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Complexity and Modeling Aspects of Mesh Re�nement intoQuadrilaterals�Rolf H. M�ohring�� Matthias M�uller{Hannemann��May, 1997; revised August, 1997AbstractWe investigate the following mesh re�nement problem: Given a mesh of polygons in three-dimensional space, �nd a decomposition into strictly convex quadrilaterals such that theresulting mesh is conforming and satis�es prescribed local density constraints.The conformal mesh re�nement problem is shown to be feasible if and only if a certainsystem of linear equations over GF (2) has a solution. To improve mesh quality with respectto optimization criteria such as density, angles and regularity, we introduce a reduction toa minimum cost bidirected ow problem. However, this model is only applicable, if themesh does not contain branching edges, that is, edges incident to more than two polygons.The general case with branchings, however, turns out to be strongly NP{hard. To enhancethe mesh quality for meshes with branchings, we introduce a two-stage approach which �rstdecomposes the whole mesh into components without branchings, and then uses minimumcost bidirected ows on the components in a second phase.Key Words. Mesh generation, bidirected ows, NP{completeness, mesh decomposition,computer-aided design1 IntroductionFor many years the �nite element method has been a fundamental numerical analysis techniquein the engineering community. In the �eld of computer-aided design, engineers often model theirworkpieces �rst in form of a coarse mesh of convex polygons in three-dimensional space whichapproximates the object's surface. However, in order to make a numerical analysis applicable,a suitable re�nement of the coarse mesh is necessary.A large amount of research has been done in the area of mesh re�nement into triangles,see [Ho88], [BE95] and [BP97] for surveys. In contrast, there is much less work on quadri-laterals, although meshes which consist solely of quadrilaterals are more appropriate in manyapplications, such as torsion problems and crash simulations. A few studies have been publishedcomparing the convergence characteristics and accuracy of meshes with triangle and quadrilat-eral elements, as well as of hexahedral versus tetrahedral elements. The interested reader is�An extended abstract of this paper appears in the Proceedings of the Eighth Annual International Symposiumon Algorithms and Computation, ISAAC'97, Singapore.��Technische Universit�at Berlin, Fachbereich Mathematik, Sekr. MA 6-1, Stra�e des 17. Juni 136, 10623 Berlin,Germany, e-mail: fmoehring,mhannemag@math.tu-berlin.de; URL: http://www.math.tu-berlin.de/~mhannemaor http://www.math.tu-berlin.de/~moehring.The second author was partially supported by the special program \E�cient Algorithms for Discrete Problemsand Their Applications" of the Deutsche Forschungsgemeinschaft (DFG) under grant Mo 446/2-2; communicatewith the second author. 1



referred to [CK92, Wei94, LL92, BPM+95]. Finite element textbooks ([ZT89], [Bra93]) includestatements such as \... for reasons of better accuracy and e�ciency, quadrilateral elements arepreferred for two-dimensional meshes and hexahedral elements for three-dimensional meshes.This preference is clear in structural analysis and seems to also hold for other engineering dis-ciplines." [Bra93]. This is the background of our work, and therefore, in this paper, re�nementof a mesh means decomposing each polygon into strictly convex quadrilaterals.This paper addresses important modeling aspects of quadrilateral mesh re�nement. Its in-tention is to show how these aspects can be captured within a combinatorial model and toelaborate on the consequences for the computational complexity of the resulting problems.Modeling aspects of mesh re�nement into quadrilaterals. We give a brief and informaldescription of the most important goals for mesh re�nement to provide further background andto motivate the problems considered in this paper.For use in the �nite element method (or its variants) a re�ned mesh should have the followingproperties:1. The �nite element method derives a system of linear or non-linear equations from the mesh(i.e. assembles a sti�ness matrix and the right hand vector) for the governing partial dif-ferential equations. To reect continuity properties in a suitable way, the mesh is requiredto be conformal. In a conformal re�nement of a mesh, any two distinct quadrilateralswhich are not completely disjoint either share exactly one whole edge, or they have asingle common vertex.2. To achieve the required accuracy the re�nement of a mesh has to be �ne enough, but nottoo �ne for reasons of e�ciency. Hence, the mesh density has to be controlled.3. Apart from the mesh density, mesh quality criteria depend upon the shape of the quadrilat-erals. For numerical reasons in the �nite element analysis, interior angles of quadrilateralsshould neither be too small nor too large. There is no generally accepted, precise thresh-old, but one usually aims at generating quadrilaterals with no angles smaller than somegiven � and no angles larger than some �. (In practice, one often uses as a rule of thumbvalues of � = 30� and � = 150� [ZZHW91].)For brevity, a conformal mesh re�nement into strictly convex quadrilaterals will be called aquadrangulation.The approximated surface need not be a two-manifold, i. e. the corresponding mesh modelmay contain branchings where more than two polygons meet, see Figure 4. Coping with non-manifold surfaces is an issue of crucial importance, as they appear in many practical examples.Moreover, quadrilateral surface meshing can be seen as a �rst step in hexahedral volume meshing(which still is an only partially solved problem with respect to both theory and practice). Atleast, it seems to be a promising approach to start a decomposition into hexahedra from a highquality quadrilateral surface mesh [Mit97]. Here, we want to point out that it might be advis-able to decompose complicated solid models �rst into smaller, preferably convex, subdomainsby insertion of internal polygons. This can be done either explicitly or implicitly. The latter ap-proach, so-called meshing by virtual decomposition, has been introduced by [WMBS95]. In bothvariants, these additional polygons induce a number of branchings. However, this �ts perfectlyinto our approach which mainly abstracts from geometry and essentially solves a combinatorialproblem. In fact, we will introduce a simple and elegant method to ensure conformity betweensubdomains resulting from branchings. 2
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9Figure 1: A small, planar arti�cial instance. Figure 2: A conformal re�nement of Figure 1.Previous work. Most work on conformal mesh re�nements in the literature relies on a fewclasses of templates [TA93, MMW96]. A template (sometimes also called meshing primitive[TA93]) is a pattern which describes how a single polygon can be decomposed into quadrilaterals.Templates are designed to achieve good angles and aspect ratios heuristically. For example, themost important template for quadrangular polygons is a (p�q){grid, where p and q are variable.See the �rst three illustrations of Figure 13 for examples of widely used standard templates.Tam and Armstrong [TA93] developed an integer programming based approach to conformalmesh re�nement using the three standard templates. However, they did not consider the problemhow to select an appropriate template for each macro element. In their approach, templatesare preselected and �xed in advance (it is not clear by which heuristics this is done). The mostimportant disadvantage of this approach based on general integer programming, however, is thelack of an e�cient algorithm.In [MMW96] the computational complexity of mesh re�nement under template restrictionshas been studied. In particular, it has been shown that even �nding feasible solutions is stronglyNP{hard in this case. The same paper also introduces a heuristic approach for �nding feasiblesolutions by a reduction to a sequence of bidirected ow subproblems (or, equivalently, to asequence of b{matching problems). See the seminal paper of Edmonds [Edm67] or the mono-graph by Derigs [Der88] for an introduction to bidirected ows and b{matchings. Each of thesebidirected ow problem can be solved e�ciently in strongly polynomial time, but no guaranteecan be given that the approach in [MMW96] �nally succeeds in �nding a feasible solution forthe original problem.Finding conformal mesh re�nements with the minimum number of quadrilaterals has beenshown to be NP{hard in [MW97a]. In a subsequent work [MW97b], matching techniques havebeen used to approximate the minimum number of quadrilaterals. However, these methods donot take care of other criteria than the number of quadrilaterals.Kannan and Soroker [KS92] have considered the very special problem to determine whethera single polygon can be re�ned into parallelograms. This problem can be solved in time O(n2)for an n-vertex polygon using ordinary ow techniques.Practical implementations often use advancing-front based heuristics, like paving [BS91], fordecomposing single macro elements. Such techniques start from the boundary of a macro ele-ment and iteratively insert quadrilaterals from the boundary inward. Although these techniquesseem to work quite well in practice, they are mere heuristics. Moreover, such approaches com-pletely ignore the di�culties in ensuring conformity between macro elements.3



Our contribution. In this paper, we generalize and improve previous results and work inseveral ways:� For meshes with branchings, we show that the re�nement problem is feasible if and only ifa certain system of linear equations over GF (2) has a solution. From any solution to thissystem of linear equations we easily derive a feasible conformal mesh re�nement. However,there seems to be no way to incorporate mesh quality optimization into this approach. Thisis not surprising as even optimizing the mesh density on the edges will be shown to beNP{hard for meshes with branchings.� We introduce a new bidirected ow model for meshes without branchings. Within thatmodel �nding a feasible mesh re�nement now amounts to solving a single bidirected owproblem. This progress has been made possible by giving up the template restrictionsimposed by the standard templates in [TA93, MMW96]. However, the new model containsthe standard classes of templates as special cases. In practice, the coarse input mesh quiteoften consists of triangle- or quadrilateral-shaped macro elements, but our approach worksfor arbitrary convex polygons, too.� We extend the bidirected ow model to a minimum cost bidirected ow problem wherecertain optimization criteria such as mesh density, interior angles and mesh regularity canalso be handled.As mentioned above, minimum cost bidirected ow problems are equivalent to mini-mum cost perfect b-matchings and can, therefore, be solved in strongly polynomial time,as shown by Anstee [Ans87] and Edmonds (cf. Gerards' survey on matching [Ger95]).The asymptotic running time of strongly polynomial algorithms for these problems aredominated by strongly polynomial algorithms for ordinary minimum cost ow problems.Thus, the best strongly polynomial time bound for minimum cost bidirected ow isO((m log n)(m + n log n)), where m denotes the number of edges and n the number ofvertices of the underlying graph [AMO93]. The number of edges and vertices in the aux-iliary graph of the bidirected ow model is linear in the number of original polygons andmesh edges.� To improve the mesh quality of meshes with branchings, we introduce mesh decomposi-tion into homogeneous components and combine both approaches: In a �rst phase, wedetermine the subdivision numbers for all branching edges by solving a system of linearequations over GF (2). Afterwards, in a second phase, we solve a minimum cost bidi-rected ow problem for each homogeneous component with �xed subdivision numbers onthe branching edges. For real-world instances the number of branching edges is usuallyrelatively small in comparison with the number of polygons. This empirical observationintuitively explains why one should hope that the proposed combined approach is likelyto achieve a reasonably good overall mesh quality. In fact, an extensive computationalstudy [MH97] shows that an implementation of the approaches described in this papersimultaneously leads to a very good mesh quality with respect to density, interior angles,edge lengths and aspect ratio.Structure of the paper. In Section 2 we give a precise de�nition of our mesh model andpresent a general, but very simple approach to conformal mesh re�nement. We also elaborateon the relation of quadrangulations and solving systems of equations over GF (2). Then, inSection 3, we consider meshes without branchings. For such meshes, we develop step by step abidirected ow model which can be used to optimize quadrangulations with respect to a number4
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������������������������������Figure 3: A convex polygon with �ve seg-ments and thirteen edges and vertices. Figure 4: A small mesh with �ve branch-ing edges.of mesh quality criteria. Finally, in Section 4, we present a decomposition approach for mesheswith branchings. The latter approach combines the simplicity of �nding feasible solutions bysolving a systems of equations over GF (2) with the more sophisticated bidirected ow approachfor the optimization of the mesh quality.2 A simple approach for conformal mesh re�nementPreliminaries. A polygon is a region in the plane or, more generally, of a smooth surface in thethree{dimensional space, bounded by a �nite, closed sequence of straight line segments (edges).The endpoints of the line segments or curves are the vertices. A polygon is simple if its edges donot cross each other, and convex if the internal angle at each vertex is at most �. A vertex of aconvex polygon is a corner if its internal angle is strictly less than �. An interval of a polygonP is a path of edges on its boundary. A segment S is an interval between two successive cornersof P (see Figure 3).A mesh is a set of openly disjoint, convex and simple polygons, the so-called macro elements.The macro elements are convex, but not necessarily strictly convex. Let M = fP1; P2; : : : ; Pqgbe the set of polygons of the mesh.Two macro elements are neighbored if they have points of the boundary in common which arenot corners. These neighborhood relationships induce an undirected graph G = (V;E), which isembedded on the surface approximated by the mesh. More precisely, V consists of the verticesof the polygons. If a vertex of a polygon also belongs to the interior of a side of another polygon,it subdivides this side. Hence, we may identify common intervals of neighbored sides of polygonswith each other, and E consists of these intervals after identi�cation. (In the small example ofFigure 1, the quadrilateral-shaped macro element number 4 has 6 neighborhood relations andedges: it is neighbored with elements 1,2,5,7,6, and 3. Macro elements number 5 and number 7are not neighbored as they have only one corner in common.)Note that the graph G of a mesh need not be planar; for example, a mesh approximatingthe surface of a torus has genus one. Even more, a mesh may contain branching edges, that is,edges incident to more than two polygons (Figure 4). We call a mesh homogeneous if it doesnot contain branching edges.For an edge ei 2 E, let Ei be the set of all those polygons which contain ei. A combinatorialdescription of a mesh consists of the graph G and the hypergraph H = (M; fE1; : : : ; Emg) withvertex set M and edge set fE1; : : : ; Emg. We will often identify a mesh with its combinatorialdescription.For the re�nement of a single polygon into quadrilaterals we allow to insert new vertices inthe interior of the polygon and on the boundary. The subdivision number of edge e 2 E, denotedby xe, is the number of additional vertices which are placed on edge e in a re�nement.5
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��Figure 5: A triangular{shaped polygon with four vertices (left); a re�nement, which places twoextra vertices on the boundary (middle); and a decomposition, where no additional vertices onthe boundary are allowed (right).In the mesh re�nement problem, the polygons cannot be re�ned independently since wehave to ensure that the mesh is conformal. Hence, we carefully distinguish between conformalre�nements of polygons, where vertices can be inserted at arbitrary positions, and conformaldecompositions (see Figure 5 for an example). By a conformal decomposition of a single polygonwe will always mean the variant which does not allow to subdivide edges but to place verticesinto the interior of the polygon.A crucial insight is the following well-known [Joe95, MW97a], but important characterizationof those polygons which can be decomposed into strictly convex quadrilaterals:Lemma 2.1 A simple polygon P admits a conformal decomposition into strictly convex quadri-laterals if and only if the number of vertices of P is even.The necessity of this evenness condition follows directly from a counting argument, and, asa side-e�ect of the proof of Proposition 3.1 below, the su�ciency will be made explicit below ina constructive way (for convex polygons).An easy way to model local density control is by means of lower and upper constraints onthe number of additional subdivision points for each edge. Hence, we assume that we are givendensity constraints of the following kind:For an edge e 2 E, the subdivision number xe is at least `e and at most ue:`e � xe � ue (lower and upper edge capacities, (`e; ue)-capacities, for short).More sophisticated ways to control local mesh density will be dealt with in Section 3. Anedge with equal upper and lower capacities is a �xed edge, otherwise it is free. A conformal meshre�nement is feasible if it respects the density constraints.A simple approach to quadrangulations. As we know from Lemma 2.1, it su�ces todetermine the subdivision numbers such that all polygons become even. Then we can alwayscomplete the quadrangulation of all polygons.For each edge e 2 E, let ~xe be some �xed integer in the interval [`e; ue]. Then de�ne for eachpolygon P 2M the \parity number" bP :=Pe2P (~xe + 1) mod 2.For each edge e 2 E, let ye be a 0/1-integer variable, but �x ye � 0, if ue � `e = 0.Now, if we take for each polygon P an equation of the form Pe2P ye = bP , this de�nes asystem of linear equations over GF (2) which one can easily solve. Clearly, any solution ~y to thissystem immediately makes all polygons even, if we setxe := � ~ye + ~xe if ~xe < ue�~ye + ~xe otherwise .Note that the solvability of this system of equations over GF (2) does not depend on the choiceof ~x. 6



A system of linear equations over GF (2) is simply solved by Gaussian elimination. No carehas to be taken for numerical stability over GF (2).This shows that �nding subdivision numbers such that all polygons become even is notharder than solving a system of linear equations over GF (2). The converse is also true, as wewill show below.Theorem 2.2 The determination of subdivision numbers for a mesh with branchings and edgecapacities such that a feasible conformal re�nement is possible (or proving its non-existence) isas hard as solving a system of linear equations over GF (2), where the encoding length of eachproblem is linear in the size of the other.Proof: In the above remarks we have already seen how to reduce the determination of thesubdivision numbers to the solution of a system of linear equations over GF (2). Hence, itonly remains to show how to transform any system of linear equations over GF (2) to a meshre�nement problem of linear size in the encoding length for the system of equations.Therefore, let A = (aij) be some m � n 0/1-matrix, x 2 f0; 1gn, b 2 f0; 1gm, and Ax = bthe linear system of equations. Without loss of generality we may assume that each column andeach row of A contains at least one non-zero entry. Denote by jaij := Pnj=1 aij the number ofnon-zero entries in the i-th row of A.The transformation to a mesh re�nement instance works as follows. For row i of A we createa polygon Pi with pi segments where all segments are single edges. These polygons are disjoint,the coupling between them is described below.If bi and jaij have the same parity, we choose pi := jaij+ 2, otherwise we set pi := jaij+ 3.The �rst jaij edges get lower capacities `i = 0 and upper capacities ui = 1, all others are �xedto zero, i.e. `i = ui = 0. (The �xed edges are used to ensure that pi � 3 for each polygon.)Each free edge of the polygon Pi corresponds one-by-one to a non-zero entry aij of the i-th row. By construction, the equation corresponding to row i is ful�lled over GF (2) for anysubdivision which makes the polygon Pi even if xj equals the subdivision number of the edgecorresponding to aij for each non-zero entry of row i.To make sure that the xj have to be chosen in a consistent way we add the followingconstruction. For each non-zero entry aij we create a quadrilateral Qij . One of its edgescorresponds to the variable xj and gets a lower capacity of 0 and an upper capacity of 1,and another edge which is not adjacent to the �rst is identi�ed with the edge of polygon Piwhich corresponds to aij . The two remaining edges of each such quadrilateral Qij are �xed tozero. Finally, all edges corresponding to the same xj are identi�ed to constitute a branchingedge. Obviously, each feasible re�nement immediately yields a feasible solution of our system ofequations. 2Note that the subsequent embedding phase can be done in linear time (linear in the numberof subdivision points) using the decomposition algorithm in [MW97a]. The obvious advantageof this approach is its simplicity. The disadvantage, however, is that there seems to be no wayto incorporate optimization of the mesh quality. Angle control and a preference of the meshstructure seem to be impossible by this approach.Only density control can be achieved to a certain extent, if we initially choose ~xe as thedesired subdivision number. But we will be forced to change the subdivision number for allthose edges which have a non-zero entry in the solution of our system of equations. In fact, itmight happen that a large portion of all edges attains non-zero values in such a solution. Wealso note that we cannot hope to �nd a solution of such a system with a minimum number ofnon-zero entries, as this problem is NP{hard. 7



Theorem 2.3 For a mesh with branchings and desired subdivision numbers it is strongly NP{hard to �nd a feasible re�nement such that the sum of deviations from the desired subdivisionnumbers over all edges is minimized.Proof: Exact Cover by 3-Sets is the following problem. Given a ground set U = fu1; : : : ; u3mgand a family S1; S2; : : : ; Sn of subsets of U , each of cardinality three, is there a subfamily of msubsets that covers U ? This problem is known to be strongly NP{complete [GJ79].The reduction from Exact Cover by 3-Sets to an instance of the mesh re�nement problemis as follows. Given an instance of Exact Cover by 3-Sets, denote by ki the total number ofappearances of ui within the subsets Sj. For each element ui we de�ne a \ground set polygon"Pi with pi � maxfki; 3g segments, where pi is chosen odd and all segments are just single edges.These polygons are pairwise disjoint. The �rst ki edges of such a polygon get (0; 1)-capacities,all others are �xed to zero.For each subset Sj we create a (branching) edge eSj with (0; 1)-capacities. Such an edge be-comes a branching edge when we connect it by quadrilaterals to the three \ground set polygons"which correspond to the elements contained in Sj. More precisely, if ui is contained in Sj, weintroduce a quadrilateral which is incident to eSj and one of the ki free edges of Pi (in such away that these two edges are not adjacent and no edge of Pi becomes a branching edge). Thetwo remaining edges of such a quadrilateral are �xed to zero.As each Pi is an odd polygon, at least one of its free edges has to be subdivided in a feasiblere�nement. A subdivision of such an edge enforces the subdivision of the branching edge eSj towhich Pi is connected by some quadrilateral. Hence, in any feasible re�nement all elements uiare covered by at least one Sj, if we interpret subdividing as covering.If the desired subdivision number is zero for all edges, then it is easy to see that an exactcover corresponds to a feasible re�nement with a total deviation of 4m, and any other feasiblere�nement has a strictly larger deviation. 23 Optimizing meshes without branchingsThe simple approach from the previous section just �nds feasible solutions. We continue withthe more ambitious task to �nd special solutions which ful�ll certain optimization criteria. Formeshes without branchings, we �rst show in Subsection 3.1 the correspondence of quadrangula-tions and feasible solutions of certain bidirected ow problems.Afterwards, we show that a number of mesh optimization criteria can be incorporated intothis model and solved e�ciently by a single minimum cost bidirected ow problem.Moreover, we show that we can also model the following more general kind of density con-straints. In a cooperation with engineers from a German company, the SFE Gesellschaft f�urStrukturanalyse in Forschung und Entwicklung mbH, Berlin, we have been asked to have a strictand local density control not only on a per edge basis, but also to control the density for a wholesegment. This is a non-trivial distinction, as, typically, the input mesh is not conformal (seeFigure 1 for an example). Therefore, we would like to model both requirements simultaneously.As this can be done without problems for meshes without branchings, we use two di�erent kindsof density constraints for that purpose:I. For an edge e 2 E, the subdivision number xe is at least `e and at most ue:`e � xe � ue (lower and upper edge capacities, (`e; ue)-capacities, for short).II. For a segment S of a polygon, the sum of the subdivision numbers over all edges of S isat least `S and at most uS : `S �Pe2S xe � uS (lower and upper segment capacities).8



3.1 Mesh re�nement as a bidirected ow problemBidirected ows. Bidirected ow problems can be de�ned in several (equivalent) ways (see[Edm67, Der88]), we will henceforth use the following setting:Let ~G = (~V ; ~E) be an undirected graph (loops and parallel edges allowed), and for ~e 2 ~E letu~e � `~e � 0 be the upper and lower capacity of edge ~e. Given an integer vector x 2 Z ~E and asubset F � ~E we abbreviate x(F ) :=P~e2F x~e.For each vertex ~v 2 ~V , there is a vertex capacity b~v 2 Z. Vertices with b~v = 0 are calledtransshipment vertices.For each vertex ~v 2 ~V , the set of all incident edges is partitioned into two parts, A1(~v)and A2(~v), where A2(~v) may be the empty set. We de�ne �(Ai(~v)) as the set of non-loop edgesin Ai(~v), and (Ai(~v)) as the set of loops within Ai(~v), for i = 1; 2.An integer weighting x 2 Z ~E of all edges in ~E is a feasible bidirected ow if and only if(1) `~e � x~e � u~e for each edge ~e 2 ~E (edge capacity constraints),(2) x(�(A1(~v))) + 2x((A1(~v)))� x(�(A2(~v)))� 2x((A2(~v))) = b~vfor each vertex ~v 2 ~V (ow conservation constraints).The imbalance imb(~v) of a vertex ~v is the absolute amount by which the ow conserva-tion constraint is violated, i.e. imb(~v) := jb~v � x(�(A1(~v))) � 2x((A1(~v))) + x(�(A2(~v))) +2x((A2(~v)))j.Note that a bidirected ow is a proper generalization of the usual ow de�nition for a di-rected graph, where the orientation of the edges induces the bipartition A1(~v); A2(~v) in a simpleway, namely into incoming and outgoing edges for each vertex ~v.Single polygons. For a single polygon P with p segments we now de�ne a small bidirectedow problem on a graph ~GP = (~VP ; ~EP ). See Figure 6 for an example of a polygon with �vesegments. Let us suppose that we are given some nonnegative integer Ni for each segment Si,such that the segment Si has to be subdivided into Ni+1 edges in the re�nement. (Clearly, theNi should be consistent with the given segment capacities.)The vertex set ~VP consists of vertices ~vi and ~wi corresponding to each segment Si, and ofone additional vertex ~vc (c for central), if p is odd.The edge set ~EP = ~Ein [ ~Ecap [ ~Epar consists of� the set ~Ein which contains all pairs (~vi; ~vj), for i; j = 1; : : : ; p, including the loops,� the set ~Ecap which contains an edge (~vi; ~wi) for each segment Si, and� the set ~Epar which contains an edge (~vi; ~vc) for each segment Si, if p is odd, and is emptyotherwise.The edges in ~Ein are \internal" edges of the polygon, those in ~Ecap will be used to modelthe segment capacity constraints, and edges in ~Epar are used to ensure the \correct parity" ofthe subdivision if the polygon initially is odd. We assign the following capacities to the edges:� For an edge ~e 2 ~Ein, we set `~e := 0 and u~e := +1.� For an edge ~e = (~vi; ~wi) 2 ~Ecap which corresponds to segment Si of P , we set `~e := `Siand u~e := uSi . 9
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Figure 6: Example: the bidirected ow graph for a polygon with 5 segments and a possiblere�nement. A short solid line through a vertex is used to indicate a non-trivial bipartition of itsadjacency list into two parts.� For an edge ~e 2 ~Epar, we set `~e := 0 and u~e := 1.The bipartition of the vertices is as follows: For each vertex ~vi, the incident edges arepartitioned into the sets ~Ein [ ~Epar and ~Ecap. For each vertex ~wi and for ~vc (if the latter vertexexists), all incident edges are in A1(�), and A2(�) is empty.We de�ne b~vc = 1, if p is odd, and all other vertices ~vi are transshipment vertices. Finally,let b ~wi = Ni for the given nonnegative integers Ni. This completes the de�nition of a bidirectedow problem for the polygon P .Proposition 3.1 The bidirected ow problem for the polygon P as de�ned above has the fol-lowing properties:(1) If the polygon P admits a feasible conformal re�nement such that the segment Si consistsof exactly Ni + 1 edges in that re�nement, then there is a feasible bidirected ow.(2) For any feasible ow x, there is a conformal re�nement of P into strictly convex quadri-laterals such that exactly x(~vi;~vj) disjoint paths go from the interior of segment Si to theinterior of segment Sj, and the segment Si consists of Ni + 1 edges in the re�nement, fori = 1; : : : ; p, and all segment capacity constraints are ful�lled.(3) If there is a feasible ow, there is also a feasible ow x0 such that at most p edges withinthe set ~Ein have a non-zero ow value.Proof: Suppose �rst that the polygon P admits a feasible conformal re�nement such that eachsegment Si consists of exactly Ni+1 edges. Then, by Lemma 2.1,Ppi=1(Ni+1) must be even. Ifp is odd, this means that PiNi is odd, and this sum is even otherwise. We construct a feasibleow by the following procedure:For all edges (~vi; ~wi) 2 ~Ecap, we set x(~vi; ~wi) := Ni, which clearly ful�lls the capacity con-straints, as the conformal re�nement of P with Ni + 1 edges on segment Si is feasible byassumption. Initialize all other edges with a zero ow value. At this stage, the imbalance forthe transshipment vertices ~vi is imb(~vi) = j0�Nij, for all i = 1; : : : ; p.10



Figure 7: Step 1: \Quadrangulation of P 0."
Figure 8: Step 2: \Routing of the ow on the loops."

Figure 9: Step 3: \Routing of the ow on all other edges."
If p is odd, there must be some index k such that Nk is strictly positive, asPiNi is odd. Inthis case, we take one such index and set x(~vk ;~vc) := 1.This makes the total imbalance imbtot := Ppi=1 imb(~vi) even, regardless of the parity ofp. As long as there are two vertices ~vi and ~vj with a non-zero imbalance, we set x(~vi;~vj) :=minfimb(~vi); imb(~vj)g > 0. As a result, at least one more vertex ful�lls its ow conservationconstraint. Observe that this always preserves the invariant that the total imbalance imbtot iseven. Hence, we end up at a point where at most one vertex ~vi may be imbalanced, but imb(~vi)is even. Thus we may �nally use the loop at ~vi and set x(~vi;~vi) := imb(~vi)=2 to get a feasiblebidirected ow. This proves property (1), but also (3), as no more than p edges in ~Ein canreceive a non-zero ow value in this procedure.To establish property (2), we have to show how to build a conformal re�nement when afeasible bidirected ow x is given.This is done in several steps: In the �rst step, we take a \geometric copy" P 0 of P , where weregard only the corners v1; : : : ; vp of P (in counterclockwise order) as vertices of P 0 and take thewhole segments of P as edges for P 0. We decompose P 0 into strictly convex quadrilaterals. If thenumber of segments is even, this can be done by the insertion of edges between corners. Moreprecisely, as long as P 0 is not completely decomposed into quadrilaterals, we choose cornersvi; vi+3 and add an edge (vi; vi+3). If P 0 has an odd number of segments, the feasible owcontains exactly one edge (~vi; ~vc) with a ow of one unit. Vertex ~vi corresponds to segment Siwhich is spanned by vi and vi+1. If this segment does not contain a non-corner vertex of P , weplace one subdivision point somewhere on this segment, otherwise we choose such a non-cornervertex. Call this original vertex or the new subdivision point w. If p � 5, insert a new vertexw0 somewhere in the interior of the convex region spanned by w, vi�1, and vi+2, and insert theedges (w0; w); (w0; vi�1); (w0; vi+2). This decomposes P 0 into two strictly convex quadrilateralsand some smaller polygon P 00, which is now even. Hence we can complete the decomposition of11



P 0 into quadrilaterals in the same way as for a polygon with an even number of segments. Thecase p = 3 is an exception, but can be treated as depicted in Figure 7.If there is a ow value of x(~vi;~vj) units on edge (~vi; ~vj), we want to construct so many disjointpaths between segment Si and Sj . We construct them path by path in the following way:We �rst place two (disjoint) end-vertices, one on segment Si, the other on segment Sj of P 0.(For loops (~vi; ~vi) these two segments coincide.) As long as there are non-corners on Si or Sjwhich have not been used as end-vertices before, we choose them as the end-vertices, in order toguarantee that, �nally, all non-corners of P will be used. Otherwise we may select any positiondisjoint from previously determined vertices. In every case, each end-vertex is incident to aquadrilateral of the current decomposition of P 0. If both end-vertices are incident to the samequadrilateral of P 0 we can directly use one of the possibilities shown in Figure 10 to embed thepath between these vertices and iterate.Otherwise, consider the dual graph of the decomposition G0 of P 0 we have constructed so farand some dual path between the two quadrilaterals incident to the two end-vertices.Such a path induces a chain of quadrilaterals where two adjacent quadrilaterals share exactlyone edge, which we subsequently subdivide by the insertion of a new vertex for each such edge.Now each quadrilateral on the dual path has two new vertices, but we can rebuild a conformaldecomposition into strictly convex quadrilaterals by using one of the possibilities for each ofthese quadrilaterals as shown in Figure 10.
Figure 10: The di�erent possibilities (up to symmetry) to complete the decomposition of aquadrilateral with two additional vertices on the boundary.It is easy to see that one can select the end-vertices and dual paths in such a way, thatall constructed paths corresponding to the ow on edge (~vi; ~vj) are disjoint. This establishesproperty (2). 2Meshes without branchings. We now extend our de�nition of a bidirected ow instance fora single polygon to an instance for a whole mesh. Let G = (V;E) be the undirected graph of amesh without branching edges.The underlying graph ~G = (~V ; ~E) of the bidirected ow instance is built up using thegraphs ~GP = (~VP ; ~EP ) as de�ned for single polygons as subgraphs. Roughly speaking, two suchsubgraphs are connected by a \dual edge" if the corresponding polygons share an edge in G.The vertex set ~V is the union of� the vertex sets ~VP of all polygons P ,� all vertices among V which are non-corners of some polygon, and� one special vertex ~vout.The edge set ~E contains the following edges:� We take the union of the edges sets ~EP over all polygons P , and the edge capacities as in~GP . 12



Figure 11: The graph ~G = (~V ; ~E) of the bidirected ow problem for an arti�cial instance. (Thespecial vertex ~vout is omitted in this �gure.)� Let e 2 E be an edge which belongs to two polygons, say to P and Q, and suppose that~wi 2 ~VP and ~wj 2 ~VQ are the vertices which correspond to the segments of P and Q towhich e belongs. For each such edge e, we introduce a \dual" edge ~e = ( ~wi; ~wj), with edgecapacities equal to that of e in G.� If an edge e 2 E belongs only to one polygon, say to P , and ~wi 2 ~VP is the vertex whichcorresponds to the segment of P to which e belongs, then we introduce a \dual" edge~e = ( ~wi; ~vout), with edge capacities equal to that of e in G.� For each polygon P and each vertex v 2 V \P which is not a corner, we introduce an edge~e = ( ~wi; v), where v lies on the segment of P to which ~wi 2 ~VP corresponds. Such an edgegets identical lower and upper capacities `~e := u~e := 1.� A loop ~e = (~vout; ~vout) with capacities `~e := 0 and u~e := +1.The bipartition of the vertices is as follows: For each vertex ~wi 2 ~VP , we put exactly allincident edges ~e 2 ~E n ~EP into A2( ~wi). For each vertex v 2 V , all incident edges are in A1(v),and A2(v) is empty. All incident edges to ~vout are in A1(~vout) except (~vout; ~vout) which belongsto A2(~vout).All vertices ~wi 2 ~VP which correspond to segments of P become transshipment vertices (incontrast to the case of single polygons). For each vertex ~v 2 ~V , let b~v be equal to the numberof incident edges in ~G. Finally, let b~vout := 0 if P~v2 ~V n~vout b~v is even, and b~vout := 1, otherwise.13



Theorem 3.2 There exists a feasible conformal re�nement for the homogeneous mesh G if andonly if the bidirected ow problem as de�ned above has a feasible bidirected ow.Proof: Suppose �rst that there is a feasible conformal re�nement for the mesh G with edgee 2 E having a subdivision number of xe. Then the assignment x~e := xe for each dual edge ~e ofe respects the edge capacities. All edges in ~E incident to vertices of V have a �xed ow valueof one unit in any feasible ow, hence there is no choice for the assignment of these edges. Theassignment of ow values we determined so far induces for each polygon of G a bidirected owproblem as in Proposition 3.1. Clearly, the feasible conformal re�nement for the whole meshinduces a feasible conformal re�nement for each individual polygon, and so by Proposition 3.1there is a feasible bidirected ow for all polygons. Notice, �nally, that we can always ful�ll theow balance constraint of ~vout by an appropriate ow assignment to the loop edge (~vout; ~vout).Conversely, it is easy to see how to convert a feasible bidirected ow into a feasible conformalmesh re�nement. We just notice that the restriction of the ow for the whole problem to theindividual polygons yields conformal re�nements for the polygons again by Proposition 3.1.Conformality for the whole mesh is guaranteed if we subdivide each edge e of G exactly x~etimes. By de�nition of the ow problem, all edge and segment capacities are ful�lled for themesh. 23.2 Optimizing the mesh qualityThe task to �nd special solutions which ful�ll certain optimization criteria instead of just feasiblesolutions leads to minimum cost bidirected ow problems. Let ~G = (~V ; ~E) be the graph of abidirected ow instance where a cost c~e is associated with every edge ~e. Then the minimum costbidirected ow problem seeks for a feasible bidirected ow with minimum cost P~e2 ~E c~ex~e. Wewill consider three kinds of mesh quality criteria:� control over the mesh density,� avoidance of too small or too large angles, and� \regularity" of the overall mesh structure.Density control. To get control over the density of a mesh, one can use a convex cost functionfor each dual edge with a minimum at the desired density d~e. The deviation from the desireddensity is punished with increasing costs. As we allow only integer ows, the cost functions canbe assumed to be piecewise linear. For practical purposes, it will often su�ce to use piecewiselinear functions with only two slopes, as depicted in Figure 12.This de�nes a minimum convex cost bidirected ow problem. The standard way to trans-form such a problem to an ordinary linear minimum cost bidirected ow problem is to replaceeach edge ~e by as many copies as there are slopes (cf. [AMO93, pages 551�.]). So if there arep slopes with cost coe�cients ck~e and breakpoints at dk~e , the k-th copy ~ek gets edge capacities[0; dk~e � dk�1~e ] and a cost coe�cient of ck~e . (Here, we assume d0~e = `~e and dp~e = u~e.)For ease of exposition, we will discuss the next two optimization criteria only for polygonswith four segments.Angle control and mesh structure. Recall from Proposition 3.1 that, for a polygon with foursegments, we may assume that we have a feasible ow with at most four edges with a non-zeroow within the set ~Ein. Furthermore, there is a conformal re�nement such that exactly x(~vi;~vj)14



x~e
c~e

`~e d~e u~eFigure 12: Piecewise linear convex cost functions for density control. ~v2~v4 ~v1 ~v3(1) (2) (3) (4) 4 321Figure 13: Illustration of the four templates for polygons with four segments. Solid lines aremandatory for each template (up to rotation and symmetry), whereas the number of dashedlines may vary. The rightmost �gure shows the corresponding subgraph of the bidirected owinstance with only those edges displayed which may have a non-zero ow value.disjoint paths go from the interior of segment Si to the interior of segment Sj. Hence, for anappropriate relabeling of the segments, conformal subdivisions of polygons with four segmentscan be assumed to be of the form as shown in Figure 13. The �rst three possibilities are thestandard templates used in [MMW96, TA93], whereas the last template is new and generalizesall standard templates.The shape of the quadrilaterals in the re�nement is closely related to the choice of thetemplate which determines the re�nement of the macro element. As a rule of thumb, the morethe polygon looks like a trapezoid, the better template (2) will be, the more it looks like a kite,the better template (3) will be. In all other cases, template (1) is likely to be the best.Moreover, template (1) tends to produce a fairly regular mesh. \Regularity of the meshstructure" is a mesh quality criterion which seemingly cannot be fully formalized. But theheuristical rule to prefer template (1) often achieves practical results which reects such a goalquite satisfactorily [MMW96].Hence, we would like to re�ne as many polygons by template (1) as possible (among thosepolygons which have no very small or large angle), or more generally, we would like to maximizethe number of macro elements which are re�ned to some preferred template, for a given prefer-ence order for each individual polygon of our instance. Unfortunately, such a goal is intractable.Theorem 3.3 Given a feasible homogeneous mesh instance, it is strongly NP-hard to �nd asolution where the number of macro elements with four segments which are re�ned according tothe (m� n){grid template (i.e. template (1) in Figure 13) is maximized.Proof: The proof of Theorem 2.4 in [MMW96] directly carries over to this more general case. 215



So what can we hope for? As the mesh re�nement problem only allows to insert new verticesand edges, no sharp input angle can be erased. Hence, we can only try to avoid the creation ofnew angles smaller than �. On the other hand, we can try to enforce the splitting of an anglelarger than �.Observe that, for the given templates in Figure 13, a non-zero ow on edge (~v1; ~v2) inducesthe splitting of the angle 4, and a non-zero ow on the loop (~v1; ~v1) induces the splitting ofboth 4 and 3.There are two possibilities to modify our bidirected ow instance for these purposes: First,we can change the edge capacities of \internal edges" ~Ein of a polygon: In the pure feasibilityproblem all these edges have a lower capacity of zero and a large upper bound (\plus in�nity").Hence, we can enforce to use an edge, if we set the lower capacity to one, or we can forbid anedge completely, if we set the upper capacity to zero. The disadvantage of this approach is, thatsuch a modi�cation may cause the infeasibility of the bidirected ow problem.A second (and not so restrictive) way is to assign costs to these edges in order to make themmore attractive or unattractive.Using these ideas we can express our preferences for the choice of the chosen template foreach polygon. So if we prefer a realization of template (1) for some polygon, we assign high costcoe�cients to all internal edges but (~v1; ~v3) and (~v2; ~v4), which get zero cost. Or, for example, ifthe angle 4 should be split by an application of template (3), we either raise the lower boundfor edge (~v1; ~v2) to one or make its cost coe�cient negative.Hence, in summary, we can use local information about the geometry of the unre�ned polygonand so can model our preferences of the choice of an appropriate template and enforce or forbidthe splitting of macro element angles by these modi�cations.Similar ideas work for polygons with a di�erent number of segments than four. We givean example for a polygon with three segments: If we set bc := 3 (rather than bc := 1) for thevertex ~vc of such a polygon, the parity is still even for every feasible ow, but we can use are�nement which does not necessarily splits all angles, as in the leftmost re�nement in Figure 7.In contrast, we can use one single interior vertex and connect this vertex to one subdivisionpoint on each segment to yield a quadrangulation in step 1. We should also note that this is infact the standard way to treat polygons with three segments [MMW96].4 Quadrangulations of meshes with branchingsA decomposition approach for meshes with branchings. In Section 2 we gave a generaland simple procedure to �nd just feasible quadrangulations for meshes with branchings. Butoptimization of the mesh quality is highly desirable for meshes with branchings, too.For these reasons, we introduce a mesh decomposition into homogeneous components. Thisallows us to combine the general approach from Section 2 and the bidirected ow approachfor homogeneous components into a two-phase approach: In a �rst phase, we determine thesubdivision numbers for all branching edges by solving a modi�ed system of linear equationsover GF (2) which we explain below. Afterwards, in a second phase, we solve a minimum costbidirected ow problem for each homogeneous component where the ow values for all branchingedges are predetermined from the �rst phase.For all instances from real-world applications we know of, the number of branchings isrelatively small in comparison with the number of all polygons. Hence, there is reason toassume that not too many edges have a prescribed ow value in the second phase and thatsolving the minimum cost bidirected ow problem is worth its e�ort.Recall from the Introduction that a combinatorial description of a mesh consists of a graph16



G = (V;E) and a hypergraph H = (M; fE1; : : : ; Emg).Depending on the number of polygons they belong to, the edges of G can be partitionedinto sets E1; E2, and E�3. The set E1 contains the boundary edges, i.e. edges which belongto exactly one polygon, the set E�3 contains all branching edges, and E2 all remaining edges.A non-branching path in H is a path between two polygons P1; P2 2 M which contains onlyhyperedges of cardinality two, i.e. hyperedges corresponding to edges in E2. Being connected bya non-branching path whose edges are all free is an equivalence relation on the set of polygons.Its equivalence classes are exactly the homogeneous components of the mesh decomposition.Such a decomposition into homogeneous components of a mesh with branchings can be ob-tained by the following procedure which \splits" all branching edges and �xed edges: A branchingedge which is incident to p polygons is replaced by p copies, once for each polygon. The copiededges are treated as boundary edges, and they get the same capacities as the original ones. All�xed edges in E2 are replaced in the same way by two copies, once for each incident polygon.Let G1; : : : ; Gk be the resulting homogeneous components, andM1; : : : ;Mk the sets of polygonscontained in these components. The decomposition into homogeneous components can be easilyimplemented by a straightforward depth or breadth �rst search.For a homogeneous component, we may de�ne a certain variant of the dual graph, denotedby GD = (V D; ED). Herein, V D is the set of all polygons of the component plus one additionalvertex for the region outside the component. For each edge e 2 E2 between two polygons,there is an edge eD 2 ED connecting these two polygons. Analogously, for each boundary edgee 2 E1, there is an edge eD that connects the polygon incident to e with the boundary vertexintroduced for this component.Later we will need the following result:Lemma 4.1 Let G = (V;E) be a homogeneous mesh, where the subdivision numbers xe are�xed for all boundary edges and Pe2E1(xe+1) is even, but all other edges are free. Then G hasa feasible conformal re�nement.Proof: For each edge e 2 E nE1, choose some integer ~xe within the interval [`e; ue], and for allother edges e 2 E1 let ~xe = xe.We call a vertex vD of GD (i.e. a polygon of G) odd (even) ifP(~xe+1) is odd (even), wherethe sum is taken over all edges e 2 E which are in one-to-one correspondence to dual edgeseD 2 ED incident to vd. As the sum over all boundary edges of the subdivision numbers plusone, namely Pe2E1(~xe + 1), is even, the dual graph GD has an even number of odd verticeswhich correspond to polygons of the mesh.By Lemma 2.1, we have to modify ~x such that all polygons become even. Hence, we lookfor a subgraph Gd of GD such that a vertex is odd in Gd if and only if it is odd in GD.To achieve this task, let T be a spanning tree of GD without the boundary vertex and let Fbe the set of all edges of T whose deletion divides T into two subtrees with an odd number ofodd vertices each.Then we change the subdivision number by one unit for each edge of G that correspondsto an edge of F . It is easy to see that each polygon becomes even by that modi�cation. Justnote that for each vertex vD the set of incident edges with respect to T induces by subtreecontainment a partition of all odd vertices. If vD is even, then there is an even number ofinduced subtrees with an odd number of odd vertices, and we take by construction exactly somany edges into F . A similar argument works for the case that vD is even.As all edges in F are free, we can do a change by one unit without violating the edgecapacities. 2Note that the proof is not only constructive, but also yields a linear-time algorithm (linearin the size of the combinatorial description of the input mesh, i.e. in the number of its vertices17



and edges) for determining subdivision numbers of a feasible re�nement of homogeneous mesheswith edge but without segment capacities.Let H 0 = (M0; fE01; : : : ; E0m0g) be the hypergraph which we obtain from H = (M; fE1; : : : ; Emg)if we(1) delete all hyperedges Ei where ei is �xed, then(2) contract all those hyperedges of degree two which correspond to free edges in E2, and�nally,(3) identify all parallel hyperedges, i.e. we keep only one hyperedge for all edges e 2 E whichare incident to exactly the same set of polygons.Observe that there is a one-to-one correspondence between the vertices of H 0 and the homoge-neous components G1; : : : ; Gk of G.We will now de�ne a smaller system of equations over GF (2) based on H 0. We start similaras in the �rst approach above. Again, let ~xe be some �xed integer in the interval [`e; ue], for eachedge e 2 E, and de�ne for each polygon P 2M the parity number bP :=Pe2P (~xe + 1) mod 2.These parity numbers are aggregated to parity numbers for each homogeneous component,by setting bGi :=PP2Mi bP mod 2, for i = 1; : : : ; k.For each hyperedge E0j 2 H 0, let yE0j be a 0/1-integer variable. For each homogeneouscomponent Gi which is not incident to a free boundary edge in G, we take an equation of theform XE0j :Ej\Gi odd yE0j = bGi ;that is, we sum over those hyperedges which are derived from a branching edge with an oddnumber of incidences with the homogeneous component Gi. Notice, that it might happen thatsome set fE0j : Ej \Gi oddg is empty (because of the deletion of �xed edges, for example). Inthat case, we de�ne the sum over the empty set to be zero. This de�nes our system of linearequations over GF (2).Suppose that this system has a solution ~y. For each hyperedge E0i with ~yE0i = 1, takeone corresponding branching edge e = ei (there may be a choice if E0i resulted from parallelhyperedges of a branching), and set xe := ~xe� 1 (such that the edge capacities remain ful�lled).For all other branching edges, set xe := ~xe. This completes the �rst phase. In the secondphase, we �x the subdivision values xe for all branching edges and then solve the bidirectedow problems for each homogeneous component separately. We claim that each bidirected owproblem is feasible if we have a feasible solution ~y in the �rst phase. This is summarized in thefollowing theorem:Theorem 4.2 There exists a feasible conformal re�nement for a mesh G with branchings if andonly if the two-phase approach as described above yields a feasible solution.Proof: If the two-phase approach yields a feasible solution, then each homogeneous componentof our mesh has a feasible conformal re�nement by Theorem 3.2, and as all branching edgesare subdivided before the treatment of the homogeneous components, this yields an overallconformal mesh re�nement.For the other direction, let us suppose that the mesh has a feasible conformal re�nementwith xe subdivision points on edge e. By Lemma 2.1, each polygon is even, thus we have18



0 = Pe2P (xe + 1) mod 2. Summing up over all polygons of a homogeneous component, weobtain 0 = XP2Gi Xe2P(xe + 1) mod 2:By de�nition of the parity numbers, we also havebGi = XP2Gi bP = XP2Gi Xe2P(~xe + 1) mod 2:Combining both equations yieldsbGi = XP2Gi bP = XP2Gi Xe2P(~xe � xe) mod 2:As the sum on the right hand side of this equation includes all edges in E2 twice, thebranching edges with an even number of incidences with Gi appear an even number of times,and �xed edges do not contribute to the sum, this equation holds if and only ifbGi = Xe2GinE2; e\Gi odd; e free(~xe � xe) mod 2:Suppose further that E0i 2 H 0 has been derived from the branching edges e1i ; : : : ; esi which areincident to the same set of polygons. If we now group the edges on the right-hand side of thelast equation by containment in the same branching and if we setyE0i := 0@ siXj=1i(~xej � xej )1A mod 2;this clearly de�nes a solution to our system of equations over GF (2) in the �rst phase.It remains to show that we have a feasible solution to all bidirected ow instances in thesecond stage, for any solution ~y of the �rst. Hence, let ~y a solution of our system of equations. Foreach hyperedge E0i with ~yE0i = 1, take one corresponding branching edge e, and set xe := ~xe� 1.For all other edges, set xe := ~xe. With such an assignment, the boundary of each homogeneouscomponent Gi ful�lls the precondition of Lemma 4.1. Hence, there is a feasible re�nement foreach homogeneous component, and by Theorem 3.2 the corresponding bidirected ow problemis feasible, too. 2Intractability of quadrangulations with segment capacities. Finally we show that thefeasible conformal mesh re�nement problem is highly intractable in the general case with branch-ings and segment capacities:Theorem 4.3 The feasible conformal mesh re�nement problem with segment capacities is stronglyNP{hard.Proof: The problem is in NP because a feasible solution, if it exists, can obviously be checkedfor feasibility in polynomial time. To show NP-completeness we shall give a reduction from3SAT [GJ79]: We are given a Boolean formula consisting of m clauses C1; :::; Cm (in conjunctivenormal form) and involving the variables y1; :::; yn, where each clause contains three literals. Isthe formula C1 � C2 � : : : � Cm satis�able ?Let F = C1 �C2 � : : : �Cm be a formula of this type. As in many NP-completeness proofs, theconstruction of an instance of our problem requires the design of special-purpose components:19



eye�y(2; 2)(2; 2)(2; 2)(0; 2)Figure 14: Representation of a variable.For each variable y 2 fy1; :::; yng we de�ne a corresponding macro element with segmentcapacities (the pair of lower and upper capacities is indicated in parentheses, for each segment)as shown in Figure 14.The negation of a variable is indicated by a bar. Two edges of such a macro element have aspecial meaning: If ey is subdivided in a re�nement, this corresponds to the truth assignmenty := TRUE, otherwise, if e�y is subdivided, this induces the assignment y := FALSE. Obviously,in any feasible re�nement either ey or e�y is subdivided exactly once, but not both.The clauses are represented by macro elements in the following way: For a clause C 2fC1; :::; Cmg we de�ne a macro element with four segments and segment capacities as shown inFigure 15. The three edges e1;C , e2;C and e3;C are intended to correspond to the three literalsof the clause. It is no problem to �nd a feasible re�nement for this type of macro elements,but in any case there must be at least one out of the three edges e1;C , e2;C and e3;C which issubdivided for each clause. (0; 3)
(0; 3)

e1;C
e3;Ce2;C (1; 3) (0; 3)

Figure 15: Representation of a clause.Finally, we connect variables with clauses in order to make the truth assignments of allvariables and clauses consistent. To this end, edge ek;C of clause C is connected by a \channel"of macro elements with eyk if the k-th literal of C is yk, or with e�yk if it is �yk, cf. Figure 16. Thesubdivision numbers of certain edges of the channel are �xed (to some small constant integers) such that the subdivision numbers for eyk and ek;C have the same parity in any feasiblere�nement. (0; 1)eyk (0; 1) ek;C(s; s)(s; s)(s; s) (0; 1) (0; 1)(s; s)(s; s)(s; s)
Figure 16: Connection between variables and clauses.20
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