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Abstract 
The initialization of process models for chemical engineering systems is often a 
challenge. While dedicated strategies exist for state of the art column models, novel 
models need to be initialized manually. In this contribution, we present a first 
application of these decomposition methods for supporting the initialization and 
solution of equilibrium- and non-equilibrium-type column models for distillation and 
compare them to well-known sequential solution methods for each. We show that these 
methods can supply viable solution procedures for nonlinear systems and are especially 
helpful in deriving new initialization techniques for novel process equipment. 
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1. Status Quo - Initialization and Solution of Column Models 
State of the art process simulation tools feature dedicated initialization and solution 
schemes for distillation and absorption columns, and many other unit operations. 
Famous examples are Amundson and Pontinen’s (1958) equation tearing method for 
equilibrium stage models, the sum-rates method tailored for absorption problems 
(Friday and Smith, 1964), etc. Of course, these methods have seen many evolutions 
over time and by now the inside-out methods (Boston and Sullivan, 1974) and their 
descendants are dominating the field of equilibrium-based column models. 
1.1. Inside-Out Method for Column Models 
The main advantage of the inside-out method lies in the introduction of an intermediate 
layer between thermodynamic calculations and the column model itself. This additional 
layer contains simplifying surrogate models for the phase equilibrium coefficients K 
and enthalpies h, which are successively retrained with complex thermodynamic models 
based on updated state variables from the column (J.D. Seader et al., 2011). The inside-
out method requires the user to guess a temperature profile for the entire column and to 
estimate a vapor/gas flow for each stage. Based thereon the column model is split into 
an outer and an inner iteration loop. For the inner loop the stripping factors are taken as 
iteration variables (Sc,tr = Kc,tr · Vtr / Ltr). In the outer loop calculations, the K and h 
correlations are then retrained and returned to the inner loop. Further details can be 
found in (R.A. Russel, 1983) and (J. Jelinek, 1988). The inside-out methods have 
proven so successful that they are nowadays implemented in most modern flowsheet 
simulators and applied for equilibrium and rate-based calculations of distillation, 
absorption, and extraction. Nevertheless, there are still many cases, in which solution 
schemes inside process simulators fail to reliably solve them. One example are complex 
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absorptions with electrolytes, which are difficult to initialize given the wide range of 
concentrations of all ionic species (Esche et al., 2014). 
1.2. Initialization of Novel Models 
For new unit operation models, tailored initialization and solution schemes usually 
become necessary and need to be implemented by the designer of each unit operation. 
Naturally, these steady-state models are systems of nonlinear equations and the main 
reason for not solving all equations simultaneously upfront lies in the ill-conditioning or 
in how bad a user-supplied initial guess is. In this contribution, we will investigate 
techniques from linear algebra to derive initialization techniques for nonlinear models. 
To benchmark these, their performance is compared against the inside-out method for 
the initialization and solution of column models.  

2. Review of Methods in Linear Algebra 
In linear algebra, several techniques are known, which by preconditioning, sorting of 
equations and variables, definition of loops, etc. improve the convergence of linear 
solution methods. Two famous examples are the Dulmage-Mendelsohn Decomposition 
(Dulmage and Mendelsohn, 1958) and the Bordered Block Transformation (Erisman et 
al., 1985). 
2.1. Dulmage Mendelsohn / Block Diagonal Decomposition 
The Dulmage Mendelsohn decomposition (DM) is a block diagonal decomposition, i.e. 
the nonzero elements of the Jacobian matrix are aligned along the main diagonal, so far 
that individually solvable blocks are created, which can be computed in sequence. This 
is achieved by permuting the original order of both rows and columns of the Jacobian. 
To this extent the DM decomposition can also be used to identify over- and 
underdetermined subsystems of a nonlinear equation systems. Further details hereon can 
be found in (Bublitz et al., 2017).  The DM decomposition has two modes. In its “fine 
decomposition” the number of blocks along the main diagonal is maximized, leading to 
as small as possible subblocks. The block at the bottom right of the reorganized matrix 
needs to be evaluated first and then step by step each further block along the diagonal. 
The upper triangular section of the matrix contains additional occurrences of variables 
in equations, which are not sorted into any of these blocks. The respective variables are 
computed in prior blocks and have fixed values for their later occurrence. Several 
implementations of the DM decomposition are available. For this contribution, the 
implementation contained in (HSL, 2017) is used. 
2.2. Bordered Block Transformation 
Whilst the DM decomposition has the goal of a mostly empty lower triangular section 
of the Jacobian matrix, the bordered block transformation (BBTF) leads to a sparse 
upper triangular section. The system is split into a dense and a sparse part. The BBTF is 
a maximum matching algorithm, which primarily identifies variables, which appear in 
numerous equations. These variables appear as spikes above the main diagonal in the 
resorted Jacobian matrix. These spikes are subsequently moved to the right side of the 
Jacobian. Variables with few appearances on the other hand are sorted below the main 
diagonal. Similarly, equations with few variables are moved to the top left of the matrix. 
As a result, the BBTF lists variables with a great influence on the whole equation 
system, albeit from a linear perspective. The variables corresponding to the spikes are 
possible candidates for tearing the nonlinear system for an outer iterative loop. 
Therefore, initialization of these variables is essential and needs to be carefully done to 
allow for successful solution of the whole nonlinear system. All other variables could 
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theoretically be left uninitialized seeing that they are calculated in sequence by iterative 
solution of the resorted and teared system starting from the tearing variables. In this 
contribution, the BBTF is also taken from the Harwell Subroutine Library (HSL, 2017). 
As outlined above, the DM decomposition and the BBTF can be used to ease the 
computational effort for the solution of a nonlinear system, solely based on the structure 
of the Jacobian matrix. Given that the conditioning of the individual subsystems 
identified by DM decomposition or the BBTF-teared system with its corresponding 
subsystems cannot be worse than the conditioning of the entire nonlinear system, it can 
be expected that the solution strategies outlined above will show a better numeric 
performance than the equation-oriented solution of the original system. However, the 
question remains, whether these decompositions lead to better solution strategies 
compared to dedicated column algorithms, e.g. the inside-out method outlined above.  
2.3. Implementation in MOSAICmodeling and Export to MATLAB 
To support the application of both decompositions (DM & BBTF), they have been 
implemented in our department’s equation-based modeling and code generation 
environment MOSAICmodeling (Merchan et al., 2016). Hence, initialization and 
solution sequences can be automatically generated for all equation systems implemented 
in MOSAICmodeling, which are tailored to the specific numerical needs of an 
individual system. To benchmark the solution strategies provided by DM decomposition 
and BBTF, all four different options have been implemented in MATLAB. As the 
baseline, the entire NLE model implemented in MOSAICmodeling is exported to 
MATLAB and solved with a standard Newton-Raphson algorithm. This solution path 
will subsequently be referred to as NR. The DM and BBTF options are similarly 
exported to MATLAB and the same Newton method is employed for the solution of all 
nonlinear subsystems. Finally, for the comparison against the state of the art column 
algorithms, an inside-out method is manually implemented in MATLAB, which also 
uses the same Newton method for all implicit, nonlinear solution steps on the inside. 
This will subsequently be referred to as IO. The resulting calculation sequences for DM, 
BBTF, and IO are sketched in Fig. 1. 

 
Figure 1: Graphical representation of calculation sequences based on DM and BBTF and for the 
implemented inside-out method. A full circular arrow implies a complete Newton-Raphson 
execution, a partial circular arrow depicts a single Newton step with dampening. 

3. Case Studies 
In this contribution two different applications of column models are investigated to 
benchmark the aforementioned implementations of DM and BBTF against an IO 
method and a basic NR algorithm. 
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3.1. Case Study 1 - Deisobutanizer 
The first application is a distillation column for the separation of n- and i-butane. The 
column model consists of 20 trays using Raoult’s law for the phase equilibrium and tray 
efficiencies based on DIPPR 102. Energy and molar component balances are formulated 
for each tray with enthalpies and densities based on further correlations from the DIPPR 
database (127 for enthalpy of vapor phase, 101 for the vapor pressure, 106 for the heat 
of evaporation, 105 for liquid phase densities). The model is further equipped with a 
total condenser and a common reboiler. The feed is positioned at stage 13 and consists 
of 40 % i-butane and 60 % n-butane. The pressure at the top of the column is set to 700 
kPa and there is a constant pressure drop of 42 Pa per stage. Fig. 2 shows the incidence 
matrices of the distillation column model. As expected the DM decomposition (Fig. 2, 
left) shows a large block, which needs to be solved simultaneously. This block refers to 
the column itself and the interdependence of all trays given the countercurrent vapor 
and liquid flows. In any case, there is a sizeable reduction of the size of the largest sub-
block compared to the overall system, by roughly 60 %. The BBTF (Fig. 2, right) 
generates a number of tear variables (spikes at the right above the main diagonal). Close 
inspection shows that these are temperatures on each tray and the vapor flows of i-
butane leaving each tray. This is very similar to the guess values required by the IO 
methods, which demand temperature profiles and total vapor flow profiles entered by 
the user for the initialization of the IO procedure. 

 
Figure 2: DM decomposition of the distillation column model (left) and BBTF (right). 

For the subsequent case study the entire model is first of all manually initialized, i.e. all 
variables are given adequate guess values and then solved with the NR. The obtained 
solution is then used as a starting point for all further discussions. All state variables are 
then perturbed by ± 10, 20, and 30 % of their absolute values and the solution is then 
attempted with NR, DM, BBTF, and IO methods in turn. The results of this variation 
are summed up in Tab. 1. Apparently, the pure NR method has great issues with the 
variation of the initial points, which leads to large numbers of iterations and even 
failures to converge. The DM is coping better, despite the large block of equations it 
still has to solve simultaneously. Quite surprisingly the BBTF and the IO method show 
a highly similar behavior despite the fact that the IO performs a lot finer iterative 
computation compared to the BBTF with only two iterative layers. However, for both 
cases initializing temperature and vapor flows at reasonable values proved essential for 
obtaining any solution at all, while the values of all other state variables can be left 
essentially uninitialized. 
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Table 1: Comparison of variation of initial point and its effect on the convergence of algorithmic 
solution methods of the deisobutanizer column in case study 1. For BBTF and IO the maximum 
number of iterations in inner (inn.) and outer (out.) iterations is given. For DM the maximum 
number of iterations in one subblock is given. 

Variation NR DM BBTF IO 

-30 % failure 31 iterations 21 out. / 52 inn. 10 out. / 57 inn. 

-20 % failure 29 iterations 20 out. / 51 inn. 5 out. / 89 inn. 

-10 % 4198 iterations 28 iterations 17 out. / 30 inn. 4 out. / 80 inn. 

+10 % 4943 iterations 26 iterations 17 out. / 34 inn. 5 out. / 23 inn. 

+20 % failure 34 iterations 17 out. / 44 inn. 7 out. / 101 inn. 

+30 % failure failure 19 out. / 68 inn. 7 out. / 75 inn. 

3.2. Case Study 2 – Absorption Column 
The second application is an absorption column for the removal of CO2 from a flue gas 
stream using an aqueous solution of monoethanolamine (MEA) as scrubbing liquid. The 
column model has 35 theoretical equilibrium stages, which employ a tray efficiency 
correlation fitted to experimental data (Esche et al., 2014). Similarly, to the first 
example, molar component and energy balances are computed on each tray with 
correlations for enthalpies, heats of absorption, etc. The flue gas fed to the bottom of the 
column has a molar fraction of 18 % CO2 and the liquid feed at the top a residual CO2 
load of 0.1 mol CO2 per mol MEA. The column is operated at 2 MPa. The gas feed has 
a temperature of 20 and the liquid feed of 40 °C. Both models describe the same basic 
tray structure, the results regarding the decompositions are highly similar. For the 
individual absorption column, a large block will always remain based on DM. A slight 
change can be seen regarding the BBTF. Given that a ternary system is now in place, 
the tear variables change slightly: all stage temperatures and stage vapor flows for CO2 
an H2O are recognized as important initials. Yet again, the model is initialized at a point 
close to the solution and then variations are carried out for the four different solution 
methods detailed above. The results are reported in Tab. 2. 
Table 2: Comparison of variation of initial point and its effect on the convergence of algorithmic 
solution methods of the absorption column in case study 2 (same notation as in Tab. 1). 

Variation NR DM BBTF IO 

-30 % 107 iterations 21 iterations 15 out. / 60 inn. 3 out. / 77 inn. 

-20 % 108 iterations 21 iterations 15 out. / 60 inn. 5 out. / 248 inn. 

-10 % 86 iterations 20 iterations 14 out. / 60 inn. 5 out. / 82 inn. 

+10 % 235 iterations 19 iterations 14 out. / 60 inn. 5 out. / 101 inn. 

+20 % 727 iterations 21 iterations 15 out. / 60 inn. 5 out. / 52 inn. 

+30 % failure 529 iterations 15 out. / 60 inn. 4 out. / 56 inn. 

The DM-based solution strategy outperforms the pure NR. Regarding the BBTF and the 
IO, variation of the initial temperatures for both by even 10% fails right away. Hence, 
the temperatures are initialized at reasonable values near the solution, while all other 
tear variables can be varied freely. For both latter techniques, the tear variables become 
absolutely essential for a successful solution. Of course, this is also a major advantage, 
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seeing that the set of variables to be initialized can be heavily reduced. It can be 
concluded that the maximum matching as implemented by the BBTF algorithm shows a 
reliable performance comparable to the IO method for complex column models. Seeing 
that the implementation of the solution strategy is quite straight forward based on the 
equation-oriented form of the nonlinear system, there is a clear advantage regarding 
novel, custom-made unit operations. The DM-based strategy appears robust and highly 
versatile for aiding in the solution, although more variables need to be initialized. 

4. Conclusions and Outlook 
The solution of nonlinear models remains an issue in chemical engineering. While 
dedicated solution strategies exist for common unit operations, these need to be 
designed for new models. Chemical engineering models can be reliably decomposed to 
improve their convergence compared to the monolithic solution with a single Newton-
Raphson solver. In this contribution, we have presented an application of the DM 
decomposition and of the BBTF to find initialization strategies for custom unit 
operations. To evaluate their performance a comparison has been carried out against the 
inside-out method. The case studies of a deisobutanizer and of a CO2 absorption column 
show the merit of the solution strategy in reducing the required effort on the 
initialization of all state variables. In future work, these decompositions are extended by 
new algorithms for maximum matching in nonlinear systems. In addition, the results of 
the decompositions will be made available inside MOSAICmodeling’s user-defined 
language specification environment. Hence, the users will be able to design their own 
solution methods using the solution environment of their choice. 
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