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Abstract

The rapidly growing mobile market has stimulated the demand for more
and more complex custom applications for embedded mobile devices, for ex-
ample, smart phones. To manage this complexity and, at the same time, to
keep the time to market small, advanced software engineering methods have to
be applied. Aspect-oriented programming (AOP) provides advanced modular-
ization and abstraction mechanisms. The main advantages of this concept are
improved maintainability, reusability, and extensibility of applications. Fur-
thermore, dynamic AOP can be used to implement the dynamic adaptation of
mobile device applications to changing contexts, like the location. However,
the overhead introduced by the additional abstraction mechanisms limits the
applicability to embedded mobile devices because they have limited resources
(CPU, memory) compared to desktop PCs.

To overcome this problem, we present a set of optimizations that signif-
icantly reduce the overhead of common AOP mechanisms and, finally, make
AOP applicable for embedded mobile devices. The foundation of our work is a
thorough analysis of the overhead that is typically generated by the realization
of AOP mechanisms. The key idea of our approach is a deep integration of
AOP mechanisms into the virtual machine. To this end, we shift mechanisms
like the registration of activated aspects to the level of the JVM. Furthermore,
we optimize the execution of AOP programs by introducing caching mecha-
nisms and specialized bytecode instructions that are tailored for the execu-
tion of AOP mechanisms. Moreover, we analyze AOP-specific semantic code
properties in order to develop optimizations that utilize these AOP-specific se-
mantic information and that exploit typical AOP usage schemes. In addition
to the AOP optimizations, we realize an efficient dynamic aspect deployment
mechanism. We apply our optimizations to the Java-based aspect-oriented pro-
gramming language ObjectTeams [HHM07] by extending the extremely small
and portable JamVM [Lou] Java virtual machine.

To evaluate our approach, we execute micro benchmarks, investigate the
effect of our optimizations on a real-world application, and finally discuss the
transferability of our optimizations to other approaches. Our evaluation shows
a considerable performance gain for the aspect activation and the aspect exe-
cution of ObjectTeams. In particular, we demonstrate that our optimizations
improve the performance of commonly used AOP mechanisms by up to 90%.
At the same time, we reduce the code size of the adapted classes, which is also
important for small devices. Finally, with our case study, namely the OTPong
game application, we show that our approach is capable of significantly opti-
mizing the execution time of real-word applications. Our main contribution is
a significant reduction of the overhead of high-level AOP constructs, which is
also demonstrated by the results of our experiments. The success of the op-
timizations provides evidence that advanced high-level abstraction techniques
like AOP can be efficiently used in embedded mobile devices. Furthermore,
our work shows that efficient dynamic aspect deployment can be supported on
the level of the JVM. This substantially enhances the dynamic capabilities of
ObjectTeams.





Zusammenfassung

Der rasant wachsende Mobilgerätemarkt verlangt nach immer komplexeren
Anwendungen für eingebettete Mobilgeräte, wie Smartphones. Um diese Kom-
plexität beherrschbar zu machen und gleichzeitig die Produktzyklen möglichst
kurz zu halten, ist es nötig fortgeschrittene Softwareentwicklungsmethoden an-
zuwenden. Die aspektorientierte Programmierung (AOP) stellt fortgeschritte-
ne Modularisierungs- und Abstraktionsmechanismen zur Verfügung. Die wich-
tigsten Vorteile dieses Konzeptes sind die verbesserte Wartbarkeit, Wieder-
verwendbarkeit und Erweiterbarkeit von Anwendungen. Darüber hinaus ist
dynamische Aspektorientierung dazu geeignet die dynamische Anpassung von
mobilen Anwendungen an wechselnde Kontexte, wie z.B. den Standort, zu
realisieren. Allerdings schränkt der Overhead, der durch die zusätzlichen Ab-
straktionsmechanismen entsteht, die Anwendbarkeit auf eingebettete Mobilge-
räte ein, da diese im Vergleich zu Desktop PCs beschränkte Ressourcen (CPU,
Speicher) aufweisen.

Um dieses Problem zu bewältigen, präsentieren wir eine Reihe von Opti-
mierungen, welche den Overhead von typischen AOP-Mechanismen signifikant
reduzieren und damit AOP für eingebettet Mobilgeräte anwendbar machen.
Die Grundlage unserer Arbeit ist eine gründliche Analyse des Overheads, der
typischerweise durch die Realisierung von AOP-Mechanismen entsteht. Die
Kernidee unseres Ansatzes ist eine tiefe Integration der AOP-Mechanismen in
die virtuelle Maschine. Zu diesem Zweck verschieben wir diese Mechanismen,
wie etwa die Registrierung von aktiven Aspekten, auf die Ebene der JVM. Wei-
terhin optimieren wir die Ausführung von AOP Programmen durch die Einfüh-
rung von Cache-Mechanismen, sowie spezialisierten Bytecode-Instruktionen,
die auf die Ausführung von AOP-Mechanismen zugeschnitten sind. Darüber
hinaus analysieren wir AOP-spezifische semantische Code-Eigenschaften und
entwickeln darauf aufbauend Optimierungen, die sich diese Eigenschaften und
typische AOP Benutzungsschemata zunutze machen. Zusätzlich zu den AOP-
Optimierungen realisieren wir einen effizienten dynamischen Aspekt-Deploy
Mechanismus. Wir wenden unsere Optimierungen auf die Java-basierte as-
pektorientierte Programmiersprache ObjectTeams [HHM07] an, indem wir die
extrem kleine und für eingebettete Systeme portierte JamVM [Lou] erweitern.

Um unseren Ansatz zu evaluieren führen wir Mikro-Benchmarks aus und
untersuchen den Effekt unserer Optimierungen auf eine echte Anwendung. Un-
sere Evaluierung zeigt eine erhebliche Performanz-Steigerung für die Aspekt-
Aktivierung und die Aspekt-Ausführung von ObjectTeams. Unsere Optimie-
rungen verbessern die Performanz von häufig verwendeten AOP-Konstrukten
um bis zu 90%. Gleichzeitig verringern wir die Code-Größe adaptierter Klassen,
was ebenfalls wichtig ist für kleine Geräte. Schließlich zeigen wir mit unserer
Fallstudie, der Spieleanwendung OTPong, dass unser Ansatz in der Lage ist,
die Ausführungszeit von echten Anwendungen signifikant zu optimieren. Unser
wichtigster Beitrag ist die signifikante Reduzierung des Overheads von höheren
AOP-Konstrukten, die wir durch unserer Experimente untermauern konnten.
Der Erfolg der Optimierungen zeigt, dass fortgeschrittene höhere Abstraktions-
techniken wie AOP effizient auf eingebetteten Mobilgeräten verwendet werden



können. Außerdem zeigt unserer Arbeit, wie effizientes dynamisches Aspekt-
Deployment auf der Ebene der JVM umgesetzt werden kann. Dadurch konnten
wir die dynamischen Fähigkeiten von ObjectTeams maßgeblich erweitern.



Danksagung

Die vorliegende Arbeit entstand während meiner Tätigkeit im DFG Aktions-
plan Informatik Verifikation und Optimierung bei der Ubersetzung höherer
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1 Introduction

During the last years, embedded mobile devices like hand-helds and mobile
phones have become much more popular and have gained increasing compu-
tational power. This development has also stimulated the demand for more
and more complex custom applications to be run on these devices. At the
same time, such mobile devices are ruled by mass-market laws. This means
that time to market as well as price per unit are critical success factors. To
keep time to market small, software engineering methods are necessary that
facilitate reuse, adaptability and extensibility of software systems, rendering
low-level programming languages like C as no longer sufficient for this grow-
ing complexity. As in the area of desktop applications, advanced concepts
for abstraction and modularization as e.g. object- or aspect-orientation are
needed. At the same time, the hardware of such embedded devices will always
be limited compared to desktop PCs, not least to keep their price per unit
small. Hence, many software engineering methods are not directly applicable
because they require too much memory space and/or computation time. This
conflict between hardware restrictions and the need for more advanced soft-
ware engineering concepts is characteristic for embedded systems. We appraise
aspect-oriented programming (AOP) [KLM+97] to be highly qualified to mod-
ularize software adequately in order to achieve the above mentioned goals of
maintainability, extensibility and reusability, also in the context of embedded
devices.

In this work, we address the problem of allowing the advanced software
engineering mechanisms of aspect-oriented programming (AOP) to be applied
to applications running on embedded mobile devices. This is a challenge be-
cause such devices have limited resources and the advanced modularization
mechanisms of AOP typically cause increased demands on computation power
and memory, by extra indirections for dispatching to the aspect code, and
by additional infrastructural code. AOP is an extension of the object-oriented
programming paradigm that facilitates a better separation of concerns, i.e., for
the separate implementation of core functionality from system-specific concerns
representing e.g. configuration decisions that may come up at many places in a
program. A subsequent weaving process combines functional and aspect code.
These advantages of aspect-orientation do not come for free, as they introduce

13



14 Introduction

a significant overhead. The main goal of our work is to reduce this overhead
and make AOP applicable for embedded devices.

To make AOP applicable for embedded device applications, we reduce the
mentioned overhead by optimizing the aspect-oriented execution mechanisms.
We solve the efficiency problems by adapting the object-oriented execution
mechanisms to meet the particular needs of aspect-oriented programs. In
this work, we focus on aspect-oriented programming languages extending the
object-oriented language Java. In these languages, aspect-oriented constructs
are typically mapped to Java bytecode which is then executed on a standard
Java virtual machine (JVM). This approach offers only restricted optimization
potential because it is restrained entirely on the limited operations of the Java
bytecode. All potential optimizations can only be applied to the bytecode level
and not directly target the performance of the aspect-oriented execution mech-
anism. In contrast, approaches like [Hau06, HM05] investigate the extension of
the executing JVM by aspect-oriented features. It turns out that this approach
offers much better optimization gains. Supporting aspect dispatch mechanisms
at the level of the JVM is more promising as this facilitates efficient weaving
policies tailored to the specific needs of static and dynamic weaving in systems
with only limited memory and computation power. Therefore, our approach
extends the execution mechanisms at the level of the Java virtual machine in
order to optimize and flexibilize the AOP execution. Additional challenges for
the efficiency arise from the demand for dynamic weaving, when aspects need
to be added at run-time, e.g. to update software or to adapt software to chang-
ing contexts. The adapted execution environment of our approach accounts
an efficient realization of such capabilities.

We require our solution to facilitate better maintainability, extensibility and
reusability of the embedded software. Moreover, it shall be able to cope with
an increased variability among the various static and dynamic versions of an
application. Static variability arises for example when the same application is
running on similar, yet different platforms of a product line. Dynamic variabil-
ity comes up when the device changes its context and the application running
on it needs to adapt to new boundary conditions. Our approach takes into
account the need for additional variability in the context of mobile devices.
Finally, our approach is required to be efficient with respect to memory us-
age and execution time in order to meet the tight constraints of embedded
hardware.

We implemented our approach in the run-time environment of the aspect-
oriented programming language ObjectTeams/Java (OT/J) [HHM07]. OT/J
is an extension of the Java programming language, performing the weaving of
aspects at class loading time. The aspect dispatch logic is entirely realized at
the level of Java bytecode, which is eventually executed by a JVM. In our work,
we are extending the extremely small and portable JVM JamVM [Lou] such
that different parts of the aspect execution mechanism for OT/J are optimized.
We evaluated our approach with micro benchmark and with an aspect-oriented
game application that we executed on an Intel Core2 desktop PC as well as on
the Linux-based smart phone FreeRunner [Fre]. The results of our experiments



15

show that we significantly reduce the execution time with our approach and,
hence, improve run-time performance.

Our main contribution in this work is a significant reduction of the over-
head of high-level AOP constructs. We achieve this by a deep integration of
AOP mechanisms into the virtual machine. The success of the optimizations
provides evidence that advanced high-level abstraction techniques like AOP
can be efficiently used in embedded mobile devices. Furthermore, our work
shows that efficient dynamic aspect deployment can be supported on the level
of the JVM.

This work is structured as follows: Chapter 2 gives an overview of the foun-
dations of this work. In Chapter 3, we discuss related work. Chapter 4 and
Chapter 5 constitute the main part of our work. Here, we detail our approach of
optimizing the execution environment of the JVM for aspect-oriented program
execution. In Chapter 4, we identify sources of overhead for AOP mecha-
nisms and develop optimizations to reduce this overhead. Moreover, we realize
an efficient dynamic aspect deployment mechanism on the level of the JVM.
Chapter 5 investigates aspect-specific semantic conditions of code. Here, we
propose optimizations that utilize these conditions to further optimize the ex-
ecution of AOP mechanisms. In Chapter 6, we explain the implementation of
our optimizations and its integration with the existing execution environment
of OT/J. Chapter 7 evaluates our approach and presents our experimental
results. In Chapter 8, we conclude and outline future work.





2 Background

In this chapter, we describe the background on which this work is based. We
introduce the underlying concepts of aspect-oriented programming and the
relevant details about virtual machines.

2.1 Aspect-oriented Programming

A common ambition of all programming paradigms is to maximize the sepa-
ration of concerns in the developed applications. Ideally, each concern should
be implemented in its own module. The better a program is modularized, the
better it can be understood, maintained, extended, and reused. In the object-
oriented paradigm, this is achieved by encapsulating concerns in classes and
methods. Hierarchical structures and inheritance between classes provide for
reuse and flexibility. However, it is often not possible to clearly separate every
concern of an application, simultaneously. When the structure of the applica-
tion is determined, some concerns have to be implemented “in between“. Such
concerns are called crosscutting concerns [KLM+97] because they crosscut the
overall application design. Thus, in a purely object-oriented implementation,
crosscutting concerns are tangled with the base application code. Often these
concerns are furthermore scattered around multiple locations. Both is problem-
atical and contradicts the separation of concerns: tangling reduces the quality
of the base code and scattering reduces the quality of the crosscutting concern
implementation. This situation is illustrated on the left hand side of Figure 2.1:
the gray concern and the shaded concern crosscut the implementation of the
white base module.

Aspect-oriented programming (AOP) [KLM+97, RFSC04] has been devel-
oped to solve this problem by facilitating the modularization of crosscutting
concerns. With AOP, crosscutting concerns are implemented in separate aspect
modules (aspects for short). The integration with the base code is realized via
a binding mechanism that makes it possible to specify the connections of the
aspect code and the base code. The right part of Figure 2.1 shows a separation
of the two crosscutting concerns from the base module together with aspect
bindings, indicated by the arrows. Now, every single concern is appropriately

17



18 Background

Figure 2.1: Separation of Concerns with AOP

modularized. Usually the aspects functionality is unanticipated (neither pre-
pared nor expected) by the base code and the binding is declared within or
in addition to the aspect modules. Several AOP languages, like AspectJ [ajH]
also support a quantification mechanism, which uses a wild-card-like notation
to describe multiple locations for aspect bindings.

In the following, we take a more detailed look at the concepts and mech-
anisms of AOP and introduce the aspect-oriented programming language Ob-
jectTeams, which will be the target of our optimizations. Further, we discuss
different kinds of aspect-oriented weaving mechanism, and, finally, introduce
the concepts and mechanisms of dynamic AOP.

2.1.1 AOP Mechanisms

In the aspect-oriented programming paradigm, the core functionality is imple-
mented in base modules, while the crosscutting concerns are defined in separate
aspect modules (see Figure 2.2). These aspects define the crosscutting func-
tionality together with aspect bindings, specifying the points in the execution
of the base program (join points) at which they should be executed.

There is no closed definition of aspect-orientation. This results in a large va-
riety of aspect-oriented programming languages, e.g., AspectJ [ajH], JBossAOP
[JBo], AspectC++ [SLU05], and ObjectTeams [otH]. Most of these languages

void bm() {

  doX();

}

void am1() {

  doY();

}

void am2() {

  doZ();

}
base module

aspect modules

before bm

after bm

Figure 2.2: AOP Concepts
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are extensions of existing object-oriented programming languages like Java
[GJSB05]. A common mechanism is the adaptation of base methods by aspect
methods. This adaptation can be specified in different ways. The exact exe-
cution point can be stated as before, after, or instead of the base method. In
the example of Figure 2.2, the aspect method am1 is defined to be executed
before the method bm of the base module. The aspect method am2 is executed
after the base method, respectively. The before and the after variant facilitate
pure additions to the base code while in the instead case, more intervention is
possible. The base method can be completely replaced by the aspect method,
which can be used to drastically change the program semantics at this point.
But usually, the original base method can also be called from within the re-
placing aspect method. In doing so, the arguments of the original call can also
be adapted. This is less invasive than completely omitting the base method,
as it does not eliminate the subsequent control flow.

Several AOP languages allow for dynamic activation (and deactivation) of
aspects. This also applies to ObjectTeams (OT/J, see 2.1.3), which is in the
focus of this work. Moreover, the adaptation can be constrained by further
conditions like the execution context, the active thread, or the dynamic activa-
tion state of an aspect. Dynamic activation of aspects can be used to support
dynamic and context-sensitive changes in program behavior. Depending on
certain constraints (like the location, or the battery power) an application
can run in different modes realized by different aspects activated at different
times. If it is even possible to add additional aspects during the run-time of a
program, this is called dynamic AOP, as introduced in Section 2.1.4.

2.1.2 Aspect Weaving

While aspect bindings specify the points at which an aspect should be effective,
we need a mechanism that actually forces the execution of the corresponding
aspect methods. This aspect weaving mechanism inserts calls to aspect meth-
ods as well as various infrastructural elements in terms of fields, methods, or
classes. Aspect weaving usually involves program transformation techniques
and can be done by using different approaches, as discussed in [PZ03].

Most weaving approaches translate the aspect-oriented parts of a program
by mapping them to constructs of the programming language the AOP lan-
guage is based on, for example Java. This can be done at different levels, as
summarized in Table 2.1.

Pre-compile-time weaving operates on source code level by performing source-
to-source transformation, as, e.g., applied by AspectC++ [SLU05]. The woven
target code conforms to the source code of the base language and can be com-
piled by a standard compiler, afterwards.

Compile-time weaving requires a customized compiler. It takes source or
bytecode and generates a woven executable. This can be for example Java
bytecode that contains the necessary aspect-specific parts and that can be
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Table 2.1: Aspect Weaving Overview

Moment Target Technique

pre compile-time source code source-to-source transformation

compile-time source code / bytecode compilation / bytecode transformation

load-time bytecode bytecode transformation

run-time VM-internal object code object code transformation

executed on every standard Java virtual machine (JVM). This, e.g., is possible
with AspectJ [ajH].

Load-time weaving, as applied, e.g., by ObjectTeams [otH], intercepts and
transforms the bytecode during the class loading phase of the JVM. It can
be realized with bytecode transformation frameworks like JMangler [GK04] or
by using the Java Programming Language Instrumentation Services (JPLIS)
API, which is part of Java SE 5. In contrast to compile-time weaving it is not
necessary to maintain different class file versions because the woven byte code
is never stored on the disk.

Run-time weaving is performed during the execution of the program inside
the JVM. Therefore, the VM-internal object code has to be adaptable, as, e.g.,
in Steamloom [BHMO04]. Because it is very complex to change the memory
image of a running application, this is often realized with some kind of pre-
existing hook mechanism (as detailed in Sec. 2.1.4).

(Pre-)Compile-time weaving is also called static weaving because it is per-
formed before the program has been started. Load-time weaving and run-time
weaving are called dynamic weaving, in contrast. Real dynamic weaving neces-
sitates a dynamic deployment mechanism which facilitates adding and remov-
ing aspects at any point in time. As dynamic run-time weaving is a prerequisite
for dynamic AOP, it will be evaluated in more detail in Section 2.1.4.

The later the aspect weaving is performed, the more dynamically the as-
pects can be added to the base program enabling more flexible context-aware
adaptation of the executed applications. Unfortunately, dynamic aspect weav-
ing suffers from more effort at run-time. Static weaving, on the other hand,
increases the code size, which is also critical for small devices. Another draw-
back of statically inlining aspectual code is that the aspects cannot be located
in later phases, which is necessary for debugging or analyzing AOP applica-
tions. Moreover, it restricts the flexibility of the AOP language because it is
complex if not impossible to remove aspects later. This indicates the need
for aspects remaining run-time entities during the execution of the program
[MJV+97].
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2.1.3 ObjectTeams

Existing AOP languages share common concepts as described in Section 2.1.1
but the used terminology as well as the realization are different. We have cho-
sen the programming language ObjectTeams (OT/J) [Her02b, HHM07, otH]
to demonstrate the achievements of our approach. OT/J is an extension of
the Java programming language, adding support for advanced collaboration-
based modularization combined with aspect-oriented adaptation mechanisms.
OT/J supports independent development of reusable aspects which can be
a-posteriori integrated into an existing base system. This is achieved by sub-
classing and fully polymorphic overriding of aspect methods. In the context
of this work, we focus on the aspect-oriented parts of the language and only
touch other features of OT/J if needed.

In OT/J, aspect functionality is defined in role classes that are played by
(bound to) individual base classes. To adapt the base functionality, role meth-
ods can be bound to corresponding base methods with callin bindings. Such
binding causes the execution of the role method before, after, or instead of
(indicated by OT/J keyword replace) the base method. In the replace case the
original base functionality can be called by a base-call.

Roles are contained in team classes, which define a collaboration context for
them. Via the surrounding teams, aspect functionality can be programmati-
cally activated and deactivated at run-time (see [HHM07], §5). The activation
of a team is necessary to enable the callin bindings of its contained roles. It can
be global or thread-local. Automatic implicit team activation for the current
thread guarantees a coherent aspectual control flow when a public method of
a team or a role is called. This is significant if the role functionality is deeply
integrated with the base functionality and calls from the role object to the
base object necessitate subsequent callins to be activated. Implicit activation
can be enabled globally or configured with annotations for individual methods
and team types. Although a team in OT/J means more than just a collection
of aspects in the context of this work, the term “team” is used synonymously
with “aspect”.

Figure 2.3 shows a small OT/J example using the UML for Aspects (UFA)
notation introduced in [Her02a]. The role class MyRole is bound to the base
class MyBase. The role method rm adapts the base method bm with a before-
callin binding. To make the aspect functionality effective, we need to create
an instance of the team class MyTeam and activate it by calling the activate

method. Whenever the method bm is called on an instance of the class MyBase
the role method is executed before the base method is executed. To this end,
the base object is lifted ([HHM07], §2.3) to the same role object each time.

Aspect Inheritance in ObjectTeams

Besides the classical object-oriented inheritance between classes, in Object-
Teams additional aspect-specific inheritance relations exist.
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Figure 2.3: ObjectTeams Concepts

1. Aspect inheritance at team/role hierarchies: If a team extends another
team, it implicitly inherits all its roles (cf. [HHM07], §1.3.1) together with
the corresponding playedBy and aspect (callin) bindings (cf. [HHM07],
§4.9.2). Bound role methods can be redefined in sub role classes.

2. Aspect inheritance at base hierarchies: Inherited base methods (also
overridden ones) are also adapted by aspects bindings defined for super
base classes (cf. [HHM07], §4.9.1). To achieve this, also the activated
team instances are “inherited“ to sub base classes.

Execution of Multiple Aspects

Each base method can be adapted by an arbitrary number of aspects. On the
one hand, a single team class can define more than one aspect binding to the
same base method. A typical pattern is the definition of a before- and an after-
callin. This way, aspects perform some preparation and finalization tasks. In
this case, first the before-callins are executed, then potential replace-callins,
and finally the after-callins. If multiple callins of the same type (e.g., before)
are defined for the same base method, the programmer needs to define their
execution order with a precedence declaration (cf. [HHM07], §4.8).

On the other hand, multiple aspect bindings to the same base method
can be defined in different team classes. When executing a base method every
active team instance with aspect bindings to this method has to be considered.
In this case, the order of activating instances of these team classes is relevant
for the execution order of the adapting aspect methods (role methods). A
team instance that is activated later has a higher ”priority”. This means that
its before- and replace-callins are executed before those of every other active
team and its after-callins are executed after the after-callins of every priorly
activated team. The same applies if multiple instances of the same team class
are activated. Figure 2.4 illustrates the execution order for different callins of
multiple active team instances. The ObjectTeams source code of this example
is shown in Listing 2.1. The team instances t1, t2, t3, and t4 have been
activated in this order. As a consequence, t4 has the highest priority regarding
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execution of its aspect functionality when the adapted base method is called
(bm call). First t4’s before-callin is executed and subsequently its replace-
callin, which proceeds the execution with a base-call. The next team defining
before- or replace-callins is t2. After executing t2’s replace-callin and the base-
call, the original base method code is executed. Now, after-callins of the active
team instances are executed corresponding to the activation order. Initially,
the team instance t1 is considered, as it has been activated first. The latest
activated team instance t4 has the ”privilege” to have its after-callins executed
at the very end.

Note that the base-call of replace-callins is not only necessary for the orig-
inal base method to be executed. Also the execution of the remaining (earlier
activated) team instances depends on the base-call. This is illustrated in Fig-
ure 2.5. The replace-callin of team instance t4 now omits the base-call. This
interrupts the execution flow we have observed for Figure 2.4. The aspect
functionality of the earlier activated team instances t3, t2, and t1 is skipped,
as well as the original base method functionality.

When we adapt the realization of the AOP functionality, in order to opti-
mize its execution, we have to guarantee the semantics of the execution order
of aspects.

Implementation of OT/J

The programming language ObjectTeams is an implementation of the Ob-
jectTeams programming model. It is a purely additive extension of the Java
programming language. In the following the term ObjectTeams is also used
when referring to the language implementation. The toolchain used to create
and run OT/J programs is shown in Figure 2.6. To facilitate the development
of OT/J applications at a high level of convenience and productivity, an ex-
tension of the Eclipse Java development tools (JDT) [JDT], the Object Teams
Development Tooling (OTDT), is available. As illustrated in Figure 2.6, the
OTDT compiles the OT source code to class files with Java bytecode, which is
augmented with OT-specific bytecode attributes (cf. [HH10]). These attributes
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Listing 2.1: ObjectTeams Code for the Multiple Activation Example

public class B {
void bm( ) { . . . }

}

public team class T1 {
protected class R1 playedBy B {

void rm( ) { . . . }
rm <− after bm;

}
}

public team class T2 {
protected class R1 playedBy B {

ca l l in void rm( ) { . . . }
rm <− replace bm;

}
}

public team class T3 {
protected class R1 playedBy B {

void rm( ) { . . . }
rm <− after bm;

}
}

public team class T4 {
protected class R1 playedBy B {

void rm1 ( ) { . . . }
ca l l in void rm2 ( ) { . . . }
rm1 <− before bm;
rm2 <− replace bm;

}
}

public class Main {
public stat ic void main ( St r ing [ ] a rgs ) {

T1 t1 = new T1 ( ) ; T2 t2 = new T2 ( ) ;
T3 t3 = new T3 ( ) ; T4 t4 = new T4 ( ) ;
B b = new B( ) ;

t1 . a c t i v a t e ( ) ;
t2 . a c t i v a t e ( ) ;
t3 . a c t i v a t e ( ) ;
t4 . a c t i v a t e ( ) ;
b .bm( ) ;

}
}
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Figure 2.6: ObjectTeams Toolchain

contain all information needed to correctly execute the aspect-specific parts of
the OT program.

When the program is started, the bytecode of every loaded class is passed
to the Object Teams Run-time Environment (OTRE) (cf. [Hun03]) before it is
passed to the JVM. The OTRE performs load-time bytecode transformation to
weave the aspects into the bytecode of the base classes. The resulting woven
bytecode is subsequently executed by a standard JVM. Typically, the Sun
(recently Oracle) JVM is used.

In order to weave an aspect into a base method, the OTRE adds a number of
fields and methods to a base class. As illustrated in Figure 2.7, every base class
gets an active teams list that is used for aspect registration and activation.
Furthermore, every adapted base method is surrounded by a wrapper method
(bm wrapper). This wrapper is responsible for looking up active teams (1) and
for dispatching to the adapting team objects (2). Next, a callin wrapper in
the team class assigns a role object to the executed base object (3:lifting).
Then, the role method is called (4). In case of a replace-callin, finally a base-
call can be performed (5).

The mechanisms in OT/J that are touched by our optimizations are aspect
activation and aspect execution. To realize aspect activation, the team has to
be registered with all base classes it contains roles for. The reverse applies
for team deactivation. During aspect execution, for all base method calls the
involved aspects have to be looked up, checked for activity, and get executed.
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Figure 2.7: Aspect Dispatch in ObjectTeams
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The overhead and optimization potential of these AOP mechanisms is analyzed
in Section 4.2.

2.1.4 Dynamic AOP

As one goal of our work is the support of dynamic AOP for mobile device
applications, this section gives an introduction to dynamic AOP. To this end,
we motivate the need for dynamic AOP and we examine existing approaches.

Dynamic AOP approaches facilitate aspects to be plugged into a running
application. New aspects can be added (and removed) at run-time without
restarting the application. In this regard, the degree of dynamism has to be
considered, as illustrated in Figure 2.8. In all four cases, an AspectClass

adapts a baseMethod of a baseClass. The aspectMethod is bound before and
after the baseMethod. For simplicity, the example does not include method
replacement, as introduced in Section 2.1.1. In static AOP approaches, aspects
are hard-wired at pre-run-time (1.). Hence, the aspect calls at the beginning
and at the end are fixed parts of the base method. A weak, but still useful
dynamic mechanism is the activation and deactivation of aspect during run-
time (2.). Again, the aspect calls are statically woven, but they can be turned
on and off during run-time. More dynamic are approaches that facilitate the
addition of further unanticipated aspects at join points, which are predefined
at pre-run-time (3.). In the example, it is not possible to weave an aspect call
at the end of the baseMethod because no join point has been defined here.
The maximum dynamism is accomplished when it is even possible to identify
new join points at run-time and attach aspects to them (4.). In the following,
we present some scenarios that demand for dynamic AOP.

Motivation for Dynamic AOP

Dynamic AOP can be used to realize dynamic reconfiguration of applications
[KB08], which is desirable if software systems must adapt at run-time to chang-
ing computing needs or environments. This is reasonable if a (long) running
application has to be changed, but shutting down and restarting it would be
problematic. Dynamic reconfiguration is very useful in several scenarios, for
example if software should be updated without restarting the system, for on-
demand debugging, and for software that adapts to dynamic contexts.

The three scenarios can be summarized as follows:

Online Updates Some long-running systems like telecommunication systems,
scientific or bioinformatics systems, or financial transaction processors have
high availability requirements. If changes are necessary in such systems, a
possible solution is to use redundant hardware and software to ensure avail-
ability, while the primary system is updated with new software. This results
in significant additional business costs. Another way is to use dynamic AOP
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to reconfigure the system without restarting it. Thus, continuous service avail-
ability is ensured without increased costs [JTSJ07], [GB04]. A typical example
are security-fixes during run-time.

On-demand Debugging Another application for dynamic reconfiguration
via AOP is data preservation while debugging long running applications with
complex internal data structures. Often, a bug only manifests after a longer
time period or with a particular data configuration. Shutting down the system
and restarting it with debugging support would cause the loss of data and in-
termediate results. To reconstruct the system configuration that triggered the
bug can be difficult and time-consuming. With dynamic AOP, in contrast, we
can dynamically add and remove various logging aspects, as soon as the sys-
tem shows wrong behavior. The dynamically attached aspects can be used to
check and manipulate the application state. So, we can dynamically debug the
application and examine which fix could solve the problem, without restarting
the application many times.

Context-Aware Adaptation For mobile device applications, dynamic AOP
can be used to realize on-the-fly adaptation to changing contexts. This context
can be defined by the location of the user as well as by the subjects which are
next to the user. Also the daytime or the presence of other electronic devices
can necessitate an adaptation of the application. Because of the restricted
system resources of mobile devices, it may be preferable to avoid the pre-
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installation of code for every possible application variant. With dynamic AOP
it is further possible to react on changes an application was not designed for.

As we have seen, dynamic AOP has a wide application scope. In Section 3.3,
we discuss related work concerning weaving techniques and strategies used by
existing dynamic AOP approaches. In this work, we develop a VM-internal
dynamic aspect deployment mechanism that is efficient in execution time and
space consumption (see Sec. 4.4.2). Furthermore, we address the usability of
dynamic AOP for context-sensitive mobile device applications in Section 7.3.

2.2 Java Virtual Machine

Java programs are compiled to Java bytecode which is eventually executed by
a Java Virtual Machine (JVM). Method bodies are translated to sequences of
relatively abstract, machine-independent bytecode instructions. Virtual ma-
chines [SN05] are programs designed to execute architecture-independent code
on concrete platforms. In the process, they translate abstract byte code in-
structions to platform-specific machine code.

Conventional compiler-based approaches, in contrast, generate architecture-
dependent object code, which can only be executed on compatible platforms.
Thus, every application has to be recompiled (ported) for every target archi-
tecture. With virtual machine approaches, only the JVM program itself has
to be ported, but not all the applications running on it. This portability is an
important advantage since Java programs only have to be compiled once and
can then be executed on arbitrary platforms.

Further advances of JVMs are the inherent security model (sandboxing),
and the automatic memory management via garbage collection. Furthermore,
with the dynamic class loading mechanism of the JVM, classes are lazily loaded
on demand, which minimizes the amount of consumed memory at runtime
(resource protectiveness).

As our goal is to optimize aspect execution mechanisms on the level of
the JVM, this section introduces the general architecture and functionality
of the JVM. Thereby, we address different bytecode execution mechanisms,
and finally motivate our selection of a JVM implementation to integrate our
optimizations.

2.2.1 The JVM Architecture

Java programs are compiled to Java byte code which is stored in class files,
in a standard format as defined in [LY99, Chap. 4]. A class file is loaded
into the JVM when the corresponding Java class is used and resolved by the
running program. The JVM uses various run-time data structures to store the
information included in the class file. In addition, a number of data structures
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is maintained at run-time to guarantee a correct execution of the program, e.g.,
stack frames for method execution. While the structure of the JVM is only
abstractly specified by the JVM specification [LY99, Chap. 3], it describes the
mainly used VM-internal runtime data structures. This section describes the
abstract JVM architecture as far as it is a basis for the subsequent chapters of
this work. We discuss the main data structures and the interactions between
them. Figure 2.9 gives an overview of the overall architecture of the JVM and
illustrates the data structures that are detailed in the following.

Stack The JVM stack is a storage area used to store stack frames. A new
stack frame is allocated and pushed on top of the stack when a method is
invoked. If the method returns, the frame is popped again and the control
flow returns to the calling method, whose frame is now the topmost.

Heap The heap is a global storage area used to allocate and maintain Java
objects and arrays, which are accessed via typed references. Storage for new
data objects is usually allocated from a pool of free storage cells. A garbage col-
lector is used to automatically maintain the life-cycle of objects and to remove
them if they are no longer used by the running program. Thereby, the corre-
sponding storage cells are restored to the free-pool. As there is no particular
garbage collection technique constituted by the JVM specification [LY99], dif-
ferent strategies can be realized by a JVM implementation. Examples are the
mark-sweep algorithm and the copying algorithm, which both have different
assets and drawbacks as extensively discussed by [JL96].
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Method Area The method area stores the content of the loaded class files in
per-class structures. For each class the field and method data is stored as well
as the method code represented as sequence of byte code instructions. Further-
more, the runtime constant pool of the class is stored. It contains constant
values and symbolic references which are dynamically linked (cf. [LY99, Chap.
5]) when the corresponding data is used and resolved for the first time (late
binding).

PC The pc register points to the currently executed bytecode instruction.
Only if the currently executed method is native, the value of the pc register is
undefined.

Frames A new stack frame is created and pushed onto the stack when a
method is invoked. Frames contain an array of local variables, an operand stack,
and a reference to the runtime constant pool of the corresponding method area.
As indicated by its name, the local variables array contains the local variables
of the method. In addition, also the method parameters passed by the calling
method are located here, at the beginning of the local variables structure. For
instance methods, the first entry is the this reference, pointing to the object
which is the target of the method invocation. The operand stack is used by the
bytecode instructions, while executing the bytecode instructions corresponding
to the methods body. They can load values on it, take operands from it and
put results on it. The operand stack is also used to pass parameters to other
methods and receive their results. A very simple example is the code of a
method returning the sum of two constant integer values, illustrated in the
method of Figure 2.9. The first two instructions (iconst_1 and iconst_2)
are used to push two constants (1 and 2) onto the operand stack. Next, the
iadd instruction takes these two values as operands and puts the result (the
sum: 3) onto the stack. Finally, the ireturn instruction returns the result
to the calling method, by putting it on the operand stack of the preceding
stack frame. The constant pool reference is used to access constant values and
perform dynamic linking if symbolic references are not yet resolved, e.g., by
previous method executions.

Threads A Java program can use different threads. While the heap and the
method area are shared among all threads, each thread uses its own stack and
PC register. The current point of execution is thus exactly defined for every
thread. The currently executed method corresponds to the active (current)
frame of the thread’s stack and the currently executed bytecode instruction is
stored by the thread’s pc register. In Figure 2.9 this thread-locality is illus-
trated by “stacked” boxes.
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2.2.2 Bytecode Interpretation

When the Java compiler translates Java programs to Java bytecode, method
bodies are translated to sequences of machine-independent bytecode instruc-
tions. A Java bytecode instruction “consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation” ([LY99, 3.11]). While exe-
cuting a program, these instructions, in some way, have to be “translated” to
platform-specific native code. A typical approach is the interpretation of Java
bytecode. This section introduces the classical interpretation approach. Sub-
sequently, established optimizations to enhance the performance of bytecode
execution are discussed in Section 2.2.3. Finally, Section 2.2.4 describes how
Java can be used in the context of embedded systems.

Basic interpreters, as illustrated by Figure 2.10, use a central dispatch loop
to process the instructions of the bytecode sequence one by one. First, the
current instruction is fetched (F), then it is translated or decoded (D) into
corresponding native code instructions and finally, it is executed (E). After-
wards, the bytecode pointer is incremented (I) to reference the next bytecode
instruction and the loop is restarted to process the next instruction. As shown
in the code excerpt on the right hand side of Figure 2.10, basic interpreters
are implemented as large switch statements traversing the sequence of byte-
codes, and thus called switched interpreters. For every bytecode instruction a
case label exists in the interpreter switch. Thus, the opcodes are looked up to
identify the corresponding native code instructions. If an operation uses one
or more operands, these also have to be fetched (from the operand stack) and
passed to the native routine. For simplicity, this has been abstracted away in
the algorithm descriptions.

Basic interpretation is highly portable and has a fast startup time. Fur-
thermore, its memory consumption is low. Unfortunately, the execution per-
formance of basic interpretation is rather low.
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(D) switch ( bc )
(E) case ADD: a+b=c

case . . .
( I ) pc++;
}

Figure 2.10: Basic Interpretation
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2.2.3 Optimized Bytecode Execution

The basic interpretation algorithm presented in Section 2.2.2 is concise, but
not very efficient. Early versions of Java have thus been called “slow”. By now,
many optimization strategies have been developed, to optimize the execution
of bytecode (e.g., [DW03], [AFG+05]). Typically, they target the reduction of
dispatch overhead, or a lower frequency of branches or stack and instruction
pointer updates. Often, there is a tradeoff between efficiency and portability of
the interpreter code. This section gives an overview of the common approaches
in this regard.

Threaded Interpretation

Threaded interpretation, as introduced by [Bel73] and described by [SN05,
Chap. 2], is a technique used to improve the performance of basic interpreta-
tion, by reducing the amount of branches. To this, instead of being located
in the main interpreter loop (see 2.2.2), the code for dispatching the next in-
struction is appended to the end of each native routine. Thus, the code pieces
for executing the individual instructions are “threaded” one after another. Ac-
cording to the strategy used for locating the next instruction, a distinction
between indirect and direct threading is made.

Indirect Threading Indirect threading uses a dispatch table to lookup the
actual address of the routine implementing the next bytecode instruction, as
visualized in Figure 2.11. Each routine first executes (E) the functionality of
its bytecode instruction, then increments (I) the code pointer and fetches (F)
the next bytecode instruction. Afterwards, the corresponding opcode is used
to lookup the address of the next routine and jump to it (D).

The advantage of the “indirect“ jumps using the dispatch table is that
“interpreter routines can be modified and relocated independently“ ([SN05, p.
34]). This simplifies the portability of the interpreter code.
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r ou t ine x {
(E)<do x>
( I ) pc++;
(F) bc = code [ pc ]
(D) nex t rou t in e =

d i s p a t c h t a b l e [ bc ]
goto ∗ nex t rou t in e ;

}

Figure 2.11: Indirect Threaded Interpretation
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Direct Threading Direct threading further reduces the overhead of interpre-
tation by eliminating the access to an extra dispatch table. As the address of
the next interpreter routine needs to be determined nevertheless, a technique
called precoding is applied. Precoding transforms the bytecode instructions
into a VM-internal intermediate representation, which is optimized for being
processed by the interpreter. Tasks, which would otherwise be repeated each
time the code is executed, are optimized this way. To support direct thread-
ing, the actual addresses of the interpreter routines are stored as part of the
intermediate representation, as illustrated in Figure 2.12. In contrast to indi-
rect threading, with direct threading the fetch and decode phases (F+D) are
merged and the jump target for the next instruction can be directly accessed
from the intermediate code of the current instruction. To navigate through
the intermediate code, an extra instruction pointer (ipc) is used.

While direct threading is fast, it limits the portability of the interpreter
code.

Superinstructions

Superinstructions are used to reduce the number of instruction dispatches by
combining sequences of common bytecode instructions. This concept was ini-
tially introduced as super operators by [Pro95]. In addition to reducing the
number of instruction dispatches, superinstructions enable further optimiza-
tions of the interpreter code. Thus, unnecessary load and store operations can
be saved and also the number of stack and instruction pointer updates can be
reduced. An example, given by [CGEN03], is the combination of an ILOAD and
an IADD instruction. Table 2.2 summarizes the benefit of the superinstruction
ILOAD-IADD compared to the single instructions. The amount of stack access
has been halved, the stack pointer does not need to be updated at all, and the
instruction pointer only needs to be updated once, at the end of the routine
implementing the superinstruction.

bytecode
sequence

code

routine_x

E

Ix

y

...

routine_y

...

intermediate 
code

...
precoding

F+D

[ipc]

r ou t ine x {
(E)<do x>
( I ) pc++;

(F+D) nex t rou t in e =
in t code [ ipc ] . addr

goto ∗ nex t rou t in e ;
}

Figure 2.12: Direct Threaded Interpretation
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Table 2.2: Benefit of Superinstructions

ILOAD IADD ILOAD-IADD

stack access store load, load, store load, store

sum: 4 2

stack pointer updates sp+=1 sp-=1 –

sum: 2 0

instruction pointer updates ip+=1 ip+=1 ip+=2

sum: 2 1

Usually, the sequences that can be properly combined to a superinstruction
are chosen via statistically counting their frequency. This can be done via static
or dynamic program analysis and also includes the evaluation of standard
benchmarks. The substitution of selected instructions with superinstructions
is done at runtime when a method is executed the first time.

Stack Caching

As introduced in Section 2.2.1, the operand stack is used by the bytecode in-
structions to access arguments (or operands) and to pass their results. Stack
caching ([Ert95, EG04]) reduces the stack access overhead by caching the top-
most stack items in registers. The number of items located in registers corre-
sponds the size of the stack cache. The other items remain on the stack.

The highest reduction of native instructions is achieved if the number of
items kept in registers dynamically depends on the behavior of the preceding
instructions. Using a fixed cache size would require the update of cache reg-
isters with stack items (and a stack pointer update), whenever the number of
items consumed by an instruction differs from the number it produces. This
can be avoided by dynamically switching between states with different cache
sizes, depending on the stack effect of an instruction.

cache size 2

r1 r2

IADD: 
r1=r1+r2
r2=load sp
sp+=1

cache size 1

r1

IADD: 
rx=load sp
r1=r1+rx
sp+=1

 A

 B

Figure 2.13: Stack Caching: Fixed (A) vs. dynamic (B) Cache Size
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Figure 2.13 illustrates the difference, using an example from [EG04]. The
IADD instruction consumes two items and only produces one item. If the in-
terpreter is in a state with cache size two while IADD is called, the values of
the two registers r1 and r2 can simply be added and stored to r1. With fixed
cache size (A), the second register r2 has to be updated with the topmost stack
item and the stack pointer has to be incremented, afterwards (see gray area).
Using a dynamic cache size (B), the interpreter simply changes to a state with
cache size one (see arrow), causing the following interpretation to expect only
one cached item1.

The routines implementing the functionality of the bytecode instructions
need to be different, depending on the current stack cache state. The conse-
quential increase of the interpreter code size is the trade-off for enhancing the
interpretation speed.

Quick Instructions

Quick instructions [LY96, Chap. 9][ETK06] (also called quickening) are used
to speed up the execution of instructions, which have to do some complicated
initializations the first time they are executed. After the initialization, they are
replaced by their quick counterparts. Such instructions typically reference the
constant pool. The initializations include checking whether a referenced class
is already loaded and initialized, as well as resolving information needed for
the execution of an instruction. E.g., for a getfield instruction the offset of
the accessed field has to be resolved. While the original instruction receives the
constant pool reference to the field as operand, the operand of the quickened
instruction (getfield_quick) is the offset of this field.

Prefetching

Prefetching, also called interpreter pipelining [HA00], [WNGG08], is a tech-
nique to improve the performance of interpreters running on processors, which
allow to execute multiple instructions in parallel (super-scalar or very long in-
struction word (VLIW) processors). While interpreting a bytecode instruction,
the execute and the increment-fetch-decode (IFD) part (see 2.2.2) are usually
independent. The latency for many simple bytecodes is determined by the IFD
part. With prefetching, the jump to the successor can be started in parallel to
the actual bytecode execution.

Dynamic / Just-in-time Compilation

An alternative to the optimizations of bytecode interpretation presented so far,
is to let a compiler translate the bytecode of methods into native code. To
preserve Javas portability and security properties, this compilation has to be

1Note: After executing an instruction like ILOAD, producing one item, the interpreter
returns to the cache size two state.
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performed dynamically, at runtime. Thus, the compilation overhead impacts
the runtime performance. To minimize this drawback, each method is compiled
not until it is executed for the first time. Hence, this kind of compilation is
called dynamic or just-in-time (JIT) compilation [CFM+97, Ayc03].

Compilers typically perform various optimizations before emitting the com-
piled code. For dynamic compilation, this is a trade-off between the speed
of the optimization algorithms and the performance gain for the application
code. Thus, expensive conventional compiler optimizations cannot be applied
because of their overhead at runtime. Nevertheless, [CFM+97] describe, how
bytecode can be transformed into efficient native code. So, the compiler can
optimize the order of evaluation, as long as the new order also conforms to
the JVM specification. Also, redundant computations in basic blocks can be
avoided, like multiple loading of values or repeated array bounds checking.
Adaptive optimizations try to assure that compilation costs pay off, by only
compiling frequently executed methods.

JIT compilation results in high performance gains, in particular for pro-
grams which are largely concerned with the execution of bytecode instructions.
In contrast, other parts of the JVM, like exception handling, synchronization,
and memory management are not optimized by JIT compilation.

JIT Compilers vs. Interpreters JVMs realize the execution of bytecode in-
structions by interpretation or just-in-time compilation. This section discusses
the pros and cons of the two approaches. The comparison criteria are execution
performance, memory efficiency, simplicity and portability.

As pointed out by [Ayc03], there is a time-space tradeoff between JIT com-
pilation and interpretation. While the execution performance is generally faster
using JIT-compilation, interpreters are more memory efficient. In addition to
the extra memory needed for the JIT compiler code, the compiled native appli-
cation code uses significantly more memory than the corresponding bytecode.
According to [CFM+97], one byte of bytecode on average corresponds to four
bytes of Intel machine code instructions. Also [CGEN03] discusses a num-
ber of advantages of interpreters, which especially apply to small platforms
like embedded systems. Beside the memory efficiency, interpreters are also
more portable to different architectures and significantly smaller and simpler
to maintain than JIT-compilers. Table 2.3 summarizes the results of comparing
JIT compilers and interpreters.

The higher memory consumption of JIT compilers is problematical for plat-
forms with small memory, as embedded systems. Also simplicity and portabil-
ity are important for such systems, as there is a large variability of hardware
device targets. Hence, using an interpretation approach incorporating opti-
mization techniques as presented above, is a good choice for small platforms.
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Table 2.3: JIT Compiler vs. Interpreter

JIT ompiler Interpreter

execution performance ⊕ 	
memory efficiency 	 ⊕
simplicity 	 ⊕
portability 	 ⊕

Optimized Method Invocation

The invocation of a method involves passing of parameters, managing of an
additional stack frame, and transferring the control before the actual method
code can be executed. Method inlining reduces this overhead by replacing
method calls with the code of the corresponding methods, thus inlining the
code into the calling method. This optimization is especially profitable for
small methods because here the dispatch overhead is high compared to the
execution of the actual method code. An additional benefit of inlining is that
it increases the scope for later optimizations. However, a drawback is a larger
binary program due to the code repetition.

In most object-oriented languages, the target of a virtual method call via
invokevirtual is dynamically chosen by dynamic method table lookup. This
dynamic method dispatch constitutes a major part of the overhead of object-
oriented program execution. Furthermore, it complicates the use of inlining
because it cannot be exactly determined which method code has to be inlined.
[SN05, 6.6.2] illustrates strategies to face this problem. In some cases, it can
be determined that a method cannot be overridden because it is final or no
subclasses have been loaded (so far). If subclasses are loaded later, the inlining
has to be undone. Another possibility is speculative method inlining. The most
likely called method can be determined by profiling. Its code can be inlined
together with a guard instructions, checking if the actual target object type
corresponds to the inlined code. If the guard fails, the correct method is called
via normal invokevirtual, instead.

The dynamic method dispatch has been optimized by various other ap-
proaches. For example, the method table lookup is optimized by compressing
the lookup tables ([VH96]) or by introducing a cache to store the target of a
method invocation, as e.g., polymorphic inline caching [HCU91].

As presented in this section, a wide range of optimizations have been devel-
oped in order to improve the performance of bytecode interpretation and (dy-
namic) method invocation. When designing optimizations for aspect-oriented
execution mechanisms, we have to take into account these existing optimiza-
tions. On the one hand, we have to ensure that our optimizations do not
interfere with them. On the other hand, we investigate how existing optimiza-
tions can be extended to become applicable to AOP mechanisms (see Sec. 5.4).
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2.2.4 Java for Embedded Systems / Small Platforms

Modern desktop computers are used for a wide range of purposes and come
with extensive resources, like CPU power and memory capacity. The user can
install various operating systems and, on-top of them, arbitrary application
programs. However, the situation is totally different for embedded systems,
like digital cameras, cars, and mobile devices like phones or hand-held com-
puters. They have to be small, lightweight and inexpensive. Often, they need
to be portable and have no permanent access to power supply. For these rea-
sons, embedded systems have restricted resources, like limited CPU power, less
memory and low power capacity. Embedded systems are special purpose com-
puters, often providing a restricted user interface. Furthermore, the user often
has no or limited access to the software installed on the device. In addition
to resource limitations, [LR05, page 25 ff.] identifies further challenges for the
context of embedded systems. These can imply additional non-functional qual-
ity criteria like safety and fault-tolerance, as well as real-time requirements, or
more reliability.

Modern mobile devices provide the subsequent installation of various ap-
plications from different domains. Typical examples are mobile games, travel
guides and maps, or utilities that provide the user with additional information,
like the weather forecast. Today, in the mobile market the variety of hardware
platforms is still high. To be competitive, application providers intend to sup-
port as many as possible of them.

A widely-used software platform (and operating system) for mobile appli-
cations is Symbian [Nokb]. Here, the applications are typically developed with
standard C++ using Qt [Noka] as SDK. When the user installs a new applica-
tion, the hardware specification is automatically submitted to the application
server. This guarantees that the compatible binary is downloaded. Thus, the
application server must maintain all the different binaries for every supported
platform.

The Android platform [Gooa] for mobile devices also features the devel-
opment of applications written in Java. However, instead of using a standard
JVM, the compiled Java class files are converted into a proprietary class format
and executed by Android’s Dalvik VM [Nic09, Goob].

Because of the high variability of devices, developing mobile applications
platform-independently is extremely relevant. As portability is one key feature
of Java as a programming language, this is an appropriate alternative for de-
veloping mobile applications. The Java Micro Edition (Java ME) [Sch04] is a
Java platform specialized for limited resources of embedded systems. It uses
configurations and profiles to support the features of different target devices.
A configuration summarizes devices with similar characteristics and defines
minimal requirements and available Java features. It contains specialized li-
braries and a virtual machine. Two different configurations have been devel-
oped: The Connected Device Configuration (CDC) and the further restricted
Connected Limited Device Configuration (CLDC) for mobile devices. Pro-
files more specifically define Java APIs (application programming interfaces)
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supported by the designated devices. Most known is the Mobile Information
Device Profile (MIDP), which includes functionality for developing graphical
user interfaces (GUIs) and the persistent storage of data. Furthermore, ad-
ditional optional packages can be supported by individual devices. Current
mobile phones typically support the CLDC configuration together with MIDP.

Embedded JVMs

Different JVMs are used in embedded systems. In this section, we introduce
some of them and finally, choose one for implementing our optimizations for
the execution of aspects.

The phoneME VM [pho] is an open-source reference implementation for
Java ME. It is a variant of the Java HotSpot virtual machine, which is highly
optimized featuring adaptive JIT-compilation.

The Dalivk VM (DVM) [Nic09, Goob] is part of the Android platform.
It does not execute Java class files, but requires transforming them into the
Dalvik executable (dex) format. According to this, the DVM is not a JVM
in the classical meaning, however due to its hight popularity it demands to
be mentioned, here. In contrast to the JVM which is a stack-based machine,
the DVM is register-based. Thus, bytecodes and operands are read from vir-
tual registers instead of from the stack. This is especially beneficial if the
virtual registers can be mapped to real processor registers. Unfortunately, this
hardware-specific realization degrades the portability of the VM implementa-
tion. The most relevant differences between the dex-format and the Java class
file format [LY99, Chap. 4] concerns the design of the constant pools and
granularity of the files. The dex-file format is optimized for memory usage.
In contrast to a class file, a dex-file may contain multiple classes. While the
Java constant pool is heterogeneous, the dex-file contains type-specific areas,
e.g., for types, signatures and method identifiers. Due to the combination of
multiple classes, no repetition of strings is necessary for all classes contained
in one dex-file, reducing the average file size by 35% percent [Nic09, page 9].
The DVM is written in C. Recent versions also include a JIT-compiler.

The JamVM [Lou] supports the full JVM specification version 2 [LY99],
although it is extremely small and applicable for embedded devices. It has
been ported to different architectures, like ARM and MIPS. The JamVM is
implemented in C, with a small amount of platform-dependent assembler code.
It does not contain a JIT, but its interpreter is highly optimized, implementing
many state-of-the-art techniques such as direct-threading, quick instructions,
stack caching and superinstructions, as introduced in Section 2.2.3. A com-
parison of Java VMs on ARM based systems [bug08] shows that the JamVM
is a good choice for embedded Java development.

The VM implementation we select as basis for implementing our optimiza-
tions has to fulfill a set of criteria. The most important ones are availability
(open-source), good extensibility, sufficient performance, applicability to em-
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bedded architectures and compatibility to the existing OT/J. We have selected
the JamVM [Lou] for implementing our optimizations.

Other candidates we considered were the KVM [KVM00] and the phoneME
VM. In contrast to the JamVM, both only support Java ME. The KVM does
not seem to be maintained during the last time. phoneME features a JIT
compiler, but this makes its implementation much more complex than the
JamVM and not suitable for prototypically evaluating our optimizations. As
the Dalvik VM is not a classical JVM, it cannot be directly used for execut-
ing ObjectTeams programs. Nevertheless, in Section 7.4.1, we investigate the
applicability of our optimizations to this virtual machine.



3 Related Work

In this chapter, we describe the work related to our approach. We start by
examining existing approaches that target the optimization of aspect-oriented
programming in Section 3.1. After that, in Section 3.2, we present approaches
that utilize high-level semantic information for optimizations. As we aim at
supporting dynamic aspect deployment, we further investigate existing dy-
namic AOP approaches in Section 3.3. In Section 3.4, we discuss a machine
model for AOP that influenced our approach, and finally, we conclude with a
summary in Section 3.5.

3.1 Optimization for Aspect-oriented Programming

Optimizations for the execution of aspect-oriented programming languages
have been proposed in various approaches.

Some of them improve the run-time performance by restraining the dy-
namic capabilities of a language. For example, the aspect dispatch can be
optimized by replacing dynamic aspect method lookup by static method calls
[GK07]. This is possible because in AspectJ aspect methods (advice) cannot
be polymorphically redefined. Such optimizations are not applicable to our
problem because (as [EL03]) we appraise the dynamic method lookup of as-
pect methods important for an adequate modularization of software. Like our
approach, Aspect C++ [SLU05] is also intended for the generation of small
and efficient code for constrained environments. However, it does not focus on
reusability of the aspects and uses a purely static weaving mechanism only.

Other approaches integrate optimizations into the execution environment
of aspect-oriented languages. For example, [Hau06], [HM05] extend the Jikes
Research Virtual Machine to directly support general AOP language mecha-
nisms. The introduced advice instance tables have inspired our team activation
infrastructure. In this approach, the dynamic weaving of aspects is realized by
an extension of the adaptive optimization system (AOS) of the Jikes VM. The
AOS comprises a runtime profiling component and a recompilation component
that makes use of a JIT compiler. Due to its dependence on the rather complex
AOS, this work is not directly transferable to embedded device applications.

41
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In [BADM06], well-known virtual machine optimization techniques are
adapted to improve aspect-oriented run-time performance. These optimiza-
tions are based on a JIT compiler and primarily aim at eliminating overhead
caused by previous optimizations of the compile-time. As motivated in 2.2.3,
we chose a virtual machine without a JIT compiler, by contrast. Furthermore,
compilation-time reduction, although desirable, is not our focus because usu-
ally applications for embedded systems are compiled on more powerful host
systems.

3.2 Using High-level Semantic Information for Op-
timization

It is a widely accepted fact that the use of high-level abstraction mechanisms in-
duces an overhead compared to semantically equivalent lower-level realizations.
At the same time, these abstractions enable the development of programs with
higher qualities like maintainability and reusability. To resolve this conflict,
a number of approaches aim at utilizing additional semantic information to
enable so called abstraction-aware optimizations. These approaches focus on
object-oriented language abstractions, like polymorphism and dynamic method
dispatch and propose a set of annotations for describing special properties of
abstractions introduced by the programmer.

[TM99] proposes an annotation language used to make the intentions of the
developer explicit. In addition, a transformation language is used to describe
how parts of a program with annotated intentions can be optimized. The
compiler performs source-to-source transformations and uses the additional
information to apply more sophisticated optimizations.

[QSYS04] and [QSVY06] extend the applicability of predefined compiler
optimizations by taking into account additional semantic information gained
by developer annotations. They differentiate between function annotations,
data annotations, and object-oriented annotations. Function annotations are
used to express the intended semantics of functions, e.g., by specifying which
variables/parameters of a function are modified or aliased. Furthermore, they
can restrict the possible values of variables and describe relations between
variables. Data annotations are used to specify the semantics of types. For
example, types can be specified to conform to a general array concept together
with a mapping of common operations, like the determination of the array’s
length. Object-oriented annotations are used to express to what extent the
properties expressed by annotations are inherited to subtypes. The high-level
semantic information about abstractions expressed by these annotations serves
as additional input for the optimizing component of the compiler.

In this work, we also aim at reducing the overhead caused by high-level
abstraction mechanisms. However, our approach focuses on the optimization of
aspect-specific abstractions. Furthermore, we do not use annotations but infer
the information from the syntactical structures of the aspect-oriented program.
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Complex annotations may enable more specialized optimizations, but require
disciplined usage by the programmer. To guarantee a correct compiler output
it would be necessary to verify the user defined annotations against the actual
properties of the program. Our contribution to utilize aspect-specific semantic
information for the optimization of AOP mechanisms is presented in Chapter 5.

3.3 Dynamic AOP Approaches

Known (pre-run-time) AOP weaving approaches are typically realized in some
form of transforming existing programs. More precisely, this requires tech-
niques like adding methods/fields to classes as well as the possibility of chang-
ing the implementation of existing methods (see Sec. 2.1.2). Dynamic AOP
systems will technically have a similar weaving realization. Adapting an al-
ready running Java application means accessing classes that are already loaded
into the executing JVM. From this follows the need to intervene the normal
operation of the JVM. For this purpose an appropriate interface with the JVM
is needed.

3.3.1 Dynamic Weaving Techniques

Run-time weaving, as introduced in Section 2.1.2, is a prerequisite for dynamic
AOP. Existing dynamic AOP approaches use different mechanisms to interact
with the JVM, in order to adapt the code of a running application.

Early approaches like PROSE1 [PGA02], Axon [AH03], and Wool [SCT03]
in its initial phase, utilize the debugger interface to realize dynamic AOP (see
Figure 3.1). Join points are mapped to break points in these approaches. If
a break point is reached, the running program is intercepted and the control
is redirected to a dynamic AOP component. This component is responsible
for calling the aspect functionality defined for the current join point. After-
wards, the control is returned to the application code. This implies that only
purely additive adaptations (after/before) are possible. The advantage of this
debugger-based approaches is a separation of the aspect binding declaration
and the aspect functionality. Moreover, the existing Java Platform Debugger
Architecture (JPDA) [JPD] can be reused. This is a disadvantage at the same
time: applications have to run in the debug mode in these approaches, caus-
ing significant performance overhead [Meh03]. Another source of overhead is
the need for context switches between the application process and the process
running the dynamic AOP component.

Other approaches like RtJAC [Esp03] and Wool [SCT03] in its later phase
use run-time code replacement to subsequently weave aspectual code into
classes which are already loaded into the JVM (see Figure 3.2). These ap-
proaches use the HotSwap mechanism [Dmi02] of the JPDA or the more re-
cent Java Programming Language Instrumentation Service (JPLIS) API [JPL]
to update the bytecode of classes inside the JVM. The performance is better
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Figure 3.1: Debugger-based Dynamic AOP

than for the previously described debugger approaches. Yet, a disadvantage
is the restriction of purely schema conserving modifications, forbidding the
addition of methods or fields. This reduces the applicable weaving approach
to pure in-method weaving, complicating the adoption of existing approaches.
Furthermore, this code replacement is very coarse-grained, as it only allows to
redefine complete classes and not, for example, single methods.

Finally, some approaches directly incorporate the dynamic AOP support
into the JVM (see Figure 3.3). They either extend the JIT (just-in-time) com-
piler to insert the aspect code directly into the generated native code [PAG03]
or extend the execution model of the JVM to achieve native support of AOP
mechanisms [BHMO04, Hau06]. A disadvantage of this approaches is that they
demand a specialized JVM. But in return, they allow efficient realizations of
dynamic AOP and a continuous presence of aspects even at run-time.

3.3.2 Dynamic Weaving Strategies

Different strategies exist to enable the dynamic addition of aspects at run-
time. Approaches with the highest degree of dynamism facilitate the unantic-
ipated addition of aspects at arbitrary join points. Many approaches use some
kind of hook weaving to prepare the application code for the possible addition
of aspects. Total hook weaving prepares every possible join point, enabling
an arbitrary adaptation, later. However, this approach produces a general
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Figure 3.3: Dynamic AOP Integrated in the JVM

overhead, independent of the actual adaptation with aspects. A totally unan-
ticipated weaving, on the other hand, requires a complete redefinition of the
affected classes, or rather, a complex run-time evolution of VM-internal data
structures like method blocks or stack frames. Therefore, some approaches like
JBossAOP [JBo] require the predefinition of possible join points at program
start to restrict the amount of preparation costs.

As our work targets mobile devices with limited resources, we need a so-
lution which is efficient in execution time and space consumption. Thus, we
cannot reuse existing approaches that use a debugger or which are based on JIT
compilers. Furthermore, we do not want the set of join points to be restricted,
and thus avoid a static predefinition. In this work, we develop a VM-internal
mechanism to meet these requirements (see Sec. 4.4.2).

3.4 Machine Model for AOP

Delegation-based AOP [HS07] proposes a machine model for aspect-oriented
languages that are based on object-oriented ones. The authors aim at closing
the semantic gap between an AOP-language expression and its realization, as
AOP-specific dispatch code should not be realized as part oft the application
code but be machine model inherent. In this approach, every object is indi-
rectly referenced via a proxy object that delegates messages to the object. This
introduction of additional indirection facilitates the (dynamic) deployment of
aspect objects. The activation of an aspect results in the insertion of an aspect
proxy object between the initial proxy and the actual object. In this delega-
tion chain, the aspect proxy is able to intercept all the messages for which it
defines aspectual functionality. The remaining messages are just delegated to
the original object. The existence of the initial proxy makes the deployment of
aspects transparent, in that no objects have to be updated in order to point to
a subsequently introduced aspect proxy. In [SHH09], the authors present an
implementation kernel for the more general delegation-based multi-dimensional
separation of concerns (MDSOC), which also comprises context-oriented pro-
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gramming [HCN08]. However, they point out that this implementation is a
proof-of-concept that is not designed for efficient execution.

The delegation-based AOP approach has influenced our delegation proxy
approach (see 4.4). Yet, we decided to introduce proxies at the level of methods
instead of at the object level, in order to better meet the ObjectTeams-specific
requirements. Here, aspects are represented by a combination of team objects,
which can be dynamically activated and deactivated, and of role objects, to
which base objects have to be lifted.

3.5 Summary

In this chapter, we presented related work of our approach. We have seen that
existing approaches for optimizing AOP are either too restrictive regarding
dynamic language capabilities or too complex for being applied to embed-
ded mobile devices. Previous work on abstraction-aware optimizations only
addresses object-oriented language abstractions and depends on programmer
annotations. In our approach, we develop optimizations for AOP mechanisms
that are compatible with the restrictions of embedded mobile devices and that
incorporate AOP-specific semantic information. Furthermore, we realize dy-
namic aspect deployment that neither requires static predefinitions nor de-
pends on expensive techniques like a debugger or a JIT compiler but uses
dynamic method proxies that are related to the approach presented in Sec-
tion 3.4.



4 Optimized Aspect Execution
Mechanisms inside the JVM

Most of the existing AOP languages are extensions to existing programming
languages like Java. The introduced aspect-oriented mechanisms are typically
mapped to constructs of the underlying language, e.g., the Java bytecode. For
example, for aspect activation, registration data structures are usually intro-
duced on the level of the base class bytecode. Aspect execution is typically
realized by additional wrapper methods that initiate and coordinate the as-
pect dispatch and execution as well as the execution of the original method.
Realizing common AOP language mechanisms on the level of the application
code causes a lot of overhead that cannot be sufficiently reduced at this level.
Analogously to the realization of other execution mechanisms like dynamic
method dispatch, also AOP mechanisms should be natively supported by the
execution environment. For languages based on Java, this is the JVM. At this
level, the optimization potential is much higher than at the bytecode level.
Therefore, in this work we optimize common AOP mechanisms on the level of
the JVM. Among other things, we realize a native aspect activation mechanism
and develop bytecode instructions for efficient aspect dispatch and execution.

In this chapter, we start by motivating our decision to optimize the execu-
tion mechanisms of AOP at VM-level. In Section 4.2, we then investigate the
sources of overhead typically generated by the realization of AOP mechanisms.
After that, we present our optimizations for the different kinds of overhead in
Section 4.3. Furthermore, in Section 4.4, we describe our approach for dy-
namic aspect deployment. Finally, we conclude this chapter with a summary
in Section 4.5.

4.1 Optimizing on Virtual Machine Level

In this section, we motivate our decision to focus on the run-time environment
when designing our optimizations for the overheads that degrade the efficiency
of aspect-oriented program execution. As we target AOP languages which
extend the Java programming language, like ObjectTeams, the run-time envi-
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Figure 4.1: Optimizations and Aspect-weaving at different Levels

ronment we focus on is the JVM. We discuss the advantages of optimizing at
the JVM level as well as the influence on aspect weaving.

Eventually, optimizations of the execution time of programs are applied
to code. When we talk about optimizations for Java, we can consider code
representations at different levels. Figure 4.1 identifies three different code
representations as target for optimizations: the source code, the bytecode,
and the code executed by the virtual machine. At the source code level, the
application programmer can optimize an application by avoiding cost-intensive
Java constructs and data structures. Of course, AOP programs can profit from
these optimizations in the same way that regular Java programs do, but in this
work we are not interested in such optimizations. We consider them as part of
the design decision, which we do not question.

The compiler translates the source code to bytecode. In the process, basic
optimizations such as constant folding and dead code elimination are applied.
In case of an AOP language, the compiler also generates aspect-specific byte-
code for the AOP parts of the program. Although this is not our main focus,
we analyze this generated code and propose alternatives if we identify the use
of costly constructs. In some cases, we also have to adapt the generated code
in order to enable optimizations which are implemented at the virtual machine
level.

The bytecode of programming languages like Java, which is executed by a
virtual machine (VM), is machine-independent and rather abstract. Therefore,
a lot of optimizations (cf. 2.2.3) can only be applied at the VM-level. In
addition, many optimizations are only reasonable if they are applied to parts
of the code that are frequently executed (hot spots).

In Section 2.1.2, the process of aspect weaving and the different phases at
which weaving can occur are discussed. As stated there, one goal of our ap-
proach is to support dynamic weaving of aspects at runtime. To realize this,
an interface to the run-time environment is necessary that allows for some
kind of class redefinition. In this case, the aspect-specific code can only be
optimized on the level of the virtual machine because it is not yet available in
earlier phases. Figure 4.1 summarizes the different levels at which optimiza-
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tions and aspect weaving can be applied. It becomes apparent that the degree
of dynamism increases towards the right hand side of the diagram.

In this work, we are interested in the optimization of aspect-oriented parts
of applications. Furthermore, we intend to increase the dynamic potential of
the AOP language. We expect that the overhead of AOP mechanisms can
be reduced much better at the level of the JVM than at the level of Java
bytecode. Inside the JVM, we have direct access to the mechanisms and data
structures necessary to support method execution, as well as to the thread-
handling mechanism. Moreover, we can adapt the execution (interpretation)
of bytecode instructions to natively incorporate AOP mechanisms. In addi-
tion to this, implementing functionality at the VM-level rather than at the
bytecode level has the general advantage that the VM code will be natively
executed instead of being interpreted. Beside the increased optimization po-
tential, considering the JVM level is a precondition for our intent to support
the dynamical weaving of aspects at run-time.

According to this, we propose to optimize the execution of AOP mecha-
nisms on the JVM-level. In doing so, we successively shift the weaving mecha-
nism to the JVM-level. We achieve this by adapting the JVM code, making it
aware of AOP-mechanisms in order to execute them more efficiently. We aug-
ment the VM-internal application code by storing additional information e.g.,
at data structures representing classes, objects, or methods. This information
is used to optimize the execution of aspectual mechanisms like aspect regis-
tration and activation, or role lifting. Furthermore, we introduce additional
bytecode instructions that make use of the newly introduced data structures
and which are significantly faster than the corresponding Java bytecode.

4.2 Overhead of AOP

Purely additive realizations of aspect-oriented programming languages per se
produce a certain amount of overhead compared to the programming language
they extend. This overhead can be relevant with respect to space or time. Both
kinds of overhead are critical especially for embedded devices with limited
memory and computation power and have to be addressed by our effort to
optimize aspect-oriented program execution. Hence, we aim at reducing the
size of additional code as well as at optimizing its execution. In this section,
we analyze the overhead caused by the different tasks performed during aspect
execution. We also published this analysis in [HG09].

The overhead of aspect-oriented program execution is caused by additional
control flow using additional data structures. Furthermore, the overhead of the
weaving process itself has to be considered, especially for languages that apply
post-compile time weaving, like OT/J. One could argue that the execution time
is more relevant because weaving is done only at an initial phase. Nevertheless,
dynamic class loading blurs the border between these two phases. Thus, the
overhead of the weaving process can also be critical during program execution.
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Taking this consideration into account, we can classify the sources of overhead
for the language OT/J by the following categories.

4.2.1 Aspect Registration/Activation

Aspects have to be linked in some way to the base classes they adapt. This
link is needed when looking up the adapting aspect instances while executing
a base method. For this, some kind of registration mechanism is needed. It is
usually realized by list data structure associated to the adapted base class. In
aspect languages that support dynamic activation and deactivation of aspects,
these data structures have to be dynamically updatable during run-time.

Commonly, the necessary data structures and methods are added at the
level of Java bytecode to the involved classes. This increases the code size,
and the activation methods have to be interpreted just as normal applica-
tion methods. Furthermore, OT/J supports sophisticated activation policies.
Aspects can be activated explicitly/implicitly and globally/thread-locally (see
[HHM07], §5). These policies cannot be efficiently implemented at the level
of Java bytecode. Thread-local activation, for example, makes the execution
of an aspect dependent on the current thread context. In Java, this can be
realized by using the Java class ThreadLocal but with direct access to the
thread context, this would be more efficient.

4.2.2 Aspect Execution

The execution of aspectual behavior is typically realized by additional calls to
aspect instances. In OT/J, this includes looking up the next adapting team
instance, determining the corresponding role object (lifting), and calling the
bound role method. The team lookup depends on dynamic aspect activation.
Dispatching from a base method to an adapting aspect method adds additional
dynamic method lookup(s). This is necessary if the aspect language supports
polymorphic method overriding also for aspect methods. Dynamic method
dispatch is always expensive and should be avoided due to performance reasons
if possible. The identification of avoidable dynamic dispatch constitutes good
potential for possible optimizations. The execution of aspectual code is subject
to special conditions, which does not hold for method dispatch in general.
Possible optimizations can exploit these conditions (see Chapter 5).

4.2.3 Run-time Infrastructure

In the face of dynamic class loading, a post-compile time weaving process
is always incremental. Therefore, information about aspects, adapted base
methods, inheritance structures etc. has to be maintained during run-time.
This necessitates additional data structures and causes extra overhead.
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In OT/J, for example, the base-side aspect inheritance requires additional
run-time information. As stated in Section 2.1.3, aspects adapting a base
class do also affect subclasses. If affected methods are overwritten, also the
subclasses have to be woven accordingly. In a dynamic weaving setting, the
subclasses could have already been loaded by the virtual machine. To locate
them, some kind of subclass lookup is necessary. In the current version of OT/J,
run-time information needed for the weaving process is stored by means of Java
data structures.

4.2.4 Advanced Modularization Mechanisms

OT/J features inheritance on the level of collaborations (teams). As we re-
ferred to in Section 2.1.3, for the roles inside a collaboration this results in
a special inheritance relation to their counterpart in a super collaboration,
called implicit inheritance, cf. [HHM07], §1.3.1. This mechanism is realized by
a copy of the ’inherited’ bytecode and the generation of additional interfaces.
This increases the code size and necessitates the use of less efficient method
invocation mechanisms. While regular methods are invoked with the bytecode
instruction invokevirtual, for interface methods invokeinterface is used.
The former is more efficient as in the entire class hierarchy, a constant index
is used to locate the method’s code in the method lookup tables. This cannot
be guaranteed for interface methods because the implementation of additional
interfaces can be declared at arbitrary points in the inheritance hierarchies
of different classes. Thus, instead of direct access with a constant index, the
method table has to be searched in order to locate the code of the method.

The main overhead of AOP languages is induced by the realization of aspect
activation mechanisms at the level of Java bytecode of the adapted classes and
by the additional dynamic dispatch for aspect execution. In the following sec-
tion, we first present optimizations for the aspect activation and subsequently
for the aspect execution. Moreover, in Chapter 5, we develop optimizations
that utilize special conditions, which apply to the code that realizes AOP
mechanisms.

4.3 Optimization of AOP Mechanisms

In this section, we present our optimizations of the aspect activation and aspect
execution of the AOP language ObjectTeams. As argued in Section 4.1, we
enhance the JVM to natively support AOP mechanisms to achieve this.

We propose the following extensions for the support of aspect execution
inside the JVM:

� We introduce additional data structures to store additional information
that is useful for the execution of aspectual code (e.g., aspect registration,
implicit inheritance information, role caching).
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Figure 4.2: Optimized Team Activation Infrastructure

� We create and integrate additional (or adapted) bytecode instructions
that are used to support optimized aspect execution. These instructions
will make use of the introduced data structures.

� We provide an interface (API) to allow the weaving process to access
information stored in the JVM data structures (e.g. from the run-time
infrastructure).

Concrete optimizations are detailed in the following sections. To optimize
aspect activation, we develop a VM-internal team activation infrastructure
(see 4.3.1) and a native team activation mechanism (see 4.3.2). Furthermore,
we improve the aspect execution by the introduction of special bytecode in-
structions for fast aspect dispatch (see 4.3.3) and efficient callin execution
(see 4.3.4). We published parts of these optimizations in [HSG10].

4.3.1 Optimized Team Activation Infrastructure

In the original OT/J implementation, the infrastructure for team (aspect) ac-
tivation is added to every adapted base class. The left side of the hollow arrow
in Figure 4.2 illustrates that arrays for storing aspect instances and methods
to access these data structures (addTeam(Team) and removeTeam(Team)) are
added to the class file of every adapted base class. These methods are called
by the de-/activation methods of the teams.

Similar to the advice instance tables of [HM05], we propose to move the as-
pect registration mechanism to the JVM-level, enabling various optimizations,
as sketched on the right side of Figure 4.2. First, we can move the data struc-
tures to the VM-internal data structures representing classes. The methods
for adding and removing teams to or from a base class can be uniquely im-
plemented in the native code of the JVM. To allow access to this data during
aspect activation, we need to extend the interface of the VM.

In a second step, we introduce a caching mechanism as optimization for
consecutive activation and deactivation of the same aspect instance. This is
a common execution pattern during implicit team activation. Implicit team
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activation has the purpose of guaranteeing a coherent aspectual control flow if
a public method of a team or a role is called (cf. [HHM07], §5.3).

For future work, a promising approach is to populate the aspect registration
data structures in a more context specific way. Currently, aspect instances are
stored per class, but during aspect execution only a subset actually adapts
the currently executed base method. Moreover, in the case of thread-local
activation, this subset is further restricted by the current thread. At VM-
level, the thread context is used for several purposes. Thus, it is more easily
accessible also for thread-local team activation mechanisms.

By adding the aspect registration and activation mechanism to the VM-
level, we can reduce the code size and enhance the run-time performance by
making the corresponding methods native. Residing in the VM, these meth-
ods have access to internal data structures and mechanisms, which is another
performance advantage.

Inheritance of the Team Activation Infrastructure

While moving the activation infrastructure to the VM-level, we have to guar-
antee the correct inheritance of active aspects to subclasses of an adapted base
class. In Section 2.1.3, we mentioned that base classes also ’inherit’ aspects
that are defined for their super classes. To ensure this, the activation of team
instances must also apply to sub base classes. At the same time, a sub base
class can be adapted by additional activated aspects. However, these aspects
only affect the sub base class but not the super base class. The example in
Figure 4.3 illustrates such a scenario. The base class MySuperBase is adapted
by the role R1 of the team T1. More precisely, the adaptation affects the base
method bm(). A subclass of our base class, MySubBase, is additionally adapted
by the team class T2. This team also adapts the same base method bm(), which
is inherited and potentially redefined. The subclass needs to inherit the adap-
tation by T1 and it has to be guaranteed that the order of aspect execution
correlates to the order of team activation (cf. Sec. 2.1.3).

In the original OT implementation, this is realized by only adding the
activation infrastructure to a base class if it has not been already added to any
super class. This means that in every inheritance hierarchy only the topmost
base class that is adapted by an aspect contains the activation infrastructure.
To guarantee this, it is necessary to analyze whether a base class has a bound
base parent when the class is loaded. This information is available because
when a bound role class is loaded, the role-base binding is stored and linked
with its super and sub class bindings. However, because this information is
stored in a global data structure it is necessary to iterate over all existing role-
base bindings to access it. Since the activation infrastructure is realized by
Java fields and methods, it is automatically inherited by subclasses via regular
Java inheritance.

Thus, the activation infrastructure (active teams) in Figure 4.3 is shared
among the two base classes. At the same time, this guarantees the correct order
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of aspect execution. In the example, first an instance of T1 and then an instance
of T2 is activated. As detailed in Section 2.1.3, this implies that T2 has a higher
priority. The team instances are registered with the active teams structure
of MySuperBase. During execution of the base method MySubBase.bm(), first
the aspect functionality of T2 and afterwards these of T1 is executed. When
the method bm() is executed at an object of type MySuperBase the T2 aspect
is silently ignored because in the corresponding wrapper method no code for
its execution has been woven in.

With our optimization, the activation infrastructure is no longer realized
by Java fields and methods, but by VM-internal C data structures related
to the class representations. These data structures are not subject to Java
inheritance mechanisms. Thus, we developed another approach to ensure the
correct aspect inheritance at base hierarchies. We decided to realize the sharing
of the team activation infrastructure among base class hierarchies, as described
in Section 6.2.1.

4.3.2 Optimized Team Activation Mechanism

The activation of a team instance includes more than just registering it with the
corresponding base classes. For instance, it has to be ensured that re-activation
of an already active team instance does not have any effect (cf. [HHM07],
§5.2.c). For the support of thread-local and global team activation, as well as
for (nested) implicit team activation, more complex mechanisms are required.
For example, it is necessary to keep track of individual threads and the nesting
depth of implicit activation. In the original OT/J implementation, the team
activation mechanism is implemented in the super class of all team classes
org.objectteams.Team in Java. This requires several fields, such as hash
maps, locks, counters and booleans.
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While explicit de-/activation may occur rather infrequently, implicit ac-
tivation and calls to the method isActive, which states whether a team is
active for a given thread, constitute a relevant part during the execution of an
OT/J program. To optimize the execution time of the activation mechanism,
we re-implement the team activation as native VM methods. Furthermore,
we move the necessary team fields to the VM-internal representation of team
objects. The methods we make native cover explicit and implicit team ac-
tivation and deactivation as well as the isActive method. Since we do not
change the method signatures from the original to the native implementation,
there is no difference for the programmer when using the optimized OT/J
implementation.

4.3.3 Optimized Aspect Dispatch

To optimize the aspect execution, we develop a specialized aspect dispatch
mechanism that works on the VM-internal activation infrastructures intro-
duced in Section 4.3.1.

In the original OT/J implementation, the base class array that contains
all activated teams (see Section 4.3.1) are traversed whenever an adapted base
method is executed. This is necessary to call the corresponding aspect meth-
ods. Therefore, every base class contains specific wrapper methods for each
adapted base method, as presented in Section 2.1.3. This procedure causes
significant overhead because the wrapper methods have to browse the active
team instances of the base class by the use of Java structures and methods.
Furthermore, during the search, each contained team has to be checked for
thread-local activity before an aspect can be executed.

Based on the optimization that moves the team activation infrastructure
into the VM (see Sec. 4.3.1), we improve the base method execution by shifting
this lookup procedure to the VM-level, too. The VM-internal information can
then be accessed through a new bytecode instruction (nextaspect), which
can be called repetitively during base method execution. With each call, this
instruction returns the next active team instance in order to execute its aspect
methods.

Figure 4.4 illustrates how this optimization integrates into the overall as-
pect execution process. Overall, we can avoid the overhead in execution time,
produced by the afore used Java structures, and we can reduce the bytecode
size for each base method as well.

4.3.4 Optimized Callin Execution

While the introduction of the nextaspect instruction in Section 4.3.3 opti-
mizes the aspect dispatch, the arrangement and execution of the necessary
aspect method calls is still implemented in the Java wrapper method (cf.
bm wrapper in Fig. 4.4). To further optimize the aspect execution, we pro-
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pose to completely shift the aspect execution mechanism into the JVM, as
illustrated in Figure 4.5. We realize this by introducing the bytecode instruc-
tion invokeaspects ([Stö10]). This instruction is responsible for everything
the base method wrapper has done before. It has to lookup the active team
instances and to initiate the execution of the corresponding aspect (role) meth-
ods and the base functionality in the correct order (see Sec. 2.1.3 (Execution of
Multiple Aspects)). Thus, the base method wrapper implemented in Java be-
comes obsolete. Instead of that, the OT runtime environment (OTRE) needs
to weave the invokeaspects instruction into every adapted base method. As
also the base-calls in replace-bound role methods need to reenter the aspect
execution mechanism, they also must invoke the invokeaspects instructions.
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Figure 4.5: Aspect Execution with ’invokeaspects’
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In order to execute an invokeaspects instruction, the virtual machine
needs information about the role methods bound to each base method. When
compiling team and role classes, the OT compiler stores this information
in bytecode attributes of the corresponding class files (cf. [Hun03, Sec. 3.1]
and [HH10]). We adapt the class loading mechanism to extract this informa-
tion when teams and roles are loaded. For each adapted base method, we
store which role methods have to be executed for each adapting team (see
[callins_per_team] in Figure 4.5). We decided to use a lazy mechanism to
construct this data structure. It is only constructed if the base method is ex-
ecuted and no entry exists for the current active team instance. On the one
hand, this is a performance advantage because the overhead of constructing the
entry is only spent if an instance of the corresponding team class is activated
and the base method in question is actually executed. On the other hand, this
approach also expands the dynamic capabilities of the language, as it facilitates
the subsequent addition of teams to adapt a base method. However, at the
moment this only applies to base methods which already have been adapted
by some team, which is known when the program has been started. Only for
such base methods, the invokeaspects instruction has been woven in.

In addition to this, we further optimize the lookup of active team instances
(with nextaspect) by storing the indices of team instances that are active in
the current thread. This avoids the overhead of considering team instances
that are only active for other threads.

With the JVM-internal aspect execution mechanism, we are able to signif-
icantly reduce the code size of adapted base methods, as the code responsible
for the execution of adapting callins is now implemented only once: in the
interpreter routine of the invokeaspects instruction.

4.4 Dynamic Delegation Proxies

This section describes our idea to realize aspect deployment and execution by
dynamically activatable proxies. In this approach, aspect dispatch is accom-
plished by delegation from method calls to relevant aspect code. Here, our
achievements are the complete integration of aspect dispatch into the JVM,
as well as efficient aspect execution and memory efficiency. Furthermore, we
enhance the runtime flexibility with dynamically addable aspects and indepen-
dence from the class loading order.

We investigated this approach in [Bis10]. The main idea is to introduce
a method header, called delegation proxy, which is responsible for the aspect
dispatch inside the JVM. The general concept of using delegation to realize
aspect execution has been inspired by the Delegation-based AOP approach
[HS07] which is discussed in Section 3.4.
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4.4.1 Delegation Proxy Deployment

With this approach, aspects are deployed by adding and enabling a delega-
tion proxy header on top of the method code. This is accomplished by the
following steps, illustrated by Figures 4.6 and 4.7. When a base class MyBase

is loaded into the JVM the code blocks of its methods are left untouched.
The delegation proxy is added on top of the method code block while passing
through the prepare phase. This happens, when a method bm() is executed
by an invokevirtual instruction for the first time (see Figure 4.6). Initially,
the code pointer pc still points to the beginning of the original code. There-
fore, the delegation proxy is still ineffective and the invokevirtual leads to a
normal execution of the called method.

The actual aspect deployment happens when a team class MyTeam is loaded
(see Figure 4.7). If the team declares an aspect binding (rm <- after bm)
to a method of an already executed method of a base class, the code pointer
is redirected to the delegation proxy header. The next time the method is
called the control is passed to the delegation proxy, which is now responsible
for assuring the correct execution of aspect and base code.

Alternatively, if the team class is loaded prior to the base class, the code
pointer is redirected to the delegation proxy in the prepare phase, directly.
Thus, we achieve an independence from the class loading order. With the
load-time weaving approach of the original OT implementation it is necessary
to load teams prior to the base classes they adapt. Every team class needs
to be known when starting a program and the class loading order has to be
manipulated, to ensure that teams are loaded first. This manipulation is now
obsolete and teams can be loaded anytime, which is a precondition for dynamic
addition of aspects/teams.
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4.4.2 Delegation Proxy Execution

If deployed (see Sec. 4.4.1), the delegation proxy header is responsible for exe-
cuting aspect and base functionality in the specified order. Furthermore, it is
responsible to build a valid activation cache containing all active team instances
with aspect bindings to the current method. Compared to the base-class-wide
team activation lists (see Sec. 4.2) in the original OT implementation, this is
a significant improvement, as only the team instances that are relevant for the
current method execution are considered.

Figure 4.8 summarizes the aspect dispatch with the delegation proxy ap-
proach. The changes regarding the original OT aspect dispatch are summarized
in the following. In Figure 4.8 they are marked in red. Base classes (MyBase)
are no longer woven before execution inside the JVM. Thus, we do not need a
load-time weaving component anymore. The method-level delegation proxy is
now responsible for team lookup, callin consideration, lifting and role method
calls. In addition, we integrated the lifting mechanism with fast role lookup
support into the JVM. Also, the team activation mechanism is natively imple-
mented inside the JVM and activation caches per base method further optimize
the lookup of active team instances.

Because the order in which team and base classes are loaded is not relevant
anymore, the delegation proxy approach facilitates dynamic deployment of
new teams/aspects at run-time. When a new team class is loaded, the binding
information is extracted from its OT-specific attributes. They are necessary
to construct VM-internal data structures that are used in the later aspect
activation. This process is accomplished independent of the moment the team
class is loaded. The actual dynamic deployment for a method reduces to the
redirection of the code pointer from the beginning of the actual method to
the delegation proxy header. This suggests a high efficiency of our dynamic
weaving mechanism.
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4.5 Summary

In this chapter, we presented our approach to optimize AOP mechanisms on
the level of the JVM. We identified the sources of overhead that are caused
by the implementation of aspect activation and aspect execution at the level
of the base programming language, namely Java. To reduce this overhead, we
developed optimizations for common AOP mechanisms by extending the data
structures and the execution mechanisms of the JVM.

To optimize aspect activation, we introduced a VM-internal team activation
infrastructure that also maintains the correct inheritance of active aspects to
subclasses of adapted base classes. In addition, we proposed a native team
activation mechanism that enables the efficient activation and deactivation of
aspects by avoiding the use of inefficient Java means. Moreover, we improved
the aspect execution by the introduction of specific bytecode instructions for
fast aspect dispatch and efficient execution of aspect functionality. Hereby,
we were able to make the originally used method wrapper of base methods
obsolete. Further, we introduced an efficient dynamically deployable method
header (delegation proxy) that is responsible for the complete aspect dispatch
and establishes the foundation for dynamic AOP.

The implementation of our optimization is presented in Chapter 6 and in
Chapter 7 we evaluate the benefit of our optimizations with benchmarks.



5 Semantic Information for
Optimization

In Chapter 4, we suggested optimizations for the execution of aspect-oriented
mechanisms. Our main focus were performance improvements achieved by
the relocation of aspect-specific infrastructure code from the bytecode into
the virtual machine. In this chapter, we examine how the overhead provoked
by the additional abstraction mechanisms of AOP can be reduced by taking
aspect-specific semantic information into account.

The enhanced abstraction mechanisms of high-level programming languages
in general, and AOP in particular, facilitate the explicit expression of the pro-
grammers intent. When this intent is made explicit, additional information
regarding the run-time behavior of a program can be inferred. We suggest
optimizations that utilize the semantic conditions that apply for the execu-
tion of ObjectTeams programs. Those conditions are not necessarily valid for
equivalent bytecode in general. An example is the fact that a base object is
frequently lifted to the same role object. This qualifies the role object for
caching, as detailed by Section 5.3.2.

This chapter is structured as follows. We start by analyzing the characteris-
tics of abstraction mechanisms in high-level programming languages. Next, we
examine general and OT-specific AOP concepts, in order to identify aspect-
specific semantic information, in Section 5.2. In Section 5.3, we propose a
number of concrete optimizations for ObjectTeams using the aspect-specific
semantic information. Finally, we investigate how existing optimizations can
profit from this additional information in Section 5.4. An overview of our ap-
proach for incorporating semantic information into the optimization of aspect-
oriented mechanisms is also given in Figure 5.1, together with an indication of
the corresponding sections.

5.1 Characteristics of Abstraction Mechanisms

In principle, each application can be developed with any existing program-
ming language. However, there is a tradeoff between human intelligence and
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Figure 5.1: Overview of AOP-specific Optimizations

computer “ignorance”. Typically, processors can only execute concrete instruc-
tions and are not able to cope with abstract statements. Machine code exactly
specifies the sequence of individual instructions, which have to be processed
to execute a program. Human individuals, in contrast, tend to think more
abstractly, trying to generalize problems and to reuse existing solutions. This
fact has always been the main motivation for the development of high-level
programming languages. With less effort, it should be possible to develop
applications that are easier to understand. Modularity concepts facilitate dis-
tributed development and better reusability. Beyond that, the source code
of high-level programming languages is more machine-independent and better
systematically analyzable.

Coming from machine code, the imperative, the object-oriented and the
aspect-oriented paradigm each provides more and more enhanced abstrac-
tion mechanisms. Examples of abstract information in the (source) code of
high-level programming languages are control structures, methods with param-
eters, modules, dynamic binding, or aspects with bindings to join points. In
the following, we illustrate selected abstraction mechanisms of the different
paradigms. Afterwards, we investigate the implications for the overhead of
higher-level languages and how it can be reduced.

In the following, we use an example to demonstrate the consequences of in-
troducing additional abstraction mechanisms to the (semantic) characteristics
of program code. The topic of our example is a bank account with different
functionalities to query or manipulate the account balance. We start by exam-
ining the transition from imperative to object-oriented mechanisms, and then
look at the additional abstraction potential of the aspect-oriented paradigm.

5.1.1 Imperative → Object-oriented

In our example, an account offers functionality to query the balance, and to
debit or credit money. In addition to basic accounts, we want to further dif-
ferentiate between savings accounts and checking accounts. The functionality
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Account

int balance

int getBalance()
credit(int am)
debit(int am)
annualAccount()

SavingsAccount

int interestRate

int calcInterest()
annualAccount()

CheckingAccount

int fee

annualAccount()

Figure 5.2: UML Diagram Account

annual account is responsible to credit interest to savings accounts and to debit
fees for account management for checking accounts.

Listing 5.1 shows the C code of the account example. The common ground
of the different kinds of accounts are stored in the account_t structure. The
tag account_tag defines whether we have a savings account or a check-
ing account. The specific qualities of these account types are defined in the
structures savings_t and checking_t, respectively. The functions debit and
annual_account each use a switch statement, which evaluates the value of
the account_tag to realize the different requirements. Although the code in
Listing 5.1 correctly implements the requirements, a number of problems can
be observed. To introduce an additional account type, the code has to be
adapted at many locations. Furthermore, the use of the enumeration type
accountType_t can provoke failures if an account (account_t) is initialized
with an undefined integer. In this case, the gcc compiler, for example, does
not emit an error message and the default case is silently used. This can also
happen if a case has been omitted unintentionally.

With object-oriented programming languages, like Java, the different ac-
count types would typically be arranged in a type hierarchy, as shown in Fig-
ure 5.2. The general superclass Account is refined to a SavingsAccount and a
CheckingAccount, respectively. At runtime, the appropriate annualAccount

method is chosen by the dynamic type of the account instance. The C code (see
Listing 5.1) simulates dynamic binding. It is, however, not obvious that the
structure of the switch is used to realize the different behavior for the account
types. In the object-oriented variant, by contrast, the intent of the program-
mer is clearly expressed. Thus, the dynamic binding has to be implemented
only once as part of the programming language and can be optimized more
easily.
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Listing 5.1: C Code of the Account Example

typedef enum {CHECKING ACCOUNT, SAVINGS ACCOUNT} accountType t ;

typedef struct {
double f e e ;

} check ing t ;

typedef struct {
double i n t e r e s t r a t e ;

} s a v i n g s t ;

typedef struct {
accountType t tag ;
double balance ;
union {

check ing t check ing ;
s a v i n g s t sav ings ;

} kind ;
} account t ;

int ge t ba lance ( account t ∗ account ) {
return account−>balance ;

}

int c r e d i t ( account t ∗account , double amount ) { . . . }

int deb i t ( account t ∗account , double amount ) {
switch ( account−>tag ) {

case CHECKING ACCOUNT: {
// d e b i t amount ,
// i f ba lance OR c r e d i t f a c i l i t y do a l l ow t h i s
return 0 ;

}
case SAVINGS ACCOUNT: {

// d e b i t amount ,
// i f ba lance AND sav ing s cond i t i on s do a l l ow t h i s
return 0 ;

}
default :

return −1; /∗ I n v a l i d tag ∗/
}

int annual account ( account t ∗ account ) {
switch ( account−>tag ) {

case CHECKING ACCOUNT: {
double f e e = account−>kind . check ing . f e e ;
account−>balance −= f e e ;
return 0 ;

}
case SAVINGS ACCOUNT: {

double r a t e = account−>kind . sav ing s . i n t e r e s t r a t e ;
double i n t e r e s t = account−>balance ∗ r a t e ;
account−>balance += i n t e r e s t ;
return 0 ;

}
default :

return −1; /∗ I n v a l i d tag ∗/
}

}
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Listing 5.2: Java Code of the ’annualAccount’ Method

void annualAccount ( ) { // in c l a s s SavingsAccount
double i n t e r e s t = c a l c I n t e r e s t ( ) ;
// s t a r t tax concern −>
double taxab le = i n t e r e s t − exemptAmount ;
double tax = i n t e r e s t R a t e ∗ taxab le ;
TaxAuthor i t ies . c o l l e c tTax ( tax ) ;
i n t e r e s t −= tax ;
// <− end tax concern
this . ba lance += i n t e r e s t ;

}

5.1.2 Object-oriented → Aspect-oriented

Now, we add the requirement that the interest for savings accounts has to be
automatically taxed by the tax authorities. Every time an annual account is
prepared, a certain tax rate is withdrawn from the interest, while allowing for
an exempt amount. In Listing 5.2, this is illustrated by a call of the method
TaxAuthorities.collectTax(double t).

A bigger part of the method annualAccount is now realizing the tax author-
ities concern. In fact, the tax authorities are independent from the bank, which
manages the accounts. Therefore, the tax collection concern should not be tan-
gled (see Section 2.1) with the bank concerns. With the aspect-oriented mech-
anisms of ObjectTeams (see Section 2.1.3), the separation of both concerns can
be realized, as illustrated by Figure 5.3. The team TaxAuthorities contains a
role TaxCollector, which adapts the base class SavingsAccount by defining
a playedBy relation. The role method collectTax replaces the base method
calcInterest, which is used by the method SavingsAccount.annualAccount

to calculate the interest. The role method uses a base-call to the original

Account

int balance

int getBalance()
credit(int am)
debit(int am)
annualAccount()

SavingsAccount

int interestRate

int calcInterest()
annualAccount()

CheckingAccount

int fee

annualAccount()

TaxCollector

int interestRebate
int exemtAmount

callin int collectTax()

TaxAuthorities

<<playedBy>>

callin int collectTax() {
  int interest = base.collectTax();
  int taxable = interest - exemtAmount;
  int tax = interestRebate * taxable;
  return interest - tax;
}
  
  

collectTax
 <- replace calcInterest

Figure 5.3: UML Diagram Account



66 Semantic Information for Optimization

method to calculate the original interest. Then, the tax is calculated and the
method returns an interest value reduced by the tax.

This example illustrates how the modularization of separate concerns ben-
efits from AOP mechanisms. Hence, the tax authorities only require the bank
to provide a method annualAccount, responsible for crediting the interest.
The TaxAuthorities aspect can be reused in the context of other taxes, like
the income tax. To this end, it can be bound to the corresponding entities,
like a payroll office.

For the aspect bindings to be effective, at a point before the execution of
the affected base method, a call to the aspect code has to be woven-in (see
Section 2.1.2). With a direct translation to Java bytecode, aspect-specific
abstract information is flattened and can no longer be used as input for later
optimizations.

5.1.3 Semantic Conditions of the AOP Example

Now, we examine the semantic conditions of the ObjectTeams example in Fig-
ure 5.2. The tax requirement can be reviewed at different levels of abstraction:

1. Functional : The interest for a savings account has to be taxed.

2. OT program: Every call to SavingsAccount.calcInterest has to be
replaced by TaxAuthorities.collectTax.

3. OT language implementation: A SavingsAccount object is lifted to a
role of the TaxAuthorities team. There, the collectTax method is
called, which also calls the original functionality of calcInterest (base-
call).

The following conditions apply for the corresponding OT program, but not
necessarily for equivalent byte code:

� collectTax is only called from corresponding (playedby) base objects.

� The base object will be accessed again by the base-call.

� In the context of the TaxAuthorities, each SavingsAccount object will
always be lifted to the same role object.

This analysis gives us first hints about the nature of semantic conditions of
ObjectTeams programs. In Section 5.2, we investigate semantic conditions of
AOP concepts more generally.

5.1.4 Summary

The additional mechanisms of abstraction, added by each programming para-
digm increase the means to directly implement abstract requirements. Further-
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Figure 5.4: Abstraction vs. Optimization Potential

more, the additional information from the abstraction mechanisms facilitate
an improved automatic error detection (cf. dynamic types vs. case structures).

A well-known drawback is the performance overhead provoked by additional
indirections and more complex execution mechanisms (e.g., dynamic dispatch).
Generally, more abstract programming languages are less efficient than less
abstract ones. In Figure 5.4, this is illustrated by the constant black line.
However, we assume that the potential for optimization increases together with
the degree of abstraction, as illustrated by the gray line in Figure 5.4. This
is due to the fact that the developer’s intent can be expressed more explicitly
by the constructs of more abstract programming languages. Therefore, more
assumptions can be derived regarding the intended program behavior. These
assumptions increase the potential for optimizations and allow us to reduce
the provoked overhead and to reduce the execution time (see dashed line in
Figure 5.4).

In the following sections, we investigate this assumption and analyze how
aspect-oriented programs, especially ObjectTeams programs, can be made
more efficient if the additional semantic information of the abstraction mech-
anisms is utilized.

5.2 Aspect-specific Semantic Information

In Section 5.1.3 we already identified semantic conditions of the AOP variant
of our account example. In this section, we generally investigate semantic con-
ditions of AOP concepts. Each optimization is eventually applied to concrete
program code. Nevertheless, it is reasonable to regard aspect-specific proper-
ties at different levels of abstraction. We present the relevant properties, start-
ing with general AOP concepts, coming to ObjectTeams-specific concepts, and
finally regarding conditions specific to the ObjectTeams language implementa-
tion. By this means, we maintain a classification, indicating which properties
are language-independent, and which are only valid for ObjectTeams, or lan-
guages with equivalent concepts. This classification can help us to identify
which optimizations are potentially transferable to other approaches.
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Aspect-oriented Concepts As mentioned in Section 2.1, there is a large
variety of AOP languages, supporting different subsets of AOP mechanisms.
However, the following characteristics are common for the majority of existing
AOP languages:

� Aspects are modules, used to define crosscutting concerns separated from
the base functionality.

� Aspect methods (advices) are woven into the control flow of base modules
at certain points (join points).

� Aspect methods can be woven to multiple points in base modules (quan-
tification).

� Base modules are not aware of potentially adapting aspects (oblivious-
ness).

ObjectTeams Concepts As detailed in Section 2.1.3, the programming model
ObjectTeams realizes aspect-oriented concepts by role objects, which can adapt
base objects they are bound to. Role objects are contained in a surrounding
team instance. Furthermore, a team and thus all its aspects can be activated
and deactivated at runtime. Join points are defined by callin bindings, relating
role methods to base methods. The following characteristics can be relevant
for optimization purposes:

� Role objects (aspects) always belong to a surrounding team instance.

� Role classes are bound to specific base classes.

� Each role object is bound to a specific base object.

� Lifting ensures that each base object always relates to the same role
object (relative to a given team instance).

� Callin role methods (bound with replace-callins) can only be called from
the bound base method of the playing base class (or a subclass).

Some characteristics only apply under certain conditions. The following
heuristics can be used for speculative optimizations:

� Many team instances are activated once and not ever deactivated again.

� Replace-callins usually make a base-call (call of the original base method).

� A callin binding ensures that a call of the bound base method implicates
a call of the bound role method (provided team activation and positive
guard predicates).

ObjectTeams Realization The concepts of ObjectTeams are implemented in
the programming language ObjectTeams (OT/J). To realize the execution of
aspects, the base code is extended by different methods and data structures,
as described in Section 4.2. The bytecode generated for this purpose involves a
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team registration mechanism, wrapper methods, as well as tags and ids used for
the aspect dispatch. Here, we are interested in portions of the generated code
that feature different semantic properties than equivalent bytecode in general.
Examples for this are:

� If a role defines multiple callins (after, before, replace) to the same base
method, the same lifting is performed multiple times.

� Every initial wrapper is identical, except for the chaining wrapper it calls.

� The target of a base-call is exactly the same method that initiated the
role method call.

5.3 AOP-specific Optimizations using Semantic In-
formation

In this section, we propose a number of concrete optimizations for Object-
Teams, using the aspect-specific semantic information gathered in Section 5.2.
In doing so, it is our goal is to optimize the aspect execution mechanism by
reducing the need of dynamic dispatch. In some cases this can be achieved
using caches for elements which will be used again shortly. The two major
sources of (additional) dynamic dispatch are the execution of the aspect func-
tionality and the call of the original base functionality. In the following the
optimization potential of these parts is evaluated.

5.3.1 Base-Call Caching

In most cases, in the course of the aspect execution, the original base function-
ality is invoked at some point in time. In ObjectTeams, for replace-callins this
is done by base-calls (see Sec. 2.1.3). For a base-call, the base object for the
current role object has to be looked up. This is simple because every role ob-
ject maintains a reference to its base object. Next, the adequate base method
is called. At the bytecode level, this call is mapped to an invokevirtual in-
struction including regular dynamic dispatch. In contrast to a method call in
general, a base-call is always calling exactly the method which was originally
called. This means that actually, it is not necessary to dynamically look up
the method which should be called. Instead, the location of the base method
(e.g., its address in memory) can be stored in a cache, which is accessed when
the base-call is processed.

Although a base-call always targets the method that triggered the execution
of the corresponding role method, it might not be unique. This is the case if a
role method is bound to more than one base method (of the same base class),
as illustrated in Figure 5.5. For the base-call cache, this means that caching a
constant single item is not sufficient. We could either dynamically update the
cache, involving cache validation, or cache multiple values, one per bound base
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MyTeam

callin rm() {
  …
  base.rm()
  …
}
rm ← replace bm1
rm ← replace bm2 

MyRole

bm1()

bm2() 

MyBase«adapt» 

Figure 5.5: Base-Call with multiple Targets

method. Another design decision is the scope in which the cache is stored.
On the one hand, this can be done relative to the role object, facilitating the
repeated use during all method calls. On the other hand, the cache can be
temporarily stored relative to the individual role method call (e.g., in the stack
frame), reducing the memory consumption.

By adapting a base method with a role method, we introduce additional
dynamic method dispatch because the role method has to be looked up dy-
namically. In return for this, we propose to cache the location of the base
method which is a promising optimization, as it avoids dynamic dispatch.

5.3.2 Role Object Caching

Aspect execution in ObjectTeams implies the call of a role method imple-
menting the aspect functionality. Before the role method can be called, the
appropriate role object has to be determined. This process includes lifting the
base object to a role object in the context of a given team. In Section 5.4.3
an optimization for the lifting mechanism itself is proposed. Here, we aim for
optimizing the management of the resulting role object. Theoretically, a base
object can be lifted to n role objects but in practice it is very often the same
role object a base is lifted to. Thus, caching of the role objects is a potential
source of optimization.

Lifting Scenarios

Optimal for caching in general is the repeated use of the same value. In our
case, the relevant value is the cached role object. Because each role object
belongs to a well-defined base object, at least one role object should be cached
per base object. Of course, it cannot be guaranteed that an aspect execution
requires the same role object than the preceding one. Thus, using a role cache
has to include a check whether the cache is (still) valid. To identify whether
role objects are repeatedly used and whether the cache becomes invalid, we
examine the possible scenarios for lifting.
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Figure 5.6: Successive lifting to the same role object.

The semantics of the lifting mechanism is defined in [HHM07], §2.3(a):

Lifting is guaranteed to yield the same role object for subsequent
calls regarding the same base object, the same team instance and
the same role class. 1

The conditions for successive lifting to the same role object are fulfilled in
the following scenarios.

(i) During a single base method call (intra) if a role defines multiple aspect
bindings to the same base method, as illustrated by the example in Fig-
ure 5.6a.

(ii) Across different base method calls (inter) if multiple callins are defined
from one role object to successively called base methods. This can apply
to calls of different base methods, as well as to multiple calls of the same
base method (e.g., iteration or recursion) (see Figure 5.6b).

In these cases, caching the latest used role object is very profitable because
every single role method call includes lifting the base object to the same role
object.

Now, we consider the cases where different role objects are involved in
the aspect execution. From the definition of lifting above follows that a base
object can be lifted to another role object if the aspect execution concerns
another team instance or another role class. In this case, the role cache of a
given base object can be invalidated. Such a situation occurs if multiple callins
from different role objects are defined (i) for the same base method or (ii) for
different base methods of the same base object. Different scenarios for the
corresponding role objects are possible. They can belong to

(a) the same role class (and team instance)

(b) another role class of the same team instance

1Note that smart lifting ([HHM07], §2.3.3) can result in a role object with a more specific
dynamic type than the one statically requested, but this is no problem because it is the
same every time.
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Figure 5.7: Scenarios: Different Roles for a Base Object.

(c) another team instance of the same team class

(d) another team class

Now, we look at the conditions leading to the different scenarios. The
different scenarios are illustrated by Figure 5.7. Because lifting operates on the
level of instances, in this figure, we use base, role, and team objects, denoted
by the UML notation :Type.

(a) Multiple role objects of the same role (and team) class are bound to
the same base object. As per definition of lifting, this seems to be impos-
sible because the definition guarantees to yield the same role object, in this
case (see Figure 5.7a). An exception exists due to the fact that a role ob-
ject can be explicitly removed by the programmer by calling the API method
unregisterRole(Object aRole). In this case a subsequent lifting request
causes the creation of a new role object.

(b) Role objects of multiple role classes of the same team can be bound to
the same base objects, as illustrated by Figure 5.7b. However, in practice this
is rather uncommon: If the roles contain separate functionality they should
be in different teams because then they can be separately activated. If they
contribute to the same aspect functionality they can usually be implemented
as one role. Only if the aspect binding is separately defined in an inheriting
team such a scenario can be essential.

(c) Role objects of the same role and team class that belong to different
team instances can be bound to the same base object (see Figure 5.7c). This
happens if multiple instances of the same team class are activated. However,
even if possible, in practice most of the team classes are instantiated and
activated only once.
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(d) If different role objects adapt the same base object, they most reason-
able belong to different team classes, as shown in Figure 5.7d. An arbitrary
number of aspects (teams) can independently adapt the same base class (and
method), each implementing a specific crosscutting concern.

The preceding analysis gives us an overview about the scenarios in which
different role objects are bound to the same base object, which can lead to the
invalidation of a role cache. At the same time, we give an estimation about
how likely these scenarios will occur in real programs. On the basis of these
considerations, we design the cache validation for our role cache, as presented
in the following section.

Cache Validation

For cache validation, we have to identify the scenarios (a)-(d) from Figure 5.7
that imply the usage of different role objects. Because the cache validation has
to be very efficient to minimize the overhead in case of cache misses, we have
to carefully choose the order of the individual checks.

If a base class has callins from different roles, those will mostly belong to
different team classes (d). Thus, we first have to check whether the cached role
belongs to the expected team class. Next, we can either check the role class
(b) or the team instance (c). Because the team class name is part of the role
class name, we decided to combine the check of the role class with the check
of the team class. Only if this check passes, we have to check for the correct
team instance. Finally, we have to guarantee that we do not use a cached role
object which has been explicitly removed.

This results in the following order of necessary checks:

1. team class name

2. role class name

3. team instance

4. has role been removed?

The check if a role has been removed would require access to the lifting
cache inside the team. As a better alternative, we use a notification mechanism,
which clears the role cache in case the unregisterRole method has been called.

Simulation: Overhead of Lifting

To decide whether this optimization is profitable, we did a simulation to esti-
mate how expensive regular lifting is compared to a cache access. To simulate
the role cache, we use a simple Java class RoleCache to set, get and validate a
single cached role object. The method setCachedRole takes three arguments:
the role object, the role class name, and the team instance. The validate
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Listing 5.3: Role Lookup Simulation

1 MyTeam. MyRole lookupRole (MyTeam t , MyBase b , RoleCache ro leCache ) {
2 MyTeam. MyRole r = null ;
3 i f ( ro leCache != null ) {
4 i f ( ro leCache . v a l i d a t e ( ”MyTeam. MyRole ” , t ) ) {
5 r = roleCache . getCachedRole ( ) ;
6 } else {
7 r = t . OT$liftTo$MyRole (b ) ;
8 ro leCache . setCachedRole ( r , ”MyTeam. MyRole ” , t ) ;
9 }

10 } else {
11 r = t . OT$liftTo$MyRole (b ) ;
12 }
13 return r ;
14 }

method first compares the role class name and subsequently checks the team
instance.

In the simple example we used for the experiment, a role class MyRole

of the team class MyTeam is bound to the base class MyBase. Note that for
simplicity, the signatures of our simulation methods contain the exact types of
our example classes.

To simulate role lookup under different conditions, we implemented the
method lookupRole, as shown in Listing 5.3. If a role cache is used, the
cached role is validated with the role class name and the team instance (see
Line 4). If the cache is valid, the cached role object is returned. Else, regular
lifting is performed by the method _OT$liftTo$MyRole, in Line 7. Afterwards,
the received role object is stored in the role cache (see Line 8). If no cache
exists, we simply call the regular lifting method.

To simulate cache misses, we instantiate the RoleCache with a hit ratio,
defining how often a cache access hits. A hit ratio of ’1’ means that the cache
always contains the right role, with a ratio of ’2’ every second cache access is
valid, and a ratio of ’0’ implicates that the cache never contains the expected
role.

In our simulation, we measured the time spent to lookup role objects with
no cache (regular lifting), a cache which is always valid (best case), a cache
which is hit every second time, and finally, a cache which is alway invalid (worst
case). The resulting values are the averages of 1000 runs, each with 10,000
role lookups performed on an Intel Core2 Duo processor with 2.93 GHz and
2GB RAM. We executed the role cache simulation with the Sun VM, with and
without the JIT and with the JamVM. The results are shown in Figure 5.8.
In the best case, the execution time for the JamVM improves by a factor of
about 9 (89%). If the cache contains the right role every second time, the
improvement is still 37% and for a hit every fifth time, the improvement is 7%.
In the worst case, the performance degrades by 11.5%. These results indicate
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Figure 5.8: Role Cache Simulation Results

that a role cache is a worthwhile optimization to be implemented within the
VM.

Discussion

After we analyzed the conditions for using a role object cache and identified
that such a cache is qualified to improve the performance of the lifting process,
we complete this section with a consideration about the scope for which a role
cache can be established.

The simplest form of a role object cache just caches the last role object for
every base object. Such a cache will use a minimal amount of memory and
is profitable for base methods with multiple callins from the same role object
(i) as well as for successive calls to base methods with callins to the same role
object (ii).

Above, we state that in the normal case the team class is sufficient to
validate cached roles. This indicates that caching one role object per team
class for every base object could be reasonable. Of course, this variant has the
drawback of a more complex cache structure.

Alternatively, we could introduce a separate role cache for every base method.
Although this is only useful for multiple callins from one role to a base method
(i), it has advantages if the individual base methods are rather adapted by
different role objects. Thus, calls to other base methods do not invalidate the
cached role of a base method.

5.4 AOP-specific Enhancements of Existing Opti-
mizations

In this section, we investigate how existing optimizations can profit from ad-
ditional AOP-specific information. We propose enhancements or additional
applicabilities of interpreter optimizations introduced in Section 2.2.3. After-
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wards, we discuss how conventional optimizations like constant propagation,
which are typically applied by a compiler can be enhanced for AOP-specific
needs.

5.4.1 Super Instructions

Super instructions (see Sec. 2.2.3) combine frequent sequences of instructions
in order to reduce the number of instruction dispatches. Usually, the appro-
priate sequences are detected via statistical counting. Regarding certain OT-
specific sequences of instructions, this process can be assisted by the knowledge
that those bytecode sequences have special semantics and are not coincidently
grouped together. This fact can be used as input for the algorithm that is
responsible for detecting code sequences which are candidates for super in-
structions. An example is the implementation of the base method wrapper
for adapted base methods (see Sec. 2.1.3). Here, the code sequences used to
implement the team lookup, and thus realizing the aspect method calls, can
be combined. In this case it is even possible to go one step further and directly
merge the functionality of such sequences into a new bytecode instruction. In
this sense, we introduce the super instruction nextaspect (see Sec. 6.3.1) in
order to optimize the aspect dispatch.

5.4.2 Stack Caching

Stack caching (see Sec. 2.2.3) is an optimization for all kinds of bytecode in-
structions. It only depends on the stack effect of an instruction, which is
determined by the number of items which are put to and taken from the stack.
This optimization can be directly applied to additional aspect specific bytecode
instructions. We only have to add the implementations of the instructions for
the different stack states. Because stack caching is independent of the specific
semantics of bytecode it is not possible to further exploit this optimization for
OT specifics. The concept of caching in general is however useful in various
other situations of OT-program execution, as demonstrated in Section 5.3.

5.4.3 Quick Instructions

Quick instructions are introduced in Section 2.2.3. They target instructions
which involve complex initializations, like constant pool resolving of fields,
methods, or classes. As the results of this initializations do not change during
the ongoing execution of the program, they only need to be performed when
an instruction is executed for the first time. As we propose to add aspect-
specific bytecode instructions, we need to investigate which OT functionality
involves initializations and could benefit from quickening. In addition to the
OT-specific bytecode instructions introduced in this work, we also consider the
team activation and the lifting mechanism, which could potentially be realized
by additional bytecode instructions.
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Team Activation At least if the activation infrastructure (see Sec. 4.3.1) is
located at the base class, the first time a team instance is registered at a base
class an initialization of the data structures is required. In our implementa-
tion this is done by the method assignTAI, which ensures that a base class
also “inherits“ team instances activated for its super classes, as described in
Section 6.2.1. This initialization only needs to be performed the first time a
team is added to a base class. Thus, if team registration is implemented as a
bytecode instruction, the quick variant can omit the initialization.

Team Lookup When executing an adapted base method the currently active
teams need to be looked up. As preparation, it can again be necessary to firstly
initialize the activation infrastructure. Thus, before the bytecode instruction
nextaspect (see Sec. 4.3.3) can be used, the activation infrastructure needs
to be initialized, to ensure that a team activation is also passed to sub base
classes. As this instruction returns the next active aspect of the current base
class, this initialization only has to be performed once. Thus, we can implement
a nextaspect_quick instruction without the initialization.

Consider Callins When an adapted base method is called and a team class is
considered for defining aspect functionality for the first time, we need to lookup
every aspect binding defined in the team class for the current base method.
Again, this information does not change later on and succeeding executions of
the code implementing the handling of a team class can reuse it when replaced
by a quick variant. This can also be applied to the invokeaspects instruction,
which we introduced in Section 4.3.3.

Lifting If we realize lifting as a bytecode instruction, we can optimize it with
a quick variant as well. The initial execution of a LIFT instruction can involve
the creation of a role object. Any further execution can then be sure that a
proper role object exists and thus be replaced by a quick variant that just looks
up the role objects. This assumption is true except for the case that a role
object has been removed by unregisterRole (see Sec. 5.3.2). In this case, we
have to ensure that either the bytecode instruction has to be restored to the
original version, or at least that a new role object is created.

5.4.4 Discussion

Conventional optimizations can be applied by classical compilers as well as by
just-in-time compilers (see Sec. 2.2.3) inside a virtual machine. Examples for
such optimizations are the reduction of dynamic method lookup (see Sec. 2.2.3
(Optimized Method Invocation)), the caching of values, which are (potentially)
used multiple times, the re-layout of code, or the optimization of loops.



78 Semantic Information for Optimization

Normally, these optimizations need certain information about the program
or data flow, often incorporating complex analysis techniques. Examples for
information provided by such analyses are:

� A variable is never aliased (for code reordering and constant propagation).

� A virtual method is not redefined in a subclass (to avoid dynamic lookup).

� An object is local to a method (for allocation on stack).

It has to be investigated, whether the application potential of conventional
optimizations can be extended if the input from the aspect-specific semantic
information is taken into account. Maybe, the complexity of analyses neces-
sary for applying such optimizations can be reduced because some conditions
inherently apply for aspect-specific parts of the code. However, this is not in
the scope of this thesis.

5.5 Summary

In this chapter, we investigated how the overhead provoked by the additional
abstraction mechanisms of AOP can be reduced by taking aspect-specific se-
mantic information into account. After analyzing the characteristics of abstrac-
tion mechanisms in high-level programming languages, we identified aspect-
specific semantic conditions of AOP in general and of ObjectTeams in par-
ticular. Moreover, we developed a number of optimizations for ObjectTeams
that utilize these semantic conditions. We proposed to use a cache to avoid
the overhead of dynamically looking up the base method during a base-call
of a replace-callin. Furthermore, we introduced a caching mechanism for role
objects in order to optimize the lifting of base objects during aspect execution.
We analyzed possible lifting scenarios in order to optimally design the structure
and the validation method of the role cache. Finally, we discussed how exist-
ing optimizations, like quick instructions, can profit from the aspect-specific
semantic information.
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We implemented the optimizations we developed in Chapter 4 and Chapter 5
as extensions to the virtual machine JamVM [Lou] (cf. 2.2.4). For every op-
timization, we incrementally adapted the weaving component of OT/J to use
our new VM-internal mechanisms. With this approach, we are able to sustain
the full functional range of the OT/J language at any time.

In this chapter, we start by outlining important characteristics of the imple-
mentation of the toolchain that we use as basis for implementing our optimiza-
tions. Thereby, we address the JamVM as well as the implementation of OT/J.
Afterwards, we describe the prototypical implementation of our optimizations
for aspect activation (Sec. 6.2) and aspect execution (Sec. 6.3). Finally, in
Section 6.4, we present details of our implementation of the delegation proxy
approach.

6.1 Toolchain Implementation

As motivated in Section 2.2.4, we selected the JamVM [Lou] as basis for im-
plementing our optimizations. We used the latest version, namely version
1.5.4. The JamVM provides an efficient mechanism to access internal data
and functions like class loading and reflection. At the Java-side, a class with
native method declarations serves as an interface. Calls to these internal na-
tive methods are directly forwarded to implementations in the VM code. This
is comparable to JNI (Java Native Interface), with a little less overhead and
without dynamic libraries. We can exploit this mechanism to make new aspect-
specific functionality available to the Java code, thus integrating it with the
existing aspect execution mechanism.

The Object Teams Run-time Environment (OTRE) is responsible for aspect
weaving in the OT/J programming language. As described in Section 2.1.3, the
base code is transformed at class loading time and subsequently executed by the
JVM. The OTRE works together with any standard JVM. Typically, the Sun
JVM is used, which is not suitable for small devices because it is too large. We
chose an adequate JVM implementation, namely the JamVM (cf. Sec. 2.2.4),
which we connected to the OTRE. This configuration provides a basis for
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our optimizations to be implemented in the VM. This approach facilitates a
direct comparison with the original OT/J implementation, allowing a precise
measurement of the performance improvement. Furthermore, we can add our
optimizations incrementally, while at any time sustaining the full functional
range of the OT/J language for benchmarking.

The JamVM does not directly support the load-time weaving mechanism
of OT/J, which uses the JPLIS API of the java.lang.instrument package.
To facilitate the transformation of bytecode with the OTRE when executing
an application with the JamVM, we had to slightly adapt the regular toolchain
configuration. To this end, we use OTEquinox [HM07, HHP06, Her10] which
is an integration of OT/J into the Eclipse Equinox framework. OTEquinox has
actually been developed to support the aspect-oriented adaptation of Eclipse
plug-ins with OT/J mechanisms. It uses an alternative mechanism to transfer
loaded classes to the OTRE that is compatible with the JamVM. With this
configuration, OT applications need to be encapsulated in Eclipse plug-ins.
This produces a certain overhead that is mainly relevant for the startup phase.
Note that this workaround is only necessary until the complete functionality
of the OTRE is taken over by our adapted JamVM.

6.2 Optimized Aspect Activation

As we described in Chapter 4, in order to optimize the execution time of aspect
activation, we developed a VM-internal mechanism for aspect registration (see
Sec. 4.3.1) as well as a native team activation mechanism (see Sec. 4.3.2). In
this section, we present the implementation of these optimizations.

6.2.1 VM-internal Activation Infrastructure

In [H0̈6], we identified (implicit) team activation as a significant element for the
overhead of OT/J program execution. Hence, as first optimization, we have
chosen the team activation infrastructure (TAI), as described in Section 4.3.1.
We start by describing our realization of the VM-internal activation infras-
tructure, and afterwards outline our implementation of the activation cache.
Furthermore, we detail our realization of the inheritance of the team activation
infrastructure, which is necessary to maintain the correct inheritance of active
aspects to subclasses.

Team Activation Infrastructure at VM-Level

In a first step, we moved the team registration mechanism to the VM-level.
The data structure representing a class inside the JamVM was extended by a
reference to the newly introduced registration data structure. In contrast to
the previous weaving strategy of OT/J, now every class has this structure.
Initially, this causes a very small overhead (20 bytes on x86 architecture). Only
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Figure 6.1: Adding and Removing Teams

if a class is actually adapted by an aspect (team), advanced initialization and
memory allocation take place.

To integrate the new data structures with the remaining aspect execution
mechanism of OT/J at bytecode-level, we provide an interface for adding and
removing team instances to/from a base class. Additional functionality to
access the array of active team instances is necessary because the remaining
aspect execution mechanism resides at bytecode-level at this stage of opti-
mization. We were able to adopt the native interface provided by the JamVM
(see 6.1) to implement the interface for the team registration mechanism. Fi-
nally, we adapted the weaving strategy of the OTRE to use the new VM-
internal mechanism.

Cache for Implicit Team Activation

Next, we implemented a caching mechanism for team activation. Our cache is
used to optimize the consecutive activation and deactivation of the same team
instance. As argued in Section 4.3.1, this is a typical execution pattern in the
event of implicit team activation.

As described in Section 2.1.3, the activation semantics of OT specifies that
teams which are activated at last, have to be processed at first. The latest
activated team is thus added at the front of the activation infrastructure, as
illustrated by the first two rows of Figure 6.1 (addTeam(t4)). If a team is to
be removed in the event of a deactivation, the TAI is searched for this team
and it is removed. Then, the remaining team instances are moved in memory
to guarantee the alignment of the TAI entries. This is shown in the lower part
of Figure 6.1 (removeTeam(t2)).

However, if a team is removed again before any other activation is accom-
plished, this team is still at the beginning of the TAI. In this case, as illustrated
by Figure 6.2 (removeTeam(t3)), our caching mechanism is applied. No team
is removed and no entries need to be moved in memory. Instead, we just in-
crease the start index (start_index) and decrease the counter of active aspects
(aspect_count) of the TAI. When the next team is added (addTeam(t4)), it
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Figure 6.2: Caching Mechanism for the latest activated Team Instance

simply overwrites the afore removed one (t3) and the start index and the
aspect counter are adjusted.

This cache stores the previous state of the activation structure when a new
team instance is added to a base class. If the same team instance is removed
again, before any other ’add’ or ’remove’ operation is performed on the same
base class, the cache is written back to the corresponding activation structure.
Thus, no team instances have to be moved in memory.

Initially, we proposed to use a global cache that only stores the activation
state of a single adapted base class, which is written back to the correspond-
ing activation structure if the same team instanced is directly removed again
(cf. [HG09]). However, in the mean time, we discovered that it is more reason-
able to directly restore the activation state. Thus, we do not need any extra
cache structure and the caching mechanism works for an arbitrary number of
adapted base classes.

Inheritance of the Team Activation Infrastructure

To maintain the correct inheritance of active aspects to subclasses of an adapted
base class, we have to implement the sharing of the team activation infrastruc-
ture among base class hierarchies. As described above, every class features a
TAI, which is uninitialized at the start. The TAI of a base class BC has to
be assigned before it is used for the first time. This happens a) during team
activation, when a team is added to BC, or b) during aspect execution, when
teams are looked up for BC. Note that b) occurs when teams have been added
to a super class of BC only.

When assigning the TAI of a base class BC, we need to check whether a
bound super class SBC exists. If this is the case, we redirect the TAI reference
of BC to the TAI of SBC. Thereby, the TAI of SBC might be uninitialized, as
well. In this case, we first initialize the TAI of SBC and then redirect the TAI
of BC to it. If no bound super class exists, we assign a freshly initialized TAI
to BC.
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The algorithm we developed to realize the inheritance of the TAI is illus-
trated by the flowchart in Figure 6.3. Initialized TAIs of super classes can be
detected by navigating the super link of a class in a loop. Bound super classes
with uninitialized TAIs are more difficult to find. To enable this, we maintain
a VM-global list of adapted base classes (adaptedBases). When a team class
is loaded which adapts a base class BC, the name of BC is added to the list.
When initializing the TAI of a base class, it is removed from the list. Thus, if
we find the name of a super class in the list, we know that it is a bound super
class whose TAI is yet uninitialized. Note that the variable adaptedSBC in
Figure 6.3 points to the uppermost bound base class (if there is one) after the
loop. Thus, we can be sure that the TAI of the base class BC is directly redi-
rected to the root of bound base classes. Potentially uninitialized base classes
that lay in between (regarding the class hierarchy) will be assigned when their
TAI is used for the first time (see above). Here, another option would be to
collect the classes in between and immediately redirect their TAIs to the TAI
of the uppermost bound base class.

6.2.2 Native Activation Mechanism

As described in Section 4.3.2, we decided to implement the team activation as
native VM methods. To integrate the corresponding team class fields into the
teams’ VM-internal representation, we created a teamdata structure holding
the required hash maps, booleans and object locks. Now, every team object
structure contains a reference to its teamdata, which can only be accessed
from inside the VM. Likewise, a VM-global array for globally activated teams
had to be added. Also, we had to intervene in the VM’s thread handling to
deactivate teams for ended threads and to activate globally active teams for
all newly started threads. After that, we implemented the team activation
methods analogously to the way it was done in the original Java Team class. A
significant optimization we made affected the handling of the base class’ map
for activated threads. If a team gets deactivated for a single thread, now the
hash map gets rearranged in case that the thread was involved in a collision
before. Thus, we gain speed whenever the map is checked for an activated
thread, which affects all native activation methods.

6.3 Optimized Aspect Execution

To improve aspect execution, we optimized the team lookup and the dynamic
role dispatch. We introduced special bytecode instructions and implemented
a cache for the recently used role object.
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6.3.1 Bytecode Instructions for Aspect Dispatch

As described in Section 4.3.3, with a VM-level team activation infrastructure a
further optimization stands to reason: Instead of returning an array of all active
team instances, we can now adapt the VM to return only the one team instance
needed for the current aspect execution. The iteration over the active teams
is then done at the VM-level. To this end, we created the two new opcodes
getaspects and nextaspect, to replace the original Java method calls, used
to work on the base class’ team list. They work on a new VM-internal data
structure, the aspect iterator, which keeps track of the aspects to be executed.
At the initial call of a base method the new bytecode instruction getaspects

creates and returns the aspect iterator. Subsequently, nextaspect gets the
iterator and returns the next team ID and next team instance.

Because of recursion and concurrency the aspect iterator has to exist per
(base) method call. Hence, a base class can have several active aspect iterators
at a time. That is why we decided to pass the iterator via the current operand
stack, instead of directly connecting it to the base class itself. Furthermore, the
possibility of activation or deactivation of team instances during the execution
of a base method makes it necessary to copy the active aspects data structure
for every base method call.

The data flow between the new opcodes and the aspect iterator is demon-
strated in a simplified example for the execution of a base method with before-
callins in Figure 6.4. When a base class checks for active aspects, getaspects
is executed first. In step 1.1, the opcode takes a base class reference from
the actual operand stack in order to initialize an aspect iterator. The iterator
contains an array with all teams that are active for some thread and relevant
for the base class (cf. TAI in 6.2.1). As shown in step 1.2, this array is taken
from the VM-internal base class structure, which was extended by this array
in the previous optimizations, mentioned above. It is copied to ensure that
the activated roles of the base class do not change during the base method
call. Furthermore, the aspect iterator holds an index counter, which is used to
traverse the team array. After initialization, the aspect iterator is put on top
of the stack (see 1.3).

The teams, stored in the aspect iterator, can be accessed through the
nextaspect opcode. When the VM executes nextaspect, it takes an aspect
iterator reference from the stack (see step 2.1). Afterwards, in step 2.2, it
traverses the aspect iterator’s team array and checks each team for thread-local
activity by using the native methods, as discussed in the previous section. If
a local-active team is found, a reference to it and its team ID is put atop of
the stack (see step 2.3). Also, the index of the following team is stored in
the aspect iterator’s index counter to state where the lookup has to begin for
the next nextaspect call. After the execution of the nextaspect opcode has
finished, the returned team can be handled.

This procedure can be repeated by following step 4 to cover all teams
adapting the base method call. If the end of the team array is reached during
a nextaspect call, a null reference is put on the stack and the aspect iterator
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Figure 6.4: Aspect Dispatch with new Bytecode Instructions

is destroyed (see step 3). However, the real integration of the new opcodes into
the base class’ bytecode is more sophisticated than we showed in the example.
For example, in our implementation, we use a recursive structure instead of a
simple loop. By doing this, we achieve a more efficient coverage for all kinds
of callins at once.

As an additional optimization, we implemented a lazy copying mechanism
for the active aspects data structure of the aspect iterator. As long as no team
activation or deactivation occurs for a given base class, copying the active
aspects data structure can be avoided. Instead, the aspect iterator works on
a reference to the original array until the activation status of a team, which is
related to the base class, changes. In this case, the aspect iterator gets a copy
of the active aspects before it is modified.

6.3.2 Callin Execution inside the JVM

As described in Section 4.3.4, we introduce the new bytecode instruction
invokeaspects to shift the callin execution mechanism into the JVM. We
realized this in the context of [Stö10], which comprehensively describes this
optimization. Here, we only detail the implementation of the interpreter rou-
tine for invokeaspcts.

The OTRE generates invokeaspects bytecode into the wrapper methods
of adapted base methods and for the base-calls of replace-callins. The al-
gorithm we used to process the invokeaspects instruction is illustrated in
Listing 6.1. The function invokeAspect receives an aspect iterator which we
already introduced in Section 6.3.1. In addition to the list of active team in-
stances the aspect iterator now maintains the arguments and the result of the
base method call, as well as some indices needed for the algorithm. While
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executing the different kinds of callins, the algorithm is called recursively for
each active team instance as well as to realize base-calls of replace-callins.

The calling_replace_index in Line 2 is used to differentiate between
calls of invokeaspects which have been directly initiated by an adapted base
method and those originating from base-calls of replace-callins. In the latter
case, only the next replace-callin of the currently processed team instance is
processed. The structure of the algorithm mainly resembles the base method
wrapper implementation of the original OTRE. Initially, we check if all team
instances have been processed in Line 4. In this case, the aspect execution is
finished and the original base method is executed. Otherwise, as introduced
in Section 4.3.4, we apply the lazy mechanism for assigning the binding infor-
mation of the current team to the executed base method (see Line 10-12).

Listing 6.1: Algorithm for invokeaspects (Origin: [Stö10])

1 void invokeAspects ( Aspec t I t e r a to r ∗ a i ) {
2 int c a l l i n g r e p l a c e i n d e x = a i−>r e p l a c e i n d e x ;
3

4 i f ( a i−>cu r r en t index >= a i−>a spec t s−>aspec t s count ) {
5 . . . // execu te base method
6 return ;
7 }
8

9 // teams c a l l i n s not in p l ace −> l a z y lookup mechanism
10 i f ( l i s t o f team ’ s c a l l i n s does not e x i s t ) {
11 . . . // lookup c a l l i n s in team a t t r i b u t e s
12 }
13

14 i f ( a i−>c a l l i n g r e p l a c e i n d e x == 0) {
15 . . . // execute be f o r e c a l l i n s f o r ac tua l team
16 }
17

18 i f ( r e p l a c e c a l l i n s are l e f t ) {
19 a i−>r e p l a c e i n d e x++;
20 . . . // execute next r e p l a c e c a l l i n f o r ac tua l team
21 } e l s e {
22 a i−>cur r en t index++;
23 a i−>r ep la ce index −−;
24 invokeAspects ( a i ) ;
25 }
26

27 i f ( c a l l i n g r e p l a c e i n d e x == 0) {
28 . . . // execute a f t e r c a l l i n s f o r ac tua l team
29 }
30 }

Next, the actual execution of the callins defined for the current team is
initiated. We begin with the execution of the before-callins (see Line 15). As
described above, this step is guarded by the calling_replace_index, which
is equal to zero for regular invocations.

Starting with Line 18, the replace-callins are processed. The aspect iter-
ator’s replace_index is incremented to indicate that the algorithm is now
in the mode of only executing replace-callins. Next, the role method of the
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replace-callin is called. If this contains a base-call, invokeAspects is re-
called recursively. If no replace-callins are left (see Line 21), the iterator’s
index (current_index) is incremented to point to the next active team. The
replace_index is reset and invokeAspects is recursively called to process
the callins of the next active team instance. After returning from the recursive
calls for processing the replace-callins, the after-callins are executed in Line 28.

6.3.3 Role Object Caching

As described in Section 5.3.2, we implemented a single role cache per base
object to optimize the execution time for base object lifting. This cache had
to be integrated into the existing lifting process of OT/J. When an object is
allocated, we do not want to make any assumptions whether it will eventually
be adapted and thus becomes a base object. This also facilitates dynamic
aspect weaving (see 2.1.2). Hence, we integrated the cache into the general
object layout of the VM. Initially, we do not allocate any memory, but set the
field to NULL. The allocation takes place when the cache is used the first time.
So, the overhead for normal objects is minimal (size of a pointer, e.g., 4 bytes
on 32 bit architectures).

In addition to the cached role object, the cache data structure stores the
qualified role class name (including the team class name) and the associated
team instance. This information is necessary for cache validation, which first
checks the role and team class name and afterwards compares the team in-
stances, as argued in Section 5.3.2.

The corresponding data structure has the following form:

1 /∗ The RoleCache i s used to s t o r e the l a s t r o l e ∗/
2 /∗ to which a base o b j e c t has been l i f t e d . ∗/
3 typedef struct r o l e c a c h e {
4 Object ∗ cached ro l e ;
5 char ∗ r o l e c l a s s n a m e ;
6 Object ∗ team instance ;
7 } RoleCache ;

Garbage Collection Issues

The reference to the cached role points to a Java object, which resides inside the
heap. When the garbage collector compacts the heap, it modifies the addresses
of objects inside the heap. In the process, the Java references to the moved
objects are updated to point to the new addresses. Garbage collection is a
challenge for our role cache, as the native reference to the cached role in the
RoleCache structure is not part of the heap and will thus not be automatically
updated. To prevent the role reference from becoming invalid, we have to
register this object reference from outside the heap with the garbage collector
by calling the JamVM-internal function registerStaticObjectRef.
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Figure 6.5: Delegation Proxy Layout

Integration into the Lifting Process

To grant the lifting process access to the role cache, we introduced native
interface methods for storing and retrieving the cached role. To integrate the
role cache with the lifting process of OT, it has to be used at every lifting site.
The role cache could be checked before every call of the lifting method, but in
this case, the many places where this can happen have to be located (lifting call
targets/parameters at callin, lifting objects at assignment). A simpler way of
integration is to adjust the lifting method itself. The generation of the lifting
method is done when a team class is compiled. So, to integrate the usage of
our role cache, we adapted the code generation of the OT/J compiler. Before a
role is created or looked up in the team-internal data structures, our role cache
is consulted. If the cache contains a valid role object, it is instantly returned.
Otherwise, the original functionality of the lifting method is executed. In this
case, the calculated role object is stored in the role cache before it is returned.

If a role has been removed from a team instance by calling the API method
unregisterRole(Object aRole), a subsequent lifting request causes the cre-
ation of a new role object. In this case, the cached role object must be removed.
In our current implementation, the unregistration method had been adapted
to set the cached role of the affected base object to NULL. This is an over-
approximation because the actual cached role object may also be independent
of the removed one. In return, it is very efficient because it does not involve
any additional check.

6.4 Delegation Proxy Approach

In Section 4.4, we introduced our approach to realize aspect deployment and
execution with dynamically activatable delegation proxies. Here, we further
describe the implementation details of this approach, which we prototypically
integrated (cf. [Bis10]) into the JamVM (JamVM/OTRun).

The layout of the delegation proxy is illustrated in Figure 6.5. It is a se-
quence of three opcodes: an INTRO entry is followed by two DEL_PROXY entries.
The INTRO instruction initializes additional stack frame entries needed to pro-
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Figure 6.6: Looking up relevant callins

cess the callin execution. If no team instance is active the INTRO entry triggers
a fall-through to the original base method code, causing no extra overhead.

The two DEL_PROXY opcodes are responsible for the actual aspect dispatch.
The difference between the two variants lies in the handling of return val-
ues. In Object Teams, replace-callins can change (replace) the return value of
their base method. After- and before-callins, in contrast, are purely additive.
Thus, potential results of the bound role methods are ignored. The first one
DEL_PROXY_1 is the return address for calls which may influence the return
value of the called base method. This is the case for the original base method
as well as for replace-callins. The second entry DEL_PROXY_2 handles control
flow returning from after and before-callins. In addition, base-calls return to
this entry.

The DEL_PROXY opcodes are responsible for the execution of the callins of
every team instance which is active when the base method is called. This
comprises two tasks:

1. The lookup of the relevant callins of the next active team instance

2. The orderly execution of the relevant callins in a switch statement

The lookup of the relevant callins (1.) is illustrated in Figure 6.6. Team
classes contain a CallinTable with entries (CallinData) for every base method
adapted by their roles. A CallinData entry contains all information about the
callins to be executed. This includes the execution order and the lifting of the
base object to proper role objects. To lookup the CallinData of the next
active team instance (t4), the CallinTable of the corresponding team class
(T4) is consulted. Our approach facilitates a very efficient access. Every base
method has a unique ID CallinID used to directly access the CallinData of
every relevant team class. To ensure this, some effort is put in the construction
of the CallinTables, which are expanded and rearranged if necessary.

The callin execution by the delegation proxy is illustrated in Figure 6.7.
In a switch statement, the entries of the current CallinData are executed. A
typical sequence is shown in the CallinData for team instance t4. First, the
base object is lifted (L) to the proper role object. Next, a before-callin (B) is
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executed. Afterwards, a replace-callin (R) with base-call is executed. Now, we
descend to the next team instance (↓). When the control flow returns from this
instance, the base object is again lifted (L) and an after-callin (A) is executed.
Finally, we ascend (↑) to the previous team instance.

The integration into the JVM is minimal-invasive, and is mainly restricted
to the following parts.

� The class loading mechanism has been adapted to integrate the analysis
of the binding information, and to create and initialize the additional
data structures.

� Some VM-internal data structure like the stack frame and the method
block have been enhanced.

� The interpreter has been adapted to facilitate infrastructure weaving
when executing the invokevirtual instruction.

Note that in contrast to the implementations of the optimizations presented
in Section 6.2 and 6.3, we implemented the delegation proxy approach in a
separate branch. This is due to the fact that here, our focus is the complete
integration of aspect dispatch into the JVM and the enhanced runtime flexi-
bility. Thereby, we completely restructured the aspect execution mechanism.
The resulting prototype realizes efficient dynamic aspect deployment but yet
does not support the full scope of the OT/J language. In future work, we plan
to integrate the two implementation branches.

Dynamic OT Experiment

To evaluate the delegation proxy’s capability for dynamically adding (and re-
moving) new aspects at runtime, we implemented a prototypical dynamic AOP
component. Figure 6.8 gives an overview of our experimental configuration.
We added the VM flag -dynamicOT to the JamVM. If this flag is set, a dy-
namic AOP server (DynAOPServer) is started. This server offers an interface
to add, activate and deactivate new aspects/teams to the running application.
In addition, we implemented an AspectManager UI tool, illustrated by the
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Figure 6.8: Dynamic OT Experiment

screen shot in the upper right of Figure 6.8. The aspect manager commu-
nicates via RMI with the dynamic AOP server. We are able to choose new
team classes and add them to the application, as shown in the right side of
the aspect manager’s UI. Afterwards, new instances of these team classes can
be created, activated and deactivated (see left side of the UI). Note that the
aspect manager can be started on demand anytime, after the application has
been started with the -dynamicOT flag.

We used our prototype to evaluate the dynamic capabilities of the dele-
gation proxy approach with a simple OT application. The program output
is shown in the Console Output in Figure 6.8. An initially unadapted base
method is called in an endless loop, producing the output “bm() called from
thread...”. Then, a team with an adapting role method is dynamically added
and activated. The program output shows that the callin is executed. After
every base method call, we see the output“rm() called“. Deactivating the team
instance again results in the original output of the unadapted base method.

This experiment demonstrates that the delegation proxy approach brings in
the dynamical addition, activation and deactivation of new (unknown) aspects
at runtime. Thus, we could substantially enhance the dynamic capabilities of
ObjectTeams.



6.5 Summary 93

6.5 Summary

In this chapter, we presented our implementation of the optimizations of as-
pect activation and aspect execution, which we introduced in Chapter 4 and 5.
For example, we illustrated details of our caching mechanism for implicit team
activation as well as of our realization of the inheritance of active teams to
sub classes. Furthermore, we described our implementation of the additional
bytecode instructions for team lookup (getaspects and nextaspect) and for
callin execution (invokeaspects). In terms of our role cache realization, we
also discussed garbage collecting issues and the integration into the lifting
process. For the delegation proxy approach, we detailed the processes of look-
ing up relevant callins and of executing callins from a number of active team
instances. Finally, we presented an experiment that confirms the delegation
proxy’s capability for dynamic aspect deployment.





7 Evaluation of the Approach

In this chapter, we evaluate our approach and demonstrate the benefit of our
optimizations. In order to assess the effect of our optimizations, we used differ-
ent kinds of programs. We executed micro-benchmarks to measure the benefit
for isolated AOP mechanisms, as aspect activation or aspect execution. The
results of our experiments are presented in Section 7.2. However, the improve-
ment for real-world applications depends on to what extent the optimized AOP
mechanisms are used in the overall program. For this reason, we further eval-
uated our optimizations with a case study presented in Section 7.3. There, we
executed the game application OTPong and measured the execution time of
updating the game’s view. Finally, in Section 7.4, we discuss the transferabil-
ity of our approach to other VM implementations on the one hand, and other
AOP languages on the other hand. Before we present our experimental results,
we start this chapter by discussing the parameters and the general set-up of
our benchmarks in Section 7.1.

7.1 Benchmarking Issues

In this section, we discuss the set-up of our benchmarks and experiments. We
outline relevant facts regarding benchmarks for Java in general and AOP in
particular. Finally, we specify the general set-up of the experiments we carried
out to evaluate our approach.

7.1.1 Benchmarking for Java

There are some issues which have to be considered when benchmarking Java
programs. [Boy08] discusses these factors in detail. As ObjectTeams is based
upon Java, we need to consider all the factors that influence the benchmarking
of Java programs. In the following, we summarize the most important influence
factors together with our effort to cope with them.

95
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Warmup Phase Usually, we are interested in the steady-state performance
when benchmarking Java code. That is, we have to avoid the influence of
startup and initialization tasks like class loading or method preparation. For
this, we accomplish a warmup phase before the measurement of our bench-
marks takes place. In this phase, we complete the creation of participating
objects, including the initialization of teams. Moreover, we perform initial
activations and subsequent deactivations of participating team instances. Fi-
nally, the methods called during the benchmark are initially executed a number
of times before we start the measurement.

Resource Reclamation The results of a benchmark can also be affected by
the current memory workload. To minimize this influence, we run each bench-
mark in a freshly started JVM instance.

Data Set Size Due to CPU caching, the size of the used data sets can affect
the results of the benchmarks. To cope with this factor, we use different
data sets, varying the number of active team instances, the number of callin
bindings, and the number of active threads.

Preparation To avoid the effect of power management and other running
programs, we stopped all other programs including the X window system and
executed the benchmarks in a linux console.

Numerical Issues In order to achieve meaningful results, the figures we
present in our benchmark results are the arithmetical mean of 10 runs. As
recommended by [Boy08], we use the Java API method System.nanoTime()

instead of System.currentTimeMillis() because of its higher resolution.

7.1.2 Benchmarking for AOP languages

For Java and the JVM, there exist standardized benchmark suites such as
JavaGrande [Jav] or SPECjvm2008 [SPE]. For AOP languages the situation is
different. As stated in Section 2.1.1, there is a large number of existing AOP
approaches. Most of the performance evaluation for AOP has been done for
the AspectJ language [ajH]. Of course, for most of the other existing AOP
languages, individual benchmarks have been published, but the comparability
among the different approaches is limited. Often only a comparison to AspectJ
is done. This is due to the fact that even the common AOP mechanisms like
binding an aspect method to a base method are expressed differently in most
of the approaches. Thus, a general benchmark suite for AOP would have to
provide many different versions of the benchmark programs.

At least for AspectJ, some attempts of preparing a benchmark suite do
exist. [Asp] contains AspectJ programs from different application domains, like
a product line for related graph algorithms and a variant of the arcade game
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Tetris. [AOP] describes micro-benchmarks that are executed with different
AOP languages to compare their performance. Most of them could be ported
to an OT/J implementation but as the analyzed languages do not support the
concepts of roles or team activation, they are only partly applicable to evaluate
our approach.

As a consequence, we decided to use our own micro-benchmarks for evalu-
ating the effect of our optimizations on the different AOP mechanisms. [HM04]
presents a micro-measurement catalog for dynamic AOP languages. According
to their suggestions, we perform the following micro-benchmarks to evaluate
the performance benefits of our approach. On the one hand, we measure the
cost of dynamic aspect activation in different contexts. On the other hand, we
evaluate the cost of executing base methods which are:

1. unadapted

2. adapted (after, before, replace bindings)

3. only adapted in other threads

Also important in this regard is the distributed fat of the different AOP
mechanisms. This is the inherent overhead of a language feature, when it is
not used. In an optimal setting, this overhead is zero. This motivates the zero-
overhead principle: ”what you don’t use, you don’t pay for” [Str94, p. 121].
Thus, an ObjectTeams program that only uses regular Java features should
execute as fast as if it is executed with a regular Java execution environment.
But also if OT/J specific mechanisms are used in a program, this should not
influence the performance of parts that do not use them. For OT/J, this means
that the execution time of methods that are not adapted by aspects should
not degrade. In this regard, we also have to consider the dynamic activation
state of aspects and minimize the overhead of inactive aspects. We analyze
the distributed fat of OT/J for method execution in Section 7.2.7.

7.1.3 Experimental Set-up

In this section, we describe the general set-up of our experiments. We start
by describing the toolchain we used to build, configure and execute our bench-
marks. Furthermore, we discuss how we measure the execution time and spec-
ify the configuration of the machine we use to run our experiments.

As discussed in Section 6.1, the JamVM does not support the JPLlS-based
weaving mechanism of ObjectTeams. Thus, we use OTEquinox to execute
our benchmark programs. Figure 7.1 gives an overview of our benchmarking
toolchain. To enable the use of OTEquinox, we wrap our benchmark programs
inside an Eclipse Plugin (BMPlugin). In this plugin, we also define an Eclipse
Application in order to enable the execution of our benchmarks from outside
the Eclipse IDE. This is necessary because we want to prevent any influence
of running programs on our results.
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Figure 7.1: Benchmark Execution Toolchain

In our experiments, we want to identify the effects of each individual opti-
mization. Thus, we need to maintain different versions of the JamVM, where
each supports a particular subset of our optimizations. At the right of Fig-
ure 7.1, JamVM RC stands for a VM version with enabled role cache, while
in JamVM InvA the invokeaspects instruction is supported. In addition,
we also had to compile and export different versions of the benchmark plugin
because some optimizations require the compiler to generate different code.
Hence, in the plugin BMPluginRC of Figure 7.1, the lifting methods of teams
are implemented to use our role cache.

The scripts (BM Scripts) we used to automate the execution of the bench-
marks are designed to perform the independent execution of each benchmark
with different optimizations enabled. We use runtime properties to configure
the parameters of each benchmark run. For example, the number of active
team instances or the number of involved threads can be varied. Also the
name of the benchmark to execute (BM name) is passed via a runtime prop-
erty. This way, we can combine all benchmark programs in a single BMPlugin.
To execute an individual benchmark, the scripts run the application and pass
all the necessary parameters. The application starts the benchmark by calling
the main method of the corresponding benchmark via reflection. During class
loading, OTEquinox induces the necessary bytecode weaving performed by an
adapted version of the OTRE. Finally, the benchmark code is executed by the
designated JamVM version.

Our benchmarks are measuring the execution time of selected code parts. In
Section 7.2, we describe the experimental results of executing micro-benchmarks
that are constructed to individually measure the execution time of selected
AOP mechanisms. In Section 7.3, we furthermore evaluate the execution of a
real application. To measure the execution time, we used the Java API method
System.namoTime(), as illustrated in Listing 7.1.

The time is measured before and after the statements we want to evaluate.
The elapsed time is calculated by subtracting the before-time from the after-
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Listing 7.1: Execution Time Measurement

1 // exexu te warmup phase
2 long tBe fo re = System . nanoTime ( ) ;
3 // execu te code to benchmark
4 long e lapsed = ( System . nanoTime()− tBe fo re )/1000000L ;

time. Thus, the startup overhead of using OTEquinox is excluded because we
do not start our measurement until the application has already been started.
However, with OTEquinox much more eclipse-specific classes are loaded be-
fore the actual benchmark code is executed, but we do not expect that the
number of loaded classes has any influence on the execution performance of
our benchmarks.

We performed each benchmark for each optimization multiple times and
took the arithmetic mean of 10 runs as result for our charts. Finally, we bench-
marked all optimizations together in Section 7.2.6. We executed the bench-
marks on a desktop PC with an Intel Core2 Duo processor with 2.93GHz and
2GB RAM using the linux kernel version 2.6.32. As our approach aims at en-
abling the use of AOP mechanisms in the context of embedded mobile systems,
we furthermore executed the benchmarks on Openmoko’s Linux-based smart
phone FreeRunner [Fre], which features a 400Mhz ARM processor, 128MB
SDRAM memory and 256 MB integrated flash memory.

7.2 Evaluation with Micro Benchmarks

In this section, we present the results of evaluating the effect of our optimiza-
tions with several suitable micro benchmarks. As our goal is to reduce the
AOP-specific overhead, each of these benchmarks measures a separate part of
the AOP mechanisms, affected by one of our optimizations. To isolate the
effect of the respective optimization, the involved aspect methods and base
methods have empty bodies. The actual improvement for real-world applica-
tions depends on to what extent the optimized AOP mechanisms are used. In
Sections 7.2.1–7.2.7, we present the results of executing our benchmarks on
the Intel PC and in Section 7.2.8, we validate these results on the ARM-based
smart phone.

In addition to the execution time, we also analyzed the effect on code size.
In general, the size of runtime structures of classes and objects is more relevant
than the woven base bytecode because the latter is only held in memory during
class loading. So, if data fields (e.g., the lists of activated team instances) are
shifted from the bytecode to the runtime structures, this only reduces the
bytecode size. Reducing method code, on the other hand, also leads to smaller
runtime structures. Therefore, we focus on method code when describing the
effect of our optimizations on code size.
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Figure 7.2: Benchmark Results for the Native Activation Infrastructure with one
Bound Base Class per Teams

7.2.1 VM-internal Activation Infrastructure

We measured the benefit of implementing a VM-internal activation infrastruc-
ture (cf. Section 6.2.1) with the following benchmark. A team-level method is
executed 3000 times, causing 3000 implicit team activations and subsequent
deactivations. The corresponding team class contained one role class bound to
a base class. Thus, activating an instance of this team led to registration with
one base class. We varied the number of previously activated team instances
from 0 to 4000. The results of this benchmark are illustrated in Figure 7.2.

The number of active team instances is shown along the x-axis of the dia-
gram. The y-axis represents the consumed time in milliseconds and the table
below the chart illustrates the exact execution time values for the different
configurations. We compared the performance of the original JamVM (Origi-
nal) with the optimization that moves the activation infrastructure to the VM
(TAI ) and with the version with the additional caching mechanism (Caching
mechanism).

Our experimental results show that TAI yields a considerable performance
gain compared to the original JamVM. The execution time is reduced by a
factor of 1.54 for 50 active team instances, by a factor of 2 for 100 instances,
and it further improves the more team instances are activated. Compared to
that, the gain of the caching mechanism is not as impressive for this benchmark.
This result was unexpected because with the cache, we eliminate the need of
team instances being moved around in memory. However, it can be explained
by the fact that array copying is implemented very efficiently inside the JamVM
and leads to a notable overhead only for a very high number of entries. So,
the benefit of the cache becomes more significant when a high number of team
instances is active. While with the cache the execution time stays nearly
constant, for 4000 active team instances, the caching mechanism outperforms
TAI by a factor of 1.7.
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Figure 7.3: Benchmark Results for the Native Activation Infrastructure with three
Bound Base Classes per Team

In addition, we repeated this benchmark with three base classes bound by
the team class. The results are shown in Figure 7.3. Here, the improvement
factor of TAI compared to the original version is even higher: e.g., almost 2
already for 50 active team instances. Note that compared to the activation
cache we presented in [HSG10], the caching mechanism we developed in this
work scales to an arbitrary number of adapted base classes per team.

In addition to the runtime improvement, we significantly reduced the byte-
code size of adapted base classes. Now, the methods for adding and removing
teams are omitted and only once implemented in the VM code. Including code
blocks and constant pool entries, this implies a code reduction by about 800
bytes per adapted base class. Moreover, the wrapper code for every adapted
base method could be reduced by about 90 bytes.

7.2.2 Native Activation Mechanism

To assess the effect of the native activation methods (cf. Section 6.2.2), we
implemented a benchmark that creates a variable number of threads and that
measures the computing time for activating or deactivating 1000 team instances
for every single thread. As we are only interested in the execution time of the
activation methods itself here, the corresponding team class does not define
any aspect bindings. In addition, we also measured the time for the isActive

method while all teams are activated or deactivated.

The left chart in Figure 7.4 shows the results of the native (NTA) and origi-
nal (Original) implementation for an activate and for a subsequent isActive
call, while the right chart shows the same for a deactivate call. The bench-
mark revealed a significant improvement of the execution time for all native
activation methods. As can be seen, the computing time for team activation
has been reduced by more than 80% (factor 5 to 7), and checking active teams
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Figure 7.4: Benchmark Results for Native Team Activation

for activation costs at least 90% less time than before. Deactivating the teams
for all threads is reduced by 93% for 10 threads and by 85% for 50 threads. For
100 threads, the improvement is only 25%. However, this is still a significant
gain and even if the improvement decreases for even more threads, this is not
very problematical, as only a few programs use such high numbers of threads.
Finally, to call the isActive method for deactivated teams takes about 80%
less computing time than before. Corresponding benchmarks for global and
implicit team activation showed that their execution time is improved similarly.

Since this benchmark only measured the performance of isolated team acti-
vation methods, we must still clarify how strong the effect will be on real-world
applications. But even if the activate and deactivate methods are rarely
used, an improvement should be present in every program that uses AOP
because the isActive method is executed once per activated team instance
whenever a base method is called.

7.2.3 Bytecode Instructions for Aspect Dispatch

To measure the optimization gain of the JVM-internal aspect dispatch mech-
anism (cf. Section 6.3.1), we implemented the following benchmarks: The first
one consists of a base class, holding a base method with empty body, and of
a team class, adding an empty aspect method as callin to the base method.
Thus, most of the base method’s computing time is used to perform the newly
implemented bytecode. Initially, 100 team instances are created and activated.
After that, the base method is called 100 times and the computing time from
the first to the last base method call is measured. We compare the execution
of an after-callin with the execution of a replace-callin. The chart shown in
Figure 7.5 compares the results from the original implementation (Original
with the results from the aspect dispatch instructions (AD instr.). With our
optimization, we saved 24% of computing time for the after-callin, and 22%
for the replace-callin.

As we changed the handling of thread-local inactive team instances in this
optimization, we also measure the execution time if the team instances are
(partly) only activated for another than the current thread. The team and base
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Figure 7.5: Benchmark Results for the Aspect Dispatch Instructions

class are defined as above. Again, we define a single replace-callin. 100 team
instances are activated for another thread. In addition, n=[0,1,10,25,50,75,100]
team instances are activated for the current (main) thread. Thus, the values
of n represent the percentage of registered team instances that are actually
active for the thread executing the benchmark. This way, the base class’ array
of active teams is filled with all 100 teams, but when looking for active aspects,
(100-n)% of the teams have to be skipped. The results of this benchmark are
shown in Figure 7.6.

The improvement gets most significant if all team instances are only active
for another thread (n=0). Here, we could reduce the execution time by 89%.
For more thread-local active team instances, this high percentage gradually
degrades to 18% if all teams are also locally active, which conforms to the
results in Figure 7.5. The high performance gain, especially for less thread-
local activated teams, is explained by the new handling of the array for active
teams. In the original implementation, the array is traversed with a recursion
over many Java method calls until the next thread-local active team is found.
In contrast, the nextaspect instruction immediately returns the next team
instance that is active for the current thread.

Note that the latter benchmark represents a kind of distributed fat, as
described in Section 7.1.2 and further benchmarked in Section 7.2.7.
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Figure 7.6: Benchmark results for local inactive teams
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Figure 7.7: Benchmark Results for the ’invokeaspects’ Instruction

With this optimization we reduced the bytecode size of adapted base classes
by about 290 bytes due to redundant constant pool entries. Additionally, the
wrapper code for every adapted base method is reduced by about 100 bytes.

7.2.4 Callin Execution inside the JVM

To evaluate the performance benefit of the new invokeaspects instruction
(cf. Section 6.3.2), we implemented a benchmark measuring the execution time
of a base method that is adapted by different kinds and numbers of callins.
For the first part of the benchmark, we bind the same number of callins of
each type (before, replace, after) to a base method. The callins are all defined
in a single role that adapts the class of the base method. For the benchmark,
we create and activate 20 instances of the role’s surrounding team class. The
base method is called 1000 times. Again, the results are arithmetical means of
10 runs.

As shown by the left chart of Figure 7.7, we compare the execution time
of the original JamVM with the version enhanced with the invokeaspects

instruction. As this optimization depends on optimizations implemented be-
fore, they are also involved in this benchmark. Only the role cache, which is
independent of the other optimizations, is not enabled here. The number of
callins of each type takes the values 1, 5, and 10. We see that this optimization
reduces the execution time by 16% for one callin of each type. For 5 callins
each, the reduction is 13%, and for 10 callins it is 9%. The decreasing per-
formance gain for more callins of each type can be explained as follows: The
actual calls to the aspect methods are not subject to our optimizations and
are thus identical in both versions. The more callins a team is declaring for
a base method, the less optimization potential exists in-between. This in par-
ticular applies to before- or after-callins for the same team, as they are simply
executed one after another.

In the second part of the benchmark, we only use replace-callins. The other
parameters are identical to the first part. The results are illustrated in the right
chart of Figure 7.7. Here, the reduction of the execution time is even higher:
40% for 1 callin, 26% for 5 callins, and 21% for 10 callins. The especially high
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Figure 7.8: Benchmark Results for the Role Cache

performance gain for replace-callins is a result of the following facts: On the one
hand, we replaced the expensive recursive calls of the base method wrappers in
the original version by more efficient VM-internal (C-level) method calls. On
the other hand, we simplified the passing of arguments during aspect and base
method execution by storing them as part of the aspect iterator (cf. Sec. 6.3.2).
Additional performance evaluations of the introduction of the invokeaspects

instruction can be found in the diploma thesis of Daniel Stöhr [Stö10].

The code size of adapted base classes is reduced because the main part of
the wrapper method code is now done by the VM-internal implementation of
invokeaspects. The actual size reduction depends on the number of adapting
teams and role methods. For a single base method that is adapted by one team
class with one (after-) bound role method we save about 600 bytes (including
constant pool entries).

7.2.5 Role Object Caching

Solely measuring the effects of the role cache (cf. Section 6.3.3) on the lifting
mechanism resembles the results of the simulation described in Section 5.3.2.
To evaluate the effect on real aspect execution runtime, we also benchmark
the effect of the cached lifting during a callin execution. A base method is
adapted by an after-callin. It is repetitively called 1000 times, causing a lifting
of the corresponding base object to the involved role object each time. Here,
the cache is always valid. One instance of the adapting team is activated. To
provoke cache misses, another base method that is adapted by a role of another
team class is called in between.

As shown in Figure 7.8, we get an improvement of 40% if the cache is always
valid. If, the cache is valid every second time and every fifth time, respectively,
the execution time does not change. In this cases, the benefit of the role cache
and its overhead when missed seem to cancel each other. In the worst case,
that is if the cache is never valid, the performance decreased by 9%.

In addition, we also repeated the benchmark illustrated in the left side of
Figure 7.7 for the role cache optimization. The results shown in Figure 7.9,
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Figure 7.9: Benchmark Results for Multiple Callins

furthermore comprise the execution with all our optimizations enabled. We
observe that the role cache (Role cache) significantly reduces the execution
time for multiple callins per team. For 5 callins of each type the improvement
is 55% and for 10 callins it is 60%. This can be explained by the fact that
here, many callins to the same role object are executed subsequently. Thus,
the role cache frequently contains a valid role object. Finally, the results also
show that we achieve an even higher performance improvement if we enable
all our optimizations together. In Section 7.2.6 we discuss more benchmark
results for the combined optimizations.

The influence of the role cache optimization on the execution time highly
depends on the concrete design of the executed program. Thus, to avoid the
overhead in case of frequent cache misses, we think it would be worthwhile to
only include the role cache for base objects which are (statically) expected to
be frequently lifted to the same role object.

In contrast to the preceding optimizations, with the role cache the code
size is not reduced. Due to the additional cache access code, this optimization
actually increased the bytecode size by about 56 bytes for every lifting method.

7.2.6 Combining all Optimizations

To evaluate the overall performance gain of our optimizations, we combined
the optimizations presented in the previous sections. One result is already
illustrated by Figure 7.9. With all optimizations (All Opt.) we could reduce
the execution time by 25% for one callin per type and even by 66% for 10 callins
each type. As stated in the description of this benchmark (see Sec. 7.2.5), it
is especially beneficial for a profitable use of the role cache.

In addition, we constructed a benchmark comprising the activation and
execution mechanisms considered by our approach. A team level method is
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Figure 7.10: Benchmark Results for Implicit Team Activation and Callin Execu-
tion

executed 1000 times, causing implicit activations. Furthermore, the method
calls a base method, which is adapted by an after-callin of the afore activated
team. Thus, also aspect execution including lifting is considered. The re-
sults, shown in Figure 7.10, are the arithmetic means of 10 benchmark runs.
Executed by the original JamVM, the benchmark took 22 ms. With all opti-
mizations enabled, we could reduce the execution time to 6 ms. This means
that with our optimizations, the overhead for this benchmark could be reduced
by 73%. Thus, it could be executed more than three times faster.

The effect of our combined optimizations on methods which are not subject
to actual aspect execution is evaluated in the next section.

7.2.7 Inherent Overhead (Distributed Fat)

As announced in Section 7.1.2, we also analyze the inherent overhead of our
approach for execution of unadapted methods. We start by classifying the pos-
sible cases of executing a base method BC.bm(), as illustrated by the flowchart
in Figure 7.11. The conditional symbols gradually check the degree of adaption
of the base class BC and the base method bm(), respectively. We differentiate
between aspect (callin) binding (Bind. for ...) and aspect activation (Act. for
...). The end symbols of the flowchart represent the eight possible cases for
executing a base method. Note that only in the bottommost case (C8) aspect
functionality is actually executed. In the following, we shortly describe each
of the possible cases (C1-C8).

[C1] Normal execution of method BC.bm(), no aspects involved

[C2] Aspect bound to other method BC.bm′, no activation

[C3] Aspect bound to other method BC.bm′, with activation

[C4] Aspect bound to the method BC.bm(), no activations

[C5] In-active aspect bound to BC.bm();
Other aspect bound to other method BC.bm′, activation for other thread

[C6] Aspect bound to BC.bm(), activation for other thread



108 Evaluation of the Approach

call BC.bm()

Aspect
weaving
for bm

Bind.
for BC?

execute
BC.bm() [C1]

no

Bind.
for bm?

Act. for
BC?

TAI init.
& aspect

registration

Act. for
BC?

Act. 
for current
Thread?

Act. for
bm?

execute
BC.bm() 

with aspect [C8]

Act. for
bm?

execute
BC.bm() [C2]

execute
BC.bm() [C3]

execute
woven BC.bm() 

with no act. asp. [C4]

execute
woven BC.bm() 
with act. asp. for 
other bm's and/or 

threads [C5]

execute
woven BC.bm() 
with act. asp. for 
other threads [C6]

execute
woven BC.bm() 
with act. asp. for 
other bm's [C7]

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

yes

initial
overhead

(classloading)

activation
overhead

   method exexuion
overhead?

  aspec exexuion
overhead!

Figure 7.11: Distributed Fat for Executing a Base Method



7.2 Evaluation with Micro Benchmarks 109

C1 C2 C3 C4 C5 C6 C7 C8

Original 3 3 3 88 165 163 216 453

3 3 3 58 68 71 73 130

3 3 3 31 36 36 42 100

All Optimizations

No invokeaspects

C1 C2 C3 C4 C5 C6 C7 C8

0

50

100

150

200

250

300

350

400

450

500

Original 

All Optimizations

No invokeaspects

C
o

m
p

u
ti
n

g
 t
im

e
 i
n

 m
s

Figure 7.12: Benchmark Results for the Cases C1-C8

[C7] In-active aspect bound to BC.bm();
Other aspect bound to other method BC.bm′, activation for current
thread

[C8] Aspect bound to BC.bm(), activation for current thread:
Actual aspect execution!

The cloud symbols in Figure 7.11 indicate where we expect some kind of
overhead. As for the cases C1 to C3, the executed base method itself is not
concerned by an aspect binding and thus not woven, we do not expect any
overhead here. Due to the actual aspect execution, for C8 an overhead is
essential. The results of the cases C4 to C7 are most interesting. Here, the
base method has been woven but the activation state does not allow aspect
execution.

We executed benchmarks for each of the cases C1 to C8. As before, the
bodies of the involved methods are empty. In each case the base method is
called 100,000 times. Figure 7.12 shows the results of our benchmarks. Here,
only one team instance is activated in each case (if activation is involved at
all). We compare the execution time of the original JamVM (Original) with
a version with all our optimizations enabled (All Optimizations). In addition
to this, we also include the results of measurements with the invokeapects
optimization disabled (No INVOKEASPECTS ).

In the following discussion of the results, multiple cases are summarized
if appropriate. Note that the even better results without invokeaspects are
subsequently discussed separately.

C1-C3: In these cases, no aspects are bound to BC.bm(), thus the method is
not woven. As expected, the benchmark shows a zero-overhead. The results
are the same for an arbitrary number of active team instances.
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Figure 7.13: Varying the Number of Teams for C6

C4: Here, we have no active aspects but the base method has been woven.
This causes a significant overhead. With our optimizations (All Optimiza-
tions), we could reduce this overhead by a factor of 1.52 (34%). Again, the
results do not change if more team instances are activated.

C5 & C6: These two cases are similar, as with both the registered aspects are
only activated for another than the current thread. Here, the original overhead
is nearly twice as high as for C4. This can be explained by the fact that the
activated aspects have to be considered, even if they are only active for another
thread. With our optimizations, we could reduce this overhead to less than
50% (by factor 2.43 for C5; by factor 2.3 for C6). In this case, the benefit of
our optimizations is even higher if more team instances are active. Figure 7.13
shows this effect for C6.

C7: This case shows an even higher overhead than C5 and C6. Here, the
activated aspects are processed and none can be excluded because they are
activated for another thread. We could reduce the overhead by nearly two
thirds (factor 2.96).

Nonetheless, these results indicate that it would be reasonable to use a
more sophisticated aspect registration strategy. This would facilitate to only
process aspects that are relevant for the currently executed method. Again,
our optimizations are even more beneficial for more active aspects, as shown
in Figure 7.14.

C8: Actually, the case C8 does not measure distributed fat but real aspect
execution, which is already covered by the benchmarks in Section 7.2.4 and
7.2.6. For multiple activated team instances, enabling the role cache slightly
degrades the performance, as the cache is always invalid because of the indi-
vidual callins from different team instances. For a single active team instance,
the role cache is an advantage because the base object is always lifted to the
same role instance of the only existing team instance.
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Figure 7.14: Varying the Number of Teams for C7

Overhead of invokeaspects As shown by Figure 7.12, for C4 to C8 the re-
sults for a single active team instance are even better if the invokeaspects

optimization is disabled. This means that this optimization increases the dis-
tributed fat and even for C8 the results are better. This is due to the fact
that the realization of invokeaspects includes a lot of initializations (e.g., for
the aspect iterator) which are overkill if no (C4) or only one team instance
is active. For C5 and C6 for 100 or more active team instances the results
for invokeaspects are no longer worse and for C7 the optimization is prof-
itable for more than 20 active team instances. However, for C8, the result
is better already for two active team instances. For actual aspect execution
the advantage of the invokeaspects optimization is also demonstrated by the
benchmark in Section 7.2.4.

These results indicate that it might be reasonable to disable some of the
optimizations under certain circumstances. If an application frequently ex-
ecutes methods that are adapted by locally deactivated team instances, the
bytecode instruction invokeaspects could be disabled. The same applies to
the role cache, which could be disabled if cache misses are commonly occur-
ring. However, the overall effect of our optimizations on the distributed fat is
very promising.

7.2.8 Benchmarks on the ARM Processor

To demonstrate the success of our optimizations for real embedded mobile
devices, we validated our results on Openmoko’s ARM-based open source smart
phone FreeRunner (see Sec. 7.1.3). To this end, we repeated the benchmarks
that we presented in Sections 7.2.1 – 7.2.7. In this section, we outline the
relevant results for the aspect activation and the aspect execution. We compare
the execution time of the original JamVM (Original) with a version with all
our optimizations enabled (allOpt). If notable, we also present the results for
other combinations of our optimizations. As the details of the benchmarks are
already discussed in previous sections, we only refer to them and discuss the
results of executing them on the ARM.



112 Evaluation of the Approach

Active team instances 0 1 10 50 100

Original  25 25 28 39 142

All Opt. 3 3 3 3 3

0 1 10 50 100

0

20

40

60

80

100

120

140

160

Original 
All Opt.

Active team instances

C
o

m
p

u
tin

g
 ti

m
e

 in
 m

s

(a) One adapted base class
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(b) Three adapted base classes

Figure 7.15: Benchmark Results for Implicit Team Activation

Due to the restricted hardware, the benchmarks are generally executed no-
tably slower on the ARM. On that account, we reduced the number of call
iterations for the benchmarks of this section. For some benchmarks, we fur-
ther reduced the number of active team instances or the number of existing
threads. The actual numbers are specified together with the particular bench-
mark results.

Aspect Activation

To evaluate the optimized aspect activation on the ARM, we executed the
benchmark that was presented in Section 7.2.1 (cf. Fig. 7.2 and 7.3). This
benchmark measures the execution time of implicit team activation for different
numbers of active teams. Note that we reduced the number of calls to the team
method from 3000 to 100 and that at most 100 team instances are activated.
The corresponding results for the ARM are shown in Figure 7.15. They show
that also on the ARM, the overhead of the implicit team activation could be
significantly reduced. It is now constant and small (3ms), independent of the
number of previously activated team instances.

To measure the effect of our optimizations on multi-threaded team activa-
tion, we used the benchmark presented in Section 7.2.2 (cf. Fig. 7.4). This
time, we reduced the number of call iterations from 1000 to 100. Furthermore,
we executed the benchmark with 5, 10, and 50 threads respectively. The results
for the ARM are illustrated in Figure 7.16. With our optimizations, reduced
the execution time of the activate method by 55–74%. Calling the isActive

method costs 74–87 % less time, and deactivate consumes 29–73% less time.
For deactivate, the improvement decreases if more threads are involved.

Aspect Execution

To evaluate the optimized aspect execution on the ARM, we repeated three
benchmarks from the preceding sections. All of them repeatedly execute a



7.2 Evaluation with Micro Benchmarks 113

Number of Threads 5 10 50 Number of Threads 5 10 50
activate() ­ Original 11 32 182 deactivate() ­ Original 11 25 123
activate() ­ allOpt. 5 14 47 deactivate() ­ allOpt. 3 14 87
isActive() ­ Original 8 18 88 isActive() ­ Original 5 10 50
isActive() ­ allOpt. 1 3 14 isActive() ­ allOpt. 1 3 13

5 10 15 20 25 30 35 40 45 50 55

0

20

40

60

80

100

120

140

160

180

200

activate() - Original
activate() - allOpt.
isActive() - Original
isActive() - allOpt.

Number of Threads

C
o

m
p

u
tin

g
 ti

m
e

 in
 m

s

5 10 15 20 25 30 35 40 45 50 55

0

20

40

60

80

100

120

140

deactivate() - Original
deactivate() - allOpt.
isActive() - Original
isActive() - allOpt.

Number of Threads

C
o

m
p

u
tin

g
 ti

m
e

 in
 m

s

Figure 7.16: Benchmark Results for Multi-threaded Activation

base method that is adapted by aspect functionality in different scenarios.
Note that compared to the corresponding benchmarks on the desktop PC, we
changed the number of call iterations from 1000 to 100.

In the first benchmark, the base method is executed with different numbers
of adapting callins. We described this benchmark in Section 7.2.4 (cf. Fig. 7.9).
The results for the execution on the ARM are shown in Figure 7.17. On the left
side of the figure, we see the results for callins of all types (after, before, and
replace). For one callin of each type, the execution time reduction of allOpt
is 9%, for 5 callins each, it is 48%, and for 10 callins each, it is 54%. The
results also show that for 1 callin of each type, the result of the invokeaspects
version (without the role cache) is even better, namely already 35%. In this
case, the advantage of the role cache seems to be not yet big enough to redeem
the overhead of its introduction. However, in the other two cases, allOpt has
the best results. The results for solely replace-callins are comparable (6–57%).
Again, allOpt is outperformed by invokeaspects for one replace-callin.

For the second benchmark on aspect execution, we varied the percentage
of team instances that are not only active for another, but also for he current
thread. This benchmark was described in Section 7.2.3 (cf. Fig. 7.6). The
results for the ARM are illustrated in Figure 7.18. As on the desktop PC, the
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Figure 7.17: Benchmark Results for Multiple Callins
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Figure 7.18: Benchmark Results for Partly Deactivated Teams

improvement is very high for few local active team instances (about 86%) and
gets less if the percentage of local active team instances converges to 100%.
For this benchmark, the improvement of the invokeaspects version is generally
higher than those of allOpt. The difference gets more significant for higher
numbers of local active teams instances. This contradicts the results we got
on the desktop PC.

For the third benchmark on aspect execution, we varied the number of
role cache hits. This benchmark was described in Section 7.2.5 (cf. Fig. 7.8).
The ARM results are shown in Figure 7.19. Solely using the Role Cache is
only profitable if the cache is always valid. However, when using allOpt, the
performance is considerably better. Even for permanent cache misses (never
valid), the drawback of cache misses is compensated by the optimizations that
improve the other parts of the aspect execution.

Moreover, we repeated the benchmark that we used to measure the perfor-
mance improvement for our combined optimizations in Section 7.2.6 (cf. Fig.
7.10). This benchmark measures the execution time for implicit team activa-
tion in combination with the execution of an adapted base method. The results
for executing this benchmark on the ARM are illustrated in Figure 7.20. The
reduction is not as high as for the desktop PC (73%) but it is still considerable,
namely 40%.
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Figure 7.19: Benchmark Results for Lifting
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Figure 7.20: Benchmark Results for Implicit Team Activation and Callin Execu-
tion

Finally, we validated that our optimizations do not negatively affect the
execution of regular (unadapted) Java methods.

7.2.9 Performance Evaluation

In this work, we significantly improved the aspect activation of OT/J by de-
veloping a VM-internal activation infrastructure as well as a native team ac-
tivation mechanism. The VM-internal activation infrastructure significantly
reduces the runtime overhead of team activation, especially for larger numbers
of active teams. Thus, the implicit activation of teams is now fast and its
effort is nearly constant, independent from the number of previously activated
teams. Based on this adaptation, we achieved a high performance gain by
implementing a native team activation mechanism. Of particular importance
is the 80 to 90% faster team activation check because this functionality is also
involved in aspect execution.

We further optimized the aspect execution of OT/J by additional bytecode
instructions and a role cache. Our newly introduced bytecode instructions
provide an optimized usage of the VM-internal activation infrastructure. This
optimization guarantees an efficient team lookup, especially for thread-local
team activation. Finally, by the introduction of the invokeaspect instruction
that is responsible for the actual aspect execution we could reduce the execu-
tion time of adapted base methods by up to 16%. By the introduction of a
role cache, we could improve the pure lifting mechanism by up to 93%. This
leads to an improvement of the general aspect execution by up to 40%.

Eventually, the combination of our optimizations shows an even higher
improvement of the execution performance. For example, on the Intel PC, the
execution time of adapted base methods is 66% less for 10 callins of each type
from one team instance (see Fig. 7.9). On the ARM processor, execution time
for the same benchmark is reduced by 54% (see Fig. 7.17). Furthermore, for
a combined execution of (implicit) team activation and aspect execution the
improvement is 73% on the Intel PC (see Fig. 7.10) and 40% on the ARM
(see Fig. 7.20).
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The effect on the distributed fat (see Sec.7.2.7) is also very promising. For
completely unbound base classes, no overhead is imposed at all. For the other
cases, where a base method is bound but no aspect functionality has to be
executed due to the activation state, we could reduce the distributed fat to by
up to one third.

The results of our micro benchmarks demonstrate that our optimizations
are very successful on the Intel PC as well as on the ARM processor. In
addition to the micro benchmarks, we also want to estimate the benefit for real-
world application. For this reason, we performed additional experiments on a
game application. We discuss the results of these experiments in Section 7.3.2.

7.2.10 Code Size Effects

In the preceding sections, we briefly referred to the influence of our optimiza-
tions on the code size. Here, we investigate the overall effect of the combined
optimizations.

As base classes are the main subject of aspect weaving, the major part of
changes affect the code size of adapted base classes. The methods for regis-
tering (and removing) team instances with base classes are no longer part of
the base class. Moreover, the wrapper code of adapted base classes could be
significantly reduced. Actually, the only thing the remaining wrapper is doing
is to invoke the invokeaspects instruction. The actual size reduction of this
adaptations depends on the number of adapting teams and role methods. In
contrast, the size of team classes is slightly increased by the additional code
for role cache access inside the lifting methods.

We measured the size of woven base class files for two examples. In the first
one, the only method of a base class is adapted by an after-callin of a single
team class. In the second example, the base class has 10 methods which are
each adapted by a different role method of the same team. The results of this
measurement are shown in Figure 7.21. For a single adapted base method, we
could reduce the overhead of the AOP parts by 77% and for 10 adapted base
methods it could be reduced by 86%. Note that this measurement only takes
into account the size of the class files and neglects the additional runtime data
we introduced by our optimizations.

To finally evaluate the code size effect, also the runtime memory footprint
has to be examined. An important fact is the effect for parts of the application
that are not subject to AOP mechanism. By our optimizations, we enhanced
different runtime data structures to hold additional aspect-specific information.
Although we payed attention to only initialize this data if actually needed,
a minimal overhead is generally imposed by the additional pointers in the
corresponding structures. Table 7.1 summarizes this initial overhead for the
affected runtime data structures.
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Figure 7.21: Code Size Measurement for adapted Base Class Files

In a first experiment, we used the Java API of java.lang.Runtime to
measure the additional memory consumption for loading a base class, creating
an instance, and executing methods on it. We used the example of a base class
with 10 base methods from above. First, we examined the used memory if no
aspect adaption is used. As indicated by Table 7.1, the amount of memory
increases by 60 bytes (from 284 to to 344 bytes). This overhead is composed
of 12 bytes for the base class plus 8 bytes for the base object plus 10*4=40
bytes for the 10 base methods.

When optimizing code, there is often a trade-off between code size and
execution speed. For example, we could avoid the initial size overhead for
unadapted code by introducing VM-global data structures (e.g., hash maps)
which store the additional data needed by our optimizations. This way, the
memory usage would not be increased for every object, but the lookup of this
data would be less efficient. As our main focus in this work is the reduction of
execution time, we decided to prioritize faster lookup mechanisms.

We also examined the memory use for the same base class when each of
its base methods is adapted by a callin, as described above. This time, the
used memory decreases from 8992 to 7248 bytes. This indicates that our
optimizations have a positive effect on the runtime memory use of adapted
base classes. However, more detailed experiments will have to be carried out,
to evaluate the overall memory effect of our approach.

Table 7.1: Initial Code Size Overhead for Runtime Data Structures

Data Structure Overhead (in bytes)

Class 12

Object 8

Method 4
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Figure 7.22: Callin Execution Time

Another factor for the code size is the size of the JVM binary. By our
additions, this size increased from 788 K to 892 K (by 13.2%). However, this
overhead is acceptable as the JVM is installed only once at each system.

7.2.11 Delegation Proxy Approach

To measure how the delegation proxy approach (cf. Section 6.4), affects the ex-
ecution time, we used a micro benchmark that we already presented in [Bis10,
p.103]. This benchmark measures the execution time of a base method with
10 before-callins from 10 different team instances. Figure 7.22 shows that we
significantly reduced the overhead of executing adapted base methods with
the delegation proxy approach. The execution time is reduced by 92%. Note
that with all our optimizations from the approach described above, the im-
provement is only 12%. This result shows that, at least for this benchmark,
the delegation proxy approach is extremely performant. Thus, it is worth-
while to integrate both of the approaches. Unfortunately, we could not repeat
the benchmarks from Sections 7.2.1 – 7.2.7 for the delegation proxy approach
because the implementation prototype does not support all of the used OT
features.

The memory usage of base classes and team classes is also affected by the
delegation proxy approach. On the one hand, the code size has been reduced.
Looking at the classes in Figure 4.8, we can see that there are no more wrapper
methods, neither in team classes nor in base classes. Moreover, the role specific
lift methods in teams are no longer needed. On the other hand, the run-time
memory usage is slightly increased by introducing additional VM-internal data.
The delegation proxy adds 24 bytes to the code block of every executed method.
Besides, additional fields have been added to the stack frame structure. The
overall effect for classes with high adaptation by aspects, as well as for ones
which are adapted less or not at all, will have to be weighed up against each
other in future work.
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Table 7.2: Mobile Device Application Types

Application Type Examples

Communications E-mail / IM clients

Games Puzzle, Sports

Multimedia Music / Video Players

Productivity Calendars, Notepads

Travel City Guides, GPS / Maps

Utilities Address Book, Profile Manager, Browser

7.3 Case Study

In this section, we briefly discuss what kind of mobile device application sce-
narios generally benefit from the use of (dynamic) AOP. Then, we present
our case study, a game application together with experimental results of a
benchmark that measures the execution time of updating the game’s view.

7.3.1 (Dynamic) AOP-Scenarios for Mobile Devices

AOP can be used to adapt mobile applications statically or dynamically. Stat-
ical adaptations can be used to encapsulate device specific parts of an applica-
tion in aspect modules. Target devices can, for example, vary in the screen size
or resolution, the sound support, or the available control keys, as illustrated
by the feature diagram in Figure 7.23. Before an application is deployed to a
specific device, the application can be configured in a product-line-like manner
[HMPS07] [AMC+07] to incorporate the matching aspects. This can be done
manually or based upon information about the device configuration. Thus, the
same core application can be deployed with different kinds of user interfaces,
for example. Commonly used mobile applications can be classified according
to [Ass08] by the types specified in Table 7.2.

Typical dynamic adaptation scenarios for mobile applications are often re-
lated to the changing context (e.g., the location). If they are anticipated, they

Device

ControlUI Sound

Touch KeysLoResHiRes

Figure 7.23: Device-specific, statical Adaptations
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can be pre-installed by the user and triggered by the environment. Unantici-
pated dynamic adaptations can be proposed and installed by the environment.
In the following scenarios, the change of contexts involves a modified applica-
tion behavior. This can be realized by implementing the context-sensitive parts
as aspects and dynamically deploying them when required by the context.

Sight Seeing In [Sch07], a sight seeing application is used to demonstrate
context sensitive integration of GPS (Global Positioning System) coordinates.
The base application features a list of sights together with a brief description for
each sight. This application is then extended by context-sensitive features. A
GPS sensor is integrated and used to enable the sorting of the sights according
to their distance from the current user position.

In-Building Navigation Several dynamic extensions to common outdoor nav-
igation applications can be considered. The following examples use building-
specific point-of-interest navigation to assist users while inside these buildings.

� Shops: extra information like prices and location of specified products,
routing to items [FN07, ACK94]

� Museum Guide: in-building map and explanations [RTA05]

� University/School: class schedule, room allocation schedule

Context-sensitive Games Mogi [LI09] is a virtual collecting game for mobile
devices. To collect items, the player has to move around in a real city. The
application has a map which shows items as well as other players. It is possible
to trade with other players. GPS information is used to track the current
position and to ensure that only items in a specified radius are visible.

On-demand Appointment Optimization In this scenario [RSC07], appoint-
ments can be rescheduled when the participants are unsuspectingly near to
each other. This can be the case if, for example, both are visiting the same
exhibition and both have fitting earlier time slots in their calendars.

In the future, more and more context-sensitive applications will be used on
mobile devices. In particular, dynamic loading of location-related modules has
to be expected.

7.3.2 OTPong - Scenario for this work

The presented scenarios show that context-sensitive adaptation is highly rel-
evant in the context of mobile applications. To illustrate the benefits of our
work, we selected a game scenario. After describing the example application,
we evaluate our approach by benchmarking it. Finally, we present dynamic
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Figure 7.24: Overview of the OTPong Architecture

adaptation scenarios for the game that can be realized with dynamic AOP
support.

Our example application OTPong is a variant of the classical computer
game Pong [Pon] that we implemented in ObjectTeams as an exercise of an
AOP class. The architecture consists of four modules, as illustrated by Fig-
ure 7.24. The Model, the View, the Controller and the Workflow (Game Logic)
are each implemented in separate modules. While the model is implemented
in pure Java, the other components make use of AOP features to interact with
the rest of the application. Thus, for example, the view can easily be ex-
changed to fit the screen size and resolution of the target device. Such static
adaptations can generally be used to configure the application according to the
configuration of the target device before installation.

Benchmarking OTPong

To evaluate the effect of our optimizations on the OTPong application, we in-
strumented the code to measure the execution time of updating the view. This
has to be done whenever game objects are moved, and thus happens frequently
during the whole game time. In the workflow component (see Fig. 7.24), the
class Game controls the overall game logic. As illustrated by Figure 7.25,
the method play() executes a loop as long as the game is still in progress
(isPlaying()). The game logic consists of the following steps: First, all game
objects (e.g., paddles and balls) are moved by changing their geometry. Note
that this only concerns the model objects. In the second step, the view is
updated. Finally, in step three, potential collisions are detected and handled
(e.g., by bouncing off the wall).

As indicated by the label BM in Figure 7.25, our benchmark measures
the execution time of the second step. This part is especially relevant to us
because the update of the view is realized by AOP mechanisms. The simplified
control flow is also shown in the figure. The game logic loop calls the method
Board.update(). This method is bound by an after-callin to the repaint()

method of the BoardView. It triggers the invocation of the paint() methods
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Figure 7.25: Updating the View of OTPong

of the view objects that are used to display the game objects. The view objects
are modeled as role objects that are bound to the corresponding game objects.
In order to update its position, each view objects accesses the geometry of its
base game object.

Again, we executed this benchmark both on the desktop PC and on the
FreeRunner smart phone, whose specifications are described in Section 7.1.3.
Figure 7.26 shows the results of benchmarking the view update process in
nanoseconds. Figure 7.26a shows that on the desktop PC our optimizations
have improved the updating of the view by 10%. In Figure 7.26b, we see that on
the FreeRunner the improvement is similar, namely 11%. As updating the view
constitutes an important part of the OTPong application, this improvement is
highly relevant for the overall performance of the application.

Extension Scenarios for OTPong

Possible additions to the basic game are monsters, a shooting ability, or extra
items which can be collected with the ball. These extra items can, for example,
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Figure 7.26: Benchmark Results for Updating the View in OTPong
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Figure 7.27: OTPong Extra Addition

increase or decrease the size of the paddles or change the speed of the ball. The
extra addition has been implemented entirely encapsulated in aspect modules,
which can optionally be deployed to the basic game. Figure 7.27 shows an
ExtraTeam aspect which adapts the move() method of the Ball class. The
corresponding aspect method moveAgain causes the ball to instantly move
again, resulting in a faster movement. Such optional additions could also be
developed and bought at a later date.

If the game had also a multi-player modus which allows playing against
other, nearby people, we can imagine the following dynamic adaptation sce-
nario. Different players can own different game extensions. If, for example,
one player uses extra items, but the other one does not own these extensions,
this could be a problem when playing together. Using dynamic AOP, the ex-
tension can be temporarily deployed also on the other device, as illustrated by
Figure 7.28. It is, however, only available during the multi-player game and
will not be permanently installed until the extension is actually bought.

The described extensions of the OTPong game can easily be realized with
the AOP mechanisms of ObjectTeams. In fact, we already implemented the
addition of extra items described above. To support real dynamic adaptation
with additional features for this complex application, our prototypical imple-
mentation has to be completed in some points. However, the experimental
setup we presented in Section 6.4 shows that our approach supports the dy-

DynAOP
Server

addTeam
(ExtraTeam)

Figure 7.28: OTPong Dynamic Aspect Deployment
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namical addition, activation and deactivation of new (unknown) aspects at
runtime.

7.4 Transferability to other Approaches

In this thesis, we implemented our optimizations by extending the Java virtual
machine JamVM for the aspect-oriented mechanisms of the programming lan-
guage ObjectTeams. In this section, we investigate the transferability of our
approach to other VM implementations on the one hand, and to other AOP
languages on the other hand.

7.4.1 Other VM Implementations

By integrating our optimizations into the virtual machine, we mainly adapted
the following components:

1. The native interface: to realize the native API for the VM-internal
aspect activation

2. VM-internal data structures of classes, objects, methods and stack
frames: to store additional AOP-specific data

3. The interpreter: to integrate the aspect-specific bytecode instructions
(getaspects, nextaspect, invokeaspects)

4. The class loading mechanism: to lookup aspect specific binding infor-
mation from bytecode attributes

As all of these are integral components of Java virtual machines, we ex-
pect that it is possible to transfer our approach to most of the existing JVM
implementations. For more evidence, we investigated the implementation of
Android’s Dalvik VM (DVM) [Goob], which we introduced in Section 2.2.4.
As expected, we could identify all the components affected by our optimiza-
tions. For example, the realization of the native interface for VM-internally
implemented methods can be easily extended to support additional functional-
ity. Furthermore, the relevant VM-internal data structures seem to be realized
similarly to those in the JamVM. However, in the handling of bytecode at-
tributes the DVM differs from the JamVM. The JamVM reads out and inter-
nally stores the bytecode attributes when a class is defined during class loading.
By contrast, in the DVM, the attributes are kept in the Dalvik executable (dex)
files and accessed there, when required. The AOP-specific attributes could be
maintained in the same way. Note that it might be useful to adapt the dex-file
format so that these additional attributes can be stored explicitly and more
efficiently.

We assume that the main challenge of transferring our approach to the
DVM is the integration of additional bytecode instructions in the interpreter.
The DVM involves three different interpreters: a portable interpreter written
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in C, a fast interpreter with hand-coded assembler fragments for each architec-
ture, and an interpreter with debugging support. All three interpreters have to
be extended in order to integrate new instructions. Finally, also the generation
of the dex-files needs to support them. However, we expect that altogether, all
of our optimizations can be transfered to the DVM with comparatively small
effort.

7.4.2 Other Programming Languages

In this section, we briefly investigate the applicability of our approach to other
programming languages. Therefore, we specify the language concepts that are
affected by our optimizations in the following list:

� VM-internal activation infrastructure: dynamic aspect activation at class-
level, implicit activation

� Native activation mechanism: dynamic aspect activation (global and
thread-local)

� Aspect dispatch instructions: dispatch/lookup of active adapting aspect
instances

� Aspect execution instructions: method-level aspect execution, considers
dynamic activation

� Role object caching: role-based concepts

� Delegation proxy: method-level aspect execution; dynamic aspect de-
ployment; aspect activation

A programming language that provides one or more of the listed concepts
can potentially benefit from the corresponding optimization. Thus, program-
ming languages that support the dynamic activation of partial program def-
initions, like CaesarJ [Cae] and ContextJ [CHM06] could benefit from our
optimizations for aspect activation.
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8.1 Results

Advanced modularization mechanisms like aspect-oriented programming are
qualified to meet the increasing demands on applications for embedded mobile
devices, such as reusability, adaptability, extensibility, and portability. However,
without adequate optimizations their practicality to small devices with limited
resources is restricted by overheads in execution time and code size. In this
work, we presented optimizations for common AOP-mechanisms on the level
of the virtual machine aiming for an applicability of AOP for embedded mobile
devices. The key idea is a deep integration of AOP mechanisms into the virtual
machine.

Our main contribution is a significant reduction of the overhead of high-level
AOP constructs, which is also demonstrated by the results of our experiments.
The success of the optimizations provides evidence that advanced high-level
abstraction techniques like AOP can be efficiently used in embedded mobile de-
vices. Furthermore, our work shows that efficient dynamic aspect deployment
can be supported on the level of the JVM.

Overview Our overall approach can be summarized as follows: We started by
investigating the overhead that is typically generated by the realization of AOP
mechanisms. After that, we presented various optimizations to overcome this
overhead for the aspect-oriented programming language ObjectTeams. We im-
plemented these optimizations by extending the JamVM Java virtual machine.
In doing so, we shifted mechanisms like the registration of activated aspects to
the level of the JVM. Furthermore, we optimized the execution of AOP mech-
anisms, e.g., by introducing a caching mechanism for implicit activation and
by efficient hash maps for thread-local team activation. Moreover, we analyzed
AOP-specific semantic code properties in order to develop optimizations that
utilize these AOP-specific semantic information. To this end, we developed a
cache for role objects. In addition to the AOP optimizations, we presented the
delegation proxy approach. With that, we have realized a deeper integration
of the aspect execution mechanism into the virtual machine, and we substan-
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tially enhanced the dynamic capabilities of ObjectTeams by bringing in the
capability of dynamically adding and activating new aspects at runtime.

Detailed Contributions As foundation of our approach, we identified the
sources of overhead that are caused by the implementation of aspect acti-
vation and aspect execution at the level of the base programming language,
namely Java. The main sources of overhead are the realization of aspect ac-
tivation mechanisms at the level of Java bytecode of the adapted classes, the
additional dynamic dispatch for aspect execution, and the missing native sup-
port of advanced modularization mechanisms, like the implicit inheritance of
roles to subclasses of teams. To overcome this overhead, we developed opti-
mizations for common AOP mechanisms by extending the data structures and
the execution mechanisms of the JVM. In the following, we review the main
achievements of our optimizations.

To optimize aspect activation, we introduced a VM-internal team activation
infrastructure that also maintains the correct inheritance of active aspects to
subclasses of adapted base classes. By our caching mechanism for subsequently
activated and deactivated team instances, we further reduced the overhead of
implicit team activation. In addition, we proposed a native team activation
mechanism that enables the efficient activation and deactivation of aspects by
avoiding the use of inefficient Java constructs. Moreover, we improved the
aspect execution by the introduction of specific bytecode instructions for fast
aspect dispatch and efficient execution of aspect functionality. Hereby, we were
able to make the originally used method wrapper of base methods obsolete.

Furthermore, to support dynamic AOP for mobile device applications, we
introduced a dynamically deployable method header (delegation proxy) that is
responsible for the complete aspect dispatch and establishes the foundation for
dynamic AOP. To evaluate the delegation proxy’s capability for dynamically
adding (and removing) new aspects at runtime, we implemented a prototypical
dynamic AOP component. By this successful experiment, we showed that our
approach supports the dynamic deployment of aspects at run-time

In Chapter 5, we furthermore investigated how the overhead provoked by
the additional abstraction mechanisms of AOP can be reduced by taking
aspect-specific semantic information into account. We analyzed the charac-
teristics of abstraction mechanisms in high-level programming languages and
identified aspect-specific semantic conditions of AOP in general and of Ob-
jectTeams in particular. Based on this analysis, we developed a number of
optimizations for ObjectTeams that utilize these semantic conditions. We
proposed to use a cache to avoid the overhead of dynamically looking up the
base method during a base-call of a replace-callin. Furthermore, we introduced
a caching mechanism for role objects in order to optimize the lifting of base
objects during aspect execution. We analyzed possible lifting scenarios in or-
der to optimally design the structure and the validation method of the role
cache. Finally, we discussed how existing virtual machine optimizations, like
quick instructions, can profit from the aspect-specific semantic information.
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Evaluation Results In Chapters 6 and 7, we presented the implementation
and a detailed evaluation of our approach. We executed micro benchmarks and
investigated the effect of our optimizations on a real-world application, both
on an Intel PC and on the ARM-based FreeRunner smart phone. Finally, we
discussed the transferability of our approach to other VM implementations as
well as to other programming languages.

The micro benchmark experiments show that we significantly improved
the aspect activation of OT/J by developing a VM-internal activation infras-
tructure as well as a native team activation mechanism. The VM-internal
activation infrastructure significantly reduces the runtime overhead of team
activation, especially for larger numbers of active teams. Thus, the implicit
activation of teams is now fast and its effort is nearly constant, independent
from the number of previously activated teams. Based on this adaptation, we
achieved a high performance gain by implementing a native team activation
mechanism. Of particular importance is the 80 to 90% faster team activation
check because this functionality is also involved in aspect execution.

We further optimized the aspect execution of OT/J by additional bytecode
instructions and a role cache. Our newly introduced bytecode instructions
provide an optimized usage of the VM-internal activation infrastructure. This
optimization guarantees an efficient team lookup, especially for thread-local
team activation. Finally, by the introduction of the invokeaspect instruction,
which is responsible for the actual aspect execution, we reduced the execution
time of adapted base methods by up to 16%. By the introduction of a role
cache, we improved the pure lifting mechanism by up to 93%. This leads to
an improvement of the general aspect execution by up to 40%.

Eventually, the combination of our optimizations shows an even higher
improvement of the execution performance. For example, the execution time
of a base method that is adapted by a team with 10 callins of each type
could be reduced by 66% on the Intel PC and by 54% on the ARM processor.
Furthermore, for a combined execution of (implicit) team activation and aspect
execution the improvement is even 73% on the Intel PC and 40% on the ARM.

The effect of our optimizations on the distributed fat is also very promising.
For completely unbound base classes no overhead is imposed at all. For the
other cases, where a base method is bound, but no aspect functionality has to
be executed due to the activation state, we could reduce the distributed fat to
up to one third.

To evaluate the overall effect of our optimizations on a real-world applica-
tion, we used the game application OTPong. OTPong is an interactive GUI
application with a modular model-view-controller architecture. Updating the
view constitutes an important part of the OTPong application. Our experi-
mental results show that with our approach, we improved the updating of the
view by 10% on the Intel PC and by 11% on the smart phone (ARM). As the
view is updated very frequently, this improvement is highly relevant for the
overall performance of the application.
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The evaluation of our approach shows a considerable performance gain
for the aspect activation and the aspect execution of ObjectTeams. With
our experiments, we demonstrated that our optimizations yield a significant
performance gain of up to 90% for commonly used aspect-oriented mechanisms.
At the same time, we were able to reduce the code size of the adapted classes,
which is also important for small devices. Finally, with our case study on
the OTPong game application, we showed that our approach is capable to
significantly optimize the execution time of real-word applications.

8.2 Outlook

In this section, we outline future work. There are basically two directions: the
completion of our implementation prototype together with ideas for further
evaluation as well as the exploration of additional optimization potential.

To provide an implementation that covers the complete range of the Ob-
jectTeams language features and, at the same time, supports the dynamic
deployment of new aspects, we need to integrate the implementation of the
delegation proxy approach with the rest of our optimizations. Furthermore,
we could implement the base-call caching mechanism, we have proposed in
Section 5.3.1. Note that in our realization of the invokeaspects bytecode, we
already cache the method block of base methods for subsequent invocations.
However, this does not yet prevent the regular dynamic method lookup. Fi-
nally, we could completely integrate the weaving process into the JVM. This
would make the load-time weaving of the OTRE obsolete and thus, we could
avoid the use of OTEquinox wrappers to execute OT programs.

To further evaluate our approach, more experiments and case studies should
be accomplished. Thus, it would be interesting to port existing AOP bench-
marks (e.g., from [Asp] and [AOP]) to ObjectTeams. In addition, regular Java
benchmark suites, like SPECjvm and JavaGrande could be applied to but they
can only measure the distributed fat as they do not contain aspects. Next, our
results could be further validated on other embedded devices. Finally, the OT-
Pong case study could be further accomplished to also evaluate the dynamic
extension scenarios, which we developed in Section 7.3.2.

As we referred to in Section 2.1.3, roles of a team implicitly inherit from
roles with the same name in a super team. This inheritance relationship is no
normal type inheritance and is only valid in the context of a surrounding team
instance. In Section 4.2.4, we discussed the overhead of the current realiza-
tion of implicit role inheritance in ObjectTeams. To reduce this overhead, we
could add a reference to the implicit super role for role classes in the VM. This
could be realized, analog to the super class reference stored in class structures.
Thus, we could avoid code duplication and inefficient interfaces method invo-
cation. Furthermore, it could be valuable to investigate the benefit of more
sophisticated role caching strategies. Multiple role objects could be cached for
one base object, e.g., one for every participating team class. As witnessed by
the benchmark results in Section 7.2.5, the effect of the role cache depends
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on the concrete design of the executed program. To minimize the overhead
of frequent cache misses, we could statically analyze, whether a base object is
often lifted to the same role object. It could also be profitable to dynamically
turn the role cache on and off according to the dynamic lifting behavior of a
program.

With our approach, we significantly reduce the overhead of common AOP
mechanisms. This sets the stage for taking advantage of the advanced mod-
ularization capabilities of AOP for developing and dynamically reconfiguring
applications for the constantly growing mobile market.
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