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Abstract 
People who want to achieve a goal with a previously unknown technical system simply try it out and learn through 

feedback from the system how to use it. This is referred to as interactive Learning. To investigate the usability of 

such systems, elaborate user studies are carried out. Additionally, changes in the system require new studies. 
Cognitive models simulate the cognitive processes of users and could be used as a substitute or as a supplement 

to user testing. However, interactive learning of systems, requires that these cognitive models depict elaborate 

cognitive processes, such as building and modification of mental models. Such aspects can best be modeled with 

the ACT-R cognitive architecture. However, there is no generally accepted theory on mental model building and 
updating. There are different views on how a representation is built-up and changes. Cognitive models which 

depict mental model building in interactive learning of technical systems are unknown of. This dissertation closes 

this gap; based on the theory of mental models of Li and Maani (2011), ACT-R mechanism are developed and 

validated.  

To investigate interactive learning in technical systems, a smartphone app and a task were developed, with which 

empirical data was collected. The app is a shopping list app, with a hierarchical-linear structure in which items 
can be selected. The task of the participants was to repeatedly search for the same items. After two blocks, an 

update that partially changed the menu structure of the app occurred. Afterwards, the subjects were required 

search for the same items again. The empirical data showed that participants learned how to use the app quickly 

and an update interrupted this learning effect. Based on the study, ACT-R modeling mechanisms for building and 
updating mental model were implemented. To make sure this model, was not too specific to the shopping list app, 

a new empirical study was conducted with another hierarchical-linear app with a similar look and task. This app 

is a real-estate app with which subjects should repeatedly enter the same search criteria. After two blocks, the 

menu structure and position of some entries in the app changed. To test how well the model can describe the 
empirical data, the model parameters were adjusted to one part of the empirical data of the Real Estate App study. 

A high match in terms of trends and absolute values was found. The predictive validity of the model was testet by 

comparing the model data with the other part of the empirical data of the real estate app study and with the data 

of the shopping-list app study. The model can predict these data very well. 

 To ensure that the developed ACT-R mechanisms for building and updating mental models are generally useful 

to depict interactive learning, another interactive task had to be found. Here for, the data from an auditory 

categorization experiment was used. The auditory stimuli are composed of several features, a certain feature 
combination was the target stimulus. This had to be identified using button-presses and subsequent feedback.  In 

the middle of the experiment, the assignment of features combination and target tones changed. The ACT-R model 

based on the previously developed model mechanisms was capable to map the empirical data. In summary, it can 

be stated that ACT-R can simulate the usage of technical systems thus usability questions can be answered. In this 
work, a model for interactive learning of hierarchical linear apps was created. The model can map learning and 

relearning. To predict the usability related aspects of other apps with ACT-R models, however, new ACT-R models 

need to be created. Hereby, the developed mechanism for mental model building and updating should be adapted 

to adequately address the structure of the specific app. 

These ACT-R mechanisms for mental model building and updating can describe and predict empirical data from 

various interactive tasks. Furthermore, the mechanisms can be transferred to other different scenarios. For this, 
however, a task must be newly modeled. For the assignment of the mechanisms, a task analysis must be carried 

out, and the new model may also need additional assumptions.  

 



Zusammenfassung 
Wenn Personen ein Ziel mit einem Ihnen bisher unbekannten technischen System erreichen wollen, dann 

probieren sie das System einfach aus und lernen durch die Rückmeldung vom Systems den Umgang damit. Man 

spricht von Interaktivem Lernen.  Um die Usability eines solchen Systems zu untersuchen, werden aufwendige 
Nutzerstudien durchgeführt. Zudem erfordern Änderungen im System neue Studien. Kognitive Modelle 

simulieren die kognitiven Prozesse von Nutzern und könnten als Ersatz oder auch Ergänzung zu Nutzertests 

eingesetzt werden. Interaktives Lernen von Systemen, erfordert allerdings, dass diese kognitiven Modelle 

elaborierte kognitive Prozesse abbilden. Das sind z.B. der Aufbau und Umbau von mentalen Modellen. Solche 
Aspekte kann man am besten mit der kognitiven Architektur ACT-R modellieren. Allerdings gibt es keine 

allgemein anerkannte Theorie zu Aufbau und Umbau von mentalen Modellen. Es gibt unterschiedliche Ansichten 

darüber, wie eine Repräsentation aufgebaut wird und sich verändert. Kognitive Modelle, die den Aufbau eines 

mentalen Modells beim interaktives Lernen von technischen Systemen abbilden sind nicht bekannt. Diese 
Dissertation schließt diese Lücke, in dem aufbauend auf der Theorie zum mentalen Modellen von Li und Maani 

(2011), ACT-R Mechanismen entwickelt und überprüft werden. 

Um interaktives Lernen bei technischen Systemen zu untersuchen, wurde zunächst eine Smartphone App and 

eine Aufgabe entwickelt, mit der empirische Daten erhoben wurden. Bei der App handelt es sich um eine 

Einkaufslisten App, mit einem hierarchisch-linearen Aufbau, bei der Produkte selektiert werden können. Aufgabe 

der Probanden war es, wiederholt dieselben Produkte zu suchen. Nach zwei Durchgängen gab es ein Update, dass 
die Menüstruktur der App teilweise veränderte. Im Anschluss sollten die Probanden erneut dieselben Produkte 

suchen. Die empirischen Daten zeigen, dass Probanden den Umgang mit der App zügig erlernen und dass ein 

Update den Lerneffekt unterbricht. Basierend auf der Studie wurden ACT-R Modelmechanismen für den Aufbau 

und die Änderung vom mentalen Modell implementiert. Um sicherzustellen, dass dieses Modell nicht zu 
spezifisch für die Einkaufslisten App konstruiert ist, wurde eine neue empirische Studie mit einer anderen 

hierarchisch-linearen App mit einem ähnlichen Aussehen und einer ähnlichen Aufgabe durchgeführt. Bei der App 

handelt es sich um eine Immobilien App, in der die Probanden wiederholt dieselben Suchkriterien eingeben 

sollten. Nach zwei Durchläufen veränderte sich für manche Einträge die Menü-Struktur und die Position in der 
App. Um zu überprüfen, wie gut das Modell empirische Daten abbilden kann, wurden die Modellparameter an 

einen Teil der empirischen Daten aus der Immobilien-App Studie angepasst. Es zeigte sich eine sehr hohe 

Übereinstimmung in Bezug auf Trends und auch auf absolute Werte. Die prädiktive Güte des Modells wurde 

überprüft, indem die Modelldaten mit dem anderen Teil der empirischen Daten aus der Immobilien-App Studie 
und mit den Daten aus der Einkaufslisten App Studie verglichen wurden. Das Modell kann diese Daten sehr gut 

vorhersagen.   

Um sicherzustellen, dass dBie entwickelten ACT-R Mechanismen zum Aufbau und Umbau von mentalen 
Modellen generell nützlich sind, um interaktives Lernen abzubilden, musste eine andere interaktive Aufgabe 

gefunden werden. Dazu wurden die Daten eines auditorischen Kategorisierungsexperiments verwendet. Die 

auditorischen Stimuli setzten sich aus mehreren Eigenschaften zusammen; eine bestimmte 

Eigenschaftskombination war der Zielstimulus. Dieser musste mittels Tastendruck und anschließendem 
Feedback identifiziert werden. In der Mitte des Experiments änderte sich die Zuordnung von Zieltönen. Das auf 

den zuvor entwickelten Modellmechanismen basierte ACT-R Modell konnte die empirischen Daten gut abbilden.   

Zusammenfassend lässt sich feststellen, dass sich die Benutzung von technischen Systemen mit ACT-R Modellen 

simulieren lässt und somit Usability Fragen beantwortet werden können. In dieser Arbeit wurde ein Modell zum 

interaktiven Lernen von hierarchischen linearen Apps erstellt. Das Modell kann Lernen und Umlernen abbilden. 

Um auch für andere Apps die Benutzbarkeit mit ACT-R Modellen vorauszusagen, sollten allerdings die in dieser 
Dissertation entwickelten Mechanismen zum Aufbau und Umbau von mentalen Modellen in Bezug auf die 

Struktur dieser App angepasst werden. 

Mit den entwickelten ACT-R Mechanismen zum Aufbau und Umbau von mentalen Modellen können empirischen 
Daten aus verschiedenen interaktiven Tasks beschrieben und vorhergesagt werden. Ferner lassen sich die 

Mechanismen auf komplett andere Szenarien übertragen. Hierfür, muss allerdings eine Aufgabe neu modelliert 

werden. Dabei muss für das Zuordnen der Mechanismen eine Aufgabenanalyse durchgeführt werden und das 

neue Modelle benötigt eventuell noch zusätzlichen Annahmen. 
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Synopsis  
 

Interaction with various technical systems, such as applications, is an integral part of our 

everyday lives. Early in the morning, we are woken up by the alarm clock app installed on 

our smartphone. At breakfast, we read newsfeeds on our tablet. We use a navigation device 

that indicates the fastest route to our workplace. At work, we accomplish our tasks with the 

help of numerous computer programs.  We even track our evening run with our 

smartwatch, and later evaluate the success of our training on our computer.  

Users do not stick to a handful of applications for which they exactly know how to use them. 

Rather, unfamiliar applications are tried out. An indication hereof is the increase of 

available smartphone apps in Google Play Store by 5343 new apps on average each day 

(statista.com, 2017). Although, many apps are tried out, repeated use of an app occurs only 

if users can easily reach their goal when initial interacting with an app. 

But how do users quickly and seamlessly achieve goals with systems prior 

unknown to them? This work aims to provide a better understanding of how 

users learn to interact with unfamiliar systems, such as new smartphone apps.  

When required to accomplish a task with an unfamiliar system, very few users choose to 
consult the operations manual. Instead, a "learning by doing" - approach is followed 
(Nielsen & Budiu, 2012). Users merely try out the new system. For such an approach to be 
successful, it is important that systems are designed in a similar fashion and follow 
common interaction philosophy. This is exactly what guidelines are for. For apps, such 
guidelines facilitate interaction design and make sure that important aspects of apps (such 
as their menus) are build-up in the same way (Android Design Guidelines; Apple iOS 
Human Interface Guidelines). An app that deviates from the recommendations of these 
guidelines often causes problems (Zapata et al, 2014); or as UX-experts would point out, 
such an app is not intuitive. Naumann et al. define intuitive use as “A technical system is, 
in the context of a certain task, intuitively usable while the particular user is able to interact 
effectively, not-consciously, using previous knowledge” (Naumann et al, 2007, pp.129).  
This means a new system is usable right away or that only very few erroneous interactions 
occur. With each interaction, users learn more about the system (and the task they are 
accomplishing with it).  Furthermore, repeated interaction is often accompanied by minor 
system changes, such as changes of the information displayed on a smartphone screen.  
Systems that keep changing while users interact with them are referred to as dynamic 
systems. Changes in dynamic systems are either based on user input or internal system 
processes. An example for user input is a user selecting search criteria in a smartphone app. 
Hereby, the selection changes the displayed content of the app e.g., a new page opens. An 
example for internal system changes are software updates. 

This work aims to provide a better understanding of how users deal with 

changing dynamic systems. Light is shed upon dynamic system interaction 

that users perceive as effortless, as well as on problematic cases.  

System interaction (initial or after occurred change) is effortless, if the user 

requires only a few interactions until success. It needs to be studied how users 

directly achieve their goals with dynamic systems. Furthermore, it needs to be 

analyzed why users can quickly, e.g., within a few additional interactions and 

without errors learn how to use dynamic systems.  

On the other hand, problematic cases need to be identified. An explanation 

needs to be found, that provides insight into questions such as, why some 

system interfaces are perceived as difficult to use. Also, why after some system 

updates, usage frequency declines.  

Albeit, there are many different motives why users interact with a system – 

this work focuses on goal-directed tasks. These are tasks in which users 
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pursue a specific goal with the use of the system (for example, selecting items 

for a shopping list smartphone application). In alignment hereof, the 

questions why and how users can quickly learn to achieve a goal in a task with 

a new dynamic system need to be addressed. 

For the user to learn how to achieve a goal with a dynamic system, interactions with it are 

crucial (Maani and Li, 2011). With each undertaken interaction more is learned about the 

system. This is because, each state of the system (change or no change) is feedback for its 

user (Maani & Li, 2011). For example, in a smartphone app, if the action of the user (e.g., 

selection of criteria) results in the opening of a screen, and if this corresponds to the user’s 

expectation, it is positive feedback. In this work, the term feedback is used in this manner. 

Thus, feedback does not necessarily need to be something like "correct" or "wrong". More 

so, in interaction learning, any system behavior following user behavior is feedback. 

For a better understanding of how exactly interactive tasks with dynamic 

systems are learned, a detailed investigation into the underlying cognitive 

processes needs to be undertaken. 

A well-established hypothesis in cognitive sciences is that internal representations (or 
mental models) of tasks and systems presuppose our behavior.  In this manner, learning 
can be described either as a mental model building or as an adjustment of similar mental 
models. In most cases, learning how to achieve a goal with an unknown dynamic system 
requires only a few interactions with that system. Thus, users can very successfully build or 
adjust a mental model of sch a task with a system and integrate the dynamic changes into 
it; provided, they receive feedback during this interaction. According to theories on mental 
models, systems problematic to learn, are those that do not correspond to our usual 
experiences or per-knowledge with systems. For such systems, no mental models exist 
which could be used to integrate new aspects into it.   

An example here for, would be a system where procedural prior knowledge is not 
considered correctly because the user is guided through the system from "right to left" 
instead of usual way which is "left to right". According to the cognitive-artifact-task triad 
(Gray and Altmann, 2000), a complete analysis of system interaction requires to consider 
the task, the artifact and the cognitive processes together. In the case of the unusual reading 
direction, not only is the mental model of the system itself difficult to learn, but there are 
also problems with the task solved with the artifact because they are closely linked.  In the 
following section on users’ mental models of systems, therefore, the tern system refers to 
the task and the artifact together.  

The concept of mental models is commonly applied to identify usability problems in user 
studies. Here, users´ mental models of system usage are consulted to identify aspects of 
interfaces which should be adjusted to achieve better usability (Norman, 2013).  The 
underlying idea hereof is that the more similar the mental model of users and the designers’ 
mental models of users’ system usage is, the higher is the system's usability (Norman, 
1985). In user studies, the mental models of users are commonly investigated using 
descriptive qualitative methods, such as verbal or graphical methods. These methods are 
useful to discover flaws of the studied system. Although mental models are described widely 
in usability studies, there is no unifying theory on mental models (see Payne, 2003 for a 
structured discussion on mental models in HCI).  Rather, various theories describe what 
mental models are and how they are built and adjusted. (Norman, 1983; Glenberg & 
Langston, 1992; Zhang, 2009; Maani & Li, 2011; Revell & Stanton, 2014). It is commonly 
agreed upon that the term mental model refers to internal, abstract representations of 
reality (Norman, 2013). Moreover, mental models evolve naturally (e.g., through 
interaction with a system) (Norman, 1983). Most importantly, they need to be functional 
but not necessarily technical adequate (Norman, 1983). Additionally, mental models are 
(mental) simulations to predict future states of systems (Klein et al., 2006). Furthermore, 
mental models are not static but can be altered during system interaction (Norman, 1983). 
This dynamic nature means that with every new incoming information (e.g., feedback) 
mental models are either verified, adjusted or discarded.   

A more detailed description regarding the cognitive phases underlying the dynamic 
processes of mental model building and updating is given by Maani and Li (2011).  
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Additionally, their approach emphasizes the importance of feedback for adjustments of the 
mental model. According to Maani and Li mental model updating (and building) can be 
depicted as a continuous circle, consisting of three reoccurring phases namely 
conceptualization, experimentation and reflection. During conceptualization, an 
understanding of the situation is acquired, and the outcome of potential actions is mentally 
simulated. Thus, the current situation is compared to information of the mental model and 
new information obtained from the environment is integrated into this mental model.  
During the experimentation phase, the actions derived from the mental model are tested. 
In the reflection phase, the outcome of the experimentation phase is evaluated by 
processing feedback. If the outcome is as expected (positive feedback), the mental model is 
kept. If not (negative feedback), the mental model is updated. 

Even though the cognitive phases of mental model updating are labeled and described in 
Maani’s and Li’s work, the exact nature of the emerging processes remains unclear.  Not 
because, the theory as such is imprecise, but rather since it is merely specified on a verbal 
level of description. Something, it has in common with many psychological theories, 
especially those on mental models. Questions that remain unanswered concern the exact 
details of the proposed cognitive processes of mental model building and updating. Thus, 
“what is meant with an understanding of the situation”, “how this situation is encoded” 
and “what exactly is updated”.   

The questions arise if and how the processes underlying mental model 
building and updating in dynamic system interaction can be precisely 
specified. What options are there, besides defined verbal theories, to decipher 
these processes?  

Computational approaches are a promising candidate to achieve more precision. Such 
approaches use algorithmic descriptions to present details of cognitive processes (Sun, 
2008). Already, computational implementations of mental model theories exist (Khemlani, 
Trafton, & Johnson-Liard, 2013). However, the primarily focus lies on modeling deductive 
thinking in reasoning task. These tasks give participants plenty of time to find solutions to 
problems like: “If all models are wrong, and this is a model, then it is wrong”. 

But, is it possible to use a computational approach for more dynamic 
scenarios - such as interactive system learning and still be specific about the 
exact processes? 

This is where cognitive architectures come into play. With cognitive architecture 
approaches complete theories are implemented in a computational model. The crucial 
aspect hereby is modeling the interplay of different cognitive processes together. This 
distinguishes cognitive architectures not only from mathematical models of cognitive 
processes (which express relationships between variables with mathematic formulas (Sun, 
2008)), but also from classical experimental approaches widely used in psychology. In 
experimental approaches specific variables are isolated and the input-output relationship 
is then analyzed. Newell´s argument against experimental approaches "you can´t play 20 
questions and win" (Newell, 1977) is still valid. In this regard, if we want to find out how 
human cognition arises - a classical psychological approach of isolating aspects cannot 
provide the answers needed for a comprehensive understanding of cognitive processes 
underlying human interaction in real-world settings. Instead, the interplay of different 
cognitive processes, such as perception, stimulus processing and motor reactions, needs to 
be considered. More so, aiming at the bigger picture seems especially important with the 
goal of a better understanding of cognitive processes influencing interaction with real 
systems.   

Therefore, this work aims at developing a cognitive architecture approach to mental model 

building and updating in dynamic systems. 

So, what exactly are cognitive architectures?  

Various cognitive architectures exist; however, EPIC (Kieras & Meyer, 1997), SOAR (Laird, 

2012) and ACT-R (Anderson et al., 2004) are the most prominent ones. They differ mainly 

in the details of how specific cognitive functions are implemented, for an overview see 

Byrne (2003). In this work, the cognitive architecture ACT-R (Adaptive Control of 
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Thought-Rational) was chosen for applied and theoretical reasons.  In the following, a short 

overview of these is given.  

Motives on the applied side are: First, there is an active and open-to-the-public ACT-R 

community which provides feedback and interaction on ACT-R related topics, including an 

annual conference and workshop and a well-maintained website (http://act-

r.psy.cmu.edu/) for models and publication. Second, specific tools exist, which allow ACT-

R models to directly interact with real (Android) smartphone applications (Büttner, 2010; 

Doerr, Prezenski & Russwinkel, 2016). Since this work seeks to address how users interact 

with real-systems, this is a significant advantage over the other architectures. A final 

practical advantage of ACT-R is that it has already been used in numerous complex real-

world tasks involving system interaction, such as problem-solving of air traffic controllers 

(Raufaste, 2006) or website navigation (John et al., 2004).   

The motivation for ACT-R on the theoretical side is: First that ACT-R has motoric as well 

as perceptual components, which allows models to interact with its environment system. 

This is especially important for studying system interaction. Second, ACT-R was originally 

developed for modeling memory and problem-solving processes closely linked with mental 

model building. Therefore, extensive evaluation of the implementation of these 

mechanisms (such as retrieval mechanisms) has taken place. Finally, theoretical concepts 

closely related to mental model building have been successfully modeled with ACT-R. 

These are instance-based learning (Gonzalez, 2017), meta-cognition (Reitter, 2010) and 

sense-making (Lebiere et al., 2013).  The core assumption of instance-based learning is that 

decisions are made depending on previous experiences in similar situations (Gonzalez, 

2003). These experiences are called instances and consist of situations and related 

outcomes which stored in memory. The instances can be seen as the core part of a mental 

model since they consist of an encoding of the situation and the predicted outcome. 

However, mental model building and updating also requires reflection and evaluation on 

the learning process, or in other terms, meta-cognition (Reitter, 2010). Finally, sense-

making means finding and interpreting facts that are relevant among all the incoming 

information. Making sense of a situation requires sorting stimuli into different categories. 

Here for previous experience and rules about category affiliation are essential.  

To conclude, ACT-R is a cognitive architecture qualified for investigating the processes 
of mental model building during system interaction.  For a deeper understanding 
of ACT-R, a brief outline of the processes of this architecture is given subsequently. For 
more information, each of the four papers of this dissertation introduces the ACT-R 
mechanism relevant to their specific content in more detail. 

ACT-R is a theory about how the interplay of cognitive processes together produce behavior 

it is based on findings from cognitive psychology and neuroscience. Aspects of the theory 

are altered if new scientific evidence suggests so. ACT-R is also a computational platform, 

for modeling these processes. The underlying theory restricts how a model can be 

implemented. For example, due to limited resources, information units cannot be altered 

simultaneously by the working memory resource of ACT-R but only one after the other. 

These restrictions ensure that the assumptions of ACT-R theory are not violated. 

ACT-R has a modular structure, resembling the functionality of our brain. These modules 

process information in parallel; not unlike our ability to simultaneously handle different 

types of information. Different modules process different types of information through 

their interfaces, called buffers. For example, there are visual and aural modules and 

corresponding buffers for sensory processing or motor and speech modules and 

corresponding buffers for output. Each piece of information is called a chunk. Chunks are 

often combined into larger pieces of information. All chunks are stored in and retrieved 

from the declarative memory module via its retrieval buffer. Only one chunk can be in a 

buffer at any given time, signifying bottlenecks of human information processing. If-then-

rules, called productions, are the core part of ACT-R models, they represent the procedural 

knowledge (in the sense of how to handle specific information) and are stored in the 

procedural module. When a model is running, only one production can be selected at any 
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moment (again a bottleneck) and the production is then placed into the procedural buffer. 

A production is only selected if the states of the specified buffers match. This process is 

called pattern matching. If more than one production matches, subsymbolic processes, 

which will be introduced shortly, come into play. The execution of each production takes 

time, in most cases 50 milliseconds. This corresponds to the duration of a cycle of 

procedural learning in the brain, thus sending information from the cortex to the basal 

ganglia, and back (Anderson et al, 2004). The execution of a production can change buffer 

states, initiate motor output and form new chunks. The forming of new chunks, e.g. 

combining information into something new, is an important aspect of learning and mental 

model building and updating. New chunks can only be formed in the imaginal module. The 

imaginal module and the corresponding buffer depict important processes of working 

memory, namely manipulating units of information. Also, important for learning a new 

system are goals and sub-goals. These are represented in ACT-Rs intentional module (goal 

module) and corresponding buffer. As mentioned earlier, subsymbolic processes are 

likewise parts of ACT-R. These are based on mathematical formulas that govern how long 

a specific process takes. Numerous subsymbolic processes exist and most of them are 

controlled by parameters and can be added to the model or fine-tuned. However, standard 

values should be used as much as possible. Deviations hereof need to be grounded in a good 

argumentation. Otherwise, the validity of the model needs to be questioned. The most 

important subsymbolic parameter for this work is the activation of a chunk. This value 

influences if a chunk can be retrieved from declarative memory or not. It is a well-known 

psychological phenomenon that we cannot access every information of our memory. 

Information that was stored long ago and has not been used since or needs to be retrieved 

in distracting conditions is more difficult or sometimes impossible to access. However, 

information we have rehearsed often or a short time ago can be retrieved and this also takes 

less time. In ACT-R, there is a numerical value for a retrieval threshold, representing how 

long information it is attempted to retrieve before a failure is reported, e.g. inaccessibility 

of information. There is a noise parameter, representing the conditions of retrieval. 

Furthermore, an activation level indicating how highly activated information is; this 

depends on the time interval and the frequency of past usage. Details on the exact 

computation and other subsymbolic processes can be found on the ACT-R website (ACT-

R, 2017).   

Analyzing ACT-R models gives insight into quantitatively and qualitatively aspects of 

cognition during task performance. The idea hereby is that investigating the models 

provides understanding on how long such a task will take and more importantly, which 

cognitive processes lead to the observed behavior. In general, the model performs a task 

repeatedly, in the same way human participants do in an experiment. But in contrast to 

experiments with humans, what is going on "in the head of the model” is visible. Thus, an 

exact specification of occurring cognitive processes is obtained with ACT-R. The direct 

output of an ACT-R model is time in milliseconds. This way, information on task duration 

(a quantitative measure) can be obtained. Also, error rates can be acquired by running a 

model several times and then computing the ratio how often a goal is met. Moreover, a 

better (qualitative) understanding of specific cognitive processes can be achieved by 

analyzing the cognitive processes proposed by the model.  

But how do we know that the cognitive processes postulated by a model are 

valid? For this purpose, human data and modeled data of the same task need to be 

compared. If the model and the participants show the same behavior, then this is an 

indication that the cognitive processes postulated by the model resemble processes 

occurring in the human mind. Developing a valid model of a specific aspect of cognition, 

such as mental model updating requires a two-steps procedure: First, empirical data needs 

to be matched by a model. Thus, an empirical study needs to be designed, conducted and 

analyzed. Then, an ACT-R model needs to be developed, and its output analyzed. The 

output of the model in terms of qualitative trends and quantitative task time should match 

the empirical data. Second, the model should be able to predict the performance of 

participants in a slightly different task. Thus, after the behavior of this model in such a task 
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is analyzed, new empirical data is needed to evaluate the predictions of the model. If the 

new empirical and the model data match, this is a strong indication for a model validity. 

In this manner, the goal of this dissertation is to develop such a valid ACT-R 

model. Herefor, the question how mental model building and updating during 

interaction with dynamic systems can be modeled with ACT-R needs to be 

addressed. Mechanisms, applicable to different dynamic tasks, need to be 

developed and tested. Hence, the aspects and mechanisms a cognitive model 

requires for learning and relearning during dynamic system interaction need 

to be specified.   

In addition to in-depth knowledge on key mechanisms of interactive learning and 

relearning of dynamic interface use, this dissertation aims to address, to what extent these 

findings can be used to map cognitive processes in the field of "user modeling". 

The idea of "user modeling" is to use models to simulate the behavior (and the underlying 

cognitive processes) of users. The long-term goal hereof is the development of systems that 

meet the cognitive needs and expectations of their users.   

Hitherto, “user modeling" is applied as a tool for evaluating the usability of systems. 

Usability refers to efficient, effective and satisfactory system use (Standard ISO 9241-11).  

The models underlying user modeling derive from different disciplines and fulfill different 

purposes. Mathematical models describe via formulas, specific aspects of user behavior, 

such as the relationship of the number of items, item position and the search time in linear 

menus (Bailly, Oulasvirta, Brumby & Howes, 2014). Other approaches use different 

computational algorithms for aspects such as color, font-size, contrast (Choi et al., 2013, 

Amalfitano et al., 2012;) These models are useful for designers; they help them determine 

the efficiency of apps. However, aside from visual processing aspects, these models do not 

provide insight into cognitive causes of usability problems. 

Thus, for designing systems that meet the needs and expectations of their users, it is 

important that the cognitive processes of these users are simulated.  

To a very limited degree, this is attempted by GOMS models. Using GOMS to simulate user 

behavior requires the modeler to specify Goals, Operators, Methods, and Selection Rules. 

Even though GOMS models are cognitive, they consist merely of different motor and visual 

operators. The entire process of thinking is represented by a sole mental operator (assigned 

a time value). Thus, GOMS models are helpful to find out how long a skilled user requires 

for a specific task, but they are an oversimplifying approach for more detailed questions.  

Such questions can be addressed with models based on cognitive architectures. Already, 

cognitive architecture tools for user modeling exist. For example, efficiency related aspects 

can be measured with the ACT-R based tool "CogTool". CogTool provides valid predictions 

on how long it takes for experienced users on average to find a specific target on a website 

(John et al., 2004). Furthermore, its successor CogTool Explorer (Teo, John & Blackmon, 

2012) can predict search behavior, including errors of users new to a website.  

However, models depicting the learning processes (the process of novice turning into 

expert users) are missing. Furthermore, models resembling interactive learning, learning 

with very few attempts, as well as a rapid relearning after system changes are needed. 

A significant challenge here is of practical matter. In general, developing a model with a 

cognitive architecture, such as ACT-R is a task that requires experienced modelers to write 

the model and to prototype the system the model needs to interact with. In work related to 

this dissertation ACT-Droid was developed, a tool that makes prototyping of smartphone 

applications written in Android for ACT-R obsolete (Doerr, Prezenski & Russwinkel, 2016). 

But the modeling effort remains high, and this dissertation, therefore, addresses the 

question of how it can be reduced. Thus, for a realistic implementation of cognitive models 

for user modeling, the questions need to be addressed how modeling can be made more 
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efficient and how this can be achieved without limiting the scope of the model. Hereby, 

including in depth-cognitive processes, such as mental model updating. 

Thus, a model needs to be developed that maps the behavior of users in a goal-directed 
interaction with an unknown system. First, an empirical study on the dynamics task 
learning with an unknown interactive system is needed. A straightforward study subject for 
this is a goal-directed task with an unfamiliar smartphone app. This is because, in general, 
apps have a limited scope; they are mostly built to solve one specific goal-directed task, 
such as assembling a shopping list. Furthermore, the most common apps are characterized 
by a simple and consistent design. This makes tasks with smartphone apps well-suited for 
a cognitive modeling study. On the one hand, apps provide a controllable study 
environment, but on the other hand, realistic real-world objects are dealt with. 

To verify whether the postulated model processes persist outside of the specific study, the 

predictive quality of the model needs to be validated with another task. Thus, it is essential 

that the model not only maps the given empirical data but also can predict new data. This 

model validation study requires a somewhat different task and system.  

Furthermore, a model is particularly useful if its core mechanisms can be transferred to 

other settings and situations (Marewski & Link, 2014). Hence, the mechanisms for learning 

and relearning in goal-directed task with dynamic systems should be general. This means 

they should not only apply to the specific examples studied but are valid in different 

contexts as well. Here, a different, interactive, dynamic task needs to be found. Thus, by 

transferring the core assumptions of the model, the usefulness of these for different settings 

can be examined.  

Summary of papers 
This dissertation consists of four previously published papers (no. 1: Prezenski & 

Russwinkel, 2014; no. 2: Prezenski & Russwinkel, 2016; no.: 3 Prezenski, Brechmann, 

Wolff & Russwinkel, 2017 no. 4: Prezenski, 2017). In the following, a brief overview of each 

paper is given. The propose hereof is to outline how and to what extent the papers address 

the research questions and assignments introduced above.  

Paper no. 1: Prezenski, S. & Russwinkel, N. (2014). Combining cognitive ACT-R 

models with usability testing reveals users mental model while shopping with a 

smartphone application. Int. J. Adv. Intell. Syst., 7(3), 700- 715. 

The primary purpose of paper no. 1 is to demonstrate how ACT-R based user-modeling can 

be applied to test the usability of smartphone applications. Furthermore, how aspects of 

mental model building and updating are related to usability problems in such an approach. 

In paper no. 1, an overview of various assessment usability methods and their benefits and 

disadvantages is given. The focus hereby lies on methods for testing usability of mobile 

applications. These are classical usability testing methods, such as thinking aloud and 

objective user testing, mathematical models of usability aspects and tools based on 

cognitive modeling. Since a hierarchical list-style smartphone application is studied, 

special attention is laid on assessment of usability aspects related to menu-design, such as 

depth of a menu.  

Paper no. 1 emphasizes on the benefit of using cognitive architecture approaches for user 

testing. Firstly, it is argued that these approaches provide insight into the cognitive process 

such as mental model building and updating of the users and reveal reasons of usability 

problems. Secondly, the point is made that they are an efficient approach to usability 

testing since the models can be reused. 

An important aim of paper no. 1 is to show that usability testing of real mobile apps is 

feasible with ACT-R models.  Therefore, an app, with a realistic impression and which is 

usable for an actual non-artificial task was needed.  To control the potential influence of 

confounding variables on usability, such as visual design effects, we opted for a self-

designed app instead of an app from an app store. The app is a hierarchical list style app. It 

supports the task of assembling a shopping list by selecting different items. The items can 
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either be accessed using an alphabetical ordering or a categorical ordering, e.g., different 

shops and product categories.  

Paper no. 1 aims at providing a better understanding of the cognitive processes of mental 

model building and updating.  Thus, a task that requires users to build up their mental 

model of the task with the system and update it if changes occur is needed.   

Such empirical data is also required for the development of a model. Two empirical studies 

are designed, conducted and analyzed. For these studies to investigate learning – or mental 

model building – repeated task processing is needed. For the studies to address mental 

model updating, aspects of the interface need to change during the study. In both studies, 

participants are required to search and select the same items repeatedly. This makes it 

possible to investigate a learning effect by comparing the performances in the first and 

second run. And in both studies after two blocks (each block consisting of eight items) the 

interface changes without notice given to the participants. This change affects the number 

of layers in the app. Either an extra layer was added, or a layer was taken away. The 

participants were again required to search for the eight items for two more times. The 

change made it possible to study mental model updating. 

The two studies are very similar. The main difference is that in first study, the participants 

were able to search alphabetically or navigate via the categories- in the other studied 

navigation was only allowed via categories. The first study´s main purpose is to make sure 

that mental model building and updating is examinable with the app.  Thus, to confirm that 

statistically significant learning (an improvement from the first to the second run) and re-

learning effects (significant behavioral changes after version switches) exist. The second 

study is restricted because the empirical data is needed to match the model to. Thus, 

limiting the options of the participants reduces the modeling effort.  

The empirical results reveal that there is indeed a learning effect and that changes in the 

menu-depth also make an effect.   

In paper no. 1, the modeling concepts for mental model building and updating are outlined, 

and it is explained how mental model building and updating can be modeled in such a task. 

Furthermore, the paper outlines how causes of usability problems can be revealed by the 

model. 

Mental model building is sketched out in paper no. 1 in the following way: In the beginning, 

the model does not know where a target item is positioned in the menu. Therefore, to 

navigate to the target (held in the goal buffer) the model uses knowledge of the world 

chunks. This pre-knowledge chunks represents with each other related or associated 

aspects. Each item in the menu is visually processed and for each item, the attempt is made 

to retrieve such an association chunk from declarative memory. On the one hand, if such a 

chunk cannot be found, the procedure repeats for the next item. On the other hand, if an 

association between the target item and the current processed menu item is retrieved, 

menu items are selected, and the core part of a mental model is built-up in form of path-

chunks in the imaginal buffer. After this familiarization for target items is complete, the 

corresponding path chunks can be retrieved and used for direct navigation to these items. 

After an update, the previous successful path chunks will not lead to the target. The model 

will use them until they result in error and then alter them from this point on. More details 

on the exact implementations are given in paper no. 2. 

Paper no. 2 Prezenski, S. & Russwinkel, N. (July 2016b). Towards a general model of 

repeated app usage. In D. Reitter & F. E. Ritter (Eds.), Proceedings of the 14th 

International Conference on Cognitive Modeling (pp. 201- 207). University Park, PA: 

Penn State.  

Paper no. 2 presents the implementation of the mechanisms for mental model building and 

updating in detail. 
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Mental model building is realized using path chunks build up in the imaginal buffer. But, 

the model performance is more efficient in the second block, not only because it uses the 

path chunks to navigate, but also because the position of items is retrieved from memory. 

Mental model updating is implemented the following way; it uses the successful path chunk 

after an update until this path chunk leads to an error. The model will try to use the chunk 

once more (e.g. check if it maybe missed something) and then use its knowledge of the 

world to build a new path chunk from the point where the old one failed. It will specify the 

old chunk and the new chunk, thus they become more complex. There is a specific change-

detection mechanism in the goal buffer. This specifies if a path chunk has been successful 

often and if a change in the app has been registered. Thus, if a path chunk has been marked 

as successful often, but its usage leads to an error it will not directly be discharged. Rather, 

a second attempt with this path chunk will be made. If this attempt fails again, a new path 

chunk is build-up using the knowledge of the world chunk.  

Furthermore, in paper no 2., modeled data and empirical data of the studies with the 

Shopping App and the Real-estate App (presented in paper no. 1) are matched and the 

descriptive and predictive power of the model is evaluated. Thus, the capacity of the model 

to predict new data with a different app is evaluated. Here for, modeled data and empirical 

data of a task with this different app are compared. This new app is a real-estate app. It 

supports the task of selecting criteria for real-estate search. Its appearance is similar to the 

Shopping App. However, unlike the Shopping App, menu depth in the Real-estate App 

varies within the same version, and the Real-estate App adapts to preselection of some, but 

not all criteria. Thus, the position of criteria on a page and the number of layers required 

to be looked at, before criteria can be found, varies. As with the Shopping App, the task with 

the Real-estate App required participants to search and select criteria repeatedly. However, 

some criteria varied, and some stayed the same. Nevertheless, this design allows 

investigating mental model building and updating. 

Also, the paper addresses the practical aspect of how ACT-R can be used to for user 

modeling and usability prediction without too much effort for the actual modeling process. 

The model presented is a general model. Consequently, with only small changes, it can 

predict average user behavior with apps that have a hierarchical list style design. Moreover, 

the model can handle changes to apps that affect the menu-structure.  

Paper no. 3 Prezenski, S., Brechmann, A., Wolff, S. &Russwinkel, N. (2017). A 

Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making. 

Frontiers in Psychology. 8 (no 1335). doi: 10.3389/fpsyg.2017.01335 

Paper no. 3´s purpose is to test if the core mechanisms for mental model building and 

updating developed for modeling user behavior with apps (paper no 1. and no. 2) can be 

extracted and used in a different context. In other words, to test to what extent the prescribe 

criteria is met (Marewski & Link, 2014).  

For this reason, a different task of mental model learning and updating is required. The 

chosen task is a complex auditory category learning task (Wolf & Brechmann, 2015). 

Hereby, multi-feature auditory stimuli (complex tones, comprising of four feature 

combination) are repeatedly presented to the participants. The participants need to learn 

to discriminate target and non-target stimuli, by using the verbal feedback provided. The 

alignment of the feature-target relationship changes during the experiment.  This task is 

also a dynamic decision-making task, because it consists of a series of decisions, which 

depend on the pervious decision and are made in a changing environment under time 

constraints.  Dynamic decision-making is also described as a continuous cycle of mental 

model updating (Li and Maani, 2011). 

Even though the new task requires mental model building and updating, it is nevertheless 

very different from the tasks with the apps from the previous papers. Hence, a new model 

was needed to describe the experimental data of this task. However, the core assumptions 

of mental model building and updating are derived from the model of paper no 2. In the 

following, a short summary of the new model is given: The model needs to learn which 

combination of features and button-press is correct. All possible strategies are already 
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stored as strategy chunks in the model’s declarative memory. There are one-feature and 

two-feature strategy chunks. The model learns which strategy is correct by trying out 

different strategy chunks. Generally, the model starts with a one-feature strategy and later-

on switches to two-feature strategies. Strategies are only changed after negative feedback. 

They are encoded like the path chunks of paper no 2.  The strategy the model is trying out 

is placed in the imaginal buffer and the goal buffer keeps track of the success of the strategy. 

For mental model updating the following aspects are the most relevant: If a strategy was 

successful often, it will not be discharged directly by the model but tested once more (as the 

path chunks in paper no 2). Furthermore, explicitly registered changes are marked in the 

goal buffer. After such registered changes, strategy chunks become more specified and thus 

more complex; differentiating between old and new strategies. 

Overall, the comparison of modeled and empirical data indicates that the model captures 

the data of the participants, including successful initial learning, and reversal learning after 

the change of feedback contingencies. The modeled data also reflects that not all 

participants were successful in the two learning phases. However, the overall performance 

of the model is lower than that of the participants. 

Paper no. 3 furthermore, focuses on explaining the theoretical background of the model 

mechanisms. Thus, the relation of the model mechanisms to dynamic decision making as 

constant mental model updating (Li and Maani, 2011) is explained. It is outlined to what 

extent Instance-Based Learning Theory (Gonzalez, 2017) is part of the model and why it is 

a mixed modeling approach, thus incorporating rule and exemplar-based aspects. Also, 

meta-cognitive mechanisms required for mental model building and updating are 

explained.  

Paper no. 4 Prezenski, S. (2017). Implementing Mental Model Updating in ACT-R. In 

M. van Vugt, A. Banks & W. Kennedy (Eds.), Proceedings of the 15th International 

Conference on Cognitive Modeling. (pp. 121-127). Coventry, United Kingdom. 

Paper no. 4 provides an answer to the question of how mental model building and updating 

in interactive tasks can be modeled with ACT-R in general. It is shown how the previously 

developed core mechanisms for mental model building and updating due to system changes 

can be implemented using ACT-R. The commonalities of the models of paper no. 1 and 2 

and of paper no. 3 are outlined. More specific, it is demonstrated how the mechanism 

required for modeling tasks of mental model updating can be modeled for these different 

tasks in the same manner and how they are aligned to and represent a computational 

implementation of the theory of mental model building and updating by Maani and Li 

(2001):  

The three phases (conceptualization, experimentation and reflection) of the cycle of mental 

model updating (Li and Maani, 2001) are implemented in the following manner: The 

central part of a mental model represents the situation, the expected outcome and how 

successful this mental model was in the past. This is stored as a representation chunk 

(referred to path chunk in paper no. 1 and no. 2. and to strategy chunk paper no. 3). This 

part of the mental model is built-up in the imaginal buffer. Thus, the process of building a 

chunk in the imaginal buffer is a computational implementation of the conceptualization 

phase. During the experimentation phase, the usefulness of the mental model’s prediction 

is tested. In the reflection phase, the mental model is reflected on and potentially changes 

to it are initiated. Thus, if the expected outcome is not obtained it is changed. If the 

predictions of are correct (it is successful), an explicit strengthening mechanism is used to 

strengthen this representation. As learning evolves mental models become more specific; 

thus, information is added to the representation chunk.  Furthermore, meta-cognitive 

reflection mechanisms are necessary to record environmental changes and to obtain a 

learning history. For these kind of meta-cognitive reflection processes the control chunk in 

the goal buffer is used. Meta-cognition is furthermore required for changing established 

mental model. So, an in the past useful (or well-established) mental-model does not lead 

to the expected outcome and the representation chunk needs to be changed (or updated). 

Hereby, the control chunk is marked with a state of uncertainty. Since, the representation 
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chunk is established, it is not discharged directly, but tested once more. It is only rebuilt, if 

it leads to unexpected outcome again. Other meta-cognitive mechanisms, which are also 

implemented in the control chunk are used to register changes, either to the system, or to 

the environment. 

More details on the exact models, studies and theories are found in the papers and the 

overall results and implication on mental model building and updating are discussed in the 

combined discussion of this dissertation. 
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Abstract—The usability of two different versions of a 
smartphone shopping list application for Android is evaluated 
via user tests and cognitive modeling. The mobile application 
enables users to compose a shopping list by selecting items out 
of different stores and product categories. The two versions of 
the linear hierarchical application differ in menu depth. Two 
empirical studies compare novice and expert product search 
time. The first study focuses on efficiency, suitability for 
learning, mental load and mental models. The second study 
supplements the findings of the first study and investigates 
varying expectations between products. An ACT-R based 
cognitive modeling approach provides in depth explanations 
for the effects found in the empirical study. The study shows 
that for expert users, product search with a 3 layer or a 2 layer 
version is equally efficient, due to the same amount of mental 
load. Expert and novice user rely on different strategies when 
searching for items- novice users need to access their general 
knowledge frequently, experts use their mental model of 
pathways leading to the items. The suitability of the mental 
model of users, explains why version updates that introduce a 
new layer produce longer product search times - and those 
reducing the number of layers do not.  

Keywords-cognitive modeling; ACT-R; usability; 
smartphone; application; menu; mental load; mental model. 

I. INTRODUCTION  
Nowadays, life without mobile applications and 

smartphones is hard to imagine. New evaluation methods for 
mobile applications are needed [1] because the market for is 
growing rapidly [2]. For an application to be successful, high 
usability is compulsory. Conventional usability testing is 
time and money consuming. Therefore, a pressing question 
is how the usability of applications can be guaranteed, 
without costs exploding. On the long run, cognitive models 
can serve as a substitute for usability testing. The following 
paper is a step towards this goal.   

The current paper investigates menu depth in a real-world 
setting with a new smartphone application. In contrast to 
this, most studies concerning menu depth use artificial labels 
and tasks in a laboratory setting.  

Our work demonstrates that the most important factor for 
menu design is not reducing the number of clicks, but users’ 
mental processes. An important finding is that the best 
number of levels of menu hierarchy may differ from case to  
 

case, but is one that maintains users’ mental load to a 
minimum. Well designed applications address users’ mental 
models of these applications. The fact that mental models of 
users are not static, but evolve as they develop from novices 
to experts is a further topic of this paper. The learning 
processes while handling a new application is studied.  

In the current work, cognitive modeling is used to 
explore users’ mental processes. We will demonstrate how 
ACT-R based cognitive modeling explains results obtained 
in empirical usability studies. It is shown, that cognitive 
modeling with ACT-R has the potential to replace traditional 
user tests to a certain extent, but also help to understand the 
underlying mental mechanisms in this kind of human-
machine interaction. 

The empirical part consists of two studies on two 
different versions of a shopping list application. The Android 
application allows users to select products out of a 
categorized hierarchical list or via an alphabetical product 
overview. With the application, users can compose a 
shopping list. The two versions differ in menu depth. 
Although both studies concern the same application, design 
and purpose of the studies differ.  

The first study allows a conclusion on the overall 
usability of the application, due to the fact that all navigating 
possibilities, the app provides, are allowed. The sample size 
of the study permits statistical testing to compare the 
versions, too. In the first study, an ACT-R modeling 
approach is introduced. The second study supplements the 
first study. It restricts functionality of the application in order 
to substantiate the model assumptions about mental models 
of users from the first study. Furthermore, the second study 
enables to conduct learning curves and to investigate 
different expectations on product affiliated categories.  

In both studies, users repeatedly search for the same 
products. Therefore, novice and expert users can be studied 
and the suitability for learning of the application can be 
evaluated.  

The modeling part further addresses how mental models 
of novice and expert users develop as users become more 
experienced with an application. It also investigates how 
version updates of software challenge users’ mental model. 
This study also unfolds the relationship between menu 
hierarchy and cognitive load.  
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II.  THEORY 

A. Usability 
Standard ISO 9241-11 specifies usability as 

effectiveness, efficiency and satisfaction. General ergonomic 
principles for the design of dialogues between humans and 
information systems are specified in standard ISO-9241-110, 
which outlines seven criteria (suitability for the task, 
suitability for learning, suitability for individualization, 
conformity with user expectations, self descriptiveness, 
controllability, and error tolerance). Nielson`s Usability 
Heuristics are another way of specifying usability; they 
describe ten general principles for interaction design, for 
example that consistency and standards should be applied for 
successful applications [3].  

1) Measurement of Usability: There are various 
methods to judge the usability of mobile applications; user 
focused assessment makes an important distinction between 
expert reviews and user data. A more engineering centered 
approach is, e.g., the method of pattern matching [4], which 
allows designers to assess certain usability problems, 
without interacting with users. There are different 
approaches to evaluate user data; either via qualitative 
methods (e.g., think aloud protocol), questionnaires or user 
tests. Particularly, information about subjective satisfaction 
can only be obtained with qualitative measurements, e.g., 
questionnaires or interviews. Nevertheless, high correlations 
between subjective satisfaction and quantitative 
measurements of usability are expectable [5] [6]. Therefore, 
assuring effectiveness and efficiency is important for 
achieving subjective satisfaction. Quantitative user testing 
allows assessment of a wide range of usability criteria; e.g., 
task completion time as a measure for efficiency, the 
number of successful task completions in a given time as a 
measure for effectiveness. The number and kind of mistakes 
give information about suitability of the application for the 
task, about conformity with user expectations, about self 
descriptiveness, controllability and error tolerance. 
Suitability for learning can be measured via comparison of 
several runs. Furthermore, contrasting inexperienced users 
(so called novice user) and very experienced users (experts) 
provides an interesting insight into the question if 
experience with an application provides a benefit for users. 
A reduction in time on task is expected for expert users, 
since they have developed a mental plan for the handling of 
an application. One should be aware of the fact, that not 
only performance in terms of time on task improves with 
experience, but that the structure of individuals knowledge 
(their mental model) changes as well [7]. 

The problems with user tests and questionnaires are 
similar to those of general psychological test; various testing 
aspects (such as reactance, conformity and other 
motivational issues) influence the outcome. Besides 
psychological testing effects, user tests are expensive and 
time consuming. Individuals need to be recruited and tested. 
Therefore, alternative methods that do not require user 

testing would be of value. Furthermore, methods that state 
precise concepts, which can then be transferred to other 
applications, are eligible. Cognitive Modeling fulfills the 
requirements mentioned above and is further a method to 
assess usability. Cognitive modeling is a helpful approach to 
learn more about cognitive processes during the interaction 
with applications. In addition, cognitive modeling offers the 
opportunity to explore the structure of users’ knowledge. In 
the future, predictive cognitive models can serve as a 
substitute for user tests. 

User tests can assess the most important aspects of 
usability, such as effectiveness and suitability for learning. 
Quantitative measurements can be replaced by cognitive 
models. In addition, cognitive models offer explanations 
about mental processes influencing usability, a benefit that 
goes beyond the scope of simple user tests. 

2) Usability and Smartphones: In the field of mobile 
applications, special challenges for usability testing exist. 
Especially, aspects of mobile context, limited connectivity, 
small and varying display size and aspects concerning data 
entry methods should be accounted for [8]. In a review on 
different studies on usability of mobile applications, 
Harrison et al. [9] stress the importance of mental load of 
applications for successful usage.   

Mental load is defined as the mental cost required 
fulfilling a task [10]. Mental (or cognitive) load is a 
multidimensional concept, with subjective, objective and 
psycho-physiological components and therefore difficult to 
measure [11]. The PACMAD (People At the Centre of 
Mobile Application Development) usability model for 
mobile devices includes mental load into the ISO definition 
and further incorporates the user, the task and the (more 
mobile) context [10].  

It is highly questionable if mental load, a 
multidimensional and crucial concept for mobile usability, is 
assessable with user test. User tests can assess the most 
important aspects of usability, such as effectiveness and 
suitability for learning. Quantitative measurements can be 
replaced by cognitive models. In addition, cognitive models 
offer explanations about mental processes influencing 
usability, a benefit that goes beyond the scope of simple user 
tests. 

B. Modeling and Usability 
It is stated that mental load is impossible to asses via 

heuristics or standards [9]. Hence, a different approach is 
needed. On the other hand, assessing cognitive load with 
cognitive models is possible and already carried out [11] 
[12].   

CogTool [13] and MeMo [14] are tools that allow user 
modeling of smartphone applications and websites and 
provide insights about usability problems.  

CogTool is a user interface prototyping tool, which 
produces a simplified version of ACT-R [15] code; it is 
based on keystroke-level modeling [13]. KLM divides tasks 
as into different kind of actions (e.g., keystrokes, pointing) 
and mental processes, which are represented through mental 
operators [16]. A specific amount of time is assumed for 
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each action and each mental operator. Total task time is 
composed of the sum of these. In order to produce a 
cognitive model with CogTool, one has to manually click 
together a storyboard. The model then runs along the 
pathway as described in the storyboard. CogTool predicts 
how long a skilled user will take for the specified task [13]. 
CogTool has limitations, for example, it is not possible for 
the model to explore the interface since the model only runs 
along the ideal-pathway (as defined by the storyboard). As a 
result of this, information about potential user errors or the 
influence of workload cannot be achieved. Furthermore, 
information about learning or the difference between expert 
and novice users cannot be uncovered using CogTool.  

MeMo is a Usability Workbench for Rapid Product 
Development, which can simulate user interactions with the 
system [14]. On the basis of tasks, possible solution 
pathways are searched by the model and deviations from 
these pathways are then generated; different user groups 
(e.g., elderly users, novice users) are taken under 
consideration [14], which is clearly an advantage of MeMo 
over CogTool. Another advantage of MeMo is that the 
model can produce errors, just as real users would do. A 
distinct disadvantage of MeMo is that it is not a cognitive 
modeling tool- important concepts about human cognition 
such as learning are not implemented. Therefore, the validity 
of the conclusions attained with MeMo is questionable. 

Besides the introduced ready-to-use tools, there are 
numerous modeling approaches that uncover how different 
cognitive aspect or design factors affect usability. These 
modeling approaches attempt to describe and predict 
coherence between usability influencing aspects. Results 
obtained from the modeling approaches introduced below, 
can be used to derive general advice for designers.  

1) Mathematical Models: Mathematical models are 
developed to predict measurements of usability, such as 
selection time as a function of external factors [16]. For 
example, the relation between item position and target 
search time in a linear menu can be described as a predictive 
mathematical model [17]. Other mathematical models focus 
on how factors such as menu size, target position and 
practice influence usability factors [16]. Such numerical 
models provide straightforward advice to designers. But on 
the downside, they are not helpful in identifying why these 
relations exist and give no information about learning and 
workload influence. One does not gain insight on how or 
why ongoing cognitive processes influence usability. 

2) Cognitive Models: Therefore, to reveal the causes of 
differences in usability performance measurements, 
cognitive models should be consulted. Just as mathematical 
models, they provide numerical predictions. But cognitive 
models simulate the interaction with an application in the 
way users would interact with the application. Specific 
cognitive processes such as attention, perception and 
memory are incorporated in these kinds of models and can 
serve as an explanation for differences in usability findings. 

The best way to build scientifically grounded cognitive 
models is to use cognitive architectures.  

a) Cognitive Architectures and ACT-R: Cognitive 
architectures offer a computable platform that represents 
well established theories about human information 
processing. With cognitive architectures, it is possible to 
simulate cognitive mechanisms and structures such as visual 
perception or memory retrieval. EPIC [18] and ACT-R [15] 
are two architectures used for modeling aspects of human 
computer interaction. This paper focuses on an ACT-R 
model of user interaction. To understand the modelling 
approach descirbed later it is helpful to know about the core 
mechanisms of ACT-R [15]. ACT-R is a hybrid 
architecture, which means that it has symbolic (knowledge 
representations such as chunks and rules called productions) 
and sub symbolic components (activation of chunks and 
utility of productions). The symbolic part consists of 
different modules and their interfaces (called buffers), with 
which these modules communicate with the production 
system. Only one element can be stored in each buffer at a 
given time. Similar to the brain, ACT-R distinguishes 
different areas called modules, which process certain classes 
of information. For instance, the declarative memory 
module, can store information in units called chunks. These 
chunks can be retrieved, which means that a chunk, which 
matches the given criteria is put into the according buffer 
and can be processed further by the production system. New 
chunks are constructed in the imaginal module. Other 
modules process visual or auditory information. There are 
also output modules such as vocal and motor modules. 
These are just some of the available modules. Furthermore, 
the sub symbolic components of the architecture are 
important. If some chunks are retrieved and used more often 
than other chunks, these chunks are given a higher 
activation level. This activation level determines how 
quickly a chunk can be retrieved or if it can be retrieved at 
all. Information that is not often used will decay over time 
and at some level will be forgotten and hence cannot be 
retrieved. The structure of chunks is characterized by 
different slots (or attributes) that can be filled with 
information. Category membership is represented in slots; 
this allows building semantic networks. Furthermore, new 
chunks can be learned during a task. The production system 
persists of rules defined by an “if” and “then” part. If the 
cognitive system with its modules and chunks in the buffers 
meet the conditions of the rule, the rule can be selected. In 
this case, the action part is executed. The production 
systems enables to initiatechanges to the chunks or to send 
requests to the modules (e.g., to the motor module “press 
mouse button”). If particular rules are more useful than 
others they receive a higher utility level and will be 
preferred to others. Also, reward can be given to 
productions if they lead to a goal, which also influences the 
utility level. It is possible to enable a process called 
production compilation. Here productions can be combined 
if they precede each other often or if identical chunks are 
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frequently retrieved in similar situations. This way the 
model will become faster just as human behavior improves 
as a task is done multiple times.  

b) ACT-Droid: In the modeling approach presented, a 
new tool, ACT-Droid [19] is implemented, which has 
outstanding benefits to other approaches. Instead of 
replicating mobile applications or websites as mock-ups or 
reprogramming aspects of the application for the model, 
ACT-Droid allows developing user models that directly 
interact with Android smartphone applications. The ACT-
Droid tool enables a direct connection of the cognitive 
architecture with an Android smartphone application via 
TCP/IP protocol. With this tool the modeling process 
becomes more convenient and much faster. In general one 
has to define a simlple interface version of the application in 
Lisp, with which the model can then interact with. When 
using ACT-Droid the ACT-R model can directly interact 
with the original Android application. The user model can 
interact with buttons and perceive changes on the interface.  

The tool has many advantages for the modeler. First of 
all, no mock-up version of the app or possible pathways 
need to be created, which saves a lot of time, compared to 
CogTool or MeMo. Secondly, models interacting with the 
application, can implement the full possibility and functions 
of the ACT-R architectures, which allows investigating a 
great number of different aspects of how applications affects 
human information processing and individual differences 
(e.g,. memory, learning, experience or age). Thirdly, with 
this modeling approach processing time as well as different 
kind of user mistakes can be evaluated. 

Main requirement for the usage of our approach are 
skills in modeling with ACT-R. The modeler just needs to 
know how to write (or change) productions and have 
rudimentary knowledge of the sub symbolic part of ACT-R. 
No lisp-programming is needed. Thus, ACT-Droid makes 
modeling with ACT-R much less complicated and more 
straightforward.  

c) Modeling of Smartphone Applications: Applications 
for smartphones are small programs. Most applications are 
very specific for their field and are hence built to solve 
limited tasks. The limited scope of applications and the fact 
that successful applications have a simple and consistent 
design, make them profound for cognitive modeling. 
Developing a user model able to interact with the 
application is an accomplishable modelling task and can 
help uncover difficulties in the application that negatively 
influence usability. Some factors influencing the usability of 
smartphone applications, especially mental load or aspects 
concerning mental models are especially eligible to be 
evaluated with cognitive models. 

Building up a mental model of an app the user normally 
orients oneself towards the menue structure.  

C. Menus 
An important research question concerning usability is 

how a menu structure should be designed in order to offer 
the best opportunity for navigating an application [20]–[23]. 
Menus help users find the right information. Different types 
of menus exist, e.g., square menus, pie menus, linear menus, 
hierarchical menus [23]. This paper focuses on linear 
hierarchical menus. Research on menu structures and design 
has revealed many important factors contributing to 
successful usability of menus. The following findings are 
derived from strongly controlled laboratory studies or 
studies dealing with either desktop menus or website menus. 
Consequently, it is questionable if these findings can be 
transferred to real-life smartphone applications.  

Zhang states that clear and consistent labeling, 
predictability, a minimum of interaction steps, but also the 
avoidance of long list in a menu structure are import factors, 
contributing to the usability of menus [8]. 

Nilsons [17] identifies important factors that influence 
item selection time, such as menu length, item placemen and 
menu organization. Shorter menus are beneficial; e.g., users 
are faster in selecting and searching items from shorter than 
from longer menus [24]. When it comes to menu 
organization, organization of items in a menu is more 
beneficial than random placement of items [25]. Semantic 
and alphabetic organizations are two typical ways of 
organizing items. The target position of an item on a menu 
has a strong influence on item search time. Targets 
positioned on the top of a menu are found faster than those 
positioned in the middle [26]. Targets positioned on the 
bottom of the menu are likewise easier to be found [16]. The 
more users are familiar with a menu, the less time they take 
for finding an item, this is known as practice effect [20]  
[27]. If the target item is included in the menu, scanning is 
quicker, than if the target is not included in the menu [16]. 
Target items are found faster, if the item label is strongly 
associated to the target item [21].   

a) Menu Hierarchies: Menu hierarchies are another 
factor that influences the usability. Lee and MacGregor [28] 
point out that two main factors influence search time for an 
item in a hierarchical menu; the number of pages (or levels) 
that have to be accessed and the time required to select 
alternatives from pages. The required time is directly 
dependent on the number of alternatives per page. For 
smartphones, finding an adequate depth and breath for the 
menu hierarchy is especially important. The small display 
size and scrolling time, make it even more important to 
provide users with and easy accessible and transparent 
menu. Some design experts recommend, that menus of 
mobile phones should rather be narrow and deep than 
shallow and broad [29]. Others state that adding more 
hierarchy levels (especially for menus with more items) is 
advisable, but that hierarchies with more than three levels 
should be avoided [30]. In General, findings in the literature 
are conflicting [31]. Another aspect influencing hierarchies 
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is scrolling. Cockburn and Gutwin propose a mathematical 
model linking the relationship between menu- scrolling and 
hierarchy on desktop computers [31]. When investigating an 
adequate ration between menu depth and items, instead of 
discussing the numbers of items or menu level, one can also 
focus on the question if users mental model matches the 
model of such a menu [23] [30]. Since measuring mental 
models is doubtful with classical methods and ACT-Droid 
provides the possibility to model application, this essential 
topic of menu hierarchies should be studied with cognitive 
modeling. 

b) Menu Structures: Currently, most modeling studies 
on menu design focus mainly on visual processing [16] [24] 
[26] [32] [33] for evaluating menu design and usability 
aspects. According to an EPIC model from 1997 [32], eye 
movement pattern are a 50/50 mixture of sequential top-to-
bottom and randomly searching. When serial top-to-bottom 
search is executed, the users’ eye moves down the menu 
with constant distance in each saccade. Because of parallel 
examination of multiple items, the eyes regularly pass the 
target item by one saccade. Motor movements do not occur 
before the target is located. An ACT-R model from the same 
year [33] on the other hand predicts, that eye movements are 
exclusively top-to-bottom, and that the distance of each 
saccade varies. The eyes never pass the target items and that 
motor movement follows the saccades and happens before 
the target is located. Succeeding studies [24] [26] that used 
an eye tracking experiment and an ACT-R / PM model 
found that the first eye fixation is almost always towards the 
top of a menu and that most of the time visual search is top-
to bottom. Search is rarely random. Some items are skipped 
and then backtracked. These models, with a focus of visual 
encoding, provide explanations for effects, such as the 
preferred item position. Mathematical models have a strong 
focus on different visual search strategies as well. Serial 
search and direcfted search are two modeled visual search 
strategies [16]. Serial search labels, top-to-bottom search 
and directed search describe search as determined by 
focusing to the assumed location of the target. Mathematical 
models also suggest that visual search of novice and expert 
users follows different functions [20]. These models 
describe the fact that as learning proceeds performance 
increases, which is explained through remembering the 
position of visual items [20]. As a conclusion, most 
modeling studies dealing with aspects of menu design, focus 
on visual and motor processing and few studies compare 
expert and novice performance [20]. Even though empirical 
studies indicate that menu-structures should incorporate the 
mental model of potential users and claim that mental 
models changes as users become more familiar with the 
menu structure [25] [21], as far as the authors are aware, no 
cognitive modeling studies focusing on this exists. This 
paper will present how cognitive model can address user’s 
mental models of menu structure of applications. 

 

III. METHODS  

A. Purpose of this study 
The study concept is designed to investigate menu 

hierarchies of an application. Two versions of an application, 
differing in menu depth, are compared using concepts 
derived from cognitive modeling. One version has two 
subcategories with the disadvantages of more required 
clicks; the other has only one level of sub-categories and 
therefore requires fewer clicks. In this paper, we develop 
modeling concepts for different aspects of usability. Aspects, 
such as efficiency, suitability for learning and the 
development of mental models are measured. A combination 
of empirical data and cognitive modeling approaches is 
presented. 

We propose that, when it comes to menu structures, it is 
important that a menu should be designed to fit the cognitive 
capabilities of humans. If designers focus on reducing clicks, 
they might miss the turning point, that less clicks are 
associated with more cognitive load (e.g., memory load). In 
general, care should be taken in the design of applications, so 
that the principles of optimal human information processing 
are met. It is commonly agreed, that human knowledge is 
represented in form of a semantic network [34]. Within this 
network, categories are associated with subcategories and 
retrieval of subcategories succeeds best and faster when the 
category representations are addressed. In the study we will 
assess how well an application meets the mental model that 
users have about the application. 

Novice (first interaction with a new version) and expert 
(second interaction with a new version) behavior will be 
compared, so information about the evolving mental model 
of users can be obtained. Furthermore, the suitability for 
learning can also be measured. Most studies investigating 
menu designs are strongly controlled and hence artificial 
laboratory studies [16] [26]. Quite the contrary is the case for 
the current study, which is conducted with a smartphone 
application. Furthermore, a very realistic task is utilized. Test 
persons are asked to select products from a shopping list 
application which provides them with a ready to use 
shopping list. This paper presents a combination of an 
empirical study of the usability of an Android shopping list 
application with cognitive modeling approaches. Cognitive 
modeling of the user behavior incorporates the full ACT-R 
architecture. Although visual processing of menus is 
modeled, this study focuses on the development of an 
adequate mental model and learning processes as users 
would do it.  

B. The Application 
Both versions of shopping list application are designed 

for Android. The application allows users to select products 
out of either an alphabetically ordered list or via categorical 
search (see Fig. 1). The chosen products are then added to a 
list. The difference between the two versions is menu depth: 
The three layer version (3L) has one more menu level than 
the two layer version (2L). The first page of the application is 
the same for both versions: three buttons are presented: 
“overview”, “shops” and “my list”. For both versions, after 
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TABLE I.  DESIGN OF STUDY 1 

order of versions 3L 
(new) 

3L 
(expert) 

2L 
(new) 

2L 
(expert) 

3L first, 2L second Block 1 Block 2 Block 3 Block 4 
2L first, 3L second Block 3 Block 4 Block 1 Block 2 

selecting “overview” the list of the alphabet appears. Three 
or two letters are always grouped together on one button, 
e.g., “ABC”, “DEF”…. Selecting one of those buttons then 
results in an alphabetical ordered list of the products. A click 
on a small checkbox in the right of the product selects it. If 
users click on shops, the categorical pathway is accessed. 
For both versions, clicking on shops results in a list of seven 
shops (bakery, drugstore, deli, greengrocer, beverage store, 
stationery, and corner shop). Each of these shops is 
represented by a button. For the 2L version, selecting one of 
the shops results in an alphabetical ordered list of the 
products available in that particular shop. For example, by 
clicking on greengrocers all items that can be found in a 
greengrocers store are presented (apples, bananas, 
blueberries, cherries, etc.) and are selected by a click on the 
checkbox. For the 3L version, the shops have seven 
subcategories, each. For example, when selecting 
greengrocers, one is presented with the subcategories exotic 
fruits, domestic fruits, tuber vegetables, herbs, seeds and 
nuts, mushrooms and salads. When selecting a subcategory, 
a list of products that can be found under this subcategory, 
appears and can be selected via the checkbox. For both 
versions, selecting “My List” from page one results in a 
shopping list, which comprises the selected products plus 
information about the store, in which the products are 
available. 

 
 
 
 
 

 
 
 
 

a)  
b)  
c)  
d)  
e)  
f)  
g)  
h)  
i)  
j)  
k)  
l)j)  

 
 

C. Procedure 
The first study is designed in order to investigate if the 

user interaction with the two versions differs on a statistical 
significant level. It further allows a conclusion on the overall 
usability of the application- namely on efficiency, 

effectiveness and suitability for learning. To ensure 
conditions close to real-life interaction, all navigating 
possibilities the application provides are allowed. An ACT-
R modeling approach concerning the evolvement of user’s 
mental model and the influence of cognitive load is also 
presented. The second study supplements the first study. 
The functionality of the application is restricted, only the 
categorical pathway is allowed for product search. This 
restriction is necessary for two reasons. First, it substantiates 
assumptions about mental models of users derived from the 
first study. Second, the restriction allows investigating 
learning curves. With help of the learning curves differences 
between products can be uncovered. In both studies 
participants were asked to find products, using both versions 
of the shopping list application. The application was 
presented on a Google Nexus 4 smartphone, running with 
Android 4.1.2. Each product was read to the participant by 
the experimenter and then the participant was asked to find 
the product and select it. In the first study participants were 
free to choose the pathway, which led them to the products. 
They were instructed to use the different possibilities the app 
provided, so they could either find the products via the 
alphabetical or via the categorical pathway. In the second 
study, participants were asked to select products merely 
using the categorical pathway. 26 student participants (12 
male and 14 female, agemean= 23) participated in the first 
study and 17 student participants (6 male and 11 female, 
agemean= 26) participated in the second study. After receiving 
standardized oral instructions participants were instructed to 
select a list of products. For each trial a product was read to 
participants by the investigator and participants had to find 
the product. After selecting a product, participants were 
asked to return to the first page and then the next trial started.  
 

 
 
Enforcing the participants to always return to the first 

page (e.g., starting point) was necessary for reasons of 
experimental control. After selecting eight or nine products, 
participants were asked to read the shopping list (in order to 
assure learning of the store categories). For the next block, 
the items were identical but presented in a different sequence. 
After completing the second block, the investigator presented 
the participant the other version and the two blocks of trials 
were repeated. For the first study half of the participants first 
worked with the 2L version and the other participants began 
with the 3L version (see Table I). In the second study all 
participants first worked with the 2L version and then 
switched to the 3L version (see Table V). 

 
Figure 1. Different product pathways for alcohol free beer. The 

orange path is the alphabetical pathway. The green and blue paths 
are the categorical pathway. The green pathway is the pathway of 

the 3L app, the blue of the 2L app. 
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IV. RESULTS   

A. Study 1 
1) Hypothes:  
a) The first study investigated how product search time 

is influenced by menu depth, expertise and version specific 
expectancies, e.g., users’ mental model of the respective 
application. Product search time is an indication of 
efficiency.  

b) The main difference between both versions of the 
application is menu depth. We expected overall product 
search time to be longer for the three layer version than for 
the shallower two layer version.  

c) As participants become more familiar with the 
application, we expected product search time to decrease as 
experience increases. Otherwise, the application would not 
be suitable for learning. 

d) Finally, we were interested in how version specific 
expectations, gained with one version of the application can 
influences performance in product search with the other 
application. We propose that learning transfers from one 
version to the other will occur.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) Descriptive results: All products could be found with 

both versions by all groups of participants, therefore, 
effectiveness of the application is given. Fig. 2 shows the 
mean trial time and standard deviations for the different 
conditions. The green bars represent the group 2L first, 3L 
second and the blue bars the group 3L first, 2L second.  

 
 
 

For participants of group 3L first, 2L second, the mean 
trial time of block 1 (3L new) is 10.048 seconds and 
decreases approximately 4 seconds for block 2 (3L expert) 
(mean trial time 5.861 seconds). After switching to the 2L 
version (2L new) time decrease to 4.928 seconds (block 3) 
and reaches 4.229 seconds for 2L expert (block 4). For 
participants of group 2L first, 3L second a trial in the first 
block (2L new) has a mean duration of 8.322 seconds and a 
trial in the second block (2L expert) a mean duration of 
3.971 seconds. After participants switch to 3L version 
(block 3, 3L new) time increase to 7.376 seconds and 
decreases again to 5.875 seconds (block 4, 3L expert).  

 
3) Statistical analysis and results: To investigate how 

product search time is influenced by menu depth, expertise 
and version specific expectancies a 2x2x2 ANOVA was 
conducted. 

The following factors were considered: the factor order 
of the versions with the two steps “3L first, 2L second” and 
“first 2L than 3L”; the repeated measurement factor version 
with the two steps “3L version” and “2L version” and the 
repeated measurement factor expertise with the two steps 
“new” and “expert”.  

The overall result of Levene test for sphericity was not 
significant therefore, the overall distribution of the error 
variance is equal in all groups and an ANOVA could be 
performed.  

The ANOVA reveals a significant main effect of factor 
version with F (1,24)=12.527, p<0.005 and a medium effect 
size (partial η2=0.343). Descriptive results indicate that the 
2L version is overall faster than the 3L version, indicating 
that shallower menu depth, results in less search time. This 
effect is labeled version effect. Another significant main 
effect is found for the factor expertise F (1,24)=29.625, 
p<0.001 and a medium to large effect size (partial η2 
=0.552). Descriptive results show, that performance in the 
new conditions is slower than in the expert conditions, 
which is a clear indication that learning occurs. This effect 
is labeled experience effect.  

The interaction between version and order of the 
versions is also significant F (1,24) =7.076, p<0.05, with a 
medium effect size (partial η2=0.228). The interaction 
between version, novelty and order of the versions is further 
significant, with F(1,24) =13.661, p<0.001 and a medium 
effect size (partial η2=0.363).  

 
 
 

Figure 2. Mean trial time of study 1. 
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TABLE II.  DESCRIPTIVE STATISTICS OF STUDY 1 
Mean Std. Deviation N 

3L new 2L first, 3L second 10.048 4.137 13 
3L first, 2L second 7.376 4.220 13 
total 8.712 4.315 26 

3L expert 2L first, 3L second 5.861 1.793 13 
3L first, 2L second 5.875 4.013 13 
total 5.868 3.045 26 

2L new 2L first, 3L second 4.928 1.122 13 
3L first, 2L second 8.322 2.063 13 
total 6.625 2.375 26 

2L expert 2L first, 3L second 4.229 1.340 13 
3L first, 2L second 3.971 .879 13 
total 4.100 1.118 26 

 

TABLE III.  POST-HOC COMPARISON WITHIN SUBJECTS 

order conditions t df sig. (2-tailed) effectsize (dz) 
 2L first, 3L second 2LNvs. 2LE** 6.940 12 0.000 1.924 

2LE vs. 3LN* - 3.273 12 0.007 0.907 
2LN vs. 3LE 1.956 12 0.074 0.542 
2LE vs. 3LE -1.699 12 0.115 0.471 
3LN vs. 3LE 1.272 12 0.227 0.352 
2LN vs. 3LN 0.795 12 0.442 0.220 

3L first, 2L second 3LN vs. 2LN** 5.221 12 0.000 1.448 
3LN vs. 2LE** 5.098 12 0.000 1.414 
3LE vs. 2LE* 3.591 12 0.004 0.995 
3LN vs. 3LE* 3.590 12 0.004 0.995 
3LE vs. 2LN 1.537 12 0.150 0.426 
2LN vs. 2LE 1.343 12 0.204 0.372 

 
Note that 2L and 3L connote in 2L version and 3L version and E in expert and N in new.  

Our data show a version effect (the 2L version is overall 
faster than the 3L), an overall experience effect (main effect 
of expertise) and an interaction between all three factors, 
which we label version specific expectation effect, and 
which might be related to users expectancies. These 
expectancies might be influenced by users exposure to 
different version. 

 
4)  Post-hoc Tests: To uncover the origin of the 

significant effects, post-hoc t-tests were computed. 
Differences within groups can be discovered with paired 
sample tests and differences between the groups with 
independent sample t-test. Note that the alpha level was set 
to 0.01 (instead of 0.05) in order to counteract alpha-error 
accumulation.  

The paired sample test reveals the following interesting 
effects: a learning through experience effect, a transfer 
effect and a switching effect. When the corresponding 

version is presented first, for both versions, a statistical 
significant learning through experience effect is revealed by 
comparing the new and the expert condition. For 2L version 
first, the difference between new and expert is highly 
significant (t (12)=6.940, p<0.001) as is the difference 
between new and expert for 3L version first, with t (12)= 
3.590, p<0.005. The comparison between new and expert 
condition with the same version, but presented as second 
version revealed no significant effects. So for both versions 
performance in the third and fourth run does not improve 
significantly. Nevertheless, the improvement between new 
users and expert users is a clear indication that both versions 
of the application are suitable for learning.  

There are significant transfer effects in the group 3L 
first, 2L second; as there is a significant improvement 
between 3LN and 2LN, with t (12)=5.221, p<0.001as well as 
from 3LN to 2LE (t (12)= 5.098, p<0.001 and from 3LE to 
2LE ((t(12)=3.591, p<0.01).  
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TABLE IV.  POST-HOC COMPARISON BETWEEN SUBJECTS 
conditions t df sig. (2-tailed) effectsize(ρ) 

2LE2 vs. 2LN1  -6.000** 24 0.000 2.353 

2LN2 vs. 2LN1  -5.211** 24 0.000 2.043 

3LN1 vs. 2LE2  5.181** 24 0.000 2.032 

3LE1 vs. 2LE2  3.412* 24 0.002 1.338 

3LE1 vs. 2LN2  -3.247* 24 0.003 1.273 

3LN1 vs. 3LE2  2.611 24 0.015 1.023 

2LE2 vs. 3LN1  -2.563 24 0.017 1.005 

2LN2 vs. 2LE1  2.421 24 0.023 0.949 

2LN2 vs. 3LN1  -2.021 24 0.055 0.792 

3LN1 vs. 3LN2  1.631 24 0.116 0.639 

2LE2 vs. 3LE1  -1.403 24 0.173 0.550 

3LN1 vs. 2LN2  1.346 24 0.191 0.528 

3LE1 vs. 3LN2  -1.192 24 0.245 0.467 

2LN2 vs. 3LE2  -0.819 24 0.421 0.321 

2LE2 vs. 2LE1  0.580 24 0.567 0.227 

3LE1 vs. 3LE2  -0.012 24 0.991 0.004 

 
Note that 2L and 3L connote 2L version and 3L version. E means expert and N means new. The numbers 1 and 2 correspond to the group. Number 1 

stands for the group 3L first, 2L second and 2 for group 2L first, 3L second. For example 2LE2 vs. 2LN1 is the comparison between the 2L version 
expert, where the 2L version is presented as first version (group 2) versus the 2L new version, when the 2L version is presented second (group 1). 

For the group 2L first, 3L second a significant switching 
effect, e.g., a drop in performance between 2LE and 3LN is 
revealed (t (12) = -3.273, p<0.01). 
    The independent sample t-test compares conditions that 
do not comprise of the same users. For novice users, 
interacting the very first time with this application, 
descriptive results indicate a general advantage for the 2L 
version. Nevertheless, on a statistical level, for first time 
users, both versions are equally difficult (3LN1 vs. 2LN2, t 
(24) =1.346, p=0.2). For expert users, without experience 
from a different version, the 3L version is significantly 
slower, than the 2L version (3LE1 vs. 2LE2, t (24) = 3.412, 
p<0.005).  

But as users become more experienced with the 
application in general (e.g., comparing 2L expert second 
with 3L expert second) both version do not differ on a 
statistical level (2LE2 vs. 3LE1, n.s.). Table IV presents the 
results of a two-way t-test between the two groups. In 
conclusion, statistical differences between both versions are 
found, but for real novice users and very experiences users, 
both versions do not differ on a statistical level. Therefore, 
efficiency is the same for both versions. 

 
5) The ACT-R Modell: In order to get a deeper 

understanding about the causes and mechanisms indicated 

by the data, a conceptual ACT-R model was developed that 
does the same task as the participants.  

The model was written to search for products just as 
human participants do. For simplicity, only product search 
via the categorical pathway is modeled. As first step 
encoding of the requested product is required. Please note 
that this paper does not focus on visual-motor processing, 
and no eye tracking data is collected, we will present merely 
the core concept of how the models mental model changes. 
Nevertheless, supplementing the model with visual 
processes is unproblematic. This is done through goal 
buffer.  

 

Hence, the goal buffer contains the information about 
what product is required. The next step represents an 
attempt to retrieve information from declarative memory 
about the version specific category membership of the 
required product.  

This knowledge is represented as a chunk and consists of 
all vital information for finding the product in the 
application. Hence, version specific category membership 
chunks contain all information necessary to navigate the 
application. These chunks represent the mental model. The 
slots of the chunks contain the words leading to the product 
(see Fig. 3). For models new to the application, version 
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Figure 3. An example of different chunk-types used in the model. P2 and P3 are the version specific category membership chunks for the 2L and the 3L 
version, respectively. A1 and A2 are the association chunks. 

specific category membership chunks are nonexistent and 
for this reason the retrieval is unsuccessful. Therefore, such 
version specific category membership chunks have to be 
build via the general semantic knowledge. The general 
semantic knowledge depicts world knowledge and includes 
association chunks between products and shops and 
between products and subcategories. This general semantic 
knowledge (association chunks) is utilized for searching the 
requested product. If the retrieval of a version specific 
category membership chunk is unsuccessful, a different 
product search strategy is selected. Word for word, each 
term represented on screen, is read. For each word the 
attempt to retrieve an association chunk between the desired 
product and the current word is made. For example if the 
requested product is alcohol free beer and the word bakery 
is read, an attempt to retrieve a chunk that holds an 
association between bakery and alcohol free beer is made. If 
such a chunk cannot be retrieved, the next word is read, for 
example beverage store and again the attempt to retrieve a 
chunk that holds an association between alcohol free beer 
and beverage store is made. If such a chunk can be 
retrieved, the word is selected and a version specific 
category-membership chunk is build.  

 
The building of these chunks takes place in the imaginal 

buffer. Fig. 3 represents the different chunks used in the 
model for the product alcohol free beer. After the word is 
selected, the next page of the application opens and the 
process of reading and searching for association chunks is 
repeated. Furthermore, if retrievals of association chunks 
are successful, the version specific category membership 
chunk is supplemented. Finally, when the requested product 
is found and clicked on, all slots of the version specific 
category membership chunks are filled with content. The 
chunk is then cleared from the imaginal buffer and placed 
into declarative memory. Thus, when the product is 
requested a second time, a complete product path is 
available and can be retrieved. 

In summary, navigating the application is modeled via 
two types of chunks- association chunks and version 
specific category membership chunks. Association chunks 
represent world knowledge and contain association between 
different words and can be retrieved from declarative 
memory without prior exposure to the application. Version 
specific category membership chunks represent the mental 
models of the pathways leading to the products. They are 
built in the models imaginal buffer, during exposure with 
the application and can only be retrieved if the product was 
encountered before.  

 
6) Discussion of the effects: Is a shallower menu-

structure beneficial? 
a) Empirical: The version effect discovered in the 

ANOVA indicates that the 2L version is overall faster than 
the 3L version. Post-hoc tests show no statistical difference, 
neither for real novice users, nor for very experienced users. 
On a descriptive level, as users become more familiar with 
the application, the benefit of a shallower version is less 
relevant, since the difference 2L expert vs. 3L expert is less 
than the difference between 3L new vs. 2L new. 

 
b) Explanation: A shallower menu structure requires 

fewer clicks than a deeper menu structure. But more 
interesting in this context is, the question to what extent 
higher level cognitive processes such as memory retrievals 
are responsible for the difference in product search time 
between the two versions. We argue that more memory 
retrievals can be seen as a higher amount of cognitive load. 
Issues concerning cognitive load, can best be answered via 
cognitive modeling.  

c) Modeling: The building of version specific category 
membership chunks out of association chunks continues 
until all product pathways are established. This building 
process of version specific category membership chunks 
takes longer for 3L version than for 2L version. Since the 3L 
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TABLE V.  DESIGN OF STUDY 2 

order of versions 2L  
(new) 

2L  
(expert) 

3L 
 (new) 

3L 
(expert) 

2L first, 3L second Block 1 Block 2 Block 3 Block 4 

version requires more interaction steps and therefore more 
encoding of these steps than the 2L version. Furthermore, 
for the 3L version more retrievals of general knowledge 
(about which shop holds which subcategory, and which 
subcategory holds which product) are needed. The 
knowledge of subcategories is unnecessary for the 2L 
version. An “expert” model can retrieve version specific 
category membership chunks for all products. Retrievals 
from declarative memory are much less frequently then for a 
“learning” model, functioning with association chunks. For 
both versions the number of retrievals is the same as soon as 
interaction with the application is realized solely via version 
specific category membership chunks. So, for an 
“experienced” model, the number of clicks alone is 
responsible for differences in search time.  

Note: If simply motor processes (e.g., clicks) differ 
between the two versions, a new study should investigate if 
the benefit of the 2L version is still measurable for products 
that require menu scrolling, or if the 3L version may be 
more favorable for such products.  

In general linear hierarchical applications with shallower 
menu structures require more scrolling than those with a 
deeper menu structure. It is very plausible that for expert 
users, a deeper menu-structure with less scrolling processes 
is more beneficial than a shallower menu structure, since the 
amount of cognitive load (memory retrievals) is the same 
for both versions. 

a) Does Learning occur? 
a. Empirical: The data show a clear experience effect 

as participants become more familiar with the application, 
the mean trial duration decreases.  

b. Modeling: Learning, defined as the reduction of 
product search time, can be explained by the modeling 
approach as follows: As long as a mental model of the 
product pathway for all products is not complete, the 
constant retrieval of association chunks is necessary. For 
each processed word a retrieval request for an association 
chunk containing both the product and the current word is 
made. If such an association chunk cannot be retrieved the 
next word is read and the process is continued until an 
association chunk is found. Then the word is selected and 
version specific category membership chunk is built up. 
Searching, encoding and retrieving chunks take time. When 
version specific category membership chunks are available 
in declarative memory the number of retrievals is reduced- 
resulting in reduced product search time. So, a “novice” 
model is constantly visual searching, encoding and 
retrieving chunks. An “expert" model, on the other hand has 
the relevant knowledge about specific product pathways and 
therefore, less time is spent on retrieving chunks. 

In conclusion, the main reason for learning is that a 
mental model of the application is built. This mental model 
consists of the relevant product pathways. As soon as the 
version specific category membership chunks can be 
retrieved, performance increases. Furthermore, an adequate 

mental model results in less cognitive load, since less 
memory retrievals are necessary for navigating. 
 

a) How do version specific expectations influence 
performance? 

Transfer effect: From the 3L to the 2L version. 
Empirical: Performance improvements between 3L to 

the 2L version are labeled transfer effect.  
Modeling: After repeatedly interacting with the 3L version 
of the application, a mental model for the 3L version exists. 
This means that version specific category membership 
chunks containing the correct product pathway for this 
version for all products are represented in declarative 
memory. The version of the application is then changed, but 
the task is kept the same. Without any kind of disturbance, 
the 3L-version specific category membership chunks are 
adequate to fulfill the task with the 2L version of the 
application. This is the case, since no additional information 
needs to be learned when switching from 3L version to the 
2L version (note that the 3L version includes all menu-
structures of the 2L version, but has more menu depth). 
Therefore, performance does not drop when switching from 
the 3L version to the 2L version.  

Switching effect: From the 2L to the 3L version 
Empirical: A switching effect occurs when participants 

familiar with the 2L version change to the 3L version. In the 
empirical data the effect is visible, in the increasing product 
search time from 2L first expert to 3L second new.  

Nevertheless, participants who use the 3L version 
second benefit from their experience with the 2L version 
(product search time for 3L second is lower, than for 3L 
first). 

Modeling: Switching from the 2L version to the 3L 
version irritates the users because they end up with a menu 
they did not expect and are not familiar with. In terms of the 
modeling approach this implicates that 2L-version specific 
category membership chunks do not lead to the required 
product, when these are deployed with the 3L version. On 
the third page of the application redemption of strategy is 
required and the problem is solved via association chunks. 
New version specific category membership chunks are built 
for the 3L version. When the 3L version is presented a 
second time, these chunks can be retrieved and the product 
search time decreases.  

b) General remarks for Modeling Menu Structures: In 
the presented approach, mental models of product pathways 
for linear hierarchical menus are represented as chunks. The 
slot values of these chunks depict the categories, 
subcategories and the target in the hierarchical menu. In 
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order to build a mental model, association chunks, 
containing associations between words are used. These 
association chunks serve as general semantic knowledge. 
Performance improvements occurring when novice become 
expert users, are explained through the change of strategy. 
Novice users rely on association chunks and experts on 
chunks containing the mental model of the specific product 
pathway. A strategy depending on associations requires 
more retrievals than a mental model strategy. The more 
retrievals a strategy needs, the higher the cognitive load. If 
experienced users are confronted with a different menu 
hierarchy then the one they are familiar with, depending on 
the fashion of the new hierarchy, two opposite effects can 
occur. In general, if hierarchy levels are reduced, existing 
mental models of product pathways are still useful and 
productive, a transfer effect occurs. On the other hand, if 
hierarchy levels are added, new mental models of product 
pathways are required, a switching effect is found. 

A. Study 2 
A second study was conducted, to substantiate findings 

and model assumptions of the first study and also to 
investigate the influence of expectancies on product 
associations. Due to the small number of participants in the 
second study, statistical tests are not computed. As in the 
first study participants were asked to search for products 
with the shopping list application. The products were read to 
the participants and the participants had to search for the 
products in the application, select the products and then 
return to the first page. This procedure was the same, as in 
the first study except, that participants could only search via 
the stores pathway. This constraint guaranteed that 
participants built up a mental model of the product path 
from the start. The study design is another difference to the 
first study. In the second study all of the participants first 
worked with the 2L version and then switched to the 3L 
version.  

 
1)  Hypothesis 

a) Learning and Version Update: 
The same experience and switching effects as in the first 

study were assumed. We expected product search time to 
decrease, if the same version is used the second time and to 
increase after the version switches to a version with extra 
menu layers. 

b) The Influence of Expectations: We predicted that 
longer product search times occur for category pairs that are 
more unfamiliar than others. We further predicted that as 
category affiliation become more familiar, differences in 
search time between products disappear.  

 
2) Results 

a) Empirical Results: As Fig. 4 shows, there is a clear 
switching effect (e.g., an increase in mean product searches 
time, after participants switch from the 2L version to the 3L 
version).  Similar to the previous study, the data show a 

clear experience effect, with product search time decreasing 
as participants become more familiar with the version of the 
application; therefore, for both versions (3L and 2L) product 
search in the new condition takes longer than the expert 
condition. To decipher how product search time differs 
between different products, learning curves were computed 
(see Fig. 5). These present the mean product search time for 
each individual product. With such en detail information, 
differences between specific products can be uncovered. 
The exact product search times are also presented in Table 
VI. In both of the new conditions strong time variations can 
be observed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In the expert conditions, on the contrary only small 

variations between the different products exist.  
A possible explanation for the observed variations in the 

new condition is, that some products are easier to find than 
others. The non presence of variations in the expert 
conditions indicates, that users have a correct mental model, 
e.g., they have learned the item labeling of the application. 
Hence, a qualitative explanation for product search time 
variations between different products will be provided. 

Products that result in large search time in the new 
condition are the second clabbered milk, the third canned 
pineapple and the eighth product gilthead. Products with 
rather short product search times in the new condition are 
product number four body wash and product number seven 
top-fermented dark beer. 

In post-hoc questioning the participants revealed that 
they expected clabbered milk in the beverage store and not 
in the deli as it was presented in the app. They also reported 
that they did not expect canned pineapple in the corner 
store and some participants were not aware that gilthead is a 
fish. A plausible explanation for variations between 
products is the fact, that some category pairs are more 
familiar for the participants than others. Higher standard 
deviations for the more uncommon products in the new 
conditions also provide evidence for this explanation (see 
Table II). 

 
Figure 4. Mean trial time of study 2. 
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TABLE VI.  MEAN TRIAL TIME PER ITEM FOR STUDY 2. 

 new  expert 

 3L 
mean 

3L  
std 

2L 
mean 

2L  
std 

 3L  
mean 

3L 
std 

2L 
 mean 

2L  
std 

Alkoholfreies Bier   
alcohol free beer 

8.918 8.268 10.408 8.510 Alkoholfreies Bier 
alcohol free beer 

5.521 1.643 3.984 0.907 

Dickmilch 
 clabbered milk 

10.513 9.029 20.596 8.242 Dorade  
gilthead 

5.143 1.213 5.378 5.758 

AnanasDose             
canned pineapple 

10.007 13.380 17.091 9.222 AnanasDose 
canned pineapple 

5.706 2.026 5.249 4.337 

Duschgel  
body wash 

7.346 2.103 4.844 2.117 Duschgel 
 body wash 

5.566 1.410 4.108 0.747 

Amerikaner 
 black and white cookie 

11.241 7.187 5.585 4.836 Edamer  
Edam cheese 

5.274 1.242 5.514 2.394 

Edamer  
Edam cheese 

7.053 2.413 11.114 8.260 Altbier                         
top-fermented dark beer 

4.920 1.556 3.895 1.678 

Altbier                           
top-fermented dark beer 

4.717 1.238 3.970 1.054 Acrylfarbe  
acrylic paint 

5.536 1.909 4.259 1.706 

Dorade 
 gilthead 

13.232 15.250 19.189 21.592 Dickmilch 
 clabbered milk 

6.896 2.357 4.913 3.161 

Acrylfarbe 
 acrylic paint 

7.024 2.069 7.759 5.885 Amerikaner 
 black and white cookie 

4.853 1.034 2.683 1.230 

 

For most of the products, participants take longer with 
2L version new than with 3L version new. This is probably 
due to learning transfer over the version, as discussed in the 
first study.  

For product number four black and white cookie product 
search time with the 3L version new is longer than with the 
2L version new. Post-hoc questioning revealed, that 
participants did not expect black and white cookie in the 
subcategory danish (pastry). 

Modeling: The modeling approach from the first study 
can easily be complemented to explain the effects revealed 
by the learning curve. The results discussed indicate that 
uncommon products and product category pairs result in 
longer search times.   

To model such an effect, the general semantic 
knowledge of the model should be modulated, so that 
association chunks exists, that are correct in daily life (e.g., 
clabbered milk is associated with beverage) but misleading 
for the application. This would make it possible for the 
model to make errors. These errors would then result in 
longer product search times, if association chunks retrieved 
from declarative memory result in misleading product path. 
Another possibility to model longer product search times for 
uncommon words would be through parametric adjustments 
to the model. Common association chunks are required 
more often, than uncommon association chunks, therefore 
the activation of the common chunks should be higher, 
making unsuccessful retrievals of uncommon association 
chunks possible and therefore resulting in longer product 
search times.  

 
3) Conclusion: In the second study, the same experience 

effect (experts are faster than novices) and the same transfer 
effect as in the first study are observed. These effects are 

even found when only the categorical pathway is used. This 
restriction ensures that the product pathway is represented 
by version specific category membership chunks as 
described in the first study. 

Furthermore, an extending modeling approach offers 
two explanations that can account for variations in product 
search time in the new conditions. One explanation is that 
for uncommon product category pairs misleading 
association chunks are retrieved.  

The other is that for unfamiliar products association 
chunks are used very rarely and therefore these chunks have 
a lower activation and retrieval failures occur.  

 

 
Figure 5. Mean learning curves for study 2. 

 
Thus, designer should use only such labels for categories 

that are unambiguously linked to the products. Especially 
for first time users of an application intuitive labeling is 
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important. Expert users, on the other hand, can cope with 
uncommon labels, since they have a correct mental model.  

 

V. DISCUSSION   

A. Summary study 1 
Two versions of a linear hierarchical real-life shopping 

list application for Android, differing in menu depth, were 
compared via user test. Product search time for different 
products gave insight into the following usability factors; 
efficiency, effectiveness and suitability for learning. 
Furthermore, novice and expert behavior and switching 
between both versions were investigated. The user study 
revealed an experience effect, namely that expert users are 
faster than novice users- a clear indications for suitability for 
learning. Overall product search with the 2L version is faster 
than with the 3L version, making the shallower version 
slightly more efficient. But the difference between the two 
versions is neither significant for users new to the 
application, nor for those very experienced with the 
application. A shallower menu hierarchy seems to be faster 
to handle, if the users are somewhat familiar with an 
application, but not jet very experienced. Both versions are 
effective to compose a shopping list. A switching effect was 
observed; product search time increases when switching 
from the 2L version to the 3L version. The transfer effect, on 
the other hand, is that product search time decreases when 
the 3L version is presented as a first version and the 2L 
version as a second version. An ACT-R based model was 
used to explain the results of the user study. It demonstrates 
how users might build up a mental model of the application. 
At the beginning, users need to use their general knowledge 
(association chunks) to find associations in between each 
processed word and the target item. Through successful 
navigating, they build version specific category membership 
chunks that contain the product path of the target item. These 
chunks represent the user´s mental model of the application. 
With this mental model the expert user then navigates 
quickly to the target item. If the different version is 
presented, the mental model either is still suitable for 
navigation (transfer effect) or needs to be revised (switching 
effect). Besides having an adequate mental model, the model 
explains the increase in performance between novices and 
expert, due to a reduction in cognitive load. Inexperienced 
users need to retrieve information about associations very 
frequently from their declarative memory. Each retrieval 
takes time. The number of retrievals is much less for 
experienced users, so they are faster.  

B. Summary study 2 
 Study two was conducted to support the findings and 

modeling assumption of the first study; moreover, to 
supplement information about the nature of expectations of 
users new to the application. The task, application and 
products where kept the same, although the functionality of 
the application was reduced to the categorical pathway and 
version switches were exclusive from the 2L version to the 
3L version. Descriptive results indicated the experience and 

switching effect. Furthermore, the evaluation of learning 
curves showed that in the new condition some products 
result in longer search times than others. An extension of the 
modeling approach of the first study provided two possible 
explanations for this: Either that the retrieval of misleading 
association chunks for uncommon product category pairs is 
responsible, or that too low activation of association chunks 
of unfamiliar products leads to retrieval failures.  

C. Conclusion and outlook 
1) Advice for designers: For a linear hierarchical menu 

application, that allows users to select items, the number of 
menu layers is not important. Especially for frequent users 
searching for products using a 3 or 2 layer menu, is equally 
efficient and effective. On the other hand, as long as users 
are not completely familiar with the application, a shallower 
menu is beneficial. It is important that these findings need to 
be verified with products that require scrolling. It seems 
plausible that more layers (resulting in more selection time) 
reduce the scrolling time. If version updates are necessary, 
designers should be aware that introducing an extra layer 
will reduce efficiency until users are familiar with the 
modification again (the switching effect). On the other hand, 
an update which reduces the number of layers, does not 
have a negative influence on efficiency (the transfer effect). 
Furthermore, intuitive labeling of categories is very 
important, especially for first time users. Designers should 
concentrate on finding categories, where the affiliation to 
the items found in these categories is immediately clear to 
the target population of the application. Language effects 
influencing potential users, such as regional terms should be 
considered. Besides, common categories should be preferred 
to uncommon ones. Though, if the scope of an application is 
essentially experts, with every-day exposure, intuitive 
labeling is less relevant. Experts can handle uncommon 
labels as well as common ones. 

2) On the specific findings of our model: Two different 
chunks are used in the modeling approach- association 
chunks and version specific category membership chunks. 
Association chunks contain the association between the 
target product and categories- either shops or product 
categories. They represent general semantic knowledge and 
a novice model searches for products using its association 
chunks. Such a strategy requires much retrieval of 
association chunks. The version specific category 
membership chunks are the mental model of product 
pathways containing the target and the first and second 
category that leads to the product. Expert users can rely on 
these chunks to navigate through the application. The 
approach shows that these two different strategies are used 
by novice vs. expert users. The difference in efficiency 
observed between the 2L and 3L versions for learning users 
is explained through the different amount of cognitive load 
when the association chunk strategy is used. Using this 
strategy requires more retrievals for 3L than for the 2L 
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version. For experts, who rely on their mental model, both 
versions are equally efficient and require the same amount 
of cognitive load, since the number of retrievals of version 
specific category membership chunks is the same for both. 
When the other version is presented, the version specific 
category membership chunks are either still suitable for 
navigation (transfer effect) or need to be revised (switching 
effect). Variations in product search time in the new 
conditions are explained by the modeling approach through 
retrieval failures or through retrievals of non matching 
association chunks.  

3) General conceptual modeling remark: This paper 
illustrates how usability influencing factors, such as 
efficiency, effectiveness and suitability for learning can be 
assessed with ACT-R based cognitive models. Further 
concepts such as users’ mental model and cognitive load are 
evaluated, too. The mental model of the pathway of a linear 
hierarchical application can be modeled through chunks, 
which slots contain the target and the categories and 
subcategories. Such a mental model can be constructed via 
general semantic knowledge, which consists of association 
chunks. Association chunks have two slots, one for the target 
and one for the associated category. User expectations 
influence the handling of applications. We showed that 
unexpectedly associated word pairs can result in retrieval 
failures, due to low activation of these association chunks. 
This paper opted for a straight forward approach to the 
concept of cognitive load- the more retrievals from 
declarative memory was equalized with more cognitive 
load. Such an approach needs further validation.  

4) Outlook: This paper focused on higher level 
cognitive processes and usability. Motor and visual 
processes were covered peripherally. Nevertheless, ACT-R 
provides possibilities to include exact visual processing of 
lists in its models and this should be done in the future. This 
is done best together with a model of the higher level 
mechanisms identified in this work. We provided a 
psychological plausible modeling approach for modeling the 
interaction of a smartphone application. Our approach is 
straight- forward, making transfer to other applications 
possible. In this work, the model was used to explain results 
obtained in user test, measuring efficiency, effectiveness 
and suitability for learning. The ACT-Droid tool allowed the 
model to directly interact with the application. In order to 
reach the long-term goal of using merely cognitive models 
to evaluate usability, other usability concepts have to be 
modeled. In the case of linear menu structures one should 
further model and investigate the following aspects: A 
considerable issue worthwhile to study is how differences 
between menu-hierarchies are affected by scrolling. When 
another layer was introduced to the application, we 
discovered a switching effect. A transfer effect occurred 
after removing one layer.  

 

Besides the number of layers, other changes in the 
workflow of applications could be analyzed and tested for 
similar effects in the future, without having to rely on 
expansive user studies. Other important factors to include in 
the model are visual and motor processes. It would be 
helpful to evaluate these assumptions of the model with eye-
tracking data. Further, it is interesting to see, at which point 
performance improvement of the model saturates. This 
would provide the opportunity to create a real expert model, 
for which learning behavior does not improve further. 
Especially a precise model of different kinds of user errors 
and different menus and a study focusing on mobile context 
is necessary for an overall model on the usability of menus. 
Furthermore, models of different user groups, such as 
elderly users, should be constructed. Such user groups 
would be presented through a set of parameters. For our 
approach to be a real alternative to user studies, it should 
allow for testing more complex applications. This will 
require implementing more actions to be simulated by the 
model, including scrolling, but also potentially 
costomization of interfaces (eg. favorits).  

Cognitive load is a crucial factor for usabiliy, especially 
for novice users. Mobile applications are a use case for 
mental load evaluation. On mobile devices, with very 
limited space, users usually have no possibility to 
externalize their working memory to the device (e.g., 
making notes while working). Therefore, users have to rely 
on their working memory completely, thereby increasing the 
cognitive load. Complex applications are more demanding 
in terms of cognitive load, which is hard to measure in user 
studies. With cognitive modeling however, cognitive load 
can be assessed [35]. This provides a clear advantage of our 
aproach over traditional user studies. 
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Abstract 

The main challenge of implementing cognitive models for 
usability testing lies in reducing the modeling effort, while 
including all relevant cognitive mechanisms, such as learning 
and relearning, in the model. In this paper we introduce a 
general cognitive modeling approach with ACT-R for 
hierarchical, list-based smartphone apps. These apps support 
the task of selecting a target, via navigating through 
subtargets positioned on different layers. Mean target 
selection time for repeated app interaction, learning and 
relearning behavior was collected in four studies conducted 
with either a shopping app or a real-estate app. The 
predictions of the general modeling approach match the 
empirical data very well, both in terms of trends and absolute 
values. We also explain how such a general modeling 
approach can be followed. The presented general model 
approach requires little modeling effort to be used for 
predicting overall efficiency of other apps. It supports more 
complex interface, as well.  

Keywords: ACT-R; usability; apps; cognitive modeling; 
learning; relearning; updates; general model 

Introduction 

Numbers of smartphone apps are growing and so is the need 
for efficient usability testing methods. Cognitive models 
simulate human behavior and can in theory be utilized either 
as a supplement to, or instead of real user testing. To 
achieve this aim, especially in terms of costs and effort, it is 
crucial to develop valid cognitive models for specific tasks 
and app characteristics. These models should be written in a 
general manner, in order to minimize the effort to transfer 
them to other similar apps. Such general models could then 
be used to predict specific usability measures like 
efficiency. This would be particularly helpful in the 
prototyping phase of apps, where these models could be 
used instead of user tests. Moreover, the model traces could 
provide evidence on potential (cognitive) causes of usability 
problems that are not achievable with user tests.  

Theory 

Smartphone apps often support a limited amount of tasks 
and although apps for a great variety of tasks exist, the 
structures and functionalities of these apps are similar. 
Consequently, predicting usability of such apps with a 
general cognitive modeling approach would be useful and 
worthwhile. In order to provide meaningful predictions, user 
behavior should be depicted accurately by such general  

ACT-R has a modularized structure, resembling the architecture of the 
human brain. Specified modules handle different types of information, 
called chunks. Each chunk has slots; this is where the smallest pieces of 
information are stored. The different modules interact via specialized 
buffers. Visual information is processed by the visual module and its two 
buffers (visual-object and visual-location). Motor movement is controlled 
by the manual module and its manual buffer. The declarative module 
serves as the systems memory and retrieved information from memory is 
stored in the systems retrieval buffer. The imaginal module and its 
correspondent buffer are required for learning new information. The 
steering of the model is governed by the goal module and buffer. The 
procedural module connects the modules and selects (production-) rules 
that steer the model behavior. A production is selected and executed, if the 
states of the buffers are met. The production then alters the states of the 
modules. Subsymbolic processes are also addressed in ACT-R. If a 
production requests a chunk and two chunks match the request, then the 
chunk with the higher activation level is selected. The activation level of a 
chunk depends on how long ago the chunk was created, on how often it 
was used and on when it was last accessed. Other parameters are the 
latency factor which influences the duration until a retrieved chunk is 
available in the retrieval buffer and the duration until a retrieval failure 
occurs. The later is also manipulated by the retrieval threshold parameter. 

 
Box 1: A brief introduction to ACT-R 

 
cognitive models. It is crucial that these models are written 
in a manner that transferability to other similar, but not 
identical apps, in terms of content and structure, is feasible 
with minimal effort. Such an approach implicates that not 
all cognitive mechanisms of users are represented by the 
models. In respect to transferability, simplifications are 
necessary for such an approach.  

Hierarchical, list style apps are a common type of apps. 
They are often designed to support the task to find and 
select a target by navigating through different layers and 
selecting a subtarget on each layer. This paper presents a 
general cognitive model of a user interacting with 
hierarchical list style apps. The model covers repeated 
interaction, thus investigating learning and relearning 
effects. 

Some cognitive modeling approaches addressing the 
usability of HMI already exist. The most prominent is 
CogTool (John, Prevas, Salvucci, & Koedinger, 2004). This 
is a rapid prototyping tool that enables the creation of 
cognitive models and predicts execution times for 
predefined task. But important aspects for the usability of 
apps such as version updates and learning behavior cannot 
be modeled with CogTool. A main objective of our work is 
to develop a model that learns through experience with the 
interface. A modeling procedure that is strong in 
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representing learning mechanism is the cognitive 
architecture ACT-R (for a brief outline of the mechanisms 
of ACT-R see box 1). Successful ACT-R models of menu 
and mobile interaction exist. The following aspects of these 
models are used our model. In an eye-tracking study using 
desktop computers, Byrne (2001) showed that menu search 
can be modeled with ACT-R. The fact that this model reads 
the menu from top to bottom is adopted in our model. In a 
study on learning of mobile phone usage for elderly novice 
users (Das & Stuerzlinger 2007), the performance increase 
in the model was due to the successful recall of locations of 
keys. Our model also uses the retrieval of locations as a 
learning mechanism. St.Amant, Horton, & Ritter (2007) 
developed a model that predicted time on task for expert 
users searching in hierarchical menus with a feature phone. 
Their assumptions that experienced users navigate with 
parent child chunks through hierarchies is implemented in a 
specialized chunk of our model. 

The aim of this paper is to develop and test a general 
cognitive model with ACT-R that predicts user behavior 
during repeated interaction. Thus, the model incorporates 
learning and relearning mechanisms. The modeled task is 
repeated target selection with different hierarchical list apps. 

Methods 

Four studies were conducted with either a shopping app 
(shopping 3-4, shopping 4-3) or a real-estate app (house 
apartment, apartment house). Both apps are custom-
designed android apps. The empirical studies are presented 
elsewhere in greater detail (Prezenski, Lindner, Moegele, & 
Russwinkel, in preparation.; Prezenski & Russwinkel, 
2014). Since this paper focuses on the modeling approach, 
only a brief outline of the apps and the study procedure will 
be given. See figure 1 for an overview of the apps. 

The main functionality of the shopping app is to compose 
a shopping list. To place products on the list, navigation 
through various stores and product categories in the menu is 
required. The real-estate app allows the selection of search 
criteria for real-estates, such as the number of rooms or the 
city district. Again, the criteria can be found by navigating 
through different categories. Both apps are multi-layer 
hierarchical list apps with variations in menu depth. The 
main functionality of the apps is target selection via 
navigating through a number of layers (see figure 1). On 
each layer a subtarget has to be preselected. For each target, 
there is only one correct path of subtargets leading to the 
target. Two versions of the shopping app are used: one with 
three and one with four layers of menu depth for all targets. 
As illustrated in figure 1, the path leading to the target e.g. 
alcohol free beer differs between the two versions. The real-
estate app has a mixed number of layers (either three or four 
layers per target). Furthermore, the real-estate app is 
adaptive. Depending on preselection the paths leading to 
targets and the position of some subtargets changed. As can 
be seen in figure 1 the path leading to the target lawn differs 
if either house or apartment has previously been selected. 

 
 

Figure 1: Screenshots of the apps with the modified paths 
leading to the targets for the different versions (shopping 
app) or different previous selections (real-estate app). 

Task 

Participants repeatedly selected targets using the apps 
installed on a Google Nexus 5 smartphone, running android 
4.1.1. Targets were read to the participants and after 
selecting the target, participants were required to navigate 
back to the first layer of the app. In all four studies there 
were four runs, each run required the participants to select a 
number of targets. Participants of the studies shopping 3-4, 
and shopping 4-3 had to select nine targets (products) per 
run. The same targets were used for all four runs. After the 
second run the version of the shopping app was updated, 
either a layer was added (shopping 3-4) or removed 
(shopping 4-3). Thus, the paths leading to the targets were 
the same for the first and second layer but were altered from 
the third layer on. Participants of the studies with the real-
estate apps had to select six or seven targets (criteria) per 
run. Some of the targets were the same for all runs, e.g. 
numerical criteria such as the rent remained the same for all 
four runs. Others, like the city district varied between all 
four runs. Participants of the study apartment house 
searched for an apartment in the first two runs and then 
switched to searching for a house. The order was reverse for 
participants of the study house apartment. Due to the 
adaptive character of the real-estate app, the pre selection of 
house or apartment altered the position of the numerical 
criteria (e.g. the number of rooms) and also changed the 
path leading to lawn. This path differed for house and 
apartment from the second layer on. 

Model 

The data obtained with the studies shopping 3-4 and 
shopping 4-3 was utilized to develop the main model 
mechanisms and a first ACT-R model. The subsequent 
studies house apartment and apartment house were 
designed for two reasons: First, to test whether the model 
can predict data obtained with a different app and second, to 
ensure that the model mechanisms are held in a general 
matter. Thus, the model incorporates mechanisms for 
handling variations in depth within an app, changes in paths 
from varying layers on and variations in locations of targets 
and subtargets. The task of repeatedly selecting targets in 
multilayer applications is captured in the model. 
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Table 1: Examples of the chunk types of the model 

Summary of Main Mechanisms
1

Without prior experience with the specific target, visual 
attention is directed to the top of the page. For each visual 
processed word, a retrieval request for a meaning chunk 
containing the word as string and as meaning is made (see 
table 1 for examples of the chunk types used in the model). 
Navigation through the application is achieved via world 
knowledge, which consists of associations between two 
words (association chunk). For each read word the attempt 
to retrieve an association chunk with the target is made. If 
an association chunk containing the current word and the 
target is retrieved, a path chunk is built, holding the path 
leading to the target in the imaginal buffer and the word is 
selected. A path chunk consists of the slots first, second, 
third and fourth for the subtargets. The slot target-im holds 
the target word. The count slot of the path chunk holds 
information on the current menu depth and is changed if a 
different subtarget is required. 

 

With experience with the specific target, navigating to 
this target is realized via the path chunks previously built. 
After a successful retrieval of a path chunk a chunk with the 
location of the relevant subtarget in the path is requested. 
The retrieved location is visually inspected and the subtarget 
is selected. 

Model steering 

Learning mechanisms are incorporated in the model. 
Furthermore, the model can handle a number of changes to 
the interface; such as version updates influencing all targets 
and smaller changes affecting only some targets Model 
steering is implemented with the goal in mind to reuse or 
extend the model for other applications. Thus, 
simplifications of some cognitive mechanisms and special 
chunk slots to account for interface variations are used. 
Model steering is realized via a count slot in the imaginal 
buffer, which holds the current depth and via different slots 
in the goal buffer. The menudepth slot holds information on 
changes in depth for the current target (e.g. number of layers 
leading to the target). The model can handle varying and 
constant depth values Currently, mechanism exist for a 
constant depth of three and two layers and for depth 
changing from three to four and vice versa, with the path 

                                                           
1 The model can be downloaded at https://depositonce.tu-

berlin.de/handle/11303/5548. 

leading to the target altered either from the second or from 
the third layer on. The menudepth slot is used to 
differentiate between strategies for the last versus the other 
layers in the path leading to the target. The menudepth slot 
is also required after an error in the path leading to the target 
is noted. From the affected layer on different path chunks 
are built and retrieved. Therefore, the menudepth slot holds 
the assumption that after an error in the path is noted, the 
erroneous (old) path chunks are used only for the layers that 
have not changed. The menudepth chunk furthermore holds 
knowledge about which layer is the final layer for each 
target. The errorpath slot in the goal buffer holds the 
knowledge about an occurred change in the path leading to 
any target; it is not reset between different targets. The 
finaltarget and the subtarget slot hold the target and the 
subtarget as a string. These two slots are used to determine 
if the target has been found and also required for a 
superficial visual search utilized on the last page and for 
researching a subtarget. 

Mechanisms en-detail 

Initiation In the beginning of each run, the production start 
requests a meaning chunk. The building of a path chunk is 
initiated. The production meaning-in-goal then copies the 
retrieved meaning of the target into the slot target-meaning 
of the chunk in the goal buffer and into the target-im slot of 
the chunk in the imaginal buffer. Then, a retrieval request 
for a path chunk leading to the target is initiated with 
variations2

 

 of the production look-for-path. 

Association approach Without prior experience with the 
specific target, a path chunk leading to the target is not 
retrievable and the production change-strategy fires, 
followed by find-word and reading-word. Visual attention is 
directed to the top of the page (to the highest location 
bellow the current visual attended location) and this location 
is visually processed. Variations3 of the production process-
word then visually encode the current word. For all layers, 
except the last layer, a request for a meaning chunk holding 
the meaning of the current word is initiated. If such a chunk 
is found the production searching association then initiates 
the search for an association chunk containing the current 
word and the target. If such an association chunk cannot be 
found, the production no-association-found clears the visual 
buffer and the search continues with the production find-
word. If an association chunk is retrieved, variations4

                                                           
2  The variations of look-for-path consider two aspects: First, 

whether or not there was an error in the path and second, the 
differences in menu depths. This ensures that for a detected change 
in menu depth the old (misleading) path is not retrieved.  

 of the 

3 There are variations of process-word for the last layer and for 
the other layers except the last. The variations consider the value of 
errorpath slot in the goal buffer and the value of the count in the 
imaginal buffer.  

3 Variations of association- found depend on the value of the 
count slot of the imaginal buffer. 
 

meaning chunk association chunk path chunk 
NAME "SEARCH" 
OBJECT SEARCH 

OBJECTS HOUSE 
CATEGORY SEARCH 
 

FIRST SEARCH 
SECOND WHAT 
THIRD RENT 
FOURTH HOUSE 
TARGET-IM HOUSE 
COUNT FOUR 

chunk with location goal chunk 
SCREEN-POS 
VISUAL LOCATION35-0-0 
VALUE "House" 
COLOR BLACK 
HEIGHT 10 
WIDTH 28 
TEXT T 

STATE PREPARECLICK 
SUBTARGET "SEARCH" 
FINALTARGET "HOUSE" 
TARGET-MEANING HOUSE 
MENUDEPTH FOUR 
IMMOLIST ("MOABIT" ….) 
MENUDEPTHLIST (THREE …) 
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production association-found update the path chunk in the 
imaginal buffer. If, for example the first subtarget in path is 
found, then the value of the count slot in the imaginal buffer 
is changed from one to two. Furthermore, the first slot of the 
path chunk is filled with the current subtarget, which is also 
copied into the subtarget slot of the goal buffer. A cursor 
move is initiated and the productions prepare-click and click 
initiate the motor movements to press the button. The 
productions waiting-click or waiting-last-click (for the final 
click, in order to initiate the backing procedure) let the 
model wait until the manual buffer is free. After the manual 
buffer is free a variation of the production look-for-path 
fires again. For the last layer, the elaborate procedure of 
reading from top to bottom and searching for association 
chunks is replaced by a superficial visual search procedure. 
If the word in the visual buffer and the word in the slot 
finaltarget of the chunk in the goal buffer are different, a 
variation of the production process-word-last-page-wrong 
will fire. Via the production find-word the next word is 
searched. If they are the same a variation5

Path Navigation If a path chunk leading to the target is 
retrieved a variation of the production found-that-path, 
depending on the value of the count slot in the imaginal 

 of process-word-
last-page-correct will copy the last slot of the path into the 
path chunk in the imaginal buffer, raise the count slot and 
change the value of the subarget slot in the chunk in the 
goal buffer. A cursor move is initiated and the productions 
prepare-click and click press the button with the target. 

                                                           
 

buffer, fires. This production copies the value of the relevant 
slot (e.g. the subtarget) from the path chunk in the retrieval 
buffer into the path chunk in the imaginal buffer and 
changes the count. The production find-location requests for 
a meaning chunk of the relevant subtarget. The production 
found-location indicates that a location was retrieved and 
the visual attention is moved to the retrieved location. Then 
the visual buffer and the subtarget slot of the chunk in the 
goal buffer are compared. If they are the same, then the 
retrieved location is correct and the production checking-
match fires, followed by click-location and waiting-click. 
 

Modified Interfaces In the following subsection an 
overview on mechanism dealing with the modified 
interfaces is given, for a detailed description see box 1. 

The retrieved location is visual inspected and the 
subtarget is not found at the retrieved location, either 
because there is a different word, or no word at the retrieved 
location. This is indicated by the productions checking-no-
match or checking-empty. A visual search for the subtarget 
is then initiated with the production read-top-to-bottum-
again-2. Visual attention is directed to the top of the page 
and the production scan-1 encodes the visual-location. If the 
word in visual buffer is the subtarget then scan-correct fires 
otherwise scan-incorrect moves the visual attention to the 
next highest word. If the subtarget is found it is selected via 
prepare-click and click. If the visual search via scan-1 and 
scan-incorrect does not lead to the subtarget and the bottom 

1. Depth changes from three to four layers; the path is different from the third layer on. An update adds a new layer to all targets of the shopping 
app, e.g. the old path for alcohol free beer is 1.stores 2.drinks 3.alcohol free beer the new path is 1.stores 2.drinks 3.beer 4.alcohol free beer. In the third 
run (after an update), alcohol free beer is searched on the third layer. But the retrieved location does not contain alcohol free beer. The third layer is 
rescanned from top to bottom in search for alcohol free beer, without success. The value of errorpath slot in the goal buffer is changed to true. The third 
layer is then read from top to bottom and for each word an attempt to retrieve an association chunk is made. The model visually encodes beer and an 
association chunk is retrieved The third slot of the path chunk in the imaginal buffer is assigned the value beer and beer is selected. On the fourth layer, the 
attempt to retrieve a path chunk that leads to alcohol free beer with the slot four having a value is made. Such a chunk cannot be retrieved. The superficial 
search approach for the last page will be used and directly search for alcohol free beer is initiated. For the next product, navigation is realized with the old 
path chunk for layer one and two. For the third and fourth layer the attempt to retrieve a path chunk with four layers will fail. The association approach or 
for the last page the superficial search will be used. In the fourth run the correct path chunks for all layers can be retrieved. 

2. Depth changes from three to four layers; the path is different from the second layer on, mixed list. The path for lawn in the real-estate 
application changes depending on preselection. If house is preselected, the path is 1.search, 2.garden, 3.lawn and changes to 1.search 2.more 3.garden 
4.lawn if apartment is preselected. On the second layer the subtarget garden is not found at the retrieved location. A rescanning of the page is unsuccessful. 
As in 1) an errorpath in the goal buffer is noted and the approach is changed to reading from top to bottom and searching for association chunks. A new 
path chunk is then built. For the third and fourth layer the attempt will be made to retrieve a path chunk with four layers leading to lawn and then utilize the 
reading and association approach or the scan approach for the last page. For the next target, the value of the menudepth slot in the goal buffer indicates 
constant depth; therefore it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found. 

3. Depth changes from four to three layers; the path is different from the third layer on. An update removes a layer for all targets from the 
shopping list app. The path for alcohol free beer changes from 1.stores, 2 drinks, 3.beer 4.alcohol free beer to 1.stores, 2.drinks 3.alcohol free beer. On the 
third layer the subtarget beer is not found at the retrieved location. The third layer is rescanned from top to bottom in search for beer and the target alcohol 
free beer is found. The errorpath slot in the goal buffer is changed to true. The third slot of the path chunk in the imaginal buffer gets the value alcohol free 
beer assigned and the target is selected,. For the next product navigation is realized with the old path chunk for layer one and two. For the third layer the 
attempt to retrieve a path chunk with three layers will fail. The superficial search will be used for the last page and the building of path chunks will be 
completed. In the fourth run the correct path chunks can be retrieved. 

4. Depth changes from four to three layers; the path is different from the second layer on (special case). First apartment is preselected. Thus, the 
path for lawn in the real-estate application is 1.search 2.other 3.garden 4.lawn. Then house is preselected and the path is 1.search, 2.garden, 3.lawn.On the 
second layer, the subtarget other is not at the retrieved location. The page is rescanned and other is found and selected. On the third page garden is 
searched for unsuccessfully. The value of the errorpath slot in the goal buffer is then set to true and the model goes back to the second page. A new path 
chunk is built from the second page on via association chunks and reading top to bottom. For the next target, the value of the menudepth slot in the goal 
buffer indicates constant depth; therefore, it is not influenced by the error in the path. In the fourth run, a path chunk for lawn can be found.  

 
Box 2 : A description on how different changes in the interfaces are processed by the model. 
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of the page is reached, an errorpath will be noted in the goal  

buffer.  An errorpath in the goal buffer will also be noted, if 
the target is found while scanning for a subtarget (via 
scanning-path-is-wrong). After the errorpath slot in the 
goal buffer is set to true and the subtarget has not been 
found, the production error-in-path-2 resumes the visual 
attention to the top of the page and via find-word, reading-
word and association-found a path chunk is build in the 
imaginal buffer. The changed value of the errrorpath slot 
will stay in the chunk in the goal buffer for all further model 
runs. Therefore, if the errorpath value in the goal buffer is 
set to true, a wrong path chunk will not be retrieved. Either 
no path chunk is retrieved and navigation is implemented 
via association chunks, or path chunk are utilized only as 
long as they are correct. For example, if the path chunk is 
helpful for layer one and two – navigation with this chunk 
for these layers is implemented, but different path chunk are 
sought for on the third layer. 

Results 

Data processing 

The empirical data comprises of four studies, with a varying 
number of student participants (10 < n < 17). The model 
was run 10 times per study. Target selection time (for both 
model and empirical data) is defined as the time between the 
selection of the target and the selection of the first subtarget. 
Extreme values were excluded from analysis. Mean target 
selection time for each target was calculated and averaged 
over the runs (six to nine targets per run). Mean target 

selection time for each run was calculated and averaged 

over the participants. Model and empirical data were 
compared via goodness of fit indices and qualitative 
analysis of graphs. 

Model parameter 

The latency factor (lf) and the retrieval threshold (rt) 
parameter were fit to match the data of the study house 
apartment. They are set to the values: lf = 0.1 and rt = -1.5. 

Comparison of modeled and empirical data 

The model provides a good to very good fit to the data, see 
figure 2 for the comparison of the mean target selection 
times of the empirical and modeled data. The main trends of 
the four studies are mapped in the modeled data, as are most 
of the absolute values.  

1. The house apartment study reveals a decrease of mean 
target selection time followed by an increase and again a 
decrease. This is exactly represented in the modeled data; r² 
= 1.0. The absolute values of the modeled and empirical 
data are also very close; RSME = 0.011. 

2. The apartment house study reveals the same pattern 
(decrease, increase and decrease); r² = 0.888. The mean 
target selection time predicted by the model is slightly lower 
in the first two runs and a bit higher in the last two runs; 
RSME = 1.660. 

3. The empirical and modeled mean target selection time 
of the shopping 4-3 study indicate a decrease from run 1 to 
run 4, with the decrease leveling out towards the last run. 
The magnitude of the decrease is very similar for both 
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datasets; r²= 0.999. In all runs the mean target selection 
times predicted by the model are lower than those of the 
participants; RSME = 0.843. 

4. For the shopping 3-4 study, both datasets show a 
pattern of a decrease, followed by an increase and a final 
decrease. The modeled increase in mean target selection 
time between run 2 and 3 is greater than the increase found 
in the empirical data. The magnitude of the other variations 
are similar for the empirical and modeled data; r² = 0.799. 
The mean target selection time predicted by the model is 
lower than that of the participants, especially in the third 
run; RSME = 1.489. 

Summary 

In summary, all trends found in the empirical data are 
predicted by the model, with a high r² = [0.799; 1.0] for all 
four studies. Decreases and increases in target search time 
are predicted by the model. Therefore, the model provides 
information on learning and relearning effects for different 
applications. Moreover, the absolute values are met by the 
model for the majority of data points, with RSME = [0.011; 
1.660], values which are lower than the average STD of the 
empirical data. Hence, the model can appropriate depict 
mean user behavior at different time points during a 
repeated target selection task. 

Discussion 

The modeling approach provides accurate predictions of the 
data from four studies with two different apps. Efficiency, 
learnabilty and the impact of updates or of adaptivty are 
predicted by the model.  

Only a few steps are necessary to alter the model for a 
different app; world knowledge needs to be provided in 
form of association chunks and reading ability as meaning 
chunks. Furthermore, a compilation of the targetlist, 
containing the targets and of the menudepthlist, containing 
the menu depth of the targets before and after an update, is 
required. 

The model can easily be extended to other list-style 
hierarchical apps with different menu depths than 3 and 4 
layers and to apps with different switches in the number of 
layers. To do so, variations of the productions process-
word, process-word-last-page and look-for-path are 
required. 

Plausibility of Modeling Decision  

A general modeling approach facilitates the adaptability 
of the model. To achieve this, partially simplified 
assumptions have been made. This applies especially to the 
menudepth slot, which offers a technical solution for the 
handling of varying menudepth. This slot contains meta-
knowledge of the model, in other words knowledge about 
what kind of update occurred. The menudepth slot holds 
information if the update relates to the entire menu structure 
or if it relates to individual paths. Furthermore, the 
menudepth slot is useful to identify the last page. It is 
plausible to assume that users know if the current page is the 
last page. However, users are likely to obtain this 

knowledge with the help of visual features. Since these in 
turn significantly differ between apps, it is useful for a 
general approach to detect the last page in a simplified 
manner.  

The reading direction of the model is always directed 
from top to bottom and each item is processed, this is a 
further simplification. It is possible to model visual 
processing of menus more precisely (Bailly, Oulasvirta, 
Brumby and Howes, 2014). Since, the goal of our work was 
to predict average mean search time for items, our chosen 
simplification of visual processing was sufficient.    
Another simplified assumption is, that the imaginal holds 
the count of the current page. This is done only for practical 
reasons to make model steering easy and adjustable to 
different updates. Furthermore, it does not affect overall 
item search time. 

Limitations and Further Steps 
To use the model approach for usability testing, a 

remaining obstacle is the need of prototyping the interface. 
In order for the ACT-R model to interact with the 
application, a copy of the app in Lisp is required. To avoid 
this effortful step, we are working on a tool called ACT-
Droid (Doerr, Russwinkel, & Prezenski, 2016).With ACT-
Droid android apps can be connected directly with ACT-R 
models. This tool is will reduce the practical hurdle of 
testing usability of apps with cognitive models further. 
Further steps to improve the model are to replace the mouse 
movements in the model with touch movements, as 
provided by ACT-Touch (Greene & Tamborello, 2013). 
Besides, an in-depth validation of the model with eye 
tracking data is planned. A new study should also 
investigate if the model can predict average click times for 
each menu layer as well. The empirical data of the current 
studies, do not allow such predictions, due to the study 
design.  Nevertheless, on an individual level the model and 
empirical data show, that after an update (shopping app) and 
after an unexpected adaption (real-estate app) search time 
increases. 

We are also intending to look into how far mechanisms of 
the current model can be used to develop a model for 
hierarchical apps with icons instead of text. 

Moreover, our general modeling approach for hierarchical 
list-style apps is not only useful for such apps. It is well 
suited to predict the average user search time for all kinds of 
list-based interfaces that spread semantically related 
subtargets across multiple layers. 
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Decision-making is a high-level cognitive process based on cognitive processes like

perception, attention, and memory. Real-life situations require series of decisions to be

made, with each decision depending on previous feedback from a potentially changing

environment. To gain a better understanding of the underlying processes of dynamic

decision-making, we applied the method of cognitive modeling on a complex rule-based

category learning task. Here, participants first needed to identify the conjunction of

two rules that defined a target category and later adapt to a reversal of feedback

contingencies. We developed an ACT-R model for the core aspects of this dynamic

decision-making task. An important aim of our model was that it provides a general

account of how such tasks are solved and, with minor changes, is applicable to other

stimulus materials. The model was implemented as a mixture of an exemplar-based and

a rule-based approach which incorporates perceptual-motor and metacognitive aspects

as well. The model solves the categorization task by first trying out one-feature strategies

and then, as a result of repeated negative feedback, switching to two-feature strategies.

Overall, this model solves the task in a similar way as participants do, including generally

successful initial learning as well as reversal learning after the change of feedback

contingencies. Moreover, the fact that not all participants were successful in the two

learning phases is also reflected in the modeling data. However, we found a larger

variance and a lower overall performance of the modeling data as compared to the

human data which may relate to perceptual preferences or additional knowledge and

rules applied by the participants. In a next step, these aspects could be implemented in

the model for a better overall fit. In view of the large interindividual differences in decision

performance between participants, additional information about the underlying cognitive

processes from behavioral, psychobiological and neurophysiological data may help to

optimize future applications of this model such that it can be transferred to other domains

of comparable dynamic decision tasks.

Keywords: dynamic decision making, category learning, ACT-R, strategy formation, reversal learning, cognitive

modeling, auditory cognition
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INTRODUCTION

Backcountry skiers (and snowboarders) strive for the unique
thrill of skiing or snowboarding down powder covered
mountains, drawing the first line into freshly fallen snow. Before
deciding to go down a particular mountain slope, they check the
snowpack, the temperature and wind conditions to avoid setting
off an avalanche. Often not a single snow characteristic is crucial
but conjunctions of them can change the conditions of safe
skiing. The decision to continue on a slope is re-evaluated often,
depending on the feedback from the snow (e.g., collapsing snow,
snow-brakes vs. nice powder snow) and previous experience.

The described scenario gives a good example of complex
cognition. Complex cognition (Knauff and Wolf, 2010)
investigates how different mental processes influence action
planning, problem solving and decision-making. The term
“mental processes in complex cognition” includes not only
cognitive but also motivational aspects. Naturalistic decision-
making research investigates how decisions are made “in
the wild.” Real-life decisions made by people with some
kind of expertise are investigated in the context of limited
time, conflicting goals, dynamically changing conditions, and
information sources of varying reliability.

Such complex situations involve further aspects that
cannot all be covered in combination when studying complex
cognition. Nevertheless, researchers should aim at describing,
understanding and predicting human behavior in its complexity.

A model situated within cognitive architectures can simulate
multiple parallel processes, thereby capturing multifaceted
psychological phenomena and making predictions, sometimes
even for complex tasks. Nevertheless, developing such models
requires a stepwise procedure to distinguish different influencing
factors. For our skiing example, first a model of the core
decision-making process (e.g., based on category learning from
snow characteristics and feedback) of a backcountry skier needs
to be developed and tested. Afterwards this approach can be
extended withmodeling approaches of other decision influencing
processes (e.g., motivation) to predict decision-making in the
wild.

To come closer to the overall goal of understanding cognition

as a whole, studying dynamic decision-making with cognitive

architectures constitutes a step in the right direction. In dynamic

decision-making, decisions are not seen as fixed but can be

modified by incoming information. So, not only singular aspects
of decision-making are considered, such as attentional influence,
but also environmental factors that give feedback about an
action or lead to major changes requiring an adaptation to new
conditions.

In real-life decisions, however, our future choices and our
processing of decision outcomes are influenced by feedback
from the environment. This is the interactive view on decision-
making, called dynamic decision-making (Gonzalez, 2017), of
which the scenario presented above is an example. According to
Edwards (1962), three aspects define dynamic decision-making.
First, a series of actions are taken over time to achieve a certain
goal. Second, the actions depend on each other. Thus, decisions
are influenced by earlier actions. Third, and most difficult to

investigate, changes in the environment occur as a result of these
actions but also spontaneously (Edwards, 1962). According to
Gonzalez (2017), dynamic decision-making is a process where
decisions are motivated by goals and external events. They are
dependent on previous decisions and outcomes. Thus, decisions
are made based on experience and are dependent on feedback.
Most of the time, these kinds of decisions are made under time
constraints. Therefore, long mental elaborations are not possible.
To sum up, dynamic decision-making research investigates a
series of decisions which are dependent on previous decisions
and are made under time constraints in a changing environment.

Another view on dynamic decision-making as a continuous
cycle of mental model updating is introduced by Li and
Maani (2011). They describe this process using the CER Cycle.
CER stands for Conceptualization–Experimentation–Reflection.
Conceptualization is obtaining an understanding of the situation
and mentally simulating the outcome of potential decisions and
related actions. Thus, the decision maker compares the given
situation with related information in his or her mental model and
integrates new information obtained from the environment to
develop a set of decisions. During experimentation, the decisions
and interventions devised from the decision-maker’s mental
model are tested in the dynamics of the real world. In the
reflection phase, the outcome of the experimentation phase is
reflected on, e.g., feedback is processed. If the expected outcome
is achieved (e.g., positive feedback), the initial decisions are
sustained. If, however, the outcome is unexpected (e.g., negative
feedback) or if obtained results differ from the expected outcome,
the decision maker updates his or her mental model. To do this,
he or she decides for alternative actions such as searching for new
sources of information for making better decisions.

These kinds of decision-making procedures have been
suggested to sharemany processes with the procedure of category
formation (Seger and Peterson, 2013). Categorization is a mental
operation that groups objects based on their similar features.
When new categories are formed from a given set of items
without explicit instruction, the features distinguishing the
different items must first be extracted. Then hypotheses about
the relevant features must be formed and tested by making serial
decisions.

Category learning experiments in cognitive science often
require participants to establish explicit rules that identify the
members of a target category. The serial categorization decisions
are reinforced by feedback indicating whether a decision
was correct or not. The success in such rule-based category
learning experiments critically depends on working memory and
executive attention (Ashby and Maddox, 2011). The fact that
real world decisions critically depend on success and failure in
previous trials qualifies category learning as a model for dynamic
decision-making.

There are numerous advanced computational models of
categorization which explain behavioral performance of subjects
in various categorization tasks (e.g., Nosofsky, 1984; Anderson,
1991; Ashby, 1992; Kruschke, 1992; Nosofsky et al., 1994;
Erickson and Kruschke, 1998; Love et al., 2004; Sanborn
et al., 2010). These competing models differ in their theoretical
assumptions (Lewandowsky et al., 2012) and there is currently no
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consensus on how different models can be compared and tested
against each other (Wills and Pothos, 2012).

Another requirement for dynamic decision-making is the
occurrence of changes in the environment. A well-known
categorization task using such changes is implemented in the
Wisconsin Card Sorting Test (WCST; Berg, 1948). In this test,
participants must first select a one-feature rule (color, shape,
number of symbols) and are then required to switch to a
different one-feature rule. This task tests for the ability to display
behavioral flexibility. Another experimental approach to test for
behavioral flexibility in humans and animals is reversal learning
(e.g., Clark et al., 2004; Jarvers et al., 2016). Here, subjects need to
adapt their choice behavior according to reversed reinforcement
contingencies.

Thus, category learning experiments with changing rules can
serve as suitable paradigms to study dynamic decision-making in
the laboratory, albeit with limited complexity as compared to real
world scenarios.

The majority of rule-based category learning experiments are
simple and only use one relevant stimulus feature specification
(e.g., a certain color of the item) as categorization basis. In
principle, however, such a restriction is not required and rule-
based category learning experiments can become more complex
by using conjunction rules. These can still be easily described
verbally (e.g., respond A if the stimulus is small on dimension
x and small on dimension y). It has been shown that conjunction
rules can be learned (e.g., Salatas and Bourne, 1974) but are much
less salient and are not routinely applied (Ashby et al., 1998).

In the following, the main points mentioned above are
integrated in our backcountry skiing example: Since feedback
from the environment plays a central role in building a correct
mental model, feedback in the form of great powder snow
indicates that the current strategy is correct. By contrast,
negative feedback, for example breaking snow, indicates that one
should change the strategy, perhaps search for different feature
specifications or even for a different combination of features that
might promise a better outcome for skiing. Furthermore, sudden
changes of environmental conditions can result in a change of
which feature combinations are indicative of a positive outcome.
In our example, a change could be a different hill side with more
exposure to the sun or a rise in temperature, requiring that other
feature combinations should be taken as an indication for a safe
descent. There are a lot of possibilities which features and feature
combinations could indicate safe or unsafe conditions, making
such a task complex.

Thus, to study dynamic decision-making in a category
learning experiment requires a task with the above-mentioned
characteristics (successive decisions with feedback, multiple
feature stimuli, and switching of category assignments). To
determine how humans learn feature affiliation in a dynamic
environment and to investigate how strategies with rising
complexity emerge, a modeling approach addressing these
aspects first needs to be developed. If this model is useful
and plausible it should match average behavioral data. This is
an important milestone toward a more precise model which
in turn should predict more detailed empirical data (e.g.,
individual behavioral or neural data). If this step is achieved, then

models can be used as decision aiding systems at an individual
level.

In this paper, we use the behavioral data of an experiment,
described in the following, to develop an initial cognitive
model as described above. In the experiment, a large variety
of multi-feature auditory stimuli were presented to participants
in multiple trials. The participants were then required to learn
by trial and error which combinations of feature specifications
predict a positive or negative outcome. Since perceptual learning
of stimulus features is not the focus of our research, we used
salient and easy-to-recognize auditory features. To meet all of
the above-mentioned criteria for dynamic decision-making, we
further introduced a spontaneous change in the environment
such that previous decisions on feature combinations suddenly
needed to be re-evaluated to obtain positive feedback.

In particular, we would like to demonstrate how different
aspects that influence dynamic decision-making can be
addressed through a combination of existing and validated
cognitive mechanisms within an architecture. These are: learning
to distinguish positive and negative feature combinations
depending on feedback; successive testing of simple one-feature
rules first and switching to more complex two-feature rules later,
and using metacognition to re-evaluate feature combinations
following environment changes. Other modeling approaches are
also able to replicate such data, what distinguishes our approach
is that it has a theory grounded interpretation of plausible
cognitive mechanisms.

Why Use Cognitive Modeling?
The method of cognitive modeling forces precision of vague
theories. For scientific theories to be precise, these verbal theories
should be formally modeled (Dimov et al., 2013). Thus, theories
should be constrained by describable processes and scientifically
established mechanisms. As Simon and Newell (1971) claim,
“the programmability of the theories is a guarantee of their
operationality and iron-clad insurance against admitting magical
entities in the head” (p. 148).

Cognitive models can make predictions of how multiple
aspects or variables interact and produce behavior observed
in empirical studies. In real-life situations, multiple influences
produce behavior. Cognitive models are helpful to understand
which interrelated cognitive processes lead to the observed
behavioral outcome. Cognitive models can perform the same task
as human participants by simulating multiple ongoing cognitive
processes. Thereby, models can provide insight into tasks that
are too complex to be analyzed by controlled experiments.
Nevertheless, studying such a task with participants is mandatory
to compare the outcomes of models and participants. However,
understanding the process leading to an outcome is more
important than perfectly fitting a model to a given set of
experimental results. Our goal in this regard is to understand
the processes underlying human decision-making, not least to
aid humans in becoming better at decision-making (Wolff and
Brechmann, 2015).

Predictions made by cognitive models cannot only be
compared to average outcome data (such as reaction times, or
percentage of correct decisions) but also to process data. Process

Frontiers in Psychology | www.frontiersin.org 3 August 2017 | Volume 8 | Article 1335

46



Prezenski et al. Strategy Formation in Decision Making

data represent patterns of information search, e.g., neural data.
In this regard, cognitive models can be informed by EEG and
fMRI data to achieve an empirical validation of such processes
(Forstmann et al., 2011; Borst and Anderson, 2015).

The development of neurobiologically plausible models is
specifically the focus of reinforcement learning (e.g., Sutton and
Barto, 1998). The aim of such computational models is to better
understand the mechanisms involved on the neural network
level as studied using invasive electrophysiological measures in
different brain regions in animals (e.g., sensory andmotor cortex,
basal ganglia, and prefrontal cortex). Such neural networkmodels
have recently been applied to learning tasks requiring flexible
behavior (e.g., contingency reversal tasks). The reader is referred
to a recent paper by Jarvers et al. (2016) that gives an overview
of the literature on reversal learning and describes a recurrent
neural network model for an auditory category learning task
such as the one applied in the current paper. This probabilistic
learning model resulted in a good fit to the empirical learning
behavior, but does not interpret the cognitive processes that
lead to this behavior. It postulates an unspecified metacognitive
mechanism that controls the selection of the appropriate strategy.
This is where the strength of our approach comes into play; It is
specific about the metacognitive mechanisms that drive behavior
in such tasks. An example would be processes which assure that
after a number of negative results, a change in strategy will be
initiated.

To summarize, cognitivemodeling is a falsifiablemethodology
for the study of cognition. In scientific practice, this implies
that precise hypotheses are implemented in executable cognitive
models. The output of these models (process as well as product)
is then compared to empirical data. Fit-Indices such as r2 and
RSME as well as qualitative trends provide information on the
predictive power of the cognitive models.

More specific, the central goals of cognitive modeling are
to (a) describe (b) predict, and (c) prescribe human behavior
(Marewski and Link, 2014). A model that describes behavior
can replicate the behavior of human participants. If the model,
however, reproduces the exact behavior found in the human data,
this is an indication of overfitting. In this case, the model has
parameters that also fit the noise found in the empirical data. To
address such issues of over specified models, it is important to
test the model on a new data set and thereby evaluate how well it
can predict novel data. Prescribemeans that the model should be
a generalizable model so that it can predict behavior in different
situations. Moreover, robust models are preferable this implies
that the output of the model is not easily influenced by specific
parameter settings.

The term cognitive model includes all kinds of models
of cognition—from very specific, isolated cognitive aspects
only applicable in specific situations to more comprehensive
and generalizable ones. The latter candidates are cognitive
architectures that consider cognition as a whole. They aim at
explaining not only human behavior but also the underlying
structures and mechanisms. Cognitive models written on the
basis of cognitive architectures therefore generally do not focus
on singular cognitive processes, such as some specific learning
process. By contrast, interaction of different cognitive processes

and the context of cognitive processes are modeled together.
Modeling the relations between different subsystems is especially
relevant for applied research questions. The structures and
mechanism for this are provided by the cognitive architecture
and should be psychologically and neurally plausible (Thomson
et al., 2015).

The most commonly used cognitive architectures, such as
ACT-R, predict processes at a fine-grain level in the range of
50 ms. These processes can be implemented computationally.
However, they are embedded in cognitive theories—this is what
distinguishes cognitive models built with cognitive architectures
from mathematical models such as neural networks. The latter
models formally explain behavior in terms of computational
processes. Thus, their explanation of behavior can be seen in
terms of computational processes but do not aim at cognitive
interpretations (Bowers and Davis, 2012).

The Cognitive Architecture ACT-R
The cognitive architecture ACT-R (Adaptive Control of
Thought—Rational) has been used to successfully model
different dynamic decision-making tasks and is a very useful
architecture for modeling learning (Anderson, 2007; Gonzalez,
2017). In the following, a technical overview of the main
structures and mechanisms that govern cognitive models in
ACT-R is given. We will focus only on those aspects that are
important to understand our modeling approach. For a more
detailed insight into ACT-R, we recommend exploring the
ACT-R website1.

ACT-R’s main goal is to model cognition as a whole using
different modules that interact with each other to simulate
cognitive processes. These modules communicate via interfaces
called buffers. ACT-R is a hybrid architecture, thus symbolic and
subsymbolic mechanisms are implemented in the modules of
ACT-R.

Our model uses the motor, the declarative, the imaginal, the
goal, the aural2, and the procedural module. The motor module
represents the motor output of ACT-R. The declarative module
is the long-term memory of ACT-R in which all information
units (chunks) are stored and retrieved. The imaginal module is
the working memory of ACT-R in which the current problem
state (an intermediate representation important for performing
a task) is held and modified. Thus, the imaginal module plays an
important role for learning. The goal module holds the control
states. These are the subgoals that have to be achieved for the
major goal. The aural module is the perceptual module for
hearing. The procedural module plays a central role in ACT-R.
It is the interface of the other processing units, since it selects
production rules (see below) based on the current state of the
modules.

Writing a model requires the modeler to specify the symbolic
parts of ACT-R. These are (a) the production rules, and (b)
the chunks. Chunks are the smallest units of information. All
information in ACT-R is stored in chunks. Production rules

1http://act-r.psy.cmu.edu/
2Please note that the aural module has two buffers. A tone is first encoded in the

aural-location buffer and its content can then be accessed using the aural buffer.
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(e.g., productions) consist of a condition and an action part.
Productions are selected sequentially, and only one production
can be selected at a given time. A production can only
be selected if the condition part of the production matches
the state of the modules. Then, the action part modifies
the chunks in the modules. If more than one production
matches the state of the modules then a subsymbolic production
selection process chooses which of the matching productions is
selected.

A further subsymbolic process in ACT-R is the activation of a
chunk. It determines if a chunk can be retrieved from memory
and how long this retrieval takes. The past usefulness of a
chunk (base-level activation), the chunk’s relevance in the current
context (associative activation) and a noise parameter sum up
to the chunk’s activation value. Modifying the subsymbolic
mechanisms of ACT-R is also part of the modeling procedure.
This can be done using specific parameters—however, most
parameters have default values derived from previous studies
(Wong et al., 2010) which should be used.

How Can Decision-Making and Category
Learning Be Modeled in ACT-R?
Many different styles for writing models in ACT-R exist (Taatgen
et al., 2006). The following modeling approaches have been used
for decision-making: (a) strategy or rule-based, (b) exemplar
or instance-based, and (c) approaches that mix strategies and
exemplars. These approaches will be compared to motivate our
chosen modeling approach.

In strategy or rule-based models, different problem solving
strategies are implemented with different production rules
and successful strategies are rewarded. Rule-based theories in
category learning postulate that the categorizer must identify the
category of an object by testing it against different rules. So, to
find a solution for a problem, strategies in the form of rules are
used.

Exemplar or instance-based models rely on previous
experience stored in declarative memory to solve decision-
making problems. The content and structure of the exemplars
depend on individual framing. It is not a complete representation
of the event, but represents the feature specifications the problem
solver is focused on, together with experienced feedback.
Exemplar theories of category learning postulate that category
instances are remembered. To decide if an instance belongs to
a category, a new instance is compared to an existing instance.
Instance-Based Learning (IBL) builds upon instances in the
context of dynamic decision processes and involves learning
mechanisms such as recognition-based retrieval. The retrieval
of instances depends upon the similarity between the current
situation and instances stored in memory. In IBL situations,
outcome observations are stored in chunks and retrieved from
memory to make decisions. The subsymbolic activation of the
retrieved instances determines which instances are likely to be
retrieved in a given situation. Instance Based Learning requires
some amount of previous learning of relevant instances. Then,
decision makers are able to retrieve and generalize from these
instances (Gonzalez et al., 2003).

Mixed approach models use both rules and instances to solve
decision-making problems.

Several authors implemented the described approaches in
category learning and decision-making environments. In a
strategy-based ACT-R model, Orendain and Wood (2012)
implemented different strategies for complex problem solving in
a microworld3 game called “Firechief.” Their model mirrored the
behavior of participants in the game. Moreover, different training
conditions and resulting behavior of the participants could be
modeled. The model performed more or less flexibly, just as
the participants, according to different training conditions. This
demonstrates that success in strategy learning depends on the
succession of stimuli in training conditions. Peebles and Banks
(2010) used a strategy-based model of the dynamic-stocks and
flows task (DSF). In this task, water level must be held constant
but the inflow and outflow of the water changes at varying rates.
An ACT-R model of strategies for accomplishing this task was
implemented in form of production rules. The model replicated
the given data accurately, but was less successful in predicting
new data. The authors proposed that by simply extending the
model so it contains more strategies and hypotheses, it would be
able to predict such new data as well. Thus, specifying adequate
rules is crucial for rule-based models.

Gonzalez et al. (2009) compared the performance of two ACT-
R models, an instance-based model and a strategy-based model,
in a RADAR task. In this task, participants and the model had
to visually discriminate moving targets (aircrafts) among moving
distractors and then eliminate the targets. Both models achieved
about the same overall fit to the participants’ data, but IBL
performed better in a transfer task.

Lebiere et al. (1998) tested two exemplar models that captured
learning during a complex problem-solving task, called the sugar
factory (Berry and Broadbent, 1988). The sugar factory task
investigates how subjects learn to operate complex systems with
an underlying unknown dynamic behavior. The task requires
subjects to produce a specific amount of sugar products. Thus,
in each trial the workforce needs to be adjusted accordingly.
The two exemplar models produced adequate learning behavior
similar to that of the subjects. In a subsequent study, Fum and
Stocco (2003) investigated how well these original models could
predict participants’ behavior in case of a much lower target
amount of the sugar product than in the original experiment.
Furthermore, they investigated if the models could reproduce
behavior in case of switching from a high product target
amount to a low product target amount and vice versa during
the experiment. The performance of the participants increased
significantly in the first case. The original IBL models were not
able to capture this behavior. The authors therefore developed a
rule based model that captured the subjects, switching behavior.

Rutledge-Taylor et al. (2012) compared a rule-based and
an exemplar-based model for an intelligence categorization
task where learned characteristics had to be studied and
assigned. Both models performed equally well in predicting the
participants’ data. No model was superior to the other.

3Microworlds are computer simulations of specific problems. They are applied to

study real-world problem solving in dynamic and highly complex settings.
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In a different categorization study, Anderson and Betz (2001)
studied three category-learning tasks with three different ACT-
R models, an exemplar-based model, a rule-based model and a
mixed model. The mixed model fitted best, reproducing learning
and latency effects found in the empirical data.

In summary, there is no clear evidence that one or the
other modeling approach is superior. In their paper, Anderson
and Betz (2001) state that the mixed approach is probably the
closest to how humans categorize, because the assumption that
categorization is either exclusively exemplar-based or exclusively
rule-based is probably too close-minded. Furthermore, stimulus
succession and adequate rule specification are important for
dynamic decision-making and category learning tasks.

In addition, models of complex tasks should incorporate
metacognitive processes such as reflecting and evaluating the
progress of the selected approach (Roll et al., 2004; Reitter, 2010;
Anderson and Fincham, 2014). Reitter’s (2010) model of the
dynamic stocks and flow tasks investigated how subjects manage
competing task strategies. The subject-to-subject analysis of the
empirical data showed that participants exhibited suddenmarked
changes in behavior. Learning mechanisms which are purely
subsymbolic cannot explain such behavior, because changes in
model behavior would take too long. Furthermore, the strategies
of the participants seemed to vary with the complexity of the
water flow. Thus, a model of this task must address switches in
strategy and not only gradual learning. Reitter (2010) assumes
that humans’ solutions to real-world problems emerge from a
combination of general mechanisms (core learning mechanisms)
and decision-making strategies common to many cognitive
modeling tasks. His model implements several strategies to deal
with the basic control task as well as a mechanism to rank and
select those strategies according to their appropriateness in a
given situation. This represents the metacognitive aspect of his
model.

Our Aim
Our aim is to develop an ACT-R modeling approach for dynamic
decision-making in a category learning task. A suitable task for
such a modeling approach needs to fulfill several requirements.
First, it should use complexmulti-feature stimuli for themodel to
build categories from combined features. Second, the task needs
to provide feedback, thereby allowing the model to learn. Third,
changes in the environment should occur during the task forcing
the model to act on them by refining once learned category
assemblies.

To model performance in such a task, the modeling approach
will need to incorporate mechanisms for strategy learning and
strategy switching. It should precisely specify how hypotheses
about category learning can be implemented with ACT-R. A
mixed modeling approach of rules and exemplars should be used
since previous work indicates that such models are most suitable
for dynamic decision-making tasks. Furthermore, since switches
in category assignments as well as monitoring of the learning
progress need to be addressed, metacognitive aspects should be
incorporated in the modeling approach.

Our modeling approach should provide information on
the actual cognitive processes underlying human dynamic

decision-making. Hence, it should be able to predict human
behavior and show roughly the same performance effects that
can be found in empirical data reflecting decision-making, e.g.,
response rates. Even more importantly, we aim at developing a
general model of dynamic decision-making. For the model to
be general (e.g., not fit exclusively to one specific experimental
setting or dataset), it needs to be simple. Thus, only few
assumptions should be used and unnecessary ones avoided. As
a result, the modeling approach should be capable to predict
behavior with other stimulus materials and be transferable to
other similar tasks.

To summarize the scope of this article, our proposedmodeling
approach aims to depict the core processes of human decision-
making, such as incorporating feedback, strategy updating, and
metacognition. Building a model with a cognitive architecture
ensures that evaluated cognitive processes are used. The quest is
to see whether these cognitive aspects including the processes of
the architecture can produce empirical learning behavior:

First, performance improvement through feedback should be
included in the model. In the case of feature learning and strategy
updating, improvements in one’s strategy are only considered in
the case of negative feedback (Li and Maani, 2011). If feedback
signals a positive decision, people consider their chosen strategy
for later use. Thus, people update their mental model during
dynamic decision-making only if they receive negative feedback
(Li andMaani, 2011). For our feature learningmodel, this implies
that once a successful strategy has been chosen over alternatives,
revisions to this strategy will require negative feedback on that
strategy rather than positive experience with others, as these are
no longer explored.

Second, the model should include transitions from simple
to complex strategies. Findings suggest that people initially
use simple solutions and then switch to more complex ones
(Johansen and Palmeri, 2002). The modeling approach under
discussion should be constructed in a similar fashion. In the
beginning, it should follow simple one-feature categorization
strategies and later switch to more complex two-feature
strategies.

Third, the model needs to use metacognitive mechanisms. For
example, it needs specifications for which conditions switching
from a single-feature strategy to a multi-feature strategy is
required. The metacognitive aspects should furthermore reflect
previous learning successes. Thus, keeping track of which
approaches were helpful and which were not, or of how often a
strategy has been successful in the past, should be implemented
in the model. Moreover, such mechanisms should ensure that
if a strategy was successful in the past and fails for the first
time, it is not discarded directly, but tested again. Furthermore,
metacognitive mechanisms should not only address the issue of
switching from single-feature to multi-feature strategies but also
incorporate responses to changes in the environment.

MATERIALS AND METHODS

In the following, an experiment of dynamic decision-making and
our model performing the same task are presented. The model

Frontiers in Psychology | www.frontiersin.org 6 August 2017 | Volume 8 | Article 1335

49



Prezenski et al. Strategy Formation in Decision Making

includesmechanisms to integrate feedback, to switch from simple
to complex strategies and to address metacognition. The model
was built after the experimental data were obtained.

This section is subdivided in the following manner: First, the
participant sample, setup and stimuli of the empirical experiment
are described. Then, themodeling approach is explained in detail.
Afterwards, the model setup and stimuli are presented. Finally,
the analytical methods to evaluate the fit between the model and
the empirical results are outlined.

Experiment Participants
55 subjects participated in the experiment that took place inside
a 3 Tesla MR scanner4 (27 female, 28 male, age range between
21 and 30 years, all right handed, with normal hearing). All
subjects gave written informed consent to the study, which
was approved by the ethics committee of the University of
Magdeburg, Germany.

Experimental Stimuli
A set of frequency-modulated different tones served as stimuli
for the categorization task. The tones differed in duration (short,
400 ms, vs. long, 800 ms), direction of frequency modulation
(rising vs. falling), intensity (low intensity, 76–81 dB, vs. high
intensity, 86–91 dB), frequency range (five low frequencies, 500–
831 Hz, vs. five high frequencies, 1630–2639 Hz), and speed
of modulation (slow, 0.25 octaves/s, vs. fast, 0.5 octaves/s),
resulting in 2 × 2 × 2 × 10 × 2 (160) different tones. The
task relevant stimulus properties were the direction of frequency
modulation and sound duration, resulting in four tone categories:
short/rising, short/falling, long/rising, and long/falling. For each
participant, one of these categories constituted the target sounds
(25%), while the other three categories served as non-targets
(75%).

As feedback stimuli, we used naturally spoken utterances (e.g.,
ja, “yes”; nein, “no”) as well as one time-out utterance (zu spät,
“too late”) taken from the evaluated prosodic corpus MOTI
(Wolff and Brechmann, 2012, 2015).

Experimental Paradigm
The experiment lasted about 33 min in which a large variety
of frequency-modulated tones (see Section Experimental Stimuli
above) were presented in 240 trials in pseudo-randomized order
and with a jittered inter-trial interval of 6, 8, or 10 s. The
participants were instructed to indicate via button-press whether
they considered the tone in each trial to be a target (right index
finger) or a non-target (right middle finger). They were not
informed about the target category but had to learn by trial
and error. Correct responses were followed by positive feedback,
incorrect responses by negative feedback. If participants failed to
respond within 2 s following the onset of the tone, the time-out
feedback was presented.

After 120 trials, a break of 20 s was introduced. From the
next trial on the contingencies were reversed such that the target
stimulus required a push of the right instead of the left button.

4The experiments were performed inside an MR scanner to study the specific

neural correlates of strategy formation which is the subject of another paper.

The participants were informed in advance about a resting period
after finishing the first half of the experiment but they were not
told about the contingency reversal.

Model in Detail
In the following, the model is presented in detail. First, a
description of the main declarative representations (chunks)
is provided. They reflect strategy representations and
metacognitive processes. This is followed by a description
of how the model runs through a trial. Finally, the rules that
govern strategy learning are summarized.

Chunks and Production Rules Used in the Model
The chunks implemented in the model are shown in Figure 1.
“Strategy chunks” hold the strategies in form of examples
of feature-value pairs and responses. They are stored in and
retrieved from long-term memory (declarative module). The
current strategy is held in working memory (imaginal module).
Strategy chunks contain the following information about the
strategy: which feature(s) and what corresponding value(s) are
relevant (e.g., the sound is loud or the sound is loud and
its frequency range is high), what the proposed response is
(categorization, 1 or 0), and the degree of complexity of the
strategy (e.g., one or two-feature strategy). Furthermore, an
evaluation mechanism is part of this chunk. This includes noting
if a strategy was unsuccessful and keeping track of how often a
strategy was successful. This tracking mechanism notices if the
first attempt to use this strategy is successful. It then counts
the number of successful strategy uses; this explicit count is
continued until a certain value is reached. We implemented such
a threshold count mechanism to reflect the subjective feeling
that a strategy was often useful. We implemented different
threshold values for the model. We also differentiated between
the threshold for one-feature strategies (first count) and for
two-feature strategies (second count). The tracking mechanism
can be seen as a metacognitive aspect of our model. Other
metacognitive aspects are implemented in the “control chunk”
which is kept in the goal buffer of the model. These metacognitive
aspects include: first, the level of feature-complexity of the
strategy, i.e., if the model attempts to solve the task with a
one-feature or with a two-feature strategy; second, whether
or not a long-time successful strategy caused an error, this
signifies the model’s uncertainty about the accuracy of the
current strategy; third, whether changes in the environment
occurred that require to renew the search for an adequate
strategy.

Trial Structure
Production rules govern how the model runs through the task.
The flow of the model via its production rules is illustrated
in Figure 2. The following section describes how the model
runs through a trial, the specific production rules are noted in
parentheses.

A tone is presented to the model and enters the aural-location
buffer (listen). After the tone has finished, it is encoded in the
aural buffer (encode). Thus, a chunk with all audio information
necessary (duration, direction of pitch change, intensity, and
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FIGURE 1 | Schematic build-up of the structure of the control and the strategy chunk. Nil indicates that the variable has no value.

FIGURE 2 | Schematic overview of how the model runs through a trial. The

dark-gray boxes on the left represent the production rules, the light-gray ovals

on the right the main buffers involved.

frequency range—see Section Modeling Paradigm and Stimuli
below) is in the aural buffer and all four characteristics of the tone
are accessible to the model. The audio chunk in the aural buffer is
then compared to the strategy chunk held in the imaginal buffer
(compare). If the specific features (e.g., intensity is high) of the
strategy chunks are the same as in the audio chunk, the response
is according to the strategy proposed by the model (react-same),
if not, the opposite response is chosen (react-different). The
presented feedback is listened to and held in the aural-location
buffer (listen-feedback) and then encoded in the aural buffer
(encode-feedback). If the feedback is positive, the current strategy
is kept in the imaginal buffer and the count-slot is updated
(feedback-correct). If the feedback is negative, the strategy is
updated depending on previous experiences (feedback-wrong).
Thus, a different strategy chunk is retrieved from declarative
memory and copied to the imaginal buffer.

Finding an Adequate Strategy
All possible strategies are already available in the model’s long-
term memory. The currently pursued strategy is maintained
in working memory and evaluated regarding the feedback. For
positive feedback, the strategy is retained and it is counted how
often it is successful. If feedback is negative, the strategy is usually
altered. The following subsection is a summary of how strategy
updating is implemented. For more information see Figure 3.

The model always begins with a one-feature strategy (which
strategy it begins with is random) and then switches to another
one-feature strategy. The nature of the switch depends on how
often a particular strategy was successful. When the model
searches for different one-feature strategies, it retrieves only
strategies which were not used recently. In case of immediate
failure of a one-feature strategy, a different response is used for
the feature-value pair. In other cases, the feature-value pair is
changed, but the response is retained. If a one-feature strategy
has been successful often and then fails once, the strategy is not
directly exchanged, but re-evaluated. However, it is also noted
that the strategy has caused an error. Two possibilities explain
why switches from a one-feature to a two-feature strategy occur:
Such a switch can happen either because no one-feature strategy
that was not negatively evaluated can be retrieved or because an
often successful one-feature strategy failed repeatedly. Switches
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FIGURE 3 | Rules governing when and to what degree the strategies are

changed after negative feedback is received.

within the two-feature strategy are modeled the following way: If
a two-feature strategy was unsuccessful at the first attempt, any
other two-feature strategy is used (which one exactly is random).
If a two-feature strategy was initially successful and then fails,
then a new strategy which retains one of the feature-value pairs
and the response will be selected. This strategy only differs in
the other feature-value pair. When the environment changes, a

previously often successful two-feature strategy (and also a one-
feature strategy) will fail. Then a retrieval of another two-feature
strategy is attempted. If at the time the environment changes,
the model has not found a successful two-feature strategy, it will
continue looking for a useful two-feature strategy, and thus not
notice the change.

Modeling Paradigm and Stimuli
The following section briefly describes how the experiment was
implemented for the model. This includes a short overview of
how the stimulus presentation was modified for the model.

The task of the participants was implemented for the model
in ACT-R 7.3 with some minor modifications. The same four
pseudo-randomizations used for the participants were also used
for the model. Thus, 25% of the stimuli were target stimuli. A
trial began with a tone, which lasted for 400 ms. To model the
two stimulus durations, we used two different features in the
new-other-sound command. As soon as the model responded via
button press, auditory feedback was presented. Overall, a trial
lasted for a randomized period of 6, 8, or 10 s, similar to the
original experiment. There was no break for the model after 120
trials, but the targets switched after 120 trials, too.

Instead of employing all 160 different tones, sixteen different
tones were presented to the model. Each of the tones is a
composition of four characteristics of the four binary features:
duration (long vs. short), direction of frequency modulation
(rising vs. falling), intensity (low intensity, vs. high intensity),
and frequency range (low vs. high). Only binary features were
used for the model because the perceptual difference between
the two classes of each selected feature was high, except for
speed of modulation, which was therefore not implemented in
the model. For the participants, more feature variations were
used to ensure categorical decisions and to prevent them from
memorizing individual tone-feedback pairs. This is not an issue
for the model, since no mechanism allowing such memorizing
was implemented. As for the participants, auditory feedback was
presented to the model.

The modeling approach is a mixed modeling approach,
the strategies are encoded as instances, but which instance is
retrieved is mainly governed by rules.

To test if the model is a generalizable model, different
variations were implemented. The learning curves found in the
empirical data should still be found under different plausible
parameter settings. However, specific parameter settings should
influence the predictive quality of the model. The approach
typically chosen by cognitive modelers is to search for specific
parameter settings that result in an optimal fit and then report
this fit. The objective behind such an approach is to show that
the model resembles the ongoing cognitive processes in humans.
We have chosen a different approach. Our objective is to show
that our modeling approach can map the general behavior such
as learning and reversal learning as well as variance found in the
data. By varying parameter settings, we want to optimize the fit of
the model and examine the robustness of the model mechanisms
to parameter variations.

Regarding the choice of varying parameters, we use an
extended parameter term which includes not only subsymbolic
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ACT-R parameters (which are typically regarded as parameters)
but also certain (production) rules (Stewart and West, 2010).
In the case of this model, productions that control the tracking
mechanism of successful strategies are varied. The tracking
mechanism keeps track of how often a strategy is successful.
However, the model does not increase the count throughout
the entire experiment. After it reaches a threshold, a successful
strategy is marked as “successful often.” Thereafter, it is not
discharged directly in case of negative feedback but instead
reevaluated. So, to answer the question what the most suitable
values for the threshold of the first and second count are, these
values were varied. Another implemented model assumption
is that this threshold is different for single-feature vs. two-
feature strategies. We assumed that the threshold for two-feature
strategies should be double the value for one-feature strategies,
as if the model was counting for each feature separately. The first
count was varied for three, four and five and the second count for
six, eight, and ten.

Besides the parameters that control the tracking mechanism,
we also investigated a parameter-controlled memorymechanism.
The latter controls for how long the model can remember
if it had already used a previous strategy. This is the
declarative-finst-span5 parameter of ACT-R. We assumed that
participants remember which strategy they previously used for
around 10 trials back. We therefore tested two different values
(80 and 100 s) for this parameter, determining whether the model
can remember if this chunk has been retrieved in the last 80 (or
100) s. The combination of the declarative-finst-span (80, 100),
three values for the first count (3, 4, 5) and three values for the
second count (6, 8, 10) resulted in 18 modeling versions (see
Table 1).

Analyses
Each of the models was run 160 times, 40 times for each pseudo-
randomized order, using ACT-R 7.3. The data were preprocessed
with custom Lisp files and then analyzed with Microsoft Excel.

The model data and the empirical data were divided into 12
blocks, with 20 trials per block. The average proportion of correct
responses and the standard deviation per block was computed for
the experiment as well as for each of the 18 models.

One aim of this study was to predict average learning curves of
the participants. Thus, the proportion of correct responses of the
participants was compared to the proportion of correct responses
of each of the models. Visual graphs comparing the modeled to
the empirical data were analyzed with regard to increases and
decreases in correct responses.

As an indication of relative fit, the correlation coefficient
(r) and the determination coefficient (r2) were computed. They
represent how well trends in the empirical data are captured by
the model.

As an indication of absolute fit, the root-mean-square error
(RMSE) was calculated. RMSE represents how accurately the

5The declarative-finst-span parameter controls how long a finst (fingers of

instantiation) can indicate that a chunk was recently retrieved. The number of

items and the time for which an item can be tagged as attended is limited. These

attentional markers are based on the work of Zenon Pylyshyn.

TABLE 1 | Resulting modeling versions from combining the different parameter

settings for the first and second count and the declarative-finst-span.

First count 3 First count 4 First count 5

:declarative-

finst-span

80

Second count 6 3_06 _080 4_06 _080 5_06 _080

Second count 8 3_08 _080 4_08 _080 5_08 _080

Second count 10 3_10 _080 4_10 _080 5_10 _080

:declarative-

finst-span

100

Second count 6 3_06 _100 4_06 _100 5_06 _100

Second count 8 3_08 _100 4_08 _100 5_08 _100

Second count 10 3_10 _100 4_10 _100 5_10 _100

FIGURE 4 | Average performance and standard deviations of the human

participants, the best fitting model (3_06_100), and the worst fitting model

(5_10_100) in the 12 blocks of the experiment.

model predicts the empirical data. RMSE is interpreted as the
standard deviation of the variance of the empirical data that is
not explained by the model.

To compare the participant-based variance found in the
empirical data with the variance produced by the 160 individual
model runs, a Levene’s test (a robust test for testing the equality
of variances) was calculated for each block of the experiment.

RESULTS

In the following sections, the empirical data, the modeled
learning curves, and the results regarding the general fit of the
different model versions to the data are presented.

Empirical Learning Curves
The descriptive analysis of the empirical data (see Figure 4 and
Table 2) shows that on average, in the first block the participants
respond correctly in 64.3% (±13.5%) of the trials. The response
rate of the participants increases until the sixth block to 90.4%
(±12.2%) of correct trials. In the seventh block, the block in
which targets and non-targets switch, it drops to 56.5% (±17.7%)
of correct trials. It then increases again and reaches 81.0%
(±18.5%) of correct trials in the eighth block and 89.7% (±13.9%)
of correct trials in the last block. Across all 12 blocks, the standard
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deviation of the empirical data ranges from 10.7% minimum to
18.9% maximum, with an average standard deviation of 15.1%.
The standard deviation of the participants derives from the fact
that different participants showed different learning curves, and
not all participants reported to have found the correct strategy
in a post interview. Correspondingly, eleven participants (20.0%)
showed a performance below 85% by the end of the first part
of the experiment (Block 6), and 12 participants (21.8%) stayed
below 85% correct responses at the end of the second part
(Block 12).

Modeled Learning Curves
Figure 4 further shows the means and standard deviations of
the proportion of correct responses of the best (3_06_100) and
worst fitting (5_10_100) model (see below, Section Model Fit).
In addition, Table 2 lists the model performance means and
standard deviations for each of the twelve blocks for all 18
models, and Figure 5 shows the learning curves of all 18 models.

Both the best and the worst fitting model (as do all others)
capture the overall shape of the learning curve found in the
data. They both show an increase in the learning rate in the
first six blocks. Similarly, all models show a drop in performance
in the seventh block, which is followed by another increase in
performance. Even in the best fitting 3_06_100 model, however,
the proportion of correct responses is underestimated by the
model, especially in the first blocks. Also, the participants show a
more severe setback after the switch but then recover faster, while
the model takes longer until its performance increases again.
Nevertheless, for the best fitting model, the modeled data are
always within the range of the standard deviation of the empirical
data.

As Table 2 shows, each of the models shows a large degree
of variance across its 160 runs. The standard deviation averaged
across all 12 blocks ranges from 18.9 to 20.4%, depending on
the model’s parameter settings. For the best-fitting model, the
standard deviation in the individual blocks ranges from 11.6
to 23.4% and is significantly larger than the standard deviation

found in the empirical data, except for the first two blocks of the
experiment and the first two blocks after the switch (for all blocks
except Block 1, 2, 7, and 8: all Fs > 6.79, all ps < 0.010). This
high variation of the individual model runs indicates that the
same underlying rule-set with the same parameter settings can
still result in very different learning curves, depending on which
exact strategies are chosen at each point when a new strategy is
selected (e.g., initial strategy, alteration of one-feature strategy,
alteration of two-feature strategy). Furthermore, similarly to the
non-learners among the participants described above (see Section
Empirical Learning Curves), not every model run was successful,
resulting (for the best fitting model) in a performance below 85%
in 35.6% of the runs for Block 6 and in 30.0% of the runs for
Block 12.

Model Fit
The average correlation of the model and the empirical data
is 0.754. Between 43.9% and 67.1% of the variance in the
data is explained by the different models. The average standard
deviation of the unexplained variance is 0.136. All r, r2, and
RMSE values for the 18 model versions are presented in Table 3.

As Table 3 and Figure 5 show, the model shows relative
robustness to the influence of varying parameter settings. For the
first count, a lower value is somewhat better for the fit—there is
a stronger increase in the first part of the experiment (until Block
6) for a lower than for a higher first count value. For the second
count, a lower value results in a better fit as well. The influence
of the declarative-finst-span parameter on the fit-indices is very
small, resulting in a slightly better fit either for a declarative-finst-
span of 80 s or of 100 s, depending on the settings of first and
second count.

The best fit in terms of correlation was achieved for the model
with the declarative-finst-span value set to 100 (i.e., the model
was able to remember if it had already used a previous strategy
for 100 s), a first count of three (i.e., a one-feature strategy needed
to be successful at least three times to be considered as “often
successful”) and a second count of six (i.e., a two-feature strategy

FIGURE 5 | Average performance of the 18 versions of the model in the 12 blocks of the experiment, (A) models with a declarative-finst-span of 80 s, (B) models with

a declarative-finst-span of 100 s.
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TABLE 3 | Values of r, r2, and RMSE of the 18 versions of the model.

r r2 RMSE

3_06_080 0.812 0.659 0.124

3_06_100 0.820 0.672 0.109

3_08_080 0.745 0.555 0.134

3_08_100 0.803 0.645 0.119

3_10_080 0.785 0.616 0.132

3_10_100 0.798 0.636 0.114

4_06_080 0.805 0.649 0.128

4_06_100 0.794 0.631 0.124

4_08_080 0.726 0.527 0.138

4_08_100 0.743 0.552 0.135

4_10_080 0.745 0.555 0.146

4_10_100 0.741 0.549 0.133

5_06_080 0.733 0.537 0.146

5_06_100 0.722 0.521 0.152

5_08_080 0.697 0.485 0.164

5_08_100 0.718 0.516 0.158

5_10_080 0.721 0.520 0.144

5_10_100 0.663 0.439 0.156

OVERALL

MEAN 0.754 0.570 0.136

MIN 0.663 0.439 0.109

MAX 0.820 0.671 0.164

needed to be successful at least six times to be considered as
“often successful”). The worst fit was observed for the model with
the declarative-finst-span value set to 100, a first count of five and
a second count of ten.

The RMSE varies from a minimum of 0.106 (3_06_100) to a
maximum of 0.164 (5_08_100). Thus, themodel with a first count
of three, a second count of six and a declarative-finst-span set to
100 performs best, both in terms of correlation (r) and absolute
prediction (RMSE).

Summary
In general, the models predict the data well. The modeled
learning curves resemble the form of the average empirical
learning curve, with an increase in the first half of the experiment,
a short decrease at the beginning of the second half, followed by
another increase in performance. The correlation indices of the
best fitting model show a good fit, with 67.2% of the variance
of the data being explained by the model with a declarative-finst
span of 100 s, a first count threshold of three and second count
threshold of six. Note that this is also the model with the closest
absolute fit (RSME is 0.109).

However, in absolute percentages of correct responses, all of
the models perform below the participants in all blocks (except
Block 7). Also, the models show greater overall variance than the
empirical data. Furthermore, the models are initially less affected
by the switch in strategies but take longer to “recover” from the
switch in strategies.

In summary, the model replicates the average learning curves
and large parts of the variance. It does so with a limited set of

rules and the given exemplars, covering learning and relearning
processes which take place in dynamic environments. Moreover,
we found differences in model fit depending on the exact
specification of the parameters, with the best fit if the model
remembers previously employed strategies for 100 s, marks a
one-feature strategy as “often successful” after three successful
uses and a two-feature after six successful uses. However, all
of the 18 different parameter settings we tested resembled
the main course of the empirical data, thereby indicating
that the mechanisms of the model are robust to parameter
variations.

DISCUSSION

The discussion covers three main chapters. First, the fit of the
model is discussed and suggestions for possible improvements
are given. Second, the broader implications of our approach are
elaborated. Finally, future work is outlined.

Discussion of the Modeling Approach
Our modeling account covers relevant behavioral data of a
dynamic decision-making task in which category learning is
required. To solve the task, two features have to be combined,
and the relevant feature combination needs to be learned by trial
and error using feedback. The model uses feedback from the
environment to find correct categories and to enable a switch in
the assignment of response buttons to the target and non-target
categories. Metacognition is built into the model via processes
that govern under what conditions strategic changes, such as
transitions from one-feature to two-feature strategies, occur.

Overall, the fit indices indicate that this model solves the
task in a similar way as participants do. This includes successful
initial learning as well as the successful learning of the reversal
of category assignment. Moreover, the observation was made
that not all participants are able to solve the task, and the
same is observed in the behavior of the modeling approach.
Thus, the model is able to generate output data that, on a
phenomenological level, resemble those of subjects performing
a dynamic decision-making task that includes complex rule
learning and reversal processes. Although the overall learning
trends found in the data can be replicated well with the general
rules implemented in our model, there are two limitations: The
variance of the model is larger than that of the participants,
and the overall performance of the model is lower than the
performance of the participants.

It is likely that the participants have a different and perhaps
more specific set of rules than the model. For example, the
participants were told which of the two keys to press for the
target sound. However, it is unclear if they used this knowledge
to solve the task. To keep the model simple, it was not given
this extra information, so there was no meaning assigned to
the buttons. This is one possibility to explain the model’s lower
performance, especially in the first block. Another example for
more task specific rules used by the participants compared to
the model is that the four different features of the stimuli may
not be equally salient to the subjects, which may have led to
a higher performance compared to the model. For example,
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it is conceivable that the target-feature direction of frequency
modulation (up vs. down) was chosen earlier in the experiment
than the non-target feature frequency range, while the model
treated all features equally to keep the model as simple as
possible. Finally, after the change of the button press rule,
some participants might have followed a rule which states to
press the opposite key if a strategy was correct for many times
and then suddenly is not, instead of trying out a different
one- or two-feature strategy, whereas the model went the
latter way.

Adding such additional rules and premises to themodel would
possibly reduce the discrepancy between the performance of
the model and the behavioral data. However, the aim of this
paper was to develop a modeling approach that incorporates
general processes important for all kinds of dynamic decision-
making. This implies using only assumptions that are absolutely
essential (meta-cognition, switching from one-feature to two-
feature strategies, learning via feedback) and keeping the model
as simple as possible in other regards. As a consequence,
adding extra rules would not produce a better general model
of dynamic decision-making, but would only lead to a better fit
of the model for a specific experiment while making it prone
to overfitting. As mentioned earlier, good descriptive models
capture the behavioral data as closely as possible and therefore
always aim at maximizing the fit to the data they describe. Good
predictive models, on the other hand, should be generalizable
to also predict behavior in different, but structurally similar
situations and not just for one specific situation with one set of
subjects. In our view, this constitutes a more desirable quest with
more potential to understand the underlying processes of human
dynamic decision-making. This is supported by Gigerenzer and
Brighton (2009), who argue that models that focus on the core
aspects of decision-making, e.g., considering only few aspects,
are closer to how humans make decisions. They also argue that
such simplified assumptions make decisions more efficient and
also more effective (Gigerenzer and Brighton, 2009).

As stated earlier, one way to model dynamic decision-
making in ACT-R using only few assumptions is instance
based learning (IBL). This approach uses situation-outcome
pairs and subsymbolic strengthening mechanisms for learning.
However, IBL is insufficient to model tasks which involve
switches in the environment (Fum and Stocco, 2003). Such
tasks require adding explicit switching rules. Besides these
rules, our task needed mechanisms that control when to switch
from simple one-feature strategies to more complex strategies.
Since meta-cognitive reflections are not part of IBL, we used
a mixed modeling approach which incorporates explicit rules
and metacognitive reflection. IBL is insofar part of our approach
as the strategies are encoded as situation-outcome pairs and
subsymbolic strengthening mechanisms of ACT-R are utilized.

To evaluate if our modeling approach of strategy formation
and rule switching is in line with how participants perform in
such tasks, data reflecting learning success need to be considered.
Such data are the learning curves reported in this paper. We
believe that an IBL model alone cannot produce the strong
increase in performance after the environmental change in the
empirical data.

For a further understanding of complex decision-making,
other behavioral data, such as reaction times, could also be
modeled. However, not all processes that probably have an
impact on reaction time are part of our general modeling
approach. This is especially the case for modeling detailed aspects
of auditory encoding with ACT-R; for example, the precise
encoding of the auditory events can be expected to comprise a
different gain in reaction time for short compared with longer
tones. However, our modeling approach is expandable, allowing
the incorporation of other cognitive processes such as more
specific auditory encoding or attention. This extensibility is one
of the strengths of cognitive architectures and is particularly
relevant for naturalistic decision-making, where many additional
processes eventually need to be considered.

Scope of the Model
A formal model was built with ACT-R, it specifies the
assumptions of dynamic decision-making in category learning.
This model was tested on empirical data and showed similar
learning behavior. Assumptions about how dynamic decisions
in category learning occur, e.g., by learning from feedback
and switching from simple to more complex strategies, and
metacognitive mechanisms were modeled together. ACT-R aims
at modeling cognition as a whole, thus addressing different
cognitive processes simultaneously, an important aspect for
modeling realistic cognitive tasks.Moreover, themodel is flexible.
Thus, the model chooses from the available strategies according
to previous experience and random influences.

Ourmodeling approach is simple in the sense that it comprises
only few plausible assumptions, does not rely on extra parameters
and is nevertheless flexible enough to cope with dynamically
changing environments.

To test the predictive power of the model, it needs to
be further tested and compared to new empirical data that
are obtained using slightly different task settings. Our aim
was to develop a first model of dynamic decision-making
in category learning. Thus, relevant cognitive processes that
occur between stimulus presentation and the actual choice
response are included in the model. Furthermore, we wanted
to show how a series of decisions emerge in the pursuit of an
ultimate goal. Thus, as a first step we needed a decision task
that shows characteristics similar to natural dynamic settings.
Such aspects include complex multi-feature stimuli, feedback
from the environment, and changing conditions. Since explicit
hints on category membership are usually not present in non-
experimental situations, it is furthermore reasonable to use a
task without explicit instructions regarding which features (or
stimuli) attention should be focused on. The downside of using
unspecific instructions as done in our study is that from the
behavioral data, it will remain unclear how exactly individual
participants process such a task, since aspects such as which
exact rules are followed or which features are considered at the
beginning of a task, are uncertain.

As a next step we aim at modeling and predicting the dynamic
decision-making course of individual participants. In general,
a big advantage of cognitive modeling approaches is that they
can predict ongoing cognitive processes at any point in time. To
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evaluate the validity of such predictions, different approaches can
be followed.

One approach to constructing models in accordance with
the cognitive processes of participants is the train-to-constrain
paradigm (Dimov et al., 2013). This paradigm requires
instructing participants in a detailed step-by-step procedure on
how to apply specific strategies in decision tasks. This approach
gives the modeler insight into the strategies that participants are
using at a given time point. This again can be used to constrain
ACT-R models in the implementation of these strategies. In
future studies, we plan to adopt this paradigm by (a) instructing
the participants and (b) adjusting our model accordingly. To
ensure that the train-to-constrain paradigm was successfully
implemented, self-reports of the participants should be used.

Another approach is to conduct interviews while the
participant is performing the task. To confirm the model’s
predictions about the prospective behavior of participants,
subjects of future empirical studies should thus be asked about
their decisions during the course of the experiment. The first few
participant decisions can be expected to be strongly influenced
by random aspects (e.g., which feature is attended to first), but
after some trials, the modeling approach should be able to predict
the next steps of the participants. Thus, it should allow precise
predictions of the subsequent cognitive processes. To make such
predictions, a revised model would need to use the first couple of
trials as information about the strategy an individual participant
initially follows.

In a further step, the exact cognitive processes proposed by
the model should be tested on an individual level on more
fine grain data (e.g., fMRI) and then be readjusted accordingly.
Currently, different methods to map cognitive models to finer
grain data such as fMRI or EEG data have been proposed
(Borst and Anderson, 2015; Borst et al., 2015; Prezenski and
Russwinkel, 2016a). These methods are currently investigated
and have been applied for basic research questions. Nevertheless,
mapping cognitive models to neuronal data is a challenge. More
research is needed especially for applied tasks. To supplement
neuronal data, additional behavioral data, such as button press
dynamics (e.g., intensity of button press), can be added as an
immediate measurement of how certain an individual participant
is about a decision (Kohrs et al., 2014).

Besides using cognitive models to predict individual behavior,
we aim to develop more general cognitive mechanisms to model
learning, relearning and metacognition that are valid in a broad
range of situations. To test the applicability of our modeling
approach in a broader context and different situations, variations
of the experiment should be tested with different tasks and
materials. For example, the model proposed here should be able
to predict data from categorization experiments using visual
stimuli such as different types of lamps (Zeller and Schmid,
2016) with some modifications to the sensory processing of our
model. Furthermore, the model should be capable of predicting
data from different types of categorization tasks, for example a
task using a different number of categorization features, more
switches or different sequences. Such a task would be a predictive
challenge for our model; if it succeeds, it can be considered as a
predictive model.

The developed general mechanisms can also be used in
sensemaking tasks. Such tasks require “an active process to
construct a meaningful and functional representation of some
aspects of the world” (Lebiere et al., 2013, p. 1). Sensemaking
is an act of finding and interpreting relevant facts amongst the
sea of incoming information, including hypothesis updating.
Performance in our task comes close to how people make sense
in the real world because it involves a large number of different
stimuli, each carrying different specifications of various features.
Thus, “making sense of the stimuli” requires the participants
to validate each stimulus in a categorical manner and use the
extracted stimulus category in combination with the selected
button-press and the feedback that follows as information for
future decisions.

To conclude, such a cognitive model which includes general
mechanism for learning, relearning andmetacognition can prove
extremely useful for predicting individual behavior in a broad
range of tasks. However, uncertainty remains regarding whether
this captures the actual processes of human cognition. This is not
only due to the fact that human behavior is subject to manifold
random influences, but also to the limitation that a model
always corresponds to a reduced representation of reality. The
modeler decides which aspects of reality are characterized in the
model. Marewski andMehlhorn (2011) tested different modeling
approaches for the same decision-making task. While they found
that their models differed in terms of how well they predicted
the data, they ultimately could not show that the best fitting
model definitely resembles the cognitive processes of humans. To
our knowledge, no scientific method is ever able to answer how
human cognition definitely works. In general, models can only
be compared in terms of their predictive quality (e.g., explained
variance, number of free parameters, generalizability). Which
model ultimately corresponds to human reality, on the other
hand, cannot be ascertained.

Outlook
One reason for modeling in cognitive architectures is to
implement cognitive mechanisms in support systems for
complex scenarios. Such support systems mainly use machine
learning algorithms. Unfortunately, those algorithms depend on
many trials to learn from before they succeed in categorization
or in learning in general. Cognitive architecture inspired
approaches, on the other hand, can also learn from few samples.
In addition, approaches that rely on cognitive architectures are
informed models that provide information about the processes
involved and the reasons that lead to success and failure.

Cognitive models can be applied to a variety of real-world
tasks, for example to predict usability in smartphone interaction
(Prezenski and Russwinkel, 2014, 2016b), air traffic control
(Taatgen, 2001; Smieszek et al., 2015), or driving behavior
(Salvucci, 2006). Moreover, cognitive modeling approaches can
also be used in microworld scenarios (Halbrügge, 2010; Peebles
and Banks, 2010; Reitter, 2010). Not only can microworld
scenarios simulate the complexity of the real world, they also have
the advantage of being able to control variables. This implies that
specific variations can be induced to test the theoretical approach
ormodel in question (as demonstrated in Russwinkel et al., 2011).
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Many applied cognitive models are quite specific task models.
Our model, in contrast, aims at capturing core mechanisms
found in a variety of real world tasks. As a consequence, it
has the potential to be applied in many domains. So, our
model of dynamic decision-making in a category learning task
makes predictions about the cognitive state of humans during
such a task. This involves predictions about strategies (e.g.,
one-feature or two-feature strategies), conceptual understanding
(e.g., assumptions about relevant feature combinations) and
metacognitive aspects (e.g., information on the success of the
decision maker’s current assumption), all of which are aspects of
cognition in a multitude of tasks and application domains.

Our general modeling approach therefore has the potential to
support users in many domains and in the long run could be
used to aid decision-making. For this, the decisions of individual
users during the course of a task could be compared to the
cognitive processes currently active in the model. If for example
a user sticks to a one-feature strategy for too long or switches
rules in an unsystematic manner, a system could provide the
user with a supportive hint. Other than regular assistant systems,
such a support system based on our model would simulate the
cognitive state of the user. For example, this online support
system would be able to predict the influence of reoccurring
negative feedback on the user, e.g., leading him to attempt a
strategy change. If, however, the negative feedback was caused by
an external source such as a technical connection error, opting
for the strategy change would result in frustration of the user.
The proposed support system would be able to intervene here.
Depending on the internal state of the user, the support system
would consider what kind of information is most supportive or
if giving no information at all is appropriate (e.g., in case of
mental overload of the user). As long as no support is needed,
systems like this would silently follow the decisions made by a
person.

Moreover, if the goal of the user is known, and the decisions
made by the user have been followed by the system, it would
be possible to predict the user’s next decisions and also to
evaluate whether those decisions are still reasonable to reach
the goal. Many avalanches have been caused by repeated wrong

decisions by backcountry skiers stuck in their wrong idea about
a situation (Atkins, 2000). A support system that is able to
understand when and why a person is making unreasonable
decisions in safety critical situations would also be able to present
the right information to overcome the misunderstanding. A
technical support system for backcountry skiers would need
information about current avalanche danger, potential safe routes
and other factors. Such information is already provided by
smartphone applications that use GPS in combination with
weather forecasts and slope-steepness measures. In the future,
when this information is made available to a cognitive model-
based companion system that predicts the decisions of the users,
it could potentially aid backcountry skiers. Cognitive model-
based support systems designed in a similar manner could
equally well be employed in other safety-critical domains, as well
as to assist cyclist, drivers or pilots.
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Abstract 

This paper demonstrates how mental models and updates of 
mental models due to system changes can be modeled with the 
cognitive architecture ACT-R using explicit mechanisms. The 
mental model building and updating is modeled with a 
representation chunk and a control chunk. The representation 
chunk holds the strategy, the expected outcome and an 
evaluation mechanism of the strategy. The control chunk holds 
information over environmental conditions and the learning 
history. This modeling approach was developed and tested for 
smartphone application tasks and then implemented in a 
dynamic decision-making task investigating strategy 
development with complex stimuli. The later task used 
different multi-feature auditory stimuli material. The modeling 
approach explained data of participants in the smartphone 
studies very well and met the trends found in the dynamic 
decision-making task. 

Keywords: ACT-R; mental model updating; general model; 
learning; dynamic decision-making, applied 

Introduction and Theory 
Our behavior is guided by our internal representation of tasks 
and situations (Norman, 1983). However, such 
representations or mental models are not static but they 
change and are adjusted, due to experience gain, 
environmental changes etc. Understanding how people 
update or adapt their mental model is relevant in many fields, 
from updates in technical systems to real-life tasks that 
require strategy learning and dynamic decision-making. The 
later investigates serial decisions. Such decisions are 
dependent on previous decisions and are made under time 
constraints in a changing environment (Edwards,1962; 
Gonzalez, 2014).  Dynamic decision-making can be seen as 
a continuous cycle of mental model updating, made up of 
conceptualization – experimentation – reflection (Li and 
Maani, 2011). In the conceptualization phase a general 
concept of the situation is obtained. Hereby, the outcome of 
potential decisions is mentally simulated. The current 
situation is compared to information in the decision maker’s 
mental model. 

New information obtained from the environment is 
integrated to develop a set of decisions. In the 
experimentation phase, these decisions are tested. The 
outcome (e.g. feedback) of the experimentation phase is 
evaluated on in the reflection phase. If the expected outcome 
is achieved (e.g. positive feedback), initial decisions are kept. 
If, the outcome is unexpected (e.g. negative feedback) the 
mental model of the decision maker is updated. Thus, 
alternatives are sought for, such as new sources of 
information. 

In real-life settings adaptations of mental representations 
of users are required in many different circumstances. 
Typical situations which require a user to update his or her 
mental model are situations leading to errors, due to 
incomplete or wrong representations. For example, if a user 
repeatedly fails to install the connection settings for the 
universities Wi-Fi, he or she needs to adjust his or her mental 
model, about how to install Wi-Fi on phones. Situations in 
which changes to the system (due to aspects outside of the 
person) make the current (in the past correct mental model) 
inadequate also require adjustment to the user´s mental 
representation. Examples for the later are a) that due to 
system-upgrades a new version of an application is launched 
or b) that past-successful strategies used in decision-making 
tasks are misleading due to environmental changes.  

Nevertheless, the core mechanisms of mental model 
adaptation should be the same for both situations. This paper 
demonstrates how mental model build-up and adjustment due 
to environmental can be addressed using the cognitive 
architecture ACT-R.  

Cognitive architectures allow computationally 
implementing theories about human cognition in a broad 
spectrum. The cognitive architecture ACT-R has been 
applied in many applied domains such as smartphone usage 
(Prezenski, Bruechner and Russwinkel, 2017) or air-traffic 
control (Raufaste, 2006) but also in more ground-based 
research (Halbrügge and Russwinkel, 2016).  

ACT-R has symbolic and subsymbolic parts which 
together produce the modeled behavior. The symbolic parts 
are chunks, production rules, buffers and modules. The 
modules resemble the architecture of the human brain. are 
specified, each of them handles different types of information 
(chunks). The chunks have slots, they store the smallest 
pieces of information. The different modules interact through 
their corresponding buffers. For example, visual information 
is processed by the visual module and its two buffers. Motor 
movement is controlled by the manual module and buffer. 
The declarative module is the long-term memory of ACT-R. 
Information for this module is retrieved via the retrieval 
buffer. The imaginal module and buffer are important for 
learning new information and can be seen as ACT-Rs 
working memory. Model steering is controlled by the goal 
module and buffer. The procedural module connects the 
modules and selects (production-) rules. These production 
rules are the core part of an ACT-R model- they govern the 
model behavior. Production-rules can be selected and 
executed, if buffer states are met. The selected production-
rule can then change the states of the modules. An example 
of a subsymbolic process in ACT-R is the activation level. 
Thus, if a production requests a chunk and more than one 
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chunk matches this request, this results in the selection of the 
chunk with the highest activation level. The activation level 
of a chunk is composed of how often it was used when it was 
last accessed and how long ago the chunk was created. There 
are many more subsymbolic processes built into the 
architecture of ACT-R (e.g. blending, partial matching). 
Subsymbolic processes are used for modeling implicit 
learning, e.g. usage of activation mechanism to 
model information that is well- known can be better retrieved 
than information that is less well-known.  

However, learning (especially in early phases) is also an 
explicit process (Tenison, Fincham & Anderson, 2016). 
Thus, the learner is deliberately processing information and 
deciding what to do next stepwise. This can be modeled by 
building of new chunks via specific production rules. They 
can represent the strategies given to a model by the modeler. 
For an overview and a discussion of implicit and explicit 
mechanisms in ACT-R in context of intuitive decision-
making see Thomson et al (2016).  

Explicit mechanisms seem especially important in mental 
model updating. According to Li and Maani (2011) mental 
model updating occurs in the reflection phase when negative 
feedback (unexpected outcome) is observed. Then new 
sources of information need to be sought for. Such processes 
require the modeler to use explicit mechanism.   

Cognitive models are useful to make precise predictions 
about theories on human cognition. Models build with 
cognitive architectures moreover allow precise prediction 
about behavior influenced by different cognitive processes. 
They try to capture cognition as a whole. Enough effort, 
modeling skills and free parameters make it possible to 
precisely match behavior of participants with models.  But 
for models to be useful. they should be able to predict data in 
other situations as well. Therefore, modelers should avoid 
using many specifications to match the data, but attempt to 
use broader concepts. A successful example for this are 
models using instance based learning (Gonzalez, 2005). 
Instance based learning is used to model intuitive decision-
making (Thomson et al, 2016). Hereby problem-solving 
instances are stored in declarative memory and decisions are 
made by retrieving these instances. The activation 
mechanism of ACT-R is used to determine which instances 
are retrieved. However, in early phases of learning and when 
previously-learned instances become invalid (due to changes 
in the environment) explicit mechanisms are needed. Such 
explicit mechanism should be constructed in a general 
manner and thus be applicable in a variety of tasks. 

Aim and Previous Work 
The aim of this paper is to show how the same modeling 
approaches and mechanisms relevant for mental model 
building and updating can be used in very different applied 
tasks. Both tasks have in common that they require the 
participants to explicitly a) learn and b) notice changes and 
thus to readjust their mental model. Otherwise the tasks are 
different, thus two ACT-R models are used. Nevertheless, 
this paper resembles a general modeling approach, since it 

demonstrates how the core model mechanisms developed in 
one study (Prezenski and Russwinkel, 2016) are applied to a 
different study (Prezenski et al. submitted). 

The first study investigated a search-and select task with 
two different smartphone applications. One application 
allows users to select items to assemble a shopping list and 
the other to select search-criteria for real-estates. Initial and 
repeated usage of these applications was investigated. 
Furthermore, users’ adaptation to changes in the applications 
due to updates influencing the menu-structure (shopping 
application) and adaptations (real-estate application) was 
studied.  

The second study examined strategy learning in an auditory 
dynamic decision-making task. In this task, multi-feature 
sounds were repeatedly presented to the participants. The task 
was to decide if the presented sound was a target or a non-
target. To solve this task a combination of features had to be 
chosen as targets. The relevance of feature combinations had 
to be learned from the feedback given in the experiment. In 
the middle of the task a uniformed switch of targets and non-
targets occurred. The task can be seen as an example for 
dynamic decision-making, because it requires participants to 
repeatedly make decisions on whether or not a stimulus is a 
target or a non-target and learn (e.g. improve their decisions) 
from feedback of the previous decisions. The decisions have 
to be made under time-constraints. Other feature-
combinations become targets at a given point in the 
experiment due to changes in the environment. 

Methods 
The methods section of this paper is structured in the 
following way: First, the core mechanisms for mental model 
building and mental model updating are described. Second, 
the results of the first study on smartphone interaction and the 
implementation of the mechanisms in the first study is 
summarized. Third, the second study on dynamic decision-
making and the transfer and implementation of the 
mechanisms is explained.  

Mechanisms 
 
Mental model building The core part of the mental model 
(or abstract representation) of a situation, strategy or solution 
is stored in the representation chunk (see figure 1). The slots 
of this representation chunk hold information on the strategy 
and the expected outcome of applying this strategy. The 
information on the strategy consists of a representation of the 
situation and the action. 

During mental model building (conceptualisation phase) 
the representation chunk needs to be placed in the imaginal 
buffer. Only here ACT-R allows chunks to be altered.  In the 
experimentation phase, the expected (or predicted) outcome 
of this representation chunk is tested and then reflected on 
(reflection phase). 

In the reflection phase, mental models can either be revised 
or strengthened. On the one hand, revision is required, if the 
outcome is different from what is expected. On the other 
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hand, if the outcome is as expected mechanisms for 
strengthening the mental model are needed. Here fore, 
explicit mechanisms are used; namely a slot that notes if a 
strategy is correct and other slots that keep track (until a 
threshold) how often a strategy was correct. Other implicit 
ACT-R strengthening mechanisms are also used, such as that 
frequently used chunks, are retrieved more often and have a 
higher activation and this again makes them more likely to be 
retrieved.   

Furthermore, as learning evolves, mental models often 
become more specific (Gonzalez and Lebiere, 2005).  For 
example, a user experienced in installing Wi-Fi on phones for 
university networks might have two or more mental models 
depending on the different types of phones the user installed 
Wi-Fi for university network in the past.  Thus, learners may 
know that a solution is only applicable for a specific situation 
(e.g. for one version of an application) such knowledge 
should also be stored in the representation chunk. 

Besides a representation of the situation, expected outcome 
and observed success (core part of the mental model), the 
building of such a model also requires some form of control 
over the environmental conditions and the learning history. 
Such information is stored in the control chunk (see Figure 
1). This chunk is kept in the goal buffer. 

  

 
Figure 1: Main chunks and slots required for mental model 

building and updating 
 
Mental Model Updating In this paper mental model 
updating refers to the modification of an established 
representation chunk, e.g. a strategy that has been successful 
in the past.  

The mechanism, illustrated in Figure 2 works the following 
way: First, the strategy of the suggested action of the 
representation chunk leads to unexpected outcome. This 
unexpected outcome is then encoded in a slot of the control 
chunk. This slot represents the uncertainty of the current 
strategy that something may have changed. The 
representation chunk is nevertheless kept as mental model 
and tested again. If following the strategy proposed by the 
representation chunk produces unexpected outcome again, 
this is noted in a slot of the control chunk. This represents that 
a change has occurred and that a different strategy needs to 
be built up from now on.  

 
Figure 2: Mental model updating process, governed by 

specified production rules. 

Studies 
In the following section the two studies, first the smartphone 
study and then the decision-making study are presented. Both 
sections first provide an overview of the tasks and material 
and then focus on how the core model mechanism from above 
are implemented respectively. 
 
1) Smartphone Application Study These mechanisms were 
implemented in a model of users search and select behavior 
via navigating two smartphone applications. This study has 
been presented in greater detail elsewhere (Prezenski and 
Russwinkel, 2016). Thus, only a brief short summary of the 
applications (material), task, participants, study-design and 
the implementation of the mental model building and 
updating mechanism is given. 
 
Material/Applications Two self-designed Android 
applications (a shopping list application and a real-estate 
application) each with two different versions were used. The 
shopping list applications differed in overall menu-depth 
(three layers vs. four layers). The real-estate application 
adapted to prior selection, this affected the menu-depth and 
the positions of some items. These applications were installed 
on Google Nexus 4.  

They are hierarchical-list style applications that support 
search and select task. Targets and subtargets are spread out 
over different pages of the applications. See Figure 3 for an 
impression of the applications. 

 
Task In the shopping-list application participants had to 
search and select shopping items via navigating through 
different pages of the application. The participants had to 
search and select targets (shopping items) via selecting 
subtargets (e.g. categories, shops) placed on different layers 
of the application.  
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Fi g ur e  3:  A p pli c ati o n  l a y o ut,  r e pri nt e d  fr o m  ( Pr e z e ns ki  et 

al,  2 0 1 7,  p.  1 7 0) 
 

I n  t h e  r e al- est at e  a p pli c ati o n  p arti ci p a nts  h a d  t o  s e ar c h  a n d 
s el e ct  s e ar c h  crit eri a  f or  r e al- est at es  vi a  s el e cti n g  diff er e nt 
s u b c at e g ori es  w hi c h  w er e  a g ai n  pl a c e d  o n  diff er e nt  l a y er s  of 
t h e  a p pli c ati o n. 

 
St u d y-  D esi g n T h e  d esi g n  i n  t h e  f o ur  s u b st u di es  w a s  si mil ar. 
I n  t h e  s h o p pi n g- list  st u d y  t h e  p arti ci p a nts  w er e  r e q uir e d  t o 
s e ar c h  f or  t h e  s a m e  ni n e  it e ms  f or  f o ur  ti m es.  I n  t h e  first  t w o 
bl o c ks,  t h e y  us e d o n e  v er si o n  of  t h e  a p pli c ati o n  ( eit h er  t hr e e 
or  f o ur  l a y er s)  i n  t h e l ast t w o bl o c ks t h e  v er si o n “ u p d at e d ” 
a n d  t h e y  h a d  t o  us e  t h e  ot h er  v er si o n.  T h e y  w er e  n ot  i nf or m e d 
a b o ut  t h e  o c c urr e n c e  of  a  v er si o n  s wit c h.  I n  t h e  r e al- est at e 
st u d y  t h e  p arti ci p a nt s  w er e  r e q uir e d  t o  s e ar c h  f or  eit h er  a 
h o us e  or  a n  a p art m e nt  wit h  si x  or  s e v e n  ot h er  crit eri a  ( e. g. 
s p e cifi c  si z e,  r e nt)  a n d  aft er  t w o  bl o c ks  t h e y  h a d  t o  s e ar c h  f or 
t h e  ot h er  o n e  t wi c e  ( e. g.  t h o s e  w h o  s e ar c h e d  f or  a  h o us e  t wi c e 
h a d  t o  s e ar c h  f or  a n  a p art m e nt  a n d  vi c e  v er s a).  D e p e n di n g  o n 
t h e  pr e- s el e cti o n  of  h o us e  or  a p art m e nt  t h e  p o siti o n  a n d  t h e 
m e n u- d e pt h  of  ot h er  s e ar c h- crit eri a  c o ul d  diff er  ( e. g.  if  h o us e 
w a s  pr e- s el e ct e d  t h e  s e ar c h- crit eri a  6 0 q m  w as  p o siti o n e d 
hi g h er  i n  t h e  li st  t h e n  if  a p art m e nt  w as  pr e- s el e ct e d).   

T h e  d e p e n d e nt  v ari a bl e  is  t h e  a v er a g e  t ar g et  s el e cti o n  ti m e 
p er  bl o c k.  E a c h  bl o c k  c o nsist s  of  t h e  s el e cti o n  of  all  it e ms 
( ei g ht  it e ms  p er  bl o c k  f or  t h e  s h o p pi n g  li st  st u di es  a n d  si x  or 
s e v e n  it e ms  f or  t h e  r e al- est at e  st u di e s).  T h us,  f o ur  bl o c ks  p er 
st u d y  e xi st e d. 

T h e  f o ur  s u b  st u di e s  w er e  c o n d u ct e d  wit h  st u d e nt 
p arti ci p a nts . 1 0  p arti ci p a nts  t o o k  p art  i n  t h e  r e al- e st at e  st u d y 
w h er e  a p art m e nt  w a s  s el e ct e d  first,  a n d  1 2  i n  t h e  o n e  w h er e 
h o us e  w as  s el e ct e d  first.  1 7  t o o k  p art  i n  t h e  s h o p pi n g  list 
st u d y  t h at  us e d  t h e  t hr e e- l a y er  v er si o n  fir st  a n d  1 2  i n  t h e  o n e 
t h at  u s e d  t h e  f o ur  l a y er  v er si o n  fir st. 
 
M o d el  i m pl e m e nt ati o n   T h e  a p p s  w er e  i m pl e m e nt e d  i n  Lis p 
a n d  t h e  m o d el  w as  r u n  wit h  A C T-  R  7. 1.  1 0  m o d el  r u ns  p er 
st u d y  w er e  i m pl e m e nt e d 1 .    I n  t h e  f oll o wi n g  t h e  m o d eli n g 
pri n ci pl es  ar e  s u m m ari z e d.  T his  s e cti o n  f o c us es  o n  h o w 
t h e  m e c h a nis m  f or  m e nt al  m o d el  b uil di n g  a n d  u p d ati n g  ar e 
i m pl e m e nt e d.  Ot h er  s u p pl e m e nt al  m e c h a nis ms  will  b e 
bri efl y  i ntr o d u c e d  i n  t h e  f oll o wi n g  s e cti o n,  as  w ell.   

M e nt al  m o d el  b uil di n g  i n  s m a rt p h o n e  st u di es   T h e  t a s k 
is  t o  fi n d  a  t ar g et  vi a  n a vi g ati n g  t hr o u g h  diff er e nt  l a y er s  of 
t h e  a p pli c ati o n.  I n  t h e  b e gi n ni n g  of  t h e  t a s k,  a  m e nt al 

1   T h e  d at a  of  t h e  m o d el  di d  n ot  s h o w  m u c h  v ari a n c e.  T h u s, 
a d diti o n al  m o d el  r u n s  w er e  n ot  n e c ess ar y. 

r e pr es e nt ati o n  of  t h e  a p pli c ati o n  is  n ot  i n h er e nt  t o  t h e  m o d el. 
T h us,  n a vi g ati o n  of  t h e  a p pli c ati o n  if  a c hi e v e d  usi n g 
k n o wl e d g e  of  t h e  w o rl d  c h u n ks .  T h es e  ar e  m a d e  u p  of 
ass o ci ati o n s  b et w e e n  diff er e nt  w or d s  ( e. g.  t h e  t ar g et-  w or d 
al c o h ol- fr e e  b e e r   is  r el at e d  t o  t h e  w or d b ottl e  s h o p). T h us, 
e a c h  it e m  of  t h e  a p pli c ati o n  is  r e a d  a n d  a  r e q u est  f or 
a k n o wl e d g e  of  t h e  w o rl d  c h u n k   li n ki n g  t h e  c urr e nt  pr o c e ss e d 
it e m  a n d  t h e  t ar g et,  is  m a d e.  If  s u c h  a k n o wl e d g e  of  t h e  w o rl d 
c h u n k c a n  b e  f o u n d  t h e  it e m  is  s el e ct e d,  ot h er wis e  t h e  n e xt 
it e m  is  pr o c e ss e d.  T h e k n o wl e d g e  of  t h e  w o rl d  c h u n k   is  us e d 
t o  b uil d  u p  a  re p r es e nt ati o n  c h u n k   i n  t h e  i m a gi n al  b uff er.  If a 
r e p r es e nt ati o n  c h u n k is  a v ail a bl e,  it  will  b e  us e d  t o  n a vi g at e 
t o  t h e  t ar g et.  T his  c h u n k  c o nt ai ns  t h e  p at h  l e a di n g  t o  t h e 
t ar g et,  e. g.  w hi c h  it e m  n e e d s  t o  b e  s el e ct e d i n  or d er  t o  r e a c h 
t h e  t ar g et.  T h us,  t h e  it e ms  ar e  t h e sit u ati o n   a n d  t h e  t ar g et  is 
t h e e x p e ct e d  o ut c o m e .  T h er e  is  n o  str e n gt h e ni n g  m e c h a ni s m 
us e d  i n  t hi s  m o d el.  B ut  a s p e cifi c ati o n m e c h a ni s m  t h at 
cl arifi es  w h e n  a r e p r e s e nt ati o n  c h u n k   is  a d e q u at e  t o  b e  us e d, 
e. g.  us e r e p r es e nt ati o n  c h u n k   f or  a  m e n u- d e pt h  of  t hr e e. 
H o w e v er,  t hi s  is  p art  of  t h e c o ntr ol  c h u n k   h el d  i n  t h e  g o al 
b uff er.  T h e  c o ntr ol  c h u n k  of  t his  m o d el  als o  h ol d s 
i nf or m ati o n  a b o ut u n c e rt ai nt y of  t h e  c urr e nt  str at e g y  ( or  p at h 
c h u n k)  a n d  o n d et e ct e d  c h a n g es   ( e. g.  u p d at es).  

 
M e nt al  m o d el  u p d at es  i n  s m a rt p h o n e  st u di e s Aft er  t h e 
s e c o n d  bl o c k  a  c h a n g e  ( eit h er  a  v er si o n  u p d at e  or  a n 
a d a pt ati o n  d u e  t o  pri or  s el e cti o n)  is  m a d e  t o  t h e  a p pli c ati o n. 
T h us,  t h e  e st a blis h e d r e p r e s e nt ati o n  c h u n k s  will  n ot  l e a d  t o 
t h e  e x p e ct e d  o ut c o m e  a n y m or e.  S o,  t ar g ets,  or  s u bt ar g et s 
c a n n ot  b e  f o u n d  wit h  t h e s e   r e p r es e nt ati o n  c h u n ks.  T his 
u n c e rt ai nt y   is  n ot e d  i n  t h e c o ntr ol  c h u n k. A n ot h er  att e m pt  t o 
fi n d  t h e  t ar g et  usi n g  t hi s r e p r es e nt ati o n  c h u n k is  m a d e.  If  it 
a g ai n  d o es  n ot  l e a d  t o  t h e  t ar g et,  t h e n  a  c h a n g e  i n  t h e 
e n vir o n m e nt  is  n ot e d.  T h us,  a  str at e g y  c h a n g e  i s  i niti at e d 
a n d  t h e k n o wl e d g e- of  t h e  w o rl d   c h u n ks  ar e  us e d  t o  b uil d  a 
diff er e nt r e p r es e nt ati o n  c h u n k .  F or  t h e  n e xt  t ar g et,  a  n e w 
r e p r es e nt ati o n  c h u n k   is  b uilt  dir e ctl y.    If  t h e  m o d el  i s 
r e q uir e d  t o  s e ar c h  f or  a  t ar g et  wit h  a  n e w  v er si o n  a  s e c o n d 
ti m e  it  c a n  r etri e v e  t h e  c orr e ct r e p r es e nt ati o n  c h u n k   usi n g  t h e 
s p e cifi c ati o n  ( s e e  Fi g ur e  4).    

 

 
Fi g ur e  4:  T w o  c h u n k s  w hi c h  ar e  i m pl e m e nt e d  i n  t h e 

S m art p h o n e  a p pli c ati o n  st u d y 
 
2)  D y n a mi c  D e ci si o n-  M a ki n g  St u d y M e nt al  m o d el  b uil di n g 
a n d  u p d ati n g  s h o ul d  b e  t h e  s a m e  pr o c e ss  e v e n  i n  v er y 
diff er e nt  t a s k s.  T h u s,  it  s h o ul d  b e  m o d el e d  i n  t h e  s a m e  w a y 

r e pr e s e nt ati o n c h u n k

sit u ati o n p art a)  (fir st it e m)
sit u ati o n p art b) ( s e c o n d it e m)

sit u ati o n p art c) (t hir d it e m)

pr e di ct e d o ut c o m e (t ar g et it e m)

u n s u c c e s sf ul ( y e s or n o)

c o ntr ol c h u n k

s p e cifi c ati o n (t hr e e or f o ur l a y er s)

u n c ert ai nt y ( y e s or nil)
e n vir o n m e nt c h a n g e ( d et e ct e d nil)

1 2 4
6 6



as other tasks that require mental model building and 
updating. Such another task was investigated in the second 
study. It required the participants to make sense of multi-
feature auditory stimuli.  The experiment and the model are 
presented in more detail in Prezenski et al (submitted). In the 
following section, a short overview of material, task, 
participants will be given. Followed by a more description of 
how the mental model building and updating mechanisms 
were implemented. 
 The stimuli were 160 different tones. These were made up of 
a combination of different category features, namely duration 
(short vs. long), direction of frequency modulation (rising vs. 
falling) and intensity (quiet vs. loud) and frequency (high vs. 
low).  Tones which included a combination of specific 
category feature (e.g. loud and falling) were the target stimuli 
(25%), while the other where the non-targets (75%). 
Different category-feature combinations were the target for 
different participants. 

In each trial (there were 240 altogether), a tone was 
presented to the participant and he or she was required to 
press one of two buttons to classify if the tone was a target or 
a non-target. After the button-press auditory feedback was 
presented (“wrong” or “correct”) and then after a pseudo-
random time of six, eight or ten seconds the next trial began. 
After 120 trials, there was a switch of the button allocations, 
the participants were not informed about this. There were 
four different randomizations of the experiment; each had 
different category features as targets. 

The dependent variable was the average percentage of 
correct responses per block. 20 trials were always grouped 
together as a block. Thus, the experiment consisted of 12 
blocks. 

55 student participants took part in the experiment. 
 
Model implementation The experiment for the model was 
implemented in Lisp using the new-other-sound command 
for the tones and using 16 tones (all possible combinations of 
the category-feature) pairs as auditory stimuli. The model 
was written with ACT-R 7.1.  
 
Mental model building The task is to find the correct 
strategy to classify tones into targets and non-targets. The 
fact, that a combination of feature-value pairs is the correct 
solution is unknown to model. Thus, first a single feature-
value-pair strategy is used and this is changed to a two 
feature-value-pair strategy in the course of the experiment. 

Two main chunks are part of the model (see Figure 5). The 
first is a representation chunk which holds the current 
strategy in the imaginal buffer.  The second is a control chunk 
in the goal buffer. In the beginning of a trial a tone is heard 
and a decision has to be made if the tone is a target or not.  

The representation chunk holds the current strategy the in 
the imaginal buffer.  It contains information about the 
relevant feature(s) and value(s) (e.g., the sound is quiet or the 
sound is quiet and its frequency range is high) and the 
proposed response (0 or 1). This can be seen as the situation 
and the predicted action. Furthermore, the specification slot 

of the representation chunk holds information on the degree 
of complexity of the strategy (e.g. one or two-feature 
strategy). An evaluation mechanism is part of the 
representation chunk as well. The evaluation’s result 
determines if a strategy was unsuccessful and keeps record of 
how many times a strategy was successful. It marks if the first 
attempt to use this strategy is successful. Furthermore, the 
number of successful strategy uses are counted until a certain 
value is reached. This is meant to reflect the subjective 
feeling that a strategy was useful often.  If a strategy was 
useful often, then is well-established. The same 
representation chunk is held in the imaginal buffer as long as 
feedback is positive. If feedback is negative a different 
representation chunk will be retrieved from memory. 

The control chunk holds information on the uncertainty 
about a current strategy and on detected environmental 
changes.  

 

 
Figure 5: Two chunks which are implemented in the 

dynamic decision-making study 
  
Mental model updating If an established strategy (in other 
words representation chunk) causes unexpected negative 
feedback uncertainty about this current strategy is noted in 
the control chunk. Nevertheless, this strategy is used a second 
time. If again unexpected outcome occurs, the strategy will 
be changed using the mechanism seen in figure 2. In the 
course of the experiment, this can occur in two different 
situations. The first situation is, when a one-feature strategy 
(e.g. volume loudness is 1) is successful often but after 
repeated unexpected outcome (negative feedback) it is 
changed into a two-feature strategy. Thereby, the first 
feature-value pair (volume loudness is 1) is kept as part of the 
strategy and complemented by another feature-value pair.  

The second situation is, after the environment changed 
when a past establish two-feature strategy repeatedly leads to 
unexpected outcome. Then different two-feature strategies 
are sought for. 

To sum up, both the smartphone and the decision task 
implemented mental model building and updating in the same 
way.  Mental model building and updating is modeled using 
a representation and a control chunk. The followed strategy 
is held in the representation chunk. This chunk is retrieved 
from declarative memory and altered using working 
memory.  Information over environmental conditions and the 
learning history is encoded in the control chunk which is held 
in the goal buffer. In both models, well-established strategies 
are not discarded directly in case of unexpected outcome, but 

representation chunk

specification one or two feature strategy

situation part a) 1.feature-value-pair (e.g. 
duration short)

situation part b) 2.feature-value-pair 
(e.g.volume high)

predicted outcome response (0 or 1)

Unsucessful (nil-yes)
First attempt (nil- yes)
1.count (nil, 1,2… threshold)
2.Count (nil, 1,2…threshold)

control chunk

uncertainty (yes or nil)
environment change (detected nil)
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tested once more. If they lead to failure again, they are partly 
revised and rebuilt. 

However, the type of behavioral data that the models´ 
performance was compared to, differed: average item 
selection time was used for the smartphone studies and 
percentage of correct responses for the dynamic decision-
making experiment. 

Results 
The results section briefly presents the results of the empirical 
data together with the modeled data. The results of the 
smartphone studies are presented in greater detail in 
Prezenski & Russwinkel, 2016. The results of the decision-
making experiment in Prezenski et al (submitted). 

Study 1: Smartphone Interaction 
In all smartphone sub studies, the model captured the trends 
found in the empirical data. The trends show a decrease in 
item selection time from the first to the second block in all 
four studies. An increase from the second to the third block 
found in three studies (both real-estate app studies and the 
shopping-list app, that added an additional layer (shopping 3-
4), see Figure 6). In the other shopping-list app study the 
model also captured the decrease found between the second 
and the third block. Finally, in all four studies there is a 
decrease in the mean item-selection time this was again 
captured by the model.  

 

 
Figure 6: Mean target selection time, reprinted from 

(Prezenski and Russwinkel, 2016, p. 205) 
 

In the other shopping-list app study the model also 
captured the decrease found between the second and the third 
block. Finally, in all four studies there is a decrease in the 
mean item-selection time this was again captured by the 
model. 

To sum up, the model captured learning and relearning 
(update detection and new learning). It matched the 
participant’s behavior in mean item selection time very well 
for all four studies (r² > 0.799).   

Study 2: Dynamic Decision-Making 
In this study, the empirical data show an increase in the 
proportion of the correct response from the first to the sixth 
block (see Figure 7). This is followed by a drop in correct 
responses in the seventh block, which is pursued by a 
performance increase until the twelfth block. The model 
resembles these trends. The overall r² is at 0.672. 
Nevertheless, the descriptive data indicates that the 
participants have almost “recovered” from the change in the 
eighth block, while the model takes longer. 

In summary, the model captured the empirical data well; an 
improvement in performance in the first half of the 
experiment, the performance drop after the strategy changed 
and the recovering in performance in the second half of the 
experiment.   

The overall fit of the dynamic decision-making task is not 
as precise as the fit of the model in the smartphone 
studies.  One explanation hereof is that more measurement 
points in the decision-making study (12) then in the 
smartphone study (4) make it less likely to achieve a good fit.  

 

 
Figure 7: Proportions of correct responses of the model and 

participants 
 
Another explanation could be that the participants need less 

long to find an adequate strategy (adequate update of their 
mental model) after the switch, because they tried the strategy 
of pressing the other button for the same strategy. Such an 
explicit strategy was not modeled to keep the model simple 
and more general. 

Discussion 
Two very different real-life tasks were modeled with ACT-R 
using the same explicit mechanisms for mental model 
building and updating.  

The building process of a mental model involves 
implementing a preliminary version of a mental model and a 
subsequent testing of this model or strategy. If the strategy 
performs as expected, it is strengthened, if not it will be 
updated with a different strategy. Established strategies are 
not changed immediately in case of unexpected outcome but 
tested another time before they are changed. Changes to the 
strategy are gradual; a strategy is not completely discarded; 
some aspects are kept. 

Explicit mechanisms were used, because the changes 
investigated are registered by the humans. Such distinct 
noticed changes lead to changes in behavior. Examples for 
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these kinds of changes in real-life settings are software-
updates or changes in environmental conditions during 
outdoor activity (e.g. sudden rain while climbing). 

The scope of the presented model mechanisms is not 
mental model updating during highly automated processes 
for very skilled users. However, the presented mechanisms 
can reproduce initial learning, usage and relearning of 
strategies. Implicit mechanisms are nevertheless part of the 
models. For example, the previous activation of chunks, as 
well as if a chunk has been retrieved recently, influence the 
course of the model.  

Modeling the change in strategy and the relatively fast 
occurring relearning of the participants using solely implicit 
mechanism with ACT-R is a challenge. 

From a cognitive psychological point of view, explicit 
mechanisms are superior to data driven machine learning 
approaches, such as deep neural networks because they 
provide explanations of the underlying mechanisms of 
participants. Knowledge about explicit strategies of 
participants is valuable for the design and testing of 
interactive systems because such knowledge does not only 
provide summative performance metrics of an interface but 
also gives hints towards the causes of usability shortcomings 
and possible solutions. 

The examples that have been demonstrated assume specific 
mental models and provide mechanisms on how such mental 
models might be updated in human cognition. There is of 
course no guarantee that such strategies and mental models 
closely resemble the real strategies, this is not at last 
grounded on the fact that the human brain does not employ 
explicit symbol manipulation mechanisms, such as the 
explained process of building and updating of mental models 
does. However, the studies that were presented here show that 
such models provide a reasonable approximation of 
participant performance.  

Potential next steps are investigating the proposed mental 
model building and switching strategies empirical, with 
studies targeting these mechanisms.  

Summary 
This paper demonstrates how mental models updating due 

to system changes can be modeled using explicit mechanism. 
This explicit mental model updating mechanism was first 
implemented in a model of smartphone application usage 
(Prezenski & Russwinkel, 2016). The mechanism was then 
applied to a dynamic decision-making task, where 
participants were presented with different multi-feature 
auditory stimuli material (Prezenski, Brechmann, Wolff & 
Russwinkel, submitted).   While the model explained data of 
participants in the smartphone studies very well, the data in 
the dynamic decision-making task was not explained to such 
extend.  
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Discussion 
The combined discussion of this dissertation is structured in the following manner; first a 
short summary of each of the four papers is given. Then, the limitations of the three main 
studies presented in the four papers are analyzed in terms of design and methodologies, 
empirical data-analysis, model mechanisms and general weaknesses. This is followed by 
the overall discussion concerning main research questions aligned to this dissertation. 
Finally, an outlook is given. 

Summary of papers 
- The main aim of paper no. 1 (Prezenski & Russwinkel, 2014) was to outline how and to 

what extend the usability of smartphone applications can be addressed with an ACT-R 
user-modeling approach. Here for, two empirical studies of a repeated search and 
select task with a smartphone app provided information on usability aspects linked to 
mental model building and updating. Finally, a model concept was developed. 

- This model concept was implemented in paper no 2. (Prezenski & Russwinkel, 2016) 
with ACT-R and the descriptive and predictive power of the model was tested using 
data from the main Shopping App study and the Real-estate App study. The model was 
matched to one condition of the Real-estate App study and could predict the data of the 
other three conditions (Shopping App study and Real-estate App study). The model 
captured the trends and absolute values in terms of average data points for eight items 
per block. The results reveal that the model has high predictive power.  It can predict 
data from different empirical datasets and different apps, with a similar layout but 
varying menudepth.  

- The aim of paper no. 3 (Prezenski et al, 2017) was to investigate the prescriptive 
capacity of the core mechanisms for mental model building and updating. Thus, to test 
if the mechanisms developed for modeling user behavior with apps can be applied for 
a completely different task, the model concept was mapped to a dynamic decision-
making task. This task required participants to decipher complex auditory stimuli and 
assign categories (Wolff & Brechmann, 2015). A new ACT-R model, using the core 
mechanism developed in paper no. 1 and 2., was developed and the model and 
empirical data were compared. The results indicate that the model concept can be 
matched to the dynamic decision-making task. The model matches the trends (learning 
and relearning) found in the data to a large extent and can capture individual 
differences.  

- Paper no. 4 (Prezenski, 2017) provides a comprehensive analysis and discussion of the 
model approach from papers no. 1 to no. 3. Hereby, it focuses on explaining the details 
of how mental model building and updating in different interactive tasks can be 
modeled with ACT-R in the same manner.  

Limitations /Points of Critiques 

First Study: Shopping App study (Paper No. 1 and Paper No. 2) 
DESIGN/METHODOLOGIES 

An important aim of the Shopping App study was to show, that usability tests with cognitive 
models are realizable. As a study subject for usability, smartphone apps were chosen. To 
demonstrate that usability tests, based on cognitive models are feasible in an applied 
setting, a real app or at least an app with a realistic appearance which supports an actual 
task was needed. To meet this demand, the Shopping App was designed and implemented 
as an Android app. Commercial shopping apps, such as the “ImmoScout24” app or “Ebay-
Kleinanzeigen” app served as a role-model for the Shopping App; regarding menu-
structure, item-selection and content it was built in the same manner as these apps. 
Nevertheless, its design is very simple and lacking many visual features (e.g. background 
colors, frames) of commercial apps. However, the general structure and selection 
mechanism used in the study is typical for such apps. To enhance the realistic impression, 
the labeling of categories, subcategories and items were taken from these commercial apps. 

The downside of using an approach which aims at realistic settings is, that some aspects 
relevant for experimental control are not respected. As a counter measure, when designing 
the study, it was attempted to balance possible error variables, such as item position, word 
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length and word frequency in common language. But, balancing these aspects was not 
priority and thus, it is possible that effects in the data exist which are due to such error 
variables. Nevertheless, such effects will also be found if actual apps are analyzed and the 
models should be robust to possible side effects and able to map main effects of learning 
and relearning. 

Regarding the aim of modeling real apps, it is important to use a task, which is close to an 
actual task in a setting that is not artificial. So, the participants, were told to imagine that 
they were entering items for shopping into the Shopping App and that these items were 
dictated to them by a spouse. Something that is common in a household setting. Since 
learning effects were relevant for the research question, participants had to select the same 
items repeatedly, which makes the task somewhat unnatural. To control, if this task and 
the resulting learning effect is not too artificial, the second Shopping App was designed. 
Here, the participants could use the full capacity of the app. Again, learning effects were 
found; an indication that the app is learnable. 

Now, besides investigating learning, it was of interest to develop modeling mechanism that 
can handle changes occurring to the application. Updates represent such changes. As a first 
step, updates that effect the entire menu-depth were looked at (adding a layer or deleting a 
layer). Again, one can argue that an update which influences all layers in a menu and not 
only some, is somewhat artificial. However, it is a starting point and more realistic updates 
should be looked up once general mechanism are developed.  

EMPIRICAL DATA 

The empirical data presented in this paper is the averaged item selection time and the 
development of the item selection time over different blocks. Thus, the time it takes for the 
participant from the starting page until the target item is selected. This is averaged over the 
items per block. Because, the aim was to look at learning and mental modeling effects on 
average, the paper does not report more fine grain data, such as the selection time for 
specific items or information on errors. So, the modeling concepts derived from this data 
will not be able to provide information that requires greater detail than average item 
selection times or trends over blocks.  

MODEL-MECHANISMS  

In short, three chunks are part of the model introduced first in paper no 1. First, a goal 
chunk which contains all information necessary for model control, second, a declarative 
chunk that contains knowledge of the world on which items and categories belong together. 
This chunk is used if the model has no specific knowledge about how to find a target. This 
specific knowledge is built up in the third chunk which contains the item belonging to the 
target in a path chunk which is built in the imaginal buffer. 

The length of the path chunk is a weak point of this modeling approach. Further studies 
need to clarify until how many items a singular path chunk is enough and from what 
number of items on, more than one path chunk should be used. 

Another shortcoming is the implementation of menu search for a specific item in the model. 
Namely, the assumption that each item is visually processed, is too simple. A more precise 
implementation of item search in menus is found in (Bailly et al, 2014). Future work should 
change the model in this regard. 

Finally, the modeling approach introduced in the first study might be a bit overfitted to the 
exact specification of the Shopping App and the exact study design. Therefore, it was tested, 
if it can be applied to a different app. 

Second Study: Real-estate App study (Paper No. 2) 
The extent to that the second app is different is debatable. The impression of the Real-estate 
App is very similar to the Shopping App. Furthermore, both apps have a hierarchical list 
style build-up and consist of at least 3 layers. Nevertheless, the content of the apps is 
different, as is the fact that menu-depth varies in the Real-estate App and does not in the 
Shopping App. Finally, the way changes are implemented differs between both apps. In the 
first app, an “update” effects the menudepth of all items; in the second the app “adapts” to 
pre-selection. Thus, for some list-items (but not for all); the menudepth changes as does 
the item position; this means that the menu-layers vary in this app. In my opinion, the two 
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apps are indeed different apps not because of the different study content, but because of 
the varying menu-depth and the adaptive character of one app compared to the static one 
of the other.  

DATA (EMPIRICAL/ MODEL) 

The data reported consists of averaged item selection times; it is lacking greater detail such 
as the selection time per item or even more details like the exact time for selecting 
subcategories on each page. Since information on these aspects was not obtained from the 
empirical data, the model approach cannot account for them.  

Another critical aspect is that the participants used their fingers to interact with the app; 
while the model used the ACT-R mouse commands. So, specific touch aspects that influence 
the empirical data cannot be captured by the model.  

Also, the scope of the empirical data was too small to obtain information on errors. Here 
for, a higher number of participants would have been required.   

The first trials in the empirical data, are noisier; assumingly, the participants use them for 
orientation in the task. Again, this cannot be predicted by the model.  

Model fitting: In total, there are four different data sets relevant for this model; two from 
the Shopping App study and two from the Real-estate App study. The version of the model 
presented in paper no. 2 was fit to one of the four datasets (Real-estate; house-apartment) 
and it can predict the three others. The model ran with these settings for the other three 
groups. This may seem a bit in conflict with the described and predicted criteria. However, 
I first had a model that could handle the Shopping App, but I never analyzed its data in 
comparison to the empirical data.  To see if this model can also run on the Real-estate App, 
I had to change the goal chunk in the model, so that the new version of this model 
(presented in paper n0. 2) could handle varying menu depth as well as fixed menu depth. 
This model and the code are reported in paper no. 2. Thus, the model was developed for 
the shopping app. However, its descriptive power was tested with one group of the Real-
Estate App study and the model can predict the other Real-Estate App group as well as the 
data from the Shopping App Study.  

Third Study: Auditory Categorization Study (Paper No. 3 and Paper No. 4) 
To test if the model mechanisms from the previous papers are more general, thus if they 
are applicable for other tasks that required learning and updating, a different task was 
chosen.  

DESIGN AND METHODOLGIES 

This is an auditory category learning task, were participants were required to repeatedly 
decide if a presented tone was a target, or not. In paper no. 3, the task is described as a 
dynamic decision-making task, because decisions about category membership are made 
under time-constraints; feedback is essential for learning and finally the environmental 
conditions change. This last aspect is debatable, because the environment only changes 
once. Nevertheless, the task is complex as are real-life decision-making tasks, where people 
need to make decisions in an environment they do not completely understand or control.  

DATA (EMPRIRICAL + MODEL) 

Due to other research questions that are aligned to the neurobiology of learning, the data 
was collected in an fMRI scanner. Such a setting is not ideal for learning and can be quite 
stressful for participants. Perhaps, this is why the performance of the participants, varied 
to a large extent and why not all participants managed to find the correct category 
assignment in the experiment.  

Furthermore, due to slow BOLD1 response, the time between the trials had to be at least six 
seconds. This is problematic for tasks which require participants to reflect on their learning 
success and keep track of their learning history (e.g. remembering which features are 
associated with negative feedback in the last trials). Unfortunately, this is likely to be 
relevant for this experiment, since the participants needed to remember which strategies 
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were not useful to avoid there usage later.  In the model, we used an ACT-R parameter 
(namely the declarative finst span) and set it to either 80 or 100 seconds, to resemble that 
the model can remember if a strategy was misleading for approximately 8 to 10 trials. 
However, it is possible that this value is too high and that the participants in the scanner 
did not focus on the task during the long pauses.   

The stimuli material was developed and tested by Wolff and Brechmann (2015). The stimuli 
consisted of 160 tones that each composed of five features with binary values. However, 
only four of these features were reported to be distinguishable by the participants. 
Consequently, only these four were used as stimuli for the model. However, if some of the 
participants did use the feature not implemented in our model (speed of modulation), they 
had a more difficult task then the model. 

The task of model and participants differed critically regarding the following aspect. 
Namely, the model was provided with less information and thus had to accomplish a 
somewhat more difficult task than the participants. The instruction of the participants 
included information on which key was assigned to correct tones, this information was not 
provided to the model2. In a subsequent master’s thesis, a new model was created that takes 
this information into account. However, the performance of the model of paper no. 3 and 
the new model does not differ, which is an indication that the missing assumption in the 
model is not that problematic.  

MODEL MECHANISMS 

Dynamic decision-making model 
In the following, critical aspects of the decision-making model are briefly discussed.  
While main aspects of the model; e.g. how learning and mental model updating is 
implemented are derived from previous work (Prezenski & Russwinkel, 2014; Prezenski & 
Russwinkel, 2016); other aspects are modeled more arbitrary. 

These are: 

The assumptions that the model first tries to solve the task using a simple strategy, which 
regards one auditory feature relevant for solving the task and if these are not useful then it 
switches to more elaborate two-feature strategy (a strategy that uses a feature 
combination). This assumption is in line with other research on category learning, which 
indicates that people start with easy strategies and then switch to more difficult ones 
(Johansen & Palmeri, 2002). Furthermore, this assumption has high face validity; it seems 
plausible that something simple is tried out in the beginning and if this does not work it is 
later changed into something more elaborate. However, it is also reasonable that some 
participants do not use one-feature strategies and that some use three-feature strategies in 
this task.  

The switching rules are another point of critique. These assumptions about when the model 
changes parts, or the whole aspect of the current strategies, where chosen carefully and 
with the intent to cover all possible cases where unsuccessful strategies need to be altered. 
The advantage of using these different switching rules is, that the model has a high variance 
and can simulate different individual learning curves. However, it is difficult to investigate 
if the participants also used all the specified switching rules and which they prefer. Here 
for, more studies using qualitative methods, such as questionnaires and retrospective 
interviews would be needed. Such a study using retrospective questionnaires with a 
modified version of this categorization task was conducted in a master’s thesis (Zhang, 
2018). However, interpreting the data was challenging and the results were inconsistent.  
They also showed that about 10 percent of the participants of this study were not able to 
name or describe their strategy at all or used guessing as a strategy during the entire study. 
Thus, in contrast to the model not all participants use a strategic approach. So, since the 
model always follows a strategy in the task, it cannot account for the data of these “non-
strategical” participants.  

Comparison of models (app and category task) 
An important aim of the third study was to show, if the previously developed model 
mechanisms for mental model building and relearning are useful. Thus, to examine if they 

                                                           
2 This was due to a misunderstanding between me and my co-authors on the instructions of the participants. 
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can be transferred to a different task and perhaps even a different area of research.   
Nonetheless, this task also needs to be an interactive task where learning and updating 
occurs.  The first two papers investigated usability related aspects of app interaction. 
Nevertheless, it would be great if the model mechanisms allow to investigate more broader 
aspects, such as decision-making. Hence, the auditory category learning-task with one 
switch in target assembly was chosen. This task is very different to the app task in terms of 
stimulus material (non-verbal tones instead of words in text forms). Also, the data of the 
new study was collected in a scanner and participants were required to repeat the same task 
for 240 trials; while in the app studies the participants interacted with a handheld 
smartphone and there a maximum of “only” 32 trials. The categorization study is more 
artificial in terms, that it does not resemble an actual real-life task (as the first studies do). 
Instead, it is more controlled and fewer error variables influence the task.  

The goals of both tasks differ as well, the first tasks’ goals were to find an item in a 
hierarchical menu; the new goal was to find a strategy that can correctly discriminate 
between target and non-target stimuli.   

To clarify, these vital differences of task and stimuli required the development of a new 
model. However, this model has high similarity regarding the way the mechanisms for 
learning an updating are modeled. In both, a model needs to find a solution; either finding 
a path and finding a target or finding a strategy that provides positive feedback. The 
structure of the tasks was modeled in the same way; Possible solutions are retrieved from 
declarative memory (either as path chunks or as strategy chunks). These solutions are built-
up and modified in the imaginal buffer. The goal buffer controls the task. Furthermore, 
changes are handled in the same way.  In case of negative feedback, a previously successful 
solution is kept and not changed directly. However, if it is again unsuccessful, it is altered, 
but not completely discarded. Both tasks are interactive learning tasks, where feedback is 
essential for learning.  In the first tasks, positive feedback is finding what was expected; in 
the second task, this is also the case; but in a more straight-forward way; here feedback is 
encoded as yes or no. 

Overall 

Cognitive Modeling of Mental Model Building and Updating: 
This thesis aimed, at obtaining a better understanding of the processes of mental model 

building and updating. Although, various theories on mental models exists (Norman, 1983; 

Glenberg & Langston, 1992; Zhang, 2009; Maani & Li, 2011; Revell & Stanton, 2014) many 

are not specified precisely or do not allow an actual implementation for real-life 

applications. Cognitive modeling with ACT-R allows both, specifying theories 

computationally, and applying them to actual problems. However, the models developed 

with ACT-R are not valid as such but need to be developed and tested following the 

descriptive, predictive and prescriptive challenge (Marewski and Link, 2014). Therefore, to 

ensure that the model mechanisms are valid, they were implemented in one model that was 

developed for one dataset and was then able to predict other datasets precisely 

(smartphone app studies). To check if these mechanisms are prescriptive; thus, if they can 

deal with novel problems, are robust and are generalizable to a wider range of task, they 

were successfully applied in the categorization study. It was found that the model and the 

derived model mechanism (which are summarized in the following section) meet the 

descriptive, predictive and prescriptive challenge.   

The model mechanisms for ACT-R developed in this thesis are a specification of the theory 

of Li and Maani (2011) on mental models in dynamic decision-making. Li and Maani´s 

approach was chosen because it is open to a broad range of study subjects and thus useful 

for modeling a broad range of tasks which require mental model building and updating. 

According to this theory mental model building and updating is a continuous cycle of 

conceptualization, evaluation and reflection. In summary conceptualization is obtaining an 

understanding of the situation and mentally simulating the outcome of potential actions. 

Hereby, the given situation is compared to related information in the mental model and 

new information is used to develop a set of decisions. Experimentation designates the phase 

were actions and decisions devised from the mental model are tested. Finally, in the 

reflection phase, the outcome of these actions is reflected by processing feedback. Positive 

feedback strengthens the mental model; negative feedback requires mental model 
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updating. Furthermore, the finding, that mental models also evolve and become more 

specific, as learning progress (see Gonzalez & Lebiere, 2005) is also implemented 

specifically in the model mechanisms of this thesis.  

In the next section, the model mechanisms developed in this thesis are summed up and 

aligned to the theory of Maani and Li. See figure 1 and 2 of paper no 4 for a graphical 

representation of the mechanisms. The main part of the mental model is a representation 

chunk (paper no. 1 and no. 2 path chunk, paper no. 3 strategy chunk), containing situation, 

expected outcome and success. During mental model building, it is placed in the imaginal 

buffer. Mental model building is the conceptualization phase. The mental model is tested 

(this is in the experimentation phase) and finally (in the evaluation phase) if the outcome 

is other than expected, the mental model is changed. If it is successful, an explicit 

strengthening mechanism is used. Also, mental models become more specific as learning 

evolves. Building of mental models furthermore requires control over environment changes 

and learning history. This information is stored in the control chunk, kept in the goal buffer. 

Mental model updating is the modification of an established representation chunk. A 

strategy which was successful in the path is altered the following way: An established 

strategy leads to unexpected outcome. So, the correctness of this strategy is questionable. 

This “uncertainty about the current strategy” is encoded in the control chunk in goal buffer. 

Nevertheless, the strategy is not discharged directly but tested once more. If this strategy 

leads to unexpected outcome once more, then a different strategy is rebuilt. Also, a change, 

e.g. to the system or the environment, is registered in the control chunk.  

The mechanisms developed in this thesis, based on Li and Maani's theory, allow simulating 
mental model building and updating for different tasks. But this does not imply that the 
theory is correct and other theories on mental models are wrong. However, the theory of Li 
and Maani is now computationally implemented and thus precisely specified. Moreover, 
the mechanisms have proved useful for simulating very different tasks of interactive 
learning.  Nevertheless, different ACT-R implementations of Li and Maani’s theory are 
plausible as well.  
In the current implementations, the core part of the mental model is the representation 
chunk in the imaginal buffer, which holds the situation and the predicted outcome. This 
could well consist of several interleaved chunks instead of one chunk. For example, the 
model of the smartphone apps the core part is one chunk with the path leading to the target. 
However, the core part of the mental model could consist of more chunks with parent child 
relationships and fewer slots per chunk.  More chunks seem especially meaningful for more 
complex systems, were different parts of information need to be combined.   
 
Another aspect worthwhile discussing, it that in this work modeling interactive learning of 
dynamic systems requires not only implicit but also explicit mechanisms. These explicit 
mechanisms where used to model meta-cognitive aspects, that reflected on learning 
progress. Many models which involve more complex issues use explicit mechanisms as well 
(Reitter, 2010; Roll, Baker, Aleven, and Koedinger, 2004), but usually the implementation 
of explicit mechanism vary between models. One of the strengths of the model approach 
that the explicit mechanisms are implemented in the same way for very different tasks. This 
reduces the arbitrary aspects of such mechanism and can serve as a basis for future 
guidelines on how to model these aspects.  
 
As a starting point, the imaginal buffer should be used to build up the mental model. Herby, 
the core aspects need to be encoded as in instance-based learning, containing the situation 
and the expected outcome. However, the exact representation of the situation depends very 
much on the exact task.  
 
Keeping track of learning success during early establishment of mental models requires an 
explicit strengthening mechanism; this needs to keep track of how often the mental model 
leads to success until a specific threshold.  If the mental model does not reach this threshold 
due to unexpected (negative) feedback, it should be discharged. If the mental model reaches 
the threshold and then negative feedback occurs, the mental model should be held on to 
and tested once more. The exact value of the threshold (e.g. until a mental model is 
established) presumably depends on the task and may also depend on individual 
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differences. Nevertheless, more studies on this topic are needed, perhaps general values for 
such a threshold can be set in the future.  
 
To control if changes to an established mental model are needed, another explicit 
mechanism should be used. In the case of interactive task learning, such changes are 
required due to changes in the system or to the environment. Here for, the presented 
modeling approach utilized two slots of the chunk in the goal buffer. If an established 
mental model leads to unexpected outcome, then uncertainty needs to be noted in the goal. 
This mental model is then tested again, if this leads to unexpected outcome again, then 
changes in the environment should be noted in the goal and the mental model needs to be 
altered. Future work should validate this changing mechanism separately, using qualitative 
methods. The assumption that a two-time failure of an established mental model leads to 
its alteration should be examined in an empirical study.   
 
Even though the exact values for the change and the strengthening mechanisms are 
currently only rules of thumbs and these values are likely to vary depending on the task, 
the way the model mechanisms are implemented in ACT-R is very useful for answering 
applied questions, such as usability prediction or even for the development of intelligent 
agents. These aspects are discussed in the following sections of this thesis.  
 

User Modeling of higher level cognitive processes/ Usability prediction 
Usability describes how efficient, effective and satisfactory the use of a system is (ISO 924-

10). On the one hand, satisfaction is a subjective feeling about which information can only 

be obtained via questionnaires or interviews, something that is time and resource 

consuming. On the other hand, efficiency and effectiveness are aspects of usability which 

can be measured with objective methods, such as measuring the time on task. An aim of 

this thesis was to investigate to what extent objective usability of system interaction can be 

captured using cognitive models which perform the same tasks as users.  Already, the 

CogTool approach (John et al, 2004) has shown that efficiency of system interaction 

(especially websites) can be captured with ACT-R based cognitive models. CogTool models 

the behavior of expert users; it predicts how long users very familiar with am app need to 

find a goal. However, aspects that are more complex, such as interactive learning of new 

systems and handling of altered systems have not been addressed. This thesis addresses 

this gap. For linear, hierarchical smartphone apps and for the task of selecting specific 

items in such an app a cognitive model with ACT-R was developed and tested. This model 

demonstrates that usability prediction of apps, using cognitive models is possible. The 

model can address different aspects of interactive task learning and relearning. This is 

possible, because the ACT-R is capable of simulating higher-order cognitive mechanisms.  

Worthwhile mentioning in the context of user modeling with ACT-R, is that we have also 

developed a tool (ACT-Droid) that allows ACT-R models to directly access Android apps 

(Doerr et al, 2016). This greatly lowers the burden of using ACT-R models for usability 

testing, because the Lisp prototyping of the app is time consuming and this is now obsolete. 

A further development of ACT-droid (Russwinkel et al, 2018) namely its connection with 

ACT-Touch (Greene & Tamborello, 2013), now allows to examine specific touch aspects, 

such as taps and swipes.  Thus, if the motor movement of the model (currently mouse 

clicks) are changed into touch commands a more accurate prediction by the model is 

possible. 

Finally, for this specific model, where knowledge of the world (or pre-knowledge) is used 

to model initial app interaction, we have developed a crawler, which creates this knowledge 

of the world automatically (Prezenski, Bruechner & Russwinkel, 2017). The crawler 

automatically creates pre-knowledge from the structure of the apps by connecting bottom 

nodes with all higher-level nodes and automatically transferring them into ACT-R chunks.  

In this regard, the crawler is an important step towards a more general modeling approach, 

which aims at minimizing the modeling effort for usability prediction with cognitive 

models. 
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In combination with the above introduced tools (ACT-Droid, ACT-Touch and Crawler), we 

have demonstrated that usability modeling of cognitive aspects can be achieved using ACT-

R models that have built-in higher-order cognitive mechanisms; which addresses aspects 

important for interactive learning such as learning depending on previous knowledge and 

relearning.  

This specific model is extendable to other apps with the same hierarchical style for tasks 

were specific items need to be searched for. Changing this model, so it can run on other 

hierarchical list-style apps with more layers is almost effortless. A bit more effort is needed 

to change this model, so it can deal with lists of icons instead of text. Most mechanisms can 

stay the same (building up a path chunk in the imaginal and using this to navigate as soon 

as it exists as well as the meta-cognitive mechanisms in the goal buffer). However, a 

preliminary study should help to quantify, how long it takes to recognize certain icons. 

This model was not designed to predict greater levels of details, such as how long it takes 

to find a subcategory, or precise visual item search. The later can be changed by 

implementing the model mechanism of Bailly et al (2014) and changing the visual search 

pattern, regarding the fact that not every item is visually processed one by one and item 

search without pre-knowledge requires that only every third item should be visual 

processed.  The first aspect, predicting greater levels of details, requires collecting new data 

and analyzing to what extent the time it takes to find a subcategory is predicted by the 

model and subsequently altering the model if necessary. 

Answering usability related questions, for very different kinds of apps such as navigation 

apps or for different tasks, such as searching for an unspecific goal requires the 

development of other ACT-R models. This is more challenging for several practical and 

theoretical reasons. These reasons hinder a more widespread usage of ACT-R in user 

modeling and will now be elaborated on. 

The first practical reason is that only few people are familiar with ACT-R. Even though the 

ACT-R community is active, there is an annual conference, a website, tutorials and help is 

provided promptly via emails. The second reason is possibly the cause of the first. Namely, 

that the burden of learning ACT-R is high; the programming in Lisp is difficult, and many 

students would much rather use a more accessible language such as Python or JAVA. 

Already implementation of ACT-R in these languages exist (http://cog.cs.drexel.edu/act-

r/download.php¸https://github.com/jakdot/pyactr); but they are not used as widely as 

Lisp ACT-R. However, a decision of the ACT-R community for prioritizing the use of these 

more accessible language could lead to more exchange with researchers from other fields.   

The theoretical reasons are, that first the mechanisms used in the model need to be valid, 

as well as the assumptions about how a task is done. Mechanism can be derived from 

related literature or taken from other models. Information on how a task is done requires 

task analysis and often some empirical data. It is important that modelers make sure, that 

the model they postulate uses only necessary assumptions and derives them from other 

studies and empirical data.  Only, because an ACT-R model can do the task does not imply 

that this is the way humans do it. There are many ways to model a task. In this work the 

attempt was made to follow the describe, predict, prescribe challenge to ensure that valid 

and useful model mechanisms for mental model building and updating are developed. 

Cognitive Intelligent Systems 
These ACT-R mechanisms for modeling mental model building and updating can be used 

to develop intelligent systems or agents. This refers to systems that simulate the cognitive 

processes of their users emerging during the system interaction. Hence, in theory, such 

systems are always informed about the cognitive states of their users. In the future, they 

can then help users in critical situations. For example, such intelligent systems could be 

used to avoid user errors. More specific, if the agent would predict a critical condition due 

to high demand of the simulated cognitive processes of the user, a warning would be issued.  

Currently, most intelligent systems are based on machine learning, such as Hidden Marcov 

Models (Eddy, 1996).  However, unlike humans or models build with cognitive 

architectures, systems based on machine learning require a lot of samples to learn a task 
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and can only relearn through many more samples (Alpaydin, 2014). Thus, mechanisms and 

processes used by cognitive architectures could fill this gap. In this dissertation an ACT-R 

model mechanism that addressing aspects of interactive learning and updating was 

advanced. This provides an important step towards the development of learning intelligent 

agents. In the future aspects of this model approach can be applied to make systems more 

usable and safer. 
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