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In the textbook formulation of dry friction laws, static and dynamic friction (stick and slip) are qualitatively 
different and sharply separated phenomena. However, accurate measurements of stick-slip motion generally show 
that static friction is not truly static but characterized by a slow creep that, upon increasing tangential load, smoothly 
accelerates into bulk sliding. Microscopic, contact-mechanical, and phenomenological models have been previously 
developed to account for this behavior. In the present work, we show that it may instead be a systemic property of 
the measurement apparatus. Using a mechanical model that exhibits the characteristics of typical setups of 
measuring friction forces – which usually have very high transverse stiffness – and assuming a small but nonzero 
misalignment angle in the contact plane, we observe some fairly counterintuitive behavior: Under increasing 
longitudinal loading, the system almost immediately starts sliding perpendicularly to the pulling direction. Then the 
friction force vector begins to rotate in the plane, gradually approaching the pulling direction. When the angle 
between the two becomes small, bulk sliding sets in quickly. Although the system is sliding the entire time, 
macroscopic stick-slip behavior is reproduced very well, as is the accelerated creep during the “stick” phase. The 
misalignment angle is identified as a key parameter governing the stick-to-slip transition. Numerical results and 
theoretical considerations also reveal the presence of high-frequency transverse oscillations during the “static” phase, 
which are also transmitted into the longitudinal direction by nonlinear processes. Stability analysis is carried out 
and suggests dynamic probing methods for the approaching moment of bulk slip and the possibility of suppressing 
stick-slip instabilities by changing the misalignment angle and other system parameters. 
 

I.  INTRODUCTION 

Dry friction plays an essential role in a great variety of 
physical processes and numerous engineering, geological, 
biological, medical, and metrological applications [1–3]. One 
of the central properties of dry friction is a sharp transition 
from the static state (stick) to dynamic state (slip): If an 
increasing lateral force is applied to an object, it will remain 
at rest while the force is below some threshold value called 
static friction. When the threshold is met, the object abruptly 
begins to slide. This property has even prompted the 
development of a special branch of mechanics – dynamics of 
systems with non-smooth interactions [4,5]. However, more 
accurate measurements consistently show that there is no 
discrete transition. As the lateral force increases, the object 
experiences, from the macroscopic point of view, a 
continuous creeping motion, which accelerates smoothly as 
the threshold is approached, and then seamlessly transitions 
into bulk sliding (while the true microscopic dynamics can 
still remain discontinuous) [6,7]. This accelerated creep 
effect not only qualitatively changes the physical picture of 
static friction, but also plays an important role in earthquake 
dynamics [8] and in the tribological aspects of many modern 
technologies such as robotics [9], micromechanics [10] and 
precision positioning systems [11]. 

How should accelerated creep be explained? One 
possibility is that the effect is rooted in macroscopic contact 
mechanics: If a spherical contact – the perennial favorite in 
friction experiments – is loaded tangentially, sliding does not 
affect the entire contact area at once, but rather propagates 
from the edge inwards as the tangential load increases. 

Because normal stress is zero at the edge of a non-adhesive 
contact, there is no threshold value for the onset of partial slip, 
and the acceleration of creep as more and more of the contact 
begins to slide is consistent with experimental data. A 
prominent representative of this approach is the theory of 
partial sliding by Cattaneo [12] and Mindlin [13]. It was 
mostly investigated in the context of fretting wear [14] and 
frictional damping [15], but it was only recently considered 
as an explanation for frictional creep [16]. 

Another possibility is to look for answers at the micro-
scale. It is not implausible to imagine, for example, that some 
of the weaker “asperity bridges” in the contact start to detach 
at a much lower force than is necessary for bulk sliding. As 
the tangential load increases, the rate of such detachments 
might accelerate and ultimately grow into an avalanche that 
precipitates macroscopic slip [17]. The process may also be 
thermally activated. This approach is embodied in the rate- 
and state-dependent laws of friction developed in the 1970s 
in the context of geophysics [18,19]. A similar, but purely 
phenomenological approach has been developed in the 
context of pre-sliding [11,20]. Further approaches combining 
both of the above views exist as well, e.g., rapid propagation 
of slip or detachment fronts in the contact plane [21]. While 
details vary, the currently predominant view in the 
tribological community seems to be that creep or pre-sliding 
is an intrinsic property of friction and as such is caused by 
some micro-scale mechanism. 

Here we present evidence that in typical experimental 
devices used for studying friction, an approach may be 
possible, which differs from both above approaches. Instead, 
in the cases described in the present paper, both apparent 
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stick and accelerated creep appear to be a property of the 
measurement apparatus itself. The strong stiffness anisotropy 
typical of tribological apparatus using leaf springs, combined 
with subtle misalignment (possibly less than one degree) 
between the direction of motion and the supporting spring, 
causes the friction force vector to rotate in the contact plane, 
which influences the time evolution of observed 
displacement. This paves the way for a purely macroscopic 
mechanical theory of static friction, slow creep, and the stick-
to-slip transition. 

The importance of the rotation of the direction of friction 
force was previously highlighted in [22] in the context of 
active control of friction by transverse oscillations. The 
apparent stick due to friction vector rotation is described in 
greater detail in the present paper. 

II.  MODEL 

Consider a simple mass-spring system as shown in Fig. 1. 
Sliding systems are usually depicted in a “side view” (Fig. 
1a) where a rigid object of mass m is coupled to a spring and 
is in contact with a horizontal flat floor (XY plane) under 
normal load W. The right end of the spring is driven along the 
X-axis with drive velocity V. However, for describing the 
rotation of the friction force vector F, we need a “top view” 
of the system (Fig. 1b). In this projection, the spring is 
characterized by the stiffness tensor. Let x and y be the 
principal axes of the stiffness tensor (as shown with green 
dashed lines in Fig. 1b) and kx and ky the corresponding 
principal values. We assume that the principal axes are 
inclined relative to the direction of the drive velocity by a 
small angle φ. Such a finite misalignment angle is not an 
unrealistic assumption because exact alignment between the 
two axes in the tribological apparatus (and probably, even in 
any other real sliding system) is virtually impossible. The 
projections of the spring forces onto the principal axes are 
kxux and kyuy, where ux and uy are the spring elongations in 
the x and y directions, respectively. The velocity of the 
immediate contact point relative to the stationary floor will 
be denoted as slip velocity vslip. The direction of the friction 
force F is assumed to be opposite to the direction of vslip and 
its magnitude a continuous function of the magnitude of vslip: 
F = F(vslip). Two different laws of friction are used: (i) 
“velocity-weakening friction” in Section III, determined by 
F = [μ∞ + (μ0 – μ∞) exp(–vslip/vf)]W (where μ0 and μ∞ are the 
friction coefficients for vslip ~ 0 and ∞, respectively, and vf is 
a velocity constant) and (ii) “constant friction” in Sections IV 
and V, determined by F = F0 = μ0W. Note that velocity 
weakening is not the only mechanism of instabilities in 
sliding systems. In [23], it was shown that rate- and state-
dependent friction can also lead to stick-slip movement. Also 
note that we have left the law of static friction unspecified. 
Although the resulting system dynamics shows what appear 
to be stick phases, the frictional contact is in a permanent 
state of slip. 

 

 
FIG. 1. Analytical model. (a) Side view: An object in contact 
with a horizontal floor is pulled to the right via a spring. (b) Top 
view: A non-zero in-plane misalignment φ exists between the 
pulling direction X and the principal axis x of the stiffness tensor. 
(c) Geometrical relationship of velocities (drive velocity, V, spring 
elongation rates, vx (= ) and vy (= ), and slip velocity, vslip) and 
angles (φ, ψ, and θ). The angle ψ of friction force F in (b) is 
determined from the direction of vslip in (c). Note that θ = ψ + φ. 

The equations of motion of the mass m in coordinates x 
and y read: 

, , (1) 

where θ = ψ + φ is the angle between the friction force and 
the x-axis. From the geometry represented in Fig. 1c, one can 
derive 

,  (2) 

with 

. (3) 

With account of Eqs. (2) and (3), Eq. (1) can be rewritten as 

, (4) 

. (5) 

This system of two non-linear second-order differential 
equations completely determines the dynamics of the system. 
They were solved numerically using the Runge-Kutta 
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method. The time evolution of object position in the 
laboratory coordinates can be obtained by 

,  (6) 

and 
, . (7) 

III.  SYSTEM DYNAMICS FOR VELOCITY-
WEAKENING FRICTION 

Fig. 2 presents numerical solutions to the equations of 
motion for velocity-weakening friction. A small in-plane 
misalignment of φ = 1° and a strong stiffness anisotropy of 
ky/kx = 104 were assumed corresponding to typical leaf 
springs used in laboratory friction tests. Other parameters are 
listed in the caption. 

 

 
FIG. 2. Dynamic stiction, slow creep, and stick-slip under 
velocity-weakening friction. (a) Spring force, kxux. (b) Spring force, 
kyuy. (c) Magnitude of friction force, F. (d) Direction of friction 
force, ψ. (e) Object position, X. System parameters: φ = 1°, m = 0.25 
kg, kx = 1 kN/m, ky = 10 MN/m, μ0 = 0.20, μ∞ = 0.15, vf = 10 mm/s, 
W = 10 N, and V = 0 for t < 0 and 1 mm/s for t ≥ 0. Initial conditions: 
X(0) = 0, Y(0) = 0, = εV, and = 0, where ε = 10–6. 

The drive started to move at t = 0. The time dependencies 

of the x- and y-components of the spring force are shown in 
Figs. 2a and 2b, respectively. The longitudinal component of 
the spring force shows the classical stick-slip behavior 
consisting of a linear increase in time followed by a sharp 
drop (Fig. 2a). The transverse component of the force, on the 
contrary, reveals an unexpected behavior: It jumps to the 
maximum value (equal to the magnitude of the friction force 
at low sliding velocity) and subsequently decreases to vanish 
at the start of the slip phase (Fig. 2b). The magnitude of the 
force remains practically constant during the whole stick 
phase (Fig. 2c) dropping only in the phases of rapid slip. 
Equilibrium in the pulling direction is maintained by the in-
plane rotation of the friction force vector described by the 
angle ψ (Fig. 2d). The time dependency of the longitudinal 
coordinate X (Fig. 2e) shows a pronounced stick-slip 
character. Although the stair-like object position (X) and the 
sawtooth-shaped spring force (kxux) indicate typical stick-slip, 
in reality, the object never comes to a full stop. During the 
stick phases, the object is slowly slipping and gradually 
accelerating in the X direction (see the inset of Fig. 2e), which 
is reminiscent of the so-called “slow creep” known from 
studies of the rate- and state-dependent friction laws [6]. To 
underline the dynamic nature of the apparent stick phase we 
call it “dynamic stiction”. 

 

 
FIG. 3. High-frequency oscillations. (a) Spring elongation rate, 
vx (= ), and (b) its spectrogram. (c) Spring elongation rate, vy (=

), and (d) its spectrogram. System parameters and initial 
conditions are the same as in Fig. 2. The spectrograms have been 
obtained using short-time Fourier transform with Hamming window 
of the width 0.1 s. 

The dynamic nature of stiction has important physical 
implications. One of them is the presence of high-frequency 
oscillations during the “stick” phase. These oscillations, 
shown in Fig. 3, are an inherent property of the described 
system, and will be discussed in more detail below. Spectral 
analysis shows that the oscillation frequency initially 
coincides with the natural frequency of transverse 
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oscillations, ωy = (ky/m)1/2 (for the system parameters used, 
1.0 kHz) and decreases when approaching the phase of rapid 
slip (Figs. 3b and 3d). Although both transverse and 
longitudinal oscillations are present, the fact that they have a 
common frequency coinciding with the transverse natural 
frequency indicates that the oscillations originate in the 
transverse degree of freedom, y, and are transmitted to 
longitudinal movement over a non-linear coupling. 

The high-frequency dynamics of sliding systems is of 
significant interest for many technical applications [24,25]. 
Their physical origin and influencing factors have been 
studied for many decades, but their nature often remains 
unclear [25]. The concept of friction vector rotation offers a 
new perspective on this phenomenon. 

IV.  SYSTEM DYNAMICS FOR CONSTANT 
FRICTION 

Fig. 4 presents results for constant sliding friction. The 
first transition from “stick” to “slip” is in this case almost 
identical to the case of velocity-weakening friction; however, 
no periodic stick-slip motion takes place. 

 

 
FIG. 4. Dynamic stiction and single stick-to-slip transition under 
constant friction. (a) Spring force, kxux. (b) Spring force, kyuy. (c) 
Magnitude of friction force, F. (d) Direction of friction force, ψ. (e) 

Object position, X. System parameters: φ = 1°, m = 0.25 kg, kx = 1 
kN/m, ky = 10 MN/m, μ0 = 0.20, W = 10 N, and V = 0 for t < 0 and 
1 mm/s for t ≥ 0. Initial conditions: X(0) = 0, Y(0) = 0, = εV, 
and = 0, where ε = 10–6. The blue circles are the approximate 
solutions provided by equations in the text, where those in (e) have 
been obtained by numerical integration of Eq. (13). 

The detailed character of the friction law seemingly has no 
influence on the phenomenology of the stick-to-slip 
transition. In retrospect, this is fairly obvious, as the whole 
creep phase occurs at very small velocity; the velocity 
dependence is thus mostly of interest during the phase of 
rapid slip. However, it also determines the character of high-
frequency oscillations during the apparent stick phase. With 
constant friction, the oscillations attenuate more rapidly 
compared with the case of velocity-weakening friction law. 

The character of the friction law exerts its greatest 
influence on the transition from slip back to stick. While the 
velocity-weakening law leads to periodic stick-slip (Fig. 2), 
the sliding phase continues indefinitely in the case of 
constant friction (Fig. 4). Accordingly, all features related to 
the back transition from slip to stick are absent in the case of 
constant friction. Thus, no drop of the friction force appears 
during the slip phase (compare Fig. 2c and Fig. 4c) because 
the rapid drop of the magnitude of friction in Fig. 2c is 
obviously caused by the velocity weakening of friction force. 

In the following, we focus only on the stick-to-slip 
transition, which is very similar for both types of friction law. 
As all described features are also observed with constant 
friction, we focus on this simple case to avoid unnecessary 
complications. We discuss in more detail the main features of 
the observed stick-to-slip transition: (a) dynamic stiction, (b) 
slow creep, (c) high-frequency dynamics, and (d) low-
frequency dynamics. 

A.  Dynamic stiction 

From the results presented so far, we would like to draw 
the following qualitative picture of dynamic stiction. 
Dynamic stiction starts with a jump-like rotation of the vector 
of friction force to the direction almost perpendicular to the 
sliding direction (ψ = 90°, see Fig. 4b) followed by a gradual 
decrease to ψ = 0. This somewhat counterintuitive behavior 
arises due to the strong anisotropy of the spring, which 
amplifies the small projection of the spring elongation onto 
the y-direction to such a degree that it completely dominates 
the friction force vector in the initial stage of dynamic stiction. 
During subsequent pulling, the x-component of the spring 
force continues to increase, but since the system is already 
sliding with a very small velocity, the absolute value F = (Fx2 
+ Fy2)1/2 of the force vector remains constant and equal to F0 
= µ0W (Fig. 4c). Thus, the perpendicular component of the 
friction force, Fy = (F02 – Fx2)1/2, is decreasing, gradually 
approaching zero (Fig. 4b). The change in the pulling force 
can be supported by the rotation of the friction force vector 

!X (0)
!Y (0)



5 
 

only while Fx ≤ F0. As soon as the pulling force exceeds this 
critical value, the quasi-static equilibrium breaks down, and 
the phase of rapid slip starts. 

Thus, even though the system is sliding the entire time, the 
macroscopic dynamics is strongly reminiscent of classical 
stick-slip. 

B.  Slow creep 

Let us consider in more detail the “stick” phase (which in 
reality is a phase of slow creep). The movement during this 
stage is quasistatic, which means that the inertial terms can 
be neglected. However, this is valid only for the movement 
in the x-direction. The high transverse stiffness ky guarantees 
very small deflections uy. The velocity  is not necessarily 
small due to the high natural frequency in the y-direction, but 
it has zero average and can be set to zero while considering 
the creep process. Thus, in the creep phase (and only for the 
creeping part of the motion), we can neglect in Eqs. (4) and 
(5) the terms with  and . After some transformations, 
this leads to 

. (8) 

 

 
FIG. 5. Disappearance of dynamic stiction with large in-plane 
misalignment. (a) Temporal changes in object position X for various 
misalignment angles φ from 1° to 89°. (b) Trajectories of object 
position in the XY plane. System parameters (except φ) and initial 
conditions are the same as in Fig. 4. 

This is an ordinary differential equation of the first order, 
which completely determines the dynamics of the degree of 

freedom ux(t). The coordinate X in the driving direction can 
finally be found using Eq. (6). The resulting solutions almost 
exactly coincide with solutions of the complete dynamic 
equations (4) and (5) shown in Fig. 5. One can see that at 
small misalignment, the system shows almost perfect stick, 
which rapidly becomes blurred when the misalignment angle 
increases. 

In the limiting case of very small misalignment angles, Eq. 
(8) takes the form  with the solution ux = Vt (for Vt 
< lx = F0/kx). Thus, the longitudinal and transverse spring 
forces will be respectively equal to: 

 (9) 

and 

. (10) 

The angle θ between the force and x-direction is determined 
by the equation cosθ = kxux/F0 = Vt/lx or 

. (11) 

For the angle ψ, we have 
. (12) 

Dependencies described by Eqs. (9)–(11) with Eq. (12) are 
shown in Fig. 4 with blue circles together with the numerical 
result for φ = 1°. 

For the creep velocity, Eq. (8) with Eq. (7) yields 

. (13) 

This creep dependence is shown in the inset of Fig. 4e 
together with results of full dynamic simulation. It contains 
two contributions: One of the first order in pulling velocity 
and of second order in misalignment angle; and a second one 
that is linear in misalignment angle and second order in the 
pulling velocity. The second term has a singularity of the 
form [1 – (Vt/lx)2]–1/2 when approaching the moment of “slip”. 
Comparison with published measurements of creep [7] seems 
to confirm the existence of these two contributions. Our 
simulations suggest that the angle of misalignment is a 
crucial parameter determining the creep rate. From Eq. (13), 
one can estimate that the creep velocity achieves the order of 
the pulling velocity when (Vt – lx)/lx = (1/2)φ2. This quantity 
characterizes the relative size of the “blurred region” 
compared to the total time of “stick”. It is determined solely 
by the misalignment angle. 

Fig. 5b shows the trajectory of the object during the stick 
phase. It is seen that at a small misalignment angle of 1°, the 
object starts moving in the direction perpendicular to the 
pulling direction and achieves a saturation level, whose 
theoretical value is (F0/kx) sinφ cosφ (0.035 mm for the 
system parameter used). During this process, the direction of 
sliding, ψ, rotates from π/2 – φ to 0. 
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C.  High-frequency dynamics 

At the beginning of the creep phase, . 
Neglecting this term in Eq. (5) transforms this equation to 

. (14) 

The average value of displacement is easily found by setting 
 and : , while the amplitude of 

oscillations is determined by the non-linear term 
. Multiplying Eq. (14) with , we can 

rewrite it as , where E is 
the energy of the system. Averaging over one oscillation 
period yields 

. (15) 

The result is negative if the amplitude of oscillation, , is 
larger than Vsinφ and becomes zero when it is equal to Vsinφ. 
After that, the system shows undamped oscillations with the 
constant amplitude 

 (16) 

and frequency ωy = (ky/m)1/2. The oscillation amplitude is 
equal to the y-component of the drive velocity. Note that in 
the case of friction with a constant magnitude, this is the 
upper bound of the oscillation amplitude. In the further 
course of creep, Eq. (14) is not strictly valid, and some 
damping appears so that finally the oscillations die out (see a 
more detailed analysis of damping in Section V). In the case 
of velocity-weakening friction, oscillations of small 
amplitude are amplified until they reach the value of Eq. (16), 
which in this case has the meaning of amplitude of stable 
limiting cycle. The above-stated difference between constant 
and velocity-weakening friction can be seen by comparison 
of Fig. 2b and Fig. 4b. 

D.  Low-frequency dynamics 

Let us now consider oscillations in the longitudinal 
direction (along the x-axis) in the slip phase. In the full 
dynamic equation (4), we can now neglect  as a small 
variable and consider the Taylor series expansion up to the 
first order in : 

 (17) 

with ωx = (kx/m)1/2 and δ = F0 sin2φ/2mV. This equation 
describes oscillation with frequency (ωx2 – δ2)1/2 and 
exponentially decreasing amplitude, exp(–δt). The condition 
for an overdamped system reads δ > ωx or F0 sin2φ/2V(mkx)1/2 
> 1. For the system parameters described in the caption of 
Fig. 4, this means φ > 7.2°. 

In Fig. 6a, one can see slowly attenuating oscillations at φ 
= 1° (red curve) and overdamped motion without oscillations 
at φ = 10°. In other words, large misalignment angles 
suppress frictionally induced oscillations in the pulling 
direction [26,27]. At the same time, they can facilitate 

oscillations in the transverse direction as can be seen in Fig. 
6b. A detailed stability analysis is carried out in Section V. 

Note that the rotation of the friction force vector is a 
common feature characteristic for both small and large 
misalignments (Fig. 6c). 

 

 
FIG. 6. Suppression of low-frequency oscillations and 
enhancement of high-frequency oscillations by increasing in-plane 
misalignment. (a) Spring elongation rates, vx (= ). (b) Spring 
elongation rate, vy (= ). (c) Direction of friction force, θ (= ψ + φ). 
Red and blue lines are numerical results for φ = 1° and 10°, 
respectively. System parameters (except φ) and initial conditions are 
the same as in Figs. 4 and 5. 

V.  STABILITY ANALYSIS 

To obtain a general view of the dynamic properties of the 
considered system, let us undertake a linear stability analysis. 
We consider the stability of the state  (where the 
average velocity  may vary significantly, but very 
slowly). Equations for small deviations  and  can be 
obtained by expanding the equations of motion (4) and (5) up 
to the terms of the first order in perturbations of displacement, 
velocity, and acceleration and setting : 

 (18) 

 (19) 

with 

. (20) 

Searching for a solution of the form , we 
find for λ the following characteristic equation: 

 (21) 

Assuming  and  and 
substituting both into Eq. (21), we find for small attenuation 
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, . (22) 

The oscillations in the x- and y-directions become 
overdamped when the damping factors ζx and ζy exceed unity: 

,  (23) 

where 

, . (24) 

Note that Λx and Λy are dimensionless parameters determined 
by system parameters. 

Consider first the dynamic properties in the longitudinal 
direction. They are determined by the factor ζx = Λx sin3θ. 
This dependency is demonstrated by the damping diagram, 
Fig. 7a. During the “stick” phase, the angle θ of the friction 
force vector slowly changes from 90° to φ. Depending on the 
combination of Λx and φ, the system in the “overdamping” 
region can either reach the “underdamping” region or not. 
For the red line in Fig. 7a (i.e., Λx = 3.6×103 and φ = 1°), the 
factor is initially quite high (ζx = Λx = 3.6×103: overdamping) 
and drops toward a low value (ζx = Λx sin3φ = 1.9×10–2: 
underdamping), across the green line (ζx = 1: critical 
damping) in the vicinity of the stick-to-slip transition. This 
overdamping-to-underdamping transition causes free 
oscillations of low frequency after stick-to-slip transition (see 
the red line in Fig. 6a). For the blue line in Fig. 7a (i.e., Λx = 
3.6×102 and φ = 10°), on the other hand, the factor that is 
always larger than unity makes the system stay in the 
overdamping region, which in terms of results, suppresses the 
free oscillations of low frequency (see the blue line in Fig. 
6a). Thus, the factor ζx, determined by Λx and θ, could be used 
for dynamic probing of the approaching moment of bulk slip. 

Similarly, the dynamic properties in the transverse 
direction are determined by the factor ζy = Λy sinθ cos2θ. The 
corresponding damping diagram is presented in Fig. 7b. One 
can see that in this case, increasing the misalignment angle 
tends to transfer the system into the underdamping region, 
thus facilitating oscillations of high frequency. An example 
of such a transition is illustrated in Fig. 6b. 

 

 
FIG. 7. Damping diagrams. (a) The contour map of damping 
factor ζx (= Λx sin3θ) in the x-direction. (b) The contour map of 
damping factor ζy (= Λy sinθ cos2θ) in the y-direction. Green lines 
denote the critical damping (i.e., ζx = 1 and ζy = 1 in Figs. 7a and 7b, 
respectively). Red and blue lines are trajectories for φ = 1° and 10°, 
respectively, under the conditions of Fig. 6. 

VI.  CONCLUSIONS 

We studied the dynamics of a simple mass-spring system, 
which can be considered representative of typical setups for 
measuring the force of friction. This or similar experimental 
configurations were used over centuries starting with the 
famous tribometer of Coulomb [28] and up to now [29]. For 
example, the very much cited stick-slip curves reproduced in 
[30] were obtained on a tribometer using a leaf spring for 
loading in the sliding direction [31]. All these tribometers 
have a common structure: A mass, a spring with low stiffness 
in the sliding direction and high stiffness perpendicular to the 
sliding direction, a frictional contact, and a pulling 
mechanism. The behavior of the system is as usual as the 
system itself: When being slowly pulled, the object first 
appears to stick and then starts macroscopic sliding. 

Analysis of the system is traditionally confined to a single 
degree of freedom: the movement in the pulling direction 
[32]. It is easy to intuitively reject the transverse degree of 
freedom as irrelevant, since the system is “guided”, with the 
very high transverse stiffness preventing any noticeable 
movement in this direction. Also, any potential misalignment 
between the pulling direction and the direction of the 
principal axis of the stiffness tensor is never measured or 
reported, as it is considered to be small and not likely to be 
significant. 

However, upon closer examination, this logic appears to 
be faulty. High transverse stiffness in combination with small 
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x x
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misalignment leads to the immediate start of sliding in the 
direction almost perpendicular to the pulling direction. The 
frictional force at the beginning of the pulling process is 
consequently not zero, as normally assumed, but equal to the 
friction force in sliding at small velocities. Besides, it is 
directed not oppositely to the pulling direction but 
perpendicularly to it! Simulations show that the object is 
creeping all the time and that the apparent “stick” is due to 
the rotation of the friction force vector. 

This novel interpretation of the apparent stick changes 
necessarily also the view on slow creep. The rotation of the 
friction force vector leads to a particular shape of the 
accelerated creep and reveals the misalignment angle as its 
main influencing parameter. 

Numerical simulations show an additional unexpected 
phenomenon – high-frequency oscillations perpendicularly 
to the pulling direction in the “stick” phase, as well as 
longitudinal oscillations with much lower frequency in the 
slip phase. 

The results offer a new possible view on static friction, 
slow creep, stick-to-slip transition, and the nature of high-
frequency oscillations in sliding systems. Clearly, this is not 
the only possible mechanism of stick-to-slip transition, as its 
prerequisite is a high stiffness anisotropy. The present 
mechanism also does not include (at least so far) the kinetics 
of friction, as described by the Dieterich-Ruina law. 

While being completely aware that the demonstrated 
mechanism of stick-to-slip transition does not exhaust all 
possible mechanisms of the stick-slip phenomena, we would 
like to draw the attention of researchers and engineers to the 
fact that the well-known and much-debated properties of the 
transition from stick to slip, including slow creep, may have 
a completely different – and much simpler – purely 
mechanical origin. 
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