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Abstract

High Mountain Asia (HMA) is a mountainous area including the Tibetan Plateau (TP) and
surrounding mountain ranges. Due to its unique climatic and tectonic settings, the HMA
region is highly vulnerable to natural hazards, such as landslides and Glacial Lake Outburst
Floods (GLOFs). Under climate change, the frequency of natural hazards is expected to
increase, posing further threats to society and human lives in HMA.

Due to the lack of meteorological data, the triggering mechanisms of atmospherically
induced natural hazards, especially landslides, are still not fully understood in HMA,
which hinders the development of early-warning systems. To overcome this issue, a new
atmospheric data set: the High Asia Refined analysis version 2 (HAR v2), was developed
and is presented in this thesis. The HAR v2 was generated by dynamical downscaling
of ERA5 reanalysis data using the Weather Research and Forecasting Model (WRF). The
HAR v2 provides atmospheric data at 10 km grid spacing and hourly temporal resolution.
It is currently available from 2000 to 2020 and will be extended back to 1979. Compared to
the old version, the HAR v2 covers a broader area and a longer temporal range.

To find the optimal model configuration of the HAR v2, several sensitivity experiments
were conducted. Validation of the HAR v2 against in-situ stations from the Global Surface
Summary of the Day (GSOD) shows that the HAR v2 fits well with observations and
outperforms its forcing data ERA5. In addition, the HAR v2 and a version of the HAR v2

run with 2 km grid spacing (HAR v2 2 km) were compared with other commonly used
gridded precipitation data sets (reanalysis data, satellite retrieval, and interpolated in-situ
observations), over a sub-region in HMA with rugged terrain. Results indicate the added
value of the HAR v2 and HAR v2 2 km since they are the only products that can reproduce
orographic precipitation and capture more extreme events.

One of the primary goals of the HAR v2 is to provide atmospheric data for landslide
researches in Kyrgyzstan and Tajikistan, one of the landslide hot spots in the HMA re-
gion. The newly developed HAR v2 was combined with historical landslide inventories
to investigate the atmospheric triggering mechanisms of landslides in this region. Results
reveal the crucial role of snowmelt in landslide triggering in this region and the added



value of climatic disposition derived from atmospheric triggering conditions in landslide
susceptibility mapping. Furthermore, the majority of previous studies applied rainfall es-
timates from in-situ gauges or satellite retrievals. This study also highlights the potential
of dynamical downscaling products generated by regional climate models in landslide
prediction.

Dynamical downscaling has already been extensively applied to understand the present-
day climate and also future climate. In the last part of this thesis, the applicability of
dynamical downscaling in the context of paleoclimate is demonstrated. Here, two global
climate simulations for the present day and the mid-Pliocene (∼3 Ma) were dynamically
downscaled to 30 km grid spacing over HMA, using the same model configuration as the
HAR v2. By keeping land surface conditions the same in both downscaling experiments,
this study was able to isolate the influence of large-scale climate states and reveal its role
in maintaining the Qaidam mega-lake system during the mid-Pliocene. An increase of
the water balance (∆S), i.e., the change in terrestrial water storage was found, when the
mid-Pliocene climate is imposed on the Qaidam Basin (QB) with its modern land surface
settings. This imbalance of ∆S induced solely by the changes in large-scale climate state
would lead to an increase of lake extent until a new equilibrium state is reached. The
estimated equilibrium lake extent is 12%-21% of the maximum lake extent approximated
from proxy data.



Zusammenfassung

Hochasien (engl. High Mountain Asia, HMA) ist eine gebirgige Region, die das Tibetische
Plateau (TP) und die umliegenden Gebirgsketten umfasst. Aufgrund der einzigartigen
klimatischen und tektonischen Gegebenheiten ist die HMA-Region sehr anfällig für Natur-
gefahren wie Erdrutsche und Gletscherseeausbrüche (engl. Glacier Lake Outburst Floods,
GLOFs). Im Zuge des Klimawandels wird erwartet, dass die Häufigkeit von Naturgefahren
zunehmen wird, was eine weitere Bedrohung für die Gesellschaft und Menschenleben in
der HMA-Region darstellt.

Aufgrund des Mangels an meteorologischen Daten sind die Auslösemechanismen atmo-
sphärisch induzierter Naturgefahren, insbesondere von Erdrutschen, in der HMA-Region
noch nicht vollständig verstanden. Dies behindert die Entwicklung von Frühwarnsystemen.
Um dieses Problem zu überwinden, wurde ein neuer atmosphärischer Datensatz, die High
Asia Refined analysis Version 2 (HAR v2), entwickelt und wird in dieser Arbeit vorgestellt.
Die HAR v2 wurde durch dynamisches Downscaling von ERA5-Reanalysedaten unter
Verwendung des Weather Research and Forecasting Model (WRF) generiert. Die HAR v2

liefert atmosphärische Daten in einem 10 km Gitterabstand und stündlicher Zeitauflösung.
Der Datensatz ist derzeit von 2000 bis 2020 verfügbar und wird bis 1979 zurück erweitert.
Im Vergleich zur alten Version hat die HAR v2 eine größere räumliche Ausdehnung und
einen längeren zeitlichen Bereich.

Um die optimale Modellkonfiguration der HAR v2 zu finden, wurden mehrere Sensi-
tivitätsexperimente durchgeführt. Die Validierung der HAR v2 mit Beobachtungen aus
der Global Surface Summary of the Day (GSOD), dass die HAR v2 mit den Beobachtun-
gen gut übereinstimmt und die Antriebsdaten ERA5 übertrifft. Zusätzlich wurden die
HAR v2 und eine Version der HAR v2 mit 2 km Gitterabstand (HAR v2 2 km) mit ande-
ren häufig verwendeten gerasterten Niederschlagsdatensätzen (Reanalyse-, Satellitendaten
und interpolierte In-situ-Beobachtungen) verglichen. Die Ergebnisse demonstrieren die
Notwendigkeit von höher aufgelösten HAR v2- und HAR v2 2 km-Daten für Regionen
mit komplexer Topographie, da sie die einzigen Datensätze sind, die den orographischen
Niederschlag reproduzieren und mehr extreme Ereignisse erfassen können.



Eines der Hauptziele der HAR v2 ist die Bereitstellung von atmosphärischen Daten für die
Erdrutschforschung in Kirgisistan und Tadschikistan, einem der Erdrutsch-Hotspots in der
HMA-Region. Die neu entwickelte HAR v2 wurde mit historischen Erdrutschinventaren
kombiniert, um die atmosphärischen Auslösemechanismen von Erdrutschen in dieser Regi-
on zu untersuchen. Die Ergebnisse zeigen die entscheidende Rolle der Schneeschmelze bei
der Auslösung von Erdrutschen in dieser Region und den zusätzlichen Wert der aus den
atmosphärischen Auslösebedingungen abgeleiteten klimatischen Disposition. Die meisten
früheren Studien verwendeten Niederschlagsschätzungen aus In-situ-Messgeräten oder Sa-
tellitenabruf. Diese Studie unterstreicht auch das Potenzial von dynamischen Downscaling-
Produkten, die von regionalen Klimamodellen erzeugt werden, für die Vorhersage von
Erdrutschen.

Dynamisches Downscaling wurde bereits ausgiebig angewandt, um das heutige Klima
und auch das zukünftige Klima zu verstehen. Im letzten Teil dieser Arbeit wird die An-
wendbarkeit des dynamischen Downscaling im Kontext des Paläoklimas demonstriert.
Hier wurden zwei globale Klimasimulationen für die Gegenwart und das mittlere Plio-
zän (∼3 Ma) auf 30 km Gitterabstand verfeinert, wobei dieselbe Modellkonfiguration wie
bei der HAR v2 verwendet wurde. Indem die Landoberflächenbedingungen in beiden
Downscaling-Experimenten gleich gehalten wurden, war diese Studie in der Lage, den
Einfluss großräumiger Klimazustände zu isolieren und ihre Rolle bei der Aufrechterhal-
tung des Qaidam-Megaseesystems während des mittleren Pliozäns aufzuzeigen. Es wurde
eine Zunahme der Wasserbilanz (∆S), d.h. der Veränderung der terrestrischen Wasserspei-
cherung, gefunden, wenn das mittelpliozäne Klima dem Qaidam-Becken (QB) mit seinen
modernen Landoberflächeneinstellungen aufgezwungen wird. Dieses Ungleichgewicht
von ∆S, das allein durch die Änderungen des großräumigen Klimazustands induziert
wird, würde zu einer Zunahme der Seeausdehnung führen, bis ein neuer Gleichgewichts-
zustand erreicht ist. Die geschätzte Gleichgewichts-Seeausdehnung beträgt 12%-21% der
maximalen Seeausdehnung, die aus Proxydaten approximiert wurde.
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1 Introduction

1.1 Background and motivation

High Mountain Asia (HMA) is a broad mountainous area that includes the Tibetan Plateau
(TP) and its surrounding mountain ranges, such as the Himalayas, the Hindu Kush, the Tien
Shan, and the Kunlun Mountain (Figure 1.1). The region holds the largest concentration of
high-elevation lakes in the world (Lei et al., 2013) and is also the largest reservoir of glacier
and ice outside the polar region (Qiu, 2008), which serves as the water source for major
Asian rivers and for over one billion of people (Immerzeel et al., 2010). HMA is under the
influence of mid-latitude westerlies and Asian monsoon systems (e.g., Schiemann et al.,
2009; Bolch et al., 2012; Yao et al., 2012; Mölg et al., 2014; Gao et al., 2014).

Figure 1.1: Overview of HMA and locations of major mountain ranges. Letters "W", "C", and "E" denote
"western", "central", and "eastern". Glaciers from Randolph Glacier Inventory version 6.0 (RGI
6.0) are marked in blue.

1



1 Introduction

HMA is extremely vulnerable to natural hazards (Kirschbaum et al., 2019). HMA presents
a global hot spot of rainfall-triggered landslides due to its special tectonic and climatic
settings. Global Landslide Catalog (GLC) (Kirschbaum et al., 2010; Kirschbaum et al.,
2015) recorded more than 1600 rainfall-triggered landslides in HMA from 2007 to 2018

with more than 1000 fatalities per year (Figure 1.2). According to the Randolph Glacier
Inventory version 6.0 (RGI 6.0), HMA encompasses 97 973 glaciers with a total area of
98 768.86 km2 (Figure 1.1). Glaciers have retreated on average over HMA as a response
to anthropogenic climate change (Cogley, 2016), except in the Pamir–Karakorum–western
Himalaya region (Bazai et al., 2020). In 2018, 30 121 (∼2080.12 km2) glacial lakes were
identified over HMA (Wang et al., 2020). The sudden discharge of water from glacial lakes,
known as Glacial Lake Outburst Floods (GLOFs), can damage the downstream areas. A
global study (Carrivick and Tweed, 2016) found that Bhutan and Nepal have the greatest
economic consequences of GLOFs. These climate-triggered hazards already pose a threat
to society and human lives. Under global warming, glacier retreat will lead to an expansion
of glacier lakes and increase the risk of GLOFs. On the other hand, increases in extreme
precipitation are expected to enhance landslide activities in HMA, with the highest increase
rate over areas covered by glaciers and glacial lakes (Kirschbaum et al., 2020). Therefore,
understanding the triggering mechanisms of these hazards is crucial and fundamental to
developing early-warning systems.
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Figure 1.2: An example of natural hazards that affect HMA. Rainfall-triggered landslides in HMA and
the corresponding fatalities from 2007-2018 extracted from the GLC (Kirschbaum et al., 2010;
Kirschbaum et al., 2015).
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1 .1 Background and motivation

Due to the complex terrain with harsh environments and limited access, in-situ meteoro-
logical stations are sparsely and unevenly distributed in HMA. Scarce meteorological data
availability in HMA constitutes a challenge, and the atmospheric triggering mechanisms
of the aforementioned localized hazards are not yet fully understood. For instance, as
hot spots for landslide activities, no rainfall threshold for landslide triggering has been
defined in Kyrgyzstan and Tajikistan (Segoni et al., 2018), even though this topic has al-
ready been thoroughly investigated in other parts of the world (e.g., Berti et al., 2012;
Gariano et al., 2015; Giannecchini et al., 2016; Leonarduzzi et al., 2017). The number of
in-situ observation stations in Kyrgyzstan and Tajikistan decreased sharply in the 1990s
due to reduced funding. Currently, there are eight stations in Kyrgyzstan and 26 stations in
Tajikistan available from Global Surface Summary of the Day (GSOD), which is a publicly
available data set. These numbers are already significantly below the recommendation of
the World Meteorological Organization, even for flat areas (Ilyasov et al., 2013). Despite
the sparse distribution, most GSOD stations are located in low-lying valleys and are not
fully representative of the area.

Reanalysis data sets derived from forecast models and data assimilation systems provide
a valuable source of homogeneous atmospheric data. Unlike operational analyses, which
typically suffer from inconsistency due to frequent updates of operational analysis systems,
a reanalysis employs a consistent forecast model and data assimilation system (Dee et al.,
2011). However, most reanalysis data sets are so far too coarse to realistically represent
the complex terrain and associated processes, such as orography-induced precipitation,
orographic drag, and atmospheric water transport (Feser et al., 2011; Zhou et al., 2021).

Downscaling can provide atmospheric data with high spatial resolution and has the po-
tential to overcome the data paucity problem over HMA. Downscaling is a technique used
to derive regional climate information from global data sets (von Storch, 1995). It can be
achieved by two fundamentally different methods: statistical and dynamical (von Storch
et al., 2000). Statistical downscaling is based on empirical relationships between the large-
scale information and local variables established for the present-day climate. A recent
application of statistical downscaling of precipitation over the TP can be found in Jiang
et al. (2021). Dynamical downscaling employs coarse-resolution global data sets, such as
analyses, General Circulation Model (GCM) simulations, and reanalyses, as initial and
lateral boundary conditions to drive Regional Climate Models (RCMs). Instead of relying
on statistical relationships that may not be valid under different conditions, dynamical
downscaling physically resolves regional-scale processes and thus, can be applied to a
broader range.
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Dynamical downscaling bridges the gap between large scale and regional-to-local scale.
There exist some controversies regarding the added value of dynamical downscaling over
coarser global simulations since the ability of dynamical downscaling is strongly impacted
by several factors, such as domain size and position, forcing strategies, and Physical Pa-
rameterization Schemes (PPSs) (Xue et al., 2014). Nevertheless, over complex terrain, the
added value of dynamical downscaling is generally well agreed (Prömmel et al., 2010; Lin
et al., 2018; Zhou et al., 2021), and dynamical downscaling has been widely applied in the
HMA region (e.g., Maussion et al., 2011; Pan et al., 2014; Maussion et al., 2014; Gao et al.,
2015; Gao et al., 2017; Karki et al., 2018; Ou et al., 2020; Li et al., 2021; Zhou et al., 2021).

The High Asia Refined analysis (HAR) (Maussion et al., 2011; Maussion et al., 2014) is a
good example to illustrate the potential and scientific value of dynamical downscaling in
data-scarce regions. It was developed at the Chair of Climatology, Technische Universität
Berlin, to overcome the data paucity problem over the TP. The HAR was generated by
dynamical downscaling of the Final Operational Global Analysis (FNL) from the National
Centers for Environmental Prediction (NCEP) using the Weather Research and Forecasting
Model (WRF). Several studies indicate the high accuracy and quality of the HAR (Maussion
et al., 2014; Pritchard et al., 2019; Li et al., 2020). Over the last few years, the HAR was
comprehensively analyzed to provide a better insight of e.g., the seasonality, variability,
and dynamic controls of precipitation over the TP (Maussion et al., 2014; Curio and Scherer,
2016); the atmospheric water transport on and to the TP (Curio et al., 2015); the large-scale
driver of local climate variability (Mölg et al., 2014; Mölg et al., 2017). The HAR was also
applied as forcing data for glacier mass-balance modeling (Mölg et al., 2014), snow and
energy balance modeling (Huintjes et al., 2015), and hydrological modeling (Biskop, 2016).
However, there are two limitations of the HAR: (1) the incomplete coverage of the 10 km
domain over HMA; (2) the relatively short temporal coverage (15 years). This calls for the
need for a new version of the HAR.

Dynamical downscaling has been extensively applied to understand the present-day cli-
mate and also future climate (e.g., Pierce et al., 2013; Hong and Kanamitsu, 2014; Jacob
et al., 2014; Xue et al., 2014; Bao et al., 2015; Dosio et al., 2015; Di Luca et al., 2016). How-
ever, the application of dynamical downscaling is less common in paleoclimate (Ludwig
et al., 2019). Most paleoclimate studies rely on proxy-based reconstructions or output from
GCMs. GCMs have been applied to reveal the mechanisms and climate drivers of global
and regional climate changes, which can not be explained by proxy data (e.g., Kitoh et al.,
2001; Tao et al., 2010; Stepanek and Lohmann, 2012; Haywood et al., 2016; Mutz et al., 2018;
Botsyun et al., 2020). GCMs are usually operated with coarse resolutions (normally larger
than 1°) to reduce computational cost and acquire long-term simulations. But therefore,
they are not able to reproduce key processes at regional scales realistically. To the author’s
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knowledge, only a few paleoclimate studies applied the dynamical downscaling technique,
e.g., for the Last Glacial Maximum (LGM) (Yoo et al., 2016; Strandberg et al., 2011; Lud-
wig et al., 2017), the Holocene (Patricola and Cook, 2007; Russo and Cubasch, 2016), the
last millennium (Gómez-Navarro et al., 2011; Gómez-Navarro et al., 2013; Gómez-Navarro
et al., 2015).

Ludwig et al. (2019) summarized the difficulties of regional paleoclimate modeling as
follows: (1) high computational cost; (2) lack of atmospheric fields from global model
simulations; (3) technical problems. Within the "Quaternary Tipping Points of Lake Systems
in the Arid Zone of Central Asia (Q-TiP)" project, we were able to work with scientists with
expertise in global paleoclimate modeling and overcome the difficulties mentioned above
in regional paleoclimate modeling. The primary goal of the Q-TiP project was to explore
the control factors of water resources in Central Asia, conditioned by climate and other
processes, for the geological past. Our particular focus within the project was to examine
the role of climate in maintaining the Qaidam mega-lake system during the mid-Pliocene.
The lower part of the Qaidam Basin (QB) is featured with hyperarid conditions today. But
the QB once held a mega-lake system during the Pliocene Epoch (5.33 to 2.58 Ma).

1.2 Objectives

The principal objectives of this thesis are to:

I apply the dynamical downscaling method to develop a new version of the HAR to
provide long-term and high-quality atmospheric data over HMA;

II explore the added values of this new data set over other commonly used gridded data
sets with regards to precipitation;

III apply the new version of the HAR to understand the atmospheric triggering mech-
anisms of landslides in Kyrgyzstan and Tajikistan, one of the hot spots of landslide
activities in HMA;

IV extend the application of the dynamical downscaling method in paleoclimate context
and investigate the role of climate states on the maintenance of the Qaidam mega-lake
system during the mid-Pliocene.

The research covered in this thesis was conducted within the framework of the "Climatic
and Tectonic Natural Hazards in Central Asia (CaTeNA)" project and the Q-TiP project
funded by Bundesministerium für Bildung und Forschung (BMBF).
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Objective I was motivated by the success and limitations of the HAR. Here, an atmospheric
data set: the High Asia Refined analysis version 2 (HAR v2) with a spatial resolution of
10 km and temporal coverage from 2000 to 2020 is presented. For generating the HAR v2,
ERA5 reanalysis data set was chosen as the forcing data. Sensitivity studies to different
forcing strategies, PPSs, and initial snow depth conditions were conducted to find the
optimal model configurations for the HAR v2. Then, the HAR v2 was validated against
in-situ observations from GSOD and compared with ERA5 in terms of precipitation and
air temperature at 2 m.

More and more gridded precipitation products are available over the HMA region derived
from different sources and with different time spans and spatial resolutions. The question
arises what is the added value of the newly developed HAR v2 over other commonly
used data sets? To answer this question and address Objective II, HAR v2 was compared
with seven other commonly used gridded precipitation data sets, including reanalysis data,
satellite-based precipitation retrieval, and interpolated ground observations, over a sub-
region of the Central Himalaya and the Southwestern TP with highly complex terrain. In
addition, to examine the influence of horizontal grid spacing on precipitation simulation,
ERA5 was dynamically downscaled further to a grid spacing of 2 km, which was also
included in the intercomparison study.

One primary goal for developing the HAR v2 is to provide high-resolution atmospheric
data for investigating the atmospheric triggers of landslides in Kyrgyzstan and Tajikistan
within the framework of the CaTeNA project. Landslide is one of the most severe natural
hazards in Kyrgyzstan and Tajikistan, but little attention has been paid to the atmospheric
triggering mechanism of landslide in this region due to the lack of available atmospheric
data. The newly developed HAR v2 has the potential to bridge this gap. Addressing
Objective III, the applicability of the HAR v2 in landslide predicting is demonstrated.

To achieve Objective IV, the sensitivity of water balance in the QB to different climate states
was examined by two WRF dynamical downscaling experiments of global climate simu-
lations for the present day and the mid-Pliocene. Through climate modeling, the climatic
and non-climatic factors influencing the water balance in the QB can be separated.

1.3 Structure of the thesis

This thesis is presented in a cumulative form and based on the following four peer-
reviewed papers, which are reprinted in their original form in the appendix:
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I Wang, X., Tolksdorf, V., Otto, M. and Scherer, D., 2021: WRF-based dynamical down-
scaling of ERA5 reanalysis data for High Mountain Asia: Towards a new version of the
High Asia Refined analysis. Int. J. Climatol., 41, 743–762, https://doi.org/10.1002/joc.66

86.

II Hamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., Reggiani, P., Scherer, D.,
Bendix, J. and Schneider, C., 2020: Intercomparison of Gridded Precipitation Datasets
over a Sub-Region of the Central Himalaya and the Southwestern Tibetan Plateau.
Water, 12(11), 3271, https://doi.org/10.3390/w12113271.

III Wang, X., Otto, M. and Scherer, D., 2021: Atmospheric triggering conditions and cli-
matic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st
century. Nat. Hazards Earth Syst. Sci., 21, 2125–2144, https://doi.org/10.5194/nhess-21-
2125-2021.

IV Wang, X.1, Schmidt, B.1, Otto, M., Ehlers, A.T., Mutz, S., Botsyun, S. and Scherer, D.,
2021: Sensitivity of Water Balance in the Qaidam Basin to the Mid-Pliocene Climate. J.
Geophys. Res. Atmos., 126(16), https://doi.org/10.1029/2020JD033965.

These four thesis papers are outcomes of the collaborative work of several authors. Each
of them addresses each of the four objectives listed in section 1.2. This thesis is organized
as follows:

Chapter 2, The High Asia Refined analysis version 2 (HAR v2) presents the development
and validation results of the HAR v2 (Objective I, Paper I). In addition, a case study over a
sub-region of the Central Himalaya and the Southwestern TP is presented to compare the
HAR v2 with other gridded precipitation products (Objective II, Paper II).

Chapter 3, Atmospheric triggers of landslides in Kyrgyzstan and Tajikistan shows an
application example of the HAR v2 in investigating the triggering mechanism of landslides
in Kyrgyzstan and Tajikistan (Objective III, Paper III).

Chapter 4, Sensitivity of water balance in the Qaidam Basin demonstrates the application
of dynamical downscaling in paleoclimate context. Here, the global climate simulations
from ECHAM5 of the present day and the mid-Pliocene were downscaled to understand
the role of climate in maintaining the Qaidam mega-lake system during the mid-Pliocene
(Objective IV, Paper IV).

Chapter 5, Conclusions and outlook summarizes the main conclusions of this thesis and
provides perspectives for future researches in HMA.

1Schmidt, B. and Wang, X. contributed equally to this work
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2 The High Asia Refined analysis version 2
(HAR v2)

This chapter summarizes the development of the HAR v2, including the design and con-
figuration choices (Section 2.1), as well as validation results (Section 2.2). In addition,
precipitation from the HAR v2 was compared to other commonly used gridded precipita-
tion products (Section 2.3).

2.1 Development

2.1.1 General setups

The HAR is a regional atmospheric data set generated by dynamical downscaling using
the WRF model version 3.3.1. The FNL from the NCEP was used as forcing data. The
HAR covers the period from October 2000 to October 2014 and is available in 30 km (3-
hourly interval) and 10 km (hourly interval) resolution. Due to its relatively short temporal
coverage and incomplete spatial coverage over the TP of the 10 km domain (Figure 2.1a),
a new version of the HAR was developed. For generating a new version with longer
temporal coverage, FNL is not suitable as forcing data anymore because (1) it is only
available from 1999; (2) as other analysis data set, it suffers from inconsistency because
the operational analysis system has been updated frequently. For the HAR v2, the newly
developed ERA5 reanalysis data (Hersbach et al., 2020) is chosen as forcing data because
it provides consistent data from 1950 to near real-time.

WRF version 4.1 was employed for generating the HAR v2. The WRF model configurations
for the HAR v2 are summarized in Table 2.1. The domain setup (Figure 2.1b) consists of
two-way nested domains with 30 km and 10 km grid spacing. Model output from the
30 km domain was discarded, and only the output from the 10 km domain was used to
generate the HAR v2 products. The forcing strategy is daily re-initialization adopted from
the HAR: each run started at 12:00 UTC and contained 36 h, with the first 12 h as spin-up
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Figure 2.1: WRF domain configuration for (a) the HAR; (b) the HAR v2. In both (a) and (b), the larger map
shows 30 km domain, while the small black box represents 10 km domain.

time. This strategy prevents the model from deviating too far from the forcing data and
provides computational flexibility since daily runs are totally independent of each other
and can be computed in parallel and in any sequence.

2.1.2 Sensitivity studies

Nesting strategy

The HAR v2 still applies a 30 km domain as the parent domain in the dynamical down-
scaling process, even though ERA5 already has a grid spacing of near 32 km. The reason
is that a one-day experiment, which directly downscaled ERA5 to 10 km resolution, shows
that the large-scale circulation patterns are distorted in the direct downscaling approach,
and the 500 hPa wind field from the two-way nesting approach is closer to the forcing data
ERA5 (Figure 2.2). Thus, the 30 km was kept as the parent domain.

Physical Parameterization Scheme (PPS)

Changes in forcing data and domain configuration have significant impacts on model
output (e.g., Miguez-Macho et al., 2004; Leduc and Laprise, 2009; Kala et al., 2015; Huang
and Gao, 2018), which means the original PPSs applied in the HAR might not be suitable
for the HAR v2. Therefore, different cumulus, microphysics, planetary boundary layer, and
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2 .1 Development

Table 2.1: WRF Model configurations for the HAR v2. Table taken and modified after Paper I.
Dynamics

Dynamical solver Advanced Research WRF (ARW), non-hydrostatic
Maps and grids

Map projection Lambert conformal conic
Horizontal grid spacing 30 km (281 x 217 grid points), 10 km (382 x 253 grid points)
Vertical levels 28 Eta-level

Forcing strategy
Forcing data ERA5 (0.25°, hourly)
Nesting Strategy Two-way nesting
Lake surface temperature Substituted by daily mean surface air temperature
Snow depth Corrected using JRA-55

Initialization Daily
Runs starting time Daily at 12:00 UTC
Runs duration 36 h
Spin-up time 12 h

Physical parameterization schemes
Longwave radiation RRTM scheme (Mlawer et al., 1997)
Shortwave radiation Dudhia scheme (Dudhia, 1989)
Cumulus Kain-Fritsch cumulus potential scheme (Berg et al., 2013)
Microphysics Morrison 2-moment scheme (Morrison et al., 2009)
Planetary boundary layer Yonsei University scheme (Hong et al., 2006)
Land surface model Unified Noah land surface model (Tewari et al., 2004)
Surface layer Revised MM5 surface layer scheme (Jiménez et al., 2012)

land surface model schemes were tested in terms of precipitation (P) and air temperature
at 2 m (T2) for January and July 2011 (Section 2.2 in Paper I). The results of PPS sensitivity
experiments (Table 3 in Paper I) show that no single PPS performs ideally in both seasons
and for both quantities. To solve this problem, the Technique for Order Preference by Simi-
larity to the Ideal Solution (TOPSIS) (Tzeng and Huang, 2011), which is a multiple criteria
decision-making method, was applied to identify the best scheme. The basic concept of
TOPSIS is to determine the best alternative that has the shortest and longest distance from
the positive and negative ideal solution. The cumulus, microphysics, planetary boundary
layer, and land surface model schemes listed in Table 2.1 were selected as the best schemes
by TOPSIS.

Snow depth correction

Orsolini et al. (2019) evaluated snow depth and snow cover from several global reanalysis
data sets over the TP against in-situ and remote-sensing observations. It was found that
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Figure 2.2: Comparison of 500 hPa wind vectors and wind speed (contour) from (a) two-way nesting ap-
proach; (b) direct downscaling approach; and (c) ERA5. Figure taken from supplementary of
Paper I.

ERA5 largely overestimates the snow depth over the TP, especially during winter. The
reason is that ERA5 did not assimilate snow cover from the Interactive Multi-Sensor Snow
and Ice Mapping System (IMS) for areas above 1500 m. WRF already exhibits a systematic
underestimation of T2 over high elevated areas (e.g., Gao et al., 2015; Karki et al., 2017;
Bonekamp et al., 2018; Maussion, 2014; Pritchard et al., 2019). Overestimation of surface
snow depth in the forcing data can lead to additional cold bias in the WRF output (Meng
et al., 2018).

To overcome this problem, the snow depth initialized from ERA5 was corrected using the
Japanese 55-year Reanalysis (JRA-55) (Kobayashi et al., 2015). JRA-55 was chosen because it
has an excellent performance among reanalyses regarding snow depth (Orsolini et al., 2019)
and also has a relatively longer temporal coverage. The snow depth correction approach
is based on linear scaling. The detailed methodology can be found in Paper I Section 2.4.
Figure 2.3 presents the bias score (model minus observation) of monthly mean T2 from
WRF simulations with and without snow depth correction. It can be seen that snow depth
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Figure 2.3: Bias scores of monthly mean T2 for WRF simulations without snow depth correction (a, b), and
with snow depth correction (c, d) in January (a, c) and July (b, d) at 103 GSOD stations. Figure
modified after Paper I .

correction significantly reduces cold bias, especially in winter over the TP and northern
Pakistan.

2.2 Validation

In Paper I, the HAR v2 was validated against in-situ observations and compared with the
HAR for 2011 in terms of P and T2. The results show that compared to the old version,
the HAR v2 generally produces slightly higher P amounts, but the spatial distribution of
seasonal P matches better to observations. With regards to T2, the HAR v2 performs better.
At the time of writing, the production of the HAR v2 is finished from 2000 to 2020. Here,
the HAR v2 and ERA5 for these 21 years are compared to each other and validated against
in-situ observations.
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2.2.1 Method

In-situ observations of P and T2 from GSOD provided by the National Centres of Envi-
ronmental Information (NCEI) were used for validation. Stations with more than 90%
of records within the validation period were selected. After filtering, 89 stations are left
within the 10 km domain of the HAR v2 from 2000 to 2020. Some GSOD stations contain
problematic precipitation values. For example, stations Da-Qaidam, Doulan, and Delingha
in the Qaidam Basin in the northeastern TP have shown 486 mm m−1, 764 mm m−1, and
1108 mm m−1 precipitation amounts in January 2019 (Da-Qaidam, Doulan) and January
2020 (Delingha), which is unrealistic for the arid condition in the Qaidam Basin. These
unrealistic monthly values were masked out for validation.

Statistical measures were applied to assess the model performance, which includes Mean
Bias (MB), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the distribution-
free Spearman’s rank correlation coefficient (rs). rs is calculated based on daily values of P
and T2. For T2, a constant temperature lapse rate of 6.5 K km−1 was applied to transfer the
T2 from the HAR v2 and ERA5 to the station altitudes.

2.2.2 Results

Table 2.2 summarizes the statistic metrics. Figure 2.4 and Figure 2.5 present the monthly
time series derived from the HAR v2, ERA5, and GSOD, as well as station-wise MB and rs

for P and T2, respectively.

Table 2.2: Statistical metrics of P (unit: mm d−1 except for rs) and T2 (unit: K except for rs ) for the HAR v2
and ERA5.

P T2

MB MAE RMSE rs MB MAE RMSE rs
HAR v2 0.29 0.47 0.80 0.41 -0.38 0.94 1.28 0.86

ERA5 0.52 0.61 1.06 0.46 -0.25 0.95 1.29 0.85

The precipitation seasonality and annual variability are generally well reproduced by the
HAR v2 (Figure 2.4a). The temporal variability of monthly P from the HAR v2 follows
ERA5 closely. Over the whole 10 km domain, both the HAR v2 and ERA5 overestimate
P, especially in summer months, but the HAR v2 has a smaller overestimation. In winter,
the spatial pattern of MB from the HAR v2 generally follows that from ERA5, but with
lower MBs. In summer, the HAR v2 shows a drying in the southern periphery of the TP
but a wetting over the middle-eastern TP, compared to ERA5 (Figure 2.4c, f). ERA5 shows

14



2 .2 Validation

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

0

1

2

3

4

5

P 
(m

m
 d

1 )

(a) HAR v2 ERA5 GSOD

(b)

30N

40N

(c) (d)

(e)

70E 80E 90E 100E

30N

40N

4.0 2.0 1.0 0.5 0.1 0.1 0.5 1.0 2.0 4.0
mm d 1

(f)

70E 80E 90E 100E

4.0 2.0 1.0 0.5 0.1 0.1 0.5 1.0 2.0 4.0
mm d 1

(g)

70E 80E 90E 100E

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.4: Comparison of the HAR v2, ERA5, and GSOD from 2000 to 2020 in terms of P. Time series
averaged over 89 GSOD stations as shown in the following subfigures (a); MB of the HAR v2
(b, c) and ERA5 (e, f) at each station for winter (b, e) and summer (c, f); Spearman’s correlation
coefficient of the HAR v2 (d) and ERA5 (g) at each station calculated based on daily P.

more consistency with in-situ observations with regards to temporal variations of daily
P (Figure 2.4d, g, Table 2.2). Previous studies also found that ERA5 performs better than
WRF simulations in reproducing daily temporal variations of P (e.g., Zhou et al., 2021;
Jiang et al., 2021).

For T2, both the HAR v2 and ERA5 exhibit a systematic cold bias over HMA (Table 2.2).
ERA5 shows an overall smaller cold bias due to the overestimation of T2 in summer
(Figure 2.5f). The HAR v2 and ERA5 exhibit different spatial patterns of station-wise
biases, especially in summer. Over stations in the southeastern TP, the HAR v2 shows
warming in winter, but cooling in summer, compared to ERA5. The warming in winter
could result from the snow correction approach (Section 2.1.2). The cooling in summer over
the southern TP produced by WRF has also been found in Zhou et al. (2021), according
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to which the reason could be the decreased latent heat release caused by weakened water
vapor transport from South Asia due to higher spatial resolution.
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Figure 2.5: Comparison of the HAR v2, ERA5, and GSOD from 2000 to 2020 in terms of T2. Time series
averaged over 89 GSOD stations as shown in the following subfigures (a); MB of the HAR v2
(b, c) and ERA5 (e, f) at each station for winter (b, e) and summer (c, f); Spearman’s correlation
coefficient of the HAR v2 (d) and ERA5 (g) at each station calculated based on daily T2.

2.3 Comparison of the HAR v2 with other gridded precipitation

products

Over complex terrain, precipitation observation is challenging due to the harsh environ-
ment and limited accessibility (Wang and Zeng, 2012). Precipitation measurements are
usually error-prone. Gridded products, on the other hand, provide continuous estimations
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products

of precipitation both spatially and temporally, and thus, can overcome the limitations of
rain-gauge observations.

In Paper II, an intercomparison of gridded precipitation datasets was conducted over a
sub-region of the Central Himalaya and the Southwestern TP. The study area (81 °E-88 °E,
28 °N-32 °N) includes different topographic features, ranging from low-lying southern
slopes of the Himalayas, followed by the extreme relief of the Himalayas, and to the less
complex TP terrain (Figure 1 in Paper II). The HAR v2 were compared to seven commonly
used gridded data sets, including weather model-derived analysis and reanalysis data
sets, satellite-based precipitation retrieval, and interpolated ground observations. Details
of these data sets can be found in Paper II Section 2.2. In addition, to investigate the
influence of horizontal grid spacing on precipitation simulation, ERA5 has been further
downscaled to 2 km grid spacing using WRF V4.1 for the study area from April 2017 to
October 2017. The 30 km and 10 km domains of the HAR v2 (Figure 2.1b) were used as the
two-way nesting parent domains. To distinguish this new dynamical downscaled product
from the original HAR v2, hereinafter they are referred to as HAR v2 2 km and HAR v2

10 km. The model setup for the HAR v2 2 km is the same as the HAR v2 10 km, except
that no cumulus parameterization scheme was used, and cumulus convection was thus
explicitly resolved in the HAR v2 2 km. The study period for the intercomparison is May
to September 2017, covering a full Indian Summer Monsoon (ISM) season.

Figure 2.6 shows that the HAR v2 products have the best representation of orographic
precipitation over complex terrains and show improvement over their forcing data ERA5.
Interestingly, the ERA5-Land with a similar spatial resolution does not depict as many
spatial details as the HAR v2 10 km. The reason is that precipitation is purely interpolated
to the ERA5-Land grid from ERA5 and is not obtained by running the land surface model1.
Climdex indices in Figure 2.7 reveal precipitation extreme for each product. Generally, the
higher the spatial resolution, the larger is the data range among all grid cells. Comparison
of R10 and R20 (number of wet days with P > 10 mm and P > 20 mm) show that both
HAR v2 10 km and HAR v2 2 km with higher resolution return the overall highest maxi-
mum values and median values. This indicates that higher resolved products experience
more extreme precipitation events in multiple grid cells than coarser products, and they
can resolve locally confined heavy precipitation events. HAR v2 10 km has an extremely
high precipitation amount of over 500 mm in a single day (Rx1). The much lower Rx1 in
HAR v2 2 km could imply the added value of convection-permitting scale simulations.
However, this needs to be further investigated in the future since 500 mm d−1 is not im-
possible in our study area. A maximum precipitation amount of 528 mm per 24 h was

1https://confluence.ecmwf.int/display/CKB/ERA5-Land
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observed during an extreme precipitation event on 14-15 August 2014 at Chisapani station
in southwestern Nepal (Karki et al., 2018).

In summary, this intercomparison study highlights the similarities and differences of grid-
ded precipitation products from various sources. It demonstrates the potential and added
value of high-resolution dynamical downscaling products (HAR v2 10 km and HAR v2

2 km) over complex terrain.

Figure 2.6: Spatial log-scaled per-grid-cell sum over the study period for each of the precipitation product.
Figure taken from Paper II.

Figure 2.7: Visualization of the selected climdex indices R1 (number of wet days with P > 1mm), R10
(number of wet days with P > 10mm), R20 (number of wet days with P > 20mm), Rx1
(maximum 1-day precipitation), Rx5 (maximum consecutive 5-day precipitation), and PTOT
(total precipitation) as boxplots. Figure taken from Paper II.
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3 Atmospheric triggers of landslides in
Kyrgyzstan and Tajikistan

In this chapter, the HAR v2 is applied to investigate the atmospheric triggering conditions
of landslides in Kyrgyzstan and Tajikistan. The results shown here were published in
Paper III.

3.1 Background

Landslide is one of the most severe natural hazards in Kyrgyzstan and Tajikistan. While
the majority of landslide research in Kyrgyzstan and Tajikistan focused on characterizing
landslide susceptibility, i.e., "where" landslides are prone to occur (e.g., Braun et al.,
2015; Saponaro et al., 2015; Havenith et al., 2015), little attention has been paid to the
atmospheric triggering conditions, and our knowledge of "when" landslides are likely to
occur is limited in this region. The reasons are the lack of landslide inventories with the
exact date of landslide occurrence and the lack of atmospheric data.

Rainfall is the most common trigger of landslide all over the world (Wieczorek, 1996).
Over snow-covered regions, snowmelt is recognized as another common trigger of shallow
landslides and debris flows (Wieczorek, 1996; Mostbauer et al., 2018). In Kyrgyzstan and
Tajikistan, more than half of the annual precipitation falls in the form of snow. Snow cover
duration over high mountain ranges in the Tien Shan and the Pamir is more than 200

days per year (Dietz et al., 2014). A large amount of water stored in snowpacks is released
during the melting season. Snowmelt is another critical source of water infiltrating into the
soil that increases slope instability. Thus, in Kyrgyzstan and Tajikistan, snowmelt might
also play a role in landslide triggering besides rainfall. But snowmelt is not as easy to
observe as rainfall and might often be neglected as a landslide trigger, especially when
co-occurring with rainfall.

The newly developed, freely available HAR v2 was combined with 96 historical landslide
events extracted from GLC and Global Fatal Landslide Database (GFLD) (Froude and
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3 Atmospheric triggers of landslides in Kyrgyzstan and Tajikistan

Petley, 2018) from 2004 to 2018 (Figure 3.1) to analyze the atmospheric triggering conditions
of landslides and to generate climatic disposition maps in Kyrgyzstan and Tajikistan.
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Figure 3.1: Landslide events from 2004 to 2018 extracted from the GLC (white points) and the GFLD (black
points). Figure taken from Paper III.

3.2 Atmospheric triggers of landslides

The atmospheric trigger of a landslide event is determined by the co-occurrence of the
landslide event with rainfall and snowmelt events. If a landslide event only occurred within
or one day after a rainfall (snowmelt) event, then this landslide event is defined as rainfall
(snowmelt) triggered. If there are both a rainfall event and a snowmelt event on the day or
one day before the landslide occurrence day, then the atmospheric trigger of this landslide
event is mixed. The results are presented in Figure 3.2. Nine landslide events did not occur
within any rainfall or snowmelt event. This mismatch between landslide information and
weather information stems from the uncertainties in landslide locations and timing, as
well as the uncertainties in the HAR v2. These nine events are referred to as "not detected"
(white points in Figure 3.2) and are excluded for further analysis.

Comparing the annual cycles of rainfall, snowmelt, and the sum of rainfall and snowmelt
(hereinafter referred to as rainfall+snowmelt) with monthly landslide occurrences, it can
be seen in Figure 3.3 that the peak of landslide activity in April and May corresponds well
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3 .2 Atmospheric triggers of landslides
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Figure 3.2: Contribution (%) of snowmelt to annual sum of rainfall and snowmelt (background contour)
and atmospheric triggers of 96 landslide events extracted from the GLC and the GFLD (points).
Figure taken from Paper III.
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Figure 3.3: (a) Mean monthly soil temperature at the top soil layer (0-0.1m) and T2 averaged over Kyrgyzstan
and Tajikistan extracted from the HAR v2; (b) mean monthly rainfall and snowmelt averaged over
Kyrgyzstan and Tajikistan extracted from the HAR v2; (c) mean monthly landslide occurrences
in Kyrgyzstan and Tajikistan from 2004 to 2018. Figure taken from Paper III.

21



3 Atmospheric triggers of landslides in Kyrgyzstan and Tajikistan

with the peak of rainfall+snowmelt. Snowmelt contributes to triggering 40% of landslide
events (35 out of 87). There are 29% of landslide events (25 out of 87) that are attributed to
the combined effect of rainfall and snowmelt. Most snowmelt-contributing events occurred
in April when snowmelt amount is the highest. March and June have almost the same
amount of rainfall+snowmelt, but more landslide occurred in June. The reason could be
the still frozen soil in March (negative soil temperature and T2 as shown in Figure 3.3a),
which makes slopes more stable.

3.3 Thresholds of landslide triggering

The threshold model from Leonarduzzi et al. (2017) was utilized to define the triggering
threshold, which can best separate the atmospheric conditions that resulted and did not
result in landslides. Firstly, landslide-triggering events and non-triggering events were
determined. For each event, three event properties were calculated: mean intensity Imean,
maximum intensity Imax, and the accumulated amount for the entire event Q. For landslide-
triggering events, these three properties were also computed by only considering the
period up to landslide occurrence (UTL). Then, the thresholds of rainfall, snowmelt, and
rainfall+snowmelt were defined based on maximizing the predictive performance using
2 × 2 contingency tables. The Peirce Skill Score (PSS), i.e., the difference between the
Hit Rate (HR) and the False Alarm Rate (FAR), was chosen to measure the predictive
performance because it is unbiased even when the numbers of triggering events and
non-triggering events are not equally presented (Woodcock, 1976). Details of threshold
model can be found in Paper III Section 2.2.2. The calibrated thresholds are presented in
Table 3.1.

Predictive performance is better when using the entire period than just using the UTL
period, which was also concluded by Leonarduzzi et al. (2017). One of the reasons is that
by considering a longer period, Imean, Imax, and especially Q of triggering events generally
increase, making it easier to distinguish triggering events from non-triggering events. An-
other reason could be the uncertainty in landslide timing. Although it is more typical that
a landslide was reported after its actual occurrence (positive errors), negative errors are
also possible depending on the interpretation of historical landslide information from an
analyst (Peres et al., 2018). The better performance by considering the entire period could
be an indication of negative errors in the landslide timing.

Despite different performances, the defined thresholds of entire events and UTL events for
rainfall+snowmelt are very similar. It can be seen from Table 3.1 that rainfall+snowmelt
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3 .4 Climatic disposition

Table 3.1: Calibrated thresholds of mean intensity Imean (mm d−1), maximum intensity Imax (mm d−1), and
accumulated amount Q (mm) for entire events and UTL events of rainfall, snowmelt, and the
sum of rainfall and snowmelt (rainfall+snowmelt), as well as corresponding performance statistics.
Table taken from Paper III.

Predictor Property Threshold HR FAR d PSS AUC
Rainfall Imean 3.60 0.62 0.35 0.51 0.27 0.62

(entire event) Imax 11.20 0.49 0.18 0.54 0.32 0.65

Q 16.95 0.52 0.18 0.52 0.34 0.67

Snowmelt Imean 7.05 0.23 0.06 0.77 0.17 0.31

(entire event Imax 13.45 0.24 0.04 0.76 0.20 0.32

Q 119.60 0.24 0.03 0.76 0.21 0.33

Rainfall+snowmelt Imean 4.95 0.71 0.25 0.38 0.46 0.78

(entire event) Imax 12.80 0.67 0.15 0.37 0.51 0.81

Q 17.15 0.74 0.23 0.35 0.50 0.81

Rainfall Imean 3.05 0.60 0.40 0.57 0.20 0.59

(UTL event) Imax 12.40 0.34 0.16 0.67 0.19 0.58

Q 9.25 0.52 0.31 0.57 0.21 0.59

Snowmelt Imean 7.40 0.22 0.05 0.78 0.17 0.31

(UTL event) Imax 12.80 0.24 0.05 0.76 0.19 0.32

Q 98.30 0.24 0.04 0.76 0.20 0.32

Rainfall+snowmelt Imean 5.05 0.68 0.25 0.41 0.43 0.76

(UTL event) Imax 14.05 0.59 0.14 0.44 0.45 0.77

Q 15.65 0.66 0.25 0.43 0.40 0.76

has the best predictive performance for both entire events and UTL events. The predictive
performance indicated by d (euclidean distance to the optimal point, where HR=1 and
FAR=0), PSS, and area under the receiver operating characteristic curve (AUC) of the three
event properties (Imean, Imax, and Q) are quite similar, but using Imax as a predictor leads
to a lower FAR but also a lower HR when compared with Q and Imean.

3.4 Climatic disposition

The occurrence of landslides depends on disposition and triggering events. Disposition
refers to the general settings that make slopes prone to failure without actually initiating it,
such as slope gradient and aspect, geology, vegetation cover, and climate (Dai et al., 2002).
Using the thresholds defined in Section 3.3 for rainfall+snowmelt UTL events, Figure 3.4
presents the annual number of rainfall+snowmelt events that exceed Imean =5.05 mm d−1,
Imax =14.05 mm d−1, and Q =15.65 mm. These mean annual exceedance maps derived
from triggering thresholds depict the climatic disposition of landslides. Historical landslide
locations generally correspond with high mean annual exceedance. High false alarms in
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3 Atmospheric triggers of landslides in Kyrgyzstan and Tajikistan

remote areas, such as the Tien Shan, could be because landslides extracted from media
reports are under-reported in remote regions. The majority of landslide susceptibility
studies only considered non-climatic factors or often simply applied averaged annual
precipitation as the climatic factor. Compared to a landslide susceptibility map (Stanley
and Kirschbaum, 2017) extracted from non-climatic factors (Figure 8 in Paper III), these
mean annual exceedance maps show similarity with regards to topographic features but
also exhibit discrepancies, which suggests that both climatic and non-climatic aspects need
to be considered for landslide susceptibility mapping.
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Figure 3.4: Mean annual exceedance (number of events per year) of (a) Imean =5.05mm d−1; (b)
Imax =14.05mm d−1; and (c) Q =15.65mm for the rainfall+snowmelt UTL events. Black circles:
landslide events from the GLC and the GFLD. Figure modified after Paper III.
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4 Sensitivity of water balance in the Qaidam
Basin

This chapter summarizes Paper IV and demonstrates the application of dynamical down-
scaling in the context of paleoclimate. The research area is the QB located in the northeast-
ern TP, which once held a mega-lake system during the Pliocene Epoch (5.33 to 2.58 Ma).
Here, the dynamical downscaling method was applied to investigate the role of the climate
in the maintenance of the mega-lake system during the Pliocene.

4.1 Study region and background

The QB is an intermontane endorheic drainage basin with a total area of around 254 000 km2

located in the northeastern TP (Figure 4.1). Hyperarid condition prevails its central and
lower part today. But the QB contained a freshwater mega-lake system throughout the
Pliocene as revealed by paleogeographic studies (Chen and Bowler, 1986; Mischke et al.,
2010; Wang et al., 2012), even though during this period, the basin and surrounding moun-
tain areas experienced a general aridification process (Rieser et al., 2009; Miao et al., 2013).
With the beginning of the Pleistocene, the mega-lake system began to shrink. This process
continued throughout the Pleistocene. Today, only a few playas and saline lakes remain in
the QB (Wang et al., 2012).

To understand how the Qaidam mega-lake system could survive the continuous aridifica-
tion for millions of years, Scherer (2020) applied the HAR to investigate the present-day
water balance (∆S) in the QB and its climate drivers. It was found that the ∆S in the QB
is close to zero under the present-day climate condition, and specific humidity at 2 m (Q2)
is the climate driver of the annual ∆S in the QB. The annual ∆S in the QB is positively
correlated with the annual Q2. Thus, the Qaidam mega-lake system was sustained by the
wetter climate condition during the Pliocene. Following these findings of Scherer (2020),
the principal objective of Paper IV is to understand to what extent climate plays a role in
the maintenance of the mega-lake system during the mid-Pliocene.
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4 Sensitivity of water balance in the Qaidam Basin

In the mid-Pliocene (∼3 Ma), the global climate was warmer and wetter than today (Ravelo
et al., 2004), while paleogeographic features, continental configuration, and ocean bathyme-
tries share similarities to those of today (Dowsett et al., 2010). Therefore, the mid-Pliocene
is often considered a past analog of near-future climate (e.g., Zubakov and Borzenkova,
1988; Burke et al., 2018).

The steady-state ∆S is zero in an endorheic basin (Broecker, 2010; Ibarra et al., 2018).
Following Scherer (2020), ∆S is defined as the total change in Terrestrial Water Storage
(TWS) within all the reservoirs inside the basin. For a large endorheic basin like the QB,
∆S can be calculated as the spatial average of net precipitation (P − ET), i.e., the difference
between precipitation (P) and evapotranspiration (ET). However, changes in climate state
can alter the TWS and cause an imbalance in the ∆S (e.g., Jiao et al., 2015; Wang et al., 2018;
Li et al., 2019). Based on the findings of Scherer (2020), the basic hypothesis of Paper IV
is that the wetter mid-Pliocene climate state would lead to a positive imbalance of the
∆S in the QB, which would result in recharging of groundwater reservoirs and eventually
to a rising lake level and an extension of the lake area. This readjustment of lake extent
would continue until a new equilibrium state is reached, where evaporation over lake areas
compensates for the input by runoff and precipitation.
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Figure 4.1: (a) Map of WRF model domain; (b) overview of the QB. Black line: boundary of the QB (Lehner
and Grill, 2013). Blue rectangle: Qaidam box for atmospheric moisture budget analysis. Figure
taken from Paper IV.

4.2 Modeling concept

RCMs provide the opportunity to isolate the climate forcing from other factors, such as
land use and vegetation cover. By imposing the mid-Pliocene climate state on the QB
with its modern land surface settings, an imbalance of ∆S will be induced and can be
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4 .3 D ifference in water balance and its implication

translated into an equilibrium lake extent needed to remove this imbalance. Comparing
this equilibrium lake extent with the estimated lake extent from proxies can give us an
insight into the influence of climate on the existence of the mega-lake system during the
mid-Pliocene. To achieve this, WRF was applied for dynamical downscaling of present-
day and mid-Pliocene global climate simulations from ECHAM5. These two regional
downscaling simulations are referred to as PD and PLIO in the following text. Details of
the global simulations from ECHAM5 can be found in Mutz et al. (2018) and Botsyun
et al. (2020). Except for the forcing data, the WRF model configurations are the same as
the HAR v2. Note that, such downscaling is not to reconstruct the regional climate in the
QB during the mid-Pliocene. Instead, we simulated the regional climate of the QB and
its surrounding areas with modern surface conditions. In this way, we can analyze the
large-scale controls of ∆S in the QB independently from other land surface controls.

4.3 Difference in water balance and its implication

Since the PLIO simulation can not be considered a reconstruction of the regional climate in
the QB for the mid-Pliocene, it should not be interpreted on its own but in conjunction with
the PD simulation. Interpretation of the simulation results should focus on the differences
between PLIO and PD simulations. The annual ∆S averaged over the QB is 26 mm a−1

higher in PLIO. Seasonally, PLIO has a higher ∆S in the QB in winter, spring, and autumn.
In summer, the difference in ∆S between PLIO and PD is negative (Table 4.1). Higher ∆S
together with higher Q2 is in accordance with the conclusion from Scherer (2020) that
annual Q2 is the climate driver of annual ∆S in the QB.

Table 4.1: Seasonal and annual P (mm season−1 or mm a−1), ET (mm season−1 or mm a−1), ∆S (mm
season−1 or mm a−1), T2 (°C) and Q2 (g kg−1) averaged over the QB for PLIO, PD, and the
difference between PLIO and PD (PLIO-PD). Table taken from Paper IV.

PLIO PD PLIO-PD

P ET ∆S T2 Q2 P ET ∆S T2 Q2 P ET ∆S T2 Q2
DJF 51 22 29 -13.9 1.3 43 25 19 -12.2 1.3 8 -3 11 -1.7 0.0

MAM 131 87 43 -2.7 3.4 111 83 27 0.0 3.1 20 4 17 -2.7 0.3
JJA 163 152 12 8.7 7.4 151 122 29 9.9 6.0 13 30 -17 -1.2 1.4

SON 74 62 12 -3.3 3.3 52 56 -4 -1.0 3.0 22 6 16 -2.3 0.3
Annual 419 322 96 -2.8 3.9 356 286 70 -0.8 3.4 63 36 26 -2.0 0.5

Applying the lake mass balance equation for an endorheic basin, the imbalance in ∆S can
be transformed into the equilibrium lake extent (details in Paper IV Section 2.3). Three pro-
jections of lake extent were calculated based on three different values of lake evaporation:
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4 Sensitivity of water balance in the Qaidam Basin

600 mm a−1, 800 mm a−1, and 1000 mm a−1. These values represent lower, medium, and up-
per estimations of lake evaporation rates over the TP based on previous studies (Haginoya
et al., 2009; Xu et al., 2009; Yu et al., 2011; Lazhu et al., 2016; Li et al., 2016). Figure 4.2
summarizes the lake extents (Alake), lake levels (zlake), and the rise in lake levels (∆z) of
these three equilibrium lake states under the increase in mean annual ∆S of 26 mm a−1.
Figure 4.2 also illustrates these three projected states, where lake extents are estimated us-
ing WRF model topography for accumulations of net precipitation and subsequent runoff
originating from land in grid points at or below equilibrium lake levels. An increase in
mean annual ∆S of 26 mm a−1 would be sufficient to sustain a lake in the QB with an extent
ranging from 7298 km2 to 12 260 km2, which is much larger than Lake Qinghai, the largest
lake over the TP (4317 km2). The maximum lake extent of 59 000 km2 approximated from
proxy data (Chen and Bowler, 1986) is still much larger than the estimations presented here.
This indicates that factors besides large-scale climate state also contributed to sustaining
the mega-lake system during the Pliocene.
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Figure 4.2: Illustrations of lake extents of equilibrium lake states using the present-day model topography
from WRF for accumulation of net precipitation and subsequent runoff originating from land in
areas at or below equilibrium lake levels (marked in blue). The equilibrium lake extent (Alake), lake
level (zlake), and the rise in lake level (∆z) were estimated using 26mm a−1 as input change in
mean annual ∆S and (a) 600mm a−1, (b) 800mm a−1, (c) 1000mm a−1 as input lake evaporation.
Figure taken from Paper IV.

4.4 Large-scale systems controlling water balance in the Qaidam

Basin

On the climatological scale, ∆S and net moisture transport into and out of an endorheic
basin through its lateral boundary are in balance (Brubaker et al., 1993). Due to the irregu-
lar shape of the QB, a simple rectangle covering the QB (hereafter referred to as Qaidam
box) was defined to perform moisture budget analysis on the Atmospheric Water Transport
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Basin

(AWT) across the four borders (blue rectangle in Figure 4.1b). The AWT was calculated
following the method described in Curio et al. (2015). Table 4.2 presents the seasonal
and annual AWT through each border of the Qaidam box, as well as the sum of AWT
from all borders, i.e., the atmospheric moisture budget, converted to the theoretical pre-
cipitation amount. Figure 4.3 illustrates the route and the magnitude of seasonal moisture
propagation across the whole domain.

Table 4.2: 15-year average of seasonal and annual atmospheric water flux converted to theoretical precipita-
tion amount (mm season−1 or mm a−1) through each border of the Qaidam box (blue rectangle in
Figure 4.1b). Positive values indicate moisture input into the QB, while negative values represent
moisture output. Table taken from Paper IV.

PLIO PD PLIO-PD

West East South North Sum West East South North Sum West East South North Sum
DJF 327 -298 -38 28 19 277 -248 -7 -2 19 50 -50 -31 30 0

MAM 433 -399 50 -49 36 390 -368 19 -14 28 43 -31 31 -35 8

JJA 344 -283 120 -174 8 407 -459 159 -95 12 -63 176 -39 -79 -4
SON 415 -414 71 -79 -7 368 -394 95 -80 -11 47 -20 -24 1 4

Annual 1519 -1393 204 -274 56 1441 -1469 267 -191 48 78 76 -63 -83 8

The western and eastern borders of the Qaidam box serve as the dominant moisture
input and output channel in both PD and PLIO. The higher annual moisture budget in
PLIO derives from (1) the increased moisture influx across the western border, and (2) the
decreased moisture outflux at the eastern border (Table 4.2). This indicates that moisture
budget and ∆S in the QB are related to the large-scale systems that influence the AWT
at the western and eastern borders. In PLIO, the increased moisture influx at the western
border occurs in winter, spring, and autumn, while a strong reduction of moisture export
at the eastern border occurs in summer.

The AWT at both the western and eastern borders of the Qaidam Box is under the influence
of the mid-latitude westerlies throughout the year (Figure 4.3). Following the methods used
by Sun et al. (2020), we defined a strength index as the average maximum zonal wind speed
at 200 hPa at each longitude over the Qaidam box to quantify the strength of the westerlies
over the QB. In PLIO, the westerlies over the QB are stronger in all seasons except for
summer (Figure 4.4), which explains the larger AWT through the western and eastern
borders (Table 4.2).

In the summer months, the moisture transport over eastern Asia by the East Asian Summer
Monsoon (EASM) is stronger in PLIO (Figure 4.3g-i). Analysis of the daily zonal water
transport on the eastern border of the Qaidam box shows moisture input from the eastern
border into the QB in PLIO from the middle of July to the beginning of August (Figure 4.5),
which indicates the influence of the EASM in PLIO. This pattern can not be observed in
PD. The additional moisture input by the EASM in PLIO also contributes to the lower

29



4 Sensitivity of water balance in the Qaidam Basin

PLIO
(a) DJF

20N

40N

PD
(b) DJF

PLIO-PD
(c) DJF

(d) MAM

20N

40N
(e) MAM (f) MAM

(g) JJA

20N

40N
(h) JJA (i) JJA

(j) SON

60E 80E 100E

20N

40N
(k) SON

60E 80E 100E

(l) SON

60E 80E 100E

80 25 5 0 5 25 80
kg m 1 s 1

0 10 30 50 90 150 250
kg m 1 s 1

Figure 4.3: 15-year mean seasonal AWT (kg m−1 s−1) in DJF (a, b, c), MAM (d, e, f), JJA (g, h, i), and SON
(j, k, l) for PLIO (a, d, g, j), PD (b, e, h, k), and the difference between PLIO and PD (c, f, i, j).
Colors represent the strength of water flux; arrows indicate transport direction. Figure taken from
Paper IV .
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Basin

values for total moisture output at the eastern border in summer. As a major component of
the subtropical EASM (Huang et al., 2019), the Northwest Pacific Subtropical High (NPSH)
intensifies and extends westwards in PLIO, indicated by higher geopotential and stronger
anti-cyclonic circulation over eastern China (Figure 4.6a). The strengthening of the EASM
in PLIO is coupled with a tilted jet stream axis over northeastern China. To demonstrate
the influence of the EASM on the QB, we selected the period from 17 July to 27 July, when
the daily AWT averaged over all the grid points at the eastern border of the Qaidam Box
is negative in PLIO (i.e., the eastern border receives moisture input on average). During
this period, the NPSH intensifies and extends further northwestwards in both PLIO and
PD (Figure 4.6d-f), as compared to the climatology in summer (Figure 4.6a-c). In PLIO, the
southern part of the QB is clearly under the control of easterly winds during this period
(Figure 4.6d).

In summary, the strengthening of the mid-latitude westerlies in all seasons, except for
summer, and the intensification of the EASM lead to higher moisture budget and higher
∆S in the QB in PLIO.
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Figure 4.4: 15-year average of seasonal strength index of jet stream (m s−1) over the QB for PLIO and PD,
calculated as defined in Sun et al. (2020). Figure taken from Paper IV.
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Figure 4.5: 15-year average of daily zonal AWT (kg m−1 s−1) of 16 grid points at the eastern border of the
Qaidam box (blue rectangle in Figure 4.1b) for (a) PLIO and (b) PD. Grid point 1 and grid point
16 represent the south-most and north-most grid points. Reddish colors indicate water transport
away from the QB, while blueish colors indicate water transport towards the QB. Figure taken
from Paper IV.
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Figure 4.6: 15-year climatology of geopotential (shading, m2 s−2) and wind field (arrows, m s−1) at 500 hPa
averaged in JJA (a, b, c) and from 17 July to 27 July (d, e, f) for PLIO, PD, and PLIO-PD. Figure
taken from Paper IV.
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5 Conclusions and outlook

In this thesis, dynamical downscaling based on WRF was employed over the HMA region
to overcome the data paucity problem. The newly developed WRF-downscaled data was
utilized to provide an insight into atmospheric triggering mechanisms of landslide activ-
ities. Furthermore, the dynamical downscaling method was applied in the paleoclimate
context to examine the mechanisms of regional water balance changes.

A new version of the HAR with a larger 10 km domain and longer temporal coverage
was developed. ERA5 reanalysis data set was chosen as the forcing data. As the first
step, sensitivity experiments regarding the nesting strategies, PPSs, and initial snow depth
were conducted to optimize the model configuration for the HAR v2 in terms of P and T2

(Paper I). Validation against publicly available in-situ observations from GSOD from 2000

to 2020 shows that the HAR v2 can reproduce the seasonal and annual variability of P and
T2 very well over HMA and fits better with observations than its forcing data ERA5. The
HAR v2 shows an overall cold bias and wet bias over the HMA region. Station-wise biases
exhibit regional and seasonal patterns. Due to the long validation period (21 years), only 89

stations with more than 90% records left for validation over the whole HMA. Some areas
of HMA, such as the western TP, the western Tien Shan, and the Pamir, are not covered
with available GSOD stations, and thus, the validation presented here does not show the
full aspect of the performance of the HAR v2.

Precipitation is a central quantity for hydrometeorological researches. Several gridded
precipitation products derived from different sources are available over HMA. Paper II
presents an intercomparison of commonly used gridded precipitation products, including
WRF-downscaled products (HAR v2 10 km and HAR v2 2 km), reanalysis data, satellite
retrieval, and interpolated in-situ observations. Results reveal that these products show gen-
eral agreement in precipitation variability, but there exist considerable differences among
products spatially and temporally. Thus, one should carefully select the product based
on the type of application. For applications requiring regional spatial details, such as
glacier mass-balance modeling, high-resolution HAR v2 10 km and HAR v2 2 km are most
suitable.
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5 Conclusions and outlook

By the time of writing, the data production of the HAR v2 10 km was finished from 2000

to 2020, and the data was made publicly available at: www.klima.tu-berlin.de/HARv2.
It is planned to generate the HAR v2 10 km data back to 1979. In addition, the HAR v2

2 km used in Paper II has been extended to the period from 2017 to 2020 and will be
utilized to investigate GLOFs in the Halji region in northwestern Nepal (Figure 5.1). The
Halji village is home to one of the oldest Tibetan Buddhist monasteries of Nepal. From
2004 to 2014, the village has been severely affected by six GLOFs from a glacial lake,
which formed episodically during the snowmelt season in the Halji Glacier (Kropáček
et al., 2015). The "Glacial lake outburst floods in the Halji region, Nepal" project funded by
the Deutsche Forschungsgemeinschaft (DFG) will explore the preconditions of GLOFs, the
controlling factor of the temporal variability of GLOFs, and the linkage of GLOF occurrence
with large-scale climate change. The research will be carried out by combining numerical
simulations with remote sensing analysis and field observations. In particular, the HAR v2

data will be compared to field measurements to assess its uncertainty and will be analyzed
to determine the triggers and large-scale controls of GLOFs. It will also be applied to
force glacier mass-balance simulations (Sauter et al., 2020; Arndt et al., 2021) and snowdrift
simulations to quantify meltwater production rates and to investigate the blocking effect
of snow on the outlet of the glacial lake basin.

Figure 5.1: (a) Overview of the Halji glacier with multi-temporal glacier outlines, figure taken from Arndt
et al. (2021); (b) domain and topography of HAR v2 2 km; red point indicates the location of the
Halji Glacier; (c) monthly P and T2 at the Halji Glacier extracted from the nearest grid point of
the HAR v2 2 km averaged over 2017-2020.

As a newly developed data set, the field of applications for the HAR v2 is rich but still
unexplored. Paper III demonstrates the application of the HAR v2 in landslide predic-
tion. Combining the HAR v2 with historical landslide events in Kyrgyzstan and Tajikistan,
the atmospheric triggers of landslides in this region were determined, and the triggering
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thresholds were defined. Mean annual exceedance maps derived from the defined thresh-
olds display the climatic disposition and have added values in landslide susceptibility
mapping. The majority of studies in this field used precipitation data from rain gauges,
which are rarely located at landslide initial points and can lead to considerable uncer-
tainty (Nikolopoulos et al., 2014; Nikolopoulos et al., 2015; Marra et al., 2016). Different
interpolation methods have been applied to extract precipitation information from rain
gauges (Nikolopoulos et al., 2015). Using gridded data can avoid this allocation problem,
but uncertainty still exists since gridded data only represent the grid-mean value but not
the "true" weather condition at landslide sites. Nevertheless, it is still essential that the
gridded data can accurately represent the grid-mean value. The careful selections of WRF
model configurations in Paper I ensure the quality of the HAR v2. Intercomparison results
from Paper II also indicate the suitability of the HAR v2 in regional researches.

Most regional climate simulations have been performed at a grid spacing of 10 km or
coarser, which cannot resolve convective processes explicitly. In recent years, more attention
has been paid to convection-permitting scale (a few km grid spacing) simulations over
HMA (e.g., Lin et al., 2018; Ou et al., 2020; Cai et al., 2021; Li et al., 2021; Zhou et al., 2021).
Convection-permitting scale simulations show improvement over simulations applying
cumulus parameterization schemes in several aspects. For example, they can (1) reproduce
the timing of precipitation peaks more accurately (Ou et al., 2020; Zhou et al., 2021); (2)
reduce wet bias over the TP due to a more realistic representation of topography (Lin et al.,
2018); (3) capture more extreme events as shown in Paper II. In a feasibility study, three
WRF simulations (with 30 km, 10 km, and 2 km spatial resolution) were generated for one
week before a landslide event occurred in the Jalal-Abad region in Kyrgyzstan on 2011-05-
11. Results reveal that the 2 km WRF simulation captures more accumulated precipitation
than simulations with coarser resolutions (Figure 5.2). This implies that applying finer
resolution atmospheric data could lead to a higher triggering threshold of landslides and
consequently a lower FAR. However, simulations with a finer spatial resolution have a
lower tolerance to the uncertainty in the landslide location. Landslide information from
the GLC and the GFLD used in Paper III was primarily derived from media reports. Most
media reports just recorded the location affected by landslides rather than the landslide
initiation point. The potential of a kilometer-scale simulation cannot be realized if the
landslide location uncertainty is larger than the grid size. Therefore, for Kyrgyzstan and
Tajikistan, future studies should not only focus on acquiring high-resolution and high-
quality atmospheric data but also on developing landslide inventories with higher location
accuracy.

Using the same model set-up as the HAR v2, Paper IV addresses the applicability of
dynamical downscaling in the context of paleoclimate. Here, global climate simulations
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Figure 5.2: A feasibility study of convection-permitting scale simulation in determine landslide triggering
conditions. Spatial distribution of accumulated precipitation from 2011-05-04 to 2011-05-11 from
WRF simulations at a grid spacing of 30 km (a), 10 km (b), and 2 km (c); Orange point indicates
the location of a landslide event occurred on 2011-05-11 recorded by the GLC. Accumulated
precipitation at the nearest grid point of the landslide event from three WRF simulations (d).

for the present day and the mid-Pliocene from ECHAM5 were dynamically downscaled
to 30 km resolution over the HMA region. By keeping the land surface condition the
same, this study was able to isolate the influence of large-scale climate states and to
reveal its role on the maintenance of the Qaidam mega-lake system during the Pliocene.
A strengthening of the mid-latitude westerlies in all seasons, except for summer, and an
intensification of the EASM was found under the mid-Pliocene climate. These changes
in large-scale climate would increase ∆S in the QB with its modern land surface settings,
which would lead to a readjustment of lake extent until a new equilibrium state is reached.
The equilibrium lake extents derived from this imbalance in ∆S take up 12%-21% of the
maximum lake extent approximated from proxy data. This implies non-climatic factors
also contributed to the maintenance of the Qaidam mega-lake system during the Pliocene.
The mid-Pliocene is considered a past analog of the near-future climate (Burke et al., 2018)
since both periods feature higher CO2 concentrations compared to pre-industrial values.
Several studies also suggest similarities of large-scale circulations in these two periods,
such as the intensification of EASM (Sun et al., 2018). Thus, Paper IV also contributes to a
better understanding of lake development in the future in HMA.
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The downscaling simulation presented in Paper IV cannot be considered reconstruction of
regional climate in the QB during the mid-Pliocene. Reconstruction at a grid spacing of
30 km would require Pliocene surface conditions, such as topography and land cover, at an
equivalent or even higher resolution, which are not available to date. The most commonly
used surface boundary conditions for mid-Pliocene simulations are from the US Geological
Survey’s Pliocene Research Interpretation and Synoptic Mapping (PRISM) project (Dowsett
et al., 1994). The most recently released PRISM data set has a 1°× 1° grid spacing (Dowsett
et al., 2016), which is too coarse for regional climate simulations at a grid spacing of 30 km.
Future regional paleoclimate studies could focus on the impact of land surface conditions
on the regional ∆S and reconstruction of regional climate in the QB, once high-resolution
reconstructions of mid-Pliocene surface boundary conditions are available.

In summary, this thesis illustrates several aspects regarding dynamical downscaling over
the HMA region. Atmospheric data generated by dynamical downscaling provides phys-
ically based information at spatial scales of relevance for regional climate studies and
contributes to a better understanding of atmospheric related processes at different tem-
poral scales (from mean climate conditions to extreme events). This thesis, in particular,
demonstrates the application and future potential of downscaling products in the field
of atmospherically triggered natural hazards. Furthermore, the dynamical downscaling
technique has been proven to be a valuable tool for regional climate studies across different
time scales (past, present, and future).
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Abstract

The High Asia Refined analysis (HAR) is a regional atmospheric data set gen-

erated by dynamical downscaling of the Final operational global analysis

(FNL) using the Weather Research and Forecasting (WRF) model. It has

been successfully and widely utilized. A new version (HAR v2) with longer

temporal coverage and extended domains is currently under development.

ERA5 reanalysis data is used as forcing data. This study aims to find the opti-

mal set-up for the production of the HAR v2 to provide similar or even better

accuracy as the HAR. First, we conducted a sensitivity study, in which differ-

ent cumulus, microphysics, planetary boundary layer, and land surface

model schemes were compared and validated against in situ observations.

The technique for order preference by similarity to the ideal solution

(TOPSIS) method was applied to identify the best schemes. Snow depth in

ERA5 is overestimated in High Mountain Asia (HMA) and causes a cold bias

in the WRF output. Therefore, we used Japanese 55-year Reanalysis (JRA-55)

to correct snow depth initialized from ERA5 based on the linear scaling

approach. After applying the best schemes identified by the TOPSIS method

and correcting the initial snow depth, the model performance improves.

Finally, we applied the improved set-up for the HAR v2 and computed a one-

year run for 2011. Compared to the HAR, the HAR v2 has a better represen-

tation of air temperature at 2 m. It produces slightly higher precipitation

amounts, but the spatial distribution of seasonal mean precipitation is closer

to observations.
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1 | INTRODUCTION

High Mountain Asia (HMA) is a geographic region that
includes the Tibetan Plateau (TP) and its surrounding
mountain ranges, such as the Himalayas, the Karakoram,
the Tian Shan, and so on. Climate-triggered natural haz-
ards pose a threat to human lives in HMA, for example,
big landslides regularly occurring in the Fergana basin
along the foothills of Tian Shan (Roessner et al., 2005).
Landslides are predetermined by static factors that can be
derived from surface characteristics but are triggered by
dynamic factors, which are mainly extreme and pro-
longed rainfall, as well as earthquakes (Dai and Lee 2002;
Hong et al. 2007; Kirschbaum et al., 2012). Another
example of climate-triggered natural hazards is the Gla-
cier Lake Outburst Flood (GLOF). Glacier thinning and
retreat in the Himalayas, caused by rising air tempera-
ture, have resulted in the formation of new glacier lakes
and the enlargement of existing ones (ICIMOD, 2011).
The sudden discharge of water from these lakes is known
as GLOF and leads to extensive damage in downstream
villages (Kropáček et al., 2015).

Availability of climate data with a high spatial and
temporal resolution is crucial for a better understanding
of climatic triggering mechanisms of these localized haz-
ards. However, in HMA, in situ meteorological observa-
tions are sparsely and unevenly distributed (Hasson et
al., 2016), for example, only a few stations are available
in the western TP due to the harsh environment and
complex terrain. Moreover, the existing stations are com-
monly situated at lower altitudes close to valley-based
settlements or airports. Thus, our knowledge of the cli-
mate at high elevations, that is, where most of the haz-
ards mentioned above occur, is still limited. Global
reanalysis data can provide evenly distributed climate
data, but they are still too coarse to resolve fundamental
processes over complex terrains, such as orographically-
induced precipitation, and therefore, they are not suitable
for applications at regional to local scales (Leung et
al., 2003; Lo et al., 2008; Feser et al., 2011). Here, regional
climate models (RCMs) applying dynamical downscaling
method have great potential to overcome this problem.

The High Asia Refined analysis (HAR, Maussion et
al., 2011; 2014) is a regional atmospheric data set gener-
ated by dynamical downscaling using the Weather
Research and Forecasting (WRF) model version 3.3.1
(Skamarock and Klemp, 2008) as RCM. The Final opera-
tional global analysis (FNL) from the National Centres of
Environmental Prediction (NCEP) was used as forcing
data. The HAR covers the period from October 2000 to
October 2014 and is available in 30 km (3-hourly inter-
val) and 10 km (hourly interval) resolution. The HAR
provides detailed and accurate gridded climate data for

HMA region. It has been comprehensively analysed,
especially in terms of precipitation and atmospheric
water transport (Maussion et al., 2014; Curio et al., 2015;
Pritchard et al., 2019; Li et al., 2020) and has been suc-
cessfully applied in many research fields, such as glacier
mass balance modelling (Mölg et al., 2014), snow and
energy balance modelling (Huintjes et al., 2015), and so
forth.

However, the short temporal coverage of the HAR
makes it unsuitable for long-term and climatological
studies. Moreover, its 10 km domain does not cover the
whole TP and Tian Shan, which further limits its applica-
tion within these two regions. Therefore, a new version
(HAR v2) with extended temporal coverage and a larger
10 km domain is developed. The state-of-the-art ERA5
reanalysis data set (Copernicus Climate Change Service
(C3S), 2017) from the European Centre for Medium-
Range Weather Forecast (ECMWF) is used as forcing
data. We switch to ERA5 because it will eventually cover
the period from 1950 to near real time (currently avail-
able from 1979 to near real time), which is much longer
than FNL (available from 1999 to near real time).

The overall goal of this study is to find an optimal
model set-up for the HAR v2 to provide similar or even
better accuracy as the HAR. During the development of
the HAR, the sensitivity of simulated precipitation to dif-
ferent physical parameterization schemes (PPSs) was
already thoroughly tested (Maussion et al., 2011). How-
ever, changes in forcing data and domain configuration
may have a significant impact on model output (Miguez-
Macho et al., 2004; Leduc and Laprise, 2009; Kala et
al., 2015; Huang and Gao, 2018). Thus, the PPSs used in
the HAR might not be suitable for the HAR v2, and
therefore, the first objective of the current study is to
investigate the sensitivity of simulated total precipitation
(Prcp) and air temperature at 2 m above ground (T2) to
different cumulus (CU), microphysics (MP), planetary
boundary layer (PBL) and land surface model (LSM)
schemes. The technique for order preference by similarity
to the ideal solution (TOPSIS) method is applied to deter-
mine the best PPSs.

Snow depth in ERA5 over the TP is reported to be
largely overestimated (Orsolini et al. 2019). Snow depth is
an important quantity in the initial condition, which later
on determines surface albedo, alters surface energy bal-
ance, and influences T2. We assume that the over-
estimated snow depth in ERA5 leads to an
underestimation of T2, and by correcting the bias in snow
depth, the cold bias might be reduced. The second objec-
tive is to validate this assumption and to examine the
model's sensitivity to initial snow conditions. Snow depth
from the Japanese 55-year Reanalysis (JRA-55) data set is
used to correct snow depth initialized from ERA5. The
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final objective is to apply the best PPSs identified by the
TOPSIS method and the snow correction approach as the
final set-up for the HAR v2, and to compare the two ver-
sions of the HAR.

2 | METHODOLOGY

2.1 | WRF model set-up of the reference
experiment (Ref)

WRF version 4.0.3 (Skamarock et al., 2019) was employed
as RCM for our sensitivity studies. We chose January and
July 2011 as simulation periods to consider atmospheric
conditions in summer and winter, which are under dif-
ferent influence by monsoon and mid-latitude westerlies.
Initial and boundary conditions were derived from ERA5
reanalysis data set with 0.25� spatial resolution and
hourly temporal resolution. The domain setup (Figure 1)
consisted of two-way nested domains with 30 km and
10 km grid spacing (hereinafter: d30km and d10km).
Only the output from d10km was used in this study. One
might argue that ERA5 already has a high resolution of
�32 km, so the parent domain (d30km) might not be
necessary. However, a one-day experiment, which
directly downscaled ERA5 to 10 km resolution (see
Supporting Information), shows that the large-scale cir-
culation patterns are distorted in the direct downscaling
approach, and the 500 hPa wind field from two-way
nesting approach is closer to the forcing data ERA5

(Figure S1). Thus, we kept the d30km as parent domain.
In the vertical direction, 28 Eta-levels were used. Lake
surface temperature was substituted by daily mean sur-
face air temperature using the avg_tsfc.exe module in
WRF. The forcing strategy was daily re-initialization
adopted from the HAR. Each run started at 12:00 UTC
and contained 36 hr, with the first 12 hr as spin-up time.
This strategy avoids the model from deviating too far
from the forcing data and provides computational flexi-
bility since daily runs are totally independent of each
other and can be computed in parallel and in any
sequence. PPSs used in Ref are the same as in the HAR.
The model set-up for Ref are summarized in Table 1.

2.2 | Design of sensitivity experiments
and evaluation methods

At first, we conducted four sets of experiments to exam-
ine the performance of different CU, MP, PBL and LSM
schemes (Table 2, hereinafter, PPS experiments). In each
experiment set, except for the reference scheme adopted
from the HAR, we chose two additional schemes. The
selected schemes fulfil at least one of the following
criteria: (a) they are commonly used in the WRF commu-
nity; (b) they have excellent performance according to
previous studies and (c) they were not tested in Maussion
et al. (2011). Except for the corresponding PPS, all the
other set-ups are the same as for Ref. At the end of the
PPS experiments, statistical measures for model

(a) (b)

FIGURE 1 Maps of (a) 30 km resolution domain (d30km, 281 × 217 grid points); (b) 10 km resolution domain (d10km, 382 × 253 grid

points). The position of stations from global surface summary of the day (GSOD) are marked by points. For the comparison of simulation

results with the HAR, only the stations marked by red points are used, because the stations marked by white points are outside the 10 km

domain of the HAR
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performance were calculated, which include mean bias
(MB), mean absolute error (MAE), root mean square
error (RMSE) and Spearman correlation coefficient (rs)
for Prcp and T2, respectively. They are defined as follows
(Wilks, 2006):

MB=
1
N

XN
i=1

�Pi− �Oi ð1Þ

MAE=
1
N

XN
i=1

�Pi− �Oij j ð2Þ

RMSE=
1
N

XN
i=1

�Pi− �Oið Þ2 ð3Þ

rs=1−
6
PM
i=1

Rpi−Roi
� �2

M M2−1ð Þ
ð4Þ

Where �Pi and �Oi are simulated monthly averages and
observed monthly averages at each station, and �Pi− �Oi is
the bias score at each station; N is the total number of
stations; Rpi and Roi are the ranks of simulated and
observed daily averages over all stations; M is the total

TABLE 1 WRF model setup for the reference

experiment (Ref)

Timing

Simulation period January and July 2011

Time step 120 s, 40 s

Maps and grids

Map projection Lambert conformal conic

Horizontal grid
spacing

30 km (281 × 217 grid points), 10 km
(382 × 253 grid points)

Vertical levels 28 eta-levels

Model top 50 hPa

Forcing strategy

Forcing data ERA5 (0.25�, hourly)

Lake surface
temperature

Substituted by daily mean surface air
temperature

Initialization Daily

Runs starting time Daily at 12:00 UTC

Runs duration 36 hr

Spin-up time 12 hr

Physical parameterization schemes

Longwave radiation RRTM scheme (Mlawer et al., 1997)

Shortwave radiation Dudhia scheme (Dudhia, 1989)

Cumulus (CU) Grell 3D scheme (Grell, 1993; Grell and
Devenyi, 2002)

Microphysics (MP) Thompson scheme (Thompson et
al., 2008)

Planetary boundary
layer (PBL)

Mellor–Yamada–Janjic scheme
(Janjic, 1994)

Land surface model
(LSM)

Unified Noah land surface model
(Tewari et al., 2004)

Surface layer Eta similarity scheme (Janjic, 1994)

TABLE 2 Summary of set-ups used in all the sensitivity

experiments

Experiments
Difference
from Ref Description

CU1 CU Kain-Fritsch cumulus
potential scheme
(Berg et al., 2013)

CU2 CU Grell-Freitas ensemble
scheme (Grell and
Freitas, 2014)

MP1 MP Purdue Lin scheme
(Chen and
Sun, 2002)

MP2 MP Morrison 2-moment
scheme (Morrison et
al., 2009)

PBL1 PBL Bougeault and
Lacarrere scheme
(BouLac, Bougeault
and Lacarrere, 1989)

PBL2 PBL Yonsei University
scheme (YSU, Hong
et al., 2006)a

LSM1 LSM Unified Noah LSM
with mosaic
approach (Li et
al., 2013)

LSM2 LSM Noah-MP land surface
model (Niu et
al., 2001; Yang et
al., 2011)b

COMB CU, MP, PBL CU, MP and PBL
schemes from CU1,
MP2 and PBL2

COMB_S CU, MP, PBL and
snow correction

PPSs same as COMB,
but the initial snow
depth and snow
water equivalent are
corrected

aYSU scheme only works with revised MM5 surface layer scheme
(Jiménez et al., 2012).
bAll the options used in Noah-MP are default.
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number of days. MB demonstrates the systematic devia-
tion of the model from the observations. However, MB
could sometimes be misleading due to the offset of posi-
tive and negative values. MAE shows the average magni-
tude of the error. Since RMSE gives more weight to
errors with larger absolute values and is more sensitive to
outliers, it provides information about the variability of the
error distribution (Chai and Draxler, 2014; Willmott and
Matsuura, 2005). The distribution-free Spearman rank cor-
relation coefficient (rs) measures the extent to which simu-
lated and observed values tend to change together. In order
to identify the best scheme for each experiment set, MB,
MAE, RMSE and rs were utilized as criteria in the TOPSIS
method (Section 2.3). In the next step, the identified best
schemes were combined to conduct two runs (Table 2):
one without modifying initial snow depth (COMB) and
one with bias correction of snow depth (COMB_S). We
used JRA-55 to correct snow depth initialized from ERA5
(Section 2.4). Finally, the improved set-up was applied as
the best set-up for the HAR v2 for a one-year run in 2011.
The resulting one-year data set was then compared with
observations and the HAR.

2.3 | Technique for order preference by
similarity to the ideal solution (TOPSIS)

The TOPSIS method was applied to identify the best
scheme among the sensitivity experiments. It is a multi-
ple criteria decision-making method and aims at finding
the optimal decision when the alternatives are numerous
and conflicting. It was proposed by Hwang and
Yoon (1981) and later applied in several studies, such as
ranking general circulation models (Raju and
Kumar, 2014; Jena et al., 2015; Li et al., 2019) and identi-
fying the best PPSs in WRF (Sikder and Hossain, 2016;
Stergiou et al., 2017). The basic concept of TOPSIS is to
determine the best alternative that has the shortest and
longest distance from the positive and negative ideal
solution. We applied this method for each experiment
set. The process was carried out following the description
in Tzeng and Huang (2011):

1 Define the weighted normalized evaluation matrix
containing m alternatives and n criteria:

rij=w j
aijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i=1aij

2
q ð5Þ

where aij represents the criterion j for alternative i; wj is
the weight for each criterion. In our case, there are three

alternatives (Ref and other two schemes, i = 1, 2, 3) and
16 criteria (MB, MAE, RMSE and rs for Prcp and T2 in
January and July, j = 1, 2, …16).

Determine the positive ideal solution (PISj) and the nega-
tive ideal solution (NISj) for each criterion:

PIS j= max rij
� �j j�J1

� �
, min rij

� �j j�J2
� � j i=1,2,3

� � ð6Þ

NIS j= min rij
� �j j�J1

� �
, max rij

� �j j�J2
� � j i=1,2,3

� � ð7Þ

where J1 and J2 represent the benefit criteria (larger is
better) and the cost criteria (smaller is better).

Calculate the Euclidean distances between each alterna-
tive to PISs (D+

i ) and to NISs (D−
i ):

D+
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j=1

rij−PIS j
� �2

vuut ð8Þ

D−
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j=1

rij−NIS j
� �2

vuut ð9Þ

Define the closeness coefficient (CCi) for each alterna-
tive as:

CCi=
D−
i

D+
i +D−

i
ð10Þ

Rank the alternatives by their CC in descending order.
The alternative with the highest CC is chosen as the best
scheme.

2.4 | Bias correction of snow depth

A systematic cold bias has been found over high ele-
vated areas in WRF simulations (e.g., Gao et al., 2015;
Karki et al., 2017; Bonekamp et al., 2018), including the
HAR (Maussion, 2014; Pritchard et al., 2019). Several
studies addressed this cold bias to snow-related pro-
cesses (Tomasi et al., 2017; Meng et al., 2018). Orsolini
et al. (2019) compared snow depth over the TP in five
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recent global reanalyses using in-situ and satellite
remote sensing observations. They found that ERA5
largely overestimates snow depth, especially during
winter. Compared to its predecessor ERA-interim, snow
depth in ERA5 is still much higher, because ERA5 does
not assimilate snow cover from Interactive Multi-Sen-
sor Snow and Ice Mapping System (IMS) for areas
above 1,500 m (Orsolini et al., 2019). A realistic repre-
sentation of snow depth in the forcing data is crucial to
accurately simulate snow cover, surface albedo, surface
energy balance and T2. To overcome this issue, we
could use snow depth from another data set to initialize
WRF. But as mentioned before, we chose ERA5 as forc-
ing data due to its long temporal coverage. If we intro-
duce a third-party data set, the production of the HAR
v2 would be dependent on it. To avoid this, we applied
an alternative strategy that is already used in WRF,
where land surface characteristic, such as snow-free
albedo, leaf area index, and so forth, are given in the
form of static data represented as 12-month climatol-
ogy. Here, analogously, we used this concept of static
data and introduced a gridded 12-month climatology of
a scaling factor to correct snow-related variables in the
initial conditions.

JRA-55 (Kobayashi et al., 2015) developed by the
Japan Meteorological Agency was utilized to calculate
the scaling factors. JRA-55 has an excellent performance
among reanalyses regarding snow depth (Orsolini et
al., 2019) and also has a relatively longer temporal cover-
age. Monthly means of snow depth at the model resolu-
tion (�55 km) available from 1958 to 2013 were
downloaded from NCAR Research Data Archive. We
used a linear approach (Lenderink et al. 2007) to scale
the initial snow depth by the ratio of long-term monthly
means of JRA-55 and ERA5. First, snow depth of ERA5
was derived from snow water equivalent and snow den-
sity. The 12-month climatological snow depth of JRA-55
and ERA5 was calculated from 35-year monthly means
(1979–2013). Between 1979 and 2013, the two data sets
overlap. Second, the 12-month climatological snow depth
was reprojected and linearly resampled to the grid of
d30km and d10km, respectively. Then the gridded 12-
month climatology of the scaling factor was calculated
for every domain as the ratio of reprojected climatological
snow depth between JRA-55 and ERA5. The ratio of grid
points where reprojected ERA5 snow depth was zero was
set to one. Figure 2a depicts the 35-year mean annual
cycle from ERA5 and JRA-55 averaged over the whole

(a)

(b) (c)

FIGURE 2 (a) 35-year

(1979–2013) mean annual cycle

of snow depth from ERA5 and

JRA-55 averaged over the whole

area of d10km of the HAR v2.

Map of scaling factor for d10km

of HAR v2 in January (b) and

July (c). The grid points where

the value is equal to one are

masked out
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area of d10km of the HAR v2. Figure 2b,c show the map
of scaling factors applied for d10km in January and July,
respectively. After running the real.exe program in WRF,
files containing the initial conditions are generated. In
the initial conditions, snow depth is represented by two
variables: physical snow depth (SNOWH) and snow
water equivalent (SNOW). We modified these two vari-
ables in the initial files by multiplying them with the
scaling factor of the corresponding month.

2.5 | Observational data

To calculate the skill scores described in Section 2.2, in-situ
observations of Prcp and T2 from Global Surface Summary
of the Day (GSOD) provided by National Centres of Envi-
ronmental Information (NCEI) were used. We selected sta-
tions with more than 80% of records within the simulation
period. After filtering, 103 stations are available within
d10km of the HAR v2 (all points in Figure 1b), and 57 sta-
tions are left within d10km of the HAR (red points in Fig-
ure 1b). We compared the station data with the nearest
grid cell from the model. Because of the difference between
station elevation and the elevation of grid cells in the
model, we applied a constant lapse rate of −6.5 K·km−1 to
correct simulated T2. No correction was applied for Prcp
due to its high spatial and temporal variability.

Due to the sparse and uneven distribution of GSOD
stations in HMA, for example, hardly any station located
in western TP and Pamir-Karakorum (Figure 1b), we also
made use of a satellite-based gridded precipitation prod-
uct from Tropical Rainfall Measuring Mission (TRMM).
Here, Multi-Satellite Precipitation Analysis (TMPA,
Huffman and Bolvin, 2015) Rainfall Estimate Product
3B42 Version 7 was applied to examine the spatial distri-
bution of simulated Prcp in the HAR and the HAR v2.
TMPA merges satellite measurement with gauge data. It
has a spatial resolution of 0.25� and a quasi-global cover-
age between 50�N and 50�S.

3 | RESULTS

3.1 | Sensitivity to PPSs

Statistical scores for all the PPS experiments and Ref are
listed in Table 3. Besides, we use box-whisker plot to
visualize the spatial distribution of bias scores (WRF-
observation) over 103 GSOD stations. White triangles in
each box in Figure 3 (Prcp) and Figure 4 (T2) correspond
to the MB scores in Table 3.

For Prcp, Ref features a wet bias, with MB of
0.14 mm·day−1 and 0.70 mm·day−1 in January and July,

respectively (Table 3). The HAR outperforms Ref with
respect to Prcp (Table S1). Sensitivities of Prcp to PPSs
vary seasonally. The fluctuation of the boxes of all experi-
ments implies that PPSs have a stronger influence on
Prcp in July than in January (Figure 3). MB of Prcp
ranges from 0.27 mm·day−1 to 1.15 mm·day−1 in July,
and only from 0.10 mm day−1 to 0.18 mm·day−1 in Janu-
ary (Table 3). The main reason for this seasonal variabil-
ity is that most GSOD stations are located in areas
receiving more precipitation in summer than in winter
(Maussion et al., 2014; Curio and Scherer, 2016). Wider
boxes in July indicate a stronger spatial variation of bias
score in summer (Figure 3). Compared to the other two
ensemble CU schemes, CU1 (Kain-Fritsch-Cumulus
Potential scheme) shows the best performance regarding
MAE and MB scores. In contrary, RMSE of CU1 in July
is higher than Ref, which implies that the station-wise
bias in CU1 is more scattered. CU1 is a modified version
of the Kain-Fritsch scheme with a better treatment of
shallow cumuli (Berg et al., 2013). According to Qian et
al. (2016), CU1 tends to suppress deep convections and
consequently produces lower Prcp. All three MP schemes
consider five hydrometeor species: cloud, rain, ice, snow
and graupel. MP1 (Purdue Lin scheme) is a single-
moment scheme only predicting the mixing ratio for
these hydrometeor species (Chen and Sun, 2002). Ref
(Thompson scheme) uses a double-moment description
for rain and ice (Thompson et al., 2008), while MP2 (Mor-
rison two-moment scheme) uses a double-moment
description for rain, ice, snow and graupel (Morrison et
al., 2009). MP2 performs the best (Table 3), probably due
to its double-moment prediction in all ice-phase particles
(Orr et al., 2017). The nonlocal scheme PBL2 (YSU) has
the best skill compared to the other two local schemes.
PBL2 largely improves summer Prcp with MB of
0.27 mm·day−1 compared to MB of 0.70 mm·day−1 in
Ref. As for LSM schemes, LSM1 uses the same scheme as
Ref (Noah LSM) but with a mosaic approach (Li et
al., 2013), which considers sub-grid variability of land
use. However, it does not improve Prcp simulation. LSM2
is Noah LSM with multi-parameterization options (Noah-
MP). It captures winter Prcp better but produces more
Prcp in summer than Ref (Table 3).

The same analysis is performed for T2. The HAR has
a better performance than Ref in winter (Table S1). All
PPS experiments including Ref produce larger T2 bias in
January than in July, with MB of T2 ranging from
−0.06 K to 0.70 K in July and −0.39 K to −2.69 K in Janu-
ary (Table 3). The spatial variability of the bias score is
also stronger in winter (Figure 4). Independently from
PPSs applied, all experiments show an overall underesti-
mation of T2 in winter. CU schemes hardly influence
winter T2. CU1, which shows some improvement over
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Ref in simulating Prcp, produces larger summer warm
bias than Ref. Both MP schemes show an improvement
in summer, but MP1 produces larger winter cold bias. As
for PBL schemes, PBL1 improves T2 simulation in winter
but worsens it in summer. It is warmer than Ref in both
seasons, which is in accordance with previous studies
(Kleczek et al. 2014; Jänicke et al., 2017; Xu et al., 2019).
Xu et al. (2019) suggests that this is because PBL1 con-
siders turbulent exchange induced by steep terrain when
calculating the turbulent diffusion coefficient. Besides,
our results show that the nonlocal PBL2 scheme is colder
than both local schemes, which is in contrast with some
previous studies concluding that nonlocal schemes gener-
ally produce higher temperature than local schemes (Hu
et al., 2010; Xie et al., 2012; Kleczek et al., 2014). This dif-
ferent behaviour might due to the unique PBL character-
istics over HMA compared to the plain regions (Yang et
al., 2004; Zou et al., 2005; Chen et al., 2013), which indi-
cates that PPSs behave very differently in different
regions, and the choice of PPSs always depends on the
specific purpose. For LSM schemes, again, LSM1 does
not show significant improvement. Noah-MP (LSM2) was
reported to have better performance than Noah LSM
(Ref) in previous studies (Yang et al., 2011; Gao et
al., 2017) and has been widely applied in numerical
modelling studies in HMA (Collier and Immerzeel, 2015;
Karki et al., 2017; Norris et al., 2017). However, our
results show the opposite, that is, that Noah-MP is colder
than Noah LSM. This might result from our relatively
short spin-up time. All the studies mentioned above use a
spin-up time longer than 2 weeks. Noah-MP needs longer
spin-up time than Noah LSM to reach a climatological
equilibrium state (Cai et al., 2014; Barlage et al., 2015;
Gao et al., 2015).

3.2 | Combination run and sensitivity to
initial snow depth

The results from Section 3.1 indicate that there is a trade-
off in model performance between Prcp and T2, as well
as between January and July. No single PPS performs ide-
ally in both seasons and for both quantities. For instance,
PBL2 has a better skill in predicting Prcp, but it worsens
the winter cold bias. PBL1 shows superior performance
in terms of T2 during winter with the lowest MAE, MB
and RMSE among all experiments, but it also features the
highest warm bias in summer. Therefore, we used the
TOPSIS method to find the optimal solution for each
experiment set, giving the same weight to each criterion
(MAE, MB, RMSE and rs) for each quantity (Prcp and
T2). Table 4 lists the closeness coefficient (CC) and
TOPSIS ranking for each experiment set. We then usedT
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(a) (b)

FIGURE 3 Box-whisker plot of Prcp bias in January (a) and July (b) for all the 103 GSOD stations (red and white points in Figure 1b).

White triangles represent the mean value

(a) (b)

FIGURE 4 Box-whisker plot of T2 bias in January (a) and July (b) for all the 103 GSOD stations (red and white points in Figure 1b).

White triangles represent the mean value

TABLE 4 Closeness coefficient (CC) and TOPSIS ranking for each experiment set

Ref CU1 CU2 Ref MP1 MP2 Ref PBL1 PBL2 Ref LSM1 LSM2

CC 0.56 0.61 0.38 0.27 0.60 0.88 0.46 0.47 0.53 0.51 0.50 0.50

Ranking 2 1 3 3 2 1 3 2 1 1 3 2

Note: The best schemes under each set are marked in bold.
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the first ranking schemes, namely Kain-Fritsch cumulus
potential scheme (CU1), Morrison 2-moment scheme
(MP2), Yonsei University scheme (PBL2) and Noah LSM
(Ref) to conduct a combination run (COMB). Scores in
Table 5 show that COMB inherits from these first-rank-
ing schemes. COMB has a better skill in predicting Prcp
than Ref because CU1, MP2 and PBL2 all perform better
than Ref in Prcp simulation. The wet bias is significantly
reduced in COMB, especially in summer. Figures 5a–d
shows the bias of monthly Prcp at each GSOD stations
for Ref and COMB. The stations with high bias are
located along the foothills of the Himalayas, where the
actual precipitation amount is also large (Figure S2).
Compared to Ref, COMB produces lower Prcp in India
and Pakistan. COMB captures Prcp over the TP better,
especially for stations in Southern TP, where Ref exhibits
a dry bias. However, COMB does not improve the simula-
tion of winter T2 (Figures 6a–d, Table 5), which is mainly
due to the larger winter cold bias induced by PBL2
(Table 3).

To validate the assumption that the large winter cold
bias is partly induced by overestimation of snow depth in
the initial conditions, we conducted a further simulation
(COMB_S). The PPSs used in this experiment are the
same as in COMB, but initial snow depth and snow water
equivalent were corrected using the method described in
Section 2.4.

After the correction, the prediction of winter T2 is
largely improved with MB of −1.54 K in COMB and MB
of 0.17 K in COMB_S (Table 5). The impact of snow cor-
rection on summer T2 is minor compared to winter.
Comparing the station-wise bias scores (Figure 6c,e), the
most affected stations are located in the TP and in North-
ern Pakistan, where snow depth differs the most between
ERA5 and JRA-55 (Section 4.2). This snow correction
approach leads to slightly higher Prcp in both months
(Table 5), but COMB_S still performs better than Ref.

3.3 | Comparison of HAR v2 with HAR

COMB_S achieves a significantly better performance
than Ref (Table 5). Therefore, the set-up of COMB_S was
applied to the HAR v2. We switched to a newer version
of WRF (V4.1) for the generation of the HAR v2 and
firstly produced HAR v2 d10km data for the whole year
of 2011. Figure S3 shows that the change of model ver-
sion only has a minor impact on the output.

We compared daily Prcp from the HAR v2 with the
HAR and GSOD data (Figure 7). Here, only 57 GSOD sta-
tions within the d10km of the HAR are used (red points
in Figure 1b). The HAR shows an overall lower MB and
is better in explaining the variance in observations thanT
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the HAR v2 (MB of 0.30 mm·day−1 and 0.36 mm·day−1,
r2 of .61 and .57). The HAR v2 tends to produce more
Prcp than the HAR in April and from September to
December. However, this kind of comparison only dem-
onstrates the ability of the two versions of the HAR to
reproduce the overall Prcp amount. In addition, we uti-
lized gridded Prcp products to examine their ability to
reproduce the spatial distribution of Prcp. Figure 8 shows
seasonal Prcp from the HAR, the HAR v2 and the TMPA
in 2011. In winter, the HAR and the HAR v2 produce
similar spatial patterns of Prcp with maximum Prcp over
Pamir-Karakoram-western-Himalayas (PKwH) region.
However, this maximum centre is not detected in the
TMPA. In MAM, two Prcp maxima exist in both versions

of the HAR: one in PKwH and one over the region near
Brahmaputra River. Only the latter one is visible in the
TMPA, but with lower Prcp amount. The HAR and the
HAR v2 show the largest differences in JJA. The HAR v2
shares more spatial similarity with the TMPA, while the
HAR produces higher Prcp amount in Indian, Pakistan
and eastern TP. In SON, the HAR still shows higher Prcp
amount in Indian. Same as in winter and spring, both
versions of the HAR detect more Prcp in PKwH than
the TMPA.

Daily T2 from the HAR and the HAR v2 are com-
pared with each other and with GSOD (Figure 9). Both
data sets reproduce T2 seasonality well (r2 = .99). The
HAR v2 simulates T2 better with MB of −0.58 K

(a) (b)

(c) (d)

(e) (f)

FIGURE 5 Bias scores of monthly mean Prcp for ref (a and b), COMB (c and d) and COMB_S (e and f) in January (a, c and e) and July

(b, d and f) at all 103 GSOD stations
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compared to MB of −0.86 K for the HAR. The HAR has a
cold bias in spring, autumn and winter but a warm bias
in summer. The HAR v2 has the same pattern, but the
magnitudes of these biases are smaller.

4 | DISCUSSION

4.1 | Sources of uncertainties

One should always keep in mind that the accuracy of
observational data and the method used for validation
could lead to uncertainty of the result. In this study, we
use freely available observations from GSOD as the gro-
und truth to calculate statistical metrics. Station data

from this data set underwent quality control before being
published (NOAA, 2019). However, some GSOD stations
seem to be outliers, for example, the station in southeast-
ern TP featuring winter warm bias, while all the sur-
rounding stations show cold bias (Figure 6a,c,e). With
regards to Prcp, it is well known that rain gauges under-
catch Prcp under strong wind conditions (Duchon and
Essenberg, 2001; WMO, 2008). We used T2 and Prcp from
the nearest grid point to compare them with observa-
tions. With a resolution of 10 km, the distance between
the actual location of stations and the associated grid
point could reach a few kilometres, which leads to a large
difference in elevation over complex terrain. A constant
lapse rate of −6.5 K·km−1 is applied to correct the simu-
lated T2 values. For Prcp, no correction is applied.

(a) (b)

(c) (d)

(e) (f)

FIGURE 6 Bias scores of monthly mean T2 for ref (a and b), COMB (c and d) and COMB_S (e and f) in January (a, c and e) and July

(b, d and f) at all 103 GSOD stations
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Therefore, the point-to-point comparison between mod-
elled and observed Prcp always depicts discrepancies.
Another source of uncertainty comes from the fact that
we only conducted sensitivity experiments for the year
2011 due to the high computational costs.

Due to the sparse distribution of GSOD stations, we
also compared the spatial distribution of seasonal Prcp
from two versions of the HRA with the TMPA. The
results (Figure 8) indicate that the TMPA fails to repro-
duce Prcp over PKwH in winter, spring and autumn. This
region is dominated by mid-latitude westerlies and expe-
riences its maximum Prcp amount in winter (Archer and
Fowler, 2004; Bookhagen and Burbank, 2010; Curio and
Scherer, 2016; Mölg et al., 2018). The majority of Prcp in
this region falls as snow (Maussion et al., 2014). Satellite-
based Prcp has a deficiency in detecting snowfall
(Behrangi et al., 2014; Immerzeel et al., 2015). The Global

Precipitation Measurement (GPM) mission, launched in
February 2014, is a successor of TRMM and a next gener-
ation of global observations of precipitation from space.
The onboard Dual-frequency Precipitation Radar is more
sensitive than TRMM in detecting snowfall and light
rainfall (NASA, 2019). GPM-based products are expected
to be a better validation tool for modelled results
after 2014.

4.2 | Snow correction approach

In this study, we propose a bias correction method for
initial snow depth and snow water equivalent based on
the concept of linear scaling approach. This approach has
the advantage that only monthly climatological informa-
tion is required. Figure 6 and Table 5 show that bias-

(a)

(c)

(b)

FIGURE 7 Comparison of daily Prcp from HAR, HAR v2 and GSOD averaged over 57 GSOD stations (red points in Figure 1b) in 2011.

Scatter plots of HAR v2 (a) and HAR (b) with statistical scores MB in mm day−1 and r2. Daily Prcp time series (c)
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corrected initial conditions improve winter T2
simulations.

To further explore the influence of snow depth on
T2, monthly mean difference of T2, surface albedo and
snow cover fraction between COMB and COMB_S in
January and July are presented in Figure 10. In January,
regions with the highest increase of T2 in COMB_S are
Southeastern TP, the Himalayas, and the Tian Shan.
These regions also feature lower albedo and lower snow
cover fraction. The same relationship can be found in
July. However, the increase of T2 is much weaker in
July than in January, which is in accordance with the
MB scores in Table 5.

In the Noah LSM, surface albedo (α) is calculated as:

α=αsn,free+ f sn � αsn−αsn,freeð Þ ð11Þ

where αsn, free and αsn refer to snow-free albedo and snow
albedo, respectively. fsn is snow cover fraction. α is pro-
portional to fsn, which is defined as:

f sn=
1−e−as W

Wcr +
W
W cr

e−as ,W<W cr

1,W≥W cr

8><
>:

ð12Þ

In Equation 12, W is snow depth in water equivalent;
Wcr is a land-use-dependent threshold of snow depth, over
which fsn is set to 1; as is a distribution shape parameter.
After snow correction, W decreases in most grid points in
d10km (Figure 2), which leads to smaller fsn according to
Equation 12. Smaller fsn results in lower surface albedo
(Equation 11) and modifies the surface energy balance by
reflecting less short-wave radiation, and thus, influences T2
in COMB_S. On the other hand, more absorption of short-
wave radiation could lead to larger moist static energy
(Meng et al., 2014), which could be a possible reason of the
enhanced precipitation in COMB_S (Table 5). Note that
snow-related changes affect T2 and Prcp through multiple
complex processes. Further work is needed to quantify the
impact of these processes on T2 and Prcp.

FIGURE 8 Seasonal mean Prcp from HAR, HAR v2 and TMPA in 2011
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The error sources of dynamical downscaling are two-
fold: deficiencies in model dynamics and physics, as well
as inaccuracies in forcing data. After snow correction, the
cold bias over TP is reduced but not eliminated. The dis-
tribution of T2 bias score in COMB_S (Figure 6e,f) share
some similar pattern with the HAR (figure 2.4 in
Maussion, 2014): cold bias over the TP but warm bias in
Pakistan and Northwestern China. This implies that
these patterns of biases are related to WRF itself, or the
same errors exist in both ERA5 and FNL data sets. Cold
bias over the TP is reported from many other WRF stud-
ies independent of the forcing data (ERA-interim: Gao et
al., 2015; Karki et al., 2017; Bonekamp et al., 2018; Huang
and Gao, 2018; FNL: Huang and Gao, 2018;
Maussion, 2014; Zhou et al., 2018). Meng et al. (2018)

pointed out that this is due to the overestimation of
albedo over snow-covered areas in Noah LSM. After
switching off albedo parameterization and replacing the
albedo with MODIS time-varying albedo, their simulated
T2 improved. According to Chen et al. (2014), the major
weakness of LSM is snow processes, and Noah LSM
needs a higher snow albedo to retain snow on ground
since it only considers a single layer of snowpack.

5 | CONCLUSIONS

Validation of the reference experiment (Ref) indicates
that, due to the changes in forcing data and domain con-
figuration, the PPSs used in the HAR are no longer

(a) (b)

(c)

FIGURE 9 Comparison of daily T2 from HAR, HAR v2 and GSOD averaged over 57 GSOD stations (red points in Figure 1b) in 2011.

Scatter plots of HAR v2 (a) and HAR (b) with statistical scores MB in K and r2. Daily T2 time series (c)
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suitable for the HAR v2 since they produce large summer
wet bias and winter cold bias. We examined model sensi-
tivities to different PPSs and initial snow conditions to
find an optimal set-up for the HAR v2. The results of PPS
experiments reveal that no single PPS is optimally suited
for both seasons (January and July) and both quantities
(T2 and Prcp). Trade-offs always exist between quantities
and between seasons.

Kain-Fritsch cumulus potential scheme, Morrison 2-
moment scheme, Yonsei University scheme and Noah
LSM are identified by the TOPSIS method as the best
schemes. The combination run (COMB) inherits from
these schemes and has a superior performance in Prcp
but not in T2 when compared to Ref.

Overestimation of snow depth in ERA5 in most areas
of d10km leads to higher snow cover fraction and higher
surface albedo, which ultimately results in a cold bias.
After correction of initial snow depth, cold bias is signifi-
cantly reduced but not eliminated. This could imply a

deficiency of Noah LSM. In future LSM development,
improvement of representation of snow-related processes
is needed.

After careful selection of PPSs and correction of initial
snow depth, model performance is improved. The
improved set-up was applied to produce 1 year of HAR
v2 data for 2011. Compared to the old version, the HAR
v2 generally produces slightly higher Prcp amounts, but
the spatial distribution of seasonal Prcp matches better to
observations. Both versions of the HAR show cold bias in
spring, autumn and winter, but warm bias in summer.
The HAR v2 has smaller magnitudes of these biases.

The HAR v2 is planned to have a temporal coverage
of at least 30 years. Comprehensive validation against
observations and comparison with the HAR are sched-
uled once data production is finished. The HAR v2 is
developed within the framework of the “Climatic and
Tectonic Natural Hazards in Central Asia (CaTeNA)”
project to investigate the climatic triggering mechanism

(a) (b)

(c) (d)

(e) (f)

FIGURE 10 Difference of T2 (a and b), surface albedo (c and d) and snow cover fraction (e and f) between COMB_s and COMB in

January (a, c and e) and July (b, d and f)
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of landslides in Central Asia. However, application of this
data set will not be limited to this research field. With
high resolution and extended temporal coverage, the
HAR v2 can contribute to a better understanding of cli-
mate-related processes in the remote and data-sparse
HMA region.
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Table S1. Statistical scores for the reference experiment (Ref) and the HAR over 57 GSOD stations within

d10km of the HAR (red points in Figure 1b) for Prcp (mm d-1) and T2 (K). The values that differ from Ref of

more than 10% are marked in bold and put between parentheses if they show a lower skill than Ref. 

Prcp January Prcp July T2 January T2 July

MAE MB RMSE r s MAE MB RMSE r s MAE MB RMSE r s MAE MB RMSE r s

Ref 0.24 0.19 0.47 0.59 2.21 1.25 3.48 0.34  2.82 -2.18 3.83 0.79 0.95 -0.14 1.22 0.95

HAR 0.20 0.14 0.36 0.67 1.77 0.27 2.82 (0.15) 2.67 -1.72 3.49 (0.61) (1.55) 0.08 (2.15) 0.87
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Sensitivity experiment: direct downscaling of ERA5 to 10 km resolution

The experiment is designed as follows:

 Simulation period: 2011-07-01

 Nesting strategy: ERA5 is directly downscaled to 10 km without d30km as the 

parent domain

 Other settings are the same as Ref

Figure S1. Comparison of 500 hPa wind vectors and wind speed (contour) from (a) two-way nesting approach;

(b) direct downscaling approach; and (c) ERA5. 
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Figure S2. Monthly mean Prcp (mm d-1) for Ref (a, b), COMB (c, d) and COMB_S (e, f) in January (a, c, e)

and July (b, d, f) with the in-situ Prcp observations from GSOD embedded as circles in each map. Note that,

the scale of the color bars is different for January and July. 

3

30

5



Figure S3. Impact of WRF versions on daily T2 and Prcp averaged over 103 GSOD stations (red and white

points in Figure 1b) in January and July.
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Abstract: Precipitation is a central quantity of hydrometeorological research and applications.
Especially in complex terrain, such as in High Mountain Asia (HMA), surface precipitation
observations are scarce. Gridded precipitation products are one way to overcome the limitations
of ground truth observations. They can provide datasets continuous in both space and time.
However, there are many products available, which use various methods for data generation and
lead to different precipitation values. In our study we compare nine different gridded precipitation
products from different origins (ERA5, ERA5-Land, ERA-interim, HAR v2 10 km, HAR v2 2 km,
JRA-55, MERRA-2, GPCC and PRETIP) over a subregion of the Central Himalaya and the Southwest
Tibetan Plateau, from May to September 2017. Total spatially averaged precipitation over the study
period ranged from 411 mm (GPCC) to 781 mm (ERA-Interim) with a mean value of 623 mm and
a standard deviation of 132 mm. We found that the gridded products and the few observations,
with few exceptions, are consistent among each other regarding precipitation variability and rough
amount within the study area. It became obvious that higher grid resolution can resolve extreme
precipitation much better, leading to overall lower mean precipitation spatially, but higher extreme
precipitation events. We also found that generally high terrain complexity leads to larger differences
in the amount of precipitation between products. Due to the considerable differences between
products in space and time, we suggest carefully selecting the product used as input for any research
application based on the type of application and specific research question. While coarse products
such as ERA-Interim or ERA5 that cover long periods but have coarse grid resolution have previously
shown to be able to capture long-term trends and help with identifying climate change features,
this study suggests that more regional applications, such as glacier mass-balance modeling, require
higher spatial resolution, as is reproduced, for example, in HAR v2 10 km.

Keywords: precipitation; reanalysis data; satellite retrieval; complex terrain; spatial resolution;
temporal resolution; High Mountain Asia; Tibetan Plateau; third pole
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1. Introduction

High Mountain Asia (HMA) is the major water source of large river systems, especially of the
Yangtze, the Yellow, the Brahamputra, the Ganges and the Indus river. It forms the freshwater supply
for billions of people in Asia who depend on it as a drinking and agriculture water supply or source
for hydropower electricity, and it is among the most vulnerable water towers globally [1,2]. Hence, it is
becoming increasingly important to monitor and model water availability as the climate is changing.
The three main direct sources of water in HMA rivers are direct precipitation, snow melt and glacier
runoff, all of which experience drastic changes due to increasing temperatures and altered precipitation
patterns [3–6].

Observing precipitation constitutes a challenge, especially in complex terrain with harsh climatic
conditions and limited access [7]. Precipitation measured with rain-gauge stations can provide
information about spatial and temporal patterns, and they are therefore essential for monitoring
and modeling. Direct observations at rain-gauge stations are (i) only available as point measurements;
(ii) sparsely and unevenly distributed in space, especially in remote areas such as HMA; (iii) error-prone,
especially for solid precipitation; and (iv) often discontinuous in time [8–14]. Further limitations arise
when comparing different gauge stations among each other due to different instrumentation and
site characteristics. A heated tipping bucket will give different results than a non-heated bucket,
and vegetation types and changes over time can influence measured precipitation and possible
interpretations about what has caused these changes [15].

To inform various research applications, such as hydrological models, precipitation data need to
be continuous in both space and time. For this purpose, weather model-derived reanalysis datasets
may provide spatially homogeneous gridded data. Gridded precipitation data can also be derived from
interpolation of ground observations, which are subject to considerable uncertainties in data-scarce
areas such as HMA [16]. Retrieving precipitation from satellites is another method for generating
gridded data. Precipitation measurement missions such as the Tropical Rainfall Measuring Mission
(TRMM) [17] and the Global Precipitation Measurement Mission (GPM) [18] were established to
continuously observe precipitation from space.

The choice of dataset to use for hydrological modeling applications greatly impacts the
results, as there are significant differences between both absolute and relative values among
datasets [4,7,19–22]. It is an inherent feature of the research problem that it is not possible to ultimately
determine whether any of the datasets provides the “true” value of precipitation. Nevertheless, it is
possible to make an informed decision about the choice of dataset by knowing about the differences,
limitations and similarities, and through validation against ground truth data. Depending on the study
area, some datasets may outperform others.

A major issue with gridded precipitation in rugged terrain, such as HMA, is the accurate
representation of a grid-mean value that represents the local variability of precipitation. The terrain
heterogeneity and topographical features get smoothed out in coarse-grid resolution products. It has
been shown that the comparison between observed and modeled elevation within a global climate
model leads to a bias of up to 2 km in elevation over HMA with higher inaccuracies on the edges
of the Tibetan Plateau, which shows the highest gradients in topography [23]. Besides the effect of
altitude as such on the amount of precipitation, it can cause inaccuracies in spatial rainfall estimates
due to local-scale dynamics of convective precipitation resulting from thermal slope breeze systems or
orographically-induced precipitation.

The comparison of gridded data to actual measurements is problematic. Even though they
are used in the majority of studies (e.g., [4,21,22]), ground observation stations are also not fully
representative of the areas of the grid cells in which they are located. Usually, gauge stations are
located in valley bottoms rather than on top of the mountains or on slopes. Further error sources
of gauge station data are the undercatch due to wind drift, especially during snowfall, wetting and
measurement inconsistencies [8,13,15,24]. However, as surface measurements are the only ground
truth observations of precipitation, they are also used as a reference in this study.
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The scope of this study is to compare the global reanalysis datasets ERA5 [25], ERA5-Land and
ERA-Interim [25,26], the Japanese 55-year Reanalysis (JRA-55) [27] and the Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-2) [28], the regional WRF-downscaled
High Asia Refined analysis version 2–10 km domain (HAR v2 10 km) [29] and High Asia Refined
analysis version 2–2 km domain (HAR v2 2 km) [29] gridded products, the station based precipitation
dataset Global Precipitation Climatology Centre (GPCC) and the satellite derived precipitation product
Precipitation REtrieval covering the TIbetan Plateau (PRETIP) [30,31]. Further information on spatial
and temporal resolutions of the datasets and websites for data downloads are shown in Table 1. In a
case study, we compared these datasets over a data-scarce sub-region covering each parts of the Tibetan
Plateau (TiP), the Himalaya and the Himalaya foothills to the south during May to September 2017.
To achieve a comprehensive intercomparison, we combined and extended different commonly used
methods to inter-compare precipitation datasets and quantify differences based on terrain complexity.
We finally compared gridded to rain-gauge data from the Chinese Ministry of Water Resources.

Comparable, longer-term comparisons across HMA have been carried out by e.g., Li et al., [20],
who found that grid resolution plays a significant role in overall mean precipitation and local maximum
precipitation, that observation-derived datasets are likely to underestimate precipitation due to their
locations in the valley bottoms and that satellite products show high uncertainties, especially for solid
precipitation. Similarly, Gao et al. [4] used precipitation indices to compare ERA-Interim reanalysis
with WRF-downscaled products based on ERA-Interim and the community climate system model
(CCSM) for the historical period and future projections over the Tibetan Plateau. They found that
both ERA-Interim and CCSM greatly overestimate mean and extreme precipitation indices when
compared to observation data. The dynamically downscaled products generally outperform their
forcings in terms of absolute precipitation accuracy, and spatial and temporal patterns, indicating the
importance of resolving small-scale processes. Similar conclusions were drawn by Huang and Gao [19],
stating that ERA-Interim and final analysis data from the Global Forecasting System (GFS-FNL)
datasets largely overestimate precipitation over the Tibetan Plateau (TiP). This wet bias is reduced in
WRF-downscaled products. Further work by Yoon et al. [21] studied the terrestrial water budget over
HMA, comparing different gridded precipitation data as boundary conditions for land surface models,
including the older HAR (High Asia Refined analysis) version [32]. Mean estimates of precipitation
were found to differ significantly between products, while the spatial patterns and seasonality were
reasonably captured in all products. The first HAR version has also been evaluated by Pritchard et
al. [33], who found that it is capable of representing precipitation in the Upper Indus Basin at multiple
scales and matches ground observation data well. Furthermore, Wang and Zeng [7] used several
predecessors of the current study over the TiP and found that the Global Land Data Assimilation
Systems (GLADS) data has the overall best performance for precipitation when compared to station
data over the 1992–2004 period. GLDAS is derived as a combination from surface observations
and remote sensing. Additionally, Bai et al. [22] investigated different precipitation datasets over
the Qinghai-Tibet Plateau, highlighting the importance of precipitation data in data-scarce regions
and complex terrain such as the TiP. In their study satellite products, blended satellite and gauge
station measurements, and climate modeling data, such as the HAR dataset, have been compared.
They conclude that extreme precipitation is generally overestimated, while light precipitation (less
than 1 mm day−1) was mostly underestimated by most products.

In our study, we complement those earlier studies by including the new and even higher spatially
resolved HAR v2 10 km and HAR v2 2 km datasets, and by applying additional ways of comparing
different gridded precipitation datasets. We emphasize that differences between datasets must be
discussed based on season, precipitation type and spatial context. With a set of selected analysis
methods, our aim was to address the following key research questions: (1) How similar are the various
gridded precipitation datasets? (2) What is the effect of terrain complexity on variations in precipitation
between products?
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2. Data and Methods

In order to address the proposed question, we compiled a set of methods to compare the datasets.
Similarities and differences are mostly related to grid-cell based values and how the various products
represent precipitation at the same location and the same time or period. In this section, we present the
study region, the datasets used for the intercomparison and the methods applied to address similarities
and differences.

2.1. Study Area and Period

The study area encompasses parts of the TiP, the Himalayas and the Himalaya foothills (Figure 1).
It stretches from 81◦ E to 88◦ E and from 28◦ N to 32◦ N (about 230,000 km2). We chose this study area
to include different topographic features, and to represent the transition from the central parts of
the Himalayas to the Tibetan Plateau and the Transhimalaya. From southwest to northeast, the first
part represents the low-lying southern slopes of the Himalaya, followed by the extreme relief of the
Himalayas, and the less complex TiP terrain. The study period was set from May to September 2017,
which is the first year in which PRETIP precipitation can be considered. Further, the period covers a
full Indian Summer Monsoon season, which exhibits the most interesting features in precipitation for
any kind of research application in the study area. The 2017 monsoon season was also unobtrusive in
the amount and length of the monsoon precipitation, making it a suitable study period. The choice
of the study area was further motivated in the course of follow-up research by Kropáček et al. [34]
dealing with glacier lake outburst floods in the Limi Valley originating from the small Halji glacier in
northwestern Nepal, which is located within the boundaries of the present study area (close to the
west-station in Figure 1).

20.0°N

25.0°N

30.0°N

35.0°N

70.0°E 75.0°E 80.0°E 85.0°E 90.0°E 95.0°E

Rain gauge stations

West

Southeast

South

Study area

Figure 1. Overview of the study area and the 3 rain gauge stations located within the boundaries of the area.

2.2. Data

The datasets used in this study and their respective properties are listed in Table 1. For comparison
purposes, all datasets were aggregated to daily sums. As with other precipitation datasets that do not
cover either the study period or study area, we have excluded the Aphrodite dataset [35] from the
analysis in this study, which is often used in precipitation comparisons in Asia.
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Table 1. Overview datasets.

Dataset Temporal
Resolution

Spatial
Resolution (Approx.)

Temporal
Coverage

Spatial
Coverage

ERA5 [36] 1 1 h 30 km 1979—near real time global
ERA5-Land [25] 2 1 h 9 km 1981—near real time global
ERA-Interim [26] 3 6 h 80 km 1979–August 2019 global

HAR v2 10 km [29] 4 1 h 10 km 2004–2018 HMA only
HAR v2 2 km [29] 1 h 2 km April–October 2017 study area

JRA-55 [27] 5 1 h 55 km 1958—near real time global
MERRA-2 [28] 6 1 h 55 × 69 km 1980—near real time global
PRETIP [30,31] 7 30 min 4 km May 2017–September 2017 TiP

GPCC [37] 8 d 111 km January 2009–present global
1 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5, 2 https://www.ecmwf.int/
en/era5-land, 3 https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, 4 http:
//www.klima.tu-berlin.de/HARv2, 5 https://climatedataguide.ucar.edu/climate-data/jra-55, 6 https://
climatedataguide.ucar.edu/climate-data/nasa-merra, 7 https://doi.org/10.5678/LCRS/DAT.395, 8 https:
//climatedataguide.ucar.edu/climate-data/gpcp-monthly-global-precipitation-climatology-project.

European Centre for Medium-Range Weather Forecasts datasets. In the framework of their
so-called reanalysis project the European Centre for Medium-Range Weather Forecasts (ECMWF)
offers different atmospheric reanalyses. With the exception of their global coverage they differ in
spatial and temporal resolution, in temporal coverage (cf. Table 1) and in the applied parameterizations.
In the present study, we used the three latest products ERA-Interim, ERA5 and ERA5-Land. Please note
that ERA5-Land uses the same atmospheric forcing as ERA5, interpolating the data to a higher grid
resolution (see ERA5-Land documentation (https://confluence.ecmwf.int/display/CKB/ERA5-Land%
3A+data+documentation#ERA5Land:datadocumentation-LandSurfaceModel)). Therefore, it was not
expected to see considerable differences between ERA5 and ERA5-Land. The gridded output variables
have been downloaded from the Copernicus Climate Change Service (C3S) Climate Date Store.

High Asia Refined analysis version 2. The High Asia Refined analysis version 2 (HAR v2) is
an atmospheric dataset generated by dynamical downscaling of ERA5 reanalysis data. The regional
climate model used for this purpose is the Weather Research and Forecasting model version 4.1
(WRF V4.1, [38]). In contrast to traditional regional climate simulations, WRF is re-initialized daily and
integrated over 36 h with the first 12 h discarded as spin-up time. The HAR v2 provides meteorological
fields at 10 km grid spacing and hourly temporal resolution. The 10 km domain covers the whole TiP
and the surrounding mountains. The HAR v2 is described in detail by Wang et al. [29]. The dataset
currently covers the period from 2004 to 2018 and will be both extended back to 1979 and updated
continuously into the future. To investigate the influence of horizontal grid spacing on precipitation
simulation, ERA5 has also been downscaled to 2 km grid spacing using WRF V4.1 for the study area
from April 2017 to October 2017 (hereinafter HAR v2 2 km). The model setup for HAR v2 2 km was
the same as HAR v2 10 km, except that no cumulus parameterization scheme was used for HAR v2
2 km and cumulus convection was thus explicitly resolved.

Precipitation REtrieval covering the TIbetan Plateau. PRETIP is a new satellite-based precipitation
retrieval dataset for the TiP and originates from a feasibility study, which aimed at the combination of
the brightness temperatures from the geostationary satellites Insat-3D and Elektro-L2 for precipitation
retrieval [39,40]. PRETIP was trained using a random forest approach. The reference for the model training
is GPM (Global Precipitation Measurement Mission) IMERG (Integrated Multi-satellite Retrievals for GPM)
from which only the rain gauge calibrated microwave precipitation data are used [41]. Gauge calibrated
microwave precipitation is the most reliable precipitation estimate from space thus far [18,42,43]. The
temporal coverage is restricted to May–September 2017 due to the limited availability of Elektro-L2.
PRETIP has the same temporal resolution as IMERG, which is 30 min, and is available in both 11 and
4 km resolutions. This increase in resolution from 11 to 4 km constitutes the advantage of PRETIP over
IMERG. The spatial coverage is confined by the Tibetan Plateau and areas above 2500 m a.s.l., which does
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only partly cover the study area (c.f. Figure 5). Further, PRETIP is limited by the availability of microwave
data, which are not available for every single 30-min timestep. Scenes for which no microwave based
precipitation but satellite data (Insat-3D, Elektro-L2) are available were modeled using a daily model,
which was built from the microwave based precipitation available on that day. However, due to the lack
of availability of Insat-3D and Elektro-L2 at some time slots, some data gaps exist. Therefore, the daily
product only contains the available timesteps. The number of available scenes per day is illustrated in
Figure A1 in the Appendix A. For further details about PRETIP please refer to Kolbe et al. [30,31] .

Japanese 55-year Reanalysis. JRA-55 is the second reanalysis project carried out by The Japan
Meteorological Agency [27]. Observations used in JRA-55 consist of those used in ERA-40 [44] and an
additional array of observations listed in the former paper. The product utilizes a four dimensional
variance analysis (4D-VAR) for data assimilation. The spatial resolution is 0.56◦ × 0.56◦ and it covers
the period from 1958 to near real-time. We obtained the dataset through The Data Support Section
facilities at the National Center of Atmospheric Research, and for purposes of the paper, accumulated
6-hourly precipitation values to daily sums.

Modern-Era Retrospective analysis for Research and Applications, Version 2. MERRA-2 is the
second version of the Modern-Era Retrospective analysis for Research and Applications produced by
NASA’s Global Modeling and Assimilation Office. It replaces its predecessor, MERRA, by including
additional observations and updates to the Goddard Earth Observing System model and analysis
scheme. It has been available in 1-hourly temporal resolution and 0.5 ◦ × 0.625 ◦ spatial resolution in
near real-time since 1980.

Global Precipitation Climatology Centre. The GPCC First Guess Daily Product is a global
gridded daily precipitation estimate based on station data. The measurements undergo automatic
quality control, and are interpolated between grid cells using an ordinary block kriging [37]. The spatial
resolution of the grid is 1◦ latitude by 1◦ longitude and the dataset is available from January 2009
until near real-time. Within our study area, a total of three gauge stations are used to derive
daily precipitation.

Ground observations. For a ground validation of the precipitation products we resorted to the
collection of precipitation data provided by the Chinese Ministry of Water Resources and collected
by the hydrometerological service of Tibet. The amount of precipitation was measured by tipping
bucket rain gauges installed according to World Meteorological Organization standards over the
period 2007–2015. The network, albeit sparse given the size of the area, provides the only set of ground
observations available to assess the gridded precipitation datasets. The stations of network used in
this study are shown in Figure 1.

2.3. Methods

2.3.1. Correlation Coefficient

To compare the different precipitation products, we used the non-parametric Spearman’s rank
correlation coefficient, R, which describes how similar the spatial pattern of precipitation is within
the compared grids on a daily or multi-daily basis. Due to the different spatial resolutions, for each
pair of products, we aggregated the higher resolution product to match the grid resolution of the
lower resolved product within each comparison. Similarities between various generations from the
same source (ERA products) and different spatial resolutions of the same product (HAR v2 products)
can help to assess variations resulting from diverse methodologies and parameterizations in the
generations of these datasets. We used different temporal aggregation intervals to assess whether the
timing of precipitation events is different within the products and whether multi-day-sums increase
their similarities. Correlations were only derived for grid cells with valid values in both datasets.
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2.3.2. Comparison to Station Data

To obtain an approximation of ground truth precipitation, we utilized three rain-gauge stations
within our study area that provide daily precipitation sums. We compared their cumulative
sums over the study period to the cumulative sum of the respective grid cell in the precipitation
products. We extracted the elevation of each station from the Advanced Land Observing Satellite
(ALOS) Digital elevation model (DEM), provided by ALOS World 3D—30 m (AW3D30) of the
Japanese Aerospace Exploration Agency (https://www.eorc.jaxa.jp/ALOS/en/aw3d30/index.htm).
The stations’ elevations were then compared to the modeled elevation of the grid cell for the reanalysis
and WRF-downscaled products, and to the mean elevation of the grid cell for PRETIP and GPCC
(derived from ALOS, Table 2). These comparisons provide insights into the possible reasons for
differences between ground-based weather station observations and gridded reanalysis or satellite
data, because the generation of several products relies on the topography, and thus the resolution of
the underlying digital elevation model.

Table 2. Modeled elevation ( m a.s.l) of used grid cell.

Dataset West Southeast South

Rain gauge 4134 * 4320 * 4476 *
ERA5 4824 4995 4944

ERA5-Land 4415 4359 4507
ERA-Interim 3573 4856 4919

HAR v2 10 km 4448 4682 4615
HAR v2 2 km 4151 4505 4465

JRA-55 3810 4887 4887
MERRA-2 4007 3512 2989

PRETIP 4243 * 4234 * 4467 *
GPCC 4903 * 4907 * 4907 *

* derived from ALOS.

2.3.3. Climdex

Climate indices are usually used to quantify how climate has changed over long periods, how
it differs in space or to identify and track climate extremes (e.g., [45]). In this study, we used a set of
climdex indices to compare the different precipitation datasets similarly to Gao et al. [4]. The indices
used in this study are R1, R10, R20, Rx1, Rx5 and PTOT. They were calculated for every grid cell and
summarized for the different products. An overview over the different indices and their definitions is
given in Table 3.

Table 3. Selection of climdex indices used in this study for intercomparison between different
precipitation (P) products.

Index Definition Unit

R1 number of wet days (P > 1 mm) days
R10 number of wet days with P > 10 mm days
R20 number of wet days with P > 20 mm days
Rx1 maximum 1-day precipitation mm
Rx5 maximum 5-day precipitation mm

PTOT total precipitation mm

2.3.4. Terrain Complexity

There are various options to geometrically and statistically define terrain complexity [46]. In this
study, we assessed the influence of terrain complexity on the differences between the precipitation
datasets on the basis of the ALOS DEM, as illustrated in Figure 2. Two levels of complexity are defined
by the standard deviation (SD) of elevation from the high resolution ALOS-grid cells within single
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grid cells according to the product with the lowest resolution (GPCC). Complexity is defined as low or
high based on the percentiles of SD of grid cells. For high complexity, we set a threshold at the 75%
percentile (Q3) of SD among all grid cells. This means that 25% of the grid-cells above this threshold
are classified as “high complexity.” The remaining 75% of the grid-cells represent “low complexity.”
For each product, we calculated the mean difference between the products with regard to terrain
complexity in order to derive its potentially varying influence on rainfall calculation. In order to
compare products with different spatial resolutions, we resampled all products to the coarsest common
denominator grid (GPCC, 111 km, 24 grid cells).

Figure 2. Schematic overview of the method applied to derive terrain complexity. Black lines represent
the grid of the lowest resolved precipitation product (GPCC), red lines represent the grid of the ALOS
digital elevation model (DEM). The topography in the background is an example topography. In the
equation to calculate the DEM standard deviation (SD) in each GPCC grid cell, xi stands for the values
within the ALOS DEM cell, µ for the overall mean and N for the number of ALOS DEM grid cells
within each GPCC grid cell.

3. Results

3.1. Statistical Analysis

In this section, we describe and visualize the datasets used for comparison and the results of the
statistical analysis.

To illustrate how the different precipitation products compare within the study region and period,
we provide the cumulative sum of precipitation from May to September 2017 (Figure 3), the sum of
precipitation for each month within the study period (Figure 4), and a spatial plot with per-pixel sums
over the study period (Figure 5).

Overall, the per-pixel sum (cf. Figure 3) is between 600 and 800 mm for all ECMWF products,
the WRF-downscaled HAR products and JRA-55. MERRA-2 and GPCC only show 400 to 500 mm
of precipitation, which results in a difference up to 100% between the datasets. Despite the missing
lower-lying areas (<2500 m a.s.l.) and the fact that the daily values are built only from available satellite
scenes, PRETIP amounted to 525 mm for the period between May and September 2017, which falls
within the range of the other datasets.

Monthly sums (Figure 4) show that all products have their maximum precipitation in July and
August, while September has the lowest values. The relative variability between datasets is greatest in
the pre-monsoon season (May), while the agreement is best between most datasets in July to August
(except for MERRA-2, PRETIP and GPCC). Other than for PRETIP, for which no valid values in the
southwestern corner of the study area exist due to the elevation below 2500 m, the other datasets
generally show highest precipitation sums in the southwest along the foothill of the Himalayas,
and lowest values occur along the transition from the Himalayas to the TiP. The Himalaya range
generally shows the highest spatial heterogeneity as long as the spatial resolution is sufficient to depict
these small-scale changes (Figure 5). In general, it can be seen that only the HAR v2 datasets and
in parts the ERA5 products are able to resolve orographic precipitation, while the resolution of the
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other products only gives grid values based on averages in the area. Surprisingly, the satellite product
PRETIP, which has the second highest grid resolution (4 km) is not able to capture small-scale patterns
of topographically-induced precipitation.

The correlation on a daily basis for each combination of datasets is given in Table 4. The highest
correlation was achieved between ERA5 and ERA5-Land, with R = 1, while lowest correlation
was found between the reanalysis product MERRA-2 and the satellite dataset PRETIP (R = 0.33).
In general, the correlation between the ERA products and the ERA-derived products (HAR v2 10 km
and HAR v2 2 km) is quite high (R > 0.66), suggesting that their precipitation values depicting the
most probable range (cumulative values of 600–800 mm, c.f. Figure 3). The fact that they are not
identical, however, shows that there are also considerable differences between the datasets, which is
most likely the effect of different representations of precipitation processes at different scales and the
different representations of cumulus convection in the models.

Temporally aggregating precipitation over a 5-day window generally increases the correlation
(Table 5). The highest correlation can still be found between ERA5 and ERA5-Land (R = 1), but the
lowest correlation can now be found between the observation-based product GPCC and the satellite
product PRETIP (R = 0.56). In general, PRETIP shows the overall smallest correlation to all other
products. With a mean of 0.63 and generally similar values regarding the comparison to the other
datasets, PRETIP appears to have the largest differences in overall grid-based precipitation. Further
aggregation of precipitation over ten days and entire months did not significantly increase correlations,
indicating that most differences in the timing of precipitation between products are covered within a
5-day period (see Tables A1 and A2).

Figure 3. Spatial mean cumulative sum of precipitation throughout the study period.
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Figure 4. Spatial average monthly sum of precipitation during the study period. The gray dashed line
represents the mean precipitation in each month over all datasets.

Figure 5. Spatial log-scaled per-grid-cell sum over the study period for each of the precipitation
products. Sums were only calculated for valid values, which excluded the south-western corner in the
PRETIP product (hatched area) and individual grid cells lower than 2500 m.a.s.l.

Table 4. Correlation coefficient R for all datasets in mm/day. The five highest correlations are
highlighted with bold font. All correlations are statistically significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.72
ERA5-Land 1.00 0.72

HAR v2 2 km 0.74 0.67 0.67
HAR v2 10 km 0.74 0.68 0.74 0.77

JRA55 0.61 0.66 0.64 0.61 0.60
MERRA2 0.50 0.48 0.53 0.48 0.48 0.44
PRETIP 0.47 0.51 0.44 0.34 0.40 0.45 0.33
GPCC 0.55 0.49 0.55 0.54 0.51 0.48 0.55 0.35



Water 2020, 12, 3271 11 of 23

Table 5. Correlation coefficient R for all datasets in mm/5days. The five highest correlations are
highlighted with bold font. All correlations are statistically significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.82
ERA5-Land 1.00 0.82

HAR v2 2 km 0.85 0.79 0.82
HAR v2 10 km 0.84 0.80 0.84 0.87

JRA55 0.69 0.76 0.71 0.72 0.70
MERRA2 0.72 0.69 0.74 0.70 0.71 0.63
PRETIP 0.64 0.66 0.63 0.59 0.61 0.63 0.59
GPCC 0.77 0.68 0.78 0.73 0.73 0.67 0.74 0.56

3.2. Comparison with Rain Gauge Data

Daily values from rain gauge stations and grid values from the daily precipitation products are
cumulatively summed up over the study period as illustrated in Figure 6. In general, the station
data shows significantly lower values than most of the gridded products. Exceptions can be seen at
the south station, where both HAR products show lower cumulative sums than the observations at
the station. At the southeast station, the observed values are almost identical to the grid values of
MERRA-2 and GPCC, while both HAR products only show slightly more precipitation by the end
of the study period. A similar trend can be seen in the south station, where the before mentioned
products represent the observations best. The other products generally show more precipitation
than what is observed at these stations, up to four times as much. The west station is located in a
generally dry valley, which receives, on average, less than 200 mm of annual precipitation [47]. This can
be seen by the total cumulative precipitation observed at the station of only 64.6 mm. The closest
gridded values are again MERRA-2, GPCC and HAR v2 2 km with about 250 mm. While both HAR
products show very similar values at the south and southeast station, they are fairly different at the
west station with the 10 km resolution product showing almost twice as much precipitation as the
2 km product. ERA-Interim, on the other hand, greatly overestimates precipitation in this grid-cell by
24 times as much precipitation as observed by the station. In general, the timing of precipitation is
better represented between station and gridded product than the actual amount. Most products agree
on the majority of precipitation falling between June and August and little precipitation from August
until the end of the study period. However, the absolute differences between observed and gridded
precipitation are, in parts, substantial.

Figure 6. Cumulative sum of daily precipitation throughout the study period for the station data
(black line) and the gridded precipitation products (colored lines).
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3.3. Terrain Complexity

The magnitude of difference in precipitation with respect to terrain complexity is given in Figure 7.
Overall, it can be seen that the difference in precipitation is consistently higher in complex terrain
(red dots, SD > Q3), than in less complex terrain (blue squares, SD ≤ Q3). The biggest difference in
precipitation can be seen between PRETIP and HAR v2 10 km with 3.9 mm d−1 followed by PRETIP and
MERRA-2 with 3.7 mm d−1, and PRETIP and ERA-Interim with 3.6 mm d−1. Visually, the differences
based on terrain complexity can be distributed in different groups: (i) overall low differences and small
variation between high and low complexity pixels (e.g., HAR v2 10 km and ERA5-Land), (ii) overall
higher differences, but small variation between high and low complexity pixels (e.g., GPCC and JRA-55)
and (iii) differences spread out greatly between low and high complexity (e.g., PRETIP and HAR v2
10 km). The lowest mean difference can be seen between ERA5 and ERA5-Land with only 0.2 mm d−1,
which further affirms that the forcing in ERA5-Land is the same as in ERA5 and that interpolation is
done linearly. The second-lowest mean difference can be seen between HAR v2 2 km and HAR v2
10 km with 0.9 mm d−1. The overall mean difference between products (yellow diamond) is between
1 and 2.5 mm d−1, with the highest value between GPCC and ERA-Interim, the two products with
the coarsest grid resolutions. Overall, for low complexity terrain, most precipitation differences are
between 0 and 2 mm d−1 while high complexity differences mostly range between 1.5 and 4 mm d−1.

Figure 7. Absolute precipitation difference (mm day−1) based on terrain complexity aligned with the
coarsest grid (GPCC). Complexity is described as high (SD > Q3) or low (SD ≤ Q3) standard deviation of
ALOS-DEM elevation within a single grid cell of the common grid. Blue rectangles represent low terrain
complexity, red dots indicate high terrain complexity and the yellow diamonds depict the mean difference.
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3.4. Climdex Indices

With the climdex indices, we aim at quantifying precipitation extremes for each product and
compare the spatial mean. Figure 8 shows boxplot charts for each index where every value represents
a single grid cell within each product. In this representation, grid resolutions were not aggregated
in order to capture the full range of grid values in each product. To be able to compare the products
universally, we additionally compiled an equivalent representation of the same indices but with the
same coarse grid resolutions. The resulting illustration can be found in the appendix (Figure A2a).
Similar overall values were found in both versions but maximum values are considerably smaller due
to the spatial aggregation. In order to allow for a more straightforward comparison of original and
spatially aggregated climdex data, in Figure A2b we include the data behind Figure 8 but with the
scaling as used in Figure A2a. The following presentation and discussion of the results will focus on
the climdex indices based on the original spatial resolution of each precipitation product as presented
in Figure 8. In general, it can be seen that the higher the spatial resolution, the larger is the data range
between all grid cells (except for PRETIP).

Figure 8. Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplots (for
descriptions, see Table 3). Each box contains all grid cell values within the precipitation product. Boxes
range from the 1st to 3rd quartile; the yellow line denotes the median; and whiskers indicate 1.5 fold
interquartile ranges from the upper to lower boundaries. Values outside this range are displayed as
black dots. Please note that the different products have different spatial resolutions.

Data points for days with more than 10 and 20 mm of precipitation (R10 and R20), show that the
higher resolved products (HAR v2 10 km and HAR v2 2 km) return the overall highest values while
they have much lower mean values and lower maximum values for the general wet-day count (R1).
This implies that individual grid cells in higher resolved products (e.g., HAR v2 2 km) can experience
more extreme precipitation events in multiple grid cells than coarser products (e.g., ERA-Interim).
Higher overall median values in the extreme precipitation indices (R10 and R20) in the higher resolved
products further imply the resolution of locally confined heavy precipitation events. Continuing with
the extreme event indices (Rx1 and Rx5), it can be seen that the highest values can also be found within
the higher resolved products, followed by a decreasing trend with decreasing grid resolution. However,
it needs to be mentioned that in contrast to HAR v2 2 km, in which convective systems are explicitly
resolved, HAR v2 10 km uses a cumulus parameterization scheme, which has some uncertainties and
can, in rare occasions, lead to extremely high values, such as more than 500 mm in one day, which can
not be found in any of the other products. The third-highest amount of precipitation in a single day



Water 2020, 12, 3271 14 of 23

(Rx1) can be found within ERA5 and ERA5-Land with about 140 mm. Over a 5-day period (Rx5),
the maximum values increase to 700 and more than 800 mm in the HAR v2 10 km and HAR v2 2 km
products, respectively, while ERA5 and ERA5-Land range between 200 and 300 mm.

Total precipitation in a single grid cell is highest in HAR v2 2 km with a maximum of 7865 mm in
a single grid cell. It is followed by HAR v2 10 km with 5217 mm and ERA5 with 2317 mm. MERRA-2
has the lowest maximum total precipitation with only 1100 mm over the study period. Comparing the
two products with similar spatial resolution, ERA5-Land and HAR v2 10 km difference between linear
interpolation and WRF-downscaling become obvious. While the grid-cell with the maximum PTOT in
ERA5-Land amounts to 2400 mm, the maximum in HAR v2 2 km amounts to 7865 mm, which is more
than three times as much compared to ERA5-Land within the 5 month-period.

Figure A2 reveals that the outstanding maximum values of the two HAR v2 datasets in Rx5 and
PTOT are mainly a consequence of higher spatial resolution. As soon as spatial resolution is equalized
by spatial aggregation, the maximum values are very much different, and the two HAR datasets do not
show extra-ordinary values. In fact, in the spatially aggregated version (Figure A2a) the GPCC dataset
shows the highest maximum value of Rx5, indicating that interpolation of station measurements to
larger areas may negatively impact hydrological modeling.

Notably, despite its second-highest grid resolution, the satellite product PRETIP shows the
smallest variation regarding precipitation rates within grid cells and few outliers in all indices,
which relate to the overall more homogeneous distribution of precipitation throughout the study
area in this product (c.f. Figure 5).

4. Discussion

Despite the short period of analysis presented, it is possible to discover substantial similarities
and differences between the different gridded precipitation products over the study area. As observed
in Figure 3, the study area is influenced by the Indian Summer Monsoon which becomes visible
in the increase of precipitation during July and August and its withdrawal starting in September.
Most products show a good agreement within the monsoon season, except for PRETIP, GPCC and
MERRA-2. In addition, the area is also affected by the westerlies, which becomes visible in the
pre-monsoon season (May). The inconsistency between JRA-55 and ERA-Interim and all other datasets
might originate from different parameterizations for westerly-driven mostly solid precipitation.
Combined, it appears that ERA5, ERA5-Land, HAR v2 10 km, HAR v2 2 km and for the most part
PRETIP consistently match both the pre-monsoon and monsoon precipitation, while the remaining
datasets have limitations in either one of those two periods.

Based on the correlation between datasets, it became obvious that some are more similar
than others. ERA5-Land and ERA5 are essentially identical when aggregating ERA5-Land to
ERA5 resolution. This is to be expected, as ERA5 is using ERA5 atmospheric forcing to derive
land-surface parameters. Hence, it should be noted that ERA5-Land does not add any value regarding
orographically-induced precipitation over ERA5 when using atmospheric data. While all the ERA
products and the ERA5-derived HAR products generally are very similar, the satellite product
PRETIP exhibits the lowest correlations, even after aggregating precipitation over multiple days.
Considering the spatial patterns of PRETIP precipitation, it is no surprise that the correlations are
low. While the other products show a spatially decreasing trend in precipitation from southwest to
northeast with a highly variable region in the Himalaya mountain range, PRETIP exhibits a much more
homogeneous distribution throughout the study area. It even shows lower values for the Himalaya
mountain range than the area covering the TiP. This is a result of the averaging character of the
random forest algorithm which is smoothing for more extreme (low and high) precipitation and tends
toward average precipitation rates. In future developments, the training should be either separated for
convective and stratiform precipitation, or another machine learning algorithm that better captures
meteorological extremes should be developed [48,49]. On the other hand, the similarities between the
ERA products, the HAR products and to some extent JRA-55 lead to the conclusion that these products
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display the most likely range of precipitation in this study. The differences between those modeled
datasets can be attributed to differences in model dynamics. This is in line with Zhang and Li [50],
who found that differences in moisture advection parameterizations greatly change precipitation
patterns on steep slopes. It is not possible to ultimately say how well these products match the “true”
precipitation. However, the few observations that are available suggest that the above mentioned
products are the ones with precipitation amounts being the closest to actual precipitation amounts.

The comparison with rain gauge station data revealed that both HAR v2 datasets have the best
matches with the ground observations. For the south and southeast stations, they also show very
similar values, though they are more different at the west station. Here, the gauge station is located
in a very localized, dry area, making local processes even more important. While these processes
seem to be better represented in HAR v2 2 km, the 10 km grid seems to catch precipitation that might
be outside the confined dry area. Considering ERA-Interim in this comparison, it becomes obvious
that the extremely coarse grid resolution must be covering areas with higher precipitation outside
the dry valley the station is located in. The elevation comparison between modeled elevation of
ERA-Interim and the DEM-extracted elevation of the rain gauge station (Table 2) shows that the station
is located higher (4134 m a.s.l) than the modeled elevation of the ERA-Interim grid cell (3573 m a.s.l.).
However, even though it is to be expected that stations located in low-lying areas would exhibit less
precipitation than higher-lying areas, ERA-Interim shows much higher values than the gauge station,
which emphasizes the limitations of trying to explain precipitation discrepancies by solely considering
altitude as the determining factor. The good match between GPCC and the ground observations can
be attributed to the fact that GPCC synthesizes station-based data and interpolates between them.
Hence, it is to be expected that GPCC scores high correlations with surface observations in grid cells
with observations, making it useful for individual grid-cells. However, the heavily interpolated values
in between distant station data are subject to extreme uncertainties as no topograhical and regional
features can be captured. Generally, rain gauge stations are often located in valley bottoms and easily
accessible areas. Precipitation at the adjacent mountain peak or on its slopes might be higher, which can
be represented by the modeled data, but not by rain-gauge station observations.

With the six climate indices (climdex) we found that the products with the highest grid resolution
exhibited the highest number of days with heavy precipitation (R10 and R20) and the largest amount
of precipitation in a single day and five consecutive days (Rx1 and Rx5). On the other hand,
the mean values of the wet-day count (R1) were much smaller, which is an improvement compared to
ERA-Interim precipitation in particular. According to Gao et al. [4], ERA-Interim tends to overestimate
precipitation on average, especially in the frequency of precipitation events. With the mean values of
R1 in both HAR datasets in our case study being much lower than those in ERA-Interim, they seem to
better represent the distribution of precipitation. The same feature, albeit lower in magnitude, can be
observed between ERA-Interim and ERA5, indicating an improvement of precipitation representation
between the two generations of ECMWF-reanalysis products in this specific case study. Overall,
extreme precipitation events can occur in multiple grid cells within the higher-resolved HAR datasets.
However, the cumulus parameterization in HAR v2 10 km seems to produce extremely high values
of more than 500 mm in a single day, which does not happen in the 2 km grid version of the product.
This finding is in accordance with Ou et al. [51], in which high-resolution WRF experiments with and
without cumulus convection scheme were conducted at a gray-zone grid spacing of 9 km. They found
that the experiment without a cumulus scheme generally outperforms the experiments with cumulus
schemes in terms of the mean total precipitation, and the diurnal cycles of precipitation amount and
frequency. The total precipitation (PTOT) for all products shows that the maximum amount of a single
grid cell can vary between less than 2000 mm up to almost 8000 mm. It became obvious that this
cumulative difference in precipitation over only five months will strongly impact on the results of
research applications if either one or the other product is chosen for the specific location.

Overall, our findings in terms of spatial resolution are in line with other studies, suggesting that
higher grid resolution is needed to accurately represent terrain-induced precipitation patterns [20]. In this
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study, only the HAR datasets and partly the ERA5 datasets were able to represent large orographic
complexity. However, an increase in spatial resolution does not always yield higher accuracy in complex
terrain, as can be seen within the PRETIP product, which is much more homogeneous than some of the
lower resolved products. On the other hand, the coarsest product GPCC might perform much better
in areas where individual grid cells contain measurements, while the interpolated cells in between are
subject to high uncertainties. Further, GPCC has a high probability of underestimating precipitation
due to the locations of ground observation stations being in valleys rather than on slopes or mountain
summit areas.

The role of terrain complexity was assessed with the help of a digital elevation model. We found
that all datasets displayed higher differences in precipitation when the terrain complexity (ALOS standard
deviation) was larger than Q3, except for one pair (PRETIP and MERRA-2). Based on the grouping of the
pairs depending on their relationship between mean difference and precipitation, for the difference between
high and low complexity terrain four main clusters can be derived (Figure 9). While cluster I includes most
of the similar datasets, such as ERA and HAR datasets due to their overall similarity, cluster II comprises
mostly comparisons with the coarsely resolved GPCC product. The greater overall mean difference between
GPCC and the other products is most likely a result of the heavily interpolated values for grid cells without
measurements. However, terrain complexity does not seem to have a significant additional impact on
the differences. Cluster IIIa and IIIb are mostly dominated by comparisons with PRETIP and MERRA-2.
While the differences with PRETIP are attributable to the averaging nature of the random forest approach
and the resulting smoothing in complex terrain, the comparisons with MERRA-2 canot be interpreted in a
straight forward way. All comparisons with MERRA-2, except for the comparison between PRETIP and
MERRA-2, are grouped within cluster III, which leads to the conclusion that precipitation in terrain with
high complexity within MERRA-2 seems to be weaker compared to most other products. The inverse
behavior of the pair PRETIP and MERRA-2 in terms of precipitation in complex terrain vs. less complex
terrain is probably attributable to the fact that this pair has the lowest overall correlation for daily values
and hence has the largest differences in all grid cells, independently of topography.

Figure 9. Visualization of precipitation differences between each two precipitation products based on
the relationship between mean difference (yellow diamonds in Figure 7) and the difference between high
(red dots in Figure 7) and low (blue squares in Figure 7) complexity precipitation. The groups describe: (I) low
mean difference and low difference between high and low terrain complexity, (II) high mean difference but
low difference with respect to terrain complexity and (III) medium overall difference but large variation
depending on terrain complexity. Only some labels of all pairs as listed in Figure 7 are displayed.
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5. Conclusions

This study presents the intercomparison of nine differently generated gridded precipitation
products from a study area in HMA from May to September 2017. Precipitation as boundary
condition for any research application can greatly influence the outcome and respective interpretation.
In order to be able to understand and predict the future behavior of a system, it is necessary to
apply tools, such as modeling, which require a certain spatial and temporal coverage of their input
data. This is particularly challenging for remote regions with complex terrain, such as in HMA.
Making an informed decision about the boundary conditions used for the respective applications is
key to achieving reliable predictions and can be a difficult endeavor. In this study, we highlighted
the similarities and differences of spatially and temporally continuous gridded precipitation data
from various sources over one full monsoon period that can be used as boundary conditions for
longer-term applications, such as climate-change assessments, runoff-calculations, glacier mass balance
modeling and hydropower-applications, among others. While a product with coarse grid resolution
such as ERA-Interim might be able to reproduce seasonal patterns and long-term climate trends [4],
glacier modeling applications might require much higher grid resolution as for example in HAR v2
2 km, which resolves processes related to local topography much better than products based on coarser
grids. However, the HAR v2 2 km product has high computational demands due to its high resolution
dynamical downscaling. It is only available for distinctive study regions and periods where it is
of high value to analyze the effects of grid resolution and topography. The HAR v2 10 km, on the
other hand, shows very good matches with observational data and is available for a longer periods
and the entire HMA. It shows slight limitations compared to the 2 km version originating from the
cumulus parameterization, which can overestimate precipitation falling in a single day. Nonetheless,
HAR v2 10 km is the only product (together with HAR v2 2 km) that is able to resolve topographic
precipitation features (c.f. Figure 5). Similarly, gauge station data might not be representative of the
wider areas due to their typical locations in areas of low-complexity terrain. Hence, products derived
from station data such as GPCC might underestimate areal precipitation, especially if there are only
one or two stations within a grid cell, as is usually the case in HMA. Higher grid resolution, as in
PRETIP, on the other hand, might also not improve precipitation estimates, as this satellite-based
product is limited to the averaging within the random-forest methodology. We therefore suggest
to not only rely on a single dataset in any application but to elaborate on the potential influences
of different datasets in comparison. We suggest selecting a precipitation dataset based on one’s
application and requirements. For example, if data are needed for multi-decadal hydro-meteorological
or hydro-climatological research applications, ERA5 is currently the best choice. When HAR v2 10 km
becomes available for longer periods it will replace ERA5 in this position. If precipitation in complex
terrain at high spatial resolution is to be investigated, HAR v2 2 km would be the optimally applicable
dataset, which might still require bias correction for local applications. HAR v2 10 km and ERA5
might be employed over larger study areas or extended study periods. Similarly, glacio-hydrological
studies, which usually expand over small areas, require high spatial resolution to accurately represent
the prevailing accumulation patterns of the area. For studies focusing on the broader precipitation
patterns under consideration of terrain complexity, most ERA products, the HAR products and JRA-55
have shown to be very similar. PRETIP offers a great opportunity for near-real time applications, such
as flood forecasting, as the satellite data can be available within hours after the passage of the satellite,
whereas reanalysis products are only available after several weeks.

Overall, in this study we elaborate and conclude on the following:
(1) How similar are the different gridded precipitation datasets? Depending on the origins

and generation of the datasets, some datasets are very similar (e.g., HAR v2 2 km and HAR v2
10 km; ERA5 and ERA5-Land), while other datasets show larger discrepancies (e.g., Merra and
GPCC). Despite some data gaps, the satellite product (PRETIP) falls within the range of cumulative
precipitation and shows similar trends to other products. When comparing the grid values to station
data, we conclude that spatial resolution plays a significant role and that gauge measurements likely
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exhibit a dry bias due to their locations on valley floors or other areas of low terrain complexity.
However, most products represent the timing and patterns of precipitation events well.

(2) What is the effect of terrain complexity on variations in precipitation between products?
Terrain complexity increases the difference of precipitation between products. In complex terrain, the
difference within daily precipitation can be up to 4 mm d−1, whereas it is generally below 2 mm d−1 in
more homogeneous landscapes. Overall, the differences in precipitation derived from the analysis
based on terrain complexity enables one to draw conclusions on how well some products work for
studies focusing on complex terrain. For instance, it is possible to use the ERA5-Land dataset rather
than the HAR v2 10 km dataset, if the latter is not available. Locally, the differences can still be large,
but the overall precipitation estimates over a wider area are consistent between both datasets.
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Abbreviations

The following abbreviations are used in this manuscript:

List of Acronyms

ALOS Advanced Land Observing Satellite.
DEM Digital elevation model.
ECMWF European Centre for Medium-Range Weather Forecasts.
ERA5 ERA5.
ERA5-Land ERA5-Land.
ERA-Interim ERA-Interim.
GPCC Global Precipitation Climatology Centre.
HAR v2 High Asia Refined analysis version 2.
HAR v2 2 km High Asia Refined analysis version 2–2 km domain.
HAR v2 10 km High Asia Refined analysis version 2–10 km domain.
HMA High Mountain Asia.
JRA-55 Japanese 55-year Reanalysis.
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2.
PRETIP Precipitation REtrieval covering the TIbetan Plateau.
TiP Tibetan Plateau.
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Appendix A

Table A1. Correlation coefficient R for all datasets in mm/10days. All correlations are statistically
significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.84
ERA5-Land 1.00 0.84

HAR v2 2 km 0.88 0.83 0.85
HAR v2 10 km 0.86 0.84 0.86 0.89

JRA55 0.72 0.80 0.74 0.75 0.73
MERRA2 0.76 0.73 0.78 0.74 0.75 0.67
PRETIP 0.72 0.74 0.72 0.71 0.71 0.72 0.64
GPCC 0.80 0.73 0.81 0.75 0.75 0.69 0.76 0.58

Table A2. Correlation coefficient R for all datasets in mm/month. All correlations are statistically
significant at the 99% confidence interval.

Dataset ERA5 ERA-Interim ERA5-Land HAR v2 2 km HAR v2 10 km JRA55 MERRA2 PRETIP

ERA-Interim 0.83
ERA5-Land 1.00 0.83

HAR v2 2 km 0.89 0.86 0.88
HAR v2 10 km 0.87 0.87 0.87 0.92

JRA55 0.71 0.86 0.73 0.78 0.76
MERRA2 0.68 0.71 0.69 0.68 0.69 0.64
PRETIP 0.71 0.75 0.74 0.76 0.72 0.66 0.51
GPCC 0.74 0.73 0.74 0.74 0.76 0.67 0.68 0.41
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Figure A1. Amount of available PRETIP scenes per day. The maximum value is 48 (2 scenes per hour)
and marked with the black dotted line. On average, 32.6 scenes per day are available.
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Figure A2. Visualization of the selected climdex indices R1, R10, R20, Rx1, Rx5 and PTOT as boxplot
charts equivalent to Figure 8 (for description see Table 3). (a) depicts resulting values after resampling
every product to the grid resolution of the lowest resolved product. (b) shows the same boxplot charts
as Figure 8, but with the y-axis limits adjusted to the range in (a) to allow for direct comparison between
both versions.
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Abstract. Landslide is a major natural hazard in Kyrgyzs-
tan and Tajikistan. Knowledge about atmospheric trigger-
ing conditions and climatic disposition of landslides in Kyr-
gyzstan and Tajikistan is limited even though this topic has
already been investigated thoroughly in other parts of the
world. In this study, the newly developed, high-resolution
High Asia Refined analysis version 2 (HAR v2) data set gen-
erated by dynamical downscaling was combined with histor-
ical landslide inventories to analyze the atmospheric condi-
tions that initialized landslides in Kyrgyzstan and Tajikistan.
The results indicate the crucial role of snowmelt in landslide-
triggering processes since it contributes to the initialization
of 40 % of landslide events. Objective thresholds for rain-
fall, snowmelt, and the sum of rainfall and snowmelt (rain-
fall+ snowmelt) were defined. Thresholds defined by rain-
fall+ snowmelt have the best predictive performance. Mean
intensity, peak intensity, and the accumulated amount of rain-
fall+ snowmelt events show similar predictive performance.
Using the entire period of rainfall+ snowmelt events results
in better predictive performance than just considering the pe-
riod up to landslide occurrence. Mean annual exceedance
maps were derived from defined regional thresholds for rain-
fall+ snowmelt. Mean annual exceedance maps depict cli-
matic disposition and have added value in landslide suscep-
tibility mapping. The results reported in this study highlight
the potential of dynamical downscaling products generated
by regional climate models in landslide prediction.

1 Introduction

Landslide is one of the most severe natural hazards in Kyr-
gyzstan and Tajikistan. More than 300 big landslides oc-
curred in Kyrgyzstan from 1993 to 2010, causing 256 fa-
talities and direct economic losses of USD 2.5 million per
year (Torgoev et al., 2012). Under global warming, wild-
fires, glacial retreat, and permafrost degradation are much
more likely to enhance slope instabilities in mountainous ar-
eas (Froude and Petley, 2018; Palmer, 2020), making these
regions, including Kyrgyzstan and Tajikistan, more vulnera-
ble to climate change. The occurrence of landslides depends
on disposition and triggering events. Disposition refers to the
general settings that make slopes prone to failure without ac-
tually initiating it, such as slope gradient and aspect, geol-
ogy, vegetation cover, climate, etc. (Dai et al., 2002). Com-
mon triggers for landslides are extreme and prolonged rain-
fall, rapid snowmelt, and earthquakes (Wieczorek, 1996).

The majority of landslide research in Kyrgyzstan and
Tajikistan focused on characterizing landslide susceptibility,
i.e., “where” landslides are prone to occur (e.g., Braun et al.,
2015; Saponaro et al., 2015; Havenith et al., 2015b), and how
to improve the landslide susceptibility models (Ozturk et al.,
2020; Barbosa et al., 2021). But little attention is paid to
the atmospheric triggering conditions, and our knowledge of
“when” landslides are likely to occur is limited in this region.
In addition, most landslide susceptibility studies only took
non-climatic factors into account or simply applied annual
precipitation as a climatic factor. According to Segoni et al.
(2018), no rainfall threshold for landslide triggering has been
defined for Kyrgyzstan and Tajikistan yet even though this
topic has already been thoroughly investigated in other parts
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of the world with high landslide susceptibility (e.g., Berti
et al., 2012; Gariano et al., 2015; Giannecchini et al., 2016;
Leonarduzzi et al., 2017). The reasons are twofold. Firstly,
although landslide inventories have been developed in this
region, e.g., the Tien Shan Geohazards Database (Havenith
et al., 2015a, b) and the multi-temporal landslide inventory
from Behling and Roessner (2020), there is a lack of land-
slide inventories with the exact date of landslide occurrence.
Given the highly dynamic nature of weather phenomena, at
least a daily timestamp of landslide records is required to
investigate weather conditions that trigger landslides. Sec-
ondly, there is a lack of atmospheric data. The number of
in situ observation stations in Kyrgyzstan and Tajikistan de-
creased sharply in the 1990s due to reduced funding. There
are currently eight stations in Kyrgyzstan and 26 stations in
Tajikistan available from Global Surface Summary of the
Day (GSOD), which is a publicly available data set. These
numbers are already significantly below the recommendation
of the World Meteorological Organization even for flat areas
(Ilyasov et al., 2013). Despite the sparse distribution, most
GSOD stations are located in low-lying valleys and are not
fully representative of the area.

Rainfall is the most common trigger of landslides all over
the world (Wieczorek, 1996). Over snow-covered regions,
snowmelt is recognized as another common trigger of shal-
low landslides and debris flows (Wieczorek, 1996; Most-
bauer et al., 2018). In Kyrgyzstan and Tajikistan, more than
half of the annual precipitation falls in the form of snow.
Snow cover duration over high mountain ranges in the Tien
Shan and the Pamir is more than 200 d yr−1 (Dietz et al.,
2014). A large amount of water stored in snowpacks is re-
leased during the melting season. Snowmelt is another im-
portant source of water infiltrating into the soil that in-
creases slope instability. Thus, in Kyrgyzstan and Tajikistan,
snowmelt might also play a role in landslide triggering be-
sides rainfall. But snowmelt is not as easy to be observed as
rainfall and might often be neglected as a landslide trigger,
especially when co-occurring with rainfall.

There are two main approaches to assess rainfall thresh-
olds for landslide triggering. The first approach is physically
based and requires detailed lithological, morphological, and
geotechnical information of each landslide event (Guzzetti
et al., 2007). Unfortunately, this level of detail is usually
restricted to small areas and is not available for the whole
of Kyrgyzstan and Tajikistan. The second one is the empiri-
cal approach based on historical landslide and rainfall data.
The majority of studies applying this approach relied on rain
gauge data to analyze rainfall thresholds (e.g., Berti et al.,
2012; Khan et al., 2012; Bui et al., 2013). However, rain
gauge data are point measurements that cannot capture the
large spatial heterogeneity of rainfall, especially over com-
plex terrain. Gridded products can provide continuous data
in both space and time and can be used in detecting atmo-
spheric triggering conditions of landslides.

We aim to analyze the atmospheric triggering conditions
of landslides and generate climatic disposition maps that
contain information on these triggering conditions in Kyr-
gyzstan and Tajikistan. For this purpose, we combined freely
available gridded atmospheric data with historical landslide
events. Atmospheric triggers for each landslide event were
determined by the co-occurrence of landslide and weather
events. Properties (mean intensity, peak intensity, accumu-
lated amount) of landslide-triggering events (LTEs) and non-
landslide-triggering events (NLTEs) were compared. Objec-
tive thresholds of these properties for different atmospheric
triggers (rainfall, snowmelt, and the sum of rainfall and
snowmelt) were defined so that they can best separate the
atmospheric conditions that resulted and did not result in
landslides. Finally, we applied the thresholds with the best
predictive performance to generate maps of mean annual ex-
ceedance. In this way, we can transform the weather-scale
triggering conditions into climate-scale dispositions (here-
after referred to as “climatic disposition”).

The objective of this study is threefold: (1) investigate the
role of snowmelt in landslide-triggering processes; (2) find
appropriate quantities of atmospheric triggers for assessing
landslide hazards; and (3) characterize climatic disposition
in terms of rainfall and snowmelt over Kyrgyzstan and Tajik-
istan.

The paper is organized as follows: we describe the data and
methods used in this study in the following section. Results
are presented in Sect. 3 and discussed in Sect. 4. Conclusions
are drawn in Sect. 5.

2 Data and method

2.1 Data

2.1.1 Landslide catalog

Landslide events used in this study come from two
sources: the Global Landslide Catalog (GLC) (Kirschbaum
et al., 2010, 2015) and the Global Fatal Landslide
Database (GFLD) (Froude and Petley, 2018). The GLC has
been compiled by NASA since 2007 and contains all types
of mass movements triggered mostly by rainfall. The sources
of the GLC are mainly media reports, disaster databases, and
scientific reports. The GFLD only includes landslide events
that caused fatalities and is obtained from media reports. It
currently covers the period from 2004 to 2017. These two
landslide inventories were chosen because, to the best of our
knowledge, they are the only ones with the exact landslide
dates available for the study region.

We selected landslide events triggered by atmospheric fac-
tors in Kyrgyzstan and Tajikistan from 2007 to 2018 from
the GLC and 2004 to 2017 from the GFLD. Then we merged
these two data sets and deleted duplicate events that occurred
on the same day and came from the same source link, re-
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Figure 1. Landslide events from 2004 to 2018 extracted from the GLC (white points) and the GFLD (black points). Background contour is
topography from digital elevation model (DEM) data from Shuttle Radar Topographic Mission (SRTM).

sulting in 96 landslide events for Kyrgyzstan and Tajikistan
from 2004 to 2018 (Fig. 1).

2.1.2 Atmospheric data

Rainfall and snowmelt data are extracted from the High Asia
Refined analysis version 2 (HAR v2). The HAR v2 is a newly
developed regional atmospheric data set. It was generated
by dynamical downscaling of the ERA5 reanalysis data us-
ing the Weather Research and Forecasting (WRF) model. It
provides atmospheric data with high resolution and accuracy
over High Mountain Asia (Hamm et al., 2020; Wang et al.,
2021). Detailed modeling strategies of the HAR v2 are de-
scribed in Wang et al. (2021). The HAR v2 has a grid spacing
of 10 km and is available in hourly, daily, monthly, and yearly
aggregations. Daily products were used in this study to deter-
mine the climatic trigger of each landslide event (Sect. 2.2.1)
and to define thresholds for landslide triggering (Sect. 2.2.2).
Rainfall was calculated as the difference between total pre-
cipitation and snowfall. Snowmelt is not a standard output of
the WRF and was calculated using the surface energy bal-
ance (SEB). The SEB in the HAR v2 is resolved by the Noah
land surface model (LSM) (Tewari et al., 2004):

Hm = Rn−Hs−Hl−Hg, (1)

where Rn, Hs, Hl, and Hg are net radiation, sensible heat
flux, latent heat flux, and ground heat flux (in W m−2),
respectively. These four variables are directly available in
the HAR v2. Hm is the heat flux for melting and re-
freezing (in W m−2). Hm > 0 indicates melting process,
while Hm < 0 refers to refreezing process. When Hm > 0,
snowmelt hm (kg m−2 s−1) is calculated as

hm =
Hm

λm
, (2)

where λm is the latent heat of fusion. When the calculated
hm is greater than snow water equivalent, then hm is set to be
equal to snow water equivalent.

2.2 Methods

2.2.1 Determine the atmospheric trigger of landslide
events

The atmospheric trigger of a landslide event is determined
by the co-occurrence of the landslide event with rainfall and
snowmelt event. If a landslide event only occurred within or
1 d after a rainfall (snowmelt) event, then this landslide event
is defined as rainfall (snowmelt) triggered. If there are both a
rainfall event and a snowmelt event on the day or 1 d before
the landslide occurrence day, then the atmospheric trigger of
this landslide event is mixed.

To define a rainfall (snowmelt) event, the daily time se-
ries of rainfall (snowmelt) were extracted from the grid cells
where landslides occurred. For each time series, an inde-
pendent rainfall (snowmelt) event is defined as a series of
consecutive days in which more than 0.2 mm d−1 of rainfall
(snowmelt) is simulated. The value of 0.2 mm d−1 is chosen
because it is the traditional precision of daily precipitation
measurement (Jarraud, 2008) and can be applied to separate
dry and wet conditions (Rodwell et al., 2010).

2.2.2 Threshold model for atmospheric triggers

The threshold model developed in this study contains three
steps: (1) define LTEs and NLTEs; (2) define the thresholds
for rainfall, snowmelt, and the sum of rainfall and snowmelt
(hereafter referred to as rainfall+ snowmelt) based on max-
imizing the predictive performance using 2× 2 contingency
tables; and (3) validate and assess the uncertainties of the
defined thresholds. The methods for the first two steps were
adopted from Leonarduzzi et al. (2017). Only the landslide
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events for which the atmospheric triggers could be deter-
mined were used for threshold modeling.

The first step is to define LTEs and NLTEs for rainfall,
snowmelt, and rainfall+ snowmelt. Here, we take rainfall
as an example to describe the procedure. First, the method
used in Sect. 2.2.1 is applied to define rainfall events for
each time series extracted from grid cells where landslides
occurred. Next, if a landslide event occurred during or 1 d
after a rainfall event, then this rainfall event is classified as
a landslide-triggering event. Given the uncertainty in times-
tamps of landslide events, the day after is also considered
as a temporal relaxation. Otherwise, if a rainfall event is not
associated with any landslide events, it is classified as a non-
landslide-triggering event. For each rainfall event, we cal-
culated three event properties: mean intensity Imean, maxi-
mum intensity Imax, and the accumulated amount of rainfall
for the entire event Q. For triggering events, we also calcu-
lated these three properties by only considering the period
up to the day of the landslide occurrence (hereafter referred
to as UTL, meaning up-to-landslide). Note that not all the
landslide events co-occurred with a rainfall event. For these
events, we set Imean, Imax, andQ to zero. The same procedure
for defining LTEs and NLTEs was conducted for snowmelt
and rainfall+ snowmelt as well.

The second step is to define thresholds of rainfall,
snowmelt, and rainfall+ snowmelt for entire events and UTL
events using Imean, Imax, andQ. No single threshold can per-
fectly separate LTEs from NLTEs since their distributions
overlap. We applied 2× 2 contingency tables to select the
threshold that yields the best predictive performance. Using
a certain threshold as a binary classifier, LTEs and NLTEs
were categorized into true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). The Peirce skill
score (PSS) (Hanssen and Kuipers, 1965) was applied as the
measure of the predictive performance because it is trail-
independent, which means it is unbiased even when the num-
bers of LTEs and NLTEs are not equally presented (Wood-
cock, 1976). The PSS is also known as the Hanssen–Kuiper
skill score and the true skill statistic. It is calculated as the
difference between hit rate (HR) and false alarm rate (FAR):

PSS= HR−FAR, (3)

HR=
TP

TP+FN
, (4)

FAR=
FP

FP+TN
. (5)

We chose the threshold that maximizes the PSS. We also
computed the Euclidean distance (d) to the optimal point
(HR= 1, FAR= 0), which is another commonly used skill
score in this application (e.g., Gariano et al., 2015; Piciullo
et al., 2017; Postance et al., 2018; Zhuo et al., 2019). Ad-
ditionally, the receiver operating characteristic (ROC) curve
was used to determine the general predictive power of a cer-

tain predictor by calculating the area under the ROC curve
(AUC) (Fawcett, 2006).

The last step is to validate the threshold model and as-
sess uncertainty. For the calibration of thresholds, all land-
slide event samples were utilized, and corresponding statis-
tic measures were calculated; i.e., the threshold model was
trained and tested on the same data set. To test the model’s
predictive ability on an unseen data set, we performed k-fold
cross-validation. Landslide events were randomly split into
k folds with k = 8. Then for each unique fold, the fold was
taken as the testing set, and the remaining k− 1 folds were
taken as the training set. Mean values of thresholds, the cor-
responding statistic measures, and their uncertainties repre-
sented by standard deviations were reported.

2.2.3 Mean annual exceedance

Mean annual exceedance (N th) is calculated for each
HAR v2 grid cell. It is defined as the number of events that
exceed a certain threshold over a certain period (Nth) divided
by the total number of years (Na):

N th =
Nth

Na
. (6)

The unit of N th is the number of events per year. Mean an-
nual exceedance transforms weather-scale triggering condi-
tions to climate-scale disposition. It depicts where landslides
are likely to occur from the climatic aspect.

3 Results

3.1 The role of snowmelt in landslide triggering

Figure 2 shows the climatology of seasonal rainfall,
snowmelt, and rainfall+ snowmelt resolved by the HAR v2.
We define seasons as commonly done in meteorology, span-
ning 3 months each: winter (December–February, DJF),
spring (March–May, MAM), summer (June–August, JJA),
and autumn (September–November, SON). A high amount
of rainfall concentrates in the western foothill of the Fergana
Range, the northern foothill of the Turkestan Range, and the
Tajik Basin in spring and shifts northeastwards into the Tien
Shan in summer. Snowmelt occurs in spring over most high
elevated areas. In summer, while most regions are snowmelt-
free, the Pamir plateau still experiences a high amount of
continuous snowmelt, which is in line with the results of Di-
etz et al. (2014) using remote sensing data.

Atmospheric triggers for each landslide event are deter-
mined using the method described in Sect. 2.2.1, and the re-
sults are shown in Fig. 3. Table A1 lists all 96 events and the
climatic triggers detected by the HAR v2. Figure A1 shows
the temporal process of rainfall and snowmelt for selected
landslide cases. Nine landslide events did not occur within
any rainfall event, snowmelt event, or rainfall+ snowmelt
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Figure 2. Seasonal rainfall, snowmelt, and rainfall+ snowmelt from the HAR v2 from 2004 to 2018. Black circles: seasonal landslide events
from the GLC and the GFLD. Topographic shading is based on DEM data from SRTM. DJF: December–February; MAM: March–May;
JJA: June–August; and SON: September–November.

event. This mismatch between landslide information and
weather information stems from the uncertainties in landslide
locations and timing, as well as the uncertainties from rain-
fall and snowmelt simulated in the HAR v2 (detailed discus-
sion in Sect. 4.1). These nine events are referred to as “not
detected” (white points in Fig. 3) and are excluded. The re-
maining 87 landslide events were used for further analysis.
Landslide events that were only triggered by rainfall mainly
cluster in Tajik Basin and the northeastern rim of the Fergana
Basin, where the contribution of rainfall to the annual sum of
rainfall and snowmelt is high (Fig. 3).

The annual cycles of rainfall, snowmelt, and rain-
fall+ snowmelt are compared with monthly landslide occur-
rences in Fig. 4. The study region experiences a peak of land-
slide activity in April and May, which corresponds with the
peak of rainfall+ snowmelt. While rainfall is the dominant
trigger of landslides, snowmelt contributes to the triggering

of 40 % of landslide events (35 out of 87). A total of 29 % of
landslide events (25 out of 87) are attributed to the combined
effect of rainfall and snowmelt. Most snowmelt-contributing
events occurred in April when snowmelt amount is the high-
est. March and June have almost the same amount of rain-
fall+ snowmelt. However, there are more landslide occur-
rences in June. This could be the result of soil still being
frozen in March which stabilizes the slope. As shown in
Fig. 4a, both soil temperature at the top soil layer (0–0.1 m)
and air temperature at 2 m are still below zero in March.

3.2 Thresholds of atmospheric triggers for landslides
in Kyrgyzstan and Tajikistan

Statistics of different properties of LTEs and NLTEs for
rainfall, snowmelt, and rainfall+ snowmelt are presented in
Fig. 5 in the form of empirical cumulative distribution func-
tion (eCDF). Rainfall and snowmelt have a high percentage
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Figure 3. Contribution (%) of snowmelt to the annual sum of rainfall and snowmelt (background contour) and atmospheric triggers of
96 landslide events extracted from the GLC and the GFLD (points). Topographic shading is based on DEM data from SRTM.

Figure 4. (a) Mean monthly soil temperature at the top soil layer (0–0.1 m) and air temperature at 2 m averaged over Kyrgyzstan and
Tajikistan extracted from the HAR v2; (b) mean monthly rainfall and snowmelt averaged over Kyrgyzstan and Tajikistan extracted from the
HAR v2; and (c) mean monthly landslide occurrences in Kyrgyzstan and Tajikistan from 2004 to 2018.
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Figure 5. The eCDF curves of Imean, Imax, Q of NLTE, landslide-triggering entire event (LTE entire), and landslide-triggering up-to-
landslide event (LTE UTL) for rainfall, snowmelt, and rainfall+ snowmelt during the period of 2004–2018. Dashed grey lines represent the
thresholds for UTL events defined in Table 1.

of events with Imean = 0, Imax = 0, and Q= 0. This is be-
cause, for landslide events that cannot be detected by only
rainfall (orange points in Fig. 3), Imean, Imax, and Q of rain-
fall for these events were all set to zero. The same proce-
dure was conducted for events that cannot be detected by
only snowmelt (blue points in Fig. 3). It can be seen in
Fig. 5 that LTEs for both entire events and UTL events have
stronger Imean and Imax, as well as larger Q, compared to
NLTEs. Moreover, snowmelt events have much higher Q
but lower Imean and Imax than rainfall events, indicating that
snowmelt events are in general prolonged and not as intense
as rainfall events. Overall, the HAR v2 combined with land-
slide inventories from the GLC and the GFLD can distin-
guish LTEs from NLTEs well and has potential in landslide
threshold modeling.

We calibrated thresholds of Imean, Imax, and Q using rain-
fall, snowmelt, and rainfall+ snowmelt as predictors. The
procedure was conducted for both entire events and UTL
events. Predictive performance is better when using the entire
period than just using the UTL period (Table 1), which was
also concluded by Leonarduzzi et al. (2017). One of the rea-
sons is that by considering a longer period, Imean, Imax, and

especially Q of LTEs generally increase, making it easier to
distinguish LTEs from NLTEs. This can also be seen from
the eCDFs in Fig. 5. In the eCDF space, the threshold de-
fined by maximizing PSS is the point on the x axis where the
vertical distance between the LTE curve and the NLTE curve
is the largest. The eCDFs of UTL events are closer to the
NLTE curve than eCDFs of the entire events. Therefore, the
maximum PSSs of UTL events are smaller (Fig. 5).The bet-
ter performance by considering the entire period could also
indicate that there exists some uncertainty of landslide tim-
ing reported in the GLC and the GFLD. It can be seen from
Table 1 that rainfall+ snowmelt has the best predictive per-
formance for both entire events and UTL events. The predic-
tive performance indicated by d, PSS, and AUC of the three
event properties (Imean, Imax, and Q) are quite similar, but
using Imax as a predictor leads to a lower FAR but also a
lower HR when compared with Q and Imean.
K-fold cross-validation results for entire events and UTL

events are presented in Tables A2 and A3. Cross-validation
reduces the sample size and makes the results more sensitive
to outliers. The validation results are in line with the con-
clusions drawn by calibration: (1) among all predictors, rain-
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Table 1. Calibrated thresholds of mean intensity Imean (mm d−1), maximum intensity Imax (mm d−1), and accumulated amount Q (mm)
for entire events and UTL events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall+ snowmelt), as well as corresponding
performance statistics.

Predictor Property Threshold HR FAR d PSS AUC

Rainfall Imean 3.60 0.62 0.35 0.51 0.27 0.62
(entire event) Imax 11.20 0.49 0.18 0.54 0.32 0.65

Q 16.95 0.52 0.18 0.52 0.34 0.67

Snowmelt Imean 7.05 0.23 0.06 0.77 0.17 0.31
(entire event) Imax 13.45 0.24 0.04 0.76 0.20 0.32

Q 119.60 0.24 0.03 0.76 0.21 0.33

Rainfall+ snowmelt Imean 4.95 0.71 0.25 0.38 0.46 0.78
(entire event) Imax 12.80 0.67 0.15 0.37 0.51 0.81

Q 17.15 0.74 0.23 0.35 0.50 0.81

Rainfall Imean 3.05 0.60 0.40 0.57 0.20 0.59
(UTL event) Imax 12.40 0.34 0.16 0.67 0.19 0.58

Q 9.25 0.52 0.31 0.57 0.21 0.59

Snowmelt Imean 7.40 0.22 0.05 0.78 0.17 0.31
(UTL event) Imax 12.80 0.24 0.05 0.76 0.19 0.32

Q 98.30 0.24 0.04 0.76 0.20 0.32

Rainfall+ snowmelt Imean 5.05 0.68 0.25 0.41 0.43 0.76
(UTL event) Imax 14.05 0.59 0.14 0.44 0.45 0.77

Q 15.65 0.66 0.25 0.43 0.40 0.76

fall+ snowmelt has the best predictive performance for both
entire events and UTL events; (2) predictive performance is
better when using the entire period than just using the UTL
period; and (3) predictive performance of Imean, Imax, and
Q for rainfall+ snowmelt are quite similar, but Imax has a
lower FAR and also a lower HR.

3.3 Mean annual exceedance

Using the thresholds defined in Sect. 3.2 for rain-
fall+ snowmelt UTL events, Fig. 6 presents the annual num-
ber of rainfall+ snowmelt events that exceed the thresh-
olds of Imean =5.05 mm d−1, Imax =14.05 mm d−1, andQ=
15.65 mm (hereafter referred to as Imean,th, Imax,th, and Qth).
Here, only the results for UTL events are presented since
the defined thresholds of entire events and UTL events for
rainfall+ snowmelt are very similar and only deviate within
10 %, although their predictive performance is different (Ta-
ble 1).

Locations with higher mean annual exceedance
over Imax,th indicate a higher chance of having rain-
fall+ snowmelt events with high intensity, such as the
Fergana Range and the northeastern Tajik Basin. These
two regions have a high contribution of rainfall to annual
rainfall+ snowmelt (Fig. 3), and rainfall events tend to
have stronger intensity than snowmelt events (Fig. 5).
Locations with high mean annual exceedance over Qth but
low exceedance over Imax,th, including the Pamir Plateau

and the Tien Shan, indicate that prolonged events instead
of short and intense events are more frequent. The mean
annual exceedance maps of Qth and Imean,th correspond
better with the landslide occurrences since they encompass
both extreme events and prolonged events. Landslide events
reported from the GLC and the GFLD are generally located
in areas with high exceedance over Qth and Imean,th. How-
ever, the mean annual exceedance maps of Qth and Imean,th
also have more areas with false alarms, i.e., areas with
high mean annual exceedance but no landslide occurrence.
In remote areas, such as the Tien Shan, high false alarms
could be due to the fact that landslides extracted from media
reports are generally underreported in remote regions. This
is discussed in detail in Sect. 4.1. In contrast, the mean
annual exceedance map of Imax,th misses more landslide
events but has less false alarm area when compared to the
exceedance maps of Qth and Imean,th.

4 Discussion

4.1 Sources of uncertainty

The uncertainty of the results depends on the accuracy of
the data and the method applied to analyze the data. Our ap-
proach is purely empirical-based, which allows us to investi-
gate broader areas without knowing the detailed surface char-
acteristics of each landslide event. However, slope instability
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Figure 6. Mean annual exceedance (number of events per year) of
(a) Imean = 5.05 mm d−1, (b) Imax = 14.05 mm d−1, and (c) Q=

15.65 mm for the rainfall+ snowmelt UTL events. Black circles:
landslide events from the GLC and the GFLD. Topographic shading
is based on DEM data from SRTM.

often results from numerous factors. The interaction between
non-climatic characteristics and atmospheric triggers is also
responsible for the initiation of landslides (Berti et al., 2012;
Jia et al., 2020), which can not be captured by empirical
methods. This is the reason why not all rainfall+ snowmelt
events that exceed Imean,th, Imax,th, and Qth triggered land-
slides (Fig. 6) even though the number of landslides is un-
derestimated.

Uncertainty in landslide inventories and atmospheric data
is a very common issue in studies investigating thresholds
for landslide triggering. These two sources of uncertainty
have been comprehensively discussed and quantified (e.g.,

Nikolopoulos et al., 2014, 2015; Marra et al., 2016, 2017;
Marra, 2019; Rossi et al., 2017; Peres et al., 2018). Uncer-
tainty in these two data sources generally results in an un-
derestimation of rainfall thresholds, leading to a higher false
alarm rate (Nikolopoulos et al., 2014, 2015; Marra et al.,
2016; Peres et al., 2018). In the following subsections, we
discuss the uncertainty stemming from the landslide invento-
ries (the GLC and the GFLD) and rainfall and snowmelt in
the HAR v2.

4.1.1 Uncertainty of landslide inventories

Uncertainties of the GLC and the GFLD are comprehen-
sively discussed in Kirschbaum et al. (2010), Kirschbaum
et al. (2015), and Froude and Petley (2018). The first ma-
jor problem of these two data sets is that they underestimate
the total number of landslides. This is because these two data
sets’ primary sources are media reports, which are biased to-
wards events with human casualties (Carrara et al., 2003).
The second issue is that the spatial distribution of landslides
is biased towards populated areas. In our study area, land-
slide events also tend to cluster in areas with high population
density, e.g., the eastern rim of the Fergana Basin and the
Tajik Basin. Landslide number over remote areas is much
more likely to be underreported. In addition, there is large
uncertainty in landslide location because most media reports
do not contain the exact location where landslides were ini-
tiated but rather just the name of the village, road, or city af-
fected by landslides. An example in our case is the landslide
event in the Issyk-Kul Basin (Fig. 1), the location of which
is in a flat area, and the location accuracy provided by the
GLC is “exact”. This landslide event’s initial zone must be
different from the reported location and somewhere nearby
with slopes. We also failed to determine the climatic trigger
of this landslide event using the HAR v2. Last but not least,
landslide timing was also reported with a certain degree of
uncertainty. Although it is more typical that a landslide was
reported after its actual occurrence (positive errors), nega-
tive errors are also possible depending on the interpretation
of historical landslide information by an analyst (Peres et al.,
2018). Our results show that using the entire weather event
period leads to a better predictive performance than just us-
ing the UTL period (Table 1). This could be an indication of
negative errors in the landslide timing.

Despite these known limitations, the GLC and the GFLD
still provide the lower boundary of landslide number and are
proven to be valuable in global and regional landslide studies.
For example, the GLC has been successfully applied to de-
tect the initiation of rainfall-induced landslides globally (Jia
et al., 2020), to investigate the spatiotemporal distribution of
potential landslide-triggering factors (Stanley et al., 2020),
to explore the synoptic-scale precursors of landslides (Hunt
and Dimri, 2021), and to evaluate the Global Landslide Haz-
ard Assessment Model (Kirschbaum and Stanley, 2018). Al-
though the landslide number is known to be incomplete, our

https://doi.org/10.5194/nhess-21-2125-2021 Nat. Hazards Earth Syst. Sci., 21, 2125–2144, 2021



2134 X. Wang et al.: Atmospheric triggering conditions and climatic disposition of landslides

results show that they can still present the seasonal distribu-
tion of landslide occurrence reasonably well (Fig. 4). This
was also concluded by Kirschbaum et al. (2015), who stated
that the reason for the unbiased seasonal distribution of land-
slide occurrence is that the compilation method depends on
media alerts, which are consistent throughout the year. Ad-
ditionally, even though location uncertainty exists, we could
determine atmospheric triggers of 91 % of landslide events
(87 out of 96). The reason could be that landslide-triggering
rainfall and snowmelt events generally have a large spatial
extend (Leonarduzzi et al., 2017).

4.1.2 Uncertainty of atmospheric data

Extracting weather data that can represent the exact weather
conditions at landslide sites is always a challenge in studies
investigating rainfall thresholds for landslide triggering. Rain
gauges are the main source of rainfall information (Segoni
et al., 2018), and it is very seldom that landslide initial lo-
cations are gauged. Due to the highly heterogeneous spa-
tial distribution of precipitation, especially over complex ter-
rain, there exists great uncertainty when rainfall is not di-
rectly measured from landslide initial points. Additionally,
Marra et al. (2016) found that the initial points of shallow
landslides and debris flows generally correspond to the local
peak of rainfall. Rain depth decreases with distance, caus-
ing an underestimation when rainfall is measured away from
the landslide initial point. Traditionally, the nearest gauge
is used to represent the weather condition at the landslide
site, which sometimes can be kilometers away. Nikolopou-
los et al. (2015) examined other more complicated interpo-
lation methods, such as inverse distance weighting and ordi-
nary kriging, and concluded that these methods did not bring
any particular added value to the simplest nearest neighbor
method.

Using gridded data can avoid this allocation problem
(Leonarduzzi et al., 2017). But uncertainties still exist since
gridded data only represent the grid-mean value but not the
“true” weather conditions at landslide sites. Nevertheless, it
is still essential that the gridded data used in our study can
accurately represent the grid-mean value. The WRF model
configurations of the HAR v2, such as the forcing strategy
and physical parameterization schemes, were carefully cho-
sen to ensure its quality (Wang et al., 2021). Several studies
(Pritchard et al., 2019; Li et al., 2020) indicate the high accu-
racy and quality of the old version of the High Asia Refined
Analysis (HAR) (Maussion et al., 2014). Wang et al. (2021)
compared the performance of the two versions of the HAR
against in situ observations from 57 GSOD stations over the
High Mountain Asia in terms of daily precipitation and air
temperature at 2 m. It was concluded that compared to the
old version, HAR v2 generally produces slightly higher pre-
cipitation amounts with a mean bias of 0.36 mm d−1. Fur-
thermore, Hamm et al. (2020) compared the HAR v2 with
other gridded precipitation data sets at different spatial reso-

lutions, including reanalysis data and satellite-based precipi-
tation retrieval, over a rugged terrain of the central Himalayas
and the southwestern Tibetan Plateau. It was concluded that
the HAR v2 is the only product that can resolve orographic
precipitation, which is a fundamental process over complex
terrain. Simulation of air temperature at 2 m in the HAR v2 is
better than the old version due to the snow depth correction
approach (Wang et al., 2021). Snowmelt in the HAR v2 is re-
solved by the Noah LSM, which only considers a single layer
of snowpack (Koren et al., 1999). Several studies found un-
certainty of the Noah LSM in reproducing the snow-related
process, e.g., the overestimation of snow albedo (e.g., Chen
et al., 2014; Minder et al., 2016; Tomasi et al., 2017). Nev-
ertheless, the snow-related process is the major weakness of
LSMs and needs further improvement in the future (Chen
et al., 2014).

4.1.3 Impact of spatial resolution of atmospheric data

Previous studies have shown that the spatial resolutions of
gridded rainfall data have impacts on identifying landslide-
triggering thresholds (Marra et al., 2017; Nikolopoulos et al.,
2017). To investigate the influence of spatial resolution of
rainfall+ snowmelt data on the event properties of landslide-
triggering weather events and the triggering thresholds, we
resampled the rainfall+ snowmelt data from HAR v2 to
lower resolutions (20, 30, and 40 km). Then, we repeated
the procedure described in Sect. 2.2.2 to determine the event
properties of LTE UTL events and their associated thresh-
olds. The results are presented in Fig. 7. There are nine “not
detected” events when using the original HAR v2 10 km
data (Fig. 3), which means the rainfall+ snowmelt amounts
at these landslide grid points are near zero (≤ 0.2 mm d−1)
on the day and 1 d before landslide occurrence. By lower-
ing the spatial resolution, more events can be detected. This
implies the uncertainty in the reported landslide location
since resampling of rainfall+ snowmelt encompasses rain-
fall+ snowmelt information from nearby grid points. In gen-
eral, Imean and Imax decrease with the increase in grid size,
which is in line with the findings of Hamm et al. (2020)
that higher-resolved products generally capture more ex-
treme events than coarser products. Imean and Imax thresholds
defined by coarser products are also generally lower. The im-
pact of grid size onQ is the opposite: larger grid size leads to
higherQ and threshold value. This is closely associated with
the increase in event duration with the increase in grid spac-
ing, resulting from the fact that the resampling process can
blend several localized events temporally together. However,
lowering the spatial resolution does not lead to worse predic-
tive performance. This, on the one hand, implies again that
lower resolution can partly compensate for the uncertainty
in landslide locations. On the other hand, it indicates that al-
though landslide initiation itself is a highly localized phe-
nomenon, the weather processes that ensure sufficient water
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Figure 7. Boxplots demonstrating the impact of spatial resolu-
tion of atmospheric data on Imean, Imax, Q, and duration of LTE
UTL events, as well as the associated landslide-triggering thresh-
olds (blue stars). The yellow line denotes the median, and the green
triangle indicates the mean. Outliers are not shown for a better inter-
comparison, and n denotes the number of landslide events detected
by rainfall+ snowmelt.

input into the system and that trigger landslides can be clearly
identified at the mesoscale (Prenner et al., 2018).

Based on the above analysis, it can be expected that a
convection-permitting-scale (< 10 km) downscaling simula-
tion would provide a more realistic representation of weather
events that initialized landslides. Compared to such a high-
resolution simulation, the HAR v2 10 km data would un-
derestimate the intensity and overestimate the duration of
landslide-triggering rainfall+ snowmelt events. Moreover,
the 10 km resolution of the HAR v2 is not able to explicitly
resolve convection processes. Convection-permitting-scale
simulations show improvement over simulations applying
cumulus parameterization schemes in several aspects, such
as more accurate reproduction of the timing of precipita-
tion peaks (Ou et al., 2020; Zhou et al., 2021). However, a
finer resolution has a lower tolerance for uncertainty in the
landslide location. The potential of a kilometer-scale simu-
lation cannot be realized if the landslide location uncertainty
is larger than the grid size. Thus, for our study region, future
studies should not focus only on acquiring high-resolution
and high-quality atmospheric data but also on developing
landslide inventories with higher location accuracy.

4.2 Climatic disposition

In probabilistic risk analysis (e.g., Scherer et al., 2013), the
risk that a system experiences an adverse effect caused by
a hazardous process is given as the product of hazard and
vulnerability. Vulnerability itself depends on exposure and
sensitivity. Adverse effects only occur when the elements at
risk are exposed to a hazardous event. Thus, risk is a func-
tion of hazard, exposure, and sensitivity. Applying this risk
concept to our case, the adverse effect is a landslide triggered
by rainfall+ snowmelt, and the hazardous process is a rain-
fall+ snowmelt event that exceeds the defined thresholds.
The risk that a location experiences a landslide triggered by
rainfall+ snowmelt depends on two factors: (a) how frequent
a location is exposed to rainfall+ snowmelt events that ex-
ceed Imean,th, Imax,th, andQth, and (b) how sensitive slope in-
stability can be triggered at this location. Climatic disposition
represented by mean annual exceedance is actually factor (a)
and comprises both aspects of hazard and exposure. Sensi-
tivity is non-climatic landslide susceptibility that is only con-
trolled by terrestrial characteristics. Thus, to assess landslide
susceptibility, both climatic and non-climatic aspects need to
be included.

The majority of landslide susceptibility studies only con-
sidered non-climatic factors. We compared our mean annul
exceedance maps with a non-climatic landslide susceptibil-
ity map developed by Stanley and Kirschbaum (2017) at a
resolution of approximately 1 km (Fig 8). This non-climatic
susceptibility map was generated using a heuristic fuzzy ap-
proach, in which slope, faults, geology, forest loss, and road
networks were taken into account. This map is chosen be-
cause it covers the whole of Kyrgyzstan and Tajikistan. Even
though the non-climatic susceptibility map and our mean
annual exceedance maps were generated by totally differ-
ent methods, they share some similarities. They both show
higher values over areas with steep slopes and lower val-
ues in intermontane basins and valleys. This is because topo-
graphic relief is considered the best first-order rainfall predic-
tor (Bookhagen and Strecker, 2008). The non-climatic sus-
ceptibility map includes information on topography, and to-
pography is explicitly resolved during dynamical downscal-
ing. Mean annual exceedance maps not only display these
local-scale features caused by topography but also comprise
general atmospheric circulation processes. Around 23% of
landslide events are located in zones with low and very low
susceptibility. Landslide locations with low susceptibility in
the eastern and southern rims of the Fergana Basin exhibit
high climatic disposition (Fig. 6). This discrepancy between
the non-climatic landslide susceptibility and our mean an-
nual exceedance maps suggests that both climatic and non-
climatic aspects need to be considered for landslide suscep-
tibility mapping. Some event locations show both low sus-
ceptibility and low climatic disposition (e.g., in southwestern
Tajikistan), which implies the uncertainty in reported land-
slide locations.
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Figure 8. Non-climatic landslide susceptibility map computed using slope, geology, fault zones, road networks, and forest loss developed by
Stanley and Kirschbaum (2017). Black circles: landslide events from the GLC and the GFLD. Topographic shading is based on DEM data
from SRTM.

Figure 9. Annual sum of rainfall and snowmelt averaged over 2014–2018 from HAR v2. Black circles: landslide events from the GLC and
the GFLD. Topographic shading is based on DEM data from SRTM.

In addition, some landslide susceptibility studies took cli-
mate into account, but they often simply applied averaged an-
nual precipitation (e.g., Shahabi et al., 2014; Havenith et al.,
2015b; Wang et al., 2015). Averaged annual precipitation
only shows the climatological conditions in general. Mean
annual exceedance is derived from weather-scale triggering
conditions, and therefore, it also contains information on ex-
treme processes. In our case, for instance, the mean annual
rainfall+ snowmelt map does not correspond well with land-
slide occurrences, especially in the Tajik Basin and the north-
eastern rim of the Fergana Basin (Fig. 9). But these landslide
events are captured better in both mean annual exceedance
maps (Fig. 6). This indicates the added value of climatic dis-
position derived from triggering conditions.

4.3 Thresholds for different landslide size

The GLC provides six categorized landslide sizes. Land-
slide events in Kyrgyzstan and Tajikistan fall into the fol-
lowing categories: (1) small – small landslide affecting one
hill slope or small area; (2) medium – moderately sized land-
slide that could be either a single event or multiple landslides
within an area and that involves a large volume of material;
(3) large – large landslide or series of landslides that occur
in one general area but cover a wide area; and (4) unknown
(Kirschbaum et al., 2015). The GFLD does not contain infor-
mation about landslide size. Therefore, for landslide events
from the GFLD, we set the landslide size as “unknown”. Ta-
ble 2 presents the calibrated thresholds and corresponding
statistical scores for these categories for UTL events. Using
entire events leads to similar results (not presented here).
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Table 2. Calibrated thresholds of Imean (mm d−1), Imax (mm d−1), and Q (mm) for UTL events of the sum of rainfall and snowmelt
(rainfall+ snowmelt), as well as corresponding performance statistics for different categories of landslide size, and n refers to the number of
landslides in each category.

Landslide size Property Threshold HR FAR d PSS AUC

Small Imean 9.85 1.00 0.07 0.07 0.93 0.97
(n= 5) Imax 21.55 1.00 0.07 0.07 0.93 0.97

Q 124.25 1.00 0.04 0.04 0.96 0.98

Medium Imean 4.80 0.63 0.25 0.44 0.39 0.71
(n= 41) Imax 14.05 0.49 0.12 0.53 0.37 0.73

Q 9.65 0.73 0.35 0.44 0.38 0.72

Large Imean 8.10 0.55 0.11 0.47 0.44 0.72
(n= 11) Imax 21.75 0.45 0.05 0.55 0.40 0.73

Q 2.85 1.00 0.63 0.63 0.37 0.73

Unknown Imean 5.25 0.77 0.26 0.35 0.51 0.80
(n= 30) Imax 13.25 0.73 0.17 0.32 0.57 0.81

Q 16.90 0.77 0.25 0.34 0.51 0.79

Interestingly, the thresholds for landslides with small sizes
are higher than other categories and have the best predictive
performance. All of these five small-sized landslide events
are snowmelt-contributed events that occurred from March to
May. The worse predictive performance for landslides with
larger sizes could indicate that for those events, the trigger-
ing mechanism is much more complicated than small-sized
events, and other non-atmospheric factors might also play
a role. However, the sample size of small-sized landslide
events is too small to draw a robust conclusion. The num-
ber of small-sized landslides is expected to be underreported
since media reports are biased towards events with more se-
vere impacts.

5 Conclusions

In this study, we combined gridded atmospheric data from
the HAR v2 with 87 landslide records extracted from the
GLC and the GFLD to analyze rainfall and snowmelt con-
ditions that triggered landslides in Kyrgyzstan and Tajik-
istan. Thresholds for landslide triggering were determined
for different event properties for rainfall, snowmelt, and rain-
fall+ snowmelt. Mean annual exceedance maps were gener-
ated based on the defined thresholds.

Monthly landslide counts in Kyrgyzstan and Tajikistan
correspond well with the monthly distribution of rain-
fall+ snowmelt. An exception is March when soil temper-
ature at the top soil layer (0–0.1 m) and air temperature at
2 m are both below zero. Investigation of the relationship be-
tween landslides and soil temperature could be a topic for
future studies. Snowmelt plays a crucial role in landslide trig-
gering in Kyrgyzstan and Tajikistan since it contributes to the
triggering of 40 % of landslide events.

By including snowmelt as an additional trigger, the skill
of landslide prediction was significantly improved. Imean,
Imax, andQ have similar predictive performance. Thresholds
of Imean = 5.05 mm d−1, Imax = 14.05 mm d−1, and Q=

15.65 mm for UTL events were defined for landslide trig-
gering in Kyrgyzstan and Tajikistan. Using the entire period
of weather events leads to similar threshold values but bet-
ter predictive performance. This could indicate uncertainty
in landslide timing. Mean annual exceedance maps derived
from these thresholds depict climatic disposition and have
added value in landslide susceptibility mapping.

The majority of previous studies applied rainfall estimates
from in situ gauges or satellite retrievals. Our study demon-
strates the potential of the regional climate model (RCM) in
landslide prediction. Dynamical downscaling products gen-
erated by RCMs can provide physically consistent, high-
resolution data that are extremely valuable for data-scarce
areas. Given the global applicability of the dynamical down-
scaling method, our approach can also be applied in other re-
gions as long as the number and quality of landslide records
are sufficient. Even though a higher-resolved downscaling
product can reproduce landslide-triggering weather events
more realistically, it has a lower tolerance for the uncertainty
in landslide locations and does not necessarily lead to bet-
ter predictive performance. Future studies in Kyrgyzstan and
Tajikistan should focus on developing landslide inventories
with both high location accuracy and timing accuracy to re-
duce the uncertainty in triggering thresholds.
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Appendix A

Figure A1. Event-based temporal process of rainfall and snowmelt for selected landslide events with landslide triggers defined as (a) rainfall,
(b) snowmelt, (c) mixed, and (d) not detected, according to the method described in Sect. 2.2.1.
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Table A1. Landslide events in Kyrgyzstan and Tajikistan extracted from the GLC and the GFLD from 2004 to 2018. The column “trigger”
indicates the trigger of landslide events detected by the HAR v2.

Event date Source Longitude Latitude Country Trigger

17 Apr 2004 GFLD 73.0420 40.3428 Kyrgyzstan Mixed
22 May 2004 GFLD 69.2172 39.8106 Tajikistan Rainfall
14 Jun 2004 GFLD 70.8718 39.8734 Kyrgyzstan Rainfall
17 Nov 2004 GFLD 70.0802 38.8324 Tajikistan Mixed
13 Mar 2005 GFLD 69.0502 40.0141 Tajikistan Mixed
9 Apr 2005 GFLD 69.2656 38.3801 Tajikistan Mixed
25 Mar 2007 GLC 70.1951 39.0071 Tajikistan Mixed
1 Apr 2007 GLC 72.5920 37.5760 Tajikistan Mixed
5 Apr 2007 GLC 71.6110 36.7270 Tajikistan Snowmelt
17 Apr 2007 GLC 71.6849 41.5552 Kyrgyzstan Rainfall
17 Apr 2007 GLC 68.2140 38.5330 Tajikistan Rainfall
22 Apr 2007 GLC 73.1416 40.8870 Kyrgyzstan Rainfall
5 Jun 2007 GFLD 69.1633 37.8276 Tajikistan Rainfall
21 Jul 2007 GLC 73.0000 38.0000 Tajikistan Mixed
22 Jul 2007 GLC 70.4400 40.7500 Tajikistan Not detected
22 Jul 2007 GFLD 71.0363 38.5289 Tajikistan Rainfall
16 Apr 2009 GFLD 71.9767 41.6184 Kyrgyzstan Rainfall
21 Apr 2009 GLC 68.7882 37.8515 Tajikistan Rainfall
5 May 2009 GFLD 70.1529 38.1701 Tajikistan Rainfall
7 May 2009 GFLD 69.7741 38.6726 Tajikistan Rainfall
11 May 2009 GFLD 71.0363 38.5289 Tajikistan Snowmelt
14 May 2009 GLC 68.6900 37.9867 Tajikistan Rainfall
16 May 2009 GFLD 71.0363 38.5289 Tajikistan Snowmelt
20 May 2009 GFLD 69.3199 38.7221 Tajikistan Rainfall
13 Mar 2010 GFLD 69.0502 40.0141 Tajikistan Snowmelt
7 May 2010 GLC 69.8054 37.9148 Tajikistan Rainfall
7 May 2010 GFLD 70.0994 37.8560 Tajikistan Rainfall
3 Jun 2010 GLC 72.9227 39.9854 Kyrgyzstan Mixed
11 May 2011 GLC 72.8282 41.4088 Kyrgyzstan Rainfall
12 Jun 2011 GLC 69.1238 38.2644 Tajikistan Rainfall
12 Jun 2011 GLC 69.5667 39.9342 Kyrgyzstan Rainfall
12 May 2012 GLC 70.8159 40.0538 Kyrgyzstan Rainfall
13 May 2012 GFLD 70.8718 39.8734 Kyrgyzstan Rainfall
28 Jun 2013 GLC 72.0106 41.6518 Kyrgyzstan Rainfall
12 Apr 2014 GLC 69.0971 37.9107 Tajikistan Rainfall
12 Apr 2014 GFLD 70.0994 37.8560 Tajikistan Rainfall
16 Apr 2014 GFLD 68.6749 38.0710 Tajikistan Rainfall
26 Apr 2014 GFLD 68.7626 38.5685 Tajikistan Rainfall
3 Apr 2015 GFLD 69.4222 38.5428 Tajikistan Rainfall
8 May 2015 GLC 70.0162 38.0991 Tajikistan Rainfall
24 May 2015 GLC 72.9053 40.8986 Kyrgyzstan Rainfall
24 May 2015 GFLD 73.2559 41.1036 Kyrgyzstan Rainfall
10 Jul 2015 GLC 70.4275 39.0712 Tajikistan Not detected
16 Jul 2015 GLC 71.7041 37.5773 Tajikistan Rainfall
21 Jul 2015 GFLD 71.7929 38.4071 Tajikistan Rainfall
26 Apr 2016 GLC 72.9071 40.8894 Kyrgyzstan Not detected
9 May 2016 GLC 68.5748 39.3160 Tajikistan Mixed
15 May 2016 GLC 72.9293 41.3431 Kyrgyzstan Rainfall
23 May 2016 GLC 72.7907 40.5304 Kyrgyzstan Rainfall
27 May 2016 GLC 69.8266 39.8751 Kyrgyzstan Rainfall
28 May 2016 GLC 71.5577 40.0150 Kyrgyzstan Mixed
16 Jun 2016 GLC 72.3374 41.4850 Kyrgyzstan Rainfall
20 Jun 2016 GLC 73.5233 40.1293 Kyrgyzstan Rainfall
27 Jun 2016 GLC 74.4438 41.7246 Kyrgyzstan Rainfall
29 Jun 2016 GLC 73.1415 41.7649 Kyrgyzstan Not detected
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Table A1. Continued.

Event date Source Longitude Latitude Country Trigger

29 Jul 2016 GLC 69.5597 39.9377 Kyrgyzstan Rainfall
16 Aug 2016 GLC 78.3019 42.6831 Kyrgyzstan Not detected
18 Aug 2016 GLC 70.5626 39.9790 Tajikistan Rainfall
4 Jan 2017 GLC 71.9999 39.6699 Kyrgyzstan Snowmelt
26 Jan 2017 GLC 72.8834 40.8960 Kyrgyzstan Not detected
26 Mar 2017 GFLD 73.5725 40.8316 Kyrgyzstan Mixed
7 Apr 2017 GLC 73.6257 40.7733 Kyrgyzstan Snowmelt
9 Apr 2017 GLC 73.5335 40.8320 Kyrgyzstan Snowmelt
10 Apr 2017 GLC 69.5091 39.9095 Kyrgyzstan Mixed
11 Apr 2017 GLC 72.8601 41.2047 Kyrgyzstan Mixed
14 Apr 2017 GFLD 73.5725 40.8316 Kyrgyzstan Mixed
16 Apr 2017 GLC 73.2668 40.6430 Kyrgyzstan Snowmelt
16 Apr 2017 GLC 73.6000 40.7836 Kyrgyzstan Snowmelt
17 Apr 2017 GLC 73.6047 40.8044 Kyrgyzstan Mixed
18 Apr 2017 GLC 71.4973 37.3628 Tajikistan Mixed
18 Apr 2017 GLC 72.9069 40.8838 Kyrgyzstan Rainfall
22 Apr 2017 GLC 73.3402 40.8663 Kyrgyzstan Mixed
23 Apr 2017 GLC 71.5074 39.3410 Tajikistan Snowmelt
23 Apr 2017 GLC 72.8835 41.1610 Kyrgyzstan Rainfall
23 Apr 2017 GFLD 72.9801 41.2790 Kyrgyzstan Mixed
29 Apr 2017 GLC 73.4724 40.8864 Kyrgyzstan Mixed
29 Apr 2017 GFLD 73.2203 40.1325 Kyrgyzstan Mixed
30 Apr 2017 GLC 72.4381 41.2550 Kyrgyzstan Rainfall
30 Apr 2017 GLC 73.5310 40.0774 Kyrgyzstan Mixed
10 May 2017 GLC 74.4847 42.5635 Kyrgyzstan Mixed
11 May 2017 GLC 73.3497 40.5560 Kyrgyzstan Rainfall
16 May 2017 GLC 71.0302 41.7545 Kyrgyzstan Rainfall
17 May 2017 GLC 72.6771 41.6014 Kyrgyzstan Rainfall
28 May 2017 GLC 71.2755 39.1978 Tajikistan Mixed
19 Jun 2017 GLC 72.9814 39.6978 Kyrgyzstan Mixed
19 Jun 2017 GLC 71.7318 40.0439 Kyrgyzstan Rainfall
26 Jun 2017 GLC 67.8173 39.5267 Tajikistan Rainfall
28 Jun 2017 GLC 68.5480 39.3951 Tajikistan Not detected
29 Jun 2017 GLC 72.7303 41.0321 Kyrgyzstan Rainfall
29 Jun 2017 GLC 72.4521 41.2557 Kyrgyzstan Rainfall
3 Jul 2017 GLC 70.3650 39.0219 Tajikistan Rainfall
3 Jul 2017 GLC 68.4838 39.1172 Tajikistan Not detected
4 Jul 2017 GLC 69.5279 39.8102 Kyrgyzstan Not detected
13 May 2018 GLC 69.5445 39.8526 Kyrgyzstan Rainfall
16 May 2018 GLC 69.1773 37.2642 Tajikistan Rainfall
21 May 2018 GLC 72.1386 40.2437 Kyrgyzstan Mixed
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Table A2.K-fold validation results. Mean values and standard deviations (in parentheses) for thresholds of Imean (mm d−1), Imax (mm d−1),
and Q (mm) for entire events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall+ snowmelt), as well as corresponding
performance statistics.

Predictor Property Threshold HR FAR d PSS AUC

Rainfall Imean 3.76 (0.33) 0.56 (0.14) 0.33 (0.03) 0.56 (0.10) 0.23 (0.13) 0.62 (0.01)
Imax 11.06 (0.66) 0.46 (0.16) 0.18 (0.02) 0.57 (0.15) 0.28 (0.15) 0.65 (0.01)
Q 12.31 (3.88) 0.53 (0.16) 0.25 (0.07) 0.55 (0.10) 0.27 (0.10) 0.67 (0.01)

Snowmelt Imean 7.06 (0.02) 0.22 (0.14) 0.06 (0.01) 0.78 (0.14) 0.16 (0.14) 0.31 (0.02)
Imax 13.61 (0.44) 0.23 (0.13) 0.04 (0.01) 0.77 (0.13) 0.19 (0.12) 0.32 (0.01)
Q 122.38 (7.93) 0.23 (0.13) 0.03 (0.01) 0.77 (0.13) 0.20 (0.12) 0.33 (0.01)

Rainfall+ snowmelt Imean 4.96 (0.02) 0.70 (0.13) 0.25 (0.02) 0.40 (0.08) 0.45 (0.14) 0.78 (0.01)
Imax 12.93 (0.37) 0.65 (0.15) 0.15 (0.01) 0.39 (0.13) 0.49 (0.15) 0.81 (0.01)
Q 17.20 (0.14) 0.71 (0.15) 0.23 (0.02) 0.38 (0.10) 0.48 (0.13) 0.81 (0.01)

Table A3.K-fold validation results. Mean values and standard deviations (in parentheses) for thresholds of Imean (mm d−1), Imax (mm d−1),
and Q (mm) for UTL events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall+ snowmelt), as well as corresponding
performance statistics.

Predictor Property Threshold HR FAR d PSS AUC

Rainfall Imean 4.04 (1.47) 0.45 (0.13) 0.33 (0.10) 0.66 (0.08) 0.12 (0.08) 0.59 (0.01)
Imax 10.94 (1.47) 0.34 (0.06) 0.18 (0.04) 0.68 (0.05) 0.16 (0.06) 0.58 (0.01)
Q 10.21 (2.22) 0.46 (0.09) 0.29 (0.04) 0.62 (0.09) 0.17 (0.11) 0.59 (0.01)

Snowmelt Imean 7.14 (0.26) 0.21 (0.10) 0.06 (0.02) 0.79 (0.10) 0.15 (0.09) 0.31 (0.02)
Imax 12.88 (0.23) 0.23 (0.12) 0.05 (0.01) 0.77 (0.12) 0.18 (0.11) 0.32 (0.02)
Q 99.95 (4.67) 0.22 (0.13) 0.04 (0.01) 0.78 (0.13) 0.18 (0.13) 0.32 (0.02)

Rainfall+ snowmelt Imean 5.35 (0.85) 0.61 (0.22) 0.23 (0.04) 0.47 (0.17) 0.38 (0.18) 0.76 (0.01)
Imax 13.54 (0.56) 0.56 (0.15) 0.14 (0.01) 0.47 (0.14) 0.42 (0.14) 0.77 (0.01)
Q 15.83 (0.44) 0.63 (0.13) 0.25 (0.02) 0.45 (0.10) 0.38 (0.12) 0.76 (0.01)
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Code and data availability. The landslide data and atmospheric
data used in this study are freely available from the following links:

– Global Landslide Catalog: https://maps.nccs.nasa.gov/arcgis/
home/item.html?id=eec7aee8d2e040c7b8d3ee5fd0e0d7b9
(NASA, 2021)

– Global Fatal Landslide Database: https://shefuni.
maps.arcgis.com/apps/webappviewer/index.html?id=
8458951270904fc29527254492517063 (UOS, 2021)

– High Asia Refined Analysis version 2: https://www.klima.
tu-berlin.de/HARv2 (TUB, 2021).

The source code used in this study is freely available upon request.
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1. Introduction
The Qaidam Basin (QB) is an intermontane endorheic drainage basin located in the northeastern Tibet-
an Plateau (TP) (Figure 1). The central and lower elevation part of the QB is hyperarid today, but pale-
ogeographic studies revealed that the QB contained a freshwater megalake system during the Pliocene 
(Chen & Bowler, 1986; Mischke et al., 2010; J. Wang et al., 2012) even though the basin and surrounding 
mountain areas experienced general aridification throughout the Pliocene (Y. F. Miao et al., 2013; Rieser 
et  al.,  2009). With the beginning of the Pleistocene, the megalake system began to shrink. This process 
continued throughout the Pleistocene until today when only a few playas and saline lakes remain (J. Wang 
et al., 2012). In the mid-Pliocene (3 Ma), the global climate was warmer and wetter (Ravelo et al., 2004), 
while paleogeographic features were similar to those of today (Dowsett et al., 2010). The principal objective 
of this study is to investigate to what extent climate plays a role in the maintenance of the Qaidam megalake 
system during the mid-Pliocene.

In an endorheic basin, the steady-state water balance (S) is zero (Broecker, 2010; Ibarra et al., 2018). S 
is defined as the total change in terrestrial water storage (TWS) within all the reservoirs inside the basin. 
However, changes in climate state can alter the TWS and lead to an imbalanced S (e.g., Jiao et al., 2015; Y. 
Li et al., 2019; J. Wang et al., 2018). A recent study by Scherer (2020) revealed that under the present climate 
conditions, the S in the QB is close to zero, and specific humidity is the main climate driver of the annual 
S. He found that the annual S positively correlates with the annual specific humidity. Based on these 
findings, we hypothesize that a wetter climate state like that of the mid-Pliocene would cause a positive 
imbalance of the S in the QB, which would lead to recharging of groundwater reservoirs and eventually to 
a rising lake level and an extension of the lake area in the QB. This readjustment of lake extent would con-
tinue until a new equilibrium state is reached, where loss due to evaporation over lake areas compensates 
for the input by runoff and precipitation.

Abstract The Qaidam Basin (QB) in the northeastern Tibetan Plateau held a megalake system 
during the Pliocene. Today, the lower elevations in the basin are hyperarid. To understand to what extent 
the climate plays a role in the maintenance of the megalake system during the Pliocene, we applied 
the Weather Research and Forecasting model for dynamical downscaling of ECHAM5 global climate 
simulations for the present day and the mid-Pliocene. When imposing the mid-Pliocene climate on the 
QB with its modern land surface settings, the annual water balance (S), that is, the change in terrestrial 
water storage within the QB, increases. This positive imbalance of S induced solely by the changes 
in the large-scale climate state would lead to a readjustment of lake extent, until a new equilibrium 
state is reached, where loss due to evaporation over lake areas compensates for the input by runoff and 
precipitation. Atmospheric water transport (AWT) analysis at each border of the QB reveals that this 
imbalance of S is caused by stronger moisture influx across the western border in winter, spring, and 
autumn and weaker moisture out-flux across the eastern border in summer. These changes in AWT are 
associated with the strengthening of the midlatitude westerlies in all seasons, except for summer, and the 
intensification of the East Asian Summer Monsoon. Given that the mid-Pliocene climate is an analog to 
the projected warm climate of the near future, our study contributes to a better understanding of climate 
change impacts in central Asia.
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By imposing the mid-Pliocene climate state on the QB with its modern land surface settings (without a 
megalake system), an imbalance of S is induced. From that, we can estimate the lake extent needed to re-
move this imbalance (hereinafter referred to as the equilibrium lake extent). This can give us an insight into 
the influence of climate on the existence of the megalake system during the mid-Pliocene. To achieve this, 
we conducted two regional climate simulations to examine the sensitivity of S to changes in large-scale 
climate state. These two simulations were driven by present-day and mid-Pliocene global climate simula-
tions, respectively. The intention of this study is not to reconstruct the regional climate in the QB during the 
mid-Pliocene. Instead, we simulated the regional climate of the QB and its surrounding areas with modern 
surface conditions. In this way, we can analyze the large-scale controls of S in the QB independently from 
other land surface controls.

Scherer  (2020) revealed the regional-scale climate driver of the S. However, the large-scale controlling 
mechanisms of S in the QB are still not fully understood. On the climatological scale, S and net mois-
ture transport into and out of an endorheic basin through its lateral boundary are in balance (Brubaker 
et  al.,  1993). Consequently, the changes in S in the QB are linked to the changes in atmospheric wa-
ter transport (AWT). The mid-Pliocene climate is considered as an analog of near-future climates (Burke 
et al., 2018). Thus, investigating the response of S to the mid-Pliocene climate can help us understand the 
lake development in the future and contribute to water resource management in central Asia.

The goal of this study is to answer the following research questions:

1.  How large is the imbalance in S in the QB if the mid-Pliocene climate is imposed on the QB with its 
modern land surface settings? What equilibrium lake extent would be needed to remove this imbalance?

2.  How does the AWT differ from the mid-Pliocene climate to the present-day climate?
3.  Which large-scale systems regulate the changes in AWT?

The paper is organized as follows: we describe the methods used in this study in the following section. Sec-
tion 3 presents the dynamical downscaling results for differences in S, AWT, and large-scale circulation 
patterns between the mid-Pliocene and the present climate. Results are discussed and compared with other 
studies in Section 4. Conclusions are drawn in Section 5.

2. Data and Methods
2.1. Global Climate Simulations

For the global climate simulations, we used isotope tracking ECHAM5-wiso atmospheric General Circula-
tion Model (GCM), which is developed at Alfred Wegener Institute and based on the ECHAM5 model of 
the Max Planck Institute for Meteorology, Hamburg (Roeckner et al., 2003). The model is well established 
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Figure 1. (a) Map of Weather Research and Forecasting (WRF) model domain and (b) overview of the Qaidam Basin. Black line: boundary of the Qaidam 
Basin (Lehner & Grill, 2013). Blue rectangle: Qaidam box for atmospheric moisture budget analysis.
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and included in the Coupled Model Intercomparison Projects (Meehl et al., 2007; Taylor et al., 2012). The 
ability of ECHAM5-wiso to reproduce modern and paleoclimates on both global and regional scales has 
been shown in multiple studies (Botsyun et al., 2020; Mutz et al., 2016, 2018).

We performed ECHAM5-wiso simulations at a T159 spectral resolution (equivalent to a grid spacing of 
 0.75 ) with a vertical resolution of L31 (31 levels up to 10 hPa). The control simulation (PD_GCM) used 
present-day boundary conditions including the AMIP2 sea-surface temperature and sea ice data from 1957 
to 2014 and observed greenhouse gas concentrations for the same period (Nakicenovic et al., 1990). The 
simulation was conducted for more than 40 model years. A climatological reference period of 15 years was 
established for the analysis presented here using the simulation years 2000–2014 to represent the most 
recent climate conditions. We also performed a paleoclimate experiment, representing the climate con-
ditions of the mid-Pliocene (PLIO_GCM, 3 Ma). The setups and boundary conditions of PLIO_GCM for 
ECHAM5 are identical to those of Mutz et al. (2018) and Botsyun et al. (2020). In PLIO_GCM, we account-
ed for changing pCO2, land surface conditions including vegetation change and land ice, albedo, orbital 
variation, and sea-surface temperatures, which potentially cause changes in the hydrological cycle. The 
PLIO_GCM experiment was conducted for 18 years, including 3 years necessary for model spin-up. Both 
PD_GCM and PLIO_GCM experiments were validated against observed and modeled climate patterns (Bot-
syun et al., 2020; Mutz et al., 2018).

2.2. Dynamical Downscaling

We employed Weather Research and Forecasting (WRF) model version 4.1.2 (Skamarock et al., 2019) as the 
Regional Climate Model for the dynamical downscaling of GCM data. WRF is a fully compressible non-
hydrostatic model. Two sensitivity experiments were conducted using 15-year time slices from PD_GCM 
and PLIO_GCM simulated by ECHAM5 (Section 2.1) as initial and boundary conditions. These two WRF 
experiments are referred to as PD and PLIO in the following text. Except for the atmospheric forcing data, 
other parameters were kept the same in both experiments (Table 1).

We set the model domain's (Figure 1) grid spacing to 30 km. In the vertical direction, 28 terrain-following 
eta-levels were used. The model time steps are 120 s with a 6 hourly data output. The boundary conditions 
were updated every 6 h. We employed the daily reinitialization strategy from Maussion et al. (2011, 2014), 
where we initialize a model run for every 24 h period. Each simulation starts at 12:00 UTC and contains 
36 h, with the first 12 h as the spin-up time. This strategy kept the large-scale circulation patterns simulated 
by WRF closely constrained by the forcing data, while concurrently allowing WRF to develop the mesoscale 
atmospheric features. Physical parameterization schemes were consistent with the ones used for high-reso-
lution dynamical downscaling in High Mountain Asia in X. Wang et al. (2021).

To examine the ability of the model to reproduce the present-day climate patterns, PD predicted climate is 
compared with ERA5 reanalysis data of the European Centre for Medium-Range Weather Forecasts (Co-
pernicus Climate Change Service (C3S), 2017) with regard to precipitation (P) and AWT (Figure S1). PD 
generally reproduces the spatial patterns of P and AWT. But there exist some discrepancies in the amount 
of P and AWT.

2.3. Data Analysis

2.3.1. Water Balance

In this study, S is defined as the total change in TWS within the basin's reservoirs. For endorheic drainage 
basins like the QB, surface runoff across the basin's border is zero by definition and groundwater runoff 
can be neglected. The QB has been a closed system at least since the Oligocene (Herb et al., 2015; J. Wang 
et al., 2012). Thus, the S of the QB can be expressed as the spatial average of net precipitation (P − ET), that 
is, the difference between P and evapotranspiration (ET), over the total area of the QB:

  S P ET (1)

Angle brackets indicate a spatial average over the whole area of the QB (black line in Figure 1b).
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2.3.2. Equilibrium Lake Extent Analysis

Several previous studies applied a lake mass balance equation to estimate the equilibrium lake extent (Bro-
ecker, 2010; Ibarra et al., 2018). The basic concept is that (a) in the equilibrium state of an endorheic basin, 
water that feeds the basin's lake (precipitation and runoff from land areas) is in balance with lake evapora-
tion and (b) runoff is generated over land areas, where P − ET is positive and accumulates in the low-alti-
tude parts of the basin to form or feed lakes:

   ( )( )land land QB lake lake lake lake lakeP ET A A P A ET A (2)

where A refers to area and subscripts land, lake, and QB denote corresponding quantities over land, lake, 
and the whole basin. Rearranging Equation 2 yields:




  
land land

lake QB
land land lake lake

P ETA A
P ET ET P (3)

Since our PD and PLIO simulations do not contain a lake in the QB, the difference of S between PLIO 
and PD can be considered as the change in land landP ET . Thus, by adding the change signal of S to the 
present-day land landP ET  and assuming constant values of lakeE  and lakeP , the equilibrium lake extent that is 
needed to remove the imbalance in S can be estimated.

The present-day   12.4 mm aland landP ET  and  140 mm alakeP  are derived from the High Asia Refined 
(HAR) analysis 10 km products (Maussion et al., 2011, 2014). The HAR is an atmospheric data set generated 
by dynamical downscaling using WRF. It was comprehensively validated and analyzed (D. Li et al., 2020; 
Maussion et al., 2014; Pritchard et al., 2019). We calculated three projections with different lakeET : 600, 800, 
and 1,000 mm a−1. These three values represent lower, medium, and upper estimations of lake evaporation 
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Dynamics
Dynamical solver Advanced Research WRF (ARW), nonhydrostatic

Maps and grids
Map projection Lambert conformal conic
Horizontal grid spacing 30 km (281 × 217 grid points)
Vertical levels 28 Eta-level

Forcing strategy
Forcing data ECHAM5 time slices PD_GCM and PLIO_GCM
Lake surface temperature Substituted by daily mean surface air temperature
Initialization Daily
Runs starting time Daily at 12:00 UTC
Runs duration 36 h
Spin-up time 12 h

Physical parameterization schemes
Longwave radiation RRTM scheme (Mlawer et al., 1997)
Shortwave radiation Dudhia scheme (Dudhia, 1989)
Cumulus Kain-Fritsch cumulus potential scheme (Berg et al., 2013)
Microphysics Morrison 2-moment scheme (Morrison et al., 2009)
Planetary boundary layer Yonsei University scheme (Hong et al., 2006)
Land surface model Unified Noah land surface model (Tewari et al., 2004)
Surface layer Revised MM5 surface layer scheme (Jiménez et al., 2012)

Note. Additional model information can be found in namelists attached in supporting information.

Table 1 
Basic WRF Model Configurations
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rates over the TP based on previous studies (Haginoya et al., 2009; Lazhu et al., 2016; X. Li et al., 2016; J. Xu 
et al., 2009; S. Yu et al., 2011).

2.3.3. Atmospheric Water Transport

Following Curio et al.  (2015), AWT is calculated as the vertical integration of water flux over the whole 
atmospheric column along the model eta-levels from surface ( sfcz ) to top ( topz ):




 
ztop

h
z zsfc

Q v q z (4)

where hv  is the horizontal wind vector,   is the dry air density, q is the specific humidity for all water species, 
which is converted from the mixing ratio of water vapor, liquid water, and solid water, and z is the thick-
ness of each eta-level, which changes over time and increases with height.

The shape of the QB is very irregular (black line in Figure 1b). A simple rectangle covering the QB (hereaf-
ter referred to as Qaidam box) was defined to perform budget analysis on the AWT across the four borders 
(blue rectangle in Figure 1). This method is widely used to estimate the moisture input and output within a 
certain area (e.g., Feng & Zhou, 2012; Koffi et al., 2013; Z. Wang et al., 2017). The AWT at each border was 
calculated and converted to the theoretical precipitation amount. The atmospheric moisture budget of the 
Qaidam box was then calculated as the sum of the AWT at all borders.

2.3.4. Statistical Method

We applied two-sided Welch's t-tests to assess the uncertainty in the change signal of 15-year means be-
tween PD and PLIO. We present p-values in the form of maps and tables to give a transparent and open 
assessment of the uncertainty in the change signal without dichotomous treatment of it, following Wasser-
stein and Lazar (2016). The interpretation of a large number of local hypothesis tests requires a conservative 
and critical interpretation of the uncertainty of each local test. Thus, the p-values presented in these maps 
are adjusted using the false discovery rate adjustment approach by Yekutieli and Benjamini (1999). This 
method allows a more realistic representation of uncertainty in a field of correlated tests.

3. Results
3.1. Comparison of S and its Components

In this section, we focus on the changes in S and its components in the High Mountain Asia region and the 
QB. Figure 2 shows the downscaling results for P, ET, and P − ET for PLIO and PD and the difference be-
tween the two. Maps of adjusted p-values from two-sided Welch's t-tests are presented in Figure S2 to show 
the uncertainty in the change signal of 15-year means between PD and PLIO. Table 2 presents seasonal and 
annual values of P, ET, S, air temperature at 2 m ( 2T ), and specific humidity at 2 m ( 2Q ) averaged over the 
QB (black line in Figure 1). The associated p-values are presented in Table S1.

Over the High Mountain Asia region, simulated P is enhanced in PLIO over the Himalayas, the northern TP, 
the Tarim Basin, and the Tien Shan. Lower P in PLIO can be found in the central TP and Pamir–Karakoram 
(Figure 2c). In the QB, P strongly correlates with the altitude for both simulations, due to orographically 
induced precipitation (Figures 2a and 2b). PLIO generally has higher values of P in the QB, and the largest 
difference can be found in the Qilian Mountains, the Altyn-Tagh Mountains, and the Qimen-Tagh ranges. 
However, the change signal shows large uncertainty on the effect in the Eastern Kunlun Mountains (Fig-
ure S2a), which are located in the transition area of positive and negative values of P difference between 
PLIO and PD (Figure 2c). Averaged over the whole QB, we see increased P in all seasons in PLIO with an 
annual difference between PLIO and PD of 63 mm a−1 (Table 2).

The spatial patterns of the differences in ET between PLIO and PD (Figure 2f) generally follow those of the 
differences in P (Figure 2c) in large parts of the domain. In these regions, it is not the availability of energy 
for latent heat, but water availability that limits ET. We find a different situation in the Pamir–Karakoram 
region, the northern slopes of the central Himalayas, and the south-eastern part of the QB. This opposite 
change of P and ET in the above-mentioned regions indicates that energy availability must be the limiting 
factor for ET. In the QB, ET mainly takes place in the mountain areas, where most of the precipitation 
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occurs (Figures 2d and 2e). Averaged over the whole QB, PLIO shows an increase in ET of 36 mm a−1 com-
pared to PD.

For P − ET, PLIO and PD yield similar spatial patterns over High Mountain Asia, with negative P − ET 
over the western TP, the Tarim Basin, and some parts of the QB (Figures 2g and 2h). In PLIO, P − ET is 
decreased over the central TP, the Tarim Basin, and Pamir–Karakoram. The annual S in the QB as a whole 
is 26 mm a−1 higher in PLIO (Table 2) with a p-value of 0.058 (Table S1), which is higher than the p-values 
of the other quantities. This suggests that the observed effect is real but more research on the topic should 
be conducted to lower the level of uncertainty. Spatially, a higher S in PLIO can be found in the eastern 
and central parts of the QB (Figure 2i). Seasonally, PLIO has a higher S in the QB in winter, spring, and 
autumn. In summer, the difference in S between PLIO and PD is negative (Table 2).

The global climate in the mid-Pliocene is believed to be warmer and wetter than the modern climate, which 
is also shown in our ECHAM5 global simulations. However, this is not true for the regional climate signal 
in the QB. While the local 2Q  signal averaged over the QB is consistent with the global signal, the local 2T  
in the QB is 2 K lower in PLIO (Table 2).
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Figure 2. Fifteen-year average of annual precipitation P (a–c), evapotranspiration ET (d–f), and net precipitation P − ET (g–i) for PLIO, PD, and difference 
between PLIO and PD. The unit for all subplots is mm a−1. p-values from two-sided Welch's t-test for difference of means between PLIO and PD are presented in 
Figure S2.
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3.2. Lake Extent Analysis

In Figure 3, we summarize lake extents (Alake), lake levels (zlake), and the rise in lake levels (z) of three 
equilibrium lake states under the increase in mean annual S of 26 mm a−1 and three different estimations 
of ET lake. Figure 3 also illustrates these three projected states, where lake extents are estimated using WRF 
model topography for accumulations of P − ET and subsequent runoff originating from land in grid points 
at or below equilibrium lake levels. An increase in mean annual S of 26 mm a−1 would be sufficient to 
sustain a lake in the QB with an extent ranging from 7,298 to 12,260 km2.

3.3. Comparison of AWT

Since S is linked to the large-scale AWT, in this section, we compare AWT between PLIO and PD. Table 3 
presents the seasonal and annual AWT through each border of the Qaidam box (blue rectangle in Fig-
ure 1b), as well as the sum of AWT from all borders, that is, the atmospheric moisture budget. In both PLIO 
and PD, the western and eastern borders of the Qaidam box serve as the dominant moisture input and 
output channel, respectively. The higher annual moisture budget in PLIO derives from the increased mois-
ture influx across the western border and the decreased moisture export at the eastern border (Table 3). In 
PLIO, the increased moisture influx at the western border occurs in winter, spring, and autumn, while a 
strong reduction of moisture export at the eastern border occurs in summer. This indicates that moisture 
budget and S in the QB is related to the large-scale systems that influence the AWT at the western and 
eastern borders.

WANG ET AL.

10.1029/2020JD033965

7 of 17

PLIO PD PLIO − PD

P ET S 2T 2Q P ET S 2T 2Q P ET S 2T 2Q

DJF 51 22 29 −13.9 1.3 43 25 19 −12.2 1.3 8 −3 11 −1.7 0.0
MAM 131 87 43 −2.7 3.4 111 83 27 0.0 3.1 20 4 17 −2.7 0.3
JJA 163 152 12 8.7 7.4 151 122 29 9.9 6.0 13 30 −17 −1.2 1.4
SON 74 62 12 −3.3 3.3 52 56 −4 −1.0 3.0 22 6 16 −2.3 0.3
Annual 419 322 96 −2.8 3.9 356 286 70 −0.8 3.4 63 36 26 −2.0 0.5

Note. p-values from two-sided Welch's t-tests for difference of means between PLIO and PD can be found in Table S1.

Table 2 
Fifteen-Year Average of Seasonal and Annual Precipitation P (mm Season−1 or mm a−1), Evapotranspiration ET (mm Season−1 or mm a−1), Water Balance ΔS 
(mm Season−1 or mm a−1), air Temperature at 2 m T2 (°C), and Specific Humidity at 2 m Q2 (g kg−1) Averaged Over the Qaidam Basin for PLIO, PD, and the 
Difference Between PLIO and PD (PLIO − PD)

Figure 3. Illustrations of simulated lake extents of equilibrium lake states using the present-day model topography from WRF for accumulation of net 
precipitation in the Qaidam Basin (QB) and subsequent runoff originating from land in areas at or below equilibrium lake levels (marked in blue). The 
equilibrium lake extent (Alake), lake level (zlake), and the rise in lake level (z) were estimated applying the method described in Section 2.3 using 26 mm a−1 as 
input change in mean annual S and (a) 600 mm a−1, (b) 800 mm a−1, and (c) 1,000 mm a−1 as input lake evaporation (E lake).
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Figure 4 illustrates the route and the magnitude of seasonal moisture propagation across the whole domain. 
In both PD and PLIO, the midlatitude westerlies control the AWT in the QB throughout the year. In win-
ter, spring, and autumn, there exists an eastward moisture transport in the difference plots (Figures 4c, 4f, 
and 4l), indicating a stronger moisture transport by the midlatitude westerlies in PLIO in these seasons. 
This is supported by higher moisture input at the western border and higher output at the eastern border in 
these seasons. In summer months, the influence of the midlatitude westerlies is weaker in PLIO, as shown 
by the anomalous westward moisture transport over the QB in Figure 4i. Accordingly, the moisture input at 
the western border and the output at the eastern border are lower in PLIO.

In the summer months, moisture transport is predominantly from the southwest due to the Indian Summer 
Monsoon (ISM). This northeastward transport over the TP into the QB through the southern border of the 
Qaidam box is stronger in PD than that in PLIO (Figures 4g–4i and Table 3). Additionally, the moisture 
transport over eastern Asia by the East Asian Summer Monsoon (EASM) is stronger in PLIO. However, 
from Figure 4, it is unclear whether the EASM also contributes to the water transport into the QB. Analysis 
of the daily zonal water transport on the eastern border of the Qaidam box shows moisture input from the 
eastern border into the QB in PLIO from the middle of July to the beginning of August (Figure 5), which 
indicates the influence of the EASM in PLIO. This pattern cannot be observed in PD. The additional mois-
ture input by the EASM in PLIO also contributes to the lower values for total moisture output at the eastern 
border in summer.

3.4. Comparison of Large-Scale Circulation Patterns

The results in Section 3.3 show the higher S and moisture budget in PLIO are caused by differences in 
the AWT at the western and eastern borders of the Qaidam box. In this section, we examine the large-scale 
systems that control the AWT across these two borders.

The AWT at both the western and eastern borders is under the influence of the midlatitude westerlies 
throughout the year. The seasonal zonal wind speed along a latitude–pressure transect across the longitu-
dinal range of the QB (89°E–100°E) for PLIO and PD is presented in Figure 6. In both PLIO and PD, the 
midlatitude westerlies show seasonal migrations: a southward extension from summer to winter and a 
northward contraction from winter to summer. The maximum zonal wind speed occurs at around 200 hPa 
in all seasons. PLIO shows a poleward shifted and contracted westerly zone. Following the methods used 
by J. Sun et al. (2020), we defined a strength index as the average maximum zonal wind speed at 200 hPa 
at each longitude over the Qaidam box to quantify the strength of the westerlies over the QB. Under the 
mid-Pliocene conditions, the westerlies over the QB are stronger in all seasons except for summer (Fig-
ure 7), which explains the larger AWT through the western and eastern borders (Table 3).

Figures  8a–8c show the 500  hPa geopotential height and wind field in summer for PLIO and PD. The 
Northwest Pacific subtropical high (NPSH) intensifies and extends westwards in PLIO, indicated by higher 
geopotential and stronger anticyclonic circulation over eastern China (Figure 8a). The NPSH is a major 
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PLIO PD PLIO − PD

West East South North Sum West East South North Sum West East South North Sum

DJF 327 −298 −38 28 19 277 −248 −7 −2 19 50 −50 −31 30 0
MAM 433 −399 50 −49 36 390 −368 19 −14 28 43 −31 31 −35 8
JJA 344 −283 120 −174 8 407 −459 159 −95 12 −63 176 −39 −79 −4
SON 415 −414 71 −79 −7 368 −394 95 −80 −11 47 −20 −24 1 4
Annual 1,519 −1,393 204 −274 56 1,441 −1,469 267 −191 48 78 76 −63 −83 8

Note. Positive values indicate moisture input into the Qaidam Basin, while negative values represent moisture output. p-values from two-sided Welch's t-tests 
for difference of means between PLIO and PD can be found in Table S2.

Table 3 
Fifteen-Year Average of Seasonal and Annual Atmospheric Water Flux Converted to Theoretical Precipitation Amount (mm Season−1 or mm a−1) Through Each 
Border of the Qaidam Box (Blue Rectangle in Figure 1b)
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component of the subtropical EASM and regulates the northern edge of the EASM (Huang et al., 2019). The 
strengthening of the EASM in PLIO is coupled with a tilted jet stream axis over northeastern China. The 
influence of the EASM on the QB is not visible in the climatology of the summer wind field at the 500 hPa 
level. Therefore, we selected the period from July 17 to July 27, when the daily AWT averaged over all the 
grid points at the eastern border of the Qaidam box is negative (westward), to define the period, when the 
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Figure 4. Fifteen-year mean seasonal atmospheric water transport (kg m−1 s−1) in DJF (a–c), MAM (d–f), JJA (g–i), and SON (j–l) for PLIO (a, d, g, and j), PD 
(b, e, h, and k), and the difference between PLIO and PD (c, f, i, and l). Colors represent the strength of water vapor flux; arrows indicate transport direction.



Journal of Geophysical Research: Atmospheres

WANG ET AL.

10.1029/2020JD033965

10 of 17

Figure 5. Fifteen-year average of daily zonal atmospheric water transport (kg m−1 s−1) of 16 grid poinrts at the eastern border of the Qaidam box (blue rectangle 
in Figure 1b) for (a) PLIO and (b) PD. Grid point 1 and grid point 16 represent the south-most and north-most grid point. Reddish colors indicate water 
transport away from the Qaidam Basin, while blueish colors indicate water transport toward the Qaidam Basin.

Figure 6. Fifteen-year average of seasonal zonal wind speed (m s−1) along a latitude–pressure transect averaged from 89°E–100°E for PLIO (a–d) and PD (e–h) 
in DJF (a and e), MAM (b and f), JJA (c and g), and SON (d and h). Dashed lines show the latitudinal range of the Qaidam Basin.
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QB is under the direct influence of the EASM. The geopotential height 
and wind field at 500 hPa in this period are presented in Figures 8d–8f. 
During this period, the NPSH intensifies and extends further northwest-
ward in both PLIO and PD, as compared to the climatology in the sum-
mer. In PLIO, the southern part of the QB is clearly under the control of 
easterly winds in this period (Figure 8d).

4. Discussion
4.1. Implications of the Higher S in the QB in PLIO

The PLIO simulation presented here cannot be considered as a recon-
struction of the regional climate in the QB for the mid-Pliocene. A recon-
struction is neither the intention of this study nor is possible at this time 
at a grid spacing of 30 km. This would require Pliocene surface condi-
tions, such as topography and land cover, at an equivalent or even higher 
resolution, which are not available to date. The most commonly used sur-
face boundary conditions for mid-Pliocene simulations are from the US 
Geological Survey's Pliocene Research Interpretation and Synoptic Map-
ping (PRISM) project (Dowsett et al., 1994). The most recently released 

PRISM4 data set has a 11 grid spacing (Dowsett et al., 2016), which is too coarse for regional climate 
simulations at a grid spacing of 30 km. Moreover, the exact extent and location of the Qaidam megalake sys-
tem in the mid-Pliocene is unknown. We took only required meteorological fields from the ECHAM5 model 
to drive the WRF model and applied the same geographical static data from WRF Preprocessing System for 
both PLIO and PD simulations. This approach has the benefit of isolating the influence of atmospheric var-
iables on the hydroclimate of the QB from other factors, such as land cover and vegetation changes.
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Figure 7. Fifteen-year average of seasonal strength index of jet stream 
(m s−1) over the Qaidam Basin for PLIO and PD, calculated as defined in J. 
Sun et al. (2020).

Figure 8. Fifteen-year climatology of geopotential (shading, m2 s−2) and wind field (arrows, m s−1) at 500 hPa averaged in JJA (a–c) and from July 17 to July 27 
(d–f) for PLIO, PD, and PLIO − PD.
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Therefore, the PLIO simulation cannot be interpreted on its own but in conjunction with the PD simulation. 
Interpretation of the simulation results should focus on the differences between PLIO and PD simulations. 
The QB has a higher S in PLIO than in PD. This imbalance in S induced solely by the changes in large-
scale atmospheric circulations could result in a lake much larger than Lake Qinghai, the largest salt lake 
in China (4,317  km2), as shown in our lake extent analysis (Section  3.2). The maximum lake extent of 
59,000 km2 approximated from proxy data (Chen & Bowler, 1986) is still much larger than the estimations 
we present here. This indicates that factors besides large-scale atmospheric circulation also contributed to 
sustaining the megalake system during the Pliocene.

4.2. Comparison With Pliocene Model Intercomparison Project Simulations

The changes in large-scale circulation patterns in PLIO are in good agreement with recent modeling studies 
(Huang et al., 2019; X. Li et al., 2015; Zhang et al., 2013). The results of these studies are based on simula-
tions in the Pliocene Model Intercomparison Project (PlioMIP) using PRISM3D as boundary conditions, 
which is the same as our forcing ECHAM5 simulation for the mid-Pliocene. X. Li et al.  (2015) found a 
global poleward shift of the midlatitude westerlies and an increase of zonal wind on the poleward flank of 
the westerly jet in the mid-Pliocene. The poleward shift of the midlatitude westerlies is accompanied by a 
poleward shift of Hadley and Ferrel cells. The intensification and northwestward extension of the EASM in 
the mid-Pliocene are also simulated by models in PlioMIP (Huang et al., 2019; Zhang et al., 2013). Huang 
et al. (2019) compared modeled results to paleontological data from 43 sites throughout China. The north-
ern margin of the EASM indicated by the wet–dry boundary located further northwest in the mid-Pliocene 
(Figure 4 in Huang et al. [2019]), which is roughly consistent with their modeled results.

In addition, we compared PD and PLIO simulations, and PD_GCM and PLIO_GCM simulations generated 
by ECHAM5 with COSMOS (Stepanek & Lohmann, 2012) and HadCM3 (Bragg et al., 2012) simulations, in 
terms of P. These two are the end-members of PlioMIP in simulated, regionally averaged annual precipita-
tion deviations from the preindustrial, as identified by Zhang et al. (2013). As shown in Figure 9, the coarse 
end-members COSMOS and HadCM3 are not able to produce orographic precipitation patterns correctly, 
such as those along the Himalayan orogen. Our high-resolution ECHAM5 simulations already show im-
provements. Nevertheless, the skill of GCMs in predicting orographic precipitation remains limited (e.g., 
Meehl et al., 2007). This is particularly true at the scale of interest in this study. At coarse grid resolutions, 
orography is systematically lower than at fine grid resolutions, such that blocking of air masses and oro-
graphically induced precipitation are generally underestimated. While the latter effect generally leads to an 
underestimation of total precipitation, less blocking could act in both directions. Less blocking could result 
in excessive AWT, which does not necessarily lead to more precipitation since for this atmospheric water to 
become precipitable, a trigger is needed (Lin et al., 2018). Consequently, the direction in which less blocking 
changes precipitation remains complicated. In addition, the WRF runs use a nonhydrostatic pressure solver 
while GCMs assume hydrostatic conditions, which further improves predictions of relatively small-scale 
phenomena that departures from the hydrostatic balance (Yang et al., 2017). In total, the WRF dynamical 
downscaling is able to physically resolve mesoscale atmospheric processes that are not included in GCM 
simulations. Given the aforementioned differences between WRF and GCMs, it is therefore not surprising 
that mean annual mid-Pliocene precipitation deviation simulated with WRF shows some discrepancies to 
GCM (Figure 10). Although the big picture of precipitation deviations from WRF is in line with ECHAM5, 
disagreement can be found over the complex terrains on the TP. WRF exhibits possible improvements, for 
example, in the eastern Himalayas and over the TP, where the spatial patterns of precipitation deviations 
are more coherent than in ECHAM5.

4.3. Large-Scale Systems Controlling the S in the QB

There exists a debate on which large-scale system dominates the hydroclimate in the QB in previous studies 
based on proxy reconstructions. Caves et al. (2015) summarized published data of the spatial distribution of 
oxygen isotopes in precipitation over High Mountain Asia since the early Eocene (56 Ma BP). They found 
that sites at the QB show consistently higher O18 values in the paleo-precipitation than sites in the south-
ern TP, which indicates that westerlies have dominated the moisture supply over the QB since the early Eo-
cene. The authors concluded that the reduction in moisture supply by the westerlies since the early Eocene, 
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rather than uplift of the TP or changes in ISM strength, is the driver of the step-wise drying in central Asia. 
The modern EASM is believed to have a weak or no influence on the QB (e.g., Huang et al., 2019; L. Yu & 
Lai, 2012). This is also shown in our PD simulation. There is no westward moisture transport across the 
eastern border of the Qaidam box in the course of the year (Figure 5b). G. Xu et al. (2011) found correlation 
between the tree ring O18 series collected from the eastern margin of the QB and the strength of EASM 
from 1873 to 1975. Y. Miao et al. (2011) examined a pollen record from the KC-1 core, which was extracted 
in the western part of the QB and covers a period of 18–5 Ma. A transition from a warm–wet climate to a 
cold–dry climate was found in the QB during this period, and the authors concluded that this transition 
was driven by the evolution of the East Asian Monsoon system. Our moisture budget analysis shows that 
the midlatitude westerlies dominate the AWT over the QB in both PLIO and PD (Table 3). However, the 
difference in the moisture budget in the QB between PLIO and PD is a combined effect of changes in the 
midlatitude westerlies and the EASM.

4.4. Implications for the Future

The mid-Pliocene warm period is a potential analog of future anthropogenic warming since both periods 
feature a higher CO2 concentration than the modern level (Burke et al., 2018). Previous studies reveal that 
both the mid-Pliocene and projected future climates show similar large-scale atmospheric circulations to 
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Figure 9. Mean annual mid-Pliocene precipitation climatologies for Pliocene Model Intercomparison Project (PlioMIP) simulations conducted with (a) 
COSMOS and (b) HadCM3, and for this study's simulations conducted with (c) ECHAM5 and (d) WRF.
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some extent. For example, Y. Sun et al. (2013) applied three Atmosphere–Ocean GCM simulations for Rep-
resentative Concentration Pathway (RCP) 4.5 scenario, mid-Pliocene, and present day. Their results showed 
a poleward expansion and an intensification of the Hadley cell over the subtropics under both mid-Plio-
cene and future climates, but the response of the Walker cell depicts some discrepancies. A conclusion was 
drawn that the Hadley cell in the mid-Pliocene can be a good analog of the Hadley cell in the future due 
to the linear relationship between the south-north thermal contrast and the CO2 concentration. But this 
analog hypothesis has limitations since the response of the east-west thermal contrast to CO2 concentration 
is more complicated and not similar. The monsoon dynamics between the mid-Pliocene climate and the 
projected future climate under the Extended Concentration Pathway version 4.5, which is an extension 
of RCP4.5 beyond 2100, were also investigated in a prior study (Y. Sun et al., 2018), who found that both 
climates show large-scale similarities and an enhanced EASM, which is due to the increase in thermally 
controlled large-scale moisture transport.

Combined with our results and discussions, the high similarity of large-scale circulations between the 
mid-Pliocene climate and the projected future climate implies a possible transient state in the QB, during 
which S will increase, if the EASM extends into the QB and AWT by the westerlies increases. The in-
creased S would lead to the recharge of groundwater reservoirs and subsequent rise of lake levels in the 
QB until S is balanced again.

5. Conclusions
In this study, we utilized the WRF model for dynamical downscaling of ECHAM5 global simulations for 
the present day and the mid-Pliocene. The downscaling results show that when imposing the mid-Pliocene 
climate to the QB with its modern land surface settings, the annual S would increase by 26 mm a−1. This 
positive imbalance of S induced only by the changes in the large-scale climate state would be sufficient to 
sustain a lake in the QB with an extent ranging from 7,298 to 12,260 km2, depending on the value of ET lake.

The annual moisture budget in the QB is higher in PLIO, corresponding with the higher S. Higher mois-
ture input from the western border and lower moisture output at the eastern border are the main reasons for 
the higher annual moisture budget and higher S in PLIO. These two borders are both under the influence 
of midlatitude westerlies. The eastern border is additionally regulated by the EASM in PLIO. In PLIO, the 
midlatitude westerlies contract poleward and intensify over the QB in winter, spring, and autumn, trans-
porting more moisture into the QB through its western border. In summer, the strengthening of the EASM 
accompanied by weakened westerlies in PLIO leads to the decrease of moisture output at the eastern border. 
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Figure 10. Mean annual mid-Pliocene precipitation deviations for (a) ECHAM5 and (b) WRF from present-day precipitation.
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We conclude that the strengthening of the midlatitude westerlies in all seasons, except for summer, and the 
intensification of the EASM lead to higher moisture budget and higher S in the QB in PLIO.

The mid-Pliocene climate shares similarities in large-scale circulations with projected future climate sce-
narios. Thus, our results can contribute to a better understanding of the impacts of climate change and 
future lake development in central Asia. Our results also highlight the added values of applying high-reso-
lution GCM and dynamical downscaling by WRF. High resolution can resolve fundamental processes over 
complex terrains, such as orographic precipitation and AWT, more realistically.

Data Availability Statement
The WRF V4.1.2 model used in this study is freely available under the official website of WRF: http://
dx.doi.org/10.5065/D6MK6B4K. The setup files for the WRF model are included in the supporting infor-
mation. The WRF model output data used in this study are available at https://doi.org/10.26050/WDCC/
RRA_WRF_simulations.
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Figure S1. Comparison of annual precipitation (upper) and atmospheric water transport

(lower) from PD (left) and ERA5 between 2000 and 2014 (right).
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Figure S2. Maps of adjusted p-values from two-sided Welch’s t-test for difference between

PLIO and PD of 15-year average of annual (a) precipitation (P ), (b) evapotranspiration (ET ),

and (c) net precipitation (P − ET ).
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Table S1. P -values from two-sided Welch’s t-test for difference between PLIO and PD of 15-

year average of seasonal and annual precipitation (P ), evapotranspiration (ET ), water balance

(∆S), air temperature at 2 m (T2) and specific humidity at 2 m (Q2) averaged over the Qaidam

Basin (QB).

P ET ∆S T2 Q2
DJF 0.080 0.000 0.018 0.000 0.691

MAM 0.002 0.016 0.016 0.000 0.001
JJA 0.051 0.000 0.043 0.000 0.000
SON 0.000 0.000 0.010 0.000 0.001

Annual 0.000 0.000 0.058 0.000 0.000

Table S2. P-values from two-sided Welch’s t-test for difference between PLIO and PD of 15-

year average of seasonal and annual atmospheric water flux through each border of the Qaidam

box (blue rectangle in Figure 1b).

West East South North Sum
DJF 0.005 0.001 0.010 0.008 0.349

MAM 0.166 0.266 0.131 0.182 0.010
JJA 0.017 0.000 0.414 0.137 0.050
SON 0.062 0.351 0.297 0.696 0.063

Annual 0.377 0.185 0.246 0.495 0.001
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Setup files for the the Weather Research and Forecasting model

namelist.wps
&share
wrf_core = ’ARW’,
max_dom = 1,
start_date = ’2011-07-09_12:00:00’,
end_date = ’2011-07-11_00:00:00’,
interval_seconds = 21600,
io_form_geogrid = 2,
debug_level = 0,

/

&geogrid
parent_id = 1,
parent_grid_ratio = 1,
i_parent_start = 1,
j_parent_start = 1,
e_we = 281,
e_sn = 217,
geog_data_res = ’usgs_lakes’,
dx = 30000,
dy = 30000,
map_proj = ’lambert’,
ref_lat = 32,
ref_lon = 83,
truelat1 = 32,
truelat2 = 38,
stand_lon = 83,
geog_data_path = ’/sim/wrf/static/WRFV4.0/’,
!opt_geogrid_tbl_path = ’geogrid/’

/

&ungrib
out_format = ’WPS’,
prefix = ’ERA5_pl’,

/

&metgrid
fg_name = ’/sim/forcing_data/GCM/PD/Post/IFF/GCM_PD’,
constants_name = ’./TAVGSFC’,
io_form_metgrid = 2,

/
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namelist.input
&time_control
run_days = 1,
run_hours = 12,
run_minutes = 0,
run_seconds = 0,
start_year = 2011,2011,2011,
start_month = 07, 07, 07,
start_day = 09, 09, 09,
start_hour = 12, 12, 12,
start_minute = 00, 00, 00,
start_second = 00, 00, 00,
end_year = 2011,2011,2011,
end_month = 07, 07, 07,
end_day = 11, 11, 11,
end_hour = 00, 00, 00,
end_minute = 00, 00, 00,
end_second = 00, 00, 00,
interval_seconds = 21600,
input_from_file = .true., .true., .true.,
history_interval = 180, 60, 60,
frames_per_outfile = 1000, 1000, 1000,
restart = .false.,
restart_interval = 5000,
io_form_history = 2,
io_form_restart = 2,
io_form_input = 2,
io_form_boundary = 2,
debug_level = 0,
auxinput4_inname = "wrflowinp_d<domain>",
auxinput4_interval = 360,
io_form_auxinput4 = 2,
iofields_filename = "./add_out_d01.txt",
ignore_iofields_warning = .false.,

/

&domains
max_dom = 1,
time_step = 120,
time_step_fract_num = 0,
time_step_fract_den = 1,
s_we = 1, 1, 1,
e_we = 281, 382, 711,
s_sn = 1, 1, 1,
e_sn = 217, 253, 296,
s_vert = 1, 1, 1,
e_vert = 28, 28, 28,
eta_levels = 1.000000,0.993000,0.983000,0.970000,0.954000,0.934000,0.909000,0.880000,

0.829576,0.779151,0.728727,0.678303,0.591744,0.513694,0.443454,0.380375,
0.323853,0.273326,0.228273,0.188210,0.152689,0.121294,0.093643,0.069378,
0.048173,0.029725,0.013753,0.000000,

num_metgrid_levels = 31,
num_metgrid_soil_levels = 5,
dx = 30000, 10000, 2000,
dy = 30000, 10000, 2000,
grid_id = 1, 2, 3,
parent_id = 1, 1, 2,
i_parent_start = 1, 85, 202,
j_parent_start = 1, 84, 115,
parent_grid_ratio = 1, 3, 5,
parent_time_step_ratio = 1, 3, 5,
feedback = 1,
smooth_option = 0,
hypsometric_opt =1,
interp_theta = .true.,
lagrange_order = 1,
/

&physics
mp_physics = 10, 10, 10,
ra_lw_physics = 1, 1, 1,
ra_sw_physics = 1, 1, 1,
radt = 30, 10, 2,
sf_sfclay_physics = 1, 1, 1,
sf_surface_physics = 2, 2, 2,
bl_pbl_physics = 1, 1, 1,
bldt = 0, 0, 0,
cu_physics = 10, 10, 0,
cudt = 5, 1, 1,
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isfflx = 1,
icloud = 1,
surface_input_source = 1,
num_soil_layers = 4,
mp_zero_out = 0,
num_land_cat = 28,
sst_update = 1,
usemonalb = .false.,
rdmaxalb = .true.,
seaice_threshold = 271,

/

&fdda
/

&dynamics
hybrid_opt= 0,
rk_ord = 3,
w_damping = 1 ,
diff_opt = 1, 1, 1,
km_opt = 4, 4, 4,
diff_6th_opt = 2, 2, 2,
diff_6th_factor = 0.12, 0.12, 0.12,
base_temp = 290.,
damp_opt = 3,
zdamp = 5000., 5000., 5000.,
dampcoef = 0.2, 0.2, 0.2,
khdif = 0, 0, 0,
kvdif = 0, 0, 0,
non_hydrostatic = .true., .true., .true.,
moist_adv_opt = 1, 1, 1,
scalar_adv_opt = 1, 1, 1,
use_theta_m = 0,
epssm = 0.1, 0.1, 0.5,

/

&bdy_control
spec_bdy_width = 5,
spec_zone = 1,
relax_zone = 4,
specified = .true., .false., .false.,
nested = .false., .true., .true.,

/

&namelist_quilt
nio_tasks_per_group = 0,
nio_groups = 1,

/

&grib2
/
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