2L(L − 1)
free variables and thus leaves room for further optimizations. Each variable, however, is
constrained to k distinct values, rendering the problem discrete. When Tslot approaches
0, the send times come completely free like in Random Mode but without the associated
delay.

6.2. TIMING MODES 95

The output related wait delay is divided by k. In Table 6.2.3 this is expressed by ω,
denoting a uniform distribution between 0 and T/k. Thus, traversal time becomes

eSpliced =
L

∑
h=1

(L
h

)

2L − 1
Ω∗(h−1) ∗ χ∗h ∗ ω (6.2.5)

6.2.4 Chained Mode

Remember that each node has exactly one peer at (maximum) hop distance L, as shown
in Table 3.3.2 on page 29. Chained Mode re�nes Spliced Mode by optimizing intermediate
send times along longest paths. To reduce the latency for these longest paths as much as
possible, �`+1 packets shall be sent promptly after receiving �` packets. Like Spliced Mode,
Chained Mode synchronizes all node-local input and output operations to the network. The
sequence of transmissions is called a chain. Each transmission within a chain is called a
chain link. In Figure 6.2.7 on page 99 four such chains are highlighted. A chain connects
each node with its longest path peer. All other peers are reached by �skipping� chain links,
thereby switching chains.

ϕn,`+1 = θn,` + ε, ε ≤
T

k
⇔ δn,`+1,` ≤

T

k

Figure 6.2.4 shows the timing in Chained Mode. Note how �`+1 send events happen

0

1

2

3

4

5

6

7

t

Figure 6.2.4: TSG for H3 in Chained Mode, k = 16

promptly after �` receive events, e. g. green departures after red arrivals.

The timing of Chained Mode is thus constituted as follows:

96 CHAPTER 6. MINIMIZING LATENCY

Algorithm 6.1 Timed communication scheme (Chained Mode)

for each �` with ` in [0..L[do loop

if ` > 0 then

wait for I (�`−1) from neighbor on �`−1

and mix it into bu�ers`⋯L−1

else

wait until ϕn,0 (unspeci�ed)

mix I (n) from sensor into bu�er`

send contents of bu�er` to neighbor on �`

Theorem 6.2.12.

∆̂Chained = (L
k
+ ⌊L − 1

2
⌋ (1 − 2

k
))T (6.2.6)

Proof. Between two chain links of the same chain the maximum wait delay is Tslot. The
chain is switched by skipping one link. This yields up to one period T of delay instead of
two inter-chain-link-delays and can happen every other level.

Lemma 6.2.13.

sup (∆Chained) = ((2L−1L − 1) 1

k
+ g (L) (1 − 1

k
)) T

2L − 1

with g (n, c = 0, s = �, p = 0)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c whenn < 1

g (n − 1, c, s, 0)+
g (n − 1, c + (s ∧ (p = 0) ? 1 ∶ 0), ⊺, 1)

otherwise
(6.2.7)

Proof. Intra-chain-link-delays are bounded by Tslot and occur everywhere except where
links are skipped and the delay is one period instead. The recursive function g counts the
skip combinations among the node's sources by looking for link-skip-link patterns. g (n)
yields the occurrences of 1 followed by any number of 0's followed by 1 in all binary strings
of length n.

In Figure 6.2.5, the function principle of g is illustrated. The recursive function
g(n, c, s, p) returns the sum of c and the number of skip combinations in all binary strings
of length n that are pre�xed by xxxxp, where xxxx denotes a string of any number of bits
and p is one bit. s = ⊺ means that xxxx contains at least one 1. Figure 6.2.6 shows a plot
of g(x).

Theorem 6.2.14.

E [∆Chained] = 1

2
sup (∆Chained) (6.2.8)

= ((2L−1L − 1) 1

k
+ g (L) (1 − 1

k
)) T

2 (2L − 1)

6.2. TIMING MODES 97

0 0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1 1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

1 1

1 1 1

x x x x p y y y y

g (n, c, s, p)

s = (xxxx > 0)

n = length (yyyy)

c = g (xxxx)

Figure 6.2.5: Function principle of g

Theorem 6.2.15.

eChained =
2L−1

∑
p=1

1

2L − 1
Ω∗G(p) ∗ ω∗(H(p)−G(p)) ∗ χ∗H(p)

with

G (p, c = 0)→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

c p = 0

G (⌊p/4⌋ , c + 1) ⌊p/4⌋ > 0 ∧ (p mod 4 = 1)
G (⌊p/2⌋ , c) otherwise

and H (p) denoting the Hamming weight of p.

Proof. For illustration refer to Table 6.2.4, showing the paths for Chained Mode. Intra-

Table 6.2.4: Path traversal times for H3 in Chained Mode

1. χ + ω
2. χ + ω
3. χ + ω + χ + ω
4. χ + ω
5. χ + Ω + χ + ω
6. χ + ω + χ + ω
7. χ + ω + χ + ω + χ + ω

chain-link-delays are ω and occur everywhere except where (as for path 5) links are skipped
and the delay is Ω instead. Only when Ω > 2ω + χ, path 5 with maximum wait latency
(6.2.6) will be the worst-case path instead of (longest) path 7, whose maximum wait latency
is

sup
ϕ,χ,i

(∆i,ixor(N−1)) = L ⋅
1

k
T (6.2.9)

✾✽ ❈❍❆ ❚❊❘✻✳ ▼■◆■▼■❩■◆●▲❆❚❊◆❈❨

①

②

✵ ✷ ✹ ✻ ✽ ✶✵ ✶✷ ✶✹ ✶✻ ✶✽ ✷✵

✶❡
✰✵
✵

✶❡
✰✵
✷

✶❡
✰✵
✹

✶❡
✰✵
✻

g(x)
2.15x−x2

❋✐❣✉❡✻✳✷✳✻✿g(x)❛♥❞❛♣♣♦①✐♠❛✐♦♥

❍❡♥❝❡✱ ❤❡ ❛✈❡❛❧✐♠❡❞✐ ✐❜✉✐♦♥✐❝❤❛❛❝❡✐③❡❞♥♦♦♥❧②❜②❤❡♥✉♠❜❡♦❢ ❛♥✲
♠✐ ✐♦♥♣❡ ♣❛❤❜✉ ❛❧♦❜② ❤❡✐ ❛❛♥❣❡♠❡♥✳ ❋✉♥❝✐♦♥G(p)❝♦✉♥ ❤❡♥✉♠❜❡ ♦❢
❣❛♣✐♥p✭✐✳❡✳♦❝❝✉❡♥❝❡♦❢❤❡♣❛ ❡♥✴✶✵✰✶✴✐♥✐ ❜✐♥❛②❡♣❡❡♥❛✐♦♥✮✳

❚❤❡ ❡♠❛✐♥✐♥❣✇❛✐❧❛❡♥❝②✉❧✐♠❛❡❧②❞❡♣❡♥❞♦♥❤❡❾0♣❤❛❡♦✛❡❜❡✇❡❡♥❾1⋯❾L−1
♣❡❡ ✱❤❛✐✱❤❡♣♦❜❧❡♠✐ ❡❞✉❝❡❞♦✜♥❞✐♥❣❛♠✐♥✐♠✉♠❢♦

∆̆(ϕ0,0,⋯,ϕN,0),

✇❤✐❝❤✐ ❛♠✐♥✐♠✐③❛✐♦♥♣♦❜❧❡♠♦❢❥✉ N✈❛✐❛❜❧❡✱♥♦✇✳

✻✳✷✳✺ ❈♦ ✐♥❣ ▼♦❞❡

❆❜♦✈❡ ✐♠✐♥❣♠♦❞❡ ❛❣❡✐♥❣❤❡❡❞✉❝✐♦♥♦❢❧❛❡♥❝②❛❡❧✐♠✐❡❞♦♥♦❞❡❧♦❝❛❧♦♣✐♠✐③❛✲
✐♦♥✳❇②②♥❝❤♦♥✐③✐♥❣❤❡♥♦❞❡ ♦❡❛❝❤♦❤❡✱✇❛✐❧❛❡♥❝②♠❛②❜❡❡❞✉❝❡❞❡✈❡♥❢✉❤❡✳
❚❤✐ ❡✉✐❡❛❡❡❢♦♠✉❧❛✐♦♥♦❢❤❡♠✐♥✐♠✐③❛✐♦♥♣♦❜❧❡♠✳❇❡❧♦✇✱✇❡✇✐❧❧✐♥✈❡✐❣❛❡
❤❡❡✛❡❝ ♦❢✐♥❡✲♥♦❞❡②♥❝❤♦♥✐③❛✐♦♥♦♥✇❛✐❧❛❡♥❝②❛♥❞❡①❛♠✐♥❡❤♦✇❤❡♣♦❜❧❡♠♦❢
❞❡❡♠✐♥✐♥❣♦♣✐♠❛❧ ❛♥♠✐ ✐♦♥✐♠❡❝❛♥❜❡❡❞✉❝❡❞♦❛♠✐①❡❞✐♥❡❣❡❧✐♥❡❛♣♦❣❛♠✲
♠✐♥❣✭▼■▲ ✮♣♦❜❧❡♠✳
■♥❙♣❧✐❝❡❞▼♦❞❡❛♥❞❈❤❛✐♥❡❞▼♦❞❡❛❜♦✈❡✱✐✐❛✉♠❡❞ ❤❛ ❡❝♦❞❡❞❞❛❛❜❡❝♦♠❡

❛✈❛✐❧❛❜❧❡❛ ✐♠❡❧♦ ❛❣❣❡❡❞❜②1/kT✳❇❡❧♦✇✱✇❡❛✉♠❡❢♦ ❤❡❛❦❡♦❢✐♠♣❧✐❝✐②❛♥❞
✐♥❛❝❝♦❞❛♥❝❡✇✐❤❙✉❜❡❝✐♦♥✻✳✷✳✸✱❈❛❡✭❛✮✱❤❛❢♦❛♥②✐♥❛♥t,❞❛❛❡❝♦❞❡❞❞✉✐♥❣
✐♠❡✐♥❡✈❛❧[t−T,t[✐ ❡❛❞✐❧②❛✈❛✐❧❛❜❧❡✱✐✳❡✳k→∞✳ ❚❤✉✱❜❡✇❡❡♥ ✇♦❝❤❛✐♥❧✐♥❦ ♦❢
❤❡❛♠❡❝❤❛✐♥✱✇❛✐❞❡❧❛②✐❝♦♠♣❧❡❡❧②❡❧✐♠✐♥❛❡❞✿

ϕn,+1=θn,, ∈[0..L−1[⇔ δn,+1,=0

❉❡❝♦✉♣❧✐♥❣

❙♣❧✐❝❡❞▼♦❞❡❡♠♦✈❡❞✇❛✐❞❡❧❛②❛❢❡❾−1❛♥❞❜❡❢♦❡❾L✳■♥❈❤❛✐♥❡❞▼♦❞❡❤❡❡♠❛✐♥✐♥❣
✇❛✐ ❧❛❡♥❝②✇❛ ❡❞✉❝❡❞♦❝❤❛✐♥✇✐❝❤✐♥❣❞❡❧❛②✱✇❤✐❝❤❝❛♥♦♥❧②♦❝❝✉♦♥✐♥♥❡❧❡✈❡❧✳

6.2. TIMING MODES 99

Consequently, wait latency now depends on the �0 phase o�set between �1⋯�L−1 neighbors.
Altering send phase o�sets between nodes that are not neighbors on these levels has no e�ect
on wait latency. Through this �decoupling� on �0 and �L−1, the problem of reducing overall
wait latency collapses into four independent pieces, henceforth referred to as partitions,
with N∗ ∶= N/4 nodes each. We call

αp ∶= ⌊p
2
⌋N

2
+ (p mod 2)

the reference node of the partition p. Wait latency associated with partition p is denoted
by ∆∗

p, which is a function of only N∗ variables:

∆̆ =
3

∑
p=0

∆∗
p(ϕα,0, ϕα+2,0,⋯, ϕα+N

2 −2,0)

Figure 6.2.7 shows a network with N = 16 nodes, i. e. L = 4 levels. The �rst partition is

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

�0 �1 �2 �3

δ7,2,0

δ3,2,0

δ1,2,0

δ7,3,1

δ7,3,0

Figure 6.2.7: First partition of 4-level network in Chained Mode.

emphasized. Its latency depends on the relative phase o�sets between nodes 0, 2, 4 and 6.

Complementary Wait Delays

Only phase o�sets between nodes belonging to the same partition have an e�ect on wait
latency. Now, within one partition, one would expect that shifting one send phase ϕn,0
by an amount z would result in a change in overall wait latency that is proportional to z.
Instead, certain ranges or intervals of z result in distinct overall wait latency situations.

100 CHAPTER 6. MINIMIZING LATENCY

Lemma 6.2.16. Let
z = ϕi,0 ⊖

T
ϕj,0

be the phase o�set between two nodes' �0 send events. Let δa (z) denote some component
wait delay that is a non-constant function of z. For each wait delay δa there exists a
complementary wait delay δb and two intervals I, I ′ ⊆ [0, T [, I ′ = I such that

δa(z + y) + δb(z + y) = δa(z) + δb(z) < T, y ∈ I
∥ (δa(z + y′) + δb(z + y′)) − (δa(z) + δb(z)) ∥ = T, y′ ∈ I ′

Proof. For illustration refer to Figure 6.2.7, where two wait delays δ1,2,0 and δ3,2,0 are
pointed out. Delaying ϕ2,0 relative to ϕ0,0, i. e. shifting the chain starting at node 2 to the
right, will decrease δ3,2,0 but at the same time increase δ1,2,0 by the same amount. In fact,
δa and δb are with regard to each other mirrored and shifted sawtooth functions with both
period and amplitude T

δa(z) = z ⊖
T
a,

δb(z) =−z ⊕
T
b

Their sum is a periodic rectangular function as shown in Figure 6.2.8.

δa(z) + δb(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b⊖
T
a for z ∈ [a, b[T

(b⊖
T
a) + T for z ∈ [a, b[T

In other words, for each pair {δa(z), δb(z)} there exists an interval I such that the sum
δa(z) + δb(z), z ∈ I is by T less than for z ∈ I. This interval I is referred to as the �low
interval� (of the rectangle function).

Lemma 6.2.17. Let nodes a and b be neighbors on �` and χa,b, χb,a be the network delays
from a to b and b to a, respectively. Then δa ∶= δa,`+1,`−1, δb ∶= δb,`+1,`−1 are complementary
wait delays, and the sum δa + δb is minimal i� δa, δb ≤ χa,b ⊕

T
χb,a. Also, one implies the

other, i. e.
δa ≤ χa,b ⊕

T
χb,a ⇔ δb ≤ χa,b ⊕

T
χb,a

Proof. To disprove the opposite case, it is, because of Lemma 6.2.16, su�cient to show
that δa + δb > T :

δa > χa,b ⊕
T
χb,a

⇒ δa > δa ⊖
T
(χa,b ⊕

T
χb,a) = δa − (χa,b ⊕

T
χb,a)

Because δb = (χa,b ⊕
T
χb,a)⊖

T
δa and x⊖

T
y = T ⊖

T
(y ⊖

T
x), it follows

⇒ δa > δa ⊖
T
(χa,b ⊕

T
χb,a) = δa − (χa,b ⊕

T
χb,a) = T − δb

⇒ δa + δb > T
⇒ δa + δb is not minimal.

6.2. TIMING MODES 101

T

wb(z)

wa(z)

T

a

b

b a

b⊖
T
a

(b⊖
T
a) + T

wa(z) + wb(z)

z

z

z

b⊖
T
a

T

T

T

Figure 6.2.8: The sum of two complementary delays

For the reverse, we consider:

δb + δa > T
⇔ ((T − δa) + χa,b + χb,a) mod T + δa > δa + (T − δa)
⇔ ((T − δa) + χa,b + χb,a) mod T > T − δa
⇒ x < T − (T − δa) = δa

The same applies for δb.

Refer to Figure 6.2.9 for an illustration: δ1,2,0 is greater than the sum of χ1,3 and χ3,1;
hence, their subtraction does not wrap and the di�erence, equaling (ϕ3,1 − θ3,1) mod T =
T−δ3,2,0, is less than the minuend. Therefore, δ1,2,0+δ3,2,0 > T . According to Lemma 6.2.16,
the sum cannot be minimal if it is greater than T. For δ5,2,0 and δ7,2,0, the communication
is timed in such a way that the �1 transmissions overlap, i. e. �cross� each other. The
subtraction wraps, T − δ7,2,0 is not less than δ5,2,0, and the δ5,2,0 + δ7,2,0 sum is less than
T and thus minimal. Note how shifting ϕ2,0 (and thereby ϕ3,1 and θ1,1) to the left would
make χ1,3 and χ3,1 cross, too.

For each partition, ∆∗
p is minimal if the send phase o�sets are chosen in such a way

that all sums of complementary delays are minimal, i. e. x lies in the low interval. This
condition is described by a system of range constraints as follows. Within a partition, each
node is involved in

d =
L−2

∑
`=1

L − ` − 1 = 1

2
(L − 1) (L − 2)

range constraints. Note that wait delay is not limited to consecutive levels. E.g. for node
7 of Figure 6.2.7, constraints comprise wait delays δ7,2,0, δ7,3,0, and δ7,3,1. Particularly,

102 CHAPTER 6. MINIMIZING LATENCY

0

1

2

3

5

6

7

t

4

χ3,1

ϕ1,1

θ7,1

θ1,1

χ1,3

θ3,1 ϕ3,1

χ7,5 χ5,7

ϕ7,1

δ1,2,0

δ3,2,0

δ7,2,0

δ5,2,0 θ5,1ϕ5,1

Figure 6.2.9: Network with 8 nodes in Chained Mode. The sum of complementary delays
δ5,2,0 and δ7,2,0 is minimal, the one of δ1,2,0 and δ3,2,0 is not.

the interdependencies between one partition's nodes form a d-regular graph with N∗ nodes
and ∣E∣ = N∗d

2
edges. Each edge e de�nes a range constraint for the o�set ze between two

nodes:

ze ∈ [ae, be[T (6.2.10)

Let n0 and n1 be two nodes connected by edge e. Then parameters ae and be can
be computed by traversing the chains starting at n0 and n1, respectively, and summing
network delays along the way. The principle algorithm is shown in Algorithm 6.2. The
chains will meet at two nodes, called rendezvous nodes. At these points, the modulo of the
sums' di�erence equals ae or be, depending on the order of levels of the last chain link that
brought each chain there. Note that as each node has only one incoming link per level, the
levels cannot be equal. However, Algorithm 6.2 disregards slot wait delays incurred at each
intermediate message arrival; Algorithm 6.3 takes these into account, too. For instance,
the interval boundaries for ϕ2,0 ⊖

T
ϕ0,0, i. e. the �rst interval constraint of partition 0 with

rendezvous ϕ1,2 ⊖
T
ϕ1,1 and ϕ3,2 ⊖

T
ϕ3,1, are determined as

6.2. TIMING MODES 103

a =
⎛
⎝
χ0,1 − ((θ0,−1 + χ0,1 − θ1,−1) mod Tslot)

− (χ2,3 + ((θ3,−1 − (θ2,−1 + χ2,3)) mod Tslot) + χ3,1)
⎞
⎠

mod T

b =
⎛
⎝
χ0,1 + ((θ1,−1 − (θ0,−1 + χ0,1)) mod Tslot) + χ1,3

+
⎛
⎝
⎛
⎝
θ3,−1 − (θ0,−1 + χ0,1 + ((θ1,−1 − (θ0,−1 + χ0,1)) mod Tslot) + χ1,3)

⎞
⎠

mod Tslot

⎞
⎠

− χ2,3

⎞
⎠

mod T

Each range constraint (6.2.10) de�nes a subspace, referred to as slice, in modulo space,
delimited by two parallel (supporting) hyperplanes. The cut-set of slices corresponds to a
system of inequations, each containing modulo operators. In order to solve this system in
non-modulo space, the modulo operators need to be eliminated using case di�erentiations
as shown in Subsection 3.4.1. As variables of the system we choose not send phases ϕ
directly but rather relative send phase o�sets with regard to the reference node. This way,
we manage with one variable less and avoid redundant solutions and the risk of degeneracy
and cycling of the MILP solver caused by such super�uous variables. Let xi, called primary
o�set, denote the o�set to the send phase of the reference node α of the partition:

xi ∶= ϕα+2(i+1),0 ⊖
T
ϕα,0, i ∈ [0..N∗ − 1[(6.2.11)

Algorithm 6.2 Computation of parameters a and b (assuming Tslot = 0)

sum0, sum1 = 0

for (`0 in 0...L) // traverse chain0 starting at n0

nb0 = nb(n0, `0)

sum0 + = χn0,nb0

n0 = nb0

for (`1 in 0...L) // traverse chain1 starting at n1

nb1 = nb(n1, `1)
sum1 + = χn1,nb1

n1 = nb1
if (n1 == n0) // rendezvous

if (`1 > `0)

a = (sum0 − sum1) mod T

else

b = (sum0 − sum1) mod T

104 CHAPTER 6. MINIMIZING LATENCY

Algorithm 6.3 Computation of parameters a and b regarding slot wait delays

start0 = true

for (`0 in 0...L) // traverse chain0 starting at n0

nb0 = nb(n0, `0)

if (start0)
sum0 = χn0,nb0

sum ′
0 = (θn0,−1 + χn0,nb0) mod Tslot

else

slotwait0 = (θn0,−1 − sum ′
0) mod Tslot

sum0 + = slotwait0 + χn0,nb0

sum ′
0 + = slotwait0 + χn0,nb0

n0 = nb0

start1 = true

for (`1 in 0...L) // traverse chain1 starting at n1

nb1 = nb(n1, `1)

if (start1)
sum1 = χn1,nb1

sum ′
1 = (θn1,−1 + χn1,nb1) mod Tslot

else

slotwait1 = (θn1,−1 − sum ′
1) mod Tslot

sum1 + = slotwait1 + χn1,nb1

sum ′
1 + = slotwait1 + χn1,nb1

n1 = nb1
if (n1 == n0) // rendezvous

if (`1 > `0)

a = (sum0 − ((sum ′
0 − θn1,−1) mod Tslot) − sum1) mod

T

else

b = (sum0 − ((θn1,−1 − sum ′
0) mod Tslot) − sum1) mod

T

6.2. TIMING MODES 105

All phase o�sets zk can then be expressed in terms of either primary o�sets xi or di�erences
thereof, referred to as secondary o�sets:

zk ∈ {xi ∣ i ∈ [0..N∗[} ∪ {xj − xi ∣ i, j ∈ [0..N∗[∧ j > i}

For instance, primary o�set x0 of partition 0 is de�ned as the di�erence ϕ2,0 ⊖ ϕ0,0.

Primary O�sets

We �rst consider the case of z being a primary o�set to α.

z ∈ {xi ∣ i ∈ [0..N∗[}, z, a, b, x ∈ [0, T [⇒ z ∈ [0, T [

⇒ b⊖
T
z =

⎧⎪⎪⎨⎪⎪⎩

b − z for 0 ≤ z ≤ b
b − z + T for b < z < T

(6.2.12)

For the solutions to (6.2.10) we discern two cases with regard to b and a, depicted in
Figures 6.2.10 and 6.2.11:

Case b ≥ a : In this trivial case, displayed in Figure 6.2.10, the interval is completely
contained in [0, T [and hence the solution in non-modulo space contiguous, too. To satisfy
equation (6.2.10), z must lie between a and b:

b ≥ a⇒ (b − a) mod T = b − a, by (6.2.10)

0 ≤ z ≤ b ∶ b − z ≤ b − a
z ≥ a
S = {z ∣a ≤ z ≤ b}

b < z < T ∶ b − z + T ≤ b − a
z − T ≥ a

S = {}

i. e.
z ≥ a
z ≤ b

In order to obtain a system in canonical form, we reverse the �rst inequality by multiplying
with −1:

−z ≤ −a
z ≤ b

(6.2.13)

Case b < a : In this case, shown in Figure 6.2.11, the solution interval of (6.2.13) is
�wrapped around� the boundaries of the codomain and therefore falls into two disjunct
solution sets. A value z belongs to the solution set i� it is either smaller than b or greater
than a:

−z ≤ −a
∨

z ≤ b

The disjunction can be transformed into a conjunction by introducing a binary case variable
c ∈ {0; 1} with oppositional signed coe�cients for the con�icting portions. The absolute

✶✵✻ ❈❍❆ ❚❊❘✻✳ ▼■◆■▼■❩■◆●▲❆❚❊◆❈❨

✈❛❧✉❡♦❢❤❡❝♦❡✣❝✐❡♥♠✉ ❜❡❧❛❣❡❡♥♦✉❣❤♦❧❡✈❡♦✉ ❤❡❡♣❡❝✐✈❡♦✇✳ ❲❡✉❡±T✳
❆✈❛❧✉❡♦❢✶♠❛❦❡ ❤❡✜ ♦✇♦❢✭✻✳✷✳✶✹✮✐♥❛♥❧②❢❡❛✐❜❧❡✱❛✈❛❧✉❡♦❢✵❤❡❡❝♦♥❞✿

−z −T⋅c ≤ −a

z +T⋅c ≤ b+T
✭✻✳✷✳✶✹✮

0
b−a a b

T
x−a

❋✐❣✉❡✻✳✷✳✶✵✿✶✲❱❛✐❛❜❧❡✲❙❧✐❝❡✐♥♠♦❞✉❧♦✲❚♣❛❛♠❡❡ ♣❛❝❡✱❝❛❡b≥a

0
b a T+b−a

T
xb−a b+T−a

c=1 c=0

❋✐❣✉❡✻✳✷✳✶✶✿✶✲❱❛✐❛❜❧❡✲❙❧✐❝❡✐♥♠♦❞✉❧♦✲❚♣❛❛♠❡❡ ♣❛❝❡✱❝❛❡b<a

❙❡❝♦♥❞❛②❖✛❡

❚❤❡ ❡♠❛✐♥✐♥❣✭❡❝♦♥❞❛②✮♣❤❛❡♦✛❡ zk❛❡❡①♣❡❡❞✐♥❡♠ ♦❢❞✐✛❡❡♥❝❡♦❢♣✐♠❛②
♦✛❡✿

zk∈{xj−xi∣i,j∈[0..N
∗[∧j>i}

◆♦❡❤❛ ❛❧❤♦✉❣❤xi❛♥❞xj❛❡❜♦❤♣♦✐✐✈❡✱❤❡❝♦❞♦♠❛✐♥♦❢z♥♦✇❡①❡♥❞✐♥♦❤❡
♥❡❣❛✐✈❡✿

xi,xj∈[0,T[⇒ zk∈]−T,T[

❇❡❝❛✉❡♦❢ ❤❡♣❡✐♦❞✐❝✐②♦❢ ❤❡ ♠♦❞✉❧♦ ♣❛❝❡✱ ❤❡❡①❡♥✐♦♥♦❢❤❡❝♦❞♦♠❛✐♥②✐❡❧❞
❛❞❞✐✐♦♥❛❧♦❧✉✐♦♥ ❤❛ ♠✉ ❜❡❝♦♥✐❞❡❡❞✳ ❚❤✐❝❛♥❜❡❛❝❤✐❡✈❡❞❜②❡❧✐♠✐♥❛✐♥❣❤❡
♠♦❞✉❧♦♦♣❡❛♦❛❢♦❧❧♦✇✿z∈]−T,T[⇒

b⊖
T
z=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

b−z−T ❢♦ −T<z≤b−T
b−z ❢♦b−T<z≤b
b−z+T ❢♦b <z< T

❆❣❛✐♥✱ ❤❡❡❛❡✇♦❝❛❡✇✐❤❡❣❛❞♦b❛♥❞a❜✉ ❤✐ ✐♠❡✇✐❤✇♦❛♥❞ ❤❡❡❞✐❥✉♥❝
♦❧✉✐♦♥❡✱❡♣❡❝✐✈❡❧②✳ ❚❤❡♦❧✉✐♦♥♦✭✻✳✷✳✶✵✮✐❡①❡♥❞❡❞❜②❛❤✐❢❡❞❝♦♣②♦❢❤❡
♦✐❣✐♥❛❧♦❧✉✐♦♥❡❢♦♠❙✉❜❡❝✐♦♥✻✳✷✳✺✿

S′=S∪{z−T∣z∈S}

❋✐❣✉❡✻✳✷✳✶✷❤♦✇ ❤❡♦❧✉✐♦♥ ♦✭✻✳✷✳✶✵✮❢♦z=x1−x0✳

✻✳✷✳ ❚■▼■◆●▼❖❉❊❙ ✶✵✼

x1
T

b

a

b−T

a−T

x1=x0

x1−x0=b−T

x1−x0=a−T

x0T x0

T
x1

T

x1=x0

a

b

a−T

b−T

x1−x0=a−T

x1−x0=b−T

x1−x0=a x1−x0=b

✭❛✮b≥a ✭❜✮b<a

c=
0

c=
1

c=
0

c=
2

c=
1

❋✐❣✉❡✻✳✷✳✶✷✿✷✲✈❛✐❛❜❧❡✲❧✐❝❡✐♥♠♦❞✉❧♦✲T♣❛❛♠❡❡ ♣❛❝❡✿❚✇♦❝❛❡

❈❛❡b≥a✿ ❆ ❤♦✇♥✐♥❋✐❣✉❡✻✳✷✳✶✷❛✱❤❡❢♦♠❡❧②❝♦♥✐❣✉♦✉ ♦❧✉✐♦♥♦❢✭✻✳✷✳✶✸✮✐
❝♦♠♣❧❡♠❡♥❡❞❜②✐ ✐♠❛❣❡❤✐❢❡❞❜②−T✱❤✉②✐❡❧❞✐♥❣✇♦❞✐❥✉♥❝ ♦❧✉✐♦♥❛❡❛

−z ≤ −a
z ≤ b
∨

−z ≤ T−a
z ≤ b−T

❆❣❛✐♥✱✇❡✉❡❛❜✐♥❛②❝❛❡✈❛✐❛❜❧❡c∈{0;1}♦ ❛♥❢♦♠ ❤❡❞✐❥✉♥❝✐♦♥✐♥♦❛❝♦♥❥✉♥❝✲
✐♦♥✿

−z −T⋅c ≤ −a
z −T⋅c ≤ b
−z +T⋅c ≤ 2T−a
z +T⋅c ≤ b

✭✻✳✷✳✶✺✮

❋♦ c=1✱♦✇✶❛♥❞✸❛❡❡✉✐✈❛❧❡♥✳❘♦✇✹✐❛✐❣❤❡❝♦♥ ❛✐♥ ❤❛♥♦✇✷✳❘❡♠♦✈✐♥❣
♦✇✷❛♥❞✸❧❡❛✈❡

−z −T⋅c ≤ −a
z +T⋅c ≤ b

✭✻✳✷✳✶✻✮

❈❛❡b<a✿ ❲❤❡♥ ❤❡❢♦♠❡❧②❞✐❥✉♥❝ ❧✐❝❡✭✻✳✷✳✶✹✮✐♥❙✉❜❡❝✐♦♥✻✳✷✳✺✐❞✉♣❧✐❝❛❡❞✱
❤❡♦✈❡❧❛♣♣✐♥❣♣✐❡❝❡❛❡❡❥♦✐♥❡❞✱❝❡❛✐♥❣❛♦❛❧♦❢♥♦❢♦✉❜✉ ❤❡❡❞✐❥✉♥❝ ♦❧✉✐♦♥

108 CHAPTER 6. MINIMIZING LATENCY

areas.
−z ≤ −a

∨
−z ≤ T − a
z ≤ b

∨
z ≤ b − T

The three cases can be modeled with a single integer variable c ∈ {0,1,2}.

−z −T ⋅ c ≤ −a
z +T ⋅ c ≤ b + T

Using the REEL tool presented in Chapter 5, the conditions required to satisfy each
range constraint can be explored. Particularly, the problems view shown in Figure 5.5.2
on page 79 provides this information in numeric as well as symbolic form.

The Shape of the Perfect Solution

Sought is the vector x of phase o�sets between peers that makes all sums of complementary
delays minimal. Each system of inequalities de�nes one or more convex, bounded polytopes
in (N∗−1)-dimensional modulo-T space {x ∈ R ∣0 ≤ x < T}L−1. Every point that lies within
one of the polytopes is an equivalent, perfect solution to the minimization problem. The
right sides, however, contain quantile estimates of stochastic network delays, that may also
change slightly over time. Optimally, the aspired solution should therefore be located as
far from the boundary of the polytope as possible. This can be achieved by determining
the center of the largest inscribed sphere of all polytopes. The center can be obtained by
shrinking each polytope, i. e. shifting all facets by the same amount along their normals
towards the inside of the polytope. The maximum shifting distance before the polytope
disappears is then the radius of the maximum sphere �tting inside. Depending on the
number of points where the sphere touches the polytope, the resulting body after the
shrinking will have at least one dimension less than the original polytope.

To check whether a feasible solution to a linear program exists, Phase-1 of the Simplex
Algorithm [39] can be used [138]. For enumerating the vertices of the (shrunk) polytope
[4] can be used.

Relaxation and Optimization

A solution where all partial sums are minimal may not exist. Hence, we search for solutions
violating as few constraints as possible. Moreover, di�erent constraints, when violated, lead
to di�erent latency penalties. The number of paths that contain one particular wait delay
δ determines the weight of the violation. The weight doubles with every chain link that is
taken. Hence, it can be computed from the size of the gap (r − l) with r and l denoting
the right and left borders of the gap, respectively.

w = 2L−(r−l)−2

To �nd an optimal solution, we de�ne an objective function to be minimized and one
binary relaxation variable pe for each constraint by which each it may be overridden. The
weights are used as coe�cients to relaxation variables pe within the objective function.

obj = T∑wepe

6.2. TIMING MODES 109

Figure 6.2.13: Largest sphere (green) �tting minimum delay solution polytopes (red) in
modulo-T parameter space (gray).

Each range constraint is then represented as follows, depending on whether z is a
primary or secondary o�set and on the order of a and b:

Case z is primary o�set:

Case b > a:
−z − T ⋅ p ≤ − a
z − T ⋅ p ≤ b

Case b < a:
−z − T ⋅c − T ⋅ p ≤ − a
z + T ⋅c − T ⋅ p ≤ b + T

c ∈ {0,1}

Case z is secondary o�set:

Case b > a:
−z − T ⋅c − T ⋅ p ≤ − a
z + T ⋅c − T ⋅ p ≤ b

c ∈ {0,1}

110 CHAPTER 6. MINIMIZING LATENCY

Case b < a:
−z − T ⋅c − T ⋅ p ≤ − a
z + T ⋅c − T ⋅ p ≤ b + T

c ∈ {0,1,2}

6.3 Evaluation

6.3.1 Random, Sync, Spliced, Chained Mode

Overall Wait Latency ∆̆, Upper Bound ∆̂ and Expectation E[∆]

Having derived analytic bounds and expectations, the gossiping scheme was emulated on
the REEL tool, presented in Chapter 5, with 128 nodes for the �rst four timing modes,
initially with a hypothetical constant network delay of 50ms, then with plausible German
network delays. The period T was set to 100ms. Figure 6.3.1 shows the quantile functions
for the three latency components wait latency (black solid, top) and network latency (green
striped, bottom). The area of each component represents its overall latency (i. e. ∆̆ for wait
latency). The red dotted/dashed horizontal lines show the derived theoretical bounds ∆̂
and expected value E [∆], respectively, speci�c to each method. The solid black horizon-
tal line (partly occluded by the red dashed line) shows the mean of the simulated wait
delay values. Constant network delay was chosen over uniform to reveal the hop count
distribution presented in Subsection 3.3.2. In Figure 6.3.2, the constant network delay
was replaced by delays obtained from the GlobalNetworkPositioningDelayModel model
of the PeerfactSim.KOM simulator [119], that realistically reproduces network locality.
The parametrization was done with measurement data obtained from speedtest.net as
detailed in Section 4.5. Results show a reduction of mean wait latency by roughly two
thirds and maximum wait latency by half.

Traversal Time e

To verify the analytical traversal time estimates, the gossiping scheme was emulated with
varying network sizes and values of k for the �rst four timing modes, using the hop delay
distribution shown in Figure 6.1.1. The period T was set to 840ms to allow for a variety of
divisors. Figure 6.3.3 shows the 99th percentile of traversal time for each method as a func-
tion of the number of nodes with k set to 8. The analytical estimate closely approximates
the simulation results. For Sync and Spliced Mode a constant reduction can be observed
with regard to Random Mode. For Chained Mode the reduction is proportional to the
number of nodes. In Figure 6.3.4, traversal time is plotted over k. Obviously, Random
Mode and Sync Mode are only de�ned for k = 1 and merely serve as a reference. As can be
seen with regard to Spliced Mode and Chained Mode, the real bene�t of I/O splicing is not
the latency reduction in Spliced Mode itself (∼ 0.5T) but rather the laying of foundations
for Chained Mode and its reduction of approximately 2T for 64 nodes.

6.3.2 Crossing Mode

To evaluate the additional reduction of latency by the global optimization approach Cross-
ing Mode, it too was integrated into the REEL tool. To this end, the operational model
was extended by routines for the computation of parameters a and b and the construction

speedtest.net

✻✳✸✳ ❊❱❆▲❯❆❚■❖◆ ✶✶✶

❘
❛
♥
❞
♦
♠

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✵✳✸✲✵✳✶✵✳✶✵✳✸✵✳✺✵✳✼

❙
②
♥
❝

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✵✳✸✲✵✳✶✵✳✶✵✳✸✵✳✺✵✳✼

❙
♣❧
✐
❝
❡
❞✱
❦
❂
✺

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✵✳✸✲✵✳✶✵✳✶✵✳✸✵✳✺✵✳✼

❈
❤
❛✐
♥
❡
❞✱
❦
❂
✺

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✵✳✸✲✵✳✶✵✳✶✵✳✸✵✳✺✵✳✼

❋✐
❣
✉
❡
✻✳
✸✳
✶✿
◗
✉❛
♥
✐❧
❡
❢
✉
♥❝
✐♦
♥
♦❢
✇❛
✐
❛
♥
❞
♥❡
✇♦
❦
❧❛
❡
♥❝
②

❢♦
❝♦
♥
❛
♥
❤♦
♣
❞❡
❧❛
②
✭
✺✵
♠
✮✱
N
=
12
8✱
T
=
10
0
ms

❘
❛
♥
❞
♦
♠

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✶✳✹✲✶✳✵✲✵✳✻✲✵✳✷✵✳✷✵✳✻

❙
②
♥
❝

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✶✳✹✲✶✳✵✲✵✳✻✲✵✳✷✵✳✷✵✳✻

❙
♣❧
✐
❝
❡
❞✱
❦
❂
✺

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✶✳✹✲✶✳✵✲✵✳✻✲✵✳✷✵✳✷✵✳✻

❈
❤
❛✐
♥
❡
❞✱
❦
❂
✺

▲❛❡♥❝②❬❪

✵✳
✵
✵✳
✷
✵✳
✹
✵✳
✻
✵✳
✽
✶✳
✵

✲✶✳✹✲✶✳✵✲✵✳✻✲✵✳✷✵✳✷✵✳✻

❋✐
❣
✉
❡
✻✳
✸✳
✷✿
◗
✉❛
♥
✐❧
❡
❢
✉
♥❝
✐♦
♥
♦❢
✇❛
✐
❛
♥
❞
♥❡
✇♦
❦
❧❛
❡
♥❝
②

❢♦
❛
♠
♣❧
❡
❞
❤♦
♣
❞❡
❧❛
②
✭
❞♦
♠❡
✐❝
❝♦
♥
♥❡
❝
✐♦
♥
✐
♥
●❡
♠❛
♥②
✮✱

N
=
12
8✱
T
=
10
0
ms

✶✶✷ ❈❍❆ ❚❊❘✻✳ ▼■◆■▼■❩■◆●▲❆❚❊◆❈❨

✷ ✹ ✽ ✶✻ ✸✷ ✻✹ ✶✷✽ ✷✺✻ ✺✶✷ ✶✵✷✹

✵
✶

✷
✸

✹
✺

◆♦❞❡

❚
❛
✈❡
❛❧
✐
♠❡
❬
❪

❊ ✳
❘❆◆❉❖▼
❙❨◆❈
❙▲■❈❊❉
❈❍❆■◆❊❉

❙✐♠✳
❘❆◆❉❖▼
❙❨◆❈
❙▲■❈❊❉
❈❍❆■◆❊❉

❋✐❣✉❡✻✳✸✳✸✿99❤♣❡❝❡♥✐❧❡♦❢ ❛✈❡❛❧✲✐♠❡❛❛❢✉♥❝✐♦♥♦❢♥❡✇♦❦ ✐③❡✱T=840ms,
k=8

✶ ✷ ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✶✵

✵
✶

✷
✸

✹

❦

❚
❛✈
❡
❛❧
✐
♠❡
❬
❪

❊ ✳
❘❆◆❉❖▼
❙❨◆❈
❙▲■❈❊❉
❈❍❆■◆❊❉

❙✐♠✳
❘❆◆❉❖▼
❙❨◆❈
❙▲■❈❊❉
❈❍❆■◆❊❉

❋✐❣✉❡✻✳✸✳✹✿99❤♣❡❝❡♥✐❧❡♦❢ ❛✈❡❛❧✲✐♠❡❛❛❢✉♥❝✐♦♥♦❢❝❤✉♥❦✐♥❣♣❛❛♠❡❡ k✱
T=840ms,N=64

✻✳✸✳ ❊❱❆▲❯❆❚■❖◆ ✶✶✸

♦❢❤❡ ② ❡♠♦❢✐♥❡✉❛❧✐✐❡❛❧❛✐❞♦✉✐♥❙✉❜❡❝✐♦♥✻✳✷✳✺✳❋♦ ❤❡ ♦❧✉✐♦♥♦❢❤❡ ②✲
❡♠✱❤❡♦♣❡♥ ♦✉❝❡▼■▲ ♦❧✈❡❧♣❴♦❧✈❡❬✶✶❪✇❛❧✐♥❦❡❞♦❤❡❏❆❱❆✲❜❛❡❞❡♠✉❧❛♦
❜②♠❡❛♥ ♦❢❛❏◆■✇❛♣♣❡✳❧♣❴♦❧✈❡✐❜❛❡❞♦♥❤❡ ❡✈✐❡❞✐♠♣❧❡①♠❡❤♦❞❬✹✵❪❛♥❞
❤❡✉❡❜❛♥❝❤✲❛♥❞✲❜♦✉♥❞❡❛❝❤❢♦ ❤❡✐♥❡❣❡❝♦♥ ❛✐♥✳❯♥❢♦✉♥❛❡❧②✱❛❡♠♣ ♦
❡ ♦❧✉✐♦♥♣❛❛♠❡❡ ❤♦✉❣❤❤❡❏◆■✇❛♣♣❡❝❛✉❡❞❤❡♦♣✐♠✐③❡ ♦❝❛❤✳❇❡❝❛✉❡
♦❧✉✐♦♥♣❡❢♦♠❛♥❝❡❤❡❛✈✐❧②❞❡♣❡♥❞ ♦♥❤❡❡♣❛❛♠❡❡✱❤❡✐♥❡❣❛✐♦♥✐♦♥❧②♦❢✐♥❡✲
❡ ❢♦✐♥❡❛❝✐✈❡✉❡✇✐❤ ♠❛❧❧♠♦❞❡❧ ♦❢✉♣♦✸✷♥♦❞❡✳❋♦❡①♣❡✐♠❡♥ ✇✐❤❧❛❣❡
♠♦❞❡❧✱❤❡✇❛♣♣❡✇❛ ♦♥❧②✉❡❞♦✇✐❡❤❡♠♦❞❡❧✐♥▲ ❢♦♠❛ ♦❞✐❦✳❚❤❡❛❝✉❛❧
♦❧✉✐♦♥✇❛♣❡❢♦♠❡❞✇✐❤ ❤❡ ❛♥❞✲❛❧♦♥❡❡①❡❝✉❛❜❧❡❧♣❴♦❧✈❡❛♥❞ ❤❡❢❛ ❡✱❝♦♠✲
♠❡❝✐❛❧●✉ ♦❜✐❖♣✐♠✐③❡❬✻✵❪✳❋♦❝♦♠♣❛❛❜✐❧✐②✬ ❛❦❡✱χmodT✇❛ ❛✉♠❡❞ ♦❜❡
✉♥✐❢♦♠❧②❞✐ ✐❜✉❡❞♦✈❡T✱❤❡❡❜②♦❜✈✐❛✐♥❣❤❡♥❡❡❞❢♦❢✉❤❡❛✉♠♣✐♦♥ ❡❣❛❞✐♥❣
❤❡❛❝✉❛❧♠❛❣♥✐✉❞❡♦❢♥❡✇♦❦❞❡❧❛②✳◆❡✇♦❦✐③❡✇❛✈❛✐❡❞❜❡✇❡❡♥✽❛♥❞✷✺✻♥♦❞❡✳
❉❡❧❛②❝♦♥✜❣✉❛✐♦♥✇❡❡❣❡♥❡❛❡❞❛♥❞♦♠❧②✉❜❥❡❝ ♦✷✵❞✐✛❡❡♥ ❡❡❞✳❋✐❣✉❡✻✳✸✳✺
❤♦✇♠❡❛♥✇❛✐ ❧❛❡♥❝②∆✐♥❈♦✐♥❣▼♦❞❡✐♥❡❧❛✐♦♥♦❈❤❛✐♥❡❞▼♦❞❡❛♥❞✉❜❥❡❝ ♦
♥❡✇♦❦ ✐③❡✳ ❚❤❡❝②❛♥❞♦✲❞❛❤❡❞❧✐♥❡❛ ❤❡ ♦♣♠❛❦ ❤❡ ❡❢❡❡♥❝❡✱✐✳❡✳✇❛✐❧❛❡♥❝②
❢♦❛♥❡✇♦❦♦❢❣✐✈❡♥✐③❡✐♥❈❤❛✐♥❡❞▼♦❞❡✳❚❤❡❜❧❛❝❦❧✐♥❡❤♦✇ ❤❡❤②♣♦❤❡✐❝❛❧✇❛✐
❧❛❡♥❝②❤❛ ✇✐❧❧ ❡✉❧ ✐❢❤❡❝♦♥✜❣✉❛✐♦♥❢♦♠❈❤❛✐♥❡❞ ▼♦❞❡❝❛♥❜❡ ♦❧✈❡❞♣❡❢❡❝❧②✱
✐✳❡✳✐❢❤❡♦❜❥❡❝✐✈❡❢✉♥❝✐♦♥❜❡❝♦♠❡③❡♦✳ ❆✇❡❝❛♥ ❡❡✱❤✐ ✇♦✉❧❞♦♥❛✈❡❛❣❡❡✉❧
✐♥❤❡❤❛❧✈✐♥❣♦❢✇❛✐ ❧❛❡♥❝②✳ ❍♦✇❡✈❡✱❛♣❡❢❡❝ ♦❧✉✐♦♥❤❛ ♠❡❡ ❛❧❧❝♦♥ ❛✐♥ ✐
♥♦ ❛❧✇❛②♣♦ ✐❜❧❡✭❡❡❙✉❜❡❝✐♦♥✻✳✷✳✺✮✳❚❤❡❡❞❧✐♥❡❤♦✇ ❤❡♦♣✐♠❛❧♦❧✉✐♦♥ ❤❛
❝❛♥❜❡♦❜❛✐♥❡❞♦♥❛✈❡❛❣❡✳ ❲❤✐❧❡❤❡ ♦❧✉✐♦♥♦❢❤❡ ▼■▲ ❢♦♥❡✇♦❦ ♦❢✸✷♥♦❞❡

✽ ✶✻ ✸✷ ✻✹ ✶✷✽ ✷✺✻

✵✳
✵

✵✳
✷

✵✳
✹

✵✳
✻

✵✳
✽

✶✳
✵

◆♦❞❡

▼❡
❛
♥
✇❛
✐
❧
❛
❡
♥❝
②
❡❧
❛
✐
✈❡
♦
❈
❤❛
✐
♥❡
❞
▼♦
❞❡

❘❡❢❡❡♥❝❡✿❈❤❛✐♥❡❞▼♦❞❡
●✉♦❜✐✱✻✵❡❝♦♥❞
●✉♦❜✐✱✻✵✵❡❝♦♥❞
●✉♦❜✐✱✻✵✵✵❡❝♦♥❞
●✉♦❜✐✱✻✵✵✵✵❡❝♦♥❞
♦♣✐♠❛❧♦❧✉✐♦♥
♦❜❥❡❝✐✈❡❂✵

❋✐❣✉❡✻✳✸✳✺✿❘❡❞✉❝✐♦♥♦❢✇❛✐❧❛❡♥❝②✐♥❈♦✐♥❣▼♦❞❡❡❧❛✐✈❡♦❈❤❛✐♥❡❞▼♦❞❡✱✉❜❥❡❝
♦♥❡✇♦❦✐③❡

114 CHAPTER 6. MINIMIZING LATENCY

L

3
4

5
6

7
8

log(seconds)

2

4

6

8

10

0

10

20

30

40

50

p
e
rc

e
n
t
re

d
u
c
ti
o
n

Figure 6.3.6: Reduction of wait latency in Crossing Mode subject to network size and
solution time

took only a few milliseconds on a single 2.8GHz CPU core, the complete solution for a
network of 64 nodes took already several seconds, whereas perfect solutions for 128 nodes
and more were unobtainable within 60,000 s (16.7 h) solution time. For networks of 128
and 256 nodes, the hollow circles depict solutions that can be obtained in various orders
of solution time. The same results are shown in Figure 6.3.6 in more detail; this time the
reduction increases with the ordinate. Note that while the computation of perfect solutions
may be unfeasible for 256 nodes, already a 5-second heuristic search yielded results that
reduced wait latency by 20% compared to Chained Mode.

6.4 Summary and Conclusion

In this chapter, wait latency in periodic hypercube gossiping was analyzed and optimized.
Combined results show that wait latency can constitute a considerable portion of total
latency. Since they directly depend on the on the employed timing mode, overall latency
can be reduced signi�cantly. Five timing modes were investigated. Of these, the four local
ones reduce wait latency by successively constraining transmission times at each node.
Analytical bounds and expected values for wait latency and resulting distribution of total
traversal time were provided and shown to yield accurate results. A �fth timing mode
further improves upon the fourth by modeling and minimizing latency as a mixed integer
linear program. Table 6.4.1 presents an overview of all �ndings.

6.4. SUMMARY AND CONCLUSION 115

6.4.1 Local Modes

Among the locally optimizing timing modes, particularly Chained Mode helps to signi�-
cantly reduce worst-case traversal time. In the scenarios, wait latency was reduced by two
thirds and overall latency was cut in half. The derived expectations and bounds are of
enhanced practical value compared to simple maxima, let alone complexity bounds, and
facilitate general statements as well as the selection of parameters without the need to run
costly simulations.

The �gures suggest that the latency predictions for the uniform network delay distri-
bution also approximate the constant and even the life-like scenario reasonably well.

6.4.2 Global Optimization

For the timing scheme Chained Mode, the nature of wait latency in periodic hypercube
gossiping was analyzed in more detail, and in Crossing Mode the problem of further mini-
mization of wait latency was reduced to a mixed integer linear program.

Experiments attest for networks of 64 nodes an additional reduction of wait latency by
close to 50% on average compared to the best locally optimizing timing scheme Chained
Mode. While for larger networks the e�ort for optimal solutions becomes prohibitive, still
signi�cant reductions can be obtained through heuristics within seconds.

Transforming the MILP problem to a completely integer one will allow to accommodate
systems where input data only becomes available at k distinct phases and is left for future
work.

So far, incomplete allocations and local queueing delay were not taken into account,
i. e. all nodes were assumed to have separate uplinks for each neighbor. The evaluation of
the implementations in the following chapters will use discrete event simulation to account
for node-local uplink queueing, processing delay and incomplete and irregular hypercube
allocations.

116 CHAPTER 6. MINIMIZING LATENCY

T
able

6.4.1:
T
im
ing

m
ode

overview
M
ode

C
onstraints

W
ait

D
elays

F
ree

V
ars

∆̂
E

[∆
]

e

R
andom

�
δ
<
T

2
L
L

(L
+

1)
T

(2
L−

1L
+

2
L
−

1)
T

2(2
L−

1)
∑
Lh=

1

⎛⎜⎝
Lh

⎞⎟⎠
2
L−

1
Ω
∗(h+

1)∗
χ
∗
h

Sync
ϕ
n
,` =

θ
n
,−

1
δ
n
,`,−

1 =
0

0
L
⋅T

(2
L−

1L
−

1)
T

2(2
L−

1)
∑
Lh=

1

⎛⎜⎝
Lh

⎞⎟⎠
2
L−

1
Ω
∗
h∗

χ
∗
h

Spliced
ϕ
n
,` =

θ
n
,−

1
,0 +

i⋅T
slo

t

δ
n
,`,−

1 =
0,

δ
n
,L
,` <

T
slo

t

2
L(L

−
1)

(L
−

1+
1k)T

((
L2
−

1+
1k)

2
L
−

1)
T

2(2
L−

1)
∑
Lh=

1

⎛⎜⎝
Lh

⎞⎟⎠
2
L−

1
Ω
∗(h−

1)∗
χ
∗
h∗

ω

C
hained

ϕ
n
,`+

1 =
θ
n
,` +

ε
δ
n
,`+

1
,` <

T
slo

t
2
L

(
Lk
+
⌊
L−

1
2

⌋(1−
2k))T

((2
L−

1L
−

1)
1k
+

g(L) (1−
1k))

T
2(2

L−
1)

∑
2
L−

1
p=

1
1

2
L−

1
Ω
∗
G
(p)∗

ω
∗(H(p)−

G
(p))∗

χ
∗

H(p)

C
rossing

∑
w
e p
e =

m
in∑

(w
e p
e)

see
Subsection

6.2.5
4

W
ait

latency
is
fully

determ
ined.

Chapter 7

Implementation

Contents
7.1 Architecture . 118

7.1.1 Layers . 118

7.1.2 Components . 119

7.2 Protocol . 126

7.3 Limitations . 129

A realization of periodic peer-to-peer hypercube gossiping aims to ascertain the practi-
cability of the proposed approach. Although the implementation is intended as a functional
prototype as opposed to a productive solution, a number requirements must be met:

� Field testing peer-to-peer applications comes with substantial e�ort, both in terms
of resources and preparations. Also the reproduction of a realistic scenario poses
a challenge. As a consequence, wherever possible, �eld tests are substituted with
simulations. Clearly, the more use cases and code fragments can be covered by
means of simulation, the less remain to be tested in costly �eld tests. This calls for
a software architecture that minimizes the code portions that depend on the actual
execution environment.

� Especially under simulation, the implementation should be highly e�cient to allow
for simulations with a large number of nodes.

� To facilitate experiments, the selection of timing modes should be possible through a
con�gurable runtime parameter, i. e. without necessitating re-compilation. To allow
for a continued support of a number of strategies, the realization of di�erent timing
behaviors should avoid code duplication.

� The implementation should be largely independent from speci�c data- and sensor-
types, aggregation functions and use of the aggregation result.

� Implementation timing behaviors and peer-to-peer protocols are error-prone tasks.
To facilitate separate veri�cation of the function of the individual components, they
should be unit-testable.

In this chapter, I present the prototypical realization of the approach established in Chap-
ter 3, including four of the timing modes contributed in Chapter 6. The implementation

117

✶✶✽ ❈❍❆ ❚❊❘✼✳■▼ ▲❊▼❊◆❚❆❚■❖◆

❢❡❛✉❡❛✢❡①✐❜❧❡❛♥❞❡✣❝✐❡♥❈✰✰❛❝❤✐❡❝✉❡❛♥❞❛♥❡①❡♥✐❜❧❡❯❉ ♣♦♦❝♦❧✳ ❚❤❡
♣♦♦②♣❡❝❛♥❜❡ ✉♥❜♦❤♦♥ ❤❡❖▼◆❡❚✰✰❞✐❝❡❡❡✈❡♥ ✐♠✉❧❛♦ ❬✶✹✺❪❛♥❞❛❛
❛♥❞✲❛❧♦♥❡▲✐♥✉①❛♣♣❧✐❝❛✐♦♥✳❉❡♣❡♥❞❡♥❝✐❡♦♥❤❡❛❝✉❛❧❡①❡❝✉✐♦♥❡♥✈✐♦♥♠❡♥❛❡❡♥✲
❝❛♣✉❧❛❡❞❜❡❤✐♥❞❛❢❛❝✐❧✐②✐♥❡❢❛❝❡✳ ❲❤❡♥✉♥♦♥ ❤❡ ✐♠✉❧❛♦✱♣❡❝✐✜❝♦♣✐♠✐③❛✐♦♥
❡❞✉❝❡❤❡♠❡♠♦②❢♦♦♣✐♥❛♥❞❡①❡❝✉✐♦♥✐♠❡♦❢❤❡❛♣♣❧✐❝❛✐♦♥✇❤❡❡❛ ✉♣♣❧❡♠❡♥✲
❛❧❞✐❛❣♥♦✐❝❞❛❛✐ ❢❡❞✐♥♦ ❤❡ ✐♠✉❧❛✐♦♥❢❛♠❡✇♦❦✳ ❋❧❡①✐❜❧❡ ✉♣♣♦ ❢♦♠✉❧✐♣❧❡
❛❡❣✐❡✐❛❝❤✐❡✈❡❞❜②❛♣♣❧②✐♥❣❤❡♠✐①✐♥♣❛ ❡♥✱❤❛♥❡ ❡❞❢♦❈✰✰✐♥❬✹✼❪✱✉✐♥❣❛

❝♦♠❜✐♥❛✐♦♥♦❢❡♠♣❧❛❡♣♦❣❛♠♠✐♥❣❛♥❞✐♥❤❡✐❛♥❝❡✱ ❤✉ ❛✈♦✐❞✐♥❣❝♦❞❡❞✉♣❧✐❝❛✐♦♥✳
❉❛❛♦♣❡❛✐♦♥✉❡❡♠♣❧❛✐♥❣♦♣♦✈✐❞❡❣❡♥❡✐❝❞❛❛❤❛♥❞❧✐♥❣❛♥❞❛❣❣❡❣❛✐♦♥✐♥❞❡♣❡♥✲
❞❡♥♦❢❞❛❛②♣❡✳❯♥✐✲❡❛❜✐❧✐②✐❡♥✉❡❞❤♦✉❣❤❧♦♦❡❝♦✉♣❧✐♥❣✐♥❝♦♥❥✉♥❝✐♦♥✇✐❤
❢❛❝✐❧✐②✐♥❡❢❛❝❡ ✉❜✳

✼✳✶ ❆❝❤✐❡❝✉❡

❚❤❡ ❡❛❧✐③❛✐♦♥♦❢❤❡♣❡✐♦❞✐❝♣❡❡✲♦✲♣❡❡❤②♣❡❝✉❜❡❣♦✐♣✐♥❣❛♣♣♦❛❝❤✐❛♣❡❡✲♦✲♣❡❡
♥❡✇♦❦✐♥✇❤✐❝❤❡❛❝❤♥❡✇♦❦♥♦❞❡✱❝❛❧❧❡❞♣❡❡ ♦ ❡✈❡♥✱❝♦♠♠✉♥✐❝❛❡✇✐❤❛ ♠❛❧❧
❡♦❢♦❤❡♣❡❡ ✱❝❛❧❧❡❞❤✐♥❡✐❣❤❜♦ ✱❜②♣❡✐♦❞✐❝❛❧❧②❡①❝❤❛♥❣✐♥❣❯❉♣❛❝❦❡ ❝♦♥❛✐♥✐♥❣
❡✉❡♥❝❡♦❢♣❛✐❛❧❧②❛❣❣❡❣❛❡❞❞❛❛❛❧♦♥❣✇✐❤♦♠❡♠❛♥❛❣❡♠❡♥✐♥❢♦♠❛✐♦♥✳

✼✳✶✳✶ ▲❛②❡

❆ ❤♦✇♥✐♥❙✉❜❡❝✐♦♥✸✳✹✳✷♦♥♣❛❣❡✹✶✱❤❡♦✈❡❛❧❧❛❣❣❡❣❛✐♦♥❝❤❡♠❡❝♦♥✐✉❡❛
❞✐❡❝❡❞❛❝②❝❧✐❝❣❛♣❤✭❉❆●✮✇✐❤❡❛❝❤♥♦❞❡❢♦♠✐♥❣❛❞✐❥♦✐♥ ✉❜❣❛♣❤❤❡❡♦❢✳

❋✐❣✉❡✸✳✹✳✹♦♥♣❛❣❡✹✻ ❤♦✇ ♦♥❧② ❤❡❞✐ ❡♠✐♥❛✐♦♥♦❢✐♥❢♦♠❛✐♦♥❀❤❡ ♠♦❞❡♦❢
♣❡❢♦♠✐♥❣ ❤❡❛❣❣❡❣❛✐♦♥✇❛❧❡❢♦♣❡♥✳❚♦❤✐❡♥❞✱✇❡✐♥♦❞✉❝❡❛❝❝✉♠✉❧❛♦

Input Layer

Delivery Layer

Aggregation Layer

Output Layer

Port

Input Channel

Accumulator

Output Channel

Port

0

to #1

1

to #2

2

to #4

3

sink

source from #1 from #2 from #4

❛❡❛❝❤
♥♦❞❡✱✐♥❜❡✇❡❡♥✐♥♣✉ ❛♥❞♦✉♣✉♥♦❞❡✱❛ ❤♦✇♥✐♥❋✐❣✉❡✼✳✶✳✶✳❆♣❡❝✐❛❧♠❡❛♥✐♥❣✐
❛❛❝❤❡❞♦❤❡❡❞❣❡ ❧❡❛❞✐♥❣❢♦♠✐♥♣✉♥♦❞❡ ♦❛❝❝✉♠✉❧❛♦✳❚❤✉✱✇❡❝♦♥✐❞❡❢♦✉
❧❛②❡ ❢♦ ❤❡♦❣❛♥✐③❛✐♦♥♦❢❤❡❞❛❛♣♦❝❡✐♥❣❛❝❤✐❡❝✉❡✿❆♥✐♥♣✉❧❛②❡✱❛❞❡❧✐✈❡②
❧❛②❡✱❛♥❛❣❣❡❣❛✐♦♥❧❛②❡❛♥❞❛♥♦✉♣✉❧❛②❡✳

❋✐❣✉❡✼✳✶✳✶✿❉❛❛✢♦✇❧❛②❡ ✭♥♦❞❡✵♦❢✽✮

■♥♣✉▲❛②❡

❚❤❡✐♥♣✉ ❧❛②❡❝♦♥✐ ♦❢♦✲❝❛❧❧❡❞♦✉❝❡♣♦ ♦❜❥❡❝✱♦♥❡❢♦❡❛❝❤♥❡✐❣❤❜♦♣❧✉ ♦♥❡
❢♦ ❤❡❧♦❝❛❧ ❡♥♦✱❤❛ ❡❝❡✐✈❡✱❞❡❝♦❞❡✱❛♥❞❜✉✛❡❞❛❛❢♦♠❤❡♥❡✇♦❦♦❝❦❡♦ ❤❡
❡♥♦✱❡♣❡❝✐✈❡❧②✳

7.1. ARCHITECTURE 119

Delivery Layer

The delivery layer is constituted of input channels that receive data from the ports and
feed it in a controlled way to the accumulators in the aggregation layer. It is responsible
for jitter compensation and enforcing packet order.

Aggregation Layer

The aggregation layer is composed of a set of aggregation bu�ers, called accumulators,
wherein data from di�erent sources is aggregated.

Output Layer

The output layer includes output channels and the very same port objects as in the input
layer, only this time in their role as output ports, that either encode data and send it to
the neighbors or output it locally.

7.1.2 Components

Figure 7.1.2 provides an overview of the key components of the servent architecture. Afore-
mentioned aggregation related components can be found on the right hand side. Below,
the key components are discussed in detail.

Application

Application is an interface that encapsulates dependencies on the actual execution en-
vironment. It is implemented by class RealApplication, a stand-alone application that
has access to a real sensor and network socket, and class SimulatedApplication, that
integrates into the OMNeT++ simulation environment.

Servent

ServentImpl is the core component of the servent implementation. It can be accessed
through the interfaces ServentIf and ServentFacility, providing external and internal
views (facets) on the class's methods.

Messaging The messages exchanged between peers can be distinguished into two kinds:
DirectMessages and RoutedMessages. The former are sent directly to a known socket
address; the latter are routed hop-by-hop and piggy-back on routinely exchanged messages
containing aggregation data.

Incoming UDP packets are handed to the MessageFactory, which parses the pack-
ets and extracts a number of Message command objects from each packet. These mes-
sages are passed to the ProtocolHandler, described below. Messages containing aggre-
gation data (DataMessages) are handed to Aggregator, also described below. Outgoing
RoutedMessages are queued at Ports for attachment to the next outgoing data packet.
Outgoing DirectMessages are passed to Application for execution environment speci�c
sending.

120 CHAPTER 7. IMPLEMENTATION

F
igure

7.1.2:
Servent

architecture
overview

7.1. ARCHITECTURE 121

Memory Management To improve simulation performance, several optimizations are
employed. When run under the simulator, message bu�ers use a global pool shared by
all nodes. Packets are handed from source node to destination node without re-allocating
the bu�er or copying the message. Additionally messages are attributed with diagnostic
data to ease debugging. This is achieved through the use of smart pointers and in-place
instantiation of messages.

Protocol Handler

The ProtocolHandler processes messages to implement the peer-to-peer protocol, detailed
in Section 7.2, and perform the network manipulations described in Subsection 3.3.4. At
this, it forwards and creates messages and recon�gures the servent.

Aggregator

Data received from neighbors and the sensor is given to the Aggregator, that, in con-
junction with Ports, Channels and Accumulators, implements the communication and
aggregation scheme presented in Section 3.4 as well as the local timing modes described
in Chapter 6. The di�erent timing modes are realized by subclassing Aggregator and
Accumulator as shown in Figure 7.1.4. They di�er in how data from multiple neighbors

SingleLocalOutAggregator (b) MultiLocalOutAggregator(a)

from #1

1 2 3

from #2 from #4

0

to #1 to #2 to #4 sink

source

0

to #1

1

to #2

2

to #4

3

sink

4 5

from #1 from #2 from #4source

Figure 7.1.3: Aggregation schemes for node 0 of 8 as used by Rand & Sync Mode (left)
and Spliced & Chained Mode (right)

is fed to the data sink. In Random Mode and Sync Mode, one accumulator aggregates
data from all neighbors, as shown in Figure 7.1.3(a). The accumulator is �ushed once per
period. In Spliced Mode and Chained Mode, data is fed to the sink right when it arrives.
In this case, the sink is responsible for mixing the phase displaced data sources. This is
shown in Figure 7.1.3(b).

When neighbors are added or removed or the maxlevel or summit (see Subsection 3.4.2
on page 44) of neighbors change, the aggregator needs to be recon�gured according to the
periodic hypercube gossiping communication and dissemination schemes for the incomplete
hypercube, as per De�nitions 3.4.12 and 3.4.13, respectively. The imperative formulation
of this recon�guration is shown in Algorithm 7.1.

Accumulators

Accumulators are responsible for performing the intermediate, partial aggregation, and, in
the cases of Random and Sync Mode, also the �nal aggregation. They can be thought of
as data bu�ers that are initialized to the neutral element of the data type. Each input
operation to the accumulator performs the fusion f of the contents and the new data,

122 CHAPTER 7. IMPLEMENTATION

Algorithm 7.1 Aggregator (re)con�guration

// Create accumulators and wire destinations. Connections are always full-duplex.
complete = 0

for (l : 0..highestPortLevel) {

dp = getPort(nb(l));

// Create accumulators for connections to neighbors within the largest
// complete containing hypercube and if either of us is the highest level
// existing neighbor for the other
if (dp && (complete==l || l==highestPortLevel || dp.maxLevel4Remote)) {

if (!accus[l]) {

accus[l] = createNetAccu(l);

accus[l].localInChannel = createLocalInChannel();

accus[l].destination = createNetOutChannel(accus[l], nb(l));

}

accus[l].dispositionLevel = complete==l ? complete+1 : complete;

if (complete==l && dp.remoteDispositionLevel==l+1)

++complete;

addLocalOutFrom(dp);

} else {

accus[l] = null;

if (dp)

remLocalOutFrom(dp);

}

}

// Wire sources for accumulators
for (acc : accus) {

dp = acc.destination.port;

for (a : accus) {

sp = a.destination.port;

if (sp == dp)

continue; // Never return data to same neighbor

// Disseminate each source to all levels >= source's disposition level
if (sp.remoteDispositionLevel <= acc.level)

acc.addSource(sp.remoteId, createNetInChannel(sp, acc));

else

acc.remSource(sp.remoteId);

}

}

7.1. ARCHITECTURE 123

Figure 7.1.4: Realization of timing modes through aggregators

according to Section 3.4. The result of the fusion is again stored to the bu�er. At some
point, speci�c to the timing mode of the accumulator, it is �ushed, i. e. its contents are
committed to the attached OutputChannel and the bu�er is re-initialized. According to
the timing mode, each accumulator computes the due time, i. e. the time at which the next
�ushing will occur and requests from all InputChannels the latest data that will have
arrived before said due time. When the due time will have arrived, it will request from
all input channels not having delivered an extrapolated packet, as discussed in the next
subsection.

The accumulators associated with the di�erent timing modes vary mostly in their
method to trigger the �ushing. RandomPhaseAccu uses a timer initially set to a random
phase. SyncAccu uses the arrival of local sensor data every period. So does SplicedAccu,
however the slot may be di�erent for every accumulator of the node. ChainedAccu mode
uses the slot arrival of local sensor data right after the estimated arrival of the preceding
chain link.

Ports

Ports receive data packets from the network socket or the sensor, on the one hand side,
and from output channels, on the other hand side. They perform the following tasks:

Arrival Estimation The reception times are measured and a high probability quantile
of the reception phase is computed by taking into account the past arrival times and
changes in send phase, speci�cally by computing a quantile of the time di�erence between
the remote peer sending a packet at remote time and this peer receiving it at local time.
This way, source ports are able to provide time estimates by which future packets will have
arrived with a high probability.

124 CHAPTER 7. IMPLEMENTATION

RTT Computation Round trip time (RTT) to the remote peer is continuously mea-
sured with piggy-backed acknowledgements whilst deducting the remote sojourn time and
adding the times by which the packets arrived early with regard to χn1,n2,q.

Congestion Detection When one node experiences rising RTT values to all neighbors,
this is strong evidence for the congestion of that node's Internet access link1. In this case,
it will terminate its connections and request a bandwidth reduced position. Note that
packet loss, though often pointed out, is ill-suited as a congestion indicator in peer-to-peer
scenarios because DSL or cable modems can queue several seconds worth of packets before
packet loss occurs.

Decompression After receiving and measuring the packet, the source port prepares the
received data for subsequent use, e. g. converts it from transfer format into a format suitable
for aggregation.

Bu�ering The packet is then stored to a ring bu�er. This bu�ering does not introduce
extra latency. In fact, packets are only queued for the amount they arrive early with regard
to their ETA χn1,n2,q plus wait delay described in Chapter 6.

Noti�cation Channels that have registered interest are noti�ed of the arrival.

Extrapolation / Loss Concealment For some applications, in the case of lost packets,
it makes sense to rather provide extrapolated data than no data at all. For example, in an
audio stream, missing samples can be synthesized. The extrapolated data must be available
when the packet is due and has not arrived. Consequently, the synthesized packet must
be computed ahead of time, e. g. for the next packet, directly after notifying the connected
channels of the current arrival.

Message Forwarding Ports accept RoutedMessages from ProtocolHandler for
piggy-back routing. They store these messages in a FIFO queue until the next data trans-
mission.

Compression and Sending Before the sending, data may have to be converted to
transfer encoding. Finally, it is passed through the Application interface to the execution
environment for transmission.

Channels

Input channels deliver data packets in a controlled way from source ports to mixing bu�ers.
On their way from one node to another, packets can get delayed, lost, or even re-ordered.
Input channels, in conjunction with source ports, provide an abstraction that hides away the
unfavorable irregular characteristics of the Internet. A channel's client, i. e. Accumulator,
can be sure of the following:

� Packets will be delivered in monotonic order and no packet will be delivered twice.

1Most likely, it will be the node's uplink, which is generally narrower. While the directed path on
which the bottleneck lies could be determined from the timing information at hand, in our case it does not
matter; it is to su�cient to know that either upstream or downstream bandwidth is scant.

7.1. ARCHITECTURE 125

� Each packet will be delivered only after having been requested.

� Packets will be delivered either before the speci�ed deadline or not at all.

� With speci�ed high probability, some packet will be delivered in time but packets
will not be bu�ered longer than necessary to ensure this.

To this end, channels keep track of reservations and the sequence numbers of the last
delivered packets.

Delivery Figure 7.1.5 illustrates the interplay between ports, channels and accumulators
by example of accumulator 1 of node 0 of 8 as of Figure 7.1.1. The depicted order of events
could occur in any of the Sync, Spliced and Chained mode.

Figure 7.1.5: Servent data �ow sequence

1. port1 noti�es inputChannel1 of the arrival of a new, numbered packet. However, the channel's receiver
has not yet requested a packet, so the channel just notes the sequence number of the arrival.

2. accu1 request a packet from inputChannel0. Since this channel is its localInChannel, connected to the
local sensor, accu1 request the data to be delivered after t0. The InputChannel computes the sequence
number of the target packet matching the requested time. Since the packet has not yet arrived, the
channel just notes the request and returns the estimated time of arrival (ETA) t1.

3. accu1 requests from inputChannel1 a packet to be delivered before t1, i. e. the ETA returned by
inputChannel1. Using the associated port's arrival estimate, InputChannel1 computes the sequence
number of the target packet matching the requested due time.

4. Since the target packet has arrived already, the channel retrieves it from the associated port's ring bu�er.

5. The retrieved packet is handed to accu1.

6. Fresh data from the sensor is o�ered to inputChannel0.

7. Because of the registered request, it is passed right through to accu1.

8. accu1 fuses the data with its current contents. Since the arrival was from the accumulator's
localInChannel, it also triggers �ushing.

9. accu1 outputs the partial aggregate.

10. OutputChannel2 just passes the data through to the port from where it is sent to node 2.

126 CHAPTER 7. IMPLEMENTATION

7.2 Protocol

The servents exchange information using UDP datagrams. In contrast to TCP, UDP is
unreliable and provides no congestion control. This makes it especially suited for real-time
applications. For these, transmission problems are best handled on the application layer.
For instance, commonly there is no use in resending dropped packets as they would likely
arrive too late to be of any value, and moreover, generate excess tra�c that may even
compound the problem.

To enable deployment in typical peer-to-peer scenarios, the protocol must consider
that hosts may be hidden behind �rewalls and NAT routers, as particularized in Subsec-
tion 2.4.5. The network setup is performed as described in Subsection 3.3.4.

As each sent packet comes with an overhead, the protocol aims to attach management
information to the aggregation data, which is exchanged periodically, where possible. Mes-
sages can thus be discerned into direct messages, that are sent directly from one node to
another, and routed messages, which travel piggy-back with the aggregation data.

Inside the UDP payload, the data is organized in a �exible container format based
on the Electronic Arts Interchange File Format [112], whereat the payload is divided into
variable size portions, called chunks. Each chunk begins with a four-byte chunk identi�er,
corresponding to a sequence of printable ASCII characters, called the type ID or FourCC.
The type ID is followed by a four byte chunk length, not counting the type ID and chunk
length �elds. Next comes the actual chunk content. To make the whole chunk a multiple
of 4 bytes, it is followed by 0�3 padding bytes. This scheme is illustrated in Figure 7.2.1.
Employing this simple container format has several bene�ts:

� An arbitrary number of logical messages can be embedded in one packet.

� The individual parts can be of variable size.

� The protocol can be easily extended by simply adding further chunks.

� Parsing is very e�cient.

� Using a FourCC as chunk identi�er eases debugging, as the four character string can
be spotted easily in packet dumps.

’B’ ’A’’,’ ’!’

00 00

00 00 00 09

00 00 00 07

00

c0 a8 00 01

fe 52 00 00

’D’ ’A’ ’T’ ’A’

.
.
.

Chunk ID

Chunk Length

Padding

Chunk Content

10

Chunk ID

Chunk Length

Figure 7.2.1: Message organization within UDP payload

7.2. PROTOCOL 127

Eleven message chunks are currently de�ned and will be described below. Throughout the
description, the following terms will be used:

applicant node applying for a node ID

contact node receiving applicant's request

host node accepting applicant as a neighbor

An exemplary message exchange is shown in Figure 3.3.5 on page 32.

FourCC: RQID Name: Request ID Type: direct
Synopsis: Application for node ID.
Content: uint16_t maxNeighbors;

Description: Sent by unassociated node to any node of the network. The
receiver (contact) will either reply directly with PTMY or will
forward the request in the form of ACMD in the direction of a
prospective host. maxNeighbors is used to determine whether the
host is bandwidth-impaired and requires special placement.

FourCC: ACMD Name: Accommodate Type: routed
Synopsis: Forwarded request for node ID.
Content: source_t contactId;

Inet4SocketAddress applicantAdr;

uint16_t maxNeighbors;

Description: Host will reply with HOST, routed back to contact, and PTMY,
sent directly to applicant; otherwise this message is forwarded to
next prospective host.

FourCC: HOST Name: Found Host Type: routed
Synopsis: Positive reply for ACMD.
Content: source_t hostId;

source_t contactId;

Inet4SocketAddress applicantAdr;

Inet4SocketAddress hostAdr;

level_t level;

Description: Routed back to contact, who will send RFR2 to applicant.

FourCC: RFR2 Name: Refer To Type: direct
Synopsis: Replied by contact to applicant upon received HOST.
Content: Inet4SocketAddress neighborAddress;

Description: Applicant is to re-send RQID to supplied address. Since host has
sent PTMY already, the RQID message completes the hole
punching.

FourCC: PTMY Name: Pleased to meet you Type: direct
Synopsis: Receiver is accepted as sender's neighbor.
Content: source_t myId;

source_t yourId;

Description: Sent by host to applicant either on RQID or ACMD or B,A!.

128 CHAPTER 7. IMPLEMENTATION

FourCC: B,A! Name: Introduce A Type: routed
Synopsis: Routed by host to potential neighbors of applicant.
Content: source_t aId;

source_t bId;

Inet4SocketAddress aAdr;

Description: The receiver will reply with A,B! (routed) and PTMY (direct).

FourCC: A,B! Name: Introduce B Type: routed
Synopsis: Returned socket address of B.
Content: source_t aId;

source_t bId;

Inet4SocketAddress bAdr;

Description: Routed back upon reception of B,A!

FourCC: BYE! Name: Good-bye Type: direct
Synopsis: Politely sent to all neighbors upon termination.
Content: source_t myId;

Description: Tells receiver that he may immediately commence recon�guration
without waiting for the timeout to pass.

FourCC: DUEL Name: ResolveCon�ict Type: direct
Synopsis: Informs holders of the same ID of each other.
Content: source_t id;

Inet4SocketAddress address;

uint16_t key;

Description: Recipients will DARE each other. key uniquely identi�es this
�ght.

FourCC: DARE Name: Challenge Type: direct
Synopsis: Challenge receiver for a �ght for id.
Content: uint16_t key;

source_t id;

source_t nodeCount;

struct { source_t id;

Inet4SocketAddress address; } neighbors[];

Description: The node with higher nodeCount wins this �ght identi�ed by key.
The passed neighbors are examined for further ID con�icts.

7.3. LIMITATIONS 129

FourCC: DATA Name: Aggregation Data Type: direct
Synopsis: Partial aggregate data exchanged between neighbors.
Content: source_t sender; // same as PTMY.myId

source_t recipient; // same as PTMY.yourId

seqno_t pktseqno; // arrival estimation
time_t sdt; // arrival estimation
seqno_t ack; // rtt computation
time_t ackDelay; // rtt computation
level_t dispositionLevel; // see Subsection 3.4.2
level_t maxLevel; // see Subsection 3.4.2
source_t nodeCount; // aggregate
source_t maxId; // aggregate
holes_t holes; // aggregate, see Subsection 3.3.4
source_t nsources; // aggregate
data_t data; // aggregate

Description: Beside the actual data, four more aggregates are formed for
internal purposes.

7.3 Limitations

In this chapter I have outlined the realization of the approaches of Chapters 3 and 6 in a
generic, application independent, form. To this end, I have picked a small and somewhat
arbitrary selection of hopefully interesting implementation details out of 20 k lines of code.

To turn the presented prototype into a useful application, several more issues would
have to be addressed:

� Currently, aggregation is limited to a single session.

� IPv6 is not supported.

� The implementation supports only binary hypercubes.

� Only Random, Sync, Spliced and Chained Mode are implemented.

� To make better use of available computing resources, the application should use
multiple threads.

� To ease employment in varied applications, the stand-alone program should be trans-
formed into a generic aggregation framework.

Chapter 8

Application 1: Scalable Audio

Communication for Massively

Multiuser Virtual Environments

Contents
8.1 Background and Problem De�nition 131

8.1.1 Conventional Audio Conferencing 131

8.1.2 Auditory Virtual Environments . 133

8.1.3 Problem De�nition . 133

8.2 Related Work . 134

8.3 Mapping the Virtual Environment to the Hypercube 136

8.3.1 Continuity . 136

8.3.2 Adapted Aggregation Scheme . 137

8.3.3 Mapping Algorithm . 137

8.4 Implementation Considerations 140

8.5 Evaluation . 141

8.5.1 Mapping . 141

8.5.2 Mouth-to-Ear Latency . 143

8.6 Conclusion . 143

With the advent of virtual environments and MMORPGs came the desire to not only
hear the sounds of the environment but also talk naturally, that is, with an audio model
conforming to the virtual environment. Audio communication for massively multiuser
virtual environments (MMVEs) comprises the provisioning of hundreds of thousands of
users with their personal, position dependent compositions of audio streams, in real-time,
at low latency, using non-realtime components connected through a heterogeneous network
with diversely limited bandwidths and varying delays.

The �rst audio communication solutions for virtual environments were separate pro-
grams that disregarded virtual distance, orientation, room acoustics, and 3-D sound alto-
gether. Recently, there have been various e�orts to integrate audio communication into
the virtual worlds. These however do not perform satisfactorily in the context of dense

130

8.1. BACKGROUND AND PROBLEM DEFINITION 131

crowds. In lack of functioning comprehensive solutions, users resort to detached and limited
conferencing tools.

In this chapter, I will show how the periodic peer-to-peer hypercube gossiping ap-
proach, presented in Chapter 3, can be applied to facilitate scalable audio communication
for MMVEs. To this end, the base architecture, described in Chapter 7, needs to be
adapted to suit the application speci�c circumstances and requirements. A particular
problem regarded comprises the mapping of virtual scenes to hypercube allocations. The
contributions of Chapter 6 are employed to reduce and to quantify latency. The prototype
is test-driven using OMNeT++ simulator in conjunction with the DELFOI delay model
from Chapter 4. Latency results indicate feasibility for domestic scenarios.

The rest of this chapter is organized as follows: Section 8.1 motivates the application
use case and de�nes the problem based on a brief on audio communications in virtual
environments. Section 8.2 gives an overview of related work. Section 8.3 regards needed
modi�cations to the aggregation scheme as well as the problem of mapping virtual scenes
to hypercube allocations. Section 8.4 deals with technical considerations for the imple-
mentation. In Section 8.5, the system's performance is evaluated through simulation, and
Section 8.6 concludes this chapter.

8.1 Background and Problem De�nition

With the rise of a whole new generation of massively multiplayer online games (MMOGs),
such as Lineage II, World of Tanks, EVE Online, and Second Life, MMVEs are now
experiencing hundreds of thousands of concurrent users with an upward trend. Their
operation long since requires thousands of servers, each [23, 142, 89]. At the same time,
MMVEs are becoming increasingly interactive where interaction more and more resembles
natural conversation [133]. In auditory virtual environments (AVEs) [116] all participants
are allowed to speak at once, but each one only hears a subset of the others, possibly with
di�erent audio volumes depending on their distance. Although some of the games provide
audio systems already, these still have problems coping with dense crowds created by large
numbers of users gathered at the same virtual location, e. g. attending the same events
or activities such as New Years Eve's countdown or popular sports events. Unsatis�ed
users resort to using external tools such as TeamSpeak, Mumble or Skype for �critical�
communication. By shifting the load to the abundant clients, peer-to-peer communication
promises to provide better service quality at lower cost.

Technically, audio conferencing is a special manifestation of the gossip problem, de-
scribed in Subsection 2.1.3, in which every node's information must be communicated to
all other nodes. However, for audio conferencing in virtual environments, the �nal result is
not just the aggregation of all sources. In particular, each participant needs a composition
of the other participants' audio streams, called personal mix, at which each audio source
is scaled by a factor that may be di�erent for each listener.

8.1.1 Conventional Audio Conferencing

Conventional audio conferencing can be regarded as a special case of sensor fusion, where
the sensors are microphones, the streams are series of audio samples and the aggregation
function is the sum over all sources. Each participant needs a composition of many other
participants' audio streams, e. g. all audio streams except her own.

132 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

The �rst conferencing solution was telephone conferencing, dating back to the begin-
ning of the twentieth century [122]. Conference providers used analog circuits for super-
positioning the audio signals, which until the 1980s were continuous in range and time.

By contrast, in digital telephony, such as ISDN [70, 71] or GSM [46], an analog-to-digital
converter (ADC) converts the continuous signal into a discrete time digital representation.
The samples are encoded and streamed across the network to the conference provider, who
combines audio streams by a process called mixing, which involves digitally summing the
corresponding audio samples from the incoming streams and then normalizing the result
[126]. This technique also applies to voice-over-IP (VoIP), where IP-packets are used
to transfer audio data. The transmission of each packet induces an data overhead due
to various headers as well as associated processing e�ort for labeling and checksumming.
Sending each audio sample in its own packet would generally overload both the processing
node and the network link. As a consequence, audio data is not sent as separate samples
but in chunks of many consecutive samples. This chunking also facilitates the use of more
e�cient compression, such as quantization in the frequency domain or, for instance, with
the aid of psycho-acoustic models, but causes additional latency.

Latency in Communication In some streaming applications, the timeliness of the de-
livery matters, however, not in the notorious ones. In unidirectional streaming of previously
recorded audio or video, such as music or movies, latency plays a secondary role. Delay
variations known as jitter can be eliminated by use of generously dimensioned bu�ers on
the receiving side. But even so-called �live� streaming usually has only moderate latency
requirements. Latency only becomes a nuisance when information arrives faster by a side
channel, e. g. when the viewer of a live video stream hears the cheering of fans coming from
the stadium before he sees the goal happen on his receiver. In real-time voice communica-
tion, however, excessive latency becomes a real problem as it adversely a�ects conversation
in various ways:

� The perceived annoyance by line echo increases with the delay the echo is subjected
to.

� In a phone conversation the media access control, i. e. who gets to speak, is negotiated
using a CSMA/CD-like �protocol� similar to the one employed in Ethernet. A (polite)
participant wishing to say something, �rst waits for the line to be silent, then starts
speaking. If both participants started speaking at the same time they will notice and
stop. In a domestic phone conversation this takes place very quickly. If the delay is
increased, however, the collision can only be detected at a much later time, where
both participants have assumed the channel to be clear, which makes it even more
unpleasant to stop, e. g. in mid-sentence. As a consequence the speakers automatically
resort to a form of CSMA/CARP and before starting to speak not only wait for silence
but also wait some additional period to make sure the previous speaker had really
�nished speaking.

� When one participants asks another a question, the spoken reply arrives a full round-
trip-time later than it would if both speakers were in one place. Even worse, addi-
tional delay is added by the CSMA/CARP collision avoidance mentioned above. The
resulting unfamiliar pauses make conversations tiresome and increase the perceived
distance between the conversation partners.

For these reasons, latency in audio communication should be kept to a minimum.

8.1. BACKGROUND AND PROBLEM DEFINITION 133

8.1.2 Auditory Virtual Environments

The intent of auditory virtual environments is to create a context in which participants have
auditory perceptions that correspond not to their real but to their virtual surroundings
[15]. The goal is a very plausible or even natural reproduction. The participant is to gain
a spatial sensation of his virtual environment and perceive both his own movements in the
surroundings as well as the movements of the other sound sources.

Whereas in some applications the user is just a passive receiver of his environment, we
will regard the more challenging use case where users communicate with each other in real-
time. At this, communication not only includes direct conversations but also all nuances in
between loosely overhearing a conversation at the neighboring café table to the atmosphere-
creating ambient buzz. Since audio communication also includes spontaneous, nonverbal
vocal utterances such as laughs and sighs, it is obvious that solutions with push-to-talk
and similar �oor control can be ruled out.

Scene Accuracy & User Expectations Just as in a real environment the auditory
perception is determined by the acoustics of the surroundings, in an auditory virtual envi-
ronment the auditory perception is determined by the audio model of the virtual environ-
ment. At this, however, it is not su�cient to reproduce the acoustics on a mere physical
level. The participant's sensation is also in�uenced by listening experience, attention and
expectations [16].

One must also consider that the perfect auditory experience may not be achievable
for a high number of users with limited bandwidth and computational resources. We will
therefore strive for a scalable solution that is as convincing as possible. Perfect scene accu-
racy between participants can only be achieved with separate mixing operations whereat
each audio source is scaled by a factor that may be di�erent for each listener. This means
that the perfect result is a holistic aggregate (see Section 2.3), whereat no useful partial
aggregation can be done, and all the data must be brought together to be aggregated by
the evaluator. Clearly, transporting all streams in unaggregated form to all nodes for local
mixing is not feasible for lack of bandwidth and computational power. In some cases, how-
ever, an approximation of the scaling factors may be su�cient so that some mixing results
can be shared by several listeners.

Latency For auditory virtual environments the problem with latency in communication
is even exacerbated. [133] explicates the need for latency bounds as follows:

�One characteristic of MMVEs is that they are very interactive. Users can
almost act as if they are seeing or talking to each other in a face-to-face manner.
Thus, delay among users, typically caused by latencies on their communication
links, must be bounded. The actual range depends on the application type, but
is often in the range of a few hundreds, or even a few tens of milliseconds.�

In some games, teams not only need to discuss strategy but also issue tactical orders in
action [132]. This raises the bar with respect to latency requirements even higher.

8.1.3 Problem De�nition

In summary, the key challenge in massively multiuser audio communications is the provi-
sioning of participants with personal position dependent compositions of live audio streams

134 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

(mixes) of audio data with acceptable latency, scene realism and packet loss rates using
non-realtime components connected through a heterogeneous network with diversely lim-
ited bandwidths and varying delays. To meet user expectations, the solution should provide
adaptive quality depending on virtual locality: Especially for users standing virtually close
together, low latency and high scene accuracy should be aspired.

8.2 Related Work

Diverse architectures have been considered for audio delivery in conventional conferences
as well as virtual environments. They di�er greatly in their assumptions regarding network
topology, features, and available bandwidths. Table 8.2.1 compares the resource demands
of a selection shown in Figure 8.2.1 and described below.

(a) (b) (c)

(d) (e) (e) Distrib. Partial Mixing

(d) Decoupled Distrib. Proc.

(c) Multicast

(b) Complete Graph

(a) Central Server

Figure 8.2.1: Selection of distribution topologies

Central Server In a central server setup, i. e. star topology (a), all participants send
their audio data to a server that mixes the streams and sends them back to each client.
With respect to the number of users N , the provider's tra�c grows in the order of N and
the processing e�ort in the order of N2, thus making scalability costly for the provider.
Nevertheless, the approach is viable for small conferences or where revenues pay for server
operation and tra�c. One notable advantage of the central server approach is that�
su�cient server bandwidth provided�it allows for fully individual mixes and low latency
with minimal client bandwidth. It is used by the conferencing solutions TeamSpeak, Ven-
trilo, Mumble, and Skype.

8.2. RELATED WORK 135

Complete Graph The complete graph topology (b), proposed in [93, 76] stipulates that
each participant sends his data to every other participant, thus obviating the need for
a dedicated server. While the complete graph is the most �exible topology, it also has
the highest bandwidth requirements. Each node's processing e�ort and bandwidth are
in the order of N . As described in [93], such structure works well for small-to-medium
size conferences but is less practical for bandwidth-limited end systems such as users with
asymmetric DSL connections with low upstream bandwidth and does not scale well to
larger conferences.

In Voiscape [76] a multi-context voice communication system called is described where
�users can talk with other users and move, in a way similar to face-to-face conversation,
in a virtual auditory space�. The prototypical voiscape implementation uses peer-to-peer
real-time communication. Whenever two avatars move within hearing range of each other
a new bi-directional SIP/RTP connection is negotiated. This leads to a fully-meshed
communication structure, i. e. complete graph.

[94] proposes a novel distributed mixing approach in which super peers form a fully
connected graph and then take turns to mix audio and send it to the other participants.
While averaged over time, this indeed reduces the tra�c to constant and the computation
to linear e�ort for each node, it does not, however, improve latency.

Multicast For the�usually more critical�upstream direction, the bandwidth problem
may be alleviated by use of multicasting or proxy servers�if available [21]. The multi-
cast topology (c) saves peer upstream bandwidth by replicating streams over a multicast
backbone, in the �gure denoted by the thick triangle. However, multicast is neither well
supported by Internet nor widely deployed and rarely available to end users [118].

Decoupled Distributed Processing True remedy lies in the spatial distribution of
the mixing process, by hierarchical mixing. Instead of delivering every source by itself,
the audio streams can be mixed in several stages on intermediate nodes, thereby reducing
data volume on the way. In peer-to-peer stream mixing, the mixing is performed by the
client nodes themselves so that no servers are required. With peerTalk [58] a resource-
e�cient two-phased structure, called decoupled distributed processing (DDP), is presented,
whereby the audio stream processing is decoupled into an aggregation phase that mixes
the audio streams of all active speakers into a single stream by way of a mixing tree, and a
distribution phase that distributes the mixed audio stream to all listeners via a distribution
tree (d). Whilst a valid solution for regular conferencing, this approach is not suited for
AVEs. Because the voices of all participants are concentrated on one node, called the
root mixer, it is not possible to provide a personal mix to each participant. Also, the delay
associated with one participant's reception of the other participants' streams is determined
by his position in the distribution tree.

Distributed Partial Mixing [126] deals with the problem of providing personal au-
dio composition by an approach called distributed partial mixing (DPM) that comprises
combining only some of the streams and transporting other streams separately where band-
width permits (e). Their single tree approach, however, appears to be aimed at scenarios
with peers behind mixer network components at network boundaries, e. g. corporate gate-
ways or dial-up servers rather than mesh networks like the Internet and individual peers.

See [21] for an extended comparison of delivery architectures for immersive audio in
crowded networked games.

136 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

Table 8.2.1: Topology comparison
E�ort Star Kn Multicast DDP DPM Hm

server bandwidth max � � � high �
client/peer bw up low high low medium low medium

client/peer bw down low high high medium variable medium
server mixing e�ort high � � � variable �

client/peer mixing e�ort none high high low variable medium
individual channel control yes yes yes no variable somewhat

latency (low) (low) low medium medium variable
special nodes server none none root mixer partial mixers none

8.3 Mapping the Virtual Environment to the Hyper-

cube

Audio communication in MMVEs requires a system that provides a personal mix of audio
sources for each participant at low latency and bandwidth and is scalable with regard to the
number of participants; a system that is a low-complexity, low-degree solution to the gos-
sip problem in full-duplex mode. The periodic peer-to-peer hypercube gossiping approach,
presented in Chapter 3 satis�es these requirements. To save bandwidth by in-network-
aggregation, the aggregate is required to be distributive (see Section 2.3). However, the
requirement of perfect personal mixes turns the aggregate into a holistic one. The pro-
posed solution to this dilemma is to treat the aggregate as distributive but minimize the
concomitant error by a considerate mapping of avatar positions to node IDs. This mapping
strategy will be purport of this section.

8.3.1 Continuity

In the past, MMOGs had distinct locations or rooms and each user was located in one
room or another. Now, MMVEs develop towards continuous spaces wherein users can move
seamlessly. Despite the good scalability of the hypercube topology, putting all users into
one hypercube network is neither feasible nor necessary. Instead, the virtual space should
be partitioned. In (�oored) indoor environments, as well as in most outdoor MMVEs,
where users linger on some (e. g. planetary) surface, it is su�cient to partition the surface
into two-dimensional cells. Distance is best preserved using a hexagonal grid, also proposed
in [152], and shown in Figure 8.3.1. For any pair of adjacent cells at most one node of the
�rst cell communicates with at most one node of the second cell to exchange cell aggregates.
If cells are smaller than the hearing range, it is still possible to convey audio across several
cells along the three axes but not in between, as this would result in redundant data paths,
and thus, echoes1.

Only in environments with multi-storied open structures where users move freely through
the third dimension, 3-D cells, e. g. hexagonal close-packed (hcp) or face-centered cubic (fcc)
are suitable.

In environments where avatars move or act as groups, it may be preferable to use
moving cells to facilitate coherent communication within the group. The predominant
use of external communication tools suggests that this is likely more important than high
�delity with respect to physical acoustics.

1For some environments this e�ect could actually be acceptable or even desirable.

8.3. MAPPING THE VIRTUAL ENVIRONMENT TO THE HYPERCUBE 137

Figure 8.3.1: Nodes at avatar positions in hexagonal cell

8.3.2 Adapted Aggregation Scheme

In Figure 3.4.3 on page 45 a generic hypercube aggregation scheme was shown. The
aggregate was formed from all sources. For audio conferencing, in contrast, aggregates
are required that exclude each participant's own audio. An aggregation scheme that is
suitable for audio communication is shown in Figure 8.3.2. The �nal result, displayed in
the rightmost column, does not contain the original piece of information of the respective
node, i. e. corresponds to (3.4.6). The di�erent shades in the rightmost column represent
the attenuated volumes of the personal mixes. Obviously, the received pre-mixed partial
aggregates can only be scaled as a whole, so the �nal mixing result deviates from the
perfect personal mix that would be attainable if all sources were separately available at
each node. The mapping algorithm presented below aims to assign node IDs in such a way
as to minimize this error.

8.3.3 Mapping Algorithm

A mapping algorithm is needed to transform the virtual avatar locations into node positions
in the network. At this, the resulting latency distribution and �delity of each participant's
personal mix must be considered. Furthermore, the algorithm must be stable to avoid
drastic dynamic changes of cluster memberships. In order to achieve a perfectly accurate
rendering of the scene according to the sound model (perfect scene accuracy), for each
listener the audio volume of each speaker needs to be attenuated according to the distance
between them. Because of the proposed processing structure, where mixed subsets of
streams are shared, this is not possible. For its output each peer can only attenuate
the composite streams it receives. The higher the level on which a composite stream is
received, the more sources it contains (and are scaled by the same factor) and the coarser is
the granularity. As latency grows with the path length, a high hop-count should correspond
to a high virtual distance.

Even though perfect scene accuracy is not attainable, the algorithm should perform the
clustering in an intuitive way, so that the participants' expectations (e. g. who will hear
them) are approximated as closely as possible. Especially two participants standing closest
to each other should experience a low latency between them and hear each other loud
and clear and with a high scene accuracy. It is desired that participants standing further
away should be heard with lower volumes. Because they blend with the background noise,

138 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

+ + + += = =

�0 �1 �2

n0

n2

n3

n4

n5

n6

n7

n1
c
0,3
⋅

c
0,1
⋅

c
0,2
⋅

�3�−1

Figure 8.3.2: Hypercube aggregation scheme suitable for audio communication in AVEs

however, their exact volume and latency are of lesser importance.
To account for bandwidth constraints, the algorithm should minimize the number of

levels, i. e. the degree of the network.
With avatars moving, peers dropping out and so forth, the topology needs to be modi�ed

continuously. Therefore, the algorithm should be stable in the sense that, e. g. a single
person walking around in the virtual environment should have only local repercussions
instead of a�ecting the whole network structure.

Obviously, peers that are neighbors in the network experience minimum latency and
transcoding artifacts between each other. Particularly, peers that are neighbors on �0 ad-
ditionally have full individual channel control, i. e. highest possible granularity. Therefore,
Algorithm 8.1, proposed below, clusters all participants with virtual locations referred
to as points p ∈ P standing in general position, i. e. in no special con�guration, into a
minimum diameter network graph with the property that participants standing closest to-
gether become neighbors on �0. Figure 8.3.3 shows the clustering of six points according

8.3. MAPPING THE VIRTUAL ENVIRONMENT TO THE HYPERCUBE 139

Algorithm 8.1 Clustering Method 1

T ∶= {{p}∣p ∈ P} // Initialize working set to singleton clusters from points.
While ∣T ∣ > 1

// Cluster mutually closest clusters...
D ∶= {{u, v} ∈ T 2∣u ≠ v,∀x ∈ T /{u, v} (∣u − v∣ < ∣u − x∣ ∧ ∣u − v∣ < ∣x − v∣)}
T ∶= T / {x ∈ c∣c ∈D} // and remove from working set.
C ∶= {{u}∣u ∈ T} // Form singleton clusters from remaining clusters.
T ∶=D ∪C // Recurse with combined result.

end

3

1

Level2 Cluster

Level0 Cluster

Level0 Cluster

Level1 Cluster

Level1 Cluster

6

4

2

5

Figure 8.3.3: Clustering six points by Method 1

to Method 1. Mutually nearest points {1, 3} and {4, 6} are clustered �rst (red circles).
Remaining points 5 and 2 are clustered into singletons (not shown). In the next loop, the
mutually closest clusters are clustered again (green circles). This is repeated a �nal time,
leaving a single resulting cluster, the root cluster (blue circle). As a result, point 1 could
have the following neighbors (point IDs): 3 (on �0), 5 (on �1), 4 (on �2). The disadvantage
of Method 1 is that the high number of singleton clusters (e. g. {2} and {5}) results in a
high node degree. As a consequence several variations were devised:

Method 2 di�ers from Method 1 in that it keeps clustering on the same level as long as
possible. In the example, it would cluster {2, 5} even though they are not particularly
close. This results in a lower degree, however, at the expense of scene accuracy. As
a compromise, four additional methods re�ne Method 2 by allowing the clustering of
remaining points only if additional constraints are met:

Method 2.1 requires the centers of the two clusters to be within audio range.

Method 2.2 requires at least one pair of points with the members from both clusters to
be within audio range.

Method 2.3 requires the circular cluster perimeters to be within audio range.

140 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

Method 2.4 re�nes Method 2.1 by additionally requiring the two clusters' unilaterally
closest points to be of approximately the same distance (e. g. up to a factor of 2) to
both clusters.

8.4 Further Considerations for the Implementation

Architecture The proposed realization of scalable audio communication for MMVEs
is a peer-to-peer network where each network node, called peer, communicates with a
small set of other peers, called his neighbors, by periodically exchanging UDP packets
containing sequences of partially mixed audio data. On the large scale, network nodes
are arranged in an overlay graph consisting of�generally incomplete�hypercube networks
(cells) connected by a, e. g. hexagonal, grid network. The internal architecture of each
peer comprises an input layer, a delivery layer, an aggregation layer and an output layer,
as detailed in Chapter 7.

Timing Considerations Several pitfalls must be avoided when implementing this seem-
ingly simple architecture. Audio streaming is a real-time process. From the recording to
the encoding, sending, receiving, decoding, aggregating to the playback, all operations
need to complete within time bounds to avoid loss of streaming. On real-time operating
systems, this is ensured by guaranteeing periodic CPU time slices to real-time processes.
On non-real-time operating systems, other processes can block the CPU or obstruct I/O
paths; the uninterrupted operation is therefore not warranted. Nevertheless, operation
can be improved by a considerate implementation that mitigates real-time requirements as
much as possible. On this account, all CPU-intensive tasks, such as audio mixing or loss
concealment, are to be performed well before the send deadline where possible.

Sound I/O and Spliced Mode In a PC, the input (recording) and output (playback)
of sound is performed by a dedicated hardware component, called the sound card. It
consists mainly of a digital-to-analog converter (DAC) for playback and an analog-to-digital
converter (ADC) for recording, each connected to a small bu�er. Samples are transferred
to main memory using direct memory access (DMA) operations.

As particularized in Subsection 6.2.3 et seq., Spliced Mode and Chained Mode synchro-
nize all input (i. e. record) and output (i. e. playback) operations to the network, separately
for each level. For this, independent phases are needed both for recording and playback.
Independent I/O streams can be approximated by using a small sampling period for com-
munication with the sound card and assembling di�ering sets of consecutive small periods
into bigger packets handed to each accumulator. The minimum size of the sampling period
is determined by the sound card hardware and the bus load of the system. If the bus is
occupied for a longer time than the sampling period, loss of streaming will occur. If the
application is noti�ed at each DMA transfer, a small period will lead to a high CPU load,
that will also increase the risk of bu�er underruns.

The Advanced Linux Sound Architecture (ALSA) supports two modes of transferring
data between the application and the ALSA system:

� Standard I/O transfers using read() and write(), possibly in conjunction with
select() and poll().

� Memory-mapped I/O, i. e. direct access to the ring bu�er.

8.5. EVALUATION 141

Using the latter method for the implementation has several advantages: Phase shifted
local source ports/input channels may simply read di�erent, mostly contiguous regions
of the ring bu�er. The same is true for local destination ports/output channels, with
the additional advantage that slightly belated audio packets may still be written to the
ring bu�er, so that only a few samples are missed. Furthermore, the memory-mapped
access mode allows for zero-copy communication, because ALSA does not need to copy the
samples from application to another place in system memory [91].

8.5 Evaluation

In this section, scene accuracy and mouth-to-ear latency of the approach will be subjected
to quantitative analysis.

Figure 8.5.1: Evaluation tool for clustering/mapping algorithms

8.5.1 Mapping

To evaluate the performance of the mapping algorithms presented in Section 8.3, a JAVA
Swing based evaluator was developed. Its graphical user interface is shown in Figure 8.5.1.
In the upper portion, con�gurations of virtual positions can be entered. Using the controls
at the lower right, these con�gurations can be clustered according to any of the six methods
regarded above. Points being put in one �0 cluster are shown as connected by a black line;
lines of colors red, orange, yellow, and green illustrate clustering of clusters on levels 1,
2, 3, and 4, respectively. The resulting errors (artifacts) are visualized in the panel in
the bottom left: For every speaker/listener pair, the coe�cients are visualized, whereat
black represents maximum loudness and white, inaudibility. The diagonal of white squares
corresponds to the fact that no participant can hear himself. The upper right half (triangle)

✶✹✷ ❈❍❆ ❚❊❘✽✳ ❆ ✳✶✿❙❈❆▲❆❇▲❊❆❯❉■❖❋❖❘▼▼❱❊❙

♦❢❡❛❝❤ ✉❛❡❡♣❡❡♥ ❤❡♥♦♠✐♥❛❧❝♦❡✣❝✐❡♥✱❛♥❞❤❡❧♦✇❡❧❡❢✱❤❡❛❝✉❛❧❝♦❡✣❝✐❡♥
❛✐✇♦✉❧❞ ❡✉❧❢♦♠❤❡❝✉ ❡♥❝❧✉❡✐♥❣✳❚❤✐❣❛✉❣❡❤❡❧♣ ♦ ✉✐❝❦❧② ♣♦♣♦❜❧❡♠
❛♦❝✐❛❡❞✇✐❤❛♣❛ ✐❝✉❧❛❝❧✉❡✐♥❣✳❋♦ ✉❛♥✐❛✐✈❡❡✈❛❧✉❛✐♦♥✇♦❡①♣❡✐♠❡♥ ❝❛♥
❜❡✐♥✐✐❛❡❞❤♦✉❣❤❤❡❝♦♠♠❛♥❞❧✐♥❡✐♥❡❢❛❝❡✿

▲❡✈❡❧

❊
♦

✵✳✷

✵✳✸

✵✳✹

✵✳✺

✵✳✻

✵ ✷ ✹ ✻ ✽

▼❡ ❤♦❞✶

▼❡ ❤♦❞✷

▼❡ ❤♦❞✷✳✶

▼❡ ❤♦❞✷✳✷

▼❡ ❤♦❞✷✳✸

▼❡ ❤♦❞✷✳✹

◆♦♥❡

❋✐❣✉❡✽✳✺✳✷✿❙❝❡♥❡❛❝❝✉❛❝②❛♥❞❞❡❣❡❡✉❜❥❡❝ ♦❝❧✉❡✐♥❣♠❡❤♦❞

■♥❤❡✜ ❡①♣❡✐♠❡♥✱❛♥❞♦♠❝♦♥✜❣✉❛✐♦♥♦❢✸✷♣♦✐♥ ❛❡❣❡♥❡❛❡❞❛♥❞❝❧✉❡❡❞
❛❝❝♦❞✐♥❣ ♦❤❡ ✐①♠❡❤♦❞✳ ❚❤❡♦❛❧❡♦ ❛♥❞♠❛①✐♠✉♠♥♦❞❡❞❡❣❡❡❛❡❡❝♦❞❡❞✳
❚❤❡ ❡✉❧ ❛❡❤♦✇♥✐♥❋✐❣✉❡✽✳✺✳✷✳ ▼❡❤♦❞✶✐ ❤♦✇♥♦②✐❡❧❞❤❡♠♦ ❛❝❝✉❛❡❛✉❞✐♦
❡♣♦❞✉❝✐♦♥✱❤♦✇❡✈❡✱✐❧❡❛❞ ♦❛❤✐❣❤♥♦❞❡❞❡❣❡❡♦❢❛❧♠♦ ✽♦♥❛✈❡❛❣❡✳ ▼❡❤♦❞✷
♠❛♥❛❣❡ ✇✐❤❛♥♦❞❡❞❡❣❡❡♦❢✺✱✇❤✐❝❤✐♦♣✐♠❛❧❢♦❛❝♦♥✐❣✉♦✉♥❡✇♦❦✸✷♥♦❞❡✳
❍♦✇❡✈❡✱❤❡❡ ♦✐❛❜♦✉✺✵✪❤✐❣❤❡✱♦♦✳ ▼❡❤♦❞✷✳✶♣❡❢♦♠ ❧✐❣❤❧②❜❡❡✱❜♦❤
✇✐❤ ❡❣❛❞ ♦❡♦ ❛♥❞❞❡❣❡❡✳ ▼❡❤♦❞ ✷✳✷✱✷✳✸✱❛♥❞✷✳✹❢♦♠❛❝♦♠♣♦♠✐❡❛❜♦✉
❤❛❧❢✲✇❛②✐♥❜❡✇❡❡♥▼❡❤♦❞✷✳✶❛♥❞▼❡❤♦❞✶✳

◆♦♥❡

▼❡ ❤♦❞✷✳✹

▼❡ ❤♦❞✷✳✸

▼❡ ❤♦❞✷✳✷

▼❡ ❤♦❞✷✳✶

▼❡ ❤♦❞✷

▼❡ ❤♦❞✶

✵ ✺✵✵ ✶✵✵✵ ✶✺✵✵

❋✐❣✉❡✽✳✺✳✸✿❙✉❝✉❛❧❝❤❛♥❣❡✐♥❝✉❡❞❜②❛✈❛❛❝♦✐♥❣❤❡❝❡♥❡

■♥❤❡❡❝♦♥❞❡①♣❡✐♠❡♥✱♦♥❡♣♦✐♥✐♠♦✈❡❞ ❤♦✉❣❤❤❡❝♦♥✜❣✉❛✐♦♥♦❢♣♦✐♥✱❛♥❞
❤❡❡✉❧✐♥❣❝❤❛♥❣❡✱✐✳❡✳❛❞❞✐♥❣❛♥❞❡♠♦✈❛❧♦❢♥❡✐❣❤❜♦✱❛❡❡❝♦❞❡❞✳❚❤❡❡✉❧ ❛❡
♣❡❡♥❡❞✐♥❋✐❣✉❡✽✳✺✳✸✳ ▼❡❤♦❞✷✳✶✐ ❤♦✇♥♦❜❡❤❡♠♦ ❛❜❧❡♦♥❡✱✇❤❡❡❛▼❡ ❤♦❞
✷✱✇❤✐❝❤♦♣✐♠✐③❡❧❡✈❡❧♠♦ ❛❣❣❡✐✈❡❧②✱✉♥✉♣✐✐♥❣❧②❝♦♠❡❧❛✳

8.6. CONCLUSION 143

8.5.2 Mouth-to-Ear Latency

Mouth-to-ear latency of the approach was determined using the prototypical implementa-
tion from Chapter 7 and compared to the analytical expectations and upper bounds from
Chapter 6. Mouth-to-ear latency (M2E latency, MEL) denotes the time from the recording
of samples at the source to their playback at their destination. Obviously, MEL perfor-
mance strongly depends on the system's underlying network environment. To reproduce
realistic Internet characteristics in the evaluation as closely as possible, the application
was run on top of the OMNeT++ simulator in conjunction with the INET Framework
and the DELFOI delay model presented in Chapter 4, that accounts for network local-
ity, inter-region speci�c jitter, individual Internet access link bandwidths and queueing.
Parametrization of the delay model was performed from Internet measurements as de-
scribed ibidem. From the data set random hosts located in Germany were drawn. Non-
realtime operating system behavior was modeled by Erlang (k = 2, mean = 2ms) distributed
response times to timer and sound card interrupts. The application's timing discipline was
set to Chained Mode (Subsection 6.2.4). Assuming a 16 kbps bitrate codec for good voice
quality in conjunction with a packet length of 50ms, i. e. 20 packets à 100 bytes UDP pay-
load plus headers per second, yields roughly 25 kbps bandwidth required to support one
connection. As the record bu�er length a conservative value of 25ms, i. e. k = 2 was chosen.
To study the e�ect of network size on MEL, the number of nodes N was varied from 2 to
256. The minimum RTT was determined for each neighbor pair and its PDF computed.
From this I calculated, for complete hypercube allocations, the upper latency bound (sym-
bol △), i. e. the sum of T , (6.1.1), and (6.2.9); and the expected value (symbol ◯), i. e.
the sum of T , (6.1.2), and (6.2.8). For each source/destination pair, i. e. not only direct
neighbors, I measured MEL, took the median of the last 200 measurements to eliminate
initialization e�ects, and computed mean (symbol ×) and the percentiles P25, P75, and
P99 (symbol �) over all pairs. For each parametrization of N , all results were averaged
over 50 simulation runs with varying random hypercube graphs produced from randomly
drawn hosts. The results are plotted in Figure 8.6.1.

Measured MEL mean is found to be slightly larger than its expectation, likely because
of queueing delays and imperfect hypercubes due to bandwidth constraints. First and
third quartile lie close by. The more delicate 99th percentile stays still below the analytical
bound. For one network with 64 nodes, I examined the situation more closely. Figure 8.6.2
shows the upstream bandwidths available. Note that two nodes do not possess su�cient
bandwidth (vertical line) to join a network of degree six. To support these nodes anyhow,
the network topology had to be transformed from a perfect hypercube of dimension six to
an incomplete (sparse) hypercube of higher dimension.

Figure 8.6.3 shows the resulting MEL distribution for this network in detail. Though
the mean exceeds the expectation, still 88% end-to-end latencies are below 500ms.

8.6 Conclusion

I have presented an approach towards scalable audio communications in MMVEs using
latency optimized hypercube gossiping, complemented by analytical latency bounds, ar-
chitecture and implementation considerations. For domestic connections, results based on
Internet measurements from the year 2010 exhibit, for networks of 64 nodes, latencies be-
low 500ms for 50 of the conversation partners. Among the mapping algorithms, Method
2.1 yields the best overall performance. However, the number of structural changes due
to one moving avatar is still considerably high. Future work should consider excluding

144 CHAPTER 8. APP. 1: SCALABLE AUDIO FOR MMVES

avatars in full motion from the regular scene mapping.
Obviously, these quantitative results can only be preliminary. Whether current latency,

accuracy and recon�guration values are acceptable will have to be determined by user stud-
ies, whose outcomes, in turn, will likely depend on the speci�c application and associated
user expectations.

Ultimately, when complemented by a stable mapping and the inevitable increase of
consumer Internet bandwidth, exponentially ampli�ed by the hypercube, the approach
brings e�cient and satisfying massively multiuser auditory virtual environments into close
reach.

✽✳✻✳ ❈❖◆❈▲❯❙■❖◆ ✶✹✺

✷ ✹ ✽ ✶✻ ✸✷ ✻✹ ✶✷✽ ✷✺✻

✵✳
✵

✵✳
✷

✵✳
✹

✵✳
✻

✵✳
✽

✶✳
✵

✶✳
✷

◆♦❞❡

▼✷
❊
▲❛
❡
♥❝
②
❬
❪

❜♦✉♥❞
✾✾
✼✺
♠❡❛♥
❡①♣❡❝❛✐♦♥
✷✺

❋✐❣✉❡✽✳✻✳✶✿ ▼♦✉❤✲♦✲❡❛❧❛❡♥❝②❢♦❞✐✛❡❡♥♥❡✇♦❦✐③❡

❯♣❧♦❛❞❇❛♥❞✇✐❞❤

❋
❡
✉❡
♥❝
②

✶✵✵❦❜♣ ✶▼❜♣ ✶✵▼❜♣ ✶✵✵▼❜♣

✵
✷

✹
✻

✽
✶
✵

❋✐❣✉❡✽✳✻✳✷✿❯♣ ❡❛♠❜❛♥❞✇✐❞❤❢♦❛♣❡❝✐✜❝♥❡✇♦❦❝♦♥✜❣✉❛✐♦♥♦❢✻✹♥♦❞❡

▼✷❊▲❛❡♥❝②❬❪

❋
❡
✉❡
♥❝
②

✵✳✵ ✵✳✷ ✵✳✹ ✵✳✻ ✵✳✽ ✶✳✵ ✶✳✷

✵
✺✵

✶✵
✵

✶
✺✵

✷✵
✵ ✽✽

❋✐❣✉❡✽✳✻✳✸✿ ▼♦✉❤✲♦✲❡❛❧❛❡♥❝②❞✐ ✐❜✉✐♦♥♦❢❤❡✻✹♥♦❞❡♥❡✇♦❦

Chapter 9

Application 2: Decentralized Data

Fusion for Object Tracking

Contents
9.1 Distributed Data Fusion . 148

9.1.1 Finite Set Statistics (FISST) . 148

9.1.2 First Moments . 148

9.1.3 Double Counting . 149

9.2 Related Work . 149

9.3 DDF on Hypercubes . 150

9.3.1 Assumptions . 150

9.3.2 The DDF Problem . 150

9.3.3 Hypercube Gossiping . 150

9.3.4 Degeneration . 152

9.4 Optimization . 153

9.4.1 Coping with Scarce Bandwidth . 154

9.5 Summary . 155

Decentralized data fusion (DDF) is an instance of the general distributed inference
problem, in which there is a single common state of interest�often a geographical area with
an initially unknown number of physical objects (targets), their locations and velocities�
that is observed by a number of distributed nodes, each equipped with one or more sensors,
and connected by some (heterogeneous) network [106]. Each node periodically obtains
observations from its sensors by which it estimates the state of interest. All nodes' estimates
are merged (fused), along with previous estimates, to form a condensed estimate at each
node that is more con�dent than one that any node could produce alone. In recent years,
the decentralization of data fusion techniques to combine data from multiple sensors has
received increasing attention. It coincides with the emergence of a new driving paradigm
of Network Centrics, e. g. Architectures or Operations (NCO) that scatter responsibility
across the network. In 1994, guiding principles were postulated [57], amounting to the
abolishment of central components such as single fusion centers, central nodes, common
communication facilities, or total knowledge of network topology. The rationale behind it is
to ensure scalability by absence of central bottlenecks, as well as modularity and �exibility

146

147

by obviating the need for knowledge of the network. Apparently however, adherence to
these principles is necessary but not su�cient to ensure scalability.

Scaling DDF networks in a heterogeneous environment presents several challenges:
Bandwidth limits the number of neighbors to which each node may send state estimates. A
fully connected topology, for instance, is therefore only possible for a small number of nodes.
Providentially, data fusion is an operation that can reduce data volume. By performing
the aggregation on the network, information can be condensed along the way. However,
each extra hop introduces additional latency that is comprised not only of network delays
but also of sojourn times of the information at intermediate nodes. This vitiates the value
of state estimates; particularly estimates of targets that behave in a non-linear way may
decay quickly. As a consequence, latency must be kept to a minimum. In [30], the neces-
sity to spread information �as fast and as e�cient as possible� and the need for analytical
performance models and metrics to predict latency and reliability is emphasized.

Another challenge generally encountered in DDF networks springs from the necessity
to eliminate common past information resulting from the fusion of estimates that were
descended from the same data. To avoid double-counting, this correlated information from
past fusion events must be identi�ed and removed�a task which requires the availability of
the original data sets. Although the theoretic fundamentals have been well documented and
studied for about twenty years now, the removal of common information while minimizing
the amount of data exchanged still remains one of the main di�culties in distributed
information fusion [29].

Numerous methods for DDF have been proposed, handling correlated data in diverse
ways. Yet all in all, current approaches compensate this so-called data incest by approxi-
mations, have scalability issues with regard to latency or bandwidth, are fragile regarding
single node failures, or resort to central components.

In this chapter, I present a periodic peer-to-peer hypercube gossiping based approach
to decentralized data fusion. Its basic hierarchical structure permits e�cient aggregation
and dissemination of information with logarithmic time and bandwidth requirements while
ruling out the possibility of double counting. In contrast to 1-trees, such as star and chain
topologies, the dense structure of a hypercube sustains connectivity in the event of sin-
gle node failures. The responsibilities of all nodes are fully determined by their position
in the hypercube, thus obviating the need to negotiate communication schemes or carry
information pedigree logs. As default timing discipline, I propose Sync Mode, as per Sub-
section 6.2.2. For operation in severely bandwidth restricted environments, I present two
aggregation-in-time schemes, based on Spliced Mode (Subsection 6.2.3) and Chained Mode
(Subsection 6.2.4) to further decrease bandwidth requirements while scheduling network
transmissions so as to keep latency at a minimum.

The rest of this chapter is structured as follows: Section 9.1 summarizes the theoretical
background on sensor fusion, �nite set statistics, the Bayes recursion and its �rst moment
reductions, as well as the problem of double-counting. Section 9.2 shows how the prob-
lem is addressed in related work. Starting from the declaration of assumptions and the
re-statement of the DDF problem, Section 9.3 presents the proposed periodic peer-to-peer
hypercube gossiping based approach. Section 9.4 points out practical considerations re-
garding the accommodation to severely limited bandwidths while keeping latency minimal.
Section 9.5 concludes this chapter.

148 CHAPTER 9. APP. 2: DDF FOR OBJECT TRACKING

9.1 Distributed Data Fusion

9.1.1 Finite Set Statistics (FISST)

With the introduction of the multi-target calculus of �nite set statistics (FISST) in 1994
[103], new conceptual and computational methods to provide a powerful multi-sensor/multi-
target object tracking have become available. Since then, these methods have received sig-
ni�cant attention in the context of both military and non-military applications. FISST is
a mathematical framework based on Bayesian statistical modeling for dealing with multi-
sensor, multi-target and multi-evidence data fusion problems. In a nutshell, it bundles
multiple sensors into a single meta-sensor and multiple targets into a meta-target while
retaining their characteristics [103]. Using FISST, the state of a multi-target system is
described by a �nite set of the form X = {x1, . . . , xM}, where M is the number of targets,
and x1, . . . , xM are the state vectors of individual targets. The state is assumed to be a
Markov process, whereat fk∣k−1 (Xk ∣Xk−1) is the probability density that state Xk−1 will
transition into Xk at time k. The Markov process is observed by sensors modeled by a
likelihood function gk (Zk ∣Xk), purporting the probability density of receiving the obser-
vation Zk given a state Xk at time k. The probability density of the state Xk at time
k, given all observations Z1∶k = (Z1, . . . , Zk) up to time k, is denoted by pk (Xk ∣Z1∶k). It
is derived from the propagation of a (multi-target) posterior in time, known as the Bayes
recursion [148]:

pk∣k−1(Xk ∣Z1∶k−1)=∫ fk∣k−1(Xk ∣x)pk−1(x∣Z1∶k−1)dx (9.1.1)

pk (Xk ∣Z1∶k) =
gk (Zk ∣Xk)pk∣k−1 (Xk ∣Z1∶k−1)

∫ gk (Zk ∣W)pk∣k−1 (W ∣Z1∶k−1)dW (9.1.2)

In multi-sensor tracking, the state of interest is observed by multiple sensors whose
estimates all contribute to the total estimate. Two estimates p (Xk ∣Zi) and p (Xk ∣Zj) of
a common state Xk at time k but conditioned on di�erent observations Zi and Zj can be
fused using the fusion rule [32]

pk (Xk ∣Zi ∪Zj) = C−1 pk (Xk ∣Zi)pk (Xk ∣Zj)
pk (Xk ∣Zi ∩Zj)

(9.1.3)

where C is a normalizing constant.

9.1.2 First Moments

That being said, due to immense computational demands, full Bayesian multi-target �lter-
ing is generally not applicable. For this reason, usually only a multi-target �rst-order mo-
ment statistic, called probability hypothesis density (PHD) or intensity, of the multi-target
posterior is considered [102]. Accordingly, the PHD recursion propagates the posterior
intensity Dk∣k of the random �nite set of targets in time. The expected number of targets
M can be obtained by integrating Dk∣k over the state space. The actual targets are then
localized by extracting theM highest peaks [49]. Problematically, the thus computed num-
ber of targets exhibits a high variance. For this reason, the PHD recursion was generalized
to the cardinalized PHD (CPHD) recursion, which jointly propagates the posterior of the
posterior cardinality distribution [147] and thereby provides more stable estimates as to
the number of targetsM . The (C)PHD is commonly represented by particles [146] or more
e�cient Gaussian Mixtures [148]. Some closed form solutions were presented in [104].

9.2. RELATED WORK 149

9.1.3 Double Counting

One particular problem in decentralized data fusion arises from data incest, i. e. the fusion
of estimates that were descended from the same data and are therefore not conditionally
independent anymore. To avoid double-counting this common information, it needs to be
canceled out by regarding it in the denominator of (9.1.3). However, the computation
of p (Xk ∣Zi ∩Zj) is generally intractable [144]; hence, great e�ort has been put into its
approximation by numerous approaches.

9.2 Related Work

In [57], the problem of double counting is �rst considered for di�erent topologies (fully
connected, tree connected and networks with multiple paths), and the concept of Channel
Filters (CF) for the removal of common information in tree connected topologies is de-
veloped. Installed into each communication link, a Channel Filter maintains the common
past information between the two nodes on each side of the link on the basis of information
communicated through the channel. More recently, [117] presents an approach for perform-
ing the associated DDF operation of division by way of importance sampling. Still and
all, for topologies that have multiple, redundant paths between nodes, the Channel Filter
approach will not produce consistent information state estimates because each �lter only
aggregates information that �ows through it. Particularly, it is not generally possible to
�nd a consistent centralized estimate for each node in an arbitrary network topology based
on local information only [57]. The Information Graph (IG) technique, presented in [32], is
a symbolic representation of the collection, propagation, and fusion of data and can be used
to identify common information in distributed estimation systems. However, considering
all relevant common priors and removing the common information at the nodes requires
carrying steadily growing pedigree logs that include communication and fusion events as
well as past fusion data, which is not applicable in the face of limited bandwidth [29].

A di�erent path is pursued by the geometrically inspired Covariance Intersection (CI)
[74] data fusion algorithm that takes a convex combination of the means and covariance
of the sources in information space. CI has the advantage that it does not require speci�c
information about the correlation but is limited to Gaussian distributions. Exponential
Mixture Densities (EMD) as generalization of CI for general probability distributions as
well as multi-object posteriors were independently proposed in [101] and derived in [67]. A
mathematically tractable representation and realization for multi-object tracking was �rst
presented in [34].

Another class of approaches counters the problem by use of special topologies. [137]
proposes two methods based on independent cliques whereas �each clique receives a partial
estimate from its preceding clique, and updates the partial estimate with local observations
made within the clique. Then, it forwards the updated estimate to the next clique�. This
pipelined distribution is scalable with regard to bandwidth but leads to a high latency.
The authors' second algorithm entails forwarding the estimates to a fusion center to obtain
the �nal output.

The approach that is closest related to the one proposed is [143]. Instead of compen-
sating the e�ects of data incest, the approach avoids it in the �rst place by keeping distinct
data-tagging sets and exploiting the tree nature of the proposed 2-tree topology for op-
timization. The mesh topology of the 2-tree network appears to be a particular �t for
wireless (ad-hoc) sensor networks. However, provided that all nodes can reach each other
and observe a common region of interest, more latency e�cient topologies are possible.

150 CHAPTER 9. APP. 2: DDF FOR OBJECT TRACKING

9.3 DDF on Hypercubes

The background given in Section 9.1 being understood, we can disregard the actual rep-
resentation of posteriors as well as the cardinality, type, transition, and distribution of
targets and focus on the dissemination of that information instead.

9.3.1 Assumptions

We assume that a set Ω of N = ∣Ω∣ distributed nodes are observing one common state of
interest with sensors emitting observations at equal time intervals. Each node has unre-
stricted reachability, i. e. it can reach every other node, features full-duplex communication,
i. e. can send and receive at the same time, but has only limited bandwidth, i. e. can only
communicate with a limited number of peers per time interval and direction. Particularly,
we assume both measurement errors and process noise of all nodes to be uncorrelated. The
former depends on faithful modeling of all sensors and their likelihoods whereas the latter
requires a true target motion model; neither of which may be generally available.

9.3.2 The DDF Problem

Given an initial probability density p (X0∣Z0
Ω) and observations Z1∶k

Ω becoming available
step-by-step at the sensors, the ultimate goal is to have, at all times k and at every node
n, an estimate conditioned on as many observations as possible.

Based on (9.1.1), (9.1.2), (9.1.3) we de�ne three abstract operations:

1. Generation G of a new posterior from one observation:

p (Xk ∣Zk{i}) = G (Zki) ∶=
gk (Zki ∣Xk)p (Xk)

p (Zki)
, (9.3.1)

2. Transition T of one posterior in time:

p (Xk ∣Z) = T (Xk−1∣Z) ∶= pk∣k−1 (Xk−1∣Z) = ∫ fk∣k−1 (Xk−1∣x)p (x∣Z)dx, (9.3.2)

3. Fusion F of two conditionally independent posteriors of the same time, conditioned
on observation sets I, J ⊂ Ω:

p (Xk ∣ZI∪J) = F (Xk ∣ZI ,Xk ∣ZJ) ∶= p (Xk ∣ZI⋃ZJ)

= C−1
1

p (Xk ∣ZI)p (Xk ∣ZJ)
p (Xk ∣ZI ⋂ZJ)

= C−1
2 p (Xk ∣ZI)p (Xk ∣ZJ) . (9.3.3)

With regard to the sequence of operations {G,T,F}, several solutions are possible to reach
the �nal result p (Xk ∣Z(k)Ω).

9.3.3 Hypercube Gossiping

Information from all sensors needs to be disseminated to all nodes. The DDF problem
can thus be regarded as an instantiation of the classic gossip problem, de�ned in Sub-
section 2.1.3. Assuming limited access bandwidth, we regard the full-duplex or two-way

9.3. DDF ON HYPERCUBES 151

communication model where each node may both send and receive data to/from one node
at a time. In stream gossiping, the exchange is performed not once but continuously, pe-
riodically. In the generic periodic peer-to-peer gossiping approach proposed in Chapter 3
of this thesis, hypercubes were chosen for their simplicity and gossip e�ciency�properties
that also render them particularly well suited for the DDF problem at hand. We adopt
the communication and aggregation schemes from De�nition 3.4.12 and 3.4.13. The in-
formation sent by node n on level ` consists of a state estimate X̂k (n, `). The amount
of information I�`

(n) increases with ` as the estimate is fused with estimates from other
nodes.

Dissemination Scheme

In periodic intervals, e. g. after every observation, each node sends estimates to its neigh-
bors. Speci�cally, node n sends to each neighbor nb (n, `) the fusion of the posteriors
received on lower levels [0..` − 1] and the posterior p (Xk ∣Zkn) generated from the latest
observation Zkn. The resulting communication scheme is depicted in Figure 9.3.1 for a
network of eight nodes. Each dimension of the hypercube corresponds to a di�erent car-
dinality of accounted observations Z. All communicated estimates are conditioned solely
on the most recent observations of all contained sources, i. e. they do not include estimates
from prior observations.

0

1

2
4

3
5

6

7

Y{4,5,6,7}

Y{5}

Y{6,7}

Y{7}

Y{0,1}

Y{2}

Y{0,1}

Y{0,1,2,3}

Y{0,1,2,3}
Y{4,5}

Y{1}

Y{3,2}
Y{2,3}

Y{0,1,2,3}

Y{4,5,6,7}

Y{4,5}

Y{6}

Y{6,7}
Y{0,1,2,3}

Y{4,5,6,7}

Y{0}

Y{4}
Y{3}

Y{4,5,6,7}

Figure 9.3.1: Posterior dissemination among nodes in complete H3 network. For the sake
of readability, p (X ∣ZJ) is denoted YJ .

152 CHAPTER 9. APP. 2: DDF FOR OBJECT TRACKING

Fusion Scheme

In accordance with De�nition 3.4.10, the estimate X̂k (n, `) to be sent from node n to its
neighbor on level ` is given by the recursive function

X̂k (n, `) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

G (Zkn) when ` = 0

F(Tk−h (X̂h (nb (n, ` − 1) , ` − 1)) , X̂k (n, ` − 1)) otherwise

where the functional power Tn denotes n-fold iteration of T.
In Figure 9.3.2, the corresponding fusion architecture is shown by example of node 0.

At time k, the sensor emits a new observation Zk0 from which a new posterior p (Xk ∣Zk0)
is generated (G) and sent to node 1. Received posteriors from nodes 1, 2, and 4 are
transitioned (T) to time k and fused (F) before being relayed via the next higher level to
nodes 2 and 4.

In addition to these log2(N) current estimates being sent to neighbors, at each node n,
another estimate X̆k (n) is fused from all collected information, this time also including
past observations, to form the total posterior. In contrast to the audio communication
application regarded in Chapter 8, the DDF application requires a fusion result that in-
cludes the data from each node's own sensor as de�ned in (3.4.6). For DDF, this fusion is
depicted by the �lled fusion node and de�ned as

X̆k (n) = F (T (X̆k−1 (n)) , X̂k (n,L − 1)) . (9.3.4)

G F

to #1

T T

F

T

F

to #2 to #4

T

output

sensor from #1 from #2 from #4

p (Xk ∣Zk
0)

p (Xk ∣Zj
1) p (Xk ∣Z2,3) p (Xk ∣Z4...7)

p (Xk ∣Z0,1) p (Xk ∣Z0...3) p (Xk ∣Z0...7)

Zk
0

p (Xj ∣Zj
1) p (Xi∣Z2,3) p (Xh∣Z4...7)

Figure 9.3.2: Fusion scheme, node 0 of 8

9.3.4 Degeneration

For incomplete allocations, we adopt the scheme from Subsection 3.3.2 and Subsection 3.4.2.

9.4. OPTIMIZATION 153

Node Failures

Robustness requirements of DDF demand that systems remain functional in the event
of single node failures. For singly-connected or 1-tree networks, such as star and chain
topologies, the failure of any non-leaf node will separate the network in two components
[143]. In denser networks without redundant paths, like the proposed hypercube topology,
node failures will result in the non-appearance of estimate updates at other nodes but
not break the network. As shown in Theorem 3.4.11, an instantaneous node failure in a
previously complete L-level network with 2L nodes will, until corrective action is taken,
result for 2i nodes in the loss of 2L−i−1 sources with i ∈ [0, L − 1]. This will reduce the
estimation performance of some nodes until recon�guration but, assuming L ≥ 2, no node
will become isolated.

Node Arrival

Joining the network must not require knowledge of the network as a whole. The position
at which the new node is to join the network can be determined from the latest estimates
received by any node: Upon generation, estimates are tagged with the respective source
IDs whereas fusion results are tagged with the set union of IDs of fused sources. The join
address is then determined as the minimum node ID whose source is not present in the
estimates. The neighbors of that position can be reached from any node in logN steps.

Nodes joining the network have no knowledge of past observations. For most practical
applications the estimate fused from recent observations should quickly converge to the
total estimate based on all past observations. Accordingly, a joined node should have
reasonable con�dence in little time. To further speed up convergence, a new node can
be given the total estimate of any node. In this case, care must be taken not to add
estimates already contained in this total. To this end, upon generation, new estimates are
tagged with sensor-unique consecutive sequence numbers. Only estimates that have higher
sequence numbers for all mutual sources may be fused into a (time-aggregated) estimate.
Note that this simple tagging does not incur the cost of pedigree logs, which grow in time.

9.4 Optimization

As shown in Chapter 6, wait latency is determined by the timing of all nodes' transmissions.

Sync Mode

A basic, natural choice is to perform the transitioning of estimates upon their reception
and the generation, fusion, and transmission upon the emission of a new observation by
the sensor. This will at each node result in expected wait delays of δ = 1/2T , and for every
information source in an expected mean latency of all sources, as experienced by one node,
of

E [∆Sync] =
∑Lh=1 (L

h
)h

N

T

2
= LT

4
. (9.4.1)

Note the simpler form compared to (6.2.3) due to the inclusion of the node's own sensor
data.

154 CHAPTER 9. APP. 2: DDF FOR OBJECT TRACKING

9.4.1 Coping with Scarce Bandwidth

The bandwidth required for each direction grows in the order of logN . Below, we will
point out considerations for coping with bandwidths that are insu�cient to implement the
basic scheme laid out in Section 9.3.

Single Nodes with Reduced Bandwidth

Single nodes with insu�cient bandwidth can be accommodated by relocating them up in
ID space, into the sparser regions of the (incomplete) hypercube, as described in Subsec-
tion 3.3.4. Generally insu�cient bandwidth calls for a di�erent approach.

Insu�cient Bandwidth in General

All posteriors that are sent at Level 0 are based on just one observation each. In case of
observations with high clutter rates, the transmission of these noisy posteriors may use
up a considerable portion of the available bandwidth. Instead of sending posteriors after
every observation, estimates from s successive observations may be fused together before
being sent. By using this aggregation in time, bandwidth is reduced not only by sending
packets less often but also because uncorrelated clutter may be removed from the (e. g.
Gaussian mixture) approximation to be transmitted, thereby reducing data volume. The
resulting extended period shall be denoted T ′ = sTSlot, where TSlot denotes the interval
between observation emissions, formerly used for T .

Spliced Mode

When using aggregation in time in conjunction with Sync Mode (6.2.2), wait latency as of
(9.4.1) is multiplied by s. By updating the �nal estimate every TSlot instead of T ′, wait
delay at the destination stage is retained and total latency reduced to

E [∆Spliced] =
∑Lh=1 (L

h
)h + (2L − 1) (1

s
− 1)

N

T ′

2

= (L
2
− 2L − 1

2L
(1 − 1

s
)) T

′

2
. (9.4.2)

Chained Mode

The sequence of transmissions along an overlay path of maximum length is called a chain.
To further reduce wait latency along these chains as much as possible, each �`+1 estimate is
sent upon the reception of the next observation following the reception of the respective �`
estimate. By using di�erently grouped sets of consecutive observations for the estimates
to be sent on di�erent levels, wait delay within chains remains 1/2TSlot and only chain
switching delays will increase to 1/2 sTSlot, resulting in a total of

E [∆Chained] =
∑Lh=1 (L

h
)h 1

s
+ g (L) (1 − 1

s
)

N

T ′

2

= (L
2s

+ g (L)
2L

(1 − 1

s
)) T

′

2
(9.4.3)

with g () as per (6.2.7) counting among all data paths the sub-paths that contain one or
more skipped links in between taken links.

✾✳✺✳ ❙❯▼▼❆❘❨ ✶✺✺

■♥❋✐❣✉❡✾✳✹✳✶✱❡①♣❡❝❡❞✇❛✐❧❛❡♥❝②E[∆]✱❡❧❛✐✈❡♦T❙❧♦,✐♣❧♦ ❡❞❢♦❞✐✛❡❡♥
♥❡✇♦❦✐③❡✱❛❣❣❡❣❛✐♦♥❢❛❝♦ s✱❛♥❞✐♠✐♥❣♠♦❞❡❙②♥❝✱❙♣❧✐❝❡❞✱❛♥❞❈❤❛✐♥❡❞✳❱✐✐❜❧②✱
❧❛❡♥❝②✐ ♦✉❣❤❧②♣♦♣♦✐♦♥❛❧♦❜♦❤❤❡♥✉♠❜❡♦❢❧❡✈❡❧L=log2N❛♥❞❤❡❛❣❣❡❣❛✐♦♥
❢❛❝♦ s✱✇✐❤❈❤❛✐♥❡❞ ▼♦❞❡ ❡✉❧✐♥❣✐♥❛❝♦♥✐❞❡❛❜❧② ❤❛❧❧♦✇❡ ✐♥❝❡❛❡✇✐❤❜♦❤
♣❛❛♠❡❡✳

✷
✻
✶✵

✿▲✸
✿✶

✿▲✹
✿✶

✿▲✺
✿✶

✿▲✻
✿✶

✿▲✼
✿✶

✿▲✽
✿✶

✿▲✸
✿✷

✿▲✹
✿✷

✿▲✺
✿✷

✿▲✻
✿✷

✿▲✼
✿✷

✷
✻
✶✵

✿▲✽
✿✷

✷
✻
✶✵

✿▲✸
✿✸

✿▲✹
✿✸

✿▲✺
✿✸

✿▲✻
✿✸

✿▲✼
✿✸

✿▲✽
✿✸

✿▲✸
✿✹

✿▲✹
✿✹

✿▲✺
✿✹

✿▲✻
✿✹

✿▲✼
✿✹

✷
✻
✶✵

✿▲✽
✿✹

✷
✻
✶✵

✿▲✸
✿✺

✿▲✹
✿✺

✿▲✺
✿✺

✿▲✻
✿✺

✿▲✼
✿✺

✿▲✽
✿✺

✿▲✸
✿✻

✿▲✹
✿✻

✿▲✺
✿✻

✿▲✻
✿✻

✿▲✼
✿✻

✷
✻
✶✵

✿▲✽
✿✻

❙❨◆❈ ❙▲■❈❊❉ ❈❍❆■◆❊❉

❋✐❣✉❡✾✳✹✳✶✿❘❡❧❛✐✈❡▼❡❛♥ ❲❛✐▲❛❡♥❝②❛❛❢✉♥❝✐♦♥♦❢◆❡✇♦❦❙✐③❡L✱❆❣❣❡❣❛✐♦♥
❋❛❝♦s✱❛♥❞❚✐♠✐♥❣▼♦❞❡

✾✳✺ ❙✉♠♠❛②

■♥❤✐ ❝❤❛♣❡✱■❤❛✈❡♣❡❡♥❡❞❛❝❛❧❛❜❧❡❛♣♣♦❛❝❤♦❞✐ ✐❜✉❡❞❞❛❛❢✉✐♦♥❜❛❡❞♦♥
♣❡✐♦❞✐❝♣❡❡✲♦✲♣❡❡❤②♣❡❝✉❜❡❣♦✐♣✐♥❣✳❇❡✐♥❣❛♠✐♥✐♠❛❧❣♦✐♣❣❛♣❤✱❤❡❤②♣❡❝✉❜❡
♦♣♦❧♦❣②❡①❤✐❜✐ ♦♥❧②❧♦❣❛✐❤♠✐❝❜❛♥❞✇✐❞❤ ❡✉✐❡♠❡♥ ❛♥❞❧❛❡♥❝②✳■ ✐♠♣❧❡❤✐✲
❡❛❝❤✐❝❛❧ ✉❝✉❡❛❧❧♦✇❢♦❡✣❝✐❡♥♥❡✇♦❦ ❡❝♦♥✜❣✉❛✐♦♥❛♥❞❛✈♦✐❞❛♥❝❡♦❢❞♦✉❜❧❡
❝♦✉♥✐♥❣✇✐❤❧♦❝❛❧❦♥♦✇❧❡❞❣❡♦♥❧②❛♥❞♥♦♣❡❞✐❣❡❡❧♦❣✳❏✉ ❧✐❦❡❈❤❛♥♥❡❧❋✐❧❡✱❤❡
♣♦♣♦❡❞❛♣♣♦❛❝❤❡✉✐❡❛❧❧♥♦❞❡✬❡✐♠❛✐♦♥❡♦ ♦❜❡✐♥❞❡♣❡♥❞❡♥✳■♥❛❞❞✐✐♦♥✱■
❤❛✈❡♣❡❡♥❡❞ ❛❡❣✐❡❢♦❝♦♣✐♥❣✇✐❤❡✈❡❡❧②❧✐♠✐❡❞❜❛♥❞✇✐❞❤✇❤✐❧❡❦❡❡♣✐♥❣❧❛❡♥❝②
❛❛♠✐♥✐♠✉♠✳
❈✉ ❡♥❧②✱❤❡♣❡❡♥❡❞❛♣♣♦❛❝❤✐❧✐♠✐❡❞♦❜✐♥❛②❤②♣❡❝✉❜❡✱✇❤✐❝❤♣♦✈✐❞❡♦♣✲

✐♠❛❧❝❛❧❛❜✐❧✐②❢♦♠❡❛❣❡ ❜❛♥❞✇✐❞❤✳●❡♥❡❛❧✐③❛✐♦♥♦❛❜✐ ❛②❜❛❡❛❧❧♦✇ ♦♠❛❦❡
❢✉❧❧✉❡♦❢❛❜✉♥❞❛♥❜❛♥❞✇✐❞❤♦❢✉❤❡ ❡❞✉❝❡❧❛❡♥❝②✳

Chapter 10

Conclusion

In this thesis I have considered the combined dissemination and fusion of streaming infor-
mation from multiple sources. At this, every node needs, at all times, an aggregate fused
from each node's as-current-as-possible information.

Although this task could be viewed as a specialization of the classic gossip problem,
at which each node's single piece of information is communicated to all other nodes, it
may well be considered a fundamental problem of its own. Neither is it characterized by
the gossiping of one fusion result, nor by the fusion of several gossiping results. Moreover,
the fusion-gossiping of streaming information is unarguably entirely di�erent from the
repeated execution of the one-shot gossiping scheme. Indeed, the regarded problem has
numerous applications in diverse areas. Treating these applications to a composition of
solutions for the conventional problems would misconstrue the nature of the problem and
lead to suboptimal results, just as the gossip problem would generally be poorly solved by
accumulation followed by broadcasting.

As frequently the case with live streaming applications, the applications regarded by
this thesis demand up-to-date information with as little latency as possible. In most real-
world scenarios bandwidth is a scarce resource, usually being regarded as a given. This
re�nes the problem into �nding a strategy that makes most e�cient use of bandwidth with
regard to network size and latency.

This thesis contributes towards an e�cient solution with predictable performance,
speci�cally, a system for the decentralized bandwidth-e�cient low-latency fusion-dissemi-
nation of high-frequency periodic measurements in heterogeneous environments.

To this end, the �rst contribution is a peer-to-peer network architecture based on the
versatile and e�cient hypercube topology. The network is fully symmetric in its complete
allocation yet not limited to certain sizes. It is robust with regard to single node fail-
ures and �exibly accommodates a minority of bandwidth impaired nodes. On this basis,
gossiping communication and aggregation schemes are provided, facilitating gossiping and
aggregation in logN communication rounds.

A separate area of contributions deals with the analytical quanti�cation and reduction
of latency, which depends to a considerable portion on transmission timing and, as such,
is under direct control by the application. Four local timing disciplines and a globally
optimizing one have been investigated, reducing wait latency in the portrayed scenarios by
up to eighty percent. Analytical bounds and expectations for wait latency and resulting
distribution of total traversal time have been developed and were shown to yield accurate
results.

156

157

Supplemental contributions include an underlay network model parametrized from
large-scale measurements and a real-time simulation and visualization tool for periodic
communication. The former e�ciently provides location- and load-dependent latency, jit-
ter and packet loss samples for connections between arbitrary hosts world-wide and is hence
particularly suited for the simulation and evaluation of peer-to-peer networks. The latter
uses steady state analysis to emulate network timing and latencies of P2P networks.

Above contributions were completed by two exemplary applications, one for the provi-
sion of audio communications to massively multiuser virtual environments, and the other
for distributed data fusion for live object tracking.

158 CHAPTER 10. CONCLUSION

Bibliography

[1] Speedtest �ow and methodology. http://wiki.ookla.com/test_flow, December
2011. Retrieved 2012-03-15.

[2] Bo Allen. Pseudo-random vs. true random - a simple visual example.
http://www.boallen.com/random-numbers.html, April 2008. Retrieved 2012-02-13.

[3] D.P. Anderson. Boinc: a system for public-resource computing and storage. In
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing,
pages 4�10, November 2004.

[4] David Avis and Komei Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete and Computational Geome-
try, Springer New York, 8(1):295�313, December 1992. 0179-5376 (Print) 1432-0444
(Online).

[5] P. Baran. On distributed communications networks. IEEE Transactions on Com-
munications Systems, 12(1):1�9, March 1964.

[6] D. Barbará, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein, Y. E. Ioanni-
dis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A. Ross, and K. C. Sevcik.
The new jersey data reduction report. IEEE Data Engineering Bulletin, 20:3�45,
1997. http://www.odysci.com/article/1010112984386637.

[7] Cagatay Basdogan and Ayam A. Srinivasan. Handbook of Virtual Environments,
chapter Haptic rendering in virtual environments, pages 117�134. Lawrence Erlbaum
Inc, 2002.

[8] Ingmar Baumgart, Bernhard Heep, and Stephan Krause. OverSim: A �exible over-
lay network simulation framework. In Proceedings of the 10th IEEE Global Internet
Symposium (GI '07) in conjunction with IEEE INFOCOM 2007, pages 79�84, An-
chorage, AK, USA, May 2007.

[9] Rene Beier and Jop Sibeyn. A powerful heuristic for telephone gossiping. In Pro-
ceedings of the 7th International Colloquium on Structural Information and Commu-
nication Complexity (SIROCCO), 2000.

[10] Gordon Bell and Jim Gray. What's next in high-performance computing? Commun.
ACM, 45:91�95, February 2002.

[11] Michel Berkelaar, Jeroen Dirks, Kjell Eikland, Peter Notebaert, and Juergen
Ebert. lp_solve v5.5.2.0: A free mixed integer linear programming (MILP) solver.
http://lpsolve.sourceforge.net/5.5/, August 2010.

159

http://wiki.ookla.com/test_flow

160 BIBLIOGRAPHY

[12] L.N. Bhuyan and D.P. Agrawal. Generalized hypercube and hyperbus structures
for a computer network. IEEE Transactions on Computers, C-33(4):323�333, April
1984.

[13] Danny Bickson and Dahlia Malkhi. The Julia content distribution network. In
Proceedings of the 2nd Conference on Real, Large Distributed Systems, volume 2 of
WORLDS'05, pages 37�41, Berkeley, CA, USA, 2005. USENIX Association.

[14] Danny Bickson, Dahlia Malkhi, and David Rabinowitz. E�cient large scale content
distribution. In WDAS '04: Proceedings of the 6th Workshop on Distributed Data
and Structures, Lausanne, Switzerland, July 2004.

[15] Jens Blauert. Spatial Hearing: The Psychophysics of Human Sound Localisation.
MIT Press, Cambridge, MA, 2nd revised edition, 1996.

[16] Jens Blauert, editor. Communication Acoustics. Signals and Communication Tech-
nology. Springer-Verlag, 2005.

[17] Alfred Boals, Ajay Gupta, Jahangir Hashmi, and Naveed Sherwani. Compact hyper-
cubes: Properties and recognition. In Frank Dehne, Frantisek Fiala, and Waldemar
Koczkodaj, editors, Advances in Computing and Information (ICCI '91), volume 497
of Lecture Notes in Computer Science, pages 395�402. Springer Berlin / Heidelberg,
1991. 10.1007/3-540-54029-6_187.

[18] Jean-Chrysostome Bolot. Characterizing end-to-end packet delay and loss in the
Internet, 1993.

[19] Jean-Chrysostome Bolot and Sacha Fosse-Parisis. Adding voice to a distributed game
on the internet. In INFOCOM '98: Proceedings of the Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies, pages 480�487,
1998.

[20] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, L. Haas, K. Kim, and N. Tatbul.
Federated stream processing support for real-time business intelligence applications.
In BIRTE '09: Proceedings of the VLDB '09 Workshop on Enabling Real-Time for
Business Intelligence. Springer, 2009.

[21] P. Boustead and F. Safaei. Comparison of delivery architectures for immersive audio
in crowded networked games. In Proceedings of the 14th International Workshop on
Network and Operating Systems Support for Digital Audio and Video, pages 22�27.
ACM, 2004.

[22] Raymond T. Boute. The euclidean de�nition of the functions div and mod. ACM
Trans. Program. Lang. Syst., 14(2):127�144, 1992.

[23] J. Allen Brack and Frank Pearce. The universe of World of Warcraft (keynote
address). In GDC '09: Game Developers Conference, Austin, Texas, USA, September
2009. United Business Media LLC, NY.

[24] Fernanda Brandi and Eckehard Steinbach. Low-complexity error-resilient data re-
duction approach for networked haptic sessions. In HAVE '11: Proceedings of thee
IEEE International Symposium on Haptic Audio-Visual Environments and Games,
pages 135�140, Qinhuangdao, Hebei, China, October 2011.

BIBLIOGRAPHY 161

[25] Vicki Bruce, Mark A. Georgeson, and Patrick R. Green. Visual Perception: Physi-
ology, Psychology and Ecology. Psychology Press, 2003.

[26] K.I. Calvert, M.B. Doar, and E.W. Zegura. Modeling Internet topology. Communi-
cations Magazine, IEEE, 35(6):160�163, June 1997.

[27] Renato Capocelli, Luisa Gargano, and Ugo Vaccaro. Time bounds for broadcasting
in bounded degree graphs. In Manfred Nagl, editor, Graph-Theoretic Concepts in
Computer Science, volume 411 of Lecture Notes in Computer Science, pages 19�33.
Springer Berlin / Heidelberg, 1990. 10.1007/3-540-52292-1_2.

[28] M.G. Ceruti, T.L. Wright, B.J. Powers, and S.C. McGirr. Data pedigree and strate-
gies for dynamic level-one sensor data fusion. In Proceedings of the 9th International
Conference on Information Fusion, July 2006.

[29] K.C. Chang, Chee-Yee Chong, and S. Mori. On scalable distributed sensor fusion. In
Proceedings of the 11th International Conference on Information Fusion, July 2008.

[30] Kou-Chu Chang. Autonomous and scalable data fusion and dissemination in net-
centric world. In Proceedings of the 11th International Conference on Information
Fusion, July 2008.

[31] Rahul Chaudhari, Clemens Schuwerk, Verena Nitsch, Eckehard Steinbach, and
Berthold Faerber. Opening the haptic loop: Network degradation limits for hap-
tic task performance. In HAVE '11: Proceedings of the IEEE International Sympo-
sium on Haptic Audio-Visual Environments and Games, pages 56�61, Qinhuangdao,
Hebei, China, October 2011.

[32] C.Y. Chong, S. Mori, and K.C. Chang. Distributed multitarget multisensor tracking.
Multitarget-multisensor tracking: Advanced applications, 1:247�295, 1990.

[33] Po-Jen Chuang, Bo-Yi Li, and Tun-Hao Chao. Hypercube-based data gathering in
wireless sensor networks. J. Inf. Sci. Eng., 23(4):1155�1170, 2007.

[34] D. Clark, S. Julier, R. Mahler, and B. Ristic. Robust multi-object sensor fusion with
unknown correlations. In Sensor Signal Processing for Defence, 2010.

[35] William S. Cleveland. LOWESS: A Program for Smoothing Scatterplots by Robust
Locally Weighted Regression. The American Statistician, 35(1), 1981.

[36] Darrell Conklin. Structured concept discovery: Theory and methods. Technical
Report 94-366, Queen's University, Kingston, Ontario, Canada K7L 3N6, June 1994.

[37] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297�301, 1965.

[38] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentral-
ized network coordinate system. In SIGCOMM, pages 15�26. ACM, 2004.

[39] G.B. Dantzig. Maximization of a Linear Function of Variables Subject to Linear
Inequalities, chapter XXI, pages 339�347. Number 13. John Wiley and Sons, Inc.,
1951.

[40] George B. Dantzig and Mukund N. Thapa. Linear programming 1: Introduction.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1997.

162 BIBLIOGRAPHY

[41] Ton de Jong and Wouter R. van Joolingen. Scienti�c discovery learning with com-
puter simulations of conceptual domains. Review of educational research, 68:179�202,
1998.

[42] S. Deering and R. Hinden. Internet protocol, version 6 (IPv6) speci�cation, December
1998.

[43] Michael J. Dinneen, Geo�rey Pritchard, and Mark C. Wilson. Degree- and time-
constrained broadcast networks. Networks, 39(3):121�129, 2002.

[44] Marcel Dischinger, Andreas Haeberlen, Ivan Beschastnikh, Krishna P. Gummadi,
and Stefan Saroiu. Satellitelab: Adding heterogeneity to planetary-scale network
testbeds. SIGCOMM Comput. Commun. Rev., 38(4):315�326, 2008.

[45] Marcel Dischinger, Andreas Haeberlen, Krishna P. Gummadi, and Stefan Saroiu.
Characterizing residential broadband networks. In IMC '07: Proceedings of the 7th
ACM SIGCOMM Conference on Internet Measurement, pages 43�56, New York, NY,
USA, 2007. ACM.

[46] J. Eberspächer, H.J. Vögel, C. Bettstetter, and C. Hartmann. GSM - Architecture,
Protocols and Services. John Wiley & Sons, 3rd edition, 2009.

[47] Ulrich W. Eisenecker, Frank Blinn, and Krzysztof Czarnecki. A solution to the
constructor-problem of mixin-based programming in C++. In Proceedings of the
GCSE '00 Workshop on C++ Template Programming at the Second International
Symposium on Generative and Component-Based Software Engineering, Erfurt, Ger-
many, October 2000.

[48] Peter Elias. Universal codeword sets and representations of the integers. IEEE
Transactions on Information Theory, 21(2):194�203, March 1975.

[49] O. Erdinc, P. Willett, and Y. Bar-Shalom. Probability hypothesis density �lter for
multitarget multisensor tracking. In Proceedings of the 8th International Conference
on Information Fusion, volume 1, pages 1�8, July 2005.

[50] S. Even and B. Monien. On the number of rounds necessary to disseminate infor-
mation. In Proceedings of the First Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA '89, pages 318�327, New York, NY, USA, 1989. ACM.

[51] Vincenzo De Florio and Chris Blondia. Robust and tuneable family of gossiping
algorithms. In PDP '12: Proceedings of the 20th Euromicro International Conference
on Parallel, Distributed and Network-based Processing, pages 154�161, Garching,
Germany, February 2012. IEEE Comp. Soc.

[52] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-peer communication across
network address translators. In Proceedings of the USENIX '05 Annual Technical
Conference, ATEC '05, pages 13�13, Berkeley, CA, USA, 2005. USENIX Association.

[53] Geo�rey C. Fox, Roy D. Williams, and Paul C. Messina. Parallel Computing Works!
Parallel processing scienti�c computing. Morgan Kaufmann, 1994.

[54] John F. Gantz, Christopher Chute, Alex Manfrediz, Stephen Minton, David Reinsel,
andWolfgang Schlichting Anna Toncheva. The diverse and exploding digital universe:
An updated forecast of worldwide information growth through 2011. White paper,
International Data Corporation, 5 Speen Street, Framingham, MA 01701, 2008.

BIBLIOGRAPHY 163

[55] A.P. Garcia, J. Oliver, and D. Gosch. An intelligent agent-based distributed archi-
tecture for smart-grid integrated network management. In LCN '10: Proceedings of
the 35th IEEE Conference on Local Computer Networks, pages 1013�1018, October
2010.

[56] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh. Data cube: a relational aggrega-
tion operator generalizing group-by, cross-tab, and sub-totals. In ICDE '96: Proceed-
ings of the Twelfth International Conference on Data Engineering, pages 152�159.
IEEE Computer Society, March 1996.

[57] S. Grime and H.F. Durrant-Whyte. Data fusion in decentralized sensor networks.
Control engineering practice, 2(5):849�863, 1994.

[58] Xiaohui Gu, Zhen Wen, Philip S. Yu, and Zon-Yin Shae. Supporting multi-party
voice-over-IP services with peer-to-peer stream processing. In Proceedings of the
13th Annual ACM International Conference on Multimedia, pages 303�306, New
York, NY, USA, 2005. ACM Press.

[59] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimating la-
tency between arbitrary Internet end hosts. In Proceedings of the SIGCOMM Internet
Measurement Workshop 2002, 2002.

[60] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2012.

[61] John P. Hayes, Trevor N. Mudge, Quentin F. Stout, Stephen Colley, and John Palmer.
Architecture of a hypercube supercomputer. In Proceedings of the 1986 International
Conference on Parallel Processing, pages 653�660, University Park, PA, USA, August
1986.

[62] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast fourier
transform. ASSP Magazine, IEEE, 1(4):14�21, October 1984.

[63] José Hernández, Iain W. Phillips, and Javier M. Moguerza. An SS-SVM approach
to generate synthetic network delays, 2005.

[64] G. Hooghiemstra and P. Van Mieghem. Delay distributions on �xed internet paths.
Delft University of Technology, report20011031, 2001.

[65] Juraj Hromkovic. Dissemination of information in communication networks: broad-
casting, gossiping, leader election, and fault-tolerance. Texts in theoretical computer
science. Springer, 2005.

[66] Juraj Hromkovic, Ralf Klasing, Burkhard Monien, and Regine Peine. Dissemination
of information in interconnection networks (broadcasting & gossiping), 1996.

[67] M.B. Hurley. An information theoretic justi�cation for covariance intersection and
its generalization. In Proceedings of the 5th International Conference on Information
Fusion, volume 1, pages 505�511. IEEE, 2002.

[68] Information Sciences Institute. Internet protocol - darpa internet program protocol
speci�cation. Technical Report rfc791, Information Sciences Institute, University of
Southern California, 4676 Admiralty Way, Marina del Rey, California 90291, Septem-
ber 1981.

164 BIBLIOGRAPHY

[69] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed dif-
fusion: a scalable and robust communication paradigm for sensor networks. In
MobiCom '00: Proceedings of the 6th Annual International Conference on Mobile
computing and Networking, pages 56�67, New York, NY, USA, 2000. ACM.

[70] ITU. Integrated services digital network (ITU-T Recommendation G.705). Interna-
tional Telecommunications Union, November 1980.

[71] ITU. Integrated services digital network (ITU-T Recommendation I Series). Inter-
national Telecommunications Union, November 1984.

[72] W. Jiang. Detecting and measuring asymmetric links in an IP network, 1999.

[73] Hai Jin, Fei Luo, Qin Zhang, Xiaofei Liao, and Hao Zhang. GTapestry: A locality-
aware overlay network for high performance computing. In ISCC '06: Proceedings of
the 11th IEEE Symposium on Computers and Communications, pages 76�81, June
2006.

[74] S.J. Julier and J.K. Uhlmann. A non-divergent estimation algorithm in the presence
of unknown correlations. In Proceedings of the 1997 American Control Conference,
volume 4, pages 2369�2373, June 1997.

[75] M. Kallstrom and S.S. Thakkar. Programming three parallel computers. Software,
IEEE, 5(1):11�22, January 1988.

[76] Yasusi Kanada. Multi-context voice communication controlled by using an auditory
virtual space. In CCN '04: Proceedings of the 2nd International Conference on
Communication and Computer Networks, November 2004.

[77] H.P. Katse�. Incomplete hypercubes. IEEE Transactions on Computers, 37(5):604�
608, May 1988.

[78] Sebastian Kaune, Konstantin Pussep, Christof Leng, Aleksandra Kovacevic, Gareth
Tyson, and Ralf Steinmetz. Modelling the Internet delay space based on geographical
locations. In Proceedings of the 17th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, pages 301�310, Washington, DC, USA,
2009. IEEE Computer Society.

[79] Thomas Keating, Michael Barnett, Sasha A. Barab, and Kenneth E. Hay. The virtual
solar system project: Developing conceptual understanding of astronomical concepts
through building three-dimensional computational models. Journal of Science Edu-
cation and Technology, 11(3):261�275, 2002.

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671�680, 1983.

[81] Kitz - ADSL Broadband Information Site. Interleaving explained. http://www.

kitz.co.uk/adsl/interleaving.htm, June 2012. Retrieved 2012-07-11.

[82] Ralf Klasing, Burkhard Monien, Regine Peine, and Elena A. Stöhr. Broadcasting in
butter�y and DeBruijn networks, 1992.

[83] D.E. Knuth. Selected papers on computer science, chapter 11, pages 194�200. CSLI
lecture notes. CSLI Publications, 1996.

http://www.kitz.co.uk/adsl/interleaving.htm
http://www.kitz.co.uk/adsl/interleaving.htm

BIBLIOGRAPHY 165

[84] Robert Kozma. Innovations in Science and Mathematics Education: Advanced De-
signs for Technologies of Learning, chapter The Use of Multiple Representations and
the Social Construction of Understanding in Chemistry, pages 11�46. Erlbaum As-
sociates, Mahwah, NJ, 2000.

[85] David Krumme. Fast gossiping for the hypercube. SIAM Journal on Computing,
21:365�380, 1992.

[86] David W. Krumme, George Cybenko, and K. N. Venkataraman. Gossiping in minimal
time. SIAM Journal on Computing, 21:111�139, 1992.

[87] H.T. Kung and Carnegie-Mellon University. Computer Science Dept. Let's design
algorithms for VLSI systems. Computer Science Dept., Carnegie-Mellon University,
1979.

[88] Gerald Kunzmann. Recursive or iterative routing? Hybrid! In Paul Müller, Rein-
hard Gotzhein, and Jens B. Schmitt, editors, GI '05: Kommunikation in Verteilten
Systemen (KiVS), Kurzbeiträge und Workshop der 14. GI/ITG-Fachtagung, volume
P-61 (2005) of Lecture Notes in Informatics, pages 189�192. GI, Gesellschaft für
Informatik, Bonn, 2005.

[89] David Kushner. Engineering everquest: online gaming demands heavyweight data
centers. Spectrum, IEEE, 42(7):34�39, July 2005.

[90] Alexey Kuznetsov and YOSHIFUJI Hideaki. iputils: Small useful utilities for Linux
networking. http://www.skbu�.net/iputils/.

[91] Jaroslav Kysela, Abramo Bagnara, Takashi Iwai, and Frank van de Pol. The advanced
Linux sound architecture (ALSA) C library reference. http://www.alsa-project.
org/alsa-doc/alsa-lib/index.html, January 2012.

[92] F.T. Leighton and B. Monien. Einführung in parallele Algorithmen und Architek-
turen: Gitter, Bäume und Hypercubes. Internat. Thomson Publ., 1st edition, 1997.

[93] Jonathan Lennox and Henning Schulzrinne. A protocol for reliable decentralized
conferencing. In NOSSDAV '03: Proceedings of the 13th international workshop on
Network and operating systems support for digital audio and video, pages 72�81, New
York, NY, USA, 2003. ACM Press.

[94] Jin Li. Mutualcast: A serverless peer-to-peer multiparty real-time audio conferencing
system. In ICME '05: IEEE International Conference on Multimedia and Expo, pages
602�605, July 2005.

[95] Xiaozhou Li and C. Greg Plaxton. On name resolution in peer-to-peer networks. In
POMC '02: Proceedings of the Second ACM International Workshop on Principles
of Mobile Computing, pages 82�89, New York, NY, USA, 2002. ACM.

[96] Arthur Liestman and Dana Richards. An introduction to perpetual gossiping. In
K. Ng, P. Raghavan, N. Balasubramanian, and F. Chin, editors, Algorithms and
Computation, volume 762 of Lecture Notes in Computer Science, pages 259�266.
Springer Berlin / Heidelberg, 1993. 10.1007/3-540-57568-5_256.

[97] Huaiyu Liu and Simon S. Lam. Neighbor table construction and update for resilient
hypercube routing in P2P networks. Technical Report TR-07-31, July 2007.

http://www.alsa-project.org/alsa-doc/alsa-lib/index.html
http://www.alsa-project.org/alsa-doc/alsa-lib/index.html

166 BIBLIOGRAPHY

[98] Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein, and Wei Hong. Tag:
A tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev.,
36:131�146, December 2002.

[99] Damien Magoni and Jean-Jacques Pansiot. Analysis and comparison of Internet
topology generators. In Proceedings of the Second International IFIP-TC6 Network-
ing Conference on Networking Technologies, Services, and Protocols; Performance of
Computer and Communication Networks; and Mobile and Wireless Communications
(NETWORKING), pages 364�375, London, UK, 2002. Springer-Verlag.

[100] Damien Magoni and Jean-Jacques Pansiot. Internet topology modeler based on
map sampling. In ISCC '02: Proceedings of the 7th International Symposium on
Computers and Communications, page 1021, Washington, DC, USA, 2002. IEEE
Computer Society.

[101] R.P.S. Mahler. Optimal/robust distributed data fusion: A uni�ed approach. In
Proceedings of SPIE, volume 4052, page 128, 2000.

[102] R.P.S. Mahler. Multitarget Bayes �ltering via �rst-order multitarget moments. IEEE
Transactions on Aerospace and Electronic Systems, 39(4):1152�1178, October 2003.

[103] R.P.S. Mahler. "Statistics 101" for multisensor, multitarget data fusion. Aerospace
and Electronic Systems Magazine, IEEE, 19(1):53�64, January 2004.

[104] R.P.S Mahler. Statistical multisource-multitarget information fusion. Artech House,
2007.

[105] Gregor Maier. Residential Broadband Internet Tra�c: Characterization and Security
Analysis. PhD thesis, Technische Universität Berlin, Berlin, September 2010.

[106] A. Makarenko, A. Brooks, T. Kaupp, H. Durrant-Whyte, and F. Dellaert. Decen-
tralised data fusion: A graphical model approach. In Proceedings of the 12th Inter-
national Conference on Information Fusion, pages 545�554, July 2009.

[107] Q.M. Malluhi and M.A. Bayoumi. The hierarchical hypercube: A new interconnec-
tion topology for massively parallel systems. IEEE Transactions on Parallel and
Distributed Systems, 5(1):17�30, January 1994.

[108] Ramón A. Mata-Toledo and Matthew A. Willis. Visualization of random sequences
using the chaos game algorithm. J. Syst. Softw., 39:3�6, October 1997.

[109] Ernst Mayr and Ralph Werchner. Divide-and-conquer algorithms on the hypercube.
In P. Enjalbert, A. Finkel, and K. Wagner, editors, STACS 93, volume 665 of Lec-
ture Notes in Computer Science, pages 153�162. Springer Berlin / Heidelberg, 1993.
10.1007/3-540-56503-5_18.

[110] Alberto Medina, Ibrahim Matta, and John Byers. On the origin of power laws in
internet topologies. SIGCOMM Comput. Commun. Rev., 30(2):18�28, 2000.

[111] Michel Mollard. Two characterizations of generalized hypercube. Discrete Mathe-
matics, 93(1):63�74, 1991.

[112] Jerry Morrison. "EA IFF 85" standard for interchange format �les. http://www.

martinreddy.net/gfx/2d/IFF.txt, January 1985. (Proposed Standard).

http://www.martinreddy.net/gfx/2d/IFF.txt
http://www.martinreddy.net/gfx/2d/IFF.txt

BIBLIOGRAPHY 167

[113] Amarnath Mukherjee. On the dynamics and signi�cance of low frequency components
of Internet load. Internetworking: Research and Experience, 5:163�205, 1992.

[114] T. S. Eugene Ng and Hui Zhang. Towards global network positioning. In Proceedings
of the 1st ACM SIGCOMM Workshop on Internet Measurement, pages 25�29, 2001.

[115] T. S. Eugene Ng and Hui Zhang. Predicting Internet network distance with
coordinates-based approaches. In INFOCOM '02: Proceedings of the 21st Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 1,
pages 170�179, 2002.

[116] Pedro Novo. Communication Acoustics, chapter Auditory Virtual Environments,
pages 277�292. Springer, 1st edition, July 2005.

[117] L.-L. Ong, T. Bailey, H. Durrant-Whyte, and B. Upcroft. Decentralised particle
�ltering for multiple target tracking in wireless sensor networks. In Proceedings of
the 11th International Conference on Information Fusion, pages 1�8, July 2008.

[118] Jianli Pan, R. Jain, S. Paul, M. Bowman, Xiaohu Xu, and Shanzhi Chen. Enhanced
MILSA architecture for naming, addressing, routing and security issues in the next
generation internet. In ICC '09: Proceedings of the IEEE International Conference
on Communications, pages 1�6, June 2009.

[119] Peerfactsim.kom: A large scale simulation framework for peer-to-peer systems.
http://peerfact.kom.e-technik.tu-darmstadt.de/.

[120] John Durham Peters. Communication as ...: Perspectives on Theory, chapter Com-
munication as Dissemination, pages 211�222. Thousand Oaks: Sage Publications,
2005.

[121] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In SPAA '97: Proceedings of
the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
311�320, New York, 1997. ACM.

[122] Ithiel de Sola Pool. Forecasting the Telephone: A Retrospective Technology Assess-
ment of the Telephone. Ablex Publishing, January 1982.

[123] Franco P. Preparata and Jean Vuillemin. The cube-connected cycles: a versatile
network for parallel computation. Commun. ACM, 24(5):300�309, May 1981.

[124] Bruno Quoitin and Steve Uhlig. Modeling the routing of an autonomous system with
CBGP. IEEE Network Magazine, 19, 2005.

[125] Martin Raack, Dominic Battré, André Höing, and Odej Kao. Papnet: A proximity-
aware alphanumeric overlay supporting ganesan on-line load balancing. In ICPADS
'09: Proceedings of the 2009 15th International Conference on Parallel and Dis-
tributed Systems, pages 440�447, Washington, DC, USA, 2009. IEEE Computer So-
ciety.

[126] Milena Radenkovic and Chris Greenhalgh. Multi-party distributed audio service
with TCP fairness. In Proceedings of the 10th ACM International Conference on
Multimedia, pages 11�20, New York, NY, USA, 2002. ACM.

168 BIBLIOGRAPHY

[127] Milena Radenkovic, Chris Greenhalgh, and Steve Benford. Deployment issues for
multi-user audio support in cves. In VRST '02: Proceedings of the ACM Symposium
on Virtual Reality Software and Technology, pages 179�185, New York, NY, USA,
2002. ACM.

[128] Statistical analysis of random numbers. http://www.random.org/analysis/.

[129] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content-addressable network. In SIGCOMM '01: Proceedings of the 2001
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 161�172, New York, NY, USA, 2001. ACM.

[130] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network. In Proceed-
ings of the First International Conference on Peer-to-Peer Computing, pages 99�100,
August 2001.

[131] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor,
Middleware 2001, volume 2218 of Lecture Notes in Computer Science, pages 329�350.
Springer Berlin / Heidelberg, 2001. 10.1007/3-540-45518-3_18.

[132] G. Schiele, R. Süselbeck, A. Wacker, J. Hahner, C. Becker, and T. Weis. Require-
ments of peer-to-peer-based massively multiplayer online gaming. In CCGRID '07:
Proceedings of the 7th IEEE International Symposium on Cluster Computing and the
Grid, pages 773�782. IEEE, 2007.

[133] Gregor Schiele, Shun-Yun Hu, Daniel Weiskopf, and Ben Leong. Challenges in design-
ing massively multiuser virtual environments: Experiences from MMVE2008. Intl.
Journal on Advanced Media and Communication, 2(4):325�330, 2008.

[134] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl. Hypercup � shaping up peer-to-
peer networks, 2002.

[135] Andre Schuchardt. Eine kurze Geschichte der Sumerer (und Akkader). GRIN Verlag
GmbH, 2010.

[136] Charles L. Seitz. The cosmic cube. Communincations of the ACM, 28(1):22�33,
January 1985.

[137] Xiaohong Sheng, Yu-Hen Hu, and Parameswaran Ramanathan. Distributed particle
�lter with GMM approximation for multiple targets localization and tracking in
wireless sensor network. In IPSN '05: Proceedings of the 4th International Symposium
on Information Processing in Sensor Networks, Piscataway, NJ, USA, 2005. IEEE
Press.

[138] Daniel Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: why the
simplex algorithm usually takes polynomial time. In STOC '01: Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pages 296�305, New
York, NY, USA, 2001. ACM.

[139] Kurt D. Squire. Replaying History: Learning World History through Playing Civi-
lization III. PhD thesis, Indiana University, January 2004.

BIBLIOGRAPHY 169

[140] Swing (java foundation classes). http://download.oracle.com/javase/6/docs/

technotes/guides/swing/.

[141] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, 4th edition, 2003.

[142] Daniel Terdiman. 'Second Life': Don't worry, we can scale. http://news.cnet.com/
2100-1043_3-6080186.html, June 2006.

[143] P.R. Thompson and H. Durrant-Whyte. Decentralised data fusion in 2-tree sensor
networks. In Proceedings of the 13th Conference on Information Fusion, pages 1�8,
July 2010.

[144] Murat Uney, Simon Julier, Daniel Clark, and Branko Ristic. Monte Carlo realisation
of a distributed multi-object fusion algorithm. In SSPD '10: Sensor Signal Processing
for Defence 2010, 2010.

[145] András Varga. OMNeT++ � Portable simulation environment in C++. In Pro-
ceedings of the Annual Students' Scienti�c Conference (TDK). Technical University
of Budapest, 1992.

[146] B.-N. Vo, S. Singh, and A. Doucet. Sequential Monte Carlo methods for multitarget
�ltering with random �nite sets. IEEE Transactions on Aerospace and Electronic
Systems, 41(4):1224�1245, October 2005.

[147] B.-T. Vo, B.-N. Vo, and A. Cantoni. The cardinalized probability hypothesis den-
sity �lter for linear Gaussian multi-target models. In 40th Annual Conference on
Information Sciences and Systems, pages 681�686, March 2006.

[148] Ba-Ngu Vo and Wing-Kin Ma. The Gaussian mixture probability hypothesis density
�lter. Signal Processing, IEEE Transactions on, 54(11):4091�4104, November 2006.

[149] Jared Winick and Sugih Jamin. Inet-3.0: Internet topology generator. Technical
Report CSE-TR-456-02, University of Michigan, 2002.

[150] Hsin-Kai Wu, Joseph S. Krajcik, and Elliot Soloway. Promoting conceptual un-
derstanding of chemical representations: Students use of a visualization tool in the
classroom, 2001.

[151] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-peer networks.
In Proceedings of the 22nd International Conference on Distributed Computing Sys-
tems, pages 5�14, 2002.

[152] Keiichi Yasumoto and Klara Nahrstedt. Ravitas: Realistic voice chat framework for
cooperative virtual spaces, 2005.

[153] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1):41�53, January 2004.

http://download.oracle.com/javase/6/docs/technotes/guides/swing/
http://download.oracle.com/javase/6/docs/technotes/guides/swing/
http://news.cnet.com/2100-1043_3-6080186.html
http://news.cnet.com/2100-1043_3-6080186.html

170 BIBLIOGRAPHY

	Introduction
	Problem Brief
	Contribution
	Outline of the Thesis

	Background and Problem Definition
	Information Dissemination
	Broadcasting
	Accumulation
	Gossiping
	Communication Modes

	Live Streaming
	Aggregation
	Peer-to-Peer Systems
	Characterization
	Advantages
	Applications
	Mode of Operation
	Challenges

	Hypercubes
	Definition
	Properties
	Gossiping on the Hypercube
	Variations on the Hypercube

	Exemplary Applications
	Scalable Audio Communication for MMVEs
	Decentralized Data Fusion for Object Tracking

	Problem Definition

	Periodic Peer-to-Peer Hypercube Gossiping
	Nomenclature
	Assumptions and Requirements
	Assumptions
	Requirements

	Network Topology
	Finding the Right One
	Presenting the Hypercube
	Deformation
	Dynamics
	Generalization

	Communication and Aggregation Scheme
	Periodicity
	Implications

	Latency Overview
	Network Delay
	Wait Delay
	Input Delay
	Output Delay
	Local Processing Delay

	Related Work
	Other Gossip Topologies
	Other Communication Tasks
	Other Communication Modes

	Modeling Latency in Peer-to-Peer Networks
	The Need for Realistic, Efficient, and Usable Network Models
	Characterizing Internet Delay
	Internet Structure
	Delay Components
	Observations

	Related Work
	Statistical Models
	Global Network Positioning (GNP)
	Network Simulators
	Topology Generators

	DELFOI—A Hybrid Modeling Approach
	Assumptions
	Implementation
	Evaluation

	Parametrizing DELFOI from HTTP@let@token -Measurements
	Measurement Methodology
	Parametrization Methodology
	Results

	Conclusion

	Emulating and Visualizing Periodic Communication
	Scientific Discovery Learning using Interactive Modeling
	Emulation
	Modeling
	Visualization
	The REEL Tool
	Sequence View
	Phase Parametrization
	Network Delay Parametrization
	Results and Statistics
	Problems View
	Geometrical Solution View
	Visualizing Real Application Measurements

	Summary

	Minimizing Latency
	Foundations
	Latency Sources
	Latency Measures

	Timing Modes
	Random Mode
	Sync Mode
	Spliced Mode
	Chained Mode
	Crossing Mode

	Evaluation
	Random, Sync, Spliced, Chained Mode
	Crossing Mode

	Summary and Conclusion
	Local Modes
	Global Optimization

	Implementation
	Architecture
	Layers
	Components

	Protocol
	Limitations

	App. 1: Scalable Audio Communication for MMVEs
	Background and Problem Definition
	Conventional Audio Conferencing
	Auditory Virtual Environments
	Problem Definition

	Related Work
	Mapping the Virtual Environment to the Hypercube
	Continuity
	Adapted Aggregation Scheme
	Mapping Algorithm

	Implementation Considerations
	Evaluation
	Mapping
	Mouth-to-Ear Latency

	Conclusion

	App. 2: Decentralized Data Fusion for Object Tracking
	Distributed Data Fusion
	Finite Set Statistics (FISST)
	First Moments
	Double Counting

	Related Work
	DDF on Hypercubes
	Assumptions
	The DDF Problem
	Hypercube Gossiping
	Degeneration

	Optimization
	Coping with Scarce Bandwidth

	Summary

	Conclusion
	Bibliography

