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Abstract: This paper is devoted to an analytical, numerical, and experimental analysis of adhesive 
contacts subjected to tangential motion. In particular, it addresses the phenomenon of instable, jerky 
movement of the boundary of the adhesive contact zone and its dependence on the surface roughness. We 
argue that the "adhesion instabilities" with instable movements of the contact boundary cause energy 
dissipation similarly to the elastic instabilities mechanism. This leads to different effective works of 
adhesion when the contact area expands and contracts. This effect is interpreted in terms of “friction” to 
the movement of the contact boundary. We consider two main contributions to friction: (a) boundary line 
contribution and (b) area contribution. In normal and rolling contacts, the only contribution is due to 
the boundary friction, while in sliding both contributions may be present. The boundary contribution 
prevails in very small, smooth, and hard contacts (as e.g., diamond-like-carbon (DLC) coatings), while 
the area contribution is prevailing in large soft contacts. Simulations suggest that the friction due to 
adhesion instabilities is governed by "Johnson parameter". Experiments suggest that for soft bodies 
like rubber, the stresses in the contact area can be characterized by a constant critical value. 
Experiments were carried out using a setup allowing for observing the contact area with a camera 
placed under a soft transparent rubber layer. Soft contacts show a great variety of instabilities when 
sliding with low velocity – depending on the indentation depth and the shape of the contacting bodies. 
These instabilities can be classified as "microscopic" caused by the roughness or chemical inhomogeneity 
of the surfaces and "macroscopic" which appear also in smooth contacts. The latter may be related to 
interface waves which are observed in large contacts or at small indentation depths. Numerical 
simulations were performed using the Boundary Element Method (BEM). 
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1  Introduction 

Since the famous work by Johnson, Kendall, and 
Roberts (JKR) from 1971 [1], adhesive contacts 
have remained in focus of research in contact 
mechanics and tribology. In the JKR theory, the  

action range of adhesive forces is assumed to be 
zero (or much smaller than any characteristic 
length of contact). In 1975, Derjaguin, Muller, and 
Toporov (DMT) suggested a model in which the 
final interaction range was considered explicitly 
(in particular, the interaction outside the contact 
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area) [2]. Tabor solved in 1977 the controversy 
between both theories stating clearly that the JKR 
and DMT theories are limiting cases for very small 
and very large range of action of adhesive forces 
and introduced a parameter (now known as Tabor 
parameter) which describes transition between these 
two limiting cases [3]. In the early 2000s, the interest 
in adhesive contacts was driven by studying adhesion 
in biological adhesion "devices" like in gecko feet 
[4] or other biological structures [5]. In the last 
years, adhesive contacts have become again a hot 
topic, in particular in the context of adhesion of 
functionally graded materials [6], the loading-unloading 
hysteresis in rough contacts [7] as well as adhesive 
contacts under tangential loading [8]. In particular, 
rough contacts have been very intensively studied, 
for example, evaluation of effective adhesion work 
based on the Maugis–Dugdale model [9, 10], 
description of rough surfaces and development of 
experimental methods [11].  

Two developments of the last years greatly 
facilitated the advancement in adhesive contact’s 
research:  

1) The development of the Fast-Fourier-Trans-
formation-assisted Boundary Element Method (FFT- 
assisted BEM) [12–14], in particular, its adaptation 
for simulation of adhesive contacts [15].  

2) The development of experimental methods for 
direct observation of the processes of attachment 
and detachment [16, 17].  

One of the striking experimental findings are 
complicated stick–slip dynamics of tangential adhesive 
contacts [17]. These are far from being understood 
well and are subject of intense debates [18‒20]. 

The present paper is devoted to an analytical, 
numerical, and experimental investigation of adhesive 
contacts under tangential loading and rolling. However, 
the dissipative properties of normal adhesive contacts 
are also considered as far as this helps understanding 
friction.  

For slow sliding of adhesive contacts, the application 
of some force is needed, which can be interpreted 
as force of friction. There are two main generic 
mechanisms of friction in adhesive contacts: (a) 
Either the friction in the boundary line – due to its 
unstable sliding as described in Ref. [21], or (b) the 

friction directly in the inner part of the contact 
area [8, 22]. In the present paper, both mechanisms 
are investigated analytically and numerically. For 
the former one, the numerical study is conducted 
by use of the BEM for the JKR-type adhesive contact. 
The analysis is restricted to the elastic contact 
under very slow normal and tangential movement 
(quasi-static contact), so that viscoelastic and inertia 
properties can be neglected. 

We will consider both basic types of friction due 
to relative movement of bodies: rolling and sliding 
friction. These types have important differences 
stemming from the different local direction of 
movement of surfaces. Pure rolling is essentially a 
normal contact problem, because the surfaces at 
the leading edge are approaching each other in the 
normal direction and on the rear edge they separate 
in normal direction, both without any tangential 
movement. It is important to note that the absence 
of relative tangential movement of surfaces in the 
case of a rolling contact suppresses the contribution 
from shearing of the contact area, while in a sliding 
contact this contribution not only exists but presumably 
represents the main contribution to friction in most 
cases.  

The structure of the paper reflects this understanding.   
The first part of the paper is devoted to numerical 

simulation of adhesive contacts. Section 2 reports 
results on adhesive hysteresis in normal and rolling 
contacts. Section 3 considers sliding adhesive contacts 
with both boundary and area contributions.  

The second part of the paper is devoted to 
experimental investigation on the contacts of rigid 
indenters and soft rubber. Reported are results for 
normal contacts and sliding.   

2  Normal and rolling contacts: numerical 
simulation 

The solution of Johnson, Kendall, and Roberts (JKR) 
[1] assumes that the tangential stresses in the 
contact area vanish. For ideally smooth surfaces, 
this assumption is a logical consequence of the 
independence of the potential energy of an adhesive 
contact on its lateral position. Real adhesive 
contacts, on the contrary, typically show very high 
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friction, which physically is caused by microscopic 
heterogeneities. However, there exists a class of 
adhesive contacts in which the friction in the contact 
area could be small. To have this property, the 
contacting bodies have to be free of viscosity, plasticity 
and should not show elastic instabilities (which, 
according to Prandtl, are the main mechanism of 
energy dissipation in purely elastic systems [23–25].) 
Under these conditions, the surfaces would be in a 
state of "structural superlubricity" as described in 
[26–28]. The tangential friction in the contact area 
does not appear also in the pure normal and 
rolling contacts. We therefore start with this class 
of dynamic contacts, focusing our attention first on 
the boundary contribution to energy dissipation. 

2.1  Methodology 

Numerical simulations presented in Section 2 were 
carried out for adhesive contact of a parabolic 
indenter with the radius of curvature R superimposed 
with a two-dimensional waviness with amplitude 
h and wave length : 
  

 
    

      
   

2 2 2π 2π, sin sin
2

x y
z x y h x y

R
 (1) 

see subplot of Fig. 1(b) for an example. In the 
following subsections, simulations were performed 
using the FFT-assisted BEM [29] under displacement- 
controlled conditions and with the same assumptions 
as in JKR theory: The materials behave as linear 
elastic half-spaces with surface slopes being low 
and adhesion only acts in the regions of intimate 
contact. Validation of this method was provided in 
[15, 29–31]. Typically, a grid with 512 × 512 points 
was used. 

2.2  Normal adhesive contact of rough surfaces 

Contrary to a non-adhesive contact of elastic bodies, 
an adhesive contact has intrinsic dissipative properties, 
which can best be seen in a complete cycle of 
formation and destruction of contact. The area 
between the indentation and detachment branches 
of force-displacement relation (e.g., in the JKR theory) 
is the dissipated energy per cycle. The JKR theory 
is based on the principle of virtual work, meaning 

  
Fig. 1  Simulation of an adhesive indentation test using a 
parbolic indenter with waviness according to (1) and h/λ = 0.05. 
(a) Force–distance and (b) force–contact radius dependencies 
during indenting and pull-off stages. The contact area remains 
constant immediately after turning from the indentation to the 
pull-off (phase II). The gray dashed curve is the JKR solution 
without waviness. 

 

that adhesive contact is reversible in all phases 
when static equilibrium is possible [32]. Irreversible 
energy dissipation occurs only during the instable 
jumps from one equilibrium state to the other. This 
occurs in the moments of coming into contact and 
in the sudden destruction of contact. Independently 
from whether such jumps occur during a normal 
or a tangential movement, energy is dissipated. 
We therefore start in this Section with discussion 
of dissipation in the normal adhesive contacts.  

According to the JKR theory, the system jumps into 
contact and then moves forth and back on the same 
curve. The situation changes for more complicated 
shapes. Even for flat-ended stamps with compact 
face shape, the detachment may occur in a series of 
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consecutive instabilities [15]. The same is valid 
when surfaces are rough. Our numerical simulations 
show that during approach and detachment, the 
movement of the contact boundary proceeds in both 
continuous changes and instable jumps. Each jump is 
irreversible and, in its course, energy is lost. Due to 
the multiple microscopic instabilities, the indentation 
differs from the detachment curve at all values of the 
indentation depth: the dissipation leads to an 
apparent “friction” counteracting the movement of 
the contact boundary.  

Figure 1 shows the results of a simulation of the 
indentation and detachment of a parabolic indenter 
with superposed waviness into an elastic half- 
space. The above mentioned instabilities are clearly 
visible in the curves in Fig. 1 as microstructure of 
the lines. When observing the evolution of the 
contact zone, the corresponding local instabilities 
can be clearly identified. 

In the following analysis, the normal force FN, 
the indentation depth d, and the contact radius a 
will be normalized by the critical values of JKR 
solution for a smooth sphere [1, 33]:  
 JKR 0

3π
2

F R   (2) 
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where 0γ  is the work of adhesion per unit area 
and E* = E/(1–ν2) is the effective elastic modulus of 
a half-space with Young's modulus E and Poisson’s 
ratio ν. 

In 1995, Johnson studied the adhesive contact 
between a wavy surface and a half-space [34], and 
showed that the distinction between rough and 
smooth surfaces is governed by the parameter, 
which we now call the "Johnson parameter": 

 0
2 2 *

2
π h E


   (5) 

In the following sections, we show that the 
Johnson parameter is an essential governing parameter 

for both adhesion and friction.  

2.3  Effective surface energies for shrinking and 
expanding of adhesive contacts 

Figure 1 represents typical simulation results for 
the force-indentation and force-contact area relations. 
Since the contact boundary is generally non- 
circular, we define the contact radius as the distance 
from the center of contact to the furthest remote 
contact point, independently of whether the contact 
area is compact or consists of a "cloud of contact 
spots" as shown in the right hand side of Fig. 2(b). 

Figure 1 allows to explain general features 
which are important for the following analysis:  

1) Both indentation and pull-off curves follow 
very closely the JKR solutions, shown in Fig. 1(b) 
with red lines, but with different values for the 
specific work of adhesion. The value 1γ  for the 
approach is smaller than 2γ  for pull-off. See Section 
2.5 for limitations of this simple picture with 
respect to very large roughness values.  

2) When the direction of loading changes from  

  
Fig. 2  (a) Dependence of the force on the contact radius, for 
four different roughness amplitudes h/λ, varying from 0.029 
to 0.12, and for the same maximal indentation depth dmax/ 
|dJKR| = 15. (b) Shapes of contact areas for different roughness 
amplitudes.  
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approach to pull-off, the contact area remains 
constant for a while. This feature is seen very 
clearly in the dependence of force on contact 
radius in Fig. 1(b) or Fig. 2(a). The dependence of 
force on the indentation depth is linear in this 
phase. This behavior is as if a force of static 
friction acted on the boundary line, keeping it in 
place when the motion of the indentation depth is 
reversed. A similar phenomenon is theoretically 
described in Ref. [35] where the effect is caused by 
microscopic chemical heterogeneities. 

The above findings mean that the normal adhesive 
contact of rough surfaces can be characterized by 
effective energies for approach and pull-off, in 
other words for the expansion and retraction of the 
contact zone. The values of the effective energies 
are expected to approach zero for very rough 
surfaces and roughly the microscopic value of the 
specific work of adhesion 0γ  for smooth surfaces.  

Figure 3 shows the results of systematic parametric 
studies of effective specific surface energies 1γ and 

2γ . All data points collapse to well-defined master 
curves if the effective energies are plotted as function 
of the Johnson parameter [36]. In most simulations, 
all parameters have been fixed and only the 
roughness amplitude was varied. These results are 
plotted in Fig. 3 with gray squares. However, we 
also performed a large number of simulations in 
which the elastic modulus, the roughness amplitude 
and wave-length, and the microscopic specific work 
of adhesion 0γ  were varied in a random fashion. 
These additional data points provide a proof of the 
hypothesis, that the true determining parameter is 

the Johnson parameter. They are shown in Fig. 3 
with open triangles having different colors for 
different sets of parameters.  

For the normalized effective surface energies 

1 0/γ γ  and 2 0/γ γ , as well as the maximum force 
of adhesion |Fad|/|FJKR|, all data points collapse 
on a well identified dependencies, confirming that 
they depend indeed only on the Johnson parameter:  

 1 0 1( )γ γ f   (6) 

 2 0 2 ( )γ γ f   (7) 

 ad JKR ( )F F    (8)  

Let us discuss the above dependencies in more 
detail. For large values of the Johnson parameter, 
all three dependencies tend towards 1. This is 
expected, since higher values of α correspond to 
small roughness amplitude, thus approaching an 
ideally smooth surface.  

An increase of the roughness amplitude corresponds 
to a decrease of the Johnson parameter. The effective 
specific work of adhesion describing the indentation 
phase 1γ , is continuously decreasing together with 
the Johnson parameter. A particularly sharp drop 
to almost zero occurs in the vicinity of α = 0.5. A 
closer analysis of the contact configuration shows 
that this sharp drop is associated with the change 
from the compact contact area to a cloud of separated 
contact spots. This reaffirms the conclusions from 
the original paper by Johnson [34]. For α > 0.5, the 
contact area has a relatively well-defined outer 
border, and the force–distance dependence can be 
accurately described by the regular JKR theory 

 

 
 

Fig. 3  Dependence on Johnson parameter of the effective specific work of (a) adhesion γ1 for approach, (b) γ2 for detachment, 
and (c) the maximum adhesive force Fad. The gray squares correspond to numerical results by varying only the roughness 
amplitude, and the triangles by randomly varied parameters (including roughness amplitude, elastic modulus and specific work 
of adhesion γ0). In all cases, the wave length was kept small in comparison to the sphere radius λ/R ranged from 0.005 to 0.0075. 
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with a modified specific work of adhesion. Surfaces 
with α > 0.5 are practically non-adhesive.  

A slightly different behavior is found in the 
effective specific energy 2γ determining the detachment 
process. A decrease of the Johnson parameter, or 
increase of roughness, first leads to an increase of 
the effective surface energy followed by an abrupt 
decrease, see also Ref. [36]. The maximum value is 
found at α = 0.6073. The force of adhesion is 
observed of course during the detachment process, 
so it is strongly correlated with 2γ , as for parabolic 
bodies, the specific work of adhesion directly  

determines the force of adhesion ad 2
3π
2

F Rγ .  
2.4  Influence of size effects 

In Fig. 1, the instabilities due to roughness are 
seen as small fluctuations of the indentation and 
pull-off curves. In some applications like the contact 
between a cell and the tip of an atomic force 
microscope, the contact radius can be very small. When 
it is comparable with the scale of the roughness, 
the microstructure becomes pronounced, as exemplified 
in Fig. 4. The observable jumps are sometimes 
interpreted as results of detachment of discrete 
adhesive bonds [37], but our simulations suggest, 
that this kind of discontinuity can also be due to 
the roughness of the indenter or the soft body 
studied. 

2.5  Friction of the contact boundary 

Note that the above simple picture of two effective 
surface energies works well only when amplitude 
of roughness is not too large. With reference to the 

 

  
Fig. 4  An exemplary dependence of the normal force on the 
indentation depth for a spherical indenter with a superimposed 
roughness of the form (1) in the case when the scale of 
roughness approaches the characteristic size of the contact. 
Note that the instable detachments are distributed irregularly 
despite of the regular waviness of the indenter. 

first of pictures in Fig. 2(b), one can state that this 
concept is applicable with reasonable accuracy to 
contacts which are compact or at least mainly compact, 
which corresponds to α > 0.5. It is not applicable to 
the regimes when the contact consists of a cloud of 
separate points, which happens for α < 0.5. This 
can be seen from the leftmost curve of Fig. 2(a): in 
this case, the force of adhesion practically vanishes. 
However, the indentation and detachment curves 
do not coincide. On the contrary, they show an 
even bigger hysteresis compared with smaller 
amplitudes of roughness. For α < 0.5 neither the 
indentation nor the detachment is well-described 
by JKR theory. 

For now, let us concentrate our attention on the 
range α > 0.6. This is the interval in which the 
contact area possesses a well-defined boundary, 
even when it is not exactly circular, but represents 
a "rough line" or even consists of a narrow band of 
separated contact spots. On the other hand, we see 
from Fig. 5 that in this interval, the mean value of 
the effective surface energies, ( 1 2γ γ )/2, is roughly 
constant and equal to its microscopic value 0γ . 
The effective surface energies for indentation and 
detachment can thus be approximately written as  
 

   

   

1 1 2 2 1 0

2 1 2 2 1 0

1 1 / 2
2 2
1 1 / 2
2 2

γ γ γ γ γ γ γ

γ γ γ γ γ γ γ

      

      
 (9) 

with  
 2 1γ γ γ    (10) 

It is well-known that the specific surface energy 
can be interpreted as the linear force density acting 

 

  
Fig. 5  Dependence of (γ1–γ2)/(2γ0) and (γ1+γ2)/(2γ0) on the 
Johnson parameter. 
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on the boundary line. We explain it [38] with an 
example of a soap film stretched within a square- 
shaped wire frame with length l. The work done 
by the external force F for a displacement x is We = 
Fx, the surface area is increased by lx, and the 
surface energy by Ws = 2 0γ lx. Equilibrium of 
both gives that linear force density is equal to F/l = 
2 0γ . The force pro length for pulling on a movable 
side of the frame is twice of the surface energy of 
liquid [38]. For smooth surfaces in the studied case, 
this linear force density is equal to the specific 
surface energy 0γ . For rough surfaces, it depends 
on the direction of the movement of the boundary, 
increasing by γ/2 for moving in one direction and 
decreasing by the same value for moving in the 
opposite direction. Thus, the quantity 
 1

2
q γ   (11) 

can be interpreted as a linear density of the force 
of friction, acting always opposite to the motion 
direction of the contact boundary.  

The dependence of the boundary friction on the 
Johnson parameter is also shown in Fig. 5. In contrast 
to the absolute values of the surface energies, their 
difference, and thus the boundary friction vanishes 
for both small and large roughness values and 
exhibits an extremum at the boundary of the 
considered interval, i.e., at α 0.6. 
2.6  Rolling adhesive contact  

During rolling, tangential movement of the contact 
area occurs due to superposition of approach at 
the front edge and detachment at the rear edge. 
Due to the adhesive hysteresis, the whole system 
dissipates energy and rolling friction emerges. The 
dissipated energy can directly be estimated analytically. 
As shown in Section 2.2, the closing of the contact 
and its opening can be characterized by two different 
specific surface energies 1γ  and 2γ . Consider an 
adhesive contact with contact radius a, which is 
moved tangentially by the distance x. During this 
movement, surface area A = 2ax will come into 
contact at the front side and the same area will detach 
at the back side. The net dissipated energy thus 
will be W = A( 2 1γ γ )=2a( 2 1γ γ )x. The friction 
force can be defined as the ratio of the dissipated 

energy to the sliding distance: 
  T 2 12F a γ γ   (12) 

If the rolling contact does not have an exact 
circular form, then the half-width of the contact in 
the direction perpendicular to the rolling direction 
should be used in Eq. (12) as the contact radius. 
We see that the adhesion contribution to rolling 
friction is indeed the friction of the contact boundary 
from Eq. (11) times the boundary width, twice 
(since both the leading and the trailing edge advance). 
A similar approach was used and experimentally 
confirmed by Kendall [39] for the rolling friction 
of cylindrical rollers. 

Now let us consider results of numerical simulation 
of rolling spheres with the same type of waviness 
as defined by Eq. (1). Simulations have been carried 
out under condition of fixed indentation. As can be 
seen in Fig. 6(a), the normal force shows only very 
small fluctuations, so that there is no substantial   

 
 

Fig. 6  An example of rolling of a rough rigid sphere on a 
smooth elastic half-space: (a) dependencies of the normal and 
tangential forces (normalized by the absolute value of Eq. (2)) 
on the rolling distance. (b) Typical contact shapes for different 
roughness amplitudes (characterized by the Johnson parameter 
α). The first snapshot corresponds to the process shown in (a). 
It is seen that the contact shape is not circular, showing 
smaller radius (corresponding to smaller γ) on the leading 
edge, and a larger radius (corresponding to larger γ) on the 
trailing edge. 
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difference between indentation control and force 
control. In the simulation for tangential contact, 
the indenter slides or rolls very slowly (statically), 
so at each moment, the adhesive normal contact 
solution obtained through BEM, then the tangential 
force was calculated as the integral over the contact 
area of the local pressure multiplied with the 
x-component of the gradient of the rigid surface. 
The tangential force shows considerable fluctuations 
caused by instabilities of the boundary line but 
these can still be characterized as "microscopic" so 
that the macroscopic force of friction can be identified 
easily. A snapshot of the contact configuration is 
shown in the first picture of Fig. 6(b). One can see 
that the boundary of the contact area is irregular 
and the macroscopic shape of the contact is not 
ideally circular. 

To verify hypothesis Eq. (12), a large number 
simulations with varying parameters were carried 
out. Figure 7 shows values of the tangential force 
plotted against 2a( 2 1γ γ ). Both FT and a were 
found numerically. For the values of Johnson 
parameter larger α = 0.506, all results collapse to a 
linear dependency with slope 1, thus indeed 
confirming Eq. (12). Note that this contribution to 
the force of rolling friction is proportional to the 
contact radius rather than to the contact area. 

 

  
Fig. 7  Comparision of tangential force from numerical 
simulation with prediction of 2a( 2 1  ). For large enough 
Johnson parameters, for which the contact area is compact, 
the tangential force is equal to this value. Otherwise, the 
contact is non-compact in form of a cloud of contact spots 
and the tangential force is overestimated by Eq. (12). Numerical 
results have been obtained for 13 different indentation depths 
from dmax/|dJKR| = 1–13. Both the tangential force and 2a 
( 2 1  ) are normalized by FJKR. 

For smaller values of the Johnson parameter, as 
explained above, the concept of effective surface 
energies for opening and closing the adhesive crack 
cannot be applied. Thus, as expected, the data do 
not fit the linear dependence Eq. (12). Rolling 
resistance for this range of Johnson parameter was 
considered in [40–43]. 

Analytical estimation of the force of rolling 
friction according to Eq. (12) requires two specific 
surface energies and the contact radius. For determining 
the contact radius, one could argue that a rolling 
contact is a combination of indentation at the 
leading edge and detachment at the rear edge. 
Thus, in average, it should approximately correspond 
to a smooth contact with the true surface energy γ0. 
Numerical simulations show that the contact radius 
of a rolling contact corresponds to an effective energy 
of about 3γ 1.15 0γ (Fig. 8). Similar to normal contact, 
we use the JKR solution with another adhesion work 

3γ to approximate the tangential force-contact radius 
curve. The dependence of 3γ on Johnson parameter 
is seen in Fig. 8. The contact radius thus can be 
obtained from the usual JKR relation:  
 


   

2 2

* *
3 02π 2π (1.15 )a aa ad

R RE E
γ

 (13) 

3  Sliding adhesive contact: numerical 
simulations 

For rolling, as for any other normal contact, it is of 
 

  
Fig. 8  Dependence of the effective specific work of adhesion, 

3 , determining the contact radius of a rolling contact, on the 
Johnson parameter. 3  was obtained using the JKR solution 
to approximate the dependence of the normal force on the 
contact radius.  
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no importance whether the stiff or the elastic body 
is rough since only the relative (composed) roughness 
of both bodies plays a role. In contrast, the sliding 
contact is a purely tangential contact and it is 
important which of the bodies is rough. For example, 
in a contact of a rigid rough indenter and a smooth 
elastic half-space, the sliding force is zero (assuming 
of course the validity of presuppositions of the 
JKR theory). When a smooth indenter slides on a 
rough elastic surface, it is not zero. In the first case, 
the contact configuration remains unchanged all 
the time, in the second it generally changes and 
may also include instable configurations leading 
to dissipation and friction. 

For numerical simulation of sliding friction, we 
considered a contact of a rough rigid sphere with a 
rough elastic half-space. The "roughness" of both 
bodies was modeled by the two-dimensional waviness 
Eq. (1) with identical h and λ. The direction of the 
axes of waviness of two bodies were rotated relative 
to each to make the surfaces incommensurable. 
The simulation procedure was the same as in the 
case of rolling contact, only the changes of the 
interfacial gap were caused by relative sliding 
instead of rolling. As discussed in the introduction, 
the frictional force in adhesive sliding contacts may 
contain two parts: friction at the contact boundary 
FB, and a contribution of the inner contact area, FC:  
  Friction B CF F F  (14) 

3.1  Friction of the contact boundary 

As in the case of rolling, the dynamics of the 
contact configuration consists of both continuous 
movements of the boundary and instable jumps. 
The continuous movement is based on energy balance 
and is completely reversible. The jumps lead to 
energy dissipation and irreversibility of the tangential 
sliding, which is perceived macroscopically as the 
force of friction. This process is illustrated in Fig. 9 
showing four snapshots of the contact configuration 
during sliding process. For this simulation, the 
wavelength of the roughness was chosen relatively 
large to visualize the irregularity of the boundary 
and its jerky behavior. 

Figure 10 shows the dependence of the contribution 
to the friction force due to boundary jumps on 

  
Fig. 9  Consecutive snapshots of the contact area during 
sliding. The dynamics of the contact configuration consists of 
the phases of continuous evolution and instable jumps.   

 

 
 

Fig. 10  (a) Dependence of the boundary contribution to the 
force of friction and (b) contact area contribution to the force 
of friction on Johnson parameter.  

 

the Johnson parameter α. The tangential force is 
small both in the limit of very smooth and very 
rough surfaces, and achieves a maximum exactly 
at the transition from smooth (adhesive) to rough 
(nonadhesive) surfaces, corresponding to α 0.65. 

3.2  Area contribution to friction 

The contribution from the area can be interpreted 
in different ways: either as a microscopic coefficient 
of friction to be multiplied with the adhesive 
pressure or as shearing of some physically existing 
boundary layer [8, 22]. In the latter case, there 
exists some characteristic tangential stress τ0 to be 
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overcome. The corresponding contribution to the 
tangential force during sliding is then proportional to 
the real contact area, A. For large Johnson parameters 
(small roughness), the contact area is compact and 
practically coincides with a2. The compactness of 
the contact, expressed as the numerically calculated 
value for the real contact area normalized by τ0a2 
is shown in Fig. 10(b). For values of α < 0.65 
approximately, it decays quickly. It is seen that at 
the large value of Johnson Parameter, the friction 
is roughly equal to the production of contact area 
and this characteristic tangential stress.  
4  Experimental setup 

The second part of the paper is devoted to an 
experimental study of adhesive contacts between 
rigid indenters and very soft transparent rubber. 
The softness of one of the contacting bodies is the 
necessary pre-requisite for formation of a large 
contact area whose configuration can be recorded 
with high resolution. The instabilities at the contact 
boundary leading to the boundary friction are 
directly observable in this system and will be 
studied in detail. However, we will see that for the 
total frictional force, the area contribution is 
prevalent in our experiments.  

Experiments have been conducted using the setup 
depicted in Fig. 11. Steel spheres having various 
radii of curvature were indented into a 5 mm thick 
layer of transparent rubber TARNAC CRG N3005, 
and subsequently pulled off or moved tangentially  

 

  
Fig. 11  Experimental setup. Left panel: general view, right 
panel: contact between the steel indenter and the rubber layer, 
with the lighting system. 

with precision linear stages attached to a strain 
gage sensor recording normal and tangential forces. 
The contact region was illuminated from the side 
with 80 LEDs and was recorded from underneath 
using a digital camera with the resolution of 1600 × 
1200 pixels. An inclination mechanism was used to 
ensure a parallel orientation between the rubber 
surface and tangential indenter movement. 

5  Normal adhesive contact 

5.1  Flat-ended elliptic punch 

Let us start with consideration of an adhesive 
contact of a flat ended stamp with a face surface in 
form of an ellipse with an elastic flat body. Assuming 
that the detachment starts at the points where the 
stress intensity factor for the first time exceeds the 
critical value, it can be easily shown that the 
detachments should start at the ends of the major 
axis of the contact ellipse [29]. Numerical simulations 
of the detachment process confirm that detachment 
starts at these maximally remote from the center 
points and propagates inwards (Fig. 12). However,  

 

  
Fig. 12  Detachment process of a flat-ended punch with an 
elliptical face surface. (a) Three dependencies of the normal 
force on the distance from the plane surface (negative indentation 
depth); for a homogeneous system and for two heterogeneous 
(quadratic) distributions of the specific work of adhesion 
along the indenter face surface. (b) The corresponding series 
of contact configurations, showing the first moment when 
detachment starts, some intermadiate configurations, as well 
as the final instable configuration after which the contact is 
lost in a jump-like manner. 
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in experiment, the detachment starts at the ends of 
the minor axis of the ellipse and leads to constriction 
of the contact in the middle of the ellipse with final 
separation in two not connected areas, Fig. 13. 

The physical reason for this striking difference 
between experiment and theoretical prediction has 
not been clarified yet. One possible explanation 
could be a heterogeneity of the surface energy in 
the direction of the large axis of the ellipse, which 
could be caused e.g., by various heating of central and 
peripheral parts of the indenter during production 
process. Results of numerical simulations with 
artificially introduced heterogeneity of the specific 
work of adhesion are shown in Fig. 13. A heterogeneity 
can indeed lead to force-displacement relations and 
sequences of contact configurations very similar to 
those found in experiment. However, for starting 
detachment at the ends of the minor axis, the ratio 
of surface energies at the end of the ellipse and in 
its middle must achieve at least 13, and for complete 
constriction in the middle, this ratio should be at 
least 20. It is hardly imaginable that such huge 
variations of the specific surface energies can appear 
due to preparation of the samples. Thus, the reason 
for this striking discrepancy of theory and experiment 
remains not clarified. 

However, we would like to stress that for many 
 

  
Fig. 13  Experimental observations of the detachment process 
of a flat-ended punch with an elliptical face surface: (a) 
Dependencies of the normal force on the distance from the 
plane surface (negative indentation depth); three curves are 
just three repetitions of the same experiment. (b) Contact 
configurations in the initial state, at the beginning of the 
detachment process at the ends of the minor axis, and further 
constriction of the contact area in the middle. Two instabilities 
are seen: 1) the "constriction instability" leading to a rapid 
division of the contact area in two separated parts, and 2) the 
final detachment of the two remaining contacts in the vicinity 
of the vertices of the ellipse. 

other shapes that were not as slim as those shown 
in Fig. 13, a good correspondence between theory 
and experiments has been shown (e.g., many 
shapes studied in Ref. [15]). 
5.2  Hysteresis of the surface energy and its time 

dependence 

An important question in experiments is their 
repeatability. Our studies of repeatability revealed 
a number of effects which have to be taken into 
account when interpreting experimental studies of 
adhesive contacts. 

If a freshly manufactured indenter is pressed 
and pulled off several times, the adhesive force is 
significantly different in the first impression compared 
to the second and all subsequent ones. The reason 
for this effect could be chemical changes in the 
surface due to the first contact leading to a change 
of the specific surface energy after the first impression.  

If a body is indented to the same depth and 
remains in this state for different time, it will follow 
different curves when it is subsequently pulled off 
(Fig. 14(a)). The dependence of the adhesive force 
on the waiting time is shown in Fig. 14(b). It can be 
approximated as follows:  
 0.0883

,min 0.07292NF t   (15) 

where the force is measured in Newton and time 
in minutes. 

This means that the specific separation energy 
increases with the waiting time.  

 

 
 

Fig. 14  (a) Dependence of the normal force on the indentation 
depth, for a spherical indenter with the a radius R = 40 mm, 
for the soft rubber CRG N0505. Different curves correspond 
to different waiting time at the maximal depth of penetration. 
The adhesive force increases with the waiting time. (b) 
Dependence of the adhesive force in the pull-off phase on the 
waiting time. The shortest time was t = 1 min. The inset 
shows the same curve on the double-logarithmic scale. 
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Note that after the reversal point, all curves 
initially coincide and follow a linear dependence. 
Video recordings show that the contact area does 
not change during this phase. This "pinning of the 
boundary of contact area" is seen also in numerical 
simulations (Fig. 1(a)). Such behavior shows that 
the boundary line of the contact area is inhibited 
to reverse the movement immediately after 
reversing the loading, which means presence of a 
frictional force experienced by the boundary line. 
Such behavior has been observed and described in 
Ref. [44]. 

Before the reversal and after the linear stage, the 
indentation and the pull-off curves follow the 
theoretical JKR curve ‒ only with different specific 
separation energies for the closing and opening of 
the contact, in correspondence with the numerical 
results shown in Fig. 1(b). 
6  Sliding adhesive contact 

In experiments with sliding of adhesive contacts, 
spherical steel indenters with radii of 11, 22, and 
100 mm were used. They were first pressed into 
the rubber layer, and then were lifted up to a fixed 
indentation depth. We studied both positive indentation 
depth (represented by the value 0.2 mm, zero 
indentation depth and negative "indentation depth" 
of –0.015 mm (in the latter case, the contact does 
exist only due to adhesion). Subsequently, it was 
slowly moved in the tangential direction (typically 
at v = 1 µm/s) over the distance x = 15 mm. After 
that, the direction of the movement was reversed, 
and the indenter moved over the same distance x = 
15 mm back to the point of initial contact. Finally, the 
indenter was lifted until complete loss of contact.  

The general feature of the dynamics of contact 
area during sliding is that it is not exactly circular 
(due to microscopic chemical heterogeneity and 
roughness). The rougher the surface (Fig. 15), the 
"rougher" is the contact boundary and the more 
discontinuous occurs its movement when increasing 
tangential loading. Most of the time, the boundary 
remains pinned by heterogeneities and the movement 
occurs in form of rapid jumps from one stable 
configuration to the other. Each jump is irreversible 
and during each jump, energy is lost. 

 
 

Fig. 15  Snapshots of the contact area, for different roughnesses 
of the indenter with radius R = 100 mm and zero indentation 
depth d = 0 mm during phase of detachment. The numbers 
P2000, P180, P60, and P0 describe the sand paper used for 
preparation of samples. The larger numbers correspond to 
smaller grain size and correspondingly to smoother surface, 
as listed in Table 1. The highest roughness was obtained by 
manual treatment with a hacksaw (P0). 

 
Table 1  Average grain sizes of the sand paper depending on 
its number.  

Grain number P2000 P180 P60 

Grain size (µm) 10.3 82 269 
 

As the detailed character of the development of 
the contact area during sliding depends on the 
radius of the indenter, in the following we describe 
separately the results for each of the radii studied.   
Indenter radius R = 22 mm  
Figure 16 shows images of the contact area during 
lateral displacement. Comparison of snapshots "1" 
and "2" shows that the displacement of the boundary 
of the contact area starts on the right side (front 
line), while it remains pinned on the left side (rear 
side of the contact). This behavior means that the 
friction force acting on the boundary line is 
asymmetric (smaller for propagation of the contact 
area and larger for shrinking).  

 

  
Fig. 16  Snapshots of the contact area in a contact with a 
spehere (R = 22 mm). The transparent elastomer is fixed and 
the rough steel sphere moves to the right. The snapshot (1) 
corresponds to the indentation to the depth d = 0.2 mm. The 
white line was inserted in the center of the contact with 
respect to the rigid indenter. Snapshot (2) shows the contact 
under subsequent displacement in the lateral direction by 0.6 
mm. The asymmetry of the contact area is seen clearly. The 
snapshots "3-2" and "4-2" show further evolution of the 
contact configuration by two subsequent displacements by 1 
micrometer each. New areas formed are marked with red, and the 
parts which disappeared (compared to the state "2") with blue. 
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Secondly, the propagation of the contact area 
occurs in jumps. Thus, the tangential displacement 
separating snapshots 3-2 and 2 is equal to 1 
micrometer, but the changes of the contact area are 
disproportionally large (up to the moment of the 
jump the boundary is pinned and does not move 
at all). However, the jumps of the rear part have a 
much smaller amplitude than those of the front 
area.  

Let us stress that the tangential displacement 
can lead not only to the propagation of the front 
boundary in the direction of movement (red areas) 
but also to shrinking (moving "back", blue areas). 
This may be caused by a stress redistribution 
either due to propagation of the line in adjacent 
regions or due to detachment waves propagating 
through the contact area from the front to the rear 
side. These waves are not seen in the snapshots 
but can be easily seen in the corresponding videos. 

At large indentation depth, the contact size in 
the direction perpendicular to the direction of 
sliding, tangential force as well as tangential stress 
do not change substantially (Fig. 17). 

An essentially different behavior is observed in 
the case of small or negative indentation depths. In 
Fig. 18, the dynamics of contact area is shown for 
d0 = 0 mm. 

 

  
Fig. 17  A small fragment of the time dependencies of left- 
hand-side (rear) area (blue line in the upper part of Figure) 
and right-hand-side (front) area (red line in the lower part of 
Figure), tangential force and tangential stress in the case of 
R = 22 mm and d = 0.2 mm. 

 
Fig. 18  Snapshots of the contact area in a contact with a 
sphere (R = 22 mm) corresponding to the indentation depth 
d = 0 mm. Other conditions are similar to those of Fig. 16. 

 
The snapshot "1" shows the contact before beginning 

of tangential motion, after the body has been 
indented to the depth d = 0.2 mm and moved back 
to the position d = 0 mm. Snapshots 2–4 show the 
contact area during tangential movement by the 
distance x = 0.42 mm at the fixed (zero) indentation 
depth. Finally, a stationary mode of motion is 
established consisting of pronounced macroscopic 
stick and slip phases, Fig. 19. 

In this case, the difference between the dynamics 
of the front line and the back line of the contacts is 
especially pronounced. The rear contact area does 
not change during tangential motion (Fig. 19, blue 
line). The front area, on the contrary, changes 
vividly (Fig. 19, red line). The changes in the total 
area are thus mostly due to the changes in the front 
area. Tangential force oscillates correspondingly. 
However, the tangential stress τ, determined as 
ratio of the total tangential force and the total area, 
remains during the sliding phase practically constant 
and equal to τ ≈ 36 kPa. Detailed view provided 
in the right part of Fig. 19 shows what exactly 
happens in the contact. During the stick phase, the 
contact area not only does not change but also does 
not move, so that the force linearly increases with 
tangential displacement. In the subsequent sliding 
phase, the sliding occurs in the whole contact area 
at practically constant tangential stress which only 
weakly depends on the indentation depth (Fig. 20). 
This suggests that in the system studied experimentally, 
the main contribution to the force of friction is the 
area contribution.  

Finally, consider the case of negative indentation 
depth d = –0.015 mm. In this case, the contact does 
exist only due to adhesion. The indenter was first 
pressed into the rubber sheet, then lifted up to 
d = –0.015 mm (snapshot "1" in Fig. 21) and moved 
subsequently in tangential direction. The size of 
the contact decreases monotonously (in Fig. 21,  
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Fig. 19  Dependencies of the tangential force Fx, parts of contact areas A (front area, rear area, and total area), and tangential 
stresses τ on time. Radius of indenter R = 22 mm; indentation depth d = 0.0 mm. 

 

  
Fig. 20  Dependencies of tangential stress for forth and back 
movement of an indenter with radius of curvature R = 22 mm 
and 6 different indentation depths.  

 

  
Fig. 21  Snapshots of the contact area in a contact with a 
sphere (R = 22 mm), corresponding to the indentation depth d = 
–0.015 mm. Other conditions are similar to those of Fig. 16. 

 
snapshot "2" corresponds to tangential displacement 
0.0369 mm, "3" corresponds to x = 0.0668 mm, and 
"4" to 0.0768 mm). Finally the contact gets lost. 

Figure 22 presents the normal and tangential 
forces, as well as the normal pressure and the 
tangential stress, during all of the essential stages 
of the experiment. The indenter was first pressed 
up to the depth 0.2 mm, then lifted up to d = –0.015 
mm, and subsequently moved tangentially. The 
tangential force first increases and then decreases, 
and eventually vanishes (Fig. 22(b)). At the same 
time, the normal pressure vanishes too. This is due 
to the above-described decrease of the contact area 
until the contact completely disappears.  

  
Fig. 22  Dependencies of: (a) the normal force, FN, (b) the 
tangential force Fx, (c) the normal mean pressure p = FN /A, 
and (d) the tangential stress τ = Fx/A on time t. Radius of 
indenter R = 22 mm; indentation depth d = –0.015 mm.  

  
Fig. 23  Dependencies of the rear, front, and total area A on 
the tangential displacement x. Radius of indenter R = 22 mm, 
indentation depth d = –0.015 mm. Vertical lines correspond 
to the configurations 2, 3, and 4 in Fig. 21. 
 

Indenter radius R = 100 mm  
To illustrate the diversity of modes observed in 
experiments with sliding adhesive contacts, we 
report also results of experiments with an indenter 
having the curvature radius R = 100 mm. While 
from the theoretical viewpoint, the behavior of 
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sliding indenters with various curvature radii 
should be qualitatively similar, experiments reveal 
several qualitative differences.  

Figure 24 shows snapshots of 4 consecutive 
contact configuration after indentation by d0 = 0.2 mm 
and subsequent tangential displacement. The left 
snapshot corresponds to some initial tangential 
displacement and serves as reference for the next 
three, where the newly appeared contact regions 
are highlighted with red and the parts which 
disappeared with blue.  

Already a study of this sequence shows that 
now there are large "jumps" of the contact area in 
the rare part of the contact (distinctively seen in 
Fig. 25, upper graph) while the front part moves 
more continuously.  

 

 
 

Fig. 24  Snapshots of contact configurations of a spherical 
indenter with radius R = 100 mm after indentation by d = 
0.2 mm and subsequent tangential displacement with fixed 
indentation depth. Areas highlighted with red are newly 
appeared contact regions (compared with the first snapshot 
which is used as reference; with blue are marked the regions 
which disappeared compared with the reference configuration).   

 

  
Fig. 25  Dependencies of the rear and front contact areas, 
tangential force and tangential stress on time t in the "stationary" 
sliding mode, for R = 100 mm and d = 0.2 mm.  

Depending on the size of the indenter and 
loading parameters, also more complicated regimes 
have been observed. In some cases, the contact 
area in the front line jumped several times forth 
and back (in spite of unidirectional movement of 
the indenter). Attentive studies of such regimes 
always reveal interface waves propagating from 
the front side of the contact towards rear part. 

As in the case of the indented with R = 22 mm, 
decreasing of the indentation depth leads to appearance 
of a pronounced "inverted stick-slip" accompanied 
by reduction or complete disappearance of the 
front part of the contact area (Fig. 26). The tangential 
stress during sliding phase changes only very 
weakly around the value around 35 kPa.  

7  Discussion and conclusions 

This paper focuses on the tangential movement of 
adhesive contacts by rolling or sliding. We also 
studied the properties of the normal adhesive 
contacts since those are directly related to the 
energy dissipation and thus appearance of friction. 
Investigations have been carried out experimentally 
by direct observations of the contact configuration, 
and numerically using the FFT-based BEM for 
adhesive contacts. 

Our studies suggest the following general 
picture:  

1) Apparently, there exist two main contributions 
to friction in adhesive contacts: one coming from 
the contact area and the second one coming from 

 

  
Fig. 26  Dependencies of the tangential force Fx, components 
of the contact areas A (rear, front, and total), and mean 
tangential stress τ on time. Radius of the indenter R = 100 mm, 
indentation depth d0 = 0.0 mm. 
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the boundary of the contact zone.  

 


 
 

Friction B C

Fr realiction 0

F F F
F qD A

 (16) 

where D is the width of the contact facing the 
direction of motion, τ0 is a constant having dimension 
of stress and q is a constant having dimension of 
linear force density, see Eq. (11). For pure rolling 
contact, FC = 0. 

When the contact is relatively circular and 
compact, with contact radius a, then D = 2a and 
Areal A = a2. The above statement can then be 
expressed as  

  Friction 02 πF q A A  (17) 

This means that formally calculated mean tangential 
stress in the contact is equal to 

   


 n

2

mea 0

1
2 πq A  (18) 

and increases with decreasing contact area. This 
seems to be supported by our experimental data 
(see e.g., Fig. 26).  

Equation (18) implies that the boundary contribution 
will prevail in very small contacts, especially if 
they are smooth and rigid, while the area contribution 
is governing in large and soft contacts. 

2) The boundary friction determines not only 
the boundary contribution to the force of friction 
but also the adhesive hysteresis in normal contacts. 
Depending on the value of the Johnson parameter 
α, we can distinguish between "smooth" contacts 
having a more or less compact contact area and 
identifiable contact boundary, and "rough" contacts 
consisting of clouds of disconnected contact spots. 
For "smooth" contacts α > 0.6, the force-indentation 
relation can be described well by the JKR theory, 
but with two different specific works of adhesion, 

1γ and 2γ  for the indenting and pull-off phases. 
When reversing the direction of loading, the contact 
area remains constant and the force-distance relation 
is linear until the system completes the transition 
from one JKR curve to the other. The effective 
surface energies 1γ  and 2γ  are determined by the 
Johnson parameter, γ1 = γ0f1(α) and γ2 = γ0f2(α). 

3) The physical nature of the boundary friction 
lies in microscopic instabilities of the contact 
configuration. Both numerical simulations and 

experiment show that tangential movement – sliding 
as well as rolling – is realized in both continuous 
movements and instable jumps. Continuous displace-
ments are reversible, energy is dissipated solely 
during jumps, thus leading to appearance of 
macroscopic friction. This is valid even in the very 
rough contacts which do not show any noticeable 
adhesion.  

4) We found that there are two main types of 
dynamics of the contact area: either "macroscopically 
continuous" (but microscopically jump-like) movement 
or as a pronounced macroscopic "inverted stick- 
slip" behavior. The continuous mode is realized for 
small contacts and/or large indentation depth and 
the "stick–slip"-like mode for large contacts or 
small (in particular, zero or negative) indentation 
depths. The reason for macroscopic instabilities 
are apparently interfacial waves, which are observed 
in all cases of pronounced macroscopic instabilities 
(on the scale much larger than that of roughness). 

5) The above properties have important macroscopic 
implications. In a sense, one can say that the 
adhesive contacts (even in the case when the 
adhesion is not visible because the adhesion force 
vanishes) are the most time in a "stick" state and 
move only due to rapid instable changes of the 
contact boundary or due to interfacial waves. This 
can explain a paradox described in Ref. [45]. In 
that study, it was experimentally found that the 
response of a sliding elastomer contact to dynamic 
loading is as if the contacts were sticking.  

6) Rolling and sliding of circular contacts lead 
to a change of the shape in the contact. However, 
the change is more complex than discussed in Ref. 
[46]. Contacts may be "compressed", either in the 
sliding direction or perpendicular to it, depending 
on the size, indentation depth, and possibly other 
parameters. 

7) Experiments with very slim indenters revealed 
a fundamental discrepancy between predictions 
based on the energetic detachment criterion (the 
JKR theory). The physical reason for this discrepancy 
remains not understood but is of utmost importance 
for the correct physical understanding of the 
detachment criterion and for numerical simulations 
of adhesive contacts. 
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