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Abstract

Deutsche Zusammenfassung

Das Formulieren und Lösen von großskaligen Prozesssyntheseproblemen unter Unsicher-
heit bleibt eine Herausforderung im Chemieingenieurswesen. Im Rahmen dieser Arbeit
wird ein Framework für das Lösen von wahrscheinlichkeitsbeschränkten gemischtganz-
zahlig nichtlinearen Optimierungsproblemen entwickelt. Das Framework ist in Python
implementiert und hat Schnittstellen zu Simulatoren für Differentialalgebra und reine
Algebrasysteme sowie zu Optimierungsalgorithmen für nichtlineare und gemischtganz-
zahlig nichtlineare Probleme. Für den unsicheren Parameterraum wird eine multivariate
Normalverteilung vorausgesetzt. Der Zusammenhang zwischen Wahrscheinlichkeitsraum
und Wahrscheinlichkeitsbeschränkung muss nicht monoton sein. Dies stellt eine erhe-
bliche Verbesserung gegenüber existierenden Implementierungen dar. Die wahrschein-
lichkeitsbeschränkte Optimierung erfordert eine wiederholte Auswertung der zugrunde
liegenden Simulationsmodelle, welche dementsprechend numerisch stabil und schnell sein
müssen bei gleichzeitig ausreichender Genauigkeit bezüglich relevanter Zustandsgrößen.
Um den Arbeitsablauf zu unterstützen werden im Rahmen dieser Arbeit auch die Mod-
ellentwicklung, Modellumformulierung zur numerischen Stabilisierung und strukturelle
Modellvereinfachung behandelt. Sobald ein passendes Modell gefunden ist, wird die
Identifikation der unsicheren Parameter essentiell, um sinnvolle Ergebnisse bei der Lö-
sung des gemischtganzzahlig nichtlinearen Optimierungsproblems unter Unsicherheit zu
erzielen. Hierfür wird eine Parameterschätzung in zwei Schritten durchgeführt. Unbe-
kannte Parameter werden zunächst auf ihre Identifizierbarkeit hin untersucht und unter
den identifizierbaren schießlich die sensitivsten bezüglich einer nutzerdefinierten Zielfunk-
tion ausgewählt.

Die entwickelten Methoden und das Softwareframework werden anschließend auf die
Optimierung der Produktaufbereitung der oxidativen Kopplung von Methan angewen-
det. Diese wandelt Methan in Ethen bei gleichzeitiger Bildung von u.a. Kohlenstoffdioxid.
Für die Produktauftrennung kommt eine Vielzahl verschiedener Trennapparate in Frage.
Beispiele sind die Absorption von Kohlenstoffdioxid mit Monoethanolamin oder Me-
thyldiethanolamin, Gastrennmembranen verschiedener Materialien und die Druck- oder
Temperaturwechseladsorption mit verschiedenen Adsorbentien. In der vorliegenden Ar-
beit werden hinreichend schnelle und genaue Modelle für diese Optionen entwickelt und
basierend auf Messdaten aus der Miniplant an der Technischen Universität Berlin die un-
sicheren Parameter in Parameterschätzungen identifiziert. Sowohl deterministische als
auch wahrscheinlichkeitsbeschränkte Optimierungsstudien werden für unterschiedliche
Kombinationen oben genannter Trennapparate durchgeführt. Es kann gezeigt werden,
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dass eine Kombination aus Membranen und anschließender Absorption den spezifischen
Energiebedarf für die Kohlenstoffdioxidabtrennung minimiert und gleichzeitig den Pro-
duktverlust an Ethen möglichst limitiert. Die Optimierung der Produktauftrennung
wird für verschiedene Austrittskonzentrationen des Reaktors durchgeführt, bei denen
sowohl Stickstoff als auch Kohlenstoffdioxid als Verdünnungsgase eingesetzt werden. Eine
abschließende Bewertung der Optimierungsergebnisse ist nur unter Berücksichtigung
des Reaktordesigns und der weiteren, hier nicht behandelten Produktauftrennschritte
möglich. Dies muss in weitergehenden Arbeiten untersucht werden. Im Rahmen dieser
Arbeit wird gezeigt, dass der Lösungsansatz der Optimierung unter Unsicherheit ro-
bust ist, um in akzeptabler Zeit praxisrelevante Lösungen für Superstrukturprobleme zu
finden.

English Summary

The formulation and solution of large-scale process synthesis problems under uncertainty
remains a challenging topic in chemical engineering. As part of this thesis a frame-
work is developed for the chance-constrained optimization of mixed-integer nonlinear
programming problems. The framework is implemented in python with interfaces to
various differential algebraic equation system and algebraic equation system simulators
as well as optimization solvers for nonlinear programming and mixed-integer nonlinear
programming problems. A multivariate-normal distribution is assumed for the uncer-
tain parameter space. The relationship between the probability space and the chance
constraint is not required to be monotonous, which is a major advantage to existing
implementations. Chance-constrained optimization requires a frequent simulation of the
underlying models, which consequently need to be numerically stable and fast. In or-
der to support the performance of the chance constraint framework, model derivation
methods, reformulation techniques for numerical stabilization, and structural model sim-
plification are discussed. Once a suitable model is found the identification of uncertain
parameters is essential for finding a sensible solution to any mixed-integer nonlinear pro-
gramming problem under uncertainty. For this purpose a two-stage parameter estimation
is employed, which initially tests parameters for identifiability and then performs further
sensitivity selections on the identifiable set based on a user-defined objective function.

The derived techniques and the software framework are subsequently employed for
the optimization of the downstreaming section of a process concept for the oxidative
coupling of methane (OCM). The latter reaction turns methane into ethene with the
byproduction of (among other things) carbon dioxide. For the product purification a
number of different separation units can be used. A few examples are the absorption of
carbon dioxide using either monoethanolamine or methyldiethanolamine, gas separation
membranes of different materials, and pressure or temperature swing adsorption using
different adsorbents. Within the scope of this thesis, suitably fast and accurate models
for each unit are derived and uncertain parameters are identified based on parameter es-
timation using experimental data obtained from a mini-plant at Technische Universität

iv



Berlin. Both deterministic and chance-constrained optimizations studies of various com-
binations of the afore-mentioned separation units are carried out comparing the effect
of the uncertainty on both structural and operational decisions for the overall process
concept. It is shown that the combination of membranes with a subsequent absorption
desorption process guarantees an optimal performance minimizing the specific energy
required for the removal of carbon dioxide while keeping the loss of the product, ethene,
in check. The optimization of the downstreaming is performed for various combinations
of reaction outlet concentrations using both nitrogen and carbon dioxide as dilutents. A
final assessment of the optimization results has to be carried out considering the reactor
design and further seperation steps, which are not dealt with here. This has to be done
in future work. Within this contribution it is shown that the developed approach to solve
optimization problems under uncertainty is robust enough to generate practical solutions
for superstructure optimization problems in acceptable time.
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Chapter 1

Introduction and Motivation

This thesis deals with the optimization under uncertainty applied on the superstructure
of a mini-plant for the oxidative coupling of methane. Hence, this initial chapter shall
shed some light on why the oxidative coupling of methane is of interest for future natural
gas utilization. Further, process and equipment options are discussed, which are sensible
and have been investigated so far. Lastly, the merits of investigating said superstructural
options under uncertainty are highlighted.

1.1 Oxidative Coupling of Methane

The oxidative coupling of methane (OCM) has been known since the 1980s as an alterna-
tive process to generate ethene (C2H4) instead of steam cracking of longer hydrocarbons.
OCM allows for the partial oxidation of methane (CH4) with oxygen (O2) and the ad-
ditional formation of water (H2O) (Keller and Bashin, 1982). The net reaction equation
is given by reaction {1.1}, which is strongly exothermic at a net heat of reaction of -280
kJ/mol.

2 CH4 + O2 C2H4 + 2 H2O {1.1}

The OCM reaction is a heterogeneous catalysis with most reactions taking place on the
catalyst surface itself and some additional gas phase reactions. Lunsford (1990) system-
atically investigated a wide variety of metal oxides as catalysts implementing them in a
fixed-bed reactor (FBR) at atmospheric pressure and temperatures surpassing 650 ◦C.
The experiments showed combined ethane and ethene yields (Y C2) of up to 20 mol. %.
As a typical behavior a C2 selectivity (S C2) of 50 mol. % is observed at a methane con-
version (X) of roughly 40 mol. %. Similary, Otsuka et al. (1986) carried out experiments
using 30 different metal oxides as catalysts. They concluded that the introduction of ox-
ides of rare earth elements or ensuring a high methane to oxygen ratio are fundamental
for guaranteeing S C2 greater than 80 mol. %.

Apart from the development of a suitable catalyst, Mleczko and Baerns (1995) dis-
cussed the importance of designing suitable reactors for the OCM reaction to best control
the reaction conditions, i.e. especially temperature and partial pressures of CH4 and O2.

Interest in OCM abated in the 1990s due to the lower price of crude oil. In the early
2000s a number of research groups regained interest into OCM given increasing demand
for ethene and apparently dwindling oil resources (Lunsford, 2000; Li, 2001; True, 2012).
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Especially the recent rise of shale gas has renewed efforts to derive ethene from gaseous
feedstocks with a high methane content (True, 2013).

Among other aspects, the founding of research collaborations such as the Berlin, Ger-
many, based cluster of excellence “Unifying Concepts in Catalysis”1 financed by the Ger-
man research foundation (Grant No. DFG EXC 314) led to considerable success with
respect to many aspects of the reaction engineering aspects of the OCM reaction. Per-
formance and durability of catalysts and their supports are being extensively examined,
ensuring optimal operation conditions is investigated, and tailor-made reactor designs
are implemented. In 2014 this effort culminated to roughly 380 publications specifically
dealing with “Oxidative Coupling of Methane”2.

These publications mainly focus on aspects such as catalyst preparation and support
material synthesis (Yildiz et al., 2014; Ghose et al., 2014; Godini et al., 2014b; Yunarti
et al., 2014), new control schemes for OCM reactors, such as pulsing of the feed gases
(Beck et al., 2014), combinations with other reactions, e.g. hydrogenation of carbon ox-
ides (Albrecht et al., 2014) or dry reforming of methane (Godini et al., 2013b). Apart
from major advancements on the catalyst side, various fluidized bed reactors, packed-bed
(membrane) reactors (Godini et al., 2013a), and hollow fibre membrane reactors (Oth-
man et al., 2014) have been designed and successfully implemented.

However, as the gist of all these publications stands the realization that a yield of 20
mol. % is viable, maybe even 30 mol. %. But, for reasonable dilutions of the feed gas and
sustainable operation conditions in terms of the catalyst’s endurance, the C2 selectivity
will not surpass 70 mol. % (Godini et al., 2014a).

Stansch et al. (1997) derived a kinetic for the OCM reaction over the La2O3/CaO
catalyst, for which they identified ten reaction steps as shown in Fig. 1.1. Accordingly,
the reacted methane, which is not coupled into ethane or ethene, is oxidized into carbon
dioxide (CO2) or carbon monoxide (CO). Moreover, for each C2H4 or C2H6 molecule
formed, two CH4 molecules are required, while each carbon oxide directly stems from a
single methane molecule. This implies that at a constant methane conversion a single
percentage point of loss in C2 selectivity causes an overproportional increase in the carbon
oxide concentrations compared to the decrease of the amount of C2 components.

Hence, some thought has already gone into possible process schemes, which will be
discussed and built upon in the next chapter.

1.2 Process Synthesis - Reactor Design and Product
Purification

Even during the very early stages of the OCM process development, several different
alternative process schemes were being discussed. In Mleczko and Baerns (1995, pp. 240)

1http://www.unicat.tu-berlin.de, last accessed: 2015/01/06
2The number of publications was generated based on a Google Scholar search (http://scholar.google.
com), date accessed: 2015/01/06
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1.2 Process Synthesis - Reactor Design and Product Purification

Figure 1.1: Reaction network of the OCM reaction over the La2O3/CaO catalyst accord-
ing to (Stansch et al., 1997). Reaction 7 is the only non-catalytic gas-phase
reaction.

an extensive review of all process schemes published in the 1980s and early 90s was car-
ried out summarizing that these were all quite similar and that they “illustrate that an
improvement of the overall process economics can be achieved when the performance [of]
the OCM reactor will be improved or when new separation techniques become available”.
The process schematics are all fairly similar. All of them contain the OCM reactor and
a subsequent separation into C2H4, C2H6, CH4, CO2, H2O, and CH4. In addition, they
usually have a combined stream of CO and H2. The CH4 is commonly recycled directly to
the feed of the reactor, while the combined stream is usually processed via an additional
methanation step and also recycled. The actual differences lie in smaller details such as
an additional ethane injection into the oxygen-free zone in the OXCO process (Edwards
et al., 1991) or the usage of common air in the ARCO GTG process (Sofranko and Jubin,
1989) instead of pure oxygen.

In more recent publications the idea of new or more advanced separation techniques
implied by Mleczko and Baerns (1995) has come into greater focus. In Stuenkel et al.
(2009); Stünkel et al. (2009); Stünkel (2013) a more concrete flowsheet for the overall
OCM process is discussed, which is summed up in Fig. 1.2. N2 is used as a represen-
tative for any diluting inert gas, which of course also needs to be separated, ideally
in the CH4/H2 separation step to allow for a direct recycle back into the reactor. Fo-
cusing on the CO2 separation step Stünkel (2013) suggests a number of measures to
improve the efficiency of the overall process concept. The state of the art process con-
cept for the absorption of CO2 from any gas stream still is the amine-based absorption
and subsequent thermal desorption. By extensive mini-plant experiments Stünkel (2013)
derives for generic OCM product gas a specific heat for the removal of CO2 of roughly 5
MJ/kgCO2, when applying 30 wt. % monoethanolamine solution (MEA) as a scrubbing
liquid. A reduction of this value can be achieved by either the application of a different
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Figure 1.2: Generic flowsheet of the OCM process according to (Stünkel, 2013).

scrubbing liquid altogether or the introduction of different separation techniques, such as
gas separation membranes. Stünkel et al. (2012); Stünkel (2013) suggest the application
of Methyl diethanolamine (MDEA) as a different scrubbing liquid and a Matrimid/Poly-
imide (PI) membrane for an initial removal of CO2 before entering the absorption process.

The idea of gas separation membranes is picked up again by Song et al. (2013) based
on networks of different membranes, namely the combination of a PI membrane and
a Polyethylene oxide (PEO) membrane into a so called stripping cascade as shown in
Fig. 1.3. The strength in the combination of those two membranes lies in the high se-

Figure 1.3: Stripping cascade of a PI and a PEO membrane in accordance with (Song
et al., 2013).

lectivity of CO2 vs. C2H4 and low permeability of the PI and the lower selectivity but
higher permeability of the PEO membrane. This way the mole fraction of CO2 is in-
creased before the PI membrane reducing the loss of C2H4 and increasing the permeation
of CO2 at the same time.

A more fundamental change to the flowsheet shown in Fig. 1.2 has been suggested in
(Son et al., 2012; Son, 2014) by the introduction of an adsorption unit before the CO2
separation and the replacement of the inert gas N2 by CO2. The resulting updated flow-
sheet is shown in Fig. 1.4. Despite the fact that pressure or temperature swing adsorption
processes usually are intensive both with respect to investment and operation costs, the
introduction here offers a number of interesting options. First of all, replacing N2 with
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Figure 1.4: Adsorption-based flowsheet of the OCM process in accordance with (Son,
2014).

CO2 as a diluting gas for the reaction reduces the number of components which need to be
separated subsequently. Secondly, CO2 can also be used as a sweep gas for the adsorption
allowing for the recycle of the unreacted CH4 and directly diluting it. This eliminates
the additional CH4/H2 separation step in the flowsheet shown in Fig. 1.2, however, at
the same time will cause a considerable increase in the size and cost of the CO2 separation.

Apart from the aforementioned superstructural options a number of integrated solu-
tions have been suggested, meaning the combination with additional reactions or the
introduction of the OCM process into existing process concepts.

The ARCO GTG process has already been mentioned above. The GTG therein stands
for the subsequent oligomerization of the ethene gas to gasoline (Sofranko and Jubin,
1989). The OXCO process (Edwards et al., 1991) and the Suzuki OCM process (Suzuki
et al., 1996) ultimately follow the same path with the main products being gasoline and
diesel. These paths towards liquid fuel production are in comparison to Fischer-Tropsch
no longer pursued as they can only become competitive for sources of CH4, which already
contain considerable amounts of longer hydrocarbons, such as C2H6.

More recently, in (Salerno-Paredes, 2012), the cogeneration of ethylene and electricity,
formaldehyde, or methanol using the OCM reaction has been considered based on nu-
merous flowsheet simulations to investigated superstructural options. In (Godini et al.,
2013b,c) the combination of the OCM reaction with the dry reforming of methane to
produce syngas (H2 + CO) as a secondary product has been investigated. These ad-
ditional, integrated options are beyond the scope of this thesis and will not be further
investigated here.

Based on the options for the OCM flowsheet listed above a multitude of different struc-
tures exists to realize the OCM reaction and subsequent product purification. Within
those structures even more options exist to use different adsorbents, column dimensions,
absorption solutions, catalysts, operation conditions, and so on. Looking at Fig. 1.4
it is easily fathomed how interdependent all of these decisions on dimensions, layouts,
materials, and operation conditions are. Optimizing the reaction section by itself for an
as high as possible yield in C2 hydrocarbons might at the same time be detrimental for
the overall process concept as considerable amounts of CO2 are produced at the same
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time and need to be removed as well as the unreacted CH4. Consequently, as part of this
thesis superstructure optimization will be applied on a part of the OCM process flow
sheet.

At the same time, the issue needs to be faced that the process and equipment options in
hand are at very different levels of maturity. Whilst the amine-based absorption process
is an often applied industrial process, the purification of gas streams using PI or PEO
membranes has barely ever been applied in industry. At the same time, adsorbents for the
purification task in hand are still under investigation as well as reactor designs, catalysts,
and catalyst supports. To factor in these different levels of maturity uncertainty and its
consequences on the overall superstructure will be investigated.

1.3 Superstructure Optimization under Uncertainty

Considering new process concepts in a rigorous manner is a time-consuming and difficult
task. For one thing, the additional introduction of chemicals not yet tested on a partic-
ular system may influence or completely change the behavior of said system. In the case
of the OCM process this is for example the introduction of hydrocarbons such as C2H4
into the amine-based absorption of CO2. Whilst, of course, previous research was carried
out to measure the solubility of C2H4 in amine solutions (Carroll et al., 1998; Rivas and
Prausnitz, 1979; Lawson and Garst, 1976), little is known on how the solubility of C2H4
effects the absorption of CO2 and most importantly the regeneration step. Consequently,
the process synthesis will always be under some parametric uncertainty even if the in-
dividual subprocesses and unit operations are very well known and described in literature.

Apart from the ongoing development on the OCM process concept and partially im-
mature technology there are a number of additional sources of uncertainty which make
the direct derivation of a suitable process concept difficult. Following the classification of
Ierapetritou et al. (1996) there are four fundamentally different sources of uncertainty in
chemical engineering process models: model inherent uncertainty, process-inherent un-
certainty, external uncertainty, and discrete uncertainity.

In the context of an optimal process synthesis or a superstructure optimization prob-
lem, the model inherent uncertainty would be any unknown or little known model param-
eter, such as transfer coefficients, kinetic terms, or physical properties. For a completely
new process concept with a new combination of unit operations and new materials ap-
plied this of course is an issue for almost every single part of the entire flowsheet to
various degrees of severity. Whilst the reactors are little tested, the absorption is known
to be a mature technology. However, the uncertainty from the feed section of a process
will of course propagate throughout the entire system and might accumulate in the final
product separation.

The process-inherent uncertainty are mostly common variations in streams, tempera-
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tures, and pressures. Regarding the number of process options discussed above, especially
units operated in cyclic steady state are of consequence here. The mentioned adsorption
unit will of course always have a varying outlet concentration, even if larger buffer tanks
are applied before the connecting unit operations.

External uncertainty stems from sources like market conditions, feed quality, environ-
mental conditions, etc. In the context of the OCM process concept, this concerns mostly
the quality of the supplied feed components, CH4, N2/CO2, and O2 and the market price
for those as raw material and the main product ethene.

Lastly, discrete uncertainty is usually only important for dynamic optimization under
uncertainty as it mostly touches aspects such as equipment availability. However, as the
reliability and robustness of the process concept is also always a concern, this might also
play a role. An interesting aspect, for example, would be the probability of a membrane
rupture in the gas separation section and the consequences for the downtime of the whole
process.

In order to deal with the consequences of the aforementioned uncertainty on the su-
perstructure in hand, they of course need to be identified to some extent and measures
need to be found to suitably insert them into the optimization problem.

1.4 Objectives

The formulation and solution of superstructure problems under uncertainty still is a
challenge to date. The purpose of this thesis is to show a possible path

• to identify and quantify relevant sources of uncertainty for the superstructure prob-
lem,

• to incorporate the uncertainty into the superstructure problem, and

• to develop a framework which enables superstructure optimization under uncer-
tainty generically.

These steps shall be applied on a part of the OCM process synthesis problem outlined
above

• to reduce the energy for the product purification of the OCM process,

• while limiting the product loss as far as possible, and

• taking into account relevant sources of uncertainty in the involved unit operations.
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1.5 Outline of Thesis

In order to achieve the described objectives the following Chapter 2 will first of all give an
overview of the existing methods for optimization under uncertainty and consider their
suitability for the application of interest. Chance-constrained optimization will be intro-
duced and discussed in detail as a method to incorporate uncertainty into optimization
problems without having to rely on scenario-based or two-stage programming. Based
on that the framework developed for the superstructure optimization under uncertainty
is detailed and supporting algorithms are outlined to allow for stability and robustness.
Thereon, the identification of relevant sources of uncertainty is discussed as well as the
description thereof. The last part of Chapter 2 deals with the required model formulation
with an emphasis on existing and new modeling techniques to obtain fast and accurate
models required for the superstructure optimization task.

In Chapter 3 the modeling of the units considered for the superstructure optimization
task is discussed starting with the OCM reactor, continuing with the absorption desorp-
tion process, the gas separation membranes, and finishing with the cyclic steady state
model for the combined pressure and temperature swing adsorption.

Afterwards in Chapter 4 the measures taken to identify the relevant uncertainty for
the unit operations discussed in Chapter 3 are described and the amounts are quantified.

Finally in Chapter 5 optimization studies are carried out firstly on the separate unit
operations and then on steadily growing superstructures both under uncertainty and
without. The results of both the deterministic optimizations and the optimizations un-
der uncertainty are compared and discussed in detail before drawing conclusions and
highlighting future work in Chapter 6.

It will be shown that chance-constrained optimization is a versatile, generic tool to
support superstructure optimization under uncertainty even for large-scale applications.
To support this the whole workflow is implemented and tested within MOSAIC as a
collaborative, platform-independent modeling, simulation, and optimization tool for en-
gineers. Therein, models for separate parts of the superstructure are formulated and
joined together. With the help of MOSAIC, code is generated for all parameter estima-
tions, simulation and optimization studies carried out within this thesis.
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Chapter 2

Theoretical Fundamentals

In this chapter an overview of optimization under uncertainty will be given, followed by
a deeper introduction into the topics concerning this thesis. Chance-constrained opti-
mization is discussed in detail as the method employed herein to incorporate uncertainty
in optimization problems. Subsequently, the method is introduced into a new framework
for Mixed Integer Nonlinear Programming under Uncertainty (MINLPuU). The chapter
concludes with the theoretical background on the identification of relevant sources of
uncertainty and the modeling of superstructure problems.

2.1 Superstructure Optimization under Uncertainty

Within this thesis a superstructure optimization problem will be any kind of optimiza-
tion problem resulting from a process synthesis task for which several unit operations are
available, which offer to perform the same or a similar task within the entire concept.
Hence, binary decisions on the equipment or material (catalyst, membrane type, scrub-
bing fluid) are made or integer decisions on how many units are introduced in addition
to continuous decisions on operating conditions, dimensions, etc. Consequently any such
optimization will always pose a mixed-integer nonlinear programming problem (MINLP).
The introduction of uncertainty into these optimization problems in the form of uncer-
tain parameters or feed conditions will lead to either stochastic programming problems
with recourse (Birge and Louveaux, 2011), robust optimization (Ben-Tal et al., 2009),
or probabilistic programming (Grossmann and Guillén-Gosálbez, 2010). The problems
solved therein are generically speaking MINLPuU and are still a challenge to be solved,
especially when dealing with superstructure problems with strongly nonlinear underlying
models and large numbers of integer and continuous decisions.

During the last few decades major advances have been made both in the solution of
optimization problems under uncertainty and in the solution of MINLP problems with
and without uncertainty.

2.1.1 MINLP Algorithms and Solvers

The number of available solvers for MINLP problems has steadily grown since the in-
troduction of the first few decomposition techniques in the 1970s (Geoffrion, 1972) for
gradient-based optimization. By now over a dozen different solvers exist for the solution
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of MINLP problems and enumerating all of them and their theoretical background goes
beyond the scope of this thesis. A comprehensive review of MINLP methods can be found
in (Grossmann, 2002). Instead the main classes of algorithms and their applicability with
respect to the superstructure optimization will be discussed.

Branch and Bound techniques stem from the solution of mixed-integer linear pro-
gramming problems (MILP). For MINLP this method is based on NLP relaxations and
a tree search on the integer variables (Gupta and Ravindran, 1985). Branch and bound
techniques are worth pursuing when the solution of the NLP relaxations is inexpensive.
For some superstructure problems this might be the case, for most rather not. The
non-convexity of nonlinear relaxations may lead to premature fathoming of nodes in the
search tree and hence to convergence at local optima far away from the global optimum.
MISQP by Exler and Schittkowski (2007) is a FORTRAN implementation combining
branch and bound techniques with sequential quadratic programming for the solution of
the nonlinear subproblems. Similarly, within Bonmin (Bonami et al., 2008) B-BB offers
an NLP-based branch and bound algorithm, which uses IPOPT (Wächter and Biegler,
2006) for the solution of the NLP parts.

Cutting Plane Methods exploit the convexity of nonlinear functions by replacing the
nonlinear terms with supporting hyperplanes (Grossmann, 2002). Similar to branch
and bound methods cutting plane methods suffer in case of strong nonlinearities and
especially non-convexities. The feasible region is inherently overestimated, which in the
case of non-convex feasible regions may lead to slow convergence behavior. This is for
example implemented within AlphaECP (Westerlund and Lundqvist, 2001).

Outer Approximation methods are well suited for systems with nonlinear inequalities
and create lower and upper bounds on the objective function sequentially by solving
NLP subproblems and mixed-integer master problems separately (Duran and Grossmann,
1986). Compared to cutting plane methods outer approximation should perform faster
given that cuts are introduced to avoid revisiting previously evaluated integer points.
For strongly nonlinear and non-convex systems, however, this still does not imply a fast
convergence. Outer approximation solvers have become increasingly popular. Examples
are AOA (Bisschop and Roelofs, 2006) and DICOPT (Kocis and Grossmann, 1989).

Generalized Benders Decomposition is quite similar to outer approximation with the
main difference lying in the derivation of the lower bounds by referring to dual represen-
tations (Geoffrion, 1972). Whether generalized Benders decomposition actually is better
suited or not than outer approximation depends heavily on the system in hand. For outer
approximation the solution of the MILP master problem is more expensive as with each
iteration constraints are added for each nonlinear constraint present. Very few solvers
implement Bender’s decomposition in its pure form, an example is FortSP (Zverovich
et al., 2014), which is, however, limited to stochastic MILP problems.
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Logic Based Methods, unlike all of the other listed above, do not rely on a solely
algebraic representation of the optimization problem. Instead the optimization prob-
lem consists of some algebraic constraints, logic disjunctions, and logic relations (Türkay
and Grossmann, 1996). These methods are of interest for all systems in which integer
decisions cause degenerate constraints. Hence, this class of algorithms is also worth in-
vestigating for process synthesis problems. However, one of the main advantages, the
reduction of the system to active parts of the optimization problem is also a weak point
as the reinitialization of nonlinear equations at new operation points is difficult.

In addition to these five main categories of algorithms, many hybrids and a few ad-
ditional approaches exist, which shall not be further discussed here. In any case, the
applicability of each approach heavily depends on the behavior of the MINLP problem
to be solved and no approach can be disregarded or preferred. Among NLP, MILP, and
MINLP optimization problems, the latter undoubtedly are the most complex to be solved.
This is even heightened in case uncertainty has to be introduced into the optimization
problem.

2.1.2 Optimization under Uncertainty

Optimization under uncertainty has found several applications on almost all levels of
chemical engineering from the dynamic optimization of batch processes to plant-wide
optimization (Grossmann and Guillén-Gosálbez, 2010). Naturally, the review here will
be limited to optimization under uncertainty on MILP and MINLP problems. These can
commonly be found in process synthesis or design and planning and scheduling tasks.

During the last few decades, major advances have been made in the solution of super-
structure problems under uncertainty. Most approaches published so far follow along the
lines of a two stage technique with an outer stage in charge of making the superstruc-
ture decisions on the design and the inner stage reacting to a set of different scenarios
generated from a description of the uncertainty.

For example, in (Chaudhuri and Diwekar, 1996) a simulated annealing algorithm is
applied for the design decisions. Latin Hypercube Sampling (LHS) is used to generate
scenarios for the uncertainty space and penalties are added to the objective function for
violation of constraints within the inner scenarios. Similarly, the algorithm suggested
by Acevedo and Pistikopoulos (1996) iteratively solves several inner NLP subproblems
and a single MILP masterproblem. For this purpose the MINLP under uncertainty is
again parameterized and a combination of outer approximation and equation relaxation
techniques is applied. In (Mohideen et al., 1996) the optimal design of dynamic systems
under uncertainty is investigated by applying collocation on the dynamic part and a
parametrization for the uncertainty space.

Acevedo and Pistikopoulos (1997) proposed a multiparametric programming approach
for MILPuU mostly concerning engineering problems. Their approach follows a paramet-
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ric branch and bound with multiparametric linear programming problems solved at each
node of the branch and bound and the results being mapped on the uncertainty space.
Based thereon a stochastic programming framework for process synthesis problems under
uncertainty was developed with two-stage stochastic programming using here-and-now
decisions for structure and design and wait-and-see decisions for the operation (Acevedo
and Pistikopoulos, 1998).

These two-stage solution methods have been applied on a multitude of applications
ranging from the optimal investment and operational planning of gas field developments
under uncertainty (Goel and Grossmann, 2004), the optimal design and planning of
chemical supply chains under uncertainty (Guillén-Gosálbez and Grossmann, 2009), the
design of polygeneration energy systems (Liu et al., 2010), and the design of integrated
process water networks (Ahmetović and Grossmann, 2011). In addition, the effect of
market price uncertainty on the design of biorefinery systems was investigated (Cheali
et al., 2014).

Some effort has also gone into the development of robust optimization and probabilis-
tic programming techniques. Therein, the algebraic inequality constraints are replaced
by probabilistic constraints, which do not require the two-stage stochastic approach de-
scribed above. The mathematical solution of these methods roots in chance-constrained
programming, which will be discussed in the following section 2.2. Up to now the ap-
plication of these methods in process design and synthesis is somewhat limited as the
computation of the probabilities was regarded as an issue (Li et al., 2004). Nevertheless,
some applications can be found such as the synthesis and optimization of plant-wide
waste management policies by (Chakraborty and Linninger, 2003) or the scheduling of
batch plants carried out by (Janak et al., 2007).

Despite all these examples MINLP optimization under uncertainty is still not carried
out on a day-to-day basis. The reasons for this lie in setting up the optimization problem,
analyzing the supplied optimal solutions, the stability of the underlying solvers, and in
quantifying the actual uncertainty, which needs to be supplied to the solver. For this pur-
pose, chance-constrained optimization is looked at next as a method which only supplies
a single optimal solution and can easily be set-up based on deterministic optimization
problems.

2.2 Chance-Constrained Optimization

Before starting with the derivation of chance-constrained optimization and its applica-
tion, a number of definitions and generalizations have to be introduced. In the following
(superstructure) optimization problems under uncertainty will be formulated as given by
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Eq. (2.1).

min
u,y

Φ(x, u, y, p, ξ) (2.1)

s.t. g(x, u, y, p, ξ) = 0

h(x, u, y, p, ξ) ≥ 0

u ∈ Rnu

uL
i ≤ ui ≤ uUi ∀i ∈ {0, 1, . . . , nu }

y ∈ {0, 1}ny

x ∈ Rnx=dim g

p ∈ Rnp, p = const.
ξ ∼ N (µ,Cov)

with Φ as the objective function to be minimized, a set of equality constraints g, inequal-
ity constraints h, continuous control variables u with lower uL and upper bounds uU ,
binary variables y, continuous state variables x, constant parameters p, and uncertain
parameters ξ, which adhere to a multivariate normal distribution with vector of expected
values µ and covariance matrix Cov. The covariance matrix Cov is given by Eq. (2.2).

Cov =

*........
,

σ2
1 cov1,2 · · · · · · cov1,nξ

cov2,1 σ2
2 cov2,3 · · · cov2,nξ

...
. . .

. . .
. . .

...

covnξ−1,1 · · · covnξ−1,nξ−2 σ2
nξ−1

covnξ−1,nξ

covnξ ,1 · · · · · · covnξ ,nξ−1 σ2
nξ

+////////
-

(2.2)

Therein σ2
i is the variance of uncertain parameter i and covi, j is the covariance of uncer-

tain parameters ξi and ξ j . In general, mathematical terms the covariance of two random
values a and b is defined as stated in Eq. (2.3):

cova,b = E [(a − E[a])(b − E[b])] (2.3)

The variance σ2 is a special case of the covariance, for which a and b are the same
random variable (Eq. (2.4)).

σ2
a = cova,a = E

[
(a − E[a])2

]
(2.4)

Chance-constrained programming as introduced by Charnes and Cooper (1959) considers
the uncertainty of a model, parameters, or inputs by a probabilistic level of constraint
satisfaction (Grossmann and Guillén-Gosálbez, 2010). This means that the model’s in-
equality constraints h are replaced by so called chance constraints (Eq. (2.5)), which
compute the probability Pr of holding said constraint above a given probability level α.

Pr{h ≥ 0} ≥ α (2.5)
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Whenever only a single constraint h is embedded within a chance constraint, this is called
a single chance constraint, otherwise it is a joint chance constraint (Miller and Wagner,
1965).

At the same time, the objective function of the optimization problem is reformulated
into a deterministic single value. Usually that is the expected value of the original
stochastic objective function. Sometimes the deviation D or variance of the objective
function value is also added with some weight ω to reduce stronger deviations from the
expected value.

min
u,y

E [Φ(x, u, y, p, ξ)] + ω · D [Φ(x, u, y, p, ξ)] (2.6)

However, in this contribution, for reasons of practicality ω is always set to zero. This
leads to a transformation of the stochastic programming problem noted in Eq. (2.1) to
the deterministic chance-constrained programming problem (see Eq. (2.7)).

min
u,y

E [Φ(x, u, y, p, ξ)] (2.7)

s.t. g(x, u, p, ξ) = 0

Pri {hi (x, u, p, ξ) ≥ 0} ≥ αi ∀i ∈ {0, 1, . . . nh} (2.8)
u ∈ Rnu

uL
i ≤ ui ≤ uUi ∀i ∈ {0, 1, . . . , nu }

y ∈ {0, 1}ny

x ∈ Rnx=dim g

p ∈ Rnp, p = const.
ξ ∼ N (µ,Cov)

The computation of the expected value of the objective function is comparatively straight
forward. For the assumption of a multivariate normal distribution made above in Eq. (2.7)
the expected value can be computed by the evaluation of the objective function for the
uncertain parameters fixed at their expected values:

E [Φ(x, u, y, p, ξ)] ≈ Φ(x, u, y, p, µ = E[ξ]) (2.9)

For other, more general cases, sampling techniques need to be applied on the uncertainty
space and the expected value needs to be determined based on the objective function
value determined for each sample.

Evaluation of a Chance Constraint

The evaluation of the chance constraint on the other hand is a lot less straight forward.
Fig. 2.1 visualizes a chance constraint for a bivariate normal distribution. The lighter
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surface in green represents the probability density function φ of the bivariate normal
distribution. The darker wall in grey is a three-dimensional representation of the chance
constraint’s equality to zero (h(ξ0, ξ1) = 0). To the left of the wall the inequality h ≥ 0
is still fulfilled, to the right it is violated.

Consequently, the probability of the chance constraint holding can be determined by
integrating the probability density function φ over the entire uncertainty space to the
left of the darker wall in grey. In mathematical terms this can be stated as follows
(Eq. (2.10)).

Pr{h(ξ0, ξ1) ≥ 0} =
∞∫

−∞

ξU0 :h(ξ0,ξ1)=0∫

−∞

φ(ξ0, ξ1)dξ0dξ1 (2.10)

In more general terms, for the chance-constrained programming problem formulated
in Eq. (2.7), the computation of the chance constraint implies the following given in
Eq. (2.11).

Figure 2.1: Visualization of a chance constraint for a bivariate normal distribution
φ(ξ0, ξ1) (in green) and a inequality constraint h(ξ0, ξ1) ≥ 0 (in grey).

Pr{h(x, u, p, ξ) ≥ 0} =
∞∫

−∞

. . .

∞∫

−∞

ξU0 :h(x,u,p,ξ )=0∫

−∞

φ(ξ0, ξ1, . . . , ξn)dξ0dξ1 . . . dξnξ (2.11)
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Eq. (2.11) requires that a number of assumptions are holding.

1. h is continuous for ξ ∈ Rnξ .

2. For any choice in values of ξ1, . . . , ξnξ a single, distinct value for ξ0 can be found.

3. h is monotonically decreasing in ξ0.

In general terms, these assumptions are actually not required and how to handle them
shall be discussed in section 2.3.1.

Many different approaches have been suggested to tackle the root-finding problem
(ξU0 : h(x, u, p, ξ) = 0 for fixed values of ξ1, . . . , ξnθ ) and the multivariate integration with a
functional upper bound given in Eq. (2.11). Some examples are the orthogonal collocation
on finite elements applied by Wendt et al. (2002) for the inner integration, the Bernstein
approximation applied by Nemirovski and Shapiro (2006) to conservatively and convexly
approximate the chance constraints. Affine linear transformations have been applied
by Henrion and Möller (2003) on chance-constrained inequalities and direct solutions of
the chance constraints in linear systems via the inverse cumulative distribution function
have been implemented by (Petkov and Maranas, 1997; Schwarm and Nikolaou, 1999; Li
et al., 2004). A Gaussian quadrature has been applied by Straub and Grossmann (1990)
for integrating flexibility and reliability of a given process design over the space of state
variables. Finally, Diwekar and Kalagnanam (1997) evaluated the probability integral
based on a Hammersley sequence sampling applied on the random distribution.

2.3 Framework for the Evaluation of Chance Constraints

In this contribution, a framework developed by Werk et al. (2011, 2012a,b) is employed
for the chance constraint evaluation and is adjusted and further developed for the more
general application of MINLP problems under uncertainty.

The Dynamically optimized Chance Constraint Evaluator (DoCCE) framework is based
on the idea of a Gaussian quadrature over a sparse grid SG ⊂ Rnξ−1 to integrate the prob-
ability density function. For every single point of the SG ξ0 is determined to equate the
inequality h ≥ 0. Depending on the location of each point of the SG a weight is com-
puted. The sum over all grid points of the weights ω multiplied with the probability of
each ξ0 directly leads to the probability of holding the chance constraint (see Eq. (2.12)).
For an infinite number of grid points this would lead to an exact representation of the
multivariate integration. In practice, however, a finite sparse grid covering a 3 · σ or a
4 · σ interval is chosen leading to a suitable approximation of the multivariate integra-
tion. Fig. 2.2 shows an exemplary three-dimensional sparse grid over a 3 · σ interval for
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a four-dimensional uncertain parameter vector.

Pr{h(x, u, p, ξ) ≥ 0} =
∞∫

−∞

. . .

∞∫

−∞

ξU0 :h(x,u,p,ξ )=0∫

−∞

φ(ξ0, ξ1, . . . , ξn)dξ0dξ1 . . . dξnξ (2.12)

≈
nSG∑
j=0

ω(SG j ) ·
ξ
j
0∫

−∞

φ(ξ0)dξ0 ∧ ξ
j
0 : h(x, u, p, ξ = SG j ) = 0

Details on sparse grid quadratures, grid layouts, and weighting functions may be found
in (Gerstner and Griebel, 1998; Holtz, 2011).

Figure 2.2: Three-dimensional sparse grid for a four-dimensional uncertain parameter
vector, for every single grid point shown the value of the fourth uncertain
parameter is determined to equate the chance-constrained inequality h.

Additional details on the actual implementation of the DoCCE may be found in (Werk,
2015). As part of this thesis only a few aspects of the implementation will be discussed
to highlight adjustments and extensions added to the framework.

Prior to this thesis, the DoCCE was able to evaluate convex single chance constraints
based on simulations of differential algebraic equation (DAE) systems using the sDACl
solver (Barz et al., 2011) or simple algebraic equation systems directly solved in Python.
The standard calling procedure and interfaces of the DoCCE interface are sketched in
Fig. 2.3.

The status quo of the DoCCE has a number issues, which need to be addressed in order
to successfully use and adjust the framework for large-scale dynamic process optimization
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Figure 2.3: Status Quo of the DoCCE framework to evaluate chance constraints.

or process synthesis under uncertainty.

1. The DoCCE framework assumes strict monotonicity between uncertain input and
the uncertain constrained output. This topic has already been breached above
during the introduction of the chance constraint evaluation.

2. The framework does not support feedback messages from the simulation solver on
the solution state. Hence, it makes faulty assumptions on descent directions, root
positions, etc.

3. Currently, no interface to a solver for large-scale sparse nonlinear algebraic problems
with sensitivity generation for parameters and decision variables exists

4. Parallelization on a multicore machine is supported by the framework, but so far
distributed programming across several machines is not supported.

5. Joint chance constraints cannot be handled by the framework.

6. Regarding the description of the uncertainty, the framework is limited to multivari-
ate normal distributions (MVND).

7. The initialization of the rootfinding problem is supported by the DoCCE frame-
work. However, this does not deal with the initialization of the DAE or AE system
to be solved.
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8. Finally, discrete decisions in the form of binary or integer variables are not yet
supported either.

Not all of these issues can be fixed within the scope of this thesis. The limitation to
MVNDs and single chance constraints will remain, although both can definitely be recti-
fied in future work. In theory, there is no general limitation to any kind of distribution.
The following paragraphs discuss to what extent the other issues are dealt with and how
the solutions are implemented.

2.3.1 Relaxing Strict Monotonicity

In its standard implementation, the DoCCE framework assumes strict positive mono-
tonicity between any uncertain input, i.e. uncertain parameter, and the uncertain output
constrained by a chance constraint. Whilst this assumption will always hold true for
linear systems, it is an invalid and basically unnecessary assumption for nonlinear sys-
tems in general. Wendt et al. (2002) and Arellano-Garcia and Wozny (2009) discuss
the monotonicity assumption at quite some length. In the context of chance constraint
problems, monotonicity is understood to be a monotonous relationship between the un-
certainty space and the variable constrained by the chance constraint. Looking back at
Eq. (2.12) this implies that for positive monotonicity an increase in any element of ξ
causes an increase in h or for negative monotonicity causes a decrease in h. Given the
fact that in practice the root-finding problem of h = 0 only has to be solved with respect
to a single element of ξ, i.e. ξ0, only that particular element of ξ has to be monotonous
over all points of the sparse grid. Wendt et al. (2002) find it realistic that one can find
a monotone relation between an output variable and one of the uncertain inputs. This
might hold true in practice. However, given the nature of nonlinear systems it is ex ante
impossible to say whether a detected monotonicity at iteration zero of the optimizer will
stay the same for all iteration runs. Hence, in this thesis the following two part algorithm
is added to the DoCCE framework. The first part of the algorithm aims at determining a
positively or negatively monotonous element of the uncertain parameter vector ξ during
the initialization of the optimization as it is computationally speaking advantageous to
retain the monotonicity despite the fact that it is mathematically not required. The
second part is an adjustment to the root-finding algorithm inside the DoCCE to detect
deteriorating monotonicity and act on it or to switch to a different element ξ0 ∈ ξ, which
at a current iteration is strictly monotonous.

The algorithm to detect a positively or negatively monotonous parameter for the chance
constraint in question is given in Algorithm 2.1. A parameter is singled out of the set
of uncertain parameters, the sparse grid is expanded for all other parameters, the value
of the chance-constrained variable h is evaluated at every grid point for the singled out
parameter set to µ − 3σ, µ, and µ + 3σ. In case h strictly decreases over these three
positions for every grid point, a negative monotonicity is detected, if h increases instead a
positive monotonicity is detected and the integration direction of the chance-constrained
is inverted. Otherwise the next parameter of the uncertain parameter set is singled out
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and the process is repeated. The reversal of the integration direction for the case of the
positive monotonicity implies that the lower bound enforced on the chance constraint’s
probability projected onto the space of the uncertain parameter ξ0 is indeed not an
upper bound, but a lower bound. Hence, for this scenario Eq. (2.12) would change into
Eq. (2.13).

Pr{h(x, u, p, ξ) ≥ 0} =

∞∫
−∞

. . .

∞∫
−∞

∞∫
ξL
0 :h(x,u,p,ξ )=0

φ(ξ0, ξ1, . . . , ξn)dξ0dξ1 . . . dξnξ (2.13)

≈ 1 −

nSG∑
j=1

ω(SG j ) ·

ξ
j
0∫

−∞

φ(ξ0)dξ0 ∧ ξ
j
0 : h(x, u, p, ξ = SG j ) = 0))

The second algorithm is inserted into the root-finding problem of the chance constraint
framework and is sketched in Algorithm 2.2 on page 23. Based on the monotonicity idea,
the algorithm first of all tests by sampling three positions for each sparse grid point,
whether the desired monotonicity is actually given. In case the descent direction hints
at a root outside the 3σ interval, the root is fixed to the respective bound and the
integration direction ID is set accordingly, i.e. if h is positive for the entire interval, ξ0
is set to µ0 + 3σ0 and the integration direction is set to ID = +1, and so on. For the
case of a perceived root inside the 3σ interval, the Newton method is started and the
integration direction is set to ID = +1 if h is greater than zero to the left of the root and
ID = −1 if it is to the right of the root. For all other cases a bisection is carried out on
the interval and the same algorithm is applied on each subinterval (For further handling
of exceptions etc. refer to Algorithm 2.2.).
As a result of Algorithm 2.2 the DoCCE framework does not find a single root for each
point of the sparse grid, but a vector of roots with a respective vector of integration
directions. Fig. 2.4 sketches the handling of the multiple roots for a single sparse grid
point. The graph on the left shows a possible case for the chance-constrained value of h
within the 3σ intervall of interest for ξ0. The inner constraint of the chance is fulfilled for
h ≥ 0. This is highlighted in the figure on the left by the areas shaded in grey. The figure
on the right shows the normal distribution. The probability of the chance constraint
holding is hence given by the sum of the areas shaded in grey on the right.

Consequently, for the case of multiple roots per sparse grid point, the calculation of
the probability of the chance constraint is calculated as given by Eq. (2.3.1).

Pr{h(x, u, p, ξ) ≥ 0} ≈

nSG∑
j=1

ω(SG j ) ·
nID−1∑
i=1

IDi ·

ξ
j
0, i∫

−3σ0+µ0

φ(ξ0)dξ0

The negative or positive integration direction ID given for each root will cause the addi-
tion or subtraction of the root’s integral from −3σ + µ to the root’s position. There are
of course a number of special cases which have to be caught and handled by the code.
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Data: u0, ξ
Result: P: Permutation matrix for ξ, ID: integration direction
begin

Initialization: P = I, ID = 0, monotonicityDetected = false, k = 0;
while monotonicityDetected is false do
ξ0 = (P · ξ)[nξ − 1];
SG = SparseGrid((P · ξ)[0 . . . nξ − 2]);
monotonicitySum = 0;
for sp ∈ SG do

f L (sp) = h(u0, sp, ξ0 = µ0 − 3σ0);
f M (sp) = h(u0, sp, ξ0 = µ0);
fU (sp) = h(u0, sp, ξ0 = µ0 + 3σ0);
if f L (sp) < f M (sp) < fU (sp) then

monotonicitySum + +;
else if f L (sp) < f M (sp) < fU (sp) then

monotonicitySum − −;
else

// nothing happens
end

end
if monotonicitySum = #(SG) then

monotonicityDetected = true;
ID = 1;

else if monotonicitySum = −1 ·#(SG) then
monotonicityDetected = true;
ID = −1;

else
P = I;
switch column k of P with column nξ − 1;
k++;

end
if k > nξ then

// Exit with error message: No monotonicity detected. break;
end

end
end

Algorithm 2.1: Determine element of ξ which is positively or negatively monotonous
at initialization of the chance-constrained optimization.

Among these are the appearance of singularities within the 3σ interval or roots which are
simultaneously extrema. These issues will in part be handled by the bisection, but also
by adjustments to the DoCCE framework to allow for a solution state feedback to the
optimization solver. Whenever a singularity is detected, e.g. by two consecutive roots,
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Figure 2.4: Handling of multiple roots for the probability integration: The sum of the
areas shaded in grey on the right returns the probability for the chance con-
straint holding for the constrained h shown on the left.

which both have a positive or a negative integration direction, the probability is set to
zero and a computation error is signalled to the opimization solver to revoke the step
taken.

The approach for the probability integration detailed above for the case of multiple
roots is analogously implemented for the calculation of the gradient of the probability
with respect to all decision variables. In case of one of the discussed failures, the gradient
values are set to small positives. More details hereon can be found in appendix D.8
starting on page 230. For second order derivatives this has not yet been implemented.
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Data: ξold0 : old root, sp: sparse grid position, u: current controls, lb, ub
Result: ξ0: vector of roots within 3σ interval, ID: integration direction vector
begin

if ub − lb < δ then
// break because interval is smaller than required minimum size
// cause new search for monotonous ξ
// and restart root-finding for entire new sparse grid

end
f1 = h(ξ0 = µ − 3σ);
f2 = h(ξ0 = µ);
f3 = h(ξ0 = µ + 3σ);
if f1 > f2 > f2 then

if f1 < 0 then
// set probability to zero:
ξ0 = µ − 3σ;
ID = 1;

else if f3 > 0 then
// set probability to maximum:
ξ0 = µ + 3σ;
ID = 1;

else
// run standard Newton to find root:
ξ0 = Newton(ξold0 , lb, ub);
ID = 1;

else if f1 < f2 < f3 then
if f1 > 0 then

// set probability to maximum:
ξ0 = µ + 3σ;
ID = 1;

else if f3 < 0 then
// set probability to zero:
ξ0 = µ − 3σ;
ID = 1;

else
// run standard Newton to find root, but reverse integration direction
ξ0 = Newton(ξold0 , lb, ub);
ID = −1

else if f2 < f1 < 0&& f2 < f3 < 0 then
// set probability to zero:
ξ0 = µ − 3σ;
ID = 1;

else if f2 > f1 > 0&& f2 > f3 > 0 then
// set probability to maximum:
ξ0 = µ + 3σ;
ID = 1;

else
// bisect intervall and apply same algorithm on new intervals:
ξleft0 , IDleft = thisAlgorithm(ξold0 :, sp, u, lb, (lb + ub)/2;
ξ
right
0 , IDright = thisAlgorithm(ξold0 :, sp, u, (lb + ub)/2, ub;
ξ0 = join(ξleft0 , ξright

0 );
ID = join(IDleft, IDright

0 );
return ξ0, ID;

end
Algorithm 2.2: Advanced root-finding algorithm to account for non-monotonous
chance-constraint relationships.
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2.3.2 Simulation Solver for Sparse Nonlinear Algebraic Equation Systems
with Sensitivity Generation

In order to provide gradients of the probability Pr with respect to the decision variables
u and y to the optimization solver the underlying simulator is required to provide sen-
sitivities of the states x with respect to the controls u and the binary/integer variables
y in case an optimization solver should require this. The latter is required for cases of
MINLP solvers applied, which e.g. perform a relaxation of the MINLP problem to an
NLP problem during the solution process. In addition, in order to facilitate the root-
finding inside the chance constraint framework, derivatives of the states x with respect
to the uncertain parameters ξ are required.

Of course, there are some solvers for nonlinear algebraic equation systems, which pro-
vide first and even second order derivatives with respect to parameters or decision vari-
ables specified by the user, even though they are more numerous for DAE systems. The
main issue for the application of any such solver is the combination of the large-scale
nonlinear equation system to be solved, the efficient generation of sensitivities, and a
smooth interfacing with the DoCCE framework in Python to allow for parallelization of
many simulations on a multicore or distributed system.

Hence, as part of this thesis, a sparse solver for nonlinear algebraic equations with
automatic computation of sensitivities for first order derivatives with respect to a user-
defined set of variables is developed. The core of the solver is based on NLEQ1s Newton
codes provided by (Nowak and Weimann, 1991)1. The sparse Newton codes are written
in FORTRAN and extended as part of this work to handle additional inputs to change
the values of the user-defined vector of variables. Additionally, a C++ frontend is added
to the NLEQ1s code to provide the nonlinear equations in a fast and efficient way.
Therein functions and derivatives are evaluated, and ADOL-C (Walther and Griewank,
2012) is applied to automatically differentiate the nonlinear equations with respect to
the state variables to provide the sparse Jacbian matrix to the NLEQ1s and secondly
with respect to the user-defined variable vector to facilitate the sensitivity generation at
the solution point. Both function values and Jacobian entries are checked for holding
a norm of 1.0e + 20 and a flag is returned to the NLEQ1s solver in case a violation
occurs. The senstivitiy generation is implemented based on the Eigen 3 template library
(Guennebaud et al., 2010), which is a C++ template library and hence is faster than
most known senstivity packages. Given the nonlinearity of the algebraic equations special
attention has been given to the sensitivity generation, details on which are given in the
next paragraph. All other details on the implementation of the solver may be found in
the appendix starting on page 218. Fig. 2.5 depicts the outlined solver implementation
and how it interacts with third party software.

The generation of sensitivities for large nonlinear equation systems has some pitfalls,

1NLEQ1s is available online at http://elib.zib.de/pub/elib/codelib/nleq1s/, last access:
2015/02/15.
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2.3 Framework for the Evaluation of Chance Constraints

Figure 2.5: Solver implementation for the solution of large-scale nonlinear equation sys-
tems with sensitivity generation. The implementation uses the functionality
of several external libraries. The model code is exported once from MOSAIC
and compiled as part of the solver.

which will be discussed in the following. For this purpose, the root-finding problem of
the vectorial function g with state variables x, dim(x) = dim(g), decision variables u, y,
and parameters ξ as given by Eq. (2.14) is considered.

g(x, u, y, ξ) = 0 (2.14)

To generate first order sensitivities with regard to u, y and ξ the implicit function theorem
is applied on the total derivative of g:

dg
d(u, y, ξ)

+
dg
dx
· dx

d(u, ξ, p)
= 0dim(x) (2.15)

As has been mentioned above, u will forthwith represent the vector of continuous decision
variables, integer decisions, and parameters. The calculation of the sensitivities dx/du is
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hence given by the following linear problem:

dg
dx
·

dx
du
= −

dg
du
, (2.16)

wherein dg/dx is a square matrix of dimension dim(x)× dim(x) and dx/du and dg/du are
both matrices of dimension dim(x) × dim(u). While both dg/dx and dg/du can both be
acquired from ADOL-C as sparse matrices, the true challenge lies in the factorization of
dg/dx. For certain intermediate solutions of the optimization it might happen that matrix
dg/dx appears numerically singular. Hence, within the solver, matrix dg/dx is initially
generated for the true vector u. The factorization is then tried via a LU decomposition. If
the factorization succeeds, the linear system is solved. Otherwise, a perturbation as given
in Eq. (2.17) is applied on u, dg/du and dg/dx are computed again, and the factorization
is tried again. This process is repeated until the factorization succeeds or the applied
perturbation ε becomes larger than a defined threshold. In case the threshold is reached
an error message is returned to the solver requiring the derivatives.

u := u · (1 + ε) + ε, ε > 0 (2.17)

The resulting senstivity matrix dx/du can also be provided in a sparse form, but is usually
transcribed into a dense matrix form as few solvers understand sparse formats.

2.3.3 Solution State Propagation and Line Search

In addition to developing a suitable solver for the solution of a nonlinear algebraic equa-
tion system and the sensitivity generation two important aspects have to be kept in
mind. First of all, an AE system may not be feasible for all combinations of u, y, and ξ.
Secondly, the initial guess provided to the solver for the state variables may be not good
enough to find a feasible solution. Both aspects are dealt with in the newly developed
framework and are discussed in the following.

Two measures are taken to guarantee good starting values and to catch infeasible
points. A sample history for all state variables is created, which is continuously updated
at runtime and a line search method is implemented to steadily move towards faraway
points for which no decent starting points are yet known.

The AE solver is interfaced from two sides of the optimization problem. The first side
is the evaluation of the objective function and its gradients with respect to u and y.
For most optimization solvers, such as IPOPT (Wächter and Biegler, 2006) or MISQP
(Exler and Schittkowski, 2007), this will always be a single evaluation call for function
and gradient each.2 Apart from that, the values of ξ never change for this side. They
are always fixed at the expected values of the uncertain parameters. Hence, this call is
separated from the framework’s calls with varying parameter values. The second side is

2Exceptions are solvers like NLPQLP (Dai and Schittkowski, 2008), which are able to handle a number
of parallel objective function evaluations.
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the determination of the probability of a chance constraint holding and the gradient of
the chance constraint with respect to u and y. On this side the DoCCE framework has
- as part of this thesis - been further developed to allow for parallel processing across a
single machine’s cores and across several connected machines. For a sparse grid based on
four uncertain parameters this implies at least 130 evaluations of the simulation model
for fixed u and y values. Consequently, a second sample history is created, which can be
accessed and written into by all subprocesses spawned for the chance constraint evalua-
tion. Every new successful evaluation of the simulation model is stored in the respective
sample history with values of u, y, ξ, and all states x. After a successful evaluation of
chance constraint or objective function the respective sample history is emptied except
for the 20 most recent entries to ensure a fast access to the shared memory and to avoid
a stack overflow.

Every single subprocess tasked with evaluating the simulation model for a given set of
u, y, and ξ accesses a python function preparing the starting values for the AE solver.
The python function calcFuncVal generates an initial guess and calls the C++ AE solver
interface as given by Algorithm 2.3. The function uses a combination of line search and
convex hull techniques. At start-up of the optimization a single sample is stored in the
sample history, which corresponds to the initial values for u and y and ξ = µ. Based on
this initial guess the new position required by the optimization solver is tested with the
AE solver. If it succeeds, the new sample point is added to the respective sample history.
Otherwise a bounded intermediate step is taken towards the new position starting with
the same initial guess for the states x. The bound for the step is computed depending
the sensitivity matrix dx/d(u, y, ξ). If that also fails, the bounded step is further reduced
until an intermediate solution is found, which is added to the sample history. The
process is restarted from that new intermediate position. Repetitive convergence to the
same intermediate point is assumed to be a sign for an infeasible combination of u, y,
and ξ, which is flagged to the optimization solver.

Fig. 2.6 depicts the line search method employed for finding intermediate solutions
projected on a u-y-ξ space with only two dimensions. All further details are given in
Algorithm 2.3.

In case two or more samples are stored in the sample history the closest neighbor is
chosen or a convex hull is formed based on samples near to the new position. This part
is adapted for large vectors of state variables from code published by Werk (2015) for
predicting guesses for scalar values.

Whilst the solution state propagation back to the optimization solver in the objective
function or gradient call is straight forward, this is obviously not as simple for the eval-
uation of the chance constraint. First of all, it is unlikely that the AE solver will fail
for every single sparse grid point for all possible values of ξ0. Secondly, if a single point
within the sparse grid shows a failure, it does not necessarily mean that the combination
of decision variables u and y should hence be revoked. The following strategy is applied
instead. Whenever the AE solver fails on a request by the DoCCE framework, the value
of the chance-constrained function h is set to a large negative value, e.g. −1.0e + 20,
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Figure 2.6: Visualization of the line search method used in python to generate a good
initial guess. Point 0 is the position obtained from the sample history, which
is closest to the desired new position 4. The boxes in blue, red, and green
show respective trusted regions for new intermediate points calculated by
the line search algorithm. At point 2 the solution fails, hence leading to a
reduction of the trusted region around point 1. This in turn leads to point 3
and then to 4.

and the gradients thereof with respect to u, y, and ξ are set to small positive values,
e.g. 1.0e − 7. This way, the probability for the sparse grid point in question will con-
sequently be set to zero and the integration can continue with further feedback to the
solver required.
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Data: u, y, ξ, sH: sampleHistory
Result: SolState: Solution status (0: success, 1: failure), x: state variables,

dx/d(u, y, ξ): gradients, . . .
begin

outerCounter = 0;
box = (u, y, ξ);
while outerCounter < 10 do
α = 100;
(u, y, ξ)Init, xInit = getGuess(u, y, ξ, sH);
SolState, x, dx/d(u, y, ξ) = C++Interface.functionCall(u, y, ξ, xInit);
if SolState == 0 then

sH.append(u, y, ξ, x);
return SolState, x, dx/d(u, y, ξ);

∆(u, y, ξ)RequiredStep = (u, y, ξ) − (u, y, ξ)Init;
∆(u, y, ξ)Allowed = (dx/d(u, y, ξ))−1 · xInit or box on failure of matrix inversion;
innerLoop = true;
while innerLoop == true do

for i ∈ {0, . . . , n(u,y,ξ ) } do
∆(u, y, ξ)Allowed[i] = sign(∆(u, y, ξ)Required[i]) ·
|min(∆(u, y, ξ)Allowed[i],∆(u, y, ξ)Required[i], box · α) |;

end
(u, y, ξ)Intermediate = (u, y, ξ)Init + ∆(u, y, ξ)Allowed;
SolState, x, dx/d(u, y, ξ) =
C++Interface.functionCall((u, y, ξ)Intermediate, xInit);
if SolState > 1 then

if α < 1e − 8 then
outerCounter = 10;
return SolState, x, dx/d(u, y, ξ);

α = α/2;
else

if | |∆(u, y, ξ)Allowed | | > 1e − 6 then
sH.addNewSample((u, y, ξ)Intermediate, x);

innerLoop = false;
outerCounter+ = 1;
distToPosition = | |(u, y, ξ) − (u, y, ξ)Intermediate | |;
if distToPosition < 1e − 6&&SolState > 0 then

return SolState, x, dx/d(u, y, ξ);
end

end
end

Algorithm 2.3: Algorithm inside function calcFuncVal for a line search towards a
new position given by u, y, and ξ and generating starting values for state variables x.
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2.3.4 Framework Extensions and Settings for MINLP under Uncertainty

Fig. 2.7 visualizes the developed framework for chance-constrained MINLP optimization
under uncertainty. The framework consists of three major parts: the optimization level,
the chance constraint level mainly consisting of the extended DoCCE framework, and
the solver level.

Figure 2.7: Framework for solving chance-constrained MINLP under uncertainty.

Optimization Level

Within the new framework the optimization level consists of the definition of the ob-
jective function, the description of the uncertain parameters, the definition of required
probability levels for all chance constraints, initial values for all continuous and integer
decisions variables u and y as well as their respective lower and upper bounds, and the
set of inequality (and equality) constraints, which are not touched by the uncertainty. In
the case of MINLP optimization under uncertainty the latter are mostly feed limitations
and integer inequalities stemming from the superstructure formulation, i.e. bounds on
the equipment to be used etc.
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The Python package SciPy3 (Millman and Aivazis, 2011; Oliphant, 2007) offers a num-
ber of NLP optimization solvers with a unified interface for supplying the optimization
problem. Some of NLP solvers offered by SciPy, such as fmin_powell, fmin_l_bfgs_b,
fmin_tnc, and fmin_slsqp have been applied for NLP studies here. In addition, both
IPOPT (Wächter and Biegler, 2006) and NLPQLP (Dai and Schittkowski, 2008) have
been integrated into the framework. IPOPT by Wächter and Biegler (2006) has a known
python interface provided by Eric Xu (2014). The interface has been adapted to allow
for the solution state feedback from the simulation solver back to IPOPT (see appendix
D.2 for details). For NLPQLP by Dai and Schittkowski (2008) an SQP solver written in
FORTRAN a completely new Python interface has been written (see appendix D.3 for
details) using f2py (Peterson, 2009).

On the MINLP solver side an interface for the MISQP solver (Exler and Schittkowski,
2007) has been written (see appendix D.4) yet again using f2py. In addition, the MIDACO
solver4 (Schlueter et al., 2013) has been applied, which has its own Python interface.

Before accessing the chance constraint level, a check is performed on the chance con-
straints, whether all of them are actually actively required and therefore need to be
evaluated. If for example a certain part of the superstructure for the current combina-
tion of binary and integer values y is inactive (yi = 0) chance constraints which concern
only this part need not be evaluated. The probability of the concerning constraint is
simply set to 1 and the gradient of the probability w.r.t. u and y to 0. As of now this
part has to be modified by the user manually.

Chance Constraint Level

On the chance constraint level the separate chance constraints are defined, the initial val-
ues are stored for the state variables, and the simulation solver is accessed. Additional
new settings concern the number of samples to be stored in the sample history (current
default: 20), how to generate the initial guess based on the sample history, multipliers
for the step length during the line search, and the number of allowed inner loops in the
line search.

The DoCCE framework has a number of options, which can be modified by the user
depending on the chance-constrained problem in hand. Most options are concerned with
the structure of the underlying sparse grid. The module of the DoCCE framework that
details the multivariate normal distribution mvnd.py has three initialization parameters
with, resolution, and depth. Whilst the latter two mainly define how many points are
placed in the sparse grid, i.e. how fine the grid is, the first defines the size of the sparse
grid. For desired probability levels of 80 to 90%, the width can safely be set to levels
around 2.0. For levels between 90 and 95%, 2.0 to 3.0 should be chosen and for any

3SciPy.org: http://www.scipy.org/, last accessed: 03/06/2015.
4MIDACO-Solver: http://www.midaco-solver.com/, last accessed: 03/06/2015.
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value above 95% at least 3.0. Tab. 2.1 shows then main settings options of the DoCCE
framework and the chosen options for this thesis.

Table 2.1: Selected options of the DoCCE framework.
Option Value Default
Multivariate Normal Distribution
width 2.5 (2.2)
resolution 3 (3)
depth 1 (1)
Newton Method
maxiter 30 (20)

Not directly connected with the chance constraint evaluation are additional new set-
tings on the connection of additional machines via local area network (LAN), which
can join into the chance constraint calculation and the number of evaluations which
can be performed on each machine in parallel. The default is of course, that no addi-
tional machine is attached to the starting process and that 8 subprocesses are started
simultaneously to run the simulations required for the chance constraint evaluation.

Simulation Level

The simulation level may consist of several separable parts of the whole superstructure.
Each part receives its respective set of values for u, y, and ξ, as well as starting values
for x from the calling process either on the chance constraint level or the optimization
level and returns solution state, values for all x, as well as derivatives of x w.r.t. u, y,
and ξ.

The NLEQ1s contained within the AE solver outlined above is operated with a number
of options deviating from the defaults specified by Nowak and Weimann (1991). A list of
all modified settings can be found in Tab. 2.2 and the most important are discussed in the
following. The option NONLIN specifies how nonlinear the AE system to be solved is. At 4
the system is specified as “highly nonlinear” and the dampening strategy of the NLEQ1s
is allowed to take up very small damping factors (see (Nowak and Weimann, 1991) for
details). Specifying IORMN to 1 ensures that a possible slow down in the convergence of
the solver is ignored and not taken as a reason to exit prematurely. Similarly, NITMAX is
set to 400 despite the fact that for good starting values the NLEQ1s can be expected to
converge within the first 10 to 20 iterations.

Based on the described framework chance constraints can be evaluated and MINLP
optimization under uncertainty is facilitated. However, this still requires a quantification
of the uncertainty in form of a multi-variate normal distribution, which is discussed in
the following section.
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Table 2.2: Selected options of the NLEQ1s solver.
Option Value Default
NLEQ1s function call
NONLIN 4 (2)
QRANK1 1 (0)
IORMN 1 (2)
NITMAX 400 50
rTol 1.0E-6 (1.0E-8)

2.4 Identification and Selection of Relevant Uncertain
Parameters

Parts of this chapter have already been published in (Müller et al., 2014).

The multiprocessing and distributed computing techniques for the chance constraint
framework described above allow for expensive computations in a fast and reliable man-
ner. However, despite all that a limitation to the number of uncertain parameters is
always desirable as it also touches the quality of the uncertainty description. Addition-
ally, accurate but fast models should always be preferred to overly rigorous, slow models.
Consequently, this section deals with the identification and reduction of the number of
uncertain parameters before the following section 2.5 details methods for obtaining mod-
els for optimization under uncertainty which are desirably fast.

A common drawback of optimization methods incorporating uncertainty is that they
are computationally expensive and that their expense increases (sometimes exponen-
tially) with the number of uncertain input values or parameters (Arellano-Garcia, 2006;
Binder, 2012; Quaglia et al., 2013; Dyer and Stougie, 2006; Wendt et al., 2002).

It is common practice to refer to parameter estimation to find a quantification of un-
certainty for a derived model based on some measurement data. The variance of the
model parameters is usually taken as a reliable estimate for uncertainty of the model.
However, these methods disregard the identifiability or even the relevance of the uncer-
tain parameters for the optimization task in question. Consequently, this leads to not
just poorly estimated parameters, but also unrealistically large values for uncertain pa-
rameters, causing unrealistic behavior of the system under uncertainty.

In the following, a strategy is discussed on how to overcome this issue. First of all,
parameter estimation strategies are briefly reviewed before subset selection is detailed
as a method to take the identifiability and linear dependence of parameters in a model
into account. Afterwards an addition to this method described in (Müller et al., 2014)
is discussed which further reduces the number of uncertain parameters to a relevant set.
Finally, further additions to this approach for larger numbers of experimental sets are
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introduced.

Parameter Estimation and Identifiability

In the last few decades many new strategies have been developed to improve the quality
of parameter estimations. In (Binder, 2012) different strategies for robust parameter
estimation are discussed. Unlike standard least squares approaches these can consider
gross-error in the measurement data sets. A disadvantage with these methods is, however,
that the resulting optimization problem using robust estimators is not twice continuously
differentiable.

For this reason and because of the difficulties in formulating these new optimization
problems, the workhorse still is the least squares parameter estimation.

In Burth et al. (1999), the introduction of parameter subsets is discussed to improve
nonlinear least squares parameter estimation. The general idea is the partitioning of
the parameters to be estimated into well-conditioned and ill-conditioned subsets. The
ill-conditioned subset of parameters is fixed at their current values and the parameter
estimation is repeated for the well-conditioned set. A repetition of this process until the
size of the well-conditioned set is not further reduced has shown to decrease variation and
unreliability of the results. The separation into the well- and the ill-conditioned set can
also be understood in terms of the identifiability of the parameters. This is most often ap-
plied in the field of design of experiments (Montgomery, 2013; Anderson and Whitcomb,
2000), where tests identifiability of parameters are well-known and frequently used. In
(López-C. et al., 2013), (Velez-Reyes and Verghese, 1995), (Grah, 2004), and (Quaiser
and Monnigmann, 2009) strategies for the determination and ranking of linearly inde-
pendent parameters are discussed. In (Brun et al., 2002), (Chu and Hahn, 2009), (Yao
et al., 2003), (Chandrakant and Bisaria, 1998), and (Weijers and Vanrolleghem, 1997)
the focus lies on the sensitivities of identifiable parameters.

Subset selection techniques for parameter estimation have already been applied by var-
ious authors, two examples are (Fink et al., 2007) and (López-C. et al., 2013). In (Müller
et al., 2014), which was co-authored together with David Müller and Diana C. Lopéz
C., the subset selection technique is extended to identify relevant uncertain parameters
for optimization. The algorithm developed therein will briefly be revisited here as it
is adapted and extended for AE systems with uncertain parameters and larger sets of
experiments.

The algorithm outlined in Fig. 2.8 starts out with iterative application of the subset
selection technique and parameter estimation as described in (López-C. et al., 2013).
Afterwards, the identifiable set of parameters is further investigated with respect to a
user-defined objective function and their sensitivity towards all state variables.

A number of assumptions and inputs are required for the application of the algorithm.
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Figure 2.8: Algorithm to reduce the number of relevant uncertain parameters for opti-
mization under uncertainty in accordance with (Müller et al., 2014). The
boxes in grey highlight the intermediate and final results of the parameter
estimation and selection steps.

1. A suitable model is required, which relates parameters, inputs on the system and
at least measurable states.

2. The model needs to be continuously differentiable with respect to all states and
the parameters.

3. Sufficient measurement data is available to allow for parameter estimation.

4. Variances for all measurement devices are available.

5. An objective function for optimization under uncertainty has been formulated by
the user and can be supplied to the algorithm.

Seeing that the algorithm will subsequently be advanced, the main points of the first
and the second part of the algorithm will be revisited in the following.

Identification of Uncertain Parameters - Part I: Subset Selection

The algorithm starts with the accumulation of the measurement data and the formula-
tion of the model. Based thereon an initial guess for the parameters, lower and upper
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bounds need to be defined. Strictly speaking parameter estimation algorithms do not
know bounds on the parameter values. However, this usually helps by narrowing down
the search space. Deviating from the standard implementation described in (Müller et al.,
2014) a Hammersley sequence sampling (Diwekar and Kalagnanam, 1997) is implemented
at this point and a multistart method is applied thereon to find the best initial guess
within the defined bounds. The Hammersley sampling is however only carried out for
the very first parameter estimation and for reasons of computation time not repeated
for the smaller subsets of parameters later. A further specialty is that the Hammersley
sampling is applied on the decadic logarithmic intervall for each parameter. This has
shown an advantageous behavior in case of lower and upper bound of a single parameter
lying in different orders of magnitude.

Initially, the parameter estimation is carried out for all parameters based on the min-
imization of the sum of least squares method starting at all Hammersley points. The
result with the lowest least square value is selected and as a byproduct of the parameter
estimation the Jacobian, also known as the sensitivity matrix SSsS f ull of the model, is
calculated for the output variables y with respect to the current parameter values p for
all measurement points.

In the step subset selection 0 the Fisher Information Matrix (FIM) is calculated (Bard,
1974). Equation 2.18 shows the calculation performed here.

FIM ≈ S′ · V−1x · S (2.18)

FIM is the approximated Fisher Information Matrix and S the sensitivity or Jacobian
matrix for all measured values regarding all parameters. Vx is the measurement de-
vice variance matrix, it is a diagonal matrix in which for each measurement point the
measurement variance of the respective device σ2

D is noted.
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The inverse of the FIM contains the variance of each parameter in its primary diagonal.
All other cells contain the covariances. Hence, the inverse of the FIM can be used as an
approximation for the covariance matrix Cov defined above.
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Based on the sensitivity matrix S a singular value decomposition (SVD) is performed
as described in (López et al., 2012). The division of the largest by the smallest singular
value yields the condition number κ. A high condition number indicates a singular sensi-
tivity matrix. Burth et al. (1999) and Grah (2004) suggest a threshold for the condition
number κ of around 1000.

As a second step after the SVD, the collinearity index γ is calculated as the inverse of
the smallest singular value. Brun et al. (2002) suggest a maximum for the collinearity
index between 10 and 15. Thirdly, the sensitivity of each parameter is computed based
on Eq. (2.21). Based thereon, on the condition number, and on the collinearity index
the number and ranking of identifiable parameters can thus be determined based on the
current result of the parameter estimation (López et al., 2012).

spi =

√
1

m
·

m∑
j=1

∂yj

∂pi
(2.21)

This process of parameter estimation and subset selection regarding identifiability is
repeated until the number of identifiable parameters remains constant.

Identification of Uncertain Parameters - Part II: Objective Function Sensitivity

The purpose of the second part of the algorithm is to further reduce the set of identifiable
parameters to the set of parameters which show a high variance while also influencing
objective function and state variables. Up to now x only implied measurable or mea-
sured states in the context of the algorithm. Now, this is extended to also contain all
immeasurable states, which might also appear in some chance constraint formulation.

Given the potentially high nonlinearity and non-convexity of the optimization problem
in question, the behavior of the model equations g and the objective function Φ can
change a lot depending on the set of decision variables chosen. Nevertheless, at this
point, only one set of values for u is investigated. The gradient of the objective function
is calculated with respect to the identifiable parameters and the values are normalized
as given by Eq. (2.22).

F i =

���
dΦ
dpi

���
max

j∈SubSet

����
dΦ
dp j

����

∀i ∈ SubSet (2.22)

The elements of F lie between zero and one. A second subset is formed of the identifiable
parameters for which the value of F i is greater than 0.1.

Similarly to the objective function the sensitivity of each identifiable parameter for all
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state variables is investigated as given by Eq. 2.23.

ȷi =

n j∑
j=0

(
∂x j
∂pi

)2
max

k∈SubSet

n j∑
j=0

(
∂x j
∂pk

)2 ∀i ∈ SubSet (2.23)

The elements of ȷ also lie in the intervall from zero to one. Initially, the same threshold
value of 0.1 is used as for F . A third subset of the identifiable parameters is formed for
which ȷi is greater than 0.1.

As a last step, the second and the third subset are joined to create the set of rele-
vant identifiable parameters which need to be left uncertain for the optimization under
uncertainty.

Identification of Uncertain Parameters - Modifications

In addition to the changes already noted within the description above, some further mod-
ifications were implemented in the algorithm published in (Müller et al., 2014).

When dealing with experimental results it can of course happen, that some experi-
ments are faulty. This could be due to simple errors in the documentation or unobserved
external disturbances which have not been reported. Apart from that it might be that
the area covered by the experimental runs is so large, that no single model can de-
scribe all the effects observed therein. For this purpose an outer loop is added to the
algorithm outlined above to deactivate or permute the active experiments and disregard
others. This approach can of course be very time-consuming was, however, found to be
sometimes vital to obtain satisfactory results for the parameter estimation and subset
selection.

As a further modification the third subset was changed to regard not all state variables,
but only those which actually appear within the chance constraints and the objective
function. This is an interesting approach, which is not always actually better than the
original path taken in (Müller et al., 2014), but is sometimes a useful measure to drasti-
cally decrease the overall number of uncertain parameters if required.

The modified framework for the identification and estimation of required uncertain
parameters implemented in Python is shown in Fig. 2.9. The experimental results need
to be supplied as a set of files containing the ID of the experiment in the file name. A
single file contains all input values for all experiments with each experiment in a single
row. For the optimizer the same NLP solvers as outlined above for the chance constraint
calculation can be employed. The same holds true for the simulation level, the recycling
of initial values, and the aforementioned line search technique. In case an ifail value larger
than zero is returned to the algorithm by the simulation level the objective function is
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set to 103 to avoid the appearance but not rule it out entirely for the final solution. For
the final solution of the inner algorithm the ifail values for all experiments are returned
to reconsider the initial selection of the set of experiments E. In case all experiments
fail for a single iteration the ifail value supplied to the optimizer is set to one to signal a
failure of the supplied parameters, otherwise it is kept at zero independent of the number
of experiments failing in the simulation level.

Figure 2.9: Parameter estimation and uncertainty identification framework: EML refers
to the described parameter estimation framework with integrated subset se-
lection named after its developers Erik Esche, David Müller, and Diana
C. López-C. ifail holds the solution state of each simulation.
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2.5 Modeling for Superstructure Optimization

Finding suitable models for process synthesis problems is an issue, especially when look-
ing at superstructure optimization. This is even more of an issue for the introduction of
uncertainty into the superstructure optimization. The repetitive evaluation of the model
equations for the probability integration causes an increase in the computation time,
which can easily grow from days to weeks or even to the level of several month.

Consequently, this section will start with various methods of deriving simplified models
for process optimization in general, which are required to be fast but also accurate,
finishing with a brief look at the modeling of superstructures and logical constraints.

2.5.1 Model Derivation and Simplification for Optimization

Parts of this chapter have already been published in (Esche et al., 2014b).

The last few decades have brought great advancements in the solution of large-scale
NLP or MINLP problems. Looking at solvers such as IPOPT (Wächter and Biegler,
2006) or MIDACO (Schlueter et al., 2013) even systems with thousands to millions of
variables are solvable. Despite the evolution of the algorithms, a large portion of the
actual success to solve a programming problem still depends upon the preparation of the
model for optimization.

Engineers tasked with setting up models for optimization follow several different strate-
gies to set-up and solve these. Among them are the application of short-cut models, model
derivations based on neural networks and support vector regression, as well as the devel-
opment of reduced-order models with help of principal component analysis or principal
orthogonal decomposition.

Classical Short-Cut Models

Given their nature, classical short-cut models are the method of choice for superstructure
optimization. The first short-cut models for process development in chemical engineering
were published in the early 1920s. A well-known representative being the McCabe-Thiele
method for graphically designing distillation columns (McCabe and Thiele, 1925). Whilst
the authors of these short-cut models claim a fast and accurate calculation, the differ-
ence to the actual application is usually rather big and the applicability of the results low.

At the same time, the computational complexity of short-cut models is exceptionally
low and convergence can always be guaranteed. But, given the large error when calculat-
ing with short-cut models their usefulness for process optimization or even superstructure
optimization under uncertainty is exceptionally limited.
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Neural Networks and Support Vector Regression

For systems for which either sufficient experimental data or a rigorous simulation model
to generate data is available, artificial neural networks (ANN) or support vector regres-
sion (SVR) have become of interest. An application can be found in (Nandi et al., 2004).

ANNs can be constructed based solely on experimental data. Phenomenologic knowl-
edge is not required at all and multivariate dependencies can easily be modeled. The
training process of the ANN requires a highly nonlinear and non-convex objective func-
tion. Therefore, finding the global optimum to guarantee a close fit between data and
model is of the essence.

SVRs are similarly exclusively based on measurement data. The objective function
is quadratic and allows for the direct calculation of the global minimum. Both types
of regression models are easily used for optimization purposes. However, given their
basic structure, neither smoothness, nor continuity, nor differentiability can be ensured.
Consequently, gradient-based optimization algorithms can seldom be applied and ge-
netic algorithms have to be used instead. Additionally, it has to be remarked, that
their applicability outside of the region for which they are trained is inadvisable as no
phenomenologic information is introduced (Bishop, 1994).

Surrogate Models

ANN and SVR are representative of a new class of models, so called Surrogate Models.
These replace an original, more detailed model by a well-known and less complex approx-
imation. Apart from ANN and SVR examples are partial least squares (Burnham et al.,
1996) or Kriging (Nielsen et al., 2002). A common feature is that the response charac-
teristics of the outputs with respect to the inputs are almost identical despite the fact
that the underlying model structure is completely different. The generation of surrogate
models is based on three recurring steps: the generation of snapshots based upon the
original model or measurement data, the actual model generation, and model validation
(Koziel et al., 2011; Simpson et al., 2001). However, larger differences are present in the
actual implementation of these steps, placement and number of snapshots, model struc-
ture and type, etc. Among the different methods applied, Kriging has become a very
popular feature for optimization applications (Davis, 2008; Forrester and Keane, 2009;
Biegler et al., 2014). Recently, Cozad et al. (2014) introduced their learning method for
the derivation of small and fast surrogate models for optimization.

Unlike for ANN and SVR, Kriging-based surrogate models can also be used to generate
derivative information with respect to the inputs despite an obvious decrease on the
quality compared to the original model. Including parametric uncertainty is of course a
lot less straight forward. One solution might be adding these parameters to the set of
inputs when generating the surrogate model. This could, however, cause a steep increase
in the size of the surrogate model.
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Reduced Order Models

A further extension to the idea of surrogate modeling is the development of Reduced Or-
der Models (ROM). The general idea is the application of some decomposition technique
which reduces the order of the system by eliminating unnecessary input/output relations.
Examples for these decomposition techniques are principal component analysis (PCA)
and proper orthogonal decomposition (POD). PCA is a decomposition technique often
applied in multivariate statistics, image processing, and analytics (Kessler, 2007). POD
on the other hand is more frequently used for spatially distributed systems, for which
systems of differential equations need to be approximated (Rowley et al., 2004; Kunisch
and Volkwein, 2002; Bui-Thanh et al., 2004).

The result of either decomposition techniques is afterwards mimicked by some surro-
gate modeling techniques, such as Kriging.

In (Lang et al., 2009) an approach for applying PCA to derive ROMs for process
optimization is presented. The great advantage of the derived model lies in the com-
putational time it takes to solve it. Their PCA based on computational fluid dynamics
simulations takes a few seconds instead of a couple of hours. Despite all that Lang et al.
(2009) showed that “there is considerable scope for future work in ROM development”.
The larger the area is over which the PCA-based ROM is generated, the larger the offset
to the original data becomes. Hence, in cooperation with Jens Bremer and Larry Biegler
a parametric ROM technique has been developed to connect several ROMs developed
for separate areas into a single ROM for the entire region of applicability (Bremer, 2014).

The application of parametric ROMs will certainly still gain some traction in modeling
for process optimization in chemical engineering and will certainly be of greater interest
for dynamic optimization and control. Nevertheless, for superstructure optimization
uncertainty, the presence of many controls and uncertain parameters will always mean a
disadvantage for ROMs as the achievable reduction will be rather small.

New First Principles and Hybrid Models

For completely new systems many theoretical systematics exist on how to derive new
models and to formulate them, examples are (Marquardt, 1996), (Rodrigues and Minceva,
2005), and (Heitzig et al., 2011). A downside to these modeling techniques is of course
that aspects such as numerical behavior, accuracy, etc. are initially disregarded. In gen-
eral, models are required for process optimization, which are on one hand as accurate
as desired, but on the other hand as fast and numerically stable as possible. These two
requirements usually clash and it is difficult to reconcile them.

In (Esche et al., 2014b) a systematic is presented which deals exactly with this topic
of how to derive a suitable model for optimization in case

• no model exists at all,
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• some inaccurate but simple model exists,

• or an exceptionally accurate rigorous model is available.

The systematic described in (Esche et al., 2014b) is shown in Fig. 2.10 and consists of a
set of accuracy and convergence checks, rules on how to simplify and reformulate existing
models, and advise on which experiments to perform both at the phenomena and the
process level.

As a result, the modeling systematic could either provide a detailed first principles
model, a completely heuristic model, or a hybrid of those two. The workflow has been
repeatedly applied throughout the work presented here. All aspects of the systematic
have already been published in detail in (Esche et al., 2014b) and (Esche et al., 2014d).
At this point, a rough overview of the main steps within the workflow will be given,
which are of consequence for this thesis and have been applied in subsequent chapters.

The starting point of the workflow is the definition of goals and model requirements.
These concern the accuracy and the numerical behavior of the system in question. With
respect to superstructure optimization it has already been emphasized that fast conver-
gence is to be preferred over exceptional accuracy. At the same time, a certain level of
accuracy still has to be retained. Based on the existence of any preliminary model (step
1 Fig. 2.10) the workflow continues with the analysis of the accuracy thereof (step 2) or
with deliberations on the basic phenomena (step 6).

The analysis of the accuracy should always be carried out based on some measure-
ment data or a preexisting validation carried out for the existing model. Unlike for a
rigorous model validation, it is often only required that selected output states relevant
for the optimization task are well represented. The algorithmic workflow quits in case
both accuracy and convergence behavior (step 3) are as desired. For this purpose the
model needs to be tested in optimization studies (both for simultaneous and sequential
optimization) to test how many iterations and CPU seconds are required to converge
from one operation point to the next.

In case the convergence behavior is inadequate, either one of the surrogate modeling or
ROM techniques discussed above should be applied or a systematic simplification of the
model in hand should be carried out. This step is the largest step within the workflow
and is also discussed at length in (Esche et al., 2014b). The finer points will only be
revisted here.

Within the model simplification step the workflow requires, first of all, a structural
decomposition, i.e. splitting the set of equations into component balances, equilibrium
formulations, summations, energy balances, momentum balances, and auxiliary equa-
tions. Each of these parts is then dealt with in turn.

Mass and component balances can sometimes be simplified by formulating atom bal-
ances instead of having to deal with heavily nonlinear kinetics, by leaving out trace
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Figure 2.10: Systematic workflow for the development of models for optimization in ac-
cordance with (Esche et al., 2014b).

components altogether, or using component mole flows instead of mole fractions, etc.
For equilibrium formulations the treatment heavily depends on the type of equilibrium,
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the introduction of slack variables, fixing fugacity or activity coefficients whenever pos-
sible, empiric replacements for equations of state, and manual scaling are advisable for
example. On the topic of summations, the summation of absolute quantities instead of
mass or mole fractions could be suggested to reduce the number of variables in the sys-
tem. Regarding energy balances a number of measures are advised, among them avoiding
formulations based on enthalpies of formation and instead using fixed heats of reaction.
In case momentum balances are required the simplification is not straight forward. One
suggestion is to use local linear representations of pressure loss correlations when possible
although this approach may cause undesired loss in accuracy. The same is also the gist
of the possibilities for all auxiliary equations. Linearizations should be preferred for all
cases possible. The deliberations in (Esche et al., 2014b) are rather extensive on these
points and detailing all of them again would go too far here.

Continuing with the workflow, step 5 investigates the trends conveyed by the model
and whether some form of readjustment or shift would be able to move the accuracy
based on those trends into the desired region. If these trends are far removed from real-
ity, the basic phenomena underlying the system need to be reinvestigated in step 6. This
may require obtaining new experimental data to generate new mechanistic or empirical
models thereof (steps 7 to 9). In this context empirical models should always be preferred
as they tend to be faster with respect to their numerical behavior.

Joining these phenomena into larger models should always be carried out based on first
principles models, which can then subsequently be adjusted to process level measurement
data (step 10) in case a pilot plant and measurement data is available (steps 11 to 15).

The technique described above to derive models for optimization applications may not
be without a gap, it has nevertheless successfully been applied here. Further details will
be given in Chapter 3 and may be found in (Esche et al., 2014b) and (Esche et al., 2014d).

Reformulation Techniques

In addition to the model derivation and simplification techniques discussed in (Esche
et al., 2014b) many mathematical reformulation methods exist and have been applied
here, which can improve the numerical behavior of any rigorous our empiric model. Orig-
inality of all of these techniques is not claimed here. Given the mathematical nature of
all reformulations naming sources for them is almost impossible.

At this point, the reformulations will simply be enumerated without a detailed dis-
cussion of the advantages and disadvantages of each as those heavily depend on the
equation or equation system applied on. The techniques are in the following organized
by the numeric issues they are supposed to fix.

Roots of Denominators: A recurring problem in the solution of chemical engineering
models is the division by zero caused by the root of some denominator as given by
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Eq. (2.24) for b(x) = 0.

f (x) =
a(x)
b(x)
, x ∈ R (2.24)

Within this contribution three different techniques have been applied to avoid these di-
visions by zero.

1. In case the fraction is separable from surrounding terms without having to introduce
additional dummy variables, a multiplication with the denominator can be tested:

b(x) · f (x) = a(x) (2.25)

2. However, this is most often not the case without the introduction of a placeholder
variable for the entire fraction. A different option is exploiting the physicality of
chemical engineering models. Given that most state variables only assume strictly
positive values, denominators will often inherit this feature. For these cases the
appearance of the root can simply be avoided by adding a small positive value to
the denominator, thus shifting the root towards small negative values:

f (x) =
a(x)

b(x) + ε
ε > 0 (2.26)

While this is the simplest reformulation technique it is also a falsifying one in case
the final values are close to zero and should hence be applied with care.

3. Finally, in case the denominator threatens to assume negative values, the reformu-
lation shown above is not a solution. In this case an approximation of the max(0, x)
function can be applied:

max(0, x) ≈
x
2
+
1

2
·
(
(x − ε)2

) 1
2 ε > 0 (2.27)

f (x) =
a(x)

max(0, b(x))
(2.28)

There are other formulations approximating the max(0, x) function, albeit these
have not been applied here.

Negative Values in Power Functions: Unless the exponents are integer values, power
functions cannot deal with negative values. In addition, the derivative for the base
approaching zero is not defined. Yet again the later two of the inexact reformulations
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discussed above for the denominator’s roots may be applied:

f (x) = (a(x))r r ∈ R \ Z (2.29)
⇒ f (x) ≈ (max(0, a(x)))r (2.30)
∨ f (x) ≈ (a(x) + ε)r ε > 0 (2.31)

Logarithmic Functions: Similar to power functions, logarithmic functions are only able
to compute positive values in their arguments. Here again, two possibilities are viable.

1. Whenever possible logarithmic functions can be exchanged by their exponential
inverse function.

f (x) = ln(a(x)) (2.32)
⇒ exp( f (x)) = a(x) (2.33)

The only downside here, is that while the exponential function is well-defined for
all real values, the computation of large arguments is not possible for comput-
ers. However, this issue is a lot smaller than the undefined call of the logarithm
approaching zero.

2. In case the replacement by the exponential formulation is not viable, the max(0, x)
approximation may yet again be applied on the argument of the logarithm.

(Partial) Differential Equations: Partial differential equations frequently appear in
chemical engineering models. Dealing with those is especially complicated in systems with
both spatially distributed and time-dependent parts. Within this thesis any differential or
partial differential system is fully discretized using Lagrangian orthogonal collocation on
finite elements for DAE systems as described by (Biegler, 2010). For systems with second
order derivatives in one space dimension and first order in the other space dimension or
in time a combination of Lagrangian and Hermite collocation on finite elements is applied
as described in (Esche et al., 2012, 2014a).

Multiple Solutions: Despite providing excellent starting values, a solver might deviate
from the original point so far that one or more equations move to different roots. Promi-
nent examples for equations in engineering models are cubic equations of state, which
have different roots for vapor and liquid phase and an intermediate solution with no
physical meaning. To handle such issues, Kamath et al. (2010) have introduced inequal-
ity constraints to distinguish between valid solutions for liquid and vapor phase and to
rule out the intermediate solution.

The model derivation, simplification, and reformulation techniques discussed so far are
usually carried out on separable subprocesses, such as a reactor, an absorption section,
or a distillation column. Additional complexity of course arises when these models are
joined together to form large-scale superstructures.
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2.5.2 Superstructure Modeling

When connecting preexisting models into a single superstructure a couple of aspects have
to be kept in mind. Among these are

• the formulation of all logical constraints describing the interdependence of the
equipment or structure parts used,

• the initialization of the whole equation system, and

• the activation and deactivation of separate parts within the superstructure, de-
pending on the binary decisions.

Many textbooks deal with the formulation of MILP and MINLP problems, the formula-
tion of logical constraints and their translation into algebraic equalities and inequalities.
Some examples are (Wolsey and Nemhauser, 2014; Edgar et al., 1989; Floudas, 1995;
Biegler et al., 1997). Important points to note here are the deactivation of inequality
constraints whenever process equipment is not in use or the relaxation of equality con-
straints which may be violated. Additional information on the actual MINLP formulation
employed here, will be given in Chapter 3 when describing the investigated superstruc-
tures.

A major issue in sequential MINLP optimization, where major nonlinear parts are
contained in the underlying simulation is the reinitialization of equipment, which was
completely deactivated in a previous iteration. To avoid these issues a rather expensive
formulation is used instead. Whenever a clear choice exists between two or more sets of
equipment for one feed stream, all sets of equipment are supplied with that feed stream
and the decision, which of the equipments is used, is moved to the outlets of the units.
This formulation is shown for two membranes in Fig. 2.11.

The main advantage of this formulation method lies in sustaining starting values for
all nonlinear equations at all times and the effects of switches with respect to jumps
in the behavior of the entire system are heavily dampened. The downside of course is,
that the number of equations is twice as high compared to a formulation, in which the
permeability equation in a single membrane is switched with a binary variable from one
type to the other.

Based on these reviewed and derived methods the next chapter can now introduce
specific models with the desired specifications regarding accuracy and convergence time
for the OCM process concept investigated within this thesis.

2.6 Collaborative Engineering

As outlined within this chapter a number of steps need to be taken to derive, formulate,
and prepare models for optimization under uncertainty. Also, the subsequent steps of
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Figure 2.11: Binary choice between two membranes yb, a bypass to the membrane choice
yz , and a subsequent recompression ycm. Instead of deactivating sets of
equipment, the binary decisions are moved to the outlets.

model reformulation, parameter estimation, sensitivity studies, deterministic and chance-
constrained optimization, as well as formulation of superstructure problems needs to be
done based on those initially formulated models. Hence, an implementation of the whole
workflow inside a single modeling environment, which can interface to different simula-
tion and optimization environments and or solvers would be helpful.

Consequently, every single step from model derivation to chance-constrained optimiza-
tion is either carried out or supported by MOSAIC, which is a development from the
group of Prof. Wozny at TU Berlin (Kuntsche et al., 2011) and is extended slightly for
the requirements arising from this thesis. MOSAIC is an collaborative, equation-based
modeling environment. Algebraic or differential equations are entered as LATEXcode and
joined together as equation systems. These are subsequently exported to some simulation
environment, e.g. AMPL, Aspen Custom Modeler, GAMS, gPROMS, MATLAB, or else
directly exported to some solver implemented in C++, FORTRAN, Python, etc. The
results can be reimported to MOSAIC and hence used to initialize larger systems, which
can then be built based on the modeled and initialized unit operations or subprocesses.
This way superstructure problems with integer variables can also be implemented and
exported to optimization environments and solvers.

As part of this dissertation a number of new code generators are added to MOSAIC
to support the workflow described so far:

1. Code generator for Python Scipy to support optimization in Python.
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2. Code generator for AMPL to support simultaneous optimization.

3. Code generator for the aforementioned sparse non-linear solver in C++.

4. Code generator for C++ to support the parameter estimation and subset selection
framework implemented in Python described above.

Given that MOSAIC also contains a database for measurement data, the next, not
yet implemented step is the introduction of a graphical interface to facilitate the formu-
lation and solution of parameter estimation problems and subsequently also for chance-
constrained optimization.
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Chapter 3

Model Derivation and Model
Simplification

In this chapter all units considered for the OCM superstructure are introduced and the
methods discussed in section 2.5 are applied to obtain suitably accurate and fast models
for the subsequent formulation and investigation of parts of the superstructure. The
four, fundamentally different unit operations investigated herein are an OCM reactor,
the amine-based absorption, gas separation membranes, and the combined pressure and
temperature swing adsorption. Two different scrubbing liquids, MEA and piperazine-
activated methyldiethanolamine (aMDEA), are considered for the absorption. Regarding
the gas separation membranes, two different materials, PI and PEO, are considered as
part of a network of up to six membranes. Based on these units several structures can be
derived for the OCM process. These are discussed in detail in Chapter 5. A first generic
structure is shown in Fig. 3.1.

3.1 Conventional Packed-bed Membrane Reactor

As has been noted before, a variety of different reactor set-ups, catalysts, and catalyst
supports have been investigated. Up to now the best performance for the OCM reac-
tion under continuous operation conditions has been achieved in coventionally operated
packed-bed membrane reactors (CPBMR) (Godini, 2014). Hence, for this thesis all other
reactor design options will be neglected and the focus will solely be put on the CPBMR.

The reactor can be operated with a number of different feed configurations and oper-
ation conditions. In its standard layout O2 and N2 are fed to the shell and CH4 and N2
are fed to the catalytic packed-bed in the tube. The outer shell of the reactor is fitted
with a heating jacket to adjust the temperature along the reactor length. The shell-side
is usually operated as a dead end with all gases leaving the system through the tube-side
outlet. Alternatively, N2 is exchanged by CO2 on the tube-side and pure O2 (sometimes
diluted with further CO2) on the shell-side. Both configurations have been investigated
extensively both theoretically (Holst et al., 2012; Jašo et al., 2010a,b; Esche et al., 2012,
2014a) and experimentally (Godini, 2014; Godini et al., 2014a, 2013a; Jašo et al., 2012;
Sadjadi et al., 2015) testing a multitude of reaction conditions and catalysts.
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Figure 3.1: First generic combination of a OCM reactor with subsequent product pu-
rification steps: The OCM product gas is fed to a pressure or temperature
swing adsorption, afterwards to a network of gas seperation membranes, and
finally to the absorption desorption subprocess. Each of these units may be
bypassed (dashed lines).

A very detailed, two-dimensional model has been presented in (Esche et al., 2014a) us-
ing the well-known La2O3/CaO catalyst with kinetics provided by Stansch et al. (1997).
The model has been developed for simultaneous optimization purposes and has been
implemented in AMPL and solved with IPOPT. The fully discretized model consists of
130’000 algebraic equations and shows a stable performance. However, even using sparse
nonlinear solvers the system is slow to converge to a new operation point with simple
deterministic optimizations taking several days to weeks.

For this reason, it was decided to develop a faster converging parametric ROM for
the reaction section. This was done in cooperation with Jens Bremer1 and Lorenz
T. Biegler2(Bremer, 2014). The resulting parametric ROM is able to mimic the be-
havior of the original model described in (Esche et al., 2012) quite well with a variance
of the residuals over the entire field of concentrations and temperatures of around 0.1
%. A single evaluation of the parametric ROM takes around 0.2 s and is hence consid-

1Jens Bremer, M.Sc., Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1,
D-39106 Magdeburg

2Lorenz T. Biegler, Ph.D., Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
USA
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Figure 3.2: Sketch of the convential packed-bed membrane reactor. Conventionally,
methane and nitrogen are fed to the tube-side of the reactor, which con-
tains the catalyst in a packed-bed. Oxygen is supplied via the shell of the
reactor and a tubular ceramic membrane surrounding the packed-bed. The
outer wall of the reactor is heated by an electrical heating jacket. In practical
implementations the shell ends in a dead end and all gases leave the system
through the packed-bed.

erably faster than the original model. Feed conditions, temperatures, length, and other
operational parameters can be manipulated and the outputs are quickly generated. The
model is described in detail in (Bremer, 2014).

Nevertheless, it is important to note that the measured micro-kinetics such as (Stan-
sch et al., 1997) show a stark overestimation of the macroscopic performance. The main
reason lies in the geometry of actual reactors like the CPBMR. At the tube-side inlet of
the reactor depicted in Fig. 3.2 the CH4 concentrations are comparatively high while the
O2 concentrations are close to zero. In this region all existing kinetics show an unrealis-
tically high production of C2 hydrocarbons.

Initially it was hoped that this issue could be overcome by adjusting the parametric
ROM to existing measurement data or to find a suitable macro-kinetic. Also, on the
first proposition too little measurement data is available. On the second proposition a
new kinetic for Unicat’s performance catalyst 2%Mn5%Na2WO4/SiO (Godini, 2014) has
been derived by now, although not in time for the rather time-consuming step of the
ROM development.

Instead, for all further investigations a number of probable output concentrations of
the CPBMR for two different feed scenarios are going to be used. In the first scenario
purified air is used instead of pure O2 and N2 is employed as a diluting gas for the CH4
feed to the reactor. For the second scenario pure O2 is employed for the shell-side feed and
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the methane fed to the tube-side of the reactor is diluted with CO2. Tab. 3.1 contains the
used set of outlet concentrations for both scenarios, which are based on results published
in (Godini et al., 2014a) and on the idea that CO2 as a diluting gas has a positive effect
on the selectivity of the OCM reaction.

Table 3.1: Outlet concentrations of the CPBMR reactor used for optimization of the
CO2 removal section. First Scenario: feed contains N2, second scenario: feed
contains no N2, CO2 is used to dilute the feed gas.

ID CH4 C2H4 CO2 N2 H2
[−] [Molar %]

Scenario I
I.1 63.0 4.1 2.7 22.1 8.1
I.2 48.3 5.2 10.3 25.9 10.3
I.3 17.9 3.1 1.5 71.3 6.1
Scenario II
II.1 62.6 4.3 24.6 - 8.5
II.2 37.8 5.1 46.8 - 10.2
II.3 17.9 3.1 72.7 - 6.3

3.2 Absorption Desorption Process

Parts of this chapter have already been published in (Esche et al., 2014b).

The task of the absorption desorption process in the whole superstructure is the re-
moval of CO2 from the product gas stream. The feed stream to the absorption section
will always contain C2H4, CO2, and C2H6. In addition, depending on the preceeding
separation steps taken N2 and CH4 might also still be present.

From previous investigations it is known that the main product of interest C2H4 has
a considerable solubility in some amine-based scrubbing liquids commonly used in CO2
separation (Stünkel, 2013; Lawson and Garst, 1976; Carroll et al., 1998). Hence, any
model derived for the absorption desorption section should not only be able to reproduce
the CO2 separation but also to catch the loss of the main product C2H4.

A number of scrubbing liquids are available to remove CO2 from industrial gas streams.
For the context of the OCM process concept especially MEA and aMDEA have already
been investigated extensively and measurement data is available (Stünkel, 2013). Con-
sequently, the model developed herein for the absorption desorption process is made
versatile enough to sustain both scrubbing liquids to easily switch from MEA to aMDEA
and vice versa without addtional modeling effort.
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3.2.1 Review of Existing Models

The removal of CO2 using MEA or aMDEA has of course already been extensively inves-
tigated. The solubility of CO2 in aqueous solutions of MEA or MDEA has been published
by e.g. Shen and Li (1992) and Jou et al. (1995) for a wide range of applications, pres-
sures, and temperatures. The first models for the reactive absorption were developed by
Clarke (1964) and Hikita et al. (1977). By now countless rigorous models exists, a recent
example being (Aboudheira et al., 2003).The degree of complexity applied for simulation
studies varies strongly. Highly rigorous examples were presented by Yeh and Bai (1999)
and Freguia and Rochelle (2003), who subsequently fitted their models to lab-scale and
field data.

Figure 3.3 shows a simplified version of the flowsheet of the absorption desorption
process considered for the OCM superstructure. Only the main gas streams (Feed, Clean
Gas, CO2), the main scrubbing liquid streams, and the most important equipment are
shown therein. Absorption and desorption column are outlined as columns filled with
structured packings. The absorption column can be operated at up to 32 bar, the desorp-
tion column at up to 3 bar and is electrically heated. At the top of the desorption column
a condenser is not shown in the simplified flowsheet which siphons off liquid water and
amine-solution and returns it into the desorption column to reduce the scrubbing liquid
loss. The flowsheet also represents an existing mini-plant at TU Berlin, which is used for
CO2 removal.

As a starting point the absorption desorption process is simulated in Aspen Plus®.
Therein both MEA and aMDEA are employed as scrubbing liquids. The first with a
weight fraction in the aqueous solution of 30 %, the latter with 3 % for piperazine and 37
% for MDEA. In both cases the E-NRTL package is employed for the liquid phase and
the SRK equation of state for the gas phase. Correlations for the mass transfer between
liquid and vapor phase are taken from (Rocha et al., 1996, 1993).

This simulation in Aspen Plus® consists of about 2’000 state variables and shows a
slow convergence behavior. To move from one operation point to a second, the scrubbing
liquid recycle has to be opened before the absorption column all units have to reach con-
vergence separately before gradually closing the recycle again. If this manual process is
not carried out, the simulations keep running into infeasibilities even for smaller changes
to the operation conditions.

Based on these initial experiences a first, simplified model (for MEA only) is imple-
mented in MOSAIC3 (Kuntsche et al., 2011). This could also be carried out within Aspen
Plus or similar flowsheeting tools. However, given the limited number of efficient solution
methods and the applicability of advanced optimization tools within Aspen, MOSAIC is
preferred. The model is based on the following basic assumptions:

3MOSAIC: The Modeling, Simulation, and Optimization Environment, http://www.mosaic-modeling.
de, last accessed: 03/11/2015.
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Figure 3.3: Simplified flowsheet of the absorption desorption process for the removal of
CO2 from OCM product gas. The CO2 rich feed gas enters an absorption
column at the bottom and countercurrently passes a scrubbing liquid which
absorbs and chemically binds the CO2. The loaded scrubbing liquid is first
flashed to ambient pressure to release a large part of the CO2. Afterwards
it is heated and further stripped of CO2 in the desorption column, in which
steam is generated electrically. The regenerated scrubbing liquid is afterwards
cooled by the loaded stream, replenished with fresh scrubbing liquid solution
and fed back to the absorption column. At the top of the absorption column
a partial condenser is tasked to limit water and amine loss by cooling the
outlet gas and returning the condensed liquid back into the column.

1. Every single theoretical plate is modeled as an equilibrium stage.

2. Gas and liquid phases are ideally mixed.

3. Both gas and liquid mixtures behave ideally.

4. Only CO2, H2O, and C2H4 can be transported between gas and liquid phase.

5. The evaporation of MEA is neglected.

6. All reactions take place in the liquid phase.

7. The streams exiting each stage have the same temperatures.

8. Each separation stage is adiabatic.
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The assumed equilibrium reactions are given below:

H2O + MEACOO– MEA + HCO –
3 {3.2}

H2O + MEAH+ MEA + H3O
+ {3.3}

H2O + HCO –
3 CO 2–

3 + H3O
+ {3.4}

2 H2O + CO2 HCO –
3 + H3O

+ {3.5}

2 H2O OH– + H3O
+ {3.6}

Therein, MEAH+ is the protonized ion of MEA and MEACOO– the carbamate ion. This
set of equilibrium reactions has been suggested by Crooks and Donnellan (1989) and suit-
able correlations for the equilibrium constants are contained in (Kim et al., 2009). The
solubility of CO2 is modeled based on a Henry approach suggested by Liu et al. (1999b)
and vapor liquid equilibrium is idealized and based solely on the Antoine correlation for
the vapor pressure. All parameters, equations, and additional model assumptions are
given in (Brodowska, 2013).

The equilibrium-based model for MEA is exported to AMPL and solved using both
SNOPT4 and IPOPT. Basic optimization studies carried out with these NLP solvers
showed an improved behavior compared to the previously designed Aspen Plus® model.
However, a general issue with the MEA system is observed caused by the appearance of
vital trace components. Both OH– and H3O

+ appear only in minute quantities in the
absorption system, but their concentrations can vary across several orders of magnitude,
i.e. from 10−11 to 10−4 mol/m3, depending on the loading of the system with CO2.
Consequently, the system of equations is badly scaled and scaling it manually is difficult
as the changes in the orders of magnitude are this big. As a consequence of the bad scaling
local infeasibilities have been observed repeatedly throughout the NLP studies. Seeing
that fixing the values for both ions OH– and H3O

+ utterly falsifies the CO2 absorption
model it is difficult to circumvent these numeric issues in any model containing the ionic
species.

3.2.2 Hybrid Model for the Absorption Desorption Process

To avoid the numeric issues with the ionic components, a hybrid model is proposed,
i.e. a model based on a combination of first principle balances and empiric correlations.
For superstructure optimization purposes knowledge on the exact ionic composition of
the scrubbing liquid is not required. Information on the loading with CO2 is more than
sufficient for a design of the system and subsequent validation of the optimization results.

Equilibrium data on the loading of aforementioned aqueous solutions of MEA or
aMDEA with CO2 and the resulting heat of absorption have already been published
by Shen and Li (1992) and Kim and Svendsen (2007) respectively. For MEA their data

4SNOPT for AMPL: http://ampl.com/products/solvers/solvers-we-sell/snopt/, last accessed:
2015/03/11.

57

http://ampl.com/products/solvers/solvers-we-sell/snopt/


Chapter 3 Model Derivation and Model Simplification

is plotted in Figures 3.4 and 3.5.

Figure 3.4: Solubility of CO2 in a 30 wt. % aqueous solution of MEA as a function of
the partial pressure of CO2 pCO2 and temperature T based on the raw data
published in (Shen and Li, 1992).

Based on the form and curvature of the data a nonlinear correlation is derived for both
the solubility α as a function of temperature T and partial pressure of CO2 pCO2 and the
heat of absorption ∆hA,CO2 as a function of solubility α and temperature T .

α(T, pCO2) = (P1 · T + P2) · (pCO2 )P3 ·T+P4 + P5 (3.1)

∆hA(T, α) = (P6 · T + P7) · ((P8 · T + P9) − α)P10 + P11 (3.2)

The temperature T therein is given in Kelvin, the partial pressure in Pascal, the solubility
in mol CO2/mol MEA, and the heat of absorption in kJ/mol CO2. The eleven parame-
ters P1 through P11 are fitted to the experimental data presented in Figures 3.4 and 3.5.
The resulting surface functions are shown in Fig. 3.6 for the solubility correlation and
in Fig. 3.7 for the heat of absorption correlation. Values for the fitted parameters Pi

for MEA and the measurement data and respective parameters for MDEA are given in
the Appendices A.1 and A.2 starting on page 165. Both MEA and aMDEA models are
structurally identical. Whenever MEA is mentioned in the following it may be replaced
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3.2 Absorption Desorption Process

Figure 3.5: Heat of absorption of CO2 ∆hA,CO2 into a 30 wt. % aqueous solution of MEA
as a function of the solubility of CO2 α and temperature T based on the
raw data published in (Kim and Svendsen, 2007). Each temperature set was
measured twice, black and blue denoting the two sets.

by aMDEA generically.

Based on the two correlations a completely new model is developed. Instead of the
ionic species actually appearing in the system three pseudo components are modeled in
the liquid phase: CO2, H2O, and MEA. These three components do not react with one
another and hence do not form any ions. In addition, C2H4 is included as a gas phase
component which is physically dissolved in the liquid phase. Table 3.2 notes all gas
and liquid phase components contained in the new model and their respective IDs for
the modeling. The other components contained in the feed stream (CH4 and C2H6) are
added to the amount of N2 and separated proportionately afterwards again.

The absorption column is separated into theoretical plates each of them modeled as an
equilibrium stage. Both desorption column and flash are modeled as a single equilibrium
stage respectively. Fig. 3.8 sketches one theoretical plate with all inlet and outlet streams
for the absorption column.
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Figure 3.6: Solubility of CO2 in a 30 wt. % MEA solution α depending on temperature T
and the partial pressure of CO2 pCO2. The lines show the measurement data,
the surface the developed correlation.

Table 3.2: List of gas and liquid phase components and their IDs for the solubility-based
absorption model.

Component Gas ID Liquid ID
cg cl

CO2 1 1
H2O 2 2
MEA/aMDEA - 3
N2 3 -
C2H4 4 4
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3.2 Absorption Desorption Process

Figure 3.7: Heat of absorption of CO2 in a 30 wt. % MEA solution ∆hA,CO2 depending on
temperature T and the solubility of CO2. The lines show the measurement
data, the surface the developed correlation.

Figure 3.8: Sketch of a theoretical plate for the solubility-based absorption model. st A
denotes the index ID of the stage of the absorption column. The stages are
counted from top to bottom starting with stage 1.
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st A is the index for the ID of the stage in the absorption column. The gas feed to the
absorption column is connected to the gas stream (g) with the stage ID st A = 0. The
liquid feed to the column to the topmost stage ID plus one st A = N st A+ 1. The streams
leaving each stage carry the ID of the stage they are leaving. In addition they inherit the
composition, temperature, and pressure. Each stage has its own heat stream (for heat
loss calculations) Q̇st A and an efficiency ηst A. The latter shows the deviation of each
theoretical stage from the actual equilibrium.

On each equilibrium stage component balances are formulated as well as a single energy
balance. The generic component balance is formulated in Eq. (3.3). Therein Ṅg

st A,cg
is

the molar flow of gas component cg leaving tray st A.

0 = Ṅg
st A−1,cg + Ṅ l

st A+1,cl − Ṅg
st A,cg

− Ṅ l
st A,cl (3.3)

Given that component three differs from gas (N2) to liquid (MEA) phase an additional
equation is entered to ensure that these do not interfere:

0 = Ṅg
st A−1,cg=3 − Ṅg

st A,cg=3 (3.4)

The energy balance for each theoretical plate is given by Eq. (3.5).

0 = − ∆hA,st A+1 · Ṅ l
cl=1,st A+1 − (−∆hA,st A · Ṅ l

cl=1,st A) (3.5)

+ ∆hW · (Ṅg
cg=2,st A−1 − Ṅg

cg=2,st A)

+ clp · (Tst A+1 − Tst A) ·
Ncl∑
cl=1

Ṅ l
cl,st A

+ cgp · (Tst A−1 − Tst A) ·
Ncg∑
cg=1

Ṅg
cg,st A

+ Q̇st A

Five phenomena are considered in the energy balance. The first is the heat of ab-
sorption associated with the absorption of CO2 and is included here via the changes to
the liquid stream of CO2 entering and leaving the theoretical stage. The second is the
evaporation and condensation of water associated with the vapor liquid equilibrium. In
this case the calculation is carried out regarding the changes in the water content of the
gas phase and calculated via the heat of evaporation of water ∆hW . The third and fourth
are the changes in the temperatures in the liquid stream and the gas stream entering the
stage. Each is calculated based on a constant heat capacity for gas and liquid cgp and
clp respectively. The latter notation is chosen for reasons of uniqueness despite the fact
that the liquid phase is incompressible. Values for all constants are given in appendix A.1.

To calculate the heat of evaporation Eq. (3.2) is formulated for every single stage and
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the solubility correlation is defined as follows:

α =
Ṅ l
st A,cl=1

Ṅg
st A,cl=3

(3.6)

The evaporation of water is calculated based on the Antoine equation. However, given
that under certain numerical circumstances a stage might dry up the Antoine equation is
relaxed for that particular case and all water is assigned to the vapor phase (see Eq. (3.7)
with Antoine parameter A, B, and C). This reformulation is required for the desorption
column. The final solution never requires this relaxation but intermediate iterations do.

pst A · Ṅ
g
stD,cg=2 =10

A− B
Tst A+C · 105 ·

Ncg∑
cg=1

Ṅg
st A,cg

(3.7)

·
1

1 + exp(−10000 · (Ṅ l
st A,cl=2

− 10−6))

+ 1 −
1

1 + exp(−10000 · (Ṅ l
st A,cl=2

− (10)−6))

· pst A · (Ṅg
st A,cg=2 + Ṅ l

st A+1,cl=2)

The relaxation is carried out with a sigmoid switch, which here is formulated with the
help of an exponential function. For small amounts of water in the liquid phase the An-
toine part is deactivated and the second inverse switch causes the relaxation to take effect.

Lastly, the solubility of C2H4 in the liquid phase is calculated based on Henry’s law
for gas liquid equilibria based on solubility data published by Carroll et al. (1998) and
implemented as given by Eq. (3.8).

Ṅg
st A,cg=4 · pst A ·

Ncl∑
cl=1

Ṅ l
st A,cl = Ṅ l

st A,cl=4 · H ·
Ncg∑
cg=1

Ṅg
st A,cg

(3.8)

Details on the Henry constant H for both MEA and aMDEA are given in appendices A.1
and A.2 starting on page 165. In addition to these main equations, the model consists of
a number of auxiliary equations to calculate heat loss, mass flows, molar fractions, degree
of CO2 removal from the absorption system, and the gas load factor in the absorption
column. All of these are also listed in the appendix.

Based on all of these equations absorption, desorption column, and flash are modeled.
The liquid recycle from the desorption to the absorption column is closed by generating a
new scrubbing liquid flow and enforcing the outlet liquid load of CO2 from the desorption
column outlet thereon. The final model considers 40 equilibrium stages for the absorption
column and one each for flash and desorption. The resulting model is fitted against
experimental data from the aforementioned mini-plant. The plant itself, the data, and
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the parameter estimation process shall be discussed in Chapter 4. The fitting process
necessitates the introduction of an additional correlation for the stage efficiency of the
desorption column. This correlation given in Eq. (3.9) is a function of the absorption
pressure pst A, the gas load factor F, the CO2 content of the feed flow ycg=1, and the mass
flow of scrubbing liquid Ṁ l

st A=NstA+1.

ηstD =P12 ·
pst A=0
100000

+ P13 · F + P14 · ycg=1 + P15 · 90 (3.9)

+ P16 · ṀL
stA=NstA+1 · 3.6

The derived model shows a good behavior in terms of computation time and con-
vergence. Optimization studies carried out with this model show a fast and reliable
convergence from different starting points and usually converging within a second on a
64bit AMD Athlon X2 Dual Core Processor 3800+ (Esche et al., 2013).

3.3 Gas Separation Membranes

Similar to the model of the absorption desorption process, which was formulated jointly
for MEA and aMDEa, this section introduces a single model with only slight variations
in the formulation for all membrane materials introduced.

3.3.1 Applied Equipment and Materials

The gas separation section has the same task as the absorption desorption process de-
scribed above. The feed gas stream containing CO2, C2H4, C2H6, CH4, N2, and CO needs
to be cleansed of as much CO2 as possible while keeping the loss of C2H4 at an absolute
minimum. As was discussed above two different membrane materials are under consid-
eration: PI and PEO. Both materials are typically applied in envelope-type membrane
modules as described in (Melin and Rautenbach, 2007) and shown in Fig. 3.9.

The circular envelope-type membranes sit on a central permeate pipe. The feed gas
is injected around these membranes and repeatedly diverted by flow diverters. The en-
velopes are separated by spacers. Some of the feed gas permeates the membranes and
leaves as permeate through the inner pipe. Gas which does not enter the membranes
leaves as retentate. The separation takes place as a cause of the varying permeabilities
of different gases for each membrane type.

The selective materials in both PI and PEO membranes, polyimide and polyethylene
oxide, are both polymers. Membranes made of polymers are commonly not porous mem-
branes, but dense (Melin and Rautenbach, 2007). The molecules transported by a dense
membrane are dissolved in the membrane material, comparable to the gas dissolution
in liquids. Inside the membrane material itself diffusion governs the material transport.
On the permeate side of the membrane the components reappear as gas. The separa-
tion effect is based on the selectivity of the membranes caused by different solubilities
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Figure 3.9: Sketch of envelope-type membrane modules adapted from (Melin and Raut-
enbach, 2007).

of gases in the membrane and differences in the diffusion velocities inside the membrane
material. Hence, the separation effect is called the solution diffusion mechanism (Melin
and Rautenbach, 2007).

Modifying the thickness of the membrane decreases the permeability, but may also
increase the selectivity for certain components. Consequently, typical thicknesses for
polymer membranes lie in the micrometer range. To guarantee stability of the membrane
it is impregnated on a porous support layer (Shishatskiy et al., 2006). To introduce
additional stability each membrane envelope is filled with a spacer as well as the space
between two envelopes. A typical spacer is sketched in Fig. 3.10. The spacer forms a
lattice, which guarantees a certain free space between two membrane layers to allow for
the gas flow. In addition, the spacer filaments of the lattice cause a steady diversion
of the gas flow minimizing among other things concentration polarization (Melin and
Rautenbach, 2007). The velocity of the gas flow on the feed/retentate side is commonly
kept constant by steadily decreasing the number of envelopes after the next flow diverter
as shown in the top left corner of Fig. 3.9.

3.3.2 Phenomena within a Membrane Module

Apart from the actual permeation of the membrane material by the gas components,
a number of additional phenomena have to be considered for the modeling of the gas
separation membranes. Among these are concentration polarization, pressure drop, and
the Joule Thomson effect. Starting with the solution diffusion model and the dependence
of the permeability on temperature, pressure, and concentrations, these effects shall be
discussed in the following.
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Figure 3.10: Sketch of a spacer for a gas permeation membrane in accordance with (Melin
and Rautenbach, 2007).

Solution Diffusion Model

The solution diffusion model is based on three basic phenomenological ideas. On the
feed/retentate side of the membrane the gas components are dissolved in the membrane
material, which acts like a liquid. Hence, this is modeled as a phase equilibrium of a gas
component and the chemical potential µ of all gas components needs to be the same on
either side of the feed/retentate to membrane interface. Within the membrane itself the
dissolved gas components move by mere diffusion along the concentration gradient or in
other words with decreasing chemical potential (∂µi/∂z < 0). On the permeate side of
the membrane the inverse of the dissolution takes place, i.e. the desorption, based on the
same phase equilibrium between gas and membrane. Fig. 3.11 sums up the ideas of this
modeling approach by plotting the chemical equilibrium of a component i across a dense
membrane in accordance with Ohlrogge and Ebert (2012).

The molar flux of a component i through the membrane ṅM,i can hence be described
as given by Eq. (3.10) depending on concentration cM,i, mobility bM,i, and the spatial
gradient of the chemical potential ∂µM,i/∂z (Melin and Rautenbach, 2007).

ṅM,i = cM,i · bM,i ·
(
−∂µM,i

∂z

)
(3.10)

Based on the Nernst Einstein relation the mobility can be described based on the diffusion
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Figure 3.11: Visualization of the solution diffusion mechanism regarding the chemical
potential µi of gas component i across a dense membrane, in accordance
with Ohlrogge and Ebert (2012).

coefficient of component i in the membrane material D0M,i resulting in Eq. (3.11).

ṅM,i = cM,i ·
D0M,i

R · T ·
(
−∂µM,i

∂z

)
(3.11)

Based hereon and on a description of the chemical potential a calculation of the molar
flux inside the membrane is possible. To combine this with the sorption and desorption
of the gas into the membrane material a description of the interface equilibria is required.
Commonly, this is done with a reference to Henry’s law for the gas solubility in liquids.
For this purpose a sorption constant SM,i is defined and the concentration of component
i in the membrane at the interface cIM,i is given by Eq. (3.12) depending on the fugacity
of component i in the gas phase at the interface f Ii .

cIM,i = SM,i · f Ii (3.12)

The diffusion coefficient of component i inside the membrane and the sorption constant at
the interface are in practice pulled together into a form of mass transfer coefficient across
the membrane, the permeability Li, which can be measured as a function of pressure,
temperature, and concentrations. The molar flux across the membrane is then described
by Eq. (3.13) with the respective fugacity coefficients for retentate and permeate sides
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fR,i and fP,i (Melin and Rautenbach, 2007).

ṅM,i = Li ·
(

fR,i − fP,i
)

(3.13)

Temperature, Pressure, and Concentration Dependence of the Permeability: The
influence of temperature, pressure, and concentration varies with the type of the dense
membrane. The two membranes under investigation here feature a glass-like polymer
in case of the PI membrane and a rubber-like polymer in case of the PEO membrane.
The differentiation between both types of polymers is carried out regarding their glass
transition temperature, which in case of polyethylene oxide is below ambient conditions
and in case of polyimide above.

Glass-like polymers therefore show no or only a low dependence on pressure. Their
permeability can usually be described based on an Arrhenius approach to include the
temperature dependence as noted in Eq. (3.14).

Li = L0
∞,i · exp

(
−

EA,i

R · T

)
(3.14)

Therein, the preexponential factor L0
∞,i and the activation energy EA,i have to be deter-

mined experimentally, typically in pure gas measurements (Ohlrogge and Ebert, 2006).
The Arrhenius approach takes note of the increase in Brownian motion and hence in-
creased diffusive flux across the membrane.

Rubber-like polymers typically have a higher permeability than glass-like ones. On top
of that the increase of the flux caused by higher temperatures is usually stronger as the
increase of the volume of the polymer and consequently the space between the polymer
chains is larger (Melin and Rautenbach, 2007).

For rubber-like polymers pressure and concentrations also have a meaningful influence
on the permeability. The aforementioned increase in the polymer volume can also be
caused by the sorption of large amounts of a single gas component. This effect is also
called membrane swelling. In general, the solubility of a gas component is proportional
to its evaporation temperature. Consequently, easily condensable gases such as CO2 are
prone to cause membrane swelling.

In the case of membrane swelling the interdependence of the permeation of various
gases can not be neglected. This is taken into account in the extended free volume model
included in Eq. 3.15, which combines the pressure and the concentration dependence.

Li = L0
∞,i · exp

*.
,
−

EA,i

R · T
+

NC∑
j=1

⎡⎢⎢⎢⎢⎣

(
σi
σ j

)2
· m0, j · f j · exp(mT, j · T )

⎤⎥⎥⎥⎥⎦
+/
-

(3.15)
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A major advantage of this approach is that all additional parameters, i.e. σi, m0, j , and
mT, j , can also be determined by pure gas measurements (Ohlrogge and Ebert, 2006).
Finally, the fugacity coefficent f i is usually calculated as the arithmetic mean of the
retentate and the permeate gas fugacity of component i resulting in Eq. (3.16).

Li = L0
∞,i · exp

*.
,
−

EA,i

R · T
+

NC∑
j=1

⎡⎢⎢⎢⎢⎣

(
σi
σ j

)2
· m0, j ·

fR, j + fP, j
2

· exp(mT, j · T )
⎤⎥⎥⎥⎥⎦
+/
-

(3.16)

Secondary Transport Resistance

The permeation of gases through the membrane is additionally hindered or changed by
a number of additional phenomena, which can have a tremendous effect and should be
considered during the derivation of any model for the membrane modules.

Concentration Polarization: The selectivity of a membrane is understood to be the
difference in permeability for different gas components. The concentration polarization
is caused by this very feature. Concentration polarization is the increase in the mole
fractions of less permeable components on the retentate side of a membrane, while at the
same time the mole fractions of the more permeable components decreases caused by the
permeation through the membrane.

Fig. 3.12 sketches molar fractions for a binary system on the retentate side of a mem-
brane. Therein, component 1 is less permeable than component 2. Molar fractions for
the core flow xC1 and xC2 are given and the interface concentrations resulting from concen-
tration polarization xm,1 and xm,2. Approaching the membrane the permeation causes a
convective flow, which adds to the diffusive flow for component 2. For component 1 an
even larger convective flow is created by the permeation, which is overlaid by an inverse
diffusive flow.

As a consequence the decrease of the molar fraction of the more permeable component
on the retentate side causes a decrease of the driving force for the permeation across the
membrane and hence a decrease in the flux. Based on Fig. 3.12 the permeate flux causes
a convective and a diffusive flow approaching the membrane (Eq. (3.17)).

ṅm,i = xi · ṅConv + ctot · Di, j ·

(
−

dxi
dz

)
(3.17)

Integrating Eq. (3.17) over the distance between membrane and core flow δ the mole
fraction xm,i of component i at the membrane surface can be calculated (Bird et al.,

69



Chapter 3 Model Derivation and Model Simplification

Figure 3.12: Visualization of concentration polarization for a binary mixture approaching
a selective membrane. Component 1 is less permeable than component 2.
The molar fraction of the more permeable component x2 increases right at
the membrane interface compared to the core flow xC2 .

2007):

⇔ ṅm,i = xi · ṅConv + ctot · Di, j ·
(
−dxi

dz

)
(3.18)

⇔ ṅm,i − xi · ṅConv = −ctot · Di, j ·
dxi
dz

(3.19)

⇔ 1 = −
ctot · Di, j

ṅm,i − xi · ṅConv ·
dxi
dz

(3.20)

⇒ 1 · dz = −
ctot · Di, j

xP
i − xi

· 1

ṅm
, xP

i =
ṅm,i

ṅConv(= ṅm)
����membrane

(3.21)

⇒
δ∫

0

dz = −
ctot · Di, j

ṅm
·

xm, i∫

xCi

dx (3.22)

⇒
xP
i − xm,i

xP
i − xCi

= exp

(
ṅm · δ

ctot · Di, j

)
(3.23)

⇔ xm,i = xP
i − (xP

i − xCi ) · exp
(

ṅm · δ
ctot · Di, j

)
(3.24)

Applying film theory the distance to the core flow or the thickness of the film layer can
be calculated based on the mass transfer coefficient β = Di, j/δ.
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Da Costa et al. (1994) suggested the following Sherwood correlation for spacer filled
channels between membranes. Therein l f is the length of a spacer filament, dh is the
hydraulic diameter, the Reynolds number Re = u · dh · ρ/η and the Schmidt number
Sc = η/(ρ · Di, j ). The latter two are calculated based on gas flow velocity u, density ρ,
dynamic viscosity η, and diffusion coefficient Di, j :

Sh =
β · dh

Di, j
= 0.664 · Re0.5 · Sc0.33 ·

(
dh

l f

)0.5
(3.25)

Pressure Drop: Similar to concentration polarization, pressure drop can cause detri-
mental effects on both feed/retentate and permeate side of the membrane. On the high
pressure feed/retentate side, pressure drop causes a decrease of the pressure at the mem-
brane, on the low pressure permeate side, the effect is inverse. There the pressure in-
creases. Both decrease on the one and increase of the pressure on the other side of the
membrane cause a reduction of the permeate flux.

The pressure drop is mainly caused by the spacers which hinder and divert the gas
flow. Fig. 3.13 shows the main geometrical information which can be used to characterize
a spacer. Based on the filament length l f , the spacer height hsp, the filament diameter
d f , and the angle θ, the porosity ε, the specific surface σsp, and the hydraulic diameter
dh can be calculated as published by Da Costa et al. (1994) and reproduced in Eq. (3.26)
to (3.28).

Figure 3.13: Geometrical layout of a spacer in accordance with (Da Costa et al., 1994).

ε = 1 −
π · d2

f

2 · l f · hsp · sin θ
(3.26)
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dh =
4 · ε

2
h + (1 − ε) · σsp

(3.27)

σsp =
4

d f
(3.28)

The pressure drop can then be calculated based on the standard equation for pressure
drop in a pipe and a fitted resistance for the flow resistance ζ published by Da Costa
et al. (1994):

∆p = ζ ·
ρ

2
· u2 ·

lm · Nm

dh
(3.29)

u =
V̇

bsp · hsp · ε
(3.30)

ζ = K1 · ReK2 (3.31)

Values for the dimensions of the applied spacers and all other parameters can be found
in appendix A.3.

In addition pressure drop is of course also caused by the support layer of the mem-
brane, this aspect however is effectively contained in the permeability description of the
membrane, seeing as the active layer and the support are measured together (Melin and
Rautenbach, 2007).

Joule-Thomson Effect: As can be seen from the permeability equations given above
the flux through the membrane is temperature sensitive, with a temperature decrease
generally decreasing the membrane flux. The gas permeating the membrane experiences
a decrease of the pressure and hence also a change in temperature. A differential energy
balance has to be formulated to include heat convection and conduction and the temper-
ature change caused by the pressure change across the membrane.

The Joule-Thomson effect describes the change of the temperature in an isenthalpic
process when the pressure is decreased. Especially, CO2 appearing in the system under
investigation has a large Joule-Thomson effect as can be seen from the original data
published by Burnett (1923); Roebuck et al. (1942). At 20 bar and 20 ◦C they measured
a Joule-Thomson coefficient of 1.1355 K/atm.

3.3.3 One-dimensional First Principles Model

Based on driving forces and the secondary transport phenomena for the permeation de-
scribed above a model for the PI and the PEO membrane module is developed. How
the Joule-Thomson effect and concentration polarization are considered is discussed af-
terwards.
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The two membrane modules installed in the mini-plant are both envelope-type mem-
brane modules. Each module has a diameter of 10 cm and can be operated at up to 40
bar. The permeability data for both membranes regarding the components of the OCM
product gas is experimentally fitted by co-workers at Helmholtz-Zentrum Geesthacht
Centre for Materials and Coastal Research, Germany.

To start with, a one-dimensional steady state model for each membrane is developed.
For this purposes each membrane is abstracted as shown in Fig. 3.14. Both the feed/re-
tentate side as well as the permeate side of the membrane is assumed as a rectangular
box with the membrane stretched out as a flat surface between both boxes.

Figure 3.14: Abstraction of the membrane modules and balancing area, the feed/reten-
tate is denoted with H (high pressure) and the permeate side with L (low
pressure).

Differential balances are formulated independently for both feed/retentate side (de-
noted with a superscript H for high pressure) and permeate side (denoted with a super-
script L for low pressure) with the permeate flow ṄP

c of component c connecting them
both. These differential balances are formulated for both components as noted generi-
cally in Eq. (3.32) and (3.33) assuming steady-state and neglecting any type of radial
influence or axial dispersion.

0 = ṄH
c (z) − ṄH

c (z + dz) − ṄP
c (3.32)

0 = ṄL
c (z) − ṄL

c (z + dz) + ṄP
c (3.33)

(3.34)
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Applying a first order Taylor polynomial for dz →0 yields:

dṄH
c

dz
= −ṅP

c · wm (3.35)

dṄL
c

dz
= ṅP

c · wm (3.36)

(3.37)

with wm as the membrane width.

Both differential equations are fully discretized using third order Lagrangian collocation
on finite elements as described in (Biegler, 2010). The resulting set of algebraic equations
is given in the following. cHi,p,c is the collocation coefficient for the high pressure side
in finite element i at collocation position p of component c, dṄH

i,p,c is the respective
discretized representative of the first order differential with respect to z. The matrices
Lcp,c and dLcp,c contain the values of all Lagrangian polynomials and their first order
differentials at third order Radau roots (Biegler, 2010).

dṄH
i,p,c = −ṅP

i,p,c · MHi (3.38)

dṄH
i,p,c =

Ncp∑
cp=0

cHi,p=cp,c ·
dLcp,p

li
(3.39)

ṄH
i,p,c =

Ncp∑
cp=0

cHi,p=cp,c · Lcp,p (3.40)

dṄL
i,p,c = ṅP

i,p,c · MHi (3.41)

dṄL
i,p,c =

Ncp∑
cp=0

cLi,p=cp,c ·
dLcp,p

li
(3.42)

ṄL
i,p,c =

Ncp∑
cp=0

cLi,p=cp,c · Lcp,p (3.43)

To connect separate finite elements the following two equations are implemented for high
and low pressure side:

cHi,p=3,c = cHi+1,p=0,c (3.44)

cLi,p=3,c = cLi+1,p=0,c (3.45)

Whilst the component balances are straight forward the complexity of the model lies
in the description of the permeation across the membrane. Adapting Eq. (3.13) for the
discretized model and replacing fugacities by fugacity coefficients and partial pressures
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yields Eq. (3.46).

ṅP
i,p,c =

1

vnormc
·

Li,p,c

3600 · 105
·
*.
,
φHi,p,c · p

H
i ·

ṄH
i,p,c∑Nc

c=1 ṄH
i,p,c

− φLi,p,c · p
L
i ·

ṄL
i,p,c∑Nc

c=1 ṄL
i,p,c

+/
-

(3.46)

Whilst the permeability Li,p,c is calculated with discretized versions of the afore-
mentioned permeability equations for glass-like and rubber-like dense membranes, an
equation of state is required for the calculation of fugacity coefficients φHi,p,c and φLi,p,c.

For reasons of legibility the following equations will only be given in their original
and not in the discretized form and only for the high pressure side (superscript H). The
Peng-Robinson equation of state (Peng and Robinson, 1976) is applied for the calculation
of the fugacity coefficients. The standard equation noted in (Peng and Robinson, 1976)
is slightly reformulated to numerically stabilize it for optimization. Hence the equations
are revisited here and the adjustments are highlighted. Eq. (3.47) contains the equation
of state as a cubic equation formulated in the compressiblity factor Z.

(ZH )3 − (1 − BH ) · (ZH )2 + (AH − 3 · (BH )2 − 2 · BH ) · ZH (3.47)

− (AH · BH − (BH )(2) − (BH )3) = 0

The coefficients A and B therein are in turn dependent on temperature, pressure, and
composition and need to be calculated separately:

ZH =
pH · vH

R · TH
(3.48)

AH =
aH · pH

(R · TH )2
(3.49)

BH =
bH · pH

R · TH
(3.50)

acr,c = 0.45724 ·
(R · Tcr,c)2

pcr,c
(3.51)

bcr,c = 0.07780 ·
R · Tcr,c

pcr,c
(3.52)

aH
c = acr,c · α

H
c (3.53)

αHc =
*
,
1 + κc · *

,
1 −

(
TH

Tcr,c

) (0.5)
+
-
+
-

2

(3.54)

κc = 0.37464 + 1.54226 · ωc − 0.26992 · (ωc)2 (3.55)

The following mixing rules are applied to account for multi-component mixtures. Therein,
δc,k is a parameter, which is set to zero by default but can be adjusted to experimental
data for binary mixtures of components c and k. These mixing rules have already been
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reformulated to avoid the appearance of molar fractions and any denominators.

aH · *
,

Nc∑
c=1

ṄH
c
+
-

2

=

Nc∑
c=1

Nk∑
k=1

ṄH
c · Ṅ

H
c=k · a

H
c,k (3.56)

bH ·

Nc∑
c=1

ṄH
c =

Nc∑
c=1

ṄH
c · bcr,c (3.57)

aH
c,k = (1 − δc,k ) · (aH

c )0.5 · (aH
c=k )0.5 (3.58)

Finally, Eq. (3.59) contains the required relation for the fugacity coefficient.

ln
(
φHc

)
=

bcr,c
bH
·
(
ZH − 1

)
− ln

(
ZH − BH

)
(3.59)

−
AH

80.5 · BH
·
*..
,

2 ·
∑Nk

k=1 aH
c,k
·

NH
c∑Nc

c=1 NH
c

aH
−

bcr,c
bH

+//
-

· ln

(
ZH + 2.414 · BH

ZH − 0.414 · BH

)
Therein, each of the following expressions φHc ,

(
ZH − BH

)
, BH , aH , and

(
ZH+2.414·BH

ZH−0.414·BH

)
have been implemented in an approximation of the max function as given in Eq. 2.27,
wherein ε is set to 10−6 in all cases. Additionally, wherever bH appears in the denomina-
tor, ε is added to avoid a division by zero. These reformulations heighten the nonlinearity
of the whole equation system. However, (Esche et al., 2014c) shows by testing each of
the reformulations in turn in a simple optimization study that despite the heightened
nonlinearity, the avoidance of non-differentiabilities for values close to zero is computa-
tionally advantageous.

On top of the reformulations of the Peng-Robinson equation of state Kamath et al.
(2010) suggest the application of inequality constraints to distinguish between vapor and
liquid roots of cubic equations of state. These are introduced here as shown in Eq. 3.60
and 3.61 already applied on the equation of state.

3 · (ZH )2 − 2 · (1 − BH ) · ZH + (AH − 3 · (BH )2 − 2 · BH ) − rest1 = 0 (3.60)

6 · ZH − 2 · (1 − BH ) − rest2 = 0 (3.61)

For simulation purposes, rest1 and rest2 are simple slack variables, which relax these
equality constraints. For optimization purposes both can be bounded to become non-
negative, thus forcing the Peng-Robinson equation of state into the area pertaining to
the vapour roots.

For membranes, which primarily are selective for CO2, it is essential to include the
Joule-Thomson effect. At the same time rigorous modeling thereof is also quite challeng-
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ing. The membrane modules are typically not insulated to the outside, so heat transfer
across the metal casing into the membrane system is an issue. In addition, the flow on
the high pressure side is usually an order of magnitude higher than on the low pressure
permeate side. Consequently, the temperature decrease caused by the pressure change
across the membrane, will have a greater effect on the low pressure side than on the high
pressure side. As an initial approach the temperature on the high pressure sides of the
membranes are assumed to be constant. For the low pressure side a linear correlation
(Eq. (3.62)) is derived based on data generated with Aspen Plus® (Esche et al., 2014c).

∆T [K] = −1.1583 · ∆p[bar] + 0.9887 (3.62)

Eq. 3.62 is valid for pressure expansions at 25◦C of up to 40 bar down to 1 bar of CO2.
The resulting temperature change caused by the difference in the partial pressure of CO2
between feed/retentate and permeate side is then assigned to the low pressure permeate
side. For the permeability relations a mean temperature of high and low pressure sides
is then used.

Based on the correlations and equations for pressure drop and concentration polariza-
tion discussed above their influence on the separation performance of the membranes is
investigated. Preliminary results were already published in (Bock et al., 2014). For a PI
membrane with a total area of 0.5 m2 the concentrations at the core of the high pressure
flow and at the membrane itself are calculated as discussed above. A maximum offset
of 0.98 % is observed in the molar fraction of CO2. Consequently, concentration polar-
ization is not considered for the membrane model used for superstructure optimization.
Regarding pressure drop a similar case study is carried out. Applying a feed pressure of
7 bar and yet again a membrane area of 0.5 m2 with a feed flow of 10 Nm3/h a maximum
pressure drop for the high pressure side of 51 mbar is calculated. Hence, pressure drop
is also not included in the final model.

Variation of Finite Elements

In (Esche et al., 2014c) finding a suitable number of finite elements is discussed for both
PEO and PI membrane modules. For a fixed total size of the membrane (0.5 m2) the
number of finite elements is varied to test the accuracy of each. It is discovered that even
a low number of finite elements suffices for third order collocation as described above. For
numbers of finite elements surpassing ten there is no visible loss in accuracy measured
by changes to the sixth digit of an outlet concentration of a membrane. Consequently,
the number is set to ten for the optimization studies. Albeit, for even lower numbers of
finite elements the difference is still small. Comparing a single and ten finite elements the
largest difference can be found in the flow rate of the CO2 on the low pressure permeate
side at 7.7 %. However, seeing that the size of the membrane area is a possible decision
variable for the optimization having some room to maneuver is advantageous. Fig. 3.15
and 3.16 compare the high ṄH

i and low pressure mole flows ṄL
i for discretizations with

one and ten finite elements for a 0.5 m2 large PEO membrane as presented in (Esche
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et al., 2014c).

Figure 3.15: Comparison of a PEO membrane module discretized using a single or ten
finite elements. The continuous lines with symbols belong to the ten finite
element case, the symbols without lines to the single finite element case,
respectively, taken from (Esche et al., 2014c).

Figure 3.16: Comparison of a PEO membrane module discretized using a single or ten
finite elements. The continuous lines with symbols belong to the ten finite
element case, the symbols without lines to the single finite element case,
respectively, taken from (Esche et al., 2014c).
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3.3.4 Combinations of Membrane Modules

Both PI and PEO membrane modules can be operated in stand alone operation, mean-
ing that they are directly connected to the preceeding equipment and their retentate or
permeate outlet (depending on the application) is connected to subsequent equipment
without any recycle or purge. Given the low permeabilities or low selectivities of these
membranes more advantageous results can be obtained by so called networks of mem-
branes.

The most common combinations of membranes are the one stage permeate recycle, the
two stage stripping cascade, and the two stage rectification cascade (Melin and Rauten-
bach, 2007). The one stage permeate recycle is shown at the top of Fig. 3.17. Recycling
a fraction of the permeate flow increases the molar fraction of the more permeable com-
ponent in the membrane feed. Consequently the concentration of the more permeable
component in the permeate flow increases.

The second option (b) in Fig. 3.17 shows the two stage stripping cascade, which is used
to increase the molar fraction of the less permeable component in the retentate stream.
This is useful for cases in which the loss of the less permeable component through the
permeate flow would otherwise be too large.

The final option (c) in Fig. 3.17 shows the two stage rectification cascade and guaran-
tees the permeate with the highest purity compared to the other options. Comparable
to the other cases the concentration of the more permeable component is increased in
the feed to the first membrane, reducing the loss of the other component.

All of these options come at an obvious cost, which is the increase in investment
and operation. The required membrane area can increase because of the recycle flows.
Additional membrane modules or compressors are required, and the flow to be compressed
increases. In some cases these disadvantages can be overcome by the reduction of the
loss of potential product. For this purpose these combinations will be investigated in
Chapter 5 to reduce the loss of C2H4 while removing as much CO2 as possible.

3.4 Combined Pressure and Temperature Swing Adsorption
– Cyclic Steady-state Model

The combined pressure and temperature swing adsorption poses a special case in the
optimal process synthesis problem of the overall steady-state process. Swing adsorption
processes are commonly operated in cyclic steady-state meaning that the underlying pro-
cess operations are inherently dynamic.

A common approach to include adsorption processes in the process synthesis step is to
revert to mathematical formulations for breakthrough curves or other short-cut modeling
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Figure 3.17: Different membrane network and recycle options: (a) one stage permeate
recycle, (b) two stage stripping cascade, (c) two stage rectification cascade,
adapted from (Melin and Rautenbach, 2007).

techniques (Ho et al., 2008; Chung et al., 1998; Doong and Yang, 1986; Lopes et al., 2011;
Farooq and Ruthven, 1991; Cavenati et al., 2006; Choi et al., 2003). There are, however,
a number of downsides to these approaches, which make them impractical for the appli-
cation in superstructure optimization under uncertainty. First of all, they are commonly
not able to correctly propagate uncertainty from preceeding process equipment, very few
of them allow for CAPEX and or OPEX costing, the accuracy is below any level required
for rigorous process optimization, sensitivity generation is seldom directly possible, and
many iterative loops are required.

The mini-plant at TU Berlin has a two column system for a combined pressure and
temperature swing adsorption. At this point, however, no model is available which has
been validated against experimental data obtained thereof. Therefore, a new model is de-
rived, which fulfills the requirements outlined above. The model needs to be fast enough
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for superstructure optimization, but at the same time be able to correctly propagate
uncertainty.

Consequently, this section takes brief general look at adsorption and adsorption iso-
therms. Afterwards the basic Skarstrom cycle will be discussed for pressure (and tem-
perature) swing adsorption, a cyclic steady-state process model is introduced, before
finally discussing the simplified version thereof applied for the superstructure optimiza-
tion herein.

3.4.1 Adsorption and Adsorption Isotherms

Similar to absorption, adsorption is also classified as either physisorption or chemisorp-
tion. Whilst physisorption is governed by van der Waals and electrostatic forces, chem-
isorption requires a chemical bond between adsorbent and adsorbed substance and is of
greater importance for heterogeneous catalysis.

For non-reactive gas adsorption the most applied adsorbents are various types of zeo-
lites and active carbons (Rajendran, 2015). Both are also of interest here. Zeolites are
porous, crystalline aluminosilicates consisting of basic silicon oxide and aluminum ox-
ide tetrahedrons. These are interconnected by oxygen and form lattice structures which
have pores and channels. Therein molecules can be adsorbed. Given the various building
blocks and possibilities to combine those a wide spectrum of zeolites and pore diameters
grant them a wide spectrum of possible applications (Yang, 2003).

A common measure to describe the adsorption of a component on an adsorbent is to
use the coverage θi, which relates the solid phase concentration q∗i of component i to the
theoretically possible number of molecules adsorbed per mass adsorbent qs

i for a single
layer of adsorbed substance. In practice an adsorbent can hold more than one layer of
adsorbed substance, which is called multilayer adsorption, otherwise the maximum for
θi is 1.

For multicomponent systems the coverage of an adsorbent is a function of tempera-
ture, pressure, and concentrations of the gas components. Depending on these and the
inherent characteristics of the adsorbent various different types of adsorptions can be
observed. Adsorption isotherms are most frequently used for this purpose. They relate
the coverage to the partial pressure of a component at constant temperature. A classi-
fication of types of adsorption isotherms has been introduced by Brunauer et al. (1940)
and summed up for physisorption in (Sing, 1985).

The isotherms of type I in those classifications hint at a form of saturation on the sur-
face with only a single layer on the adsorbent and are commonly described by Langmuir
isotherms. Type II describes the formation of multiple layers of adsorbed substance and
is described by BET isotherms. These are the two types most common for pressure swing
adsorption.
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Langmuir Isotherm

The Langmuir isotherm is named after its original publication in (Langmuir, 1916). The
basic underlying idea is that each gas molecule can take up exactly one spot on the surface
of an adsorbent and all molecules require the same amount of space. The equation for
the standard Langmuir isotherm is given by Eq. (3.63).

θ =
K · p

1 + K · p
(3.63)

K is the Langmuir constant, which is temperature dependent and can usually be de-
scribed by an Arrhenius approach.

Markham and Benton (1931) extended this approach for multicomponent systems as
shown in Eq. (3.64) and subsequently Dual-site langmuir isotherms were introduced cap-
turing the interaction of macropores and surfaces as adsorption sites (Eq. (3.66)) (Myers,
1983).

θi =
q∗i
qs
i

=
Ki · pi

1 +
∑NC

i=1 Ki · pi
(3.64)

with: Ki = k1,i · exp
(

k2,i
T

)
(3.65)

q∗i =
qs
1,i · K1,i · pi

1 +
∑NC

j=1 K1, j · pj

+
qs
2,i · K2,i · pi

1 +
∑NC

j=1 K2, j · pj

(3.66)

with: qs
m,i = k1,m,i + k2,m,i · T, m = {1, 2} (3.67)

Km,i = k3,m,i · exp

(
k4,m,i

T

)
, m = {1, 2} (3.68)

BET Isotherm

A downside of the Langmuir isotherm is that multilayer adsorption is ruled out upfront.
Consequently, Brunauer et al. (1938) derived the BET isotherm, which assumes a flat
surface, on which multiple molecular layers can form. For each layer the same assump-
tions as for the Langmuir isotherms are made an interaction between layers is rule out.
The resulting Eq. (3.69) requires the vapor pressure of each component.

θi =
K ·

(
pi

pLV
i

)
(
1 − pi

pLV
i

)
·

(
1 − pi

pLV
i

+ K · pi
pL
i V

) (3.69)
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Freundlich Isotherm

Finally, an often applied isotherm for cases in which the assumption of identical adsorp-
tion sites of Langmuir does not hold has been developed by Freundlich (1906) and is
fully empirical. It can be combined with Langmuir’s formulation into Eq. (3.70) with
constants b and n.

θi =
b · p

1
n

i

1 + b · p
1
n

i

(3.70)

Transport Phenomena

Given the structure of various adsorbents using the aforementioned isotherms does not
suffice to describe the adsorption process. The cyclic steady state of a pressure or tem-
perature swing adsorption highlights the necessity to include transport phenomena into
any modeling approach. Summed up in (Perry et al., 1999) five different mechanisms may
play a considerable role in adsorption: pore diffusion, solid diffusion, reaction kinetics
at phase boundary, external mass transfer, and fluid mixing. Reactions are neglected at
this point as physisorption is assumed, all other aspects are investigated subsequently.
Fig. 3.18 shows an overview of transport mechanisms for adsorption.

Pore Diffusion: Diffusion in porous particles mostly takes place within the pores. The
diffusion on the surface itself can usually be neglected in comparison given the higher
mobility of gas molecules. Generically diffusion is described by Fick’s law supplying the
diffusive flux ṅD,i of component i as a function of diffusion coefficient De f f ,i and the
concentration gradient (see Eq. (3.71)).

ṅD,i = −Deff,i ·
∂ci
∂z

(3.71)

Various descriptions of molecular diffusion exist. In molecular diffusion the interaction
between molecules and the wall of the surface is neglected and is only governed by the
binary interaction of gas moelcules. One approach is the application of the Chapman-
Enskog equation to compute the molecular diffusion coefficient Dmol,i, j with individual
diffusion volumes dvi for all molecules calculated using Fuller’s method (Poling et al.,
2001) (see Eq. (3.72)).

Dmol,i, j =
0.00158 · T1.5 ·

√
Mi+Mj

Mi ·Mj

p ·
(
dv

1
3

i + dv
1
3

j

)
2

(3.72)

Knudsen diffusion on the other hand neglects the binary interaction of molecules and
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Figure 3.18: Transport mechanisms in adsorbents: (a) convective transport, (b) Knudsen
diffusion, (c) molecular diffusion, and (d) surface diffusion, adapted from
(Riesenbeck, 2014).

instead only considers collisions of gas molecules with the walls of pores and channels.
For this purpose Knudsen requires the mean pore diameter DPore and the molecular mass
of each component Mi (see Eq. (3.73)).

DK,i = 48.5 · DPore

√
T
Mi

(3.73)

An approach published by Wohlfahrt (1982) combines both molecular and Knudsen
diffusion for multicomponent systems using the particle porosity εP and its tortuosity τ
(Eq. (3.74)).

Deff,i =
εP
τ
· ��
�

NC∑
j=1

yj

Dmol,i, j
+

1

DK,i

��
�

(3.74)
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Linear Driving Force Model: The diffusion into the pores of the adsorbent particles
necessitates the addition of a differential equation describing the concentration profile
across the particle radius. To avoid this additional level of complexity, the Linear Driving
Force approximation derived by Glueckauf and Coates (1947) can be applied with the
mass transfer coefficient ki in accordance with (Glueckauf, 1955) (see Eq. (3.75) and
(3.76)).

∂qi
∂t
= ki · (q∗i − qi) (3.75)

ki =
15 · Deff,i

r2P
(3.76)

External Mass Transfer: Outside of the pores of the particles additional mass transfer
phenomena have to be considered. First of all, the resistance to the mass transfer from
the convective flow into the particles has to be considered as described by Wakao and
Funazkri (1978). Secondly, within packed-beds dispersive effects cannot be neglected.
Hence, an axial dispersion coefficient has to be calculated to account for mixing inverse
to the flow direction. Here, an approach published by Langer et al. (1978) and Wakao and
Funazkri (1978) is applied. All correlations required for these two additional phenomena
are noted in the appendix A.4.

3.4.2 Basic Skarstrom Cycle

The combined temperature and pressure swing adsorption unit in the mini-plant at TU
Berlin consists of two columns, which are operated in a cyclic steady state, each column
performing the following four steps of the Skarstrom cycle, while the other column is
always two steps behind (Skarstrom, 1966):

1. Pressurization

2. Adsorption

3. Depressurization

4. Desorption (Purge)

As a modification to the Skarstrom cycle, the temperature of the packed-bed is modified
at the same time as the pressure level in the system. During the pressurization and
adsorption the system is operated at ambient temperature (around 20 ◦C) and during
depressurization and desorption the column is electrically heated to speed-up desorption.
This guarantees an as low as possible load of the packed-bed after the desorption.

During the pressurization the feed gas is led into the column until the required pressure
is reached, afterwards the outlet valves are opened and the less adsorbable components
escape through the outlet. After a defined time, before the other components begin
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to leave as well the adsorption is stopped, the feed stream is cut off and the system
is depressurized and subsequently desorbed. During these two phases the components
adsorbed by the adsorbent during the first two phases leave the system as a second
stream. The desorption or purge phase is supported by some sweep gas, which replaces
the adsorbed gas in the packed-bed.

3.4.3 Cyclic Steady-State Process Model

The cyclic steady-state process model discussed in the following is based on the basic
Skarstrom cycle described above. Deliberations on the underlying simplifications of the
model are shown in appendix A.4. At this point only the basic assumptions are noted,
the governing equations are stated, and the equations coupling the four steps of the cyclic
steady state are introduced.

The assumptions made for the cyclic steady-state model are as follows:

1. All gases behave ideally.

2. Radial profiles in pressure, temperature, and concentrations across the adsorption
column can be neglected.

3. Gas phase and solid state are in thermodynamic equilibrium.

4. The material properties of the solid phase are temperature independent, e.g. the
heat conductivity etc.

5. The adsorption rate can be described the Linear Driving Force approach.

6. Dual-site multicomponent Langmuir isotherms can be used for the adsorption.

Overall Column Model

Fig. 3.19 gives an overview of the most import modeling aspects for each column and
each cycle step. Q̇H denotes the heat flow across the outer shell of the column and Q̇ads,i
the heat of adsorption generated during the adsorption of Ṅads,i of component i at time
point t.

Each cycle step of the Skarstrom cycle described above is initially modeled as a sep-
arate column. However, all of these four columns have a common underlying PDAE
system, which consists of six major parts. The first part is a set of component balances
to obtain concentration profiles for the gas phase and the solid phase dependent on time
t and axial location z. The second is a mass balance to compute the velocity profile
yet again as a function of t and z. As a third part, the energy balance is formualted
to incorporate heat loss, heating, and heat of adsorption and hence generate a tempera-
ture profile over t and z. In addition, the Ergun equation as described in section 3.3 is
applied as a pressure velocity relation, dual-site Langmuir isotherms are applied for the
adsorption and subsequent desorption of all components, and the Linear Driving force
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3.4 Combined Pressure and Temperature Swing Adsorption – Cyclic Steady-state Model

Figure 3.19: Sketch of a pressure and temperature swing adsorption column at an arbi-
trary time point t. External heating, heat of adsorption, and influences of
time t and axial position z are considered.

approach is implemented for the mass transfer into the adsorbent particles.

Eq. (3.77) contains the molar component balance for the gas phase. Moving from left
to right, the dynamic component hold-up is considered, the convective transport changes
with the velocity of the gas flow u, axial dispersion is introduced via the dispersion
coefficient Dax, and the mass transfer to the adsorbent is included. A list of values for
all parameters is include in Appendix A.4.

∂yi
∂t
= −u
ε
· ∂yi
∂z
+ Dax ·

∂2yi

∂z2
+
ρP · R · T

p
· 1 − ε
ε
· �
�

∂qi
∂t
− yi ·

NC∑
i=1

∂qi
∂t

�
�

(3.77)

The overall mass balance is given by Eq. (3.78). Some additional assumptions are neces-
sary here. It is assumed that the influence of the pressure changes is a lot more influential
than the changes in temperature.

1

R · T ·
dp
dt
= −1
ε
· u

R · T ·
∂p
∂z
− 1

ε
· p

R · T ·
∂u
∂z

(3.78)

+
Dax

R · T ·
∂2p
∂z2
+ ρP ·

1 − ε
ε
·
NC∑
i=1

∂qi
∂t
= 0
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Chapter 3 Model Derivation and Model Simplification

The energy balance is shown in Eq. (3.79). Therein, Tw is the wall temperature impreg-
nated from the outside of the adsorption column and could yield either a heating or a
cooling of the system.

(ε · cgp · ρg + csp · ρb) ·
∂T
∂t

(3.79)

= −cgp · u · ρg ·
∂T
∂z
+ λax ·

∂2T
∂z2
− ρb ·

NC∑
i=1

∆Hi ·
∂qi
∂t
+
2 · h
Rb
· (T − Tw)

Finally, the Ergun equation is included in accordance with (Ergun, 1952) to compute a
pressure profile:

−
∂p
∂z
=

150 · ηmix · (1 − ε)2

2 · D2
p · ε

3
b

· u +
1.75

DP
·

(
1 − εb
εb

)
· ρb · u2 (3.80)

All auxiliary equations required for the calculation of material and fluid properties etc. are
also included in Appendix A.4.

Boundary Conditions, Discretization, and Coupling of Cycle Steps

The actual difference between all four phases of the Skarstrom cycle lies in the definition
of the boundary conditions. These are summed up in Tab. 3.3.

Table 3.3: Boundary conditions for the four phases of the combined pressure and temper-
ature swing adsorption valid for all time points in accordance with (Riesenbeck,
2014).

Pressurization Adsorption Depressurization Desorption

yj |z=0 = y f ,i yj |z=0 = y f ,i
∂yj

∂z
��z=0 = 0

∂yj

∂z
��z=0 = 0

∂yj

∂z
��z=L = 0

∂yj

∂z
��z=L = 0

∂yj

∂z
��z=L = 0 yj |z=L = yp,i

p|z=0 = pH p|z=0 = pH p|z=0 = pL p|z=0 = pL

T |z=0 = TFeed T |z=0 = TFeed
∂T
∂z

��z=0 = 0
∂T
∂z

��z=0 = 0

∂T
∂z

��z=L = 0
∂T
∂z

��z=L = 0
∂T
∂z

��z=L = 0 T |z=0 = TPurge

w |z=0 = wFeed w |z=0 = wFeed w |z=0 = −wPurge w |z=0 = −wPurge

w |z=L = 0 ∂w
∂z

��z=L = 0 w |L=0 = 0 ∂w
∂z

��z=L = 0

In addition to the boundary conditions noted in Tab. 3.3 to equations are introduced
for the pressurization and the depressurization to account for the opening of respective
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valves (see. Eq. (3.81) and (3.82)) (Rege et al., 2001).

p(t) = pL + (pH − pL) · exp
(

t
τPressurization

)
(3.81)

p(t) = pH + (pL − pH ) · exp
(

t
τDepressurization

)
(3.82)

Equivalent to the CPBMR’s rigorous PDAE system discussed above each of the phases
of the Skarstrom cycle shows first order derivatives in one and second as well as first order
derivatives in the other coordinat, here time t and space z respectively. In accordance
with (Esche et al., 2012) and (Esche et al., 2014a) the PDAE system is fully discretized
using a combination of Lagrangian orthogonal collocation on finite elements and Her-
mite orthogonal collocation on finite elements. It is found that for z five finite elements
suffice and for t eight using third order Lagrangian collocation and third order Hermite
polynomials. To initialize each of the resulting AE systems the PDAE is partially dis-
cretized in its axial dimension using Hermite orthogonal collocation on finite elements.
The resulting DAE system is solved in gPROMS® and the solution is used as a set of
initial values for the AE system.

After initializing each of the four parts of the Skarstrom cycle the four parts are
connected in MOSAIC as described in the following. Fig. 3.20 gives an overview of the
steps taken for the coupling of all four steps. Information on how the input and output
steps are computed are contained in appendix A.4.

Figure 3.20: Coupling of all four Skarstrom cycle steps, calculation of average output
mole fractions yi and output mole flows Ṅ . x denotes all values appearing
in differential equations (T , p, yi, w), which are coupled from one step to
the next.
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Chapter 3 Model Derivation and Model Simplification

As has been said above the concentrations of the feed stream are impregnated on the
column inlet during the pressurization and the adsorption step. Seeing as all radial in-
fluence is neglected in the PTSA model a required cross sectional area A for the PTSA
columns needs to be calculated based on the feed flow velocity into the column and the
pressure to handle the whole feed stream in the system.

The four phases of the Skarstrom cycle are coupled together by attaching the last time
point of the previous steps to the first time point of the next step for all discrete positions
of z. This is done for all pressures, mole fractions, temperatures, and velocities denoted
as x in Fig. 3.20.

Finally, average values for mole flows and concentrations are calculated for both outlets.
The average mole flow leaving the adsorption step is calculated as an integral time average
over the adsorption step (I I) as given by Eq. (3.83).

Ṅ
out,I
=

t I Iend∫
t I I0

Ṅ (t, z = L)dt

t I Iend − t I I0
(3.83)

The time dependent mole flow at the outlet can be calculated based on the ideal gas law
and cross sectional area of the column:

t I Iend∫
t I I0

Ṅ (t, z = L)dt =

t I Iend∫
t I I0

(
A · w(t, z = L) ·

p(t, z = L)
R · T (t, z = L)

)
dt (3.84)

The computation of the time integral with three time dependent variables is of course
quite challenging and would require successive partial integration. Instead the full dis-
cretization of the system is exploited and an approximation of the integral as a sum over
all finite elements FE and collocation positions cp is carried out.

t I Iend∫
t I I0

Ṅ (t, z = L)dt ≈
NFE∑
FE=1

Ncp∑
cp=1

A
R
·
wFE,cp · pFE,cp

TFE,cp
·

1

ucp − ucp−1
·

1

hFE
(3.85)

Therein, ucp is the coordinate of the collocation position (ucp=0 = 0) and hFE is the
length of the finite element in time. For the calculation of the average outlet mole frac-
tions yi,Fe,cp is added to the summation.

For the second outlet flow the integration is carried out over depressurization (I I I)
and purge (IV) and instead of at the outlet the integration is carried out at the inlet as
the flow direction is reversed.
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The equations shown here are slightly simplified to ensure legibility. The full versions
of all equations are given in Appendix A.4.

For the application within the scope of this thesis a zeolite 4A is employed, which has
previously been investigated by Son (2014). Dual-site Langmuir isotherms are used to
describe the adsorption behavior. The data for these is taken from Son (2014) and fitted
to Eq. (3.67) and (3.68). The coefficients are reported in Tab. 3.4. Each zeolite particle
has a diameter of 3.2 mm, the free volume fraction is 0.5, the density is given at 1500
kg/m3, and the specific heat capacity is assumed constant at 1000 J/kgK.

Table 3.4: Coefficients for dual-site Langmuir isotherms fitted to data published in (Son,
2014).

k1,m,i k2,m,i k3,m,i k4,m,i

[–] [1/K] [–] [K]
CO2, m = 1 4,17 ·100 -7.33·10−3 1.89·106 5.76·103

CO2, m = 2 2.58·100 -4.37·10−3 5.68·10−3 1.28·103

C2H4, m = 1 3.13·100 -2.70·10−3 1.05·104 4.58·103

C2H4, m = 2 0.00·100 0.00·100 0.00·100 0.00·100

CH4, m = 1 7.00·100 -1.58·10−2 1.08·10−2 2.16·103

CH4, m = 2 0.00·100 0.00·100 0.00·100 0.00·100

N2, m = 1 7.59·100 -1.72·10−2 1.64·10−1 3.01·103

N2, m = 2 0.00·100 0.00·100 0.00·100 0.00·100

Based on the models derived within this Chapter the identification and selection of
relevant parameters for optimization under uncertainty is carried out in the following
before moving on to the optimization studies under uncertainty.
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Chapter 4

Uncertainty Identification

In section 2.4 the basis was lain for the identification of the relevant uncertain parameters
for optimization under uncertainty. In this chapter, such an identification will be applied
on the absorption desorption process and the membrane units in turn. For the PTSA sec-
tion measurement data is only available in insufficient quantity. The systematic method
for the identification and selection method introduced above requires rigorous design of
experiments and analysis of measurements to pertain sufficient information, which has
not yet been carried out for the PTSA section. Hence, a successful identification of un-
certainty for that unit individually is not possible. The treatment of the PTSA unit and
the OCM reactor is discussed at the end of this chapter.

4.1 Absorption Desorption Process

The absorption desorption process has been investigated extensively in (Stünkel, 2013).
The whole design and operation of the mini-plant at Technische Universität Berlin is de-
scribed therein and only the most important points for the subsequent discussion of the
experimental results will be reviewed herein. In addition, new experimental data from a
mini-plant will also be presented here. For these, however, modifications on the original
configuration of the mini-plant presented in (Stünkel, 2013) were carried out. These are
discussed subsequently and denoted as set-up 2, whereas the original mini-plant layout
is set-up 1.

The most important components of the absorption desorption process were already
introduced in Fig. 3.3 on page 56. The absorption column is 10 m high and has an inner
diameter of 40 mm. 5 m of the entire height is filled with structured packing Rombopak
12 M of Sulzer with a specific surface of 450 m2/m3. Four liquid collectors and redis-
tributors are located between every meter of packing height. The column can sustain
pressures at up to 40 bar. On entering the flash the liquid is throttled to almost ambient
pressure (1.013 bar), which causes a larger portion of the dissolved gas to leave the liquid
phase. The flash itself is 520 mm high and has an inner diameter of 400 mm. The des-
orption column is 8 m high and is filled with 4 m of structured packing (Rombopak 9 M,
350 m2/m3) over an inner diameter of 100 mm. The bottom of the desorption column is
electrically heated with a maximum electrical power of 30 kW. The partial condenser at
the top is operated with cooling water and has a maximum cooling duty of 25 kW. The
desorption column and the attached partial condenser can be operated at up to 5 bar.
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The bottom of the desorption column has an inner diameter of 320 mm and can hold up
to 0.08 m3. The small liquid drum connected to the partial condenser can hold up to
0.02 m3 of recondensed liquid. The liquid storage tank between desorption column and
absorption can contain up to 0.05 m3. The pumps charged with sustaining the liquid
cycle between absorption and desorption have a maximum capacity of 0.08 m3/h.

Regarding the measurement equipment all gas and liquid flows entering or leaving
the absorption column are measured using Coriolis type flow meters by Endress+Hauser
AG. In addition, the gas feed to the absorption column and the gas outlet are alter-
natingly analyzed with infrared quality sensors for CO2, C2H4, C2H6, O2, and CH4 by
Sick AG. Apart from these online measurements, liquid samples are taken at the outlets
of absorption column, desorption, and flash on an hourly basis and measured with gas
chromatography and pH titration to estimate amount of amine in the aqueous solution
and the CO2 liquid load.

The gas feed to the absorption system is realized with bottles of pressurized (or liqui-
fied) gas for CO2, C2H4, C2H6, N2, and CH4. Two different amine-solutions are applied:
an aqueous solution of MEA (30 wt %) and an aqueous solution of aMDEA (3 wt %
Piperazine and 37 wt % MDEA).

The piping and information diagrams on set-up 1 can be found in (Stünkel, 2013) with
additional information on the equipment and operation of the mini-plant. Set-up 2 is a
slight modification of set-up 1. The two most important changes to the configuration are
the introduction of a gas compressor for recycling gas from the outlet of the absorption
column back to the feed and the implementation of a micro gas chromatograph and a
Raman spectrometer for more precise gas and liquid measurements respectively.

The updated piping and information diagrams for set-up 2 can be found in Appendix
B.1 starting on page 185. While the introduction of the compressor and the gas recycle
is a challenge regarding the operation of the absorption desorption process, its main
advantage lies in the amount of gas saved during experiments. Fig. 4.1 sketches the
implementation of the gas recycle. Details on the implementation of the compressor with
control circuits, safety procedures, and operational guidelines are contained in (Kracht,
2014).

The main challenge of the gas recycle is that the feed composition has to change with
the changing composition of the gas recycle. During the steady-state operation of the
mini-plant this is not a major issue. However, for switching to a new operation point a
purge of the gas recycle is required.

In order to facilitate the gas recycle and proper adjustment of the gas feed an ad-
ditional online gas measurement is installed, a micro gas chromatograph (microGC) by
Agilent Technologies, Inc. This way both the gas feed to the absorption as well as the gas
outlet can be measured simultaneously. Additionally, microGC and IR can also sample
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4.1 Absorption Desorption Process

Figure 4.1: Gas recycle for saving gas during the absorption desorption experiments. The
gas leaving the absorption column is pressurized again and fed back to the
absorption column.

the same position simultaneously allowing for a validation of the results obtained with
the IR, which is faster than the microGC but also less accurate. The microGC takes 3
min to measure each new sample whilst the IR measurements are basically instantaneous.

Finally, a Raman spectrometer is applied to measure the CO2 liquid load at the outlets
of absorption, flash, and desorption online. Details hereon can be found in (Kraemer,
2014). The Raman measurements have proven to be robust and more reliable compared
to manual offline samples. However, these results will not be further discussed within
the scope of this thesis as they are not required for the subsequent deliberations.

4.1.1 Experimental Studies

The following discussion of the experimental studies is divided between the two applied
scrubbing liquids, starting with the results for MEA obtained from set-up 1 and set-up
2 and afterwards supplying the results for aMDEA for set-up 1.

Results for MEA in Set-up 1

In (Stünkel, 2013) 15 different cases of absorption pressures, gas load factors, and feed
concentrations of CO2, C2H4, CH4, and N2 were investigated. The results from those
experiments using an aqueous solution of MEA are noted in Tab. 4.1.

Each experiment is given a specific ID for later reference. The gas feed to the ab-
sorption column is given in terms of absorption pressure pAbsorption, gas load factor F,
and molar fractions of CH4, CO2, N2, and C2H4. These are the only gases, which were
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used during these experiments. The gas load factor F is defined by Eq. (4.1), wherein
ρg is the density of the supplied gas and ug is the superficial velocity in the absorption
column.

F = ρg ·
√

ug (4.1)

The liquid flow of MEA and water ṀL is measured before the absorption column. The
settings for the desorption are given by the desorption pressure pDesorption and the elec-
trical power supplied to the desorption bottom Q̇Desorption. Each experimental point is
evaluated regarding two characteristic values, the relative amount of CO2 removed from
the gas flow in percent αCO2 and the energy required for each kilogram of CO2 which is
removed eCO2.

Results for MEA in Set-up 2

Tab. 4.2 contains the new measurements obtained as part of this thesis. Each new opera-
tion point is held for two hours to guarantee a steady-state performance of the absorption
desorption process. In addition, an operation point is only accepted as constant, if the
most important measurements fluctuate by less than 10 % in the half hour preceeding
it. These most important measurements have been considered here to be the levels of all
columns and liquid tanks, the gas composition before and after the absorption column,
and the temperature in the bottom of the desorption column.

Results for aMDEA in Set-up 1

Tab. 4.3 shows the results obtained for activated MDEA (Stünkel, 2013). Unlike for the
MEA experiments, the absorption pressure was only set to 10 and 32 bar. On top of that
the total number of experiments is quite low making it improbable that the parameter
estimation will yield sensible results. For the future, further experiments are required to
rectify this situation. An additional mini-plant operation using set-up 2 with aMDEA
was planned, but had to be canceled for technical reasons.
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Ṁ
L
,t

he
de

so
rp

ti
on

pr
es

su
re

p D
es

or
pt

io
n
,
an

d
th

e
el

ec
tr

ic
al

he
at

in
g

du
ty

Q̇
D

es
or

pt
io

n
.

T
he

ev
al

ua
ti

on
of

th
e

ex
pe

ri
m

en
ts

is
ba

se
d

on
th

e
re

la
ti

ve
am

ou
nt

of
C

O
2

re
m

ov
ed

fr
om

th
e

sy
st

em
α

C
O

2
an

d
th

e
sp

ec
ifi

c
en

er
gy

re
qu

ir
ed

to
re

m
ov

e
a

ki
lo

gr
am

of
C

O
2

e C
O

2
.

ID
p A

bs
or

pt
io

n
F

y C
O

2
y C

H
4

y C
2H

4
y N

2
Ṁ
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Chapter 4 Uncertainty Identification

4.1.2 Analysis of Measurement Data

The measurement data listed above for all three sets of experiments has a number of
issues, which need to be considered before continuing with the parameter estimation.

The data obtained from set-up 1 relies almost entirely on the measurements from the
IR and the samples taken manually from the outlets of absorption, desorption, and flash.
During the operation of set-up 2 it was shown that the IR has an inherent drift, which
leads to an offset of up to 20 mole percentage points. To acquire the data the mini-
plant was operated for over 160 hours continuously. During the first day no sizeable
difference between IR and microGC is observed. They lie within a 5 % range of one
another whenever they are switched to the same measurement position for validation
purposes. After a couple of days, however, that offset becomes a steady underestimation
of the mole fraction of CO2 by the IR growing up to 20 mole %. This is shown in Fig. 4.2
comparing the measurement results for microGC and IR of the CO2 molar fraction in
the feed of the absorption column. After the mini-plant operation each measurement
device is checked again with their respective calibration gases. The microGC passes the
validation, whilst the IR test confirms the observed drift.

Figure 4.2: Comparison of the results for the mini-plant operation of the absorption des-
orption process between microGC and IR measuring the molar fraction of
CO2 in the feed. QIR-1 is the devicename for the gas IR and µGC for the
microGC. Initially both measurements run in lockstep, after about a day the
measured values of the IR starts to drift away from the microGC. Directly af-
ter the mini-plant operation both devices are tested against their calibration
gas, which was used to validate the results for the microGC and disqualify
those for the IR.

The manual samples on the other hand are analyzed in two steps. The mass fractions
of MEA, Piperazine, and MDEA are estimated with a gas chromatograph (GC), which
in itself is rather accurate. However, errors can be made during the preparation of the
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4.1 Absorption Desorption Process

samples: insufficient dead volume is purged in the mini-plant before taking the sample,
too much of the diluting 2-Propanol (outdated name: isopropyl alcohol) escapes during
the sample preparation, etc. On top of that GC measurements are highly sensitive to
unknown impurities, which might come from remnants of decayed scrubbing liquids from
previous plant operations. These were also observed as additional peaks overlapping the
MEA peak during the mini-plant operation carried out as part of this thesis.

As a second step the CO2 content of the liquid samples is measured by pH tirations.
The sample is injected into a beaker filled with barium chloride (BaCl2(aq)) and sodium
hydroxide (NaOH(aq)) solution causing the dissolved CO2 to precipitate as barium car-
bonate (BaCO3(s)). The solid is siphoned off and dissolved with a defined amount of
hydro chloric acid (HCl(aq)). The amount of consumed acid is subsequently determined
by titration with NaOH(aq) and the neutralization is determined by pH measurement.
Just as for the GC measurements a number of errors can be made during the sample
preparation. The liquid sample is taken directly into the prepared solution causing the
immediate precipitation of BaCO3(s). However, looking at the outlet of the absorption,
at which the pressure can reach up to 32 bar and the temperature ranges from 40 to 80
◦C a certain level of outgassing of CO2 not captured as BaCO3(s) cannot be ruled out
entirely. In addition, human error during the subsequent preparation of the samples may
further falsify the results of the titration.

Given that the liquid samples are only taken and analyzed on an hourly basis it is
difficult to crossvalidate the results. In conclusion, the results of the mini-plant operations
displayed above have to be handled with care and excluding at least some experiments
from the parameter estimation appears sensible.

4.1.3 Parameter Estimation

Despite the differences between set-up 1 and set-up 2 the results are joined together for
the parameter estimation and implemented in the Python framework described in section
2.4. Afterwards, the parameter estimation for aMDEA is discussed.

Parameter Estimation for MEA

Based on the model derivation the following set of parameters is initially chosen for the
parameter estimation with the upper and lower bounds considered given by Eq. (4.2).

*..
,

pL

p
pU

+//
-
=
*..
,

−104 −104 −104 −104 −104 −104 −104 −104

ηFlash ηst A P12 P13 P14 P15 P16 k A
104 104 104 104 104 104 104 104

+//
-

(4.2)

Parameters P12 to P16 are the required coefficients for the desorption efficiency correla-
tion in Eq. (3.9). Setting the upper and lower bounds farther apart leads to a highly
unstable performance of the parameter estimation.
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Chapter 4 Uncertainty Identification

The objective function Φ for the parameter estimation is given by Eq. (4.3) as the
sum over all selected experiments E of the squared differences between experimental and
simulated relative amount of CO2 removed from the system αCO2.

Φ =
∑
e∈E

*.
,

α
experiment
CO2,e

− αsimulation
CO2,e

α
experiment
CO2,e

+/
-

2

(4.3)

Apart from eCO2 all other parameters listed in Tab. 4.1 and 4.2 define the experiments.
The specific heat required for the removal of a kilogram of CO2 eCO2 is a redundant
value in case the CO2 removal rate and the heating duty for the desorption Q̇Desorption
are already given.

For the subsequent further reduction of the uncertain parameter set the minimization
of eCO2 is selected as the user-defined objective function. This choice is made as it is
assumed at this point that some form of eCO2 will appear in the final objective function
for the whole superstructure.

Carrying out the parameter estimation itself took several weeks given that many dif-
ferent sets of experiment selections were tested. Only selections were accepted which
contained at least one low pressure (5 bar) experiment and in total at least five ex-
periments. This requirement was made to ensure that at least one case is present of
an experiment, which is more relevant for the application of the absorption within the
investigated superstructure. Higher pressure cases require more energy in the initial
compression. Hence, lower pressure cases will be more favorable when minimizing the
specific energy consumption of the whole process concept.

The final result covers all low pressure cases from (Stünkel, 2013) ID 1 to 6 and ID 1 to
3 of the experiments carried out here (see Tab. 4.2). This solution is preferred compared
to all others seeing as solutions are found for all low pressure experiments, which are of
greater importance for the whole superstructure. At higher pressures (20 to 32 bar) the
loss of C2H4 in the absorption process is too high, especially if the partial pressure is
already elevated by the preceeding PTSA or membrane modules.

The first part of the subset selection algorithm returns five identifiable parameters.
Afterwards, the second part reduces that number down to two without any changes to the
settings discussed in section 2.4. The subsets of identifiable and ultimately left uncertain
parameters are shown in Eq. (4.4) respectively. 1 showing an identifiable/uncertain and
0 otherwise.

*..
,

p
SsS0
SsSIII

+//
-
=
*..
,

ηFlash ηst A P12 P13 P14 P15 P16 k A
1 1 0 0 0 0 1 1
0 0 0 0 0 0 1 1

+//
-

(4.4)

The final set of parameter values and their respective standard deviations σ are given in
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4.1 Absorption Desorption Process

Eq. (4.5).

���
�

p
pPE

σPE

���
�
=
���
�

ηFlash ηst A P12 P13 P14

0.7873 0.9818 −0.0200 −0.5281 −2.686
0 0 0 0 0

���
�

(4.5)

���
�

P15 P16 k A
−0.0131 0.010 0.0010

0 2.778 · 10−6 5.613 · 10−7
���
�

Fig. 4.3 shows a parity plot of the measured vs. the simulated values of the CO2
removal rate αCO2 based on the results of the parameter estimation. Fig. 4.4 shows
the respective residuals per experiment. The stars denote the experiments used for the
parameter estimation, the diamonds the additional experiments obtained from set-up 2.

Figure 4.3: Comparison of simulated vs. measured values of the CO2 removal rate αCO2

based on the results of the parameter estimation for the absorption desorption
process using MEA. The dashed lines show a deviation from the parity by
+10% and -10%. The stars denote the original set of experiments on which
the model is trained on, the diamonds the additional experiments carried out
as part of this work.

The residuals for all investigated experiments lie within a range of ± 5.5 % points.
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Chapter 4 Uncertainty Identification

Figure 4.4: Residuals of the parameter estimation of the CO2 removal rate αCO2 of the
absorption desorption process using MEA for the first six experiments of
Tab. 4.1 and the first three of Tab. 4.2.

Consequently, the model with the parameters identified as uncertain above is considered
to be sufficiently accurate for optimization purposes within the scope of this work. Also
the spread of the experiments regarding values of αCO2 is sufficiently large to employ the
model for the superstructure application.

Parameter Estimation for aMDEA

Regarding the set of five experiments for aMDEA shown in Tab. 4.3 the parameter
estimation is set-up identically to the one described above. The same set of parameters
is considered for the parameter estimation with the bounds given in Eq. (4.6).

���
�

pL

p
pU

���
�
=
���
�

−104 −104 −104 −104 −104 −104 −104 −104
ηFlash ηst A P12 P13 P14 P15 P16 k A
104 104 104 104 104 104 104 104

���
�

(4.6)

In (Stünkel, 2013) no low pressure cases at 5 bar are given for aMDEA. Consequently
and because of the low number of experiments in total, all experiments given in Tab. 4.3
are considered for the parameter estimation.
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4.1 Absorption Desorption Process

The final set of parameter values and their respective standard deviations σ are given
in Eq. (4.7).

���
�

p
pPE

σPE

���
�
=
���
�

ηFlash ηst A P12 P13 P14

1.0 0.991 −0.01778 −0.6436 −1.948
0 0 0 0 0

���
�

(4.7)

���
�

P15 P16 k A
−0.01057 0.02221 5.0 · 10−4

0 3.615 · 10−5 4.506 · 10−7
���
�

Fig. 4.5 shows a parity plot of the measured vs. the simulated values of the CO2 removal
rate αCO2 based on the results of the parameter estimation and Fig. 4.6 shows the re-
spective residuals per experiment.

Figure 4.5: Comparison of simulated vs. measured values of the CO2 removal rate αCO2

based on the results of the parameter estimation for the absorption desorption
process using aMDEA. The dashed lines show a deviation from the parity by
+10% and -10%.

The standard deviations of the remaining active parameters are considerably larger
in the aMDEA case compared to the MEA before. The exceptionally small number of
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Figure 4.6: Residuals of the parameter estimation of the CO2 removal rate αCO2 of the
absorption desorption process using aMDEA.

experiments with pressures in the region of interest (below 20 bar) make it difficult to
derive a proper set of parameters with low deviation. The accuracy is also considerably
lower compared to the MEA case. Whilst four of the five experiments still lie in the ± 10
% range in the parity plot their offsets are all between 5 to 10 percentage points and none
are below 5. Considering the uncertainty of the actual measurements in the mini-plant,
this is quite reasonable. Measurements based on more accurate methods such as Raman
spectroscopy would be more accurate to get below deviations of 5 to 10 %.

4.1.4 Sensitivity Analysis on Selection of Uncertain Parameters

In case of the MEA, the standard deviations are orders of magnitude smaller than the
actual parameter values of the two parameters, which should be kept uncertain for op-
timization under uncertainty. Before continuing with the parameter estimation for the
membranes a brief discussion of the impact of these parameters on the CO2 removal rate
will be done.

The sensivitiy analysis is carried out for all experiments used in the parameter es-
timation by means of a set of Monte Carlo simulations. Values for the two uncertain
parameters are randomly sampled based on the multivariate normal distribution and
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4.1 Absorption Desorption Process

αCO2 is determined for each sample case. Fig. 4.7 contains the results for all nine exper-
iments.

Figure 4.7: Monte Carlo simulation sampling the uncertain parameters of the absorption
desorption process model using MEA for the first six experiments of Tab. 4.1
and the first three experiments of Tab. 4.2.

For these six experiments the uncertain parameters cause a general variation in the
CO2 removal rate of ± 3 % points. Only in very few cases (see experiment 6) do strong
outliers appear.

For aMDEA the impact of the uncertainty is considerably larger caused by the larger
standard deviations. Fig. 4.8 holds the respective results of the Monte Carlo simulation
carried out on the five available experiments. Outliers appear more frequently and in the
case of experiment No. 3 no clear expected value appears, but instead a wide spread of
αCO2 from 60 to 95 %.
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Chapter 4 Uncertainty Identification

Figure 4.8: Monte Carlo simulation sampling the uncertain parameters of the absorp-
tion desorption process model using aMDEA for the first six membranes of
Tab. 4.3.
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4.2 Matrimid®/Polyimide Membrane

The PI membrane module has been experimentally investigated in (Stünkel, 2013) as well
as (Song, 2014; Song et al., 2013) and also within the scope of this thesis (data published
in (Kracht, 2014)). In (Song et al., 2013) a validation of a model for the PI membrane
module similar to the model described in section 3.3 is presented, which is reproduced
here in Fig. 4.9.

Figure 4.9: Validation for the PI membrane module taken from (Song et al., 2013).

The validation shows a good agreement between simulation and experiment for the
CO2 removal for cases of 5 and 10 bar. However, at higher pressures (32 bar) simulations
and measurements deviate strongly. Looking at the recovery of C2H4 the deviations do
not increase with the pressure but overall the validation is less persuasive.

The measurements taken on the same membrane module as part of this thesis are
carried out more than a year after the measurements by Stünkel (2013) and Song et al.
(2013). As part of this additional measurement campaign permeabilities for all pure
components of interest (CO2, C2H4, N2, CH4) and a number of mixtures at different
compositions and pressures are carried out. The results published in (Kracht, 2014)
suggest that the original membrane has experienced some form of deterioration in the
meantime. Fig. 4.10 compares measurement results for two gas mixtures to simulated
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Chapter 4 Uncertainty Identification

results based on the original permeability data (red) and newly measured permeabilities
(black).

Figure 4.10: Parity plot for the permeate stream of a PI membrane module with simu-
lated results obtained from two different sets of permeabilities, taken from
(Kracht, 2014).

In correspondence with Dr.-Ing. T. Brinkmann and co-workers at Helmholtz-Zentrum
Geesthacht Centre for Materials and Coastal Research it was determined that the dete-
rioration is mostly due to an aging issue with the original membrane material by evap-
oration of residual monomers in the polymer’s pores, which is now rectified by means
of a new production technique. Hence, all further deliberations omit the data obtained
and published in (Kracht, 2014) and solely focus on the initial measurements published
in (Stünkel, 2013) and (Song, 2014).

4.2.1 Experimental Studies

The PI membrane module employed for all measurements has a total membrane area of
0.5 m2 and each envelope type membrane has a diameter of 0.1 m. Tab. 4.4 contains the
most important data for the experiments carried out on the PI membrane module.
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Chapter 4 Uncertainty Identification

4.2.2 Analysis of Measurement Data

Feed, retentate, and permeate flows are yet again measured with the same gas IR by Sick
AG described for the absorption desorption process. Hence, the drift discussed above
may also be an issue. On top of that measuring the permeate flow of the membrane
module is quite challenging. Given the small quantities and low pressures the error will
always be large. Consequently, no data reconciliation is carried out on the raw data
given in Tab. 4.4 as the measurement data provided for the retentate flow provided by
(Stünkel, 2013) is highly unreliable.

Based on the results of the validation carried out in (Song et al., 2013) it becomes
obvious that a similar approach regarding the selection of experiments for the parame-
ter estimation should be taken. The high pressure (32 bar) seems to cause additional
phenomena within the membrane modules, which are not included in the model. An
example could be membrane swelling caused by the higher partial pressures of CO2.

4.2.3 Parameter Estimation

The parameter estimation is carried out in exactly the same way as for the absorption
above. However, the set of parameters, the objective function, and the set of controls need
to be redefined. For reasons of confidentiality all values describing the permeabilities of
the PI membrane are normalized. The vector of parameters considered for the parameter
estimation is given in Eq. (4.8). Presenting the lower and upper bounds in a normalized
form is little sensible as they are then either zero or one.

p =
(
L0
∞,CO2

L0
∞,C2H4

L0
∞,N2

L0
∞,CH4

EA,CO2 EA,C2H4 EA,N2 EA,CH4

)
(4.8)

Each experiment is described by the feed pressure and the mole flows of all four gas
components (C = {CO2,C2H4,N2,CH4}). The pressure on the low pressure side is set to 1
bar for all experiments. The goal of the parameter estimation is to obtain a good match
for the retentate flows of all components, which implies the objective function defined in
Eq. (4.9).

Φ =
∑
e∈E

∑
c∈C

*
,

ṄR, experiment
c,e − ṄR, simulation

c,e

ṄR, experiment
c,e

+
-

2

(4.9)

The presumption that the high pressure cases need to be handled separately holds true.
The final set of experiments considered for the parameter estimation includes all but ID
12 to 20 of Tab. 4.4.

Eq. (4.10) shows the subsets of identifiable and ultimately left uncertain parameters
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respectively.

p
SsS0
SsSIII

=
���
�

L0
∞,CO2

L0
∞,C2H4

L0
∞,N2

L0
∞,CH4

EA,CO2 EA,C2H4 EA,N2 EA,CH4

1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0

���
�

(4.10)

Seeing that CO2 is the most permeable component and for the subsequent unit operations
also the most important the following figures focus thereon. Fig. 4.11 shows the parity
plot for all 11 experiments contained in the final set for the parameter estimation and
Fig. 4.12 the respective residuals. Given the aforementioned confidentiality reasons the

Figure 4.11: Parity plot comparing simulated and experimental results for the retentate
mole flows of CO2 for the PI membrane module based on the parameter
estimation results for all experiments considered therein.

standard deviations of the uncertain parameters contained in SsSIII are normalized with
respect to their expected values (see Eq. (4.11)).

p
σPE

=

(
L0
∞,CO2

L0
∞,C2H4

L0
∞,N2

L0
∞,CH4

EA,CO2 EA,C2H4 EA,N2 EA,CH4

1.5 · 10−3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

)
(4.11)
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Figure 4.12: Residuals between simulated and experimental results for the retentate mole
flows of CO2 for the PI membrane module based on the parameter estimation
results for all experiments considered therein.

4.2.4 Sensitivity Analysis on Selection of Uncertain Parameters

The respective Monte Carlo simulation for all 11 investigated experiments is given in
Fig. 4.13. For the uncertain parameters 1000 samples are generated based on their
multivariate normal distribution. The single uncertain parameter, which should directly
effect the permeation of CO2, shows no or very little influence on the retentate flow of
CO2. This could mean that this uncertain parameter can actually be neglected for the
superstructure investigation.
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Figure 4.13: Monte Carlo simulation sampling the uncertain parameters of the PI mem-
brane model for the first eleven experiments shown in Tab. 4.4.
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4.3 Polyethylene Oxide Membrane

Similar to the PI membrane the PEO has already been investigated to some extent.
Fig. 4.14 shows a comparison of simulations and experiments for the PEO membrane
carried out by (Song, 2014). The recovery of C2H4 seems to be reasonably well modeled,
whilst the removal of CO2 shows a chronic underestimation in the simulations.
This issues is overcome in (Kracht, 2014) by refitting the free volume parameters for

Figure 4.14: Experimental validation of the model for the polyethylene oxide (PEO)
membrane for eight different experimental points taken from (Song, 2014).

the rubber-like polymer in cooperation with Helmholtz-Zentrum Geesthacht Centre for
Materials and Coastal Research causing an improved performance of the model as shown
in Fig. 4.15.

4.3.1 Experimental Studies

The issue with the damaged membrane material did not come up during the investi-
gations of the PEO membrane module. Hence, both data from (Song, 2014) and data
obtained herein and previously published in (Kracht, 2014) can be used for the sub-
sequent identification and estimation of uncertain parameters. Tab. 4.5 contains the
experimental data measured by Song (2014) and Tab. 4.6 the additional data measured
as part of this work (Kracht, 2014). Both studies are carried out on a membrane module
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4.3 Polyethylene Oxide Membrane

Figure 4.15: Experimental validation of the model for the polyethylene oxide (PEO)
membrane for eight different experimental points taken from (Kracht, 2014).

similar to the PI described above with a total membrane area of 0.11 m2.

4.3.2 Analysis of Measurement Data

Sadly, Song (2014) only reports experimental separation factors for his experiments. As
these do not allow for the calculation of absolute quantities in either retentate or permeate
flow the data is useless for the parameter estimation and can only be used for a validation
similar to Fig. 4.14. Consequently only four experiments are available for the parameter
estimation which is attempted nevertheless.

4.3.3 Parameter Estimation

The same confidentiality issues exist with the PEO membrane as with the PI. Similarly,
all absolute values are either omitted or shown as normalized data. The configuration
regarding objective function and input values for the parameter estimation are identical
to the case of the PI membrane. It was considered to also include the free volume param-
eters into the parameter estimation. However, given the small number of experiments
actually available this idea is not pursued further.

Eq. (4.12) shows the subsets of identifiable and ultimately left uncertain parameters
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respectively

p
SsS0
SsSIII

=
���
�

L0
∞,CO2

L0
∞,C2H4

L0
∞,N2

L0
∞,CH4

EA,CO2 EA,C2H4 EA,N2 EA,CH4

1 1 1 1 0 0 0 0
1 0 0 0 0 0 0 0

���
�

(4.12)

Seeing that CO2 is the most permeable component and for the subsequent unit opera-
tions also the most important the following figures focus thereon. Fig. 4.16 shows the
parity plot for all four experiments contained in the set for the parameter estimation and
Fig. 4.17 the respective residuals. Given the aforementioned confidentiality reasons the

Figure 4.16: Parity plot comparing simulated and experimental results for the retentate
mole flows of CO2 for the PEO membrane module based on parameter esti-
mation results for all experiments consdiered therein.

standard deviations of the uncertain parameters contained in SsSIII are normalized with
respect to their expected values (see Eq. (4.13)).

p
σPE

=

(
L0
∞,CO2

L0
∞,C2H4

L0
∞,N2

L0
∞,CH4

EA,CO2 EA,C2H4 EA,N2 EA,CH4

1.3 · 10−2 0.0 0.0 0.0 0.0 0.0 0.0 0.0

)
(4.13)

In order to validate the results of the parameter estimation further the separation
fractions for the experiments performed by Song (2014) can be calculated and compared
to the values noted in Tab. 4.5.
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4.3 Polyethylene Oxide Membrane

Figure 4.17: Residuals between simulated and experimental results for the retentate mole
flows of CO2 for the PEO membrane module based on the parameter esti-
mation results for all experiments considered therein.

4.3.4 Sensitivity Analysis on Selection of Uncertain Parameters

The respective Monte Carlo simulation for all four experiments is given in Fig. 4.18. For
the uncertain parameters 1000 samples are generated based on their multivariate normal
distribution.

The larger degree of uncertainty in case of the PEO membrane compared to the PI
becomes apparent in the increased spread in the Monte Carlo simulation results for all
four experiments. Each mole flow shows a variation of around 1 % arround an assumed
expected value.
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Chapter 4 Uncertainty Identification

Figure 4.18: Monte Carlo simulation sampling the uncertain parameters for the PEO
membrane module for all four experiments shown in Tab. 4.6.
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Chapter 4 Uncertainty Identification

4.4 Additional Units

The reaction section and the combined PTSA are treated differently from the absorption
processes and the membrane modules.

As described in section 3.1 the reaction section is considered without any kind of model,
instead a set of likely output values is used and fed to the superstructure as given by
Tab. 3.1. To incorporate uncertainty by deterioration of the catalyst, fluctuations in the
feed gas composition, or some cyclic phenomena an arbitrary uncertainty is implemented
on the C2H4 production in the feed section. The concerned CH4 is instead turned into
CO2. The parameter introduced for the described uncertainty in the reaction section is
ϑReactor and is assumed to be normally distributed with a standard deviation of 0.05 and
an expected value of 1 (ϑReactor ∼ N (1, 0.05)). Consequently two equations are added
for the description of the reaction section as given by Eq. (4.14) and (4.15) to model the
variation of the output flows of the reaction section.

ṄReactor,C2H4 = Ṅnominal
Reactor,C2H4

· ϑReactor (4.14)

ṄReactor,CO2 = Ṅnominal
Reactor,C2H4

+ 2 · Ṅnominal
Reactor,C2H4

· (1 − ϑReactor) (4.15)

Therein the nominal values refer to those listed in Tab. 3.1 and ṄReactor,C2H4 and ṄReactor,CO2

are the mole flows under uncertainty.

Unlike the reaction section, the combined PTSA of course has a number of parameters,
which might be left uncertain. However, despite the efforts made in (Son, 2014) insuf-
ficient data is available. There, only a single experiment in the mini-plant was carried
out, which does not allow for any reasonable parameter estimation and identification of
parameters to be left uncertain. Instead all parameters within the combined PTSA unit
are left fixed at their respective literature values. The uncertainty coming from the feed
section will of course propagate through the PTSA unit into the connected membranes
or the absorption process.

4.5 Uncertainty for the Superstructure Problem

The selection of parameters to be left uncertain up to now is of course only based on each
of the investigated units and does not take into regard the interdependence of the units
within the superstructure or compare the levels of uncertainty between different units.
This is an issue which can not be overcome within the scope of this work as different
sets of uncertain parameters might be of importance for different combinations of the
units considered for the superstructure problem. Instead all parameters supplied by the
investigation of each individual unit is left uncertain for all superstructure investigations.
A complete list is supplied in Tab. 4.7.
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4.5 Uncertainty for the Superstructure Problem

Table 4.7: List of all parameters left uncertain for the superstructure optimization with
their expected values µ and their standard deviations σ. (1) Values for the
membranes are normalized for reasons of confidentiality.

Parameter Unit Expected Value Standard Deviation
p - µ σ

Reaction Section
ϑ - 1 0.05
Absorption with MEA
P16 - 0.010 2.778 ·10−6

k A W/(m2 K) 0.0010 5.631 ·10−7

Absorption with aMDEA
P16 - 0.02221 3.615 ·10−5

k A W/(m2 K) 5.0 ·10−4 4.506 ·10−7

PI Membrane
L0
∞,CO2

m3/(m2 h bar) 1 1.5 ·10−3 (1)

PEO Membrane
L0
∞,CO2

m3/(m2 h bar) 1 1.5 ·10−2 (1)
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Chapter 5

Optimization Studies

Based on the models for reaction section, pressure and temperature swing adsorption, gas
separation membranes, and absorption desorption system a number of possible combina-
tions is worth investigating. Here, the focus will be put on two fundamentally different
superstructures, which by themselves offer a variety of possible combinations. For the
first superstructure case CH4 and N2 are fed to the tube-side of the OCM reactor, O2
and N2 to the shell-side. For the second case, N2 is replaced by CO2 to dilute the feed
gas. Fig. 5.1 and 5.2 show these two superstructure cases and a number of consecutive
options for the downstreaming.

Figure 5.1: Superstructure case I: CH4 is diluted with N2 for the tube and O2 and N2 are
fed to the shell of the reactor

In the first case the outlet of the OCM reactor will consist of left over CH4, inert
N2, and the reaction products C2H4, C2H6, CO2, CO, H2, and H2O. To simplify things,
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Chapter 5 Optimization Studies

it is assumed that H2O can be removed free of charge directly at the reactor outlet.
In addition, CO is added to the amount of CO2 and C2H6 to C2H4. The remaining
stream of C2H4, CH4, CO2, H2, and N2 can afterwards be led directly to a PSA or
a TSA (or combined PTSA) unit to remove CH4 and N2 from the stream, which are
both recycled. Alternatively (dashed line), everything is fed directly to the membrane
network to remove the bulk amount of CO2 and subsequently to the absorption desorption
process to achieve the desired level of CO2 removal. Both the membrane network and
the absorption desorption section can be bypassed individually (dashed lines). In case
the PTSA is bypassed a subsequent removal of CH4 and N2 is required at the outlet of
the absorption desorption process, which is not modeled as part of this work.

Figure 5.2: Superstructure case II: CH4 is diluted with CO2 for the tube and oxygen and
CO2 are fed to the shell of the reactor

The structural options for the second case are basically the same as for the first. How-
ever, given that no N2 is present in the system and the amount of CO2 is considerably
higher, this is treated separately. The advantage here of course is, that no inert gas needs
to be removed at the outlet of the absorption desorption process. In case of the PTSA
bypass only a demethanizer is required.

In the following sections the absorption desorption, the membrane network, and the
combined two-stage system will be investigated in optimization studies independently,
before turning to membrane absorption systems with a maximum of two, four, and six
membranes respectively and afterwards the full-scale superstructure system.
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5.1 Stand-alone Absorption System

5.1 Stand-alone Absorption System

In (Stünkel, 2013) a minimum for the required energy for the removal of a kilogram of
CO2 eCO2 at 5.02 MJ/kgCO2 is determined for a feed composition of 17 n/n % CH4, 26
n/n % CO2, 40 n/n % N2, 17 n/n % C2H4 for the absorption column using MEA as a
scrubbing liquid. The gas load factor F is set to 0.32 Pa0.5. This is equivalent to the
experiment No. 12 in Tab. 4.1. At the same time Stünkel (2013) observed a loss of C2H4
relative to the feed of 6.22 %.

Without a rigorous investigation of all process units, it is assumed that the C2H4 loss
is too high to allow for an economically feasible implementation of the whole process
concept. Hence, the purpose of the following optimization studies is to investigate the
influence of an enforced limit on the C2H4 loss to levels below 5 % and at the same time
to investigate the effect of the uncertainty caused by both feed and the absorption itself.

5.1.1 Deterministic Investigation

For all optimization studies on the stand-alone absorption process using MEA the specific
heat required for the removal of CO2 eCO2 is chosen to be minimized. The heating duty
for the desorption column Q̇Desorption, the scrubbing liquid flow ṀL, and the pressure in
the absorption column pAbsorption are chosen as decisions variables. At the same time the
gas load factor F and the feed composition as noted above are kept constant. To allow
for a comparison to the results obtained by Stünkel (2013) the CO2 removal rate αCO2

is specified to be 90 %.

Initially the C2H4 loss is limited by an upper bound of 5 %, which is then steadily
decreased with each new optimization run by 0.5 percentage points. The upper and
lower bounds of all decision variables are given by Tab. 5.1. The deterministic study
is carried out as simultaneous optimization in AMPL using IPOPT as a solver and as
sequential optimization in python using IPOPT and NLPQLP as solvers and NLEQ1s to
solve the system of nonlinear algebraic equations. For both cases the model is identical
to the one employed for the parameter estimation in the previous chapter implemented
using MOSAIC and subsequently exported to both AMPL and C++.

Tab. 5.2 contains the results of the optimization studies with a descending upper bound
on the C2H4 loss using the model derived for the absorption desorption process in section
3.2 and the according sketched process flowsheet shown in Fig. 3.3.

5.1.2 Chance-constrained Investigation

For the chance-constrained case both the inequality constraint to limit the C2H4 loss and
the 90 % CO2 removal requirement are turned into chance constraints. Each is assigned
their respective probability level as given by Eq. (5.1) and (5.2). Therein α1 and α2 are
the respective required probability levels and β is the desired upper bound on the loss
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Table 5.1: Upper and lower bounds of all decision variables for the stand-alone optimiza-
tion of the absorption desorption process using MEA as a scrubbing liquid.
Range of the heating duty of the desorption column Q̇Desorption, the scrub-
bing liquid flow of the aqueous solution of MEA, and the feed pressure to the
absorption column pAbsorption.
Decision Variable Unit Lower Bound Upper Bound

Q̇Desorption kW 1 30
ṀL kg/h 1 80
pAbsorption 105 Pa 4 32

Table 5.2: Results for the deterministic optimization of the stand-alone absorption pro-
cess using MEA as a scrubbing liquid in terms of the loss of C2H4 ℓC2H4, the
specific heat required for the removal of CO2 eCO2, the heating duty for the
desorption Q̇Desorption, the scrubbing liquid cylcle flow ṀL, and the absorption
pressure pAbsorption.

Case ℓC2H4 eCO2 Q̇Desorption ṀL pAbsorption

- % MJ/kgCO2 kW kg/h 105 Pa

1 5.0 – 2.0 5.7 7.0 29.6 32.0
2 1.5 6.1 7.0 27.6 27.2
3 1.0 8.7 9.6 25.8 14.3

of C2H4.

Pr 1

⎧⎪⎪⎨⎪⎪
⎩
ℓC2H4 =

Ṅ loss
C2H4

Ṅ f eed
C2H4

≤ β
⎫⎪⎪⎬⎪⎪
⎭
≥ α1 (5.1)

Pr 2
{
αCO2 ≥ 0.90

}
≥ α2 (5.2)

To figure out maximum possible values for α1 and α2 a preparatory optimization problem
is run maximizing the sum of both with the chance constraints fixed to equality. This is
carried out for a β value of 1.0. Both α1 and α2 can be set to 98 % without violating
the bounds on the decision variables for the absorption desorption process (Q̇Desorption,
ṀL, and pAbsorption).

Holding the required level of CO2 removal is fairly important seeing as the subsequent
unit operations for the final product purification and the product quality rely upon it.
Consequently, α1 is set to the maximum value of 98 %. While keeping the product loss at
a minimum is important for the overall economic feasibility of the process concept, it is
not as essential as keeping the purity for the subsequent purification. Hence, α2 is set to

128



5.1 Stand-alone Absorption System

90 %. Based on these settings the optimization is carried out similarly to the determin-
istic case discussed above. The same lower and upper bounds are applied (see Tab. 5.1).
The chance-constrained optimization study is carried out in python using yet again both
IPOPT and NLPQLP as solvers, the chance constraint framework developed herein for
the probability calculation, and the NLEQ1s for the solution of the nonlinear algebraic
equation system. The absorption model remains unchanged and is also exported from
MOSAIC to C++.

Tab. 5.3 contains the results for the chance-constrained optimization study of the
stand-alone absorption process.

Table 5.3: Results for the chance-constrained optimization of the stand-alone absorption
process using MEA as a scrubbing liquid in terms of the loss of C2H4 ℓC2H4,
the specific heat required for the removal of CO2 eCO2, the heating duty for
the desorption Q̇Desorption, the scrubbing liquid cycle flow ṀL, and the feed
pressure to the absorption column pAbsorption. Pr1 and Pr2 are the probabilities
of the two chance constraints holding.

Case ℓC2H4 eCO2 Pr1 Pr2 Q̇Desorption ṀL pAbsorption

- % MJ/kgCO2 % % kW kg/h 105 Pa

1 5.0 – 2.0 5.8 98 96 7.1 29.4 31.0
2 1.5 6.2 98 96 7.3 28.3 26.2
3 1.0 20.8 98 96 20.2 16.8 13.3

5.1.3 Conclusions on the Stand-alone Absorption

Fig. 5.3 compares the specific energy required for the removal of CO2 of the deterministic
and the chance-constrained optimization runs for varying levels of C2H4 loss. In both
cases the introduction of the bound on the product loss of 5 % causes the system to move
to a new local minimum in which the loss is below 2 %. Consequently values for β are
set to 0.02 and below.

For a loss of around 2 % both cases show a highly similar behavior with only minor
differences in the operational parameters, the chance-constrained case obviously choos-
ing a slightly more conservative and more energy intensive solution. For lower product
losses, however, the chance-constrained case reacts a lot more strongly moving to a solu-
tion which has a lower scrubbing liquid flow, lower desorption pressure, and consequently
higher desorption heating duty to ensure the required probability levels. In the chance-
constrained case approaching a loss of 1.0 % the absorption liquid cycle flow is severly
reduced compared to the 1.5 % case. In order to still realize the required CO2 separation
the desorption of the liquid is increased immensely leading to the strong increase in the
specific energy required for that particular case. For both cases the comparatively low
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Figure 5.3: Comparison of the results of the deterministic and the chance-constrained
optimization of the stand-alone absorption system using MEA as a scrubbing
liquid. The specific energy required for the removal of CO2 eCO2 is plotted
against the bound on the C2H4 loss ℓC2H4.

loss of C2H4 has to be remarked. The loss is influenced by two main factors, the partial
pressure of C2H4 in the feed gas directly influenced by the absorption pressure and the
liquid cycle flow. Higher pressure and greater flow cause a greater loss of C2H4. As has
been described before the model implemented here is solely based on equilibrium data
and does not consider any additional mass transfer effects. Also, no parameter estimation
or validation has been carried out thereon given a lack of reliable experimental data for
the loss in the actual mini-plant.

Otherwise, this initial study shows an expected behavior and is a sound baseline for
the subsequent investigation of the membrane system and the combination of both. The
discussion of the numerical behavior of both models, optimization framework, and solvers
is carried out at the end of this chapter for all studies carried out here.
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5.2 Two-stage Membrane System

5.2 Two-stage Membrane System

In Fig. 1.3 on page 4 the stripping cascade suggested by Song et al. (2013) is introduced
consisting of a PI and a PEO membrane module. These membranes can by themselves
achieve a major portion of the CO2 separation. Similar to the stand-alone operation of
the absorption process the stripping cascade is investigated on its own to estimate how
it fares independently of the absorption regarding the designated CO2 removal of 90 %
while minimizing the specific energy required for the CO2 removal and keeping the loss
of C2H4 in check as discussed above.

To allow for a comparison to the results obtained for the stand-alone operation of the
absorption desorption process operated with MEA as a scrubbing liquid the same feed
composition is applied as noted for experiment 12 in Tab. 4.1. For the investigation of the
absorption the gas load factor F in the absorption column is kept constant. Turning to
the stripping cascade of membranes this is of course not an option, instead the standard
volume flow is fixed at 10 Nm3/h.

In (Stünkel, 2013) the pressurization of the feed flow to the desired pressure within the
absorption column was not considered for the specific energy for the CO2 removal. For
the investigation of the stripping cascade the power required for the compression of the
feed flow is also disregarded. Hence, the specific energy here is only dependent on the
power required for the recompression of the recycle flow from the permeate side of the
PEO membrane back to the feed of the PI membrane. The specific energy per kilogram
of CO2 removed from the system is chosen as the objective to be minimized, while an
inequality constraint is enforced to require at least 90 % of the CO2 from the feed stream
to be removed. Loss of C2H4 in the stripping cascade is caused by C2H4 permeating the
PI membrane and leaving with the flow of CO2, which is separated, or by the purge of
the recycle from the PEO membrane. Enforcing an upper bound on the C2H4 loss of 5
% while removing 90 % of the CO2 only using the stripping cascade appears infeasible.
Hence, the upper bound thereon is relaxed initially to 25 % and then steadily decreased
with each new optimization run.

The membrane modules can be operated at pressures of up to 40 bar. Nevertheless,
the parameter estimations carried out in section 4.2 and 4.3 show that the models can
only be relied upon at pressures from 5 to 20 bar. In addition to the feed pressure, the
membrane areas of both modules (PI and PEO) are selected as decision variables for
the stripping cascade as well as a purge factor ε for the recycle stream from the PEO
membrane to the PI feed. εR set to 1.0 means that the entire flow is fed back to the feed.
0.0 causes the entire stream to be purged, of course increasing the amount of CO2 being
separated and the amount of C2H4 lost.
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5.2.1 Deterministic Investigation

Repeating the procedure carried out for the absorption desorption process, the stripping
cascade is initially investigated deterministically. Tab. 5.4 contains upper and lower
bounds for all decision variables considered for the stripping cascade and Tab. 5.5 the
respective results of all optimization studies performed for the cascade. As before the
deterministic optimization is formulated in MOSAIC and then exported to both AMPL
using IPOPT and to C++ optimizing in Python with NLPQLP and IPOPT and solving
the algebraic equation system in NLEQ1s. The objective function to be minimized is the
specific energy to remove a kilogram of CO2 eCO2.

Table 5.4: Upper and lower bounds of all decision variables for the stand-alone opti-
mization of the stripping cascade based on a single PI and a PEO membrane
module. The feed pressure pFeed, the membrane area of the PI module API and
of the PEO module APEO, as well as the recycle factor εR can be modified.
Decision Variable Unit Lower Bound Upper Bound

pFeed 105 Pa 4 20
API m2 0.1 10
APEO m2 0.1 10
εR - 0.0 1.0

Table 5.5: Results for the deterministic optimization of the stand-alone stripping cascade
separating 50 % of the CO2 in terms of the C2H4 loss ℓC2H4, the specific energy
required to remove CO2 eCO2, feed pressure pFeed, membrane areas API and
APEO, and the recycle factor εR.

Case ℓC2H4 eCO2 pFeed API APEO εR

- % MJ/kgCO2 105 Pa m2 m2 -

1 25.0 4.8 5.3 4.7 3.0 0.86
2 24.5 4.9 5.3 4.7 3.0 0.87
3 24.0 5.1 5.3 4.7 3.1 0.89
4 23.5 5.2 5.2 4.7 3.2 0.91
5 23.0 5.4 5.2 4.6 3.3 0.92
6 22.5 5.6 5.1 4.6 3.5 0.94
7 22.0 5.9 5.0 4.6 3.6 0.96
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5.2.2 Chance-constrained Investigation

For the chance-constrained case the two inequalities on the C2H4 loss and the CO2
removal are yet again turned into chance constraints as given by Eq. (5.1) and (5.2). The
determination of the maximum possible values for the two probability levels α1 and α2 of
course has to be repeated as described above. Here, this is carried out for a β value of 22.0
%, resulting in maximum values of 98 % each. The reasoning for selecting sensible levels
for both is identical to the case of the stand-alone operation of the absorption desorption
process and the same values are chosen. The results of the optimization studies with the
probability levels of the chance constraints at each respective optimal solution Pr1 and
Pr2 are given in Tab. 5.6.

Table 5.6: Results for the chance-constrained optimization of the stand-alone stripping
cascade. Pr1 and Pr2 are the probabilities of the two chance constraints hold-
ing, ℓC2H4 the actual loss of C2H4, eCO2 the specific energy for the CO2 re-
moval, pFeed the feed pressure to the membrane system, API and APEO the
areas of the two membranes, and εR the recycle fraction.

Case ℓC2H4 eCO2 Pr1 Pr2 pFeed API APEO εR

- % MJ/kgCO2 % % 105 Pa m2 m2 -

1 25.0 5.1 98 96 5.2 4.6 3.5 0.91
2 24.5 5.3 98 96 5.0 4.6 3.6 0.92
3 24.0 5.4 98 96 5.0 4.5 3.7 0.92
4 23.5 5.6 98 96 4.8 4.5 3.9 0.92
5 23.0 5.9 98 96 4.6 4.5 4.1 0.93
6 22.5 6.1 98 96 4.5 4.5 4.2 0.96
7 22.0 6.3 98 96 4.4 4.5 4.4 0.97

5.2.3 Conclusions on the Two-stage Membrane System

Fig. 5.4 compares the specific energy required for the removal of CO2 of the deterministic
and the chance-constrained optimization runs for varying levels of C2H4 loss. Setting a
bound is absolutely vital for the two-stage membrane system as the trivial solution to
optimization problem would otherwise of course be to have a product loss of 100 % and
not invest any energy at all for the removal of CO2.

For a loss of around 25 % both cases show a highly similar behavior with only minor
differences in the operational parameters, the chance-constrained case obviously choos-
ing a slightly more conservative and more energy intensive solution. As before, a tighter
bound on the C2H4 loss turns holding the chance constraints more and more difficult,
the system reverting to more energy-intensive solutions.
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Figure 5.4: Comparison of the results of the deterministic and the chance-constrained
optimization of the two-stage membrane system. The specific energy required
for the removal of CO2 eCO2 is plotted against the bound on the C2H4 loss
ℓC2H4.

Looking at the results the initial assumption holds, that this stripping cascade will
not suffice to separate 90 % of CO2 while limiting the product loss to reasonable levels.
Consequently, the combination with the absorption system is investigated next.
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5.3 Two-stage Membrane Absorption System

Based on the investigations of the stripping cascade of membranes and the absorption
desorption process in respective stand-alone modes, Esche et al. (2013) introduce the
two-stage membrane absorption system as shown in Fig. 5.5.

Figure 5.5: Two-stage membrane absorption system as introduced by Esche et al. (2013).
The boxed numbers are the identification numbers of the streams.

The general idea behind the new system is the combination of a less energy intensive
but less selective with a more energy intensive and also more selective separation unit. In
this case the former would be the stripping cascade consisting of the PI (Matrimid®) and
the PEO membrane modules which do require less energy to separate the same amount
of CO2 compared to the absorption desorption process but at the same time have a con-
siderably higher loss of C2H4.

In the combined system, the membranes could be used to separate the bulk amount of
CO2 without loosing too much C2H4. This might allow for lower pressure conditions in
the absorption desorption section to remove the remaining CO2 and ensuring no larger
product loss therein. In (Esche et al., 2013) a specific energy required for the removal of
CO2 of around 2.55 MJ/kgCO2 was calculated for an upper bound on the C2H4 loss of 5
%. The results obtained therein are however not directly comparable to the optimization
carried out as part of this work as the models have been refined further and the pa-
rameter estimations were repeated subsequently with additional experiments considered.
Consequently, the deterministic case study described therein is repeated here. The feed
conditions are identical to the ones for the stand-alone stripping cascade. Yet again, the
initial compression of the feed stream (stream No. 1 in Fig. 5.5) is disregarded for the
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calculation of the specific energy eCO2, which instead only considers the heating duty
for the desorption Q̇Desorption and the power for the recycle compression ẆR. Both the
CO2 removal rate αCO2 and the C2H4 loss ℓC2H4 are calculated based on the differences
between streams 1 (s = 1) and 6 (s = 6) as given by Eq. (5.3) and (5.4).

αCO2 =
Ṅs=1,CO2 − Ṅs=6,CO2

Ṅs=1,CO2

(5.3)

ℓC2H4 =
Ṅs=1,C2H4 − Ṅs=6,C2H4

Ṅs=1,C2H4

(5.4)

The objective function to be minimized is eCO2 and the same bounds as before are
enforced on αCO2 and ℓC2H4. Details on both deterministic and chance-constrained opti-
mization studies are given subsequently.

5.3.1 Deterministic Investigation

The CO2 removal rate is specified to be at least 90 % and the β specifying the upper
bound on the C2H4 loss is decreased with each additional optimization study starting
at 5 %. The decision variables of both previous stand-alone examinations of stripping
cascade and absorption desorption process constitute the set of decision variables for
the two-stage membrane absorption system with the sole limitation that the absorption
pressure has to be less than or equal to the feed pressure of the stripping cascade as no
intermediate compressor is installed there. Tab. 5.7 contains the set of decision variables
for the new system. The two previously applied models are connected into a single model
using Connectors in MOSAIC and exported to AMPL and C++ as before. The results

Table 5.7: Upper and lower bounds of all decision variables for the two-stage mem-
brane absorption system: feed pressure to the membranes pFeed, membrane
areas PI and APEO, recyle fraction εR, heating duty of the desorption column
Q̇Desorption, scrubbing liquid cycle flow ṀL, and absorption pressure pAbsorption.
Decision Variable Unit Lower Bound Upper Bound

Membrane Section
pFeed 105 Pa 4.0 20.0
API m2 0.1 10.0
APEO m2 0.1 10.0
εR - 0.0 1.0
Absorption Section
Q̇Desorption kW 1.0 30.0
ṀL kg/h 1.0 80.0
pAbsorption 105 Pa 4.0 20.0
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5.3 Two-stage Membrane Absorption System

of the optimization runs obtained with either IPOPT or NLPQLP are identical and are
reported in Tab. 5.8 for the deterministic case.

5.3.2 Chance-constrained Investigation

For the chance-constrained case all uncertain parameters noted in Tab. 4.7 are considered.
The uncertain reactor outlet is fed directly to the two-stage membrane absorption system.
As before the bounds on αCO2 and ℓC2H4 are turned into chance constraints. Yet again
both α1 and α2 can be safely set to 98 % for a β value of 3.0 %. α1 is set to 98 % and α2
to 90 %. The results of the chance-constrained optimization are also included in Tab. 5.8
denoted with an asterisk (*) after the case number and the final probability levels Pr1
and Pr2.

5.3.3 Conclusions on the Preliminary Studies

In Fig. 5.6 all the cases investigated so far on the stand-alone optimization for the absorp-
tion desorption process, the stand-alone stripping cascade, and the two-stage membrane
absorption process are compared both regarding their deterministic and their chance-
constrained results. The specific energy required for the removal of CO2 eCO2 is plotted
over the enforced bound on the C2H4 loss ℓC2H4.

Figure 5.6: Comparison of the results for the deterministic and the chance-constrained
optimization of the stand-alone absorption, the stand-alone stripping cascade,
and the two-stage membrane absorption system. The specific energy required
for the removal of CO2 is plotted against the relative loss of C2H4. M denotes
cases using only the stripping cascade of membranes, A the absorption, and
MA the combined system.

A couple of conclusions can be drawn on the results obtained so far. First of all, there
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is a tendency of a larger offset between chance-constrained and deterministic results for
decreasing values of the loss of C2H4. This is more pronounced for the absorption, but
also visible in the stripping cascade of membranes. Secondly, especially in the case of
the membranes, the optimization moves towards regions in which the models have not
been tested yet, i.e., larger membrane areas or lower scrubbing liquid cycle flows. These
tendencies have to be kept in mind and further investigated in subsequent more detailed
simulations or experiments.

5.4 Superstructure Case I

As described at the beginning of this chapter the final superstructure investigation for
the entire process concept described in Fig. 5.1 and 5.2 is carried out in two steps. In
this section the feed diluted with N2 is investigated, afterwards in section 5.5 the dilution
with CO2 is discussed.

Before turning to the optimization studies, the superstructure sketched above in Fig. 5.1
is further detailed. All structural descriptions made here are also valid for section 5.5.
Fig. 5.7 adds a first set of superstructural variables. The OCM reactor is viewed as a
fixed blackbox with a complete disregard for the inputs and is reduced to a set of output
concentrations with the described uncertainty on the ratio of C2H4 to CO2. The reactor
is assumed to operate at 3 bar. The outlet stream can then be pressurized by the first
compressor, which is activated by binary decision ysc=1 = 1 and has a continuous decision
on the pressure increase ∆psc=1 > 0.5 bar. The outlet gas is fed to the combined PTSA
unit, which may be circumvented by the binary decision ysc=2 = 0. At the outlet of the
PTSA unit the gas may be recompressed with binary decision ysc=3 = 1 and pressure
increase ∆psc=3 > 0.5 bar. The gas stream is then led to membrane network, which will
be described in detail independently. The network may also be bypassed with binary
decision ysc=4 = 0. The outlet gas is recompressed with binary decision ysc=5 = 1 and
∆psc=5 > 0.5 bar. Afterwards the gas is led into the absorption desorption process, which
can be bypassed by ysc=6 = 0. Within the absorption desorption process an additional
decision shall be made on the scrubbing liquid: ysc=7 = 0 chooses MEA and ysc=7 = 1
aMDEA.

The membrane network itself features a total of six possible membranes with a de-
cision on the material for each. This membrane network was first introduced in (Bock
et al., 2014) and is further built upon here. Fig. 5.8 presents a detailed flowsheet of the
membrane network with all additional binary and continuous decisions which have not
been described so far for the membranes.

The sketched network consists of a maximum of six membranes and contains a multi-
tude of possible membrane connections featuring the single stage permeate recycle, the
two-stage rectification, and the two-stage stripping cascade (see Fig. 5.9). Each mem-
brane can be selected to be either of PI (yb = 1) or PEO (yb = 0) or to be bypassed
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Figure 5.7: Details on the implementation of superstructure case I with additional com-
pressors, binary decisions ysc, and continuous decisions on the pressure in-
crease ∆psc. The overall goal of the product separation of the OCM reactor
is the C2H4 rich outlet stream of the absorption desorption unit.

Figure 5.8: Detailed sketch of the membrane network with a maximum of six membranes.
Each membrane (subscript b) can be selected to be either a PI (yb = 1) or a
PEO (yb = 0) module. The bypass of each membrane module is not sketched.
The respective decision is yz = 0 to bypass module number z. The split
factors ε can take values between 0 and 1. The respective meaning for each
is contained in the figure.

(yz = 0). A number of compressors are introduced, which are activated by either ycm = 1
or yz = 1. For the former compressors a pressure increase ∆pcm = 0.5 bar can freely be
chosen, for the latter the feed pressure of the overall system defines the pressure increase.
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These can only be chosen, if the respective membrane z is active (yz = 1). Each mem-
brane has its own activation decision yz which are mostly omitted in Fig. 5.8. In addition,
ten split factors ε can be set to values between 0.0 and 1.0 to cause no, a partial, or a full
recycle of a specific stream. The exact meaning of each split factor is given in Fig. 5.8.

Figure 5.9: Simplified sketch of the membrane network with a maximum of six mem-
branes. The network containes the aforementioned single stage permeate
recycle, two-stage rectification cascade, and the two-stage stripping cascade.

Fig. 5.9 shows a simplified version of the membrane network to highlight the purpose
of all recycle options and purge positions. The initial compressor of the feed gas is super-
fluous and simply shows the compression before the gas is fed to the membrane network.
Within the superstructure, this is carried out by the preceeding units or compressors.

Depending on whether the combined PTSA unit is part of the superstructure or not
the composition of the subsequent streams is fundamentally changed. In addition, the
absence of the PTSA requires the removal of CH4 and N2 after the CO2 is removed with
the help of the membranes or the absorption desorption section. Consequently, the results
for these two scenarios will be little comparable. For this reason the decision ysc=2 to
activate or deactivate the PTSA is investigated in two separate optimization case studies.
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No heuristics for equipment costing have been introduced within the scope of this
thesis. All optimization studies here are carried out on the minimization of the energy
required for the removal of CO2 while keeping the C2H4 loss in check. This approach can
of course cause misleading results. If, for example, the PTSA section, all six membranes,
and the absorption desorption process are employed, the energy required for removing
the CO2 might be minimal, but the overall investment cost for the equipment and the
proportionally larger maintenance cost might annihilate the cost reductions achieved on
the operation side. For this reason separate cases are also investigated in which only
membranes 1 and 2 (see Fig. 5.9) and subsequently membranes 1 to 4 and 1 to 6 are
active.

For all the cases investigated in the following the same set of continuous decisions is
available as detailed in Tab. 5.9 and of course all binary variables introduced so far. An
extensive investigation of the PTSA section goes beyond the scope of the work here and
is also of little importance for the CO2 removal. On top of these 33 continuous decisions,
the whole system contains 21 binary decisions consisting of ysc=1...7, yb=1...6, yz=1...6, and
ycm=2...3.

Table 5.9: Upper and lower bounds of all continuous decision variables for the super-
structure optimization case I.
Decision Variable Unit Lower Bound Upper Bound

Membrane Network
API 1 . . . 6 m2 0.01 10
APEO 1 . . . 6 m2 0.01 10
∆pcm=2,3 105 Pa 0.5 20
ε1...10 - 0.0 1.0
Absorption Section with MEA
Q̇Desorption kW 1 30
ṀL kg/h 1 80
pAbsorption 105 Pa 4 20
Absorption Section with aMDEA
Q̇Desorption kW 1 30
ṀL kg/h 1 80
pAbsorption 105 Pa 4 20
Superstructure
∆psc=1 105 Pa 0.5 20
∆psc=3 105 Pa 0.5 20
∆psc=5 105 Pa 0.5 20
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Given the multitude of possible combinations within the superstructure system all
further discussions are not separated between deterministic and chance-constrained opti-
mization as before. Instead, for each investigated structural option the chance-constrained
and deterministic results are directly compared. For each structure the entire set of feed
concentrations coming from the OCM reactor as specified in Tab. 3.1 is applied and the
results for each are reported in the following.

The objective function is, yet again, the specific energy required for the removal of
CO2 consisting of the compression duties and the desorption energy divided by the total
amount of CO2 removed from the system as given by Eq. (5.5).

eCO2 =

∑
sc∈{1,3,5}

ysc · Psc +
∑

cm∈{2,3}
ycm · Pcm +

∑
z∈{1,2,5}

yz · Pz

MCO2 ·
(
ṄFeed,CO2 − ṄOutlet,CO2

) (5.5)

+
ysc=6 ·

(
ysc=7 · Q̇MEA + (1 − ysc=7) · Q̇aMDEA

)
MCO2 ·

(
ṄFeed,CO2 − ṄOutlet,CO2

)
The inequality constraints on the C2H4 loss is yet again implemented (see Eq. (5.6)).
The specification on the CO2 removal, however, is slightly modified to guarantee a purity
of the outlet stream of at least 95 n/n % of C2H4 relative to CO2.

ℓC2H4 =
ṄFeed,C2H4 − ṄOutlet ,C2H4

ṄFeed,C2H4

≤ β (5.6)

αCO2 =
ṄOutlet,c=C2H4

ṄOutlet,CO2 + ṄOutlet,C2H4

≥ 95% (5.7)

For the chance-constrained case both inequalities are turned into the chance constraints
described above with the desired probability levels α1 and α2. The bound on the C2H4
loss β can be safely set to 5 % and below. As before the probability levels are set to
α1 = 96 % for the purity and α2 = 90 % for the loss. All uncertain parameters noted in
Tab. 4.7 are considered for the calculation of the chance constraints.

5.4.1 Case I without PTSA

As discussed above, the activation and deactivation of the PTSA is investigated sepa-
rately. Initially, it is deactivated by setting ysc=1 and ysc=2 to 0. Furthermore, only
membranes 1 and 2 (see Fig. 5.9) are allowed to be activated by forcing yz=3...6 to zero.
The retentate outlet of membrane No. 1 is consequently directly fed to the next unit,
i.e. possibly the absorption. The modeling and code generation procedure is carried out
similarly to the previously discussed systems. Within MOSAIC the superstructures and
optimization problems are set up and subsequently exported to AMPL and C++. For
the simultaneous optimization case the definition of binary decisions is already carried
out in MOSAIC, for the sequential case using Python and the C++ NLEQ1s interface
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this has to be done manually within Python as the code is only exported as an algebraic
equation system suitable for NLEQ1s. In AMPL Couenne, Bonmin, and Baron are em-
ployed, in Python MISQP und MIDACO are used as solvers.

Tab. 5.10 shows the most important results for the investigated feed concentrations
using up to two membranes. Given the large amount of data generated by each opti-
mization run this table only focuses on the objective function value, a normalized form
thereof to account for the varying concentrations of CO2, and the information on which
part of the superstructure is employed. At this point only the results for a value of β
of 5 % will be presented. Information on the continuous decision variables is given in
Tab. C.5 in the appendix on page 199.

Table 5.10: Results of the superstructure optimization using N2 as a dilutent without
the PTSA unit and a maximum of 2 membranes. Cases with an asterisk (*)
denote the respective chance-constrained case study. The C2H4 loss is limited
to 5 %. Units marked with 1 are active and otherwise inactive. #C is the
number of compressors required for the respective structure.

Feed eCO2 e PI 1 PEO 1 PI 2 PEO 2 MEA aMDEA #C
- MJ/kgCO2 kJ - - - - - - -
I.1 12.2 1.6 0 0 0 0 0 1 1
I.1* 13.3 1.8 0 0 0 0 1 0 1
I.2 3.3 1.6 0 0 0 0 0 1 1
I.2* 4.5 2.2 0 0 0 0 1 0 1
I.3 16.5 1.5 0 0 0 0 0 1 1
I.3* 16.6 1.5 0 0 0 0 0 1 1

As a next step membranes 3 and 4 are also allowed to be activated. The respective re-
sults are contained in Tab. 5.11. Afterwards all six membranes are activatable leading to
Tab. 5.12. Details on the respective continuous decisions may be found in the appendix
in Tab. C.6 and C.7.

Before continuing with the other studies for the superstructure investigation there are
a number of conclusions to be drawn. The tiny concentrations of CO2 of feed scenarios I.1
and I.3 are a challenge for the application of membranes. In both cases the concentration
is even lower than the concentration of C2H4, which is of course a disadvantage regard-
ing the gas permeation as the driving forces for each component approach one another.
Although this is not the case for scenario I.2 the quantity of CO2 to be removed there
is still comparatively small also leading to a solution with only the absorption used. An
interesting phenomenon is the switch from aMDEA to MEA between deterministic and
chance-constrained cases. The slightly larger standard deviation regarding the parame-
ters of the aMDEA system seems to be detrimental for the application under uncertainty.
Obviously, this might be remedied by adding additional experiments to the parameter
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estimation.

In previous studies it was suggested that aMDEA will outperform MEA by far (Stünkel,
2013). Here, however, the difference between MEA and aMDEA appears to be minor.
There are two apparent reasons for this. First of all, the CO2 concentrations are con-
siderable lower compared to the gas compositions investigated by Stünkel (2013). This
reduces the attainable liquid load of CO2 to a bare minimum. Secondly, previous studies
did not consider the energy required to compress the feed gas to the required absorption
pressure. Whilst Tab. C.5 shows a difference in the heats of desorption between MEA
and aMDEA cases, the difference in the specific energy is almost inexistent as both cases
necessitate a compression to at least 5 bar before the absorption.
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5.4 Superstructure Case I

5.4.2 Case I with PTSA

The activation of the PTSA causes a steep increase of the feed concentrations of both
CO2 and C2H4 before the membrane section. Tab. 5.13 contains the results for the case
with a limit to the number of membranes to 2. The respective tables on the structural
decisions for the cases using up to 4 or 6 membranes are given in the appendix (see
Tab. C.1 and C.2 starting on page 197). A summary of the geometrical and operational
decisions is contained in Tab. C.8, C.9, and C.10 also in the appendix for each of the
three cases respectively.

Table 5.13: Results of the superstructure optimization using N2 as a dilutent and the
PTSA unit with a maximum of 2 membranes. Cases with an asterisk (*)
denote the respective chance-constrained case study. The C2H4 loss is limited
to 5 %. #C is the total number of compressors necessary for the respective
structure.

Feed eCO2 e PI 1 PEO 1 PI 2 PEO 2 MEA aMDEA #C
- MJ/kgCO2 MJ - - - - - - -
I.1 4.2 0.6 0 1 0 1 0 1 3
I.1* 4.4 0.6 0 1 0 1 0 1 3
I.2 20.1 9.7 0 1 0 0 0 1 3
I.2* 22.3 10.8 0 1 0 0 0 1 3
I.3 3.1 0.3 0 1 0 0 0 1 3
I.3* 3.3 0.3 0 1 0 0 0 1 3

The changes caused by the PTSA allow for the application of one or more PEO mem-
branes for all feed scenarios, which is succeeded by the absorption unit operated with
aMDEA in all cases.

5.4.3 Optimal Superstructure

As an exemplary solution to the superstructure case I an optimal solution using up to six
membranes and the absorption desorption process is detailed in the following. Solution
I.2* from Tab. C.2 is chosen which uses the PTSA, three PEO membranes, and aMDEA
as scrubbing liquid for the absorption.

The PTSA is specified to remove 98 % of all components, which are not CO2 or C2H4.
This leads to a total cycle time of roughly 40 minutes for the specified system. The
cyclic steady state PTSA model returns averaged values for the outgoing streams. The
molar fractions and flows for the feed and the C2H4 rich stream are noted in Tab. 5.14.
Fig. 5.10 shows the respective breakthrough curves at the outlet of the 1 m long PTSA
column for the system limited to four components (N2, CO2, C2H4, and CH4). The plot
shows the molar fractions of the components in the gas phase. N2 and CH4 are the first
to make it through the bed appearing within the first 10 seconds of the pressurization
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of the system. The third gas is C2H4 appearing at roughly 380 s just before CO2. The
adsorption takes place at 3 bar and 320 K, whereas the desorption is carried out at 1 bar
and 550 K. During desorption N2 is employed as a purge gas causing the high amount in
the gas phase at the column’s outlet during the pressurization of the system, which are
roughly the first 10 s.

Figure 5.10: Breakthrough curve for the PTSA section using the feed gas composition of
case I.2*. N2 and CH4 are the first to break through. C2H4 and CO2 appear
after more than 380 s at the outlet of the 1 m long PTSA column. The plot
shows the molar fraction in the gas phase over time.

The investigation of the PTSA is carried out only superficially within the scope of this
work as only the outlet concentration is of major importance here. Further details on
breakthrough curves, discussions of cycle times, etc. are contained in (Son, 2014) and
(Riesenbeck, 2014).

Table 5.14: Feed and C2H4 rich outlet of the PTSA unit for the feed scenario I.2.
Ṅ CH4 C2H4 CO2 N2 H2

[mol/s] [n/n %]
Feed 0.111 48.3 5.2 10.3 25.9 10.3
C2H4 Outlet 0.018 0.7 33.9 64.8 0.4 0.2

Fig. 5.11 shows the settings and specifications for the membrane network for the same
case. The chosen path is highlighted by thicker lines. The results for the operation of
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the absorption process is given in Tab. 5.15.

Table 5.15: Optimal settings for the absorption desorption using aMDEA for the exem-
plary optimal superstructure for case I.

Variable Unit Value
Q̇Desorption kW 2.8
ṀL kg/h 6.7
pAbsorption 105 Pa 9.7
F Pa0.5 0.28

5.4.4 Conclusions on Superstructure Case I

In general the investigation of optimal superstructures for case I shows quite a diverse
picture. Both PI and PEO membranes are selected for various feed concentrations some-
times with or without the absorption process or the absorption in stand-alone operation.
This highlights the importance of developing product purification and reaction section at
the same time as the outcome can vary rather strongly. However, this picture might still
utterly change in case investment cost is also included. Up to five compressors are used in
the systems outlined above. While of course some of them are rather small and only deal
with moderate pressure increases the investment cost can be expected to be enormous.
The exemplary optimal superstructure for case I.2* is looking a lot more reasonable with
a maximum of three compressors making the reduction in the energy required to remove
the CO2 even more impressive.

For obvious reasons the application of the PTSA reduces the energy required for the
removal of CO2. Nevertheless, this is a biased comparison as the cost for the removal of
CH4, N2, and H2 needs to be added to the amount of energy specified here for CO2.

A remarkable aspect is the small difference between chance-constrained and determin-
istic optima found. This is further explored in Fig. 5.12, which displays the probabilities
of both the chance-constrained and the deterministic optima violating the applied in-
equality constraints. The probabilities for the deterministic cases are calculated offline
after the optimization. It appears that even the deterministic optima hold the bound on
the C2H4 loss to a probability of more than 90 %. The required removal of CO2 on the
other hand is a lot more difficult to enforce. The deterministic optima show a probability
concerning the CO2 removal of 50 to 90 %. It is likely that several of the deterministic
optimization runs converged in local minima further away from both bounds, which is
not unlikely with the applied solvers.
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5.4 Superstructure Case I

Figure 5.12: Comparison of the probabilities of constraint violation between deterministic
(cross) and chance-constrained (plus) results for superstructure case I.
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5.5 Superstructure Case II

There are few major differences between cases I and II. The main challenge of course lies
in the considerably higher concentrations of CO2. All structural options and decision
variables outlined in section 5.4 remain and can be applied in the same way here. The
same procedure to investigate various structural options is used. Initially the PTSA is
manually deactivated and the maximum number of membranes is varied.

5.5.1 Case II without PTSA

The PTSA is deactivated by setting ysc=1 and ysc=2 to 0. Only Membranes 1 and 2 (see
Fig. 5.9) are initially present and can be activated. The retentate outlet of membrane
No. 1 is directly fed to the next unit, i.e. possibly the absorption. Tab. 5.16 shows the
most important results for the investigated feed concentrations yet again focusing on
which units are applied and the total number of compressors. Details on geometry and
operational decisions are contained in Tab. C.11 in the appendix on page 205.

Table 5.16: Results of the superstructure optimization using CO2 as a dilutent without
the PTSA unit and a maximum of 2 membranes. Cases with an asterisk (*)
denote the respective chance-constrained case study. The C2H4 loss is limited
to 5 %. Units marked with 1 are active and otherwise inactive. #C is the
total number of compressors in each structure.

Feed eCO2 e PI 1 PEO 1 PI 2 PEO 2 MEA aMDEA #C
- MJ/kgCO2 MJ - - - - - - -
II.1 36.0 42.8 1 0 1 0 0 1 5
II.1* 41.1 48.8 0 0 0 0 1 0 1
II.2 14.3 34.0 1 0 0 0 0 1 1
II.2* 18.2 43.2 1 0 0 0 1 0 1
II.3 No solution found.
II.3* No solution found.

As a next step membranes 3 and 4 are also allowed to be activated. The respective
results are contained in Tab. 5.17. Afterwards all six membranes are enabled leading
to Tab. 5.18. Tab. C.12 and C.13, also in the appendix, present further details on all
operational and geometrical decisions made for both case studies.

Diluting with CO2 instead of N2 has a tremendous effect on the optimal structures
with a strong preference for the application of PI membrane modules to remove the bulk
amount of CO2. The total amount of energy required for the removal of CO2 increases
for obvious reasons. It is questionable whether the advantage of not having to separate
any N2 evens out this increase. On top of that, everything that has been said so far
about the investment costs of compressors required for the large number of membranes
still holds.
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Chapter 5 Optimization Studies

5.5.2 Case II with PTSA

The activation of the PTSA further increases the molar fractions of CO2 and C2H4
before the membrane network. Tab. 5.19 contains the results for the case with a limit
to the number of membranes to 2. The respective tables for the cases using up to 4
or 6 membranes are given in the appendix (see Tab. C.3 and C.4 starting on page 198)
together with the details on geometry and operation in Tab. C.14, C.15, and C.16 for
each of the three cases respectively.

Table 5.19: Results of the superstructure optimization using CO2 as a dilutent and the
PTSA unit with a maximum of 2 membranes. Cases with an asterisk (*)
denote the respective chance-constrained case study. The C2H4 loss is limited
to 5 %.

Feed eCO2 e PI 1 PEO 1 PI 2 PEO 2 MEA aMDEA #C
- MJ/kgCO2 MJ - - - - - - -
II.1 2.9 3.4 0 1 0 1 0 1 3
II.1* 3.1 3.7 0 1 0 1 0 1 3
II.2 1.0 2.3 0 1 0 1 0 1 4
II.2* 1.2 2.8 0 1 0 1 0 1 4
II.3 0.8 2.9 0 1 0 1 0 1 4
II.3* No solution found.

The PTSA unit further eases the energetic cost of removing CO2 from the system allow-
ing for the application of PEO membranes, which have a higher permeability compared
to the PI modules.

5.5.3 Optimal Superstructure

As before for case I an exemplary solution to the superstructure case II is selected and
detailed in the following. Solution II.2* from Tab. C.4 is chosen which uses the PTSA
all six membranes with PEO as the membrane material and aMDEA as scrubbing liquid
for the absorption.

The PTSA is specified to remove 98 % of all components which are not CO2 or C2H4.
This leads to a total cycle time of roughly 20 minutes for the specified system. The cyclic
steady state PTSA model returns averaged values for the outgoing streams. The molar
fractions and flows for the feed and the C2H4 rich stream are noted in Tab. 5.20. Fig. 5.13
shows the respective breakthrough curves at the outlet of the 1 m long PTSA column
for the system limited to three components (CO2, C2H4, and CH4). The plot shows the
molar fractions of the components in the gas phase. CH4 is the first to make it through
the bed appearing within the first 10 seconds of the pressurization of the system. C2H4
and CO2 appear roughly at the same time after 90 s. The adsorption takes place at 3
bar and 320 K, whereas the desorption is carried out at 1 bar and 550 K. During the
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5.5 Superstructure Case II

desorption CO2 is used as a purge gas, which leads to the initial high molar fraction of
CO2 at the column’s outlet during the pressurization, i.e. roughly the first 10 s.

Figure 5.13: Breakthrough curve for the PTSA section using the feed gas composition of
case II.2*. CH4 is the first to break through. C2H4 and CO2 appear after
roughly 90 s at the outlet of the 1 m long PTSA column. The plot shows
the molar fraction in the gas phase over time.

Table 5.20: Feed and C2H4 rich outlet of the PTSA unit for the feed scenario I.2.
Ṅ CH4 C2H4 CO2 N2 H2

[mol/s] [n/n %]
Feed 0.111 37.8 5.1 46.8 - 10.2
C2H4 Outlet 0.588 0.8 9.6 88.4 - 0.2

Fig. 5.14 shows the settings and specifications for the membrane network for the same
case. The chosen path is highlighted by thicker lines. The results for the operation of
the absorption process is given in Tab. 5.21.

5.5.4 Conclusions on Superstructure Case II

The picture obtained from the investigation of case II is quite different from case I. De-
activating the PTSA the PI membrane is predominantly applied in addition to the PEO
membrane and uniquely the aMDEA absorption desorption system. The activation of
the PTSA reverses the relation between PI and PEO material with a clear preference for
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Table 5.21: Optimal settings for the absorption desorption using aMDEA for the exem-
plary optimal superstructure for case II.

Variable Unit Value
Q̇Desorption kW 1.3
ṀL kg/h 8.2
pAbsorption 105 Pa 11.2
F Pa0.5 0.28

the latter and at the same time heavily decreasing the energy required for the CO2 re-
moval. In total, the bias against the dilution with CO2 remains as the cost for the PTSA
and required cryogenic distillations are not accounted for. Hence, no further conclusions
past the reported results are drawn here.

In Fig. 5.15 deterministic and chance-constrained optima for the superstructure case
II are compared. Highly similar to case I the deterministic results show an exceptionally
high probability regarding the desired C2H4 loss. Only very few show a probability below
90 %. Regarding the removal of CO2 the result is almost exactly the same. As before
this goes to show why there is seldom a larger structural difference between deterministic
and chance-constrained result.
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Chapter 5 Optimization Studies

Figure 5.15: Comparison of the probabilities of constraint violation between deterministic
(cross) and chance-constrained (plus) results for superstructure case II.
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5.6 Numerical Remarks

5.6 Numerical Remarks

Comments on the initialization, the applied solvers, and the convergence behavior of each
were left out in all of the discussions above. A similar behavior has been observed for all
optimization studies carried out as part of this work.

For all deterministic and chance-constrained NLP studies IPOPT is the workhorse
within the scope of this thesis. For a few chance-constrained cases IPOPT is unable to
find a solution and is replaced by NLPQLP. Otherwise IPOPT always finds the lowest
objective value. For the deterministic MINLP studies Couenne and Bonmin are success-
fully applied, either one of them finds the lowest optimum of all solvers applied. The
chance-constrained MINLP studies are carried out sequentially. Most optimal results are
obtained using MISQP, while MIDACO seldom finds better solutions. The respective
solver settings are inlcuded in appendix C.2.

Regarding the chance constraint framework the most important aspect proves to be a
good initialization. In general, for each study the deterministic case is solved first and
subsequently used as a starting point for the chance-constrained optimization. The com-
putation time of both cases is often found to be quite similar ranging from half and hour
to several weeks in the most extreme cases. However, the similarity between determin-
istic and chance-constrained study is only achieved because of the initialization at the
deterministic optimum and the small-scale application of distributed computing across
three machines with 16 threads each. Each uncertain parameter causes a multiplication
of the number of sparse grid points to be investigated by a factor of 7. For the large-scale
systems four uncertain parameters and hence 343 different grid points are investigated
implying at least 1029 function evaluations per chance constraint evaluation. Thanks
to the distributed computing 48 simulations are carried out simultaneously causing a
tremendous time reduction.

Given the nature of discrete variables, MINLP solvers take larger steps during their
iterations. For this reason the line search method described as part of chapter 2.3.3
proved to be essential to ensure a successful solution of the simulation solver. In most
cases each new set of controls supplied by the MINLP solver required at least two steps
to move the simulation towards the new operation point.

During the discussion of the parameter estimations in chapter 4 the importance of
globalization techniques for optimization is noted. For the deterministic and chance-
constrained optimization studies in this chapter, however, globalization is mostly dis-
regarded and only considered in the form of testing various solvers and reporting the
best result. Using Hammersley sampling or similar techniques for globalization purposes
stands little chance as finding a valid set of decision variables with a matching set of
initial values for all state variables is a challenge.
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Chapter 6

Conclusions and Outlook

In this final chapter conclusions on the work carried out as part of this thesis will be
drawn and remarks will be made on topics which remain to be solved in future work.

6.1 Conclusions

There are a number of reasons for why optimization under uncertainty is still mostly
only carried out as part of some academic Ph.D. work and not yet an industrial standard
method apart from the infrequent application of Monte Carlo simulations to estimate
the effect of some uncertain parameters on the operation of a chemical process. A major
obstacle is certainly that numerous steps have to be taken manually and that the inter-
pretation of results is sometimes unclear.

Within this thesis a number of measures have been introduced to resolve these issues.
The model derivation and uncertainty identification for superstructure optimization have
been outlined and structured to a larger degree. In addition, a number of reformulation
techniques have been introduced to support the numerical stability of optimization mod-
els. A Python-based framework for chance-constrained MINLP problems with large-scale
NLP parts and up to 20 binary decisions has been developed, which no longer required
strict monotonicity between uncertain input and chance-constrained output.

Within the scope of this thesis a focus is laid on systems for which strong a interdepen-
dence exists between reaction and product purification. The OCM process is an excellent
example highlighting the issues appearing for these type of design problems. Decisions
on catalyst, reactor design, and operation cannot be made without knowledge on the cost
of the product purification for various scenarios. Given the fact that the process concept
compared to existing plants is comparatively new, little investigated or completely new
process units might appear. Regarding the OCM process, examples are numerous. None
of the investigated OCM reactors have yet been implemented on an industrial scale, gas
separation membranes, adsorption, and absorption have of course already been applied
but never on gas compositions and ranges relevant for the OCM process. Consequently,
a certain level of uncertainty can never be avoided during the early process design stage.
However, the effect of uncertainty can be destructive on the feasibility of the overall
process concept. Applying the methods and algorithms derived within the scope of this
thesis on the CO2 removal section shows a persuasive picture. Comparing deterministic
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and chance-constrained results of the optimization studies shows that while the structure
in all investigated cases stays the same, the operational cost and the size of the equip-
ment are sometimes strongly increased, which both of course effect the economics of the
process concept.

To conclude, the following achievements and findings have been made during the course
of the work culminating in this dissertation:

1. The first-ever framework for the formulation and solution of chance-constrained
MINLP problems under uncertainty has been implemented in python and interfaced
with different simulation and optimization tools.

2. The workflow for the reduction or rigorous simulation models and the derivation
of sometimes completely new optimization models has been structured and applied
to complex processing units in chemical engineering, i.e. reactive absorption and
gas permeation.

3. A first approach for the identification of relevant uncertain parameters has been
implemented and published for dynamic and steady-state parameter estimation
problems.

4. Regarding the synthesis of the OCM process, it is shown that reaction section
and product separation can in fact not be dealt with individually but need to be
designed to match an complement one another. Each is equally important for the
success of the feasibility of the process synthesis.

5. Finally, based on the first application it can be surmised that chance-constrained
MINLP problems can be reliably solved. Thanks to extensive parallelization the
solution time is not significantly longer compared to a deterministic MINLP prob-
lem.

Despite these advancements chance-constrained superstructure optimization is still far
away from becoming an industrial standard or even a frequently applied technique in
academia. Reasons are a number of deficiencies in the workflow outlined by this thesis
which need to be dealt with in future work.

The model derivation and simplification is a time-consuming step, which is for now lim-
ited to academic research as intensive manual labor is required. An industrial application
would require some form of flowsheeting environment in which the structural simplifica-
tion or generation of a surrogate model is carried out at least semi-automatically.

The same is true for all measures concerning the exact of inexact reformulation for
numerical stabilization of an existing model. Equations are seldom directly accessible
in flowsheeting environments turning the application of these reformulation techniques
quite impossible without structural changes to the software.
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6.2 Future Work

There are of course many more issues, which still need fixing. These range from the
number of uncertain variables solvers can manage in a reasonable amount of time to the
comparability of measurement data obtained from different sources. On top of that, the
limitation to normally distributed uncertainty is an issue, which has to be dealt with.
Finally, the inherent prejudice against little investigated and hence highly uncertain new
process units should be tackled.

6.2 Future Work

Building on the conclusions drawn above there are a number of pressing topics which
need to be discussed in future work. To overcome the hurdles towards an industrial ap-
plication an interface to commercial simulators is required, which hence needs to be able
to supply sensitivities regarding decision variables and uncertain parameters.

On top of that methods should be developed to allow for the semi-automatic simplifi-
cation and or reformulation of existing models within flowsheeting environments. This is
in parts already implemented within MOSAIC, but needs to be pursued further to truly
enable chemical engineers.

As part of this thesis code generators have been implemented in MOSAIC to support
the interfacing to the chance constraint framework. Nevertheless, the actual set-up is still
a mostly manual procedure. It is planned for the near future that both the uncertain pa-
rameter identification as well as the chance constraint framework will be implemented as
graphical user interfaces in MOSAIC. While of course still allowing for a direct access of
the user to the actual software code this will immensely speed up the process of setting up
chance-constrained optimization problems. MOSAIC’s inherent structure will of course
allow for the simplification, adjustment, or reformulation of all existing models further
supporting the required workflow for the chance-constrained superstructure optimization.

A lot can be achieved with the aforementioned reformulation of models. However, this
will often not suffice to achieve the fast computational behavior desired and required
for superstructure optimization. Consequently, measures should be derived, how the
discussed model reduction techniques to generate surrogate or reduced order models
may be implemented in a generic form. In the long-term a (semi-)automatic formulation
of ROMs based on existing rigorous models or measurement data is highly desirable.
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Appendix A

Models

A.1 Absorption Desorption Model for MEA

For the solubility model of CO2 in an aqueous solution of MEA data from Shen and Li
(1992) is taken. Tab. A.3 contains the raw data used for the parameter estimation at the
phenomenon level. The respective fitted parameter values are contained in Tab. A.1.

The correlation for the heat of absorption of CO2 in an aqueous solution of MEA is
fitted to data published by Kim and Svendsen (2007) and supplied here in Tab. A.4. The
parameter values resulting from the parameter estimation are given in Tab. A.2.

Table A.1: Parameters of the solubility model for CO2 in an aqueous solution of MEA
fitted to experimental data published by Shen and Li (1992).

P1 P2 P3 P4 P5

-2.67 ·10−3 1.40 -1.7 ·10−4 1.62 ·10−1

Table A.2: Parameters of the heat of absorption model for CO2 in an aqueous solution
of MEA fitted to experimental data published by Kim and Svendsen (2007).

P6 P7 P8 P9 P10 P11

-2.85 ·10−3 0 1.35 ·10−3 3.63 ·10−1 7.58 ·10−2 0

Tab. A.5 lists all parameters contained in the absorption desorption model for MEA.
The following correlation is applied to calculate the loss of Ethylene in the absorption

section using either MEA or aMDEA:

Ṅloss = (3.03886 · (10)−10 · (pin ·
Ṅs=90,c=2

Ṅs=90,c=1 + Ṅs=90,c=2 + Ṅs=90,c=3

) (A.1)

+ 9.86786 · (10)−5) · (Ṅrecyc
cl=2

+ Ṅrecyc
cl=3

)

In the following all auxiliary equations of the absorption desorption process model
are noted, which are not included in chapter 3. These also apply for the model using
aMDEA.
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α = 1 −
NG
stA=NstA,cg=1

(NG
stA=0,cg=1 + 0.00001)

(A.2)

F = 2 ·
(
∑Ncg

cg=1 NG
stA=0,cg) · R · Tst A=0

(3.141592654 · (0.04)2 · pst A=1 + 0.00001)
(A.3)

· (
M · pst A=1

(R · Tst A=0 · 1000 + 0.00001)
)0.5

ycg=1 · (
Ncg∑
cg=1

NG
cg,st A=0) = NG

cg=1,st A=0 (A.4)

wcl=3 · (NL
cl=2,st A=NstA+1 · Mcl=2 + NL

cl=3,st A=NstA+1 · Mcl=3) (A.5)

= NL
cl=3,st A=NstA+1 · Mcl=3

ML
stA=NstA+1 = (NL

cl=2,st A=NstA+1 · Mcl=2 + NL
cl=3,st A=NstA+1 · Mcl=3) · 3.6 (A.6)

Qst A = k A · (293.15 − Tst A) (A.7)
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A.1 Absorption Desorption Model for MEA
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A.1 Absorption Desorption Model for MEA

Table A.5: Parameters chosen for the absorption desorption model for MEA.
Parameter Value Unit
∆hw 43.0 kJ/mol
ηst A 0.96 -
ηflash 0.96 -
M 33.36 g/mol
pflash 105 Pa
pstD 2.7 · 105 Pa
R 8.314 J/mol K
cGp 0.0288 kJ/mol K
cLp 0.0753 kJ/mol K
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A.2 Solubility Model for aMDEA

For the solubility model of CO2 in an aqueous solution of aMDEA data from Liu et al.
(1999a) is taken. Tab. A.8 contains the raw data used for the parameter estimation at
the phenomenon level. The respective fitted parameter values are contained in Tab. A.6.

The correlation for the heat of absorption of CO2 in an aqueous solution of MEA is
fitted to data published by Arcis (2008) and supplied here in Tab. A.9. The parameter
values resulting from the parameter estimation are given in Tab. A.7.

Table A.6: Parameters of the solubility model for CO2 in an aqueous solution of aMDEA
fitted to experimental data published by Liu et al. (1999a).

P1 P2 P3 P4 P5

-4.5 ·10−3 2.0 -1.7 ·10−4 2.5 ·10−1 0

Table A.7: Parameters of the heat of absorption model for CO2 in an aqueous solution
of aMDEA fitted to experimental data published by Arcis (2008).

P6 P7 P8 P9 P10 P11

-5.1 ·10−3 5.5 ·101 0 2.25 4.5 ·10−1 0
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A.2 Solubility Model for aMDEA
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Appendix A Models

Table A.9: Raw data as published by Arcis (2008) used for the parameter estimation of
the heat of absorption model of CO2 in an aqueous solution of aMDEA.

αCO2 ∆hA,CO2 αCO2 ∆hA,CO2

mol CO2/ mol aMDEA kJ/mol CO2 mol CO2/ mol aMDEA kJ/mol CO2
40 ◦C 80 ◦C

0.096 74.8 0.137 71.2
0.115 77.9 0.206 71.5
0.159 74.6 0.27 71.7
0.186 75.9 0.274 72.2
0.211 76 0.343 71.4
0.247 74.9 0.389 73.9
0.316 75.6 0.403 71.8
0.372 74.9 0.471 69.7
0.383 75.1 0.547 70.7
0.432 75.8 0.617 70.6
0.474 76.3 0.684 69.9
0.546 75.4 0.756 68
0.553 75.4 0.814 63.6
0.593 73.4 0.91 57.4
0.597 76 0.95 55.2
0.624 73.7 1.086 44
0.732 70.3 1.12 44.6
0.764 70 1.221 40.3
0.77 71 1.352 36.5
0.794 71.7 1.357 32.4
0.874 67.9 1.654 27.9
0.947 67.4 0.136 71.8
0.983 61.7 0.204 72.6
1.064 57.9 0.275 71.7
1.186 52.5 0.34 69.5
1.278 48 0.416 71.2
1.327 46.2 0.482 68.5
1.465 41.4 0.553 67.3
1.555 39.3 0.691 65.5
0.142 74.9 0.758 66.2
0.174 74.5 0.83 64.3
0.233 76.3 0.888 63.6
0.259 75.6 0.962 58.8
0.291 75.9 1.09 51.3
0.361 77.8 1.215 45.9
0.384 77.4 1.339 41.1

Table continued on the next page
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A.2 Solubility Model for aMDEA

Tab. A.9 continued
αCO2 ∆hA,CO2 αCO2 ∆hA,CO2

mol CO2/ mol aMDEA kJ/mol CO2 mol CO2/ mol aMDEA kJ/mol CO2
40 ◦C 80 ◦C

0.433 77.9 1.529 35.9
0.502 76.6 1.894 28.2
0.514 76.6 0.362 63.7
0.593 74.6 0.362 66.7
0.598 75.2 0.479 67.9
0.637 74 0.585 64.8
0.683 71.2 0.69 64.4
0.693 70.5 0.884 64.1
0.711 72.8 0.884 64.9
0.753 72.1 0.89 62.5
0.878 66.1 0.913 60.7
0.918 64.9 0.953 62.9
0.929 63.6 0.979 64.3
0.972 61.4 1.039 62.5
1.036 61.9 1.043 63
1.042 60 1.085 60.5
1.086 57.5 1.207 55.6
1.239 50.4 1.29 52.4
1.274 50.5 1.326 50.2
1.320 48.5 1.399 47.9
1.380 46.5 1.413 46.9
1.472 43.7 1.462 46.3
1.486 42.4 1.573 42.6
1.598 40.4 1.634 41.1
1.845 34.8 1.768 37.8
1.872 33.4 0.136 75
0.123 76.2 0.202 77
0.123 74.3 0.213 75.4
0.228 78 0.235 78.7
0.247 75.9 0.252 75.5
0.315 75.5 0.252 75.9
0.315 75.6 0.284 74.5
0.315 74.8 0.342 78.1
0.391 74.9 0.382 78.7
0.424 75.7 0.382 77.1
0.424 75.2 0.432 76.6
0.424 75.7 0.461 74.9
0.455 74.1 0.513 77.5
0.53 73.7 0.545 76.7

Table continued on the next page

173



Appendix A Models

Tab. A.9 continued
αCO2 ∆hA,CO2 αCO2 ∆hA,CO2

mol CO2/ mol aMDEA kJ/mol CO2 mol CO2/ mol aMDEA kJ/mol CO2
40 ◦C 80 ◦C

0.569 72.5 0.578 74.2
0.605 74.5 0.651 70.4
0.623 73.1 0.724 62.6
0.623 75.1 0.804 55.2
0.623 75.6 0.91 47.8
0.662 71.7 1.016 41.5
0.716 73 1.137 36.1
0.767 69.8 1.274 31.4
0.767 70 1.398 27.9
0.821 68.3 1.531 24.5
0.844 68.7 0.264 71.3
0.844 68.1 0.332 69.1
0.936 66.1 0.399 73.8
0.978 63.3 0.474 74.4
1.049 60.5 0.532 73.6
1.049 60.2 0.604 74.3
1.181 53.5 0.665 73
1.364 46.3 0.738 72.1
1.516 41.7 0.79 68.9
1.620 38.2 0.858 63.6
0.283 71.9 0.923 58.3
0.427 73.1 0.985 54.3
0.578 72.6 1.057 50.6
0.729 71.9 1.19 44.4
0.884 69.2 1.31 40
1.043 65.8 1.444 35.9
1.111 63.7 0.178 66.8
1.146 61 0.263 69.5
1.229 58.2 0.348 73.6
1.412 49.2 0.439 71
1.433 49.6 0.53 72.2
1.606 44.2 0.635 71.2
0.503 74.5 0.72 70.1
0.55 74.7 0.802 66.2
0.617 74.8 0.863 67.3
0.678 73.9 0.868 68.3
0.812 71.3 0.954 65.3
0.859 74 0.978 63.9
0.904 71.5 1.03 60.8

Table continued on the next page
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A.2 Solubility Model for aMDEA

Tab. A.9 continued
αCO2 ∆hA,CO2 αCO2 ∆hA,CO2

mol CO2/ mol aMDEA kJ/mol CO2 mol CO2/ mol aMDEA kJ/mol CO2
40 ◦C 80 ◦C

0.908 69.3 1.096 56
0.94 71.3 1.187 50.9
0.959 70.2 1.249 51.3
0.984 70.3 1.341 47.7
1.011 68.4 1.404 45.6
1.016 67.6 1.624 39.3
1.037 66.7 1.813 35.2
1.255 55.9
1.421 49.2
1.514 46.7
1.758 40
2.035 34.6

Figure A.1: Solubility of CO2 in an 37 wt % aqueous solution of MDEA and 3 wt %
Piperazine as a function of the partial pressure of CO2 pCO2 and temperature
T based on the raw data published in (Liu et al., 1999a).
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Figure A.2: Heat of absorption of CO2 ∆hA,CO2 into a 37 wt % aqueous solution of MDEA
and 3 wt % Piperazine as a function of the solubility of CO2 alpha and tem-
perature T based on the raw data published in (Arcis, 2008). Each temper-
ature set was measured twice, black and blue denoting the two sets.
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A.2 Solubility Model for aMDEA

Figure A.3: Solubility of CO2 in a 37 wt % MDEA and 3 wt % Piperazine solution α
depending on temperature T and the partial pressure of CO2 pCO2. The
markers show the measurement data, the surface the developed correlation.
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Figure A.4: Heat of absorption of CO2 in a 37 wt % MDEA and 3 wt % Piperazine
solution ∆hA,CO2 depending on temperature T and the solubility of CO2. The
markers show the measurement data, the surface the developed correlation.
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A.3 Membrane Modules

A.3 Membrane Modules

Table A.10: Geometrical specifications of the membrane spacers for both PI and PEO
membrane modules.

Specification Unit Value
Spacer height hsp mm 1.0
Porosity ε - 0.84
Hydraulic diameter dh mm 0.99
Filament length l f mm 2.4
Constant K1 - 11.636
Constant K2 - -0.1236
Space angle θ ◦ 90

A.4 Pressure and Temperature Swing Adsorption

Péclet correlation for the axial dispersion in the adsorption column according to (Wakao
and Funazkri, 1978):

1

Pe
=

20

ε
·

(
Dm

2 · Rp · w

)
+
1

2
=

20

Re · Sc
+
1

2
(A.8)

Sherwood correlation for the mass transfer into each adsorbent particle according to
(Wakao and Funazkri, 1978):

Sh =
2 · k f · RP

DM
= 2.0 + 0.6 · Sc1/3 · Re1/2 (A.9)

Derivation of the Component Balance in the Gas Phase

d(dNi (z, t))
dt

= Ṅi (z, t) − Ṅi (z + dz, t) + dṄads
i (z, t) (A.10)

d
(
π · r2 · ε · R ·Tp · yi · dz

)
dt

= −
d

(
Ṅi (z, t)

)
dz

· dz + π · r2 · dz · (1 − ε) · ṅads(z, t) (A.11)

d
(
π · r2 · ε · p

R ·T · yi · dz
)

dt
= −

d
(
ṄConvective
i (z, t) + ṄDispersive

i (z, t)
)

dz
· dz

+ π · r2 · dz · (1 − ε) · ṅads
i (z, t) (A.12)

d
(
π · r2 · ε · p

R ·T · yi · dz
)

dt
= −

d
(
π · r2 · u · p

R ·T · yi − Dax ·
p

R ·T · π · r
2 · ε ·

dyi
dz

)
dz

· dz

+ π · r2 · dz · (1 − ε) · ṅads
i (z, t) (A.13)
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At this point a number of assumptions are made: Temperature T and pressure p changes
over time and space are low and can be neglected. The same applies to the superficial
gas velocity u. Consequently, the component balance of the gas phase can be simplified
to:

d
(
ε ·

p
R ·T · yi

)
dt

= −
d

(
u · p

R ·T · yi − Dax ·
R ·T
p · ε ·

dyi
dz

)
dz

+ (1 − ε) · ṅads
i (z, t) (A.14)

ε ·
p

R · T
·

dyi
dt
= −u ·

p
R · T

·
dyi
dz
+ Dax ·

p
R · T

· ε ·
d2yi

dz2
+ (1 − ε) · ṅads

i (z, t) (A.15)

dyi
dt
= −

u
ε
·

dyi
dz
+ Dax ·

d2yi

dz2
+

(1 − ε)
ε

·
R · T

p
· ṅads

i (z, t) (A.16)

Derivation of the Overall Mass Balance

d(dN (z, t))
dt

= Ṅ (z, t) − Ṅ (z + dz, t) + dṄads(z, t) (A.17)

d
(
π · r2 · ε · R ·Tp · dz

)
dt

= −
d

(
Ṅ (z, t)

)
dz

· dz + π · r2 · dz · (1 − ε) · ṅads(z, t) (A.18)

d
(
π · r2 · ε · p

R ·T · dz
)

dt
= −

d
(
ṄConvective(z, t) + ṄDispersive(z, t)

)
dz

· dz

+ π · r2 · dz · (1 − ε) · ṅads(z, t) (A.19)

π · r2 · ε ·
d
dt

[ p
R · T

]
· dz = −

d
(
π · r2 · u · p

R ·T

)
dz

dz +

d *.
,
Dax · π · r2 · ε ·

d
(

p
R ·T

)
dz

+/
-

dz
dz

+ π · r2 · dz · (1 − ε) · ṅads(z, t) (A.20)

ε

R
·

d
dt

[ p
T

]
= −

1

R

d
(
u · pT

)
dz

+
ε · Dax

R
·

d *.
,

d
(
p
T

)
dz

+/
-

dz
+ (1 − ε) · ṅads(z, t)

(A.21)
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At this point a number of simplifications are introduced based on the assumption that the
temperature changes in time and space will always be smaller than the pressure changes:

d
dt

[ p
T

]
= p ·

d
dt

[ p
T

]
+

1

T
·

dp
dt
≈

1

T
·

dp
dt

(A.22)

d
(
u · pT

)
dz

= u ·
d

(
p
T

)
dz

+
p
T
·

du
dz

(A.23)

= u ·
[
p ·

d
dz

( 1
T

)
+

1

T
·

dp
dz

]
+

p
T
·

du
dz

(A.24)

≈
u
T
·

dp
dz
+

p
T
·

du
dz

(A.25)

d *.
,

d
(
p
T

)
dz

+/
-

dz
=

d
(
1
T ·

dp
dz + p · d

dz

[
1
T

] )
dz

(A.26)

≈
d

(
1
T ·

dp
dz

)
dz

(A.27)

=
d
dz

[ 1
T

]
·

dz
dz
+

1

T
·

d2p
dz2

(A.28)

≈
1

T
·

d2p
dz2

(A.29)

These simplifications reduce the overall mass balance to:

ε

R · T
·

dp
dt
= −

1

R
·

(
u
T
·

dp
dz
+

p
T
·

du
dz

)
+
ε · Dax

R · T
·

d2p
dz2
+ (1 − ε) · ṅads(z, t) (A.30)
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Derivation of the Energy Balance

d(dU (z, t)
dt

= Ḣ (z, t) − Ḣ (z + dz, t) + dḢads(z, t) + dQ̇H (z, t) (A.31)

d
(
π · r2 · dz · (ε · ρG · uG (z, t) + (1 − ε) · ρS · uS

)
dt

= −
dH
dz

dz + π · r2 · dz · ρb · ḣads (z, t) + 2 · π · r · dz · k A · ∆T (A.32)

d
(
π · r2 · (ε · ρG · uG + (1 − ε) · ρS · uS)

)
dt

= −
d

(
π · r2 · u · hG + π · r2 · λax · dTdz

)
dz

+ π · r2 · ρb · ḣads (z, t) + 2 · π · r · k A · ∆T (A.33)

d
(
ε · ρG · uG + (1 − ε) · ρS · uS

)
dt

= −
d

(
u · hG − λax ·

dT
dz

)
dz

+ ρb · ḣads (z, t) +
2

r
· k A · ∆T (A.34)

ε · ρG ·
d

(
hG + pG · vG

)
dt

+ ρb ·
d

(
hS + pS · vS

)
dt

= −u ·
dh
dz
+ λax ·

d2T
dz2
+ ρb · ḣads (z, t) +

2

r
· k A · ∆T (A.35)

ε · ρG ·

[
dhG

dt
+ pG ·

dvG

dt
+ vG ·

dpG

dt

]
+ ρb ·

[
dhS

dt
+ pS ·

dvS

dt
+ vS ·

dpS

dt

]

= −u · cGp ·
dT
dz
+ λax ·

d2T
dz2
+ ρb · ḣads (z, t) +

2

r
· k A · ∆T (A.36)

A number of assumptions are required to further simplify the energy balance. It is
assumed that the specific heat capacities of gas and solid phase do not overly change
in time and space. Secondly, that the molar density of the gas phase does not vary too
strongly over time and space and hence also the specific volume. The latter of course is
also quite small and can hence be neglected compared to the enthalpies. Pressure and
temperature of course have no physical influence on the solid phase and can hence also
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be removed from the energy balance.

ε · ρG ·
dhG

dt
+ ρb ·

dhS

dt

= −u · cGp ·
dT
dz
+ λax ·

d2T
dz2
+ ḣads(z, t) +

2

r
· k A · ∆T (A.37)

ε · ρG · cGp ·
dT
dt
+ ρb · cSp ·

dT
dt

= −u · cGp ·
dT
dz
+ λax ·

d2T
dz2
+ ḣads(z, t) +

2

r
· k A · ∆T (A.38)

Computation of Outlet 1

Ṅ
out, I

=

∫
tAdsorption

Ṅ (t, z = L)dt

tDepressurization
end

(A.39)

y
out,I
i =

∫
tAdsorption Ṅi (t, z = L)dt∫
tAdsorption Ṅ (t, z = L)dt

(A.40)

Computation of Outlet 2

Ṅ
out, II

=

∫
tDepressurization

Ṅ (t, z = 0)dt

tDepressurization
end

+

∫
tDesorption

Ṅ (t, z = 0)dt

tDesorption
end

(A.41)

y
out,II
i =

∫
tDepressurization Ṅi (t, z = 0)dt∫
tDepressurization Ṅ (t, z = 0)dt

+

∫
tDesorption Ṅi (t, z = 0)dt∫
tDesorption Ṅ (t, z = 0)dt

(A.42)
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Appendix B

Experimental Set-up

B.1 Modified Set-up of the Absorption Desorption Process

The following pages contain the piping and information diagrams of set-up 2 of the
mini-plant for the absorption desorption process in the following order:

1. Gas supply

2. Absorption section

3. Membrane section

4. Compressor section

5. Desorption section

6. Stack and flare

7. Gas measurement section

8. Infrastructure overview
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Appendix C

Optimization Results

C.1 Additional Results of the Superstructure Optimization

All additional results of the superstructure optimization are contained in the tables on
the following pages.

C.2 Solver Settings for Optimization Studies

In general the following solver settings were applied. For some cases minor changes to
these settings are carried out manually. The settings of MIDACO are kept at their default
values.

IPOPT

print_user_options yes
print_level 5
hessian_approximation limited_memory
warm_start_init_point yes
linear_solver ma57
ma57_pivot_order 4
ma57_automatic_scaling yes
mu_init 1e-10
mu_strategy monotone
mu_min 1e-15
mu_max 1e+3
mu_oracle probing
warm_start_mult_bound_push 1e-10
warm_start_bound_push 1e-10
max_iter 10000
constr_viol_tol 1e-5
acceptable_constr_viol_tol 1e-4
tol 1e-8
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Appendix C Optimization Results

NLPQLP

acc = 1e-6
accqp = 1e-8
stpmin = 0
maxfun = 10
maxit = 100
maxnm = 25
rho = 100
iprint = 2
mode = 0
iout = 6
lql = 0

MISQP

acc = 1e-6
maxit = 1000
mnfs = 10
maxnde = 1000
iprint = 2
iout = 6
roptpy = -1.0 * np.ones(60)
roptpy[0] = 1e-6
roptpy[1] = 10.0
roptpy[2] = 0.1
roptpy[3] = 1000.0
roptpy[4] = 0.05
roptpy[5] = 10.0
roptpy[6] = 10.0
roptpy[7] = 1.0
ioptpy = -1 * np.ones(60, dtype=np.int)
ioptpy[0] = 1
ioptpy[1] = 10
ioptpy[2] = 0
ioptpy[3] = 0
ioptpy[4] = 0
ioptpy[5] = 2
ioptpy[40] = 2
ioptpy[41] = 2
ioptpy[43] = 1000
ioptpy[44] = 0
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Appendix D

Software and Algorithmic Specifications

D.1 Python Requirements

Python is installed on every Ubuntu System. In addition, please install the following
Python packages via Synaptic or Aptitude:

• python-numpy (at least version 1.8.2)

• python-scipy and dependencies (at least version 0.13.3)

• python-matplotlib and dependencies (at least version 1.3.1)

D.2 PyIpopt: Python Interface for Ipopt

For the purpose of this work, the pyipopt interface written by Eric Xu (xu.mathena@gmail.com)
has been fundamentally modified to allow for the feedback communication of the solution
state of the nonlinear solver to ipopt. The modified pyipopt interface can be downloaded
from (http://www.mosaic-modeling.de).

Compilation Notes for Ubuntu Systems: The compilation of Pyipopt reqires a local
compilation of Ipopt, Python Numpy, and the Python.h header file. For the installation
of the interface, follow these steps:

1. Extract the pyipopt folder and move it to any location on your hard disk.

2. Open a terminal.

3. cd into the pyipopt directory.

4. Edit setup.py to direct the interface to the build folder of your Ipopt source direc-
tory: IPOPT_DIR = ’<Your Ipopt Source>/build/’.

5. Enter command python setup.py build.

6. Enter command sudo python setup.py install.

7. Pyipopt is now installed as a python module.

For troubleshooting information refer to: https://github.com/xuy/pyipopt.
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D.3 NLPQLP Interface

Preparation and Compilation of the FORTRAN Code Before compiling the FOR-
TRAN code to generate a Python module, a few preparatory steps need to be taken.

1. NLPQLP uses the QL (also provided by Professor K. Schittkowski) to solve the
QP subproblems. This is performed via an external function call within NLPQLP.
To speed up the process of compiling both NLPQLP and QL, the latter will be
introduced as an extra subroutine in the former. Hence, copy the contents of QL.
FOR to the end of NLPQLP.FOR.

2. Change the name of the new SUBROUTINE QL into SUBROUTINE QPSLVE.

3. Change the calling definition of NLPQLP by leaving out the last argument, which
is QPSLVE.

4. As a last step, we need to set some markers for f2py to understand which parts of the
code should be made visible in FORTRAN. This is especially important regarding
all input and output arguments and their interdependencies. The FORTRAN to
Python compiler f2py helps by creating a signature file of the FORTRAN code,
which then needs to be modified. However, f2py requires a .f extension, so rename
NLPQLP.FOR into NLPQLP.f.

5. Via the terminal enter your NLPQLP directory and enter the follwing command:
f2py NLPQLP.f -m nlpqlp -h nlpqlp.pyf.

6. nlpqlp.pyf now holds the signature information of all subroutines of NLPQLP.
Now, open the signature file. We need to edit the input and output information of
subroutine nlpqlp everything else may stay unchanged as we are not going to call
them from Python although they are visible.

7. Replace everything from subroutine nlpqlp(l, . . . to . . . end soubroutine nlpqlp
by the following:

subroutine nlpqlp(l,m,me,mmax,n,nmax,mnn2,x,f,g,df,dg,u,xl,xu,c,d,
acc,accqp,stpmin,maxfun,maxit,maxnm,rho,iprint,mode,iout,ifail,
wa,lwa,kwa,lkwa,active,lactiv,lql) ! in :nlpqlp:NLPQLP.f
integer, intent(in) :: l
integer, intent(in) :: m
integer, intent(in) :: me
integer, intent(in) :: mmax
integer, intent(in) :: n
integer, intent(in) :: nmax
integer, intent(in) :: mnn2
double precision dimension(nmax,l),intent(in,out),depend(nmax,l

) :: x
double precision dimension(l),intent(in,out),depend(l) :: f
double precision dimension(mmax,l),intent(in,out),depend(mmax,l

) :: g
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double precision dimension(nmax),intent(in),depend(nmax) :: df
double precision dimension(mmax,nmax),intent(in),depend(mmax,

nmax) :: dg
double precision dimension(mnn2),intent(out),depend(mnn2) :: u
double precision dimension(n),intent(in),depend(n) :: xl
double precision dimension(n),intent(in),depend(n) :: xu
double precision dimension(nmax,nmax),intent(out),depend(nmax,

nmax) :: c
double precision dimension(nmax),intent(out),depend(nmax) :: d
double precision intent(in) :: acc
double precision intent(in) :: accqp
double precision intent(in) :: stpmin
integer, intent(in) :: maxfun
integer, intent(in) :: maxit
integer, intent(in) :: maxnm
double precision, intent(in) :: rho
integer, intent(in) :: iprint
integer, intent(in) :: mode
integer, intent(in) :: iout
integer, intent(in,out) :: ifail
integer, intent(in) :: lwa
double precision dimension(lwa), intent(out) :: wa
integer, intent(in) :: lkwa
integer dimension(lkwa), intent(out) :: kwa
integer, intent(in) :: lactiv
logical dimension(lactiv),intent(out),depend(lactiv) :: active
logical, intent(in) :: lql

end subroutine nlpqlp

8. Once the signature file has been saved enter the following command to compile
the FORTRAN code as a python module using the signature file as a description:
f2py -c nlpqlp.pyf NLPQLP.f

9. This will create a new shared library called nlpqlp.so, which you may copy to any
directory within Python’s search path or your current working directory.

Usage of the Python Module To use the NLPQLP python module only a couple of
steps need to be taken:

1. Within python import nlpqlp to load all FORTRAN subroutines of NLPQLP.

2. The steps to call NLPQLP for optimization are describe in (Schittkowski, 2012).
Sample codes for the implementation of the code in Python may be found on
http://www.mosaic-modeling.de. The main function call looks as follows:

x,f,g,u,c,d,ifail,wa,kwa,active = nlpqlp.nlpqlp(l,m,me,mmax,
n,nmax,mnn2,x,f,g,df,dg,xl,xu,acc,accqp,stpmin,maxfun,
maxit,maxnm,rho,iprint,mode,iout,ifail,lwa,lkwa,lactiv,
lql)
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3. Whenever, arguments are labelled as inout in the signature file, they will appear
as inputs and outputs of the Python module.

4. These details may also be read from the module by opening a terminal and entering:

import nlpqlp
print nlpqlp.nlpqlp.__doc__

5. Lastly, all python arrays need to be passed to the NLPQLP module as FORTRAN
arrays. Numpy has a basic function for that purpose. import numpy and then trans-
form the array format by performing fortranarrayname = numpy.asfortranarray(
pythonarrayname) on all arrays, which need to be passed on to NLPQLP.

6. The transformation of the output values of NLPQLP into Python doubles and
integers is carried out by Python on the fly.
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D.4 MISQP Interface

Preparation and Compilation of the FORTRAN Code Before compiling the FOR-
TRAN code to generate a Python module, a few preparatory steps need to be taken.

1. MISQP uses the MIQL (also provided by Professor K. Schittkowski) to solve the
QMIP subproblems. This is performed via an external function call within MISQP.
To speed up the process of compiling both MISQP and MIQL, the latter will be
introduced as an extra subroutine in the former. Hence, copy the contents of MIQL
.FOR to the end of MISQP.FOR.

2. As a last step, we need to set some markers for f2py to understand which parts of the
code should be made visible in FORTRAN. This is especially important regarding
all input and output arguments and their interdependencies. The FORTRAN to
Python compiler f2py helps by creating a signature file of the FORTRAN code,
which then needs to be modified. However, f2py requires a .f extension, so rename
MISQP.FOR into MISQP.f.

3. Via the terminal enter your MISQP directory and enter the follwing command:
f2py MISQP.f -m misqp -h misqp.pyf.

4. misqp.pyf now holds the signature information of all subroutines of MISQP. Now,
open the signature file. We need to edit the input and output information of
subroutine misqp everything else may stay unchanged as we are not going to call
them from Python although they are visible.

5. Replace everything from subroutine misqp(l, . . . to . . . end soubroutine misqp by
the following:

subroutine misqp(m,me,mmax,n,nbin,nint,x,f,g,df,dg,xl,xu,acc,maxit,
mnfs,maxnde,iprint,iout,ifail,ideriv,ropt,iopt,lopt,rw,lrw,iw,
liw,lw,llw) ! in :misqp:MISQP.f
integer, intent(in) :: m
integer, intent(in) :: me
integer, intent(in) :: mmax
integer, intent(in) :: n
integer, intent(in) :: nbin
integer, intent(in) :: nint
double precision dimension(n), intent(in,out), depend(n) :: x
double precision, intent(in,out) :: f
double precision dimension(mmax), intent(in,out), depend(mmax)

:: g
double precision dimension(n), intent(in), depend(n) :: df
double precision dimension(mmax,n), intent(in), depend(mmax,n)

:: dg
double precision dimension(n), intent(in), depend(n) :: xl
double precision dimension(n), intent(in), depend(n) :: xu
double precision, intent(in) :: acc
integer, intent(in) :: maxit
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integer, intent(in) :: mnfs
integer, intent(in) :: maxnde
integer, intent(in) :: iprint
integer, intent(in) :: iout
integer, intent(in,out) :: ifail
logical dimension(nbin+nint), intent(in), depend(nbin,nint) ::

ideriv
double precision dimension(60), intent(in) :: ropt
integer dimension(60), intent(in) :: iopt
logical dimension(60), intent(in) :: lopt
double precision dimension(lrw), intent(in), depend(lrw) :: rw
integer, intent(in) :: lrw
integer dimension(liw), intent(in), depend(liw) :: iw
integer, intent(in) :: liw
logical dimension(llw), intent(in), depend(llw) :: lw
integer, intent(in) :: llw

end subroutine misqp

6. Once the signature file has been saved enter the following command to compile
the FORTRAN code as a python module using the signature file as a description:
f2py -c misqp.pyf MISQP.f

7. This will create a new shared library called misqp.so, which you may copy to any
directory within Python’s search path or your current working directory.

Usage of the Python Module To use the NLPQLP python module only a couple of
steps need to be taken:

1. Within python import misqp to load all FORTRAN subroutines of NLPQLP.

2. The steps to call MISQP for optimization are describe in (Schittkowski, 2014).
Sample codes for the implementation of the code in Python may be found on
http://www.mosaic-modeling.de. The main function call looks as follows:

x,f,g,ifail = misqp(m,me,mmax,n,nbin,nint,x,f,g,df,dg,xl,xu,
acc,maxit,mnfs,maxnde,iprint,iout,ifail,ideriv,ropt,iopt
,lopt,rw,lrw,iw,liw,lw,llw)

3. Whenever, arguments are labelled as inout in the signature file, they will appear
as inputs and outputs of the Python module.

4. These details may also be read from the module by opening a terminal and entering:
import misqp
print misqp.misqp.__doc__

5. Lastly, all python arrays need to be passed to the MISQP module as FORTRAN
arrays. Numpy has a basic function for that purpose. import numpy and then trans-
form the array format by performing fortranarrayname = numpy.asfortranarray(
pythonarrayname) on all arrays, which need to be passed on to MISQP.
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6. The transformation of the output values of MISQP into Python doubles and inte-
gers is carried out by Python on the fly.
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D.5 NLEQ1s Interface

The following description requires ecplice with the C++ development plugin.

Compilation Notes for Ubuntu Systems: Modifications to .bashrc: Add the following
lines at the bottom:

PATH=$PATH:$HOME/bin
export PATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib:/usr/local/lib
export LD_LIBRARY_PATH
PYTHONPATH=$PYTHONPATH:/usr/local/lib
export PYTHONPATH

Remark: For these modifications to take effect, close and reopen the terminal.
Create the static library of NLEQ1s on your system by performing the following steps:

1. Download the NLEQ1s source code from ZIB as a tar-file: http://www.zib.de/
weimann/CodeLib/de/nonlin.html

2. Open a terminal.

3. cd to the download directory of NLEQ1s.

4. Enter command tar xvf nleq1s.tar.

5. Move the NLEQ1s folder to your desired location by entering mv -r ./nleq1s <new
location>.

6. cd into the NLEQ1s’ directory.

7. Edit the makefile to include BLAS and Lapack: BLAS = -L/usr/lib -llapack -
lblas.

8. Replace nleq1s.f by a modified version you can obtain on http://www.mosaic-modeling.
de (Add details!).

9. Enter command make all.

10. Enter command ar -r "libnleq1s.a" *.o.

11. Enter command ranlib libnleq1s.a.

12. Remark. This is now the location of the NLEQ1s library for the stand-alone oper-
ation, which is different from the sDACl version. The NLEQ1s interface needs to
be linked here.

Install the following packages via Synaptic or Aptitude:

• libsuitesparse-dev and dependencies
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• libeigen3-dev Do not use Eigen2 for the NLEQ1s interface, if Eigen2 is installed,
it is of no consequence.

• gfortran

• gfortran-multilib and dependencies

• libboost-python-dev and dependencies

Download and install ColPack by performing the following steps:

1. Download link: http://cscapes.cs.purdue.edu/download/ColPack

2. Download ColPack-1.0.9.tar.gz or newer.

3. Open a terminal.

4. cd to download location of ColPack-1.0.9.tar.gz.

5. Enter command gunzip ColPack-1.0.9.tar.gz.

6. Enter command tar xvf ColPack-1.0.9.tar.

7. Enter new ColPack directory by entering cd ColPack-1.0.9/.

8. Enter command ./configure.

9. Enter command make.

10. Enter command sudo make install.

11. ColPack libraries are now stored in /usr/local/lib/.

Download and install ADOL-C by performing the following steps:

1. Download link: http://www.coin-or.org/download/source/ADOL-C/

2. Remark: Do not use the standard version of ADOL-C supplied for Ubuntu by
Canonical. The version is outdated.

3. Download ADOL-C-2.5.2.tgz or newer.

4. Open a terminal.

5. cd to download location of ADOL-C-2.5.2.tgz.

6. Enter command gunzip ADOL-C-2.5.2.tgz.

7. Enter command tar xvf ADOL-C-2.5.2.tar.

8. Enter new ADOL-C directory by entering cd ADOL-C-2.5.2/.

9. For 64bit systems enter ./configure --enable-ulong otherwise only ./configure.
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10. Check the configuration output in the terminal for Build sparse drivers: and
Build with ColPack:. Both should be answered with yes, otherwise make sure
that suitesparse and ColPack are actually installed and visible to the compiler and
repeat the configuration step.

11. Enter command make.

12. Enter command sudo make install.

13. ADOL-C is now located in $HOME/adolc_base/.

14. Create a soft link in /usr/local/lib to the ADOL-C library location. cd to /usr/
local/lib.

15. Enter command sudo ln -s $HOME/adolc_base/lib64/libadolc.so ./libadolc.so.

Configure Eclipse for the NLEQ1s interface and compile the Interface by performing
the following steps:

1. Download the Current NLEQ1s interface version from http://www.mosaic-modeling.
de.

2. Open Eclipse and select menu entry: File → Import....

3. In the new window select General → Existing Projects into Workspace.

4. Press Next > and select the root directory of the downloaded NLEQ1s interface
project.

5. Select the option to Copy projects into workspace.

6. Press Next > and enter a new name for the Interface project and finish.

7. Inside Eclipse’s project explorer right click on the Interface project and select Open
Project.

8. Afterwards right click again and select Properties.

9. Select C/C++ Build → Settings. The following Tab. D.1 contains all the required
settings and options for the Interface’s Eclipse project. All other options should
remain unchanged. Please, make sure to keep the order of the include paths.

10. Finally, right click on the Interface project in the project explorer and select Build
Project. Make sure, that you build in Debug configuration.

11. As a last step, create a soft link to the Interface location in Eclipse’s workspace.

12. Open a terminal.

13. cd to /usr/local/lib.

14. Enter command sudo ln -s <Eclipse workspace>/<NLEQ1s Interface Project name
>/Debug/libnlextfunc.so ./libnlextfunc.so.

220

http://www.mosaic-modeling.de
http://www.mosaic-modeling.de


D.5 NLEQ1s Interface

Table D.1: Settings for compiling the C++ NLEQ1s version inside eclipse.
ToolSettings

GCC C++ Compiler
Includes $HOME/adolc_base/include

/usr/include/python2.7 (or newer)
"${workspace_loc:/${ProjName}/include}"
/usr/include/suitesparse
/usr/include/eigen3

Miscellaneous Position Independent Code (-fPIC): active
GCC C Compiler

Includes $HOME/adolc_base/include
/usr/include/python2.7 (or newer)
"${workspace_loc:/${ProjName}/include}"
/usr/include/suitesparse
/usr/include/eigen3

Miscellaneous Position Independent Code (-fPIC): active
GCC C++ Linker

Libraries - Libraries (-l) adolc
python2.7
boost_python
nleq1s
gfortran

Libraries - Library search path (-L) $HOME/adolc_base/lib64
(for 64bit system, otherwise /lib)
<NLEQ1s MA28 location>

Share Library Settings Shared (-shared): active
Build Artifact

Artifact type Shared Library
Artifact name nlextfunc
Artifact extension so
Output prefix lib
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D.6 sDACl-Modifications

The following description requires ecplice with the C++ development plugin.

Compilation Notes for Ubuntu Systems: Modifications to .bashrc: Add the following
lines at the bottom: PATH=$PATH:$HOME/bin export PATH LD_LIBRARY_PATH=$LD_LIBRARY_PATH
:$HOME/lib:/usr/local/lib export LD_LIBRARY_PATH PYTHONPATH=$PYTHONPATH:/usr/local
/lib export PYTHONPATH

Create the static library of NLEQ1s on your system by performing the following steps:

1. Download the NLEQ1s source code from ZIB as a tar-file: http://www.zib.de/
weimann/CodeLib/de/nonlin.html

2. Open a terminal.

3. cd to the download directory of NLEQ1s.

4. Enter command tar xvf nleq1s.tar.

5. Move the NLEQ1s folder to your desired location by entering mv -r ./nleq1s <new
location>.

6. cd into the NLEQ1s’ directory.

7. Edit the makefile to include BLAS and Lapack: BLAS = -L/usr/lib -llapack -
lblas.

8. Enter command make all.

9. Enter command ar -r "libnleq1s.a" *.o.

10. Enter command ranlib libnleq1s.a.

11. Remark. This is now the location of the NLEQ1s library for the sDACl, which
is different from the stand-alone version. The sDACl needs to be linked to this
location.

Install the following packages via Synaptic or Aptitude:

• libumfpack5.6.2 or newer

• libsuitesparse-dev and dependencies

• libeigen2-dev Do not use Eigen3 for the sDACl, if Eigen3 is installed, it is of no
consequence.

• gfortran

• gfortran-multilib and dependencies
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Download and install ColPack by performing the following steps:

1. Download link: http://cscapes.cs.purdue.edu/download/ColPack

2. Download ColPack-1.0.9.tar.gz or newer.

3. Open a terminal.

4. cd to download location of ColPack-1.0.9.tar.gz.

5. Enter command gunzip ColPack-1.0.9.tar.gz.

6. Enter command tar xvf ColPack-1.0.9.tar.

7. Enter new ColPack directory by entering cd ColPack-1.0.9/.

8. Enter command ./configure.

9. Enter command make.

10. Enter command sudo make install.

11. ColPack libraries are now stored in /usr/local/lib/.

Download and install ADOL-C by performing the following steps:

1. Download link: http://www.coin-or.org/download/source/ADOL-C/

2. Remark: Do not use the standard version of ADOL-C supplied for Ubuntu by
Canonical. The version is outdated.

3. Download ADOL-C-2.5.2.tgz or newer.

4. Open a terminal.

5. cd to download location of ADOL-C-2.5.2.tgz.

6. Enter command gunzip ADOL-C-2.5.2.tgz.

7. Enter command tar xvf ADOL-C-2.5.2.tar.

8. Enter new ADOL-C directory by etnering cd ADOL-C-2.5.2/.

9. For 64bit systems enter ./configure --enable-ulong otherwise only ./configure.

10. Check the configuration output in the terminal for Build sparse drivers: and
Build with ColPack:. Both should be answered with yes, otherwise make sure
that suitesparse and ColPack are actually installed and visible to the compiler and
repeat the configuration step.

11. Enter command make.
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12. Enter command sudo make install.

13. ADOL-C is now located in $HOME/adolc_base/.

Configure Eclipse for the sDACl and compile the sDACl by performing the following
steps:

1. Download the current sDACl version from http://www.mosaic-modeling.de.

2. Open Eclipse and select menu entry: File → Import....

3. In the new window select General → Existing Projects into Workspace.

4. Press Next > and select the root directory of the downloaded sDACl project.

5. Select the option to Copy projects into workspace.

6. Press Next > and enter a new name for the sDACl project and finish.

7. Inside Eclipse’s project explorer right click on the sDACl project and select Open
Project.

8. Afterwards right click again and select Properties.

9. Select C/C++ Build → Settings. The following Tab. D.2 contains all the required
settings and options for the sDACl’s Eclipse project. All other options should
remain unchanged. Please, make sure to keep the order of the include paths.

10. Finally, right click on the sDACl project in the project explorer and select Build
Project. Make sure, that you build in Release configuration.

11. As a last step, create a soft link to the sDACl location in Eclipse’s workspace.

12. Open a terminal.

13. cd to /usr/local/lib.

14. Enter command sudo ln -s <Eclipse workspace>/<sDACl Project name>/Release
/libsDACl.so ./libsDACl.so.
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Table D.2: Settings for compiling the sDACl inside eclipse.
ToolSettings

GCC C++ Compiler
Includes $HOME/adolc_base/include

"${workspace_loc:/${ProjName}/include}"
/usr/include/eigen2
/usr/include/suitesparse

GCC C++ Linker
Libraries - Libraries (-l) nleq1s

gfortran
umfpack
adolc

Libraries - Library search path (-L) <NLEQ1s MA28 location>
$HOME/adolc_base/lib64
(for 64bit system, otherwise /lib)

Share Library Settings Shared (-shared): active
Build Artifact

Artifact Type Shared Library
Artifact name sDACl
Artifact extension so
Output prefix lib
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D.7 Extfunc

Extfunc is an interface developed by T. Barz and S. Werk to tether the sDACl to python.
For the purpose of this work some major changes have been implemented within Extfunc
to extend its functionality. The most import change is the forwarding of the sDACl’s
solution state to python.

Table D.3: Extfunc - Solution state values.
Value Meaning

0 Successfull completion.
-1 Error in user-defined input data.
-2 Error in user-defined gradient.
-3 Error in user-defined derivative values.

-11 Problem could not be solved, minimal step size reached.
-15 Problem could not be solved, maximum step number reached.
-16 Problem could not be solved, error from linear solver.
-17 Error in call to ADOL-C.
-18 Error in call to NLEQ solver.

The following description requires ecplice with the C++ development plugin.

Compilation Notes for Ubuntu Systems: Modifications to .bashrc: Add the following
lines at the bottom:

PATH=$PATH:$HOME/bin
export PATH
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib:/usr/local/lib
export LD_LIBRARY_PATH
PYTHONPATH=$PYTHONPATH:/usr/local/lib
export PYTHONPATH

Before downloading and compiling all Extfunc files, pleasure make sure you have op-
eration installations of:

• libsDACl.so

• libnleq1s.a (sDACl version)

Install the following packages via Synaptic or Aptitude:

• libumfpack5.6.2 or newer

• libsuitesparse-dev and dependencies

• libeigen2-dev Do not use Eigen3 for the Extfunc, if Eigen3 is installed, it is of no
consequence.
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• gfortran

• gfortran-multilib and dependencies

• libboost-python-dev and dependencies

Download and install ColPack by performing the following steps:

1. Download link: http://cscapes.cs.purdue.edu/download/ColPack

2. Download ColPack-1.0.9.tar.gz or newer.

3. Open a terminal.

4. cd to download location of ColPack-1.0.9.tar.gz.

5. Enter command gunzip ColPack-1.0.9.tar.gz.

6. Enter command tar xvf ColPack-1.0.9.tar.

7. Enter new ColPack directory by entering cd ColPack-1.0.9/.

8. Enter command ./configure.

9. Enter command make.

10. Enter command sudo make install.

11. ColPack libraries are now stored in /usr/local/lib/.

Download and install ADOL-C by performing the following steps:

1. Download link: http://www.coin-or.org/download/source/ADOL-C/

2. Remark: Do not use the standard version of ADOL-C supplied for Ubuntu by
Canonical. The version is outdated.

3. Download ADOL-C-2.5.2.tgz or newer.

4. Open a terminal.

5. cd to download location of ADOL-C-2.5.2.tgz.

6. Enter command gunzip ADOL-C-2.5.2.tgz.

7. Enter command tar xvf ADOL-C-2.5.2.tar.

8. Enter new ADOL-C directory by etnering cd ADOL-C-2.5.2/.

9. For 64bit systems enter ./configure --enable-ulong otherwise only ./configure.
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10. Check the configuration output in the terminal for Build sparse drivers: and
Build with ColPack:. Both should be answered with yes, otherwise make sure
that suitesparse and ColPack are actually installed and visible to the compiler and
repeat the configuration step.

11. Enter command make.

12. Enter command sudo make install.

13. ADOL-C is now located in $HOME/adolc_base/.

Configure Eclipse for the Extfunc and compile by performing the following steps:

1. Download the current Extfunc version from http://www.mosaic-modeling.de.

2. Open Eclipse and select menu entry: File → Import....

3. In the new window select General → Existing Projects into Workspace.

4. Press Next > and select the root directory of the downloaded Extfunc project.

5. Select the option to Copy projects into workspace.

6. Press Next > and enter a new name for the Extfunc project and finish.

7. Inside Eclipse’s project explorer right click on the Extfunc project and select Open
Project.

8. Afterwards right click again and select Properties.

9. Select C/C++ Build → Settings. The following Tab. D.4 contains all the required
settings and options for the Extfunc’s Eclipse project. All other options should
remain unchanged. Please, make sure to keep the order of the include paths.

10. Finally, right click on the Extfunc project in the project explorer and select Build
Project. Make sure, that you build in Debuggen configuration.

11. As a last step, create a soft link to the Extfunc location in Eclipse’s workspace.

12. Open a terminal.

13. cd to /usr/local/lib.

14. Enter command sudo ln -s <Eclipse workspace>/<sDACl Project name>/
Debuggen/libextfunc.so ./libextfunc.so.
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Table D.4: Settings for compiling the Extfunc inside eclipse.
ToolSettings

GCC C++ Compiler
Includes "${workspace_loc:/${ProjName}/include}"

/usr/include/python2.7 or newer
<path to sDACl header files>
$HOME/adolc_base/include
/usr/include/eigen2
/usr/include/suitesparse

Miscellaneous Position Independent Code (-fPIC): active
GCC C++ Linker

Libraries - Libraries (-l) sDACl
boost_python
adolc
umfpack
nleq1s

Libraries - Library search path (-L) $HOME/adolc_base/lib64
(for 64bit system, otherwise /lib)
<NLEQ1s MA28 location>

Share Library Settings Shared (-shared): active
Build Artifact

Artifact type Shared Library
Artifact name extfunc
Artifact extension so
Output prefix lib
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D.8 Gradient Calculation within the Chance Constraint
Framework

In order to provide gradients of the probability of a chance constraint holding with re-
spect to the optimization variables u, the chance constraint framework requires among
other things derivatives of the state variables x with respect to both the optimization
variables u and the uncertain parameters ξ. Within the scope of this work the sensitiv-
ities are generated by the simulation solver and are already dealt with. Based on these
sensitivities and the gradient of the probability with respect to the uncertain parameters
ξ, the gradient regarding u can be calculated.

At this point, only the modifications carried out at part of this work are mentioned as
everything else is already part of the DoCCE framework. As mentioned above the mono-
tonicity criterion between uncertain input and uncertain output is relaxed, which results
in the necessity to allow for multiple roots for a single sparse grid point. Consequently,
the following approximation is derived for the calculation of the probability:

Pr{h(x, u, p, ξ) ≥ 0} ≈

nSG∑
j=1

ω(SG j ) ·
nID−1∑
i=1

IDi ·

ξ
j
0, i∫

−3σ0+µ0

φ(ξ0)dξ0

Based thereon the gradient regarding the uncertain paramters ξ can be approximated:

∇ξ Pr{h(x, u, p, ξ) ≥ 0} ≈ ∇ξ

nSG∑
j=1

ω(SG j ) ·
nID−1∑
i=1

IDi ·

ξ
j
0, i∫

−3σ0+µ0

φ(ξ0)dξ0 (D.1)

Applying the differentiation rule on a function of sums results in:

∇ξ Pr{h(x, u, p, ξ) ≥ 0} ≈

nSG∑
j=1

ω(SG j ) ·
nID−1∑
i=1

IDi · ∇ξ

ξ
j
0, i∫

−3σ0+µ0

φ(ξ0)dξ0 (D.2)

∇ξ Pr{h(x, u, p, ξ) ≥ 0} ≈

nSG∑
j=1

ω(SG j ) ·
nID−1∑
i=1

IDi · φ(ξ j0,i) (D.3)

This approximation will of course result in some mishaps in case multiple roots are de-
termined, which would require a finer sparse grid for a correct calculation of the gradient
of the probability. However, it is assumed that these will only appear in intermediate
iteration steps and are hence of little consequence.
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