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Abstract  

In Aspergillus, controlled gene expression is often achieved using the reverse tetracycline-

controlled transactivator (rtTA) dependent Tet-on system, whereby transcription is titratably 

activated by addition of the tetracycline derivative doxycycline. The complementary Tet-off 

system utilises the tetracycline-controlled transactivator (tTA) component to quantitatively 

reduce gene expression. In this study, we utilized a synthetic biological approach to engineer 

highly optimized Tet-off conditional expression systems in Aspergillus niger and Aspergillus 

fumigatus. Steps for delivery of these tools include utilizing codon optimized cassette 

components, testing several promoters for improved genetic stability and validating two 

modified luciferase reporters for highly accurate measurements of gene expression. The Tet-

off cassettes developed in this study enable facile and quantitative functional analysis, as 

validated by Tet-off analysis of genes involved in chitin synthesis and cell wall polarity in A. 

niger, and para-aminobenzoic acid synthesis in A. fumigatus. We also used a racA
G18V

dominant allele to demonstrate that Tet-off in A. niger enables gene over-expression and 

downregulation in a single isolate. Additionally, we used the improved luciferase reporters to 

show that the Tet-off cassette in A. niger enables quantification of gene oscillations. In order 

to demonstrate that synthetic biological approaches developed here are broadly applicable to 

engineering transcriptional circuits in filamentous fungi, we used our strategy for improving 

cassette stability by promoter replacement in the A. niger Tet-on system, which resulted in a 

modified Tet-on cassette with higher stability in recipient genomes.
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Introduction 

The design and reengineering of fungal systems at the molecular level has generated 

numerous improved tools for basic and applied research. Such synthetic biological approaches 

include reengineering a prokaryotic serine recombinase for site-specific marker recycling 

(Hartmann et al., 2010), the CRISPR-Cas9 system for genome editing (Vyas et al., 2015) 

(Nødvig et al., 2015), generation of RNA interference vectors for gene knock-down (Skowyra 

and Doering, 2012) and an impressive range of inducible promoter systems from bacteria 

(Meyer et al., 2011) and other kingdoms (Hörner and Weber, 2012). Such conditional 

expression systems, where transcript abundance is controlled by experimental parameters, are 

a vital tool for characterisation of essential genes, which are unable to be analysed by deletion 

strategies. Moreover, titratable systems allow quantitative control of gene expression, which 

might be an important technique for deciphering complex phenotypes by enabling tightly 

controlled native, reduced or over-expression levels. One such tool is the tetracycline 

inducible system, commonly referred to as Tet-on, whereby transcription is titratably 

activated by addition of the highly stable tetracycline derivative doxycycline (Dox) to growth 

media (Fig. 1A). In this system, a reverse tetracycline-controlled transactivator (rtTA) 

requires a Dox ligand for DNA binding to rtTA responsive operator sequences (tetO). rtTA is 

constitutively expressed and a gene of interest placed under control of a minimal promoter 

next to several tetO elements, which enable activation of transcription in the presence of Dox. 

In a seminal study, Vogt et al. established conditional gene expression in Aspergillus 

fumigatus (Vogt et al., 2005). We have optimised this system and demonstrated that Tet-on is 

titratable in the model organism Aspergillus niger, with the level of gene induction 

proportional to the concentration of Dox added to the media (Meyer et al., 2011). The 

minimal promoter of the Tet-on system, which controls the gene of interest has 

low/undetectable basal rates of expression in the absence of inducers. Accordingly this is a 

popular and versatile tool for gene functional characterisation in a variety of model and 

pathogenic fungi. For example, a  simple application of the Tet-on system for analysis of 

uncharacterised gene (cfrX) in A. niger was to quantitatively elevate transcript levels using 

Dox and assess strain phenotypes with/without induction (Meyer et al., 2011). For natural 

product genome mining, Macheleidt and colleagues used Tet-on over-expression of a putative 

transcription factor to activate an A. fumigatus secondary metabolite cluster, which resulted in 

biosynthesis of a novel compound in induced strains (Macheleidt et al., 2015). Alternatively, 

replacing the native promoter of a gene with the Tet-on cassette can be used for gene 

functional analysis. For example, the Rho GTPase rho1 in the pathogenic mould A. fumigatus 
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was demonstrated to be an essential gene by replacement of the native rho1 promoter with the 

Tet-on cassette, which resulted in a mutant isolate which could not grow in the absence of 

Dox (Dichtl et al., 2012). An alternative strategy is to place genes of interest under control of 

the Tet-on system and subsequently delete the wild-type allele, enabling characterisation of 

gene function by quantitative transcript downregulation by reducing Dox in growth media, an 

approach validated using the A. niger γ-actin encoding gene (Meyer et al., 2011). An 

innovative application in A. nidulans by Wartenberg and colleagues used Tet-on to express 

antisense RNA for a gene encoding a putative dehydrin (Wartenberg et al., 2012). This 

enabled mRNA knock-down and functional characterisation of this mutant, which 

demonstrated a role of the product of this gene in stress resistance of dormant conidia 

(Wartenberg et al., 2012). Thus, the Tet-on system is a versatile tool that can be used for 

multiple applications in a variety of fungi.  

An alternative conditional expression system, named Tet-off, utilises the tetracycline-

controlled transactivator (tTA), in which tTA binding to tetO is prevented by tetracycline, 

enabling quantitative reduction of gene expression (Fig. 1B). In the diploid yeast Candida 

albicans, a high throughput approach in which one allele was deleted and the other placed 

under control of the Tet-off system enabled analysis of 1152 genes, of which 567 were 

demonstrated as essential for growth following Tet-off mediated down regulation (Roemer et 

al., 2003). In the corn smut Ustilago maydis, Tet-off replacement of the native promoter for a 

mating regulatory transcription factor enabled Dox controlled abolishment of sex in vitro 

(Zarnack et al., 2006). In addition to demonstrating the utility of the Tet-off system, this latter 

study highlights the numerous engineering steps that are required to develop highly optimised 

conditional expression systems in fungi, which included obviating early polyadenylation of 

the tetR gene by codon optimisation and decreasing basal activity of the Tet promoter by 

removal of enhancer elements in U. maydis (Zarnack et al., 2006). For the Tet-on system in A. 

fumigatus, further development entailed removal of repetitive sequences that were resulting in 

intramolecular recombination and loss of the cassette from recipient genomes (Helmschrott et 

al., 2013). These studies demonstrate the importance of synthetic biological approaches which 

are necessary to deliver optimal functionality of conditional expression systems.   
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Figure 1: Design of the Tet-expression systems. (A) In the Tet-on system gene transcription is 

reversibly turned on by the addition of Dox. It forms a complex with the constitutive expressed 

transcription factor rtTA2
S
-M2, thereby inducing association of rtTA2

S
-M2 protein to its operator 

binding site tetO7. As reporter gene, behind the minimal promoter of gpdA (Pmin), different luciferase 

versions were used. (B) The Tet-off system works in opposite direction, through addition of Dox the 

gene transcription is reversibly turned off, because the antibiotic induced dissociation of tTA2
S
 from 

tetO7.  

The objective of this study was to develop, optimise and validate a functional Tet-off system 

in the model genus Aspergillus, represented by the industrially important model organism A. 

niger and the pulmonary pathogen A. fumigatus. We describe a synthetic biological approach 

in which the Tet-on cassette was reengineered to a titratable, stable, tightly regulated Tet-off 

conditional expression system in both organisms. These inducible downregulation systems 

significantly expand the toolkit of Aspergillus spp. and provide an engineering framework for 

adapting any given promoter system in filamentous fungi.     
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Results 

Engineering of the Tet-off system in Aspergillus niger 

The fully functional A. niger Tet-on cassette was optimized previously and is encoded on 

plasmid pVG4.1 (Meyer et al., 2011). This vector also enables A. niger transformation using a 

pyrG auxotrophic marker (Meyer et al., 2011). Given that promoter and terminator sequences 

are common to both Tet-on and Tet-off conditional expression systems (Fig. 1), it was 

reasoned that simple exchange of the pVG4.1 reverse transactivator (rtTA2
S
-M2) with a

transactivator (tTA) would yield a derivative vector encoding a functional Tet-off cassette. 

Accordingly, a tTA sequence was PCR amplified from p473 (Vogt et al., 2005), which was 

used to replace the entire rtTA2
S
-M2 coding sequence in pVG4.1 to give plasmid pMA247.

This vector also contains a luciferase reporter encoded by the mluc gene under control of the 

minimal promoter so that functionality of the cassette can be validated. This vector was 

transformed into A. niger strain AB4.1, to give strain MA241.1, expressing a single copy of 

the putative Tet-off cassette at the pyrG locus. However, in microtiter assays this isolate 

demonstrated very low mluc expression as measured by LCPS values (data not shown). Strain 

SB1.16, which contains multiple integrations of the putative Tet-off expression system at 

random loci, did not sufficiently improve mluc expression (data not shown).  

Hence, a transactivator optimized for mammals (tTAS
2
, see Material and methods) was used

to replace the rtTA2
S
-M2 sequence in pVG4.1, which gave derivative plasmid pFW9.1.

Transformation of A. niger with this plasmid generated strain FW13.11, which expressed a 

single copy of the Tet-off modified cassette at the pyrG locus. In microtiter assays, this isolate 

demonstrated strong luciferase activity following 8 hours growth, which was not observed in 

growth media supplemented with various concentrations of Dox, indicating successful Tet-off 

mediated downregulation of this gene (Fig. 2A). Interestingly, non-induced FW13.11 shows 

higher luciferase values than the Tet-on expressing strain VG8.27 following induction with 20 

µg/ml Dox (Fig. 2A). Importantly, induction of the Tet-off cassette with higher concentrations 

of Dox resulted in faster downregulation of luciferase, indicating this system is titratable (Fig. 

2A). Bioreactor cultivation of Tet-off expressing strain FW13.11, pictured in Fig 2B, shows 

that downregulation using the expression system works on a large scale and with low 

concentrations of Dox induction (5 µg/ml). These data also demonstrate high expression of 

the mluc gene results in slower growth rates of A. niger, an effect which is abolished by Tet-

off mediated downregulation of this gene (Fig. 2B). During development and testing the Tet-

off system, we observed that not all PCR and Southern blot confirmed A. niger transformants  
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Figure 2: Microtiter plate assay and bioreactor cultivation and proof of genetic stability of Tet-

off PgpdA::tTA2
S
::mluc strain. (A) 5x10

4 
spores/ml of the Tet-off strain FW 13.11 and the control 

Tet-on strain VG8.27 were inoculated in 300 µl complete medium with 0, 5, 10, 20 and 50 µg/ml Dox 

for 20 h (30 °C). Luciferase activity was measured in LCPS and normalised through division of 

measured optical density at 595 nm (OD) during cultivation in microtiter plate. (B) Two batch 

cultivations of FW13.11 were run, inoculated with 10
9
/l spores, one was induced after ~19.5 h with 5 

µg/ml Dox. The diagram shown on the left side the luciferase activity per OD printed with lines and on 

the right side the biomass accumulation was figured by blocks. The cultivation with gene down 

regulation, show a decrease luminescence after induction and higher biomass values in comparison to 

the non-induced luciferase producing strain. (C) Schematic overview of the analytic PCR, the forward 

primer annealed on the PgpdA and the reverse primer on the modified luciferase (Supplementary Table 

S1). The integration of the whole Tet-off expression system in the A. niger genome resulted in ~2 kbp 

PCR fragment. If an intramolecular recombination event occurred the assumed PCR fragment of ~ 400 

bp will be visible. (D) The Tet-off strain (PgpdA) of the bioreactor cultivation without Dox induction 

shown an increase in intramolecular recombination event PCR fragment over cultivation time. The 44 

h time point was analysed in technical duplicate, and additionally the recipient strain AB4.1 was used 

a control. (E) The cultivation of the Tet-off strain with 5 µg/ml Dox induction lead to constant but 

small amount of an intramolecular recombination event over cultivation time. 

expressing the Tet-off mluc reporters demonstrated down regulation following induction. 

Moreover, isolates in which the conditional expression system was functional lost Tet-off 

mediate gene regulation following storage on MM plates. Given that other groups utilizing the 

Tet-on system in A. fumigatus demonstrated genome instability of this cassette due to 

intramolecular recombination events (Helmschrott et al., 2013), we investigated this 

possibility for the Tet-off cassette in A. niger using diagnostic PCR (primers listed in 

Supplementary Table S1). We extracted genomic DNA from bioreactor culture samples 

throughout a time series of growth, and PCR using primers spanning a 1.9 kb fragment of the 

Tet-off cassette demonstrated loss of a 1.5 kilobase pair sequence over time (Fig. 2C), 
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indicating the Tet-off cassette is not genetically stable due to a intramolecular recombination 

event which was observed to increase throughout cultivation (Fig. 2D). The cultivation with 

Dox induction in Fig. 2E shows that this event occurs in a small but consistent subset of the 

population. Given that there is 176 bp sequence homology between the minimal gpdA 

promoter and constitutive gpdA promoter, we reasoned that this was resulting in 

intramolecular recombination and loss of functionality in A.  niger.  

Accordingly, we decided to replace the constitutive gpdA promoter, which in vector pFW9.1 

originates from A. nidulans. Firstly, we utilised the A. niger gpdA promoter (gpdAn), with the 

rationale that this gene would offer similar expression levels to the A. nidulans orthologue 

encoded in the Tet-off cassette. This was verified to lack homologous sequences to the 

minimal gpdA promoter as determined by DNA alignment analysis (data not shown). Initial 

experiments using a gpdAn promoter resulted in a functional Tet-off system, but ~15% of 

transformants demonstrated loss functionality as measured by luciferase activity in the 

presence of Dox (data not shown). By PCR amplification of the Tet-off cassette from these 

isolates and subsequent sequencing we demonstrate this is due to another recombination event 

between this promoter and the crgA terminator (primers describe in Supplementary Table S1).  

In order to identify a further constitutive promoter which lacks any sequence homology to 

other regions of the cassette, we interrogated an in-house compendium of microarray data for 

genes which have comparable transcriptional profiles to gpdAn. This analysis yielded one 

gene, which we term fraA, encoding a putative ribosomal subunit (An16g04690) which 

demonstrated comparable transcriptional profiles with gpdAn in a variety of experiments (data 

not shown). Exchange of the constitutive gpdA promoter with the fraA promoter resulted in a 

stable strain as repeated purifications of transformants on MM plates did not result in loss of 

function of the expression system, and evaluation of southern blots demonstrated no 

detectable intramolecular recombination event (data not shown). In microtiter plate assays, the 

resulted new Tet-off strain FW25.35 demonstrated titratable downregulation of luciferase 

after induction with Dox, but the strain is about 50 % less active in the absence of induction 

than the established Tet-on system (VG8.27) induced with 20 µg/ml Dox (Fig. 3A). Batch 

cultivations in a bioreactor demonstrated that biomass accumulation was comparable under 

both inducing and non-inducing conditions (Fig. 3B), which was a notable improvement when 

compared to isolate FW13.11, which demonstrated reduced growth under inducing conditions 

(Fig. 2B). Using the PfraA Tet-off system, gene downregulation occurred in the presence of 5 

µg/ml Dox, and we observed rapid decrease in reporter luminescence after induction (< 11 

minutes, Fig. 3B). Figure 3D and 3E demonstrate that in both bioreactor cultivations with and 

without inducer there was no intramolecular recombination event as determined by diagnostic 



After demonstration of an intramolecular recombination event during Tet-off construction and 

re-engineering a stable cassette (Fig. 2D and E), we reasoned that similar design flaws might 

be present in the original Tet-on system. Using a similar diagnostic PCR approach 

(Supplemental Table ST 1, Fig. 2C), we confirmed that during bioreactor cultivation of Tet-on 

strain VG8.27 a similar recombination event was occurring, in media with and without Dox 

(Supplemental Figure S1A&B). Accordingly, to obviate recombination between gpdA 

promotor and Pmin, we exchanged PgpdA with PfraA in pFW20.1 (Supplementary Table S1), 

and generated the strain FW36.1 (Table 1). This strain demonstrated no further recombination 
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PCR (Fig. 3C). Taken together, these data indicate the fraA Tet-off system will be a useful 

tool for functional gene characterization in A. niger.  

Figure 3: Microtiter plate assay, bioreactor cultivations and proof of genetic stability of Tet-off 

PfraA::tTA2
S
::mluc. (A) The Tet-off strain FW 25.35 and as control the Tet-on strain VG8.27 were 

inoculated with 5x10
4 

spores/ml in 300 µl complete medium with 0, 5 and 20 µg/ml Dox and  

measured for 20 h (30 °C). Luciferase value per optical density at 595 nm (OD) indicated a less 

expression strength of the Tet-off system compared with the induced Tet-on system. (B) The luciferase 

activity per OD of the strain FW25.35 in a bioreactor run induced after ~19 h with 5 µg/ml Dox and in 

another run without Dox is printed with lines and additionally the biomass accumulation is marked by 

blocks over cultivation time of 2 days. (C) The analytic PCR is pictured, where by the forward primer 

anneals on the PfraA and the reverse primer on the modified luciferase (Supplementary Table S1). The 

integration of the whole Tet-off expression system in the A. niger genome resulted in ~2,7 kbp PCR 

fragment, if  an intramolecular recombination event of the transactivator take place the assumed PCR 

fragment would be a minimum of 800 bp shorter. (D) The Tet-off with PfraA indicates without and (E) 

with Dox addition no an intramolecular recombination event problem during 48 h batch cultivation. 

Engineering improved genetic stability of the A. niger Tet-on cassette 
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of the Tet-on cassette (data not shown), yet luminescence MTP analysis demonstrated less 

strength and a different reporter expression profile when compared to isolate FW32.14 

containing the PgpdA promoter (Supplemental Figure S1C). These variations in vector 

functionality (i.e. improved genome stability or maximal expression level) must be taken into 

consideration for optimal use in downstream applications.  

 Table 1: Aspergillus strains used in this study. 

Strain Relevant genotype Source 

N402 Aspergillus niger wild type (Bos et al., 

1988) 

  AfS35   Aspergillus fumigatus recipient [akuA::loxP]   (Krappmann et 

al., 2006) 

AB4.1 A. niger pyrG
-
 isolate (Hartingsveldt 

et al., 1987) 

VG8.27 AB4.1, pyrG
+
 (transformed with pVG4.1 (Tet-on

PgpdA::rtTA2
S
-M2::mluc), single copy)

(Meyer et al., 

2011) 

MA241.1 AB4.1 transformed with pMA247 (Tet-off  

Pgpd::tTA::mluc pyrG*), pyrG
+
, single copy

this work 

SB1.16 AB4.1 transformed with pSB1.1 (Tet-off  

PgpdA::tTA::mluc) and co-transformation with pAB4.1 

(pyrG), pyrG
+
,~ 7 copies

this work 

FW13.11 AB4.1 transformed with pFW9.3 (Tet-off  

PgpdA::tTA2
S
::mluc pyrG*),  pyrG

+
, single copy

this work 

FW25.35 AB4.1 transformed with pFW15.1 (Tet-off  

PfraA::tTA2
S
::mluc pyrG*), pyrG

+
, single copy

this work 

FW28.1 AB4.1 transformed with pFW19.7 (Tet-off  

PfraA::tTA2
S
::gfaA pyrG*), pyrG

+
,single copy

this work 

FW29.37 FW28.1 transformed with ∆gfaA::hyg single integration this work 

MA37.29 AB4.1, ∆gfaA ::AopyrG (Ram et al., 

2004) 

FW26.5 transformed with pFW17.1 (Tet-off PfraA::tTA2
S
::racA

pyrG*), pyrG
+
,  single copy

this work 

FW30.37 FW26.5 transformed  with ∆racA::hyg, single integration this work 

MA80.1 MA70.15 transformed with  ∆racA::AopyrG (Kwon et al., 

2011) 
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FW27.7 AB4.1 transformed with pFW18.1 (Tet-off  

PfraA::tTA2
S
::racA

G18V
 pyrG*), pyrG

+
, single copy

this work 

FW31.14 FW27.7 transformed with ∆racA::hyg, single integration this work 

MA61.24 AB4.1 transformed with PinuE::racAG18V (Kwon et al., 

2011) 

FW35.1 AB4.1 transformed with pAB4.1 (pyrG), pyrG
+
, single copy this work

AfS191 AfS35 transformed with pSK606 (A. fum. Tet-on::pabaA ) 

HpaI fragment replacing the endogenous pabaA promoter 

region 

this work 

XM1.7 AB4.1 transformed with pXM1.1 (Tet-on PgpdA::rtTA2
S
-

M2::luc pyrG*), pyrG
+
, single copy

this work 

FW32.14 AB4.1 transformed with pFW20.1 (Tet-on  PgpdA::rtTA2
S-

M2::luc-PEST pyrG*), pyrG
+
,  single copy

this work 

FW33.23 AB4.1 transformed with pFW21.8 (Tet-off  

PfraA::tTA2
S
::luc-PEST pyrG*), pyrG

+
, single copy

this work 

FW36.1 AB4.1 transformed with pFW22.1 (Tet-On  PfraA::rtTA2
S
-

M2::luc-PEST pyrG*), pyrG
+
, single copy

this work 

Validation of the Tet-off system in A. niger 

In order to validate that the Tet-off inducible expression system developed in this study will 

enable gene functional characterization, we utilised a strategy where genes which mediate 

easily detectable phenotypes in A. niger were placed under control of the Tet-off system, 

followed by deletion of the wild-type allele. In these isolates, Tet-off mediated transcript 

downregulation should result in comparable phenotypes to previously published null isolates. 

Firstly, we substituted the coding sequence for the mluc reporter in the fraA Tet-off system 

with gene gfaA, which encodes a glutamine: fructose- 6- phosphate amidotransferase (Ram et 

al., 2004). This gene is responsible for the first step in chitin synthesis and null isolates are 

unable to grow on media without exogenous supplementation of glucosamine, which is the 

metabolite produced by the enzyme gfaA (Ram et al., 2004). Additionally, the RhoGTPase 

racA coding sequence was cloned into fraA Tet-off. Deletion of this gene results in reduced 

colony sporulation and a hyphal hyperbranching phenotype in simple growth assays (Kwon et 

al., 2011).  

In order to demonstrate that the Tet-off system can also be used for gain-of-function studies 

under non-induced conditions, we cloned the dominant activation allele of the racA 

RhoGTPase racA
G18V

 into fraA Tet-off. racA
G18V

 confers a clavate germling phenotype when
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over-expressed in A. niger (Kwon et al., 2011). We therefore hypothesised that by deletion of 

the wild-type racA in a PfraA::tTA2
S
::racA

G18V
 background, this single isolate can be used for

both gain-of-function and loss-of-function analysis during non-inducing and inducing growth 

conditions respectively, thus proving a further technique for use with the Tet-off system.  

Accordingly, A. niger strains expressing gfaA, racA, racA
G18V

 under Tet-off control at the

pyrG locus were generated (Table 1).  These Tet-off expression strains were used as recipient 

isolates in which the respective native gene was deleted using a split marker approach. We 

used ∆gfaA and ∆racA isolates as positive controls for the predicted growth deficiencies of 

Tet-off downregulation strains (Table 1). All isolates were phenotypically screened on solid 

media +/- Dox induction (Fig. 4). For all strains macroscopic colony morphology was 

assessed, and for analysis of racA mutant isolates cell morphology was analysed 

microscopically to determine apolar growth phenotypes.  

For strain FW29.37 (PfraA:tTA2
S
::gfaA, ∆gfaA) growth on MM plates was identical to the

control isolate FW35.1 (Fig. 4A). Induction of gfaA Tet-off by supplementation of the growth 

media with more than 5 µg/ml Dox resulted in complete absence of growth in FW29.37 (10-

10
3
 spores), which is consistent with loss of chitin synthesis due to gfaA down-regulation. The

gfaA knock out strain was unable to grow on MM or MM+Dox plates, but supplementation 

with 10 mg/ml glucosamine enabled growth of this isolate. The plate assay also shows rescue 

of FW29.37 growth on MM+Dox plates through addition of glucosamine. Down-regulation of 

gene gfaA was titratable with various Dox concentrations as determined by colony growth on 

plate assays (Fig. 4A).  

Growth of strain FW30.37 (PfraA::tTA2
S
::racA, ∆racA) was identical to control isolate

FW35.1 on MM (Fig. 4 B).  Tet-off downregulation resulted in radial colony growth which 

was indistinguishable from that of a ∆racA strain but with notably less spores than the control 

isolate (Fig. 4 B). Microscopic inspection revealed a clear hyberbranching phenotype in both 

∆racA and following Tet-off downregulation in strain FW30.37 (Fig. 4 C). 

In FW31.14 (PfraA::tTA::racA
G18V

, ∆racA) dominant activation of RacA
G18V

 under non-

inducing conditions resulted in growth inhibition due to the previously documented actin mis-

localisation defect in this over-expression strain (Fig. 4D and 4E). Following Tet-off 

downregulation, FW31.14 demonstrated reduced growth rates and hyphal hyperbranching 

consistent with loss of racA function. These data collectively demonstrate that Tet-off is a 

versatile tool for both gain-of-function and quantitative downregulation studies in A. niger.  
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Figure 4: Phenotypical growth assay and microscopic analysis of gfaA, racA and racA
G18V 

under 

control of the new Tet-off (PfraA) in A. niger. Minimal medium plates (MM) and a serial spore 

dilution (10, 10
2
, 10

3
) were used. (A) Tet-off mediate down regulation of the gfaA gene (FW29.37) 

encoding glutamine fructose-6-phosphate amidotransferase. Deletion of gfaA is lethal (MA29.37) but 

can be rescued by addition of glucosamine (GA). (B) The Rho GTPase racA integrated in the Tet-Off 

system (FW30.37) shows a down regulation with low Dox concentrations (1 µg/ml), which was a 

comparable phenotype to the knock out strain (MA80.1), with reduced diameter and spore formation. 

(C) The strains grown on coverslips in MM for microscopy. Microscopic studies confirmed that 

FW30.37 showed hyperbranching similar to the knock out mutant (MA80.1) under induced conditions 

in the Tet-off system, and under uninduced conditions a phenotype comparable with the wild type 

(FW35.1). Scale bar, 10 µm. (D) The strain FW31.14 included the dominant activation allele racA
G18V

, 

without Dox the overexpression of racA
G18V

 confers a lethal clavate germling phenotype similar to the 

control strain MA61.24, which shown the overexpression phenotype only on saccharose medium 

plates (SM) because of the used inuE promoter. Under induced conditions, the downregulation of 
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racA
G18V

 in the Tet-off system introduced reduced macroscopic growth rates and hyphal 

hyperbranching consistent with loss of racA function as in B. (E) The clavate germling overexpression 

phenotype of the Tet-off racA
G18V

 system looked similar to the induced control strain MA61.24 in 

microscopic analysis with a magnification of 40x and also the hyperbranching took place under 

induced condition similar to C. Scale bar, 10 µm. 

Conditional gene silencing in A. fumigatus by an alternative Tet-off module 

In a parallel effort, the established Tet-on system as validated in the human-pathogen 

A. fumigatus was remodeled to a Tet-off version. Initial attempts after replacing the rtTA2
S
-

M2 sequence in the established Tet-on module of pVG4.1 (Meyer et al., 2011) by a formerly 

validated tTA sequence (Vogt et al., 2005) (Gossen and Bujardt, 1992) were unsuccessful, 

presumably due to toxicity this transactivator when expressed at high levels in the host cell. 

Accordingly, we made use of the recently modified version of the Tet-on system (Helmschrott 

et al., 2013), in which rtTA2
S
-M2 expression is driven by the tpiA promoter. Moreover, we

used a synthetic tTA2 transactivator that might be tolerated in A. fumigatus at higher 

intracellular concentrations (Baron et al., 1997) (Urlinger et al., 2000). The resulting Tet-off 

module of plasmid pSK606 was then used to assemble a conditional promoter replacement  

(Hu et al., 2007) cassette in order to target the pabaA gene in A. fumigatus (Fig. 5A). 

Respective recombinant strains were screened for their growth behavior in the presence and 

absence of Dox with respect to para-aminobenzoic acid (PABA) necessity, a vitamin K 

precursor that is formed by the action of the pabaA-encoded PABA synthetase (Fig. 5B). 

Inoculation of the Tet-off::pabaA strain AfS191 on solid culture medium lacking PABA 

revealed that the presumed auxotrophy depends on the presence of the inducer, as the isolate 

was unable to grow significantly when Dox was supplemented at a concentration of 50 μg/ml 

and this conditional auxotrophy could rescued by the presence of PABA. 
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Figure 5: Conditional Tet-off promoter replacement in A. fumigatus. (A) Schematic outline of the 

A. fumigatus pabaA locus and the conditional promoter replacement allele carrying the functional Tet-

off module, in which expression of the doxycycline-responsive trans-activator (tTA2) is driven by the 

tpiA promoter. Transcription of the pabaA gene is initiated from a minimal promoter comprising tetO 

sequences that the tTA2 factor binds to in the absence of the tetracycline derivative Dox; the 

pyrithiamine resistance-conferring ptrA gene is used as selection marker after genetic recombination. 

(B) Growth phenotype of the Tet-off::pabaA strain AfS191 in dependency of Dox and 

supplementation of para-aminobenzoic acid (PABA) compared to its wild-type progenitor and an 

auxotrophic pabaAΔ deletion strain. Indicated amounts of conidia were spotted on Aspergillus minimal 

culture medium (AMM) in the presence or absence of supplements and growth was monitored after 

three days of incubation at 37 °C. A conditional requirement for PABA is evident for the conditional 

promoter replacement strain AfS191, demonstrating functionality of the Tet-off system. 

Application of the Tet-on and Tet-off system for induced gene oscillations 

In order to conduct gene oscillatory studies in Aspergillus spp., we decided to test two 

modified luciferase reporters, including a fungal codon optimized version luc (Gooch et al., 

2008) and a reporter encoding a proline, glutamic acid, serine, and threonine (PEST) protein 

degradation sequence luc-PEST (Cesbron et al., 2013). We reasoned that these modifications 

would increase fluorescent intensity and decrease luciferase half-life, which is essential for 

accurate measurement of gene expression during oscillations. We firstly used the Tet-on 

system [4] to compare both luc and luc-PEST with the conventionally used mluc (for 
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construction of plasmids see Supplementary Table S1, and strain generation see Table 1). We 

used a standard luciferase microtiter plate assay to measure luciferase activity in all Tet-on 

isolates expressing the various luciferase genes (Fig. 6A). Following induction, strains 

expressing the codon optimized luc and luc-PEST demonstrated an average of 5 and 1.5 times 

higher LCPS/OD values when compared to those expressing mluc respectively. This indicates 

both performed favourably with regards to fluorescent intensity. 

Next, we compared mluc with luc-PEST using the Tet-off system to determine luciferase half-

life following conditional expression (Fig. 6B). Downregulation by addition of Dox to growth 

media was comparable for mluc with luc-PEST in MTP format. Under non-inducing 

conditions, luciferase in luc-PEST expressing strains rapidly decreases following ~14 h 

growth. However, in mluc expressing strains we observed increased LCPS/OD values beyond 

this timepoint, which we hypothesised in due to accumulation of luciferase with an 

unacceptably high half-life rather than active transcription of this gene in stationary phase 

cells.  

Figure 6: Comparison of different luciferase variants in Tet-on and off system. (A) The Tet-on 

expression system (PgpdA) was used to compare the different luciferase version mluc (VG8.27), luc 

(XM1.7) and luc-PEST (FW32.14) in A. niger in a microtiter plate assay.  Induction with 5 or 20 

µg/ml Dox occurred at time point 0. (B) In the Tet-off system (PfraA) mluc (FW25.35) was compared 

with luc-PEST (FW33.23) and repression of both systems induced with 5 or 20 µg/ml Dox at time 

point 0.  

In order to corroborate this, we inhibited protein translation by addition of cycloheximide to 

culture media following 10 hours of growth of Tet-off strains in microtiter plate assay 

(Supplementary Figure S2). Mluc expressing isolates demonstrated that decrease in luciferase 

activity following cycloheximide treatment is not so fast with a half-life of mluc with 90 min 

(Supplementary Figure S2A). In contrast, we observed rapid decrease of luciferase per optical 

density activity in luc-PEST strains and estimated the half-life of luc-PEST with 30 min 

(Supplementary Figure S2B). The identified half-lifes were independent of cycloheximide 

concentration (Supplementary Figure S2). Reporter half-lifes estimated using cycloheximide 



- 17 - 

inhibition of mluc and luc-PEST reporters under control of the Tet-on cassette induced with 5 

µg/ml Dox were comparable to values observed with the Tet-off cassette (data not shown).  

A luc-PEST reporter has previously been used to quantify circadian rhythms in Neurospora 

crassa, where improved sensitivity enabled accurate reporting of oscillatory transcriptional 

patterns (Cesbron et al., 2013). In order to test if luc-PEST in A. niger was similarly sensitive, 

we simulated circadian oscillations by addition of Dox to growth medium, which was 

followed by a growth period of 5h and subsequent removal of Dox by washing cultures with 

fresh media. We used strain FW33.23 expressing luc-PEST under control of PfraA Tet-off in 

this assay (Fig. 7A) which demonstrated clear Dox dependent oscillations in luciferase 

activity. At later time-points (19 – 30 h) LCPS/OD was reduced when compared to earlier 

time-point (10.7 h) which is consistent with increased optical density of the culture. Direct 

comparisons of strains expressing Tet-off controlled luc-PEST (FW33.23) with mluc 

(FW25.35) demonstrated that Dox induced repression was faster using PEST modified 

luciferase and with lower LCPS/OD values (Fig. 7B). This indicates that luc-PEST will enable 

improved detection of both small and rapid transcriptional changes.  

Figure 7: Gene oscillation studies used the Tet-off system. (A) The microtiter plate assay was 

inoculated with 5x10
4 

spores/ml of the Tet-off strain with PfraA luc-PEST (FW33.23) for oscillation 

studies. Following 14 h growth the culture was induced with 1 µg/ml Dox, and after further 5h the 
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wells were washed with fresh medium to enable gene expression. Following 5 h further growth, we 

induced the culture again. For comparison the same experiment was started directly with induction 

through 1 µg/ml Dox. (B) To show the advantage of luc-PEST, FW25.35 (mluc) was used in microtiter 

plate assay for comparison. After 10 h growth both cultures were induced with 1µg/ml Dox, after 5h 

the cultures were washed and let grown again for 5 h and after further 5 h induced the last time. The 

LCPS per OD values indicated that FW33.23 show a faster decrease after gene repression and enable 

vales closed to zero. 

Discussion 

The rational redesign of fungal genetic circuits has huge promise for industrial applications 

and fundamental research. Such optimised systems might enable production of a greater 

variety of bioactive products at higher yields by experimentally and genetically tractable 

fungi. For characterisation of gene function in basic research, applications of reengineered 

conditional expression systems have enabled interrogation of multiple attributes of fungal 

biology, including gene essentiality (Roemer et al., 2003), secondary metabolism (Skowyra 

and Doering, 2012) and mating (Zarnack et al., 2006). In this study we deliver a functional 

Tet-off conditional expression system in A. niger and A. fumigatus which are model 

/industrially important and pathogenic moulds respectively.    

In A. niger we re-engineered the established Tet-on cassette to a functional Tet-off conditional 

expression system by sequential molecular modifications which included: (i) replacement of 

the rtTA2
S
-M2 with a codon optimised tTA2S; (ii) testing several promoters for improved

genetic stability of the cassette and (iii) validating two modified luciferase reporters for highly 

accurate measurements of transcription.  

During validation experiments, poor genetic stability of both Tet-off and Tet-on cassettes was 

identified. Previous studies have demonstrated that the strength of promoter has an influence 

on the stability of the expression system, where an overexpressed transactivator interacts with 

a variety of essential components of the transcriptional machinery, which can be deleterious to 

cell metabolism, a phenomena described as squelching (Gill and Ptashne, 1988). To improve 

stability of the Tet-off cassette, we exchanged the gpdA promoter with the fraA promoter, so 

that an intramolecular recombination event was undetectable in various laboratory cultures. 

Importantly, this Tet-off system maintained titratable downregulation of a luciferase reporter.  

In order to demonstrated the utility of the new Tet-off expression system for gene functional 

analysis, we could confirmed roles of gfaA and racA in chitin biosynthesis and regulation of 

polar growth respectively. Thus, distinct processes which include fungal metabolism and 

signalling cascade components can be assessed using the Tet-off system described in this 

study. We also used a dominant racA
G18V

 allele to prove that the Tet-off cassette will enable
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both gain-of-function and conditional gene downregulation in a single strain background. 

Concomitant gene over-expression and downregulation enables comprehensive 

characterisation of gene function, yet has previously required time-consuming generation of 

multiple mutant isolates. That a single background can be used for both experimental 

approaches greatly enhances the available toolkit for gene functional analysis in Aspergillus 

spp. 

Probing the cellular function of gene products in the context of fungal virulence is a valuable 

and promising application of conditional gene expression in Aspergillus. Successful 

establishment of the Tet-on system in A. fumigatus made such studies possible, in which the 

expression of distinct genes during infection could be manipulated by Dox feeding of the 

inoculated animals (our unpublished results). Accordingly by addressing the role of 

presumably essential genes during pathogenesis of aspergillosis, the conditional promoter 

replacement approach employing the Tet-on or Tet-off system is valid and supportive in 

defining novel targets of antifungal therapy. When titrating the minimal amount of Dox that 

would result in auxotrophy in the Tet-off::pabaA strain AfS191, concentrations of 3 μg/ml 

turned out to be sufficient when inoculating 10
3
 conidia (data not shown), prompting

successful application of the Tet-off system in infection series where concentrations of 0.2% 

in the drinking water of susceptible mice are routinely applied. 

With regards to modification of luciferase reporters for optimal measurement of gene 

expression, we tested the fully codon optimised luciferase (luc) (Gooch et al., 2008) and short 

half-life luc-PEST (Cesbron et al., 2013). Using a gene oscillation approach in A. niger with 

the Tet-off system, we demonstrate approximately 5 times higher luciferase values using luc, 

which is therefore a useful tool for experiments which assess activity of lower activity 

promoters. With regards to improved sensitivity, our results determined the average half-life 

of luc-PEST as 30 mins, which is comparable to the half-life published in Neurospora crassa  

(Cesbron et al., 2013) . In contrast, the conventionally used mluc (Morgan et al., 2003) 

demonstrated an extended half-life of 90 min with cycloheximide microtiter plate 

determination. Faster degradation of luciferase reporters presented here will enable more 

accurate measurements of conditional expression systems in future synthetic biological 

applications.  

Conclusions 

In this study we engineered a titratable Tet-off system in A. niger and A. fumigatus. This 

conditional expression system enabled gene functional analysis as determined by quantitative 
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downregulation of racA and gfaA in A. niger and pabaA in A. fumigatus. These data provide 

proof of principle that this tool will be useful for assessing essential genes in both these 

organisms. Using a racA
G18V

 dominant activation allele in A. niger, we were able to confirm

that the Tet-off conditional expression system enabled downregulation and overexpression in 

a single isolate, an approach which obviates experimentally costly generation of multiple 

mutant strains. We conducted several quality control experiments in which genetic stability of 

the Tet-off encoding cassette was maximised by replacement of a gpdA promoter with a fraA 

promoter. Accordingly, the Tet-off system is a versatile and robust tool for gene functional 

analysis in industrially important and pathogenic Aspergilli.  Expansion of this synthetic 

biological approach enabled improvement of genetic stability in the previously published A. 

niger Tet-on cassette, demonstrating that tools and techniques described in this study can 

broadly be applied to engineering transcriptional circuits in filamentous fungi. Finally, in 

order to conduct gene oscillatory studies, we describe two improved luciferase reporters 

which can be used for accurate measurement of gene transcription in Aspergillus spp.     

Material and methods 

Cloning 

The Gibson assembly method was utilized for plasmid construction (Gibson et al., 2009). 

Briefly, PCR products or restriction endonuclease digested DNA fragments to be recombined 

were designed with 20 over-lapping base pair regions to facilitate homologous recombination 

(all plasmid constructions are listed in Supplementary Table S1). 5 µl DNA fragments were 

mixed with 15 µl Gibson master mix consisting of 4 µl 5x isothermal reaction buffer (25 % 

PEG-8000, 500 mM Tris-HCl pH 7.5, 50 mM MgCl2, 50 mM DTT, 1 mM of each four 

dNTPs and 5 mM NAD), 0.08 units T5 exonuclease (Epicentre), 0.5 units Q5 DNA 

polymerase (NEB) and 80 units Taq DNA ligase (NEB), made up to 15 µl with sterile water. 

Samples were incubated at 50 °C for 60 minutes, before 3 minutes cooling at room 

temperature, subsequent 3 minute incubation on ice, after which 3 µl aliquots were 

transformed into chemically competent Escherichia coli strain TOP 10. Bacteria were grown 

in LB medium supplemented with ampicillin at 50 µg/ml where appropriate.  

Construction of Tet-off cassettes 

Several versions of the tTA were used throughout this study. Initial experiments utilized the 

tTA gene provide from p473 (Vogt et al., 2005), which was then cloned into the Tet-On 



positive clones during transformation. Accordingly, transformation media was supplemented 

with Dox (1-5 µg/ml) in order to prevent heterokaryotic colonies overgrowing positive 
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system of pVG4.1 plasmid (Meyer et al., 2011) (all plasmid constructions are listed in 

Supplementary Table S1). In subsequent work we used the commercially available tTA2
 S

codon optimized for eukaryotic translation (pTet-Off® Advanced Vector, Clontech). 

To validate the functionality of other promoters instead of gpdA, 5’ upstream regions from 

two genes were rationally selected based on comparable gene expression profiles to gpdAn 

transcripts from an in-house compendium of A. niger microarray experiments (gpdAN 

An16g01830, fraA An16g04690). In both cases we choose 1000 bp in front of the annotated 

gene as promoter region. 

To determine whether the new Tet-off system allowed gene function assays, the gene racA 

(An11g10030), racA
G18V

 (dominant activation of racA) and gfaA (An18g06820) were used to

verify the concept. The reporter gene mluc was PmeI restriction digested from pFW15.1 and 

replaced by DNA sequences encoding one of the above genes using Gibson cloning (racA: 

pFW17.1, racA
G18V

: pFW18.1, gfaA: pFW19.7), in detail see Supplementary Table S1.

A Tet-off module based on the pCH008 construct of Wagener and co-workers (Helmschrott et 

al., 2013) was generated by replacing the rtTA2
S
-M2-encoding sequence by the synthetic tTA2

sequence isolated from the plasmid pUHT61-1 (Urlinger et al., 2000) by sequence and 

ligation independent cloning (SLIC) using the Seamless Cloning system of Life Technologies. 

A fragment of the resulting plasmid pSK606 was then used to assemble a conditional 

promoter replacement cassette targeting the pabaA locus of A. fumigatus, using PCR 

amplicons covering 1.5 kb of the 5' region and the coding sequence together with the 3' 

region. A 7 kb HpaI fragment from this conditional promoter replacement vector pSK607 was 

used for transformation of the A. fumigatus recipient strain AfS35. 

Furthermore both luc-PEST (1879 bp) and luc (1741 bp) DNA encoding sequences were 

amplified by Q5-polymerase from pFH62 (Cesbron et al., 2013) and Gibson cloned into the 

recently used Tet-on system (pVG4.1) at PmeI restriction locus. luc-PEST was also cloned 

into the Tet-off plasmid using this approach (pFW15.1). Additionally, the published Tet-on 

cassette (pVG4.1) was also optimised with the new fraA promotor (Tab.1) and luc-PEST 

resulting in pFW22.1. 

A. niger transformation 

A. niger transformation protocols, selection procedures, fungal chromosomal DNA isolation, 

diagnostic PCR and Southern analyses were performed as described in Meyer et al., 2010. 

We observed that expression of the Tet-off reporter cassettes resulted in slow growth of 
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transformants.  In the case of the transformation with pFW18.1 (Tet-off with racA
G18V

) it was

necessary to add Dox in the transformation and purification plates, because the overexpressed 

racA
G18V 

transformant is non-viable.

A split marker approach enabled directed deletion of the target genes gfaA and racA at 

endogenous loci, with a hygromycin resistance gene (from pAN7.1 (Punt et al., 1987)) used as 

a selectable marker. Following transformation, agar plates were supplemented with 200 µg/ml 

and 100 µg/ml
 
hygromycin in subsequent purification plates (Arentshorst et al., 2015). 

In order to confirm single cassette integration in the recipient genome at the pyrG locus, 

transformant genomic DNA was restriction endonuclease digested and probed using a DIG 

labelled DNA amplicon, which was a homologous sequence to 538 bp in AnpyrG* at 3` of the 

Tet-off construct (described in detail in Supplementary Table S1). Two independent 

restriction endonucleases were used for confirmation of each strain. Similarly, for 

confirmation of gfaA and racA gene deletion events, two DIG labelled DNA probes were used 

which targeted either the promoter or terminator region of each gene respectively 

(Supplementary Table S1). 

Strains and culture conditions

Aspergillus strains used in this study are given in Table 1. In all instances where A. niger was 

modified with derivative plasmids of pVG4.1, we used AB4.1 (Table 1) as recipient strain 

using its uracil-auxotrophy for selection. This enabled comparison to established Tet-On 

strains (Meyer et al. 2011) and AB4.1 may show a better genomic stability in comparison to 

NHEJ-inactivated strains (Zhang et al., 2011). A. niger strains were routinely grown on 

minimal medium (MM) containing 1 % glucose, 1 x ASP+N (50 x ASP+N: 3.5 M NaNO3, 

550 mM KH2PO4, 350 mM KCl, pH5.5), 2 mM MgSO4 and 1x trace elements solution 

(modified from composition given by Vishniac and Santer, 1957, 1000 x trace elements 

solution: 10 g of EDTA, 4.4 g of ZnSO4·7H2O, 1.01 g of MnCl2·4H2O, 0.32 g of CoCl2 

·6H2O, 0.315 g of CuSO4 ·5H2O, 0.22 g of (NH4)6Mo7O24·4H2O, 1.47 g of CaCl2·2H2O, and

1 g of FeSO4·7H2O ) or on complete medium (CM) consisting of MM supplemented with 0.5 

% yeast extract and 0.1 % casamino acids. For the growth assay we used saccharose medium 

plates (SM) composed of the same ingredients as MM, except 1 % saccharose replacing 1 % 

glucose. For growth on solid plates, media was supplemented with 1.5 % agar. 

All bacterial and fungal strains were routinely stored at −80 °C in 50 % (v/v) glycerol. For 

short term storage of fungal strains, spores were suspended in physiological sodium chloride 

solution and kept at 4 °C. 
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Bioreactor cultivation 

Bioreactor cultivation was conducted as described previously (Jørgensen et al., 2010). Briefly, 

glucose-limited batch cultivations were performed with 5 l reactor minimal medium 

containing the following 22.5 g of NH4Cl, 7.5 g of KH2PO4, 2.5 g of KCl, 2.5 g of 

MgSO4·7H2O, 5 ml of trace metal solution (described above) and 0.8 % glucose, with pH 

adjusted to 3. The 5 l bioreactor cultivation was inoculated with a spore density of 10
9 

/liter
 
in

BioFlo3000 bioreactors (6.6 liter, New Brunswick Scientific, NJ, USA). Temperature of 30° 

C and pH 3 through computer controlled addition of 2 M NaOH or 1 M HCl were kept 

constant. The addition of base was used as an indirect growth measurement, after 

consumption of ~12,5 ml 2M NaOH (correlated with 1 gbiomass dryweight/kg, early 

exponential phase), we induced or repressed our expression systems Tet-On and Tet-off with 

5 µg/ml Dox. 

Luciferase Measurement in Microtiter plate 

Luciferase reporter activity was measured in microtiter ViewPlates (96 white with transparent 

bottom, from Perkin Elmer) using a Victor3X plate reader. Two different types of 

luminescence assays to evaluate the conditional expression systems were performed. In the 

first type of assay, the strains were grown directly in the microtiter plates for ~20 h. In the 

second assay, strains were grown in bioreactor cultivation, after which aliquots were taken 

and measured in microtiter plates. For microtiter growth, wells were inoculated with 

4x10
5
sp/ml, 70 µl luciferin solution (diluted with CM to 1.4 mM, Promega), Dox were stated

(ranging from 0 – 20 µg/ml) and a final volume of 300 µl made up by addition of CM 

medium. For every condition, triplicate biological replicates were performed. The 

measurement protocol determines luminescence (LCPS) and optical densitiy (OD) values at 

595 nm. For determination of the half-life of the different luciferase proteins (from mluc, luc, 

luc-PEST) cycloheximide in a final concentrations of 10, 20, 30 and 100 µg/ml was added 10h 

after inoculation of the respective strains. For oscillation studies, we used the PfraA Tet-off 

system mluc and luc-PEST. Microtiter samples were inoculated with spores 10h in media 

without Dox. Then cultures were induced with 1 µg/ml Dox, and after 5h the inoculated Dox 

was removed by washing MTP wells (through discarding the used CM, addition of fresh CM, 

pipette mixing, centrifugation of the plates 5min 1000 x g followed by exchange with fresh 

CM  plus luciferin solution). After a further 5 h the cultures were induced again. For 

bioreactor growth assays, triplicate biological replicates were conducted and LCPS and OD 

measured as described above. In this experiment 230 µl samples were mixed with 70 µl 
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luciferin (diluted with reactor minimal medium to 1.4 mM) and directly measured in 

Victor3X. 

Phenotypical growth assays on plates 

A dilution series of A. niger spores (10, 10
2
, 10

3
) and A. fumigatus spores (10, 10

2
, 10

3
, 10

4
,

10
5
) of indicated strains (listed in Table 1) were spotted on either MM, SM or AMM plates,

supplemented where indicated with 10 mg/ml glucosamine,  1/ 10/ 50 µg/ml Dox 

concentrations or 50 µg/ml para-aminobenzoic acid. Plates with A. niger strains were 

incubated at 30 °C and A. fumigatus plates at 37 °C for 3 days. All plates were photographed 

to visualize macroscopic colony morphology. 

Microscopy 

Two coverslips were disinfected and placed onto the bottom of a small Petri Dish, after which 

5 ml of liquid MM or SM supplemented with 0.003 % yeast extract and 0 or 50 µg/ml Dox 

were added. Petri dishes were inoculated with 10
6
 spores of A. niger strains and incubated for

7 h at 30 °C. Coverslips with adherent germlings were placed upside down on an object slide 

and analysed by microscopy. Light microscopic pictures (using DIC settings) were captured 

with a 40x objective using a Leica DMI5000 CS equipped with a Leica DFC365 FX camera 

and processed with GIMP 2.8 afterwards. 
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Supplementary Table S1:  Expression vectors and split markers designed and used in this study. 

Plasmid/ split 

marker (SM) 

Description Source 

pVG4.1 Tet-on PgpdA::rtTA2
S
-M2::TcrgA::TetO7::Pmin::mluc::Ttrpc (Meyer et al., 

2011) 

p473 synthetic tTA transactivator (Vogt et al., 

2005) 

pMA247 Exchange rtTA with tTA from p473 in pVG4.1, by digestion with 

EcoRI-BamHI in 2 steps, because of the extra BamHI site in 

pVG4.1. 

Southern probe for pyrG was amplified with 

5`TCTCGCGCAGAAGCACAACT and 

3`GCAGCCTGCACCGGATCG. 

This work 

pSB1.1 pMA247 was digested with AscI (flanked pyrG*), the linear 

DNA without the pyrG* sequence ligated again. 

This work 

pTet-off® 

Advanced 

Vector 

synthetic tTA2
S
 transactivator Clontech 

pFW9.3 pVG4.1 was digested with BamHI (2 restrictions sites) and 

EcoRI, two linear fragments without rtTA-M2 was cloned 

together with cutted  tTA2
S  

from pTet-off® Advanced Vector 

(BamHI/ EcoRI) in a three-way ligation. 

To proof in the genome the recombination event between PgpdA 

and Pmin 5`  TTCCTGCTCTCCCCACCAG (in PgpdA) and 3` 

TGTCCACCTCGATATGTGCA (in mluc) were used. 

This work 

pFW15.1 pFW9.3 was digested with EcoRI and BspLUII, the backbone 

was used for Gibson cloning. And also the promoter of fraA 

(1000 bp in front of An16g04690) was amplified from AB4.1 

genome with 5` CCCTCGGCTGGTCTGTCTTA and 3` 

agtctagacatggtgaattcTTTGGCGGTTTGTTGCTGGC and 

additionally a PCR part which was amplified with 5` 

TTTTGCTGGCCTTTTGCTCA and 3` 

taagacagaccagccgagggAAGCTTATCGATACCGTCGA from 

pFW9.3 as template.  

To proof in the genome the recombination event between PfraA 

and Pmin 5` CCCTCGGCTGGTCTGTCTTA (in PfraA) and 3` 

TGTCCACCTCGATATGTGCA (in mluc) were used. 

This work 

pAT1.11 pFW9.3 was digested with EcoRI and BspLUII, the backbone 

was used for Gibson cloning. And also the Syer of gpdAn (1000 

bp in front of An16g01830) was amplified from AB4.1 genome 

with 5`TAAGAATGGGGAAGGCGAAG  and 3` 

cagtctagacatggtgaattcTGTTTAGATGTGTCTATGTG and 

additionally a PCR part which was amplified with 5` 

TTTTGCTGGCCTTTTGCTCA and 3` 

cttcgccttccccattcttaAGCTTATCGATACCGTCGAC from 

pFW9.3 as template.  

To proof in the genome the recombination event between 

PgpdAn and Pmin 5`  TAAGAATGGGGAAGGCGAAG and 3` 

TGTCCACCTCGATATGTGCA (in mluc) were used. 

This work 

pFW17.1 With PmeI cut out the backbone (8138 bp) of FW15.1 and 

amplified racA with 5` 

gacatcaccgtttaaacaccATGGCCACTGGTCCAGCT and 3` 

tcggcatctactgtttaaacCTACAGAATCACGCATTTCTTGTTCT  

from AB4.1 genome and Gibson-cloned together. 

This work 
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pFW18.1 With PmeI cut out the backbone (8138 bp) of FW15.1 and 

amplified racA
G18V

 with 5` 

gacatcaccgtttaaacaccATGGCCACTGGTCCAGCT and 3` 

tcggcatctactgtttaaacCTACAGAATCACGCATTTCTTGTTCT 

from MA61.24 genome and Gibson-cloned together. 

This work 

pAN7.1 PgpdA::hph (hygromycin resistence)::Ttrpc (Punt et al., 

1987) 

SM 1 and 

SM2 for 

∆racA 

Construction of 2 split markers for the deletion of racA. For split 

marker 1 we amplified GOI 5` of racA with 

5`AGCAGCAGCAGCAACACTAA and 3` 

ccagaaagagtcaccggtcaGTCGAATTGAGGCGAGG from 

AB4.1genome and the hygromycin resistance with 

5`aagccgctgctggaattgGGCTCTGAGGTGCAGTGGAT and  

cgatggataattgtgccgtgTTGGGTGTTACGGAGCATTCA from 

pAN7.1. Following we fusioned GOI 5` and hph together with a 

PCR with 5`ACCTGTCCAGTGGCTATCTT and 3´ 

GAAATTGCCGTCAACCAA. With the same approach we 

constructed the splitmarker 2, we amplified GOI 3` part with  5` 

acgagactgaggaatccgctGCCAAACCGAAGAACAAGAA and  3` 

CAACTACGACCGCATGAAGA  from AB4.1 genome and 

fusioned it together with hph in a PCR with  

5`AGAGCCTGACCTATTGCATCT and 3` 

CAACTACGACCGCATGAAGA . By recombination of the two 

parts of the selection marker and homologous integration of the 

cassette in the genome, a successful gene deletion mutant can be 

obtained. Probe for the promoter was amplified with 5` 
ACCTGTCCAGTGGCTATCTTT and 

3`ccagaaagagtcaccggtcaGTCGAATTGAGGCGAGGG and for 

the terminator with 5` 
acgagactgaggaatccgctGCCAAACCGAAGAACAAGAA and 3` 
CAACTACGACCGCATGAAGA. 

This work 

pFW19.1 With PmeI cut out the backbone (8138 bp) of FW15.1 and 

amplified racA with 5` 

gacatcaccgtttaaacaccATGTGGTATGTATGGCTCCAAAG and 

3` gtcggcatctactgtttaaacGCTCTCTATTCAACAGTAACCGAC 

from AB4.1 genome and Gibson-cloned together. 

This work 

SM 1 and 

SM2 for 

∆gfaA 

Construction of 2 split markers for the deletion of gfaA. For 

splitmarker 1 we amplified GOI 5` of gfaA with 

5`AGCAGGTCACCACTACCATC and 3` 

caattccagcagcggctATGTGATTACTCGGAGGCGT from AB4.1 

genome  and the hygromycin with 

5`aagccgctgctggaattgGGCTCTGAGGTGCAGTGGAT and  

3`cgatggataattgtgccgtgTTGGGTGTTACGGAGCATTCA from 

pAN7.1.  Following we fusioned GOI 5` and hph together with a 

PCR with  5`AGCAGGTCACCACTACCATC and 

3`GGCGTCGGTTTCCACTATC. With the same approach we 

constructed the splitmarker 2, we amplified GOI 3` part with 

5`acacggcacaattatccatcgGTGGGCACGAGACTGGGA and 

3`ATCTGGGAAGCCGCGTATAA from AB4.1 genome and 

fusioned it together with hph in a PCR with 

5`AAAGTTCGACAGCGTCTCC and 

3`ATCTGGGAAGCCGCGTATAA. By recombination of the 

two parts of the selection marker and homologous integration of 

the cassette in the genome, a successful gene deletion mutant can 

be obtained. Probe for the promoter was amplified with 

5`AGCAGGTCACCACTACCATC and 3` 

caattccagcagcggctATGTGATTACTCGGAGGCGT and for the 

This work 



- 31 - 

terminator with 5` 

acacggcacaattatccatcgGTGGGCACGAGACTGGGA and 3` 

ATCTGGGAAGCCGCGTATAA. 

pCH008 Tet-on module 
p
tpiA::rtTA2

S
-M2::cgrA

t
-tetO-

p
min (Helmschrott et 

al., 2013)  

pUHT61-1 synthetic tTA2 transactivator (Urlinger et al., 

2000) 

pSK606 Tet-off module 
p
tpiA::tTA2::cgrA

t
-tetO-

p
min: 800 bp PCR 

amplicon with tTA2 sequence from pUHT61-1 assembled with 

540 bp BstBI/XbaI fragment from pCH008 carrying tpiA 

promoter assembled in SpeI/PstI vector pCH008 backbone     

This work 

pSK607 Tet-off::pabaA conditional promoter replacement cassette: 

assembly of 1.5 kb 5' pabaA flanking region, 4.1 kb SfiI 

fragment of pSK606, and 1.5 kb pabaA cds and 3' flanking 

region in pUC19 

This work 

pXM1.1 With PmeI cut out the backbone (7818 bp) of pVG4.1 and luc 

sequence (1741 bp) was amplified from pFH62 (Cesbron et al. 

2013). Primer 5` 

ttgagcagacatcaccgtttaaacaccATGGAGGACGCCAAGAACA 

and 

3`ccggtcggcatctactgtttaaacttaGAGCTTGGACTTGCCGCCCT  

were used, with a stop codon encoded in the 3’ region of primer. 

Backbone and PCR product were fusioned by Gibson cloning. 

This work 

pFW20.1 With PmeI cut out the backbone (7818bp) of pVG4.1 and luc-

PEST sequence (1879 bp) was amplified from pFH62 (Cesbron 

et al. 2013) with primers 5` 

ttgagcagacatcaccgtttaaacaccATGGAGGACGCCAAGAACA 

and 3` 

atcccggtcggcatctactgtttaaacTTAGACGTTGATCCTGGCGCT 

and fusioned by Gibson cloning.  

This work 

pFW21.8 With PmeI cut out the backbone (8138bp) of pVG15.1 and luc-

PEST sequence (1879 bp) was amplified as describe above (see 

pFW20.1) and fusioned by Gibson cloning. 

This work 

pFW22.1 pFW20.1 was digested with EcoRI and BspLUII, the backbone 

(8589 bp) was used for Gibson cloning together with the same 

two PCR products as for  construction of pFW15.1. 

To proof in the genome the recombination event between PfraA 

and Pmin 5` CCCTCGGCTGGTCTGTCTTA (in PfraA) and 3` 

CTCGAAGTACTCGGCGTAGG (in luc-PEST) were used. 

This work 
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Supplementary Figure S1: Genetic Stability of Tet-on PgpdA::rtTA2
S
-M2 strain and MTP assay 

of Tet-on PfraA::rtTA2
S
-M2 strain. (A) Samples from bioreactor cultivation with strain VG8.27 

(PgpdA) +/- Dox induction were extracted throughout a time series of growth. A diagnostic PCR 

demonstrated that with Dox induction, an intramolecular recombination event was occurring. (B) This 

recombination event was also observed in culture without Dox over the time period shown. (C) In 

microtiter plate assays the Tet-on system with fraA promotor (FW36.1) was compared with the 

established one (PgpdA) (FW32.14), under conditions with 0, 5 and 20 µg/ml Dox. The expression 

strength of FW36.1 was less compared to FW32.14.  

Supplementary Figure S2:  Determination on half-life of luciferase variants in Tet-off system. 

(A) In a microtiter plate assay the Tet-off system with mluc (PfraA) is cultivated without Dox, after 10 

h growth 20 and 100 µg/ml cycloheximide was added to the wells. The time point  were the 

normalized LCPS/OD activity [%] decrease 50 % related to the values at addition time point was 

estimated as half-life of the protein. (B) The Tet-off strain with luc-PEST (FW33.23) shown after 

addition of cycloheximide a fast decrease and reduced normalized LCPS/OD activity [%] up to 10. 
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