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Introduction

Explicit parametrizations of surfaces with special properties have always
been intensively studied in differential geometry. Local explicit parametriza-
tions were found for large classes of surfaces in the 19th and at the beginning
of the 20th century. At the end of the 20th century the focus shifted to global
parametrizations, e.g., conformal immersions of compact Riemann surfaces
into space. A prominent example is the explicit description of all constant
mean curvature tori in R3, S3, and H3 using methods from the theory of
integrable systems [PS89, Bob91].

The main tool for the investigations of this thesis is the quaternionic ap-
proach to surface theory, as introduced in [PP98, FLPP01, BFLPP02].
In this theory, branched conformal immersions of Riemann surfaces into R4

are represented as quotients of holomorphic sections in quaternionic holo-
morphic line bundles. The action of GL(2,H) on the two dimensional linear
system spanned by the two holomorphic sections amounts to Möbius trans-
formations of the quotients. The appropriate target space of the branched
conformal immersions is therefore S4 ∼= HP1. This is reminiscent of the
meromorphic functions on Riemann surfaces, which are holomorphic maps
into S2 ∼= CP1.

The well known Plücker formula for complex holomorphic curves carries
over to the quaternionic setup, involving a new invariant of quaternionic
holomorphic geometry: the Willmore energy. The quaternionic Plücker for-
mula implies for a quaternionic holomorphic line bundle L over a compact
Riemann surface of genus g and an (n+ 1)–dimensional linear system H of
holomorphic sections of L the Plücker estimate

1
4π
W ≥ (n+ 1)(n(1− g)− d) + ordH,

where W is the Willmore energy and d is the degree of L. The integer ordH
counts the total branching of the osculating curves of the holomorphic curve
in HPn that corresponds to the linear system H via the quaternionic analog
of the Kodaira correspondence.

The central theme of this thesis is the investigation of linear systems
with equality in the Plücker estimate. It is proven that all linear systems
with equality can be described by complex holomorphic data. More pre-
cisely, to every (n+ 1)–dimensional linear system with equality corresponds
a complex holomorphic curve in CP2n+1, and, conversely, every complex
holomorphic curve in CP2n+1 that satisfies some nondegeneracy condition
yields a linear system with equality via twistor projection and dualization.
The quotient of two quaternionic holomorphic sections of a linear system
with equality can be obtained by algebraic operations and differentiation
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vi INTRODUCTION

from a parametrization of the corresponding complex holomorphic curve in
CP2n+1.

The focus of this thesis is on soliton spheres, i.e., branched conformal
immersions of CP1 into H that are quotients of two holomorphic sections
contained in a linear system with equality in the Plücker estimate. Because
the corresponding complex holomorphic curve is a curve of genus zero, it
can be parametrized by polynomials in a rational parameter of CP1. This
implies that soliton spheres are parametrized by rational branched conformal
immersions. It is shown that the soliton spheres, investigated by Iskander
Taimanov [Ta99], are soliton spheres in the sense of this thesis. This justifies
the name and provides a direct link to the theory of integrable systems, since
Taimanov’s soliton spheres correspond to solutions of the Zakharov–Shabat
linear problem with reflectionless potential.

Furthermore, it is shown in this thesis that all Willmore spheres in S4

are soliton spheres. This fact is used to derive an algebraic construction
for all Willmore spheres in S4 from rational curves in CP3. The condition
on the rational curve in CP3 which ensures that the constructed Willmore
sphere lies in S3 is given. Robert Bryant shows in [Br88] that there exists
an immersed Willmore sphere with Willmore energy W in S3 if and only if
W = 4πn and n ∈ N\{2, 3, 5, 7}. In this thesis it is shown that the Willmore
energy of an immersed soliton sphere in S3 is 4πn for some n ∈ N\{2, 3, 5}.

The construction of the Willmore spheres from rational curves in CP3

involves the Willmore–Bäcklund transformation introduced in [BFLPP02].
A generalization of this transformation to arbitrary holomorphic curves in
HPn is proposed. It is shown that this generalized transformation includes
the Willmore–Bäcklund transformation of Willmore surfaces as well as the
Christoffel transformation of isothermic surfaces.

In the theory of integrable systems there often exists a method to con-
struct all solitons of a given equation from the vacuum, i.e., the most trivial
solution. Attempting to find such a construction for soliton spheres, different
transformations of the round sphere were investigated. The most promising
candidate seemed to be successive applications of the isothermic Darboux
transformation to the round sphere. The first step, i.e., Darboux transfor-
mation of the round sphere, is nothing but Robert Bryant’s representation
[Br87] of constant mean curvature one surfaces (CMC–1) in hyperbolic 3–
space (cf., [JMN01]). In this thesis it is shown that a countable subset of the
catenoid cousins, the most famous example of CMC–1 surfaces, are smooth
at their ends. Moreover, they are soliton spheres. To the authors surprise
it seems that CMC–1 surfaces that smoothly extend through their ends to
the ideal boundary of hyperbolic 3–space were not investigated previously.

This thesis is organized as follows. In Chapter I basic definitions and
facts concerning quaternionic holomorphic vector bundles over Riemann sur-
faces are collected. In addition it is shown that the isomorphism class of a
quaternionic holomorphic line bundle with a nontrivial holomorphic section
is uniquely determined by the zero divisor of this section and its normal vec-
tor. Furthermore, it is shown that quaternionic holomorphic line bundles,
even locally, do not allow nontrivial automorphisms.
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Chapter II introduces the quaternionic holomorphic geometry associated
to a (branched) conformal immersion into the conformal 4–sphere. In par-
ticular, the Kodaira correspondence between 2–dimensional linear systems
of holomorphic line bundles and (branched) conformal immersion into S4,
and the generalized Weierstrass representation of (branched) conformal im-
mersions is described. The behavior of the branched conformal immersions
obtained via Kodaira correspondence from 2–dimensional base point free
linear systems with Weierstrass points, or via Weierstrass representation
from holomorphic sections with zeros at their branch points is discussed.
Moreover, the relation of the four holomorphic line bundles that enter into
the Kodaira correspondence and Weierstrass representation of a (branched)
conformal immersion into S4 are described in detail. This leads to the lad-
der of holomorphic line bundles and relations of holomorphic structures on
them. Finally, the special properties of the four holomorphic line bundles
associated to a conformal immersion into S3 are described.

In Chapter III the relation between the osculating k–planes of a holo-
morphic curve in HPn and the Weierstrass flag of its canonical linear system
is explained. The Plücker formula and Plücker estimate is formulated. The
Plücker formula is applied to 1– and 2–dimensional linear systems, which
leads to well known formulas from classical surface theory and extends them
to branched conformal immersions that have at least one smooth normal
vector. It is shown that all linear systems for which equality holds in the
quaternionic Plücker estimate can be obtained from complex holomorphic
curves in complex projective space via twistor projection and dualization.
Three equality preserving operations, two of them along the ladder of holo-
morphic line bundles, are described. Soliton spheres are defined in Möbius
invariant terms, and it is shown that this definition is equivalent to a possi-
ble definition in Euclidean terms. The rational functions that describe the
differential of all soliton spheres in R3 with rotationally symmetric poten-
tial, due to Iskander Taimanov [Ta99], are presented in our setup. Finally,
it is shown that the Willmore energy of an immersed soliton sphere in R3 is
4πn for some n ∈ N \ {2, 3, 5}.

In Chapter IV it is shown that all Willmore spheres in HP1 are soli-
ton spheres. The 1–step Willmore–Bäcklund transformation, introduced in
[BFLPP02], is used to describe a construction of all Willmore spheres in
HP1 from complex holomorphic curves in CP3 that only uses algebraic op-
erations. This construction restricted to holomorphic curves whose tangent
curve in the Plücker quadric Q4 ⊂ CP5 is contained in a space like projec-
tive hyperplane yields all Willmore spheres in R3. The hyperplane condition
implies that the twistor projection of the curve in CP3 is hyperbolic super-
minimal. A unified description of the superminimal surfaces in R4, S4, and
H4 usingHP1 models of these spaces is given (cf., [Br82, Fr84, Fr97]). Fur-
thermore, a generalized Bäcklund transformation for holomorphic curves in
HPn is proposed. It is shown that it includes the Willmore–Bäcklund trans-
formation of Willmore holomorphic curves in HP1 as well as the Christoffel
transformation of isothermic surfaces.

In the last chapter of this thesis it is shown that a countable subset
of the famous catenoid cousins (cf., [Br87]) extends to immersed soliton
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spheres. The proof uses the fact that Robert Bryant’s representation of mean
curvature one surfaces in hyperbolic space of curvature minus one can be
interpreted as Darboux transformation of branched holomorphic coverings
of the round 2–sphere (cf., [JMN01]). A quaternionic proof of this fact is
given.
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CHAPTER I

Quaternionic Holomorphic Vector Bundles

The present chapter provides basic definitions, facts, and useful formulas
concerning quaternionic holomorphic vector bundles. The aim is to provide
a quick reference for the following investigations.

1. Quaternions

This section collects some facts about quaternions. For proofs and more
about quaternions the reader may consult [Numbers].

1.1. Quaternions. The skew field of quaternions H can be obtained
defining a multiplication on R4. For this purpose the standard basis of R4

is denoted 1, i, j,k and the multiplication is defined by

i2 = j2 = −1 and ij = −ji = k.

A quaternion λ = a+ ib+ jc+kd ∈ H is the sum of its real part, Reλ = a,
and its imaginary part, Imλ = ib + jc + kd. The imaginary quaternions
ImH will be identified with R3, where i, j,k is identified with the standard
basis of R3. The quaternionic conjugation is defined by λ̄ = Reλ− Imλ. It
satisfies λµ = µ̄λ̄ and λλ̄ = λ̄λ ∈ R≥0.

1.2. Euclidean Geometry of R3 and R4 with Quaternions. For
the standard Euclidean inner product of R4 one gets 〈λ, µ〉 = Re(λµ̄) =
Re(λ̄µ). The absolute value of a quaternion |λ| =

√
λλ̄ is the length of

λ as a vector in R4. The real part of the quaternionic multiplication is
commutative, because Re(λµ) is the standard Minkowski product of R4.
The product of imaginary quaternions λ, µ ∈ ImH gets λµ = λ×µ−〈λ, µ〉,
where × denotes the vector product of R3.

The multiplicative inverse of a quaternion λ satisfies λ−1 = λ̄|λ|−2. The
unit 2–sphere S2 ⊂ R3 is the set of solutions of the equation λ2 = −1. The
orientation preserving similarities of R4 are given by x 7→ λxµ+ c, and the
orientation preserving similarities of R3 = ImH by x 7→ µ̄xµ + c, where
λ, µ ∈ H \ {0} and c ∈ H or ImH.

1.3. Quaternionic Vector Spaces. In this text quaternionic vector
spaces V are always right vector spaces. The dual V ∗ of a quaternionic
right vector space V is naturally a left vector space. Defining the scalar
multiplication of β ∈ V ∗ with λ ∈ H by βλ(x) = λ̄β(x), for all x ∈ V , it is
also a right vector space.

A complex structure on a quaternionic vector space is a quaternionic
linear endomorphism J ∈ End(V ) such that J2 = −1. A quaternionic vector
space with a complex structure is a complex quaternionic vector space. The
complex and the quaternionic scalar multiplication of such a vector space
commute.

1



2 I. QUATERNIONIC HOLOMORPHIC VECTOR BUNDLES

2. Quaternionic Holomorphic Vector Bundles

Quaternionic holomorphic vector bundles on Riemann surfaces are the
central object of this thesis. This section is a collection of definitions and for-
mulas related to quaternionic holomorphic vector bundles from [FLPP01].

2.1. Quaternionic vector bundles. Let M be a Riemann surface. A
quaternionic vector bundle V over M is a fiber bundle with quaternionic
right vector spaces as fibers and trivializations that are quaternionic linear
on the fibers. Throughout this text all vector bundles are defined over
a connected Riemann surface M , and if different vector bundles occur in
the same context, they are assumed to be defined over the same Riemann
surface.

2.2. Complex Quaternionic Vector Bundles. A complex structure
on a quaternionic vector bundle V is a quaternionic endomorphism field
J ∈ Γ(End(V )) such that J2 = − Id. A quaternionic vector bundle V is
called a complex quaternionic vector bundle, if it is endowed with a com-
plex structure. If V is a complex quaternionic vector bundle with complex
structure J , then V ∗ denotes the dual vector bundle of V and V̄ denotes
the complex vector bundle with complex structure −J . As for complex line
bundles, the dual of a complex quaternionic line bundle L is denoted L−1.

The tensor product of a complex vector bundle E and a complex quater-
nionic vector bundle V is again a complex quaternionic vector bundle EV :=
E ⊗C V . The most important examples are the tensor products of a com-
plex quaternionic vector bundle V with the canonical bundle K and the
anticanonical bundle K̄ of M :

KV = {α ∈ T ∗M ⊗ V | ∗α = Jα }
K̄V = {α ∈ T ∗M ⊗ V | ∗α = −Jα }

where ∗ denotes precomposition with the complex structure of TM . This is
minus the usual Hodge ∗–operator.

The quaternionic homomorphism bundle Hom(V, Ṽ ) of two complex
quaternionic vector bundles has no canonical quaternionic structure, but it
has two complex structures induced by composition with the complex struc-
tures of V or Ṽ . Thus there are two complex tensor products of Hom(V, Ṽ )
with the canonical complex line bundle K of M :

KHom(V, Ṽ ) = {α ∈ T ∗M ⊗Hom(V, Ṽ ) | ∗α = J Ṽ α }

Hom(V, Ṽ )K = {α ∈ T ∗M ⊗Hom(V, Ṽ ) | ∗α = αJV }.

The homomorphism bundle Hom(V, Ṽ ) splits into the complex linear and
complex antilinear homomorphisms

Hom±(V, Ṽ ) := {B ∈ Hom(V, Ṽ ) | J̃B = ±BJ }.
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2.3. Quaternionic Holomorphic Structures. Let V be a complex
vector bundle. A V –valued 1–form α ∈ Ω(V ) can then be decomposed into
its (1, 0) part α′ := 1

2(α− J ∗ α) and its (0, 1) part α′′ := 1
2(α+ J ∗ α). The

decomposition α = α′ + α′′ is called the type decomposition of α.
A quaternionic holomorphic vector bundle V is a complex quaternionic

vector bundle with a quaternionic holomorphic structure D, i.e., a quater-
nionic linear map

D : Γ(V )→ Γ(K̄V )
that satisfies the Leibniz rule

D(ψλ) = (Dψ)λ+ (ψdλ)′′,

for all ψ ∈ Γ(V ) and λ : M → H.

2.4. Zeros of Holomorphic Sections. Sections ψ ∈ Γ(V ) that lie in
kerD =: H0(V ) ⊂ Γ(V ) are called holomorphic. The zeros of holomorphic
sections ψ ∈ H0(V ) are isolated, and there is a unique integer ordp ψ ∈ N
such that on an open neighborhood U ⊂M of p

ψ = zordp ψϕ+O(ordp ψ + 1),

for a non vanishing ϕ ∈ Γ(V U ) and a holomorphic coordinate z : U →
C centered at p (cf., [FLPP01, Lemma 3.9]). Note that, in contrast to
the complex case, it is in general not possible to choose a holomorphic ϕ.
Moreover, z− ordp ψψ is continuous, but in general not differentiable at p.

There always exists a covering of M with local holomorphic frames,
[BP]. From the Leibniz rule follows that any covering with local holomor-
phic frames completely determines the quaternionic holomorphic structure
D. If M is compact, then H0(V ) is finite dimensional (cf., [FLPP01, The-
orem 2.2])

2.5. The Underlying Complex Vector Bundle. If D commutes
with J then D is a usual complex holomorphic structure or ∂̄–operator on
the complex vector bundle (V, J). Any quaternionic holomorphic structure
D splits into a ∂̄–operator, the J commuting part of D, and a quaternionic
J–anticommuting endomorphism field Q ∈ Γ(K̄End−(V )), called the Hopf
field of D. For D, ∂̄, and Q one has

D = ∂̄ +Q, ∂̄ψ =
1
2
(Dψ − JDJψ), Qψ =

1
2
(Dψ + JDJψ),

for all ψ ∈ Γ(V ).
Let

V̂ = {ψ ∈ V | Jψ = ψi }
then V = V̂ ⊕ V̂ j and ∂̄ is a complex holomorphic structure on V̂ and V̂ j,
which are isomorphic as complex holomorphic vector bundles via multiplica-
tion by j. Every quaternionic holomorphic vector bundle V is, consequently,
the double of a complex holomorphic vector bundle V = V̂ ⊕ V̂ j plus a Hopf
field Q ∈ Γ(K̄End−(V )), and Q ≡ 0 means D = ∂̄ and V is (the double of)
a complex holomorphic vector bundle. If the basis M of V is compact, one
defines the degree of V to be the degree of V̂ :

deg V := deg V̂ .
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2.6. The Willmore Energy. The real part of the trace of a quater-
nionic endomorphism B, i.e., a quarter of the trace of B as a real endomor-
phism, is well defined. Hence one can define

〈B〉 :=
1
4

trR(B).

The Willmore energy W (V ) of a quaternionic holomorphic vector bundle
(or rather its holomorphic structure D = ∂̄ +Q) is then by definition

W (V ) = 2
∫
M
〈Q ∧ ∗Q〉.

Note that if M is not compact, then W (V ) can well be infinity.

2.7. Connections and Holomorphic Structures. Let∇ be a quater-
nionic connection on a complex quaternionic vector bundle V and ∇ =
∇′ +∇′′ its decomposition into its (1,0) part ∇′ = 1

2(∇− J ∗ ∇) and (0,1)
part ∇′′ = 1

2(∇+J ∗∇). ∇′ is a quaternionic holomorphic structure of V̄ and
∇′′ one of V . Further decomposition into J commuting and anticommuting
parts yields the type decomposition:

∇ = ∇′ +∇′′ = (∂ +A) + (∂̄ +Q).

∂ and ∂̄ are complex holomorphic structures on V̄ and V . A ∈ Γ(K End−(V ))
and Q ∈ Γ(K̄ End−(V )), and A and Q are the Hopf fields of (V̄ ,∇′) and
(V,∇′′), respectively. Because ∇̂ = ∂ + ∂̄ is a complex connection, one has

∇J = 2(∗Q− ∗A).

This means that 2∗Q and 2∗A are the (0, 1) and (1, 0) parts of ∇J , respec-
tively. The curvature tensor R∇ of M , its J–commuting part R∇+ , and its
J–anticommuting part R∇− satisfy

R∇ = R∇̂ +Q ∧Q+A ∧A+ d∇̂(A+Q),

R∇+ = R∇̂ +Q ∧Q+A ∧A, R∇− = d∇̂(A+Q).

In the calculation of the first line Q ∧ A = A ∧ Q = 0 is used. This is an
instance of the type argument.

2.8. The Type Argument. The type argument is often used to show
that certain wedge products of one forms on a Riemann surface vanish. It
is a generalization of the fact that there are no nontrivial 2–forms of type
(2, 0) and (0, 2) on a Riemann surface.

For example, the vanishing of Q∧A follows because ∗Q = QJ and ∗A =
JA (Q is right and A is left K) implies for all X ∈ TM : Q ∧A(X, JMX) =
QX∗AX − ∗QXAX = QXJAX − QXJAX = 0. The vanishing of A ∧ Q
follows because A is right and Q is left K̄.

Another example is two 1–forms ω, η ∈ Ω1(H) with values in H such
that ∗ω = ωN for some map N : M → H and ω does not vanish on a dense
subset of M , then ω ∧ η = 0 is equivalent to ∗η = Nη.
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3. Quaternionic Holomorphic Line Bundles

For the following investigations the most important quaternionic holo-
morphic vector bundles are line bundles, i.e., quaternionic holomorphic vec-
tor bundles with 1–dimensional fibers. For nowhere vanishing sections of
such line bundles one can define the normal vector. It is shown in the
present section that one can calculate the degree and the Willmore energy
of the line bundle from every normal vector. In the second part of this sec-
tion the definition of the Weierstrass flag, points, and order from [FLPP01]
is given. Finally, it is shown that, in contrast to the complex case, the
generic holomorphic section realizes the base locus of a linear system.

3.1. Normal Vector. Let L be a complex quaternionic line bundle
and ψ ∈ Γ(L) a nowhere vanishing section. Such a section always exists,
by transversality. There is a unique smooth map N : M → H such that
Jψ = ψN . From J2 = − Id follows N2 = −1. Thus N is a map into
S2 ⊂ ImH = R3. N is called the normal vector of ψ.

3.2. The Degree of Normal Vectors. On compact M a normal vec-
tor N : M → S2 has a mapping degree. The mapping degrees of the normal
vectors of sections of a complex quaternionic line bundle are all equal.

Theorem. Let L be a complex quaternionic line bundle on a compact
Riemann surface and ψ ∈ Γ(L) a nowhere vanishing section with normal
vector N , then

degL = degN.

Proof. Let ∇ be the complex quaternionic connection on L defined by
the equation ∇ψ = −ψ 1

2NdN . Then the curvature tensor R∇ of ∇ satisfies
J R∇ ψ = −ψ 1

4NdN ∧ dN = ψ 1
2〈NdN, dN〉. Hence

degL =
1
2π

∫
M
J R∇ =

1
4π

∫
M
〈NdN, dN〉 = degN .

�

3.3. Type Decomposition by Normal Vectors. The left multipli-
cation with a normal vector induces a complex structure on H and conse-
quently a type decomposition of H–valued 1–forms α ∈ Ω1(H): α = α′ +α′′,
α′ = 1

2(α−N ∗α) and α′′ = 1
2(α+N ∗α). In most situations it is clear from

the context, which normal vector has to be taken, for example in

(ψdλ)′′ = ψ(dλ)′′

(dλ)′′ is the (0, 1)–part of dλ with respect to left multiplication with the
normal vector of ψ. Let ψ ∈ H0(L) without zeros, N its normal vector and
Q the Hopf field of the holomorphic structure of L, then one gets

Qψ = 1
2(Dψ + JDJψ) = 1

2JD(ψN) = 1
2J(ψdN)′′ = ψ 1

2NdN
′′.
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3.4. The Normal Vector Determines the Holomorphic Section.
In contrast to the complex case—where all sections have the normal vector
i—different holomorphic sections of quaternionic holomorphic line bundles
with nontrivial Hopf field have different normal vectors.

Theorem. If a quaternionic holomorphic line bundle L has two non-
trivial holomorphic sections with the same normal vector besides their zeros,
then the two sections are linearly dependent over the reals or L is a doubled
complex holomorphic line bundle.

Proof. Let ψ, ψ̃ ∈ H0(L) be two nontrivial holomorphic sections with
the same normal vector N besides their zeros. The set M0 = { p ∈ M |
ψp 6= 0 } is dense in M and there is a map λ : M0 → H such that ψ̃ = ψλ.
The quaternionic linearity of J implies Nλ = λN . Thus there exists λ1 and
λ2 : M0 → R, such that

λ = λ1 + λ2N.

The Leibniz rule and holomorphicity of ψ and ψ̃ imply

0 = D(ψλ) = D(ψ)λ+ (ψdλ)′′ = ψ(dλ)′′.

Decomposition of 0 = dλ′′ = 1
2(dλ + N ∗ dλ) into N–commuting and N–

anticommuting terms yields two equations:

0 = (dλ1 + dλ2N)′′ = 1
2(dλ1 + dλ2N + ∗dλ1N − ∗dλ2)

0 = λ2dN
′′.

The first equation means that λ̃ = λ1 +λ2i : M0 → C is a complex holomor-
phic function. This implies that λ2 ≡ 0 or λ2 does not vanish on a dense
open subset of M0. In the first case λ = λ1 is a real constant, and ψ̃ = ψλ1

on M . In the second case, the equation 0 = λ2dN
′′ implies that dN ′′ = 0.

The Hopf field Q of D satisfies 2Qψ = ψNdN ′′ for all ψ ∈ L, see 3.3 below.
Hence dN ′′ = 0 implies that Q vanishes identically on M . �

3.5. Willmore Energy. Let L be a quaternionic holomorphic line bun-
dle and ψ ∈ H0(L) nontrivial. Then ψ has a normal vector N away from
the zeros of ψ. The formula Qψ = ψ 1

2NdN
′′, from 3.3, then holds besides

the zeros of ψ, which is a set of measure zero. Thus

〈Q ∧ ∗Q〉 =
1
4

Re(NdN ′′ ∧N∗dN ′′) =
1
2
〈dN ′′N, dN ′′〉

away from the zeros of ψ and

W (L) =
∫
M
〈dN ′′N, dN ′′〉.

Let X ∈ TM and write JM for the complex structure of TM , then X, JMX is
positively oriented and 〈dN ′′N, dN ′′〉(X, JMX) = 〈dN ′′(X)N, dN ′′(X)N〉 =
|dN ′′(X)|2, because ∗dN ′′ = −NdN ′′ = dN ′′N . Thus 〈dN ′′N, dN ′′〉 is a
positive area form on M . Hence

W (L) = 0 ⇐⇒ Q = 0,

which implies that every quaternionic holomorphic line bundle with vanish-
ing Willmore energy is a (doubled) complex holomorphic line bundle.
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3.6. Remark. The equations 〈Q ∧ ∗Q〉(X, JX) = 1
2 |dN

′′(X)|2 and
Qψ = ψ 1

2NdN
′′ imply that 〈Q ∧ ∗Q〉 vanishes at p ∈ M if and only if Q

vanishes at p.

3.7. Weierstrass Numbers, Flag, Gaps, Points, and Order. Let
L be a quaternionic holomorphic line bundle and H ⊂ H0(L) an (n + 1)–
dimensional linear system, i.e., an (n + 1)–dimensional quaternionic vector
space of holomorphic sections of L. The Weierstrass numbers at p ∈M are
defined recursively as follows

n0(p) := min{ ordp ψ | ψ ∈ H },
nk+1(p) := min{ ordp ψ | ψ ∈ H, ordp ψ > nk(p) },

as long as there are elements ψ in H such that ordp ψ > nk(p). Let

Hk(p) := {ψ ∈ H | ordp ψ ≥ nn−k(p) }.

Lemma. dim (Hk/Hk−1) = 1.

Proof. The definition of the Hk implies dim (Hk/Hk−1) ≥ 1. Let
ψ1, ψ2 ∈ Hk \ Hk−1, then ordp ψ1 = ordp ψ2 = nn−k. Consequently, there
is a centered coordinate z : M ⊃ U → C, z(p) = 0, and nowhere vanishing
sections ϕ1, ϕ2 ∈ Γ(L U ) such that

ψ1,2 = znn−kϕ1,2 +O(nn−k + 1).

The holomorphic section ψ = ψ1ϕ1(0)−1 − ψ1ϕ2(0)−1 of L is contained in
Hk−1, because limz→0 z

nn−kψ = 0. Thus ψ1 and ψ2 are linearly dependent
modulo Hk−1. �

The lemma implies,
dimHk = k + 1,

because Hn = H. The flag

{0} ⊂ H0 ⊂ . . . ⊂ Hn−1 ⊂ Hn = H

is called the Weierstrass flag of H. The sequence 0 ≤ n0 < n1 < . . . < nn
is called the Weierstrass gap sequence.

A point p ∈ M at which the sequence differs from 0, 1, . . . , n is called a
Weierstrass point. The Weierstrass order ordpH of H at p ∈ M is defined
by

ordpH =
n∑
k=0

nk(p)− k.

Thus p ∈M is a Weierstrass point if and only if ordpH 6= 0. The Weierstrass
points are isolated, by [FLPP01, Lemma 4.1 & 4.9]. Hence if M is compact,
then there are only finitely many points with ordp ψ 6= 0. In this case one
can define the Weierstrass order ordH of H by

ordH =
∑
p∈M

ordpH.
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3.8. Base Points. Let H ⊂ H0(L) be a linear system of a quaternionic
holomorphic line bundle. A point p ∈M at which all elements of H have a
common zero is called a base point of H.

If H has dimension 1, then the base points of H are obviously the zeros
of every element in H and n0(p) = ordp ψ, for all ψ ∈ H and p ∈ M . In
contrast to the complex case, generic sections of linear systems of higher
dimension also realize the base locus of the linear system.

Theorem. If H ⊂ H0(L) is a linear system of a quaternionic holomor-
phic line bundle, then generic sections ψ ∈ H realize the base locus of H,
i.e., ordp ψ = n0(p) holds for all p ∈M .

Proof. The theorem follows if one shows that the set H̃ := {ψ ∈
H | ordψ 6= n0 } is a set of measure zero in H. Let n + 1 = dimH.
Because the n–th member of the Weierstrass flag Hn−1(p) contains all ψ ∈
H for which ordp ψ 6= n0(p), one has H̃ =

⋃
p∈M Hn−1(p). Let M0 =

M \ {base points of H}. Then
⋃
p∈M0

Hn−1(p) is the union of the kernels of
the evaluation maps

evp : H → Lp, ψ 7→ ψp.

As ev : M0 × H → LM0
is a surjective bundle homomorphism, its kernels

form a subbundle of hyperplanes in the trivial bundle H over M0. Because
the real dimension of M is 2 and the real codimension of quaternionic hy-
perplanes is 4, one concludes from Sard’s theorem, that

⋃
p∈M0

Hn−1(p) has
measure zero in H. The base points of a linear system are isolated, because
zeros of holomorphic sections are isolated. Hence M \M0 is countable. Thus
H̃ has measure zero. �

4. Holomorphic Bundle Homomorphisms

In the following the questions whether a given complex quaternionic
bundle homomorphism is holomorphic and whether two given quaternionic
holomorphic line bundles are isomorphic occur frequently. The first ques-
tion can often be answered by Lemma 4.1, whereas Theorem 4.2 is useful
for answering the second one. Finally, in Theorem 4.3 an important differ-
ence between the complex and the quaternionic case is exposed: There are,
even locally, no nontrivial automorphisms of quaternionic holomorphic line
bundles.

4.1. Holomorphic Bundle Homomorphisms. A quaternionic bun-
dle homomorphism B : V → Ṽ is called a quaternionic holomorphic bundle
homomorphism, if it is complex linear, i.e., BJ = J̃B, and holomorphic, i.e.,
BD = D̃B. If D = ∂̄ +Q and D̃ = ˜̄∂ + Q̃, as in 2.5, then B∂̄ = ˜̄∂B, i.e., B
is complex holomorphic, and BQ = Q̃B.

If B : L→ L̂ is a holomorphic bundle homomorphism between line bun-
dles, then one can define the vanishing order of B at p ∈ M by ordpB :=

ordp B̂, where B̂ : L̂ → ˆ̃L is the induced complex holomorphic homomor-
phism between the underlying complex line bundles (cf., 2.5). If M is com-
pact, then B has finite total vanishing order, ordB :=

∑
p∈M ordpB.
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Lemma. Let V and Ṽ be quaternionic holomorphic vector bundles and
B : V → Ṽ a complex quaternionic bundle homomorphism. If Ui is an
open cover of M such that there exist holomorphic frames (ψij)1≤j≤rankV of
V Ui

, then B is holomorphic if and only if the sections Bψij are holomorphic
sections of Ṽ .

Proof. If B is holomorphic, then all Bψij are holomorphic. If, on the
other hand, all Bψij are holomorphic, then BDψ = D̃Bψ for all ψ ∈ Γ(L),
by the Leibniz rule and because BJ = J̃B implies B(α′′) = (Bα)′′ for all
α ∈ Ω1(L). �

Note that the lemma remains true if the (ψij)1≤j≤rankV fail to be a basis
of the fiber of V on a discrete subset M0 ⊂M .

4.2. Isomorphic Quaternionic Holomorphic Line Bundles. Com-
plex holomorphic line bundles with nontrivial holomorphic sections are iso-
morphic if and only if they have holomorphic sections with the same zero
divisor. The same holds for quaternionic holomorphic line bundles if one
also requires that the normal vectors of these sections are equal.

Theorem. Let L and L̃ be two quaternionic holomorphic line bundles.
Suppose that there exists a nontrivial holomorphic section ψ ∈ H0(L). Let
N be its normal vector on M0 = { p ∈ M | ψp 6= 0 }. Then L and L̃ are
isomorphic if and only if L̃ has a holomorphic section ψ̃ with normal vector
N on M0 such that ordp ψ = ordp ψ̃ for all p ∈M .

Proof. If B ∈ Γ(Hom+(L, L̃)) is a holomorphic isomorphism, then
ψ̃ := Bψ is a holomorphic section of L̃ with the same vanishing order as ψ.
Furthermore, on M0 one gets Jψ̃ = J̃Bψ = BJψ = BψN = ψ̃N .

Conversely, if there exists ψ̃ ∈ H0(L̃) with normal vector N on M0 such
that ordp ψ = ordp ψ̃, then Bψ := ψ̃ defines a quaternionic isomorphism
from LM0

to L̃M0
. The equality of the normal vectors of ψ and ψ̃ implies

B ∈ Γ(Hom+(L, L̃)M0
). Furthermore, B is holomorphic, by Lemma 4.1, and

bounded near the zeros of ψ and ψ̃. The boundedness follows from 2.4 and
the assumption that the vanishing orders of ψ and ψ̃ coincide. The induced
bundle homomorphism B̂ ∈ Γ(Hom(L̂, ˆ̃L)M0

) is complex holomorphic on

the underlying complex holomorphic line bundles L̂ and ˆ̃L. Thus B̂, and
consequently B, can be holomorphically extended into the zeros of ψ. B
does not vanish at the zeros of ψ, once again because the vanishing orders
of ψ and ψ̃ coincide. Hence the extension of B to M is a quaternionic
holomorphic bundle isomorphism between L and L̃. �

4.3. Automorphisms of Holomorphic Line Bundles. In the com-
plex case holomorphic line bundles on noncompact Riemann surfaces have
many holomorphic automorphisms. This does not hold for quaternionic
holomorphic line bundles with nontrivial Hopf field.

Theorem. If a quaternionic holomorphic line bundle L has a holomor-
phic automorphism that is not multiplication with a real constant, then the
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Hopf field of L vanishes identically, i.e., L is a doubled complex holomorphic
line bundle.

A consequence of this theorem is that holomorphic bundle homomor-
phisms of quaternionic holomorphic line bundles with nontrivial Hopf field,
even locally, only differ by real multiplicative constants.

Proof. Let B be a holomorphic automorphism of L. Let ψ ∈ H0(L U )
be a local holomorphic section on U ⊂M . Then ψ̃ := Bψ is also a holomor-
phic section of L U . Because BJ = JB and B is quaternionic linear ψ̃ and
ψ have the same normal vector N . Then Theorem 3.4 implies that Q U ≡ 0
or there exist c ∈ R such that Bψ = ψ̃ = ψc.

To conclude the proof, it is sufficient to show that if Bψ = ψc for
some c ∈ R and ψ ∈ Γ(L U ), then B is multiplication with c on all of M .
Let ψ1 ∈ H0(L U1

) and ψ2 ∈ H0(L U2
) be local holomorphic sections on

overlapping open subsets U1, U2 ⊂ M and suppose that B is multiplication
by c on U1. Then Bψ2 − ψ2c is holomorphic on U2 and vanishes on the
nonempty open set U1 ∩ U2, and, therefore, vanishes on all of U2, by 2.4.
Hence B is multiplication by c on U2. Because M can be covered by local
holomorphic sections of L, as mentioned in 2.4, and M is connected, it
follows that B is multiplication by c on all of M . �

4.4. Notation. In the rest of this text the adjective “quaternionic”
is usually omitted. If it is necessary the adjective “complex” is used to
emphasize that something is only assumed to be complex linear, complex
holomorphic, etc. For example “ψ ∈ Γ(V ) is holomorphic” means Dψ = 0,
and “ψ ∈ Γ(V ) is complex holomorphic” means ∂̄ψ = 0.



CHAPTER II

Surfaces in S4

Identifying S4 with HP1, a conformal immersion of a Riemann surface
into S4 can be interpreted as an immersed quaternionic holomorphic curve
in HP1. There are four quaternionic holomorphic line bundles associated to
such an immersion.

Two of these quaternionic holomorphic line bundles are Möbius invari-
ant. They are determined by the property that all stereographic projections
of the immersion or its antipodal reflection are quotients of holomorphic
sections of these bundles.

The quaternionic holomorphic structures of the other two, the Euclidean
holomorphic line bundles, depend on the choice of a point ∞ ∈ S4. These
bundles are determined by the property that they are paired and that the
differential of the stereographic projection of the immersion with pole ∞ is
the product of two holomorphic sections of these bundles.

For nonimmersed holomorphic curves in HP1 one can at least define one
Möbius invariant and one Euclidean holomorphic line bundle. This and the
behavior of these curves at the zeros of their differentials is discussed in the
section on branched conformal immersions.

The relations of the holomorphic structures of the four quaternionic
holomorphic line bundles associated to the immersion can be visualized in
the quadrilateral of holomorphic line bundles. This quadrilateral can then
be extended to the ladder of holomorphic line bundles. Many results in the
remaining text rely on a detailed investigation of the relations between the
holomorphic line bundles that occur in this ladder.

If the immersed surface takes values in some 3–sphere in S4, then the
quaternionic holomorphic line bundles associated to this immersion have
special properties. This is the subject of the last section of this chapter.

5. The Conformal 4–Sphere and HP1

The standard metric of the 4–sphere is the induced metric on the em-
bedding of the 4–sphere as the unit sphere S4 ⊂ R5. The 4–sphere together
with the conformal structure of the standard metric is called the conformal
4–sphere. In the present text the quaternionic projective line HP1 is used
as a model for the conformal 4–sphere. This model is very similar to the
CP1 model of the conformal 2–sphere. The Möbius transformations of S4,
for example, can be represented by linear transformations of H2. But, in
contrast to the case of the conformal 2–sphere, every conformal diffeomor-
phism between open subsets of S4 extends to a Möbius transformation, by
Liouville’s theorem, see [Jeromin, 1.5.4].

11
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Another model, the light cone model, of the conformal 4–sphere is de-
scribed in 26.8. Neither the light cone nor the quaternionic model for the
Möbius geometry can be discussed in much detail in the present text. A com-
prehensive introduction to the Möbius geometry of the conformal n–sphere,
the relation of the different models, applications as well as an extensive bib-
liography can be found in the excellent lecture note “Introduction to Möbius
differential geometry” by Udo Hertrich–Jeromin [Jeromin].

5.1. HP1, Affine and Euclidean coordinates. The quaternionic pro-
jective line HP1 is the set of quaternionic lines in H2. The line through x ∈
H2\{0} is denoted [x] ∈ HP1. Every quaternionic linear form β ∈ (H2)∗\{0}
induces an affine coordinate Aβ of HP1

Aβ : HP1 \{∞} −→ {x ∈ H2 | β(x) = 1 }
[x] 7−→ x(β(x))−1,

where∞ = kerβ is called the pole of the affine coordinate. If f is a map into
HP1 \{∞}, then Aβf is a section of the trivial quaternionic vector bundle
H2 over the domain of f . This section is called the affine lift of f. If α, β is
a basis of (H2)∗, then

σα,β := αAβ : HP1 \{∞} −→ H

[x] 7−→ α(x)(β(x))−1.

is called a Euclidean coordinate or stereographic projection of HP1. For the
inverse of a Euclidean coordinate one gets

σ−1
α,β : H −→ HP1 \{∞}

λ 7−→ aλ+ b,

where a, b ∈ H2 denotes the dual basis of α, β.

5.2. Identification of HP1 and S4. If one identifies H ∪ {∞} with
S4 ⊂ R5 via stereographic projection, then the composition with a Euclidean
coordinate is a bijection between S4 and HP1. To see that this identification
of S4 and HP1 induces a well defined conformal structure on HP1, one
needs to show that the transition functions of the Euclidean coordinates are
conformal transformations of H ∪ {∞}.

Let α, β and α̃, β̃ be two bases of (H2)∗ and A ∈ GL(H, 2) such that
αA = α̃ and βA = β̃, then σα,βA = σα̃,β̃ . Thus the transition functions of
Euclidean coordinates σα̃,β̃σ

−1
α,β = σα,βAσ

−1
α,β can be identified, via a fixed

Euclidean coordinate, with the projective transformations PGL(H, 2) =
GL(H, 2)/R∗ of HP1.

The group GL(H, 2) is generated by

Sλ1,λ2 =
(
λ1 0
0 λ2

)
, Tµ =

(
1 µ
0 1

)
, R = ( 0 1

1 0 ).

λ1, λ2, µ ∈ H \ {0}. These transformations correspond in the Euclidean
coordinate σα,β to the following transformations of H ∪ {∞}:

σe1,e2Sλ1,λ2σ
−1
e1,e2(x) = λ1xλ

−1
2 , σe1,e2Tµσ

−1
e1,e2(x) = x+ µ,

σe1,e2Rσ
−1
e1,e2(x) = x−1 =

x̄

|x|2
,
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for all x ∈ H. Hence Sλ1,λ2 induces an orientation preserving similarity of
H, Tµ a translation and R the orientation preserving inversion at the unit
sphere S3 ⊂ H.

These three types of transformations generate the group of orientation
preserving Möbius transformations of S4 = H ∪ {∞}, see [KulPi, p. 13–
15]. Consequently, the identification of HP1 with S4 ⊂ R5 via a Euclidean
coordinate with S4 = H ∪ {∞} is unique up to Möbius transformations.
The group of projective transformations of HP1 is noncanonically identified
with the group of Möbius transformations of S4. The induced conformal
structure on HP1 is independent of the choice of the Euclidean coordinate.
The group of projective transformations fixing the pole∞ of a Euclidean co-
ordinate σα,β corresponds to the group of orientation preserving similarities
of HP1 \{∞} ∼= H. Finally, one can define the standard orientation of HP1

to be the pullback of the standard orientation of H, for which 1, i, j,k is a
positively oriented bases, because the transition functions of the Euclidean
coordinates are orientation preserving.

5.3. The Tangent Space of HP1. One usually identifies the tangent
space T[x]HP1 of HP1 at [x] with Hom([x],H2/[x]) as follows: Let π : H2 →
HP1, x 7→ [x] be the canonical projection, then dxπ : H2/[x]→ T[x]HP1 is an
isomorphism. The map [x] → H2/[x], y 7→ dyπ

−1(v) is for all v ∈ T[x]HP1

quaternionic linear, because dyπ(w) = dyλπ(wλ), for all y, w ∈ H2 and
λ ∈ H. Thus the map

T[x]HP1 −→ Hom([x],H2/[x])
v 7−→ (y 7→ dxπ

−1(y))

is an isomorphism.
Let f : R → HP1 and f̃ : R → H2 be some lift of f , i.e., f = πf̃ . The

differential of f at p ∈ R can, with the above identification, be written as

dpf = (f̃(p) 7→ ∇f̃ p mod f(p)),

where ∇ is the trivial connection on the trivial bundle H2 over R.
The differential of a map f : HP1 → R at [x] ∈ HP1 is in terms of its

lift f̃ = fπ : H2 → R given by

d[x]f(v) = dxf̃(v(x)),

for all v ∈ T[x]HP1 = Hom([x],H2/[x]). Here the map dxf̃ : H2 → R and
the induced map dxf̃ : H2/[x]→ R are not distinguished notationally. More
generally, if A ∈ Hom(V,W ), then the induced map on V/ kerA is in the
following also denoted by A.

For example, the affine coordinate Aβ : HP1 \{∞} → β−1({1}) has at
[x] ∈ HP1 the differential

d[x]Aβ : Hom([x],H2/[x]) −→ ∞ ⊂ H2

v 7−→ v(x)(β(x))−1 − x(β(x))−1β(v(x))(β(x))−1.

Here, v(x) stands, according to the above convention, at both occurrences for
the same arbitrary element of the equivalence class v(x) ⊂ H2. The formula
of the differential of a Euclidean coordinate σα,β is then easily derived from
dσα,β = αdAβ.
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5.4. 3–Spheres in HP1. A subset of HP1 is a 3–sphere if one (and
then every) stereographic projection maps it onto a 3–sphere or a real hy-
perplane plus infinity in H ∪ ∞. The 3–spheres in HP1 can be described
with quaternionic Hermitian forms. A quaternionic Hermitian form 〈 , 〉 on
H2 is a real bilinear H–valued map that is quaternionic linear in the right
entry and Hermitian, i.e., 〈x, y〉 = 〈y, x〉. The set of isotropic lines of an
indefinite Hermitian form on H2 is a 3–sphere in HP1, and every 3–sphere
arises this way. The 3–sphere uniquely determines the indefinite Hermitian
form, up to a real factor.

This can be seen as follows. If 〈 , 〉 is an indefinite Hermitian form. Then
there exists a basis a, b ∈ H2 such that 〈a, a〉 = 〈b, b〉 = 0 and 〈a, b〉 = 1.
If α, β is the dual basis of a, b, then 〈x, x〉 = 2 Re(σα,β(x))|β(x)|−2. Thus
the stereographic projection σα,β maps the set of isotropic lines of 〈 , 〉 onto
the real hyperplane ImH ∪ {∞}. Conversely, let a, b be a basis of H2 such
that σα,β maps the 3–sphere onto ImH ∪ {∞}, and define the Hermitian
form by 〈a, a〉 = 〈b, b〉 = 0 and 〈a, b〉 = 1. Then 〈x, x〉 = 0 if and only if
σα,β(x) ∈ ImH as above. Uniqueness follows since 〈a, a〉 = 〈b, b〉 = 0 and
〈x, x〉 = 0 ⇐⇒ σα,β(x) ∈ ImH implies 〈a, b〉 ∈ R.

5.5. 2–Spheres in HP1. A subset of HP1 is a 2–sphere if one (and
then every) stereographic projection maps it onto a 2–sphere or a real plane
plus infinity in H ∪∞. If S ∈ End(H2) and S2 = −1, then the set of fixed
points of the Möbius involution induced by S is a 2–sphere in HP1, every
2–sphere arises this way, and the 2–sphere determines the endomorphism S
up to sign (cf., [Jeromin, Lemma 4.8.1]). In what follows the 2–sphere, the
endomorphism of H2 as well as the Möbius involution are denoted by the
same letter, usually S.

The endomorphism S can be used to define an orientation of the 2–
sphere. If p ∈ HP1 is a fixed point of S, i.e., Sp = p, then S induces
on each of the quaternionic lines p and H2/p a complex structure, and
TpS = Hom+(p,H2/p). Thus S induces, by pre– or post–composition, a
complex structure on TpS, hence an orientation of the 2–sphere. Conse-
quently, oriented 2–spheres in HP1 are in canonical one–to-one correspon-
dence to the endomorphisms of H2 that square to minus one.

5.6. Incidence of 2–spheres and 3–spheres in HP1. A 2–sphere is
contained in a 3–sphere if and only if the endomorphism S ∈ End(H2) that
represents the 2–sphere is Hermitian with respect to the Hermitian form
representing the 3–sphere, see [Jeromin, Lemma 4.8.6].

6. Conformal Immersions into H

A differentiable map f : M → C of a Riemann surface M to C is holo-
morphic if and only if the Cauchy–Riemann equations ∗df = idf are satisfied.
As a conformal map f : M → C is either holomorphic or antiholomorphic,
this can be reformulated as follows: A smooth map f : M → C is conformal
if and only if there exists a smooth map N : M → C such that ∗df = Ndf
(clearly N is then i or −i). This version generalizes verbatim to H–valued
immersions of Riemann surfaces.
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6.1. Lemma. Let f : M → H be an immersion. Then the following
three statements are equivalent

(i) f is conformal.
(ii) There exists N : M → H such that ∗df = Ndf .
(iii) There exists R : M → H such that ∗df = −dfR.

In this case N and R are unique, N2 = R2 = −1, and the tangent and
the normal bundle of f can be described by

>f = {x ∈ H | NxR = x }, ⊥f = {x ∈ H | NxR = −x }.

Proof. The immersion f : M → H is conformal if and only if | ∗ df | =
|df | and ∗df ⊥ df .

(ii) implies −df = ∗2df = N2df . Thus N2 = −1, which is equivalent
to |N | = 1 and N(p) ∈ ImH for all p ∈ M . Hence |∗df | = |Ndf | = |df |
and 〈∗df, df〉 = Re(∗dfdf) = Re(N |df |2) = 0. Thus existence of N implies
conformality of f .

Suppose now that |∗df | = |df | and ∗df ⊥ df . This implies that N :=
∗df(X)(df(X))−1 : M → H does not depend on the choice of X ∈ TM .
Hence ∗df = Ndf . Thus (i) and (ii) are equivalent. The equivalence of (i)
and (iii) can be proven the same way.

At each point p ∈ M the assignment x 7→ NxR is a real linear map. It
has the two eigenvalues ±1, and the corresponding eigenspaces are orthog-
onal, real 2–dimensional subspaces of H. Since >f = df(TM) ⊂ {x ∈ H |
NxR = x } is also 2–dimensional, the description of >f and ⊥f follows. �

6.2. Left and Right Normal Vector. The equation N2 = R2 = −1
means that N and R assume values in S2 ⊂ ImH = R3. They are called the
left respectively right normal vector of f . Note that N and R are in general
not orthogonal to f . In fact N (or R) taking values in the normal bundle of
f is equivalent to N = R, which is equivalent to f lying in some translation
of ImH = R3. In this case N is the Gauss normal of f (see Section 12).

6.3. Degree of the Tangent and Normal Bundle. Left multipli-
cation by N induces complex structures on >f and ⊥f , which have the
property that the induced orientations on >f and ⊥f together give the
standard orientation of H, as defined in 5.2.

Corollary. On compact M the degree of >f and ⊥f can be calculated
from the degrees of N and R:

deg>f = degN + degR and deg⊥f = degN − degR.

Proof. Left multiplication with N makes H into a complex quater-
nionic line bundle. As a complex bundle it is the double of the underlying
complex line bundle. Thus the degree of H is 2 degN , by Theorem 3.2. The
rank 2 complex vector bundle H is also the direct sum of >f and ⊥f , hence

2 degN = deg>f + deg⊥f.

Left multiplication with R makes H into a complex quaternionic line
bundle. On the conjugate of >f left multiplication with R induces the
complex structure of >f , because Rx̄ = −xR = Nx for x ∈ >f , but on
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the conjugate of ⊥f left multiplication with R induces the negative of its
complex structure. Thus as above, one gets

2 degR = deg>f − deg⊥f.
�

6.4. Remark. For orientable surfaces it is no restriction to consider
only conformal immersions of Riemann surfaces. Because, ifM is an oriented
2–dimensional manifold and f : M → R4 is an immersion, then there is a
unique complex holomorphic structure on M , such that f is a conformal
immersion. But if one considers two conformal immersions on M , then it is
a special property of this pair to introduce the same complex holomorphic
structure on M . The Bäcklund and Darboux transformations of chapter IV
and V have this as a build in feature.

7. Holomorphic Curves in HP1

In the previous section the conformality of an immersion into H was
characterized by an equation analogous to the Cauchy–Riemann equations
of complex analysis. In the present section this is used to identify conformal
immersions into HP1 with immersed holomorphic curves in HP1.

7.1. Maps into HP1. Let f : M → HP1 be a smooth map, then f(p)
is a quaternionic line in H2. Hence, f can (and will) be identified with
the quaternionic line subbundle L ⊂ H2 that satisfies f(p) = Lp, where
H2 denotes the trivial quaternionic vector bundle of rank 2 over M . Each
section ψ ∈ Γ(L) without zeros can be interpreted as a lift ψ : M → H2 of
f . One defines the derivative of L to be δ := df ∈ Ω1 Hom(L,H2/L), thus
δX(ψ) ≡ ∇Xψ mod L for all X ∈ TM , see 5.3. Let π : H2 → H2/L be the
canonical projection, then

δ := df = π∇
L
.

A quaternionic line subbundle L ⊂ H2 over a Riemann surface M is called
a curve in HP1.

7.2. Holomorphic Curves in HP1. A line subbundle L ⊂ H2 over a
Riemann surface M is called a holomorphic curve in HP1 if there exists a
complex structure J on L such that

∗δ = δJ.

The zeros of the derivative δ of a holomorphic curve L are isolated branch
points of L, by Theorem 10.2 and its corollary. This implies that the complex
structure J is uniquely determined by ∗δ = δJ . Furthermore, ∗δ = δJ
implies that L is immersed away from the zeros of its derivative.

7.3. A form β ∈ (H2)∗ or basis α, β ∈ (H2)∗ is called admissible for a
curve L ⊂ H2, if ∞ = kerβ does not lie on L. That means that the affine
lift β−1 := AβL ∈ Γ(L) and the stereographic projection σα,βL = α(β−1)
are well defined. The notation β−1 for the affine lift of L with respect to β
emphasizes the fact that β−1 is the unique section of L satisfying β(β−1) = 1.
From Sard’s Theorem follows that generic elements of (H2)∗ are admissible.
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7.4. Lemma. Let L ⊂ H2 be a curve in HP1 and α, β ∈ (H2)∗ an ad-
missible basis. Then L is a holomorphic curve if and only if the stereographic
projection σα,βL of L has a right normal vector. In this situation each of
the following three equations determines the right normal vector R : M → H

of σα,βL.
(i) Jβ−1 = −β−1R, i.e., −R is the normal vector of β−1.
(ii) ∗d(σα,βL) = −d(σα,βL)R, i.e., R is the right normal vector of σα,βL.
(iii) dLσα,β(vJ) = −dLσα,β(v)R for all v ∈ Hom(L,H2/L), i.e., dLσα,β is

complex linear with respect to J and right multiplication with −R.

Note that the curve in the lemma does not need to be immersed.

Proof. The affine lift β−1 = AβL satisfies β(β−1) = 1. Thus the
differential of the stereographic projection σα,β along L satisfies

dLσα,β(v) = α(vβ−1)− α(β−1)β(vβ−1)

for all v ∈ TLHP1 = Hom(L,H2/L) (cf., 5.3). Thus

d(σα,βL) = dLσα,βδ = α(δβ−1)− α(β−1)β(δβ−1).

Hence if L is a holomorphic curve and −R is the normal vector of β−1,
then ∗d(σα,βL) = −d(σα,βL)R. Thus σα,βL has a right normal vector. If,
conversely, σα,βL has a right normal vector R, then the quaternionic linear
extension of Jβ−1 = −β−1R is the complex structure on L that makes L
into a holomorphic curve. �

7.5. Dual Curve. With every curve L in HP1 comes another curve,
namely its dual curve L⊥ ⊂ (H2)∗, whose fiber at p ∈M is the quaternionic
line L⊥p = {β ∈ (H2)∗ | β L = 0 }.

Lemma. If L ⊂ H2 is a holomorphic curve and α, β ∈ (H2)∗ an ad-
missible basis with dual basis a, b ∈ H, then b, a is admissible for L⊥ and

σb,aL
⊥ = −σα,βL.

This means that the stereographic projections of L⊥ are the Möbius
reflections of the stereographic projections of L. Seen as maps into S4 ⊂ R5,
the lemma implies that the curve L⊥ is, up to a Möbius transformation, the
antipodal reflection of L.

Proof. Admissibility of β for L is equivalent to the admissibility of a
for L⊥. The affine lift a−1 = AaL

⊥ of L⊥ satisfies a−1 = α−βσα,βL, because
(α− βσα,βL)(β−1) = α(β−1)− σα,βL = 0 and (α− βσα,βL)(a) = 1. Hence
σb,aL

⊥ = a−1(b) = −σα,βL. �

7.6. Conformal Immersions into HP1. Lemma 6.1 can now be for-
mulated in terms of holomorphic curves instead of normal vectors.

Theorem. Let L ⊂ H2 be an immersed curve. Then the following three
statements are equivalent

(i) L is conformal.
(ii) L is holomorphic.
(iii) L⊥ is holomorphic.
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In this case the tangent and the normal bundle of L are given by

>L = Hom+(L,H2/L) and ⊥L = Hom+(L̄,H2/L),

as complex line bundles.

Proof. Let α, β ∈ (H2)∗ be an admissible basis. The definition of the
conformal structure of HP1 in 5.2 then implies that L, seen as a map into
HP1, is conformal if and only if σα,βL is conformal. This is by Lemma 6.1
and 7.4 equivalent to L being a holomorphic curve.

The stereographic projection σα,βL is conformal if and only if σb,aL⊥ =
−σα,βL is conformal (cf., Lemma 7.5). This is, as before, equivalent to L⊥

being a holomorphic curve. Thus L is a holomorphic curve if and only if L⊥

is a holomorphic curve.
The description of the tangent and normal bundle of L follows from the

equalities

>σα,βL = {x ∈ H | NxR = x } and ⊥σα,βL = {x ∈ H | NxR = −x },
given in Lemma 6.1, the formulas

dLσα,β(vJ) = −dLσα,β(v)R and dLσα,β(J⊥v) = NdLσα,β(v),

from Lemma 7.4, and the fact that dLpσα,β is by definition a conformal iso-
morphism between TLp HP1 and H, which maps >pL onto >pσα,βL. The
complex structures on >σα,βL and ⊥σα,βL, as defined in 6.3, are given by
right multiplication with −R and R, respectively. This implies that pre-
composition with J is the complex structure on >L = Hom+(L,H2/L) and
precomposition with −J is the complex structure on ⊥L = Hom+(L̄,H2/L).

�

7.7. Example. If a curve L in HP1 is not immersed, then it is possible,
in contrast to the complex situation, that L is holomorphic, but L⊥ is not.
For example, the curve L =

(
z2
j+z

)
H ⊂ H2 over M = C is an immersion

away from z = 0. The stereographic projection σe∗1,e∗2L = z2(j + z)−1 has
the right normal vector R = −(j+ z)i(j+ z)−1. Hence L is a holomorphic
curve, by Lemma 7.4. But the left normal vector of σe1,e2L is

N =
4 + 3|z|2 + |z|4

4 + 5|z|2 + |z|4
i− z3

|z|2
4 + 2|z|2

4 + 5|z|2 + |z|4
k,

which does not extend smoothly into z = 0. Hence Lemma 7.4 and 7.5 imply
that L⊥ is not a holomorphic curve.

7.8. The Four Complex Quaternionic Line Bundles. There are
four complex quaternionic line bundles canonically associated to a conformal
immersion f : M → HP1:

L ⊂ H2, L⊥ ⊂ (H2)∗, L−1 = (H2)∗/L⊥, H2/L = (L⊥)−1.

Let δ be the derivative of L, δ⊥ the derivative of L⊥, and ∇ the trivial
connection of H2 as well as (H2)∗. Let ϕ and ψ be sections of L⊥ and L,
respectively, then they are also sections of (H2)∗ and H2. From ϕ(ψ) = 0
follows ∇ϕ(ψ) = −ϕ(∇ψ) and δ⊥ϕ(ψ) = −ϕ(δψ). Consequently,

δ⊥ = −δ∗, ∗δ = J⊥δ = δJ, and ∗ δ⊥ = Jδ⊥ = δ⊥J⊥,



8. THE MÖBIUS INVARIANT HOLOMORPHIC LINE BUNDLE 19

where J denotes the complex structures of L as well as L−1, and J⊥ the
complex structures of L⊥ as well as (L⊥)−1.

7.9. If M is compact, then there is a corollary to Theorem 7.6, which
relates the degrees of the four complex quaternionic line bundles associated
to an immersed holomorphic curve L, the degrees of the normal vectors of
stereographic projections of L, and the degrees of the tangent and normal
bundle of L.

Corollary. Let L be an immersed holomorphic curve on a compact Rie-
mann surface M of genus g. Let N and R be the left and right normal vectors
of some admissible stereographic projection of L, then

degR = −degL = degL−1,

degN = −degL⊥ = degH2/L.

The degrees of the tangent and normal bundle satisfy

deg>L = degH2/L+ degL−1 = 2− 2g,

deg⊥L = degH2/L− degL−1 = 2− 2g − 2 degL−1.

Proof. The first two equations are a consequence of Theorem 3.2 and
the fact that −R and −N are the normal vectors of non vanishing sections
of L and L⊥, by Lemma 7.4. The formulas for deg>L and deg⊥L follow
from Theorem 7.6, because deg Hom+(L,H2/L) = degH2/L − degL and
deg Hom+(L̄,H2/L) = degH2/L+degL. The equalities involving the genus
follow from the Gauss–Bonnet formula deg>L = 2− 2g. �

8. The Möbius Invariant Holomorphic Line Bundle

Let L ⊂ H2 be a holomorphic curve in HP1. The following theorem
shows that the complex quaternionic line bundle

L−1 = (H2)∗/L⊥

carries a unique Möbius invariant holomorphic structure such that the co-
ordinate functions of H2 induce holomorphic sections. If the dual curve
L⊥ ⊂ (H2)∗ of L is also a holomorphic curve (in particular if L is immersed,
by Theorem 7.6), then

H2/L = (L⊥)−1

also has a canonical Möbius invariant holomorphic structure.

8.1. Theorem. Let L ⊂ H2 be a holomorphic curve. Then there is
a unique holomorphic structure on L−1 with the following property: The
restriction of every β ∈ (H2)∗ to L is a holomorphic section of L−1.

This theorem is a special case of a theorem for holomorphic curves in
quaternionic projective space of arbitrary dimension (cf., [FLPP01, Theo-
rem 2.3] or Section 14).

The holomorphic line bundle (ML)−1 of every orientation preserving
Möbius transformation ML, M ∈ PGL(H2), of L is obviously isomorphic
to L−1. The holomorphic line bundle L−1 with the holomorphic structure
of the theorem is called the Möbius invariant or canonical holomorphic line
bundle of the curve L.
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Proof. Let β ∈ (H2)∗ be admissible for L. Then β L is a nowhere
vanishing section of L−1 and D(β L) = 0 uniquely determines a quaternionic
holomorphic structure on L−1, by the Leibniz rule. It remains to show that
for every α ∈ (H2)∗ the restriction α L of α to L is holomorphic with respect
to D. But α L = β Lσα,βL, because α(β−1) = σα,βL. The Leibniz rule then
implies that Dα L = β Ldσα,βL

′′ = 0, by Lemma 7.4. �

8.2. Corollary. If R is the right normal vector of an admissible stere-
ographic projection of a holomorphic curve L ⊂ H2, then the Möbius in-
variant holomorphic line bundle L−1 of L is isomorphic to M × H with
complex structure J defined by J1 = R and holomorphic structure D defined
by D1 = 0.

If f : M → H has a right normal vector R, then the holomorphic line
bundle defined by R as in the corollary is called the Möbius invariant holo-
morphic line bundle of f . It is isomorphic to the Möbius invariant holomor-
phic line bundle of any stereographic lift of f to HP1, and, consequently,
invariant under orientation preserving Möbius transformations of H.

Proof. If β is admissible for L then β L is a holomorphic section of L
without zeros. Lemma 7.4 implies that Jβ−1 = −β−1R. From Jβ(β−1) =
β(Jβ−1) = β(−β−1R) = −R = (βR)(β−1) follows Jβ L = β LR. Eventu-
ally, holomorphicity of β L and Theorem 4.2 yields the isomorphism. �

8.3. Let L ⊂ H2 be a holomorphic curve and π : (H2)∗ → (H2)∗/L⊥

the canonical projection and ∇ the trivial connection of (H2)∗. The Möbius
invariant holomorphic structure D of L−1 = (H2)∗/L⊥ then satisfies

Dπψ = 1
2(π∇+ ∗Jπ∇)ψ,

for all ψ ∈ Γ(H2). This formula follows since its right hand side, which
only depends on πψ, defines a holomorphic structure on L−1 that trivially
satisfies the condition of Theorem 8.1.

8.4. Umbilics. Let f : M → HP1 be a conformal immersion. The

trace free part
◦
II of the second fundamental form of f is independent of the

choice of metric in the conformal structure of HP1 (cf., [Jeromin, P.6.4]).
This also follows from the Möbius invariance of the holomorphic structure
of L−1 and H2/L, since, using the identification ⊥L = Hom+(L̄,H2/L) (cf.,
7.6) the trace free part of the second fundamental form satisfies

◦
II(X,Y ) = Q

H2/L
X δY + δX(QL

−1

Y )∗,

where δ is the derivative of L, and QL
−1

and QH
2/L are the Hopf fields of

L−1 and H2/L (cf., [Boh03, p. 104]).
This formula also implies that p ∈ M is an umbilic of f if and only if

the Hopf fields of L−1 and H2/L vanish at p. Consequently, the Hopf fields
of the Möbius invariant holomorphic line bundles of a holomorphic curve in
HP1 both vanish identically if and only if L takes values in some 2–sphere.
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8.5. Kodaira Correspondence. In addition to the Möbius invari-
ant quaternionic holomorphic structure on L−1, a nonconstant holomor-
phic curve L ⊂ H2 induces a 2–dimensional base point free linear system
{β L | β ∈ (H2)∗ } of holomorphic sections of L−1, which is also Möbius
invariant. This system is canonically isomorphic to the vector space (H2)∗.
It is called the canonical linear system of L. From Theorem 10.2 bellow fol-
lows that the Weierstrass points of the canonical linear system are exactly
the zeros of the differential of L.

Each basis α L, β L ofH yields a stereographic projection σα,βL : M → H

of L, that satisfies, away from the zeros of β L,

α L = β Lσα,βL,

because α(β−1) = σα,βL. A map f : M → H such that ϕ = ψf̄ holds for two
sections of a quaternionic line bundle is called the quotient of ϕ and ψ. Thus
the stereographic projections of L are the quotients of linearly independent
holomorphic sections in (H2)∗ ⊂ H0(L−1).

Hence the canonical linear system (H2)∗ describes L up to projective
transformations of HP1. The curve L can also be directly reobtained from
the canonical linear system: If H ⊂ H0(L−1) is a 2–dimensional base point
free linear system, then the evaluation map ev : H → L−1, (p, β) 7→ β(p) is a
smooth bundle homomorphism from the trivial bundle H to L−1. One can
check (cf., [FLPP01, Section 2.6]) that ker(ev)⊥ ⊂ H∗ is a holomorphic
curve, and if H = (H2)∗ is the canonical linear system of a holomorphic
curve L in HP1, then ker(ev)⊥ = L.

In summary one has the bijective correspondence:{
2–dimensional base point free
linear systems of quaternionic

holomorphic line bundles.

}
←→

{
Projective equivalence
classes of nonconstant

holomorphic curves in HP1.

}
This is the quaternionic version of the Kodaira correspondence1 for the spe-
cial case of 2–dimensional linear systems and holomorphic curves in HP1.

8.6. Willmore Energy. Let L ⊂ H2 be a holomorphic curve and f =
σα,βL an admissible stereographic projection of L. If R is the right normal
vector of f , then R is the normal vector of a nowhere vanishing holomorphic
section of the Möbius invariant holomorphic line bundle L−1 of L, by Corol-
lary 8.2. The Hopf field Q of L−1 then satisfies 〈Q ∧ ∗Q〉 = 1

2〈dR
′′R, dR′′〉

(cf., 3.5). Furthermore, 〈dR′′R, dR′′〉 = (|H|2 − K + K⊥)〈df, dfR〉, where
K is the Gauss curvature, K⊥ the curvature of the normal bundle and
H : M → H the mean curvature vector of f , by [BFLPP02, Proposition
11]2. Hence

〈Q ∧ ∗Q〉 =
1
2
〈dR′′R, dR′′〉 = 1

2(|H|2 −K +K⊥)dA

1Cf., [FLPP01, Section 2.6] or Section 14 for a more general definition of the
quaternionic Kodaira correspondence, and [GriHa, Section 1.4] for the complex Kodaira
correspondence.

2The normal curvature has the opposite sign in [BFLPP02]. The sign in the formula
above is due to the convention that the orientation of the tangent and normal bundle
together should induce the standard orientation of HP1, see 6.3.
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and for the Willmore energy of L−1 one obtains

W (L−1) =
∫
M

(|H|2 −K +K⊥)dA,

where dA = 〈df, dfR〉 is the area form induced on M by f .
Suppose that the dual curve L⊥ of L is also a holomorphic curve. The

right normal vector of σb,aL⊥ = −f̄ (cf., Lemma 7.5) is then the left normal
vector N of f . The Hopf field Q̃ of the Möbius invariant holomorphic line
bundle H2/L of L⊥ then satisfies, as above, 〈Q̃ ∧ ∗Q̃〉 = 1

2〈dN
′′N, dN ′′〉.

Since 〈RdR′′, dR′′〉− 2K⊥dA = 〈dN ′′N, dN ′′〉 (cf., [BFLPP02, Proposition
8 & 9]) one gets

〈Q̃ ∧ ∗Q̃〉 =
1
2
〈dN ′′N, dN ′′〉 = 1

2(|H|2 −K −K⊥)dA

and for the Willmore energy of H2/L one obtains

W (H2/L) =
∫
M

(|H|2 −K −K⊥)dA.

Suppose now that L is immersed and M is compact. The famous Will-
more functional W (f) of the stereographic projection f of L is defined by

W (f) =
∫
M
|H|2dA.

Using deg>f = 1
2π

∫
M KdA, deg⊥f = 1

2π

∫
M K⊥dA Corollary 7.9 implies

the following equations:

W (L−1) = W (f)− 4π degL−1, W (H2/L) = W (f)− 4π deg(H2/L),

W (L−1)−W (H2/L) = 4π deg⊥f = 8π(1− g − degL−1).

for every admissible stereographic projection f of L.

9. The Euclidean Holomorphic Line Bundle

Let L ⊂ H2 be a holomorphic curve. If one singles out a point at infinity
∞ ∈ HP1 that does not lie on L, then one can define a holomorphic struc-
ture on L that is invariant under Möbius transformations that fix ∞. This
structure is called the Euclidean holomorphic structure of L with respect
to ∞. If the dual curve L⊥ ⊂ (H2)∗ of L is also a holomorphic curve (in
particular if L is immersed, see Theorem 7.6), then also L⊥ has a Euclidean
holomorphic structure. If L is an immersed holomorphic curve then the
holomorphic line bundles L and L⊥ provide the data for a Weierstrass type
representation of its stereographic projections.

9.1. Theorem. Let L ⊂ H2 be a holomorphic curve and ∞ ∈ HP1 a
point that does not lie on L. Then there is a unique holomorphic structure
on L, such that the affine lift β−1 of L is a holomorphic section of L for all
nontrivial β ∈ ∞⊥.

Proof. If β ∈ (H2)∗ \{0}, then there is a unique holomorphic structure
D on L such that D(β−1) = 0. If β, β̃ ∈ ∞⊥ \ {0}, then there exists λ ∈ H
such that β̃ = βλ. Hence β̃−1 = (βλ)−1 = β−1λ̄−1, which implies that
D(β̃) = 0. �
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The unique holomorphic structure defined by ∞ ∈ HP1 is called the
Euclidean holomorphic structure of L with respect to ∞. If M ∈ PGL(H2)
is an orientation preserving similarity of HP1 \{∞} ∼= H (cf., 5.2), then M
fixes∞ and the Euclidean holomorphic structures of L and ML with respect
to ∞ are obviously isomorphic. If L⊥ is also a holomorphic curve, then the
Euclidean holomorphic structure on L⊥ is defined to be the holomorphic
structure induced by ∞⊥ ⊂ (H2)∗.

9.2. Although the holomorphic structure on L depends on the choice
of a point at infinity, its J–commuting part ∂̄, does not depend on that
choice: Writing also ∂̄ for the J–commuting part of the Möbius invariant
holomorphic structure of L−1, one obtains

∂̄α(ψ) + α(∂̄ψ) = 1
2(d(αψ) + ∗d(αJψ))

for all α ∈ Γ(L−1) and ψ ∈ Γ(L). (Because the difference of both sides
of this equation is tensorial, it suffices to check it for α = β L, ψ = β−1

and some admissible β ∈ (H2)∗. But Dβ L = 0 and Dβ−1 = 0 implies
∂̄β L = −Qβ L = −β L

1
2NdN

′′ and ∂̄β−1 = −Qβ−1 = −β−1 1
2NdN

′ for the
normal vector N of β L, by 3.3. Thus for the left hand side of the above
equation one has ∂̄β L(β−1) + β L(∂̄β−1) = −1

2 ∗ dN , which equals the right
hand side 1

2 ∗ d(β LJβ
−1).)

Hence the complex holomorphic structure ∂̄ of the Euclidean holomor-
phic line bundle L is the dual complex holomorphic structure of the J–
commuting part of the Möbius invariant holomorphic structure of L−1, which
implies that it does not depend on the choice of ∞ ∈ HP1.

9.3. Corollary. If R is the right normal vector of an admissible stere-
ographic projection with pole ∞ of a holomorphic curve L ⊂ H2, then the
Euclidean holomorphic line bundle L with respect to ∞ is isomorphic to
M × H with complex structure J defined by J1 = −R and holomorphic
structure D defined by D1 = 0.

Proof. Let σα,β be an admissible stereographic projection. Lemma 7.4
then implies that Jβ−1 = −β−1R. Furthermore, β ∈ ∞⊥, because ∞ is the
pole of σα,β. Thus β−1 = AβL is a holomorphic section of L. The corollary
then follows from Theorem 4.2. �

If f : M → H has a right normal vector R, then the holomorphic line
bundle defined by R as in the corollary is called the Euclidean holomor-
phic line bundle of f . It is isomorphic to the the Euclidean holomorphic
line bundle of any stereographic lift of f to HP1 with holomorphic struc-
ture induced by the pole of the stereographic projection. It is consequently
invariant under orientation preserving similarities of H.

9.4. Willmore Energy. Let L ⊂ H2 be a holomorphic curve and
f = σα,βL an admissible stereographic projection of L. If R is the right
normal vector of f , then −R is the normal vector of a nowhere vanish-
ing holomorphic section in the Euclidean holomorphic line bundle L with
pole ∞ = kerβ, by Corollary 9.3. The Hopf field Q of L then satisfies
〈Q ∧ ∗Q〉 = 1

2〈RdR
′, dR′〉, see 3.5, and because d(−R)′′ = 1

2(d(−R) +
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(−R)d(−R) = −dR′, where the double prime refers to left multiplica-
tion with −R and the single prime to left multiplication with R. The
formula 〈RdR′, dR′〉 = |H|2dA from [BFLPP02, Proposition 9] implies
〈Q ∧ ∗Q〉 = 1

2 |H|
2dA and W (L) = W (f).

If L⊥ is also a holomorphic curve and a, b ∈ H2 is the dual basis of α, β,
then f = −σb,aL⊥ (cf., Lemma 7.5) implies that 〈Q̃∧∗Q̃〉 = 1

2〈NdN
′, dN ′〉 =

1
2 |H|

2dA for the Hopf field Q̃ of the Euclidean holomorphic structure of L⊥

with respect to ∞ = [a] and the left normal vector N of f .
Hence

〈Q ∧ ∗Q〉 =
1
2
〈NdN ′, dN ′〉 = 〈Q̃ ∧ ∗Q̃〉 =

1
2
〈RdR′, dR′〉 =

1
2
|H|2dA

and the Willmore energies of the Euclidean holomorphic line bundles satisfy

W (L) = W (L⊥) = W (f) =
∫
M
|H|2dA.

This implies that the Euclidean holomorphic line bundles are complex
holomorphic line bundles if and only if the stereographic projection of L
with pole ∞ is a minimal surface. The Euclidean holomorphic line bundles
are consequently not Möbius invariant.

On compact M the two formulas W (L−1) = W (f) − 4π degL−1 and
W (H2/L) = W (f) − 4π deg(H2/L) from 8.6 yield a relation between the
Willmore energies of the Möbius invariant and Euclidean holomorphic line
bundles:

W (L−1) = W (L)− 4π degL−1, W (H2/L) = W (L⊥)− degH2/L.

9.5. Paired Complex Quaternionic Line Bundles. Finally, we will
see how the Weierstrass representation of a conformal immersion f : M → H

is obtained from its Euclidean holomorphic line bundles. The Weierstrass
representation gets a particularly simple form, if it is written with pairings
of holomorphic line bundles. A pairing of two complex quaternionic line
bundles L̃ and L is a pointwise nondegenerate real bilinear form

( , ) : L̃× L→ T ∗M ⊗H

such that for all p ∈M , λ ∈ H, ϕ ∈ L̃p, and ψ ∈ Lp
(ϕ,ψλ) = (ϕ,ψ)λ, (ϕλ, ψ) = λ̄(ϕ,ψ),

∗(ϕ,ψ) = (Jϕ, ψ) = (ϕ, Jψ).

If L̃ and L are paired, then L and L̃ are paired with (ψ,ϕ) := (ϕ,ψ). If
L is a complex quaternionic line bundle, then KL−1 and L are canonically
paired via the evaluation pairing (ϕ,ψ) := ϕ(ψ).

Proposition. If L̃ and L are paired complex quaternionic line bundles,
then α : L̃→ KL−1, ϕ 7→ (ϕ, ·) is an isomorphism that maps the pairing of
L̃ and L onto the evaluation pairing of KL−1 and L.

Proof. If ϕ ∈ L̃p, p ∈M , then αϕ is quaternionic linear on fibers of Lp,
real linear on the fibers of TpM and ∗αϕ = αϕJ , thus αϕ ∈ KL−1. α is a
quaternionic linear bundle homomorphism, because for λ ∈ H: α(ϕλ)(ψ) =
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λ̄(ϕ,ψ) = λ̄αϕ(ψ) = ((αϕ)λ)(ψ). Since ( , ) is nondegenerate α is an iso-
morphism. �

9.6. Paired Holomorphic Line Bundles. Two quaternionic holo-
morphic line bundles are paired if they are paired as complex quaternionic
line bundles and if the product of every pair of local holomorphic sections
of L̃ and L is closed.

Theorem. Let L̃ and L be paired complex quaternionic line bundles. If
there is a holomorphic structure D on L, then there is a unique holomorphic
structure D̃ on L̃ such that the H–valued 1–form (ϕ,ψ) is closed for all local
holomorphic sections ϕ ∈ H0(L̃ U ) and ψ ∈ H0(L U ). Furthermore, if ψ is a
holomorphic section of L and ϕ is a section of L̃ such that (ϕ,ψ) is closed,
then ϕ is a holomorphic section of L̃.

Proof. Let ϕ ∈ Γ(L̃) and ψ ∈ Γ(L), then there is a unique section
D̃ϕ ∈ Ω1(L̃) such that for all p ∈M and X ∈ TpM

dp(ϕ,ψ)(X, JMX) = 2(D̃Xϕ,ψ)(JMX) + 2(ϕ,DXψ)(JMX).(∗)

D̃ : Γ(L̃) → Ω1(L̃) is obviously quaternionic linear and ∗D̃ϕ = −JD̃ϕ. D̃
satisfies the Leibniz rule, because for λ : M → H one has

d(ϕλ,ψ)(X, JMX)
= λ̄d(ϕ,ψ)(X, JMX) + dλ̄ ∧ (ϕ,ψ)(X, JMX)
= λ̄d(ϕ,ψ)(X, JMX) + (ϕdλ̄(X) + Jϕ∗dλ̄(X), ψ)(JMX)
= λ̄d(ϕ,ψ)(X, JMX) + 2((ϕdλ̄)′′(X), ψ)(JMX).

Hence D̃ is a holomorphic structure on L̃.
Let U ⊂M be an open set, ϕ ∈ H0(L̃ U ) and ψ ∈ H0(L U ) local holomor-

phic sections, then (∗) implies that (ϕ,ψ) is closed. Let D̂ be a holomorphic
structure on L̃ with the property that products of local holomorphic sections
of L̃ and L are closed. Then let ϕi ∈ Γ(L̃ Ui

) be a covering with holomorphic
sections of D̂ and ψi ∈ H0(L Ui

), then (ϕi, ψi) is closed and (∗) implies that
D̃ϕi = 0. Thus the Leibniz rule implies D̃ = D̂. �

D̃ is called the paired holomorphic structure of D. Two holomorphic
line bundles are paired, if they have a pairing such that their holomorphic
structures are paired. If L is a holomorphic line bundle over a compact
Riemann surface M of genus g, and KL−1 is equipped with the paired
holomorphic structure—which will from now on be assumed without further
notice—the Riemann–Roch formula for complex holomorphic line bundles
holds verbatim for quaternionic holomorphic line bundles (cf., [FLPP01,
Theorem 2.2]):

dimH0(L)− dimH0(KL−1) = degL− g + 1.

9.7. Corollary. If two holomorphic line bundles are paired as complex
quaternionic line bundles, then they are paired as holomorphic line bundles
if and only if there exists a covering with local holomorphic sections whose
products are closed 1–forms.
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Proof. This corollary follows from the fact that a holomorphic struc-
ture of a line bundle is, by the Leibniz rule, already determined by a covering
with local holomorphic sections. �

9.8. Corollary. All paired holomorphic line bundles of a holomorphic
line bundle L are isomorphic to KL−1.

Proof. If L̃ and L are paired, then the isomorphism α : L̃ → KL−1

of Proposition 9.5 is holomorphic, because of the uniqueness of the paired
holomorphic structure on L̃. �

9.9. For η ∈ Ω1(L̃), ψ ∈ Γ(L), ϕ ∈ Γ(L̃), ω ∈ Ω1(L) one defines the
following H valued 2–forms

(η ∧ ψ)(X,Y ) = (η(X), ψ)(Y )− (η(Y ), ψ)(X),

(ϕ ∧ ω)(X,Y ) = (ϕ, ω(X))(Y )− (ϕ, ω(Y ))(X).

Corollary. Let L̃ and L be paired complex quaternionic line bundles.
If D is a holomorphic structure on L, then the paired holomorphic structure
D̃ on L̃ is the unique holomorphic structure on L̃ that satisfies

d(ϕ,ψ) = (D̃ϕ ∧ ψ) + (ϕ ∧Dψ),

or, equivalently, the complex holomorphic structures and Hopf fields of L̃
and L satisfy

d(ϕ,ψ) = ( ¯̃
∂ϕ ∧ ψ) + (ϕ ∧ ∂̄ψ) and 0 = (Q̃ϕ ∧ ψ) + (ϕ ∧Qψ).

Furthermore, W (L) = W (L̃).

Proof. The first equation is equivalent to the equation of 9.6(∗). It is
equivalent to the two equations for the complex holomorphic structures and
the Hopf fields, because ∂̄ = 1

2(D−JDJ) and Q = 1
2(D+JDJ). Finally, the

equation for the Hopf fields implies 〈Q̃XQ̃X〉 = 〈QXQX〉 for all X ∈ TM ,
thus 〈Q̃ ∧ ∗Q̃〉 = 〈Q ∧ ∗Q〉 and W (L) = W (L̃). �

9.10. Weierstrass Representation. The description of the differen-
tial of a conformal immersion f : M → H as the product of two holomorphic
sections of paired quaternionic holomorphic line bundles is called the Weier-
strass representation3 of f .

Proposition. Let L ⊂ H2 be an immersed holomorphic curve, α, β ∈
(H2)∗ an admissible basis, and a, b ∈ H2 its dual basis. The Euclidean
holomorphic line bundles L⊥ and L with respect to ∞⊥ := [β] and ∞ = [a]
are paired and

dσα,βL = (a−1, β−1)
is the Weierstrass representation of σα,βL.

Corollary 9.8 implies that the holomorphic line bundles L⊥ and KL−1

are isomorphic.

3This is a generalization of the Weierstrass representation of minimal surfaces. It
was introduced by Iskander Taimanov, [Ta98], for surface in R3 and generalized by Franz
Pedit and Ulrich Pinkall in [PP98] to surfaces in R4.
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Proof. Let δ⊥ and δ be the derivatives of L⊥ and L. Then

(ϕ,ψ) := ϕ(δψ) = −δ⊥ϕ(ψ),

(cf., 7.8) defines a pairing between the complex quaternionic line bundles
L⊥ and L, because ∗(ϕ,ψ) = ϕ(∗δψ) = ϕ(δJψ) = (ϕ, Jψ) and ∗(ϕ,ψ) =
− ∗ δ⊥ϕ(ψ) = −δ⊥(Jϕ)(ψ) = (Jϕ, ψ). From a−1 = α − βσα,βL and β−1 =
aσα,βL+ b, follows dσα,βL = (a−1, β−1).

As a−1 and β−1 are by definition (cf., 9.1) nowhere vanishing holomor-
phic sections of L⊥ and L. Furthermore, the 1–form (a−1, β−1) is closed,
hence L⊥ and L are paired, by Corollary 9.7. �

9.11. Theorem. The Euclidean holomorphic line bundle L of a confor-
mal immersion f : M → H is, up to isomorphisms, the unique holomorphic
line bundle with holomorphic sections ϕ ∈ H0(KL−1) and ψ ∈ H0(L) such
that

df = (ϕ,ψ),
where KL−1 is equipped with the paired holomorphic structure. Furthermore,

W (L) = W (KL−1) = W (f).

On the other hand, if L is a holomorphic line bundle over simply con-
nected M , ϕ ∈ H0(KL−1) and ψ ∈ H0(L) are nowhere vanishing holomor-
phic sections, then

∫
(ϕ,ψ) is a conformal immersion of M into H.

Proof. The existence of the holomorphic sections ϕ ∈ H0(L) and ψ ∈
H0(KL−1) follows from Proposition 9.10, because KL−1 is isomorphic to
L⊥, by the same proposition and Corollary 9.8. The uniqueness follows from
Theorem 4.2 and Corollary 9.3, because ψ has no zeros, since f is immersed,
and the normal vector of ψ is determined by df = (ϕ,ψ).

In 9.4 the equation W (L) = W (L⊥) = W (f) was shown for the Eu-
clidean line bundles L and L⊥ of a holomorphic curve L and its stereographic
projection f . Thus W (L) = W (KL−1) = W (f).

From the definition of a pairing, follows that (ϕ,ψ) is closed and nowhere
vanishing. The normal vectors of ϕ and ψ provide the normal vectors of∫

(ϕ,ψ). Lemma 6.1 then implies that
∫

(ϕ,ψ) is conformal. �

9.12. If f is not minimal, thenKL−1 and L have nontrivial Hopf fields,
and Theorem 3.4 implies that f also uniquely determines ϕ and ψ, up to
ϕ 7→ ϕc, ψ 7→ ψc−1, for c ∈ R \ {0}. The triple (L,ϕ, ψ) is called the
Weierstrass data of the conformal immersion f : M → H.

The two holomorphic sections ϕ and ψ have no zeros, thus they de-
termine two 1–dimensional base point free linear systems of KL−1 and L,
respectively. On the other hand, two 1–dimensional base point free linear
systems in KL−1 and L, determine, up to similarities of H (cf., 1.2) a con-
formal map f : M̃ → H on the universal covering M̃ of M with translational
periods. Hence for simply connected Riemann surfaces M the Weierstrass
representation provides the following correspondence:

1–dimensional base point free
linear systems of paired

quaternionic holomorphic line
bundles.

 ←→

{
Conformal immersions
f : M → H modulo

similarities.

}
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9.13. Example: Minimal Surfaces in R4. Let f : M → R4 be a
conformal immersion. By Theorem 9.11 there exists a holomorphic line
bundle L, ϕ ∈ H0(KL−1) and ψ ∈ H0(L) such that df = (ϕ,ψ). From
〈Q ∧ ∗Q〉 = 1

2 |H|
2dA (cf., 9.4 and 3.6) follows that f is minimal if and only

if L and KL−1 have zero Willmore energy. This is a generalization of the
well known spinor Weierstrass representation of minimal surfaces in R3, see
12.6.

10. Branched Conformal Immersions

To define the Möbius invariant and Euclidean holomorphic line bundles
of a holomorphic curve in HP1 the curve does not need to be immersed
(cf., Theorems 8.1 and 9.1). Hence the quaternionic holomorphic geometry
can also be applied to nonimmersed holomorphic curves. In this section the
behavior of a holomorphic curve at the zeros of its differential is described,
a Weierstrass representation for branched conformal immersions that admit
a smooth left and a smooth right normal vector is derived, and the behavior
of the normal vector of a holomorphic section at its zeros is discussed.

10.1. Branch Points of Holomorphic Curves in HP1. Recall the
definition of branch points from [GOR73]: Let M be a smooth 2–dimen-
sional manifold, N a smooth manifold of dimension n ≥ 2 and f : M → N
a smooth map. A point p ∈ M is called a branch point of f if and only if
there exists an integer k ≥ 1, and centered coordinates z : M ⊃ U → C and
u : N ⊃ V → Rn, such that

u1(f) + iu2(f) = zk+1 +O(k + 2), ul(f) = O(k + 2), l = 3, . . . , n.

The integer k is independent of the charts. It is called the order, denoted
bp(f), of the branch point p. The map f is called a branched immersion if all
points at which df fails to be injective are branch points. One immediately
deduces from the definition that the differential of f at a branch point equals
zero, and that branch points are isolated. On compact M one can define
the total branching b(f) :=

∑
p∈M bp(f) of f .

10.2. Theorem. A holomorphic curve L ⊂ H2 over a Riemann surface
M is a branched immersion. It has a branch point p ∈ M if and only
if p is a Weierstrass point of its canonical linear system H ⊂ H0(L−1).
Furthermore, bp(L) = ordpH.

Proof. If α, β ∈ (H2)∗ is an admissible basis, then the canonical linear
system H ⊂ H0(L) of L is spanned by α L and β L. Let f := σα,βL, p ∈M
and ψ := β L(f − f(p)). Then ψ(p) = 0 and ψ ∈ H, since α L = β Lf , see
8.5. Because β L does not vanish, one has

ordp ψ = ordpH + 1.

Consequently, there is a centered holomorphic coordinate z : M ⊃ U → C,
z(p) = 0 and a nowhere vanishing ϕ ∈ Γ(L U ) such that

β L(f − f(p)) = ψ = zk+1ϕ+O(k + 2),

where k := ordpH. Let N be the normal vector of β L, g : M → H such that
ϕ = β Lg, z = x+ iy, and z̃ = x+Ny. Then f − f(p) = z̃k+1g +O(k + 2).
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Applying a Euclidean motion one can assume f(p) = 0, g(p) = 1 andN(p) =
i. Then z̃ = z +O(2), g = 1 +O(1), and, consequently,

f = zk+1 +O(k + 2).

Thus k = 0 or f has a branch point of order k at p. �

10.3. Since Weierstrass points are isolated (cf., 3.7) the theorem has
the following corollary.

Corollary. The derivative of a holomorphic curve has isolated zeros.

10.4. Branched Conformal Immersions with a Normal Vector.
A smooth map f : M → H is called a branched conformal immersion with a
right (left) normal vector, if there exists a smooth map R : M → H, R2 = −1
(N : M → H, N2 = −1) such that

∗df = −dfR (∗df = Ndf).

It follows directly from the definition that the differential of a branched
conformal immersion f with a normal vector is either zero or injective.
Lemma 6.1 implies that f is conformal away from the zeros of its differen-
tial. In 10.14 branched conformal immersions whose normal vector extend
continuously but not smoothly into its branch points are constructed.

10.5. Proposition. Every admissible stereographic projection of a
curve L in HP1 to H is a branched conformal immersion with a smooth
right (left) normal vector if and only if L (L⊥) is holomorphic.

Proof. This is a direct consequence of the Lemmas 7.4 and 7.5. �

Hence every branched conformal immersion with a right normal vector
is the stereographic projection of a holomorphic curve in HP1. In particular,
it possesses a unique Möbius invariant and a unique Euclidean holomorphic
line bundle, by Corollary 8.2 and 9.3. The proposition also implies that
having a smooth normal vector is a Möbius invariant property for branched
conformal immersions f : M → H.

10.6. Holomorphic curves are branched conformal immersions, by The-
orem 10.2. Their stereographic projections are also branched conformal im-
mersions, since stereographic projections are conformal and the definition of
a branched immersion is invariant under diffeomorphisms. Thus one obtains
the following corollary of the preceding proposition.

Corollary. Branched conformal immersions f : M → H with a smooth
right or left normal vector are branched immersions.

10.7. Weierstrass Representation: One Normal Vector. Bran-
ched conformal immersions that have one normal vector have a Weierstrass
representation, in which the section on the side of the missing normal vector
has at least one zero. The case of branched conformal immersions with both
normal vectors is discussed in 10.10 below.

Proposition. The Euclidean holomorphic line bundle L of a branched
conformal immersion f : M → H with a right normal vector is the unique
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holomorphic line bundle for which there exists a nowhere vanishing holomor-
phic section ψ ∈ H0(L) and a holomorphic section ϕ ∈ H0(KL−1) satisfying

df = (ϕ,ψ).

Moreover, p is a branch point of f if and only if p is a zero of ϕ, and the
vanishing order of ϕ is the branching order of f at p.

If f is not minimal, i.e., W (f) = W (L) = W (KL−1) 6= 0 (cf., 9.11), then
Theorem 3.4 implies that ϕ and ψ are uniquely determined up to ϕ 7→ ϕc,
ψ 7→ ψ 1

c for some c ∈ R \ {0}

Proof. Let R : M → H be the right normal vector of f . Let L := M×H
with complex structure J such that J1 = −R and holomorphic structure D
such that D1 = 0. Then L is the Euclidean holomorphic line bundle of f ,
by Corollary 9.3. Let ϕ := (1 7→ df) ∈ Γ(KL−1) and ψ := 1 ∈ Γ(L). Then
df = (ϕ,ψ) and ϕ ∈ H0(KL−1), by Theorem 9.6.

The branch points of f coincide with the zeros of ϕ, because the pairing
is pointwise nondegenerate and ψ has no zeros. If ϕ has a zero of order n at
p ∈ M , then ϕ = znϕ̃+O(n+ 1) for some centered coordinate z and some
nowhere vanishing section ϕ̃. Thus df = zn(ϕ̃, ψ) +O(n+ 1). This formula
and Corollary 10.6 imply that p is a branch point of f of order n. �

10.8. Branched Pairings. Branched conformal immersions with both
normal vectors have a Weierstrass representation with two nowhere vanish-
ing holomorphic sections, if one allows the pairing to be branched.

A branched pairing of holomorphic line bundles L̃ and L is a smooth
map ( , ) : L̃ × L → T ∗M ⊗H that is a pairing of holomorphic line bundles
on some nonempty subset of M and zero on its complement.

Proposition. A smooth bundle map ( , ) : L̃ × L → T ∗M ⊗ H is a
branched pairing of the holomorphic line bundles L̃ and L if and only if
B̃ : L̃→ KL−1, ϕ 7→ (ϕ, ·), or, equivalently, B : L→ KL̃−1, ψ 7→ (·, ψ) is a
nontrivial holomorphic bundle homomorphism. Moreover, ordpB = ordp B̃.

This proposition implies that the zeros of nontrivial branched pairings
are isolated. The vanishing order of the pairing ( , ) can then be defined by
ordp( , ) := ordpB = ordp B̃.

Proof. If ( , ) is a branched pairing, then ∗(B̃ϕ) = B̃(Jϕ) = (B̃ϕ)J =
JB̃ϕ implies that B̃ϕ ∈ Γ(KL−1) and that B̃ is complex linear. If ϕ and ψ
are local holomorphic sections of L̃ and L, then B̃ϕ(ψ) = (ϕ,ψ) is closed,
because ( , ) is a pairing away from its zeros. Thus B̃ϕ is a holomorphic
section of KL−1, by Theorem 9.6. Lemma 4.1 then implies that B̃ is holo-
morphic. The proof of the holomorphicity of B is similar. The converse
follows because B̃ and B are holomorphic isomorphisms away from their
isolated zeros, and KL−1 and L as well as KL̃−1 and L̃ are by definition
paired with the evaluation pairing. Finally, the equality of the vanishing
orders of B and B̃ follows from B̃ϕ(ψ) = (ϕ,ψ) = Bψ(ϕ). �
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10.9. Branched Conformal Immersions from Branchedly Paired
Holomorphic Line Bundles. Products of holomorphic sections, possibly
with zeros, of branchedly paired holomorphic line bundles can be integrated
to yield branched conformal immersions.

Theorem. Let L̃ and L be holomorphic line bundles over a simply con-
nected Riemann surface M with a branched pairing ( , ). Let ϕ ∈ H0(L̃) and
ψ ∈ H0(L). Then f :=

∫
ϕ(ψ) : M → H is a branched conformal immer-

sion, whose branching order satisfies bpf = ordp( , ) + ordp ψ + ordp ϕ.

Proof. Since ϕ and ψ may have zeros, one can assume, by Proposi-
tion 10.8, that L̃ = KL−1 and ϕ ∈ H0(KL−1). The map f =

∫
ϕ(ψ) is

away from the isolated zeros of ψ and ϕ a conformal immersion, by Theo-
rem 9.11. Thus it remains to show that f has a branch point of the claimed
order at p ∈M , whenever ϕ or ψ has a zero at p.

Near p ∈M one can write

ϕ = zmϕ̃+O(m+ 1) and ψ = znψ̃ +O(n+ 1),(∗)

as in 2.4. Multiplying ϕ by a quaternionic constant one can assume that
Jϕ̃(p) = ϕ̃(p)i. The section ϕ̂ := 1

2(ϕ̃ − Jϕ̃i) then satisfies Jϕ̂ = ϕ̂i and
coincides with ϕ̃ at p. Hence it does not vanish near p and ϕ̂ − ϕ̃ = O(1).
Thus one can replace ϕ̃ by ϕ̂ in (∗). The same can be done for ψ, and one
obtains

df = (ϕ,ψ) = (ψ̂zn +O(n+ 1), ϕ̂zm +O(m+ 1))

= (ψ̂, ϕ̂)zm+n +O(m+ n+ 1),

because −i(ϕ̂, ψ̂) = (Jϕ̂, ψ̂) = ∗(ϕ̂, ψ̂) = (ϕ̂, Jψ̂) = (ϕ̂, ψ̂)i. Since ϕ̂ 6= 0 and
ψ̂ 6= 0, there is near p a smooth C–valued map g such that (ϕ̂, ψ̂) = jdzg
and g(p) 6= 0. Thus

df(g(p))−1 = jdzzm+n +O(m+ n+ 1),

which implies that f has a branch point of order m+ n at p. �

10.10. Weierstrass Representation: Two Normal vectors. Re-
placing the pairing by a branched pairing, Theorem 9.11 holds verbatim for
branched conformal immersions that have both normal vectors.

Theorem. If f : M → H is a branched conformal immersion with both
normal vectors, then the Euclidean holomorphic line bundles L⊥ and L of
f̄ and f are the unique holomorphic branchedly paired line bundles such
that there exist nowhere vanishing holomorphic sections ϕ ∈ H0(L⊥) and
ψ ∈ H0(L) satisfying

df = (ϕ,ψ).

The branching order of f equals the vanishing order of the pairing.
On the other hand, if ϕ ∈ H0(L̃) and ψ ∈ H0(L) are nowhere vanishing

sections of branchedly paired holomorphic line bundles over simply connected
M , then

∫
(ϕ,ψ) is a branched conformal immersion of M into H with both

normal vectors.
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As for the Weierstrass representation of conformal immersions, (cf., 9.12)
the quadruple (L⊥, L, ϕ, ψ) is called the Weierstrass data of f . If f = σα,βL

is the stereographic projection of a holomorphic curve in HP1, then df =
(a−1, β−1) at immersed points of f , by Proposition 9.10, and trivially at the
branch points of f .

Proof. Let N : M → H and R : M → H be the left and right normal
vectors of f . The Euclidean holomorphic line bundles L and L⊥ of f and
f̄ are then M × H with the complex structures 1 7→ −R and 1 7→ −N
and holomorphic structure such that 1 is holomorphic, by Corollary 9.3 and
Lemma 7.5. Then define

(ϕ,ψ) := ϕ̄dfψ,

for all p ∈ M , ϕ ∈ L⊥p and ψ ∈ Lp, where ϕ and ψ on the left hand side
stand for the corresponding quaternions. One easily checks that ( , ) is a
pairing of the complex quaternionic line bundles L⊥ and L away from its
zeros, i.e., the branch points of f .

To see that ( , ) is a branched pairing, one needs to check, by Theorem 9.6,
that (ϕ,ψ) is closed for all local holomorphic sections of L̃ and L: If ϕ is
a holomorphic section of L⊥, then the Leibniz rule implies that ∗dϕ =
−Ndϕ, where ϕ is interpreted as a map on M with values in H. For the
same reason one has ∗dψ = −Rdψ for holomorphic sections ψ of L. Thus
d(ϕ,ψ) = dϕ̄ ∧ dfψ − ϕdf ∧ dψ = 0, as both terms vanish by type.

This shows the existence part, since df = (1, 1) for the holomorphic
sections 1 ∈ H0(L⊥) and 1 ∈ H0(L). Uniqueness, follows from Theorem 4.2,
because if df = (ϕ,ψ), then Jϕ = −ϕN and Jψ = −ψR.

Corollary 10.6 implies that f is a branched immersion. Hence one only
needs to calculate the branching order of f at the branch points of the
pairing: If B : L⊥ → KL−1 is the holomorphic bundle map ξ 7→ (ξ, ·) of
Proposition 10.8, then k := ordpB = ordp(Bϕ) is the vanishing order of ( , )
at p ∈ M . Writing Bϕ = zkϕ̃+ O(k + 1), as in 2.4, one gets df = (ϕ,ψ) =
Bϕ(ψ) = zkϕ̃(ψ). Hence f has a branch point of order k at p.

The last statement of the theorem follows from the definition of a
branched pairing, which assures that (ϕ,ψ) is closed, and the fact that
nowhere vanishing sections of L and L̃ do have normal vectors. �

10.11. Tangent and Normal Bundle. Both the tangent and the nor-
mal bundle of a branched conformal immersion that has both normal vectors
extend smoothly into its branch points.

Proposition. If L is a holomorphic curve in HP1 whose dual curve
L⊥ is also a holomorphic curve, then the tangent and the normal bundle of
L extend smoothly through the branch points of L. The extensions satisfy

>L = Hom+(L,H2/L) and ⊥L = Hom+(L̄,H2/L),

as complex line bundles.
In terms of normal vectors one obtains: The tangent bundle as well

as the normal bundle of a branched conformal immersion f : M → H with
right normal vector N and left normal vector R extends smoothly through
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the branch points of f , and

>f = {x ∈ H | NxR = x }, ⊥f = {x ∈ H | NxR = −x }.

Proof. This follows from the description of the tangent and normal
bundle away from the branch points of L or f in Theorem 7.6 or Lemma 6.1,
respectively. �

10.12. Normal Vectors of Holomorphic Sections with Zeros.
In 3.1 normal vectors where only defined for nowhere vanishing sections of
complex quaternionic line bundles. The following theorem shows that if the
section is holomorphic, then the normal vector extends continuously into
the zeros of the section, but the extension of the normal vector is in general
not smooth.

Theorem. Let L be a holomorphic line bundle and ψ ∈ H0(L) a holo-
morphic section of L with a zero at p ∈M .

(i) The normal vector of ψ extends continuously into p.
(ii) If the extended normal vector of ψ is continuously differentiable at p,

then the Hopf field Q of L vanishes at p.

Proof. Restricting to some open neighborhood of p, one can assume
that p is the only zero of ψ. One can write ψ = znϕ+O(n+1) with n ∈ N,
n ≥ 1 and a nowhere vanishing section ϕ ∈ Γ(L), as in 2.4. Let N be the
normal vector of ψ restricted to M \ {p}.

(i) From ψ = znϕ+O(n+1) follows that there exists a continuous function
g : M → H such that g(p) = 1 and ψ = znϕg. Let Ñ be the normal
vector of ϕ. Then

Jψ = J(znϕg) = znϕÑg and Jψ = ψN = znϕgN.

on M \ {p}. Hence N = g−1Ñg. Since g−1Ñg is continuous on all of
M , it follows that N extends continuously into p.

(ii) For the Hopf field Q of L one has Qψ = ψ 1
2NdN

′′ (cf., 3.3) on M \{p}.
Thus

Qψ = ψ 1
2NdN

′′ = znϕ1
2NdN

′′ +O(n+ 1) and

Qψ = Q(znϕ+O(n+ 1)) = z̄nQϕ+O(n+ 1).

Hence
(
z̄
z

)n
Qϕ = ϕ1

2NdN
′′ + O(1) on M \ {p} . This implies that(

z̄
z

)n
Qϕ extends continuously into p. Consequently, Qϕ p = 0. But ϕ

does not vanish at p, thus Q is zero at p.
�

10.13. Corollary. The Hopf fields of branchedly paired holomorphic
line bundles vanish at the branch points of the pairing.

Proof. Let L̃ and L be branchedly paired holomorphic line bundles,
p ∈ M a zero of the pairing, and B : L̃ → KL−1 the holomorphic bundle
map ξ 7→ (ξ, ·) of Proposition 10.8. Let ϕ be a local nowhere vanishing
holomorphic section near p and N its normal vector. Then Bϕ is zero at p,
but has the smooth normal vector N , thus the Hopf field of KL−1 vanishes
at p, by Theorem 10.12. Corollary 9.9 implies that the Hopf field of L at p
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vanishes. Interchanging L̃ and L, the same argument shows that the Hopf
field of L̃ vanishes. �

10.14. Branched Conformal Immersions Without Smooth Nor-
mal Vectors. Let L be a quaternionic line bundle whose Hopf field does
not vanish at p ∈ M . Then Corollary 9.9 implies that the Hopf field of
KL−1 does not vanish at p either. Restricting to a neighborhood of p one
can assume that there are holomorphic sections ϕ and ψ of KL−1 and L
with zeros at p, [BP]. Then Theorem 10.9 implies that f :=

∫
ϕ(ψ) is a

branched conformal immersion. This branched conformal immersion pos-
sesses continuous left and right normal vectors that are not continuously
differentiable, by Theorem 10.12.

11. The Ladder of Holomorphic Line Bundles

The relations of the holomorphic structures of the Euclidean and Möbius
invariant holomorphic line bundles of an immersed holomorphic curve in
HP1 can be generalized to relations of holomorphic structures on the four
complex quaternionic line bundles L, L−1, KL−1 and K−1L. This situation
can be visualized in a diagram, which naturally extends to a ladder whose
vertices are the complex quaternionic line bundles KnL and KnL−1, n ∈ Z.
The relation of the holomorphic line bundles that occur in this ladder play
an important role in the following investigations.

11.1. The lines in the following diagram depict the relations of the
holomorphic structures of the Möbius invariant holomorphic line bundles
L−1 and H2/L and the Euclidean holomorphic line bundles L and L⊥ of an
immersed holomorphic curve L in HP1 and its dual curve L⊥:

L⊥
9.1 _________

9.6
TTTTTTTTTT

TTTTTTTTTT

H2/L

L−1 9.1 __________ L

• The solid line stands for the paired holomorphic structures (cf.,
Theorem 9.6). The holomorphic structure at one vertex uniquely
determines the holomorphic structure at the other vertex.
• The lower dashed line stands for the relation of the Möbius invari-

ant holomorphic structure on L−1 and the Euclidean holomorphic
structure on L, described in Theorem 9.1. The upper dashed line
describes the same relation with L replaced by L⊥ and L−1 re-
placed by H2/L = (L⊥)−1. These relations depend on the choice
of an admissible point ∞ ∈ HP1.

11.2. The Horizontal Relation with Connections. The relation
depicted by the dashed line can be generalized as follows: Let L ⊂ H2 be
a holomorphic curve in HP1 and ∞ ∈ HP1 a point that does not lie on
L. Then there is a unique quaternionic connection ∇ on L−1 such that
∇β L = 0 for all β ∈ (H2)∗ whose kernel is∞. This connection is trivial and
its (0, 1) part ∇′′ is the holomorphic structure D of L−1, because one has
∇′′β L = 0 = Dβ L for all β ∈ (H2)∗ such that kerβ = ∞. The Euclidean
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holomorphic structure of L with respect to ∞ is the (0, 1) part (∇∗)′′ of the
dual connection of ∇ on L, because the affine lift β−1 of L is holomorphic,
by the definition of the Euclidean holomorphic structure, and (∇∗)′′β−1 = 0,
since β(β−1) = 1.

If ∇ is now an arbitrary flat quaternionic connection on a holomorphic
line bundle L−1 such that∇′′ is the holomorphic structure of L−1, then (∇∗)′′
is a holomorphic structure on L. There is, at least locally, a curve in HP1

such that L−1 and L are its Möbius invariant and Euclidean holomorphic
line bundles: Let β be a local section of L−1 and H a 2–dimensional linear
system of local holomorphic sections of L−1 that contains β. The Kodaira
corresponding curve of H then has the Möbius invariant holomorphic line
bundle L−1 and the Euclidean holomorphic line bundle L.

If one, on the other hand, starts with β−1, instead of β, and a 2–
dimensional linear system H of local holomorphic sections of L, then L,
instead of L−1, is the Möbius invariant holomorphic line bundle and L−1,
instead of L, is the Euclidean holomorphic line bundle of the Kodaira cor-
responding curve of H.

The relation of the Willmore energies obtained in 9.4 is preserved in the
more general situation.

11.3. Proposition. Let L be a quaternionic holomorphic line bundle
over a compact Riemann surface M , ∇ a flat quaternionic connection on L
such that ∇′′ is the holomorphic structure of L and let (∇∗)′′ be the holo-
morphic structure of L−1. The Willmore energies of L and L−1 then satisfy

W (L) = W (L−1)− 4π degL

Proof. Let ∇ = ∂ + A + ∂̄ + Q be the type decomposition of ∇, as
in 2.7, then one easily checks that ∇∗ = ∂∗ − Q∗ + ∂̄∗ − A∗, where ∂∗

and ∂̄∗ are the dual antiholomorphic and holomorphic structures of ∂ and
∂̄, and A∗ and Q∗ are the dual endomorphisms of A and Q. Furthermore,
∇′′ = ∂̄+Q and (∇∗)′′ = ∂̄∗−A∗. Thus W (L) = 2

∫
〈Q∧∗Q〉 and W (L−1) =

2
∫
〈A∗ ∧ ∗A∗〉 = 2

∫
〈A ∧ ∗A〉. The flatness of ∇ and the formula for the

complex linear part of the curvature tensor of ∇, given in 2.7, then imply
0 = R∇+ = R∇̂ +Q∧Q+A∧A, hence Q∧∗Q = A∧∗A−J R∇̂. Integration
of the real trace of this formula, and the formula 2π degL =

∫
〈J R∇̂〉, gives

the claimed formula. �

11.4. Direct Vertical Relation. The diagonal and the horizontal re-
lation of the holomorphic structures in the diagram (11.1) yield a zigzag
relation between the holomorphic structures of L−1 and KL−1. This rela-
tion can be described by the exterior derivative: Let ∇ be a quaternionic
connection on L−1. The exterior derivative d∇ is then a quaternionic holo-
morphic structure on KL−1 if one identifies the tensor product K̄K of the
canonical and anticanonical bundle and the complex line bundle of C–valued
2–forms Λ2 ⊗C by

K̄K 3 ω ⊗ η ↔ ω ∧ η ∈ Λ2 ⊗C,

which induces an identification of K̄KL−1 and Λ2 ⊗ L−1. The exterior de-
rivative d∇ : Γ(KL−1)→ Γ(K̄KL−1) then satisfies the Leibniz rule, because
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for ω ∈ Γ(KL) and λ : M → H one has

d∇(ωλ) = d∇ωλ− ω ∧ dλ = d∇ωλ+ (ωdλ)′′,

since w ∧ dλ′ = 0 by type and w ∧ dλ′′ is identified with −(ωdλ)′′.

Theorem. If L−1 is a complex quaternionic line bundle and ∇ a flat
quaternionic connection on L−1, then d∇ and (∇∗)′′ are paired holomorphic
structures on KL−1 and L. Moreover, ∇ induces a quaternionic linear
map from H0(L−1,∇′′) to H0(KL−1, d∇), and on compact M the Willmore
energies of KL−1, L and L−1 satisfy

W (L−1) = W (L)− 4π degL−1 = W (KL−1)− 4π degL−1.

Proof. Let U ⊂ M be open, ω ∈ Γ(KL−1
U ) such that d∇ω = 0, and

ψ ∈ Γ(L U ) such that (∇∗ψ)′′ = 0. Then

d(ω, ψ) = d(ω(ψ)) = d∇ω(ψ) + ω ∧∇∗ψ = ω ∧ (∇∗ψ)′′ = 0,

where ω ∧∇∗ψ = ω ∧ (∇∗ψ)′′ follows by type (cf., 2.8). Thus d∇ and (∇∗)′′
are paired, by Theorem 9.6.

If ψ is a holomorphic section in (L−1,∇′′), then ∇ψ ∈ Γ(KL−1), be-
cause (∇ψ)′′ = 0, and ∇ψ is holomorphic, because the flatness of ∇ implies
d∇∇ψ = 0. The equation for the Willmore energies follows from Corol-
lary 9.9 and Proposition 11.3 �

11.5. Remark. The J commuting part of d∇ is the tensor product
of the complex holomorphic structures of K and L−1: The complex holo-
morphic structure on K is the exterior derivative d, and the complex holo-
morphic structure of L−1 is the J–commuting part of ∇′′. For ω ∈ K and
ϕ ∈ Γ(L−1) one gets

d∇(ωϕ)− Jd∇(ωJϕ)

= dωϕ− ω ∧∇ϕ− J(dωJϕ) + ω ∧ J(∇J)ϕ+ ω ∧ J2∇ϕ
= 2dωϕ+ 2ω ∧ (Q+A)ϕ− 2ω ∧∇ϕ︸ ︷︷ ︸

=2ω∧(∇ϕ)′′=2ω∧(∂̄+Q)ϕ
= 2dωϕ+ 2ω∂̄ϕ.

In the second line the formula ∇J = 2(∗Q− ∗A) = −2J(Q+A) from 2.7 is
used, and ω ∧∇ϕ = ω ∧ (∇ϕ)′′ as well as ω ∧Aϕ = 0 by type (cf., 2.8).

11.6. The Quadrilateral of Holomorphic Line Bundles. Theo-
rem 11.4 implies that every flat connection ∇ on L−1 induces a commutative
triangle of quaternionic holomorphic structures:

(KL−1, d∇)
OO

11.4 �
�
�

9.6
VVVVVVVV

VVVVVVVV

(L−1,∇′′)
11.3

_________ (L, (∇∗)′′)



11. THE LADDER OF HOLOMORPHIC LINE BUNDLES 37

Rotating the triangle of holomorphic line bundles and substituting L by
KL−1 yields

(KL−1, (∇̃∗)′′) 11.3 _________

9.6
VVVVVVVVVV

VVVVVVVVVV

(K−1L, ∇̃′′)

11.4
���
�
�

(L, d∇̃)

If one chooses ∇̃ such that d∇ = (∇̃∗)′′ then the triangles fit together,
and one obtains the quadrilateral of holomorphic line bundles:

(KL−1, d∇ = (∇̃∗)′′)
OO

11.4
�
�
�

11.3 __________

9.6
WWWWWWWWW

WWWWWWWWW

(K−1L, ∇̃′′)

11.4
���
�
�

(L−1,∇′′)
11.3

____________ (L, (∇∗)′′ = d∇̃)

11.7. The Ladder of Holomorphic Line Bundles. KL−1 with flat
connection ∇̃∗ is the lower left corner of a new triangle above the quadri-
lateral, and L with ∇∗ is the upper right corner of a rotated triangle below
the quadrilateral. Choosing new flat connections whose (0, 1) parts equal
d∇

∗
and d∇̃

∗
, respectively, yields two new triangles. This procedure can

be continued as long as there are flat connections with appropriate (0, 1)
parts. Because there are always local nowhere vanishing holomorphic sec-
tions, such connections exist at least locally. All in all, one arrives at a
ladder of holomorphic line bundles:

KnL−1

WWWWWWWWWWWWWWWWWWWWWWWWWWWW

(K2L−1, d∇̃
∗
)

OO

�
�
�

WWWWWWWWWWWWWWWWWWWWWWW
... K−n+1L

(KL−1, d∇ = (∇̃∗)′′)
OO

11.4
�
�
�

11.3 __________

9.6
WWWWWWWWW

WWWWWWWWW

(K−1L, ∇̃′′)

11.4
���
�
�

(L−1,∇′′)

WWWWWWWWWWWWWWWWWWWWWWWWWW 11.3
____________ (L, (∇∗)′′ = d∇̃)

���
�
�

K−nL−1

XXXXXXXXXXXXXXXXXXXXXXXXXXXX
... (KL, d∇

∗
)

Kn+1L
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12. Surfaces in R3

In this section it is shown that the Euclidean holomorphic line bundles
of a conformal immersion into ImH = R3 are isomorphic. This means that
only one holomorphic line bundle enters into the Weierstrass data of such an
immersion. This line bundle is paired to itself, and the conformal immersions
into ImH are obtained integrating squares of holomorphic sections.

12.1. Surfaces in ImH. Immersions with values in a parallel hyper-
plane of ImH are characterized by equality of their normal vectors.

Proposition. If f : M → H is a branched conformal immersion with a
normal vector, then f takes values in a hyperplane parallel to ImH if and
only if it has both normal vectors and they are equal. In this case, the normal
vector is the Gauss map of f .

Proof. If N is the left normal vector of f , then ∗df = −∗df = −Ndf =
−dfN , because the image of df is contained in ImH. ThusN is also the right
normal vector of f . On the other hand, if there exists a map N : M → H

such that N2 = −1 and ∗df = Ndf = −dfN , then Re(df) = −Re(dfN2) =
−Re(NdfN) = Re(dfN2) = −Re(df), because the real part of the quater-
nionic multiplication is commutative. Thus df takes values in ImH. Finally,
N(p) is for all p ∈ M orthogonal to the image of dpf , since Ndf = −dfN
implies 〈N, df〉 = Re(Ndf) = 0. �

12.2. Weierstrass Representation. The preceding proposition and
Theorem 10.10 imply that a branched conformal immersion with a normal
vector and values in ImH has a Weierstrass representation. Its Weierstrass
data is symmetric:

Lemma. If (L⊥, L, ϕ, ψ) is the Weierstrass data of a branched confor-
mal immersion with a normal vector into ImH, then L⊥ and L are isomor-
phic with an isomorphism mapping ϕ onto ψ.

Proof. Let f : M → ImH be a branched conformal immersion into
ImH with normal vector N : M → H, then ∗df = Ndf = −dfN , by Propo-
sition 12.1. Thus df = (ϕ,ψ) implies that ϕ and ψ are nowhere vanishing
holomorphic sections of L⊥ and L with the same normal vector −N . The
bundle map B : L⊥ → L mapping ϕ onto ψ is a holomorphic isomorphism,
by Lemma 4.1. �

12.3. If two paired holomorphic line bundles L̃ and L are isomorphic
with an isomorphism B : L → L̃, then (·, ·) := (B·, ·) is a pairing of L
with itself. A holomorphic line bundle L that is paired to itself is called a
spin bundle, and a branched spin bundle, if L is branchedly paired to itself.
Proposition 10.8 implies that a holomorphic line bundle L is a branched spin
bundle if and only if there is a holomorphic bundle homomorphism from L
to KL−1. It is a spin bundle if and only if L and KL−1 are isomorphic.

Lemma. If L is a branched spin bundle with branched pairing (·, ·),
then (ϕ,ψ) = −(ψ,ϕ).
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Proof. Let ψ ∈ L not zero and N ∈ H such that Jψ = ψN . Then
N2 = −1 and Re(ψ,ψ) = −Re(Jψ, Jψ) = Re(N(ψ,ψ)N) = −Re(ψ,ψ).
Thus (ψ,ψ) takes values in ImH. Let ϕ be some element in the same fiber
as ψ, then there exists λ ∈ H such that ϕ = ψλ. This implies (ϕ,ψ) =
λ̄(ψ,ψ) = −(ψ,ψ)λ = −(ψ,ϕ). �

12.4. Putting everything together one concludes that the Weierstrass
representation of a branched conformal immersion with a normal vector into
ImH is obtained from one holomorphic section in a branched spin bundle.

Theorem. If f : M → ImH is a branched conformal immersion with a
normal vector. Then the Euclidean holomorphic line bundle L is the unique
branched spin bundle with a nowhere vanishing holomorphic section ϕ ∈
H0(L) such that

df = (ϕ,ϕ).

The branching order of f equals the vanishing order of the pairing. If M is
compact of genus g, then

b(f) = 2g − 2− 2 degL.

Conversely, if ϕ ∈ H0(L) is a nowhere vanishing holomorphic section
of a branched spin bundle L over a simply connected Riemann surface, then∫

(ϕ,ϕ) is a branched conformal immersion of M into H with both normal
vectors that takes values in some hyperplane parallel to ImH ⊂ H.

The pair (L,ϕ) is called the Weierstrass data of f .

Proof. The first part follows form Theorem 10.10 and Lemma 12.2. In
particular, L is a branched spin bundle, the map B : L→ KL−1, ϕ 7→ (ϕ, ·)
is holomorphic, by Proposition 10.8, and ordB is the total branching order
b(f) of f . Thus b(f) = ordB = −2 degL+ degK = −2 degL+ 2g − 2.

The converse is a consequence of Theorem 10.10 and Proposition 12.1,
because df = (ϕ,ϕ) implies that the left and the right normal vector of f
coincide. �

12.5. Maps into Real Hyperplanes of H. If V ⊂ H is a real hyper-
plane of H through zero, then V µ̄ = ImH, for every nonzero µ ∈ H orthogo-
nal to V . Thus the image of a map f : M → H is contained in a hyperplane
parallel to V if and only if the image of fµ̄ is contained in a hyperplane
parallel to ImH. It follows, by Theorem 12.4, that (branched) conformal
immersions (with a normal vector) that take values in a real hyperplane of
H, have Weierstrass data of the form (L,L, ϕ, ϕµ̄) with a nowhere vanishing
holomorphic section ϕ in a (branched) spin bundle L, and vice versa. In
terms of normal vectors one gets that the equation N = µRµ−1, for the
normal vectors N and R of f and some constant µ ∈ H, is equivalent to f
assuming values in a hyperplane parallel to the orthogonal complement of
µ. In particular, a smooth map f : M → H whose image is contained in a
real hyperplane has either both or no normal vectors.
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12.6. Example: Minimal Surfaces. Let f : M → ImH be a branched
conformal immersion such that

df = (ϕ,ϕ),

with a holomorphic section ϕ of a spin bundle L. The equation 2〈Q∧∗Q〉 =
|H|2dA (cf., 9.4) and Remark 3.6 imply that f is minimal if and only if the
Willmore energy of L vanishes.

This is the quaternionic version of the well known spinor Weierstrass
representation of a minimal surface in R3, see for example [Bob94]. To
get the standard formula with two complex holomorphic spinors choose a
meromorphic section ψ of the underlying complex line bundle L̂ of L. Then
∗(ψ,ψ) = −i(ψ,ψ) = (ψ,ψ)i. Hence locally, away from the zeros and poles
of ψ, there are holomorphic charts z : M ⊃ U → C such that (ψ,ψ) = jdz.
Writing ϕ = ψ(λ1k+λ2) with complex holomorphic maps λ1,2 : U → C one
gets

df = Re(2λ1λ2dz)i+ Re((−λ2
1 + λ2

2)dz)j+ Re(i(λ2
1 + λ2

2)dz)k.

With the meromorphic map g = λ1
λ2

and the holomorphic 1–form η = 2λ2
2dz

one obtains the classical Weierstrass representation (cf., [HK97, Theorem
2.1]) of minimal surfaces

df = Re(gη)i+ Re(1
2(1− g2)η)j+ Re(1

2i(1 + g2)η)k.

The normal vector N of f is minus the normal vector of ϕ, which implies
N = −(λ1k+ λ2)−1i(λ1k+ λ2). Consequently, N = (|g|2−1)i+2gj

|g|2+1
. Thus g is

the stereographic projection of the normal vector of f .

13. Surfaces in S3

If L ⊂ H2 is an immersed holomorphic curve in HP1 that lies in some
3–sphere of HP1, then there is a stereographic projection sα,βL of L that
takes values in the imaginary quaternions ImH. The Euclidean holomor-
phic structures of L and L⊥ with respect to∞ ∈ S3 are then isomorphic, by
Lemma 12.2. In this section it is shown that the Möbius invariant holomor-
phic line bundles are also isomorphic. Because this is a Möbius invariant
condition one could ask whether the property that the Euclidean holomor-
phic line bundles are isomorphic is possibly also invariant under Möbius
transformations. The answer is no. In fact, a conformal immersion of a
compact Riemann surface into S3 whose Euclidean holomorphic line bun-
dles are isomorphic is a surface of constant mean curvature in S3.

13.1. The Möbius Invariant Holomorphic Line Bundles. The
Möbius invariant holomorphic line bundles of a holomorphic curve in HP1

that lies in a 3–sphere are isomorphic. This can be derived from the fact
that the Euclidean holomorphic line bundles of such a curve and its dual
are isomorphic. Nevertheless an independent proof is given below.

Theorem. A holomorphic curve L in HP1 lies in some 3–sphere if and
only if L⊥ is a holomorphic curve and there is a holomorphic isomorphism
between the Möbius invariant holomorphic line bundles of L⊥ and L that
maps the canonical linear systems of L⊥ and L onto each other.



13. SURFACES IN S3 41

The author does not know any example of a holomorphic curve in HP1

that does not lie in a 3–sphere whose Möbius invariant holomorphic line
bundle is isomorphic to the Möbius invariant holomorphic line bundle of
its dual curve. Thus the condition on the canonical linear systems in the
theorem may be superfluous.

Proof. Suppose L ⊂ H2 lies in some 3–sphere S3 ⊂ HP1. Then L
can be stereographically projected onto a branched conformal immersion
in ImH. This immersion has a smooth right normal vector, by Propo-
sition 10.5. Proposition 12.1 implies that it also has a smooth left nor-
mal vector. Thus L⊥ is also a holomorphic curve, by Proposition 10.5 and
Lemma 7.5.

Let 〈 , 〉 be the indefinite Hermitian form on H2 associated to S3, as
described in 5.4, then 〈L,L〉 = 0. The quaternionic linear homomorphism

B : H2 → (H2)∗, a 7→ 〈a, ·〉

maps L onto L⊥. Hence it induces a quaternionic linear bundle homomor-
phism B̃ : (L⊥)−1 = H2/L → L−1 = (H2)/L⊥, which maps the canonical
linear system of L⊥ onto the canonical linear system of L. If a, b ∈ H2 is an
admissible basis, then a L⊥ and b L⊥ are holomorphic sections of (L⊥)−1,
and there exists f : M → H such that a L⊥ = b L⊥f . From the Leib-
niz rule follows that the normal vector of b L⊥ is the left normal vector
of f . The left normal vector of f is also the normal vector of B̃(b L⊥),
because B̃(a L⊥) = 〈a, ·〉 L and B̃(b L⊥) = 〈b, ·〉 L are holomorphic and
B̃(a L⊥) = B̃(b L⊥)f . Thus Theorem 4.2 implies that B̃ is holomorphic.

Suppose now that there exists a holomorphic bundle homomorphism
B̃ : (L⊥)−1 → L−1 that maps the canonical linear system of L⊥ onto the
canonical linear system of L. Then B̃ induces a parallel quaternionic linear
bundle homomorphism B : H2 → (H2)∗ that satisfies B(L) = L⊥. The latter
follows, because ψ ∈ Lp corresponds to a holomorphic section of (L⊥)−1 with
a zero at p whose image under B is also a holomorphic section with a zero
at p. If one now proves that 〈x, y〉 := B(x)(y) is a Hermitian form on H2,
then L lies in the 3–sphere associated to 〈 , 〉, and the proof is complete.

Let ψ ∈ Γ(L) be a nowhere vanishing section, then B(ψ)(ψ) = 0 implies

B(δψ)(ψ) = −B(ψ)(δψ).

This equation implies −NB(δψ)(ψ) = B(δψ)(ψ)N for the normal vector
N : M → H of ψ. Thus the image of B(δψ)(ψ) is contained in the imaginary
quaternions. Let p, q ∈M such that Lp 6= Lq, δ p 6= 0, and X ∈ TpM \ {0}.
Then there exists b ∈ Lq \ {0} such that b ≡ δXψ p mod Lp. If a = ψ p,
then a, b is a basis of H2 such that B(a)(a) = B(b)(b) = 0, because a ∈ Lp
and b ∈ Lq. Furthermore, B(b)(a) = B(δ(X)ψ p)(ψ p) is imaginary, and

B(b)(a) = B(δ(X)ψ p)(ψ p) = −B(ψ p)(δ(X)ψ p) = −B(a)(b) = B(a)(b).

�
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13.2. Maps into S3 and Spin Bundles. The Weierstrass data of a
branched conformal immersion into a real hyperplane of H consists of two
linearly dependent sections of a branched spin bundle (cf., 12.5). Linearly
independent nowhere vanishing sections induce immersions that do not lie in
a real hyperplane ofH. The quotient of these sections is a nowhere vanishing
holomorphic section of the normal bundle (cf., Lemma 13.4). From this one
can derive (cf., Theorem 13.6) that the Weierstrass data of a branched con-
formal immersion of a compact Riemann surface into S3 lies in a branched
spin bundle if and only if the immersion has constant mean curvature (CMC)
in S3.

13.3. Recall from Proposition 10.11 that the normal bundle ⊥ f of a
branched conformal immersion f : M → H with right normal vector R and
left normal vector N is {x ∈ H | NxR = −x }. It is a complex line bundle,
whose complex structure is left multiplication with N , which equals right
multiplication with R. The trivial connection d of H induces a complex
connection ∇⊥ on the normal bundle of f , since for a section ψ ∈ Γ(⊥ f)
one has ∇⊥(ψR) = ∇⊥(ψ)R, because ψdR has values in the tangent bundle
of f . The (0, 1) part of the normal connection ∇⊥ defines the complex
holomorphic structure of the normal bundle of f .

13.4. Lemma. Let L be a branched spin bundle over simply connected
M , ϕ,ψ ∈ H0(L) nowhere vanishing holomorphic sections, and λ : M → H

the quotient of ϕ and ψ, i.e., ϕ = ψλ̄. Then λ is a nowhere vanishing holo-
morphic section of the normal bundle of the branched conformal immersion∫

(ϕ,ψ).

Proof. Let N be the left normal vector and R the right normal vector
of the branched conformal immersion f :=

∫
(ϕ,ψ). Then Jϕ = −ϕN =

−ψλ̄N and Jϕ = Jψλ̄ = −ψRλ̄. Hence NλR = −λ, which means that
λ is a nowhere vanishing holomorphic section of the normal bundle of f .
Because ϕ and ψ are holomorphic, the Leibniz rule implies ∗dλ̄ = −Rdλ̄,
hence ∗dλ = dλR. The (0, 1) part of dλ with respect to right multiplication
by R on H thus vanishes identically. Its projection onto the normal bundle
of f is of course also zero. This means that λ is a holomorphic section of
the normal bundle of f . �

13.5. Remark. As ∗dλ = dλR implies dλ ∧ df̄ = 0 by type, λ is a 1–
step Bäcklund transform of f̄ (cf., 21.5). From ∗d(λ−1) = d(λ−1)N follows
that d(λ−1) ∧ df = 0, hence λ−1 is a 1–step Bäcklund transform of f .

13.6. Theorem. Let M be a compact Riemann surface, f : M → S3 a
branched conformal immersion with both normal vectors, and (L⊥, L, ϕ, ψ)
its Weierstrass data. The holomorphic line bundles L⊥ and L are isomorphic
if and only if f is a CMC surface in S3. The quotient of ϕ and ψ is in this
situation, up to a constant real factor, the parallel CMC surface of f .

Proof. If L and L⊥ are isomorphic, then let λ : M → H be the quotient
of ϕ and ψ, i.e., ϕ = ψλ̄. Lemma 13.4 then implies that λ is a holomorphic
section of the normal bundle of f . Since f takes values in S3, f is also a
section of its normal bundle. By the definition of the normal connection
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it is parallel, and, consequently, holomorphic. Because M is compact this
implies that there are real constants λ1,2 ∈ R such that

λ = λ1f + λ2n,

where n = Nf = fR is the normal vector of f in S3.
Let I = 〈df, df〉, II = −〈df, dn〉 and III = 〈dn, dn〉 be the first, second,

and third fundamental forms of f as a surface in S3. Let H be the mean
curvature of f in S3 and K the Gauss curvature of f . Then H is half
the trace and (K − 1) the determinant of II with respect to I. From the
Cayley–Hamilton theorem follows

0 = (K − 1)I − 2H II + III .

Furthermore, there exists a smooth map u : M → R such that |dλ| = u I,
because λ is a conformal immersion, away from the zeros of its differential,
by Lemma 6.1 (λ has a right normal vector, see the proof of Lemma 13.4).
Consequently,

u I = |dλ| = λ2
1 I−2λ1λ2 II +λ2

2 III = (λ2
1 −K + 1) I+2λ2(−λ1 +Hλ2) II .

Thus one has the following three cases: (1) λ2 = 0; (2) λ2 6= 0 and
H = λ1

λ2
; or (3) II is at all p ∈ M a multiple of I. Case (1) means that λ

is a constant real multiple of f , which is a contradiction to ∗df = −dfR
and ∗dλ = dλR, see the proof of Lemma 13.4. Case (2) implies that f
has constant mean curvature H = λ1/λ2 in S3, and that λ = λ2(Hf + n).
Hence λ has constant length (because dλ is orthogonal to λ) and λ/|λ| is the
parallel CMC surface of f in S3. Case (3) means that f is totally umbilic.
It, consequently, lies in some real hyperplane of H. From 12.5 then follows
that ψ and ϕ are linearly dependent. Thus λ is constant. This implies
dn = −λ1

λ2
df . Hence H = λ1

λ2
. So, case (3) is contained in case (2).

Suppose now that f has constant mean curvature H in S3. Then

λ := Hf + n

is, up to a constant real factor, the parallel CMC surface of f in S3. Then
dλ is orthogonal to λ, and dλ takes values in the tangent bundle of f .
Furthermore,

|dλ| = H2 I−2H II + III = (H2 −K + 1) I .

Hence λ is conformal. Let N be the left and R the right normal vector of
f . Then one arrives at the following three cases: (a) λ is constant; (b) N is
its left and R is its right normal vector; or (c) −N is its left and −R is its
right normal vector.

Case (a) means that df is orthogonal to the constant λ. Thus f takes
values in a real hyperplane of H parallel to λ⊥, and L⊥ and L are holo-
morphically isomorphic (see 12.5). In case (b) dλ = Hdf + dn implies that
∗dn = Ndn = −dnR. From n = Nf = fR one concludes dN ′′ = dR′′ = 0.
Thus the Willmore energies of the Möbius invariant holomorphic line bun-
dles of f and f̄ vanish (cf., 8.6). Consequently f takes values in some
2–sphere (cf., 8.4). Hence as in case (a), f takes values in a real hyper-
plane of H, and L⊥ and L are holomorphically isomorphic (see 12.5). In
case (c) one has ∗dλ = dλR. This equation and the Leibniz rule imply that
ψλ̄ is a holomorphic section of L. From Jψ = −ψR (since df = (ϕ,ψ))
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and Nλ = λR follows that Jψλ̄ = −ψRλ̄ = −ψλ̄N . So ψλ is a nowhere
vanishing holomorphic section of L that has the same normal vector as the
nowhere vanishing section ϕ of L⊥. Thus L⊥ and L are holomorphically
isomorphic, by Theorem 4.2. �



CHAPTER III

Equality in the Plücker Estimate

The complex version of the Plücker formula relates basic extrinsic and
intrinsic invariants of compact complex holomorphic curves in CPn. If bk is
the branching order of the osculating k–plane, g the genus and d the degree
of the curve, then

0 = (n+ 1)(n(1− g)− d) +
n−1∑
k=0

(n− k)bk,

(cf., [GriHa, Section 2.4, p. 270f]). In the quaternionic situation the formula
holds verbatim if one replaces the zero on the left hand side by the difference
of the Willmore energies of the curve and its dual. As a matter of fact, the
quaternionic Plücker formula, as formulated in [FLPP01] (or 14.7), is about
linear systems of holomorphic line bundles and the weighted sum of the
branching orders of the osculating k–planes is replaced by the Weierstrass
order of the linear system. The connection between these two formulations
is the Kodaira correspondence (cf., 14.1) and the formula bk = nk+1−nk−1,
which implies

∑n−1
k=0(n− k)bk(p) =

∑n
k=0(nk(p)− k) = ordpH (cf., 3.7 and

Lemma 14.2).
The first section of the present chapter contains important definitions

and the formulation of the Plücker formula and the Plücker estimate. The
Plücker formula is in the next section applied to 1– and 2–dimensional linear
systems. This yields a formula that relates the Willmore energies of different
stereographic projections of a holomorphic curve in HP1, and a formula for
the total curvature of the stereographic projection of a holomorphic curve
in HP1. Furthermore, it is shown that compact holomorphic curves which
project stereographically onto minimal surfaces inR4 are those curves whose
canonical linear system contains a 1–dimensional linear system with equality
in the Plücker estimate. Section 16 then contains the most important fact
about equality in the Plücker estimate: Linear systems with equality in the
Plücker estimate can be described by complex holomorphic data. Then three
operations that preserve equality in the Plücker estimate are presented.

In Section 18 soliton spheres are defined as those branched conformal
immersion of CP1 into H whose canonical linear system is contained in a
linear system with equality. It is then shown that this Möbius invariant
definition is equivalent to a definition in Euclidean terms, which was pro-
posed by Iskander Taimanov in [Ta99] for immersions of CP1 into R3 with
rotationally symmetric potential. This leads to a large class of examples of
soliton spheres in R3, the Taimanov soliton spheres. The last section of the
present chapter is concerned with the possible Willmore energies of soliton
spheres in R3.

45
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14. Plücker Formula and Plücker Estimate

In this section holomorphic curves in the Grassmannian manifold of a
quaternionic vector space, their osculating k–planes, their dual curve, as well
as their canonical complex structure are introduced. It is shown how the
osculating k–planes are related to the Weierstrass flag of the canonical linear
system of a holomorphic curve in HPn. Finally, the quaternionic Plücker
formula can be formulated. This formula yields an estimate on the Willmore
energy, which is called the Plücker estimate.

14.1. Holomorphic Maps into Grassmannians. Let Gk(H) be the
Grassmannian manifold of k–dimensional subspaces of a quaternionic vec-
tor space H. A map M → Gk(H) is, as for HP1 = G1(H2), identified with
a rank k subbundle V of the trivial H–bundle over M . In order to keep the
notation simple, the trivial H–bundle is again denoted by H. The endo-
morphism δ := π∇

V
∈ Ω1 Hom(V,H/V ) is then the derivative of the map

represented by V , analogous to 7.1. Here ∇ denotes the trivial connection
of H and π : H → H/V the canonical projection. A subbundle V ⊂ H
is called a holomorphic curve in Gk(H), if V posses a complex structure J
such that

∗δ = δJ.

As for holomorphic curves in HP1 (cf., Theorem 8.1) there is a unique
holomorphic structure on the dual bundle V ∗ = H∗/V ⊥ of V such that the
restrictions of the elements of H∗ to V are holomorphic sections of V ∗ (cf.,
[FLPP01, Theorem 2.3]). The holomorphic vector bundle V ∗ with this
holomorphic structure is called the canonical holomorphic vector bundle of
V . If V is full, i.e., V does not lie in a linear subspace of H, then H∗

can be identified with the base point free linear system obtained from H∗

restricting its elements to V . H∗ ⊂ H0(V ∗) is called the canonical linear
system of the curve V . As for curves in HP1 (cf., Paragraph 8.5) V can
be recovered from H∗, because V = ker(ev)⊥ ⊂ H, where ev : H∗ → V ∗,
(p, β) 7→ β(p) is the evaluation map. This is the Kodaira correspondence
between base point free linear systems H∗ of holomorphic vector bundles
of rank k and projective equivalence classes of full holomorphic curves in
Gk(H) (cf., [FLPP01, Paragraph 2.6]).

14.2. Osculating k–Planes. Let H be an (n + 1)–dimensional base
point free linear system of a holomorphic line bundle L−1, {0} ⊂ H0 ⊂ . . . ⊂
Hn = H the Weierstrass flag, 0 = n0 < n1 < . . . < nn the Weierstrass gap
sequence of H (cf., 3.7) and L ⊂ H∗ the corresponding holomorphic curve.
For p ∈M let

∇kL
p

:= span{∇X1 . . .∇Xk̃
ψ p | ψ ∈ Γ(L), X1, . . . , Xk̃ ∈ Γ(TM), k̃ ≤ k }.

If dim∇kL p = k + 1 for all p ∈ M , then ∇kL is the osculating k–plane of
L. The ∇kL fail to satisfy the condition on the dimension exactly at the
Weierstrass points of the linear system H, because of the following relation
to the Weierstrass flag of H.
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Lemma. For all p ∈M and all k = 0, . . . , n one has

∇nk(p)L
p

= (Hn−k−1(p))⊥ and dim
(
∇nk(p)L

p

)
= k + 1.

Proof. Let β ∈ H, β = zlϕ + O(l + 1) at p, as in 2.4, ψ ∈ Γ(L), and
X1, . . . , Xk̃ ∈ Γ(TM). Then β(∇X1 . . .∇Xk̃

ψ) = X1 . . . Xk̃(β(ψ)). Thus
β(∇X1 . . .∇Xk̃

ψ) p = 0 for all ψ ∈ Γ(L) and X1, . . . , Xk̃ ∈ Γ(TM) if and
only if l > k̃. Hence β ∈ Hn−k−1(p) = {β ∈ H | ordp β > nk } if and only if
β ∈

(
∇nk(p)L

p

)⊥. The dimension formula follows from dimHk = k+ 1 (cf.,
3.7). �

The lemma implies that dim∇kL p ≤ k + 1, since ∇kL ⊂ ∇k+1L and
nk ≥ k. Thus dim∇kL p = k + 1 holds at p for all k if and only if p is
no Weierstrass point. Hence the Weierstrass flag is smooth away from the
Weierstrass points of H. It is not smooth at the Weierstrass points. But
the Weierstrass flag is continuous on M , by Lemma A.1. This now implies
that the subbundle

Lk := ∇nkL ⊂ H
of rank k + 1 is continuous on M and smooth away from the Weierstrass
points. Lk is the osculating k–plane of L.

14.3. Canonical Complex Structure. Let H be an (n+ 1)–dimen-
sional Weierstrass point free linear system of a holomorphic line bundle L−1.
Theorems 4.2 and 4.4 of [FLPP01] imply that H posses a unique complex
structure S such that the following three conditions are satisfied:

(i) S stabilizes the Weierstrass flag of H, i.e., SHk = Hk.
(ii) If ∇S = 2(∗Q− ∗A) is the type decomposition of ∇S, as in 2.7, then

Hn−1 ⊂ kerQ and imA ⊂ H0.

(iii) S induces the given complex structure on H/Hn−1 = L−1.
The endomorphism field S is called the canonical complex structure of the
linear system H. Lemma 14.2 yields ∇Γ(Hk) ⊂ Ω1(Hk+1), since H is as-
sumed to be base point free. If πk : H → H/Hk−1 is the canonical projection,
then the derivatives

δk := πk∇ : Hk/Hk−1 → T ∗M ⊗Hk+1/Hk

satisfy
∗δk = Sδk = δkS,

because the flatness of ∇ implies δk ∧ δk−1 = 0 and ∗δn−1 = Sδn−1 by
(iii). The δk : Hk/Hk−1 → KHk+1/Hk are complex quaternionic bundle
isomorphisms. The dual bundle homomorphism δ∗k : Ln−k−1/Ln−k−2 →
Ln−k/Ln−k−1 of δk is the derivative of Ln−k−1. The two homomorphism
valued 1–forms A ∈ Γ(KHom−(H,L)) and Q ∈ Γ(K̄Hom−(H/L,H)) such
that

∇S = 2(∗Q− ∗A)

are called the Hopf fields of S.
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14.4. If L = H⊥
n−1 ⊂ H∗ is the Kodaira corresponding holomorphic

curve of H in G1(H∗), then the dual complex structure S∗ ∈ Γ(End(H∗))
of S is called the canonical complex structure of L. If a holomorphic curve
L ⊂ Hn+1 is given then its mean curvature sphere is away from the isolated
Weierstrass points of its canonical linear system defined as before. The
canonical complex structure in general does not extend continuously into
the Weierstrass points (cf., Appendix A).

The differential of S∗ satisfies ∇S∗ = 2(−∗A∗+ ∗Q∗). One easily checks
that A∗ ∈ Γ(K̄Hom−(H/L,H) and Q∗ ∈ Γ(KHom−(H,L). Thus −A∗ is
the “Q” and −Q∗ the “A” of S∗. In particular S∗ satisfies and is uniquely
determined by analogous conditions to 14.3 (i)–(iii):

(i) S∗Lk = Lk, (ii) Ln−1 ⊂ kerQ+, imA+ ⊂ L, (iii) S∗ L = J ,
where Q+ = −A∗ and A+ = −Q∗ are the Hopf fields of S∗. The derivative
δ = δ∗n−1 ∈ Γ(KHom+(L,H/L) of L satisfies ∗δ = S∗δ = δS∗. This implies
that L is a complex holomorphic subbundle with respect to the complex
holomorphic structure ∂̄ of the decomposition (2.7) of the trivial connection
of H with respect to S∗.

14.5. Dual Curve. Let L ⊂ Hn+1 be a holomorphic curve and M0 ⊂
M such thatM \M0 are the Weierstrass points of the canonical linear system
H = (Hn+1)∗. Let S be the canonical complex structure of H on M0. The
equation ∗δk = δkS implies that each member Hk of the Weierstrass flag is
on M0 a holomorphic curve in Gk+1(H) with complex structure induced by
S, in particular,

Ld := H0 M0

is a holomorphic curve in G1(H) ∼= HPn. This curve is called the dual curve
of H or L.

On M0 let H∗
k ⊂ H∗ be the Weierstrass flag of the canonical linear

system H∗ = Hn+1 ⊂ H0((Ld)−1). If ϕ ∈ Γ(Ld), then ϕ ∈ Γ(∇n−1LMo
)⊥,

by Lemma 14.2. Thus

∇X1 . . .∇Xk
ϕ(∇Xk+1

. . .∇Xn−1ψ) = 0,

for all ψ ∈ Γ(LM0
) and X1, . . . , Xn−1 ∈ Γ(TM M0

). This equation implies
∇kLd p = (∇n−k−1L)⊥ p for all p ∈ M0. Hence Lemma 14.2, applied to L
and Ld, yields

(H∗
n−k−1)

⊥ = ∇kLd = (∇n−k−1LM0
)⊥ = Hk M0

.

This implies that the canonical linear system H∗ of Ld is Weierstrass point
free, (Ld)d = LM0

and S∗ is the canonical complex structure of H∗.

14.6. Mean Curvature Sphere of a Holomorphic Curve in HP1.
Let H ⊂ H0(L−1) be the 2–dimensional Weierstrass point free canonical
linear system of an immersed holomorphic curve L in HP1. Then

Ld = L⊥,

because Ld = H0 = Hn−1 = L⊥ for n = 1.
If S ∈ Γ(End(H2)) is the canonical complex structure of L, then the Sp

invariant lines in H2 form a 2–sphere (cf., 5.5). This is the mean curvature
sphere or conformal Gauss map of the immersion M → S4 represented by
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L at p (cf., [BFLPP02, Section 5]). The canonical complex structure of
an immersed holomorphic curve in HP1 is, therefore, also called the mean
curvature sphere (congruence) of the holomorphic curve L. Let δ : L →
T ∗M ⊗ H2/L be the derivative of L, and Q and A the Hopf fields of S.
From 14.4 then follows that the mean curvature sphere S of L satisfies (and
is uniquely determined by)

SL = L, ∗δ = Sδ = δS, L ⊂ kerQ.

Note that, given the first equation the second implies ∇S(L) ⊂ Ω1(L).
Given the first two equations, L ⊂ kerQ is equivalent to ImA ⊂ L, because
∇S = 2(∗Q−∗A). The condition SL = Lmeans that Lp lies on the 2–sphere
Sp. The second condition, ∗δ = Sδ = δS, implies that the tangent space of L
at p ∈M and Sp at the point Lp coincide, since TLpS = Hom+(Lp,H2/Lp)
(cf., 5.5). The last condition, L ⊂ kerQ, ensures that the mean curvature
vectors of L at p and Sp at Lp coincide for one and, consequently, every
stereographic projection onto H (cf,. [BFLPP02, Remark 9, p. 44]).

For later applications a description of S, Q and A in Euclidean terms
will be useful (cf., [BFLPP02, Propositions 12 & 15]). Let α, β ∈ (H2)∗ be
an admissible basis and a, b ∈ H2 its dual basis. In the frame (a, β−1) one
has

S =
(
N 0
−H −R

)
, 4∗Q =

(
2dN ′′ 0

ω − 2dH 0

)
, 4∗A =

(
0 0
ω 2dR′′

)
,

4d∗Q = 4d∗A =
(

0 0
ω 0

)
,

ω = dH +R∗dH +HNdN ′′,

H̄ = NH = HR,

where β−1 is the affine lift of L with respect to β, N and R are the left
and right normal vectors and H is the mean curvature vector of σα,βL.
Furthermore, Hdf = dR′ and dfH = dN ′. Geometrically H is (up to
quaternionic conjugation) the rotation of H by π

2 in the normal bundle of
sα,βL. Note that, if sα,βL takes values in ImH, then H is real valued and
−H equals the mean curvature of sα,βL.

14.7. Plücker Formula. Let H ⊂ H0(L−1) be an (n+1)–dimensional
linear system of a holomorphic line bundle L−1 over a compact Riemann
surface M of genus g. Let Ld ⊂ H be the dual curve of H on M0, where
M \M0 are the Weierstrass points of H. The Willmore energies of L−1 and
(Ld)−1 are then related by the Plücker formula (cf., [FLPP01, Theorem
4.7]):

1
4π

(
W (L−1)−W ((Ld)−1)

)
= (n+ 1)(n(1− g)− degL−1) + ordH.

In particular, the Willmore energy W ((Ld)−1) is finite, although (Ld)−1 is
only defined on M0. If S is the canonical complex structure of H, and Q
and A are its Hopf fields, then

W (L−1) = 2
∫
M
〈Q ∧ ∗Q〉 and W ((Ld)−1) = 2

∫
M
〈A ∧ ∗A〉.
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14.8. Plücker Estimate. Because W ((Ld)−1) ≥ 0, the Plücker for-
mula yields an estimate for the Willmore energy of L−1, the Plücker estimate

1
4πW (L−1) ≥ (n+ 1)(n(1− g)− degL−1) + ordH.

14.9. Equality. The main theme of the rest of this thesis is the in-
vestigation of linear systems with equality in the Plücker estimate as well
as the branched conformal immersions obtained from such systems via Ko-
daira correspondence and Weierstrass representation. A linear system has
equality in the Plücker estimate if and only if the Willmore energy of (Ld)−1

vanishes, i.e., the canonical holomorphic line bundle of the dual curve of the
linear system is a (doubled) complex holomorphic line bundle.

15. The Plücker Formula for
1– and 2–Dimensional Linear Systems

Before we start investigating linear systems with equality in the Plücker
estimate, some immediate consequences of the Plücker formula for curves
in HP1 are derived in this section. First the Plücker formula is applied to
the canonical linear system of a holomorphic curve in HP1. This leads to
a generalization of the formula W (L−1)−W (H2/L) = 8π(1− g − degL−1)
from 8.6, which relates the Willmore energies of the two Möbius invariant
holomorphic line bundles of an immersed holomorphic curve in HP1. Ap-
plying the Plücker formula to the 1–dimensional linear subsystem of the
canonical linear system associated to a point ∞ in HP1 yields a generaliza-
tion of the formula W (L−1) = W (L) − 4π degL−1 from 9.4, which relates
the Willmore energies of the Möbius invariant and Euclidean holomorphic
line bundle of an immersed holomorphic curve. The generalized formula
implies that Euclidean minimal curves in HP1 are those holomorphic curves
whose canonical linear system contains a 1–dimensional linear subsystem
with equality in the Plücker estimate. Finally, the formulas are combined
and a formula for the total curvature of the (possibly non admissible) stere-
ographic projections of a (possibly branched) holomorphic curve in HP1 is
derived.

15.1. Application of the Plücker Formula to the Canonical Lin-
ear System of a Holomorphic Curve in HP1. If M is compact and H
is the 2–dimensional canonical linear system of a holomorphic curve L in
HP1, then the Plücker formula yields

W (L−1)−W (H2/L) = 4π(2− 2g − 2 deg(L−1) + b(L)),

because ordH = b(L), by Theorem 10.2. For immersed holomorphic curves,
i.e., b(L) = 0, this formula was already derived in 8.6.

15.2. Application of the Plücker Formula to 1–Dimensional
Linear Systems. Let H = βH ⊂ H0(L−1) be the 1–dimensional linear
system of a holomorphic line bundle L−1 spanned by some β ∈ H0(L−1).
The set M0 of Weierstrass points of H is then the set of zeros of βH. If
∇ is the connection on L−1

M0
that makes β parallel, then the canonical
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holomorphic line bundle (Ld)−1 of the dual curve Ld of H is isomorphic to
(LM0

, (∇∗)′′): (Ld)−1 is by definition the trivial bundle H−1 × M0 with
the complex structure Jβ∗ = −β∗N , where N is the normal vector of
β M0

and β∗ ∈ Γ(H−1 ×M0) is determined by β∗(β) = 1, and the holo-
morphic structure that makes β∗ holomorphic. The isomorphism between
(LM0

, (∇∗)′′) and (Ld)−1 is then provided by the dual of the evaluation map
ev Mo

: H ×M0 → LM0
. The Plücker formula applied to βH then reads

W (L−1)−W (LM0
, (∇∗)′′) = −4π deg(L−1) + 4π

∑
p∈M

ordp β.

15.3. Let H be the canonical linear system of a holomorphic curve
L ⊂ H2. Let ∞ ∈ HP1 and

H∞ = {β L | β ∈ (H2)∗, kerβ =∞} =∞⊥

be the 1–dimensional linear subsystem of H associated to the point∞. The
Weierstrass points p ∈ M of H∞ are the points at which Lp = ∞. Hence
M0 = M \ { p ∈M | Lp =∞}.

If LM0
is equipped with the Euclidean holomorphic structure with re-

spect to ∞, then W (LM0
) = W (LM0

, (∇∗)′′) = W ((Ld)−1). Because
H is base point free, one gets ordpH∞ = ordpH + 1 if Lp = ∞. But
ordpH = bp(L), by Theorem 10.2, hence ord.H∞ =

∑
p∈M\M0

(bp(L) + 1).
The Plücker formula then reads

W (L−1)−W (L) = −4π deg(L−1) + 4π
∑

p∈M,Lp=∞
(bp(L) + 1).

For immersed L and admissible ∞ this formula was already derived in 9.4.

15.4. Equality and Euclidean Minimal Curves. Let f : M0 → H

be a stereographic projection of L with respect to ∞, and let f̃ : M → H

be a stereographic projection of L with respect to an admissible point ∞̃.
Let D∞ and D∞̃ be the Euclidean holomorphic structures of L with respect
to ∞ and ∞̃. Then W (f) = W (L,D∞), W (f̃) = W (L,D∞̃) (cf., 9.4), and
bp(f̃) = bp(L) for all p ∈ M . Applying the formula from 15.3 to ∞ and ∞̃,
one obtains

W (f̃)−W (f) = 4π
∑

p∈M,Lp=∞
(bp(f̃) + 1).

As W (f) ≥ 0, this implies W (f̃) ≥ 4π
∑

p∈M,Lp=∞(bp(f̃) + 1), and
equality if and only if f is a minimal surface. For branched immersions into
R3 this estimate can be found in [Ku89, Proposition 1.3]. For immersions
into R4 it is contained in [LiYa82, Theorem 6].

A holomorphic curve L in HP1 is called a Euclidean minimal curve if
L can be stereographically projected onto a branched minimal immersion
in R4. The pole of the stereographic projection that projects a Euclidean
minimal curve onto a branched minimal immersion in R4 is called the pole
of the Euclidean minimal curve.
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Proposition. A compact holomorphic curve L in HP1 is a Euclidean
minimal curve with pole∞ ∈ HP1 if and only if H∞ ⊂ H0(L−1) has equality
in the Plücker estimate.

Proof. The Plücker formula for H∞ reads

W (L−1)−W (L) = −4π deg(L−1) + 4π ordH∞

(cf., 15.3), where W (L) is the Willmore energy of the Euclidean holomorphic
structure on L with respect to ∞. Hence equality in the Plücker estimate
W (L−1) ≥ −4π deg(L−1)+4π ordH∞ is equivalent to W (L) = 0. But W (L)
is the Willmore energy of the stereographic projection of L with pole∞ (cf.,
9.4). �

If S is the mean curvature sphere of L, then the Euclidean formulas of
14.6 for its Hopf fields Q and A imply that imQ ⊂ ∞ ⊂ kerA. So that the
pole of a Euclidean minimal curve is unique, if S is not constant (or otherwise
said, if the corresponding minimal surface in R4 is not contained in a plane).
If, on the other hand, there is a point∞ ∈ HP1 such that imQ ⊂ ∞, Q 6≡ 0
or ∞ ⊂ kerA, A 6≡ 0, then L is a Euclidean holomorphic curve with pole
∞, because all mean curvature spheres of L then pass through ∞.

Note that a compact Euclidean holomorphic curve L obviously projects
onto a complete minimal surface in R4. Furthermore, one can show anal-
ogous to [Br84, §4], see [Mu90, Corollary 6.2 and Proposition 6.5], that
all ends are planar, if L is immersed at the end, or of Enneper type, if L is
branched at the end. Theorem 15.5 below implies that the total curvature
of the minimal surface is finite. So compact Euclidean minimal holomor-
phic curves correspond to complete minimal surfaces in R4 with finite total
curvature and planar or Enneper type ends.

15.5. Total Curvature. Combining the formulas from 15.1 and 15.3
one can derive a formula for the total curvature of the stereographic projec-
tions of a compact holomorphic curve in HP1.

Theorem. Let L be a compact holomorphic curve in HP1, ∞ ∈ HP1

some point and σ : HP1 \{∞} → H a stereographic projection with pole ∞.
Then the total curvature of f := σ(L { p∈M |Lp 6=∞}), satisfies

1
2π

∫
M
KdA = 2(1− g) + b(f)−

∑
p∈M,Lp=∞

(bp(L) + 2).

For branched immersions into R3 that extend smoothly (C1,α) to a com-
pact surface in S3 = R3 ∪ {∞} this formula can also be found in [Ku89,
Lemma 1.2].

Proof. Subtracting twice 15.3 from the formula 15.1 yields

2W (L)−W (L−1)−W (H2/L)

= 8π(1− g) + 4πb(L)− 8π
∑

p∈M,Lp=∞
(bp(L) + 1).

The formulas W (L−1)+W (H2/L) = 2
∫

(|H|2−K)dA ( 8.6) and the formula
W (L) =

∫
|H|2dA ( 9.4) imply that the left hand side is twice the total

curvature of f . Finally, b(L) = b(f) +
∑

p∈M,Lp=∞ bp(L). �
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16. Twistor Projection and Equality

If for a linear system equality holds in the Plücker estimate, then the
Plücker formula implies that the canonical holomorphic line bundle of the
dual curve has zero Willmore energy (cf., 14.9). This observation is now
used to show that all (n + 1)–dimensional linear systems with equality are
obtained from complex holomorphic curves in CP2n+1 via twistor projection
and dualization.

16.1. Twistor Projection and Twistor Lift. Let H be a quater-
nionic vector space, and write (H, i) for the complex vector space obtained
from H via multiplication by i. Let G∗

k(H, i) ⊂ Gk(H, i) be the open set of
the Grassmannian manifold of k–dimensional subspaces W ⊂ H that satisfy
W ∩W j = {0}. Then

T : G∗
k(H, i) −→ Gk(H)

W 7−→ W ⊕W j

is called the twistor projection. Note that G∗
1(H, i) = G1(H, i) = P (H, i) ∼=

CP2 dimH−1 and in the case where H = H2 one gets T : CP3 → HP1 = S4.
If V ⊂ H is a holomorphic curve in Gk(H), then the underlying complex

line bundle V̂ = {ψ ∈ V | Jψ = ψi } is a lift of V to G∗
k(H), because

T (V̂ ) = V̂ ⊕ V̂ j = V.

The complex curve V̂ in G∗
k(H, i) is called the twistor lift of the holomorphic

curve V in Gk(H). If H = H2 and k = 1, then this is the usual twistor lift
(cf., [Fr84, p. 259]), because V̂ uniquely determines the complex structure J
and vice versa, and J is the rotation by π

2 in the positive (negative) direction
in >L (⊥L), by Theorem 7.6.

The twistor projection T (W ) of a smooth curve W in G∗
k(H, i) is a

holomorphic curve in Gk(H) if and only if W has vertical ∂̄ derivative (cf.,
[FLPP01, Lemma 2.7]). The complex structure of T (W ) = W⊕W j is then
the quaternionic linear extension of x 7→ xi for x ∈ W , and the twistor lift
of T (W ) is W again.

16.2. Holomorphic Twistor Lift. Let E ⊂ Cn+1 be a complex holo-
morphic curve in CPn, and let ∇kE be defined as ∇kL in 14.2. In the
complex case ∇kE always extends holomorphically into the isolated points
at which its rank is not k + 1 (cf., [GriHa, 2.4]). The extended curve Ek
is the osculating k–plane of E. If the canonical holomorphic line bundle of
a holomorphic curve in HPn has zero Willmore energy and the canonical
linear system is Weierstrass point free, then the curve and its osculating
planes are the twistor projection of a complex holomorphic curve and its
osculating planes in CP2n+1:

Lemma. Let H be an (n+1)–dimensional quaternionic vector space, L
a holomorphic curve in P (H) whose canonical linear system is Weierstrass
point free. Let S be the canonical complex structure of L with Hopf fields Q
and A. Then the following three statements are equivalent:

(i) The twistor lift L̂ of L is holomorphic in P (H, i).
(ii) A ≡ 0.
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(iii) L−1 has zero Willmore energy.
In this situation one has for all k = 0, . . . , n:

∇kL̂ = ∇̂kL := {ψ ∈ ∇kL | Sψ = ψi }.

Contrary to the convention 4.4, holomorphic twistor lift always means
complex holomorphic twistor lift.

Proof. Using the formula Dπ = 1
2(π∇+ ∗Jπ∇) from 8.3 for the holo-

morphic structure of L−1 and the decomposition ∇ = ∂ +A+ ∂̄ +Q of the
trivial connection ∇ of H with respect to S, as in 2.7, one sees that −A∗
induces the Hopf field of L−1 = H∗/L⊥. Thus (ii) implies (iii).

If the Hopf field of L−1 vanishes, then A L ≡ 0. Let ϕ ∈ Γ(L̂). Then the
1–form ∇ϕ + ∗∇ϕi = ∇ϕ + ∗∇(Sϕ) = 2∂̄ϕ + 2Aϕ = 2∂̄ϕ takes values in
L̂, because ∂̄ commutes with S and ∂̄L takes values in L (cf., 14.4). Hence
(iii) implies (i).

Suppose now that L̂ is holomorphic and ϕ ∈ Γ(L̂), then

Ω1(L̂) 3 ∇ϕ+ ∗∇ϕi = ∇ϕ+ ∗∇(Sϕ) = 2∂̄ϕ+ 2Aϕ.

Hence Aϕ is contained in the i–eigenspace of S, because L̂ and ∂̄ϕ lie in
that space. But, SAϕ = −ASϕ = −Aϕi, hence Aϕ = 0. Thus L =
L̂ + L̂j ⊂ kerA. From L ⊂ Ln−1 ⊂ kerQ (cf., 14.4) now follows ∇S L =
2(∗Q − ∗A) L = 0, and, consequently, ∇1L̂ = ∇̂1L. Because the osculating
k–planes of the complex holomorphic curve L̂ are again holomorphic, one
can proceed inductively to show that ∇kL̂ = ∇̂kL and ∇̂kL ⊂ kerA for
all k = 0, . . . , n. Since the canonical linear system of L is assumed to be
Weierstrass point free, Lemma 14.2 implies H = ∇nL = ∇̂nL⊕∇̂nLj. Thus
∇̂nL ⊂ kerA implies A ≡ 0. Therefore (i) implies (ii). �

16.3. Holomorphic Twistor Lift and Equality. The characteriza-
tion of holomorphic curves with holomorphic twistor lift in Lemma 16.2
yields the following characterization of linear systems with equality in the
Plücker estimate.

Theorem. If M is compact then equality in the Plücker estimate holds
for a linear system if and only if the dual curve of the linear system extends
to a holomorphic curve on M with holomorphic twistor lift.

Proof. Let H ⊂ H0(L−1) be a linear system of holomorphic sections
of a holomorphic line bundle L−1. The canonical linear system of the dual
curve Ld = H0 M0

⊂ H of H is then Weierstrass point free (cf., 14.5). So the
Plücker formula and Lemma 16.2 imply that H has equality in the Plücker
estimate if and only if Ld has holomorphic twistor lift. The twistor lift L̂d

of Ld extends continuously to M , by Lemma A.1. Thus L̂d extends to a
complex holomorphic curve on M . The twistor projection of this curve is,
consequently, a holomorphic curve on all of M that coincides with Ld away
from the Weierstrass points of H. �

In the situation of the theorem Lemma 14.2 implies that the osculating
k–planes Ek of the holomorphic twistor lift E of Ld are, away from the
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Weierstrass points, the holomorphic twistor lifts of the members Hk of the
Weierstrass flag of the linear system H with equality. If the quaternionic
dimension of their twistor projection does not collapse at the Weierstrass
points, which is equivalent to En ⊕ Enj = H, then the continuity of the
Weierstrass flag Hk (cf., Lemma A.1) implies that the Hk are holomorphic
curves on all of M with holomorphic twistor lifts Ek. Clearly En ⊕ Enj =
H holds if and only if the canonical complex structure S of Ld extends
continuously (and then smoothly) into the Weierstrass points.

16.4. Let H be an (n+ 1)–dimensional quaternionic vector space and
E a compact complex holomorphic curve in P (H, i). If the dual curve L :=
T (E)d of E’s twistor projection extends to a full holomorphic curve on all
of M , then the canonical linear system H ⊂ H0(L−1) of L is a base point
free linear system with equality in the Plücker estimate, by Theorem 16.3.

T (E)d extends smoothly to a full holomorphic curve if the osculating
n–plane En of E satisfies En ⊕ Enj = H: Let Ld := T (E) = E ⊕ Ej. Then
Ld ⊂ H is a holomorphic curve with holomorphic twistor lift E. Its canonical
complex structure S satisfies Sx = xi for all x ∈ En, by Lemma 16.2.
Thus, S extends smoothly onto all of M , since En is smooth on M and
En ⊕ Enj = H, by assumption. From En ⊕ Enj = H also follows that
Hn−1 = T (En−1) = En−1 ⊕ En−1j ⊂ H is a smooth quaternionic vector
subbundle of rank n. Hence H⊥

n−1 ⊂ H∗ defines a holomorphic curve in
P (H∗) that extends T (E)d onto all of M .

Moreover, if the canonical complex structure S of Ld = T (E) extends
smoothly into the Weierstrass points of Ld, then En ⊕ Enj = H follows,
because En is the i–eigenspace of S. Thus S extends smoothly into the
Weierstrass points of Ld if and only if En ⊕ Enj = H.

Remark. It is not clear to the author whether there exists a linear sys-
tem with equality in the Plücker estimate whose canonical complex structure
does not extend continuously into the Weierstrass points. See Lemma 20.2
for a first result in this direction.

16.5. More Details. A thorough investigation of the Weierstrass gap
sequence yields a more detailed correspondence (cf., [FLPP01, Paragraph
4.4]) between

(i) (n+ 1)–dimensional base point free linear systems of holomorphic line
bundles of degree d over compact M of genus g with equality in the
Plücker estimate and Weierstrass gap sequence (nk)0≤k≤n whose canon-
ical complex structure extends smoothly into the Weierstrass points,
and

(ii) compact complex holomorphic curves of genus g in CP2n+1 of degree∑
p∈M (nn(p)−n)−d−2n(g−1) whose Weierstrass gap sequence starts

with (nn−nn−k)0≤k≤n together with a quaternionic structure onC2n+2

such that the quaternionic span of the osculating n–plane of the curve
is C2n+2.
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17. Three Equality Preserving Operations

In this section three operations that preserve equality in the Plücker esti-
mate are discussed. The first is about holomorphic bundle homomorphisms,
the second is along vertical arrows in the ladder of holomorphic line bundles
(11.7), and the third is concerned with paired holomorphic line bundles.

17.1. Proposition. If B : L̃ → L is a nontrivial holomorphic bun-
dle homomorphism, H̃ ⊂ H0(L̃) a linear system and H := BH̃ ⊂ H0(L)
its image under B, then W (L̃) = W (L), dim H̃ = dimH, and for the
Weierstrass gap sequences of H̃ and H at a point p ∈ M one obtains
nk(p) = ñk(p) + ordpB. If M is compact, then degL = deg L̃ + ordB
and H̃ has equality in the Plücker estimate if and only if the linear system
H has equality.

Proof. As B is not identically zero, its zeros are isolated and dim H̃ =
dimH. Because BQ̃ = QB, one has W (L̃) = W (L). Let B̂ : ̂̃L → L̂ be the
induced complex holomorphic bundle homomorphism. On compact M one
then gets degL = deg L̂ = deg ̂̃L+ ord B̂ = deg L̃+ ordB.

Let ñk(p) be the Weierstrass gap sequence of H̃ at p ∈ M and ψ̃k a
basis of H̃ such that ordp ψ̃k = ñk(p). Then ψk := Bψ̃k is a basis of H and
ordp ψk = ordp ψ̃k + ordpB. Thus nk(p) = ñk(p) + ordpB is the Weierstrass
gap sequence of H. All together one gets for the right hand side of the
Plücker estimate:

(ñ+ 1)(ñ(1− g)− deg L̃) + ord H̃

= (n+ 1)(n(1− g)− degL+ ordB) + ordH − (n+ 1) ordB

= (n+ 1)(n(1− g)− degL) + ordH.

�

17.2. Equality along Vertical Arrows. The operation, described in
11.4, to transport holomorphic structures and linear system along verti-
cal arrows in the ladder of holomorphic line bundles preserves equality in
the Plücker estimate. Recall that this relation was obtained from a flat
connection ∇ on a holomorphic line bundle L whose (0, 1) part ∇′′ is the
holomorphic structure of L. The connection ∇ then induces a quaternionic
linear map from H0(L) to H0(KL, d∇). If ψ is a nowhere vanishing holo-
morphic section of L, then the (0, 1) part ∇′′ of the unique connection ∇ on
L that makes ψ parallel is the holomorphic structure of L.

Theorem. Let L be a holomorphic line bundle, H ⊂ H0(L) a linear
system with a nowhere vanishing holomorphic section ψ0 ∈ H, ∇ the trivial
connection for which ψ0 is parallel and suppose that KL is equipped with the
holomorphic structure d∇.

The linear system ∇H ⊂ H0(KL) then satisfies dim∇H = dimH − 1
and the Weierstrass gap sequences satisfy n∇Hk (p) = nHk+1(p) − 1 for all
p ∈ M and k = 0, . . .dimH − 2. If M is compact, then W (KL) =
W (L) + 4π degL and the linear system H ⊂ H0(L) has equality in the
Plücker estimate if and only if ∇H = {∇ψ | ψ ∈ H } ⊂ H0(L) has equality.
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Recall that a linear system has a nowhere vanishing holomorphic section
if and only if it is base points free, by Theorem 3.8.

Proof. The kernel of the linear map H → ∇H, ϕ 7→ ∇ϕ is ψ0H, thus
dim∇H = dimH − 1. On compact M one has W (KL) = W (L)+ 4π degL,
by Theorem 11.4. To prove the equality of the Weierstrass orders let ψ ∈ H
with k := ordp ψ > 0 for p ∈ M , then ψ = zkϕ + O(k + 1), as in 2.4.
Let ∇ = ∇̂ + ω be the decomposition of ∇ into its J–commuting and J–
anticommuting part, then ω ∈ Ω1(End− L). Hence

∇ψ = kzk−1dzϕ+ zk∇̂ϕ+ z̄kωϕ+O(k) = kzk−1dzϕ+O(k).

This means ordp(∇ψ) = ordp(ψ) − 1. If ψ0, . . . , ψn ∈ H is a basis of H
such that (ordp ψj)0≤j≤n is the Weierstrass gap sequence of H at p, then
(ordp∇ψj)1≤j≤n is the gap sequence of ∇H at p. Consequently, ord∇H =
ordH. Finally, if n+ 1 = dimH, then

1
4π
W (L) = (n+ 1)(n(1− g)− degL) + ordH

⇐⇒ 1
4π
W (KL) = (n+ 1)n(1− g)− n degL+ ord∇H

⇐⇒ 1
4π
W (KL) = (n+ 1)n(1− g)− n degKL− 2n(1− g) + ord∇H

⇐⇒ 1
4π
W (KL) = n((n− 1)(1− g)− degKL) + ord∇H.

Thus equality for H is equivalent to equality for ∇H. �

17.3. Equality and Paired Holomorphic Line Bundles. Let H
be a base point free linear system of a holomorphic line bundle L−1, and
suppose that the canonical complex structure S of H extends smoothly into
the Weierstrass points of H. If Q is the Hopf field of S, then Q∗b ∈ Γ(KL)
for all b ∈ H∗. If H has equality in the Plücker estimate, then ∗Q∗b is in fact
holomorphic, see the proof of the following theorem. Moreover, the holo-
morphic sections of the form ∗Q∗b constitute a linear system with equality
in H0(KL), and the branched conformal immersions that have Weierstrass
data in H and ∗Q∗(H∗) are obtained from S without integration.

Theorem. Let L−1 be a holomorphic line bundle over compact M with
nonzero Willmore energy. If H ⊂ H0(L−1) is a base point free linear system
with equality in the Plücker estimate whose canonical complex structure S
extends smoothly into the Weierstrass points of H and Q ∈ Γ(K̄ End−(H))
is its Hopf field, then ∗Q∗(H∗) ⊂ H0(KL) is a linear system with equality
in the Plücker estimate. Moreover, if b ∈ H∗ and β ∈ H, then the H–valued
1–form ∗Q∗b(β) is exact, indeed

S∗b(β) : M → H

is a branched conformal immersion with Weierstrass data (KL,L−1, ∗Q∗b, β).

Proof. Equality for H and smoothness of S implies that the Weier-
strass flag (Hk)0≤k≤n of H is smooth on M (cf., 16.3). Let L ⊂ H∗ be the
Kodaira corresponding curve of H. Then S∗ induces the complex structure
of L, imQ∗ ⊂ L, and ∗Q∗ = S∗Q∗ (cf., 14.4). Thus Q∗b ∈ Γ(KL) for all
b ∈ H∗.
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Equality forH is equivalent to A ≡ 0, by Lemma 16.2 and Theorem 16.3.
Hence∇S = 2∗Q, which yields d∇∗Q = 0. Thus for every b ∈ H∗ and β ∈ H
one has d(∗Q∗b(β)) = 0, which implies

∗Q∗b ∈ H0(KL),

by Theorem 9.6.
Lemma 16.2 implies that Q is not identically zero, since −Q∗ is the

“A” of S∗ and the Willmore energy of L−1 is not zero, by assumption.
Lemma 23.2 below then implies that there exists a holomorphic curve L̃ ⊂ H
on M with complex structure −S imQ such that imQ = L̃ away from the
isolated zeros of Q. Since L̃−1 = H/L̃⊥ and L̃⊥ ⊂ kerQ∗, Q∗ induces a
quaternionic bundle homomorphism Q∗ : L̃−1 → KL. It is complex linear,
because S∗Q∗ = −Q∗S∗, and the complex quaternionic bundle homomor-
phism

∗Q∗ : L̃−1 → KL

is holomorphic, by Lemma 4.1, since ∗Q∗b ∈ H0(KL) for all b ∈ H∗ ⊂
H0(L̃−1). The smooth map S∗b(β) : M → H satisfies

d(S∗b(β)) = 2∗Q∗b(β).

Thus S∗b(β) : M → H is a branched conformal immersion with Weierstrass
data (KL,L−1, ∗Q∗b, β), by Theorem 10.9.

It remains to show that the linear system ∗Q∗(H∗) ⊂ H0(KL) has equal-
ity in the Plücker estimate. To this end we show that −S is the canonical
complex structure of L̃. S clearly stabilizes L̃, because L̃ = imQ away from
the isolated zeros of Q and S anticommutes with Q. Let ψ ∈ Γ(H) and
X,Y ∈ Γ(TM). Then

S∇X(QY ψ) = ∇XS(QY ψ)−∇X(SQY ψ) = 2∗QXQY ψ −∇X(SQY ψ).

Hence im(S∇X(QY ψ)) ⊂ Γ(∇1(imQ)). This implies S∇1L̃ = ∇1L̃. Pro-
ceeding inductively one concludes that S stabilizes ∇kL̃ for all k = 0, . . . , n.
Hence −S satisfies condition 14.4 (i). Let δ be the derivative of L̃, then
d∇∗Q = 0 implies δ ∧ ∗Q = 0, thus ∗δ = −δS, which is condition 14.4 (iii).
Finally −A is the “Q” and −Q is the “A” of −S, thus A ≡ 0 and imQ ⊂ L̃
implies that −S satisfies condition 14.4 (ii).

Consider now the linear system H̃∗ := { b L̃ | b ∈ H∗ } ⊂ H0(L̃−1).
If L̃ is full, then H∗ = H̃∗ and −S∗ is the canonical complex structure
of H̃∗, because −S is the canonical complex structure of L̃. If L̃ is not
full, then there is a subspace H̃ of H such that L̃ ⊂ H̃ is full, and the
linear system H̃∗ is the canonical linear system of L̃ ⊂ H̃ and the canonical
complex structure of H̃∗ is again induced by −S∗. As A∗ ≡ 0 and −A∗ is
the “A” of −S∗, H̃∗ has equality in the Plücker estimate, by Lemma 16.2
and Theorem 16.3. The holomorphicity of ∗Q∗ and Proposition 17.1 implies
that the linear system ∗Q∗(H̃∗) ⊂ H0(KL) has equality. This completes
the proof, because ∗Q∗(H̃∗) = ∗Q∗(H∗). �

Note that dim ∗Q∗(H∗) ≤ dimH and equality holds if and only if imQ
does not lie in some linear subspace of H.
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18. Soliton Spheres

A holomorphic curve in HP1 over M = CP1 is called a soliton sphere if
its canonical linear system is contained in a linear system with equality. A
branched conformal immersion of CP1 with values in H is called a soliton
sphere if it is the stereographic projection of a soliton sphere in HP1.

18.1. Weierstrass Representation of Soliton Spheres. Iskander
Taimanov calls in [Ta99] a conformal immersion of CP1 into R3 with ro-
tationally symmetric Hopf field a soliton sphere if its Weierstrass data lies
in a linear system with equality (cf., Section 19). The following theorem
shows that this is equivalent to the definition in Möbius invariant terms
given above.

Theorem. If f : CP1 → H is a branched conformal immersion with a
smooth right normal vector and Weierstrass data (L,ϕ, ψ), as in 10.7, then
ϕ is contained in a linear system with equality if and only if f is a soliton
sphere.

Proof. Proposition 10.5 implies that there is a holomorphic curve L ⊂
H2 and a stereographic projection sα,β : HP1 \{∞} → H such that

f = sα,βL.

The canonical linear system H ⊂ H0(L−1) of L is spanned by α L and β L

(cf., 8.5) and α L = β Lf̄ . Let ∇ be the trivial quaternionic connection on
L−1 such that ∇β L = 0. Then (L, (∇∗)′′) is the Euclidean holomorphic line
bundle of L with respect to ∞ = kerβ. The uniqueness of the Weierstrass
representation (cf., 10.7) and ∇α(β−1) = df = (ϕ,ψ) imply that ϕ,∇α ∈
H0(KL−1, d∇) are linearly dependent over the reals. For holomorphic line
bundles over CP1 the quaternionic linear map ∇ : H0(L−1) → H0(KL−1)
is surjective, because the sphere is simply connected. Theorem 17.2 then
implies that the canonical linear system, which is spanned by α and β, is
contained in a linear system with equality if and only if ∇α lies in a linear
system with equality. �

18.2. Remark. Let f = σα,βL : CP1 → H be a soliton sphere, H the
linear system with equality that contains the canonical linear system of L,
and ∇H the corresponding linear system in KL−1 as in the proof above.
In addition to ∇H having equality in the Plücker estimate, Theorem 17.2
implies that dimH = dim∇H + 1, and if 0 = n0 ≤ n1 ≤ . . . ≤ nn is the
Weierstrass gap sequence of H then n1− 1 ≤ . . . ≤ nn− 1 is the one of ∇H.

18.3. Rational Parametrizations. Let z : CP1 \{∞} → C be a ra-
tional coordinate of CP1. Then every holomorphic line subbundle E ⊂ Cn

over CP1 has a meromorphic section that has a pole at ∞ and is holo-
morphic elsewhere. This section provides homogeneous coordinates of E
consisting of n polynomials in z. If f : CP1 → H is a soliton sphere, then f
is by definition the quotient of two sections in a linear system with equality.
Theorem 16.3 then implies that f is rational in z, because twistor projection
and dualization only involves differentiation and algebraic manipulations of
the polynomials that describe the dual curve. So soliton spheres are given
by conformal and rational parametrizations.
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19. Taimanov Soliton Spheres

Iskander Taimanov provides in [Ta99] explicit formulas for all soliton
spheres in R3 with rotationally symmetric potentials. These formulas were
used by the author to provide pictures (see 19.6) of the simplest nontrivial
examples. The similarity of these pictures with pictures of the catenoid
cousins led to the investigations on the relation between soliton spheres and
catenoid cousins. The result of these investigations is Theorem 30.3. The
present section is a collection of results from [Ta99] in terms of quaternionic
holomorphic spin bundles and equality in the Plücker estimate.

19.1. Spin Bundles over CP1 in Rational Coordinates. Let L be
a quaternionic holomorphic spin bundle over M = CP1 (cf., 12.3). Then
degL = 1

2 degK = −1. This implies that the underlying complex holo-
morphic line bundle L̂ of L is isomorphic to the tautological bundle ΣCP1

of CP1, because there is exactly one complex holomorphic line bundle over
CP1 for every degree. Consequently, L is the doubled complex holomorphic
line bundle ΣCP1⊕ΣCP1j plus a Hopf field. Fix some point∞ ∈ CP1. Then
there exists a meromorphic section ψ∞ in L̂ with divisor −∞ and

d(ψ∞,ψ∞) = (∂̄ψ∞ ∧ ψ∞) + (ψ∞ ∧ ∂̄ψ∞) = 0

on CP1 \{∞}, by Corollary 9.9. Thus (ψ∞, ψ∞) is closed, and ∗(ψ∞, ψ∞) =
−i(ψ∞, ψ∞) = (ψ∞, ψ∞)i implies that there exists a holomorphic map

z : CP1 \{∞} → C, dz = j(ψ∞, ψ∞).

This is, up to z 7→ az+ b, the stereographic projection or rational coordinate
of S2 ∼= CP1 with pole ∞, since z is holomorphic with a simple pole at ∞.

19.2. Lemma. Let L be a spin bundle over CP1, z : CP1 \{∞} → C

a rational coordinate and ψ∞ a meromorphic section of L̂ such that dz =
j(ψ∞, ψ∞).

(i) If Q is the Hopf field of L, then there is a smooth map q : C→ R such
that

Qψ∞ = ψ∞kdz q(z)

and 1
|w|2 q

(
1
w

)
extends smoothly into zero. On the other hand, every

such q determines a Hopf field Q on L = ΣCP1 ⊕ ΣCP1j such that L
with D = ∂̄ +Q is a quaternionic holomorphic spin bundle.

(ii) If ψ ∈ H0(L) and µ1,2 : C→ C such that ψ = ψ∞(µ1(z) + kµ2(z)) on
CP1 \{∞}, then the maps µ1,2 satisfy(

q ∂
−∂̄ q

)(
µ1

µ2

)
= 0, |µ1|2 + |µ2|2 = O(|z|−2) as |z| → ∞.

Every pair µ1,2 : C → C that satisfies this equation gives rise to a
holomorphic section of L.

(iii) The Willmore energy of L satisfies

W (L) = 4
∫
C

q2(x+ iy)dx ∧ dy.
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Proof. (i) IdentifyCP1 \{∞} andC via z. AsQ ∈ Γ(K̄ End− L) one
knows Qψ∞ ∈ Γ(K̄L̂j

C
). Hence there exists a smooth map q : C→ C

such that Qψ∞ = ψ∞kdzq, because ψ∞kdz is a nowhere vanishing
section of K̄L̂j

C
. Then

(∗) 0 = (Qψ∞ ∧ ψ∞) + (ψ∞ ∧Qψ∞) = (q − q̄)idz ∧ dz̄,
by Corollary 9.9. This implies that q is real valued. Let p0 ∈ CP1 such
that z(p0) = 0 and w : CP1 \{p0} → C, w = 1

z . Then ψ̃∞ := ψ∞wi is
a meromorphic section of L̂ such that dw = j(ψ̃∞, ψ̃∞) and

(∗∗) Qψ̃∞ = ψ∞kdzq(z)wi = ψ̃∞kdw
1

|w|2 q
(

1
w

)
.

Because w(∞) = 0 and ψ̃∞kdw is not zero at ∞ it follows that
1

|w|2 q
(

1
w

)
is smooth at w = 0.

If, on the other hand, q : C → R is a smooth map such that
1

|w|2 q
(

1
w

)
is smooth at w = 0, then the equations Qψ∞ = ψ∞kdzq

and (∗∗) define a smooth Q on the complex quaternionic line bundle
L = ΣCP1⊕ΣCP1j. The complex holomorphic line bundle ΣCP1⊗ΣCP1

is isomorphic to the canonical bundle K = {ω ∈ T ∗CP1⊗C | ∗ω =
iω } of CP1. The bundle homomorphism ΣCP1 × ΣCP1 → H⊗C K ⊂
T ∗M ⊗ H, (ϕ,ψ) 7→ jϕ ⊗ ψ can be extended to define a complex
quaternionic pairing of L with itself. This pairing satisfies d(ϕ,ψ) =
(∂̄ϕ, ψ) + (ϕ, ∂̄ψ) for all ϕ,ψ ∈ Γ(L), because the holomorphic struc-
ture of K ⊂ T ∗CP1⊗C is d. The complex quaternionic line bundle
L with the holomorphic structure D = ∂̄ + Q is a quaternionic spin
bundle, because the pairing defines a holomorphic pairing of (L,D)
with itself, by Corollary 9.9 and equation (∗).

(ii) Dψ∞ = Qψ∞, as ψ∞ is a complex holomorphic section of L̂ C. Then

D(ψ∞(µ1 + kµ2)) = ψ∞dz̄(−qµ2 + ∂̄µ1) + ψ∞kdz(qµ1 + ∂µ2).

Thus it remains to show that |µ1|2 + |µ2|2 = O
(

1
|z|2

)
as |z| → ∞

is equivalent to the smoothness of ψ at ∞. In the coordinate w one
obtains ψ = ψ∞

(
µ1

(
1
w

)
+ kµ2

(
1
w

))
. Because ψ∞ has a pole at w = 0,

smoothness of ψ at w = 0 implies µ1,2

(
1
w

)
= O(|w|) at w = 0, which

implies |µ1|2+ |µ2|2 = O
(

1
|z|2

)
as z →∞. If now µ1 and µ2 satisfy this

condition, then ψ = ψ∞(µ1 + kµ2) is bounded at p0 and holomorphic
on CP1 \{p0}. Hence ψ extends smoothly into p0.

(iii) The equation for the Willmore energy follows since

Q ∧ ∗Qψ∞ = ψ∞kdzq ∧ kidzq = −ψ∞|q|2idz̄ ∧ dz.
�

19.3. Explicit Formulas for Taimanov Soliton Spheres. Iskan-
der Taimanov investigates in [Ta99] spin bundles of CP1 with rotationally
symmetric Hopf fields, i.e., Hopf fields that are represented in some ratio-
nal coordinate z : CP1 \{∞} → C by a q (cf., Lemma 19.2) that satis-
fies q(z) = q(|z|). Taimanov translates the problem of finding the holo-
morphic sections of such a spin bundle to the “simplest reduction of the
Zakharov–Shabat linear problem”. In the case of reflectionless potentials he
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describes the space of all holomorphic sections explicitly. In the language of
the present text this means:

Theorem. Let L be a spin bundle over CP1 with rotationally symmet-
ric Hopf field. Then there is a linear system H ⊂ H0(L) with equality in
the Plücker estimate if and only if there are integers 0 ≤ n0 < n1 . . . < nn
and real numbers λ0, . . . , λn ∈ R such that

q(z) = −〈Φ(|z|), T (|z|)〉|z|−1,

where 〈 , 〉 is the standard scalar product of Rn+1,

T (x) =
(
x−

1
2
(2n0+1), . . . , x−

1
2
(2nn+1)

)
,

Ψ(x) = −
(
λ0x

− 1
2
(2n0+1), . . . , λnx

− 1
2
(2nn+1)

)
,

Φ(x) = Ψ(x)(1 +M2(x))−1,

and M(x) is the (n+ 1)× (n+ 1) matrix valued function with coefficients

Mjk(x) =
−λkx−(nj+nk+1)

nj + nk + 1
for 0 ≤ j, k ≤ n.

Furthermore, H = H0(L), dimH0(L) = n + 1, and H0(L) is spanned
by the holomorphic sections ψj = ψ∞(µ1j(z) + kµ2j(z)), where

µ1j(z) = 〈Φ(|z|),Wj(|z|)〉
(
z

|z|

)nj

|z|−
1
2 ,

µ2j(z) = (|z|−
1
2
(2nj+1) − 〈Φ(|z|)M(|z|),Wj(|z|)〉)

(
z

|z|

)nj+1

|z|−
1
2 ,

Wj(x) =

(
x−(n0+nj+1)

n0 + nj + 1
, . . . ,

x−(nn+nj+1)

nn + nj + 1

)
.

The linear system H0(L) has Weierstrass points at z = 0 and z = ∞, if
any, with Weierstrass gap sequence (nj)0≤j≤n at both points. The Willmore
energy of L is

W (L) = 4π
n∑
j=0

(2nj + 1).

Integrating the closed one forms
(∑n

j=0 ψjcj ,
∑n

j=0 ψjcj

)
yields for all

aj ∈ H soliton spheres, by Theorem 18.1, because H0(L) = span{ψj}0≤j≤n
has equality in the Plücker estimate. The soliton spheres fj : CP1 → R3

that satisfy

dfj = (ψj , ψj)

= −Re(2µ1µ̄2dz)i+ Re((µ2
1 − µ̄2

2)dz))j+ Re(i(µ2
1 + µ̄2

2)dz))k

are surfaces of revolution on the cylinder C/(2π(2nj + 1)iZ), see 19.6.

Collection of Results from [Ta99]. If L has a rotationally sym-
metric Hopf field, then Lemma 19.4 implies that H = H0(L). [Ta99,
Lemma 4] together with Lemma 19.2(ii) implies that there are integers
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0 ≤ n0 < n1 < . . . < nn and some smooth functions1 ϕj : R>0 → C2\{0} for
0 ≤ j ≤ n such that the (n+ 1)–dimensional space of holomorphic sections
of L is spanned by the holomorphic sections ψj = ψ∞(µ1j(z) + kµ2j(z)),
where (

µ1j(z)
µ2j(z)

)
=
(

1 0
0 z

|z|

)
ϕj(|z|)

(
z

|z|

)nj

|z|−
1
2 .

From [Ta99, equations 45, 47 and 53] follows that the ϕj have the asymp-
totics

ϕj(x) = O(x−
1
2
(2nj+1)), x→∞,

ϕj(x) = O(x
1
2
(2nj+1)), x→ 0,

which implies

|µ1j(x)|2 + |µ2j(x)|2 = O(x−2nj−2), x→∞,
|µ1j(x)|2 + |µ2j(x)|2 = O(x2nj ), x→ 0.

Because ψ∞ has divisor −∞, one concludes from the asymptotic behav-
ior of the µ’s that

ord0 ψj = ord∞ ψj = nj .

Thus nj is the Weierstrass gap sequence of H0(L) at 0 and ∞. The Plücker
estimate for M = CP1 then implies

1
4π
W (L) ≥ (n+ 1)2 + 2

n∑
j=0

(nj − j) =
n∑
j=0

(2nj + 1),

as g = 0 and degL = −1. [Ta99, equation (25)] implies for q̃(t) = q(et)et:∫ ∞

−∞
q̃2(t)dt ≥ 1

2

n∑
j=0

(2nj + 1),

and equality in this equation is equivalent to equality in the Plücker estimate
for the linear system H0(L), because Lemma 19.2(iii) implies

1
4π
W (L) =

1
π

∫
C

q2(x+ iy)dx ∧ dy = 2
∫ ∞

−∞
q̃2(t)dt.

In this case Iskander Taimanov [Ta99, §4] derives the explicit formulas for
q and ϕj given in the theorem. �

19.4. Lemma. Let L be a spin bundle over CP1 with rotationally sym-
metric Hopf field. If H ⊂ H0(L) is a linear system with equality in the
Plücker estimate, then H = H0(L).

Proof. If z : CP1 → C ∪ {∞} is a rational coordinate in which the
Hopf field of L is rotationally symmetric, then linear systems of L only
have Weierstrass points at z = 0 and z = ∞, because Weierstrass points
are isolated (cf., 3.7). The Plücker estimate then implies that H already
contains all holomorphic sections of L: Otherwise, if n+1 = dimH, then H
would be contained in an (n+2)–dimensional linear system H̃ of holomorphic

1We write ϕj(x) for the function ϕ+
1 (ln x, 1

2
(2nj + 1)i) from [Ta99].
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sections. H̃ would have Weierstrass order ord H̃ ≥ ordH − 2(n + 1). The
Plücker estimate then yields

1
4π
W (L) ≥ (n+ 2)((n+ 1)(1− g)− deg(L) + ord H̃

≥ (n+ 2)2 + ordH − 2(n+ 1) = (n+ 1)2 + ordH + 1 ≥ 1
4π
W (L) + 1.

This is a contradiction. �

19.5. Note that the theorem does not answer the question which inte-
gers 0 ≤ n0 < n1 . . . < nn and real numbers λ0, . . . , λn ∈ R correspond to
quaternionic holomorphic spin bundles over CP1. This is, by Lemma 19.2,
equivalent to the question for which parameters the functions q(z) and

1
|w|2 q

(
1
w

)
extend smoothly into zero. The formula for q(z) can be written

as follows

q(z) =
1

det(Ajk)

∑
0≤j,k≤n

A∗jkλj |z|−nj−nk−2,

where

Ajk = (1 +M2)jk = δjk + |z|−nj−nk

n∑
l=0

λlλk|z|−2nl−2

(nj + nl + 1)(nl + nk + 1)

and A∗jk is (−1)j+k times the determinant of the matrix obtained from Ajk
after canceling the k–th row and the j–th column. One sees that detAjk
as well as |z|−nj−nkA∗jk are polynomials in |z|−2. Hence q is the quotient
of polynomials in |z|2. It, consequently, suffices to distinguish the parame-
ters for which the functions q(z) and 1

|w|2 q
(

1
w

)
are both bounded at zero.

Using Mathematica the author checked that this is true for small n and nj
(0 ≤ n, nj ≤ 6) and arbitrary λj . The problem to derive a general answer
from the formulas is the fact that the coefficients of the highest and lowest
powers coming into the formula for the numerator and denominator of q
may cancel. See also the remark in the last paragraph of [Ta99] about the
general problem of determining the decay of the potential U(x) = q(ex)ex

for x→ ±∞ from the spectral data.

19.6. Pictures. The Taimanov soliton spheres for n = 1, n0 = 0, n1 =
µ, λ0 = µ+1

µ , and λ1 = (µ+1)(2µ+1)
µ are catenoid cousins, see 30.4. The first

picture in each row is
∫

(ψ0, ψ0) and the second is
∫

(ψ1, ψ1). The rows show
the surfaces corresponding to µ = 1, 2, 4.
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Pictures of the rotationally symmetric Taimanov soliton spheres for n =
2, 3:∫

(ψ0, ψ0) ,
∫

(ψ1, ψ1), and
∫

(ψ2, ψ2) for n = 2, n0 = 0, n1 = 1, n2 = 2,
λ0 = 2, λ1 = 6, and λ2 = 3:

∫
(ψ0, ψ0) ,

∫
(ψ1, ψ1), and

∫
(ψ2, ψ2) for n = 2, n0 = 0, n1 = 1, n2 = 2,

λ0 = 2, λ1 = 6, and λ2 = 120:

∫
(ψ0, ψ0) ,

∫
(ψ1, ψ1),

∫
(ψ2, ψ2), and

∫
(ψ3, ψ3) for n = 3, n0 = 0, n1 = 1,

n2 = 2, n3 = 3, λ0 = 4, λ1 = 48, λ2 = 120, and λ3 = 120:

∫
(ψ0, ψ0) ,

∫
(ψ1, ψ1),

∫
(ψ2, ψ2), and

∫
(ψ3, ψ3) for n = 3, n0 = 0, n1 = 1,

n2 = 2, n3 = 3, λ0 = 6, λ1 = 720, λ2 = 120, and λ3 = 1:
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Finally, some pictures of non rotationally symmetric Taimanov soliton
spheres. To get such pictures one needs to integrate the square of linear
combinations of the ψi. This has been done by Jörg Richter [Ri97] for the
Dirac spheres, which are Taimanov soliton sphere for nk = k, k = 0, . . . , n,
and some λ’s that only depend on n (cf., [Ta99, 4.2.3]).

The following are pictures of Dirac Spheres for n = 2:

The surface in the lower left corner:
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20. Willmore Numbers of Soliton Spheres in R3

Equality in the Plücker estimate implies that the Willmore energy is an
integer multiple of 4π. The Willmore energy of the immersed Taimanov
soliton spheres is of the form 4π

∑n
j=0(2nj +1) with integers 0 = n0 < . . . <

nn (cf., Theorem 19.3). Thus, Taimanov soliton spheres have Willmore
energy 4πn for some n ∈ N \ {2, 3, 5, 7}. Interestingly, this set coincides
with the possible Willmore energies of immersed Willmore spheres in R3

(cf., [Br88]), which are soliton spheres (cf., 25.3). In the present section
it is shown that immersed soliton spheres in R3 with Willmore energy 8π,
12π, and 20π do not exist. The case 28π is left open.

20.1. Let f : CP1 → ImH be an immersed soliton sphere, and L its
Euclidean holomorphic line bundle. Then L is a spin bundle and degL = −1,
by Theorem 12.4. The spinor ϕ ∈ H0(L) such that df = (ϕ,ϕ) is then, by
Theorem 18.1, contained in a linear system H ⊂ H0(L) with equality in the
Plücker estimate, i.e.,

1
4π
W (L) = (n+ 1)2 + ordH,

where dimH = n + 1. The spinor ϕ has no zeros, because f is immersed,
thus H is base point free. If 1

4πW (L) is 2 or 3, then n = 1 and ordH > 0.
This is a contradiction to H being base point free.

Theorem. The Willmore energy of an immersed soliton sphere in R3

is 4πn for some n ∈ N \ {2, 3, 5}.

Proof. It remains to show that the Willmore energy of an immersed
soliton sphere in R3 is not 20π. Let L be the Euclidean holomorphic line
bundle of an immersed soliton sphere with Willmore energy 20π. Then
degL = −1, the linear system H = H0(L) is 2–dimensional, base point free,
has equality in the Plücker estimate, and ordH = 1. Let E ⊂ (H, i) ∼= C4

be the twistor lift of the dual curve Ld ⊂ H of the linear system H extended
to a compact complex holomorphic curve on CP1 (cf., Theorem 16.3).

The proof now goes as follows: a) The first step is to show that E
has degree 4 and exactly one branch point of order 1, i.e., a cusp. b) The
isomorphism of L and KL−1 is then used to deduce a symmetry of the
branching of E and its dual curve Ed. This symmetry and the complex
version of the Plücker formula imply that E can not be full in CP3. c) This
is used to show that Ld is a Euclidean minimal surface with four planar
ends. These ends are inflection points of E, and the curve of tangent lines
E1 of E does not have other branch points. Hence E is a rational curve in
CP2 of degree 4 with exactly one cusp and exactly four inflections points,
which lie on one projective line. d) In the last step it is shown that such a
curve does not exist.

a) The derivative δ ∈ Γ(KHom+(Ld,H/Ld)) of Ld is complex holomorphic,
by Lemma 20.3, and has exactly one zero of order 1 at the Weierstrass
point of H, by Theorem 10.2. Thus

degE = deg(Ld) = deg(H/Ld) + degK − ord δ = deg(L)− 3 = −4.
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(Note that degE is the degree of the complex holomorphic line bundle
E, which is minus the degree of the holomorphic curve E.)

Because the twistor projection Ld of E has only one branch point of
order 1, E has at most one branch point of order 1. If E had no branch
point, then the branch point p0 ∈ CP1 of Ld would come from the twistor
projection. That means that the osculating 1–plane E1 ⊂ (H, i) of E is
a quaternionic subspace of H at p0. But S is smooth and E1 is its i–
eigenspace near p0, by Lemma 16.2. Hence E1 is the i–eigenspace of S at
p0, which can not be a quaternionic subspace of H. Contradiction. The
branch point of Ld is, consequently, the only branch point of E.

b) The canonical complex structure S of H extends smoothly into the
Weierstrass point of H, by Lemma 20.2. Its Hopf field A vanishes, by
Lemma 16.2. Hence d∇∗Q = 1

2d
∇∇S = 0. Let Ed be the dual curve of E

in P (H, i). Then the twistor projection of Ed satisfies T (Ed) ⊂ kerQ∗ =
(imQ)⊥ ⊂ H∗ and −S∗ is the canonical complex structure of T (Ed), by
Lemma 20.4. Hence

∗Q∗ : H∗/T (Ed)→ KL−1

is a complex quaternionic bundle homomorphism. It is holomorphic,
by Corollary 9.7, for if β ∈ H∗ and b ∈ H one gets d(∗Q∗β(b)) =
d∇∗Q∗β(b) = 0. Since L is the Euclidean holomorphic line bundle of
a conformal immersion into R3, KL−1 is isomorphic to L, by Theo-
rem 12.4. Hence, Q induces a holomorphic bundle homomorphism

∗Q∗ : H∗/T (Ed)→ L.

The holomorphicity of ∗Q∗ induces a symmetry of the branching of
E and Ed, which implies that E lies in a projective plane: The complex
version of the Plücker formula reads

0 = (n+ 1)(n(1− g)− d) +
n−1∑
k=0

(n− k)bk

(cf., [GriHa, Section 2.4, p. 271f]) for a compact holomorphic curve of
genus g in CPn, where bk is the total branching of the osculating k–plane.
If E is full, then this formula yields 0 = 4(3−4)+3+2b1+b2, since g = 0,
n = 3, d = 4 and b0 = 1. Hence b1 = 0 and b2 = 1. As E is a holomorphic
curve of degree 4 in CP3, it follows that the branch point p0 ∈ CP1 of E,
which is the Weierstrass point of H, and the branch point p∞ ∈ CP1 of
its osculating 2–plane are different points. The point p∞ is a branch point
of Ed. Hence p∞ is a Weierstrass point of the canonical linear system
H∗ ⊂ H0(H∗/T (Ed)) of T (Ed), by Theorem 10.2. But this implies
that p∞ is the Weierstrass point p0 of H, by Proposition 17.1, since
∗Q∗ : H∗/T (Ed) → L is holomorphic and H = H0(L) is 2–dimensional.
This is a contradiction to p0 6= p∞. Hence E is not full.

c) If E is contained in a projective line, then S is constant and Q vanishes
identically, which implies W (L) = 0 6= 20π. Thus E lies in a projective
plane and Q does not vanish identically. The complex Plücker formula
then implies 0 = (n + 1)(n − d) + 2b0 + b1 = −4 + b1. The tangent line
congruence E1 of E thus has branching order b1 = 4.
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Lemma 20.5 implies that T (E) = Ld is Euclidean minimal. In par-
ticular imQ is constant. This and Theorem 17.3 implies that ∗Q∗(H∗) ⊂
H = H0(L) is a 1–dimensional linear system with equality in the Plücker
estimate. Hence Ld is Euclidean minimal with pole ∗Q∗(H∗), by Propo-
sition 15.4. Hence imQ = ∗Q∗(H∗), by the uniqueness of the pole of a
Euclidean minimal curve (cf., 15.4). Hence the zeros of Q are the points
at which Ld equals imQ. But the zeros of Q are branch points of E1, by
Lemma 20.4. As b1 = 4, E1 has no other branch points and its 4 branch
points are of order 1, so they are inflection points of E, and they all lie
on the complex projective line imQ.

d) Suppose that

E = [f ]C ⊂ C3, f = (f1, f2, f3) : C→ C3,

where the fi : C→ C are polynomials in z of degree at most 4. Assume
that the cusp of E lies at z = 0 and z = ∞ is one of the 4 inflection
points. Changing the coordinates of C3 one can assume that the line
g = imQ is given by the vanishing of the third coordinate. Since E
has degree 4 the intersection order of E and g is 4, hence E intersects g
only at the 4 inflection points and the intersection is transversal. Hence
f3 is a cubic polynomial with nonvanishing constant term. Scaling the
coordinate z and the third coordinate one can assume that

f3(z) = z3 + c2z
2 + c1z + 1.

Changing again the coordinates of C3 one can assume that the cusp
is given by the vanishing of the first two coordinates and the tangent
at the cusp by the vanishing of the first coordinate. Scaling the first
two coordinates and adding some multiple of the first coordinate to the
second, one can assume that

f1(z) = a4z
4 − 1

6
z3,

f2(z) = b4z
4 + z2.

The zeros of

det(f,f ′, f ′′)z−2

= (2a4 −
b4c2
3

)z4 − c1b4z3 − 2(3c1a4 + b4)z2 + (
c1
3
− 16a4)z + 1

are the inflection points of E. These zeros coincide with the zeros of f3,
since the inflection points of E lie on g. Hence f3 = det(f, f ′, f ′′)z−2,
which is a contradiction.

�

20.2. Lemma. The canonical complex structure of a 2–dimensional
base point free linear system with equality in the Plücker estimate extends
smoothly into its Weierstrass points.

Proof. Let H ⊂ H0(L) be a 2–dimensional base point free linear sys-
tem with equality in the Plücker estimate. Let Ld ⊂ H be the dual curve
extended into the Weierstrass points of H (cf., Theorem 16.3). Let S be the
canonical complex structure of H on M0, where M \M0 are the Weierstrass
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points of H. Let p ∈M \M0, z a centered coordinate at p, and ϕ ∈ Γ(L̂d) a
holomorphic section such that ϕ(p) and ϕ̃(p) are linearly independent over
C, where ϕ̃ is the holomorphic extension of ϕ′z−k, k = ordp ϕ′. If ϕ(p) and
ϕ̃(p) are linearly independent over H, then the quaternionic linear extension
of ϕ(p) 7→ ϕ(p)i and ϕ̃(p) 7→ ϕ̃(p)i is a quaternionic linear endomorphism
that extends S smoothly into p, because Eig(S, i) = spanC{ϕ,ϕ′} near p,
by Lemma 16.2.

Suppose now that there exists λ ∈ H \C such that ϕ̃(p) = ϕ(p)λ. Let
e1, e2 ∈ H be a basis of H such that e1 = ϕ(p). Let ϕ1 and ϕ2 be H valued
functions defined near p such that ϕ = e1ϕ1 + e2ϕ2. Then ϕ1 and ϕ2 are
complex holomorphic functions into (H, i). Furthermore,

ϕ1(p) = 1, ϕ2(p) = 0, ϕ′1z
−k = p λ ∈ H \C, and ϕ′2z

−k = p 0.

The second and third equation follows from e1λ = ϕ̃(p) = (e1ϕ′1 +e2ϕ
′
2)z

−k.
Since H is base point free, (Ld)⊥ ⊂ H∗ is the curve that corresponds to H
via Kodaira correspondence. In particular, it is a holomorphic curve on all
of M and L = H/Ld is its canonical holomorphic line bundle. Thus, the
derivative δ : Ld → KH/Ld is complex holomorphic, by Lemma 20.3 below.
This and

∇ ∂
∂z
ϕ = ϕ′ = e1ϕ

′
1 + e2ϕ

′
2 = e2(ϕ′2 − ϕ2ϕ

−1
1 ϕ′1) + ϕϕ−1

1 ϕ′1

implies that ψ = e2(ϕ′2 − ϕ2ϕ
−1
1 ϕ′1) mod Ld ∈ Γ(Ĥ/Ld) is a complex holo-

morphic section of Ĥ/Ld. ψ has a zero of order strictly greater than k at
p, because ϕ2(p) = 0 and ϕ′2z

−k = p 0. Hence ψz−k−1 extends smoothly
into p. But ψz−k−1 does not extend smoothly into p, since e2 6∈ Ld p,
ϕ−1

1 ϕ′1z
−k = p λ ∈ H \ C and ϕ2z̄

−1 is not smooth at p, because ϕ2 is a
complex holomorphic map into (H, i). �

20.3. Lemma. If L is a holomorphic curve in HP1 whose dual curve
is also holomorphic, then the derivative δ of L is a complex holomorphic
section of KHom+(L,H2/L).

Proof. There is a sphere congruence, i.e., S ∈ Γ(EndH2), S2 = −1,
such that S preserves L and induces the complex structures of L and H2/L.
Let ∇ = ∂ +A+ ∂̄ +Q be the decomposition (2.7) of the trivial connection
∇ on H2 with respect to S. Let π : H2 → H2/L be the canonical projection.
Then ∗δ = Jδ = δJ implies that δ = π∂ L and ∂̄Γ(L) ⊂ Ω1(L). In particular,
L ⊂ (H2, ∂̄, S) is a complex holomorphic subbundle, and ∂̄ induces a complex
holomorphic structure on L. It is straight forward to check that this complex
holomorphic structure is the complex holomorphic structure of L (as defined
in 9.2). Furthermore, ∂̄ induces the complex holomorphic structure of the
Möbius invariant holomorphic line bundle H2/L, because Dπψ = 1

2(π∇ +
∗Jπ∇)ψ, for all ψ ∈ Γ(H2) (cf., 8.3).

The formula for R∇+ in 2.7 implies πR∂+∂̄
L = −π(A∧A+Q∧Q) L = 0.

Hence for ψ ∈ Γ(L) and a (local) holomorphic vector field X ∈ Γ(TM), i.e.,
[X, JX] = 0, one gets 0 = πR∂+∂̄

(X,JX) ψ = π(−2J∂X ∂̄X + 2J∂̄X∂X)ψ. Hence
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π∂X ∂̄Xψ = π∂̄X∂Xψ, which implies

δX ∂̄Xψ = π∂̄XδXψ.

Thus δ is complex holomorphic. �

20.4. Lemma. Let H be a 2–dimensional base point free linear system
with equality in the Plücker estimate, S its canonical complex structure and
Q its Hopf field. Let E be the holomorphic twistor lift of the dual curve of
H and suppose Q is not identically zero.

Then imQ extends to a holomorphic curve on M , the dual curve Ed of
E is the holomorphic twistor lift of L̃ = (imQ)⊥ ⊂ H∗, −S∗ is the canonical
complex structure of L̃, and Qp = 0 if and only if p ∈ M is a branch point
of the tangent line congruence E1 of E.

Note that the image of Q may be constant, then E lies in some projective
plane CP2 ⊂ CP3, since L̃ as well as Ed are in this case constant. The
condition that Q is not identically zero assures that E is not contained in a
projective line CP1 ⊂ CP3.

Proof. The canonical complex structure is smoothly defined on all of
M , by Lemma 20.2. The dual curve Ld of H has holomorphic twistor lift E,
by Theorem 16.3, and ∇S = 2 ∗Q, since A ≡ 0, by Lemma 16.2. The same
lemma says that E1, the tangent line congruence of E, is the i–eigenspace
of S. In particular, E1⊕E1j = H. Let ϕ ∈ Γ(E1) and ω1, ω2 ∈ Ω1(E1) such
that ∇ϕ = ω1 + ω2j. Then ω2j = ∇ϕ− ω1 ∈ Ω1(E2) and

2∗Qϕ = ∇Sϕ = ∇(Sϕ)− S∇ϕ
= ω1i+ ω2ji− ω1i− ω2ij = −2ω2k ∈ Ω1(E2).

Hence imQ ⊂ E2. The dual curve Ed of E is by definition E⊥
2 ⊂ (H, i)∗.

With the complex linear isomorphism

(H, i)∗ → (H∗, i), α 7→ (x 7→ α(xj) + jα(x)),

one sees T (Ed) ⊂ (imQ)⊥ and L̃ = T (Ed) smoothly extends the line sub-
bundle imQ ⊂ H into the zeros of Q. The −i eigenspace of S∗ is the oscu-
lating 1–plane Ed1 of Ed, because Ed1 = E⊥

1 and E1 is the i–eigenspace of S.
Thus, as −S∗ is the canonical complex structure of T (Ed), by Lemma 16.2,
−S is the canonical complex structure of L̃ and L̃ is a holomorphic curve
on all of M whose dual curve is T (Ed).

Q is zero at a point p ∈ M if and only if Qϕ = 0 for all ϕ ∈ E1 p, since
E1 ⊕ E1j = H. Let ϕ ∈ Γ(E1). Then 2∗Qϕ = ∇Sϕ = ∇ϕi− S∇ϕ. This is
zero at p if and only if im∇ϕ p ⊂ E1 p, because E1 is the i–eigenspace of S.
But im∇ϕ p ⊂ E1 p means that p is a branch point of E1. �

20.5. Lemma. A holomorphic curve in HP1 with holomorphic twistor
lift is a Euclidean minimal curve if and only if its twistor lift is planar.

Proof. Let L ⊂ H2 be a holomorphic curve with holomorphic twistor
lift E ⊂ (H2, i). L is Euclidean minimal if and only if imQ is constant
(cf.,15.4). But imQ is constant if and only if the dual curve Ed of E is
constant, by Lemma 20.4, which is equivalent to E being planar. �
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20.6. Willmore Energy 28π. The author does not know any example
of an immersed soliton sphere with Willmore energy 28π. Applying the
arguments of the proof of the preceding theorem one arrives at the following
situation:

Let L be the Euclidean holomorphic line bundle of an immersed soliton
sphere in R3 with Willmore energy 28π. Then H0(L) is a 2–dimensional
base point free linear system with equality in the Plücker estimate and
ordH0(L) = 3. In the notation of the proof of Theorem 20.1 one gets
degE = −6 and b0 = 3. If E is full then the complex Plücker formula
implies b1 = 0 and b2 = 3, or b1 = b2 = 1. Again, using the fact that
∗Q∗ provides a holomorphic bundle homomorphism from H∗/T (Ed) to L,
one concludes that b0(p) = b2(p) + ordpQ for all p ∈ CP1. In the case
b1 = b2 = 1 this formula implies that Q has 2 zeros. But Lemma 20.4
implies that Q has exactly 1 zero in this case. Contradiction. Hence b1 = 0,
b2 = 3, and b0(p) = b2(p). Since E is a curve of degree 6 in CP3, one knows
b0(p) + b2(p) ≤ 3 for all p ∈ CP1. Hence there are three distinct points
p0, p1, p∞ ∈ CP1 such that b0(p) = b2(p) = 1, and b0 = b1 = b2 = 0 at all
other points.





CHAPTER IV

Bäcklund Transformation and Equality

The main purpose of this chapter is to show that Willmore spheres in
HP1 are soliton spheres and to derive a procedure to construct all Will-
more spheres in HP1 from holomorphic curves in CP3 using only algebraic
operations. This is done in the Sections 23–25. The first step is a the-
orem which states that a holomorphic Willmore sphere in HP1 is a Eu-
clidean minimal curve, or the curve or its dual has holomorphic twistor lift
[Ej88, Mu90, Mo00]. The second step is to show that the dual curve of
the 1–step Willmore–Bäcklund transform of a Euclidean minimal sphere has
holomorphic twistor lift. Because the composition of the 1–step Willmore–
Bäcklund transformation with dualization is an involutive transformation,
all Willmore spheres in HP1 are the twistor projection of a holomorphic
curve in CP3 or its dual, or the 1–step Willmore–Bäcklund transform of
the twistor projection of a holomorphic curve in CP3. The observation that
the 1–step Willmore–Bäcklund transform of the twistor projection of a holo-
morphic curve in CP3 can, in contrast to the general situation, be obtained
without integration completes the algebraic construction.

The Sections 26 and 27 deal with the question how this procedure can
be used to construct the Willmore spheres in R3. This is done by applying
a theorem by Jörg Richter [Ri97] which says that the 1–step Willmore–
Bäcklund transform of a Willmore holomorphic curve in S3 is minimal in
hyperbolic 4–space. To apply this theorem to our construction, the condi-
tion of hyperbolic minimality needs to be slightly relaxed to allow compact
hyperbolic minimal surfaces. This is natural for curves in HP1, as HP1

can be understood as two hyperbolic spaces glued together at their ideal
boundary 3–sphere. With the new definition one can show that hyperbolic
minimal spheres are superminimal, which is analogous to a result for minimal
spheres in S4 obtained by Robert Bryant in [Br82]. It is shown, that the
1–step Willmore–Bäcklund transforms of hyperbolic superminimal curves
are branched conformal Willmore immersions into R3 (in fact they are Eu-
clidean minimal curves), and, conversely, every Willmore sphere in R3 is the
1–step Willmore–Bäcklund transform of a hyperbolic superminimal sphere.

An important tool in the present chapter is the Willmore–Bäcklund
transformation, which was introduced in [BFLPP02]. In Section 21 a gen-
eralization of this transformation is proposed. As it concentrates on the
involved holomorphic line bundles, it is assumed to be helpful to keep track
of the different holomorphic line bundles involved in the proofs of this and
the next chapter. It shows how the relations of the Willmore energies and
the preservation of equality in the Plücker estimate on the ladder of holomor-
phic line bundles can be applied to the Willmore–Bäcklund transformation.
Moreover, in Section 22 it is shown that the Christoffel transformation of
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isothermic surfaces is also an example of the generalized Bäcklund transfor-
mation. This transformation is applied in the last chapter of this thesis.

21. Bäcklund Transformation

In this section a definition of a Bäcklund transformation for holomorphic
curves in HPn is proposed. It is shown that the (n + 1)–step Bäcklund
transforms are projective invariants of the transformed curve. Before we
give the definition of the Bäcklund transformation in 21.3 some explanation
seems useful. A first approximation of the definition of the (n + 1)–step
Bäcklund transformation is the following. If L is a holomorphic curve inHPn

then the canonical holomorphic line bundle L̃−1 of the Bäcklund transform
L̃ is related to the canonical holomorphic line bundle L−1 of L along the
ladder of holomorphic line bundles (11.7). This means that there exist flat
connections (∇i)0≤i≤n on KiL−1 such that ∇′′0 is the holomorphic structure
of L−1 and ∇′′i = d∇i−1 for all i = 1, . . . , n, and a quaternionic holomorphic
bundle homomorphism L̃−1 → (Kn+1L−1, d∇n).

21.1. (n + 1)–Step Bäcklund Transformation I. The next step is
to require that the holomorphic structure d∇n is related to the canonical
linear system of L. This goes as follows: Let H ⊂ H0(L−1) be an (n+ 1)–
dimensional linear system without Weierstrass points. Then there exists
a nowhere vanishing holomorphic section β0 ∈ H, by Theorem 3.8. The
equation ∇0β0 = 0 then defines a trivial connection on L−1 such that ∇′′0
is the holomorphic structure of L−1. ∇0H ⊂ H0(KL−1, d∇0) is an n–
dimensional linear system without Weierstrass points, by Theorem 17.2.
Consequently, one can proceed successively choosing βi ∈ H such that
∇i−1 . . .∇0βi ∈ ∇i−1 . . .∇0H ⊂ H0(KiL−1, d∇i−1) has no zeros and triv-
ial connections ∇i of KiL−1 such that ∇i(∇i−1 . . .∇0βi) = 0 until i = n,
because the linear systems ∇i−1 . . .∇0H are (n + 1 − i)–dimensional and
Weierstrass point free.

This procedure provides holomorphic structures on KiL−1 for all i =
0, . . . , n + 1. The following theorem shows that the induced holomorphic
structure d∇n on Kn+1L−1 only depends on the linear system H and not
on the choice of the basis (βi)0≤i≤n.

Theorem. If H ⊂ H0(L−1) is an (n + 1)–dimensional linear system
without Weierstrass points and the connection ∇n on KnL−1 is defined as
described above, then (Kn+1L−1, d∇n) is paired with (Ld)−1.

In the case of the canonical 2–dimensional linear system of an immersed
holomorphic curve L in HP1 this theorem reduces to the fact that the upper
right vertex (K−1L, (∇∗1)′′) of the quadrilateral of holomorphic line bundles
is isomorphic to the canonical holomorphic line bundle of the dual curve Ld

(cf., 11.6). The lemma below shows that the isomorphism is given by the
dual of the derivative δ : Ld → KL−1 of Ld.

Proof. It suffices to show that (K−nL, (∇∗n)′′) and (Ld)−1 are iso-
morphic, because (K−nL, (∇∗n)′′) and (Kn+1L−1, d∇n) are paired by The-
orem 11.4. Let Ld = H0 ⊂ . . . ⊂ Hn = H be the Weierstrass flag of H.
The composition of all its derivatives δ := δn ◦ . . . ◦ δ0 : Ld → KnH/Hn−1 =
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KnL−1 (cf., 14.3) is a complex quaternionic isomorphism. Thus it suffices to
show that δ∗ : K−nL→ (Ld)−1 maps a nontrivial holomorphic section onto
a holomorphic section, by Lemma 4.1. If (βi)0≤i≤n is the basis of H that
defines the ∇n’s and (β∗i )0≤i≤n is its dual basis, then (∇n−1 . . .∇0βn)−1 and
β∗n Ld are holomorphic sections of (K−nL, (∇∗n)′′) and (Ld)−1). The following
lemma thus finishes the proof. �

21.2. Lemma. δ((β∗n)
−1) = (−1)n∇n−1 . . .∇0βn.

Proof. Let β0
i be the constant section of the trivial bundle H = Hn

that corresponds to βi. Construct successively for k = 0, . . . , n sections
(βki )k≤i≤n of Hn−k ⊂ H such that

δn−1 . . . δn−kβ
k
i = (−1)k∇k−1 . . .∇0βi and β∗l (β

k
i ) = δli(∗)

for all i, l = k, . . . , n as follows:
Suppose that the all (βki )k≤i≤n are constructed up to some k, then

Hn−k = Hn−k−1⊕βkkH, because∇k−1 . . .∇0βk ∈ Γ(KkL−1) has no zeros, by
the definition of βk. Consequently, there are sections βk+1

i ∈ Γ(Hn−k−1) and
smooth maps fi : M → H such that βk+1

i = βki +βkkfi for all i = k+1, . . . , n.
These sections clearly satisfy for all l, i = k + 1, . . . , n the second condition
β∗l (β

k+1
i ) = δli in (∗).

Because ∇Hn−k−1 ⊂ Ω1(Hn−k), and since β∗k(β
k
i ) = δki for i = k, . . . , n

implies β∗k(∇βki ) = 0, one gets ∇βk+1
i −βkkdfi = ∇βki −∇βkkfi ∈ Ω1(Hn−k−1).

Hence

δn−1 . . . δn−k−1β
k+1
i = δn−1 . . . δn−k(πn−k−1∇βk+1

i )

= δn−1 . . . δn−k(βkkdfi) = (−1)k∇k−1 . . .∇0βidfi.(∗∗)

But

0 = δn−1 . . . δn−kβ
k+1
i = δn−1 . . . δn−k(βki + βkkfi)

= (−1)k∇k−1 . . .∇0βi + (−1)k∇k−1 . . .∇0βkfi.

This equation and the definition of ∇i imply

∇k∇k−1 . . .∇0βi = −∇k−1 . . .∇0βkdfi,

which together with (∗∗) yields the first condition in (∗).
For k = n one gets δ(βnn) = (−1)n∇n−1 . . .∇0βn and β∗n(β

n
n) = 1, thus

βnn = (β∗n)
−1 and δ((β∗n)

−1) = (−1)n∇n−1 . . .∇0βn. �

21.3. Bäcklund Transformation. Let L be a holomorphic curve in
HPn and H ⊂ H0(L−1) its canonical linear system. Let H̃ ⊂ H0(L−1)
be a (k + 1)–dimensional linear system, such that H̃ ⊂ H or H ⊂ H̃. Let
M0 = M \{Weierstrass points of H̃} and ∇k be a flat connection of KkLM0

as in 21.1 for some basis of H̃. A holomorphic curve L̃ is called a (k+1)–step
Bäcklund transform of L with respect to H̃, if

(i) its canonical holomorphic line bundle restricted to M0 admits a non-
trivial holomorphic map to (Kk+1L−1

M0
, d∇k), and

(ii) the image of the canonical linear system of L̃ is included in or includes
the linear system ∇k . . .∇0H.
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Theorem 21.1 and Proposition 10.8 imply that the canonical holomor-
phic line bundle of a (k + 1)–step Bäcklund transform is on M0 branchedly
paired to the canonical holomorphic line bundle (Ld)−1 of the dual curve Ld

of H̃. The Willmore energies of L and of its (k + 1)–step Bäcklund trans-
forms L̃ are in the case that M is compact of genus g related by the Plücker
formula:

1
4π

(W (L−1)−W (L̃−1)) = (k + 1)(k(1− g)− degL−1) + ord H̃,

because branchedly paired holomorphic line bundles have the same Willmore
energies.

21.4. (n+ 1)–Step Bäcklund Transformation II. For the (n+ 1)–
step Bäcklund transformation of a holomorphic curve in HPn one has no
choice for H̃ but H̃ = H = (Hn+1)∗. Then (ii) is trivially satisfied. Theo-
rem 21.1 thus implies that the set of (n+ 1)–step Bäcklund transforms of L
only depends on the projective equivalence class of L. More precisely, one
gets the following corollary.

Corollary (of Theorem 21.1). Let L be a holomorphic curve in HPn

and M0 = M \ {Weierstrass points of (Hn+1)∗}. A holomorphic curve L̃
in HPñ is then an (n + 1)–step Bäcklund transform of L if and only if
the canonical holomorphic line bundle of L̃ is on M0 branchedly paired with
(Ld)−1. If M is compact of genus g, then the Willmore energies of L and L̃
are related by

1
4π

(W (L−1)−W (L̃−1)) = (n+ 1)(n(1− g)− degL−1) + ord(Hn+1)∗.

In particular, the 2–step Bäcklund transformation of holomorphic curves
in HP1 is Möbius invariant.

21.5. 1–Step Bäcklund Transformation of Holomorphic Curves
in HP1. The 1–step Bäcklund transformation involves the choice of a 1–
dimensional linear subsystem of the canonical linear system. For holomor-
phic curves in HP1 this can be interpreted as the choice of a point∞ ∈ HP1.
The 1–step Bäcklund transformation of a holomorphic curve in HP1 with
respect to a fixed point at infinity then yields a transformation of branched
conformal immersions f : M → H that respects the geometry of similarities
of HP1 \{∞} = H.

Proposition. Let L ⊂ H2 be a holomorphic curve in HP1, whose dual
curve is also holomorphic. If f := σα,βL : M → H is an admissible stereo-
graphic projection and g : M → H is a nonconstant smooth map satisfying

(∗) dg ∧ df = 0,

then g is a 1–step Bäcklund transform of L with respect to β LH.
If, conversely, g̃ : M → H is a 1–step Bäcklund transform of L with

respect to β LH, then there is a Möbius transform g of g̃ in H ∪ {∞} that
satisfies (∗), away from the points that are mapped to ∞.

If one transforms f by a similarity x 7→ λxµ + c of H and g by x 7→
λx̄µ+ c, then (∗) is preserved. Thus the transformation f 7→ ḡ commutes
with similarities. Furthermore, this modified transformation is involutive.
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A smooth map g : M → H is called a 1–step Bäcklund transform of a
branched conformal immersion f : M → H with a left normal vector, if (∗)
is satisfied.

Proof. Since the dual curve of L is by assumption a holomorphic curve,
it follows that f has a left normal vector N , by Lemma 7.4 and 7.5. Let
∇0 be the trivial connection on L−1 such that ∇0β L = 0. Then α L = β Lf̄

(cf., 8.5) implies ∇0α L = β Ldf̄ . Hence −N is the normal vector of ∇0α ∈
H0(KL−1, d∇0).

If (∗) holds, then g has right normal vector −N . Hence the canonical
linear system of g contains a nowhere vanishing holomorphic section ϕ with
normal vector −N , because g is a quotient of elements of the canonical
linear system (cf., 8.5). The quaternionic bundle homomorphism from the
Möbius invariant holomorphic line bundle of g to KL−1 that maps ϕ to
∇0α is complex linear, because ϕ and ∇0α have the same normal vector,
and holomorphic, by Lemma 4.1, because ϕ and ∇0α are both holomorphic.
Thus g is a 1–step Bäcklund transform of L.

If, on the other hand, g̃ is a 1–step Bäcklund transform of L with respect
to β LH, then its canonical linear system must contain a section with normal
vector −N , by condition (ii) of Definition 21.3. Hence there is a Möbius
transform g of g̃ that has right normal vector −N , by 8.5. Then, away from
the points that are mapped to ∞, g satisfies (∗) by type. �

21.6. Successive Bäcklund Transformations. One easily sees from
the definition of the Bäcklund transformation: If k1, k2 ∈ N \ {0}, then
every (k1 + k2)–step Bäcklund transform is, besides isolated points, a k2–
step Bäcklund transform of some k1–step Bäcklund transform.

22. Christoffel Transformation

The aim of this section is to discuss the Christoffel transformation as an
example for the Bäcklund transformation defined in the previous section as
well as to establish some facts that are needed in Chapter V. For more on
the theory of isothermic surfaces see [Jeromin] or the survey [Bu00].

22.1. Isothermic Holomorphic Curves. A holomorphic curve L in
HP1 is called isothermic if and only if its dual curve Ld = L⊥ is a holo-
morphic curve and the Möbius invariant holomorphic line bundles L−1 =
(H2)∗/Ld and (Ld)−1 = H2/L of L and Ld are branchedly paired. A holo-
morphic curve in HP1 whose dual curve is also holomorphic is, by Corol-
lary 21.4, isothermic if and only if it is a 2–step Bäcklund transform of
itself.

If L is a holomorphic curve that is not contained in a 2–sphere, then at
least one of the Hopf fields of L−1 and (Ld)−1 does not vanish identically, by
8.4. If L is isothermic the both Hopf fields do not vanish, by Corollary 9.9.
Then Proposition 10.8 and Theorem 4.3 imply that the pairing of L−1 and
(Ld)−1 is unique up to multiplication by a real constant.
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22.2. Christoffel Transformation. If L is a holomorphic curve in
HP1 whose dual curve is also holomorphic, then every nonconstant smooth
map g : M → H such that

(∗∗) dg ∧ df = df ∧ dg = 0

for some admissible stereographic projection f = σα,βL of L is called a
Christoffel transform of L. The equation (∗∗) is equivalent to saying that the
left / right normal vector of f equals minus the right / left normal vector of
g. Proposition 21.5 implies that the Christoffel transforms of a holomorphic
curve L are 1–step Bäcklund transforms of the curve. Furthermore, L is a
1–step Bäcklund transform of every one of its Christoffel transforms g.

22.3. Isothermic holomorphic curves L have Christoffel transforms.
Their Weierstrass data is obtained from the Möbius invariant holomorphic
line bundles of L.

Lemma. Let L be a holomorphic curve in HP1 whose dual curve is also
holomorphic. A conformal immersion g : M → H is a Christoffel transform
of L if and only if L−1 and (Ld)−1 are the paired Euclidean holomorphic
line bundles of g, and there exists an admissible β ∈ (H2)∗ and a ∈ H2 with
β(a) = 0 such that (L−1, (Ld)−1, β L, a Ld) is the Weierstrass data of g.

Proof. Let f = σα,βL be some admissible stereographic projection
of L. From Theorem 10.10 and Proposition 9.10 then follows that df =
(a−1, β−1). If N and R are the left and right normal vectors of f , then N
and R are the normal vectors of α Ld and β L, respectively.

If g : M → H is a Christoffel transform of L such that (∗∗) holds for f ,
then ∗dg = −Rdg = dgN , and (β L, a Ld) := dg defines a pairing of L−1 and
(Ld)−1, by Corollary 9.7, because dg is closed and

(β L, Ja Ld) = (β L, a Ld)N = ∗(β L, a Ld) = −R(β L, a Ld) = (Jβ L, a Ld).

Suppose now that g : M → H has Weierstrass data (L−1, (Ld)−1, β L, a Ld)
for some admissible β ∈ (H2)∗ and a ∈ H2 with β(a) = 0. Choose α ∈ (H2)∗

such that α(a) = 1. Then and df = dσα,βL = (a−1, β−1) and dg = (β L, a Ld)
imply (∗∗) by type. �

22.4. Proposition. A holomorphic curve L in HP1 whose dual curve
is also a holomorphic curve is isothermic if and only if L has a Christoffel
transform on the universal covering of M with translational periods.

Proof. If L is isothermic and f = σα,βL is an admissible stereographic
projection, then L−1 and (Ld)−1 are paired and Lemma 22.3 implies that∫

(β L, a L⊥) : M̃ → H is a smooth Christoffel transform on the universal
covering M̃ of M with translational periods only. If, on the other hand, L
has a Christoffel transform g : M̃ → H with only translational periods, then
dg is well defined on M and (β L, a L⊥) := dg defines a pairing of L−1 and
H2/L, as in the proof of Lemma 22.3. �
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22.5. The Retraction Form. If L is an isothermic holomorphic curve
in HP1, then there is, by Proposition 10.8, a holomorphic bundle homomor-
phism τ : (Ld)−1 → KL. As (Ld)−1 = H2/L and L ⊂ H2 one can interpret τ
as a 1–form with values in End(H2) satisfying im τ ⊂ L ⊂ ker τ and dτ = 0,
because β(τa) is closed for all β ∈ (H2)∗ and a ∈ H2, by the definition of the
paired holomorphic structure of KL (cf., 9.6). A nontrivial closed 1–form
τ with values in End(H2) such that im τ ⊂ L ⊂ ker τ is called a retraction
form of the holomorphic curve L.

Proposition. A holomorphic curve L in HP1, whose dual curve is also
a holomorphic curve, is isothermic if and only if L has a retraction form. A
retraction form τ defines and is uniquely determined by a branched pairing
of L−1 and (Ld)−1 via (ϕ,ψ) = ϕτψ. Furthermore, τ induces a holomorphic
bundle homomorphism (Ld)−1 → KL.

If L is isothermic but not contained in a 2–sphere, then we have already
seen in 22.1 that the pairing of L−1 and (Ld)−1 is unique up to multiplication
by a real constant. Hence the retraction form of an isothermic holomorphic
curve that is not contained in a 2–sphere is unique up to multiplication by
a real constant.

Proof. The fact that isothermic holomorphic curves have retraction
forms is already shown in the preliminary remark. If now τ is a retrac-
tion form of L, then 0 = πdτ = δ ∧ τ , for the derivative δ of L and the
canonical projection π : H2 → H2/L. Moreover, for ψ ∈ Γ(L) one gets
0 = d(τψ) = τ ∧ ∇ψ = τ ∧ δψ. Hence τ induces a complex quaternionic
bundle homomorphism (Ld)−1 → KL. Furthermore, every holomorphic sec-
tion a L⊥ for a ∈ H2 is mapped by τ onto a holomorphic section of KL, by
Theorem 9.6, since β(τa) is closed for all β ∈ (H2)∗. Thus τ is holomorphic,
by Lemma 4.1. Hence L is isothermic, because τ defines via (ϕ,ψ) := ϕτψ
a branched pairing of L−1 and (Ld)−1, by Proposition 10.8. �

22.6. The Christoffel transforms g : M → H of L with Weierstrass
data (L−1, (Ld)−1, β L, a Ld), as in Lemma 22.3, satisfies

dg = βτa,

if the pairing of L−1 and (Ld)−1 is induced by τ . If L is isothermic that is
not contained in a round 2–sphere and τ is a retraction form of L, then the
uniqueness of τ , up to a real factor, and Lemma 22.3 imply that g : M → H is
a Christoffel transform of L if and only if there exists an admissible β ∈ (H2)∗

and a ∈ H2 with β(a) = 0 such that dg = λβτa for some λ ∈ R.

22.7. Remark. Usually an immersion f : M → H is called isothermic,
if f admits, away from the umbilics of f , local conformal curvature line
parameters, see [Jeromin, Definition 5.1.1]. In [Jeromin, Lemma 5.2.6]
it is shown that an immersed Christoffel transform assures the existence of
local conformal curvature line parameters. Thus Proposition 22.4 implies
that, away from the branch points of L and the branch points of the pairing
of L−1 and (Ld)−1, the branched conformal immersion f = σα,βL admits
conformal curvature line parameters. The branch points of the pairing are
the umbilics of f : Corollary 10.13 implies that p ∈ M is a branch point of
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the pairing if and only if the Hopf fields QL
−1

and QH
2/L of L−1 and H2/L

vanish at p, i.e., p is an umbilic of f (cf., 8.4).
Consequently, if L is an isothermic holomorphic curve, then every stere-

ographic projection f = sα,βL restricted to M \ {branch points of f} is an
isothermic immersion in the usual sense. The definition in the present text
is stronger than the usual definition, because it is required that the pairing
of (Ld)−1 and L−1 is globally defined. This difference is discussed in more
detail in [Boh03, 9.3].

In particular, our definition of isothermic holomorphic curves is to re-
strictive in case M = CP1, because the composition of a holomorphic homo-
morphism from (Ld)−1 to KL with the derivative δ of L, yields a complex
holomorphic homomorphism from L to K2L, i.e., a holomorphic section of
K2. But K2 has degree −4 and, consequently, no holomorphic sections. A
solution to this problem is to allow the retraction form to be meromorphic.
The smooth catenoid cousins in Section 30 are an example of Darboux trans-
forms of the round sphere with respect to a meromorphic retraction form.

23. Willmore–Bäcklund Transformation

A Bäcklund transformation for Willmore surfaces in S4 was introduced
in [BFLPP02]. In the present section it is shown that this Bäcklund
transformation is another example of the Bäcklund transformation of Sec-
tion 21. Important for the following investigations is the fact that the 1–step
Willmore–Bäcklund transforms of a holomorphic curve with holomorphic
twistor lift can be obtained without integration.

23.1. Willmore Holomorphic Curves inHP1. A holomorphic curve
in HP1 is called Willmore if it is a critical point of the Willmore energy for
all variations with compact support in M0 = M \{Weierstrass points of L}.
Katrin Leschke and Franz Pedit show in [LP03, Theorem 3.4] that a holo-
morphic curve is Willmore if and only if its mean curvature sphere S is
harmonic. If A and Q are the Hopf fields of S, then S is harmonic if and
only if d∇∗Q = 0, or, equivalently, d∇∗A = 0. In particular, all holomorphic
curves with holomorphic twistor lift and their duals are Willmore holomor-
phic curves, since A or Q vanishes identically in this case (cf., Lemma 16.2).

The Willmore–Bäcklund transform of a Willmore holomorphic curve can
only be defined for Willmore holomorphic curves whose mean curvature
sphere extends smoothly into the branch points of L. Such a Willmore
holomorphic curve is called a regular Willmore holomorphic curve.

23.2. 2–Step Willmore–Bäcklund Transformation. Let L ⊂ H2

be a holomorphic curve in HP1 and A and Q the Hopf fields of its mean
curvature sphere S. Then imA ⊂ L and L ⊂ kerQ implies that kerA and
imQ define, besides the branch points of L and the zeros of A and Q, new
S invariant line subbundles of H2. If ∗Q is closed, i.e., L is Willmore, then
0 = πd∇∗Q = δimQ ∧ ∗Q implies that imQ is a holomorphic curve whose
complex structure is induced by −S, again only away from the branch points
of L and the zeros of Q. Dualizing, the same holds for A, as −A∗ is the “Q”
of S∗. The following lemma shows that imQ extends into the zeros of Q as
a holomorphic curve.
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Lemma. If S is a complex structure of a trivial quaternionic vector
space H such that the (0, 1) part 2∗Q of its derivative is closed and not
identically zero, then Q : H → KH̄ is complex holomorphic and there is a
unique holomorphic curve V ⊂ H of rank maxp∈M (dim imQp) with complex
structure −S V such that V = imQ besides isolated points of M .

If L is a regular Willmore holomorphic curve, then the holomorphic
curve defined by imQ as in the lemma is called the 2–step Willmore–
Bäcklund transform1 of L, denoted WBT(L) = imQ. Dualization yields
WBT(Ld) = (kerA)⊥. Moreover, if WBT(L) is not constant, then L =
WBT(WBT(L)d)d, by [BFLPP02, Theorem 8, p. 59].

Proof. The bundle map Q : H → KH̄ is complex quaternionic, be-
cause ∗Q = −SQ = QS. Let ∇ be the trivial connection of H, then d∇

is a holomorphic structure on KH̄, analogous to 11.4. Then d∇∗Q = 0
implies that ∗Q maps constant sections of H, which are holomorphic with
respect to ∇′′, to holomorphic sections of KH̄. Thus, ∗Q is holomorphic,
by Lemma 4.1. In particular, Q is a complex holomorphic bundle homo-
morphism. Thus, dim imQp = maxp∈M (dim imQp) besides isolated points
and there is a subbundle V ⊂ H (by a standard argument for the image of
complex holomorphic bundle homomorphisms, see for example [BFLPP02,
Lemma 23] or [GriHa, Section 2.4]) such that V coincides with imQ be-
sides the same isolated points. S clearly stabilizes V and V is a holomorphic
curve whose complex structure is induced by −S, because d∇∗Q = 0 implies

0 = πd∇∗Q = δ ∧ ∗Q,

where π : H → H/V is the the canonical projection and δ is the derivative
of V . Thus ∗δ = −δS. �

Remark. Suppose L is a regular Willmore holomorphic curve that lies
in some 3–sphere. Write † for the dual with respect to the Hermitian form
that describes this 3–sphere. Then S† = S and Q† = −A (cf., 5.6). Hence
imQ = kerA and WBT(L) = WBT(Ld)d lies in the same 3–sphere. The
Euclidean formulas (14.6) for Q and A then imply that WBT(L) p is the
unique point in that 3–sphere, such that the mean curvature of the stereo-
graphic projection of L with pole ∞ = WBT(L) p vanishes to second order.
Thus WBT(L) is the dual Willmore surface as defined by Robert Bryant in
[Br84].

23.3. Proposition. If L ⊂ H2 is a regular Willmore holomorphic curve
in HP1 and Q its Hopf field, then the bundle map

( , ) : WBT(L)−1 × (Ld)−1 → T ∗M ⊗H, (ϕ,ψ) = ∗Q∗β(b) = ∗β(Qb)

is a branched pairing of holomorphic line bundles.

1In [BFLPP02, Section 9.2] this is called the backward Bäcklund transform of L. The
forward Bäcklund transform of [BFLPP02] is the holomorphic curve obtained extending
ker A into the zeros of A. With the notation of the present text this would be WBT(Ld)d.
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Corollary 21.3 thus implies that the holomorphic curve WBT(L) is a
2–step Bäcklund transform of L and

1
4π

(W (L−1)−W (WBT(L)−1))

= (n+ 1)(n(1− g)− degL−1) + ord(Hn+1)∗.

Proof. Let S ∈ Γ(EndH2) be the canonical complex structure of L
and Q and A its Hopf differentials. Then L ⊂ kerQ implies imQ∗ ⊂ Ld,
and imQ ⊂ WBT(L) implies WBT(L)⊥ ⊂ kerQ∗. Since −S∗ induces
the complex structure of WBT(L)−1, by Lemma 23.2, the quaternionic
bundle homomorphism Q∗ : WBT(L)−1 → KLd is a complex linear. If
β ∈ (H2)∗ ⊂ H0(WBT(L)−1) and b ∈ H2 ⊂ H0((Ld)−1), then d∇∗Q = 0
implies d(∗Q∗β(b)) = d∗β(Qb) = 0. Thus ∗Q∗β is a holomorphic section of
KLd, by Theorem 9.6. Hence

∗Q∗ : WBT(L)−1 → KLd

is a holomorphic bundle homomorphism, by Lemma 4.1, and Proposition 10.8
implies that the pairing of the proposition is indeed a pairing of holomorphic
line bundles. �

23.4. 1–Step Willmore–Bäcklund Transformation. Let L ⊂ H2

be a regular Willmore holomorphic curve, β ∈ (H2)∗ ⊂ H0(WBT(L)−1)
and a ∈ H2 ⊂ H0((Ld)−1) such that β(a) = 0 and β is admissible for L and
WBT(L). A branched conformal immersion g : M̃ → H on the universal
covering M̃ of M with Weierstrass representation (WBT(L)−1, (Ld)−1, β, a),
which means that

dg = 2∗β(Qa),
is called a 1–step Willmore–Bäcklund transform of L. β is admissible for
L and WBT(L) if and only if the holomorphic sections induced by β and
a have no zeros. Hence g is a branched conformal immersion with both
normal vectors and g’s branching order equals the vanishing order of Q, by
Theorem 10.10. Furthermore, g is Willmore (cf., [BFLPP02, Theorem 6,
p. 55]).

23.5. Choose some α ∈ (H2)∗ such that α(a) = 1 and let f := σα,βL.
If N is the left normal vector of f , then Ja = aN , because df = (a−1, β−1)
by Proposition 9.10, and ∗dg = 2∗β(Qa) = dgN . Hence dg ∧ df = 0 and g
is a 1–step Bäcklund transform of f , by Proposition 21.5.

23.6. In [BFLPP02, Section 9.1]2 the following is shown: Suppose
that g is immersed, and let Lg ⊂ H2 be the immersed Willmore holomorphic
curve such that σα,βLg = g. Let Ag be the Hopf field of the mean curvature
sphere of Lg, then

dσα,βL = 2∗β(Aga).
Hence σα,βL is a 1–step Willmore–Bäcklund transform of Ldg.

2In [BFLPP02] the 1–step Willmore–Bäcklund transform goes by the name backward
Bäcklund transform, the 1–step Willmore–Bäcklund transform of the dual curve is called
a forward Bäcklund transform, and the formula dσα,βL = 2∗β(Aga) reads df = 1

2
ωh and

h is our g.
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23.7. 1–Step WBT of Curves with Holomorphic Twistor Lift.
Let L be a holomorphic curve in HP1 with holomorphic twistor lift. Then L
is Willmore (cf., 23.1). L is regular if and only if the curve of tangent lines
L̂1 of the twistor lift L̂ of L satisfies L̂1 ⊕ L̂1j = H2, see 16.4. The 1–step
Willmore–Bäcklund transforms of L can then be obtained from the mean
curvature sphere of L without integration.

Proposition. Let L be a holomorphic curve in HP1 with holomorphic
twistor lift L̂, suppose that L̂1 ⊕ L̂1j = H2, and let S be the mean curvature
sphere of L extended to M . If β ∈ (H2)∗ and a ∈ H2 such that β(a) = 0
and β admissible for L and WBT(L), then

g = β(Sa) : M → H

is a 1–step Willmore–Bäcklund transform of L. The branch points of g
are the branch points of L̂1. Furthermore, g is the Möbius transform of a
minimal surface in H or the stereographic projection of a holomorphic curve
in HP1 with holomorphic twistor lift. If M is compact of genus g, then the
Willmore energy of g satisfies

W (g) = 4π(2g − 2 + 2 deg(L−1)− b(L)).

The map H = −β(Sa) has a geometric meaning. Let f = σα,βL, for
α ∈ H2 such that α(a) = 1. H is then the quaternionic conjugate of the
rotation by π

2 of the mean curvature vector of f in the normal bundle of f
(cf., 14.6). This implies that if f : M → H is the stereographic projection of
a curve with holomorphic twistor lift, then the mean curvature vector of f
rotated by π

2 in the normal bundle of f is again a Willmore surface.

Proof. Because L has holomorphic twistor lift, one gets ∇S = 2∗Q,
by Lemma 16.2. Hence d(β(Sa)) = 2β(∗Qa) and g = β(Sa) is a 1–step
Willmore–Bäcklund transform of L.

If β is admissible for L and WBT(L), then dg = 2β(∗Qa) is zero at
p ∈M if and only if Q is zero at p ∈M . But the zeros of Q are the branch
points of L̂1: Let ϕ ∈ Γ(L̂1), then 2∗Qϕ = ∇Sϕ = ∇ϕi− S∇ϕ. Thus Q is
zero at p ∈M if and only if the image of ∇ϕ p is for all ϕ ∈ Γ(L̂1) contained

in the i–eigenspace of S. For L̂1 is the i–eigenspace of S, by Lemma 16.2,
L̂1 is branched at p if and only if Qp is zero.

Let L̃ ⊂ H2 be a holomorphic curve that stereographically projects onto
g. If L̃ does not have holomorphic twistor lift, then the Hopf field Ã of L̃ does
not vanish, by Lemma 16.2. From [BFLPP02, Lemma 10] then follows that
ker Ã stereographically projects onto a 1–step Willmore–Bäcklund transform
of Ld. Hence it is constant, because the Hopf field A of L vanishes. Hence
kerA is constant and L̃ is a Euclidean minimal curve with pole kerA, see
24.1.

The Euclidean holomorphic line bundle of g is the Möbius invariant holo-
morphic line bundle (Ld)−1 of Ld, by Theorem 10.10, because the Weier-
strass data of g is (WBT(L)−1, (Ld)−1, β, a). The Willmore energy of the
Möbius invariant holomorphic line bundle L−1 of L vanishes, by Lemma 16.2,
because L has holomorphic twistor lift. If M is compact of genus g, then
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one derives from the Plücker formula, as in 15.1, that W (g) = W ((Ld)−1) =
−4π(2− 2g − 2 deg(L−1) + b(L)). �

24. Euclidean Minimal Curves and Equality

The 2–step Willmore–Bäcklund transform of a holomorphic curve L in
HP1 is a constant point if and only if the curve is Euclidean minimal (cf.,
the next paragraph). This is in the present section used to show that the
canonical linear system of the 1–step Willmore–Bäcklund transform of such
a curve has equality in the Plücker estimate. If M = CP1 one can go down-
wards on the ladder of holomorphic line bundles (applying Theorem 17.2)
to get a 3–dimensional linear system with equality in the Plücker estimate
that contains the canonical linear system of the Euclidean minimal curve.

24.1. Let L be a Euclidean minimal curve in HP1 (cf., 15.4) and S its
mean curvature sphere on M0 = M \ {Branch points of L}. The Euclidean
(14.6) formula for d∇∗A = d∇∗Q and the fact that the mean curvature vector
of some stereographic projection of L vanishes identically imply d∇∗A =
d∇∗Q = 0. Hence every Euclidean minimal curve in HP1 is Willmore (cf.,
23.1). If∞ is the pole of L then imQ ⊂ ∞ ⊂ kerA. This follows again from
the Euclidean formulas for A and Q of 14.6. Hence the 2–step Willmore–
Bäcklund transform of a Euclidean minimal curve is its pole. If, on the
other hand, Q (or A) does not vanish identically and there exists a point
∞ ∈ HP1 such that imQ ⊂ ∞ (or ∞ ⊂ kerA), then S∞ = S and L is,
consequently, a Euclidean minimal curve with pole ∞.

As for Willmore holomorphic curves, a Euclidean minimal curve is called
regular if its mean curvature sphere extends smoothly into its branch points.

24.2. Theorem. If a compact regular Euclidean minimal curve L in
HP1 has a nonconstant closed 1–step Willmore–Bäcklund transform g, then
the canonical linear system of g has equality in the Plücker estimate.

Proof. The proof can be divided into two steps. The first is to show
that ∗Q∗((H2)∗) ⊂ H0(KLd) is a linear system with equality in the Plücker
estimate. This in fact follows from Theorem 17.3. But we prefer to give
the proof for the special case that is needed here. The second step is to go
one step down on the ladder of holomorphic line bundles (applying Theo-
rem 17.2) to show equality for the canonical linear system of g.

The 2–step Willmore–Bäcklund transform of the Euclidean minimal
curve L is the pole ∞ of L. Hence ∞⊥ ⊂ kerQ∗. Thus Q∗ : (H2)∗/∞⊥ →
KLd is a quaternionic bundle homomorphism. It is nonzero because g is
nonconstant. If one equips (H2)∗/∞⊥ with the complex structure J that
satisfies −πS∗ = Jπ, where π : (H2)∗ → (H2)∗/∞⊥ is the canonical projec-
tion, then Q∗ is complex linear.

Contemplate the 1–dimensional space H = {α∞ | α ∈ (H2)∗ } of
sections of (H2)∗/∞⊥ and let ∇̃ be the connection on (H2)∗/∞⊥ that
makes H parallel. Then H is a linear system of holomorphic sections of
((H2)∗/∞⊥, ∇̃′′) with equality in the Plücker estimate: J , understood as
an endomorphism of the trivial H–bundle, is the canonical complex struc-
ture of H. Since π is ∇∗–∇̃–parallel and −πS∗ = Jπ it follows that
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∇Jπ = −π(∗Q∗ − ∗A∗) = −π(∗Q∗), since ∞ ⊂ kerA. Hence the “A”
of J vanishes and the Plücker formula (14.7) implies that H has equality in
the Plücker estimate.

Since d∇∗Q = 0 the map

∗Q∗ : ((H2)∗/∞⊥, ∇̃′′)→ KLd

is holomorphic, as is shown in the proof of Proposition 23.3. The linear
system ∗Q∗(H) ⊂ H0(KLd), consequently, has equality in the Plücker esti-
mate, by Proposition 17.1.

Let now β ∈ (H2)∗ and a ∈ H2 such that β(a) = 0 and dg = 2∗Q∗β(a).
Let ∇1 be the trivial connection of Ld such that ∇1a

−1 = 0. Then (Ld,∇′′1)
is Möbius invariant holomorphic line bundle of g, by Corollary 8.2, since
dg = 2∗Q∗β(a) implies that the right normal vector of g is the normal vector
of a−1. Furthermore, H̃ := span{a−1, a−1ḡ} ⊂ H0(Ld) is the canonical
linear system of the stereographic lift of g (cf., 8.5). Then

∇1H̃ = a−1dḡH = ∗Q∗βH = ∗Q∗(H),

because a−1dḡ(a) = dg. d∇1 is the holomorphic structure of KLd, by The-
orem 11.4, since (∇∗1)′′ by definition of ∇1 the holomorphic structure of
(Ld)−1. Now Theorem 17.2 implies that the canonical linear system H̃ of g
has equality in the Plücker estimate. �

24.3. Euclidean Minimal Spheres and Equality. If M = CP1 the
assumption in the theorem above that the 1–step Willmore–Bäcklund trans-
form be closed is trivially satisfied. Moreover, it is possible to apply The-
orem 17.2 once again and descend one step further on the ladder of holo-
morphic line bundles, i.e., from Ld to L−1, which yields equality for a 3–
dimensional linear system in the Möbius invariant holomorphic line bundle
of L.

Theorem. The regular Euclidean minimal spheres in HP1 are soliton
spheres. More precisely, the canonical linear system of a regular Euclidean
minimal sphere has equality in the Plücker estimate or it is contained in a
3–dimensional linear system with equality.

Proof. If the Hopf field Q of the mean curvature sphere of L ⊂ H2 is
identically zero, then the canonical linear system of L has equality in the
Plücker estimate. This follows from the Plücker formula (14.7) since −Q∗

is the “A” of the complex structure S∗ of the canonical linear system of L
(cf., 14.4). Assume that Q is not identically zero. Then L has a nontrivial
and closed, as CP1 is simply connected, Willmore–Bäcklund transform g.

Use the notation of the proof of Theorem 24.2 and choose α and b such
that α, β ∈ (H2)∗ is a basis and a, b ∈ H2 its dual. Let ∇0 be the flat con-
nection on L−1 such that ∇0β L = 0, and δ : Ld → KL−1 be the derivative
of Ld. Then δ(a−1) = −∇0α L, by Lemma 21.2, and δ is holomorphic, by
Lemma 4.1. The connection ∇0 induces a surjective quaternionic linear map
∇0 : H0(L−1)→ H0(KL−1), because CP1 is simply connected. It maps the
canonical linear system of L onto δ(a−1)H = ∇0α L H ⊂ δ(H̃), where H̃ is
the canonical linear system of g as in the proof of Theorem 24.2. Conse-
quently, there is a linear system ˜̃H ⊂ H0(L−1) that contains the canonical
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linear system of L such that ∇0
˜̃H = δ(H̃). Because δ is holomorphic and H̃

has equality, Proposition 17.1 and Theorem 17.2 imply equality for ˜̃H. �

With the notation of the preceding two proofs, the 3–dimensional linear
system with equality is spanned by (β, α = βf̄ , β

∫
(df̄)ḡ), where f := σα,βL,

because δ(a−1) = −∇0α = −βdf̄ and δ(a−1ḡ) = −β(df̄)ḡ.

24.4. The author found the following diagram helpful to keep track of
the ingredients of the preceding two proofs:

((H2)∗/∞⊥, ∇̃′′)
∗Q∗

17.1
// (KLd, d∇1)

OO

11.4 17.2�
�
�

9.6
PPPPP

PPPPP

(Ld,∇′′1)
δ

17.1 ((PPPPPPPPPPPP
11.3 ____ ((Ld)−1, (∇∗1)′′)

(KL−1, d∇0)
OO

11.4 17.2�
�
�

9.6
PPPPP

PPPPP

(L−1,∇′′0) 11.3
____ (L, (∇∗0)′′)

25. Willmore Spheres in S4 and Equality

25.1. Robert Bryant in [Br84] showed that every immersed Willmore
sphere in R3 has Willmore energy 4πn for some integer n. Furthermore, it
has an n–fold point (which is unique if n > 1), and if one applies a Möbius
transformation to the Willmore sphere that sends the n–fold point to infin-
ity, then one gets a complete minimal surface with finite total curvature and
n embedded planar ends. Conversely, every bounded Möbius transform of
a complete immersed minimal sphere with finite total curvature and n em-
bedded planar ends in R3 extends to a compact immersed Willmore sphere
in R3 with Willmore energy 4πn. In the language of the present text this
can be rephrased as follows: If M = CP1 and L is an immersed holomorphic
sphere in HP1 that lies in some 3–sphere, then L is Willmore if and only
if L is Euclidean minimal. This result was generalized to S4 by Nori Ejiri,
[Ej88], Emilio Musso [Mu90], and Sebastián Montiel, [Mo00]: IfM = CP1

and L is an immersed Willmore holomorphic sphere in HP1, then L or Ld

have holomorphic twistor lift in CP3, or L is Euclidean minimal. The proof
of this fact in [BFLPP02, Section 11] applies verbatim to regular Willmore
holomorphic curves and arbitrary compact Riemann surfaces M , and one
gets the following theorem.

Theorem. If M is compact of genus g and L is a regular Willmore
holomorphic curve in HP1 with total branching order ord δL > 8(g − 1),
then L or Ld have holomorphic twistor lift or L is a Euclidean minimal
curve with pole WBT(L).
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25.2. Willmore Spheres in HP1. Because the condition on the total
branching of L in Theorem 25.1 is vacuous for g = 0, one obtains the
following corollary.

Corollary. If M = CP1 and L is a regular Willmore holomorphic
sphere in HP1, then L or Ld have holomorphic twistor lift or L is a regular
Euclidean minimal sphere with pole WBT(L).

Note that the three cases in the corollary are not disjoint. If L and Ld

have holomorphic twistor lift, then both Hopf fields of the mean curvature
sphere vanish identically, by Lemma 16.2. Thus ∇S = 2(∗Q− ∗A) ≡ 0 and
L is a branched covering of a totally geodesic 2–sphere in HP1. Lemma 20.5
implies that a Euclidean holomorphic sphere L with holomorphic twistor lift
is the twistor projection of a planar holomorphic curve.

25.3. Theorem. If M = CP1 and L is a regular Willmore holomorphic
sphere in HP1, then L is a soliton sphere. More precisely, a regular Will-
more holomorphic sphere in HP1 has holomorphic twistor lift, its canonical
linear system has equality in the Plücker estimate, or it is contained in a
3–dimensional linear system with equality.

Proof. The theorem follows from Corollary 25.2 and Theorem 24.3. �

25.4. Construction of Willmore Spheres in HP1 from Holomor-
phic Data. Theorem 25.3 implies that every regular Willmore holomorphic
sphere in HP1 can be obtained from a rational curve in CP5 via twistor pro-
jection, dualization, and projection from HP2 to HP1. But it is hard to say
which curves in CP5 yield Willmore holomorphic curves in HP1.

On the other hand, Theorem 24.2 together with Corollary 25.2 implies
that the canonical linear system of every 1–step Willmore–Bäcklund trans-
form g of a regular Willmore holomorphic sphere in HP1 whose Hopf fields
are nontrivial is a linear system with equality in the Plücker estimate. This
and the fact that the 1–step Willmore–Bäcklund transformation composed
with dualization is involutive (cf., 23.6) means that every regular Willmore
holomorphic sphere in HP1 can be obtained from a rational curve in CP3.
The corresponding construction yields for all rational complex holomorphic
curves in CP3 Willmore holomorphic spheres in HP1. Moreover, the con-
struction is, by Proposition 23.7, algebraic, i.e., only differentiation of poly-
nomials and algebraic operations are involved:

Theorem. Let E ⊂ (H2, i) be a complex holomorphic curve in P (H2, i)
such that E1⊕E1j = H2. Then L and Ld are regular Willmore holomorphic
curves in HP1. Let L = T (E) be its twistor projection and S the mean
curvature sphere of L extended into the branch points of L. If β ∈ (H2)∗,
a ∈ (H2) such that β(a) = 0, and β is admissible for L and WBT(L), then

β(Sa) : CP1 → H

is a branched conformal Willmore immersion with both normal vectors. Its
branch points are the branch points of E1.

If M = CP1 and L is a regular Willmore holomorphic sphere in HP1,
then L or Ld has holomorphic twistor lift, or L can be obtained as described
above.
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See 23.7 for a geometric interpretation of the branched conformal im-
mersion β(Sa). See 27.3 for an explicit example of the construction of this
theorem. If M is compact of genus g, then the Willmore energy of β(Sa) is

W (β(Sa)) = 8π(g − 1 + deg(L−1))− 4πb(L),

by Proposition 23.7

Proof. In 16.4 it is shown that the mean curvature sphere of the twistor
projection L = T (E) of E extends smoothly into the branch points of L if
and only if E1 ⊕ E1j = H2. Proposition 23.7 and the fact that the 1–step
Willmore–Bäcklund transforms are branched conformal Willmore immer-
sions (cf., 23.4) then imply the statement about β(Sa). So it remains to
show that if L is a regular Willmore holomorphic sphere such that neither
L nor Ld has holomorphic twistor lift, then some stereographic projection
of Ld is of the form β(Sa), as described in the theorem.

Corollary 25.2 implies that L is a regular Euclidean minimal curve. The
Hopf field Q of L does not vanish identically, since the twistor lift of Ld is by
assumption not holomorphic. Let g : CP1 → H be defined by dg = 2∗β(Qa).
Then g is a nontrivial closed 1–step Willmore–Bäcklund transform of L and
the canonical linear system of g has equality in the Plücker estimate, by
Theorem 24.2.

Choose α ∈ (H2)∗ and b ∈ H2 such that α, β is the dual basis of a, b. Let
Lg ⊂ H2 be the Willmore holomorphic curve that stereographically projects
onto g, i.e., σα,βLg = g. Then Lg is regular, by Lemma 20.2, and

dσα,βL = 2∗β(Agβ) = 2∗dβ(Sa)

for the mean curvature sphere S of L. The first equality follows from 23.6
and the second because Q ≡ 0, since Ldg has holomorphic twistor lift, by
Theorem 16.3. Thus up to a constant of integration σα,βL = 2∗β(Sa). This
implies

σb,aL
d = −σα,βL = −2∗(S∗β)(a) = −2∗a(S∗β),

by Lemma 7.5. As S∗ is the mean curvature sphere of Ldg. S∗ extends
smoothly into the branch points of Ldg, because Ld is regular. The holomor-

phic twistor lift E := L̂dg of Ldg thus satisfies E1 ⊕ E1j = (H2)∗. �

26. HP1–Models of the 4–Dimensional Space Forms

In order to construct Willmore spheres in R3 with the technique of The-
orem 25.4, one needs to understand the condition on the holomorphic curve
E in CP3 which ensures that the 1–step Willmore–Bäcklund transform of
its twistor projection takes values in R3. This is done in two steps. The first
step is Jörg Richter’s theorem (cf., 27.1) which says that the twistor projec-
tion of E has to be hyperbolic minimal. The second step is the description
of the twistor lift of hyperbolic minimal spheres in HP1.

Although the Euclidean and spherical case is not needed for the present
purpose, all three 4–dimensional space forms are treated in this section.
This is done to show the remarkable similarity of the three cases in the
quaternionic description.
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26.1. The Metric 4–Spaces: R4, S4, and H4 Modeled on HP1.
Let 〈 , 〉 be a nondegenerate Hermitian form on H2. The real part of 〈 , 〉 then
induces a (pseudo–)Riemannian metric on N = {x ∈ H2 | |〈x, x〉| = 1 }.
This can be used, as in the definition of the Fubini–Study metric of CP1, to
define a metric on HP1. In fact, there is a unique metric on HP1 \I, where
I := { [x] ∈ HP1 | 〈x, x〉 = 0 }, such that π : N → HP1 \I, x 7→ [x] is a
Riemannian submersion, i.e., dxπ : (ker dxπ)⊥ → Tπ(x)HP1 is an isometry
for all x ∈ N , where the orthogonal complement (ker dxπ)⊥ is meant in TxN
with respect to the real part of 〈 , 〉.

Lemma. If x ∈ HP1 \I and v, w ∈ T[x]HP1 = Hom([x],H2/[x]), then

(∗) g[x](v, w) :=
1

〈x, x〉2
Re
(
〈v(x), w(x)〉〈x, x〉 − 〈v(x), x〉〈x,w(x)〉

)
.

is the metric defined above, up to a sign which is constant on the components
of HP1 \I.

Proof. It is straight forward to check that the right hand side of (∗)
does not depend on the choice of the vector in H2 that represents [x], v(x)
and w(x). It is, consequently, a well defined real bilinear form on T[x]HP1.
If x ∈ N and y ∈ (ker dxπ)⊥, then 〈x, y〉 = 0, because ker dxπ = [x] ∩ TxN .
Since dxπ(y)(x) ≡ y mod [x], one gets

g[x](dxπ(y), dxπ(y)) =
1

〈x, x〉2
Re
(
〈y, y〉〈x, x〉 − 〈y, x〉〈x, y〉

)
= ±〈y, y〉.

�

26.2. A Hermitian form is called degenerate, definite, or indefinite if
its real part is a degenerate, definite, or indefinite symmetric form on R8 =
H2. Multiplying a Hermitian form by a real nonzero constant does neither
change its type nor the induced metric g on HP1. In what follows Hermitian
forms are therefore considered equal, if they only differ by a real nonzero
multiplicative constant.

Proposition. Let 〈 , 〉 be a nontrivial Hermitian form and define I :=
{ [x] ∈ HP1 | 〈x, x〉 = 0 } to be the set of isotropic points in HP1. If 〈 , 〉 is

(i) degenerate, then I = {∞} for some point ∞ ∈ HP1, and the stereo-
graphic projections with pole ∞ provide an identification HP1 \I ∼= H

up to orientation preserving similarities of H.
(ii) definite, then I = ∅ and there is a stereographic projection that maps

(HP1, 4g) isometrically onto H equipped with the metric induced by the
stereographic projection of S4 ⊂ R5 = H×R onto H.

(iii) indefinite, then I is a 3–sphere in HP1 and there is a stereographic
projection that maps the two components of (HP1 \I,−4g) isometri-
cally onto H \ ImH if both components are equipped with the metric of
the Poincaré half space model of hyperbolic 4–space.

The metrics in the cases (ii) and (iii) induce the standard conformal struc-
ture of HP1.
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The last statement implies that the mean curvature sphere of a surface
has the same mean curvature vector as the surface at the point of tan-
gency in all three cases. Hence the mean curvature sphere of the curve in
HP1 is the same as the mean curvature sphere in the metric (sub)space de-
fined by a Hermitian form. Note that in case (iii) the Riemannian manifold
(HP1 \I,−4g) consists of two hyperbolic 4–spaces which are glued together
at their ideal boundary, i.e., the 3–sphere S3

∞ := I.

Proof. (i) As 〈 , 〉 is nontrivial and degenerate, there is exactly one
point ∞ ∈ HP1 such that x ∈ ∞ is equivalent to 〈x, x〉 = 0. The rest
follows from 5.2.

(ii) Assuming without loss of generality that 〈 , 〉 is positive definite, there
exists a basis a, b ∈ H2 such that 〈a, a〉 = 〈b, b〉 = 1 and 〈a, b〉 = 0. Let
α, β ∈ (H2)∗ be its dual basis. Then σ−1

α,β : H → HP1 \{[a]} satisfies
σ−1
α,β(λ) = [aλ+ b], and for λ, µ ∈ H one gets

dλσ
−1
α,β(µ)(aλ+ b) ≡ aµ mod [aλ+ b],

by 5.3, and

(σ−1
α,β)

∗gλ(µ, µ) = 〈aµ,aµ〉〈aλ+b,aλ+b〉−〈aµ,aλ+b〉〈aλ+b,aµ〉
〈aλ+b,aλ+b〉2 =

|µ|2

(1 + |λ|2)2
.

The assertion follows, since 4|µ|2
(1+|λ|2)2

is the induced metric of the stere-
ographic projection of S4 to R4 = H.

(iii) In this case I is a 3–sphere in HP1 (cf., 5.4) and there exists a basis
a, b ∈ H2 such that 〈a, a〉 = 〈b, b〉 = 0 and 〈a, b〉 = 1. For λ ∈ H\ ImH,
µ ∈ H one then obtains as before

(σ−1
α,β)

∗gλ(µ, µ) = − |µ|2

4 Re2(λ)
.

The assertion follows, since |µ|2
Re2(λ)

is the metric of the Poincaré half

space model of H4.
�

26.3. Isometries of R4, S4, and H4. If 〈 , 〉 is a nondegenerate Her-
mitian form and M ∈ GL(H, 2), then the Möbius transformation of HP1

represented by M is an isometry of (HP1 \I, g) if and only if M preserves the
Hermitian form, i.e., there exists a constant c ∈ R such that 〈Mx,Mx〉 =
c〈x, x〉 for all x ∈ H2, see Lemma 26.1. All orientation preserving isometries
of (HP1 \I,±g) are obtained this way (cf., [Jeromin, Theorem 1.3.14 &
Lemma 1.4.13]). If the Hermitian form is degenerate, then M induces a sim-
ilarity of HP1 \{∞} = H if and only if M fixes∞ (cf., 5.2), which is equiva-
lent to M preserving the Hermitian form. All similarities of HP1 \{∞} = H

are of this form (cf., 5.2).

26.4. Euclidean, Spherical and Hyperbolic Minimal Curves.
Proposition 26.2 justifies the following definitions. A curve L in HP1 is
called a spherical minimal curve, if there is a definite Hermitian form such
that L is minimal in (HP1, g). A curve L in HP1 is called a hyperbolic
minimal curve, if there is an indefinite Hermitian form such that L is not
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completely contained in its 3–sphere S3
∞ of isotropic lines and L is mini-

mal in (HP1 \S3
∞,−g). Euclidean minimal curves are defined in 15.4. In

all three cases minimality of the curve is equivalent to its mean curvature
sphere being skew Hermitian.

Theorem. Let L ⊂ H2 be a holomorphic curve in HP1 and S its mean
curvature sphere. L is Euclidean, spherical or hyperbolic minimal, if and
only if there exists a degenerate, definite, or indefinite Hermitian form, re-
spectively, for which S is skew Hermitian. In all three cases L is a Willmore
holomorphic curve. In the hyperbolic case L intersects the ideal boundary
orthogonally.

Proof. Assume, without loss of generality, that L has no branch points.
If S is skew for a degenerate Hermitian form 〈 , 〉 with isotropic line

∞ = [a] ∈ HP1, then 〈Sa, x〉 = −〈a, Sx〉 = 0 for all x ∈ H2. Thus ∞ is a
fixed point of S and, consequently, lies for all p ∈M on the mean curvature
sphere Sp. This implies that the stereographic projection of L with pole
∞ is a minimal conformal immersion. If L is a Euclidean minimal curve
with pole ∞, then there is a degenerate Hermitian form with degenerate
direction ∞. The mean curvature sphere fixes ∞ = [a], see 14.6. For every
x ∈ H2\{∞} there exists λ ∈ H such that Sx ≡ xλ mod [a]. Then λ2 = −1
and 〈Sx, x〉 = 〈xλ, x〉 = −〈x, xλ〉 = −〈x, Sx〉, thus S is skew. The fact that
Euclidean minimal curves are Willmore is proven in 24.1. This finishes the
proof of the Euclidean case.

Suppose now that S is skew for a nondegenerate form. The skewness
of S implies 〈Sx, Sx〉 = 〈x, x〉 for all x ∈ H2. Fix a point p ∈ M . The
Möbius involution induced by Sp is then an isometry for the metric g of
26.1. The sphere defined by Sp is the fixed point set of this isometry. It is
not the identity, squares to the identity and preserves orientation. Thus, Sp
is minus the identity on the normal space of Sp. Consequently, the sphere
defined by Sp is totally geodesic in (HP1, g) or (HP1 \S3

∞, g). This implies
that if the Hermitian form is definite, then L is minimal in (HP1, g), and
if the form is indefinite, then L is minimal on the preimage of HP1 \S3

∞.
In the indefinite case let now p ∈ M such that Lp ∈ S3

∞. Because Sp is
skew Hermitian for 〈 , 〉, it does not lie in S3

∞ (cf., 5.6). Hence it intersects
S3
∞ orthogonally. Since, Sp is tangent to L at Lp, L also intersects S3

∞
orthogonally at p .

If L is now a spherical minimal curve with respect to the Hermitian form
〈 , 〉, then its mean curvature spheres Sp are totally geodesic for all p ∈ M .
Let [a] ∈ Sp and [b] ∈ HP1 such that 〈a, a〉 = 〈b, b〉 = 1 and 〈a, b〉 = 0.
Let α, β ∈ (H2)∗ be its dual basis. The stereographic projection σα,β maps
Sp onto a two plane in H. Since Sp is totally geodesic its projection is the
stereographic projection of a great sphere. Hence the two plane contains
the origin. Thus [b] ∈ Sp and there are N,R ∈ H such that Sa = aN ,
Sb = bR and N2 = R2 = −1. Hence Sp is skew Hermitian with respect to
the Hermitian form 〈 , 〉.

If L is hyperbolic minimal with respect to the indefinite Hermitian form
〈 , 〉, then its mean curvature spheres Sp are totally geodesic for all p ∈ M
such that Lp 6∈ S3

∞. Hence Sp intersects S3
∞ in a circle. This implies that
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there are [a], [b] ∈ Sp such that 〈a, a〉 = 〈b, b〉 = 0 and 〈a, b〉 = 1. The
stereographic projection σα,β maps Sp onto a 2–plane orthogonal to ImH.
In particular, [a + b] ∈ Sp. Let N,R ∈ H such that Spa = aN , Spb = bR,
and N2 = R2 = −1. Then [a + b] ∈ Sp implies N = R. Hence Sp is skew
for all p ∈ M such that Lp 6∈ S3

∞. Suppose now that there is p ∈ M such
that Sp is not skew, then there exists a whole open neighborhood U ⊂ M
of p such that Sq is not skew for all q ∈ U . Hence Lq ∈ S3

∞ for all q ∈ U .
But the mean curvature sphere Sp of L at p is then contained in S3

∞. So Sp
is Hermitian (cf., 5.6). Thus for all p ∈ M either Sp is Hermitian or skew
Hermitian. Since M is connected and there is at least one point p ∈ M for
which Lp 6∈ S3

∞, by the definition of a hyperbolic minimal curve, Sp has to
be skew for all p ∈M .

It is now easy to see that the spherical and hyperbolic minimal curves
are Willmore: Write ()∗ for the dual of an endomorphism or orthogonal
complement of a subspace with respect to the Hermitian form. Then S∗ =
−S implies Q∗ = −Q and A∗ = −A for the Hopf fields of S. Hence d∇∗A∗ =
−d∇∗A. Consequently, (ker d∇∗A)∗ = im d∇∗A. This and im d∇∗A ⊂ L ⊂
ker d∇∗A, see the Euclidean formula for d∇∗A in 14.6, implies L∗ + L ⊂
ker d∇∗A. In the spherical case L∗ + L = H2, and in the hyperbolic case
L∗p + Lp = H2 for all p ∈ M such that Lp 6∈ S3

∞. But the points p with
Lp ∈ S3

∞ form a submanifold of dimension one, because L and S3
∞ intersect

transversally. Thus in both cases d∇∗A vanishes on all of M . This implies
that L is a Willmore holomorphic curve (cf., 23.1). �

26.5. As in the Euclidean case, although there are no compact hy-
perbolic minimal surfaces, there are compact hyperbolic minimal curves in
HP1. These curves have to pass through the ideal boundary of the two
hyperbolic spaces defined by the indefinite Hermitian form. An example of
such a surface is given in 27.3.

26.6. Superminimal Surfaces in R4, S4, and H4. A surface in S4

is called superconformal (holomorphic or t–holomorphic) if its twistor lift is
holomorphic, see [Fr84] and [Fr88]. A surfaces in S4 is superconformal if
and only if its mean curvature ellipse is a circle (cf., [BFLPP02, section
8.2]). A surface is called superminimal if it is superconformal and minimal.
There is a nice overview article on superminimal surface by Thomas Friedrich
[Fr97]. In this article the hyperbolic superminimal surfaces are discussed in
detail as an example of the general construction.

The following precise definition is adopted in the present text: A holo-
morphic curve L in HP1 is called Euclidean, spherical, or hyperbolic super-
minimal with positive (or negative) spin3, if L is Euclidean, spherical, or
hyperbolic minimal, and L (or Ld) has holomorphic twistor lift.

If M = CP1 one gets the following result.

26.7. Theorem. If M = CP1, then every regular spherical or hyper-
bolic minimal sphere in HP1 is superminimal.

3The notion of spin of a superminimal surface was introduced by Robert Bryant,
[Br82]. In [Fr84] positive spin is build into the definition of superminimal surfaces.
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For immersed minimal spheres in S4 this result was obtained by Robert
Bryant (cf., [Br82, Theorem C]).

Proof. If L is a regular spherical or hyperbolic minimal sphere in HP1,
then it is a regular Willmore holomorphic sphere whose mean curvature
sphere is skew with respect to some nondegenerate Hermitian form 〈 , 〉, by
Theorem 26.4. Suppose that neither L nor L⊥ has holomorphic twistor
lift. Then the Hopf fields Q and A of S do not vanish identically, and L is a
Euclidean minimal curve with pole imQ, by Corollary 25.2. The skewness of
S implies Q∗ = −Q, where ∗ denotes the dual endomorphism with respect
to 〈 , 〉. But then L ⊂ kerQ = (imQ)∗. This implies that L is constant,
contradiction. �

Using Theorem 25.1 instead of Corollary 25.2 one gets that every regular
spherical or hyperbolic minimal sphere in HP1 whose total branching order
satisfies ord δL > 8(g − 1) is superminimal.

26.8. The Complexified Light Cone Model of S4. To describe
superminimality in terms of the twistor lift, the following link between the
quaternionic model and the light cone model of the conformal 4–spheres is
used in the next theorem. Every element of the Grassmannean G2(H2, i) is
either a quaternionic 1–dimensional subspaces, i.e., a point in HP1, or the
i–eigenspace of a quaternionic endomorphism S that squares to −1, i.e., a
2–sphere in HP1. The Plücker embedding (cf., [Harris, Lecture 6])

Pl : G2(H2, i) −→ PΛ2(H2, i) ∼= CP5

span{x, y} 7−→ [x ∧ y]C
embeds G2(H2, i) as the Plücker quadric

Q4 = P{ v ∈ Λ2(H2, i) | v ∧ v = 0 },
into the 5–dimensional complex projective space PΛ2(H2, i).

The quaternionic structure of (H2, i) induces a real structure on Λ2(H2, i)

x ∧ y := xj ∧ yj.
The real part of Q4 then corresponds to HP1, Q4 \ReQ4 corresponds to the
set of oriented 2–spheres in HP1, and the ∧–product defines a symmetric
bilinear form on the real 6–dimensional vector space Re Λ2(H2, i). This
product is a Minkowski product: If a, b ∈ H2 is a basis, then the ∧–product
is represented by the diagonal matrix (−1, 1, 1, 1, 1, 1) in the basis

a ∧ aj+ b ∧ bj, a ∧ aj− b ∧ bj, a ∧ b+ aj ∧ bj,
− (a ∧ b− aj ∧ bj)i, a ∧ bj− aj ∧ b, −(a ∧ bj+ aj ∧ b)i

of Re Λ2(H2, i) and 2a∧b∧aj∧bj of Re Λ4(H2, i). Thus ReQ4 is the projec-
tivised light cone of the 6–dimensional Minkowski space (Re Λ2(H2, i),∧).

26.9. The Twistor Lift of a Superminimal Curve in HP1. The
i–eigenspaces of the mean curvature sphere of a holomorphic curve L inHP1

with holomorphic twistor L̂ are, by Lemma 16.2, the osculating lines (or the
tangent line congruence) L̂1 of the twistor lift L̂. Minimality of L can thus
be described in terms of the tangent line congruence L̂1 of L̂:
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Theorem. A holomorphic curve L is superminimal with positive spin
if and only if its twistor lift L̂ is holomorphic and there exists [h], h ∈
Re Λ2(H2, i) polar to the Plücker embedding Pl(L̂1) of L̂1, i.e., h ∧ v = 0
holds for all p ∈M and v ∈ Pl(L̂1) p. If h is light (time, space) like then L

is Euclidean (spherical, hyperbolic) minimal with respect to the Hermitian
form

(∗) 〈x, y〉 = −h ∧ xj ∧ y + j(h ∧ x ∧ y).

Proof. If one identifies Λ4(H2, i) ∼= C ∼= R ⊕ Ri ⊂ H such that
Re Λ4(H2, i) ∼= R, then (∗) defines a Hermitian form on H2 (up to a real
factor), because h is real. The light like vectors v ∈ Re Λ2(H2, i) can be
written v = x ∧ xj for some x ∈ H2, because ReQ4 corresponds to HP1.
Then h ∈ Re Λ2(H2, i) is orthogonal to v = x ∧ xj if and only if 〈x, x〉 = 0.
Thus h is light, time, or space like if and only if the set of isotropic lines
of the Hermitian form (∗) contains one, zero, or infinitely many points, re-
spectively. Proposition 26.2 then implies that the form (∗) is degenerate,
definite, or indefinite.

Suppose that the twistor lift L̂ of L is holomorphic and that Pl(L̂1) is
polar to [h], h ∈ Re Λ2(H2, i). The quaternionic extension of x 7→ xi on L̂1

is then the mean curvature sphere S of L, by Lemma 16.2. To see that S is
skew with respect to the Hermitian form (∗) fix a point p ∈ M and choose
x ∈ H2. Then one can write x = x1+x2j with xi ∈ L̂1 p, and h∧x1∧x2 = 0,

since [h] is polar to Pl(L̂1) p. Hence 〈xi, xj〉 ∈ C, for i, j = 1, 2. This implies
〈Spxi, xj〉 = −i〈xi, xj〉 = −〈xi, Spxj〉. Hence S is skew Hermitian.

To see the converse, suppose that L is superminimal with respect to the
Hermitian form 〈 , 〉. Then there exists h ∈ Re Λ2(H2, i) such that (∗) holds,
because Re Λ2(H2, i) and the space of Hermitian forms on H2 are real 6–
dimensional vector spaces and the map described by (∗) is an injective linear
map between these spaces. Let now x1,2 ∈ L̂1atp ⊂ (H2, i) for some p ∈M ,
then Spx1,2 = x1,2i and i〈x1, x2〉 = −〈Spx1, x2〉 = 〈x1, x2〉i, since Sp is skew
Hermitian. Hence 〈x1, x2〉 ∈ C, which implies h∧x1∧x2 = 0. Consequently,
[h] is polar to Pl(L̂1). �

26.10. Remark. Holomorphic curves in CP3 whose tangent lines all
lie in the intersection of the Plücker quadric Q4 ⊂ CP5 with some projec-
tive hyperplane CP4, as in the theorem, are well studied, see for example
[Bol, §54]. Choosing a suitable local coordinate z and suitable homogeneous
coordinates of CP3, all such curves are locally of the form

(1, z, F ′(z), zF ′(z)− 2F (z))

for some holomorphic function F .
A curve in Q4 is locally the curve of osculating lines of a curve in CP3 if

and only if it is null, i.e., its tangent lines are contained in Q4. So hyperbolic
and spherical superminimal curves correspond to holomorphic null curves
in the nondegenerate 3–dimensional quadric Q3 = Q4 ∩ CP4 ⊂ CP5 ∼=
PΛ2(H2, i). In the Euclidean case Q4 ∩CP4 is a degenerate quadric.

The condition that the tangent lines of a holomorphic curve E ⊂ C4

are as points in the Plücker quadric Q4 ⊂ CP5 polar to a fixed point in
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CP5 \Q4 implies that the dual curve Ed ⊂ (C4)∗ is the same curve as E:
Let ϕ be a local holomorphic section of E and h ∈ Λ2(C4) \ Q4 such that
h∧ϕ∧ϕ′ = 0. Then h∧ : C4 → Λ3(C4) is an isomorphism. If one identifies
Λ4(C4) with C, then Λ3(C4) ∼= (C4)∗ and h∧ maps ϕ onto a section of the
dual curve, because h ∧ ϕ ∧ ϕ = h ∧ ϕ ∧ ϕ′ = h ∧ ϕ ∧ ϕ′′ = 0. In particular,
E is either full or takes values in some projective line.

27. Willmore Spheres in R3

The results of the previous section and a theorem by Jörg Richter [Ri97]
are now applied to specialize the construction of Willmore spheres in HP1

from 25.4 to Willmore spheres in R3.

27.1. Hyperbolic Minimal Curves in HP1 and Branched Con-
formal Willmore Immersions into R3. Let L be a regular hyperbolic
minimal curve in HP1, 〈 , 〉 the corresponding indefinite Hermitian form and
S3
∞ ⊂ HP1 the 3–sphere of isotropic lines of 〈 , 〉. Let [a] ∈ S3

∞ be some
point in this 3–sphere and g : M → H such that

dg = 2∗〈a,Qa〉,
where Q is the Hopf field of L. Then g is a 1–step Willmore–Bäcklund
transform of L, since β := 〈a, ·〉 ∈ (H2)∗ satisfies β(a) = 0. Because the
mean curvature sphere of L is skew, by Theorem 26.4, one gets

dg = 2∗〈a,Qa〉 = 2∗〈Qa, a〉 = −2∗〈a,Qa〉 = −dg.
Hence, g takes values in ImH, up to some translation. Conversely, if L
is a regular Willmore holomorphic curve in S3

∞, then its 1–step Willmore–
Bäcklund transforms with [a] ∈ S3

∞ are up to a translation hyperbolic min-
imal in the two Poincaré half spaces H \ ImH., by Jörg Richter’s theorem
(cf., [Ri97] or [BFLPP02, Theorem 9]).

27.2. 1–Step Willmore–Bäcklund Transformation of Hyperbolic
Superminimal Curves in HP1. The observation of the previous para-
graph implies that the 1–step Willmore–Bäcklund transforms of hyperbolic
superminimal curves, which can be obtained without integration, by Propo-
sition 23.7, take values in R3, and if M = CP1 then all regular Willmore
spheres in S3 are obtained this way.

Theorem. Let L be a regular hyperbolic superminimal curve in HP1

with positive spin, 〈 , 〉 the corresponding indefinite Hermitian form, S the
mean curvature sphere of L, and S3

∞ the ideal boundary of the hyperbolic
spaces. Let [a] ∈ S3

∞ \ (L ∪ L⊥). Then

〈a, Sa〉 : M → ImH

is a branched conformal Willmore immersion into ImH with both normal
vectors. Its branch points are the branch points of the tangent line congru-
ence of the holomorphic twistor lift of L. If M is compact of genus g, then
its Willmore energy is

W (〈a, Sa〉) = 4π(2g − 2 + 2 deg(L−1)− b(L)),

and its total branching

b(〈a, Sa〉) = 6g − 6 + 2 deg(L−1)− 2b(L).



98 IV. BÄCKLUND TRANSFORMATION AND EQUALITY

Furthermore, 〈a, Sa〉 is the Möbius inversion of a complete minimal surface
of finite total curvature with n = 2g−2+2 deg(L−1)−b(L) planar or Enneper
type ends (counted with multiplicity). Its n–fold point is the origin.

Every regular Willmore holomorphic sphere in S3, besides coverings of
the round sphere, arises this way.

The map 〈a, Sa〉 allows the following geometric interpretation: If β =
〈a, ·〉 and α ∈ (H2)∗ such that α(a) = 1, then 〈a, Sa〉 is the mean curvature
vector of f = σα,βL rotated by π

2 in the normal bundle of f (cf., 14.6 and
use H̄ = −H).

This theorem in connection with Theorem 26.9 describes a construction
for all regular branched conformal Willmore immersions of CP1 into R3

from rational curves in CP3 whose tangent lines satisfy a linear equation, in
other words, from 4 polynomials whose derivatives satisfy a linear equation.
The construction is algebraic, since the i–eigenspaces of the mean curvature
spheres Sp, p ∈ M , are the tangent lines of the holomorphic twistor lift L,
and differentiation of polynomials is an algebraic operation. Moreover, the
Willmore spheres inR3 can be constructed directly from the i–eigenspaces of
the mean curvature sphere congruence (cf., 27.3), whose Plücker embedding
is a holomorphic null curve in Q3 = Q4 ∩CP4 ⊂ P (Λ2(H2, i)), see 26.10. A
similar construction was used by Robert Bryant (cf., [Br84] and [Br88]) to
investigate the moduli space of immersed Willmore spheres of low Willmore
energy.

Proof. Since S is skew, by Theorem 26.4, one gets 〈a, Sa〉 = −〈a, Sa〉.
Thus 〈a, Sa〉 takes values in ImH. Furthermore, imQ = (kerQ) ⊥, where ⊥
denotes the orthogonal complement with respect to 〈 , 〉. Hence WBT(L) =
L⊥. Thus 〈a, Sa〉 is a branched conformal Willmore immersion into ImH

with both normal vectors whose branch points are the branch points of the
tangent line congruence of the holomorphic twistor lift of L, by Proposi-
tion 23.7. Furthermore, if M is compact of genus g, then the Willmore
energy of 〈a, Sa〉 satisfies

W (〈a, Sa〉) = 4π(2g − 2 + 2 deg(L−1)− b(L)).

The derivative δ of L is a holomorphic section of KHom+(L, (Ld)−1), by
Lemma 20.3. Thus

b(L) = 2g − 2 + deg(Ld)−1 + deg(L−1).

(Ld)−1 is the Euclidean holomorphic line bundle of 〈a, Sa〉, by Proposi-
tion 23.7 and the definition of the 1–step Willmore–Bäcklund transformation
(cf., 23.4). Thus

deg(Ld)−1 = g − 1− 1
2
b(〈a, Sa〉),

by Theorem 12.4. Hence b(L) = 3g − 3 + deg(L−1)− 1
2b(〈a, Sa〉).

If one shows that the origin is an n–fold point,

n = 2g − 2 + 2 deg(L−1)− b(L),

of 〈a, Sa〉, then 〈a, Sa〉 is the Möbius inversion of a complete minimal surface
of finite total curvature with n planar or Enneper type ends (counted with
multiplicity), by 2.4, because W (〈a, Sa〉) = 4π(2g − 2 + 2 deg(L−1)− b(L)).
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Let β := 〈a, ·〉 and α ∈ (H2)∗ such that α(a) = 1. Let R be the right normal
vector of σα,βL, then H = −〈Sa, a〉 and dR′ = Hdf (cf., 14.6). But since L
has holomorphic twistor lift, the Hopf field A of L vanishes and dR′′ = 0.
Thus dR = Hdf and R is a holomorphic map from M to CP1. Furthermore,
degR = deg(L−1), by 7.4 and 3.2. Hence the Riemann–Hurwitz formula
[GriHa] implies that the branching order of R satisfies

b(R) = 2g − 2 + 2 deg(L−1),

and dR = Hdf implies for the total vanishing order of H satisfies ordH =
2g − 2 + 2 deg(L−1)− b(L) = n.

A holomorphic curve in S3 with holomorphic twistor lift takes values in
some round sphere, because S = S∗ (with respect to the Hermitian form
that corresponds to S3) implies that if one Hopf field of S vanishes then the
other one vanishes too. Thus, Theorem 25.4 and Jörg Richter’s Theorem
(cf., 27.1) imply that all regular Willmore holomorphic spheres in S3, besides
coverings of the round sphere, can be obtained by the construction of the
theorem. �

27.3. Example: Immersed Willmore Spheres in R3 with Will-
more Energy 16π. According to a result of Robert Bryant (cf., [Br88])
the immersed Willmore spheres in R3 have Willmore energy 4πn for n ∈
N\{0, 2, 3, 5, 7}. The value 4π corresponds to the round sphere. So 16π is the
lowest possible Willmore energy for nontrivial immersed Willmore spheres
in R3. If one wants to construct such an immersion from a regular hyper-
bolic minimal curve L in HP1, as in Theorem 27.2, then W (〈a, Sa〉) = 16π,
g = 0, and b(〈a, Sa〉) = 0 imply deg(L−1) = 3 and b(L) = 0. Its twistor lift
L̂ is thus a rational curve in CP3 of degree 3. It is full by Theorem 26.9
and Remark 26.10. Hence it is the rational normal curve. Let e1, e2 ∈ H2

be some basis and z : CP1 \{∞} → C a rational coordinate of CP1. The
complex holomorphic curve

L̂ := [ϕ], ϕ := e1 + e1j
1
6z

3 + e2z + e2j
1
2z

2

is a parametrization of the rational normal curve. It satisfies the assumption
of Theorem 26.9 for

h = e1 ∧ e1j− e2 ∧ e2j,
because

ϕ ∧ ϕ′ = 1
24(12z2, 0, 12− z4, 12i+ z4i, 12z + 4z3, 12zi− 4z3i)

in the basis of Re Λ2(H2, i) given in 26.8. This formula also implies that
the Plücker embedding Pl(L̂1) of L̂1 not pass through ReQ4 ∼= HP1, which
means that L̂1 ⊕ L̂1j = H2. The twistor projection L = L̂ ⊕ L̂j of L is
thus a regular hyperbolic superminimal curve in HP1 with respect to the
Hermitian form

(
1 0
0 −1

)
(in the basis e1, e2). Write now a = a1 +a2 with two

sections a1 ∈ Γ(L̂1) and a2 ∈ Γ(L̂1)j. Then 〈a, Sa〉 = 〈a, a1i− a2i〉.
For a = (1, j) one gets the following formula

〈a, Sa〉 = iRe(144+144z2+12|z|4z2−|z|8)+4k(−36z̄−36|z|2z+12z3+3|z|2z3+12|z|4z−|z|6z̄)
144+144|z|2−72|z|4+16|z|6+|z|8
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The surfaces for a = (1, j) (left) and a = (1, 1) (right):

For ϕ 7→ ϕe1 + e2j3z and a = (1, j) (below), and ϕ = e1 + e2j7z and
a = (1, 1) (next page) one gets:
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CHAPTER V

Darboux Transformation and Equality

Surfaces of constant mean curvature one in hyperbolic 3–space of cur-
vature minus one where intensively studied in the last two decades. The
starting point was Robert Bryant’s representation (cf., [Br87]) of these sur-
faces in terms of holomorphic data. In this article Robert Bryant studies an
important example: the catenoid cousins. These surfaces are spheres punc-
tured at two points, at which the surface approaches the ideal boundary of
the hyperbolic 3–space. The two punctures are called the ends of the surface.
The ends of the catenoid cousins behave nicely in the sense that the surface
continuously extends to the ideal boundary. In this chapter it is shown that
the members of a countable subset of the family of catenoid cousins extend
to smooth conformal immersions of CP1, and that these immersions are
soliton spheres. For the proof it is useful to describe Robert Bryant’s repre-
sentation of surfaces of constant mean curvature one in hyperbolic 3–space
as Darboux transformation of the round 2–sphere.

28. Darboux Transformation

In this section the Darboux transformation for isothermic holomorphic
curves in HP1 is described in the language of a generalized Darboux trans-
formation for arbitrary holomorphic curves in HP1 (see [Boh03]1). As this
is in terms of quaternionic holomorphic geometry, relations between the in-
volved quaternionic holomorphic line bundles are easily deduced, see for
example Lemma 28.4.

28.1. Splitting. A splitting of H2 = L⊕L] by two holomorphic curves
L and L] in HP1 induces a decomposition of the trivial connection ∇ of H2:

∇ =
(
∇L δ]

δL ∇]
)
.

One easily checks that∇L and∇] are connections on L and L], and that δL ∈
Ω1 Hom(L,L]) and δ] ∈ Ω1 Hom(L], L). The splitting induces quaternionic
bundle isomorphisms L] ∼= H2/L and L ∼= H2/L]. With these isomorphisms
δL and δ] can be interpreted as the derivatives of the holomorphic curves L
and L]. The flatness of ∇ implies

0 = R∇ =

(
R∇L

+δ] ∧ δL d∇
L,∇]

δ]

d∇
],∇L

δL R∇]
+δL ∧ δ]

)
.(∗)

1In devising the proofs of the present chapter Christoph Bohle’s formulas, especially
the equations (40) and (41) in [Boh03], proved to be very useful.
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28.2. Darboux Transformation. Let L be a holomorphic curve in
HP1. A holomorphic curve L] in HP1 is called a Darboux transform of L if
L⊕L] = H2, δ]∧δL = 0, and δL∧δ] = 0. The pair (L,L]) is called a Darboux
pair. Equation 28.1(∗) implies that δ] ∧ δL = 0 if and only if ∇L is flat, and
δL ∧ δ] = 0 if and only if ∇] is flat. Thus, a splitting H2 = L ⊕ L] with
holomorphic curves is a Darboux pair if and only if the trivial connection of
H2 induces flat connections on L and L].

If L and L] are nonconstant holomorphic curves and H2 = L⊕L], then
δ]∧δL = 0 is equivalent to ∗δL = J ]δL, and δL∧δ] = 0 is equivalent to ∗δ] =
Jδ]. This implies that two nonconstant holomorphic curves L and L] such
that H2 = L⊕L] form a Darboux pair if and only if δL ∈ Γ(KHom+(L,L]))
and δ] ∈ Γ(KHom+(L], L)). The 2–sphere congruence

S =
(
JL 0
0 J]

)
then satisfies SL = L, SL] = L], ∗δ = SδL = δLS and ∗δ] = Sδ] = δ]S.
Hence it touches L and L], and the orientation of S coincides with the
one of L and L] at the points of tangency. If, on the other hand, L and
L] are holomorphic curves such that there exists a 2-sphere congruence S
which touches L and L] with the right orientation, then ∗δ = SδL = δLS
and ∗δ] = Sδ] = δ]S. Hence L and L] form a Darboux pair of isothermic
holomorphic curves.

28.3. The following proposition connects the definition of the Darboux
transformation given above with the definition in [Jeromin, 5.4.8].

Proposition. If a holomorphic curve L in HP1 has a nonconstant Dar-
boux transform L], then L is isothermic and the derivative of L] interpreted
as a section τ of T ∗M⊗End(H2) is a retraction from of L. Furthermore, L]

is (∇− τ)–parallel. Conversely, if L is a nonconstant isothermic holomor-
phic curve with retraction form τ , then every (∇−τ)–parallel line subbundle
of H2 is, away from the isolated points p ∈M at which Lp = L]p, a Darboux
transform of L.

Proof. Suppose that L has a Darboux transform L]. In the splitting
H2 = L⊕ L] the derivative δ] is then a section of K Hom+(L], L) and

τ :=
(

0 δ]

0 0

)
obviously satisfies im τ ⊂ L ⊂ ker τ . From δ] ∧ δL = 0, δL ∧ δ] = 0,
and d∇

L,∇]
δ] (cf., 28.1) follows dτ =

(
δ]∧δL d∇

L,∇]
δ]

0 δL∧δ]

)
= 0. Hence τ is a

retraction form of L. L is then isothermic, by Proposition 22.5, because the
complex structure of L] defines a complex structure on (Ld)−1 = H2/L ∼= L]

such that Ld is a holomorphic curve.
Suppose now that τ is a retraction form of L. Then dτ + τ ∧ τ = 0,

hence the connection ∇− τ is flat. Let ψ be a local (∇− τ)–parallel section
of a (∇− τ)–parallel subbundle L] ⊂ H2 and π : H2 → H2/L the canonical
projection. The section πψ ∈ Γ(H2/L) is then holomorphic, because if
D is the Möbius invariant holomorphic structure of H2/L then Dπψ =
1
2(π∇ + ∗Jπ∇)ψ = 1

2(πτ + ∗Jπτ)ψ = 0 (cf., 8.3). In particular, πψ has
isolated zeros. Hence the points at which L] coincides with L are isolated.
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Away from these points L and L] are a splitting of H2, and ∇] is flat,
because ∇ψ = τψ ∈ Γ(KL) implies that ψ is ∇]–parallel. Thus L] is a
Darboux transform of L. �

28.4. The observation that the projection of a ∇] parallel section of
L] is a holomorphic section of H2/L has the following consequence.

Lemma. If L] is a Darboux transform of an isothermic holomorphic
curve L in HP1 and L] is endowed with the holomorphic structure (∇])′′,
then the bundle isomorphism L] ∼= H2/L is holomorphic. Furthermore,
(∇])∗′′ is the holomorphic structure of the Möbius invariant holomorphic
line bundle (L])−1 of L].

Proof. Let π : H2 → H2/L be the canonical projection and D the
Möbius invariant holomorphic structure of H2/L, then Dπψ = 1

2(π∇ +
∗Jπ∇)ψ holds for every section ψ ∈ Γ(H2) (cf., 8.3). Let ψ be a local
∇]–parallel section of L], then ∇]ψ = 0 and Dπψ = 1

2(π∇ + ∗Jπ∇)ψ =
1
2(δ] + ∗Jδ])ψ = 0. Lemma 4.1 then implies that π induces a holomorphic
bundle isomorphism between L] and H2/L.

The second statement of the lemma follows from the first, because L⊥

and (L])⊥ also form a Darboux pair and the canonical projection induces
a (∇∗)L⊥–(∇])∗–parallel isomorphism L⊥ ∼= (H2)∗/(L])⊥, where (∇∗)L⊥ is
the connection induced on L⊥ by the dual connection ∇∗ of ∇ and the
splitting (H2)∗ = L⊥ ⊕ (L])⊥, and (∇])∗ is the dual connection of ∇] on
(H2)∗/(L])⊥. �

28.5. For a retraction form τ of an isothermic holomorphic curve L
the differential equation

∇F = τF, F : M → SL(2,H),

has for every initial condition a unique local solution, because ∇ − τ is
flat and the trace of τ is zero on all of M . Here SL(2,H) is the group
of quaternionic 2 by 2 matrices whose Study determinant equals 1. The
Study determinant of a quaternionic 2 by 2 matrix is the determinant of the
corresponding complex 4 by 4 matrix (cf., [Jeromin, 4.2]).

The Darboux transforms of L that correspond to the retraction form τ ,
i.e., the (∇− τ)–parallel ones, are locally all of the form

L] = [Fa], a ∈ H2,

because F is a parallel Frame for ∇− τ .

28.6. Calapso Transformation, Associated Family. Lemma 28.4
implies that the (∇− τ)–parallel sections Fb ∈ Γ(H2), b ∈ H2, project onto
a 2–dimensional base point free linear system of holomorphic sections of
H2/L. The dual curve of the Kodaira embedding of this linear system, is
called a Calapso transform of L. In other words, L viewed as a holomorphic
curve in HP1 with respect to a (∇ − τ)–parallel trivialization of H2 is a
Calapso transform of L. In the standard ∇–parallel trivialization of H2 the
Calapso transform of L becomes

F−1L.
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The Calapso transforms of an isothermic surface L are isothermic, because
if τ is a retraction from of L, then F−1τF is a retraction from of F−1L. If
L is not totally umbilic, then all retraction forms of L are a real multiples
of τ (see 22.5). Hence locally there is a real 1–parameter family of Calapso
transforms, which is also called the associated family of L.

29. CMC–1 Surfaces in Hyperbolic Space

In this section Robert Bryant’s representation of surfaces of constant
mean curvature ±1 in hyperbolic 3–space of curvature −1, CMC–1 surfaces
for short, is interpreted as Darboux transformation of holomorphic curves
that take values in the ideal boundary of the hyperbolic 3–space. This ex-
poses the similarity of Bryant’s representation of CMC–1 surfaces to the
Weierstrass representation of minimal surfaces in R3, which can be inter-
preted as Christoffel transformation of holomorphic curves that take values
in a 2–sphere. Furthermore, there naturally arises for every minimal sur-
face a family of CMC–1 surfaces that has the minimal surface as a limit.
The members of this family are called the CMC–1 cousins of the minimal
surface. They are related by Lawson’s correspondence (cf., [La70, § 12]).
The description of minimal surfaces and its hyperbolic CMC–1 cousins as
Christoffel and Darboux transforms of conformal parametrizations of the
2–sphere was pointed out to the author by Udo Hertrich–Jeromin (see also
[JMN01] and [Jeromin, Chapter 5, in particular the Examples 5.3.21 and
5.5.29]).

29.1. Minimal Surfaces in R3 via Christoffel Transformation.
The Weierstrass representation of minimal surfaces in R3 can be interpreted
as Christoffel transform of the round sphere: If L is a holomorphic curve in
HP1 that takes values in a 2–sphere, then Ld is also a holomorphic curve,
and the Hopf fields of the Möbius invariant holomorphic line bundles L−1

and H2/L = (Ld)−1 vanish (cf., 8.4). Then every choice of meromorphic
sections ϕ1 of L̂ and ϕ2 of (̂Ld)−1 of the underlying complex line bundles of
L and (Ld)−1, and meromorphic 1–form η onM defines onM0 a holomorphic
bundle homomorphism from (Ld)−1 to KL via ϕ2 7→ ϕ1η, where M \M0

is the set of poles of ϕ1,ϕ2, and η. If M \M0 is the set of poles of ϕ1, ϕ2,
and η, then (Ld)−1 and L−1 are paired on M0, by Proposition 10.8, and L is
isothermic on M0. Moreover, every Christoffel transform of L is a minimal
surface, by 9.13 and Lemma 22.3. This is the Weierstrass representation of
minimal surfaces in R3 (12.6):

Fix the 2–sphere in HP1 to be

CP1 = { ( zw )H ⊂ H2 | z, w ∈ C }.

If g : M → C ∪ {∞} is a meromorphic function, then L = ( g1 )H is a holo-
morphic curve that takes values in CP1. Let η be a meromorphic 1–form
on M . Then

τ := Ad
(

1 g
0 1

)(
0 0
η 0

)
=
(
g −g2
1 −g

)
η

is a retraction form of LM0
(closedness follows from the fact that there are

no nontrivial (2, 0) forms on a Riemann surface). Hence if β ∈ (H2)∗ and
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a ∈ H2 such that β(a) = 0, then every local potential f of the closed 1–
form βτa is a Christoffel transform of L (cf., 22.6). If one chooses the basis
a =

(
k
1

)
, b =

(
1
k

)
of H2, and its dual basis α, β ∈ (H2)∗, then

df = βτa = Re(gη)k+ Re(1
2(1− g2)η) + Re(1

2i(1 + g2)η)i.

This is, up to the rotation x 7→ −ixk, the formula of the usual Weierstrass
representation of minimal surfaces (cf., 12.6).

29.2. CMC–1 Surfaces via Darboux Transformation. Bryants
representation of CMC-1 surfaces can be interpreted as Darboux transform
of the round sphere: To see this one describes hyperbolic three space as
follows. Let 〈 , 〉 be a Hermitian form on H2 and think of it to be a 3–
sphere in HP1. Then choose some fixed 2–sphere in this 3–sphere and call
the corresponding endomorphism S. Then S is Hermitian with respect to
〈 , 〉 (cf., 5.4–5.6). Hence 〈S·, ·〉 is also a Hermitian form. Its corresponding
3–sphere intersects the 3–sphere 〈 , 〉 orthogonally in the 2–sphere S. (This
can be seen from 5.4 choosing [a], [b] ∈ S.) In particular with the hyperbolic
metric induced by 〈S·, ·〉 via Proposition 26.2(iii) the two components of the
3–sphere 〈 , 〉 minus the 2–sphere S both are isomorphic to the hyperbolic
3–space of curvature −1.

Let L] be a holomorphic curve that takes values in the 3–sphere 〈 , 〉,
i.e., L] is isotropic for 〈 , 〉. L] is a CMC–1 surface in the hyperbolic 3–
space determined by 〈 , 〉 and S, if and only if its mean curvature sphere
is a horosphere, i.e., a sphere that touches the ideal boundary S of the
hyperbolic space, because the horospheres are the spheres of mean curvature
±1 in hyperbolic space of curvature −1. The intersection point of the mean
curvature sphere of L] with S is called the hyperbolic Gauss map2 of L].
Robert Bryant’s representation of CMC–1 surfaces in [Br87] can now be
described as follows (see also [JMN01]).

29.3. Theorem. Let L] be a holomorphic curve in HP1 that is not
contained in a 2–sphere. Then L] is a CMC–1 surface if and only if it has
a Darboux transform L that takes values in a fixed 2–sphere. L is then the
hyperbolic Gauss map of L].

Proof. Let L] be a Darboux transform of a holomorphic curve L that
takes values in the 2–sphere S. Let τ be the corresponding retraction form.
Then locally L] = [Fa] for some a ∈ H2 and some F : M → SL(2,H) that
solves ∇F = τF (cf., 28.5). Lemma 29.4 then implies that if 〈 , 〉 is a 3–
sphere that contains S, then d〈Fa, Fa〉 = 0. Hence if 〈 , 〉 is a 3–sphere that
contains S and one point of L], then L] is contained in this 3–sphere 〈 , 〉.
Thus L] and S do not intersect, because otherwise L] would be contained
in S.

2The geodesic that passes through a point p of the surface and the image of the
Gauss map at p intersects the surface orthogonally at p, since this geodesic is orthogonal
to the mean curvature sphere at the point of tangency with the ideal boundary S of the
hyperbolic space. From this one sees that if the mean curvature of the surface is +1,
then the Gauss map is the same as the one of Robert Bryant [Br87, p. 326]. In the
case of mean curvature −1 Robert Bryant chooses the opposite intersection point of the
orthogonal geodesic with the ideal boundary.
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SoH2 = L⊕L] and L] is contained in one of the two hyperbolic 3–spaces
obtained intersecting the hyperbolic 4–space 〈S·, ·〉 with the 3–sphere 〈 , 〉.
Let S] =

(
JL 0
0 J]

)
be the 2–sphere congruence that touches L and L] (cf.,

28.2). The Hopf field Q] of S] then satisfies

Q] =
(
QL 0

0 QL]

)
,(∗)

where QL and QL
]

are the Hopf fields of (∇L)′′ and (∇])′′. Since the holo-
morphic line bundles (L], (∇])′′) and H2/L are isomorphic, by Lemma 28.4,
and because the Hopf field of H2/L vanishes identically (cf., 8.4), one con-
cludes that QL

]
vanishes identically. Hence L] ⊂ kerQ] and S] is the mean

curvature sphere of L] (cf., 14.6). Since S] is tangent to S it is a horosphere,
and, consequently, S] as well as L] have mean curvature ±1.

If, on the other hand, L] is a CMC–1 surface in the hyperbolic 3–space
determined by the 3–sphere 〈 , 〉 and the 2–sphere S, then its mean curvature
spheres S] are horospheres, i.e., for all p ∈M there is a point Lp ∈ HP1 at
which S] and S intersect and have the same tangent space. Without loss
of generality one can assume that S]p and Sp induce the same orientation
on their common tangent space. The description of the tangent space in
5.5 then implies that R = S] − S ∈ Γ(EndH2) satisfies imR ⊂ L ⊂ kerR.
Furthermore R anticommutes with S and S]. Let ψ ∈ Γ(L) then

S∇ψ = ∇(Sψ) = ∇(S]ψ) = (∇S])ψ + S]∇ψ = (∇S])ψ + S∇ψ +R∇ψ

implies that

Rδψ = (∇S])ψ,

where δ ∈ Ω1(End(L,H2/L)) is the derivative of L. Let Q] and A] be the
Hopf fields of S]. Then (∇S])ψ ∈ Ω1(L) implies A]ψ = 1

4(S]∇S]+∗∇S])ψ ∈
Ω1(L). Hence A]ψ = 0, because imA] ⊂ L] (cf., 14.6). Thus

Rδψ = 2∗Q]ψ.
Hence ∗δ = S]δ = δS], and L is a Darboux transform of L]. �

29.4. Lemma. If τ is a retraction form of an isothermic holomorphic
curve L ⊂ H2 that takes values in a 3–sphere 〈 , 〉, and ∇F = τF , then

d〈F ·, F ·〉 = 0.

Proof. Since d〈F ·, F ·〉 = 〈∇F ·, F ·〉+〈F ·,∇F ·〉 = 〈τF ·, F ·〉+〈F ·, τF ·〉,
it suffices to show that the Hermitian form 〈̃·, ·〉 = 〈τX ·, ·〉+ 〈·, τX ·〉 vanishes
for all p ∈ M and X ∈ TpM . If [a] = Lp then 〈̃a, b〉 = 0 for all b ∈ H2,
since 〈a, a〉 = 0, τXa = 0, and [τXb] = Lp = [a]. Hence it suffices to show
that there exists b ∈ H2 linearly independent of a such that 〈̃b, b〉 = 0. Since
the branch points of L are isolated one can assume that L is immersed near
p. Let Sp be the mean curvature sphere of L at p. Then Sp is Hermitian
with respect to 〈·, ·〉 (cf., 5.6) and commutes with τ (cf., 22.5). Hence Sp is
Hermitian with respect to 〈̃·, ·〉 and all points of the sphere Sp are isotropic
lines of 〈̃·, ·〉. �
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29.5. The Standard Formulas. Let us describe the construction of
CMC–1 surfaces in the setup of 29.1, i.e.,

S =
(
i 0
0 i

)
, L = [( g1 )], and τ =

(
g −g2
1 −g

)
η.

Furthermore, fix the 3–sphere S3 to be

〈( x1
x2 ), ( y1y2 )〉 = x̄1jy2 − x̄2jy1.

Then S is Hermitian with respect to 〈·, ·〉, and the hyperbolic metric on
S3 \ S is induced by 〈S·, ·〉. Let now F be a solution of

(A) ∇F = τF =
(
g −g2
1 −g

)
ηF, F : M → SL(2,C),

(cf., 28.5). Note that in contrast to F taking values in SL(2,H) as in 28.5 it
is now assumed that F takes values in SL(2,C). This can be done, because
∇[F, S] = τ [F, S] implies that if F is in SL(2,C) at some point then it
is in SL(2,C) at all points. So it is a matter of choosing the right initial
condition. This implies that the Darboux transform

L] = Fa,

for a ∈ H2 such that 〈a, a〉 = 0 takes values in the 3–sphere 〈 , 〉, because
F ∈ Γ(SL(2,C)) implies 〈F ·, F ·〉 = 〈·, ·〉.

Let a =
(
k
1

)
, b =

(
1
k

)
∈ H2, and α, β ∈ (H2)∗ its dual basis as in

29.1. The stereographic projection σβ,α of S is then the unit sphere of
R ⊕ Ri ⊕ Rk, since σβ,α( z1 ) = 2z+(|z|2−1)k

|z|2+1
. The stereographic projection

σβ,α of the Darboux transform L] = [Fa] of L is then a CMC–1 surface in the
corresponding Poincaré ball model of hyperbolic 3–space, by Theorem 29.3.
More explicitly one gets

σβ,αL
] =

1
x0 + 1

(x1 + x2i+ x3k), where
(
x0 + x3 x1 + x2i

x1 − x2i x0 − x3

)
:= FF̄ t.

This is the version of Robert Bryant’s representation of CMC–1 surfaces
used in [BPS02] (see also [RUY97]).

Instead of solutions of (A) Robert Bryant considers solutions of

(B) ∇F̃ = −F̃ τ, F̃ : M → SL(2,C).

If F̃ = F−1 then F̃ solves (B) if and only if F solves (A). The relation of
L̃] = [F̃ a] and L] is the following. The form τ̃ = F−1τF is a retraction
form of the Calapso transform L̃ := F̃L = F−1L of L (cf., 28.6). The
holomorphic curve L̃ takes values in S, since F and S commute. Because F̃
solves (A) for τ̃ , it follows that L̃] is a Darboux transform of L̃. Hence in
Robert Bryant’s representation of CMC–1 surfaces, the surface is obtained
as a Darboux transform of a Calapso transform of L.

Robert Bryant’s representation has the disadvantage that the CMC–1
surface L̃] = [F̃ a] may be well defined on the Riemann surface M , although
τ is only defined on some covering ofM (for example for the catenoid cousins
in [Br87, p. 341]). In the representation with solutions of (A) the form τ
is well defined on the domain of L], since its hyperbolic Gauss map L is
well defined on that domain and τ is the derivative of L] in the splitting
H2 = L⊕ L] (cf., 28.3).
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29.6. Cousin relation. In 22.5 it was observed that in general the
retraction form of an isothermic holomorphic curve is unique up to multi-
plication by a real constant. Contemplate the corresponding 1–parameter
family of CMC–1 surfaces

fλ = σβ,α[Fλa], where ∇Fλ = λτFλ, a =
(
k

1

)
.

Let p0 ∈ M be some point and choose the initial condition at p0 such that
Fλ(p0) is differentiable with respect to λ and F0(p0) = Id (The reason not
to choose Fλ(p0) = Id for all λ ∈ R is the fact that this is not done for
the catenoid cousins in [Br87], and the formula for F of [Br87] is used
in Section 30.). Then fλ converges to the constant point f0 = σβ,αa = 0,
as F0 ≡ Id. If one takes a magnifying glass that multiplies fλ by 1

λ , then
the family of scaled surfaces converges to f̂0 = ∂fλ

∂λ 0. The differential of f̂0

satisfies

df̂0 =
∂

∂λ 0
dfλ =

∂

∂λ 0
d
(
β(Fλa)(α(Fλa))−1

)
= β

(
∂∇Fλa
∂λ 0

)
= βτa.

Hence f̂0 is the minimal surface of 29.1. The CMC–1 surfaces fλ are called
the CMC–1 cousins of the minimal surface f̂0.

30. Catenoid Cousins

The best known example of the cousin relation are the catenoid cousins
(cf., [Br87, p. 341]). In this section it is shown that some of these catenoid
cousins extend smoothly into both ends. It turns out that the smoothly ex-
tendable catenoid cousins are immersed Taimanov 1–soliton spheres. Robert
Bryant notes that one can see from the family of catenoid cousins that there
is no “quantization” of the total curvature of CMC–1 surfaces. But Theo-
rem 30.3 implies that if one adds the reasonable boundary condition that
the CMC–1 surface extends through its ends to an immersion of a compact
surface, then the total curvature or Willmore energy of the catenoid cousins
is quantized.

30.1. In [Br87, p. 341] one finds the following multi–valued functions
Fµ : C \ {0} → SL(2,C),

Fµ(z) =
1√

2µ+ 1

(
(µ+ 1)zµ µz−(µ+1)

µzµ+1 (µ+ 1)z−µ

)
,

for µ > −1
2 . They satisfy the equation (A) of 29.5 for

τ = µ(µ+ 1)
(
z−1 −z−2

1 −z−1

)
dz.

So with the notation of 29.1, 29.5, and 29.6 one gets λ = µ(µ + 1), g = 1
z ,

η = dz, and the minimal surface

f̂0 = xk+ cosh(x)(cos(y)− i sin(y)),
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where z = ex+iy. Hence f̂0 is the catenoid. Let α, β ∈ (H2)∗ be the dual
basis of a =

(
k
1

)
, b =

(
1
k

)
∈ H2 as in 29.5. The immersions

fµ = σβ,α[Fµa]

=
2µ(µ+1)(|z|2µ+|z|−2(µ+1))z̄+

[
(µ+1)2(|z|2µ−|z|−2µ)+µ2(−|z|2(µ+1)+|z|−2(µ+1))

]
k

(µ+1)2(|z|2µ+|z|−2µ)+µ2(|z|2(µ+1)+|z|−2(µ+1))+4µ+2

are called the catenoid cousins. They are surfaces of revolution in R⊕Ri⊕
Rk with axis Rk, since fµ(e2ϕiz) = e−ϕifµ(z)e−ϕi.

Here are pictures of the fµ for µ = −1
3 ,−

1
5 ,−

1
9 ,−

1
20 ,

1
20 ,

1
9 ,

1
2 , 1, 2:
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30.2. Smoothness at the Ends for µ ∈ N. The catenoid cousins are
stereographic projections of the holomorphic curves

L]µ = [ψ], ψ :=
√

2µ+ 1Fµa =
(

(µ+ 1)zµk+ µz−(µ+1)

µzµ+1k+ (µ+ 1)z−µ

)
.

Let

ψ0 := ψzµ+1 =
(

(µ+ 1)|z|2µz̄k+ µ
µ|z|2µ+2k+ (µ+ 1)z

)
,

ψ∞ := ψz̄−(µ+1) =
(

(µ+1)z−1k+µ|z|−2µ−2

µk+(µ+1)|z|−2µz̄−1

)
.

The sections ψ0, ψ∞, and, consequently, L]µ are in contrast to Fµ well defined
on C \ {0}. Furthermore, L]µ extends smoothly into 0 and ∞ if and only if
µ ∈ N. The extended holomorphic curve on CP1 = C∪{∞} for µ ∈ N\{0}
is immersed. In the following theorem L]µ stands for the extended curve.

30.3. Theorem. The catenoid cousins L]µ for µ ∈ N\{0} are immersed
soliton spheres. More precisely, the Willmore energy of the Möbius invari-
ant holomorphic line bundle (L]µ)−1 of the extension of L]µ to CP1 equals
4π(2µ + 1), dimH0

(
(L]µ)−1

)
= 3, H0

(
(L]µ)−1

)
has equality in the Plücker

estimate, the Weierstrass points of H0
(
(L]µ)−1

)
are the ends of L]µ, and the

Weierstrass gap sequence at both ends is 0, 1, µ+ 1.

Proof. Let a = ( 1
0 ), b = ( 0

1 ) ∈ H2 and α, β ∈ H0
(
(L]µ)−1

)
the

projection of its dual basis to (L]µ)−1 = (H2)∗/(L]µ)⊥ . The section ψ
is well defined on M0 := C \ {0}, since µ ∈ N, and has no zeros. Let
γ := ψ−1 ∈ Γ

(
(L]µ)−1

M0

)
. From ∇]ψ = 0 and γ(ψ) = 1 follows (∇])∗γ = 0.

Thus γ is a holomorphic section of (L]µ)−1
M0

, by Lemma 28.4. Since

γ(ψ0) = zµ+1 and γ(ψ∞) = z̄−(µ+1)

γ extends smoothly into z = 0,∞ with the vanishing orders

ord0 γ = µ+ 1 and ord∞ γ = µ+ 1,

and has no other zeros. Applying α and β to ψ0 and ψ∞ yields the vanishing
orders

ord0 α = 0, ord∞ α = 1, and ord0 β = 1, ord∞ β = 0.

Contemplate the 1–dimensional linear system H = γH of holomorphic
sections of (L]µ)−1. The formula of 15.2 then reads

W ((L]µ)
−1)−W (L]µ M0

, (∇])′′) = −4π deg((L]µ)
−1) + 4π

∑
p∈M

ordp γ

= 4π(2µ+ 1),

since deg((L]µ)−1) = −deg(L]µ) = 1, by Theorem 12.4. Furthermore, since
L]µ is the Darboux transform of a holomorphic curve L that takes val-
ues in some 2–sphere, the Willmore energy of H2/L vanishes, by 8.4, and
Lemma 28.4 then implies W ((L]µ)M0

, (∇])′′) = W (H2/L) = 0. Hence

W ((L]µ)
−1) = 4π(2µ+ 1).
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Let now H be the linear system spanned by α, β and γ. It has the Weier-
strass points 0 and ∞ with gap sequence 0, 1, µ+ 1. Hence

ord0H = ord∞H = µ− 1.

Thus ordH ≥ 2(µ − 1). The Plücker estimate (14.8) applied to H then
yields:

2µ+ 1 = 1
4πW ((L]µ)

−1) ≥ (n+ 1)(n(1− g)− deg((L]µ)
−1)) + ordH

≥ 3(2− 1) + 2(µ− 1) = 2µ+ 1.

Both inequalities are, consequently, equalities. The points z = 0 and z =∞
are thus the only Weierstrass points of H and H has equality in the Plücker
estimate. Since L]µ is rotationally symmetric, Lemma 19.4 implies that
H = H0(L). �

30.4. The Catenoid Cousins and Taimanov 1–Soliton Spheres.
The catenoid cousins for µ ∈ N \ {0} are immersed rotationally symmetric
soliton spheres in R3. Their Euclidean holomorphic line bundle is thus a
spin bundle with rotationally symmetric Hopf field. The full linear system
of their Möbius invariant holomorphic line bundle is a 3–dimensional linear
system with equality in the Plücker estimate. The full linear system of the
Euclidean holomorphic line bundle is, consequently, a 2–dimensional linear
system with equality in the Plücker estimate (see 18.2). Hence the catenoid
cousins for µ ∈ N \ {0} are Taimanov soliton spheres, by Theorem 19.3. If
one chooses

n = 1, n0 = 0, n1 = µ, λ0 =
µ+ 1
µ

, λ1 =
(µ+ 1)(2µ+ 1)

µ

in Theorem 19.3, then fµ and 2(µ+1)
µ

∫
(ψ1, ψ1) coincide up to some Euclidean

motion (see 19.6 for pictures of these surfaces).

30.5. Conjecture. The author conjectures that other surfaces of con-
stant mean curvature 1 in hyperbolic 3–space with catenoidal ends besides
the catenoid cousins, in particular a countable subset of the trinoids studied
in [BPS02], extend to immersed spheres. Successive Darboux transforma-
tions of these spheres provide via permutability (cf., [Boh03, Theorem 3,
p. 57]) a procedure to construct a large class of soliton spheres (all?) with
algebraic operations from branched holomorphic coverings of the round 2–
sphere.





APPENDIX A

Continuity of the Dual Curve

In Section 16, the fact that the twistor lift of the dual curve extends
continuously into the Weierstrass points, is used to show that linear systems
with equality are described by complex holomorphic data. If the Weierstrass
flag is continuous and the canonical complex structure extends continuously
into the Weierstrass points, then the twistor lift of the members of the
Weierstrass flag also extends continuously, by Lemma 16.2. But in general
the canonical complex structure does not, in contrast to the false statement
of [FLPP01, Lemma 4.10], extend continuously into the Weierstrass points.
To see this consider the following example.

The line bundle L =
(

z2
j+z

)
H ⊂ H2 is a holomorphic curve on M = C

with holomorphic twistor lift L̂ =
(

z2
j+z

)
C. It has exactly one branch point

at z = 0. Away from z = 0, the mean curvature sphere S ∈ Γ(EndH2
C\{0})

of L satisfies

S
(

z2
j+z

)
=
(

z2
j+z

)
i, S( 2z

1 ) = ( 2z
1 )i,

by Lemma 16.2. S does not extend continuously into z = 0, because the sec-
tions

(
z2
j+z

)
and ( 2z

1 ) are at z = 0 linearly independent over C and linearly
dependent over H. The problem in the proof of [FLPP01, Lemma 4.10] is
in the last formula, where In+1i + O(1) should read In+1i + W−1O(1)W ,
which in general is not continuous at pα.

Nevertheless, the arguments in the proof of [FLPP01, Lemma 4.10] can
still be used to show the continuity of the Weierstrass flag as well as the
continuity of the twistor lift of the dual curve.

A.1. Lemma. Let L be a holomorphic line bundle and H ⊂ H0(L) a
linear system. The Weierstrass flag of H is then continuous at the Weier-
strass points, and the twistor lift of the dual curve extends continuously into
the Weierstrass points.

Proof. First we need to recall some facts from [FLPP01, Lemma 4.9
and the discussion preceding this lemma]. Let p be a Weierstrass point of
H. Then there exists a basis ψk, k = 0, . . . , n := dimH − 1 that realizes the
Weierstrass gap sequence nk(p) of H at p such that:

(i) There exists an open neighborhood V of p that does not contain an-
other Weierstrass point and a matrix valued smooth function B : V →
M(n + 1,H) that is invertible on the punctured neighborhood V0 :=
V \ {p} of p and ψB−1 is an adapted frame of the Weierstrass flag
Hk V0

⊂ H.

115
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(ii) The matrix valued function B has the form

B = Z(B0 +O(1))W,

where Z = diag(1, z−1, . . . , z−n), W = diag(zn0(p), . . . , znn(p)), in a
centered holomorphic coordinate z : V → C, z(p) = 0, and B0 is a
constant invertible matrix with integer coefficients, in fact B0 is the
Wronskian matrix of the functions x 7→ xnk(p) evaluated at x = 1.

(iii) The canonical complex structure S satisfies SψB−1 = ψB−1i on U0.
The principle minors of B0 do not vanish. Hence one can assume that

the principle minors of B0+O(1) do not vanish on V , and one can decompose

B0 +O(1) = L̃Ũ

into a lower and an upper triangular matrix such that the upper triangular
matrix has ones on its diagonal. The upper triangular matrix

U := W−1ŨW

converges to the identity matrix as z goes to 0, because nk(p) is strictly
increasing. With the lower triangular matrix

L := ZL̃W

one obtains the LU decomposition

B = LU

of B. Since L is lower diagonal, the frame

ψB−1L = ψU−1

is adapted to the Weierstrass flag on V0, and, because ψU−1 converges to ψ
as z goes to 0, it is continuous and adapted at p. Thus the Weierstrass flag
is continuous at p.

Hence the last section

ϕ := ψB−1Len+1 = ψU−1en+1

of the adapted frame ψU−1 is a continuous section of V ×H. It spans the
dual curve Ld on V0 and ϕH extends Ld continuously into p. The complex
structure of Ld on V0 is given by S. From fact (iii) follows

Sϕ = SψB−1Len+1 = ψB−1iLen+1 = ϕ(L−1iL)(n+1,n+1)

on V0, where (L−1iL)(n+1,n+1) : V0 → H denotes the lower right entry of the
matrix L−1iL. Let λ := (L̃)(n+1,n+1), then

(L−1iL)(n+1,n+1) = (W−1L̃−1iL̃W )(n+1,n+1) = z−nn(p)λ−1iλznn(p).

Because B0 is an invertible real matrix, λ is not zero, real and continuous
at z = 0, hence

Sϕ = ϕ(i+O(1)),
which shows that the complex structure of the dual curve is continuous on
V and ϕ(p)C ⊂ (H, i) continuously extends the twistor lift L̂d = {ψ ∈ Ld |
Sψ = ψi } of the dual curve. �
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Index

∗, 2
α′,α′′, see type decomposition
⊥, see normal bundle
◦
II, see trace free second fundamental form
〈 , 〉, see Hermitian form
>, see tangent bundle

Aβ , see affine coordinate

B̂, 8
β−1, see affine lift
bp(f), b(f), see branching order
D, see quaternionic holomorphic struc-

ture
∂̄–operator, 3
δ, see derivative of a subbundle
Ek, see osculating k–plane
ev, see evaluation map
H0(V ), 3
H∞, 51
H, see quaternions
HP1, see quaternionic projective line

Hom(V, Ṽ ), 2

Hom±(V, Ṽ ), 2
K, see canonical bundle
KV , K̄V , 2

KHom(V, Ṽ ), Hom(V, Ṽ )K, 2

L⊥, Ld, see dual curve
L−1, see dual bundle
Lk, see osculating k–plane
ord, see vanishing order, Weierstrass or-

der
PGL, 12
Pl, see Plücker embedding
Q, see Hopf field
S3
∞, see ideal boundary

σα,β , see stereographic projection
SL(2,H), 105
V ∗, see dual quaternionic vector space,

dual bundle
V̄ , 2

V̂ , 3
W (L), see Willmore energy
W (f), see Willmore energy

WBT(L), see Willmore–Bäcklund trans-
formation

admissible basis, 16
affine coordinate, 12
affine lift, 12, 16
antipodal reflection, 17
associated family, 105

Bäcklund transformation, 77
1–step, 78

base point, 8
branch point, 28
branched conformal immersion with nor-

mal vector, 29
branched immersion, 28
branched pairing, 30
branching order, 28

Calapso transformation, 105
canonical bundle, 2
canonical complex structure, 47, 48
canonical holomorphic line bundle, 19
canonical holomorphic vector bundle, 46
canonical linear system, 21, 46
catenoid cousins, 111
Christoffel transformation, 80
CMC–1 cousins, 110
CMC–1 surfaces, 106
complex holomorphic structure, 3
complex quaternionic vector bundle, 2
complex quaternionic vector space, 1
complex structure, 1, 2
conformal 4–sphere, 11

light cone model, 95
quaternionic model, 12

conformal Gauss map, 49
conformal structure of HP1, see quater-

nionic projective line
cousin relation, 110
curve in HP1, 16

Darboux pair, 104
Darboux transformation, 104
degree, 3, 5
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derivative of a subbundle, 16, 46
double of a complex holomorphic line bun-

dle, 3
dual bundle, 2
dual curve, 17, 48
dual quaternionic vector space, 1

Euclidean coordinate, see stereographic
projection

Euclidean holomorphic line bundle, 23
evaluation map, 21, 46

Grassmannian, 46, 53

Hermitian form, 14
degenerate, definite, indefinite, 91

holomorphic curve, 16, 46
holomorphic section, 3
Hopf field, 3, 4, 47
hyperbolic Gauss map, 107

ideal boundary, 92
isothermic holomorphic curve, 79

Kodaira correspondence, 21, 46

ladder of holomorphic line bundles, 37
Leibniz rule, 3
linear system, 7

mean curvature sphere, 49
minimal curve

Euclidean, 51
spherical, hyperbolic, 93

minimal surface, 28, 40
Möbius invariant holomorphic line bun-

dle, 19, 20
Möbius transformation, 13

normal bundle, 15, 18
complex holomorphic structure, 42

normal vector, 5
left and right, 15

osculating k–plane, 47, 53

paired holomorphic structure, 25
pairing, 24
Plücker estimate, 50
Plücker formula, 49
Plücker embedding, 95
Plücker quadric, 95
pole, 12, 51

quaternionic conjugation, 1
quaternionic holomorphic bundle homo-

morphism, 8
quaternionic holomorphic structure, 3
quaternionic holomorphic vector bundle,

3

quaternionic projective line, 12
conformal structure of the, 12
standard orientation of the, 13

quaternionic vector bundle, 2
quaternions, 1
quotient of sections, 21

rational coordinate, 60
regular

Euclidean minimal curve, 86
Willmore holomorphic curve, 82

retraction form, 81
rotationally symmetric Hopf field, 61

similarity, 1
soliton sphere, 59
2–sphere, 14
3–sphere, 14
4–sphere, see conformal 4–sphere
spin bundle, 38
splitting, 103
standard metric, 11
stereographic projection, 12, 60
superminimal, 94

tangent bundle, 15, 18
tangent space of HP1, 13
trace free second fundamental form, 20
twistor lift, 53
twistor projection, 53
type argument, 4
type decomposition, 3–5

umbilic, 20

vanishing order, 3, 8, 30

Weierstrass data, 27, 32, 39
Weierstrass flag, gaps, numbers, order,

point, 7
Weierstrass representation, 26
Willmore–Bäcklund transformation, 83,

84
Willmore energy, 4, 21–23
Willmore holomorphic curve, 82
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