
Online Optimization:
Probabilistic Analysis and Algorithm Engineering

vorgelegt von

Dipl.-Inf. Benjamin Hiller

Von der Fakultät II – Mathematik und Naturwissenschaften
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
– Dr. rer. nat. –

genehmigte Dissertation

Berichter: Prof. Dr. Dr. h.c. mult. Martin Grötschel
Dr. Tjark Vredeveld

Vorsitzender: Prof. Dr. Fredi Tröltzsch

Tag der wissenschaftlichen Aussprache: 15. Dezember 2009

Berlin 2010
D 83

Zusammenfassung

Diese Arbeit beschäftigt sich mitOnline-Optimierung, also der Steuerung
von Systemen, bei denen die für die optimierte Steuerung relevanten
Daten erst mit der Zeit, d. h. online, bekannt werden. Wir konzentrieren
uns dabei auf kombinatorische Online-Optimierungsprobleme, bei denen
die Steuerungsentscheidungen diskret sind.
Im ersten, praktisch orientierten Teil der Arbeit werden Reoptimie-

rungsalgorithmen für die Online-Steuerung komplexer realer Systeme
vorgestellt. Ein Reoptimierungsalgorithmus trifft seine Steuerungsent-
scheidung so, dass sie in einem bestimmten Sinn “günstig” für die
aktuelle Situation ist. Wir benutzen Techniken der mathematischen
Optimierung, insbesondere ganzzahlige Optimierung, um fortgeschrit-
tene Reoptimierungsalgorithmen zu entwickeln. Unsere erste Anwen-
dung ist die automatische Disposition von Pannenhilfefahrzeugen des
ADAC. Hier zeigt sich, dass mathematische Optimierungsmethoden den
Dispositionsprozess gegenüber der Planung mit einfachen Heuristiken
verbessern und kürzere Wartezeiten für die Kunden erzielen. Für die
zweite Anwendung, die Steuerung von Gruppen von Personenaufzügen
in Hochhäusern, entwickeln wir ebenfalls Reoptimierungsalgorithmen.
Diese sind speziell auf die Steuerung von Zielrufsystemen, bei denen
Passagiere ihre Zieletage bereits auf der Startetage eingeben, zugeschnit-
ten. Zusätzlich zur Steuerung der Aufzugsgruppe unter Ausnutzung
der Freiheitsgrade des Systems versuchen die Algorithmen, langfristig
ungünstige Steuerungen zu vermeiden, was durch eine geeignete Model-
lierung erreicht wird. Unsere Simulationen zeigen, dass die Anzahl der
Passagiere, die mit akzeptabler Servicequalität bedient werden kann,
durch die Verwendung von Zielrufsystemen um 50% gesteigert werden
kann.
Im theoretischen zweiten Teil stellen wir einen neuen Ansatz zur

probabilistischen Analyse von Onlinealgorithmen vor. Im Gegensatz zu
bestehenden Analysen bewerten wir die Güte eines Algorithmus nicht
anhand des Erwartungswertes der Zielfunktion, sondern anhand der
Verteilung der Zielfunktionswerte auf allen möglichen Eingaben, die eine
globalere Beschreibung der Güte des Algorithmus darstellt. Mithilfe des
Konzepts der stochastischen Dominanz können wir z. B. zeigen, dass
der bekannte Paging-Algorithmus LRU eine bezüglich der stochastischen
Dominanz optimale Verteilung erreicht, wenn die Eingabe bestimmte
praktisch häufig vorkommende Lokalitätseigenschaften aufweist. Für das
Online-Bin-Coloring-Problem [KdPSR01] beweisen wir eine Aussage,
die das in Simulationen beobachtete Verhalten erklärt und damit eine
offene Frage aus [KdPSR01] beantwortet.

Abstract

The subject of this thesis is online optimization, which deals with making
decisions in an environment where the data describing the process to
optimize becomes available over time, i. e., online. In particular, we
study combinatorial online optimization problems involving discrete
decisions both from a practical and a theoretical point of view.
The first part of the thesis is devoted to reoptimization algorithms

for the online control of complex real-world systems. A reoptimization
algorithm obtains its online control decision by determining a decision
that is in some sense “good” for the current state of the system. We
apply rigorous mathematical modelling and optimization methods based
on Integer Progamming to develop advanced reoptimization algorithms.
Our first application concerns the automatic dispatching of a large fleet
of service vehicles to serve waiting customers. We find that rigorous
methods improve the performance of the dispatching process, leading
to shorter waiting times for the customers. In our second application
we consider the scheduling of groups of passenger elevators in high
rise buildings. We suggest advanced control algorithms for destination
call systems, in which a passenger enters his desired destination floor
already at his current floor. In addition to exploiting all degrees of
freedom offered by the system, our reoptimization algorithms feature
means to avoid decisions that will lead to undesirable online behavior.
Our simulation experiments indicate that the number of passengers
that can be served with an acceptable service level increases by 50% by
using a destination call system controlled by our algorithms instead of
a conventional system.
The second part introduces a novel kind of probabilistic analysis for

online algorithms. In contrast to existing probabilistic analyses, we do
not judge the quality of an online algorithm using the expectation of the
objective. Instead, we consider the distribution of the objective value on
all inputs which gives a more global description of the performance of
the algorithm. Using the notion of stochastic dominance, we are able to
establish that certain online algorithms obtain better objective value
distributions than others. For instance, we can show that the famous
paging algorithm LRU achieves a distribution that is optimal w. r. t. the
stochastic dominance order if the request sequences exhibit locality of
reference. We also apply this approach to the analysis of algorithms
for online bin coloring [KdPSR01], obtaining a result that explains the
behavior observed in simulations, thus resolving an open problem posed
in [KdPSR01].

Acknowledgements

The theoretical part of this thesis grew out of the project “Combinatorial
online planning” which was part of the DFG research group “Algorithms,
Structures, Randomness”. I want to thank my colleagues from this
research group, in particular Arie Koster and Volker Kaibel, for inspiring
discussions and encouraging my own research. Special thanks go to
Tjark Vredeveld, with whom I started the analysis of the bin coloring
algorithms and who always motivated me to continue the work. I am
very grateful to him for hosting me for several stays in the nice city of
Maastricht.
Before even starting in the “Combinatorial online planning” project

I did already work on the project with the ADAC together with Jörg
Rambau and Sven O. Krumke. Both guided my research there, but also
let me pursue own ideas.

The ADAC project was a good preparation for two research projects
with Kollmorgen Steuerungstechnik on the development of control al-
gorithms for passenger elevators. I want to thank Björn Kollmorgen
and Peter Gerstenmeyer, who provided important insights in the details
of elevator scheduling. Most importantly, they believed that we young
researchers could deliver insights and control algorithms that are at least
as good as if Kollmorgen Steuerungstechnik developed them on their
own. I have to mention Martin Grötschel’s way of supporting young
researchers here: He just lets them do own projects, so one quickly learns
to take responsibility, but also to define own research goals. Andreas
Tuchscherer, who also worked on the elevator projects, was a big help
both in very valuable discussions and in sharing the overtime work to
meet the project deadlines.

Finally, I have to thank my proof readers Torsten Klug, Jacint Szabó,
and Andreas Tuchscherer for providing me with valuable feedback,
despite the tight deadline I imposed on them. Their feedback, and in
particular Andreas’ detailed comments and questions, helped a lot to
improve the presentation and to wipe out errors. I also want to thank
my other colleagues at ZIB for the nice working atmosphere and their
encouragement during the completion of my thesis.
Last not least I want to thank my wife Petra for her patience, in

particular during the last two months when I did almost nothing else
than to finish this work.

Contents

Introduction and overview 1

I. Design of reoptimization algorithms 5

1. Dispatching service vehicles for the ADAC under high load 7
1.1. Issues and motivation . 7
1.2. Simplified models . 9

1.2.1. The original ZIBDIP model . 9
1.2.2. The simplified model 4-ZIBDIP . 10
1.2.3. The simplified model PTC (Prescribed Total Cover) 10
1.2.4. The simplified model ShadowPrice 11
1.2.5. The simplified model ZIBDIPdummy 12

1.3. Simplified reoptimization algorithms . 12
1.3.1. The simplified algorithm BestInsert 12
1.3.2. The simplified algorithm 2-Opt . 12

1.4. Computational results . 13
1.4.1. Simplified models . 13
1.4.2. Simplified reoptimization algorithms 15

1.5. Significance . 16

2. Group control of elevator systems 23
2.1. Conventional elevator systems vs. destination call systems 24
2.2. Some more background on elevator control 28
2.3. Assumptions and requirements for elevator dispatches 31

2.3.1. General requirements . 31
2.3.2. Additional assumptions . 33
2.3.3. System-specific requirements . 34

2.4. A general model for elevator group control 35
2.4.1. The structure of the snapshot problem 36
2.4.2. A model for elevator schedules . 37

2.5. Heuristic algorithms for group elevator control 42
2.5.1. Classical elevator control . 42
2.5.2. Computer Group Control . 44
2.5.3. Genetic algorithms . 44
2.5.4. A cost-based best-insertion heuristic 44

i

Contents

3. Exact elevator group control algorithms 51
3.1. Previous work . 52

3.1.1. The algorithms of Closs . 52
3.1.2. The algorithm of Seckinger and Koehler 53
3.1.3. The algorithm of Tanaka et al. 54
3.1.4. Comparison of algorithms for groups of unit capacity cargo elevators 55

3.2. New exact reoptimization algorithms for elevator group control 56
3.2.1. A set partitioning model . 57
3.2.2. Pricing via Branch&Bound . 58
3.2.3. Greedy lower bounds . 63
3.2.4. Lower bounds via the algorithm of Tanaka et al. 66
3.2.5. Lower bounds based on state-space relaxations 72
3.2.6. The overall algorithm ExactReplan 78

3.3. Computational results . 81
3.3.1. Solving the snapshot problem . 82
3.3.2. Simulation results . 86

3.4. Significance . 92

II. A stochastic dominance approach to the analysis of online algo-
rithms 93

4. Stochastic dominance analysis of online algorithms 95
4.1. Introduction . 96
4.2. Related work . 99

4.2.1. Measures for online algorithms . 99
4.2.2. Related applications of Markov chains and stochastic dominance . 104

4.3. Stochastic dominance and Markov chain models for online algorithms . . . 104
4.3.1. Stochastic dominance and online algorithms 105
4.3.2. Simulation results for bounded-space bin packing and bin coloring 108

4.4. Optimality of LRU for paging with locality of reference 110
4.4.1. Paging with locality of reference 111
4.4.2. Optimality of LRU for paging with locality of reference 113

4.5. Conclusion . 118

5. Analysis of bin coloring algorithms 119
5.1. Problem definition and an application to elevator control 119
5.2. Comparison methods for Markov chains 121

5.2.1. Monotonicity-based Methods . 121
5.2.2. Coupling-based Methods . 126
5.2.3. Computer proofs for stochastic dominance relations between bin

coloring algorithms . 129
5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit 132

5.3.1. Markov chain models and preliminaries 132

ii

Contents

5.3.2. GreedyFit is better than OneBin: max-BC 136
5.3.3. GreedyFit is better than OneBin: sum-BC 139

A. Tables of computational results 143
A.1. Simulation results for elevator control algorithms 143
A.2. Exact Markov chain simulation results for bin packing 155

Bibliography 163

iii

Introduction and overview

The subject of this thesis is online optimization, which deals with making decisions in an
environment where the data describing the process to optimize becomes available over
time. Online optimization problems occur in many different settings, notably in the broad
area of logistics, and are of high practical relevance.

The prime example of an online optimization problem is elevator control: The passengers
requiring service of the elevator system arrive in the course of the day and the elevator
control has no means of determining where and when a new passenger will arrive. Instead,
it has to react to the elevator calls provided by the passengers as they are issued, trying
to provide a good service to all passengers.

Online optimization problems are frequently control problems, but may be different, for
instance there are online optimization problems concerning the organisation of dynamic
data structures. We focus on combinatorial online optimization problems, meaning that the
decisions to make are of a discrete nature, e. g., deciding which elevator answers a certain
passenger call. This is in contrast to online control problems, where the decision variables
are usually continuous, e. g., in controlling chemical production processes (although there
discrete decisions might be involved, too). We study combinatorial online optimization
problems and, most importantly, online algorithms both from a practical and a theoretical
point of view.
Real-world combinatorial online problems are usually solved by reoptimization algo-

rithms : Everytime the state of the system changes or new information becomes available,
all currently available information is collected and a snapshot problem is solved to de-
termine the reaction to the change, i. e., the online decision. When solving the snapshot
problem, one usually generates solutions which are suppposed to be good w. r. t. some
objective function, usually the same as the overall, end-of-day objective for the system
that is optimized. It is, however, not at all clear that controlling a system in this way
will yield good online performance, since the decisions made this way do not take into
account future and thus may be bad in the long run. In fact, for the control of elevator
systems there is some theoretical evidence [HKR00] that such a strategy might lead to
very undesirable behavior in some situations. It may well be that the use of different or
extended objectives gives better overall performance.

Moreover, the reoptimization algorithms used by practioners are usually heuristics only
and are not based on a rigorous mathematical model describing the choices available.
Thus they cannot exploit the full potential of the system and it is unclear how much
performance is lost this way. An advantage of having a mathematical model is that
it allows to employ mathematical optimization methods that can exploit the degree of
freedom offered by the system. Using these methods it is possible to investigate how much
potential is wasted by using weak optimization only. One can then study how the model,

1

Introduction and overview

e. g., the objective function, might be changed in order to obtain an improved online
performance. Frequently, mathematical optimization methods require long computation
times and seem therefore not to be suitable for real online control systems that require
real-time decisions. Therefore, important questions in this context are

1. Does it pay off to use computationally expensive mathematical optimization methods,
given the future is unknown anyway?

2. If mathematical optimization improves performance, how can the algorithms be
made real-time compliant?

The results of this thesis indicate that exact mathematical optimization methods indeed
help to improve the online performance, despite neglecting the future. However, they
can be improved further by studying effects of the decisions on future performance and
adjusting the mathematical model appropriately. Moreover, for practically relevant cases
they can also be implemented to be real-time compliant.

In the theoretical part of the thesis, we strive to improve the analysis of existing online
algorithms, bringing the analysis more in line with the empirically observed behavior. By
now, the standard tool to analyze online algorithms from a theoretical point of view is
competitive analysis.
In the simplest theoretical model [BEY98] of online optimization, the input is repre-

sented as a request sequence that reveals the information (abstracted as a request) piece
by piece. An online algorithm processes the request sequence by making for each request
an (irrevocable) decision, trying to minimize some overall objective. While processing a
request, the online algorithm has no access to later, i. e., future, requests. One way to
evaluate the quality of an online algorithm is competitive analysis, which measures how
much the performance of the algorithm degrades w. r. t. what would have been possible if
one knew the future. One can think of this as the “price of not knowing the future”.

Comparing with the optimal decisions when knowing the future is often not a suitable
yardstick. There are several interesting online optimization problems where competitive
analysis fails in the sense that it does not allow to discriminate between algorithms that
perform well in practice and ones that do not. In a sense, in these problems there is a “bad
future” for any algorithm, i. e., no matter how you make your decisions. To address this
issue, many extensions of and alternatives to competitive analysis have been suggested.
We suggest a new approach of probabilistic analysis, i. e., we assume that the request

sequence is generated by some random process. An important feature of our approach is
that we do not compare an algorithm to some hypothetical optimum, but we compare
two algorithms directly. We also do not consider a single number (e. g., an average or a
maximum) describing the performance of an online algorithm, but rather consider the dis-
tribution of the objective values on all request sequences. To compare the objective value
distributions of two online algorithms we use stochastic orders which are partial orders
on probability distributions. In particular, we suggest to compare online algorithms A
and B by establishing that the distribution of objective values of A is smaller w. r. t. the
stochastic dominance order than the objective value distribution of B.

2

A frequent argument against probabilistic analysis is that often the probabilistic
assumptions or the probabilistic model are not justified and considered for reasons of
tractability only. Our approach has the interesting property that a stochastic dominance
result obtained for the uniform distribution admits a strong deterministic interpretation,
stating that A achieves small objective values on at least as many request sequences as B.
Put in other words, A is at least as good as B on many possible futures, which is a very
desirable property for an online algorithm.
Using our stochastic-dominance-based approach, we are able to prove that for the

well-studied paging problem, the LRU algorithm is an optimal online algorithm for several
classes of interesting request sequences. Most of these results were known before, but our
approach provides a simplifying, unifying, and also strengthening view on those results. In
an application to the online bin coloring problem [KdPSR01], we are able to show that the
algorithm GreedyFit is better w. r. t. stochastic dominance than the algorithm OneBin, thus
explaining the superior performance of GreedyFit over OneBin observed in simulations.

Outline of the thesis The first part of the thesis deals with the design and application
of reoptimization algorithms in real-world environments. In Chapter 1 we experimentally
study reoptimization algorithms for dispatching the service vehicles of the ADAC, a
big German automobile club. In particular, we address the question whether better
reoptimization algorithms can be constructed by sacrificing modelling accuracy to obtain
simpler models that are more focused on the near future. The contents of this chapter is
taken from [HKR06].
Chapters 2 and 3 consider algorithms for controlling groups of passenger elevators in

high rise buildings. Most of the elevator systems currently installed use conventional
2-button control, which means that at each floor there are two input buttons for specifying
whether passengers want to go up or down. The major drawback of such systems is
that the elevator control algorithm learns of the desired destination floors only after an
elevator is sent to the floor. This destination floor information can, however, be crucial
for an efficient scheduling of the elevators, especially in high rise buildings. The elevator
industry thus developed destination call systems, in which the passengers can enter the
desired destination floor already at their current floor. We investigate how advanced
algorithms can take advantage of this additional information to increase the performance
of an elevator system. Chapter 2 provides an thorough introduction in the fundamentals
of controlling passenger elevators and devises a general mathematical model describing
the schedule of the elevator, taking into account the relevant constraints. We also describe
a best-insertion type heuristic for scheduling elevators that has been the basis of the
real-world implementation of the algorithm that is currently employed by our industry
partner, Kollmorgen Steuerungstechnik GmbH.
In Chapter 3 we study more advanced elevator scheduling algorithms, using current

state-of-the-art techniques to obtain provably optimal schedules in each reoptimization
run. Based on the general model from Chapter 2, we develop a novel algorithm to
control destination call systems. The heart of this algorithm is a Branch&Bound method
for which we study three different lower bound techniques, two of which have been

3

Introduction and overview

developed in this work. In our computational experiments it turns out that one of our
lower bound methods leads to short running times of the overall exact reoptimization
algorithm. Thus our algorithm becomes real-time compliant, at least for low to medium
load traffic. Improving the algorithm further is an ongoing research project. We also
provide data from extensive simulation experiments based on real-world buildings, allowing
us to conclude that destination control systems can serve up to 50% more traffic than
conventional systems without degrading the service quality. To achieve this, we extended
the reoptimization model by additional constraints that may degrade the quality of the
snapshot solution, but lead to a better online performance in the long run.

In the second part of the thesis, we develop our novel approach to the analysis of online
algorithm and apply it to several online optimization problems.

Our approach is introduced and discussed in Chapter 4, which also contains a detailed
review of related work. At first sight, a stochastic dominance relation between two online
algorithms seems to be a too strong result to hope for. We establish using computer
simulations of Markov chains that this phenomenon shows up, however, between interesting
bin packing and bin coloring algorithms. We conclude the chapter with a series of simple
proofs for the optimality of the paging algorithm LRU in the presence of locality of
reference. The stochastic dominance approach allows us to unify and strengthen several
results that were known before.
Chapter 5 is devoted to a detailed analysis of online bin coloring algorithms. It turns

out that an analysis of the stochastic dominance relation between the algorithms GreedyFit
and OneBin suggested by our simulation results from Chapter 4 is harder than the analysis
of the paging algorithm LRU. We show that techniques based on the monotonicity of
stochastic matrices cannot easily be used to derive this result. Using a novel proof
technique, we are nevertheless able to establish that GreedyFit is better w. r. t. stochastic
dominance than OneBin. The last section of the chapter containing the proof of this result
is based on [HV08].

4

Part I.

Design of reoptimization algorithms

Chapter 1.

Dispatching service vehicles for the ADAC
under high load

This chapter is based on joint work with Sven O. Krumke and Jörg Rambau. The text is
a slightly adjusted version of our Discrete Applied Mathematics article [HKR06].

1.1. Issues and motivation

The ADAC (Allgemeiner Deutscher Automobilclub) is the major German automobile
association. In Germany, ADAC is best known for its “yellow angels”, a fleet of service
vehicles operated by ADAC. The “yellow angels” provide help service to people experiencing
car breakdowns. The fleet of service vehicles is controlled by five service centers spread
over Germany. Customers can report their breakdowns by phone, the service center
responsible for the region of the breakdown will then ensure service, either by sending an
appropriate ADAC service vehicle or by assigning the customer to an external contractor.
In each service center, dispatchers coordinate the service vehicles of a certain region

by assigning each vehicle the customer to serve next. All over Germany there are some
1600 service vehicles with different capabilities plus thousands of contractors available to
provide the required service. The task of the dispatchers is to do the assignments such
that a high service quality, i. e., short waiting times for customers, is achieved at low
operational cost. Operational cost arise e. g., due to driving, working time, and contractor
cost. Observe that although the service vehicles are assigned to at most one customer at
a time, it may be beneficial if the dispatcher is actually planning a tour for each vehicle
that serves a sequence of customers.
Until 2004, dispatching was done manually with no other support than a graphical

display of vehicle and customer locations. With increasing traffic, the need for more
advanced computer support arose. Thus ADAC and a group at Zuse Institute Berlin
developed an automated dispatching algorithm called ZIBDIP [KRT02]. The ZIBDIP
algorithm has been incorporated into the automated dispatching system for service vehicles
(units) and service contractors (contractors). It is based on exact cost-reoptimization,
meaning that a current dispatch, which is near optimal on the basis of the current data,
is maintained. The current dispatch is a set of tours for each vehicle that covers all
known yet unserved requests; whenever a unit becomes idle its next request is read from
the current dispatch. At each event (new request, finished service, etc.) the dispatch is
updated by a reoptimization run, generating again a near-optimal current dispatch.

7

Chapter 1. Dispatching service vehicles for the ADAC under high load

A feasible current dispatch for all known requests and available service vehicles is a
partition of the requests into tours for units and contractors such that each request is in
exactly one tour and each unit drives exactly one tour (maybe directly to its home position)
so that the cost function is minimized. Cost contributions come from driving costs for
units, fixed service costs per requests for contractors, and a strictly convex lateness cost
for the violation of soft time windows at each request (currently quadratic). The latter
cost structure is chosen so as to avoid large individual waiting times for customers.
It is not a-priori clear that such a rigorous reoptimization yields the best, or even a

good, long-term cost, as a “good” decision at a certain point in time may turn out to be a
bad one in view of the unanticipated future; this is the online issue of the dispatching
problem. Indeed, at times in the literature it is claimed that exact reoptimization (i. e.,
with small optimality gap) does not pay in practice because of the unknown future
requests [ZO00, p. 5]. In the case of this particular application, however, the results of
exact reoptimization are satisfying [GKRT02], in concordance with [BSL96, Sec. 8.4].

Although the reoptimization problem, which is modeled as a set partitioning problem
for tours, has an astronomical number of variables, it can be solved by a dynamic
column generation procedure. An effective method to obtain provably good solutions in
ten seconds (the real-time aspect of the dispatching problem) is dynamic pricing control,
which is the main feature of our ZIBDIP algorithm (a thorough description of the algorithm
and computational results can be found in [KRT02]).
As it turns out, the fixed costs for service by contractors bound the dual values of

requests. Thus, contractors substantially contribute to the success of ZIBDIP. The
contractor, however, may in practice decline to serve suggested requests, in which case
this request has to be manually reentered into the system, with the additional constraint
that it must not be assigned to this contractor again. This is a time consuming process.
In metropolitan areas, contractors decline so often that the ADAC decided to remove
contractors from the model.

In simulations on ADAC production data without contractors, derived from three days
in December 2002 with high load, we encountered significant reoptimization gaps. For
2002/12/13, e.g., Figure 1.1 shows the gap of the reoptimization result to the respective
lower bound coming from the optimal solution of the LP relaxation computed a-posteriori
for each reoptimization. The reoptimization still works well in most cases, but under high
load the solutions – delivered after ten seconds – exhibit optimality gaps around 3% on
average but up to 10% in peak load situations.
One way to overcome this problem is to consider simplified reoptimization models

that stem from the following considerations: In principle, for each unit we only have
to determine the next request to work on. The complete dispatch is computed only to
pick up future synergies by considering more than one request per unit. Synergies that
are implemented only very far in the future will be disturbed by new requests anyway;
therefore, an exact pre-calculation of the best decisions in, say, two hours may not really be
necessary; consequently, one can try to cover only a subset of requests in a reoptimization
step.

The issue of this experimental work is: should one stick to the complete model and accept
occasional substantial reoptimization gaps, or is it better to simplify the reoptimization

8

1.2. Simplified models

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00

0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

gap

load ratio

Figure 1.1.: Optimality gap over time of ZIBDIP (the load ratio is the number of requests
per unit in a reoptimization problem).

model so as to eliminate the reoptimization gap? This question is answered on the basis
of simulation studies, performed on the aforementioned ADAC production data: we
first compare the original ZIBDIP reoptimization to several methods to select subsets of
requests that have to be covered by any solution of the reoptimization run. Then ZIBDIP
competes with two simple online heuristics for the ZIBDIP model in order to estimate
how even larger reoptimization gaps harm in the long run.

1.2. Simplified models

We developed and evaluated the following strategies for the selection of requests to be
covered in a reoptimization run. In the sequel, we describe the original and each simplified
model in more detail.
We will use R and U to denote the set of requests and units, respectively. In all our

models, there is a binary selection variable xT for each feasible tour T . Such a tour is
given by a unit u and a sequence of requests to be served by u in the given order. We call
the set of all feasible tours T and the set of all feasible tours for unit u is written as Tu.

We denote by cT the cost coefficient of tour T . This is a weighted sum of strictly convex
lateness costs, linear drive costs, and strictly convex overtime costs. Lateness costs in
the reoptimization are incurred whenever a request is served after a waiting time of more
than 15min. The true target for the waiting time is higher. The 15min deadline in the
reoptimization problem was derived from the following consideration: the true waiting
time for a request should lead to the same lateness costs as the fixed contractor costs for
serving that request. This is motivated by the wish that requests that can not be served
inside the true time window by a unit should be served by a contractor in order to reach
the true target time. The exact formula including the numerical values of the coefficients
of the cost function can not be disclosed here.
Let (avT) be the incidence matrix of requests and tours.

1.2.1. The original ZIBDIP model

The original reoptimization problem solved by ZIBDIP without contractors reads as follows.

9

Chapter 1. Dispatching service vehicles for the ADAC under high load

min
∑
T∈T

cTxT s.t.∑
T∈T

avTxT = 1 ∀v ∈ R (partitioning requests)∑
T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

In contrast to the following simplifications this model guarantees that, after every
reoptimization, each request is assigned to exactly one unit because of the set partitioning
constraint. Every unit has to drive exactly one tour, where the direct move to its home
position is also a feasible tour, the drive-home tour. The details of the column generation
based solution method ZIBDIP are described in [KRT02]. It is relatively easy to adjust
ZIBDIP to solve the following simplified models.

1.2.2. The simplified model 4-ZIBDIP

Select those requests that are among the four closest to some unit. This can be generalized
to k-ZIBDIP. In the following, k-close requests are requests that are among the k closest
to some unit, denoted by Rk ⊆ R. In formulae, we obtain the following model:

min
∑
T∈T

cTxT s.t.∑
T∈T

avTxT = 1 ∀v ∈ Rk (partitioning k-close requests)∑
T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

1.2.3. The simplified model PTC (Prescribed Total Cover)

Relax the set partitioning condition to set packing, and require that a request set of
cardinality twice the number of units is covered by tours of units. This leads to the
following model, where nT is the number of requests in tour T :

min
∑
T∈T

cTxT s.t.∑
T∈T

avTxT ≤ 1 ∀v ∈ R (packing requests)∑
T∈T

nTxT ≥ 2|U | (cardinality)∑
T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

10

1.2. Simplified models

Note that if we replace the cardinality constraint by∑
T∈T

nTxT ≥ min{2|U |, |R|}

the PTC model is equivalent to the original ZIBDIP model if there are at most two requests
per unit on average.

1.2.4. The simplified model ShadowPrice

Solve the LP relaxation of ZIBDIP. To find an integral solution, relax the set partitioning
condition to set packing and change the cost of each tour to its reduced cost from the
hopefully near optimal LP solution. In the following, the new cost coefficient c̃T of a
tour T is the reduced cost of T w. r. t. the best LP solution that can be found in time.
Because the LP solution algorithm works by dynamic column generation, this solution is
an optimal solution to the last RLP that could be solved in time. The resulting model
reads as follows:

min
∑
T∈T

c̃TxT s.t.∑
T∈T

avTxT ≤ 1 ∀v ∈ R (packing requests)∑
T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T

In this model, requests are assigned to units only if their LP dual prices together with
the drive-home cost of a unit pay enough to weigh out the primal costs of their service.
This requires that the LP relaxation can be solved fast, since the LP is not simplified at
all.
This model is motivated by the fact that not only the column generation process is

slowed down by the absence of contractors but also the IP-solution process. This can
be explained as follows: In the presence of contractors, for each request there is an
elementary column covering exactly that request. That way, each set packing solution
using cheap tours through suitable requests can be augmented to a feasible set partitioning
solution by adding such elementary columns, each at the fixed cost of the corresponding
contractor. When there are no contractors, such elementary columns may become much
more expensive than the price for a contractor, and for this reason they may even be
overseen in the column generation process. From the remaining columns it may be difficult
to augment a set of nice tours to a feasible set partitioning solution at reasonable costs.
Relaxing the set partitioning condition to set packing on the model-level by-passes this
problem completely and may lead to a faster IP-solution process.

11

Chapter 1. Dispatching service vehicles for the ADAC under high load

1.2.5. The simplified model ZIBDIPdummy

Introduce a dummy contractor. This contractor can be assigned arbitrarily many requests
at the same time at no extra cost, i. e., in reality, these requests are unassigned for the
moment. In order to enforce a cost for the assignment to the dummy contractor, its
arrival time at any request is a fixed time, the dummy contractor delay. In our case,
135min were chosen. In the following, dv is the dummy contractor delay, i. e., the lateness
cost for 135min additional delay at v (on top of the current age of v). By using decision
variables yv to indicate whether request v should be served by the dummy contractor, we
obtain the following model:

min
∑
T∈T

cTxT +
∑

v∈requests

dvyv s.t.

∑
T∈T

avTxT +
∑
v∈R

yv = 1 ∀v ∈ R (partitioning requests)∑
T∈Tu

xT = 1 ∀u ∈ U (partitioning units)

xT ∈ {0, 1} ∀T ∈ T
yv ∈ {0, 1} ∀v ∈ R

This model implies that, in an optimal solution, for any request in a tour of a unit,
service will start after at most 135 minutes after reoptimization; otherwise, the request
would have been assigned to the dummy contractor.

We remark that all simplified models, including ZIBDIPdummy, can be augmented to
accommodate real contractors as soon as this might be reasonable again.

1.3. Simplified reoptimization algorithms

We furthermore evaluated two heuristics for the original model, which were used in the
reoptimization process as replacements for ZIBDIP. One should mention that in each
reoptimization with either model, the solutions of the previous reoptimization are reused
as start solutions – a simple but essential technique to stabilize the dispatching process in
case of occasional suboptimal reoptimization.

1.3.1. The simplified algorithm BestInsert

A new dispatch is obtained by taking the dispatch of the previous reoptimization, removing
all requests that have been served in the meantime, and inserting new requests at minimal
additional cost w. r. t. to the original ZIBDIP-model.

1.3.2. The simplified algorithm 2-Opt

A first tentative dispatch is computed by BestInsert. This dispatch is then improved by
successively exchanging two requests between distinct time slots in the dispatch if this

12

1.4. Computational results

instance requests units requests per unit
2002/12/07 2123 125 16.98
2002/12/13 2537 146 17.38
2002/12/14 1731 131 13.21

Table 1.1.: Sizes of high load instances used for simulation.

decreases the cost. It has to be noted that the complicated cost function for tours leads
to quite some computational effort for the calculation of the 2-Opt solutions.

1.4. Computational results

The simulation data stems from three days of production at ADAC in December 2002;
instance sizes are given in Table 1.1. Depending on the instance, between 1700 and 2100
reoptimization runs were triggered.
The software ran on a standard Linux PC equipped with a 2.4 GHz Pentium 4 CPU,

4 GB RAM, distribution SuSE 9.0 using kernel 2.4.21-202-smp. It was compiled with
gcc 3.3.1 and used the LP/MIP solver CPLEX 8.0. Each reoptimization run was
interrupted after 10 seconds run-time.

1.4.1. Simplified models

Since all our simplified models by design do not guarantee service for all requests under
low load, we evaluated them in the following way: If the load ratio was less or equal to 2.0,
reoptimization was performed using the original ZIBDIP model. If the load ratio exceeded
2.0 we employed the respective simplified model (this is natural since these models were
designed for high load situations).
First of all, we checked whether the simplified models can reduce the optimality gaps

of the reoptimization solutions that could be computed in 10 s (see Figure 1.2). It can
be seen that all models reduce the gap significantly, i. e., the corresponding optimization
problems are easier to solve in 10 s.
We think that some single large optimality gaps for 4-ZIBDIP and PTC stem from

switching back to ZIBDIP if the load ratio drops temporarily below 2.0. The switches
are particularly “unsmooth” for these two models, since ZIBDIP has to run essentially
without a feasible start solution. This discontinuity in operation is certainly a drawback
of 4-ZIBDIP and PTC.
Next, we investigated the cost over time w. r. t. the reoptimization cost function,

designed in cooperation with ADAC (see Figure 1.3 on page 17).
The results: only ShadowPrice and ZIBDIPdummy are competitive against ZIBDIP,

although ShadowPrice seems to degrade in performance in the largest instance (b). In two
out of three instances, ShadowPrice and ZIBDIPdummy have even slightly lower long-term
cost than ZIBDIP, though by a small margin. In the largest instance with the most

13

Chapter 1. Dispatching service vehicles for the ADAC under high load

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00

0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

gap

load ratio

(a) ZIBDIP

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00

0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

gap

load ratio

(b) 4-ZIBDIP

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00

0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

gap

load ratio

(c) PTC

0

3

6

9

12

15

08:00 10:00 12:00 14:00 16:00

0

0.5

1

1.5

2

2.5

3

3.5

g
a
p

in
%

lo
a
d

ra
ti

o

gap

load ratio

(d) ZIBDIPdummy

Figure 1.2.: Optimality gaps and load ratios for simplified models and ZIBDIP. The opti-
mality gap of ShadowPrice is inevitably infinite, since the lower bound the LP provides
w. r. t. the modified cost (which is the reduced cost) is zero.

14

1.4. Computational results

difficult reoptimization problems, however, the original ZIBDIP is superior. On average,
however, the results are in favor of ZIBDIPdummy.
Since the reoptimization cost function of ADAC is quite a complicated mixture of

lateness, drive, and overtime costs, we decided to investigate two standard measures on
the so-called lateness time vectors (see Figure 1.4 and 1.5 on page 18f). The lateness
time of a request is its waiting time portion that exceeds the allowed waiting time, fixed
by ADAC. We calculated the L1 norms and the L2 norms of the lateness time vectors
with one entry for each request. The former norms measure the average waiting time,
the latter norms penalize in particular large individual lateness times, which is desirable
from a fairness point of view. One should mention that these two criteria are also of vital
interest in the evaluation of the long-term behavior of online-algorithms. The ADAC
reoptimization objective was chosen to contain more aspects since reoptimization of L1

and L2 norms alone, resp., did not lead to satisfactory overall results.
It is evident that w. r. t. these lateness time measures, ZIBDIPdummy is never worse than

second best; moreover, it performs best in four out of six evaluations. ShadowPrice shows
the worst L1 norms, although the L2 norms are good. We have no explanation for this.
The good L1 norms of PTC are due to the fact that, obviously, individual requests

are postponed in favor of new requests that can be served faster. This can be seen very
clearly in the L2 norm diagrams, in which PTC performs worst. Uncontrolled deferment
of requests is a very undesired property of an online algorithm. Therefore, PTC can
not be recommended for tasks in which fairness is an issue. In our application, fairness
certainly is an issue, whence the ADAC cost function contains a strictly convex waiting
time penalty.
The answer to our main question is that the model error of most of our high-load

models leads to worse long-term behavior than the computational error that ZIBDIP
produces (Figure 1.3). Therefore, model simplifications have to be treated with great
care. In our case, ZIBDIPdummy delivers the overall slightly best solution. One needs to
be careful, though: a substantially smaller contractor delay of 45min would lead to a tiny
reoptimization gap; it, however, would at the same time produce unacceptable long-term
costs because too many requests stay unassigned for too long. (This was, by the way,
observed when we were looking for a good dummy contractor delay. Thus, ZIBDIPdummy

involves some parameter tuning that the original ZIBDIP does not.)

1.4.2. Simplified reoptimization algorithms

The results so far could lead us to the conclusion to keep the original model but to use
simplified reoptimization algorithms, since it seems that the optimality gap does not
harm too much. After all, the implementation of a dynamic column generation procedure
means a substantially larger effort, which is important especially in the industrial context.

Since we hear quite frequently such arguments in order to promote the use of heuristics
rather than exact mathematical programming methods, we followed also this line in our
simulation experiments and found out the following: Larger computational errors in the
reoptimization can increase the long-term costs even more significantly than the model
errors above.

15

Chapter 1. Dispatching service vehicles for the ADAC under high load

This is most incisively shown by the bad performance of BestInsert (Figures 1.6, 1.7,
and 1.8 on pages 20ff). Even 2-Opt can not catch up with ZIBDIP and ZIBDIPdummy in
the heavier instances. In the largest instance (b), 2-Opt ends up at a long-term cost of
20 % above ZIBDIP and ZIBDIPdummy. Especially striking is the fact that, in the largest
instance, the cost of 2-Opt is constantly increasing over time relative to ZIBDIP. That
means: the reoptimization errors accumulate.
In particular: in our application it is certainly not true, that deliberately sticking to

the suboptimal solutions of heuristics like BestInsert in order to leave space for future
requests can yield superior long-term behavior (compare [ZO00, p. 5]). We are not saying
that reoptimization is the best possible policy, maybe not even in our application. We
claim: if anything is wrong with the reoptimization policy then this defect is not cured
by using suboptimal solutions to the reoptimization problems.
The good overall performance of ZIBDIPdummy may stem not only from closing the

optimality gap in the reoptimization process; it seems, moreover, that the special model of
ZIBDIPdummy makes perfectly sense in the dynamic environment: since requests that are
assigned to the dummy contractor would otherwise be served quite far in the future, with
a high probability their position in the dispatch will change anyway. These considerations
led us to the conclusion to install ZIBDIPdummy as the default reoptimization model in
the automatic dispatching software for ADAC.

1.5. Significance

The production software for automated dispatching of ADAC service vehicles is delivered
by Intergraph Public Saftety (IPS), based on the ZIBDIP algorithm. In the view of
the results presented in this work, ADAC has filed a change request for the production
software: ZIBDIPdummy is now the standard reoptimization model because it has proven
to be more robust against sudden load increase.

The key learning is that rigorous reoptimization on the basis of mathematical program-
ming – though myopic w. r. t. unknown future requests – yields the best results in this
particular application.

16

1.5. Significance

90

100

110

120

130

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(a) 2002/12/07

90

100

110

120

130

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(b) 2002/12/13

90

100

110

120

130

140

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(c) 2002/12/14

Figure 1.3.: Comparison of ZIBDIP and simplified models w. r. t. the nonlinear cost func-
tion used by ADAC.

17

Chapter 1. Dispatching service vehicles for the ADAC under high load

90

95

100

105

110

115

08:00 10:00 12:00 14:00 16:00L
1
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(a) 2002/12/07

90

95

100

105

110

115

08:00 10:00 12:00 14:00 16:00L
1
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(b) 2002/12/13

90

95

100

105

110

115

08:00 10:00 12:00 14:00 16:00L
1
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(c) 2002/12/14

Figure 1.4.: ZIBDIP vs. simplified models: L1-norm of lateness time.

18

1.5. Significance

90

95

100

105

110

115

120

125

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(a) 2002/12/07

90

95

100

105

110

115

120

125

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(b) 2002/12/13

90

95

100

105

110

115

120

125

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

ShadowPrice

4-ZIBDIP

PTC

ZIBDIPdummy

(c) 2002/12/14

Figure 1.5.: ZIBDIP vs. simplified models: L2-norm of lateness time.

19

Chapter 1. Dispatching service vehicles for the ADAC under high load

90

100

110

120

130

140

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

BestInsert
2-Opt

(a) 2002/12/07

90

100

110

120

130

140

150

160

170

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

BestInsert
2-Opt

(b) 2002/12/13

90

100

110

120

130

140

150

08:00 10:00 12:00 14:00 16:00

c
o
s
t

in
%

re
la

ti
v
e

to
Z
IB

D
IP ZIBDIP

BestInsert
2-Opt

(c) 2002/12/14

Figure 1.6.: Comparison of ZIBDIP and the heuristics w. r. t. the nonlinear cost function
used by ADAC.

20

1.5. Significance

100

110

120

130

140

150

160

08:00 10:00 12:00 14:00 16:00L
1
-o

rm
o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(a) 2002/12/07

100

110

120

130

140

150

160

08:00 10:00 12:00 14:00 16:00L
1
-o

rm
o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(b) 2002/12/13

100

110

120

130

140

150

160

08:00 10:00 12:00 14:00 16:00L
1
-o

rm
o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(c) 2002/12/14

Figure 1.7.: ZIBDIP vs. heuristics: L1-norm of lateness time.

21

Chapter 1. Dispatching service vehicles for the ADAC under high load

95

105

115

125

135

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(a) 2002/12/07

95

105

115

125

135

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(b) 2002/12/13

95

105

115

125

135

08:00 10:00 12:00 14:00 16:00L
2
-n

o
rm

o
f
la

te
ti

m
e

in
%

re
la

ti
v
e

to
Z
IB

D
IP

ZIBDIP

BestInsert
2-Opt

(c) 2002/12/14

Figure 1.8.: ZIBDIP vs. heuristics: L2-norm of lateness time.

22

Chapter 2.

Group control of elevator systems

The control of elevators is probably the most well-known online optimization problem.
The task is to schedule a group of elevators such that they serve the passenger flow
efficiently and offer a good service level to the passengers. Obviously, this is an online
optimization problem: The transportation requests of passengers become known over
time and the control algorithm has to serve known requests without having information
about future requests.

A real elevator control is a complex system whose most important task is the mechanical
control of the elevators (accelerating, decelerating, opening and closing doors), ensuring
high safety requirements. In addition to this mechanical control task the elevator control
has to decide which elevator of the group serves which passenger request. Moreover,
it has to decide in which order to serve the passenger requests assigned to an elevator.
When talking about an elevator control algorithm, we mean an algorithm that generates a
dispatch prescribing how the passenger requests are served. Although such an algorithm
is just one module in a real elevator control, it is crucial for the performance of the entire
elevator group.
Elevator control algorithms for elevator groups were first studied back in the 1950s,

when the first automatic elevator controls were installed [Bar02]. These first algorithms
were rather simple, since they had to be implemented in hardware using relays. Since
then, the performance achieved by elevator control algorithms has become more important
as buildings become higher and higher. In addition to algorithmic improvements one
possible way to enhance this performance is to use destination call systems (sometimes
also called destination hall call system). In such a system, a passenger registers his or her
destination floor right at his start floor instead of the travel direction only. This way, the
elevator control has more information as a basis for its decisions which hopefully leads
to better performance. Apart from new high-rise buildings, there is another important
application for destination call systems in existing buildings. It may happen that due to
changing usage of a building the installed elevator system is not capable to cope with
increased passenger demand. In this situation, changing over to a destination call system
may be a relatively cheap alternative to upgrading the elevator system itself or installing
additional elevators.
Elevators are also used in industrial applications, e. g., in high rack warehouses. Al-

gorithms for these applications have also been studied in the literature, both from a
theoretical [AKR00] and applied point of view [FR06]. However, there are significant
differences in the constraints for scheduling the elevators. We will therefore restrict the

23

Chapter 2. Group control of elevator systems

discussion to passenger elevator systems; the algorithms considered here are most suitable
for controlling such systems.
In this chapter, we will discuss the basic notions of elevator control and provide a

general model for various variants of elevator systems. This model will be the basis
for the discussion of elevator control heuristics in Section 2.5 and exact reoptimization
algorithms in Chapter 3. Section 2.5 contains a detailed description of the BestInsert
heuristic. This heuristic has been developed in a joint research project with our industry
partner Kollmorgen Steuerungstechnik and is the basis for the algorithm currently used in
their elevator controls. A preliminary version of it was presented at Operations Research
2007 [HT08].

2.1. Conventional elevator systems vs. destination call
systems

In order to realize the degrees of freedom that can be exploited by an elevator control
algorithm it is important to understand the flow of information in an elevator system.
Most of the terms we use are the ones used by Barney [Bar02], which is a standard
reference in the elevator industry.
In a system employing a conventional (2-button) control, a passenger registers his

transportation request by issuing a landing call, i. e., he pushes the button corresponding
to his travel direction. Since most conventional systems indicate that a landing call for
a direction has already been registered, the passenger does not need to issue a landing
call if another passenger did so before. Even if he pushes the direction button again this
will not generate an additional landing call at this floor. Once a landing call has been
registered, the elevator control algorithm ensures that some elevator travels to this floor
and leaves in the requested direction. Passengers are assumed to enter the first arriving
elevator that leaves in the correct direction, so once an elevator arrived the landing call
is considered to be served. The passenger needs to issue a car call inside the cabin in
order to tell the elevator control his destination floor. The elevator control ensures that
the elevator stops at all floors corresponding to the car calls. It may happen that the
capacity of the arriving elevator is not sufficient to pick up all waiting passengers. In that
case, passengers are expected to reissue a landing call.

One major drawback of a conventional system is that the elevator control learns about
the desired destination floors only after the passengers boarded the elevator. At this
point, it has to stop at all those destination floors. If the elevator control knew the
destination floors beforehand, it might have been able to group passengers according to
their destination floors, thus reducing the stops required to serve the passengers. This is
the main motivation to consider destination call systems.
In a destination call system a passenger issues a destination call at his start floor,

telling the elevator control his destination floor. In all the systems implemented so
far (e. g., by Schindler [Sch90, KO02], Thyssen Krupp [SP02], and KONE [TY05]), the
elevator control answers by telling the passenger which elevator is going to serve him. The
passenger may then proceed to this elevator and wait for its arrival. Registered destination

24

2.1. Conventional elevator systems vs. destination call systems

calls need not be indicated, so the next passenger has to issue his own destination call,
whereby the elevator control acquires more information about the passengers waiting at a
floor. The elevator has to ensure that the assigned elevator will arrive at this floor, leaving
in the required direction. The passengers enter the assigned elevator as it arrives and
indicates the matching leaving direction. Inside the elevator there is no further facility
to issue calls. Having a possibility to enter a car call inside the elevator would defeat
the idea of the destination call, since passengers could enter any destination floor and
board the first arriving elevator which can be forced to stop at the desired destination
floor. Without this opportunity, a passenger has no incentive to board another than the
assigned elevator as he cannot be sure that this elevator will stop at his destination floor.
Again, the passengers are expected to reissue a destination call∗ if they were not able to
board the elevator. Note that they have to go back to the registration device to do that
and that they may be assigned to a different elevator.
Clearly, the early and irrevocable assignment of a serving elevator is a disadvantage

from an optimization point of view, since later reassignments might improve the dispatch
substantially. This restriction can be alleviated in the following destination call system,
which delays elevator assignments as long as possible. Upon registration of a destination
call the elevator control only acknowledges that it registered the call. The passenger
waits in the common waiting area of the elevator group for the first arriving elevator
indicating his destination floor. A destination call is assigned to an elevator shortly before
the elevator opens its door, so the elevator can indicate the corresponding destination
floors and the passengers have time to proceed to the door. Again, passengers that could
not board have to reissue their calls. Observe that this kind of system resembles the
conventional system much more than the one described above; essentially the difference is
that destination floors are communicated instead of directions only. From now on, we
call the first kind of destination call system immediate assignment system and the second
kind delayed assignment system.
One interesting aspect of passenger elevator control is that it is an online problem

with partial observability and partial control only. First, there is the issue of intended or
unintended misuse: Passengers might not use the signalling properly or try to trick the
system to achieve better service for themselves. It is often reported that in a conventional
system people press both directional buttons at the same time. In a destination call
system, a passenger might not issue a destination call because he knows that his colleague
is going to the same floor. A more selfish passenger might assume that more waiting
passengers are considered to be more important by the elevator control and thus issue
several destination calls to the same floor. In general, the elevator control cannot avoid
nor detect these kinds of misuse. But even if there is no misuse, there is another problem:
The elevator control cannot prescribe or detect which passengers board an elevator or not.
If there is enough capacity, this is not an issue, since it is safe to assume that all matching
passengers board in this situation. If, however, the capacity is insufficient the elevator
control does not know anything about which passengers really boarded. In contrast to a

∗ The elevator control M10 described in [Sch90] does not require re-registration which is reportedly
avoided by book-keeping of the loaded passengers via weighing.

25

Chapter 2. Group control of elevator systems

conventional system, the elevator control does not get a feedback at which destination
floors it has to stop to drop the passengers. Therefore, the elevator control has to ensure
that any passenger that could have boarded can leave at his destination floor, i. e., it
has to ensure stops at all registered destination floors. This may lead to what we call a
phantom stop: None of the passengers travelling to a certain floor boards the elevator,
but it stops on that floor without loading another passenger, i. e., the stop is completely
unnecessary. Note that this cannot happen in a conventional system. All in all, the
elevator control cannot reliably keep track of the remaining capacity of an elevator. This
is the reason why we require reissuing of destination calls which would be unnecessary if
we could track every passenger through the system.

However, one of the claimed advantages of a destination call system is that there is
more information on the number of waiting or loaded passengers which can be used
to incorporate the elevator capacity into the planning. As discussed above, the lack
of boarding control and the remaining uncertainty about the exact number of waiting
passengers pose severe difficulties to taking limited elevator capacity into account. We
address this issue in the following ways.

1. We assume during planning that the elevator capacity is unlimited, i. e., that all
passengers corresponding to destination calls matching the signalling of the elevator
board it.

The advantage of this approach is that we do not need to require a one-to-one
relation between passengers and destination calls. Insufficient capacity is simply
dealt with by relying on the passengers to reissue their calls. Therefore we do not
need any book-keeping for dealing with the capacity.

As a disadvantage, capacity is always overestimated which means that in high-load
situations the planned schedules do not match the real behavior of the system. As
a consequence, passengers have to reissue their calls which is annoying and results
in long waiting times.

2. We take the limited elevator capacity into account, assuming that each call represents
one passenger (i. e., that there is no misuse) and that all passengers board if there
is sufficient capacity.

This approach has the advantage that, if misuses are rare, the predicted behavior
resembles the real behavior closely, thus avoiding unnecessary reissuing of calls. If
there is in fact no misuse, every passenger planned to board can actually board.

The drawback is that the remaining capacity of the elevator is underestimated since
all potentially loaded passengers are assumed to be loaded. We need some additional
book-keeping and the approach works best if there is a close correspondence between
the destination calls and the passengers.

Additionally, the elevator control can be designed to be more robust against misuses.
For instance, allowing to issue a destination call for several people at once eases the
“increase-my-priority” misuse, since a single person can claim to be a group of people.
Therefore it should not be used. Increasing the priority of a floor with many waiting

26

2.1. Conventional elevator systems vs. destination call systems

conventional system immediate assignment system delayed assignment system

optimization opportunities

− destination informa-
tion only available
after boarding

+ reassignment of calls
between elevators
possible

+ no phantom stops

+ destination informa-
tion for each passen-
ger available with the
call

− reassignment of calls
is not possible

− possibility of phantom
stops

+ destination informa-
tion for each passen-
ger available with the
call

+ reassignment of calls
between elevators
possible

− possibility of phantom
stops

handling for passengers

− separate landing call
and car call needed

− passengers need to
be attentive to catch
their serving eleva-
tor [Sch90]

+ only one call needed
+ passengers can pro-

ceed right to their
serving elevator

+ only one call needed
− passengers need to

be attentive to catch
their serving eleva-
tor [Sch90]

possibilities for misuse

− erroneous usage (both
buttons pushed)

+ priority cannot be
increased

− erroneous usage (no
button pushed)

− priority can be in-
creased by issuing
multiple destination
calls

− erroneous usage (no
button pushed)

− priority can be in-
creased by issuing
multiple destination
calls

Table 2.1.: Comparison of the advantages and disadvantages of the considered elevator
control systems for various aspects.

passengers is, on the other hand, very reasonable. In order not to sacrifice it, the priority
might increase only sublinearly in the number of waiting passengers. A more extreme
measure is to allow only one destination call per destination floor at each floor, which
means that the elevator control cannot use capacity information. The choice between the
two approaches discussed above and the use of further measures should be made on the
kind of building the elevator group is in.

Table 2.1 summarizes the various advantages and disadvantages of the systems discussed
here.

So far we did not discuss the precise goals that an elevator control should achieve. In
most situations, the most important goal is a good quality of service. Traditionally, this
is measured via the waiting time of a passenger, which is the time between the arrival

27

Chapter 2. Group control of elevator systems

Grade of service Percentage of calls answered in Time to answer calls (s)

30s 60s 50% 90%

Excellent > 75 > 98 20 45
Good > 70 > 95 22.5 50
Fair > 65 > 92 25 55
Poor/unacceptable < 65 > 92 > 25 > 55

Table 2.2.: Classification of the performance of an elevator system based on characteristics
of the response time distribution according to [Bar02, p. 136].

of a passenger and the time the serving elevator has arrived and opened the door. In
a conventional system, this cannot be measured directly, since only the first landing
call is registered. The time between the registration of the first landing call and the
arrival of the elevator is called response time and is often used as a substitute for the real
waiting times in conventional elevator control algorithms. Note that in destination call
systems, we get a much more precise picture as the elevator control can better discriminate
between passengers, possibly even between two passengers with the same destination floor.
Moreover, a destination call system can determine the travel times, i. e., the time between
the arrival of the passenger and the arrival of the serving elevator at the destination floor
(again, with door opened), for the passengers it can discriminate. This is not possible in
a conventional system, since we cannot match landing calls and car calls, which is the
main reason why the travel time is not considered in conventional systems. We measure
the quality of service in terms of the waiting time and, when applicable, the travel time
distributions. Of course, the average and maximum values should be small, but the
literature also gives target values for certain quantiles to classify the performance of a
system, see e. g., Table 2.2. Another goal is to avoid having passengers to reissue their
calls.
In high load situations short waiting or the travel times for the individual passenger

might not be the most important goal. Instead, a high capacity or throughput is required,
i. e., the elevators should serve as many passengers in a short period of time as possible in
order to reduce the load. Another goal for an optimized elevator control that is becoming
more and more important is energy efficiency. Since there are different goals depending
on the traffic situation, an interesting question is how to dynamically adjust the planning
to the current situation.

2.2. Some more background on elevator control

Control algorithms for conventional systems only decide about the assignment of landing
calls to elevators [Bar02]. The set of landing calls assigned to an elevator is then served by
a roundtrip: The elevator first serves all landing and car calls in its current travel direction,
then reverses the direction and serves all calls in this direction, reverses direction again
and serves the calls behind it in its original direction (see Figure 2.1). This strategy for

28

2.2. Some more background on elevator control

10
9
8
7
6
5
4
3
2
1

↑
↓
↓

↑
↓

↑

•

•

Figure 2.1.: Construction of an elevator schedule for the assigned calls based on an elevator
roundtrip. Arrows on the left indicate registered landing calls, whereas the bullets indicate
registered car calls.

scheduling an elevator to serve a set of calls is known as Simplex Collective or Collective
for short.
Of course, restricting the kind of schedule considered for each elevator to a single

roundtrip simplifies the control algorithms. Using the concept of a roundtrip, it is quite
straightforward to compute the response times for each landing call which can be used
to evaluate an assignment. However, there may be situations in which it is beneficial
to postpone certain calls to the next roundtrip, but such schedules are not considered.
For example, the elevator may be moving upwards passing floor 9, where very recently
an up landing call has been registered, to pick up a long-waiting down landing call at
floor 10. If the schedule is restricted to a single roundtrip, this landing call at floor 10 has
to be delayed further. However, an advantage of using roundtrips is that it guarantees a
bounded response time for every call. This is due to the fact that a call cannot be delayed
indefinitely and the time for a roundtrip and thus the response time is bounded by the
sum of times needed to travel from floor 1 to floor 2 to floor 3 and so on and back again.

Probably the main reason for sticking to roundtrips is that too few data is available to
consider schedules consisting of multiple roundtrips. Since in destination call systems
much more information is available earlier, there is no reason to keep this restriction. It
will be interesting to see how much can be gained by considering more complex schedules.

Elevator control algorithms are most often evaluated by simulating various common
traffic patterns. For instance, in an office building one can observe the following traffic
patterns during the day (cf. Figure 2.2).

Up peak traffic In the morning, there is a high-intensity traffic from the entrance
floors to the office floors. The duration of the peak traffic is often relatively short.

Interfloor traffic In the late morning and before noon, people are travelling inside
the building from floor to floor. Start and destination floors are more or less
uniformly distributed and there is a low traffic intensity.

Lunch traffic Around noon, people leave the building for having lunch, so there is

29

Chapter 2. Group control of elevator systems

0
20
40
60
80
100
120
140
160

07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

nu
m
be

r
of

pa
ss
en
ge
rs

time

up traffic
down traffic

interfloor traffic

Figure 2.2.: Typical passenger traffic in an office building. Shown is the number of passen-
gers requiring service in each interval of ten minutes. One can clearly recognize the up
peak phase in the morning around 9:00, the interfloor traffic phase before 12:00, lunch
traffic between 12:00 and 14:00, afternoon interfloor traffic, and late afternoon down
traffic starting at 17:30.

an intense down traffic. Some time later, people return from lunch, generating
intense up traffic which might overlap with the down traffic from other offices.

Down peak traffic In the afternoon, people leave the building. The down traffic is
quite intense, but the intensity is lower than for the morning up peak, but spread
over a longer time period.

Up peak traffic is considered to be the most demanding traffic situation [Bar02], so it is
often used for dimensioning an elevator system. An important figure in this context is the
handling capacity HC [Bar02]. The handling capacity is defined as the critical passenger
arrival rate: If the passenger arrival rate is higher than the handling capacity, the system
cannot cope with the resulting traffic and waiting times increase rapidly.

Consider an elevator system consisting of L lifts with capacity P each, serving a building
with N floors. The handling capacity is determined by considering up peak traffic, i. e.,
all arriving passengers arrive at the main entrance floor and want to travel to the upper
floors. Note that during up peak traffic, all a conventional elevator system can do is to
send the lifts to the main entrance floor, loading as many passengers as possible, carry
them to their floors, and return to the main entrance floor. The system performance
therefore strongly depends on the round trip time RTT , which is the time needed to serve
all loaded passengers and return to the main entrance floor. According to Barney [Bar02],
the RTT is used to estimate the handling capacity via

HC =
P · L
RTT

. (2.1)

RTT is computed using the formula

RTT = 2Htv + (S + 1)ts + Ptl,

30

2.3. Assumptions and requirements for elevator dispatches

where H is the highest floor reached, tv the drive time needed to pass one floor, S is the
number of stops needed to unload the passengers, ts the time per stop, and tl the time
to unload one passenger. Note that only H and S depend on the actual load of the lift.
For calculations, H is usually assumed to be N or N − 1, which is justified if the lift
capacity P is high. The number of stops S is calculated by assuming some distribution of
the destination floors.
We already mentioned that in a conventional system, during up peak traffic there are

basically no control decisions. The only parameter that can be controlled is the time
an elevator waits on the main floor before starting its ride. Waiting longer may help to
improve the utilization of the cabin and to some extent the waiting time of the passengers,
but this will not reduce the number of stops. In contrast, in a destination call system
the elevator control can distribute passengers between elevators, which can help a lot to
reduce the number of stops during a single roundtrip. Therefore, destination call systems
can achieve smaller round trip times and thus higher handling capacities. In Chapter 5
we will give some theoretical evidence for this.

2.3. Assumptions and requirements for elevator dispatches

The dispatching decisions of an elevator control algorithm are limited by certain re-
quirements, that either arise from technical limitations, safety restrictions, or passenger
expectations about the behavior of an elevator system. Since the passengers cannot be
controlled nor supervised by the elevator control, the elevator dispatch needs to be based
on certain assumptions on how a “reasonable” passenger behaves.

In the following, “call” means any of landing call, car call, or destination call, depending
on the context. We will say that a landing call or destination call is picked up by an
elevator that travels to the floor and signals that it is going to serve that call. After a
destination call has been picked up, it becomes loaded. Similarly, registered car calls are
also considered loaded. A loaded car call or destination call is dropped by an elevator by
visiting the destination floor the first time after the call has been picked up (destination
call) or registered (car call). A stop at a floor to pick up a call is called pickup stop, a
stop for dropping a call drop stop. Note that this terminology mimics the transportation
of a passenger, although in general there is no one-to-one correspondence between calls
and passengers. Due to this, the elevator control can only measure the waiting and travel
times of calls, not those of passengers. Thus we will only talk of waiting and travel times
of calls from now on.

2.3.1. General requirements

The most important restrictions on the structure of a dispatch are consequences of the fact
that passengers do not expect to travel against their desired direction [Bar02]. However,
individual passengers might nevertheless choose to travel against their direction. Since
the elevator control has no way to recognize this, the best we can do is to postulate the
following assumptions on the behavior of passengers.

31

Chapter 2. Group control of elevator systems

Assumption G.1. A passenger never boards an elevator going in the wrong direction.
In particular, a passenger boards the first elevator that was signaled to serve his call, i. e.,

• the first elevator with matching leaving direction in the conventional system,

• the assigned elevator when it leaves in the correct direction in the immediate assign-
ment system, and

• the first elevator signalling to go to the desired destination floor in the delayed
assignment system.

Assumption G.2. A passenger leaves an elevator at the first stop at the desired desti-
nation floor.

Based on these assumptions, the elevator control can ensure that no “well-behaving”
passenger is going into the wrong direction by fulfilling the following requirement.

Requirement G.3. An elevator never transports calls in the wrong direction, i. e., the
travel direction of the elevator is always equal to the desired direction of the loaded
calls. Therefore, an elevator has to complete all requested drop stops before changing the
direction.

Clearly, the elevator control has to ensure that every passenger receives the required
service at some point in time.

Requirement G.4. For every registered landing call and destination call there is a
matching pickup stop, i. e., one of the elevators is going to the start floor and leaving in
the correct direction. Likewise, there is a drop stop for every loaded call.

It may well happen that the capacity of the elevator doing a pickup stop is not sufficient
to allow boarding of all waiting passengers. We assume that if there are passengers left
that still require service, they are registering new calls.

Assumption G.5. If a passenger could not board its assigned elevator due to lack of
capacity, he reregisters his call again.

The next requirement is more or less a psychological one: Passengers find it irrational
if an elevator stops without loading or unloading passengers. As discussed before, such
phantom stops cannot be avoided in general, at least not for destination call systems.
However, the elevator control should ensure this requirement as far as possible, based on
the available information.

Requirement G.6. An elevator does not stop without loading or unloading potentially
loaded passengers. Once an elevator starts decelerating, it stops at the next floor and, if
passengers are loaded, opens its door before accelerating again.

32

2.3. Assumptions and requirements for elevator dispatches

A special case where the elevator control can tell that no passengers board or leave the
elevator is when none of the on-board passengers wants to leave at a floor and the elevator
control detected via weighing that the elevator is full. In this situation the elevator must
not stop at that floor.

Requirement G.7. When the elevator is fully loaded, the elevator does not stop at floors
where no passenger is going to leave.

Apart from the restrictions implied by passenger service, there are also technical
limitations.

Requirement G.8. An elevator cannot reverse its direction without stopping.

2.3.2. Additional assumptions

We will use some additional assumptions to simplify the model and the simulation used to
compare different elevator control algorithms. Most of these assumptions can be relaxed
and the model presented later still remains valid.

Assumption A.1. Elevators can only stop at floors. In particular, empty elevators need
to stop at a floor in order to change direction.

This assumption implies that the arrival times of the stops can be computed from the
time needed to travel from one floor to another. If stops between floors are allowed in
order to change direction, the arrival time computation becomes more complex in these
cases.

Assumption A.2. In the simulation, passengers board and leave the elevator only if the
door is fully opened.

In reality, passengers might try to board an elevator whose door is not yet or not
anymore fully opened. This may cause an additional delay on that floor, which should
trigger an update of the schedule.
Once the door is closing, it is possible to decide whether or not the door should be

reopened if another call on the current floor of the elevator is registered. However, loaded
passengers might find the additional delay annoying. Of course, we have to reopen the
door for security reasons if a passenger steps into the closing door. The only effect of
reopening the door is that the execution of the remaining dispatch is delayed. In our
simulation environment we allow to reopen the closing door at most a given number of
times.

Assumption A.3. As long as the door is closing it might be reopened, but at most k
times on the same floor. Once the door has closed it cannot be reopened again and the
elevator will start its ride.

33

Chapter 2. Group control of elevator systems

For evaluating the quality of a dispatch we need to compute or estimate the waiting
and the travel time. Note that in the definition of the waiting and the travel time, we did
not refer to the exact boarding time nor leaving time, which cannot be measured by the
system. Instead, we used the time of arrival of the serving elevator to define them. This
definition and the fact that we do not know the order in which passengers board or leave
motivate the following assumption.

Assumption A.4. From the elevator control point of view and in the simulation, pas-
sengers board and leave the elevator at the instant the doors are fully opened.

To determine timing estimates for a dispatch, we need to specify how long an elevator
waits on a floor before continuing its schedule. Since the transfer of passengers in and
out of the elevator can take a significant amount it is too simplistic to assume a fixed
time interval. Although in general we do not know exactly how many passengers board
or leave at a floor we might have estimates for these numbers.

Assumption A.5. The time an elevator waits at a floor with door open is at least a
given time interval and increases with the (estimated) number of passengers that are
picked up or dropped.

We assume that an elevator stops at its final floor once it completed its schedule. An
alternative to this is to employ some kind of parking policy [Bar02] to distribute the
elevators over the building in order to achieve short waiting times for the next calls.

Assumption A.6. If the elevator schedule is empty, it stays at the last visited floor with
the doors opened.

2.3.3. System-specific requirements

Apart from the general requirements and assumption that apply to all elevator control
systems, there are further restrictions due to the type of information flow in the different
systems.

Conventional system

Obviously, upon arrival of an elevator on a floor the elevator control needs to signal the
direction of the landing call it is serving and than move the elevator accordingly.

Requirement CS. If an elevator stops at a floor where at least one landing call is
registered, the elevator control must fix and signal the leaving direction of the elevator
before opening the doors. The elevator serves all car calls before changing direction.

Note that the single-roundtrip based schedules employed in conventional systems
naturally satisfy the last part of the requirement.

34

2.4. A general model for elevator group control

Destination call systems

We already mentioned that the elevator control in general does not know the exact set of
passengers that boarded and therefore has to visit all corresponding destination floors.
Of course, it also needs to signal which calls to serve.

Requirement DS. After stopping at a floor, the elevator stops at all registered (and
signalled) destination floors in its leaving direction before changing the direction.

If an elevator stops at a floor where at least one destination call assigned to this elevator
has been registered, the elevator control must fix and signal

• the leaving direction of the elevator (immediate assignment system)

• the destination floors of the destination calls to be served by this elevator (delayed
assignment system)

before opening the doors.

For the delayed assignment system, the fixing of the destination floors to be signalled
is typically done some time before the door is opened in order to allow passengers to
proceed to the elevator. Note that not all floors the elevator is going to stop at need to
be signalled. In fact, the elevator control may choose to signal no destination floor at all.

2.4. A general model for elevator group control

In this section we present a general model for elevator group control that captures
the degrees of freedom and restrictions of the three types of systems considered so far:
conventional systems, immediate assignment systems, and delayed assignment systems.
In addition, it also captures destination call systems with full boarding control, i. e., the
elevator control can decide and control which passengers board the elevator on each floor.
Although this is an unrealistic setting for passenger elevators, it is interesting from a
mathematical point of view for the following reasons:

• It may serve as a yardstick to provide “upper bounds” on the performance that can
be achieved by any elevator control algorithm.

• It may be used to measure the “price of freedom”, i. e., the potential performance
loss due to not having full boarding control.

• There may be applications where full boarding control can be realized, e. g., cargo
elevators.

The main purpose of this model is to provide a unified framework for the algorithms in
Section 2.5 and Chapter 3. It may also be used to study “mixed systems” [SP02, TYMR06],
where destination calls are used at some of the floors only, whereas the other floors employ
conventional landing calls.

We start by collecting the data that is available to the algorithms and thus are part of
the snapshot problem.

35

Chapter 2. Group control of elevator systems

2.4.1. The structure of the snapshot problem

The key idea to obtain a general model is to consider certain groups of calls as one request.
A request describes a group of calls with the same start floor that will be picked up by the
same elevator, i. e., the elevator control has no way to distribute calls of this request to
different elevators. A request is served by picking up the corresponding calls and visiting
each destination floor of the destination calls belonging to the request. In addition to
serving picked up requests, an elevator may have drop commitments, i. e., floors to stop at
before changing the direction, due to car calls or destination calls that have been picked
up earlier.
The requests can be partitioned into the requests that are already assigned to an

elevator e, denoted by R(e), and the ones that are still unassigned, denoted by Ru. For
elevator e, F(e) is the set of drop commitments. Formally, the task is now to assign the
requests Ru to elevators and to find for each elevator a sequence of stops that fulfills the
drop commitments F(e) and serves the requests R(e) and the requests from Ru assigned
to that elevator. We call such a solution to the snapshot problem dispatch, which consists
of one feasible schedule for each elevator specifying the stop sequence. The cost of a
dispatch is the sum of the cost of its schedules, which are defined in the next subsection.

The exact set of calls belonging to a request and the sets of assigned requests depend as
follows on the system considered. Figure 2.3 gives an example illustrating the differences.

conventional system There is one request for each landing call, which consists of
this landing call only. A request is assigned to an elevator as soon as the elevator
is going to stop at that floor and signalled the corresponding leaving direction.

immediate assignment system There is one request for each floor/direction/elevator
combination such that a destination call from that floor leaving in the direction
has been assigned to the elevator. This request consists of all these destination
calls that have been assigned to the elevator. Each such request belongs to R(e)
for the assigned elevator e.
Another type of request arises from each yet unassigned destination call, which
makes up a request of its own, reflecting that it still can be assigned to any
elevator.

delayed assignment system For each elevator e that signalled destination floors
to be served, there is a request in R(e) consisting of all the destination calls
originating from the start floor and going to the destination floors signalled by
that elevator.
Unassigned destination calls belong to the unassigned requests in Ru; there is
one such request per start floor / destination floor combination.

systems with full boarding control In a system with full boarding control, each
destination call constitutes its own request. The assigment to an elevator is
handled as in the system without boarding control. However, if the capacity does
not suffice to pick up all matching requests, the elevator control algorithm may
choose the ones to pick up.

36

2.4. A general model for elevator group control

conventional system A request corresponds to a landing call.

requests: 2 3 2 5 - 4 5

immediate assignment system All destination calls at a floor with same
direction and assigned to the same elevator constitute a request.

Every yet unassigned destination call constitutes a request on its own.

requests (calls 1, 2, 3 assigned to elevator 1, call 4 to elevator 2): 2 3 2 5 - 4 5

delayed assignment system All destination floors at a floor with the same,
yet unsignalled destination floor constitute a request.

All destination calls to destination floors signalled by an elevator constitute a
request.

requests (without signalling): 2 3 2 5 - 4 5

requests (floors 2 and 3 signalled): 2 3 2 5 - 4 5

Figure 2.3.: Example illustrating the differences in addressing the passengers to serve that
are modelled by the request concept. We assume that there are six passengers waiting
on floor 1 with destination floors 2, 3, 2, 5, 4, 5, respectively, in the order of arrival of
the passengers. Furthermore, assume that passengers 5 and 6 have been registered after
the last replanning step, which is depicted by the horizontal bar. The partitioning of the
requests into calls is encoded by the dash pattern.

In addition to the requests, the snapshot problem encompasses a set of distinguishable
calls C. Each call is described by its type (landing or destination call), release time, start
floor and, if it is a destination call, destination floor.
Finally, E denotes the set of available elevators. For a single request % or a set of

requests S we use the notation |%| and |S| to indicate the number of calls belonging to
the requests and thus the required capacity.

2.4.2. A model for elevator schedules

We model the journey of an elevator e as a schedule S = (s0, . . . , sk), which is a sequence
of stops si, 0 ≤ i ≤ k. A stop si is characterized by the following data:

si.floor Floor the elevator stops at.

si.direction Direction in which the elevator continues its travel. Note that in a
conventional system, this is not necessarily implied by the floor of the next stop.
For instance, an elevator is to serve first an up and then a down landing call from
the same floor, but no up car call has been given yet. Then there are successive
stops at the same floor and the leaving direction is not implied by the next stop.

si.current_calls Set of currently loaded destination calls.

37

Chapter 2. Group control of elevator systems

si.pickups Set of requests picked up at this stop. Used to determine the waiting time
of the corresponding calls.

si.drops Set of loaded destination calls with this floor as destination. Used to
determine the travel time of these destination calls.

si.drop_floors Set of pending drop commitments, i. e., floors to visit due to picked
up destination calls or car calls.

si.arrival (Estimated) Time of arrival at this floor.

si.departure (Estimated) Time of departure from this floor.

Note that only destination calls are “trackable” in the sense that we can associate a stop
at the destination floor to the call and thus determine the travel time of the corresponding
passenger. This is why we only keep track of destination calls in si.current_calls.

Feasibility of a schedule At any point in time, elevator e is either halting at a floor
or travelling towards a floor. Let f0(e) be this floor. Depending on its current state,
elevator e may not stop on every floor. For instance, it may currently bypass floor 5 at
maximum speed, but deceleration takes too long to stop on floor 6, so floor 7 is the next
floor it can stop at. We denote by Fi(e) the set of floors that are admissible for the first
stop in a schedule. If the elevator is halting at floor f0(e), we have Fi(e) = {f0(e)} and it
is not possible to have the first stop at a floor different from f0(e). In case the elevator is
full, the only floor allowed as a first stop is the next floor of the drop commitments.
Similarly, the leaving direction of the first stop might already be fixed due to drop

commitments or because the leaving direction has already been signalled to the passengers.
Denote by D0(e) the set of feasible leaving directions for the first stop. Finally, C(e)
denotes the set of destination calls that are currently loaded by elevator e.

According to Assumption G.1, passengers board the elevator that was signalled to serve
them on its first stop in the matching direction. To model this, we let P (e, f, d) denote
the set of requests that are to be picked up by elevator e at its first stop on floor f with
leaving direction d. The first such stop of elevator e then has to be followed by stops
according to the additional drop commitments implied by all requests in P (e, f, d). The
definition of P (e, f, d) depends as follows on the considered system.

conventional system All sets P (e, f, d) are empty. The rationale for this is that in
a conventional system there are no implied drop commitments, since the elevator
control does not know the destination floors yet.

immediate assignment system P (e, f, d) is the set of requests leaving floor f
that have been assigned to elevator e.

delayed assignment system P (e, f, d) is again the set of requests leaving floor f
that have been assigned to elevator e. Note that in a delayed assignment system,
requests are only assigned to an elevator that is already approaching the floor
and signalled the corresponding destination floors.

38

2.4. A general model for elevator group control

systems with full boarding control All sets P (e, f, d) are empty, since the ele-
vator can freely choose which passengers/requests are picked up.

We now have all the ingredients to formally define feasibility of a schedule S =
(s0, . . . , sk) for elevator e. For convenience, we denote by P (si) the set of requests already
picked up by the schedule up to, but not including, stop si. Note that P (s0) = ∅.
The most important feasibility restrictions are due to the requirement that (well-

behaving) passengers must not be transported in the wrong direction. This implies
restrictions on the sequence of floors and the leaving directions of the stops. For the
initial stop s0 we have the following conditions:

• The floor s0.floor is one of the floors of Fi(e).

• The leaving direction s0.direction is one of D0(e) if s0.floor = f0(e) or the direction
towards this stop if F(e) is nonempty. Otherwise the direction may be arbitrary,
but of course matching the requests picked up.

• The drop commitments s0.drop_floors are the floors from F(e) without s0.floor
plus the destination floors of the destination calls picked up at this stop.

The analogues of these conditions for the later stops are a bit more involved.

• There are the following cases depending on the pending drop commitments:

si.drop_floors 6= ∅: si+1.floor is between si.floor and the next floor from si.drop_floors
in the leaving direction of si or equal to this floor.

The leaving direction si+1.direction is the same as on the last stop, if si.drop_floors
consists of at least two floors or it is one floor, but si+1.floor is before this floor.
Otherwise the direction may be arbitrary.

si.drop_floors = ∅: si+1.floor and the leaving direction are arbitrary.

• The drop commitments si+1.drop_floors are the same as si.drop_floors without
si+1.floor plus the destination floors of the destination calls picked up at this stop.

In addition to the conditions due to passenger directions there are conditions on the
sets of picked up requests and the sets of current and dropped destination calls.

• si.pickups contains all the requests in P (e, si.floor , si.direction) \ P (si). Moreover,
si.pickups does not contain any request that is assigned to a different elevator and,
of course, each request starts at floor si.floor and travels in direction si.direction.

• si.current_calls is the set of current calls of the preceding stop (C(e) for s0) that have
a different destination floor than si.floor plus the destination calls corresponding
to si.pickups. Note that these are all calls that could have been picked up if the
elevator capacity was not limited.

• si.drops is the set of current calls of the preceding stop (C(e) for s0) that have
destination floor si.floor .

39

Chapter 2. Group control of elevator systems

So far we did not take the limited elevator capacity into account, i. e., we assumed
unlimited elevator capacity. We now introduce an optional soft constraint to model limited
elevator capacity as sketched in Section 2.1 to avoid having the passengers to reissue
their calls. In general, we cannot avoid insufficient elevator capacity so we cannot strictly
forbid capacity violations. Instead, we penalize each call of a request that exceeds the
elevator capacity at the pickup stop of the request with additional cost ccapacity. Denoting
the capacity of elevator e by κ(e), the capacity penalty cost at stop s are

ccapacity ·max
{

0, |s.current_calls|+ |s.pickups| − κ(e)
}
.

Now the overall schedule is feasible if and only if

• every stop is feasible,

• there are no two successive stops on the same floor with the same leaving direction,

• all requests assigned to the elevator are served, i. e., R(e) ⊆ P (sk),

• finally, all calls and drop commitments have been served, i. e., sk.current_calls = ∅
and sk.drop_floors = ∅.

Timing of a schedule A schedule allows to evaluate waiting times for all calls of each
request and the travel time of each destination call and thus facilitates the computation
of an objective value based on these times. Essentially, we are computing these times for
each call that can be discriminated by the elevator control, i. e., we assume that each call
corresponds to exactly one passenger.
Let e denote the elevator to execute the schedule S and let f ∈ Fi(e) be a floor

elevator e can stop at next. Denote by τarr(e, f) the time elevator e will stop at floor f
and by τdrv(e, f1, f2) the floor-to-floor travel time from floor f1 to floor f2 of elevator e,
including the time to close and reopen the door. Moreover, let τstop be the minimum
waiting time on a floor and τload the transfer time of a passenger, i. e., the time a passenger
needs for boarding or leaving. The arrival and departure times of each stop are then
given by the equations

s0.arrival = τarr(e, s0.floor), provided s0.floor ∈ Fi(e)
s0.departure = s0.arrival + max{τstop, τload

(
|s0.pickups|+ |s0.drops|

)
}

si+1.arrival = si.departure + τdrv(e, si.floor , si+1.floor),
si+1.departure = si+1.arrival + max{τstop, τload

(
|si+1.pickups|+ |si+1.drops|

)
}

Note that the elevator waiting time is essentially proportional to the number of calls
transfered. For conventional systems this is constant since we do not use any estimates
for the number of passengers belonging to a request.
Based on the arrival times it is now easy to compute the waiting times for the calls

picked up according to si.pickups and the travel times for the calls in si.drops.

40

2.4. A general model for elevator group control

Cost of a schedule Different objective or cost functions can be defined based on this
model for elevator schedules. In the model, waiting and travel times of each call are
computed. From these it is possible to compute the ride time, i. e., the time a passenger
spends inside the elevator, as the difference between the travel and waiting time. Note
that ride and travel times are only defined for destination calls and assumed to be zero
for landing calls. This setup allows general objective functions capturing the quality of
service for passengers, for instance a weighted sum of waiting times, ride times, and travel
times for each call. It is also possible to incorporate the completion time for each elevator
in the objective, expressing that the requests should be served as fast as possible.

Formally, let twait(c), tride(c), and ttravel(c), respectively, denote the waiting, ride, and
travel time of call c. The simplest objective function is linear, i. e., the cost for serving
call c are cwait(c)twait(c) + cride(c)tride(c) + ctravel(c)ttravel(c) where cwait(c), cride(c), and
ctravel(c) are cost coefficients associated with call c. A disadvantage of linear cost is that
for calls with the same coefficient only the total time matters. For instance, suppose that
calls c1 and c2 experience waiting times of 5 and 55 seconds in one dispatch, and of 35
and 25 seconds in another. With a linear objective, both alternatives incur the same cost,
but the second dispatch would be prefered in practice since the maximum waiting time is
smaller.
For this reason, we also consider a quadratic objective function. The cost of serving

call c is then cwait(c)twait(c)2 + cride(c)tride(c)2 + ctravel(c)ttravel(c)2. Assuming cwait(c1) =
cwait(c2) = 1 in the above example, the costs are 3050 vs. 1850, so the second schedule
would be prefered. However, a quadratic objective is often less desirable from a computa-
tional point of view. A compromise between the linear and the quadratic objective can
be obtained by using a linear objective, but choosing the cost coefficients cwait(c), cride(c),
and ctravel(c) based on the age of c such that they increase with age. This approach was
used by Tanaka et al. [TUA05a]. It avoids the above weakness of the linear objective if
calls c1 and c2 have different release times, but does not help if the release times are the
same.

We emphasize that for systems without boarding control, the service cost are included
for all signalled calls at each stop, no matter whether the elevator capacity is sufficient or
not. Of course, this leads to underestimating the waiting time of a passenger and distorts
the evaluation of schedules, but we cannot avoid this. However, depending on the kind of
system used the elevator control may be able to reduce capacity violations by assigning
calls to elevators with sufficient capacity.

In addition to these service quality cost capacity penalty cost are incurred as described
earlier. However, it turned out that the service quality cost and the capacity penalty alone
do not lead to a good grouping of the destinations calls according to their destination
floor. Figure 2.4 gives an example of the elevator movements in a simulation of high load
up peak traffic. As we can see, the elevator performs a lot of stops before returning to
the main entrance floor 1 again, giving rise to long round trip times, resulting in bad
service. These long round trip times could be avoided by an improved grouping according
to destination floors. To achieve this, we introduce a round trip time penalty function
cRTT : R≥0 → R≥0, that assigns a round trip time t a penalty of cRTT(t). This RTT
penalty is incurred for every roundtrip starting and ending at the main entrance floor. If

41

Chapter 2. Group control of elevator systems

2

4

6

8

10

12

0 600 1200 1800 2400 3000 3600 4200 4800 5400

flo
or

time (seconds)

Figure 2.4.: Movement diagram of an elevator during high load up peak traffic. The
simulation was done with the capacity penalty enabled.

the schedule of an elevator does not end at the main entrance floor, a corresponding stop
is added for the purposes of computing the round trip time.

Finally, Table 2.3 summarizes all the data constituting a snapshot problem.

2.5. Heuristic algorithms for group elevator control

Almost any algorithmic paradigm has been applied to the control of elevators. For instance,
there are algorithms based on reinforcement learning [CB98], genetic or evolutionary
algorithms [SSE03, TY06], artificial intelligence methods [KO02] as well as exact ones
based on dynamic programming [Glo70] and Branch&Bound [TUA05b]. Fuzzy logic
has been used to switch the scheduling policy according to the observed traffic situa-
tion [KSLKK98]. However, very few of the scientific publications on elevator control seem
to have had practical impact. In this section we will give a brief overview on algorithmic
concepts and ideas that are known to be used or have been used in practice. We will only
consider non-exact or heuristic approaches; algorithms based on exact solution methods
will be described in-depth in Chapter 3.

2.5.1. Classical elevator control

Barney [Bar02, Chapter 10] describes some “classical” elevator control algorithms, i. e.,
algorithms that were implemented using electromechanical hardware before microproces-
sors were used. As these are algorithms for conventional systems, each single elevator
is scheduled according to the Collective strategy mentioned in Section 2.2, i. e., it serves
assigned calls on a single roundtrip. The main task of the elevator control algorithm is to
decide which landing call will be served by which elevators.
The landing call allocation is done according to fixed rules. The simplest rule is to

allocate each landing call to the next elevator, which defines the NearestCar algorithm.
Barney reports that this algorithm gives reasonable performance only for small buildings
with few elevators.

42

2.5. Heuristic algorithms for group elevator control

symbol meaning

R set of all requests
C set of registered and unserved landing and destination calls
E set of available elevators

R(e) set of requests assigned to elevator e
Ru set of requests that are not assigned to any elevator
F(e) floors elevator e needs to stop at due to car or destination calls before

changing direction

f0(e) floor elevator e is travelling to or halting at
Fi(e) set of floors elevator e still can stop at before reaching floor f0(e)
D0(e) set of possible leaving directions for elevator e
κ(e) (rated) capacity of elevator e
C(e) set of loaded destination calls of elevator e
P (e, f, d) set of requests picked up by elevator e on its first stop on floor f with

leaving direction d

τarr(e, f) time of arrival of elevator e at floor f ∈ Fi(e)
τdrv(e, f1, f2) floor-to-floor travel time from floor f1 to floor f2 for elevator e
τstop minimum stopping time for all elevators
τload transfer time of a passenger

cwait(c) waiting time cost coefficient of call c
cride(c) ride time cost coefficient of call c
ctravel(c) travel time cost coefficient of call c
ccapacity penalty for each picked up call that exceeds elevator capacity
cRTT round trip time penalty function

Table 2.3.: Overview of input data for the elevator control snapshot problem.

More advanced rules employ sectoring : The floors of the building are divided into
sectors, which are to be served by one elevator each. There are several ways on how to
assign elevators to sectors.

In the FSO sectoring scheme there are as many sectors as elevators. A sector is either
assigned to an elevator or it is vacant. Once an elevator is present in a vacant sector
it is assigned to that sector. An elevator serves the landing call in its sector and the
ones in vacant sectors above it; the lowermost elevator is responsible for its sector and
all sectors below it. If an elevator has no more calls to serve, it is assigned to one of the
vacant sectors. Thus the algorithm tries to distribute the elevators evenly in the building.
According to Barney, it achieves good performance for up peak and interfloor traffic.

Another way to employ the sectoring concept is the dynamic sectoring system DS. Here,
the sectors are dynamically defined based on the positions of the elevators. The sector of
an elevator extends from the current floor of the elevator to the floor of the next elevator
travelling in the same direction. If there is no other elevator in that direction, the sector

43

Chapter 2. Group control of elevator systems

“wraps around” and continues in the opposite direction. Each elevator serves landing calls
with matching travel directions in its sector. An additional strategy is used to maintain
free elevators which do not take part in this sectoring scheme, but provide additional
capacity to be send to heavy traffic sectors. Barney states that the performance for up
peak and interfloor is very good, the one for down peak rather poor.

2.5.2. Computer Group Control

In this section we describe a variant of the Computer Group Control (CGC) algorithm
sketched by Barney [Bar02, Case Study 16] in greater detail, as it will be used in our
computational comparisons. Unlike the classical control algorithms, this algorithm is not
rule-based but uses a cost function to decide the assignment of landing calls to elevators.

The CGC algorithms inserts requests (i. e., landing calls) successively in a set of elevator
schedules serving all car calls of each elevator plus the requests assigned so far. The cost
of request % incurred by assigning it to elevator e is the waiting time of % in the resulting
single-roundtrip schedule for e. In order to compute reasonable estimates for this, CGC
assumes that the (unknown) destination floor of each request is halfway between the
start floor and the last floor in the request direction. Note that the schedule model of
Section 2.4 may be used to evaluate the resulting waiting times for each request.

In general, request % is assigned to the elevator with minimal cost, with two exceptions
based on a parameter HTT called “high threshold time”. In order to reduce the number of
stops, request % is allocated to an elevator with a car call at the start floor of %, provided
it does not get waiting time greater than HTT due to this allocation. Moreover, request %
is not allocated to the minimum cost elevator if the waiting time of another request
increases beyond HTT. If this cannot be avoided, % is allocated to the minimum cost
elevator anyway. The details are summarized in Algorithm 2.1.

Following the recommendations of Barney, HTT is thrice the average system response
time, which is measured over an interval of 90 seconds. Thus HTT reflects the current
load situation of the system.

2.5.3. Genetic algorithms

Genetic algorithms are a well-known metaheuristic for solving optimization problems
that can relatively easy be applied to elevator control. In fact, KONE has several
publications [SSE03, TY06] as well as patents [TY99b, TY99a, TY05, TYMR06] on using
genetic algorithms for this purpose. The genetic algorithm decides the assignment of
landing calls to elevators and evaluates an assignment by evaluating the resulting single
round trip schedule, thus following the scheme described in Section 2.2. However, the
publications do not give an indication on the details of the genetic algorithm used, e. g.,
the population size, the mutation rate, the crossover operation and so on.

2.5.4. A cost-based best-insertion heuristic

In this section we describe an elevator control algorithm for destination call systems
designed for Kollmorgen Steuerungstechnik, our partner from industry [HT08]. A variant

44

2.5. Heuristic algorithms for group elevator control

procedure CGC
1. Sort the requests by decreasing waiting time; assume that the

order is %1, . . . , %n.

2. Initialize the schedules of the elevators according to their car
calls.

3. For each request %← %1, . . . , %n:
a) If there is an elevator e with a car call at the start floor of %

and the resulting waiting time for % is at most HTT, then
assign % to elevator e and update the schedule of elevator e.
Continue with the next request.

b) Allocate % to the elevator e that realizes the lowest waiting
time for %, such that no other request served by e experience
waiting time more than HTT. If there is no such elevator,
allocate % to the elevator with the lowest waiting time for %,
updating e’s schedule accordingly.

end procedure

Algorithm 2.1: Overview of the implemented CGC algorithm.

of it has been implemented by Kollmorgen Steuerungstechnik and is now running in their
elevator controls. However, the original algorithm was designed for immediate assignment
systems whereas this version is based on the generic request model from Section 2.4 and
thus also suitable for delayed assignment systems. Hence the semantics for the immediate
assignment are slightly different to the original algorithm described in [HT08].

The high-level algorithm

Kollmorgen Steuerungstechnik posed severe restrictions on the computing environment
for the elevator control algorithm: The algorithm is supposed to run on embedded
microcontrollers with computation times of at most 200 ms using not more than 200 kB
of memory. Thus computational resources are very scarce, rendering exact optimization
methods infeasible. We therefore propose an insertion heuristic. Insertion heuristics are
well-known for e. g., the Travelling Salesman Problem. However, the structure of a tour
for an elevator is much more complex, making the insertion operation non-trivial.
Our algorithm BestInsert relies on the schedule model described in the last section.

In contrast to other heuristic destination call algorithms it exploits the possibility of
using multiple roundtrips. It assumes a set of schedules that already serve a subset R
of the requests and then successively assigns the requests R \ R to elevators. Usually,
R is the set of requests that were already known and scheduled in the last replanning
step. In order to assign requests to elevators, it considers suitable insertion positions
and chooses, for each elevator, the one with minimum additional cost. The elevator with
overall minimum additional cost then receives the request. The outline of BestInsert is
given in Algorithm 2.2.

45

Chapter 2. Group control of elevator systems

procedure BestInsert (subset R of the requests R)
1. Assume that the schedules of the elevators are initialized such

that all requests R are already served.

2. Sort the requests in R \ R by decreasing waiting time; assume
that the order is %1, . . . , %n.

3. For each request %← %1, . . . , %n:
a) For each elevator e ∈ E : determine the minimum insertion

cost c(e, %) as follows:
i. Let S = (s0, . . . , sk) be the current tentative schedule of

elevator e.
ii. For each feasible insertion pair (si, sj), i ≤ j, compute

the new tentative schedule S′ via

S′ ← AddRequest(S, si, sj , %).

The insertion cost for this insertion pair are c(S′)− c(S).
Update c(e, %) if this insertion is cheaper.

b) Assign request % to the elevator e minimizing c(e, %).
c) Replace the tentative schedule of e with the one correspond-

ing to the cheapest insertion.
end procedure

Algorithm 2.2: Overview of the BestInsert algorithm.

The main ingredient of BestInsert is the procedure AddRequest(S, si, sj , %), which inserts
request % at positions si and sj in the schedule S. The stops si and sj indicate the
insertion position of the stop for picking up and dropping, respectively. The details
of AddRequest are rather involved and will be explained in the next section. We note
that BestInsert in this version is computationally too expensive; the variant implemented
by Kollmorgen Steuerungstechnik therefore considers only a restricted set of insertion
positions.

The insertion procedure

The general semantics of AddRequest(S, si, sj , %) are that the pickup stop for % is either
si itself or inserted before it. Likewise, the stop for dropping the calls of % with the
destination floor that is furthest away is either sj itself or inserted before sj . Figure 2.5
gives an example, showing that in order to support schedules with multiple roundtrips
two stops for specifying the insertion are needed.

AddRequest is non-trivial due to the cases that may arise. For instance, it may be
necessary to split an existing stop into two new stops to avoid direction changes for
passengers, see Figure 2.6 for an example. Worse, it may happen that a newly inserted

46

2.5. Heuristic algorithms for group elevator control

1 5
1

1

s0 s1

(a) Original
schedule S.

1 3 2 5
2

2

1

1

s0 s1 s2 s3

(b) Schedule S after
AddRequest(S, s0, s0, 2).

1 2 3 5
2

2

1

1

s0 s1 s2 s3

(c) Schedule S after
AddRequest(S, s0, s1, 2).

Figure 2.5.: Example illustrating the semantics of AddRequest. Our graphical notation
represents a stop by a boxed floor number. Numbers above or below a stop indicate
requests picked up or dropped, respectively. The original schedule S serves only the
request 1: 2→ 5. The schedule is extended by inserting request 2: 1→ 3.

1 5 3
1

1

2

2

s0 s1 s2

(a) Original
schedule S.

1 5 6 5 3

1,3

1 3

2

2

s0 s1 s2 s3 s4

(b) Schedule S after insertion.

Figure 2.6.: Inserting request 3: 1→ 6 via AddRequest(S, s0, s1, 3) requires to split stop s1.

1 3 1 2 5
1 2

1 2

3

3
1

s0 s1 s2 s3 s4

(a) Original schedule S.

1

1,4

2 3
4 1

3
5
3

3 1
2

2
(b) Schedule S after insertion.

Figure 2.7.: Inserting request 4: 1→ 2 via AddRequest(S, s0, s1, 4) requires a non-trivial
adjustment.

stop becomes the first stop on a floor with this leaving direction. According to our schedule
model, all requests in the respective set P (e, f, d) have to be picked up at this new stop,
leading to corresponding stops for dropping them. This means that it is necessary to
adjust the tour, maybe changing its structure quite substantially. As an example, consider
the tour in Figure 2.7(a) and suppose we want to insert the request 4: 1 → 2 via the
stops s0 and s1 (which is the only feasible insertion position). We need to create a new
stop at floor 2, leaving upwards due to request 1. But then request 3 will enter and we
need to go to floor 5 before we can leave floor 3 downwards. Therefore we need to adjust
the tour, keeping it close to the original one; the resulting tour is shown in Figure 2.7(b).
There are more complex cases to take into account.

Of course, the schedule AddRequest generates has to be feasible. The most important
requirements that have to be ensured are

• The requests in P (e, f, d) are picked up at the first matching stop.

47

Chapter 2. Group control of elevator systems

• The drop floors of the loaded calls are visited before changing the direction.

• The new schedule serves exactly the requests of the old schedule plus the new
request.

The tour is adjusted such that these requirements are established and the resulting tour
is as close as possible to the original one. In fact, if all P (e, f, d) are empty, AddRequest
inserts just the stops needed to pickup and drop %.
Algorithm 2.3 shows a rough outline of the AddRequest procedure. For convenience,

the algorithm description assumes an additional (sentinel) stop s∞ after sk. To ensure
pickup of the requests in P (e, f, d) we first make a copy Q(e, f, d) which keeps track of
the requests still to pick up on the first matching stop. We call a stop unnecessary, if no
calls are picked up or dropped there. Due to the insertion of stops and the subsequent
service of the corresponding drop floors it may happen that requests receive service earlier
and later stops become unnecessary.

After having created pickup and drop stops, we adjust the schedule to maintain feasibility
(Steps 5 to 5). We have the following invariant: The partial schedule (s0, . . . , s) is feasible
and the leaving direction of s has already been determined, whereas the remaining schedule
(s′, . . . sk) still needs to be adjusted. Moreover, the set of requests served is exactly that
of the old schedule plus the new request. This invariant is established by Step 5. It is
understood that while scanning the remainder of the tour for the first stop s′ that is
still necessary unnecessary stops are removed from the schedule. Thus s is always the
predecessor of s′.

In order to push the invariant to the next stop we need to determine the next stopping
floor f and its leaving direction d. The next stop floor is either prescribed by the drop floors
of the current stop or by the next necessary stop, if any. Note that if there is no necessary
stop any more, there are also no drop floors to visit and the procedure terminates. Similar
to the next stopping floor, the leaving direction is also either determined by the drop
floors of the current stop s or by the next necessary stop s′. Finally, a stop corresponding
to f and d is created (or an existing one reused), ensuring that the requests Q(e, f, d) are
picked up. Observe that no necessary stop is deleted, so stops with requests not picked
up earlier will be reused eventually. Thus all requests served by the original schedule are
included in the new schedule.

48

2.5. Heuristic algorithms for group elevator control

procedure AddRequest (S, si, sj , %)
1. Let Q(e, f, d) be a copy of P (e, f, d) for all e, f , and d.

2. For all stops from s0 to the predecessor of si: Reset the corre-
sponding Q(e, f, d) to the empty set.

3. Create pickup stop: Either create a new stop or reuse si, split-
ting the stop if necessary. The requests to pickup are Q(e, f, d)
plus %, where f and d are the start floor and the direction of %,
respectively.

4. Create drop stop: Either create a new stop or reuse si, splitting
the stop if necessary. The requests to pickup are not yet deter-
mined.

5. Let s be the predecessor of si (or the first copy of the split stop
in case of splits) or s0 if si is the first stop. Let s′ be the first still
necessary stop after s.

6. Avoid successive stops on same floor: If s and s′ are on the same
floor, but s has no drop floors, then transfer the pickups of s′ to s
and replace s′ by the next stop that is still necessary.

7. While s′ 6= s∞ or stop s has drop floors:
a) Determine the next stopping floor f :

i. If stop s has drop floors: Let f be the nearest floor of
these. Let s′ be the next stop after s that is either neces-
sary or whose floor is before floor f . If s′.floor is before
f , set f ← s′.floor .

ii. Otherwise: Let s′ be the next necessary stop after s. If
s′ = s∞, stop, else set f ← s′.floor .

b) Determine leaving direction d for next floor:
i. Let F be the drop floors of stop s without f .
ii. If F is nonempty: d is the current direction.
iii. Otherwise: Let s′ be the next necessary stop after s.

The direction d is STOP, if s′ = s∞. It is the leaving
direction of s′ if s′.floor = f and the direction from f to
s′.floor otherwise.

c) Create update next stop:
i. If s′ matches f and d: Remove the requests that have

been picked up earlier from s′.pickups. Let s ← s′ and
let s′ be the first necessary stop after s.

ii. Otherwise: Let s be a new stop at floor f with leaving
direction d and picked up requests Q(e, f, d).

d) Reset Q(e, f, d) to the empty set.
end procedure

Algorithm 2.3: Overview of the AddRequest procedure.

49

Chapter 3.

Exact elevator group control algorithms

In this chapter we develop and study exact reoptimization algorithms, which are algorithms
that solve the snapshot problem exactly, i. e., they compute a provably optimal solution,
maybe up to a certain optimality gap. These algorithms are interesting since they allow
to investigate how much the performance of an elevator system may be improved by using
control algorithms that find solutions with a higher quality. Moreover, they may be the
basis for developing high-quality heuristics to be used in practice.
Let us emphasize that computing an optimal dispatch for each snapshot does not

necessarily lead to a good or “optimal” online control algorithm. This is due to the
online nature of the control problem: The decisions of an optimal schedule for a certain
snapshot problem may turn out to be bad in view of the realized future. In fact, it is
hard to define a practically useful notion of “optimal online algorithm”. In theory, one
usually calls an online algorithm optimal, if it attains the optimal competitive ratio –
see Chapter 4 for a discussion of this concept. This notion is, however, often not useful
for designing practically relevant online algorithms, since for more complex problems it
often fails to discriminate between algorithms that perform very different in practice.
Another approach to define optimality is to assume some stochastic model; an algorithm
is then said to be optimal if it minimizes the expectation of some performance measure.
This approach has indeed been applied to the elevator control problem for conventional
systems [CB98, PC97, PC98, NB03]. For special traffic situations like up peak it is
possible to derive optimal control algorithms, though this can only be achieved since
the number of control actions is low and there are relatively few input parameters. The
situation is much more complex for destination call systems. If optimality of an algorithm
cannot be proved, it is still possible to compute optimal control decisions w. r. t. to the
stochastic model. Such stochastic optimization algorithms tend to require much more
computational effort for their solution than their deterministic counterparts. Another
drawback of the stochastic approach is that often no reliable statistical data is available,
so it is hard to construct an appropriate stochastic model. We will not consider stochastic
optimization algorithms in this thesis.
It is known that several simple versions and special cases of the elevator scheduling

problem are already NP-hard. For instance, Seckinger and Koehler [SK99] showed that
deciding whether or not there is a feasible schedule for a single elevator which serves all
requests with at most k stops is NP-hard. The elevator scheduling problem may be viewed
as an instance of the Dial-a-Ride problem, where one or more servers with capacity k
have to serve transportation requests in a graph. Each transportation request specifies a

51

Chapter 3. Exact elevator group control algorithms

source and a target node; usually the objective is to minimize the total travel distance
which is equivalent to the makespan in the single server case. Krumke et al. [HKRW01]
proved that the single server Dial-a-Ride problem for a server with capacity 1 is NP-hard
already on a caterpillar graph, which is a path with an additional node attached to each
node on the path. They also argue that a caterpillar graph can conveniently be used to
model elevator operation, since the elevator moves along a line (i. e., the backbone path
of the caterpillar) and the “legs” may be used to model acceleration and deceleration as
well as floor stopping times.

Given the hardness of the problem and the tight real-time requirements of elevator
control it may seem daring to aim for exact reoptimization algorithms. Still, there have
been promising results indicating that (almost) optimal solutions can be obtained in very
short time for similar problems [KRT02, FR06]. We will start the chapter with a review
of related work on exact elevator control algorithms. We will then introduce our new
algorithm, that follows the same set partitioning-based approach used in [KRT02, FR06].
The main emphasis is on how to solve the pricing problem and in particular, how to
compute lower bounds to be used in our Branch&Bound pricing algorithm. Finally, we
conclude by providing computational results on the performance of our reoptimization
algorithms and its impact on the performance of the elevator system.
In the entire chapter we restrict ourselves to systems without boarding control which

are more realistic anyway. However, the ideas presented can be applied to such systems
as well. Since assuming boarding control usually significantly increases the number of
requests, we believe that our algorithms will not achieve satisfying running times when
applied to such systems.

3.1. Previous work

3.1.1. The algorithms of Closs

Closs was the first who proposed a destination call system in his PhD thesis in 1970 [Glo70].
His main motivation was to develop optimal or almost optimal elevator control algorithms.
In order to reasonably define optimality, he assumed the destination floor information to
be known and proposed an elevator control system with destination floor input.
As a first step, Closs studies the problem to schedule an elevator to serve a fixed

set of assigned destination calls. He observes that an approach based on Dynamic
Programming is not feasible, since the state space is rather complex and huge, and the
transitions between states are such that few states can be eliminated. He concludes that
a Dynamic Programming algorithm yields little advantage over an enumeration algorithm
and therefore develops such an exhaustive enumeration algorithm. The basic idea for this
algorithm is to look for an optimal dispatch by traversing a tree whose nodes correspond
to elevator states and a successor state is generated by moving the elevator to the next
(feasible) floor.

It turned out that the computation time of this enumeration algorithm was prohibitively
large on the computers available at that time. For instance, it took almost ten minutes
[sic] to solve an instance with four calls. Therefore, it could not be used as a basis for real

52

3.1. Previous work

elevator control algorithms. Instead, the optimal dispatches computed by the exhaustive
enumeration algorithm for some small instances were compared to the corresponding
dispatches according to the Collective strategy (see Section 2.2). Since in most cases the
dispatches were identical and in the remaining cases Collective was at most 5% worse
than the optimal solution, Closs concluded that Collective is almost optimal. However, he
only considered offline instances with at most five destination calls that were generated
randomly. It is therefore questionable whether Collective is really optimal for more
realistic traffic situations with higher load. We also saw in Chapter 1 that relatively small
differences in snapshot solution quality can give much bigger differences in online solution
quality.

In order to control a group of two elevators, Closs gives an algorithm that systematically
evaluates all assignments of up to eight calls to the two elevator. Based on his observation
that Collective gives almost optimal dispatches for a single elevator, each elevator is
controlled according to this dispatch. The resulting algorithm is thus an exact algorithm
where the feasible schedules are exactly the schedules consisting of a single roundtrip. It
is interesting to note that Closs considers a delayed assignment system to be controlled
by this algorithm. Again, the computation time is too long for a practical algorithm.
Therefore, Closs introduces a more heuristic algorithm that he calls Single Car Allocation
(SCA). SCA assigns the destination calls successively in the order of arrival by tentatively
assigning each call to each elevator to compute the cost of this assignment. Finally, each
call is assigned to the elevator with minimum cost increase, i. e., in a best-insertion way,
before the next call is considered. Due to this way of inserting calls, a call is always
assigned to the same elevator, implying that only new calls need to be assigned, which
is important to obtain short running times. Moreover, the SCA algorithm essentially
realizes an immediate assignment system, which Closs describes in more detail. Closs
compares SCA to the algorithm that determines the optimal assignment using simulation.
He reports that the average travel time is at most 10% and the average waiting time at
most 14% worse than that achieved by the optimal assignment algorithm. Closs concludes
that SCA is an almost optimal algorithm for two elevators, that can easily be generalized
to larger groups of elevators. In further simulations, he establishes that SCA significantly
outperforms a conventional system for up peak traffic. For instance, SCA achieves an
average travel time comparable to that of the conventional system with six instead of
eight elevators.
However, destination call systems were not established until around 1990. The first

implementation seems to be Schindler’s MICONIC 10 elevator control [Sch90] for an
immediate assignment system. The control algorithm is a variant of the SCA algorithm
developed by Closs.

3.1.2. The algorithm of Seckinger and Koehler

Seckinger and Koehler [Sec99, SK99] investigated the dispatching problem for an immedi-
ate assignment system. Their work was motivated by Schindler’s MICONIC 10 system,
which employs a heuristic algorithm similar to the SCA algorithm described above. They
develop exact algorithms for scheduling a single elevator to serve a fixed set of calls based

53

Chapter 3. Exact elevator group control algorithms

on Constraint Programming techniques. These algorithms are then used to assign a new
call to an elevator.

The elevator dispatch is modelled as a sequence of floors, such that for each destination
call to be picked up there is a stop at the start floor and a later stop at the destination floor.
This simple model may be extended by additional requirements, e. g., capacity restrictions
and that passengers do no travel in the opposite direction. Objectives considered are the
number of stops, the sum of travel times, and the sum of squared travel times. They show
that deciding whether or not there is a feasible sequence with at most k stops is NP-hard.

In their first attempt to solve this problem with one of the travel time objectives, they
create a Constraint Programming model to be solved by a general solver. However, using
the Oz solver they find that running times are far too long to be useful. In order to
obtain better running times, they develop an alternative forward search algorithm. This
algorithm searches a tree of partial floor sequences, where at each level of the tree the
next stopping floor is decided. This floor maybe a destination floor of one of the currently
loaded calls or the start floor of one of the calls still waiting. Tree nodes corresponding
to infeasible floor sequences are rejected as they are encountered, which allows to take
several extensions into account. In addition, they use a bounding scheme for the travel
times of each call to prune the search tree, i. e., the forward search algorithm is in fact a
Branch&Bound algorithm. The travel time of a currently loaded call is bounded by the
time to reach the destination floor directly from the current floor. Similarly, the travel
time of a waiting call is bounded by the time needed to travel directly to the start floor
and then immediately to the destination floor. Note that these lower bounds do not take
into account the correct travel directions of the passengers nor the capacity of the elevator.
In fact, both features are considered as optional extensions by the authors.

Both the Constraint Programming model and the forward search algorithm are evaluated
by solving several instances. As expected, the forward search algorithm significantly
outperforms the Constraint Programming model. When taking capacity and correct travel
directions into account, the authors report that the algorithm terminates within less than
a second for buildings with up to 16 floors. Even for buildings with up to 25 floors the
algorithm determines solutions of a good quality within one second computation time.
The performance can be improved further by using a suitable node selection strategy
when searching the tree.

Finally, the authors propose a group control algorithm based on the forward search
algorithm. A new call is tentatively assigned to each of the elevators and the forward
search algorithm is used to compute a corresponding dispatch. The call is then assigned
to the elevator which minimizes a certain criterion. Simulation of a five elevator group
for a 15 floor building shows that the algorithm provides good performance for moderate
traffic intensity, even if the computation time per elevator is 0.2 seconds.

3.1.3. The algorithm of Tanaka et al.

Tanaka et al. [TUA05a, TUA05b] introduce a Branch&Bound algorithm for optimally
dispatching a single elevator. They observe that existing control algorithms for destination
call systems use the destination information only for deciding about the assignment of the

54

3.1. Previous work

call to an elevator, whereas each elevator is scheduled according to the Collective strategy,
i. e., serves all requests on a single roundtrip. The goal of their study is to assess the
improvement possible by incorporating the destination information in the scheduling of
each elevator and to schedule the elevator optimally.
In their model, they assume that the elevator control has full boarding control. The

only restriction is that the group of boarding passengers with the same destination floor is
as large as possible, i. e., only limited by the elevator capacity. For instance, if the elevator
has remaining capacity three and there are two passengers for floor 2, two for floor 4,
and one for floor 10 it is not allowed to board only one from each group. Moreover, they
also study a variant that does not forbid calls travelling in the opposite direction. The
algorithm computes a schedule that is optimal w. r. t. to the weighted sum of completion
times. The completion time of a call is the additional time needed to transport it to its
destination floor. If the weight of a call is just the cost coefficient of the travel time, this
objective is equivalent to the weighted sum of travel times. However, Tanaka et al. also
consider weights depending on the time the call is already in the system to avoid long
deferals of single calls.

We only give a brief review of their computational results here. The algorithm itself is
described in Section 3.2.4 in detail. Tanaka et al. consider a 10-floor building and assume
that passengers are selected by displaying the destination floors as in a delayed assignment
system, but only for a single elevator. Since full boarding control is assumed, it is not
necessary for passengers to reenter their calls if capacity is not sufficient because the
system can keep track of them. They simulate the algorithm on both up peak and down
peak traffic, which is mixed with a small fraction of interfloor traffic. The simulation
results indicate that

• The destination call system is stable for higher traffic intensities than the con-
ventional system controlled by the Collective strategy. However, for low load the
Collective strategy achieves lower travel times, in particular lower maximum travel
times.

• The performance with travelling in the opposite direction of loaded calls allowed is
significantly better than if it is forbidden.

• The computation time needed is usually below 0.1 seconds for up to 30 calls, but
sometimes more than 10 seconds.

The authors conclude that this algorithm is only suitable for simulation, but not for
controlling real systems.

3.1.4. Comparison of algorithms for groups of unit capacity cargo
elevators

Friese and Rambau [FR06] developed an exact algorithm for controlling a group of cargo
elevators in a distribution center. The algorithm is based on a set partitioning model
and is, in fact, a variant of the ZIBDIP algorithm described in Chapter 1. Adapting the
ZIBDIP algorithm for elevator control is possible since the considered cargo elevators have

55

Chapter 3. Exact elevator group control algorithms

unit capacity, which is quite different from elevators with higher capacity. The required
extension is that requests are now waiting in queues and may only be served in the order
given by the queues. They report that the exact algorithm gives very good solutions after
only one second of computation time.
In a very comprehensive study, they compare the performance of a broad range of

algorithms, ranging from simple rule-based policies like FIFO or NearestNeighbor over
reoptimizing heuristics similar to BestInsert and 2-Opt from Chapter 1 to their exact
reoptimization algorithm. They find that the optimizing algorithms are much superior
to the simple policies and that the exact algorithm is still able to improve the average
waiting time by 10% over that of BestInsert. Friese and Rambau also study the impact
of the control algorithm to system capacity by changing the number of elevators. It
turns out that FIFO requires 8 elevators to achieve an average waiting time of at most
40 seconds, while NearestNeighbor needs only 6 and the exact reoptimization algorithm
can do with 5 elevators. Thus exact reoptimization algorithms offer the possibility to
efficiently utilize the capacity offered by a system.

Although there has been some work on exact elevator control algorithms for a single
elevator, there are no exact algorithms for controlling a group of passenger elevators yet.
In order to assess the performance of existing algorithms it is desirable to have such exact
algorithms as a yardstick for performance evaluation.

3.2. New exact reoptimization algorithms for elevator group
control

In this section we propose new exact reoptimization algorithms for the snapshot problem
introduced in Section 2.4. They are based on the request model and can therefore be
used to control the different kinds of systems discussed in Section 2.1. Thus they are
suitable for comparing the performance of these systems.
The existing exact algorithms for elevator control determine optimal schedules for a

single elevator only. To extend them to exact group control algorithms, two approaches
are possible.

1. Extend the Branch&Bound scheme by a “top-level” part which determines the
assignment of requests to elevators. Once assignments are fixed, the existing single
elevator algorithms may be used to obtain optimal schedules for each elevator.

2. Determine an optimal dispatch using a set partitioning approach as for the ADAC
problem in Chapter 1. Existing algorithms may then be extended to pricing
algorithms for determining improving columns.

We decided to follow the second approach since it worked so well for the ADAC problem
and the scheduling of cargo elevators [FR06]. An advantage of this approach is that dual
information guides the search for better schedules, so usually only few schedules need to
be considered. We also expect the set partitioning approach to work well for the case of
many unassigned requests which is important for delayed assignment systems. However,

56

3.2. New exact reoptimization algorithms for elevator group control

it is not easily possible to handle conventional systems via set partitioning, since there
are interdependencies between the schedules of the elevators: A request is actually served
by the first elevators reaching the floor, so request assignment cannot be decided for each
elevator independently.

3.2.1. A set partitioning model

Recall that a dispatch distributes the unassigned requests Ru among the elevators and
gives, for each elevator, a feasible schedule that serves its assigned requests R(e) and the
unassigned requests it received.
Let S(e) be the set of feasible schedules for elevator e and define S :=

⋃
e∈E S(e) (we

assume S(e1) and S(e2) are disjoint whenever e1 6= e2). A dispatch is then a collection of
schedules, one for each elevator, such that each unassigned request is served by exactly
one schedule. For each schedule S ∈ S we introduce a decision variable xS ∈ {0, 1} for
including it in the dispatch or not. We denote the cost of schedule S by c(S). To compute
an optimal dispatch, we can solve the following set partitioning problem:

min
∑
S∈S

c(S)xS (3.1)∑
S∈S : %∈S

xS = 1 % ∈ Ru, (3.2)

∑
S∈S(e)

xS = 1 e ∈ E , (3.3)

xS ∈ {0, 1} S ∈ S. (3.4)

This Integer Programming (IP) problem cannot be solved by an off-the-shelf IP solver
directly since the number of feasible schedules and thus columns is very large. However,
it is possible to solve the Linear Programming (LP) relaxation using dynamic column
generation (see, e. g., [DDS05]), which can be integrated in a general IP solver framework.

Let π%, % ∈ Ru, and πe, e ∈ E , denote the dual prices associated with constraints (3.2)
and (3.3), respectively. The pricing problem for the LP relaxation of the above IP is
then to find, for each elevator e, a set of feasible schedules for elevator e having negative
reduced cost

c̃(S) := c(S)−
∑

%∈Ru∩S
π% − πe (3.5)

or to decide that no such schedule exists. Usually the pricing problem is solved by
considering the optimization version asking for a minimum reduced cost schedule.
During the solution of the LP relaxation of (3.1)–(3.4) using column generation we

are solving a sequence of subproblems which encompass only subsets of the columns
(i. e., schedules). The optimal LP solution of a subproblem is guaranteed to have the
same objective value as the LP relaxation of the full IP if there are no more columns
with negative reduced cost. However, it may be desirable to stop the column generation
process earlier if a specified solution quality has been achieved. To do this, we use the

57

Chapter 3. Exact elevator group control algorithms

3 4 5 7 8 9
1

1

2

2
(a)

3 5 4 7 8 9
1

1

2

2
(b)

3 4 5 8 7 9
1

1

2

2
(c)

Figure 3.1.: Three feasible schedules corresponding to the request sequence 1, 2, showing
that this sequence does not uniquely determine the schedule. We assume that the elevator
is currently located at floor 3 and has to stop at floor 5 before changing direction and
that there are two requests 1: 4→ 8 and 2: 7→ 9.

following lower bound on the optimal solution value of the LP relaxation of (3.1)–(3.4)
due to Lasdon.

Theorem 3.2.1 ([Las70]) Let S̃ be the set of schedules defining the current subproblem,
(x∗S)S∈S̃ be an optimal solution of the current subproblem and (π∗%)%∈Ru and (π∗e)e∈E be
the corresponding dual solution. Moreover, let

¯
c̃(e) be a lower bound on the minimum

reduced cost of any feasible schedule for elevator e, i. e.,

¯
c̃(e) ≤ min

S∈S(e)

{
c(S)− π∗e −

∑
%∈Ru∩S

π∗%

}
. (3.6)

Then the cost c∗ of an optimal solution of the LP relaxation of (3.1)–(3.4) satisfies

c∗ ≥
∑
S∈S̃

c(S)x∗S +
∑
e∈E

¯
c̃(e). (3.7)

Note that suitable bounds
¯
c̃(e) can be easily computed during pricing.

3.2.2. Pricing via Branch&Bound

In order to solve the pricing problem, we need a way to systematically consider all feasible
schedules. For the Travelling Salesman problem a sequence of cities uniquely determines
a tour for the salesman. However, for the elevator scheduling problem it is not sufficient
to give a sequence of requests to determine a schedule. To see this, consider the following
example. Assume that the elevator is currently located at floor 3, with a drop commitment
at floor 5. Moreover, assume that there are two reqests, with request 1 going from floor 4
to floor 8, and request 2 from floor 7 to floor 9. Figure 3.1 shows that in this situation
there are three different schedules corresponding to the request sequence 1, 2.
The reason why a request pickup sequence does not determine a schedule is that it

does not specify whether or not pending drop commitments are to be executed before or

58

3.2. New exact reoptimization algorithms for elevator group control

after a request is picked up. It turns out that including this drop information is sufficient
to characterize a schedule. More precisely, each schedule can be described by giving a
sequence of pickup actions and drop actions, specifying which request to pick up and
at which floor to stop for dropping, respectively. Of course, not all of these sequences
represent feasible schedules.
We can use this description to make up a search tree that can be traversed in order

to find schedules with negative reduced costs. Each node in the tree corresponds to a
stop of the elevator at a floor, where a subset of the possible requests has already been
picked up. The nodes are joined by edges corresponding to pickup or drop actions. An
action is feasible at a node if it is compatible with the drop commitments of the node,
i. e., executing the action will not transport a passenger in the wrong direction. A full
search tree for the small example above is shown in Figure 3.2.
Formally, a node v of the search tree is labelled with the following data:

Av Set of not yet picked up (assigned) requests from R(e).

Ov Set of not yet picked up (optional) requests from Ru.

Sv A feasible schedule that serves all requests in R(e) \ Av. This schedule is
determined by the path from the root node to node v. In addition to stops
corresponding to the actions on this path Sv has stops at the pending drop floors.

sv A stop from Sv, namely the stop resulting from the sequence of actions along the
path from the root node.

Node v represents all schedules that may be obtained by picking up unserved requests at
stop sv or later. The schedule Sv has the property that there are no pickups after stop
sv, i. e., these stops are there only for dropping loaded destination calls. Node v is called
feasible if Av is empty and sv is the last stop of Sv, i. e., has no pending drop floors. A
feasible node corresponds to a feasible schedule that serves all requests assigned to the
elevator.

There is a separate search tree for every floor where the elevator can still stop at next,
provided that a request is waiting there and the floor is not beyond the next pending
drop floor. More precisely, let F be the subset of Fi(e) where at least one request from
R(e) ∪ Ru is waiting and which are not beyond floor f0(e), plus floor f0(e). For each
f ∈ F , there is a root node v initialized by

Av := R(e),
Ov := Ru,
Sv := schedule for dropping all loaded calls of

elevator e with first stop at floor f ,
sv := first stop of Sv.

As described before, a child node v′ of node v arises by two actions: Either a request is
picked up or the elevator moves to the next floor for dropping a loaded destination call.

59

Chapter 3. Exact elevator group control algorithms

3 5

4 5, 8

1

5 8

7 8, 9

2

8 9

1

9
2

drop(9)

drop(8)

pickup(2)

8
1

7 9

2

9
2

drop(9)

pickup(2)

drop(8)

drop(5)

pickup(1)

5

4 8

1

7 8, 9

2

8 9

1

9
2

drop(9)

drop(8)

pickup(2)

pickup(1)

7 9

2

9
2

4 8

1

8
1

drop(8)

pickup(1)

drop(9)

pickup(2)

drop(5)

(a) Search tree.

3 4 5 7 8 9
1

1

2

2
(b)

3 4 5 8
1

1
(c)

3 4 5 8 7 9
1

1

2

2
(d)

3 5 4 7 8 9
1

1

2

2
(e)

3 5 7 9 4 8
1

1

2

2
(f)

Figure 3.2.: Full search tree for the example situation of Figure 3.1 and the feasible
schedules in the tree. Figure (a) shows the search tree of all schedules, arising by
enumerating all feasible pickup- and drop-action sequences. Note that each pickup-
action refers to a request, whereas each drop-action refers to a floor. Each node denotes
a stop, the numbers at the top and bottom giving the requests being picked up and the
calls being dropped, respectively (for simplicity, we assume a one-to-one correspondence
between requests and calls). Additionally, the pending drop floors are shown at the right
of each node. Assuming that request 1: 4 → 8 has been assigned to the elevator and
request 2: 7→ 9 is still unassigned, the nodes corresponding to feasible schedules are
marked in bold. A stop corresponds to a feasible schedule if all assigned requests have
been served and there are no further drop floors. The feasible schedules are shown in
Figures (b)–(f) in the order they are encountered in the search tree.

60

3.2. New exact reoptimization algorithms for elevator group control

Assuming that sv is not the last stop of Sv, the data of v′ according to the drop action is

Av′ := Av, Ov′ := Ov, Sv′ := Sv, sv′ := successor stop of sv.

For the pickup action, there are two cases. If the start floor of request % ∈ Av ∪Ov is the
same as sv.floor , then

Av′ := Av \ {%},
Ov′ := Ov \ {%},
Sv′ := AddRequest(Sv, sv, s(sv, %), %),
sv′ := sv,

where we use the AddRequest-operation defined in Section 2.5.4 to compute the schedule
resulting from picking up request %. Here, s(sv, %) denotes the first stop after sv that
is at or beyond the furthest destination floor of request %. In case request % starts at a
different floor, the child node labels are

Av′ := Av \ sv′ .pickups,
Ov′ := Ov \ {%},
Sv′ := AddRequest(Sv, s′v, s(sv, %), %),
sv′ := successor of sv in Sv′ ,

where s′v is the successor stop of sv in Sv. We remove sv′ .pickups instead of {%} only from
Av since other requests might have been picked up as well since the new stop may be
the first stop with this leaving direction. In the case of an immediate assignment system
without boarding control Ov′ has to be restricted further: All optional requests leaving
from sv.floor in direction sv.direction need to be removed as they would be picked up on
stop sv even if selected later.

Note that, in general, not all requests % ∈ Av ∪Ov are valid for the pickup action. This
is only true if sv.drop_floors is empty. If sv.drop_floors is not empty, only requests in
direction sv.direction with start floor between sv.floor and (including) the first floor from
sv.drop_floors may be picked up next.
Branching is now done by creating all valid child nodes for a node v. So far it may

happen that the same schedule is represented multiple times in the search tree due to
symmetries. For instance, assume that requests %1 and %2 have the same start floor and
direction. Picking them up in the order %1, %2 or %2, %1 results in the same schedule. To
avoid this, we use an order ≺R on the requests and require that requests can only be
picked up in this order at the same stop.
Algorithm 3.1 gives an overview on the overall procedure used to search for schedules

with negative reduced costs. It returns a set M of schedules with negative reduced
costs; if M is empty then there is no schedule with negative reduced cost. In addition,
the algorithm computes a lower bound for the value of the LP relaxation according to
Theorem 3.2.1 to be used to measure the progress of the optimization. The procedure
uses a queue Q to organize the search through the decision tree. Depending on the kind

61

Chapter 3. Exact elevator group control algorithms

Input: snapshot problem data, elevator e, dual prices πe and (π%)%∈R(e)∪Ru
,

parameters k ∈ N and θ < 0
Output: set M of columns with negative reduced cost, lower bound

¯
c̃(e) on the reduced

cost for any schedule for elevator e

1: procedure EnumSchedules
2: M ← ∅,
3: Q← ∅, M ← ∅
4: for all feasible first stop floors f do
5: Create root node v at floor f .
6: if LowerBound(v) < θ then
7: Add v to Q.
8: if v is feasible then
9: Add Sv to M .

10: θ ← minimum reduced cost of the feasible schedules in M
11: end if
12: end if
13: end for
14: while Q 6= ∅ and |M | < k do
15: Pick first node v from Q.
16: Let N be the child nodes of v obtained via branching.
17: for all u ∈ N do
18: if LowerBound(u) < θ then
19: Add u to Q.
20: if u is feasible then
21: Add Su to M .
22: θ ← minimum reduced cost of the feasible schedules in M
23: end if
24: end if
25: end for
26: end while
27: Let

¯
c̃(e) be the minimum of the cost of the cheapest schedule in M and the

minimum reduced cost of any node in Q.
28: return M ,

¯
c̃(e)

29: end procedure

Algorithm 3.1: Outline of Branch&Bound-search for schedules with negative reduced cost.

62

3.2. New exact reoptimization algorithms for elevator group control

of queue used, different search strategies can be implemented. For each new node v a
lower bound LowerBound(v) on its reduced cost is computed and the node is pruned if is
not negative enough. We stop the search once we found k feasible schedules with negative
reduced costs, since it may not be worthwhile to add all improving schedules if there are
many. The parameter θ serves a similar purpose: Initially, it is set to a small negative
value, say −1.0× 106. Everytime a new feasible schedule with reduced cost below θ is
encountered, θ is set to the minimum reduced cost of a feasible schedule found so far. This
is done to avoid finding many schedules whose reduced cost are only slightly negative.

The lower bound computed by LowerBound(v) consists of two parts: a lower bound on
the reduced cost of the requests already picked up and dropped or currently loaded and
a lower bound on the additional reduced cost for serving still unserved requests. The
reduced cost for the picked up requests are at least c̃(Sv). To see this, note that the
service-related costs (i. e., waiting time, ride time, and travel time costs) increase with
time. Due to the construction of Sv, the waiting times of all calls are already fixed and the
ride time (and thus the travel time) of currently carried calls can only increase by picking
up further requests, since the calls cannot be dropped earlier than at the already existing
drop stops. Since capacity penalty cost are only incurred when picking up a request and
all pickups of Sv are irrevocable, they cannot decrease either. Finally, the main floor
cannot be visited earlier than in Sv after stop sv, since Sv contains only unavoidable drop
stops. Thus the RTT penalty cost of Sv are a lower bound for the RTT penalty cost of
any extension of Sv.
The lower bound for the additional reduced costs may be computed using one of the

methods discussed in the next subsections. These bounds try to account for the additional
service and capacity penalty costs, but not for additional RTT penalty costs.

3.2.3. Greedy lower bounds

A straightforward way to obtain lower bounds for the additional reduced cost of all
schedules represented by a node is to determine lower bounds on the pickup and drop
times for each request. This is essentially what Seckinger and Koehler [SK99] did, but we
also take into account the current drop commitments and the requirement that passengers
must not travel in the opposite direction.
The idea of this “greedy” bound is to determine for each unserved request earliest

pickup and drop times. Serving the request incurs at least the service cost according to
these times, so the sum of all of these costs gives a lower bound for the additional cost.
Note that this corresponds to assuming that all requests can be served at their earliest
pickup times, i. e., the interactions between requests due to serving a set of them are
neglected. Figure 3.3 illustrates this idea.

Consider a node v in the decision tree and a request % ∈ Av ∪Ov and let f+(%) be the
start floor of %. In case the direction of % is opposite to the leaving direction from sv, the
elevator has to visit all drop floors before it can pickup %. If the direction matches, the
elevator has to pass the drop floors before (and including) f+(%), too. For both cases,
let s′ be the first stop of Sv where all preceding drop floors have been passed. A lower

63

Chapter 3. Exact elevator group control algorithms

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

(a) Schedule Sv with sv = s3. Clearly
we have

¯
t+(8→ 2) ≥ s4.arrival .

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

(b) We have
¯
t+(5→ 3) ≥ s5.arrival ,

since the elevator needs to pass floors 8
and 7 before it can stop at floor 5.

1 15 10 8 7 1
s1 s2 s3 s4 s5 s6

5

8

(c) We have
¯
t+(8→ 9) ≥ s6.arrival , since the

elevator needs to serve all drop floors before
changing direction.

Figure 3.3.: Example situations for estimating the pickup time. Figure (a) shows a sched-
ule Sv corresponding to a node v in the search tree, the current stop sv being marked
bold. Figures (b) and (c) show how the pickup time

¯
t+(%) of request % can be bounded.

bound
¯
t+(%) for the pickup time of % is then given by

¯
t+(%) =

{
s′.arrival f+(%) = s′.floor ,
s′.arrival + τstop + τdrv(e, s′.floor , f+(%)) f+(%) 6= s′.floor .

Now consider a call c ∈ % and let f1, . . . , fl the sequence of floors to be visited before
dropping c, where f1 = s′.floor and fl is the destination floor of call c. This sequence
includes both drop commitments after stop s′ and the destination floors of other calls
of %. A lower bound

¯
t−(c) for the drop time of c is

¯
t−(c) = s′.arrival + max{τstop, |%|τload}+

l−1∑
i=1

τdrv(e, fi, fi+1) + (l − 2)τstop.

Note that the difference
¯
t−(c)−

¯
t+(%) does not provide a lower bound for the ride time

of call c, since drop commitments from stop s′ might delay arrival at the destination floor
of c. It is however always possible to serve a request % without stopping at other than
the request’s destination floors. We therefore bound the ride time of c by

¯
tr(c) = max{τstop, |%|τload}+

l−1∑
i=1

τdrv(e, fi, fi+1) + (l − 2)τstop, (3.8)

where this time f1, . . . , fl is the sequence of floors to be visited before dropping c according
to request % only; f1 and fl are start and destination floors of c, respectively.
To estimate the additional capacity penalty cost we have to treat the immediate

assignment system and the delayed assignment differently, due to the differences in
signalling. Recall that in the immediate assignment system, a request has to be picked

64

3.2. New exact reoptimization algorithms for elevator group control

up on the first stop with matching start floor and leaving direction. Denote by n(f, d)
the number of calls that are unavoidably picked up when leaving floor f in direction d.
The value of n(f, d) is given by the number of all assigned requests (i. e., requests in
Av) starting at floor f with travel direction d, plus the number of calls that are loaded
when the elevator leaves floor f in direction d when doing the drop stops according to Sv.
Based on n(f, d), we can determine two types of contributions to the additional capacity
penalty cost: costs

¯
ccap(%) that can be attributed to picking up a request %, and costs

¯
ccap(Sv, Av) that arise from Av and the structure of Sv so far. Intuitively, the latter part
is either due to assigned requests at a floor / direction pair exceeding the capacity, or
due to earlier picking up requests that now take up too much capacity to accomodate
the remaining assigned requests. Let ν(Sv, sv) be the total number of calls exceeding the
elevator capacity on stops later than sv; these are already accounted for in c(Sv). We
then have

¯
ccap(Sv, Av) = ccapacity ·

(∑
f,d

max{0, n(f, d)− κ(e)} − ν(Sv, sv)
)
,

where the sum just counts all calls to be picked up beyond the elevator capacity, which
needs to be corrected by those already considered in c(Sv). Additional cost capacity
penalty

¯
ccap(%) can also arise due to picking up request %, so that the current load (further)

exceeds the capacity. Writing n(%) := n(f, d) for the start floor f and direction d of
request %, we get the lower bound

¯
ccap(%) =

ccapacity ·
(
|%| −max{0, κ(e)− n(%)}

)
n(%) + |%| > κ(e),

0 otherwise,

for each % ∈ Av ∪Ov.
For the delayed assignment system, we use

¯
ccap(Sv, Av) = 0. The rationale is that

exceeding the capacity due to too many loaded calls can be avoided by first emptying
the elevator, i. e., signalling no destination floor at the remaining drop floors of Sv. Since
every request can effectively be served on its own the only way to incur a capacity penalty
is that a single request already exceeds the elevator capacity, i. e., |%| > κ(e). This leads
to the bound

¯
ccap(%) = ccapacity ·max{0, |%| − ccapacity(e)} for each % ∈ Av ∪Ov.

Using these estimates, it is easy to obtain a lower bound
¯
c(%) on the additional cost for

serving request % in any schedule by summing the cost according to the time bounds and
the capacity penalty cost, i. e.,

¯
c(%) =

∑
c∈%

(
cwait(c)¯

t+(%) + cride(c)¯
tr(c) + ctravel(c)¯

t−(c)
)

+
¯
ccap(%)

for linear service costs.
An important observation is that we can do some kind of dual fixing based on

¯
c(%)

for requests % ∈ Ov: If π% ≤ ¯
c(%) it will never be favorable to serve this request, since it

cannot decrease the reduced cost and it does not have to be served by this elevator. All
such requests can thus be removed from Ov, which helps to prune the search tree.

65

Chapter 3. Exact elevator group control algorithms

Assuming that there are no requests with π% ≤ ¯
c(%) in Ov, we thus get the following

bound
¯
c̃(v) for the reduced cost of any schedule in the subtree of v:

¯
c̃(v) = c(Sv) +

∑
%∈Av

¯
c(%) +

∑
%∈Ov

(̄
c(%)− π%

)
+

¯
ccap(Sv, Av)− πe.

The time complexity of this bound is O (|Av ∪Ov|L), where L is the sum of the number
of stops after sv and the maximum number of destination floors in any request in Av ∪Ov.

3.2.4. Lower bounds via the algorithm of Tanaka et al.

The single elevator Branch&Bound algorithm proposed by Tanaka et al. [TUA05b] is
similar to our Branch&Bound pricing algorithm. In particular, its lower bounding scheme
can be incorporated into our algorithm. As our setting is more general and differs in some
aspects, we describe a modified version of their algorithm that is generalized to our model
introduced in Section 2.4 in greater detail. Moreover, we remove the assumption of full
boarding control and we will not assume that the passengers are picked up or dropped in
a particular order as Tanaka et al. did. However, we stick to linear cost functions and do
not take capacity or round trip time penalty cost into account.
In the following, we discuss the algorithm of Tanaka et al. for solving the elevator

scheduling problem for a single elevator. At the end of this section we explain how the
resulting lower bounds can be applied in each node of our pricing decision tree. Observe
that since the algorithm was designed for a single elevator it can only handle the requests
already assigned to an elevator.

Basic solution approach

The basic idea is to think of the elevator operation as a sequence of actions: Each currently
boarded passenger requires a drop action and each waiting passenger a pickup action
followed by a matching drop action. The task is to schedule these actions subject to
several restrictions such that some objective is minimized. In contrast to the original
work, the objective function considered here is a linear function of both the waiting and
travel times of the calls instead of travel time only. The cost coefficients for the waiting
and travel time of call c are denoted by cwait(c) and ctravel(c), respectively.

As before, let C(e) denote the set of loaded calls of elevator e andR(e) the set of requests
that need to be served by this elevator. The set J consists of n actions, each described
by a weight wj and a duration dj , according to C(e) and R(e) as follows. For each call
c ∈ C(e) there is one drop action j with weight wj := ctravel(c) and duration dj := τload.
For each request % ∈ R(e) there is one pickup action with weight wj :=

∑
c∈% cwait(c)

and duration dj := |%|τload. Moreover, there is one drop action for each destination floor
required by %. Let C be the set of destination calls of % with common destination floor f .
The weight of the corresponding drop action is wj :=

∑
c∈C ctravel(c) and its duration

is dj := |C|τload. The floor associated with action j is denoted by fj , P is the set of pickup
actions and the set of drop actions D is the disjoint union of DB and DW , corresponding

66

3.2. New exact reoptimization algorithms for elevator group control

to dropping loaded and waiting calls, respectively. The map pickup : DW → P gives the
pickup action corresponding to a drop action.

The task is now to find a minimum cost schedule of the actions of J , where each drop
action is scheduled after its corresponding pickup action and that fulfills the following
additional constraints.

1. Drop actions happen as soon as possible after the corresponding pickup action, i. e.,
on the first stop on the destination floor.

2. There is no change of direction if a drop action in the current direction is still
pending. (This constraint was considered optional by Tanaka et al.)

3. The schedule respects the first-stop pickups P (e, f, d).

Formally, we look for an execution order π : [n]→ J of the actions J , which determines
a start time Tj for each action j ∈ J , as in the following model.

min
∑
j∈J

wjTj (3.9)

s. t. π : [n]→ J is bijective, (3.10)

Tπ(i) =

{
Tπ(i−1) fπ(i) = fπ(i−1),

Tπ(i−1) + `(π, i− 1) + τdrv(e, fπ(i−1), fπ(i)) fπ(i) 6= fπ(i−1),
(3.11)

∀i ∈ [n],
Tj ≥ Tpickup(j) + τdrv(e, fpickup(j), fj) + τload ∀j ∈ DW , (3.12)

π fulfills the additional constraints above. (3.13)

Here `(π, i) := max{τstop, P (π, i)} denotes the loading time at floor fπ(i), where P (π, i)
is the total duration of consecutive actions that take place on fπ(i) not later than the
ith action π(i). Moreover, note that we implicitly assume Tπ(0) = 0 and fπ(0) = f0 for
notational convenience. Constraints (3.11) prescribe the delay between successive actions,
depending on whether they happen on the same floor or not. The precedence constraints
of a pickup action and its corresponding drop actions are modelled by (3.12). They could
have been formulated using the execution order π, but this formulation is more suitable
for the solution approach.
The model given by (3.9)–(3.13) is solved using a Branch&Bound algorithm, that

successively fixes π(1) up to π(n). An initial feasible solution is obtained by inserting the
new call in the schedule from the last replanning step.

Computation of lower bounds

The additional constraints (3.13) are not taken into account by the lower bound compu-
tation, i. e., they are relaxed. The key idea for computing lower bounds for the remaining
problem is to decompose it into three subproblems, dealing with the time needed for
loading / unloading, stopping due to visiting different floors, and travelling between floors

67

Chapter 3. Exact elevator group control algorithms

separately. The decomposition relies on a linear approximation of the floor-to-floor travel
times. Suppose we know (large) constants τS and τF such that

τdrv(e, f1, f2) ≥ τS + τF |f1 − f2| ∀f1 6= f2. (3.14)

We can then relax the timing constraints (3.11) to

Tπ(i) ≥

{
Tπ(i−1) fπ(i) = fπ(i−1),

Tπ(i−1) + `(π, i− 1) + τS + τF |fπ(i−1) − fπ(i)| fπ(i) 6= fπ(i−1),
∀i ∈ [n].

(3.15)
Note that in the case fπ(i) 6= fπ(i−1), the delay of action π(i) depends on three components
due to loading / unloading, stopping, and travelling between floors.
To decompose the problem in subproblems corresponding to these three components,

we introduce three separate execution orders πL, πS , πF : [n] → J and corresponding
starting times Lj , Sj , Fj . The overall model then reads

min
∑
j∈J

wj(Lj + Sj + Fj) (3.16)

s. t. πL, πS , πF : [n]→ J is bijective, (3.17)

LπL(i) ≥

{
LπL(i−1) fπL(i) = fπL(i−1),

LπL(i−1) + `(πL, i− 1) fπL(i) 6= fπL(i−1),
∀i ∈ [n], (3.18)

SπS(i) ≥

{
SπS(i−1) fπS(i) = fπS(i−1),

SπS(i−1) + τS fπS(i) 6= fπS(i−1),
∀i ∈ [n], (3.19)

FπF (i) ≥

{
FπF (i−1) fπF (i) = fπF (i−1),

FπF (i−1) + τF |fπF (i−1) − fπF (i)| fπF (i) 6= fπF (i−1),
∀i ∈ [n], (3.20)

Lj ≥ Lpickup(j) + τload ∀j ∈ DW , (3.21)

Sj ≥ Spickup(j) + τS ∀j ∈ DW , (3.22)

Fj ≥ Fpickup(j) + τF |fpickup(j) − fj | ∀j ∈ DW . (3.23)

Obviously, this problem decomposes into the three subproblems. Moreover, its optimal
solution value is a lower bound for a solution of (3.9)–(3.13). The subproblem associated
with the variables Lj , Sj , and Fj is denoted by (L), (S), and (F), respectively.

The basic approach for solving all three subproblems∗ is to apply Lagrange relaxation
to the precedence constraints. Since the optimal value of the Lagrange relaxation for
every choice of Lagrange multipliers is a lower bound for the original problem, a lower
bound for the Lagrange relaxation is a lower bound for the original problem, too. For
fixed Lagrange multipliers, an optimal solution of each relaxed subproblem executes all

∗In the original paper, subproblem (L) is solved exactly, which is not possible for our generalization
to the request model. The main reason for this is that in our model, all pickups at the same floor happen
at the same time, whereas in the original paper the times differ by a constant loading time. Thus we
chose to apply the same solution approach for (L) that Tanaka et al. used for the other two subproblems.

68

3.2. New exact reoptimization algorithms for elevator group control

actions on one floor at the same time. We can thus aggregate all actions at one floor to a
single action identified by the floor f , where the weight ωf and the duration df of this
floor depend on the weights and the durations of the aggregated actions and the Lagrange
multipliers. We denote this set of m aggregated actions / floors by F (J). The remaining
task is to solve the aggregated problem and to derive values for the Lagrange multipliers
such that the solution is large to yield a good lower bound.

Let us consider the Lagrange relaxation of (L) for fixed multipliers λj ≥ 0, j ∈ DW , as
an example, which is given by

min
∑
j∈J

wjLj +
∑
j∈DW

λj(Lpickup(j) + τload − Lj) (3.24)

s. t. πL : [n]→ J is bijective, (3.25)

LπL(i) ≥

{
LπL(i−1) fπL(i) = fπL(i−1),

LπL(i−1) + `(πL, i− 1) fπL(i) 6= fπL(i−1),
∀i ∈ [n]. (3.26)

Clearly, the objective (3.24) can be rewritten as

min
∑
j∈J

w̄jLj + τload

∑
j∈DW

λj (3.27)

with

w̄j :=

wj +

∑
j′∈DW : pickup(j′)=j λj′ j ∈ P,

wj − λj j ∈ DW ,

wj j ∈ DB.

(3.28)

It is obvious that in an optimal solution of (3.24)–(3.26) actions at the same floor happen
at the same time. Furthermore it is always optimal to perform actions at the current
floor f0 immediately. Hence we assume that there are no actions at f0, i. e., f0 /∈ F (J).
The weight ωf of a floor f ∈ F (J) representing all actions there is given by

ωf :=
∑

j∈J : fj=f

w̄j . (3.29)

The relaxation and aggregation steps work as well for the other two subproblems.
We will now describe how the resulting subproblems are solved and how the Lagrange
multipliers are chosen to yield good lower bounds.

Computing lower bounds for (L) The aggregated subproblem for (L) is

min
∑

f∈F (J)

ωfLf + τload

∑
j∈DW

λj (3.30)

s. t. π : [m]→ F (J) is bijective, (3.31)
Lπ(i) ≥ Lπ(i−1) + dπ(i−1) ∀i ∈ [m], (3.32)

69

Chapter 3. Exact elevator group control algorithms

where the loading time df at floor f is given by df := max{τstop,
∑

j∈J : fj=f dj}. It is
easy to see that, for constant Lagrange multipliers λj , this problem is essentially a single
machine scheduling problem with the weighted sum of completion times as objective
which is commonly abbreviated as 1||

∑
wjCj . This problem can be optimally solved by

the well-known WSPT rule (weighted shortest processing time first) [Smi56]. An optimal
solution π : [m]→ F (J) according to the WSPT rule is obtained by ordering the floors
nondecreasingly by the ratio df/ωf . For simplicity, we choose all Lagrange multipliers to
be 1.

Computing lower bounds for (S) Applying the same steps to subproblem (S), we
obtain the aggregated subproblem

min
∑

f∈F (J)

ωfSf + τS
∑
j∈DW

λj (3.33)

s. t. π : [m]→ F (J) is bijective, (3.34)
Sπ(i) ≥ Sπ(i−1) + τS ∀i ∈ [m]. (3.35)

This subproblem is again a 1||
∑
wjCj scheduling problem with optimal solution value

given by
τS
∑
i∈[m]

ωπ(i)i+ τS
∑
j∈DW

λj ,

where π : [m] → F (J) orders the floors nonincreasingly according to their weight. For
fixed Lagrange multipliers λj , the second term is constant and dominated by the first. We
therefore aim to maximize the first term by choosing appropriate λj ; this can be achieved
by values for ωf which are both large and balanced.
Tanaka et al. propose a heuristic to do that; a generalization to our request model is

shown in Algorithm 3.2. The basic idea is to determine a value κ such that, after updating
with λj = κ, ωfj

is equal to ωfpickup(j)
(step 7). If however λj would be negative or the

change to ωfj
would be negative, λj is set to a truncated κ (step 8). Finally, values for

all λj , j ∈ DW , have been chosen and the values of ωf , f ∈ F (J), are set in accordance
with (3.27) and (3.28).

Computing lower bounds for (F) The relaxed and aggregated problem of subprob-
lem (F) is

min
∑

f∈F (J)

ωfFf + τF
∑
j∈DW

λj |fpickup(j) − fj | (3.36)

s. t. π : [m]→ F (J) is bijective, (3.37)
Fπ(i) ≥ Fπ(i−1) + τF |fπ(i−1) − fπ(i)| ∀i ∈ [m]. (3.38)

Again, we consider this problem for fixed λj . The task is to find a visiting order for the
floors in F (J), such that a weighted sum of arrival times is minimized.

70

3.2. New exact reoptimization algorithms for elevator group control

1: procedure FindWeights(set of actions J with weights wj)
2: Initialize all ωf for f ∈ F (J) to zero.
3: for all j ∈ P ∪DB do
4: ωfj

← ωfj
+ wj

5: end for
6: for all j ∈ DW do
7: κ← (ωfj

+ wj − wfpickup(j)
)/2.

8: λj ←

0 κ < 0,
κ 0 ≤ κ ≤ wj ,
wj κ > wj .

9:
ωfj
← ωfj

+ wj − λj
ωfpickup(j)

← ωfpickup(j)
+ λj

10: end for
11: return (ωf)f∈F (J)

12: end procedure

Algorithm 3.2: Heuristic for determining Lagrange multipliers to obtain balanced weights
in lower bound computation for subproblem (S).

In the special case that all floors in F (J) are in the same direction from f0, it is optimal
to visit the floors in order of increasing distances. Tanaka et al. mention that the general
problem can be solved by Dynamic Programming, but is computationally expensive.
Instead, they propose the following way to compute lower bounds.

Suppose that are floors in both directions from f0. In case that m = |F (J)| = 2 there
are only two possible visiting orders which are both tried. If m ≥ 3 then there are at least
two floors in one direction. Assume w. l. o. g. that this is the up direction and consider
the two floors fm−1 < fm that are furthest up. In an optimal solution, fm−1 is visited
(not necessarily immediately) before fm, since an interchange would yield a cost increase.
Therefore there are two feasible orders for m = 3, too. For m = 4, we can apply the same
argument to f1 < f2, which are furthest down. In this case there are six orders possible,
namely

f2, f1, fm−1, fm

f2, fm−1, f1, fm

f2, fm−1, fm, f1

fm−1, f2, f1, fm

fm−1, f2, fm, f1

fm−1, fm, f2, f1.

If there are more than four different floors, we use the following decomposition. Let F1

denote the set of (at most four) extreme floors as above and F2 := F (J)\F1. The objective
can then be written as

∑
f∈F (J) ωfFf =

∑
f∈F1

ωfFf+
∑

f∈F2
ωfFf . A lower bound for the

71

Chapter 3. Exact elevator group control algorithms

first term is then obtained as in the case for m = 3 or m = 4. The second term is bounded
by assuming that each floor in F2 is served first, i. e.,

∑
f∈F2

ωfFf ≥
∑

f∈F2
ωf |f − f0|.

The time to compute the overall bound is O (m).
Unlike the previous subproblem, the constant term in the objective (3.36) is relatively

large, so Tanaka et al. choose λj = 1 for all j ∈ DW .

Putting the lower bounds together A lower bound for the original problem is
obtained by summing the lower bounds for subproblems (L), (S), and (F). The time
needed to compute this lower bound is O (n log n).
This lower bound can be readily incorporated into our Branch&Bound algorithm by

considering Av instead of R(e) as the requests to be scheduled. Similarly, the set of
loaded calls is given by sv.current_calls instead of C(e). As mentioned before, unassigned
requests are not handled by Tanaka et al.’s approach. To obtain a meaningful bound, we
therefore add the greedy bound for the unassigned requests. Denoting the Tanaka et al.
lower bound for the additional cost of serving the assigned requests by

¯
cTanaka(Sv, Av),

we thus have the following bound
¯
c̃(v) for the reduced cost of any schedule in the subtree

of v:

¯
c̃(v) = c(Sv) +

¯
cTanaka(Sv, Av) +

∑
%∈Ov :

¯
c(%)<π%

(̄
c(%)− π%

)
− πe.

Note that in order to obtain the additional cost for serving assigned requests, one has to
modify the lower bound obtained by summing the lower bounds for the subproblems. In
particular, one has to subtract the travel cost for the currently loaded calls and to add
the waiting cost of the requests in Av up to now.

3.2.5. Lower bounds based on state-space relaxations

A common technique to solve routing problems is Dynamic Programming. The basic idea
is to formulate the routing problem as a shortest path problem in a suitable graph. In
principle, every combinatorial optimization problem may be solved using this way. The
resulting state-space graph (S,A(S), c) uses the nodes S to capture certain decision stages
called states and the arcs A(S) describing further decisions, i. e., transitions between
states. Finally, the arc cost function c : A(S)→ R models the cost of the original problem.
For many (realistic) problems, however, the resulting graph turns out to be very huge so
the approach is not promising. This is also the case for our elevator scheduling pricing
problem, due to the complexity of the side constraints and the objective function.
Christofides et al. [CMT81] proposed a method called state-space relaxation to allow

shortest path algorithms to be used for computing lower bounds. A state-space relaxation
of a state-space graph (S,A(S), c) is another (much smaller) state-space graph (Ŝ,A(Ŝ), ĉ)
together with a mapping g : S → Ŝ satisfying

(s, t) ∈ A(S) =⇒ (g(s), g(t)) ∈ A(Ŝ), and, (3.39)

ĉ(ŝ, t̂) ≤ min{c(s, t) | g(s) = ŝ, g(t) = t̂} for all (ŝ, t̂) ∈ A(Ŝ). (3.40)

72

3.2. New exact reoptimization algorithms for elevator group control

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

(a) Original state-space graph.

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11
a11

a10

(b) Relaxed state-space graph that is not a
homomorphic image of the original

state-space graph.

Figure 3.4.: Difference between the notion of state-space relaxation used in [CMT81] and
the notion used here. The relaxed state-space graph is not the homomorphic image of
the original state-space graph which can be seen by considering the arcs a2, a6, a3, and
a7. Nevertheless, each path in the original state-space graph is also represented in the
relaxed state-space graph.

Requirement (3.39) states that g is a graph homomorphism from the big to the small
state-space graph, whereas (3.40) ensures that an arc in the small graph is at most at
expensive as the cheapest of its preimages in the original graph. From now on we will
refer to the original state space and the relaxed state space.
Let C(s, t) denote the length of a shortest s, t-path in (S,A(S), c) and Ĉ(ŝ, t̂) the

length of a shortest ŝ, t̂-path in (Ŝ,A(Ŝ, ĉ). Due to the homomorphism property, it is
clear that

Ĉ(g(s), g(t)) ≤ C(s, t) for all s, t ∈ S, (3.41)

so we can compute lower bounds by shortest path algorithms in a much smaller graph.
We use a more general version of the state-space relaxation idea (see Figure 3.4 for an

illustration). The key property guaranteed by (3.39) and (3.40) is that for each path P in
(S,A(S), c) there is an image path P̂ in (Ŝ,A(Ŝ), ĉ) which has at most the cost of P , i. e.,
ĉ(P̂) ≤ c(P). This ensures that a shortest path in the relaxed state-space graph provides
a lower bound for one in the original state-space graph. In our variant, we construct the
state-space relaxation graph with this property inductively.
We assume that the original state-space graph (S,A(S), c) is acyclic, has an initial

73

Chapter 3. Exact elevator group control algorithms

state s0, and each of its arcs arises due to some decision or action (think of the pickup
and drop actions in the schedule search tree). For a state s ∈ S, we denote by A(s) the
set of actions allowed in state s, i. e., A(s) is the set of arcs leaving s. Let state ŝ0 be the
image of the initial state s0 in the relaxed state-space graph. Our relaxed state-space
satisfies the following properties:

(SSR1) For each state s ∈ S, there is an injective map φs : A(s)→ A(ŝ). Intuitively,
this means that for each action possible in the original state space there is a
corresponding action in the relaxed state space.

(SSR2) For each path P = (s0, a0, . . . , sn−1, an−1, sn) in (S,A(S), c) the path P̂ =
(ŝ0, φs0(a0), . . . , ŝn−1, φsn−1(an−1), ŝn) is a path in (Ŝ,A(Ŝ), ĉ).

(SSR3) For each state s ∈ S and each a ∈ A(s) holds ĉ(φs(a)) ≤ c(a).

The first two statements guarantee the existence of an image path by ensuring that in
the relaxed state-space graph the set of allowed actions reflects the actions in the original
state-space graph. The third statement guarantees the lower bound property.
To model our pricing problem, we use a state space where each state s ∈ S is a

tuple s = (A,O, f, tp, L) with the following meaning of each component. Note that the
meaning of A and O is opposite to the data in the Branch&Bound nodes, i. e., they
denote the set of picked up instead of not-yet picked up requests.

A Set of picked up (assigned) requests from R(e).

O Set of picked up (optional) requests from Ru.

f Current stopping floor.

tp Time for picking up the next call, i. e., the arrival time at this floor.

L Set of currently loaded destination calls.

We use the notation A(s) and so on to refer to the components of a state. Observe that
f(s), tp(s), and L(s) are just the information needed to compute the service cost (the
capacity and RTT penalty costs are ignored here for simplicity) in a destination call
system: Using tp(s) we can determine the waiting time for a request being picked up on
the same floor, from L(s) we can determine the drop floors F(L(s)), and using f(s) and
L(s) it is possible to calculate the time for reaching any other floor. The components
A(s) and O(s) are used to keep track of the requests already picked up.
The transitions between states arise from applying a pickup or drop action just as in

the search tree. In fact, the whole state-space model can be viewed as an alternative
description of the search space used in the Branch&Bound pricing algorithm. For
an unserved request %, we denote the successor state resulting from a pickup action
by pickup(s, %). Likewise, we use the notation drop(s, f) for the successor state resulting
from a drop action at floor f ∈ F(L(s)). Moreover, ∆pickup(s,%) denotes the additional
cost due to the pickup action, i. e., the service cost for request %, but also the additional

74

3.2. New exact reoptimization algorithms for elevator group control

service cost for the destination calls in L(s). The additional cost ∆drop(s,f) associated to
a drop action are 0, since the schedule does not change due to this action. The cost for
the arcs in the state-space graph are thus

• ∆pickup(s,%) for a pickup action with request % ∈ R(e) \A(s),

• ∆pickup(s,%) − π% for a pickup action with request % ∈ Ru \O(s), and

• ∆drop(s,f) = 0 for every drop action at a floor f ∈ F(L(s)).

The initial state s0 is given by A(s0), O(s0), f(s0), tp(s0), and L(s0) corresponding to the
node in the search tree for which a lower bound is computed. Observe that the state-space
graph (S,A(S), c) defined this way is acyclic.

Obviously, the size of this state space is exponential in the number of unserved requests,
not to mention the complexity due to including time in the model. Therefore, dynamic
programming is not efficient even for small instances. This is why we employ the idea of
using a state-space relaxation as described above to compute lower bounds. To arrive at
a reasonably small relaxed state space, we use a number of measures to reduce the size:

• We only keep the number of assigned and unassigned requests already served. This
idea has been used e. g., by Christofides et al. [CMT81] for the Travelling Salesman
Problem.

• We discretize the time using some discretization δ.

• We only keep a limited number k of drop floors from F(L(s)).

The time discretization will be achieved by rounding down the pickup times of each
stop to the nearest multiple of δ. In order to avoid unnecessary many round-downs that
degrade the quality of the lower bound, we use a modified but equivalent definition of
the actions in the original state space, which will serve as the basis of the state-space
relaxation. Consider a pickup of request % in state s, i. e., assume that f(s) = f+(%),
the start floor of %. The drop floors to be visited from the resulting state are the floors
F(L(s)∪ %) \ {f+(%)} = {f1, . . . , fl}. We now replace every path starting with the action
pickup(s, %) and followed by subsequent drop actions at floors f1, . . . , fi by a single arc
corresponding to a composite action called pickup(s, %, fi), meaning that % is picked up
from state s and then all drop floors up to fi are visited without any pickup in between
(see Figure 3.5). Observe that since this is just the meaning of the original path, this
modification is equivalent to the original definition and every sequence of actions is still
represented in the state-space graph. This construction will later allow us to round down
just once for every composite action, instead of everytime a state is reached. The cost
of the composite action pickup(s, %, fi) is that of the original path, which is that of the
pickup action.

We are now ready ro describe the relaxed state-space graph. Formally, a state ŝ ∈ Ŝ is
a tuple ŝ = (nA, nO, f, t̂p, Fk, %) with the following meaning.

nA Size of A.

75

Chapter 3. Exact elevator group control algorithms

s s′ s1 sl−1 sl
. . .

pickup(s, %) drop(s′, f1) drop(sl−1, fl)

(a) Path in the original definition of state transitions.

s s′ s1 sl−1 sl
. . .

pickup(s, %)

pickup(s, %, f1)

pickup(s, %, fl−1)

pickup(s, %, fl)

(b) Modified definition of state transitions using composite actions.

Figure 3.5.: Idea of replacing pickup action / drop actions paths by composite actions
combining one pickup and a series of drop actions.

nO Size of O.

f Current stopping floor.

t̂p Time for picking up the next call.

Fk A subset of F of size at most k, giving the drop floors to be considered.

% The request that was the last to be picked up so far. If there was no pickup so far,
the dummy request ⊥ is used. This component is used to eliminate short cycles
in the state-space graph.

As sketched earlier, we inductively construct the relaxed state-space by applying the
same actions as in the original state-space, starting from the initial state s0. The state ŝ
corresponding to original state s (i. e., reached by the same path of actions) will fulfill the
following natural invariant w. r. t. s:

1. nA(ŝ) = |A(s)| and nO(ŝ) = |O(s)|,

2. f(ŝ) = f(s),

3. t̂p(ŝ) ≤ tp(s),

4. Fk(ŝ) ⊆ F(L(s)), and

5. %(ŝ) is the request of the last pickup action occuring on the path to s.

For a state ŝ the set R(ŝ) of admissible requests is defined to be

• any request apart from %(ŝ) if Fk(ŝ) is empty, or

• if Fk(ŝ) is nonempty, any request % 6= %(ŝ) that 1. starts on floor f(ŝ), leaves in the
direction implied by Fk(ŝ), and satisfies %(ŝ) ≺R % for some fixed total order ≺R
on the requests, or 2. has start floor between f(ŝ) and the nearest floor in Fk(ŝ),
including this floor.

76

3.2. New exact reoptimization algorithms for elevator group control

A pickup action pickup(ŝ, %) is only allowed if % ∈ R(ŝ). Note that %(ŝ) is used to
eliminate paths corresponding to picking up the same request twice without picking up
another request in between. Similarly, the order ≺R is used to break the symmetry due
to different pickup orders on the same floor.

The components describing state ŝ′ = pickup(ŝ, %) are determined as follows. Of course,
nA(ŝ′) = nA(ŝ) + 1 or nO(ŝ′) = nO(ŝ) + 1, depending on whether % ∈ R(e) or % ∈ Ru,
f(ŝ′) is the start floor f+(%) of %, and %(ŝ′) = %. The lower bound θ0 for the pickup time
of % is either t̂p(ŝ) if % starts on floor f(ŝ), or t̂p(ŝ) + τstop + τdrv(e, f(ŝ), f+(%)) otherwise.
The value of t̂p(ŝ′) is defined as θ0 rounded down to the next multiple of δ. Observe that
τstop is a lower bound on the stopping time on floor f(ŝ). Since t̂p(ŝ) is a lower bound
for tp(s) for state s reached on path P , θ0 and thus t̂p(ŝ′) is a lower bound for tp(s′) for
state s′ reached on path (P, pickup(s, %)). Finally, Fk(ŝ′) is defined to be the k floors
of
(
Fk(ŝ) \ {f+(%)}

)
∪ F−(%) that are furthest away from f(ŝ′), where F−(%) are the

destination floors of %.
Moreover, there is a composite action pickup(ŝ, %, f) for every f ∈ F :=

(
Fk(ŝ) \

{f+(%)}
)
∪ F−(%). Note that F may at this point contain more than k floors. For each

floor f ∈ F we can compute a lower bound θf for the time of reaching this floor, starting
from t̂p(ŝ) and adding the appropriate floor stop times and floor-to-floor travel times
for all intermediate floors from F . Denoting by ŝ′′ the state resulting from picking up %
from stop ŝ and perfoming all the drop actions up to and including floor f , we can then
set t̂p(ŝ′′) to θf rounded down to the nearest multiple of δ. This way, we rounded just
once for the entire composite action. Observe that this construction also ensures that θf
and t̂p(ŝ′′) are lower bounds for tp(s′′), with notation and arguments analogously to the
pickup action above. As expected, nA(ŝ′′), nO(ŝ′′), f(ŝ′′), and %(ŝ′′) are the same as for
the pickup action without a subsequent drop action. The set of drop floors Fk(ŝ′′) is the
set of drop floors from Fk(ŝ′) remaining after visiting floor f .

In summary, the definition of the arcs between states satisfy the invariant given above.
It remains to define the cost corresponding to each arc and to establish that they are
indeed suitable for computing lower bounds of the original problem. Since the drop action
does not incur additional costs, the arcs corresponding to composite actions get the same
cost as that corresponding to the pickup action only. It is thus sufficient to consider the
cost for pickup actions. These costs are computed based on the time estimates θ0 and
θf obtained as described above (note that these are the values before rounding down).
Since these times are lower bounds for the corresponding times in the original state space
and the drop floors Fk(ŝ) are a subset of the floors in the original state space, we can use
them to obtain lower bounds for the waiting time and the travel time of each call of %.
The ride time can be bounded via Equation (3.8) as in the greedy lower bound. We thus
arrive at a lower bound on the cost for serving request % from state s in the original state
space, which is the cost of the pickup action arc in the relaxed state space. This lower
bound is a lower bound for the additional cost incurred by serving request %, which is
the cost of the pickup action in the original graph. Note that we neglect the additional
service cost for the loaded calls due to serving request % in the state-space relaxation.
Finally, we observe that the constructed graph has the properties (SSR1), (SSR2), and
(SSR3) and thus is a valid state-space relaxation.

77

Chapter 3. Exact elevator group control algorithms

We remark that due to keeping track of the last picked up request in the relaxed state
space, the relaxed state space is in general not a homomorphic image of the original state
space: If there are two requests starting at the same floor both pickup orders will lead
to the same state in the original state space, whereas they lead to different states in the
relaxed state space. Moreover, the fact that there is in general no homomorphism is also
due to the time discretization employed.

Before turning to the description of the actual algorithm used to compute the state-space
relaxation lower bound, observe that the size of the relaxed state space is polynomial in
the input size of the snapshot problem for fixed k and δ. To see this, it is sufficient to
argue that there are only polynomially many values of t̂p. This follows from the fact that
in an optimal schedule, there are no stops without picking up or dropping a call. Thus,
the total time to execute any schedule is bounded from above by the time it takes to
serve all requests by serving each request on its own. Clearly, the time needed to serve
each request is constant w. r. t. input size.
Although the state space size is polynomial, it is still rather huge. Yet there is some

hope that the bounds are computationally tractable, since usually there are not many
requests (in general, at most 30). Additionally, there are some ways to keep the size of
the state space reasonable, at the expense of a weaker bound. The easiest way to do so is
to choose small k and large δ. It is not sensible to drop Fk completely, as a large share of
the cost –most importantly, waiting cost for requests picked up later– is due to stopping
to drop the loaded passengers.

We use a label-correcting algorithm to compute, for each state ŝ reachable from the initial
state ŝ0, the cost Ĉ(ŝ) of a shortest path from ŝ0 to ŝ, see Algorithm 3.3. The algorithm
maintains the states in sets S(nA, nO) according to their first components nA and nO and
uses a priority queue Q to determine the order in which the sets S(nA, nO) are processed.
It is crucial that all states in S(nA, nO) are processed before any states in S(nA + 1, nO)
and S(nA, nO+1), since only then the values of Ĉ(ŝ) for ŝ ∈ S(nA+1, nO)∪S(nA, nO+1)
are guaranteed to be correct. Therefore, the partial order ≺ used by Q has to satisfy

(nA, nO) ≺ (nA + 1, nO), and
(nA, nO) ≺ (nA, nO + 1).

(3.42)

There is another measure we call time reduction to reduce the size of the state space
that may be used by the algorithm. The idea is to identify all states differing only in the
t̂p-component, i. e., replacing all of these states by the one which has the minimal t̂p-value.
The corresponding state-space relaxation still fulfills properties (SSR1), (SSR2), and
(SSR3) and thus remains a valid state-space relaxation. It is easily possible to incorporate
time reduction in Algorithm 3.3.

3.2.6. The overall algorithm ExactReplan

By now we described all the ingredients of our new exact reoptimization algorithm Exact-
Replan. The algorithm computes a dispatch for a given snapshot problem as follows. If
there is at most one unassigned request, we solve the elevator scheduling problem using
enumeration. In case there is no unassigned request, we compute an optimal schedule

78

3.2. New exact reoptimization algorithms for elevator group control

procedure StateRelax
1. Let Q be a priority queue for pairs (nA, nO), using a partial order ≺

satisfying (3.42).

2. Given an initial state s0, let ŝ0 be the state corresponding to s0 and set
Ĉ(ŝ0) := c(s0).

3. Let F(L(s0)) = {f1, . . . , fl} and ŝi be the states corresponding to states
drop(s0, fi) for 1 ≤ i ≤ l. Set Ĉ(ŝi) := c(s0) for 1 ≤ i ≤ l.

4. Put all pairs (nA, nB), 0 ≤ nA < |Av| and 0 ≤ nO < |Ov|, into Q.

5. While Q 6= ∅:
a) Remove (nA, nO) from Q.
b) For each ŝ ∈ S(nA, nO):

For each % ∈ R(ŝ):
- Using f(ŝ), t̂p(ŝ), and Fk(ŝ) compute the time θ0 for arriving at
the start floor of % and the times θfi

for arriving at the drop
floors {f1, . . . , fl} given by Fk(ŝ) and the destination floors of %.

- Let ŝ′ = pickup(ŝ, %) be the state resulting from picking up %
and ∆̂ the cost incurred by this, based on times θ0 and θfi

.
Update the cost of ŝ′ via

Ĉ(ŝ′)← min{Ĉ(ŝ′), Ĉ(ŝ) + ∆̂− π%.}

- For each 1 ≤ i ≤ l, let ŝ′′ = pickup(ŝ, %, fi) be the state
resulting from the composite action. Update the cost of ŝ′′ via

Ĉ(ŝ′′)← min{Ĉ(ŝ′′), Ĉ(ŝ) + ∆̂− π%.}

6. Return min
{
Ĉ(ŝ)

∣∣∣ ŝ ∈ ⋃0≤nO≤|Ov | S(|Av|, nO)
}
.

end procedure

Algorithm 3.3: Overview of the label-correcting algorithm to compute lower bounds based
on state-space relaxation.

79

Chapter 3. Exact elevator group control algorithms

for each elevator via EnumSchedules (see Algorithm 3.1), which together constitute an
optimal dispatch. We exploit here that EnumSchedules finds a schedule that is optimal
w. r. t. to the primal cost if all dual prices are set to zero. For a single unassigned
request, we additionally compute for each elevator an optimal augmented schedule serving
the fixed requests plus this unassigned request. The request is then assigned to the
elevator serving it with least additional cost, so the optimal dispatch is given by the
augmented optimal schedule for this elevator and the unaugmented optimal schedules for
the remaining elevators. Upper bounds for the enumeration are obtained by constructing
feasible schedules via BestInsert (Algorithm 2.2).
The general case of at least two unassigned requests is treated by solving the LP

relaxation of the set partitioning IP (3.1)–(3.4) using column generation. The IP resulting
from column generation is then solved to optimality using a standard IP solver. Note
that in general this approach does not guarantee optimal solutions since we solve the LP
relaxation to optimality only in the root node of the IP search tree. The set of schedules
in the IP model is initialized by the schedules obtained from inserting the unassigned
requests in the schedule from the last reoptimization run using BestInsert. Thus the IP is
always feasible. The pricing problem is solved by EnumSchedules, invoking it with the
dual prices from the current LP relaxation.

In all invocations of EnumSchedules, the lower bound procedure LowerBound computes
either the greedy lower bound, the Tanaka lower bound, or the state-space relaxation
lower bound as described in the preceding sections. Moreover, it is also possible to use
the Tanaka or the state-space relaxation lower bound as a secondary lower bound for
the greedy bound, invoking it only if the greedy lower bound did not prune the tree
node. More precisely, a secondary lower bound is only computed if the cost of the current
node are at least the threshold θ or if there are unserved fixed requests at the node. The
rationale behind this is that only then the node can potentially be pruned due to the
lower bound. When using secondary lower bounds, the greedy bound is always used as
the primary bound since it is the only bound that allows dual fixing as explained on
page 65. It turns out that the pruning achieved by this dual fixing is crucial to obtain
reasonable running times. Therefore it is applied everytime the greedy lower bound is
computed.
There are two other optional features of the algorithm. The first is early stopping,

meaning that the pricing process is stopped as soon as the Lasdon lower bound according
to Theorem 3.2.1 certifies a certain optimality gap for the LP relaxation. The second is
the reuse of old schedules: Schedules that were generated during the solution process of
the last reoptimization run are considered during pricing before invoking EnumSchedules,
i. e., we check whether any of these old schedules have negative reduced cost. If so, we
include these schedule in the LP, resolve it, and start the next pricing round. Note that
this necessitates keeping the old schedules and updating them to the changes happening
between successive reoptimization runs. This reuse enables to take advantage of the
considerable effort for finding good schedules we invested in the last reoptimization run.

80

3.3. Computational results

3.3. Computational results

We already mentioned in Section 2.2 that a key figure for the performance of an elevator
system is its handling capacity. Conceptually, the handling capacity measures which
passenger arrival rate the system can handle. Equation (2.1) from Section 2.2 is a way
to provide an estimate for the handling capacity under pure up peak traffic based on
probabilistic assumptions. Elevator practitioners use another more practical and also
pragmatic definition [Bar02] based on the observation that the up peak traffic is the most
demanding traffic. According to this definition, the handling capacity is the percentage
of the entire building population that may arrive in a 5 minute interval such that the
elevator system provides a satisfactory service. Its value is determined by simulating the
arrival of a corresponding number of passengers in 5 minutes and verifying whether the
service quality is sufficient. Barney [Bar02, p. 88] states that this provides a reasonable
approximation to the usual morning up peak and is thus a justified simplification. A
5 minute handling capacity of 14% of the building population is considered to be very
good.

In this section we will use this pragmatic approach to evaluate the performance increase
that is possible by using destination call systems and advanced control algorithms. As
our main measures of service quality we use the median α0.5 and the 0.9-quantile α0.9

of the waiting time and the number of call-reissues that were necessary, measured as a
percentage of the total number of calls. Table 2.2 on page 28, taken from the book of
Barney [Bar02], shows that the elevator performance is considered “fair” if the waiting
time median is at most 25 seconds and the 0.9-quantile at most 55 seconds. We will use
these values and a limit of 10% reissues as our thresholds, i. e., the handling capacity is
the largest percentage of building population for which the system achieves a waiting
time median of at most 25 seconds, a 0.9-quantile of at most 55 seconds and not more
than 10% of the passengers have to reissue their calls.

As indicated before, we will not consider systems with full boarding control, since the
high-intensity traffic situations lead to extremely many requests in a snapshot problem,
namely one per destination call which may be up to 100. Such a large number of requests
cannot be handled efficiently by our algorithms.
We implemented our algorithms and the simulation environment in C++, using the

SCIP framework [Ach07, ABK+] to implement the IP-based ExactReplan algorithm, using
CPLEX [CPL] as LP solver. All computations ran under Linux on a system with an Intel
Core 2 X9650 CPU with 3.0 GHz and 8 GB of RAM. We did not use the 64 bit facilities
of this machine, but compiled 32 bit code using GCC 4.3 [GCC].
In all the tests performed we used the following settings for the cost structure of the

snapshot problem, which were selected ad-hoc without making an attempt to optimize
the resulting behavior. The service cost coefficients were set to cwait(c) = 2, cride(c) = 0,
and ctravel(c) = 1 for all calls c, reflecting that waiting time is more important than travel
time. The results reported later compare the difference due to penalizing the service times
either linearly or quadratically. In any case, the capacity penalty ccapacity corresponds
to the waiting time cost of 120 seconds. Finally, the round trip time penalty function
cRTT : R≥0 → R≥0 (henceforth called RTT penalty, for short) is defined as follows. Let N

81

Chapter 3. Exact elevator group control algorithms

be the number of floors of the building and m the number of elevators in the group. We
compute a critical travel time T , which is the average time needed to serve d(N − 1)/me
floors from the main floor, i. e., we assume that the destination floors travelled to from
the main floor are distributed evenly between all elevators. Note that this time includes
the times for unloading a full cabin as well as the time to return to the main floor. The
RTT penalty cRTT is of the form

cRTT(t) =

{
a1t t ≤ T,
ea2t t ≥ T.

The parameters a1 and a2 are set such that cRTT(1.5T) corresponds to the waiting cost
of one hour. We remark that this setup is somewhat arbitrary and its main point is to
discourage to serve more than the average number of floors from the main floor.

We start our evaluation by investigating how our exact algorithm ExactReplan performs
on snapshot problems for the different traffic situations.

3.3.1. Solving the snapshot problem

To generate a selection of snapshot problems as a test set for ExactReplan, we performed
a simulation run of five minutes traffic in a 23-floor building (“building B” in Table 3.5
on page 87) for six typical traffic patterns. These include the traffic patterns interfloor,
up peak, down peak and lunch peak mentioned earlier. In addition, we also consider the
patterns real up peak and real down peak, which mix the up peak and down peak traffic
which 5% of interfloor and 5% of down peak and up peak traffic, respectively. These
two patterns are supposed to model the real traffic conditions more closely than the
pure ones. As traffic intensity, we chose 16% of the building population in five minutes,
which represents a high load situation and thus a stress test for our algorithm. We used
these 16% for all traffic patterns except for interfloor traffic, where we assumed 10% since
interfloor traffic usually has a lower intensity.
From the recorded snapshot problems of the simulation runs, we selected 10 snapshot

problems for each of the six traffic patterns. The selection was done such that we obtained
the instances with the longest running time, featuring many requests and calls, but such
that the reoptimization times of the selected instances are at least 10 seconds apart to
ensure a certain diversity. These snapshot problems thus do not reflect typical performance,
but rather point to performance limitations of the algorithm and are thus suitable for
investigating which techniques may improve the performance. Table 3.1 summarizes some
statistics of our test set. Note that in each of the intermediate assignment snapshot
problems there is only one unassigned request, due to the fact that reoptimization is
invoked after each new destination call.
In a first test, we investigated how much the optional features reuse of old schedules

and early stopping improve the performance (see Table 3.2). In this experiment, we used
only the greedy lower bound. When early stopping was active, we stopped the pricing
process as soon as a gap of 1% was reached. As Table 3.2 reveals the algorithm in its
default variant without reuse of old schedules and early stopping is already very fast for

82

3.3. Computational results

traffic pattern calls requests unassigned requests
min avg max min avg max min avg max

IA, Interfloor 35 42.1 48 15 17.0 19 1 1 1
IA, Real Down Peak 52 59.0 70 14 15.6 19 1 1 1
IA, Down Peak 51 64.4 80 13 16.2 21 1 1 1
IA, Lunch Peak 63 69.1 78 15 17.4 19 1 1 1
IA, Real Up Peak 58 76.6 91 6 10.5 14 1 1 1
IA, Up Peak 55 65.3 79 2 3.6 5 1 1 1

DA, Interfloor 29 36.3 42 14 16.4 19 14 16.4 19
DA, Real Down Peak 24 46.6 57 13 15.1 19 13 15.1 19
DA, Down Peak 36 51.4 70 13 14.5 18 13 14.5 18
DA, Lunch Peak 50 63.9 77 16 19.7 28 16 19.7 28
DA, Real Up Peak 63 71.8 79 17 22.4 28 17 22.4 28
DA, Up Peak 30 45.3 59 11 13.7 18 11 13.7 18

Table 3.1.: Overview of the size of the snapshot problems in our test set. Shown are the
minimum, average and the maximum number of calls, requests and unassigned requests,
each for the immediate assignment system (IA) and the delayed assignment system
(DA). In each of the IA snapshot problems there is only one unassigned request, due to
the fact that reoptimization is invoked after each new destination call.

most situations. It solves all immediate assignment (IA) snapshots in significantly less
than a second; the same holds for delayed assignment (DA) snapshots from interfloor and
down peak traffic. Reuse of old schedules reduces the maximum running times by roughly
20–50%, which is significant. Combined with early stopping, the maximal running times
of the critical traffic situations up peak and real up peak are reduced to 8% and 44% of
the default variant’s running time. These are then the only traffic situations which require
(significantly) more than one second to solve to provable optimality with at most 1% gap.

Our second experiment assesses the quality of the lower bound methods. In contrast to
the first experiment, we ignore the capacity and RTT penalty costs here, since they are
only accounted for by the greedy lower bound. Table 3.3 shows the results for using the
three bounding methods as primary lower bounds on the immediate assignment snapshots.
For the state-space relaxation bound we use time discretization δ = 4 s and we limit the
number of drop floors to k = 3. We test these parameters once with time reduction (see
page 78) turned off and once turned on. All methods perform very well which is not too
surprising, since the search trees are not large as there is only one request to incorprate
in the existing schedules. However, the greedy lower bound performs best, followed by
the Tanaka bound. Using or not using the time reduction in the state-space lower bound
has not a big impact on the quality of the bounds, which can be seen from the number of
nodes, but effects the running time strongly.

The results for the delayed assignment (DA) snapshots are shown in Table 3.4. It turns
out that in almost all of the DA snapshots there are no fixed requests, rendering the
Tanaka bound useless, so we omit it here. We tested the state-space relaxation bound with
the same settings as for the IA snapshots, setting a time limit of one hour for the pricing

83

Chapter 3. Exact elevator group control algorithms

scenario nodes time [s]
avg max avg max

immediate assignment, default settings
IA, Interfloor 59 76 0.00 0.01
IA, Down Peak 86 135 0.00 0.01
IA, Real Down Peak 88 167 0.00 0.01
IA, Lunch Peak 87 187 0.01 0.01
IA, Up Peak 11 14 0.00 0.00
IA, Real Up Peak 25 38 0.00 0.01

delayed assignment, default settings
DA, Interfloor 7,703 17,820 0.18 0.44
DA, Down Peak 9,141 21,234 0.19 0.46
DA, Real Down Peak 14,030 73,903 0.29 1.56
DA, Lunch Peak 45,052 152,366 1.09 3.97
DA, Up Peak 2,002,852 9,915,185 96.08 527.84
DA, Real Up Peak 15,736,032 45,818,844 765.53 2,421.16

delayed assignment, reuse of old schedules
DA, Interfloor 4,655 11,431 0.11 0.27
DA, Down Peak 5,152 16,316 0.11 0.35
DA, Real Down Peak 5,927 35,429 0.13 0.76
DA, Lunch Peak 25,639 64,625 0.61 1.62
DA, Up Peak 1,137,871 4,864,135 52.98 257.73
DA, Real Up Peak 13,266,581 37,115,554 648.52 1,909.64

delayed assignment, reuse of old schedules, early stopping
DA, Interfloor 2,952 6,098 0.07 0.16
DA, Down Peak 3,132 12,943 0.07 0.29
DA, Real Down Peak 3,403 20,845 0.08 0.44
DA, Lunch Peak 11,408 29,686 0.29 0.77
DA, Up Peak 258,925 1,011,181 11.47 45.75
DA, Real Up Peak 4,430,791 20,385,333 218.23 1,076.69

Table 3.2.: Performance of our exact reoptimization algorithm ExactReplan on the snapshot
problem test set. Shown are the total number of nodes in all search trees, i. e., both
for the initial solution and the pricing phase. With the default settings, the running
times for the immediate assignment system are already more than sufficient. Reusing
schedules from the last reoptimization run and checking the LP gap via the Lasdon
bound (see Theorem 3.2.1) to stop the pricing process early significantly improves the
running time.

84

3.3. Computational results

scenario nodes time [s]
avg max avg max

greedy lower bound
IA, Interfloor 59 76 0.00 0.01
IA, Down Peak 86 135 0.00 0.01
IA, Real Down Peak 88 167 0.00 0.01
IA, Lunch Peak 87 187 0.00 0.01
IA, Up Peak 11 14 0.00 0.01
IA, Real Up Peak 25 38 0.00 0.01

Tanaka lower bound
IA, Interfloor 71 101 0.00 0.01
IA, Down Peak 119 187 0.01 0.01
IA, Real Down Peak 118 227 0.00 0.01
IA, Lunch Peak 109 261 0.01 0.01
IA, Up Peak 11 14 0.00 0.00
IA, Real Up Peak 25 37 0.00 0.01

state-space relaxation lower bound, with time reduction
IA, Interfloor 80 189 0.01 0.02
IA, Down Peak 114 185 0.01 0.01
IA, Real Down Peak 124 245 0.01 0.01
IA, Lunch Peak 92 227 0.00 0.01
IA, Up Peak 11 14 0.00 0.01
IA, Real Up Peak 23 30 0.00 0.01

state-space relaxation lower bound, without time reduction
IA, Interfloor 79 187 0.02 0.04
IA, Down Peak 113 181 0.01 0.02
IA, Real Down Peak 121 242 0.01 0.02
IA, Lunch Peak 87 199 0.02 0.07
IA, Up Peak 11 14 0.00 0.01
IA, Real Up Peak 23 30 0.00 0.01

Table 3.3.: Performance of the ExactReplan algorithm employing different lower bound
methods for solving the immediate assignment system snapshot problems. The state-
space relaxation lower bound was computed with time discretization δ = 4 s and the
number of drop floors limited to k = 3.

85

Chapter 3. Exact elevator group control algorithms

time of ExactReplan. In addition to nodes and running time data, Table 3.4 provides
information on how often the state-space relaxation bound exceeded the greedy bound (it
was “better”) and how often this led to pruning the node (“prunes”). We can see that the
state-space relaxation bound is roughly in 40% of its invocations better than the greedy
bound for all traffic types except up peak. It can prune the node in 7% to 18% of its
invocation for these traffic types. Unfortunately, it is not helpful for the critical up peak
traffic types, where it is better much less frequently and pruning is even rarer. On second
thought this is not too surprising, as the information used by the greedy bound already
captures the up peak behavior rather accurately. Note that the lower number of nodes of
the state-space relaxation bound for the up peak traffic types is caused by stopping due
to a timeout frequently. The quality of the state-space relaxation bound does not change
much if time reduction is used, whereas the running time decreases drastically. Still, the
running times of the state-space relaxation bound are much inferior to that of the greedy
bound. We remark that the state-space relaxation idea might still be useful to improve
the algorithm in more sophisticated ways than just to compute a lower bound at each
node. For instance, one might extend it to a decremental state-space relaxation pricing
algorithm as suggested by Righini and Salani [RS08].

Our results indicate that ExactReplan using the greedy lower bound only, together with
reusing old schedules and early stopping, gives the best running time results. We will
therefore use this setting in our simulation experiments.

3.3.2. Simulation results

In our simulations we consider two example buildings / elevator systems whose data is
given in Table 3.5. Building A has 12 floors served by a group of eight elevators. Its
population is 3,300 persons, which is relatively high. In contrast, the 23-floor building B
has only a population of 1,400 persons. The elevator group in building B consists of
six elevators with a significantly higher maximum speed than that of the elevators in
building A. This high maximum speed is necessary to provide a reasonable service in
such a tall building. We are interested in how much the handling capacity of both
elevator systems can be improved by applying the advanced destination control algorithms
developed in the preceding sections.
We investigate this by studying the service quality achieved by our algorithms on up

peak and real up peak traffic. For each building, traffic type and population percentage
from 6% to 20% we generated ten realizations of five minutes of traffic. In the following
simulation experiments, the elevators immediately returned to the main entrance floor
once they served their schedule. This strategy is very important to obtain reasonable up
peak traffic performance.
In a first extensive set of simulations, we considered the effect of the various cost

structure variants on the service quality and thus on the handling capacity. We simulated
the BestInsert algorithm on each of the traffic realizations for the following cost structure
settings.

service Only service costs, i. e., waiting and travel costs, are incurred.

86

3.3. Computational results

scenario better prunes nodes time [s]
avg max avg max

greedy lower bound
DA, Interfloor 5,881 12,536 0.12 0.28
DA, Down Peak 5,721 13,572 0.11 0.25
DA, Real Down Peak 9,632 52,364 0.18 0.98
DA, Lunch Peak 20,812 78,117 0.45 1.78
DA, Up Peak 786,979 4,605,010 35.17 223.83
DA, Real Up Peak 3,189,122 9,083,347 138.68 384.00

state-space relaxation lower bound, with time reduction
DA, Interfloor 44.25% 7.59% 4,029 8,259 2.28 9.51
DA, Down Peak 39.32% 7.62% 4,243 8,464 0.71 1.81
DA, Real Down Peak 47.70% 12.45% 5,847 27,308 1.13 6.95
DA, Lunch Peak 44.17% 10.04% 16,361 49,574 17.12 89.66
DA, Up Peak 2.56% 0.02% 163,288 427,530 1,350.34 3,601.003

DA, Real Up Peak 5.54% 0.55% 324,254 758,678 2,789.19 3,600.686

state-space relaxation lower bound, without time reduction
DA, Interfloor 47.16% 7.11% 3,709 6,024 76.10 389.25
DA, Down Peak 42.28% 9.33% 4,275 8,701 27.27 122.57
DA, Real Down Peak 57.65% 18.64% 5,340 19,521 39.52 257.99
DA, Lunch Peak 45.62% 9.61% 11,878 22,192 714.20 3,608.671

DA, Up Peak 7.80% 0.05% 25,755 43,611 2,799.16 3,851.457

DA, Real Up Peak 12.40% 0.88% 20,102 53,103 3,626.29 3,723.8710

Table 3.4.: Performance of the ExactReplan algorithm employing different lower bound
methods for solving the delayed assignment system snapshot problems. “better” counts
how often the state-space relaxation lower bound was better than the greedy one, “prunes”
counts how often it led to pruning the node when the greedy lower bound did not
prune the node. The state-space relaxation lower bound was computed with time
discretization δ = 4 s and the number of drop floors limited to k = 3. The small number
at the top of the maximum running time indicates the number of terminations due to a
timeout.

building A building B

population 3300 1400
floors 12 23
elevators 8 6
cabin capacity 19 13
acceleration [m/s2] 1.0 0.9
maximum speed [m/s] 2.0 5.0
deceleration [m/s2] 1.0 0.9

Table 3.5.: Details of the elevator systems in the buildings considered.

87

Chapter 3. Exact elevator group control algorithms

service + cap In addition to service cost also capacity penalty cost are incurred.

service + cap + RTT Service costs, capacity costs, and RTT penalty cost are in
effect.

service + cap + mmf The cost are as in the “service + cap” variant. However,
there is a hard limit for each elevator on how many destination floors it accepts
at the main floor. As the RTT penalty, this limit shall reduce the round trip
time and thus increase the service level at the main floor. The limit is only
implemented in BestInsert so far.

For delayed assignment systems, we used a slightly modified version of BestInsert that
actually constructs two alternative dispatches and chooses the better one in each reopti-
mization step. The alternative dispatch to inserting only the new requests in the existing
schedules is constructed by inserting all requests in the order of their release times into
the empty schedules. Thus BestInsert has the chance to reconsider some of its decisions
and thus can use the freedom offered by the delayed assignment.
The service characteristics resulting from these simulation runs are reported in the

Appendix in Tables A.1 to A.8. We briefly summarize the most important observations
here. In general, one can say that

• The delayed assignment (DA) system gives better waiting times than the immediate
assignment (IA) system, if sometimes only by a slight margin.

• The DA system necessitates a higher number of reissues.

• Planning with quadratic service cost reduces the number of reissues in comparison
to planning with linear service cost.

• Compared with planning with linear service cost, planning with quadratic service
cost leads to worse waiting time for low load and better waiting times for high load.

For the specific cost settings, we observe the following.

service The fraction of reissues is almost the same for the IA and the DA system.
This fraction becomes rather high for relatively low loads and thus is the limiting
factor for the handling capacity.

It is clear that the limited capacity of an elevator becomes an issue when the
load increases. Since limited capacity is not considered in any way, the control
algorithm allocates too many passengers to the same elevator, thus forcing many
reissues.

service + cap The number of reissues can be drastically reduced in comparison
to the “service” setting. In addition, the DA system achieves significantly better
waiting times than the IA system for higher loads. Moreover, on building A the
DA system outperforms the IA system significantly.

88

3.3. Computational results

The reduction of reissues shows that penalizing exceeding the elevator capacity
has the desired effect of avoiding such request assignments. Considering cabin
capacity also improves the accordance between planning and the realized future,
avoiding long waiting times due to unnecessary reissues. This explains the positive
effect of the capacity penalty on the waiting times. Moreover, since building A
exhibits much higher traffic intensity (up to 660 passengers for 20% traffic), the
advantages of the DA system become more apparent here.

service + cap + RTT For low loads, the waiting time median α0.5 is zero. The
DA system offers significantly better waiting times than the IA system. However,
the fraction of reissues is quite high for the DA system and limits the handling
capacity. There are more reissues than with the “service + cap” setting.

The reason for the zero median is that there is always an elevator present at the
main floor, which is a side effect of the RTT penalty: If the RTT penalty is not
yet high, it is more advantageous to increase it a little bit for one elevator by
assigning it an additional destination floor than to increase it much to send an
idle elevator there. This means that an elevator is assigned several floors before
any of the other elevators is used, which is desirable.

service + cap + mmf The waiting times are worse than in the “service + cap”
setting for low load, but better for high load. The number of reissues in the DA
system is lower than for both the “service + cap” and the “service + cap + RTT”
settings, thus enabling higher handling capacities.

The increase of the waiting times for low load is due to avoiding many destination
floors served from the main floor, which does not hurt in low load. For high load,
however, this pays off and reduces the round trip times and thus also the waiting
times. In contrast to the RTT penalty, there is no mechanism that encourages
leaving elevators at the main floor.

Using our definition of “reasonable” service quality meaning that the waiting time
median α0.5 is at most 25 seconds, the 0.9-quantile α0.9 is at most 55 seconds, and at
most 10% of the passengers have to reissue their call, we obtain from Tables A.1 to A.8
the handling capacities shown in Table 3.6. Since these thresholds are sometimes missed
by a small margin only and the next precentage level gives much worse results, we were
less strict and actually used 58 seconds and less than 11% as the critical thresholds.
From the table we see that incorporating the capacity helps to increase the handling

capacity. In both buildings, the highest handling capacities are achieved with the “service
+ cap + mmf” setting. The second best setting for building A is “service + cap”, whereas
for building B it is “service + cap + RTT”, which performs rather poor in building A.
The differences between the best and the worst setting for each system (IA /DA) and
traffic (Up /Real Up) are between 2% and 5% of the building population, which is quite
significant. It is interesting to observe that the quadratic service costs consistently (except
for “service + cap + mmf”) lead to a higher handling capacity than the linear service
costs. The reason is that quadratic service costs penalize high waiting times stronger,
thus helping to reduce the critical 0.9-quantile α0.9.

89

Chapter 3. Exact elevator group control algorithms

The question is now whether the handling capacity can be further improved by using
our exact algorithm ExactReplan. Since the limit on the number of destination floors
served from the main floor is not yet supported by our implementation, we decided to
investigate the “service + cap” setting instead of the “service + cap + mmf” setting more
deeply. We simulated ExactReplan in the critical range of the handling capacity, admitting
a computation time of at most one second per reoptimization run. The full results are
reported in Tables A.9 and A.10. In summary, we can say that

• For the IA system, the values obtained by ExactReplan are almost the same as
those obtained by BestInsert, indicating that BestInsert finds (almost) the same

(a) Building A.

IA system DA system
cost setting linear quadratic linear quadratic

service Up 10% 12% 10% 12%
Real Up 10% 11% 9% 11%

service Up 13% 14% 13% 14%
+ cap Real Up 13% 13% 13% 13%

service Up 11% 12% 11% 11%
+ cap + RTT Real Up 10% 10% 13% 13%

service Up 14% 14% 15% 15%
+ cap + mmf Real Up 13% 13% 14% 13%

(b) Building B.

IA system DA system
cost setting linear quadratic linear quadratic

service Up 13% 15% 14% 15%
Real Up 13% 14% 13% 15%

service Up 16% 16% 16% 16%
+ cap Real Up 15% 15% 15% 15%

service Up 14% 15% 17% 17%
+ cap + RTT Real Up 13% 14% 15% 15%

service Up 16% 16% 17% 17%
+ cap + mmf Real Up 15% 15% 16% 15%

Table 3.6.: Handling capacities achieved by the BestInsert algorithm for various cost
function variants. Italic values indicate the number of reissues limits the handling
capacity. In all other cases, the handling capacity is limited by the 0.9-quantile α0.9 of
the waiting time.

90

3.3. Computational results

dispatches. Since ExactReplan manages to find the optimal dispatches within one
second, BestInsert’s dispatches are almost optimal, too.

• For the DA system, where there are much more decisions to take during each
reoptimization run, ExactReplan is able to significantly improve over BestInsert. It
even attains a higher handling capacity in four out of eight cases – mainly for
quadratic service cost, which reduces α0.9 as described above. However, many of
the high load snapshot problems cannot be solved to optimality within one second.

Table 3.7 contrasts the handling capacities of ExactReplan with that of BestInsert.
Moreover, it shows the handling capacities achieved by the CGC algorithm controlling a
conventional system and the best handling capacity of any of the tested algorithms. We
see that ExactReplan always attains the best handling capacity, except for the up peak
traffic in building A controlled by a DA system, where it is outperformed by BestInsert
with setting “service + cap + mmf”. This suggests that further improvement is possible
by incorporating the destination floor limit in the ExactReplan algorithm. Comparing
with CGC, the handling capacity in building A can be more than doubled by using a
destination call system, whereas it can be improved by at least 66% in building B. Since
CGC is not specifically designed towards up peak traffic, we have to assume that other
conventional control algorithms might perform better. Still, improving the handling
capacity by something like 50% by replacing a conventional system with a destination
control system can be expected from our results. The improvement possible by installing
a DA instead of a IA system is not as significant.
There are some questions for further research. For instance, it is unclear why there

are more reissues for the DA system and whether they can be avoided. Moreover, so
far our simulation neglects the time needed for reoptimization, i. e., the new dispatch
becomes effective immediately after a new call. In practice, reoptimization takes some
time during which several calls may arrive, thus opening up more optimization potential
for the IA system by having more than one request to assign. It remains to see whether
BestInsert still delivers almost optimal dispatches in this situation. However, the running
times of ExactReplan on DA snapshots with at most five requests are still below one
second, which indicates that it will perform well in the IA system when there is more
than one unassigned request per snapshot problem, too. We also need to see whether
our techniques extend to more complex traffic patterns, e. g., in buildings with additional
entrance floors such as parking floors.

Finally, there is the issue of the limited elevator capacity. We saw that by assuming a
one-to-one correspondence between passengers and destination calls the handling capacity
can be increased significantly. Therefore, one should definitely employ this in practice.
An important question for practical use is how robust the scheduling decisions are to
violations of this one-to-one assumption, e. g., due to misuse. Both the RTT penalty and
the limit on the number of destination floors do to some extent encourage not to fill up a
cabin completely, but to assign passengers to other elevators earlier. This effect might
increase the robustness of the schedules w. r. t. to misuse.

91

Chapter 3. Exact elevator group control algorithms

(a) Building A.

CGC IA system DA system
linear quadratic linear quadratic
BI ER BI ER best BI ER BI ER best

Up 6% 13% 13% 14% 14% 14% 13% 14% 14% 14% 15%
Real Up < 6 % 13% 13% 13% 13% 13% 13% 13% 13% 14% 14%

(b) Building B.

CGC IA system DA system
linear quadratic linear quadratic
BI ER BI ER best BI ER BI ER best

Up 9% 16% 16% 16% 16% 16% 16% 16% 16% 17% 17%
Real Up 9% 15% 15% 15% 15% 15% 15% 15% 15% 17% 17%

Table 3.7.: Resulting handling capacities for the various considered elevator systems and
elevator control algorithms. As before, italics indicate that the number of reissues limits
the handling capacity, whereas in all other cases the handling capacity is limited by the
0.9-quantile α0.9 of the waiting time. The column “best” gives the best result of any
algorithm studied.

3.4. Significance

Our research showed that the BestInsert algorithm is performing very well when controlling
an immediate assignment system as it is used today. From a practical point of view it
is nice that this relatively simple algorithm can effectively exploit the capacity offered
by an elevator group, since it is much easier to implement and maintain than an exact
reoptimization algorithm. Since delayed assignment systems do not offer a significant
advantage for the load levels seen in practice it is unlikely that they will be introduced,
given that they would also require some familiarization from the passengers.

It is very valuable to know approximately how far the handling capacity of an existing
conventional system can be improved by replacing it with a destination call system.
Replacing the control system is a much cheaper alternative than to upgrade the elevator
drives to faster ones or install additional elevators and it is sometimes the only option.
A variant of the BestInsert algorithm has been implemented by our industry partner

Kollmorgen Steuerungstechnik and is in use today. Our results will help to improve this
algorithm further.

92

Part II.

A stochastic dominance approach to
the analysis of online algorithms

Chapter 4.

Stochastic dominance analysis of online
algorithms

This chapter introduces a novel approach for the probabilistic analysis of algorithms
for combinatorial online optimization problems. The main motivation for designing
this approach is that the results obtained using the standard analysis tool, competitive
analysis [ST85], often do not reflect performance differences observed in practice.

Throughout this chapter, we will use the following three online optimization problems
as examples. The first two problems are classical problems, whereas the third one, online
bin coloring, arose in application projects at ZIB. A connection of the online bin coloring
problem to the control of elevators is discussed in Section 5.1.

Paging Paging models an optimization problem occuring in a computer with a
two-level memory system. The slow memory stores a fixed set M of pages. To
speed up access to the pages, up to k pages can be put in the fast memory, also
called cache. The task is to serve a sequence σ ∈ Mn of n page requests. In
order to serve a page request p ∈M , the page has to be in the cache, otherwise a
page fault occurs. The requested page must then be loaded into the cache, and,
if the cache contains k pages, at least one page must be evicted from the cache.
An online paging algorithm needs to decide which page(s) will be evicted from
the cache on a page fault without knowing the remaining request sequence or its
length. The goal is to minimize the number of page faults.

Bin Packing The input consists of a sequence of items, described by their item
sizes l1, . . . , ln ∈ {1, . . . , B}, that need to be packed in bins of capacity B ∈ N,
i. e., the set of items put in a bin has total size at most B. The goal is to minimize
the total number of bins used. In the online version, the items arrive one-by-one
and each item has to be put into a partially filled bin that still has sufficient
capacity or a new bin has to be opened. Once an item has been packed in one
bin, it is not possible to repack it into another bin. An online algorithm does not
know the number of items to come nor their sizes.

In the bounded-space variant, at most k bins may be open at the same time. If
none of the k open bins provides sufficient capacity for the new item, one of these
bins needs to be closed and replaced by an empty bin. Closed bins are no longer
available for packing items. Note that it is also allowed to close a bin if there is
some bin with enough remaining capacity.

95

Chapter 4. Stochastic dominance analysis of online algorithms

Bin Coloring [KdPSR01] The input consists of a sequence of unit-sized items, each
of which has one of C colors. These items need to be packed sequentially into
one of m initially empty bins of capacity B. As soon as a bin is full, i. e., has
exactly B items, it is replaced by an empty one. As for bin packing, repacking is
not allowed. An online algorithm must decide upon the bin for each item without
knowing future item colors. The goal is to minimize the maximum number of
different colors in one bin, which is called colorfulness.

Note that all these problems are minimization problems. Without further notice, we will
always assume that the goal is to minimize some objective.
In the next section, we give an introduction to competitive analysis and we sketch

the main idea of our new stochastic-dominance-based approach to the analysis of online
algorithms. We then review related work and other alternative ways for analyzing online
algorithms. Section 4.3 introduces our approach in detail, highlighting its main properties.
We perform an analysis of paging algorithms in Section 4.4, establishing several interesting
stochastic dominance results. As a byproduct, we reprove a number of known results in a
very straightforward way, thus simplifying, strengthening and unifying former work.

4.1. Introduction

In standard competitive analysis [ST85, BEY98, FW98], an online algorithm ALG is
compared with a hypothetical optimal offline algorithm OPT. OPT has access to the
entire request sequence, i. e., it knows the future and is thus not an online algorithm, and
is supposed to serve this sequence optimally, i. e., at minimum cost. Competitive analysis
measures how much the performance of ALG degrades w. r. t. OPT in the worst case as
a consequence of the lack of information about the future. For a request sequence σ,
we denote the corresponding optimal offline cost and the cost of ALG by OPT(σ) and
ALG(σ), respectively. The algorithm ALG is said to be c-competitive for c ≥ 1, if

ALG(σ) ≤ c · OPT(σ) + b (4.1)

for all request sequences σ and some b ≥ 0. The competitive ratio of ALG is the infimum
value c such that ALG is c-competitive. ALG is called competitive if ALG is c-competitive
for some constant c ≥ 1 that does not depend on the length of the sequence. Frequently,
only the case b = 0 is considered, which makes the results less asymptotic.

We will briefly discuss the results of competitive analysis for the three online optimization
problems introduced above.

Paging Well-known paging algorithms are flush-when-full (FWF), which evicts every
page on a page fault, first-in-first-out (FIFO), which evicts the page that has been
in the cache the longest, and least-recently-used (LRU), which evicts the page
whose most recent request was earliest.

Sleator and Tarjan [ST85] showed that the competitive ratio of every online
algorithm is at least the cache size k. They also proved that both LRU and FIFO

96

4.1. Introduction

attain this ratio and are thus optimal, whereas some other algorithms are not
k-competitive. Later it was shown that any online algorithm from the class of
marking algorithms is k-competitive [Tor98], which includes FWF and LRU.

These results did not match empirical observations: LRU was observed to be
much better than FWF and to outperform FIFO (see e. g., [You94]). Moreover,
the “empirical” competitive ratio of LRU was much smaller than k.

Bin Packing Probably the simplest online algorithm for bin packing is NextFit,
which looks only at the most recently opened bin. If the next item fits, it is
put into this bin; if not, the item is put in a new bin and the other bin is never
considered again. It is shown by Johnson [Joh74] that the competitive ratio of
NextFit is 2. The algorithm FirstFit scans through the bins in their opening order,
putting the item in the first bin with sufficient capacity. If no bin is found, a new
bin is opened to accomodate the item. BestFit works similar, but puts the item
in the open bin with least remaining capacity that suffices for the item. Both
FirstFit and BestFit have competitive ratio 17/10 [JDU+74], but BestFit gives
better results in practice.

Well-known algorithms [GW95] for the bounded-space bin packing problem are
the algorithms Next-k-Fit (or NFk for short) and k-bounded BestFit (BBFk for
short). NFk puts the new item in the first (in the order of opening) of the k bins
which has sufficient capacity. If there is no such bin, it closes the first bin and
opens a new bin containing the item. BBFk, in contrast, puts the item in the
fullest bin in which it will fit; also the fullest bin is closed if there is no bin with
sufficient capacity. As shown by Csirik and Imreh [CI89] and Mao [Mao93], NFk
has a competitive ratio of 17/10 + 3/(10k− 10). BBFk has, independently of k, a
competitive ratio of 17/10 [CJ01], so BBFk is better than NFk, if only by a slight
margin. However, Lee and Lee [LL85] established a lower bound of roughly 1.691
for the competitive ratio of any bounded-space algorithm. Thus all reasonable
algorithms have almost the same competitive ratio.

Bin Coloring A natural algorithm for this problem is the algorithm GreedyFit:
it packs an item with an already present color in the bin with that color and
otherwise chooses a bin which currently has the least number of different colors.
Another simple algorithm, OneBin, packs all items in the same bin. Krumke et
al. [KdPSR01] showed that the competitive ratio of GreedyFit is at least 2m, the
competitive ratio of OneBin is at most 2m−1. The authors report that this result
contrasts the clear dominance of GreedyFit over OneBin observed in simulations.

The common failure of competitive analysis to discriminate between algorithms that
perform (even significantly) differently in practice is due to its worst-case nature. An
online algorithm has a bad competitive ratio even if there is just a single sequence on
which the online algorithm incurs much higher cost than OPT. In order to overcome this
drawback, a number of variations of and alternatives to competitive analysis have been
proposed, see Section 4.2.1 for a brief overview or e. g., [Alb03, DLO05, BF07] for some

97

Chapter 4. Stochastic dominance analysis of online algorithms

σ1 σ2 σ3 σ4 σ5

A 3 2 3 4 2
B 4 3 4 3 2

(a) Objective values obtained by A
and B on some input sequences.

≤ 1 ≤ 2 ≤ 3 ≤ 4

A 0 2 4 5
B 0 1 3 5
(b) Empirical distribution of
objective values obtained by A

and B.

Figure 4.1.: Illustration of the idea of comparing two online algorithms A and B using
stochastic dominance. By looking at the distribution of the objective values it becomes
apparent that algorithm A is in general better than algorithm B. The empirical distribu-
tion plays in this example the role that the distribution function plays in our probabilistic
analysis.

recent surveys. Much of this work sticks to worst case analysis or considers randomization
on the side of the online algorithm in order to improve the competitive ratio.

Another alternative is to drop the worst-case view and assume that the input sequences
are generated randomly and to perform a probabilistic analysis. So far all probabilistic
analyses of online algorithms are more or less average case analyses, i. e., they focus on the
expected performance of an algorithm. In our novel approach to probabilistic analysis, we
apply stochastic orders, in particular the stochastic dominance order, to derive results that
compare the performance of algorithms. A random variable X is said to be stochastically
dominated by a random variable Y , written X ≤st Y , if

Prob [X ≤ x] ≥ Prob [Y ≤ x] for all x ∈ R.

Intuitively, this means that X has “more probability mass” on small values than Y , so it
is in a probabilistic sense smaller than Y . This concept is illustrated in Figure 4.1.

Suppose we can describe the objective values of two online algorithms A and B after
n steps by random variables χA

n and χB
n , respectively. We can then say that A is

stochastically better than B w. r. t. to the considered input distribution if χA
n ≤st χ

B
n for

all n ∈ N (assuming a minimization problem). A main feature of this approach is that it
judges an algorithm not by a single worst-case or average value, but by its objective value
distribution induced by the random sequences. We will see that this approach sometimes
admits quite a strong deterministic interpretation as well.

Our distribution-based analysis allows to prove stronger and more realistic results for
the paging and the bin coloring problems than the competitive analysis results sketched
above. For the paging problem, we show in Section 4.4 that the algorithm LRU is actually
optimal on a large class of relevant request sequences. In Chapter 5 we establish that
the maximum colorfulness obtained by GreedyFit is stochastically dominated by that of
OneBin, indicating that GreedyFit is better than OneBin.

98

4.2. Related work

4.2. Related work

In this section we give an overview on related work. There are basically two kinds of
research we concentrate on. First we review alternative measures for evaluating and
designing online algorithms. Since it turns out that for the purposes of our analysis it
is useful to model the working of an online algorithm using a Markov chain, we will
also summarize work on the uses of Markov chains and / or stochastic dominance in the
analysis of algorithms.

4.2.1. Measures for online algorithms

We already mentioned that competitive analysis results often do not reflect (significant)
performance differences between online algorithms that are observed empirically. This
observation has stimulated a lot of research on alternative measures. In this overview, we
focus on approaches that use randomness to provide more meaningful results.
Competitive analysis of online algorithms can be viewed as a two player game. The

online player, i. e., the online algorithm, tries to achieve a small competitive ratio, whereas
the other player, the adversary, tries to generate the request sequence such that he can
serve it with small cost, but incurring comparatively high cost for the online player, which
gives a large competitive ratio.

Basically there are three approaches to remedy the drawbacks of competitive analysis
in order to get more realistic and useful results.

1. Keep the idea of comparing to the offline optimum, but reduce the power of the
adversary online algorithms are compared to.

2. Compare online algorithms to a weaker optimum, and use this to compare the
algorithms. An example for this approach is the paper by Karlin et al. [KPR00],
where an optimal policy of a Markov decision process is used as the reference
optimum.

3. Compare online algorithms directly instead of indirectly via the offline optimum.

The first approach is the most prominent one. An obvious way to reduce the power of
the adversary is to restrict the set of request sequences it may generate. This problem-
specific technique is quite successful. Examples for paging are the restriction to sequences
that exhibit locality of reference [AFG05, Tor98] or that are derived from an access
graph [BIRS95]. Another possibility is to allow the online algorithm to use more resources
(e. g., more bins) than the adversary [KP00]; this is known as resource augmentation. Many
more deterministic approaches have been proposed, see e. g., the surveys by Albers [Alb03]
and Dorrigiv and López-Ortiz [DLO05] or the overview provided by Boyar et al. [BF07].
Randomness can be used in two ways in the analysis of online algorithms. First, the

request sequence may be assumed to be drawn from some probability distribution. This
is equivalent to replacing the adversary by some random process. Second, the online
algorithms themselves may be randomized, which makes it harder for the adversary to
come up with bad sequences.

99

Chapter 4. Stochastic dominance analysis of online algorithms

Randomized online algorithms

Using randomization to improve online algorithms has been suggested by Borodin et
al. [BLS92]. Usually, analyses are done with respect to an oblivious adversary, i. e.,
this adversary knows the probability distribution employed by the randomized online
algorithm, but not the random outcomes, so the adversary cannot predict what the online
algorithm is going to do. The competitive ratio is then determined by replacing ALG by
its expectation E [ALG] in Equation (4.1).

For the paging problem, Fiat et al. [FKL+91] showed a lower bound of Hk (Hk is the
kth harmonic number) on the competitive ratio of every randomized paging algorithm.
Moreover, they provided a randomized paging algorithm that is 2Hk-competitive against
the oblivious adversary. McGeoch and Sleator [MS91] presented an optimal randomized
algorithm with competitive ratio Hk. Since Hk ∈ O(log k), both results show that
randomized paging algorithms can achieve a significantly better competitive ratio than
deterministic ones. Similar improvements have been achieved for many online optimization
problems.
Interestingly, randomized algorithms for bin packing can only be slightly better than

deterministic ones. Chandra [Cha92] proves a lower bound of 1.536 for the competitive
ratio of any randomized online algorithm, whereas the best-known deterministic algorithms
achieves 1.589.
In the bin coloring problem, any randomized algorithm has a competitive ratio of

Θ(m) [KdPSR01], so random algorithms cannot achieve a qualitative improvement over
GreedyFit and OneBin.

Average case analysis

Probably the first alternative for worst case analysis that comes into one’s mind is average
case analysis. In average case analysis, the request sequence is chosen according to some
probability distribution. In most average case competitive analyses, the requests are
chosen independently and identically distributed. In this context, the optimal value for a
request sequence of length n, OPTn, becomes a random variable, just as ALGn, the value
obtained by an (online) algorithm. The expected performance ratio is defined as

RALG(n) = E
[

ALGn
OPTn

]
, (4.2)

i. e., as the expectation of the ratio between ALGn an OPTn. Note that this is in contrast
to the expected competitive ratio defined by (4.4), which uses the ratio of the expectations.
Scharbrodt et al. [SSS06] and Souza and Steger [SS06] elaborate on the difference between
the two measures. Although the expected competitive ratio as the ratio of the expectations
is normally easier to compute, they prefer the expected performance ratio, for several
reasons. First, they say that expected competitive ratio favours algorithms that perform
well on sequences for which the optimal solution value is large, due to the fact that
sequences with small solution value contribute little to the expected value of an algorithm.
On the other hand, the expected performance ratio favours algorithms that perform well

100

4.2. Related work

on many sequences. Furthermore, by Markov’s inequality, one can easily derive bounds
on the probability that for a randomly generated sequence the ratio ALGn/OPTn is more
than a certain factor away from the expected performance ratio.
There is a vast literature on average case analysis of bin packing algorithms (see e. g.,

[CGJ97, CCG+02] for surveys). Many results for bin packing focus on the asymptotic
expected competitive ratio of ALG, i. e.,

R∞ALG(F) := lim
n→∞

RALG(n),

assuming that the input sequence is generated by choosing each item size i. i. d. from
distribution F . In most cases, F is a uniform distribution, e. g., U [0, 1], the uniform
distribution on [0, 1]. The first precise average case asymptotic analysis is by Coffman et
al. [CSHY80] for the NextFit algorithm. They showed that the asymptotic expected
competitive ratio for NextFit is R∞NF(U [0, 1]) = 4/3. Lee and Lee [LL85] proved that
their Harmonic algorithm achieves R∞H (U [0, 1]) < 1.306. Bentley et al. [BJL+84] were
able to show, somewhat suprisingly, R∞FF(U [0, 1]) = 1, i. e., that FirstFit is asymptotically
optimal. The result was surprising since the empirical value is significantly larger than 1
in simulations, even for large numbers of items. This motivated the study of the expected
waste after n items, i. e., the expected difference between the number of bins used by ALG
and the total size of n items. Analyzing the waste, Shor [Sho86] was able to separate
the performance of FirstFit and BestFit: While the expected waste of FirstFit grows as
Ω(n2/3), BestFit has expected waste Θ(

√
n log3/4 n). Both FirstFit and BestFit are thus

asymptotically optimal, but the performance of BestFit converges faster.

Diffuse adversaries

As competitive analysis is often criticized for being too pessimistic due to its worst
case character, average case analysis is often considered to be too optimistic. Moreover,
in many cases the probability distributions analyzed are quite special and / or realistic
probabilistic models cannot be analyzed or are not available.

In order to address these issues and to improve upon competitive analysis, Koutsoupias
and Papadimitriou [KP94] proposed the diffuse adversary model. In this model, the offline
adversary is replaced by the diffuse adversary, which chooses a probability distribution D
out of a family of distributions ∆. The class ∆ of distributions may be used to express
some structural property of the inputs without sticking to a certain distribution. An
algorithm ALG is called c-competitive against class ∆ of request sequence distributions, if
there is a b ≥ 0 such that

ED [ALG(σ)] ≤ c · ED [OPT(σ)] + b

for all D ∈ ∆, where the request sequence σ is drawn according to D. Note that this
definition generalizes both competitive analysis and average case analysis for the ratio of
expectations.

To apply this approach to the paging problem, Koutsoupias and Papadimitriou propose
a class of distributions ∆ε. This class contains all distributions D such that the conditional

101

Chapter 4. Stochastic dominance analysis of online algorithms

probability D[p|σ] of page p being requested after request sequence σ satisfies D[p|σ] ≤ ε
for all p and σ. Clearly, a small ε limits the power of the adversary since he has less
control over the next request (note that ∆1 is equivalent to all request distributions).
Koutsoupias and Papadimitriou show that LRU attains the optimal competitive ratio
against ∆ε for any ε ∈ [0, 1]. However, they cannot determine this ratio. In subsequent
work, Young [You00] gives lower and upper bounds for the optimal competitive ratio in
terms of a function ψ(ε, k) that match up to a factor of two. The function ψ(ε, k) exhibits
the following threshold behavior around ε = 1/k:

ψ(ε, k) is

≤ 1 + ln 1

δ ε = (1− δ)/k,
≈ ln k ε = 1/k,
≤ k δ

1+δ ε = (1 + δ)/k.

Thus the optimal competitive ratio (that of LRU) is constant for small ε and almost
k for large ε. This bound holds for randomized algorithms, too, except for the case
ε ≥ 1/k where both the lower and upper bounds are O (log k). Moreover, Young shows
that FIFO and FWF have competitive ratio k for ε ≥ 1/k. Hence, these results generalize
the standard competitive analysis results and those for randomized algorithms and are
able to discriminate between FWF or FIFO and LRU.
Becchetti [Bec04] proposes a different diffuse adversary for the paging problem. The

class ∆ comprises distributions D whose conditional distributions D[p|σ] favor pages p
that are more recent w. r. t. σ in order to model the locality of reference often encountered
in practice. He then shows that LRU achieves a constant competitive ratio against ∆,
whereas that of FWF is Ω(k) if locality of reference is high.

Smoothed competitive analysis

An alternative compromise between worst case and average case analysis is to consider
smoothed inputs. The notion of smoothed complexity was introduced by Spielman and
Teng [ST04] in an attempt to explain the success of algorithms that are known to work
well in practice while having a poor worst case performance. It can be seen as an hybrid
between worst case and average case complexity. The basic idea is to randomly perturb
the initial input sequences and to analyze the expected performance of the algorithm on
the perturbed sequences.
Becchetti et al. [BLMS+06] extended the idea of smoothed complexity to smoothed

competitive ratio. Following the idea of Spielman and Teng, they smoothen the input
sequence according to some probability distribution f . Given an input sequence Ī, let
N(Ī) denote the set of sequences that can be obtained by smoothing the input sequence
I according to f . The smoothed competitive ratio is defined as

sup
Ī

E
I

f←N(Ī)

[
ALG(I)
OPT(I)

]
,

where the supremum is taken over all input sequences Ī and the expectation is taken
according to f over all sequences I in N(Ī).

102

4.2. Related work

Becchetti et al. [BLMS+06] considered the so-called multilevel feedback (MLF) al-
gorithm for preemptive scheduling on a single machine so as to minimize the total
flow-time. When all processing times are between 1 and 2K , any nonclairvoyant deter-
ministic online algorithm has a competitive ratio of Ω(2K) and Ω(n1/3). Becchetti et
al. show that when the processing times are smoothed according to a suitable natural
randomization model with standard deviation σ, the smoothed competitive ratio of MLF
is O

(
(2k/σ)3 + (2k/σ)22K−k

)
. Whenever f is the uniform distribution over [0, 2k − 1],

this simplifies to O
(
2K−k

)
.

Other measures

As mentioned before, one weakness of competitive analysis is the comparison to the offline
optimum, which is due to the fact that in a deterministic setting there is no reasonable
concept of “optimal online algorithm” that can serve as a yardstick. In contrast, such an
optimal online algorithm can be defined if the input is generated by some random process.
This approach has been applied in the analysis of paging algorithms even before the

advent of competitive analysis. Franaszek and Wagner [FW74] studied the paging problem
with request sequences generated according to the independent reference model. In this
model, each request is generated independently and identically from the same fixed page
distribution. They consider the page fault rate, i. e., the (asymptotic) expected number
of page faults per time unit, instead of the number of page faults as their performance
measure for paging algorithms. It is shown that no paging algorithm from a certain class
of algorithms including LRU and FIFO achieves a page fault rate that is at most a constant
factor larger than the optimal one. However, it turns out that if LRU is allowed to use
(slightly) larger cache than the optimal online algorithm, the ratio of the page fault rates
becomes bounded, which is not true for FIFO.
Karlin et al. [KPR00] generalize this approach by considering a request sequence

generated by a fixed Markov chain, which is a probabilistic version of the access graph
model. Using the theory of Markov decision processes, they are able to characterize the
optimal online algorithm for the given Markov chain, which is a deterministic algorithm
whose decisions depend only on the current request and the state of the cache. They show
that there are Markov chains such that all marking algorithms exhibit a page fault rate
that is Ω(k) times the optimal one. Surprisingly, this includes LRU, which performs well
under deterministic locality of reference models. The authors describe a polynomial-time
algorithm whose page fault rate is not more than a constant times the optimal one. In
contrast to most paging algorithms, this algorithm is not independent of the input, but
depends crucially on the Markov chain generating the request sequence.

All the measures discussed so far use a single number to evaluate the performance of
an algorithm, e. g., the maximum or the average. The only approach we are aware of
that looks at the distribution of the objective values of an algorithm for various inputs
to assess the algorithm is Bijective Analysis [ADLO07, AS09], which can be viewed as a
special case of our stochastic dominance approach.

Very recently, Angelopoulos and Schweitzer [AS09] applied Bijective Analysis to paging
and showed that LRU is the unique optimal algorithm w. r. t. to Bijective Analysis for a

103

Chapter 4. Stochastic dominance analysis of online algorithms

restricted class of sequences exhibiting locality of reference. In Section 4.4 we present an
alternative proof of this result based on stochastic dominance.

4.2.2. Related applications of Markov chains and stochastic dominance

Although Markov chains are a natural tool for the study of online algorithms, they have, to
the best of our knowledge, been applied only to study paging and bin packing algorithms.
For paging, Karlin et al. [KPR00] studied request sequences generated by a Markov
chain. This work uses Markov chains to model the input sequences and not for analyzing
algorithms, but employs the theory of Markov decision processes to derive lower bounds
for all online algorithms.
Coffman et al. [CSHY80] and Karmarkar [Kar82] used Markov chains to analyze the

expected performance of NextFit with continuous item size distributions. They determined
the expected number of bins needed to pack n items of sizes distributed according to U(0, u)
for 1/2 < u ≤ 1. Ramanan [Ram89] applies a similar analysis to a variant of NextFit
called SmartNextFit. Recently, Naaman and Rom [NR08] used a Markov chain approach to
analyze the asymptotic expected performance ratio for several bounded-space bin packing
algorithms. An alternative way of measuring the performance of bin packing algorithms is
to consider the growth of the waste, which is the bin capacity that remains unutilized by
the bin packing algorithm. Coffman et al. [CJSW93] study the stability of Markov chains
in order to discriminate parameters (u,B) for which the asymptotic expected waste of
BestFit on U{u,B}-sequences remains bounded or grows linearly. Kenyon et al. [KRS98]
and Albers and Mitzenmacher [AM00] extended their results. In contrast to our approach
all mentioned results are only asymptotic and expectation-based.

Other uses of Markov chains in the analysis of algorithms are in the field of approximate
sampling [Sin93]. Some of the techniques used there are similar to ours since they are
based on the concept of coupling, which is very useful to compare probability distributions.

Our approach is also related to the theory of Markov decisions processes (MDPs) (see
e. g., [Put05]). A Markov decision process is a stochastic process that can partially be
controlled, i. e., at certain points in time a control algorithm can choose from a set of
actions influencing the future behavior of the process. The goal is to identify an algorithm
that minimizes the expected cost w. r. t. to an associated cost function.

There are many applications of the rich theory of stochastic comparison and stochastic
dominance, see e. g., [SS94, MS02]. However, there are only few papers applying them
to analyze or develop algorithms. The papers by Mitzenmacher [BM01, Mit96] employ
these methods to analyze routing algorithms.

4.3. Stochastic dominance and Markov chain models for
online algorithms

From now on we consider random input sequences drawn according to some probability
distribution and aim to analyze the performance of an online algorithm probabilistically.
This approach dates back at least to the 1970s (see e. g., [CD73] and the references

104

4.3. Stochastic dominance and Markov chain models for online algorithms

therein) and has been applied to various online optimization problems. Our contribution
is to introduce stochastic orders, in particular the stochastic dominance order, to the
performance analysis of online algorithms.

4.3.1. Stochastic dominance and online algorithms

So far all probabilistic analyses of online algorithms are more or less average case analyses,
i. e., they focus on the expected performance. Sometimes results on the expected perfor-
mance are used to obtain “with high probability” or “asymptotically almost surely” results.
However, different algorithms are compared by considering their expected performance,
e. g., their expected competitive ratio. In this thesis we propose to compare algorithms
by looking at their objective value distributions using stochastic orders, in particular the
stochastic dominance order. A random variable X is said to be stochastically dominated
by a random variable Y , written X ≤st Y , if

Prob [X ≥ x] ≤ Prob [Y ≥ x] for all x ∈ R. (4.3)

Suppose we can describe the objective values of two online algorithms A and B after n steps
by random variables χA

n and χB
n , respectively. We can then say that A is stochastically

better than B w. r. t. to the considered input distribution if χA
n ≤st χ

B
n for all n ∈ N

(assuming a minimization problem).

Example 4.3.1 Consider the bounded-space bin packing problem with at most k open
bins, bin capacity B and item sizes drawn uniformly at random from {1, . . . , B}. The
“performance” χA

n of a bin packing algorithm A after processing n items is the random
variable giving the total number of bins used to pack those items. Algorithm A is
considered to be superior to algorithm B if the number of bins used by A is stochastically
dominated by the number of bins required by B. �

Having a stochastic dominance result for two online algorithms has some nice conse-
quences due to the properties of this stochastic order.

Theorem 4.3.2 (see e. g., [MS02]) Let X and Y be two random variables with X ≤st Y
and f : R→ R be some nondecreasing function. Then

• E [X] ≤ E [Y] and

• f(X) ≤st f(Y).

Suppose (Xn)n∈N0 and (Yn)n∈N0 are sequences of random variables that converge in
distribution to X and Y , respectively, and that satisfy Xn ≤st Yn. Then

• X ≤st Y .

Assuming that the random variables X and Y measure the performance of algorithms
A and B, respectively, the first part of Theorem 4.3.2 states that if algorithm A is
stochastically better than B it is also better in expectation. It also implies that A has

105

Chapter 4. Stochastic dominance analysis of online algorithms

a better expected competitive ratio than B, where the expected competitive ratio of an
online algorithm ALG is defined as the smallest c such that

E [ALG] ≤ c · E [OPT] . (4.4)

The second part of the theorem states that A remains superior to B for all other perfor-
mance measures that are nondecreasing functions of the original performance measure.
Finally, the third part says that if A is stochastically better than B for any point in time,
then it is also better in the limit.

Stochastic dominance results admit an interesting interpretation if the input sequences
are uniformly distributed. It is then possible to view the probabilistic result deter-
ministically as a counting result. Stochastic dominance then implies that the better
algorithm achieves a low cost on more sequences than the worse one, i. e., it is more
robust w. r. t. the unknown future, a property that is certainly desirable for an online
algorithm. In fact, stochastic dominance in the special case of the uniform distribution is
equivalent to a recent deterministic way to compare online algorithms, known as Bijective
Analysis [ADLO07, AS09]. Let Sn denote the input sequences of length n and consider
two online algorithms ALG1 and ALG2. ALG1 is said to dominate ALG2 w. r. t. Bijective
Analysis, if there is a bijective mapping φ : Sn → Sn such that ALG1(σ) ≤ ALG2(φ(σ)) for
any σ ∈ Sn. Intuitively, the input sequences are “remapped” such that ALG1 is “pointwise”
better than ALG2. A similar statement is indeed a characterization of the stochastic
dominance order, see Theorem 5.2.12 and Remark 5.2.13.

It is quite natural to model the working of an online algorithm on random input as
a (time homogeneous, discrete time) Markov chain, where the state space is given by
the configurations an online algorithm generates while processing the input sequence.
Formally, we will consider the following Markov chain model for online algorithms for
minimization problems.

Definition 4.3.3 A valued Markov chain (X,χ) is a Markov chain X = (Xn)n∈N0 on
state space S together with a valuation function χ : S → V for some V ⊆ N0. The random
successor state of state x ∈ S is denoted by X(x).

Example 4.3.4 Consider again the bounded-space bin packing problem as above. The
working of many online bin packing algorithms can be modelled as follows as a valued
Markov chain. The state space S is given by

S = {(r1, . . . , rk, n) | 0 ≤ ri ≤ B − 1, n ∈ N0},

where ri denotes the remaining capacity of bin i and n is the total number of bins used
so far. Let A be an online bin packing algorithm that decides in which bin to put the
new item or which bin to close by using the information of the remaining capacities
and the size of the new item only. Such an algorithm is fully described by the function
A : S × {1, . . . , B} → {1, . . . , k} giving for each state s and item size l the bin A(s, l) in
which the new item is put. Note that if the capacity of that bin is not sufficient, it is
closed and replaced by a new empty bin, which then accomodates the new item. The

106

4.3. Stochastic dominance and Markov chain models for online algorithms

successor state of s = (r1, . . . , rk, n) for a new item of size l is then s′ = (r′1, . . . , r
′
k, n
′)

with

r′i =

ri − l i = A(s, l), l ≤ ri,
B − l i = A(s, l), l > ri,

ri otherwise,

n′ =

{
n+ 1 i = A(s, l), l > ri,

n otherwise.

These successor relations together with the uniform item size distribution define the
transitions of a Markov chain XA on state space S with initial state (0, . . . , 0, 0). By
defining χ

(
(r1, . . . , rk, n)

)
= n we get a valued Markov chain (XA, χ) corresponding

to A. �

In our setting there are basically two ways to measure the performance of an online
algorithm. The first, more natural one, was already introduced: We look at the evolution
of the valuation over time, i. e., at χ(Xn) if (X,χ) is a valued Markov chain modelling
the algorithm. But we may also ask: How fast does the valuation grow, i. e., for how
many steps can the algorithm “guarantee” that the valuation is at most v ∈ V ? Of
course, an algorithm is regarded to be good if it keeps a low valuation for a long time.
Formally, we look at the stopping time T vX , a random variable that gives the first time
the Markov chain X reaches a state with valuation at least v. The following result states
that both performance measures are actually equivalent if we compare algorithms with
the stochastic dominance order. The theorem is an extension of a result in [bMBFP06].

Theorem 4.3.5 Let (X,φ) and (Y, ψ) be valued Markov chains on state spaces SX and
SY with common valuation space V ⊆ N0. Assume that the transitions of X and Y are
such that the value of a state is nondecreasing in each step and that φ(X0) = ψ(Y0). Then
the following are equivalent:

1. T vY ≤st T
v
X ∀v ∈ V .

2. φ(Xn) ≤st ψ(Yn) ∀n ∈ N0.

Proof. Let the Markov chain X be defined on the probability space (Ω,A,Prob). The
stopping time T vX is then a random variable T vX : Ω→ N0 that is defined by

T vX(ω) := min
{
n
∣∣φ(Xn(ω)

)
≥ v
}

for each ω ∈ Ω. Since φ(Xn(ω)) ≥ φ(Xn′(ω)) whenever n′ ≤ n, we have the equivalence

T vX(ω) ≤ n ⇐⇒ φ(Xn(ω)) ≥ v,

which implies
Prob [T vX ≤ n] = Prob [φ(Xn) ≥ v] .

107

Chapter 4. Stochastic dominance analysis of online algorithms

Of course, analogous statements hold for Y as well.
We now have the following chain of equivalences.

φ(Xn) ≤st ψ(Yn) ∀n ∈ N0

⇐⇒ Prob [φ(Xn) ≥ v] ≤ Prob [ψ(Yn) ≥ v] ∀n ∈ N0, v ∈ V
⇐⇒ Prob [T vX ≤ n] ≤ Prob [T vY ≤ n] ∀n ∈ N0, v ∈ V
⇐⇒ T vY ≤st T

v
X ∀v ∈ V. 2

4.3.2. Simulation results for bounded-space bin packing and bin
coloring

We already mentioned that having a stochastic dominance relation is equivalent to having
an “almost pointwise” dominance relation (see Theorem 5.2.12 and Remark 5.2.13 on
page 127 for a precise statement). Therefore, it is a rather strong statement. It is thus
reasonable to ask whether such strong relations hold between interesting algorithms. To
support this, we present some Markov chain simulation results for bounded-space bin
packing and bin coloring algorithms. Markov chain simulation means here that we start
with some initial distribution p0 and then successively compute the distribution pn of
the Markov chain after n steps using its transition matrix. Markov chain simulation is
stronger than simulating an online algorithm on a random sample of input sequences, since
simulating a Markov chain for n steps implicitly considers all sequences of length n. To
ensure that stochastic dominance does not show up or vanish due to numerical inaccuracies,
the Markov chain simulations described in the following were done with exact rational
arithmetic provided by the GNU Multiple Precision Arithmetic Library [GMP06].

Bounded-space bin packing In order to be able to simulate the Markov chains
corresponding to bin packing algorithms we assumed that item sizes are discrete, which
lead to the countable state space Markov chains described in Example 4.3.4. We remark
that historically, the bin packing problem has been studied for continuous item sizes
(see [CGJ97] for a survey) and discrete item sizes were only considered much later. In
our simulations, we assume that the item sizes are drawn from the uniform distribution
on {1, . . . , u} for some u ≤ B. It turns out that the number of bins used by BBFk is
stochastically dominated by that needed by NFk, at least for the parameters considered
here, meaning that BBFk performs better than NFk. Detailed simulation results including
the expected number of bins used can be found in Table A.12 in the Appendix.

Observation 4.3.6 Let BBFn(k,B, u) and NFn(k,B, u) denote the state of the BBFk
and NFk Markov chains for parameters k, B, u after n steps, respectively. For the bin
packing parameters in the set

{(k,B, u) | 2 ≤ k ≤ 5, 5 ≤ B ≤ 14, 4 ≤ u ≤ B − 1}

we have that
χ(BBFn(k,B, u)) ≤st χ(NFn(k,B, u))

for all n = 1, . . . , 200.

108

4.3. Stochastic dominance and Markov chain models for online algorithms

Ramanan [Ram89] introduced the SmartNextFit algorithm, which uses only one bin.
However it employs a more clever closing rule than NextFit: It tries to put the new item in
a bin of its own and closes the original bin only if it has less remaining capacity than the
bin with the new item. Ramanan shows that SmartNextFit is at least as good as NextFit
on every input sequence, which is a (stronger) special case of stochastic dominance. Note
that the idea of the “safe” closing rule can be applied to BBFk and NFk as well. By a
straightforward extension of Ramanan’s induction argument one can see that the resulting
variants are better than the original algorithm on any input sequence, too.

Bin coloring We assume that the color sequence is generated by choosing each color
independently and uniformly at random from a set of C colors. An online bin coloring
algorithm is called partitioning algorithm, if it never puts the same color in two different
bins at the same time, i. e., if the color of the new item is already present in one of the bins,
the new item is put in this bin. Note that both OneBin and GreedyFit are partitioning
algorithms. Due to the uniform color distribution it does not matter exactly which colors
are already in a bin. Therefore the operation of any partitioning algorithm ALG can be
described on a state space which encodes for every bin i its current number of items fi
and the number of colors in that bin ci. The state also keeps track of the maximum
colorfulness attained so far. Moreover, let χmax be the maximum colorfulness that ALG
attains on any color sequence. Formally, we have

S :=
{

(f1, c1, . . . , fm, cm, χ)
∣∣∣∣ 0 ≤ ci ≤ fi ≤ B,

ci ≤ χ, 1 ≤ χ < χmax

}
∪ {(χmax)}.

For convenience, we assume that χ ≥ 1 and we collapsed all states with χ = χmax to
a single state since we are only interested in the correct distribution of the maximum
colorfulness. We use the notation fi(s), ci(s), and χ(s) to refer to the components of
state s, the state (0, 0, . . . , 0, 0, 1) is called the initial empty state. Note that the states
reachable by the operation of an algorithm may be a proper subset of S. In order to
reduce the size of the state space, we break the symmetry by requiring that

(
fi(s), ci(s)

)
is lexicographical not smaller than

(
fi+1(s), ci+1(s)

)
.

If a new item arrives, there are two cases: Either the color is already contained in bin i,
i. e., the color is known (in bin i), or it is not, so the color is new (in bin i). In the first
case, only fi is incremented (modulo B), in the second case both fi and ci and maybe
also χ are incremented. We will denote the successor state of a known-transition in bin i
by sknown(i) and for a new-transition in bin i by snew(i). The OneBin algorithm can then
be described by the transitions

s′ =

{
sknown(1) with probability c1(s)/C,
snew(1) with probability (1− c1(s))/C.

Similarly, any partitioning algorithm can be modelled. We denote the Markov chains
modelling OneBin and GreedyFit for parameters m, B, and C by OB(m,B,C) and
GF(m,B,C), respectively. Two small examples are given in Figure 4.2.

109

Chapter 4. Stochastic dominance analysis of online algorithms

0,0:0,0:1

1,1:0,0:1

2

1 1/4

3/4

1

(a) OneBin Markov chain
OB(2, 2, 4).

0,0:0,0:1

1,1:0,0:1

1,1:1,1:1

2

1 1/4

3/4

1/2

1/2

1

(b) GreedyFit Markov chain
GF(2, 2, 4).

Figure 4.2.: Small example Markov chains for OneBin and GreedyFit for the parame-
ters m = B = 2 and C = 4. The lightly shaded states are the states of maximum
colorfulness 1, the darker ones those with maximum colorfulness 2.

We computed the colorfulness distributions of processing up to 1000 items with OneBin
and GreedyFit by simulating the evolution of the corresponding Markov chains for some
set of parameters. More precisely, we considered two parameter sets:

1. C = mB, m,B s. t. the resulting Markov chains have at most 1000 states, and

2. m = 3, B = 5, 6 ≤ C ≤ 45 and C mod 3 ≡ 0.

Table 4.1 shows an example of the evolution of the colorfulness distributions of OneBin and
GreedyFit, clearly exhibiting stochastic dominance. The simulation results are summarized
in the following observation.

Observation 4.3.7 For the parameters given above we have

χ(GFn(m,B,C)) ≤st χ(OBn(m,B,C))

for all n = 1, . . . , 1000.

This observation states that w. r. t. stochastic dominance the algorithms are ordered as
one would conjecture. Stochastic dominance also explains the superiority of GreedyFit to
OneBin observed in earlier simulations on randomly generated sequences. We will provide
a formal proof of this result in Section 5.3.

4.4. Optimality of LRU for paging with locality of reference

In this section we apply stochastic dominance analysis to show that in the paging problem,
LRU is optimal w. r. t. stochastic dominance for a certain natural class of input sequences.

110

4.4. Optimality of LRU for paging with locality of reference

#items OneBin GreedyFit

5 0.000, 0.004, 0.094, 0.525, 1.000 0.094, 1.000, 1.000, 1.000, 1.000
10 0.009, 0.276, 1.000 0.189, 0.981, 1.000, 1.000
20 0.076, 1.000 0.009, 0.725, 0.999, 1.000
40 0.006, 1.000 0.429, 0.999, 1.000
80 1.000 0.149, 0.998, 1.000
160 1.000 0.018, 0.993, 1.000
1000 1.000 0.956, 1.000

Table 4.1.: Example of the evolution of the colorfulness distribution of OneBin and Greedy-
Fit for m = 3, B = 5, and C = 15. Shown are the cumulative distribution functions of
the colorfulness distributions.

As byproducts we obtain several results from the literature as corollaries of our optimality
results.

4.4.1. Paging with locality of reference

We start by recalling some basic notions for paging algorithms, see e. g., [BEY98]. A
standard tool is the partitioning of a sequence into phases. The first phase starts with
the first request. Phase ` starts with the (k + 1)st distinct request after the start of
phase `− 1. Each phase ends just before the start of the next phase or at the end of the
sequence, whichever comes first.
Given a request sequence σ, we say that a page p is marked w. r. t. σ if it has been

requested in the final phase of σ; otherwise, we say that p is unmarked w. r. t. σ. Note that
by definition of the phases, there cannot be more than k marked pages w. r. t. a request
sequence. Also note that all pages are unmarked w. r. t. the empty sequence. Moreover,
the partition into phases and the set of marked pages at any point in the sequence do not
depend on the algorithm. An algorithm is called marking algorithm if, for any request
sequence σ, it never evicts a marked page. Observe that a marking algorithm has, at any
point in time, all marked pages in its cache, which justifies the name.
A paging algorithm is called lazy if it evicts a page only on a page fault and never

evicts more than one page. We remark that both FIFO and LRU are lazy algorithms,
whereas LRU is a marking algorithm and FIFO is not.

One of the reasons that competitive analysis is not able to make a distinction between the
performance of several paging algorithms is that it considers arbitrary request sequences.
In practice, however, request sequences have some structure, for instance they often
feature locality of reference. In a strict sense this means that if a page is referenced, it is
likely to be referenced again in the near future, a fact that has been observed early and
formalized by Denning with his working set concept [Den68, Den80].

There is also the broader sense of locality of reference, meaning that usually “each time
a page is referenced by a program, the next page to be referenced is very likely to come
from a small set of pages” [BIRS95]. To formalize this, Borodin et al. [BIRS95] presented

111

Chapter 4. Stochastic dominance analysis of online algorithms

the access graph model, in which a graph models which pages can be requested after
a certain page has been asked. Using this model, they showed that LRU is at least as
good as FIFO. This approach was extended in several ways in [IKP96, KPR00, FM97].
Panagiotou and Souza [PS06] introduce another model, restricting the sequences such
that successive references to the same page are mostly close together or far apart.

We consider only locality of reference in the strict sense and focus on three models for
paging with locality of reference proposed in the literature. Our main result states that
LRU is optimal w. r. t. stochastic dominance for sequences exhibiting this kind of locality
of reference. It is well known that LRU is not an optimal online algorithms for sequences
with locality of reference in the broader sense, since e. g., the access graph model allows
the k + 1 cycle as an access graph, for which LRU faults on every page request.

The age model Coffman and Denning [CD73] introduced the following probabilistic
model which we call the age model. In the age model, the next request for a prefix
sequence σ is generated based on the age of the pages. For a prefix sequence σ, the age
of a page p ∈M is defined by

age(p, σ) :=

{
l if p is the lth most recently requested page,
∞ if p does not appear in σ.

We say that a probability distribution over the request sequences is an age model
distribution if it arises in the following way. Let ∆ be the set of probability distributions
over {1, . . . , |M |}. Given a prefix sequence σ, the probability Prob [p | σ] that the next
request page is p is determined by an age distribution δ ∈ ∆ as follows. The age
distribution δ gives the age of the new request page p, i. e., if a is a realization according
to δ, the next page is p ∈M with age(p, σ) = a. If there is no page with age a one of the
pages with age ∞ is chosen arbitrarily.
Let D ⊆ ∆ be the set of probability distributions with nonincreasing distribution

functions f : {1, . . . , |M |} → [0, 1]. Note that considering age distributions from D
models locality of reference: Pages requested more recently have a high probability to be
requested next. Note that D contains two out of three classes of age distributions studied
by Becchetti [Bec04]. In his diffuse adversary analysis, Becchetti considers probability
distributions favoring recently over less recently requested pages and shows that in this
model, LRU outperforms FWF.

The concave function model and the a-locality model In contrast to the age
model, the concave function model [AFG05] and the a-locality model [Tor98] are deter-
ministic models which restrict the set of request sequences. Both models are based on
Denning’s working set concept [Den68, Den80].
Albers et al. [AFG05] propose the concave function model which models working sets.

Locality of reference is modeled by an increasing concave function f : N → R, which
specifies the maximum number f(l) of distinct pages in a (contiguous) subsequence of
length l for any l ∈ N. A request sequence for which each subsequence of length l has
at most f(l) distinct pages is called f-consistent. They showed that LRU is an optimal

112

4.4. Optimality of LRU for paging with locality of reference

online algorithm in their model and that FIFO and marking algorithms are not optimal in
general.
Torng [Tor98] generalizes the partitioning of a sequence to m-phases, i. e., a phase

consists of m distinct pages. For a sequence σ, we denote the subsequence σi, . . . , σj by
σ[i, j]. Given a sequence σ of length n, define the phase indices Ii,m(σ) recursively by

I0,m(σ) = 0,
Ii+1,m(σ) = max{j ≤ n | σ[Ii,m(σ), j] contains at most m distinct pages}.

The m-phases of σ are then given by σ[I0,m(σ) + 1, I1(σ)], σ[I1,m(σ) + 1, I2,m(σ)], . . . and
so on. Let A(σ,m) be the average length of the m-phases in σ. Torng argues that σ
exhibits significant locality of reference if A(σ,m) � m. To capture this formally, we
introduce the notion of a-locality for a function a : N→ R ∈ Ω(1). A sequence σ is called
a-local if A(σ,m) ≥ a(m)m holds for all m = 1, . . . , |σ|. Note that this generalizes the
notion of “a-local” used in [DLO08]. Torng [Tor98] showed that, among other algorithms,
LRU achieves a constant competitive ratio for sequences σ with A(σ, k)� k.

4.4.2. Optimality of LRU for paging with locality of reference

We now show that LRU is optimal w. r. t. to stochastic dominance, i. e., incurs stochastically
fewer page faults than any other paging algorithm, for a certain class of request sequence
distributions. This class includes all distributions according to the age model as well as the
uniform distribution over all f -consistent sequences for any increasing concave function f
and the uniform distribution over all a-local sequences for any function a : N→ R ∈ Ω(1).

Preliminaries

For an online algorithm ALG, an integer j ∈ {1, . . . , n} and a sequence σ of length
|σ| = j − 1, the random variable XALG

j (σ) = 1 if the first j − 1 requests of the random
sequence are given by σ and ALG encounters a page fault on the jth request; otherwise
XALG
j (σ) = 0. The random variable Yj(σ) = 1 if |σ| = j and the first j requests are as in

σ; otherwise Yj(σ) = 0. Moreover, we define the random variable WALG(σ) =
(
XALG
j (σ) |

Yj−1(σ) = 1
)
, i. e., WALG(σ) = 1 if the next request after processing j − 1 requests from

σ leads to a page fault in ALG, and WALG(σ) = 0 otherwise.
Given a sequence σ of length |σ| ≥ j and an online algorithm ALG, the variable

ZALG
j (σ) = 1 if the jth request leads to a page fault when ALG operates on σ and

ZALG
j (σ) = 0 otherwise. Note that ZALG

j (σ) is deterministically determined by ALG, j,
and σ. On a sequence σ ∈Mn, an online algorithm ALG has

∑n
j=1 Z

ALG
j (σ) page faults.

In analogy to the notation ALG(σ) for the number of page faults of ALG on σ, we denote
by ALG the random variable giving the number of page faults on a random sequence. We
can write this random variable for a sequence of length n as

ALG =
∑
σ∈Mn

n∑
j=1

ZALG
j (σ)Yn(σ).

113

Chapter 4. Stochastic dominance analysis of online algorithms

Finally, we denote by CALG(σ) the set of pages in the cache after the sequence σ has been
processed by algorithm ALG.

Lemma 4.4.1 The random variable ALG can be expressed as

ALG =
n∑
j=1

∑
σ∈Mj−1

XALG
j (σ).

Proof. We have

ALG =
∑
σ∈Mn

n∑
j=1

ZALG
j (σ)Yn(σ) =

n∑
j=1

∑
σ∈Mn

ZALG
j (σ)Yn(σ)

=
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

∑
σ2∈Mn−j

ZALG
j (σ1pσ2)Yn(σ1pσ2).

As ALG is an online algorithm, we can write this as

ALG =
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

ZALG
j (σ1p)

∑
σ2∈Mn−j

Yn(σ1pσ2).

Due to the fact that Yj(σ1p) =
∑

σ2∈Mn−j Yn(σ1pσ2), we get

ALG =
n∑
j=1

∑
σ1∈Mj−1

∑
p∈M

ZALG
j (σ1p)Yj(σ1p)

=
n∑
j=1

∑
σ1∈Mj−1

XALG
j (σ1),

where the last equality follows from the fact that XALG
j (σ1) = 1 for all realizations of

the request sequence that start with σ1 and the jth request p leads to a page fault, i. e.,
ZALG
j (σ1p) = 1. 2

The following theorem is the main result underlying our stochastic dominance proofs.
We call a probability distribution over request sequences a prefix distribution if it is
completely described by the probability that page p is requested given that the sequence
up to this page is σ, Prob [p | σ]. Note that all age model distributions are of this type.

Theorem 4.4.2 Let ALG1 and ALG2 be two online paging algorithms. Assume that the
request sequence is drawn according to a prefix distribution and denote by P the random
next request after prefix σ. Suppose that

Prob
[
P ∈ CALG1(σ)

]
≥ Prob

[
P ∈ CALG2(σ)

]
(4.5)

for any prefix sequence σ. Then ALG1 ≤st ALG2.

114

4.4. Optimality of LRU for paging with locality of reference

Proof. By Lemma 4.4.1, it is sufficient to show

XALG1
j (σ) ≤st X

ALG2
j (σ),

for all j = 1, . . . , n, and all sequences σ ∈ M j−1. As the variables XALG
j (σ) are binary

random variables, this is equivalent to

Prob
[
XALG1
j (σ) = 1

]
≤ Prob

[
XALG2
j (σ) = 1

]
. (4.6)

For any online algorithm ALG, j ∈ {1, . . . , n}, and σ ∈M j−1, we can write

Prob
[
XALG
j (σ) = 1

]
= Prob

[
Yj−1(σ) = 1 ∧ XALG

j (σ) = 1
]

= Prob
[
XALG
j (σ) = 1 | Yj−1(σ) = 1

]
· Prob [Yj−1(σ) = 1]

= Prob
[
WALG(σ) = 1

]
· Prob [Yj−1(σ) = 1] .

Since Yj−1(σ) does not depend on the algorithm, (4.6) is equivalent to

Prob
[
WALG1(σ) = 1

]
≤ Prob

[
WALG2(σ) = 1

]
,

which in turn is equivalent to (4.5). 2

Optimality results

Theorem 4.4.3 Suppose the request sequence is chosen according to the age model with
age distributions from D. Then the number of page faults of LRU is stochastically
dominated by that of any online algorithm.

Proof. Let ALG be any online paging algorithm. We show that condition (4.5) of The-
orem 4.4.2 is satisfied. Note that always |CLRU(σ)| ≥ |CALG(σ)| holds. Therefore by
definition of LRU, there is an injective mapping φ : CALG(σ) → CLRU(σ) that maps a
page q from CALG(σ) to a page p in CLRU(σ) with age(p, σ) ≤ age(q, σ). Let p be some
page that ALG has in the cache and denote by P the random next request generated
according to the age model distribution. Clearly, Prob [P = φ(p)] ≥ Prob [P = p], which
implies condition (4.5). 2

Remark 4.4.4 1. Coffman and Denning [CD73, p. 276] show that LRU achieves an
optimal expected number of page faults if the request sequence is generated as in
Theorem 4.4.3. This result is implied by Theorem 4.4.3.

2. The result actually holds for all age distributions where the age probabilities
(p1, . . . , p|M |) satisfy min{p1, . . . , pk} ≥ max{pk+1, . . . , p|M |}. As the uniform dis-
tribution over all sequences belongs to the family of age model distributions, we
also have that LRU, as any other lazy paging algorithm, is an optimal algorithm
w. r. t. Bijective Analysis for the set of all request sequences.

115

Chapter 4. Stochastic dominance analysis of online algorithms

We will now prove similar optimality results for the deterministic locality of reference
models mentioned in Section 4.4.1, assuming the uniform distribution over the feasible
sequences. We start by explaining how we can use a prefix distribution to generate a
uniform distribution. Denote by Sn the set of sequences of length n that are feasible
for the locality of reference model (i. e., f -consistent or a-local). Moreover, for any σ,
0 ≤ |σ| < n, and p ∈M let Sn(σ, p) be the set of extensions of σp to a feasible sequence
of length n, i. e.,

Sn(σ, p) =
{
σ′ ∈Mn−|σ| ∣∣ σpσ′ ∈ Sn}.

Finally define Ln(σ, p) = |Sn(σ, p)| and Ln(σ) =
∑

p∈M Ln(σ, p). A uniformly distributed
random sequence Σ ∈ Sn may be generated as follows: after σ = (σ1, . . . , σi−1) has been
choosen, we set σi = p with probability Ln(σ, p)/Ln(σ) for each p ∈M .

Lemma 4.4.5 Consider any online paging algorithm ALG and suppose that for any
sequence σ, 0 ≤ |σ| < n, and for any pages p ∈ CLRU(σ) \ CALG(σ) =: Mp and q ∈
CALG(σ) \ CLRU(σ) =: Mq we have

Ln(σ, p) ≥ Ln(σ, q). (4.7)

Then LRU(Σ) ≤st ALG(Σ), where Σ is a random sequence distributed uniformly over Sn.

Proof. For a sequence σ with |σ| = j < n let P denote the random request that follows
σ according to the distribution defined above, i. e., Prob [P = p] = Ln(σ, p)/Ln(σ). By
Theorem 4.4.2, it is sufficient to show Prob

[
P ∈ CLRU(σ)

]
≥ Prob

[
P ∈ CALG(σ)

]
for

any sequence σ. We have

Prob
[
P ∈ CLRU(σ)

]
=

∑
p∈CLRU(σ) Ln(σ, p)

Ln(σ)

=

∑
p∈CLRU(σ)∩CALG(σ) Ln(σ, p) +

∑
p∈Mp

Ln(σ, p)

Ln(σ)

≥
∑

p∈CLRU(σ)∩CALG(σ) Ln(σ, p) +
∑

q∈Mq
Ln(σ, q)

Ln(σ)

= Prob
[
P ∈ CALG(σ)

]
,

where we used (4.7) and the fact that |CLRU(σ)| ≥ |CALG(σ)| which implies |Mp| ≥ |Mq|.2

In the subsequent proofs we need the following notation borrowed from [AS09]. For a
sequence σ and two distinctive pages p, q ∈M , the complement sequence of σ w. r. t. p
and q, denoted by σ(p,q), arises from σ by exchanging each occurence of p by q and vice
versa and keeping all other requests. Note that the mapping σ 7→ σ(p,q) is bijective since
it is self-inverse.

Theorem 4.4.6 Let f : N→ R be an increasing concave function and let Σ be a request
sequence drawn uniformly at random from all f-consistent sequences of length n. Then
LRU(Σ) ≤st ALG(Σ).

116

4.4. Optimality of LRU for paging with locality of reference

Proof. We apply Lemma 4.4.5 and show Ln(σ, p) ≥ Ln(σ, q) for any sequence σ, 0 ≤
|σ| < n and for any pages p ∈Mp and q ∈Mq by giving an injective map from Sn(σ, q)
to Sn(σ, p). In particular, we claim that for σ′ ∈ Sn(σ, q), σ′ 7→ σ′(p,q) is such a map.
By definition of p and q, the last request for page p in σ was after the last request

for page q. Let ω = σqσ′ be the f -consistent extended sequence corresponding to σ′.
Lemma 1 from [AS09] states that either the sequence σpσ′(p,q) is f -consistent or the first
access to p after σ in ω is before the first access to q. Since in ω, q is the first requested
page after σ, the second case obviously cannot be true and therefore σ′(p,q) must be an
element of Sn(σ, p). 2

Theorem 4.4.7 Consider a function a : N→ R ∈ Ω(1) and let Σ be a request sequence
drawn uniformly at random from all a-local sequences of length n. Then LRU(Σ) ≤st

ALG(Σ).

Proof. We use the same proof technique as in the last theorem, using again the mapping
σ′ 7→ σ′(p,q) for each σ′ ∈ Sn(σ, q). Let ω := σqσ′ be the original sequence and ω̄ :=
σpσ′(p,q) be its mapping image. We establish A(ω̄,m) ≥ A(ω,m) for any m by showing
Ii,m(ω̄) ≥ Ii,m(ω) by induction on i. Let ` be the number of m-phases of σ. It is obvious
that Ii,m(ω̄) = Ii,m(ω) for all i < `.
Suppose |σ| = l and denote by D(σ, i, j) the set of distinct pages in the subsequence

σi, . . . , σj . We claim I`,m(ω̄) ≥ I`,m(ω), or equivalently,

|D(ω̄, I`−1,m(σ) + 1, I`,m(ω))| ≤ |D(ω, I`−1,m(σ) + 1, I`,m(ω))|. (4.8)

If q is referenced in σ[I`−1,m + 1, l], then so is p since p ∈ CLRU(σ) and q /∈ CLRU(σ). This
implies that (4.8) holds with equality in this case. The same is true if both p and q do
not occur in σ[I`−1,m + 1, l]. In the case that p occurs in σ[I`−1,m + 1, l] but q does not
we have |D(ω̄, I`−1,m(σ) + 1, l + 1)| < |D(ω, I`−1,m(σ) + 1, l + 1)| and (4.8) holds as well.

To finish the induction, assume we already established Ii,m(ω̄) ≥ Ii,m(ω). Then
Ii+1,m(ω̄) ≥ Ii+1,m(ω) follows by observing that

|D(ω̄, Ii,m(ω̄) + 1, Ii+1,m(ω))| ≤ |D(ω, Ii,m(ω) + 1, Ii+1,m(ω))|,

which follows from the fact that |D(σ, i, j)| = |D(σ(p,q), i, j)| for any sequence σ and
1 ≤ i < j ≤ |σ|. 2

Remark 4.4.8 1. Theorem 4.4.6 is actually equivalent to Theorem 1 in [AS09], but
we believe that our proof is simpler and more straightforward; it is only half as long,
too.

2. Theorem 4.4.6 also holds for the more general average concave function model by
Albers et al. [AFG05], as Lemma 1 from [AS09] holds for this as well.

3. As observed by Angelopoulos and Schweitzer [AS09], LRU is actually optimal
for each locality of reference model with the following property: If the sequence
σ1qσ2pσ3qσ4pσ5 with sequence σ3 containing neither p nor q is feasible, then so is
the sequence σ1qσ2pσ3pσ4qσ5, which is arguably more “local” than the original one.

117

Chapter 4. Stochastic dominance analysis of online algorithms

Remark 4.4.9 Aho et al. [ADU71] study random request sequences that are almost
stationary in the sense that the page request probabilities maintain their relative orders,
i. e., the probability distribution is such that for pages p and q

Prob [p | σ] ≥ Prob [q | σ] =⇒ Prob
[
p | σσ′

]
≥ Prob

[
q | σσ′

]
(4.9)

for all request sequences σ and σ′. They define a ranking relation < on the pages with
q < p meaning Prob [q | σ] ≤ Prob [p | σ] for all request sequences σ. Aho et al. show
that the algorithm A0 which on a page fault evicts a <-minimal page from the cache is
optimal w. r. t. to the expected number of page faults. From (4.9) and Theorem 4.4.2 it
is clear that A0 is optimal w. r. t. to stochastic dominance of page faults, implying the
result from [ADU71]. Note that the almost stationary random sequences include the
independent reference model [CD73], in which each requested page is drawn i. i. d. from a
fixed distribution.

4.5. Conclusion

We saw in Sections 4.3.2 and 4.4 that stochastic dominance is useful to compare online
algorithms, yielding results that are more in line with their actually observed behavior.
The proofs for the optimality of LRU presented in Section 4.4 are relatively straightforward,
which is mainly due to the following fact. In the presence of locality of reference, we can
prove that LRU’s cache configuration after any sequence σ has higher probability of not
increasing the objective function than that of any other algorithm on the same sequence
(Theorem 4.4.2), which is sufficient for stochastic dominance.

In general, however, such a condition is obviously not necessary: Algorithm ALG1 may
be in a state with higher probability of increasing the objective function after processing a
certain sequence σ of length n than algorithm ALG2. Nevertheless ALG1 may still be better
than ALG2 w. r. t. to stochastic dominance for random sequences of length n+ 1. As an
example, consider the bounded-space bin packing problem with B = 6 and size sequence
σ = (3, 4, 1, 2, 2). After packing the item of size 1 BBF2 has used two bins with remaining
capacities 3 and 1 and thus cannot accomodate the two items of size 2 without opening
a new bin. In contrast, NF2 has used two bins which both have remaining capacity 2,
meaning it can pack both items without opening a new bin. Nevertheless the simulation
results of Section 4.3.2 indicate that χ(BBF2(Σ)) ≤st χ(NF2(Σ)) for a sequence Σ chosen
uniformly at random from {1, . . . , B− 1}6. For such cases more powerful proof techniques
are needed. In the next chapter, we develop such techniques and apply them to a detailed
analysis of online bin coloring algorithms.

118

Chapter 5.

Analysis of bin coloring algorithms

In this chapter we conduct a detailed study of online algorithms for the bin coloring
problem, applying the stochastic dominance approach developed in Chapter 4. We start
by introducing the online bin coloring problem and discussing an application to estimating
the handling capacity of an elevator system. Section 5.2 deals with general methods
for proving stochastic dominance results and how they can be applied to analyzing bin
coloring algorithms. Finally, we present a proof showing that GreedyFit is better than
OneBin w. r. t. stochastic dominance in Section 5.3. This result appeared as [HV08].

5.1. Problem definition and an application to elevator
control

An instance of the bin coloring problem is described by the number of simultaneously
open bins m, the bin capacity B and a sequence of n unit sized items, each of which has
one of C colors. The items need to be packed in the open bins and whenever a bin has
B items, it is closed and replaced by a new empty bin. The colorfulness of a bin is the
number of different colors in this bin and the goal is to pack the items in the (open) bins
such that the maximum colorfulness over all bins is minimized. For probabilistic analysis,
we assume that the number of open bins m, the bin capacity B and the number of colors
C is given deterministically. The color sequence, however, is generated by chosing each
color independently according to a probability distribution function γ over the colors.
Note that in this model, all online algorithms eventually have to produce a bin with

colorfulness B if the number of colors is sufficiently high, say C ≥ 2mB. This implies
that in this case, all online algorithms are asymptotically equally bad. Moreover, since
eventually there will be a color subsequence of length 2mB with all colors different, the
asymptotic competitive ratio is 1 with probability 1. Both issues indicate that asymptotic
probabilistic analysis does not give meaningful results. Instead it is necessary to study the
transient behavior instead of the asymptotic behavior of the algorithms. Let the random
variables χGF

n and χOB
n denote the maximum colorfulness attained after processing n items

using GreedyFit and OneBin, respectively. We will show that GreedyFit is stochastically
better than OneBin after n items, i. e., that χGF

n ≤st χ
OB
n . The competitive analysis results

of Krumke et al. [KdPSR01] imply that there is a sequence on which OneBin gives better
overall colorfulness than GreedyFit, i. e., GreedyFit is not sequence-wise at least as good
as OneBin.

119

Chapter 5. Analysis of bin coloring algorithms

We consider the following bin coloring algorithms.

GreedyFit packs an item with an already present color in the bin with that color
and otherwise chooses a bin which currently has the least number of different
colors.

OneBin uses only a single bin, i. e., it packs all items in the same bin until it is full
and replaced.

FixedColors puts the items into bins according to their colors and a prescribed
color-to-bin-assignment.

Observe that FixedColors is somewhere between OneBin and GreedyFit: it takes advantage
of all available bins, but uses a static assignment rule of colors to the bins.

Application to elevator control Before starting with stochastic dominance analysis,
we briefly explain an interesting connection between the online bin coloring problem and
the relative performance of conventional elevator control and elevator control based on
destination calls as discussed in Chapter 2.

In Section 2.2 we mentioned that the up peak handling capacity, a performance measure
often used for dimensioning elevator systems, is inversely related to RTT , the time needed
for a single roundtrip. Elevator engineers estimate RTT using the formula

RTT = 2Htv + (S + 1)ts + Ptl,

where H is the highest floor reached, tv the drive time needed to pass one floor, S is the
number of stops needed to unload the passengers, ts the time per stop, and tl the time
to unload one passenger. Note that only H and S depend on the actual load of the lift.
For calculations, H is usually assumed to be N or N − 1, which is justified if the lift
capacity P is high. The number of stops S is calculated by assuming some distribution of
the destination floors.
We now want to compare the RTT for a conventional system to that of a destination

call system using our bin coloring analysis. Let us assume that the passenger arrival rate
is so high that the elevators leaving the main entrance floor are always full (this is also
assumed in the formula for the handling capacity above). Since we are only interested
in the number of stops S for a roundtrip, we can model the passenger sequence by a
sequence of destinations only.
In a conventional system, passengers board the lifts in the order of their arrival at

the main entrance floor. The stops of the resulting roundtrips are determined by the
sub-sequences of size P of the destination floor sequence. Regarding the destination floors
as colors and the round trips as bins, this can be viewed as OneBin working on sequences
with N distinct colors and bin capacity P .

For a destination call system the elevator control has the possibility to reduce stops
by assigning passengers with the same destination floor to the same lift and balancing
the number of stops between the L lifts. A natural strategy to do this is the GreedyFit
algorithm, using up to L bins.

120

5.2. Comparison methods for Markov chains

As we will see in Theorem 5.3.9, the average number of colors achieved by GreedyFit is
stochastically dominated by that of OneBin. Applied to our elevator setting this means
that the total number of stops in the destination call system is stochastically dominated
by that of the conventional system, which implies the same relation for the RTT of both
systems. Since X ≤st Y implies 1/X ≥st 1/Y , we get that the handling capacity of
a destination call system is higher than that of a conventional system, independent of
the destination floor distribution. Note that we could not conclude that the expected
handling capacity is larger if we had shown only that the expected RTT is smaller.

5.2. Comparison methods for Markov chains

We already saw in Sections 4.3.2 and 4.4 that stochastic dominance is useful to compare
online algorithms. In particular, Observation 4.3.7 suggests that there is a general
stochastic dominance relation between GreedyFit and OneBin. However, ist is not as easy
as for the paging algorithm LRU to prove stochastic dominance here. We will therefore
consider several general methods for proving stochastic dominance. Results of this type
are known as “comparison results” [MS02].

5.2.1. Monotonicity-based Methods

The first comparison result for Markov chains was provided by Daley [Dal68]. It applies
to the case that the state space S is a subset of N0 and the valuation function χ is the
identity, i. e., the value of a state is the number of the state itself. Daley’s result is based
on the notion of ≤st-monotonicity. A transition matrix P of a Markov chain on state
space S ⊆ N0 is called ≤st-monotone, if

s1, s2 ∈ S, s1 ≤ s2 =⇒ P (s1, ·) ≤st P (s2, ·). (5.1)

For a probability distribution λ and a transition matrix P on S we denote by λP the
probability distribution resulting from starting with λ and doing a one-step transition
according to P (this probability is given by the vector-matrix product). Daley proved
that (5.1) is equivalent to requiring that for all distributions λ and µ over S we have

λ ≤st µ =⇒ λP ≤st µP.

Theorem 5.2.1 ([Dal68]) If the Markov chains X and Y with transition matrices P and
Q and state space S ⊆ N0 satisfy

1. X0 ≤st Y0,

2. P (s, ·) ≤st Q(s, ·) for all s ∈ S,

3. at least one of the matrices P and Q is ≤st-monotone,

then this implies Xn ≤st Yn for all n ∈ N0.

121

Chapter 5. Analysis of bin coloring algorithms

Obviously, this result is not sufficient to compare valued Markov chains with more
complex countable state spaces, since in general different states may have the same value.
In this case, χ induces a partial order ≤χ on the state space S by

s ≤χ s′ :⇐⇒ χ(s) ≤ χ(s′). (5.2)

Using the theory of integral stochastic orders (see e. g., [MS02]) ≤st can be generalized
to partially ordered spaces. We will briefly recapture the notions and results needed to
apply monotonicity techniques to valued Markov chains.

Definition 5.2.2 Let F be a class of functions from S to R. The class F induces a
stochastic order ≤F among S-valued random variables X and Y by

X ≤F Y :⇐⇒ E [f(X)] ≤ E [f(Y)] ∀f ∈ F . (5.3)

A stochastic order arising in this way is called an integral stochastic order with generator F .

Definition 5.2.2 defines a very broad class of stochastic orders that includes the stochastic
dominance order on arbitrary partially ordered sets. Consider a partial order ≺ on S. A
function f : S → R is called nondecreasing w. r. t. ≺ if it satisfies f(s) ≤ f(s′) whenever
s ≺ s′ for all s, s′ ∈ S. Then the stochastic dominance order ≤st induced by ≺ is generated
via (5.3) by the set of all functions that are nondecreasing w. r. t. ≺. The stochastic
dominance order ≤st used so far and defined by inequality (4.3) is just the special case
S = R and ≺ = ≤.

It is easier to check (4.3) if the class F is small and has a simple structure. The stochastic
dominance order ≤st induced by a partial order ≺ has also a nice small generator. A
subset S ⊆ S is called a ≺-increasing set if s ∈ S and s ≺ s′ imply s′ ∈ S. It is not
hard to see that ≤st induced by ≺ on S is generated by the indicator functions of all
≺-increasing subsets of S, which are of course ≺-nondecreasing functions.

The theorem of Daley can be generalized to any integral stochastic order by generalizing
the equivalent characterization of ≤st-monotonicity. We call a stochastic matrix P over S
≤F -monotone, if for all distributions λ and µ over S we have

λ ≤F µ =⇒ λP ≤F µP.

Theorem 5.2.3 ([MS02, p. 180]) If the Markov chains X and Y with transition matrices
P and Q satisfy

1. X0 ≤F Y0,

2. P (s, ·) ≤F Q(s, ·) for all s ∈ S,

3. at least one of the matrices P and Q is ≤F -monotone,

then this implies Xn ≤F Yn for all n ∈ N0.

122

5.2. Comparison methods for Markov chains

Note that the second requirement P (s, ·) ≤F Q(s, ·) can be interpreted as “P is state-
wise better than Q”. Applied to online algorithms, we can view monotonicity as an
additional property that makes an algorithm superior to all algorithms which are not
better in any state. This criterion might thus provide guidance for constructing good
online algorithms.
Unfortunately, it turns out that this result is not strong enough to explain e. g., the

stochastic dominance observed between GreedyFit and OneBin. In the remainder of this
section we will show this.
We say that an online bin coloring algorithm is a partitioning algorithm, if it uses at

most one bin for the same color at any point in time. Observe that OneBin, FixedColors,
and GreedyFit are all partitioning algorithms. We briefly recall the valued Markov chain
model from Section 4.3.2 which is suitable for modelling partitioning algorithms, assuming
the color sequence is generated by the uniform color distribution. For each bin i of the m
bins the state space has a component fi giving the number of items contained in that bin
and a component ci indicating the number of distinct colors in the bin. Moreover there is
a state space component χ that keeps track of the maximum colorfulness attained so far,
so the state space is

S :=
{

(f1, c1, . . . , fm, cm, χ)
∣∣∣∣ 0 ≤ ci ≤ fi ≤ B,

ci ≤ χ, 1 ≤ χ < χmax

}
.

The key point here is that all partitioning algorithms can be modeled using the same
state space (some algorithms may not reach all states) and the same valuation function χ,
which gives just the χ-component of the state.

Let GF = (GFn)n∈N0 and OB = (OBn)n∈N0 be the valued Markov chains modelling
the working of GreedyFit and OneBin, respectively, for some fixed parameters m ≥ 2,
B, and number of colors C and denote by POB and PGF the corresponding transition
matrices. Moreover, let ≤χ−st be the stochastic dominance order ≤st induced by the
partial order ≤χ on S. The following result states that GF and OB satisfy requirements 1
and 2 of Theorem 5.2.3 w. r. t. ≤χ−st.

Proposition 5.2.4 Let GF and OB be valued Markov chains as above.

1. GF0 ≤χ−st OB0.

2. PGF(s, ·) ≤χ−st POB(s, ·) for every state s ∈ S.

Proof. The first assertion follows from the fact that both GF and OB start in the same
state, i. e., GF0 = OB0.
To establish the second assertion, consider a state s ∈ S and let SGF and SOB be

random states distributed according to PGF(s, ·) and POB(s, ·), respectively. We need to
show E

[
f(SGF)

]
≤ E

[
f(SOB)

]
for all ≤χ-nondecreasing functions f . It is sufficient to

consider the indicator functions 1M of all ≤χ-increasing sets M only. As the valuation χ
is increasing and can increase at most by one in each step, we have E

[
1M (SGF)

]
=

123

Chapter 5. Analysis of bin coloring algorithms

E
[
1M (SOB)

]
whenever there is a state s′ ∈M with χ(s′) ≤ χ(s) or all states in M have

valuation at least χ(s) + 2. We therefore can restrict ourselves to the remaining sets M
only. Finally, we can assume that state s is reachable in OB, since otherwise we can
modify POB(s, ·) to be the same as PGF(s, ·) without affecting the observed behavior of
the OB Markov chain.

A state s reachable by OB is of the form s = (f1, c1, 0, . . . , 0, χ). Consider a set M ⊆ S
where the lowest valuation of any state is χ + 1. If f1 = c1 = χ = 0, we trivially have
E
[
1M (SGF)

]
= E

[
1M (SOB)

]
since both algorithms behave identically. In any other case,

GF in state s will put an item with a new color in the second bin, thus reaching a state
with valuation χ in any case. However, OB will by definition always use the first bin, thus
possibly reaching a state in M . Hence, we have

E
[
1M (SGF)

]
= Prob

[
SGF ∈M

]
= 0 ≤ Prob

[
SGF ∈M

]
= E

[
1M (SOB)

]
and the claim follows. 2

All we still need to do in order to prove χ(GFn) ≤st χ(OBn) by applying Theorem 5.2.3
is to show that POB or PGF is ≤χ−st-monotone. However, this is not necessary and we
can get along with a weaker result. Instead, it would be sufficient to show that one of
POB and PGF is monotone w. r. t. some integral order ≤F , where F is a set of indicator
functions of ≤χ-increasing sets including the level sets S≥v defined by

S≥v := {s ∈ S | χ(s) ≥ v}

for each valuation v. To see this, suppose F contains the indicator functions gv of the
level sets S≥v and one of the transition matrices is ≤F -monotone. Since requirements 1
and 2 of Theorem 5.2.3 are fulfilled for ≤χ−st, they are also fulfilled for ≤F , as F is a set
of ≤χ-nondecreasing functions. We can thus apply Theorem 5.2.3 yielding

Prob [χ(GFn) ≥ v] = Prob [GFn ∈ S≥v]
= E [gv(GFn)]
≤ E [gv(OBn)] by Theorem 5.2.3 and Definition 5.2.2
= Prob [χ(OBn) ≥ v]

for all valuations v, which is equivalent to χ(GFn) ≤st χ(OBn).
However, we can show that this approach does not work. To do this we need some

more machinery.

Definition 5.2.5 The maximal generator RF of an integral stochastic order ≤F is the
set of all functions for which X ≤F Y implies E [f(X)] ≤ E [f(Y)].

The maximal generator is useful to characterize ≤F -monotone transition matrices. We
will use the structure of the maximal generator to show that monotonicity arguments are
not suitable for establishing stochastic dominance between online bin coloring algorithms.

124

5.2. Comparison methods for Markov chains

Theorem 5.2.6 ([MS02, p. 181]) A stochastic matrix P is ≤F -monotone if and only if
for every f ∈ F the function fP defined by

fP (s) := E [f(P (s, ·))]

is an element of the maximal generator RF .

Theorem 5.2.7 ([MS02, p. 72]) If F ⊆ G ⊆ RF , and G is a convex cone containing the
constant functions and being closed under pointwise convergence, then G = RF .

Corollary 5.2.8 Consider an integral stochastic order ≤F defined by a finite class F of
functions from S to R. The maximal generator of ≤F is the convex cone generated by F .

Proof. It is easy to see that any function f ∈ coneF satisfies E [f(X)] ≤ E [f(Y)]
whenever X ≤F Y . Hence, F ⊆ coneF ⊆ RF . Since coneF is finitely generated, it is
closed under pointwise convergence and the result follows from Theorem 5.2.7. 2

The following result shows that the transition matrices of the valued Markov chains for
GreedyFit and OneBin are not ≤F -monotone for stochastic orders of the type described
above. Thus monotonicity methods cannot be applied (that easily) to show stochastic
dominance results between these algorithms.

Theorem 5.2.9 Let (X,χ) be a valued Markov chain corresponding to GreedyFit or
OneBin operating on a color sequence drawn from the uniform distribution on C colors
using m bins with capacity B ≥ 3. Furthermore, let k be the maximum colorfulness
attained by the algorithm. If k ≥ 2, there is no integral stochastic order ≤F where F is a
(finite) set of indicator functions of ≤χ-increasing sets including the level sets and the
transition matrix P of X is ≤F -monotone.

Proof. It suffices to consider GreedyFit since OneBin is obtained by running GreedyFit
with one bin only.

Let gk be the indicator functions of the level set S≥k. Denote by s1, . . . , sl all predecessor
states of smax. According to the definition of GreedyFit, a predecessor state sj of smax is
of the form ci(sj) = k − 1 ≥ 1 for any bin i. Therefore, the probability α that the next
color leads to state smax is the same for all predecessor states and it is strictly positive.
Hence we have that gPk (s) = Prob [S≥k | s] (confer Theorem 5.2.6) is

gPk (s) =

0 s 6= {smax, s1, . . . , sl},
α s = sj 1 ≤ j ≤ l,
1 s = smax.

Since gk ∈ F , P is ≤F -monotone, and coneF is by Corollary 5.2.8 the maximal generator
of ≤F , gPk is in coneF due to Theorem 5.2.6. Thus for any sj , 1 ≤ j ≤ l, there exists a
subset M(sj) 3 sj of all smax-predecessor states, such that the indicator function fsj :=
1M(sj)∪{smax} ofM(sj)∪{smax} is in F , as such a subset is needed in any conic combination
of indicator functions of ≤χ-increasing sets giving gPk .

125

Chapter 5. Analysis of bin coloring algorithms

Now consider the special smax-predecessor state s = (B−1, k−1, . . . , B−1, k−1, k−1)
and its predecessor s′ = (B−1, k−1, . . . , B−1, k−1, B−2, k−2, k−1), in which one color
less than in s is known. We can now compute fPs (s) = Prob [M(s) ∪ {smax} | s] = α, as
no state in M(s) can be reached from s. Moreover, fPs (s′) = Prob [M(s) ∪ {smax} | s′] =
α+ 1/C, since s is the only state in M(S)∪{smax} that can be reached from s′. We thus
derived fPs (s′) > fPs (s), but s′ ≤χ s, so fPs is not a ≤χ-nondecreasing function, thus not
in coneF . Therefore, P cannot be ≤F -monotone by Theorem 5.2.6. 2

5.2.2. Coupling-based Methods

Doisy [Doi00] proposed the following Markov chain comparison criterion, which does not
require monotonicity. Recall that given a valued Markov chain (X,χ) and a state x ∈ S
we use the notation X(x) for the random successor state of state x.

Theorem 5.2.10 ([Doi00]) Consider valued Markov chains (X,φ) and (Y, ψ) on count-
able state spaces SX and SY , respectively. Suppose we have φ(X0) ≤st ψ(Y0) and

∀x ∈ SX , y ∈ SY : φ(x) ≤ ψ(y) =⇒ φ(X(x)) ≤st ψ(Y (y)).

This implies φ(Xn) ≤st ψ(Yn) for all n ∈ N0.

Unfortunately, this criterion is too weak for our purposes, too. To see this, consider the
Markov chains of OneBin vs. GreedyFit in the case m = B = 2 and C = 4 (cf. Figure 4.2
on page 110). For this case, the transition matrices are

POB =

 0 1 0
1/4 0 3/4
0 0 1

 , PGF =

0 1 0 0

1/4 0 3/4 0
0 1/2 0 1/2
0 0 0 1

 ,

where the lines separate the states of colorfulness 1 from the state of colorfulness 2. Let x =
(0, 0, 1) (row 1) be the state of the OneBin chain and y = (1, 1, 1, 1, 1) (row 3) be the state
of the GreedyFit chain. Since χ(x) = χ(y) = 1 we have χ(x) ≤ χ(y). On the other hand,
we have POB(x, ·) = (0, 1, 0) and PGF(y, ·) = (0, 1/2, 0, 1/2). Thus χ(OB(x)) = 1 with
probability 1, whereas χ(GF(y)) = 2 with probability 1/2, so χ(PGF(x, ·)) 6≤st χ(POB(y, ·)).
Hence, the condition of Theorem 5.2.10 is not fulfilled.

Interestingly, the proof of Doisy’s criterion lends itself to a generalization. To describe
this, we need the notion of a coupling that is well-known in probability theory (and in
some areas of algorithmics as well).

Definition 5.2.11 (Coupling) Let X and Y be S-valued random variables on proba-
bility spaces (Ω1,A1, P1) and (Ω2,A2, P2), respectively. A coupling of X and Y is an
S × S-valued random variable Z = (X̃, Ỹ) on some probability space (Ω̃, Ã, P̃) with

1. X̃ ∼ X i. e., P̃
[
X̃ ≤ x, Ỹ arbitrary

]
= P [X ≤ x] and

2. Ỹ ∼ Y .

126

5.2. Comparison methods for Markov chains

1.0
FX(x)

FY (x)0.55

X̃(0.55) Ỹ (0.55)

Figure 5.1.: Illustration of the proof idea for Theorem 5.2.12.

Couplings are a powerful concept allowing to compare distributions with each other.
The following result, which is sometimes refered to as the Theorem of Strassen, gives a
well-known connection between stochastic dominance and couplings, see e. g., [Lin92]. It
states that stochastic dominance is almost as strong as a pointwise comparison and it is
the deeper reason for some of the nice properties of the stochastic dominance order. For
instance, the first two statements of Theorem 4.3.2 can easily be derived from it.

Theorem 5.2.12 (e. g., [Lin92]) For two random variables X and Y the following are
equivalent:

1. X ≤st Y

2. There is a coupling Z = (X̃, Ỹ) of X and Y such that Prob
[
X̃ ≤ Ỹ

]
= 1.

Proof. This proof is taken from the book of Lindvall [Lin92, p. 127].

1. ⇒ 2. Let F be a distribution function and consider a random variable U distributed
uniformly on [0, 1]. It is well known that the random variable F−1(U) with

F−1(u) := inf{x ∈ R | F (x) ≥ u}

has distribution function F . We use this fact to construct a coupling Z of X and Y
as required (see Figure 5.1 for an illustration). In particular, let X̃ := F−1

X (U) and
Ỹ := F−1

Y (U) for a random variable U as above. From the definition of stochastic
dominance we have FX(x) ≥ FY (x) for all x ∈ R, which implies F−1

X (x) ≤ F−1
Y (x) and

thus Prob
[
X̃ ≤ Ỹ

]
= 1.

2. ⇒ 1. For all x ∈ R:

Prob [X ≤ x] = Prob
[
X̃ ≤ x, Ỹ arbitrary

]
≥ Prob

[
X̃ ≤ Ỹ ≤ x

]
= Prob

[
Ỹ ≤ x, X̃ arbitrary

]
= Prob [Y ≤ x] . 2

127

Chapter 5. Analysis of bin coloring algorithms

Remark 5.2.13 For an arbitrary finite set S, consider a uniformly distributed S-valued
random variable Σ. Suppose we know f1(Σ) ≤st f2(Σ) for two real-valued functions f1 and
f2. The existence of a coupling between f1(Σ) and f2(Σ) according to Theorem 5.2.12 is in
this case equivalent to the existence of a bijective mapping π : S → S with f1(σ) ≤ f2(π(σ))
for any σ ∈ S, which can be obtained by the construction in the proof. Hence, stochastic
dominance analysis includes Bijective Analysis as a special case.

The following theorem gives a sufficient criterion for a pairwise comparison between
online bin coloring algorithms. It will serve as the theoretical basis for the computer
proofs of stochastic dominance between GreedyFit and OneBin obtained in the next section.
For a Markov chain X = (Xn)n∈N0 the l-step Markov chain X l = (X l

n)n∈N0 is defined by

X l
n := Xln ∀n ∈ N0.

If P is the transition matrix of X, the transition matrix of X l is P l.

Theorem 5.2.14 Let (X,φ) and (Y, ψ) be valued Markov chains on countable state spaces
SX and SY , respectively. Suppose there is a set S ⊆ {(x, y) ∈ SX × SY | φ(x) ≤ ψ(y)}
and an l ≥ 1 s. t.

1. For 0 ≤ i < l there exists a coupling (X̃i, Ỹi) of Xi and Yi with

Prob
[
(X̃i, Ỹi) ∈ S

]
= 1

and

2. for every (x, y) ∈ S there exists a coupling (X̃ l, Ỹ l) of X l(x) and Y l(y) with

Prob
[
(X̃ l, Ỹ l) ∈ S

]
= 1.

Then we have φ(Xn) ≤st ψ(Yn) for all n ∈ N0.

Proof. 0 ≤ i < l Follows directly using Theorem 5.2.12 and Property 1.

i ≥ l We construct a coupling (X̃i, Ỹi) of Xi and Yi as follows. First observe that the
couplings required by 2. define a transition matrix Z of a Markov chain on state space S
where the first component of the state evolves as the l-step Markov chain corresponding
to X and the second component as that of Y . Now let i = ql + r, 0 ≤ r < l. Let
p be the probability distribution of (X̃r, Ỹr) on S and define (X̃i, Ỹi) as the random
state distributed as pZq. By construction, (X̃i, Ỹi) is in S with probability 1 and has
marginal distributions Xi and Yi, so by Theorem 5.2.12 the claim follows. 2

128

5.2. Comparison methods for Markov chains

5.2.3. Computer proofs for stochastic dominance relations between
bin coloring algorithms

Observe that the set of couplings, or equivalently, the pair (S, l), assumed by The-
orem 5.2.14 constitute a certificate for the stochastic dominance between the valued
Markov chains (X,φ) and (Y, ψ). We now describe how such a certificate can be found
using a computer-aided construction.
We assume that the colors are generated according to the uniform distribution and

consider the Markov chain model of Section 4.3.2. In particular, we study the valued
Markov chains for the algorithms OneBin, FixedColors, and GreedyFit. Figure 5.2 gives an
example of an explicit construction of the set S for l = 1 for a FixedColors and a GreedyFit
Markov chain, indicating the obstacles that may occur.
Of course, one can try to algorithmically find a subset S of the product state space
SX × SY and an integer l such that the couplings required by Theorem 5.2.14 exist.
Our algorithm (see Algorithm 5.1) maintains a set F ⊆ SX × SY of forbidden states,
which initially contains those pairs of states (x, y) ∈ SX × SY with φ(x) > ψ(y). For
a given l, we can assume w. l. o. g. that each Markov chain has l initial states having
the i-step distribution as successor distribution, for 0 ≤ i < l. Let x0, . . . , xl−1 and
y0, . . . , yl−1 be those states for the chains X and Y , respectively. Starting from the
states (x0, y0), . . . , (xl−1, yl−1), we iteratively try to construct successor-state couplings
of all states that can be reached from there such that the probability of reaching a
forbidden state is zero. The set G is the set of “good” states that, if the construction is
successful, constitute the set S. To keep track of the states for which we still need to find
successor-state couplings avoiding F we use a queue Q.

This check is accomplished by procedure Coupling(X(x), Y (y), F) which tries to compute
for random states X(x) and Y (y) and a forbidden set F ⊆ SX × SY a coupling (X̃, Ỹ)
that avoids states in F . This procedure can be implemented by solving the following
Linear Program. Let px,y be a real variable for the probability to go to state (x, y).

min 0

s. t.
∑
y∈SY

px,y = Prob [X(x) = x] ∀x ∈ SX ,∑
x∈SX

px,y = Prob [Y (y) = y] ∀y ∈ SY ,

px,y = 0 ∀(x, y) ∈ F,
0 ≤ px,y ≤ 1 ∀x ∈ SX , y ∈ SY .

If this Linear Program is feasible, Coupling(X(x), Y (y), F) indicates success and returns
the computed probabilities in matrix Z, otherwise it indicates the failure.
If the coupling construction was successful for state (x, y), we need to ensure that we

can successfully couple from all states reached via the successor-state coupling. Therefore
we add (x, y) to Q and G if it is not in G yet. In the case there is no F -avoiding
successor-state coupling from state (x, y), state (x, y) needs to be forbidden, too. Once

129

Chapter 5. Analysis of bin coloring algorithms

GreedyFit

F
ix

e
d
C

o
l
o
r
s

0,0:0,0:1
0,0:0,0:1

0,0:0,0:1
1,1:1,1:1

0,0:0,0:1
2

1,1:0,0:1
1,1:0,0:1

1,1:0,0:1
2

1,1:1,1:1
0,0:0,0:1

1,1:1,1:1
1,1:1,1:1

1,1:1,1:1
2

2
0,0:0,0:1

2
1,1:0,0:1

2
1,1:1,1:1

2
2

(a) First stage: Product coupling with
forbidden states (i. e., states that cannot be
part of S) and forbidden transitions into the

forbidden states.

GreedyFit

F
ix

e
d
C

o
l
o
r
s

0,0:0,0:1
0,0:0,0:1

0,0:0,0:1
1,1:1,1:1

0,0:0,0:1
2

1,1:0,0:1
1,1:0,0:1

1,1:0,0:1
2

1,1:1,1:1
0,0:0,0:1

1,1:1,1:1
1,1:1,1:1

1,1:1,1:1
2

2
0,0:0,0:1

2
1,1:0,0:1

2
1,1:1,1:1

2
2

(b) Second stage: The transition from
(1,1;1,1:1 | 1,1;1,1:1) to (1,1;0,0:1 | 2) can be

avoided via coupling.

GreedyFit

F
ix

e
d
C

o
l
o
r
s

0,0:0,0:1
0,0:0,0:1

0,0:0,0:1
1,1:1,1:1

0,0:0,0:1
2

1,1:0,0:1
1,1:0,0:1

1,1:0,0:1
2

1,1:1,1:1
0,0:0,0:1

1,1:1,1:1
1,1:1,1:1

1,1:1,1:1
2

2
0,0:0,0:1

2
1,1:0,0:1

2
1,1:1,1:1

2
2

(c) Third stage: The transition from
(0,0;0,0:1 | 1,1;1,1:1) to (1,1;0,0:1 | 2) cannot

be avoided via coupling, so the state
(0,0;0,0:1 | 1,1;1,1:1) has to be forbidden as
well. The ingoing transition can be avoided

via coupling.

GreedyFit

F
ix

e
d
C

o
l
o
r
s

0,0:0,0:1
0,0:0,0:1

0,0:0,0:1
2

1,1:0,0:1
1,1:0,0:1

1,1:0,0:1
2

1,1:1,1:1
1,1:1,1:1

1,1:1,1:1
2

2
2

(d) Final stage: Resulting coupling consisting
of the set S and the transitions staying in S.

Figure 5.2.: Example construction of a set S that for l = 1 shows that GreedyFit is superior
to FixedColors for m = B = 2. The lower component of each state is the GreedyFit
state, the upper the FixedColors state.

130

5.2. Comparison methods for Markov chains

Input: Valued Markov chains (X,φ) and (Y, ψ) and their initial states x0, . . . , xl−1 and
y0, . . . , yl−1

1: F ← {(x, y) ∈ SX × SY | φ(x) > ψ(y)}
2: Q,G← ∅
3: for i = 0, . . . , l − 1 do
4: G← G ∪ {(xi, yi)}
5: if ¬UpdateViaCoupling(xi, yi) then
6: stop; construction failed
7: end if
8: end for
9: while Q 6= ∅ do

10: remove state s = (s1, s2) from Q
11: if ¬UpdateViaCoupling(s1, s2) then
12: stop; construction failed
13: end if
14: end while
15: construction successful, S = G

16: procedure UpdateViaCoupling(states x and y)
17: (success, (X̃, Ỹ))← Coupling(X(x), Y (y), F)
18: if success then
19: for s′ ∈ {(x, y) ∈ SX × SY | Z(x, y) > 0} do
20: if s′ /∈ G then
21: G← G ∪ {s′}, Q← Q ∪ {s′}
22: end if
23: end for
24: else
25: F ← F ∪ {(x, y)}, G← G \ {(x, y)}
26: if (x, y) = (xi, yi) for some 0 ≤ i < l (initial state) then
27: return FALSE . construction failed
28: end if
29: Q← Q ∪ {predecessors of (x, y) according to Z}
30: end if
31: return TRUE
32: end procedure

Algorithm 5.1: Try to construct a certificate for stochastic dominance.

131

Chapter 5. Analysis of bin coloring algorithms

one of the initial states has to be forbidden, it is clear that we cannot avoid entering a
forbidden state at all and thus no set S exists.

We implemented the algorithm based on exact arithmetic using the GNU Multiple Pre-
cision Arithmetic Library [GMP06] (GMP) and the exact LP solver QSopt_ex [ACDE07]
in C++. Table 5.1 reports our results for the three bin coloring algorithms, in particular
the smallest value of l such that our algorithm found appropriate couplings according to
Theorem 5.2.14. The correctness of the constructed couplings does not depend on the
construction method, but only on the correct implementation of the (simple) routine which
checks the conditions of Theorem 5.2.14 and the correctness of the rational arithmetic
provided by GMP used in that routine. Assuming this, we get the following result.

Theorem 5.2.15 Denote by GF, FC, and OB the valued Markov chains for the max-BC
for sequences with the uniform color distributions. For the values of m, B, and C given
in Table 5.1, we have

χ
(
GFn(m,B,C)

)
≤st χ

(
FCn(m,B,C)

)
≤st χ

(
OBn(m,B,C)

)
for all n ∈ N0.

Observe that for B = 2 and for GreedyFit against OneBin l = 1 is sufficient, indicating
that the “proof” is particularly simple. In fact, the case B = 2 can in general be dealt with
similarly to Figure 5.1 and GreedyFit against OneBin admits a rigorous proof presented in
the next section.

5.3. Rigorous proofs of the stochastic dominance between
OneBin and GreedyFit

We mentioned already in Chapter 4 that the monotonicity technique [MS02] and the
comparison criterion of Doisy [Doi00] are not sufficient to prove the observed stochastic
dominance between OneBin and GreedyFit. Our analysis is therefore based on Theo-
rem 4.3.5, which states that stochastic dominance at every point in time is equivalent to
stochastic dominance between certain stopping times.

So far we assumed that the objective of the bin coloring algorithms is to minimize the
maximum colorfulness attained in any bin. Another reasonable objective is to minimize
the average colorfulness of all the bins, or equivalently the sum of the colorfulnesses of all
bins. From now on, we refer to the first problem as max-BC and to the second one as
sum-BC.

5.3.1. Markov chain models and preliminaries

We start by describing a valued Markov chain model for max-BC algorithms that is a
generalization of the Markov chain model given in Section 4.3.2. The operation of any
such bin coloring algorithm can be described on a state space which encodes for every

132

5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit

Parameters GF vs. OB FC vs. OB GF vs. FC

m = 2, B = 2, C = 4 1 1 1
m = 2, B = 3, C = 6 1 4 2
m = 2, B = 4, C = 8 1 6 8
m = 2, B = 5, C = 10 1 8 9
m = 2, B = 6, C = 12 1 10 9
m = 2, B = 7, C = 14 1 12 11

m = 3, B = 2, C = 6 1 1 1
m = 3, B = 3, C = 9 1 4 4
m = 3, B = 4, C = 12 1 6 6
m = 3, B = 5, C = 15 1 8 6

m = 4, B = 2, C = 8 1 1 1
m = 4, B = 3, C = 12 1 4 3
m = 4, B = 4, C = 16 1 6 4

m = 5, B = 2, C = 10 1 1 1
m = 5, B = 3, C = 15 1 4 2
m = 5, B = 4, C = 20 1 6 3

m = 3, B = 5, C = 6 1 1 1
m = 3, B = 5, C = 9 1 6 5
m = 3, B = 5, C = 12 1 8 6
m = 3, B = 5, C = 15 1 8 6
m = 3, B = 5, C = 18 1 8 6
m = 3, B = 5, C = 21 1 8 6
m = 3, B = 5, C = 24 1 8 7
m = 3, B = 5, C = 27 1 8 7
m = 3, B = 5, C = 30 1 8 8
m = 3, B = 5, C = 33 1 8 8
m = 3, B = 5, C = 36 1 8 8
m = 3, B = 5, C = 39 1 8 8
m = 3, B = 5, C = 42 1 8 8
m = 3, B = 5, C = 45 1 8 10

Table 5.1.: Results of our algorithm on the parameter sets defined in Section 4.3.2. The
reported numbers are the smallest values l for which couplings proving stochastic domi-
nance via Theorem 5.2.14 could be constructed.

133

Chapter 5. Analysis of bin coloring algorithms

bin i its current number of items fi and the set of colors in that bin Ci. Moreover, the
state also keeps track of the maximum colorfulness attained so far. Formally, we have

Smax-BC := Smax-BC(m,B,C) =
{

(f1, C1, . . . , fm, Cm, χ)
∣∣∣ 0 ≤ |Ci| ≤ fi ≤ B,

|Ci| ≤ χ ≤ min{B,C}
}
.

Note that the states reachable by the operation of an algorithm may be a subset of
Smax-BC.
We will use fi(s), Ci(s), and χ(s) to refer to the components of state s. Additionally,

we define ci(s) := |Ci(s)|. The state (0, ∅, . . . , 0, ∅, 0) is called the initial empty state.
Suppose an online bin coloring algorithm A is in state s and receives an item of color c.

The algorithm then changes to state s′ by putting this item in one of the bins, say bin i.
There are two cases: Either color c is contained in Ci(s), we say the color is known (in
bin i), or it is not, so the color is new (in bin i). We will denote the successor state for
the first case by sknown(i) (the color c is not needed to determine the successor state), for
the second by snew(i,c). It will be convenient not to consider the new color c, but to deal
with the random state resulting from s if any new color distributed according to γ is seen.
We will use the notation snew(i) for this random state.

The OneBin algorithm is then described by the transitions

s′ =

{
sknown(1) with probability γ(C1(s)),
snew(1) with probability 1− γ(C1(s)),

(5.4)

where we use the shortcut notation γ(S) :=
∑

s∈S γ(s). This defines a Markov chain
which we denote by OB(m,B,C, γ). Note that although OneBin uses only the first bin,
we consider OB(m,B,C, γ) as working on the whole state space with m bins.

Similarly, we can give a Markov chain GF(m,B,C, γ) for GreedyFit. GF(s) is the bin
GreedyFit selects for an item with a new color in state s. Depending on the tie-breaking
rule used by the specific variant of GreedyFit, GF(s) may or may not be a random variable.
We only need that GF(s) is one of the bins having in state s the smallest number of colors.

s′ =

{
sknown(i) with probability γ(Ci(s)) 1 ≤ i ≤ m,
snew(GF(s)) with probability 1− γ

(⋃
iCi(s)

)
.

(5.5)

The operation of online algorithms in the sum-BC problem can be captured by a similar
Markov chain model. The main difference is that the χ-component is no longer the
maximum of the colorfulness seen so far, but the sum. Note that the resulting Markov
chains are infinite. We can use the state space

Ssum-BC := Ssum-BC(m,B,C) =
{

(f1, C1, . . . , fm, Cm, χ)
∣∣∣ 0 ≤ |Ci| ≤ fi ≤ B,

|Ci| ≤ min{B,C}, χ ∈ N0

}
.

The χ-component increases each time a new color for a bin is encountered.

134

5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit

To avoid notational overhead, we will use the same notation for both problem variants.
Therefore the sum-BC-Markov chains for OneBin and GreedyFit will be denoted by
OB(m,B,C, γ) and GF(m,B,C, γ), too. We use the notations OB(m,B,C, γ)n and
GF(m,B,C, γ)n for the random state after n steps when OneBin and GreedyFit are started
in the initial empty state.
Consider valued Markov chains (X,χ) and (Y, χ) corresponding to bin coloring algo-

rithms, where χmeasures either the maximum or the sum of the colorfulnesses encountered.
Recall that for a valued Markov chain (X,χ), we denote by T vX the first time the Markov
chain X reaches a state with valuation at least v. By Theorem 4.3.5, it is suffient to
show T vY ≤st T

v
X for all v ∈ V to conclude show χ(Xn) ≤st χ(Yn) for all n ∈ N0. We will

therefore analyze the stopping times to prove our stochastic dominance result. In the
sequel, we denote by T vX(s) the stopping time for reaching a state with valuation at least
v when started deterministically in state in s.

How can we show T vY (s0) ≤st T
v
X(s0)? In order to apply a kind of induction technique

we introduce a family of Markov chains
(
X(n)

)
n∈N derived from a Markov chain X as

follows. The state space of X(n) is S × {0, . . . , n} and the transitions are defined by

Prob
[
X(n)i+1 = (s′, i+ 1) | X(n)i = (s, i)

]
:= Prob

[
Xi+1 = s′ | Xi = s

]
∀0 ≤ i < n,

Prob [X(n)i+1 = (s, n) | X(n)i = (s, n)] := 1 ∀i ≥ n.

The Markov chain X(n) can be thought of as an time-expanded, acyclic version of the
chain X for the first n steps. Clearly, we have

Prob [T vX(s) = i] = Prob
[
T vX(n)((s, 0)) = i

]
∀0 ≤ i < n. (5.6)

So in order to show T vY (s0) ≤st T
v
X(s0), we can prove that

T vY (n)((s0, 0)) ≤st T
v
X(n)((s0, 0)) ∀n ∈ N.

To simplify notation, we will write T vX(n)(s) for T vX(n)((s, 0)) from now on. We have the
following simple result.

Lemma 5.3.1 For any valued Markov chain (X,χ) the stochastic dominance relation

T vX(n+1)(s) ≤st T
v
X(n)(s)

holds for all states s, n ∈ N0, and v ∈ V .

Proof. Consider a sample path ω = (X0, X1, . . . , Xn) of X(n) with X0 = s. Obviously,
ω can be extended to a sample path ω′ = (X0, X1, . . . , Xn, Xn+1) of X(n + 1) and all
sample paths of X(n+ 1) starting in s are obtained this way. There are two cases:

1. χ(Xn) ≥ v: For all ω′ that are extensions of ω we have T vX(n+1)(s) = T vX(n)(s).

2. χ(Xn) < v: For those ω, T vX(n)(s) is infinite, whereas for any extension ω′ T vX(n+1)(s)
is either n+ 1 or infinite, too. Thus T vX(n+1)(s) ≤ T

v
X(n)(s). 2

135

Chapter 5. Analysis of bin coloring algorithms

To analyze the stopping times, we will employ the concept of a mixture of random
variables.

Definition 5.3.2 Let (Xm)m∈M be a family of random variables and Θ be an M -valued
random variable. The random variable Y defined by Y := XΘ, i. e., the X-variable to use
is given by the realization of Θ, is called a mixture and denoted by [(Xm)m∈M |Θ].

An important property of ≤st is that it is closed under mixture, as stated in the Mixture
Theorem.

Theorem 5.3.3 ([MS02, p. 6]) Suppose [(Xm)m∈M |Θ] and [(Ym)m∈M |Θ] are two mix-
tures controlled by the same random variable Θ satisfying Xm ≤st Ym for all m ∈ M .
Then we have

[(Xm)m∈M |Θ] ≤st [(Ym)m∈M |Θ] .

For two random variables X and Y , we will frequently write X = Y to mean that they
have the same distribution function.

5.3.2. GreedyFit is better than OneBin: max-BC

We will now apply the strategy described above to the comparison of the GreedyFit and
the OneBin bin coloring algorithms. The main technique is to analyze a kind of stochastic
recursion for T vX(n) based on a mixture of random variables.
Let OB = OB(m,B,C, γ) for fixed parameters m,B,C, γ. In a state s ∈ Smax-BC

OneBin does the transitions to states{
sknown(1) with probability γ(C1(s)),
snew(1) with probability 1− γ(C1(s)).

Using the random variable Θ: Smax-BC → N defined by

Θ(s) :=

{
1 the next color is known in bin 1,
2 the next color is new in bin 1,

we can come up with a recursive expression for T vOB(n)(s), namely

T vOB(n)(s) =

{
0 χ(s) ≥ v,
1 +

[
T vOB(n−1)

(
sknown(1)

)
, T vOB(n−1)

(
snew(1)

) ∣∣∣Θ(s)
]

χ(s) < v.
(5.7)

This recursion and the Mixture Theorem 5.3.3 are the most important ingredients for the
proofs to come.

We call two states s, s′ ∈ Smax-BC OB-equivalent, if the valuation, the number of items
and the set of colors in bin 1 are the same in s and s′, i. e., if χ(s) = χ(s′), f1(s) = f1(s′),
and C1(s) = C1(s′). Note that OneBin behaves exactly the same in two OB-equivalent
states and therefore the stopping times from two OB-equivalent states coincide. The
following lemma gives some useful comparisons of stopping times from certain states in
the OB(n) chains.

136

5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit

Lemma 5.3.4 Consider the OneBin Markov chain OB = OB(m,B,C, γ) for parameters
m,B ≥ 2, C, and color distribution γ. We have for all states s ∈ Smax-BC, n ∈ N, and
v ∈ V :

1. T vOB(n)(s
new(1)) ≤st T

v
OB(n)(s

known(1)), and

2. T vOB(n)(s
new(1)) ≤st T

v
OB(n)(s

′) for every state s′ that is OB-equivalent to s.

Proof. Let s ∈ Smax-BC be such that χ(snew(1)) < v (the case χ(snew(1)) ≥ v is trivial).

1. Observe that both snew(1) and sknown(1) have the same number of items in bin 1,
say f . In the case f = 0 both states are OB-equivalent, since bin 1 is empty then.
Therefore, T vOB(n)(s

new(1)) = T vOB(n)(s
known(1)).

For f > 0 the evolution from both states will be identical after B − f steps, since
bin 1 is then empty again. It is therefore sufficient to show

T vOB(B−f)(s
new(1)) ≤st T

v
OB(B−f)(s

known(1))

for all 1 ≤ f < B. We will show this by induction on j := B − f .
To start the induction, consider j = 1. There are two cases:

• c1(s) = v − 2: We have Prob
[
T vOB(j)(s

new(1)) ≤ 1
]
≤ 1 and

Prob
[
T vOB(j)(s

known(1)) =∞
]

= 1.

• c1(s) < v − 2: Then T vOB(j)(s
new(1)) = T vOB(j)(s

known(1)) ≡ ∞.
In both cases, the stochastic dominance is immediate.
Let us now consider the induction step, i. e., j > 1. The key observation is that
(since we need at least two items to close bin 1)

f1(snew(1),known(1)) = f1(sknown(1),new(1)) and

C1(snew(1),known(1)) = C1(sknown(1),new(1)),

which means that both states are OB-equivalent. Using the Mixture Theorem 5.3.3,
we can then estimate

T vOB(j)(s
new(1))

= 1 +
[
T vOB(j−1)(s

new(1),known(1)), T vOB(j−1)(s
new(1),new(1))

∣∣∣Θ(snew(1))
]

≤st 1 + T vOB(j−1)(s
new(1),known(1))

(by induction)

= 1 + T vOB(j−1)(s
known(1),new(1))

(OB-equivalence)

≤st 1 +
[
T vOB(j−1)(s

known(1),known(1)), T vOB(j−1)(s
known(1),new(1))

∣∣∣Θ(sknown(1))
]

(by induction)

= T vOB(j)(s
known(1)).

137

Chapter 5. Analysis of bin coloring algorithms

2. Since s and s′ are OB-equivalent, we have

T vOB(n)(s
′) = T vOB(n)(s) (OB-equivalence)

= 1 +
[
T vOB(n−1)(s

new(1)), T vOB(n−1)(s
known(1))

∣∣∣Θ(s)
]

≥st 1 + T vOB(n−1)(s
new(1)) (by 1.)

≥st 1 + T vOB(n)(s
new(1)) (by Lemma 5.3.1)

≥st T
v
OB(n)(s

new(1)). 2

Theorem 5.3.5 Let OB and GF be the OneBin and GreedyFit max-BC-Markov chains
for fixed parameters m,B,C with B,m ≥ 2 for some color distribution γ. We have for
all states s ∈ Smax-BC, n ∈ N, and v ∈ V :

T vOB(n)(s) ≤st T
v
GF(n)(s).

Proof. The proof is by induction on n. Since GreedyFit is not worse than OneBin for a
single step in each state s, we have T vOB(1)(s) ≤st T

v
GF(1)(s).

The proof idea for the induction step is depicted in Figure 5.3. Suppose we know that
T vOB(n)(s) ≤st T

v
GF(n)(s) for all s ∈ Smax-BC. Consider a state s ∈ Smax-BC. Define the

random variable Θ: Smax-BC → {1, . . . ,m+ 1} by

Prob [Θ(s) = i] =

{
γ(Ci(s)) 1 ≤ i ≤ m,
1− γ

(⋃
iCi(s)

)
i = m+ 1,

i. e., Θ in a sense “selects” the GreedyFit successor of state s. Using Θ, we can write the
recursion for the stopping time of OB as

T vOB(n+1)(s)

= 1 +
[
T vOB(n)(s

known(1)), T vOB(n)(s
new(1)), . . . , T vOB(n)(s

new(1))
∣∣∣Θ(s)

]
.

Observe that sknown(i), 2 ≤ i ≤ m, are OB-equivalent to s, snew(GF(s)) is either OB-
equivalent to s or equal to snew(1). We use Lemma 5.3.4 to bound this by

≤st 1 +
[
T vOB(n)(s

known(1)), . . . , T vOB(n)(s
known(m)), T vOB(n)(s

new(GF(s)))
∣∣∣Θ(s)

]
,

which by the induction hypothesis is bounded by

≤st 1 +
[
T vGF(n)(s

known(1)), . . . , T vGF(n)(s
known(m)), T vGF(n)(s

new(GF(s)))
∣∣∣Θ(s)

]
= T vGF(n+1)(s). 2

This concludes the induction step and the proof.

138

5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit

Figure 5.3.: Proof idea for induction step in proof of Theorem 5.3.5. The upper part shows
the transitions of the OB Markov chain, the lower part those of the GF chain, both with
corresponding stopping times. Using Lemma 5.3.4 and the induction hypothesis, one
can map (dashed lines indicate mapping Θ) the successor states of the OB chain to
those of the GF chain such that we have stochastic dominance for each pair of stopping
times.

Corollary 5.3.6 Let OB and GF be the OneBin and GreedyFit max-BC-Markov chains
for fixed parameters m,B,C and color distribution γ. We have for all states s ∈ Smax-BC,
in particular the initial empty state, and for all n ∈ N0 that

χ
(
GF(s)n

)
≤st χ

(
OB(s)n

)
.

Proof. The cases m = 1 and B = 1 are trivial. For the remaining cases, combine
Theorems 4.3.5 and 5.3.5 and the relation of OB(n) and OB as well as GF(n) and GF
according to Equation (5.6). 2

5.3.3. GreedyFit is better than OneBin: sum-BC

The analysis of the sum-BC problem is very similar to the one of max-BC in the preceding
section. Recall that the state space of the sum-BC only differs from the one of the max-BC
in its interpretation of the χ-component: it now counts the sum of the colorfulnesses of
all used bins instead of the maximum. Therefore, the χ-component increases with every
transition due to a new color. Nevertheless, recursion (5.7) for the stopping times is also
valid for the analysis of the sum-BC.

Note that the proof of Theorem 5.3.5 is based only on Lemma 5.3.4. The proof of item 2
of Lemma 5.3.4 only needs item 1 and OB-equivalence. The notion of OB-equivalence
introduced for the max-BC is also appropriate for the sum-BC. In particular, stopping
times for two OB-equivalent states coincide also for the sum-BC-Markov chain of OneBin.
Due to these observations, it is sufficient to prove an analogue of item 1 of Lemma 5.3.4
to establish stochastic dominance between GreedyFit and OneBin for the sum-BC. The
proof uses the concept of a coupling Markov chain.

139

Chapter 5. Analysis of bin coloring algorithms

Definition 5.3.7 Let X = (Xn)n∈N0 and Y = (Yn)n∈N0 be Markov chains on state
spaces SX and SY , respectively. A Markov chain Z = (X̃, Ỹ) on state space SX × SY is
a coupling Markov chain if X̃ and Ỹ are distributed as X and Y , respectively. However,
X̃ and Ỹ need not be independent.

Lemma 5.3.8 Consider the OneBin Markov chain OB = OB(m,B,C, γ) for parameters
m,B ≥ 2, C, and color distribution γ for the sum-BC. We then have

T vOB(n)(s
new(1)) ≤st T

v
OB(n)(s

known(1))

for all states s ∈ Ssum-BC, n ∈ N, and v ∈ V .

Proof. We will show the stronger T vOB(snew(1,c)) ≤st T
v
OB(sknown(1)) for all c /∈ C1(s) by

constructing a coupling Markov chain Z = (X,Y) on a state space that is a subset
of Ssum-BC × Ssum-BC. The first component of Z behaves exactly as OB started in
state snew(1,c) and the second component as OB started in sknown(1).

A state (sn, sk) of Z that can be reached from the initial state (snew(1,c), sknown(1)) will
always satisfy the invariant

• either χ(sn) ≥ χ(sk), f1(sn) = f1(sk), and C1(sn) = C1(sk) or

• χ(sn) = χ(sk) + 1, f1(sn) = f1(sk), and C1(sn) = C1(sk) ∪ {c}.

Since in both cases χ(sn) ≥ χ(sk), the invariant implies

Prob
[
T vX(snew(1,c)) ≤ T vY (sknown(1))

]
= 1,

so by Strassen’s Theorem the stochastic dominance is established.
It remains to describe Z. The initial state is (snew(1,c), sknown(1)), which obviously

satisfies the invariant. Consider any state (sn, sk) satisfying the invariant. If sn and sk

differ at most in the χ-component, then the transitions of Z are such that the same
happens in both components, leading to further states satisfying the invariant.

Suppose sn and sk differ also in the C1-component. The transitions are then determined
by the next color c′ drawn according to γ as follows:

(
sn,new(1,c′), sk,new(1,c′)

)
c′ /∈ C1(sn) = C1(sk) ∪ {c},(

sn,known(1), sk,new(1,c′)
)

c′ = c,(
sn,known(1), sk,known(1)

)
c′ ∈ C1(sk).

Note that all the states satisfy the invariant and that the second kind of transition leads
to states which differ at most in the χ-component (the other way of reaching such a state
is when bin 1 is empty again). Finally, we can verify that these transitions mirror the
behavior of the OB chain in each component:

Prob
[
Xn+1 = sn,new(1,c′)

∣∣∣Xn = sn
]

= 1− γ(C1(sn)),

Prob
[
Xn+1 = sn,known(1)

∣∣∣Xn = sn
]

= γ(C1(sn)),

140

5.3. Rigorous proofs of the stochastic dominance between OneBin and GreedyFit

Prob
[
Yn+1 = sk,new(1,c′)

∣∣∣Yn = sk
]

= 1− γ(C1(sk)),

Prob
[
Yn+1 = sk,known(1)

∣∣∣Yn = sk
]

= γ(C1(sk)). 2

Theorem 5.3.9 Let OB and GF be the OneBin and GreedyFit sum-BC-Markov chains
for fixed parameters m,B,C and color distribution γ. We have for all states s ∈ Ssum-BC,
in particular the initial empty state, and for all n ∈ N0 that

χ
(
GF(s)n

)
≤st χ

(
OB(s)n

)
.

141

Appendix A.

Tables of computational results

A.1. Simulation results for elevator control algorithms

The following tables provide the detailed results of our extensive simulation studies
described in Section 3.3. For each of the two buildings and every population percentage
between 6% and 20% we report the waiting time median α0.5, the 0.9-quantile α0.9 of the
waiting time, and the number of reissues as a fraction of the total number of passengers.
Each of these values is determined from ten independent simulation runs, with different
algorithms running on exactly the same instances.
From this data, we can determine the handling capacity according to our definition

of “reasonable” service quality, meaning that α0.5 is at most 25 seconds, α0.9 is at most
55 seconds, and at most 10% of the passengers have to reissue their call. Since these
thresholds are sometimes missed by a small margin only and the next precentage level gives
much worse results, we were less strict and actually used 58 seconds and less than 11% as
the critical thresholds. The row that determines the handling capacity is marked grey,
with the limiting value indicated in bold.

143

Appendix A. Tables of computational results

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

2
18

6
0.
1%

0
13

4
0.
2%

8
24

10
0.
0%

6
24

9
0.
0%

U
p
7%

2
23

7
1.
8%

1
16

5
1.
2%

8
28

11
0.
2%

5
23

8
0.
0%

U
p
8%

3
24

8
2.
8%

0
17

5
2.
5%

8
29

11
0.
2%

5
24

9
0.
1%

U
p
9%

4
28

9
6.
3%

0
18

6
6.
2%

8
29

11
0.
3%

4
25

9
0.
6%

U
p
10
%

5
33

11
9.

5%
1

27
8

8.
6%

9
32

12
1.
2%

4
27

10
1.
4%

U
p
11
%

8
43

15
16
.9
%

4
32

10
14
.7
%

11
36

14
5.
7%

5
29

10
3.
1%

U
p
12
%

9
50

17
27
.3
%

6
46

15
24
.6
%

12
38

16
10

.4
%

5
33

11
8.

9%
U
p
13
%

15
66

24
41
.8
%

8
59

19
37
.0
%

17
51

21
21
.5
%

8
41

15
12
.6
%

U
p
14
%

19
98

34
56
.9
%

12
81

28
56
.6
%

24
73

31
37
.1
%

16
60

23
34
.5
%

U
p
15
%

28
11
0

43
63
.6
%

19
10
7

38
66
.1
%

30
88

37
48
.3
%

21
76

30
46
.6
%

U
p
16
%

34
14
0

54
79
.0
%

29
12
9

49
79
.5
%

37
11
4

48
62
.1
%

30
98

41
62
.0
%

U
p
17
%

44
15
9

65
90
.1
%

37
15
2

60
93
.8
%

46
13
5

58
73
.8
%

40
11
6

51
76
.3
%

U
p
18
%

56
17
5

76
10
6.
4%

59
17
3

73
11
4.
0%

59
14
8

68
87
.2
%

50
13
1

59
86
.4
%

U
p
19
%

80
19
9

89
11
8.
5%

70
19
1

84
11
6.
1%

77
17
7

85
10
3.
0%

65
15
1

70
10
1.
0%

U
p
20
%

95
22
4

10
1

13
1.
7%

88
21
6

94
12
7.
8%

87
19
5

93
11
2.
5%

76
17
1

81
11
2.
1%

R
ea
lU

p
6%

3
21

7
0.
4%

2
19

6
0.
6%

9
28

12
0.
0%

8
26

10
0.
0%

R
ea
lU

p
7%

4
23

8
2.
2%

2
22

7
1.
2%

10
29

12
0.
1%

7
28

10
0.
2%

R
ea
lU

p
8%

4
24

9
2.
8%

2
21

7
1.
5%

10
33

13
0.
0%

6
26

10
0.
1%

R
ea
lU

p
9%

5
29

10
5.
2%

2
24

8
5.

4%
10

33
13

0.
5%

6
29

11
1.
1%

R
ea
lU

p
10
%

7
37

13
10

.1
%

5
33

11
11
.7
%

11
37

15
2.
9%

7
34

12
2.
4%

R
ea
lU

p
11
%

12
49

19
26
.0
%

6
37

13
19
.1
%

13
42

18
9.

1%
8

37
14

6.
2%

R
ea
lU

p
12
%

17
59

24
33
.7
%

13
58

21
34
.9
%

19
54

23
19
.4
%

12
43

17
11
.4
%

R
ea
lU

p
13
%

22
86

33
48
.3
%

19
87

33
52
.6
%

25
67

29
27
.3
%

19
61

25
28
.8
%

R
ea
lU

p
14
%

27
10
7

42
57
.4
%

25
10
7

41
63
.4
%

32
91

39
40
.9
%

25
84

34
42
.0
%

R
ea
lU

p
15
%

39
13
1

55
72
.2
%

33
13
5

53
77
.5
%

38
11
4

48
51
.5
%

31
10
4

43
51
.7
%

R
ea
lU

p
16
%

52
15
0

66
88
.7
%

47
15
7

65
92
.5
%

45
13
0

57
63
.0
%

39
12
2

52
67
.8
%

R
ea
lU

p
17
%

73
17
4

81
10
2.
8%

61
17
9

78
10
2.
9%

57
14
9

68
73
.7
%

57
14
4

66
82
.1
%

R
ea
lU

p
18
%

83
19
1

89
11
0.
3%

82
19
8

89
11
8.
8%

72
17
2

81
89
.6
%

63
16
6

76
91
.9
%

R
ea
lU

p
19
%

10
0

21
9

10
5

12
4.
9%

98
21
8

10
2

12
9.
8%

83
18
9

91
97
.8
%

77
18
2

86
10
4.
8%

R
ea
lU

p
20
%

11
1

23
5

11
2

13
0.
9%

10
4

23
8

11
1

13
6.
1%

99
20
9

10
3

10
8.
2%

89
20
0

96
11
2.
5%

T
ab

le
A
.1
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

A
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
on

ly
in
cl
ud

e
th
e
se
rv
ic
e
co
st
,
i.
e.
,
w
ai
tin

g
tim

e
an

d
tr
av
el

ti
m
e
co
st
,
ei
th
er

lin
ea
rl
y
or

qu
ad

ra
ti
c.

144

A.1. Simulation results for elevator control algorithms

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

2
13

5
0.
0%

2
12

4
0.
0%

8
20

9
0.
0%

8
20

9
0.
0%

U
p
7%

4
20

7
0.
0%

3
17

6
0.
0%

9
22

10
0.
0%

8
22

9
0.
0%

U
p
8%

5
24

9
0.
1%

5
23

9
0.
3%

10
26

12
0.
0%

10
26

11
0.
0%

U
p
9%

5
24

9
0.
0%

4
22

8
0.
2%

11
28

13
0.
0%

11
29

13
0.
0%

U
p
10
%

6
28

10
0.
9%

5
27

10
0.
0%

12
31

13
0.
0%

11
30

13
0.
0%

U
p
11
%

7
34

12
2.
6%

6
30

11
1.
4%

12
32

14
0.
1%

11
31

13
0.
3%

U
p
12
%

9
36

13
3.
6%

6
33

12
3.
5%

14
35

15
0.
7%

12
34

14
0.
8%

U
p
13
%

11
39

15
5.

3%
10

42
15

7.
3%

13
38

16
0.
9%

11
35

14
0.
8%

U
p
14
%

14
45

18
12
.0
%

11
43

16
10

.4
%

14
39

17
3.
5%

13
39

16
2.
1%

U
p
15
%

16
51

21
19
.0
%

15
52

21
20
.8
%

17
45

20
7.

5%
15

42
18

6.
7%

U
p
16
%

21
67

28
29
.4
%

21
69

28
35
.6
%

21
53

24
16
.3
%

18
48

21
15
.9
%

U
p
17
%

33
95

41
53
.2
%

29
90

38
55
.0
%

31
72

34
30
.0
%

27
66

31
32
.8
%

U
p
18
%

40
12
2

51
66
.6
%

37
12
4

51
72
.8
%

37
91

42
44
.4
%

33
88

39
47
.1
%

U
p
19
%

49
14
0

61
82
.2
%

45
13
8

58
77
.8
%

40
10
5

47
51
.4
%

38
96

44
54
.3
%

U
p
20
%

66
17
3

76
95
.6
%

62
16
6

73
10
0.
0%

53
12
8

61
70
.1
%

55
12
4

59
77
.4
%

R
ea
lU

p
6%

4
18

7
0.
0%

4
18

6
0.
0%

9
23

10
0.
0%

9
22

10
0.
0%

R
ea
lU

p
7%

5
22

9
0.
0%

5
24

9
0.
0%

11
25

12
0.
0%

11
25

12
0.
0%

R
ea
lU

p
8%

5
20

8
0.
1%

6
22

8
0.
1%

11
27

13
0.
0%

11
27

12
0.
0%

R
ea
lU

p
9%

6
26

10
0.
0%

6
24

9
0.
3%

12
32

14
0.
0%

11
31

13
0.
0%

R
ea
lU

p
10
%

7
29

11
0.
6%

7
28

11
0.
2%

13
34

15
0.
0%

12
33

14
0.
0%

R
ea
lU

p
11
%

9
32

13
2.
4%

8
33

12
2.
0%

15
39

17
0.
1%

14
38

16
0.
1%

R
ea
lU

p
12
%

9
34

13
4.
4%

9
33

13
4.
9%

15
40

17
0.
5%

14
38

16
0.
9%

R
ea
lU

p
13
%

12
41

17
9.

5%
11

41
16

10
.3

%
17

44
20

3.
0%

15
42

18
1.
6%

R
ea
lU

p
14
%

14
42

18
13
.6
%

15
48

20
15
.3
%

18
47

21
4.

5%
15

44
19

2.
5%

R
ea
lU

p
15
%

18
61

25
24
.5
%

16
59

23
24
.2
%

24
57

27
11
.7
%

19
50

22
10

.0
%

R
ea
lU

p
16
%

28
86

37
43
.9
%

30
93

40
55
.8
%

27
70

32
20
.6
%

26
72

32
27
.4
%

R
ea
lU

p
17
%

32
10
3

43
54
.4
%

31
96

41
56
.5
%

31
81

37
29
.1
%

29
77

34
32
.0
%

R
ea
lU

p
18
%

42
13
4

58
70
.2
%

42
12
5

54
71
.1
%

40
10
5

47
40
.3
%

37
99

45
42
.9
%

R
ea
lU

p
19
%

53
15
4

68
83
.1
%

53
15
9

69
87
.4
%

51
12
2

58
55
.8
%

50
12
4

58
62
.2
%

R
ea
lU

p
20
%

59
16
9

74
91
.6
%

63
17
9

79
10
8.
1%

53
13
1

61
59
.0
%

49
12
6

58
66
.0
%

T
ab

le
A
.2
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

B
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
on

ly
in
cl
ud

e
th
e
se
rv
ic
e
co
st
,
i.
e.
,
w
ai
tin

g
tim

e
an

d
tr
av
el

ti
m
e
co
st
,
ei
th
er

lin
ea
rl
y
or

qu
ad

ra
ti
c.

145

Appendix A. Tables of computational results

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

2
18

6
0.
0%

0
13

4
0.
2%

8
24

10
0.
0%

6
24

9
0.
0%

U
p
7%

3
23

7
0.
0%

1
16

5
0.
8%

8
28

11
0.
0%

5
23

8
0.
0%

U
p
8%

3
24

8
0.
0%

0
17

5
2.
1%

8
28

11
0.
0%

5
24

9
0.
1%

U
p
9%

3
24

8
0.
0%

0
19

6
4.
5%

8
29

11
0.
0%

4
25

9
0.
6%

U
p
10
%

5
32

11
0.
0%

2
29

9
6.
0%

8
32

12
0.
0%

4
27

10
1.
4%

U
p
11
%

7
35

13
0.
0%

3
31

10
7.
8%

10
33

13
0.
0%

5
29

10
3.
0%

U
p
12
%

10
41

15
0.
0%

6
37

13
8.
5%

11
35

14
0.
0%

5
32

11
5.
1%

U
p
13
%

16
51

21
0.
0%

9
45

16
8.
6%

15
42

18
0.
0%

7
38

14
6.
4%

U
p
14
%

26
67

30
2.
0%

15
61

23
6.
6%

23
54

25
0.
1%

15
50

20
7.
9%

U
p
15
%

35
86

39
11
.2
%

20
74

29
7.
9%

29
71

33
2.
4%

19
63

25
6.
9%

U
p
16
%

47
11
1

50
22
.2
%

28
82

35
8.
4%

39
89

43
11
.7
%

25
78

33
7.
3%

U
p
17
%

53
13
4

59
34
.4
%

33
91

39
10
.7
%

49
11
7

54
24
.9
%

31
87

38
9.
7%

U
p
18
%

64
15
8

72
48
.6
%

42
10
1

47
15
.3
%

61
14
4

66
39
.8
%

38
95

44
13
.1
%

U
p
19
%

75
18
6

86
64
.6
%

49
11
1

52
18
.7
%

72
16
7

80
57
.3
%

47
10
6

50
17
.3
%

U
p
20
%

82
21
4

99
77
.8
%

55
11
9

57
24
.8
%

79
19
1

91
67
.9
%

53
11
7

56
22
.6
%

R
ea
lU

p
6%

3
21

7
0.
0%

2
19

6
0.
6%

9
28

12
0.
0%

8
26

10
0.
0%

R
ea
lU

p
7%

4
23

8
0.
0%

2
22

7
1.
2%

10
29

12
0.
0%

7
28

10
0.
2%

R
ea
lU

p
8%

4
24

9
0.
0%

2
21

7
1.
4%

10
33

13
0.
0%

6
26

10
0.
1%

R
ea
lU

p
9%

5
27

10
0.
0%

2
25

8
4.
6%

10
33

13
0.
0%

6
29

11
0.
8%

R
ea
lU

p
10
%

5
30

11
0.
0%

4
31

11
6.
6%

11
36

14
0.
0%

7
34

12
1.
9%

R
ea
lU

p
11
%

9
39

15
0.
0%

6
32

11
9.
7%

12
40

16
0.
0%

8
36

13
4.
7%

R
ea
lU

p
12
%

16
46

20
0.
0%

12
45

18
8.
1%

17
49

21
0.
0%

11
42

16
5.
3%

R
ea
lU

p
13
%

23
58

27
0.
3%

17
57

23
6.
8%

21
55

25
0.
0%

17
53

22
7.
3%

R
ea
lU

p
14
%

28
73

34
3.
0%

23
72

30
7.
0%

30
70

33
1.
2%

22
65

28
7.
2%

R
ea
lU

p
15
%

38
90

43
10
.1
%

28
83

35
8.
2%

37
84

40
6.
8%

25
79

33
6.
7%

R
ea
lU

p
16
%

47
11
7

54
20
.1
%

32
95

41
10
.8
%

43
99

47
13
.2
%

32
89

39
9.
9%

R
ea
lU

p
17
%

63
14
8

70
36
.7
%

41
10
5

48
14
.8
%

57
13
2

61
27
.0
%

40
10
3

48
13
.8
%

R
ea
lU

p
18
%

67
16
7

77
44
.8
%

46
11
5

54
18
.1
%

66
16
0

74
39
.4
%

47
11
5

54
21
.9
%

R
ea
lU

p
19
%

75
18
9

88
54
.9
%

55
12
9

62
23
.3
%

71
17
0

79
46
.2
%

52
12
3

59
24
.5
%

R
ea
lU

p
20
%

84
20
6

98
64
.3
%

60
13
5

65
27
.0
%

81
19
2

93
58
.6
%

64
14
5

69
37
.8
%

T
ab

le
A
.3
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

A
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

pl
us

a
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
co
rr
es
po
nd

in
g
to

12
0
se
co
nd

s
w
ai
ti
ng

ti
m
e.

146

A.1. Simulation results for elevator control algorithms

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

2
13

5
0.
0%

2
12

4
0.
0%

8
20

9
0.
0%

8
20

9
0.
0%

U
p
7%

4
20

7
0.
0%

3
17

6
0.
0%

9
22

10
0.
0%

8
22

9
0.
0%

U
p
8%

5
24

9
0.
0%

5
23

9
0.
3%

10
26

12
0.
0%

10
26

11
0.
0%

U
p
9%

5
24

9
0.
0%

4
22

8
0.
2%

11
28

13
0.
0%

11
29

13
0.
0%

U
p
10
%

6
28

10
0.
0%

5
27

10
0.
0%

12
31

13
0.
0%

11
30

13
0.
0%

U
p
11
%

7
33

12
0.
0%

6
30

11
0.
7%

12
32

14
0.
0%

11
31

13
0.
3%

U
p
12
%

8
35

13
0.
0%

7
34

12
1.
4%

14
35

15
0.
0%

12
33

14
0.
4%

U
p
13
%

10
37

14
0.
0%

9
40

14
2.
5%

13
37

16
0.
0%

11
35

14
0.
7%

U
p
14
%

13
44

18
0.
0%

10
41

15
1.
8%

15
39

17
0.
0%

12
39

16
1.
1%

U
p
15
%

14
47

19
0.
0%

13
47

18
2.
3%

16
41

18
0.
0%

14
42

17
2.
8%

U
p
16
%

20
57

25
0.
2%

17
53

22
3.
4%

19
48

22
0.
0%

17
46

20
2.
7%

U
p
17
%

32
71

34
1.
4%

23
64

28
2.
2%

28
61

30
0.
0%

23
59

27
2.
0%

U
p
18
%

40
89

43
8.
4%

27
77

33
2.
6%

33
71

35
0.
4%

26
68

30
1.
7%

U
p
19
%

42
10
1

48
15
.2
%

33
81

37
3.
0%

38
82

41
5.
0%

29
73

34
2.
5%

U
p
20
%

56
13
3

62
29
.0
%

37
88

41
3.
5%

50
10
7

53
17
.2
%

35
83

40
2.
8%

R
ea
lU

p
6%

4
18

7
0.
0%

4
18

6
0.
0%

9
23

10
0.
0%

9
22

10
0.
0%

R
ea
lU

p
7%

5
22

9
0.
0%

5
24

9
0.
0%

11
25

12
0.
0%

11
25

12
0.
0%

R
ea
lU

p
8%

5
20

8
0.
0%

6
22

8
0.
1%

11
27

13
0.
0%

11
27

12
0.
0%

R
ea
lU

p
9%

6
26

10
0.
0%

6
24

9
0.
0%

12
32

14
0.
0%

11
31

13
0.
0%

R
ea
lU

p
10
%

7
29

11
0.
0%

7
28

11
0.
2%

13
34

15
0.
0%

12
33

14
0.
0%

R
ea
lU

p
11
%

9
32

13
0.
0%

8
33

12
0.
5%

15
38

17
0.
0%

14
38

16
0.
1%

R
ea
lU

p
12
%

8
33

13
0.
0%

8
35

13
1.
7%

15
40

17
0.
0%

14
38

16
0.
7%

R
ea
lU

p
13
%

13
41

17
0.
0%

11
39

16
2.
8%

17
43

19
0.
0%

15
42

18
1.
0%

R
ea
lU

p
14
%

13
41

17
0.
0%

12
43

17
2.
6%

18
47

20
0.
0%

15
44

19
1.
2%

R
ea
lU

p
15
%

17
48

22
0.
0%

15
51

20
2.
8%

22
53

25
0.
0%

18
46

21
2.
2%

R
ea
lU

p
16
%

26
67

32
1.
0%

23
67

29
2.
5%

26
61

29
0.
0%

23
61

27
1.
9%

R
ea
lU

p
17
%

27
73

34
1.
6%

24
68

30
2.
8%

29
69

32
0.
6%

25
63

29
2.
6%

R
ea
lU

p
18
%

35
90

43
5.
7%

30
78

36
2.
5%

36
81

40
2.
4%

30
79

36
3.
1%

R
ea
lU

p
19
%

46
11
4

55
17
.8
%

38
93

43
4.
4%

47
10
4

51
12
.0
%

38
92

43
3.
9%

R
ea
lU

p
20
%

48
12
4

58
20
.5
%

36
92

43
3.
5%

46
10
3

51
11
.9
%

36
90

42
4.
5%

T
ab

le
A
.4
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

B
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

pl
us

a
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
co
rr
es
po
nd

in
g
to

12
0
se
co
nd

s
w
ai
ti
ng

ti
m
e.

147

Appendix A. Tables of computational results

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

0
11

3
0.
0%

0
7

2
0.
1%

0
11

3
0.
0%

0
7

2
0.
2%

U
p
7%

0
14

3
0.
0%

0
9

2
1.
0%

0
14

4
0.
0%

0
8

2
0.
5%

U
p
8%

0
19

5
0.
0%

0
11

3
2.
0%

0
16

4
0.
0%

0
15

4
2.
2%

U
p
9%

0
19

5
0.
0%

0
11

3
3.
5%

0
24

7
0.
0%

0
14

4
3.
6%

U
p
10
%

0
35

11
0.
0%

0
16

4
7.
4%

0
34

11
0.
0%

0
19

5
6.
4%

U
p
11
%

1
51

17
0.
6%

0
19

6
10

.7
%

4
43

16
0.
1%

0
27

8
8.

7%
U
p
12
%

0
66

22
1.
0%

2
31

10
12
.6
%

10
58

21
0.
5%

2
34

11
12
.2
%

U
p
13
%

18
92

34
5.
5%

8
41

15
13
.0
%

26
83

32
3.
3%

8
44

16
12
.0
%

U
p
14
%

28
10
1

40
14
.5
%

15
56

22
9.
8%

35
95

39
8.
2%

14
58

22
9.
6%

U
p
15
%

41
11
5

49
23
.1
%

21
68

28
11
.0
%

47
10
3

48
14
.4
%

20
68

27
10
.5
%

U
p
16
%

51
14
1

58
33
.5
%

28
83

35
13
.4
%

52
11
8

55
21
.2
%

28
84

35
12
.6
%

U
p
17
%

60
15
6

66
42
.2
%

35
91

40
18
.0
%

60
13
7

64
29
.1
%

35
91

40
14
.8
%

U
p
18
%

72
18
0

78
54
.7
%

42
10
0

46
22
.1
%

67
15
9

72
36
.5
%

43
99

46
18
.3
%

U
p
19
%

83
20
1

89
65
.5
%

53
11
3

54
29
.3
%

83
19
7

87
49
.5
%

53
11
5

55
27
.8
%

U
p
20
%

97
22
4

10
0

73
.1
%

60
12
1

59
32
.8
%

94
21
8

10
0

56
.9
%

61
12
9

62
35
.1
%

R
ea
lU

p
6%

0
20

5
0.
0%

0
16

5
0.
2%

0
22

6
0.
0%

0
20

5
0.
0%

R
ea
lU

p
7%

0
23

7
0.
0%

0
17

5
0.
5%

0
25

8
0.
0%

0
20

6
0.
5%

R
ea
lU

p
8%

0
24

8
0.
0%

0
20

6
1.
3%

0
26

9
0.
0%

0
22

6
1.
0%

R
ea
lU

p
9%

2
37

13
0.
0%

0
23

8
3.
1%

3
37

13
0.
0%

0
28

8
2.
6%

R
ea
lU

p
10
%

2
41

14
0.
0%

0
28

9
3.
8%

7
39

15
0.
0%

0
30

10
3.
1%

R
ea
lU

p
11
%

14
69

27
0.
3%

3
35

13
6.
8%

17
60

24
0.
1%

5
39

14
5.
6%

R
ea
lU

p
12
%

18
80

30
1.
2%

6
44

16
8.
8%

26
79

32
0.
4%

8
48

17
8.
4%

R
ea
lU

p
13
%

24
91

39
2.
5%

10
49

19
10
.3
%

30
90

37
1.
0%

10
53

20
9.
2%

R
ea
lU

p
14
%

35
10
6

47
9.
6%

16
67

26
8.
9%

42
10
2

48
6.
2%

18
70

27
8.
6%

R
ea
lU

p
15
%

42
11
9

53
15
.3
%

21
81

32
11
.6
%

43
10
7

51
8.
5%

26
83

34
9.
3%

R
ea
lU

p
16
%

51
14
1

62
24
.1
%

29
93

38
13
.8
%

56
12
2

64
14
.6
%

28
94

39
11
.7
%

R
ea
lU

p
17
%

57
15
0

68
30
.2
%

36
10
2

44
16
.0
%

61
14
1

68
20
.2
%

40
10
5

46
15
.3
%

R
ea
lU

p
18
%

68
17
5

79
42
.5
%

43
11
5

51
19
.6
%

73
16
9

81
28
.7
%

48
12
3

55
22
.9
%

R
ea
lU

p
19
%

75
18
7

86
46
.0
%

48
12
1

55
23
.4
%

76
18
9

87
34
.0
%

55
13
3

61
26
.9
%

R
ea
lU

p
20
%

85
20
6

94
54
.9
%

57
14
2

65
27
.9
%

90
21
4

98
41
.5
%

61
14
9

68
30
.2
%

T
ab

le
A
.5
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

A
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st
,
th
e
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
as

be
fo
re

pl
us

th
e
R
T
T

pe
na

lty
.

148

A.1. Simulation results for elevator control algorithms

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

0
10

3
0.
0%

0
9

2
0.
0%

0
12

3
0.
0%

0
11

3
0.
0%

U
p
7%

0
10

3
0.
0%

0
10

3
0.
0%

0
12

3
0.
0%

0
12

3
0.
0%

U
p
8%

0
14

4
0.
0%

0
16

4
0.
0%

0
14

4
0.
0%

0
15

4
0.
0%

U
p
9%

1
19

6
0.
0%

1
18

6
0.
0%

1
19

6
0.
0%

0
19

6
0.
0%

U
p
10
%

3
24

8
0.
0%

2
20

7
0.
1%

2
24

8
0.
0%

2
26

8
0.
1%

U
p
11
%

5
32

11
0.
0%

4
24

8
0.
2%

6
30

11
0.
0%

4
26

9
0.
2%

U
p
12
%

10
36

14
0.
0%

5
27

10
0.
8%

11
34

14
0.
0%

7
30

11
0.
5%

U
p
13
%

12
39

16
0.
0%

6
32

12
1.
8%

13
40

16
0.
0%

8
33

12
0.
6%

U
p
14
%

16
48

20
0.
0%

8
37

13
1.
5%

17
45

20
0.
0%

11
36

14
2.
1%

U
p
15
%

26
62

27
0.
1%

13
42

17
3.
3%

24
54

24
0.
0%

13
38

15
2.
7%

U
p
16
%

31
72

32
1.
2%

16
48

20
3.
8%

28
62

29
1.
4%

16
48

20
2.
8%

U
p
17
%

39
84

40
4.
5%

22
55

24
3.
6%

36
74

35
1.
5%

23
56

25
3.
6%

U
p
18
%

45
95

46
9.
2%

26
65

29
3.
5%

44
91

44
5.
3%

27
66

30
3.
5%

U
p
19
%

42
97

47
10
.6
%

29
72

33
4.
1%

45
95

47
9.
4%

30
71

32
2.
8%

U
p
20
%

57
11
6

57
18
.8
%

35
83

39
6.
7%

56
10
9

56
15
.4
%

37
81

39
3.
9%

R
ea
lU

p
6%

0
15

4
0.
0%

0
16

4
0.
0%

0
16

4
0.
0%

0
15

4
0.
0%

R
ea
lU

p
7%

0
19

6
0.
0%

0
19

6
0.
0%

0
19

6
0.
0%

0
20

6
0.
0%

R
ea
lU

p
8%

2
20

6
0.
0%

2
20

6
0.
0%

1
21

7
0.
0%

1
21

7
0.
0%

R
ea
lU

p
9%

4
24

9
0.
0%

3
23

8
0.
0%

4
27

10
0.
0%

4
24

9
0.
0%

R
ea
lU

p
10
%

7
32

12
0.
0%

4
26

10
0.
0%

7
32

12
0.
0%

5
30

11
0.
2%

R
ea
lU

p
11
%

11
35

15
0.
0%

8
33

13
0.
3%

11
37

15
0.
0%

8
33

13
0.
3%

R
ea
lU

p
12
%

16
44

21
0.
0%

11
41

16
0.
2%

17
43

19
0.
0%

12
38

16
0.
3%

R
ea
lU

p
13
%

20
56

25
0.
0%

11
44

18
0.
8%

19
55

24
0.
0%

13
43

18
0.
8%

R
ea
lU

p
14
%

25
63

30
0.
0%

14
43

19
1.
2%

23
55

26
0.
0%

16
46

20
1.
2%

R
ea
lU

p
15
%

30
76

36
0.
2%

17
58

25
1.
7%

28
70

32
0.
0%

19
55

24
2.
1%

R
ea
lU

p
16
%

36
86

44
2.
3%

22
64

28
2.
8%

35
82

40
0.
4%

23
66

29
2.
5%

R
ea
lU

p
17
%

39
90

44
1.
6%

24
67

30
3.
2%

43
89

45
1.
0%

27
67

31
3.
5%

R
ea
lU

p
18
%

43
10
4

52
5.
2%

26
85

36
3.
1%

46
95

52
3.
0%

30
85

37
3.
5%

R
ea
lU

p
19
%

51
10
5

57
8.
7%

33
90

41
5.
3%

50
10
8

58
7.
4%

36
92

42
5.
4%

R
ea
lU

p
20
%

50
11
5

58
11
.0
%

34
93

42
5.
6%

56
12
0

63
10
.6
%

38
90

42
4.
9%

T
ab

le
A
.6
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

B
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st
,
th
e
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
as

be
fo
re

pl
us

th
e
R
T
T

pe
na

lty
.

149

Appendix A. Tables of computational results

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

6
27

10
0.
0%

5
23

8
0.
0%

9
25

11
0.
0%

7
25

10
0.
0%

U
p
7%

7
31

11
0.
0%

5
26

9
0.
0%

9
28

11
0.
0%

7
25

10
0.
0%

U
p
8%

7
33

12
0.
0%

5
28

10
0.
2%

11
33

14
0.
0%

7
27

10
0.
0%

U
p
9%

7
35

12
0.
0%

4
27

9
0.
5%

10
34

14
0.
0%

6
27

10
0.
1%

U
p
10
%

8
40

14
0.
0%

6
35

12
0.
6%

11
36

14
0.
0%

7
30

11
0.
5%

U
p
11
%

9
36

14
0.
0%

5
33

11
2.
1%

10
35

14
0.
0%

6
31

11
1.
2%

U
p
12
%

8
39

14
0.
0%

6
34

12
4.
3%

9
34

13
0.
0%

6
32

12
3.
2%

U
p
13
%

9
38

14
0.
0%

7
38

13
5.
3%

14
44

18
0.
0%

7
35

13
4.
3%

U
p
14
%

14
45

19
0.
1%

13
47

19
6.
4%

18
51

22
0.
0%

13
43

17
6.
3%

U
p
15
%

23
63

28
2.
5%

17
58

23
6.
2%

25
61

28
1.
5%

17
58

23
7.
0%

U
p
16
%

34
77

37
6.
4%

23
73

30
6.
5%

33
76

36
4.
8%

23
73

30
6.
6%

U
p
17
%

40
90

43
13
.6
%

29
84

36
8.
0%

40
89

43
12
.3
%

28
82

35
8.
0%

U
p
18
%

49
11
2

53
23
.9
%

37
97

44
11
.6
%

51
11
6

55
25
.9
%

37
93

43
12
.7
%

U
p
19
%

61
13
7

64
36
.5
%

42
10
3

48
14
.7
%

61
13
9

66
37
.8
%

45
10
5

49
16
.0
%

U
p
20
%

67
15
6

74
49
.3
%

47
11
1

52
17
.7
%

67
15
4

74
48
.3
%

51
11
2

54
21
.1
%

R
ea
lU

p
6%

8
30

12
0.
0%

7
26

10
0.
0%

12
31

13
0.
0%

10
28

12
0.
0%

R
ea
lU

p
7%

9
29

12
0.
0%

8
28

11
0.
0%

11
31

13
0.
0%

10
30

12
0.
0%

R
ea
lU

p
8%

9
35

13
0.
0%

7
29

11
0.
2%

12
34

14
0.
0%

9
32

12
0.
0%

R
ea
lU

p
9%

10
34

13
0.
0%

8
32

12
0.
3%

14
37

16
0.
0%

9
33

13
0.
1%

R
ea
lU

p
10
%

10
35

14
0.
0%

8
33

12
0.
9%

13
40

17
0.
0%

9
35

13
0.
5%

R
ea
lU

p
11
%

11
39

15
0.
0%

9
34

13
3.
1%

14
44

18
0.
0%

10
38

15
1.
5%

R
ea
lU

p
12
%

13
42

17
0.
0%

12
40

16
4.
5%

16
47

20
0.
0%

12
42

16
3.
2%

R
ea
lU

p
13
%

18
49

22
0.
0%

14
46

19
5.
8%

19
53

23
0.
0%

15
46

19
5.
3%

R
ea
lU

p
14
%

24
60

28
0.
2%

20
58

25
5.
3%

26
65

30
0.
5%

20
60

25
6.
2%

R
ea
lU

p
15
%

29
71

34
2.
2%

24
72

31
6.
0%

34
76

37
3.
4%

25
74

31
6.
5%

R
ea
lU

p
16
%

35
83

40
6.
7%

28
84

36
8.
0%

37
87

42
7.
7%

29
85

37
7.
9%

R
ea
lU

p
17
%

45
10
2

51
15
.0
%

36
95

43
10
.8
%

49
10
9

53
17
.3
%

38
95

44
10
.8
%

R
ea
lU

p
18
%

56
12
7

61
27
.0
%

44
10
9

51
15
.2
%

57
13
5

64
29
.5
%

44
10
9

51
19
.1
%

R
ea
lU

p
19
%

62
14
4

70
34
.6
%

47
11
7

55
17
.8
%

63
14
8

69
33
.7
%

53
12
1

58
23
.5
%

R
ea
lU

p
20
%

70
16
5

79
43
.6
%

54
12
8

61
22
.2
%

73
16
8

82
45
.7
%

60
13
8

65
32
.9
%

T
ab

le
A
.7
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

A
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

an
d
th
e
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
as

be
fo
re
.
In

ad
di
ti
on

,
th
e
nu

m
be
r
of

de
st
in
at
io
n
flo

or
s
se
rv
ed

fr
om

th
e
m
ai
n
flo

or
is

lim
it
ed

to
3.

150

A.1. Simulation results for elevator control algorithms

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
6%

2
13

5
0.
0%

2
12

4
0.
0%

8
20

9
0.
0%

8
20

9
0.
0%

U
p
7%

5
21

8
0.
0%

4
20

7
0.
0%

9
22

10
0.
0%

8
22

9
0.
0%

U
p
8%

7
27

10
0.
0%

6
25

10
0.
0%

10
26

12
0.
0%

10
26

11
0.
0%

U
p
9%

7
26

10
0.
0%

6
26

9
0.
0%

11
29

13
0.
0%

11
30

13
0.
0%

U
p
10
%

8
31

12
0.
0%

8
31

12
0.
1%

12
32

14
0.
0%

11
31

13
0.
0%

U
p
11
%

11
36

14
0.
0%

10
36

14
0.
3%

13
34

15
0.
0%

12
32

14
0.
1%

U
p
12
%

11
42

16
0.
0%

10
40

15
0.
1%

15
37

16
0.
0%

13
35

15
0.
2%

U
p
13
%

14
42

18
0.
0%

12
42

16
0.
5%

15
38

17
0.
0%

13
36

15
0.
7%

U
p
14
%

15
46

19
0.
0%

13
43

18
0.
8%

18
43

19
0.
0%

15
41

18
0.
6%

U
p
15
%

17
50

21
0.
0%

15
47

20
0.
9%

19
48

21
0.
0%

17
45

20
1.
2%

U
p
16
%

22
55

25
0.
0%

18
49

22
1.
7%

21
50

23
0.
0%

17
46

20
1.
9%

U
p
17
%

27
62

30
0.
5%

24
58

27
1.
4%

26
59

28
0.
3%

22
55

25
2.
1%

U
p
18
%

30
67

32
1.
2%

27
64

29
1.
6%

29
64

31
0.
6%

25
62

28
1.
9%

U
p
19
%

34
73

36
3.
2%

30
72

33
1.
3%

33
72

35
2.
6%

28
70

32
1.
7%

U
p
20
%

47
92

48
12
.6
%

36
82

39
1.
6%

42
86

44
7.
7%

36
80

39
2.
5%

R
ea
lU

p
6%

4
19

7
0.
0%

4
19

7
0.
0%

9
23

10
0.
0%

9
22

10
0.
0%

R
ea
lU

p
7%

6
23

9
0.
0%

6
24

9
0.
0%

11
25

12
0.
0%

11
25

12
0.
0%

R
ea
lU

p
8%

7
25

10
0.
0%

7
24

9
0.
0%

12
28

13
0.
0%

11
27

12
0.
0%

R
ea
lU

p
9%

8
30

12
0.
0%

7
29

11
0.
0%

12
32

14
0.
0%

12
31

14
0.
0%

R
ea
lU

p
10
%

9
32

13
0.
0%

9
32

13
0.
1%

14
34

16
0.
0%

13
34

15
0.
0%

R
ea
lU

p
11
%

13
36

16
0.
0%

12
37

15
0.
1%

17
40

18
0.
0%

15
39

17
0.
0%

R
ea
lU

p
12
%

14
39

17
0.
0%

13
39

16
0.
4%

17
42

19
0.
0%

16
42

18
0.
3%

R
ea
lU

p
13
%

17
44

20
0.
0%

16
47

20
0.
7%

21
49

23
0.
0%

18
45

21
0.
5%

R
ea
lU

p
14
%

17
44

20
0.
0%

17
45

20
0.
6%

20
47

22
0.
0%

17
47

20
0.
6%

R
ea
lU

p
15
%

20
49

23
0.
0%

18
49

21
1.
3%

23
54

26
0.
0%

19
51

22
1.
7%

R
ea
lU

p
16
%

25
59

29
0.
1%

24
58

27
1.
6%

26
61

29
0.
1%

24
60

27
1.
5%

R
ea
lU

p
17
%

26
63

30
0.
2%

26
61

29
1.
5%

26
64

29
0.
0%

26
62

29
2.
3%

R
ea
lU

p
18
%

31
71

35
1.
3%

28
71

33
1.
9%

34
75

37
1.
4%

30
73

34
1.
6%

R
ea
lU

p
19
%

41
88

45
5.
7%

35
84

40
2.
5%

44
91

46
6.
1%

36
84

40
3.
4%

R
ea
lU

p
20
%

39
86

45
5.
7%

35
85

40
4.
0%

43
89

46
6.
6%

37
83

40
4.
0%

T
ab

le
A
.8
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

B
es

tI
ns

er
t
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t
(D

A
)

de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

B
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

an
d
th
e
ca
pa
ci
ty

vi
ol
at
io
n

pe
na

lty
as

be
fo
re
.
In

ad
di
ti
on

,
th
e
nu

m
be
r
of

de
st
in
at
io
n
flo

or
s
se
rv
ed

fr
om

th
e
m
ai
n
flo

or
is

lim
it
ed

to
5.

151

Appendix A. Tables of computational results

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
12
%

10
41

15
0.
0%

5
33

11
10
.8
%

11
35

14
0.
0%

5
29

10
5.
6%

U
p
13
%

16
50

20
0.
0%

8
42

15
8.
5%

15
42

18
0.
0%

8
34

13
8.
1%

U
p
14
%

26
67

30
2.
0%

13
59

22
6.
2%

23
55

25
0.
1%

14
45

19
7.
4%

U
p
15
%

35
86

39
11
.2
%

17
74

28
4.
9%

29
71

33
2.
4%

19
62

25
6.
1%

U
p
16
%

47
11
1

50
22
.2
%

25
86

35
6.
9%

39
89

43
11
.7
%

26
76

33
6.
1%

R
ea
lU

p
12
%

16
43

20
0.
0%

9
37

14
9.
5%

17
49

21
0.
0%

9
35

13
7.
6%

R
ea
lU

p
13
%

22
58

27
0.
2%

12
50

20
6.
8%

21
54

24
0.
0%

12
42

17
8.
6%

R
ea
lU

p
14
%

27
71

33
2.
6%

18
67

27
6.
8%

30
69

33
1.
1%

18
57

24
6.
0%

R
ea
lU

p
15
%

36
88

42
9.
7%

21
86

34
10
.2
%

36
84

40
6.
6%

22
67

28
7.
3%

R
ea
lU

p
16
%

47
11
4

54
20
.3
%

26
94

39
10
.9
%

43
99

47
13
.0
%

29
83

36
10
.1
%

T
ab

le
A
.9
.:
R
es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

Ex
ac

tR
ep

la
n
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn

m
en

t
(I
A
)
or

de
la
ye
d
as
si
gn

m
en

t
(D

A
)
de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

A
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

pl
us

a
ca
pa
ci
ty

vi
ol
at
io
n
pe
na

lty
co
rr
es
po
nd

in
g
to

12
0
se
co
nd

s
w
ai
ti
ng

ti
m
e.

152

A.1. Simulation results for elevator control algorithms

sc
en
ar
io

IA
,l
in
ea
r
co
st

D
A
,l
in
ea
r
co
st

IA
,q

ua
dr
at
ic

co
st

D
A
,q

ua
dr
at
ic

co
st

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

α
0
.5

α
0
.9

∅
re
is
su
es

U
p
14
%

13
44

18
0.
0%

7
34

13
2.
1%

15
39

17
0.
0%

12
34

14
1.
0%

U
p
15
%

14
47

19
0.
0%

10
43

16
3.
3%

16
41

18
0.
0%

12
36

16
2.
5%

U
p
16
%

20
57

25
0.
2%

15
53

21
3.
4%

19
48

22
0.
0%

15
42

18
2.
8%

U
p
17
%

32
71

34
1.
4%

21
67

28
3.
5%

28
61

30
0.
0%

21
53

24
2.
8%

U
p
18
%

40
89

43
8.
4%

22
80

33
5.
1%

33
71

35
0.
4%

24
66

29
4.
8%

R
ea
lU

p
14
%

13
40

17
0.
0%

8
34

14
3.
1%

17
46

20
0.
0%

13
35

16
1.
6%

R
ea
lU

p
15
%

17
48

22
0.
0%

12
43

19
3.
8%

22
52

24
0.
0%

14
39

17
2.
9%

R
ea
lU

p
16
%

25
67

32
1.
2%

18
64

27
4.
9%

25
61

28
0.
0%

19
53

24
4.
4%

R
ea
lU

p
17
%

27
70

33
1.
3%

18
69

29
7.
9%

28
69

32
0.
6%

21
58

26
5.
1%

R
ea
lU

p
18
%

35
87

42
6.
3%

25
92

38
12
.9
%

34
82

39
2.
3%

25
76

32
6.
5%

T
ab

le
A
.1
0.
:R

es
ul
ts

ob
ta
in
ed

by
th
e
al
go
ri
th
m

Ex
ac

tR
ep

la
n
co
nt
ro
lli
ng

an
im

m
ed
ia
te

as
si
gn
m
en
t
(I
A
)
or

de
la
ye
d
as
si
gn
m
en
t

(D
A
)
de
st
in
at
io
n
ca
ll
sy
st
em

in
bu

il
di

n
g

B
.
T
he

co
st

co
ns
id
er
ed

by
B
es

tI
ns

er
t
in
cl
ud

es
th
e
se
rv
ic
e
co
st

pl
us

a
ca
pa
ci
ty

vi
ol
at
io
n
pe
na

lty
co
rr
es
po
nd

in
g
to

12
0
se
co
nd

s
w
ai
ti
ng

ti
m
e.

153

Appendix A. Tables of computational results

(a) Building A.

scenario conventional system (CGC)
α0.5 α0.9 ∅ reissues

Up 6% 0 3 1 9.0%
Up 7% 0 11 3 29.1%
Up 8% 3 22 7 63.8%
Up 9% 20 43 21 132.9%
Up 10% 39 80 40 222.1%
Up 11% 53 111 56 291.3%
Up 12% 75 146 76 378.2%
Up 13% 97 181 97 474.5%
Up 14% 116 215 115 551.8%
Up 15% 129 251 133 632.7%
Up 16% 155 288 156 731.6%
Up 17% 174 323 175 814.3%
Up 18% 192 356 193 897.6%
Up 19% 214 392 212 980.4%
Up 20% 233 427 232 1066.2%

Real Up 6% 0 15 4 14.5%
Real Up 7% 0 16 5 28.3%
Real Up 8% 4 26 9 62.6%
Real Up 9% 15 50 20 111.8%
Real Up 10% 18 71 27 140.9%
Real Up 11% 44 108 48 260.7%
Real Up 12% 67 148 71 357.5%
Real Up 13% 85 178 87 442.5%
Real Up 14% 95 208 102 499.8%
Real Up 15% 122 247 126 632.3%
Real Up 16% 138 271 138 657.6%
Real Up 17% 144 298 151 688.8%
Real Up 18% 171 337 173 804.9%
Real Up 19% 191 362 185 854.2%
Real Up 20% 212 400 205 969.4%

(b) Building B.

scenario conventional system (CGC)
α0.5 α0.9 ∅ reissues

Up 6% 0 7 2 1.1%
Up 7% 0 9 2 2.5%
Up 8% 0 12 3 6.0%
Up 9% 0 14 4 10.3%
Up 10% 0 21 6 22.9%
Up 11% 2 23 8 34.4%
Up 12% 6 31 11 47.5%
Up 13% 9 41 15 66.9%
Up 14% 19 57 24 104.0%
Up 15% 30 76 34 141.5%
Up 16% 42 101 44 181.5%
Up 17% 55 116 56 236.2%
Up 18% 62 139 67 274.1%
Up 19% 70 163 77 311.5%
Up 20% 83 182 90 370.4%

Real Up 6% 0 15 4 0.8%
Real Up 7% 0 16 5 1.9%
Real Up 8% 0 18 6 6.3%
Real Up 9% 1 20 6 9.8%
Real Up 10% 3 25 8 19.2%
Real Up 11% 6 30 11 26.3%
Real Up 12% 13 41 16 53.4%
Real Up 13% 18 60 24 76.2%
Real Up 14% 23 60 27 98.5%
Real Up 15% 36 92 42 159.0%
Real Up 16% 55 120 58 220.0%
Real Up 17% 60 134 63 235.9%
Real Up 18% 61 150 70 234.9%
Real Up 19% 77 178 87 314.9%
Real Up 20% 93 194 96 372.0%

Table A.11.: Results obtained by the algorithm CGC controlling a conventional system.

154

A.2. Exact Markov chain simulation results for bin packing

A.2. Exact Markov chain simulation results for bin packing

Table A.12 shows the results of the exact simulation of the Markov chains of the BBFk
and NFk algorithms for various bin packing parameters referenced by Observation 4.3.6
on page 108. The simulation covers the first 200 items, starting from all empty bins. For
all parameters, the number of bins used by BBFk is stochastically dominated by that
needed by NFk.
The Markov chain simulations were implemented using the GNU Multiple Precision

Library [GMP06]. The simulations ran on a system with an Intel Core 2 X9650 CPU with
3.0 GHz and 8 GB of RAM with 32 bit code, except for the parameters marked with ∗,
which ran on the same system but used 64 bit code due to the high memory requirements.

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms for various bin packing parameters.

m B u E [BBFk] E [NFk] time [s]

2 5 4 112.79 116.25 4.08

2 6 4 91.22 94.03 5.11
2 6 5 112.62 117.49 26.50

2 7 4 76.50 77.41 5.84
2 7 5 96.56 99.34 32.55
2 7 6 114.08 118.60 38.24

2 8 4 64.80 65.78 3.21
2 8 5 81.70 83.75 35.28
2 8 6 99.17 102.96 46.34
2 8 7 114.12 119.28 83.82

2 9 4 57.86 58.38 3.83
2 9 5 71.08 72.08 36.76
2 9 6 86.91 89.14 53.55
2 9 7 102.08 105.82 98.54
2 9 8 114.91 119.89 31.05

2 10 4 51.64 52.06 4.44
2 10 5 62.70 63.63 22.74
2 10 6 75.93 77.57 57.05
2 10 7 90.29 93.30 111.85
2 10 8 103.66 107.94 36.64
2 10 9 114.99 120.31 197.80

2 11 4 46.73 47.03 4.79
2 11 5 57.09 57.72 25.47
2 11 6 67.82 68.82 59.16
2 11 7 80.64 82.50 122.52
2 11 8 93.61 96.74 41.84

155

Appendix A. Tables of computational results

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

2 11 9 105.41 109.68 225.86
2 11 10 115.47 120.70 232.29

2 12 4 42.70 42.94 3.40
2 12 5 52.09 52.53 28.30
2 12 6 61.28 62.20 34.75
2 12 7 72.12 73.54 124.72
2 12 8 84.13 86.59 46.58
2 12 9 95.87 99.48 254.00
2 12 10 106.46 111.05 264.71
2 12 11 115.55 120.98 387.90

2 13 4 39.42 39.57 3.80
2 13 5 47.77 48.13 29.60
2 13 6 56.63 57.29 38.94
2 13 7 65.58 66.60 125.54
2 13 8 76.29 77.92 51.22
2 13 9 87.44 90.11 280.91
2 13 10 98.08 101.78 297.00
2 13 11 107.61 112.22 435.56
2 13 12 115.86 121.24 308.55

2 14 4 36.53 36.66 4.18
2 14 5 44.20 44.49 29.93
2 14 6 52.37 52.86 42.62
2 14 7 60.28 61.19 79.12
2 14 8 69.41 70.71 54.70
2 14 9 79.66 81.74 299.38
2 14 10 89.97 93.05 328.35
2 14 11 99.67 103.68 482.00
2 14 12 108.37 113.17 344.69
2 14 13 115.94 121.44 680.79

3 5 4 109.69 112.44 10.07

3 6 4 87.75 90.15 12.96
3 6 5 108.85 113.32 82.36

3 7 4 74.18 74.92 14.46
3 7 5 93.03 95.42 105.00
3 7 6 110.52 114.54 138.12

3 8 4 63.64 64.39 8.68
3 8 5 78.58 80.35 113.18

156

A.2. Exact Markov chain simulation results for bin packing

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

3 8 6 95.28 98.82 176.50
3 8 7 110.24 115.11 347.47

3 9 4 56.71 57.15 11.02
3 9 5 68.93 69.85 115.88
3 9 6 83.46 85.43 206.44
3 9 7 98.27 101.72 432.74
3 9 8 111.16 115.77 149.86

3 10 4 50.76 51.09 12.80
3 10 5 61.42 62.19 76.10
3 10 6 73.09 74.58 217.44
3 10 7 86.47 89.31 505.02
3 10 8 99.62 103.77 187.07
3 10 9 111.02 116.14 1023.46

3 11 4 46.13 46.33 13.45
3 11 5 55.84 56.41 87.96
3 11 6 65.86 66.79 226.59
3 11 7 77.39 79.08 553.13
3 11 8 89.80 92.72 222.68
3 11 9 101.52 105.56 1234.14
3 11 10 111.63 116.56 1320.20

3 12 4 42.26 42.42 9.84
3 12 5 51.01 51.42 99.95
3 12 6 59.92 60.74 141.29
3 12 7 69.57 70.88 552.39
3 12 8 80.50 82.84 253.50
3 12 9 91.86 95.37 1439.81
3 12 10 102.42 106.90 1588.69
3 12 11 111.57 116.82 2392.22

3 13 4 39.03 39.14 11.21
3 13 5 46.96 47.27 102.05
3 13 6 55.32 55.94 162.60
3 13 7 63.72 64.69 560.34
3 13 8 73.29 74.79 275.41
3 13 9 83.71 86.23 1628.79
3 13 10 94.12 97.68 1849.33
3 13 11 103.66 108.09 2823.37
3 13 12 111.96 117.09 2071.51

157

Appendix A. Tables of computational results

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

3 14 4 36.24 36.32 12.31
3 14 5 43.58 43.81 101.98
3 14 6 51.19 51.67 182.02
3 14 7 58.88 59.71 372.47
3 14 8 67.05 68.28 289.10
3 14 9 76.28 78.25 1731.99
3 14 10 86.05 89.05 2110.15
3 14 11 95.61 99.55 3260.20
3 14 12 104.32 109.03 2434.24
3 14 13 111.95 117.29 4876.30

4 5 4 108.00 110.35 24.72

4 6 4 86.14 88.05 31.91
4 6 5 106.96 110.90 256.07

4 7 4 73.18 73.75 35.18
4 7 5 91.17 93.22 329.24
4 7 6 108.68 112.23 491.76

4 8 4 63.27 63.78 24.21
4 8 5 77.24 78.64 352.73
4 8 6 93.25 96.43 653.11
4 8 7 108.26 112.69 1433.43

4 9 4 56.33 56.64 32.29
4 9 5 68.09 68.84 361.48
4 9 6 81.76 83.42 754.80
4 9 7 96.26 99.36 1866.02
4 9 8 109.23 113.39 705.25

4 10 4 50.57 50.75 37.39
4 10 5 60.95 61.54 253.25
4 10 6 71.91 73.15 786.89
4 10 7 84.53 87.06 2201.15
4 10 8 97.49 101.34 929.99
4 10 9 108.97 113.72 5234.23

4 11 4 46.00 46.11 39.21
4 11 5 55.41 55.84 304.10
4 11 6 65.09 65.88 860.44
4 11 7 75.86 77.30 2376.93
4 11 8 87.80 90.41 1126.86
4 11 9 99.46 103.16 6656.04

158

A.2. Exact Markov chain simulation results for bin packing

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

4 11 10 109.65 114.16 7390.48

4 12 4 42.18 42.25 28.73
4 12 5 50.70 50.98 346.29
4 12 6 59.41 60.07 572.85
4 12 7 68.54 69.64 2358.11
4 12 8 78.73 80.79 1278.68
4 12 9 89.73 92.98 7984.21
4 12 10 100.27 104.47 9426.20
4 12 11 109.50 114.39 14622.80

4 13 4 38.97 39.01 32.86
4 13 5 46.77 46.96 346.00
4 13 6 54.84 55.34 680.93
4 13 7 63.00 63.83 2447.53
4 13 8 71.95 73.24 1363.04
4 13 9 81.81 84.05 9081.97
4 13 10 92.02 95.29 11334.40
4 13 11 101.58 105.68 18138.90
4 13 12 109.95 114.69 13770.70

4 14 4 36.21 36.24 36.12
4 14 5 43.43 43.58 344.79
4 14 6 50.81 51.18 774.04
4 14 7 58.35 59.03 1744.76
4 14 8 66.12 67.17 1460.87
4 14 9 74.70 76.42 9627.75
4 14 10 84.00 86.76 13072.00
4 14 11 93.42 97.13 21776.00
4 14 12 102.17 106.61 17045.20
4 14 13 109.87 114.87 34718.70

5 5 4 106.94 109.02 58.73

5 6 4 85.32 86.80 74.96
5 6 5 105.86 109.32 782.57

5 7 4 72.70 73.14 83.67
5 7 5 90.03 91.81 1002.00
5 7 6 107.55 110.72 1727.42

5 8 4 63.13 63.48 69.65
5 8 5 76.60 77.68 1063.31
5 8 6 92.04 94.86 2335.00

159

Appendix A. Tables of computational results

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

5 8 7 107.07 111.09 5861.31

5 9 4 56.20 56.40 95.39
5 9 5 67.72 68.31 1104.30
5 9 6 80.80 82.19 2644.17
5 9 7 95.01 97.82 7860.54
5 9 8 108.04 111.83 3282.17

5 10 4 50.52 50.62 108.33
5 10 5 60.77 61.20 834.69
5 10 6 71.38 72.37 2741.75
5 10 7 83.42 85.63 9262.64
5 10 8 96.18 99.73 4571.52
5 10 9 107.72 112.10 26725.40

5 11 4 45.97 46.02 114.82
5 11 5 55.25 55.56 1046.26
5 11 6 64.75 65.39 3231.74
5 11 7 75.05 76.27 9863.31
5 11 8 86.59 88.92 5493.74
5 11 9 98.17 101.58 35517.10
5 11 10 108.44 112.57 41170.90

5 12 4 42.16 42.20 85.47
5 12 5 50.60 50.78 1164.64
5 12 6 59.19 59.70 2294.35
5 12 7 68.08 68.99 9790.54
5 12 8 77.77 79.54 6122.56
5 12 9 88.43 91.41 43257.80
5 12 10 98.93 102.85 55275.40
5 12 11 108.23 112.78 88846.20

5 13 4 38.95 38.97 97.92
5 13 5 46.71 46.83 1135.21
5 13 6 54.65 55.03 2833.83
5 13 7 62.68 63.36 10579.30
5 13 8 71.28 72.37 6487.19
5 13 9 80.71 82.68 49022.10
5 13 10 90.72 93.72 67716.40
5 13 11 100.28 104.08 115473.00
5 13 12 108.71 113.09 50884.10∗

5 14 4 36.20 36.21 105.35

160

A.2. Exact Markov chain simulation results for bin packing

Table A.12.: Results of the exact simulation of the Markov chains of the BBFk and NFk
algorithms (continued).

m B u E [BBFk] E [NFk] time [s]

5 14 5 43.39 43.48 1144.85
5 14 6 50.68 50.94 3253.52
5 14 7 58.10 58.66 8145.65
5 14 8 65.69 66.58 7224.89
5 14 9 73.87 75.35 51474.60
5 14 10 82.79 85.28 78354.90
5 14 11 92.06 95.52 77932.90∗

5 14 12 100.83 104.99 66313.80∗

5 14 13 108.59 113.26 134709.00∗

161

Bibliography

[ABK+] Tobias Achterberg, Timo Berthold, Thorsten Koch, Alexander Martin, and
Kati Wolter. SCIP – solving constraint integer programs. Available at
http://scip.zib.de.

[ACDE07] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G. Espinoza.
Exact solutions to linear programming problems. Oper. Res. Lett., 35(6):693–
699, 2007.

[Ach07] Tobias Achterberg. Constraint Integer Programming. PhD thesis, Technische
Universität Berlin, 2007.

[ADLO07] Spyros Angelopoulos, Reza Dorrigiv, and Alejandro López-Ortiz. On the
separation and equivalence of paging strategies. In SODA 2007, pages
229–237, 2007.

[ADU71] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of optimal
page replacement. J. ACM, 18(1):80–93, 1971.

[AFG05] Susanne Albers, Lene M. Favrholdt, and Oliver Giel. On paging with locality
of reference. J. Comput. System Sci., 70(2):145–175, 2005.

[AKR00] Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau. Online Dial-a-
Ride problems: Minimizing the completion time. In Proceedings of the 17st
Symposium on Theoretical Aspects of Computer Science, volume 1770 of
Lecture Notes in Computer Science, pages 639–650. Springer, 2000.

[Alb03] Susanne Albers. Online algorithms: A survey. Math. Programming, 97:3–26,
2003.

[AM00] Susanne Albers and Michael Mitzenmacher. Average-case analyses of first fit
and random fit bin packing. Random Structures Algorithms, 16(3):240–259,
2000.

[AS09] S. Angelopoulos and P. Schweitzer. Paging and list update under bijective
analysis. In Proceedings of the 20th ACM-SIAM Symposium on Discrete
Algorithms, pages 1136–1145, 2009.

[Bar02] Gina Carol Barney. Elevator Traffic Handbook: Theory and Practice. Taylor
and Francis, 2002.

163

http://scip.zib.de

Bibliography

[Bec04] Luca Becchetti. Modeling locality: A probabilistic analysis of LRU and
FWF. In Proceedings of the 12th European Symp. on Algorithms (ESA),
pages 98–109, 2004.

[BEY98] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[BF07] Joan Boyar and Lene M. Favrholdt. The relative worst order ratio for online
algorithms. ACM Trans. Algorithms, 3(2):Article 22, 2007.

[BIRS95] A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competitive paging
with locality of reference. J. Comput. System Sci., 50(2):244–258, 1995.

[BJL+84] J. L. Bentley, D. S. Johnson, F. T. Leighton, C. C. McGeoch, and L. A.
McGeoch. Some unexpected expected behavior results for bin packing. In
Proceedings of the 16th Annual ACM Symposium on Theory of Computing,
pages 279–288, 1984.

[BLMS+06] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido
Schäfer, and Tjark Vredeveld. Average case and smoothed competitive
analysis for the multi-level feedback algorithm. Math. Oper. Res., 31(1):85–
108, 2006.

[BLS92] Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line
algorithm for metrical task systems. J. ACM, 39(4):745–763, 1992.

[BM01] Justin Boyan and Michael Mitzenmacher. Improved results for route planning
in stochastic transportation networks. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 895–902, 2001.

[bMBFP06] Mouad ben Mamoun, Ana Bušić, Jean-Michel Fourneau, and Nihal Pekergin.
Increasing convex monotone Markov chains: Theory, algorithms, and appli-
cations. In Amy N. Langville and William J. Stewart, editors, MAM 2006:
Markov Anniversary Meeting, pages 189–210. Boson Books, 2006.

[BSL96] Dimitris J. Bertsimas and David Simchi-Levi. A new generation of vehicle
routing research: Robust algorithms, addressing uncertainty. Operations
Res., 44(2):286–304, 1996.

[CB98] Robert H. Crites and Andrew G. Barto. Elevator group control using multiple
reinforcement learning agents. Machine Learning, pages 235–262, 1998.

[CCG+02] E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W.
Shor, R. R. Weber, and M. Yannakakis. Perfect packing theorems and
the average-case behavior of optimal and online bin packing. SIAM Rev.,
44(1):95–108, 2002.

[CD73] Edward G. Coffman, Jr. and Peter J. Denning. Operating Systems Theory.
Series in automatic computation. Prentice-Hall, 1973.

164

Bibliography

[CGJ97] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: A survey. In Dorit S. Hochbaum, editor, Ap-
proximation Algorithms for NP-hard problems, chapter 2. PWS Publishing,
1997.

[Cha92] Barun Chandra. Does randomization help in on-line bin packing? Inform.
Process. Lett., 43(1):15–19, 1992.

[CI89] János Csirik and Balázs Imreh. On the worst-case performance of the nkf
bin-packing heuristic. Acta Cybernet., 9(2):89–105, 1989.

[CJ01] J. Csirik and D. S. Johnson. Bounded space on-line bin packing: Best is
better than first. Algorithmica, 11:115–138, 2001.

[CJSW93] E. G. Coffman, Jr., D. S. Johnson, P. W. Shor, and R. R. Weber. Markov
Chains, computer proofs, and average-case analysis of best fit bin packing.
In Proc. 25th Ann. ACM Symp. on Theory of Computing, pages 412–421,
1993.

[CMT81] Nicos Christofides, A. Mingozzi, and P. Toth. State-space relaxation pro-
cedures for the computation of bounds to routing problems. Networks,
11:145–164, 1981.

[CPL] ILOG CPLEX. http://www.ilog.com/products/cplex/.

[CSHY80] E. G. Coffman, Jr., K. So, M. Hofri, and A. C. Yao. A stochastic model of
bin-packing. Information and Control, 44:105–115, 1980.

[Dal68] Daryl J. Daley. Stochastically monotone Markov chains. Z. Wahrsch. Verw.
Gebiete, 10:305–317, 1968.

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Col-
umn generation. GERAD 25th anniversary series. Springer, 2005.

[Den68] P. J. Denning. The working set model of program behavior. Communications
of the ACM, 11:323–333, 1968.

[Den80] P. J. Denning. Working sets past and present. IEEE Transactions on Software
Engineering, 6:64–84, 1980.

[DLO05] Reza Dorrigiv and Alejandro López-Ortiz. A survey of performance measures
for on-line algorithms. SIGACT News, 36(3):67–81, 2005.

[DLO08] Reza Dorrigiv and Alejandro López-Ortiz. On certain new models for paging
with locality of reference. In WALCOM 2008, volume 4921 of Lecture Notes
in Computer Science, pages 200–209, 2008.

165

http://www.ilog.com/products/cplex/

Bibliography

[Doi00] M. Doisy. A coupling technique for stochastic comparison of func-
tions of Markov processes. Journal of Applied Mathematics & Deci-
sion Sciences, 4(1):39–64, 2000. Available at http://www.hindawi.com/
GetRegularIssueArticles.aspx?journal=JAMDS&volume=4.

[FKL+91] Amos Fiat, Richard Karp, Mike Luby, Lyle McGeoch, Daniel Sleator, and
Neal E. Young. Competitive paging algorithms. J. Algorithms, pages 685–699,
1991.

[FM97] A. Fiat and M. Mendel. Truly online paging with locality of reference. In
FOCS ’97: Proceedings of the 38th Annual Symposium on Foundations of
Computer Science, pages 326–335, 1997.

[FR06] Philipp Friese and Jörg Rambau. Online-optimization of a multi-elevator
transport system with reoptimization algorithms based on set-partitioning
models. Discrete Appl. Math., 154(13):1908–1931, 2006. also available as
ZIB Report 05-03.

[FW74] P. A. Franaszek and T. J. Wagner. Some distribution-free aspects of paging
algorithm performance. J. ACM, 21(1):31–39, 1974.

[FW98] Amos Fiat and Gerhard J. Woeginger, editors. Online Algorithms: The State
of the Art, volume 1442 of Lecture Notes in Computer Science. Springer,
1998.

[GCC] GCC, the GNU compiler collection. http://gcc.gnu.org/.

[GKRT02] Martin Grötschel, Sven Oliver Krumke, Jörg Rambau, and Luis M. Torres.
Online-dispatching of automobile service units. In U. Leopold-Wildburger,
F. Rendl, and G. Wäscher, editors, Operations Research Proceedings, pages
168–173. Springer, 2002.

[Glo70] Gordon David Gloss. The computer control of passenger traffic in large lift
systems. PhD thesis, Victoria University of Manchester, 1970.

[GMP06] GNU GMP – the GNU multiple precision arithmetic library. available at
http://gmplib.org/gmp-man-4.2.1.pdf, 2006.

[GW95] Gábor Galambos and Gerhard J. Woeginger. On-line bin packing – a
restricted survey. ZOR—Math. Methods Oper. Res., 42:25–45, 1995.

[HKR00] Dietrich Hauptmeier, Sven O. Krumke, and Jörg Rambau. The online Dial-a-
Ride problem under reasonable load. In CIAC 2000, volume 1767 of Lecture
Notes in Computer Science, pages 125–136. Springer, 2000.

[HKR06] Benjamin Hiller, Sven Oliver Krumke, and Jörg Rambau. Reoptimization
gaps versus model errors in online-dispatching of service units for ADAC.
Discrete Appl. Math., 154(13):1897–1907, 2006. Traces of the Latin American

166

http://www.hindawi.com/GetRegularIssueArticles.aspx?journal=JAMDS&volume=4
http://www.hindawi.com/GetRegularIssueArticles.aspx?journal=JAMDS&volume=4
http://gcc.gnu.org/
http://gmplib.org/gmp-man-4.2.1.pdf

Bibliography

Conference on Combinatorics, Graphs and Applications – A selection of
papers from LACGA 2004, Santiago, Chile.

[HKRW01] Dietrich Hauptmeier, Sven O. Krumke, Jörg Rambau, and Hans-Christoph
Wirth. Euler is standing in line – Dial-a-Ride problems with precedence-
constraints. Discrete Appl. Math., 113(1):87–107, 2001.

[HT08] Benjamin Hiller and Andreas Tuchscherer. Real-time destination-call ele-
vator group control on embedded microcontrollers. In Operations Research
Proceedings 2007, pages 357–362. Springer, 2008.

[HV08] Benjamin Hiller and Tjark Vredeveld. Probabilistic analysis of online bin
coloring algorithms via stochastic comparison. In Proceedings of the 16th
Annual European Symposium on Algorithms, volume 5193 of Lecture Notes
in Computer Science, pages 528–539. Springer, 2008.

[IKP96] Sandy Irani, Anna R. Karlin, and Steven Phillips. Strongly competitive
algorithms for paging with locality of reference. SIAM J. Comput., 25(3):477–
497, 1996.

[JDU+74] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Gra-
ham. Worst-case performance bounds for simple one-dimensional packing
algorithms. SIAM J. Comput., 3(4):299–325, 1974.

[Joh74] D. S. Johnson. Fast algorithms for bin packing. J. Comput. System Sci.,
8(8):272–314, 1974.

[Kar82] Narendra Karmarkar. Probabilistic analysis of some bin-packing problems.
In FOCS 1982, pages 107–111, 1982.

[KdPSR01] Sven Oliver Krumke, Willem E. de Paepe, Leen Stougie, and Jörg Rambau.
Online bin coloring. In Friedhelm Meyer auf der Heide, editor, Proceedings of
the 9th Annual European Symposium on Algorithms, volume 2161 of Lecture
Notes in Computer Science, pages 74–84, 2001.

[KO02] Jana Koehler and Daniel Ottiger. An AI-based approach to destination
control in elevators. AI Magazine, 23(3):59–78, 2002.

[KP94] Elias Koutsoupias and Christos Papadimitriou. Beyond competitive analysis.
In Proceedings of the 35th Annual IEEE Symposium on Foundations of
Computer Science, pages 394–400, 1994.

[KP00] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance.
J. ACM, 47(4):617–643, 2000.

[KPR00] Anna R. Karlin, Steven J. Phillips, and Prabhakar Raghavan. Markov paging.
SIAM J. Comput., 30(2):906–922, 2000.

167

Bibliography

[KRS98] Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Biased random walks,
Lyapunov functions, and stochastic analysis of best fit bin packing. J.
Algorithms, 27(2):218–235, 1998.

[KRT02] Sven Oliver Krumke, Jörg Rambau, and Luis M. Torres. Realtime-dispatching
of guided and unguided automobile service units with soft time windows.
In Rolf H. Möhring and Rajeev Raman, editors, Proceedings of the 10th
Annual European Symposium on Algorithms, volume 2461 of Lecture Notes
in Computer Science, pages 637–648. Springer, 2002.

[KSLKK98] Chang Bum Kim, Kyoung A. Seong, Hyung Lee-Kwang, and Jeong O. Kim.
Design and implementation of a fuzzy elevator group control system. IEEE
Transactions on Systems, Man and Cybernetics, Part A, 28(3):277–287, 1998.

[Las70] Leon S. Lasdon. Optimization Theory for Large Systems. Macmillan, 1970.

[Lin92] Torgny Lindvall. Lectures on the coupling method. Wiley Series in Probability
and Mathematical Statistics. John Wiley & Sons, 1992.

[LL85] C. C. Lee and D. T. Lee. A simple online bin-packing algorithm. J. ACM,
32(3):562–572, 1985.

[Mao93] Weizhen Mao. Tight worst-case performance bounds for next-k-fit bin packing.
SIAM J. Comput., 22(1):46–56, 1993.

[Mit96] Michael Mitzenmacher. Bounds on the greedy routing algorithm for array
networks. J. Comput. System Sci., 53:317–327, 1996.

[MS91] Lyle A. McGeoch and D. D. Sleator. A strongly competitive randomized
paging algorithm. Algorithmica, 6:816–825, 1991.

[MS02] Alfred Müller and Dietrich Stoyan. Comparison Models for Stochastic Models
and Risks. John Wiley & Sons, 2002.

[NB03] Daniel Nikovski and Matthew Brand. Decision-theoretic group elevator
scheduling. In Proceedings of the 13th International Conference on Automated
Planning and Scheduling, 2003.

[NR08] Nir Naaman and Raphael Rom. Average case analysis of bounded space bin
packing algorithms. Algorithmica, 50:72–97, 2008.

[PC97] David L. Pepyne and Christos G. Cassandros. Optimal dispatching control
for elevator systems during uppeak traffic. IEEE Transactions on Control
Systems Technology, 5(6):629–642, 1997.

[PC98] David L. Pepyne and Christos G. Cassandros. Design and implementation of
an adaptive dispatching controller for elevator systems during uppeak traffic.
IEEE Transactions on Control Systems Technology, 6(5):635–650, 1998.

168

Bibliography

[PS06] Konstantinos Panagiotou and Alexander Souza. On adequate performance
measures for paging. In STOC ’06: Proceedings of the thirty-eighth annual
ACM symposium on Theory of computing, pages 487–496, 2006.

[Put05] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. John Wiley and Sons, 2nd edition, 2005.

[Ram89] Prakash Ramanan. Average-case analysis of the Smart Next Fit algorithm.
Inform. Process. Lett., 31(5):221–225, 1989.

[RS08] Giovanni Righini and Matteo Salani. New dynamic programming algorithms
for the resource constrained elementary shortest path problem. Networks,
51(3):156–170, 2008.

[Sch90] Jordis Schröder. Advanced dispatching: Destination hall calls + instant
car-to-call assignments: M10. Elevator World, pages 40–46, March 1990.

[Sec99] Bernhard Seckinger. Synthese von Aufzugssteuerungen mit Hilfe von con-
straintbasierten Suchverfahren. Diplomarbeit, Universität Freiburg, 1999.

[Sho86] P. W. Shor. The average-case analysis of some on-line algorithms for bin
packing. Combinatorica, 6(2):179–200, 1986.

[Sin93] Alistair Sinclair. Algorithms for Random Generation and Counting: A Markov
Chain Approach. Progress in Theoretical Computer Science. Birkhäuser, 1993.

[SK99] Bernhard Seckinger and Jana Koehler. Online-Synthese von Aufzugs-
steuerungen als Planungsproblem. In 13th Workshop on Planning and
Configuration, pages 127–134, 1999.

[Smi56] Wayne E. Smith. Various optimizers for single-stage production. Naval
Research Logistics Quarterly, 3(1-2):59–66, 1956.

[SP02] Rory Smith and Richard Peters. ETD algorithm with destination dispatch
and booster options. Elevator World, pages 136–145, July 2002.

[SS94] Moshe Shaked and J. George Shanthikumar. Stochastic orders and their
applications. Probability and mathematical statistics. Academic Press, 1994.

[SS06] A. Souza and A. Steger. The expected competitive ratio for weighted
completion time scheduling. Theory of Computing Systems, 39:121–136,
2006.

[SSE03] Janne Sorsa, Marja-Liisa Siikonen, and H. Ehtamo. Optimal control of
double-deck elevator group using genetic algorithm. Intl. Trans. in Op. Res.,
10(2):103–114, 2003.

[SSS06] Mark Scharbrodt, Thomas Schickinger, and Angelika Steger. A new average
case analysis for completion time scheduling. J. ACM, pages 121–146, 2006.

169

Bibliography

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of
list update and paging rules. Comm. ACM, 28(2):202–208, 1985.

[ST04] D. A. Spielman and S. H. Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. J. ACM, 51:385–463, 2004.

[Tor98] Eric Torng. A unified analysis of paging and caching. Algorithmica, 20(2):175–
200, 1998.

[TUA05a] Shunji Tanaka, Yukihiro Uraguchi, and Mituhiko Araki. Dynamic optimiza-
tion of the operation of single-car elevator systems with destination hall call
registration: Part I. Formulation and simulations. European J. Oper. Res.,
167(2):550–573, 2005.

[TUA05b] Shunji Tanaka, Yukihiro Uraguchi, and Mituhiko Araki. Dynamic optimiza-
tion of the operation of single-car elevator systems with destination hall
call registration: Part II. The solution algorithm. European J. Oper. Res.,
167(2):574–587, 2005.

[TY99a] Tapio Tyni and Jari Ylinen. Method and apparatus for allocating landing
calls in an elevator group. US Patent 5,932,852, August 3, 1999. KONE
Corporation.

[TY99b] Tapio Tyni and Jari Ylinen. Genetic procedure for allocating landing calls in
an elevator group. US Patent 5,907,137, May 25, 1999. KONE Corporation.

[TY05] Tapio Tyni and Jari Ylinen. Method and apparatus for allocating passen-
gers by a genetic algorithm. US Patent 6,913,117, July 5, 2005. KONE
Corporation.

[TY06] Tapio Tyni and Jari Ylinen. Evolutionary bi-objective optimisation in the
elevator car routing problem. European J. Oper. Res., 169(3):960–977, 2006.

[TYMR06] Tapio Tyni, Jari Ylinen, Mika Matela, and Toni Rintala. Genetic allocation
method for an elevator group. US Patent 7,140,472, November 28, 2006.
KONE Corporation.

[You94] Neal E. Young. The k-server dual and loose competitiveness for paging.
Algorithmica, 11(6):525–541, 1994.

[You00] Neal E. Young. On-line paging against adversarially biased random inputs.
J. Algorithms, 37(1):218–235, 2000.

[ZO00] Kenny Qili Zhu and Kar-Loon Ong. A reactive method for real time dynamic
vehicle routing problem. In 12th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2000), pages 176–, 2000.

170

	Introduction and overview
	Design of reoptimization algorithms
	Dispatching service vehicles for the ADAC under high load
	Issues and motivation
	Simplified models
	The original ZIBDIP model
	The simplified model [4]
	The simplified model PTC (Prescribed Total Cover)
	The simplified model ShadowPrice
	The simplified model ZIBDIPdummy

	Simplified reoptimization algorithms
	The simplified algorithm BestInsert
	The simplified algorithm 2-Opt

	Computational results
	Simplified models
	Simplified reoptimization algorithms

	Significance

	Group control of elevator systems
	Conventional elevator systems vs. destination call systems
	Some more background on elevator control
	Assumptions and requirements for elevator dispatches
	General requirements
	Additional assumptions
	System-specific requirements

	A general model for elevator group control
	The structure of the snapshot problem
	A model for elevator schedules

	Heuristic algorithms for group elevator control
	Classical elevator control
	Computer Group Control
	Genetic algorithms
	A cost-based best-insertion heuristic

	Exact elevator group control algorithms
	Previous work
	The algorithms of Closs
	The algorithm of Seckinger and Koehler
	The algorithm of Tanaka et al.
	Comparison of algorithms for groups of unit capacity cargo elevators

	New exact reoptimization algorithms for elevator group control
	A set partitioning model
	Pricing via Branch&Bound
	Greedy lower bounds
	Lower bounds via the algorithm of Tanaka et al.
	Lower bounds based on state-space relaxations
	The overall algorithm ExactReplan

	Computational results
	Solving the snapshot problem
	Simulation results

	Significance

	A stochastic dominance approach to the analysis of online algorithms
	Stochastic dominance analysis of online algorithms
	Introduction
	Related work
	Measures for online algorithms
	Related applications of Markov chains and stochastic dominance

	Stochastic dominance and Markov chain models for online algorithms
	Stochastic dominance and online algorithms
	Simulation results for bounded-space bin packing and bin coloring

	Optimality of LRU for paging with locality of reference
	Paging with locality of reference
	Optimality of LRU for paging with locality of reference

	Conclusion

	Analysis of bin coloring algorithms
	Problem definition and an application to elevator control
	Comparison methods for Markov chains
	Monotonicity-based Methods
	Coupling-based Methods
	Computer proofs for stochastic dominance relations between bin coloring algorithms

	Rigorous proofs of the stochastic dominance between OneBin and GreedyFit
	Markov chain models and preliminaries
	GreedyFit is better than OneBin: max-BC
	GreedyFit is better than OneBin: sum-BC

	Tables of computational results
	Simulation results for elevator control algorithms
	Exact Markov chain simulation results for bin packing

	Bibliography

