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Abstract. The regularity and stability of optimal controls of instationary Navier-Stokes equa-
tions is investigated. Under suitable assumptions every control satisfying first-order necessary con-
ditions is shown to be a continuous function in both space and time. Moreover, the behaviour of
a locally optimal control under certain perturbations of the cost functional and the state equation
is investigated. Lipschitz stability is proven provided a second-order sufficient optimality condition
holds.
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1. Introduction. We are considering optimal control of the instationary Navier-
Stokes equations. As model problem serves the minimization of the quadratic objec-
tive functional

min J(y, u) =
αT

2

∫

Ω

|y(x, T ) − yT (x)|2dx +
αQ

2

∫

Q

|y(x, t) − yQ(x, t)|2dxdt

+
αR

2

∫

Q

| rot y(x, t)|2dxdt +
γ

2

∫

Q

|u(x, t)|2dxdt (1.1)

subject to the instationary Navier-Stokes equations

yt − ν∆y + (y · ∇)y + ∇p = u in Q,
div y = 0 in Q,
y(0) = y0 in Ω,

(1.2)

and the control constraints u ∈ Uad with control set defined by

Uad = {u ∈ L2(Q)n : ua,i(x, t) ≤ ui(x, t) ≤ ub,i(x, t) a.e. on Q, i = 1..2}.

Here, Ω is an open bounded subset of R
2 with C3-boundary Γ, such that Ω is locally

on one side of Γ, and Q is defined by Q = (0, T )×Ω. Further, functions yT ∈ L2(Ω)2,
yQ ∈ L2(Q)2, and y0 ∈ H ⊂ L2(Ω)2 are given. The parameters γ and ν are positive
real numbers. The constraints ua, ub are required to be in L2(Q)2 with ua,i(x, t) ≤
ub,i(x, t) a.e. on Q, i = 1, 2.

In this article, we deal with two questions arising in the optimal control of partial
differential equations:

1. How smooth is a locally optimal control?
2. Does a locally optimal control enjoy stability under perturbations of the data?

Both are related in the following sense: if one has that the optimal control enjoy
some regularity then one wants that under reasonable perturbations this regularity is
preserved.

Actually, regularity results for optimal controls can be derived from the first order
necessary optimality system. It introduces some coupling between the control and
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the adjoint state. The adjoint state itself is solution of a partial differential equation
and therefore has some regularity, which is inherited by an optimal control. We want
to show that any control satisfying the first-order necessary optimality conditions of
problem (1.1) is a continuous function in both - space and time.

Since the 1980s the investigation of stability of optimal controls has attracted much
interest. Once a stability result holds true, one easily can prove convergence of nu-
merical methods such as the SQP-method for instance, [5]. The first stability results
for optimal control of partial differential equations are due to Tröltzsch [26], where a
linar-quadratic control problem is studied. For the treatment of general state equa-
tions including instationary ones we refer to [7, 13, 17, 27] and the references cited
therein. For the control of the stationary Navier-Stokes system, we refer to [20]. The
stability of optimal controls of the instationary Navier-Stokes equations was presented
in the recent research paper [11].

The control of instationary Navier-Stokes flow has been studied very intensively since
the pioneering work [1], see for instance [3, 6, 8, 9, 10, 11, 12, 13, 22, 28]. Stability
problems were addressed in [11] to prove convergence of the SQP-method.

Since we will show that optimal controls of (1.1) has to be continuous, we will give
stability results in the associated L∞-norm. This extends the results obtained in
[11], where stability of optimal controls in Ls(Q)2, s < 7/2, was achieved. But, it
requires a change in the methods too. Using Hilbert-space theory of the instation-
ary Navier-Stokes equations one can prove stability of optimal controls in the space
Ls(0, T ; L∞(Ω)2)∩L∞(0, T ; Ls(Ω)2) only for s < ∞. We will close the gap to s = ∞
employing a Lp-solution theory due to v.Wahl [29, 30].

The outline of the article is as follows. In Section 2, we will introduce some notation
and state common results concerning solvability of the instationary Navier-Stokes
system (1.2). Section 3 contains a brief summary of known facts about optimality
conditions. The continuity of optimal controls is proven in Section 4. Finally, Section
5 is devoted to the study of stability of optimal controls.

2. Notations and preliminary results. Here, we will restrict ourselve to the
two-dimensional case, n = 2, since a satisfactory theory of the instationary Navier-
Stokes equations is only available for this space dimension. First, we introduce some
notations and provide some results that we need later on.

To begin with, we define the solenoidal spaces

Hp := {v ∈ Lp(Ω)2 : div v = 0}, Vp := {v ∈ W 1,p
0 (Ω)2 : div v = 0}.

Here, p denotes an arbitrary exponent p ≥ 2. These spaces are Banach spaces with
their norms denoted by | · |p respectively | · |1,p. For p = 2, we get the frequently
used solenoidal spaces H := H2 and V := V2, which are Hilbert spaces with scalar
products (·, ·)H respectively (·, ·)V . The dual of V with respect to the scalar product
of H we denote by V ′ with the duality pairing 〈·, ·〉V ′,V .

We shall work in the standard space of abstract functions from [0, T ] to a real Banach
space X , Lp(0, T ; X), endowed with its natural norm,

‖y‖Lp(X) := ‖y‖Lp(0,T ;X) =

(

∫ T

0

|y(t)|pXdt

)1/p

1 ≤ p < ∞,

‖y‖L∞(X) := vrai max
t∈(0,T )

|y(t)|X .
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In the sequel, we will identify the spaces Lp(0, T ; Lp(Ω)2) and Lp(Q)2 for 1 < p < ∞,
and denote their norm by ‖u‖p := |u|Lp(Q)2 . The usual L2(Q)2-scalar product we
denote by (·, ·)Q to avoid ambiguity.

In all what follows, ‖ · ‖ stands for norms of abstract functions, while | · | denotes
norms of ”stationary” spaces like H and V .

To deal with the time derivative in (1.2), we introduce the common spaces of functions
y whose time derivatives yt exist as abstract functions,

W α(0, T ; V ) := {y ∈ L2(0, T ; V ) : yt ∈ Lα(0, T ; V ′)}, W (0, T ) := W 2(0, T ; V ),

where 1 ≤ α < ∞. Endowed with the norm

‖y‖W α := ‖y‖W α(0,T ;V ) = ‖y‖L2(V ) + ‖yt‖Lα(V ′),

these spaces are Banach spaces, respectively Hilbert spaces in the case of W (0, T ).
Every function of W (0, T ) is, up to changes on sets of zero measure, equivalent to a
function of C([0, T ], H), and the imbedding W (0, T ) ↪→ C([0, T ], H) is continuous, cf.
[2, 16].

Furthermore, we introduce the following space of abstract functions in the Lp-context:

W 2,1
p := {y ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp) : yt ∈ Lp(0, T ; Lp(Ω)2)},

which is continuously imbedded in C([0, T ], W
2−2/p, p
0 (Ω)2), [15]. Here, W

2−2/p, p
0 (Ω)2

denotes the space of solenoidal W 2−2/p, p-functions where zero boundary values are
prescribed if p ≥ 4/3. We abbreviate H2,1 = W 2,1

2 for p = 2. Note, that in this case

we have W
2−2/2, 2
0 (Ω)2 = V . In this article, we will use exponents p ≥ 2.

We define the trilinear form b : V × V × V 7→ R by

b(u, v, w) = ((u · ∇)v, w)2 =

∫

Ω

2
∑

i,j=1

ui
∂vj

∂xi
wj dx.

To specify the problem setting, we introduce a linear operator A : L2(0, T ; V ) 7→
L2(0, T ; V ′) by

∫ T

0

〈(Ay)(t), v(t)〉V ′,V dt :=

∫ T

0

(y(t), v(t))V dt,

and a nonlinear operator B by

∫ T

0

〈(

B(y)
)

(t), v(t)
〉

V ′,V
dt :=

∫ T

0

b(y(t), y(t), v(t))dt.

B is continuous for instance as operator from W (0, T ) to L2(0, T ; V ′). Further prop-
erties can be found in [4, 23, 31]. For convenience, we will use in the sequel the
notation

bQ(y, v, w) =

∫ T

0

b(y(t), v(t), w(t))dt.
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2.1. The state equation. We begin with the notation of weak solutions for the
instationary Navier-Stokes equations (1.2) in the Hilbert space setting.

Definition 2.1 (Weak solution). Let f ∈ L2(0, T ; V ′) and y0 ∈ H be given. A
function y ∈ L2(0, T ; V ) with yt ∈ L2(0, T ; V ′) is called weak solution of (1.2) if

yt + νAy + B(y) = f,
y(0) = y0.

(2.1)

Results concerning the solvability of (2.1) are standard, cf. [4, 23] for proofs and
further details.

Theorem 2.2 (Existence and uniqueness of solutions). For every f ∈ L2(0, T ; V ′)
and y0 ∈ H, the equation (2.1) has a unique solution y ∈ W (0, T ). Moreover, the
mapping (y0, u) 7→ y is locally Lipschitz continuous form H×L2(0, T ; V ′) to W (0, T ).

For more regular data, one expects more regular solutions. The next theorem states
some well-known facts, see for instance [23] for the details and [24] for more regularity
results.

Theorem 2.3 (Regularity). For the higher regularity of the weak solutions of (2.1)
the following holds.

(i) Let y0 ∈ V and f ∈ L2(Q)2 be given. Then the weak solution of (2.1) fulfills

y ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

yt ∈ L2(0, T ; H).

(ii) Let additionally, y0 ∈ H2(Ω)2 ∩ V and ft ∈ L2(0, T ; V ′) and f(0) ∈ L2(Ω)2

be given. Then the weak solution y of (2.1) satisfies

yt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H).

(iii) If moreover f ∈ L∞(0, T ; L2(Ω)2) then it holds

y ∈ L∞(0, T ; H2(Ω)2).

The solution mapping (f, y0) 7→ (y, yt) is locally Lipschitz continuous between the
mentioned spaces.

For the proofs of the three statements we refer to Temam [23, Theorems III.3.10, 3.5,
3.6].

Remark 2.4 (Linearized state equation). We consider the linearized equation

yt + νAy + B′(ȳ)y = f,
y(0) = y0,

(2.2)

for a given state ȳ, which is usually the solution of the nonlinear system (2.1). Fol-
lowing the lines of Temam, one can proof existence and uniqueness of a weak solution
y ∈ W (0, T ). Regularity results similar to (i)–(iii) hold, provided the state ȳ has the
same regularity as one wants to get for the solution of the linearized equation, see also
[13].

Notice, that result (ii) implies in particular y ∈ C(Q̄)2. But the pre-requisites are
quite restrictive with respect to f . We need that its time-derivative has some regu-
larity. Also, any other result in the Hilbert theory which leads to continuous states
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of class C(Q̄)2 needs regularity of space or time derivatives of the right hand side, cf.
[4, 21, 23, 31]. In the context of optimal control this is quite problematic. We will
comment on it later on, see remarks at the end of Section 5.3.

Can we gain some ‘intermediate’ regularity of the solution if the right-hand side is in
Lp(Q)2 with p > 2? If then the weak solution would satisfy y ∈ Lp(0, T ; W 2,p(Ω)2)
and yt ∈ Lp(0, T ; Lp(Ω)2), we would get immediately y ∈ C([0, T ]; W 1,p(Ω)2) ↪→
C(Q̄)2. Actually, such a result is available. At first, we have to specify the notation
of a strong solution in the Lp-setting.

Definition 2.5 (Strong solution in Lp). Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be

given. A function y ∈ Lp(0, T ; Vp) with yt ∈ Lp(0, T ; Lp(Ω)2) is called strong solution
to the exponent p > 2 of (1.2) if

−

∫ T

0

(y, φ′)dt + ν

∫ T

0

(∇y,∇φ)dt +

∫ T

0

b(y, y, φ) =

∫ T

0

(f, φ)dt + (y0, φ(0)) (2.3)

for all test functions φ ∈ Lq(0, T ; Vq) with φt ∈ Lq(0, T ; Lq(Ω)2) and φ(T ) = 0, where
q is the dual exponent to p, 1/q + 1/p = 1.

Here the space W
2−2/p, p
0 (Ω)2 is the natural trace space. Every abstract function of

Lp(0, T ; W 2,p(Ω)2) with time derivative in Lp(0, T ; Lp(Ω)2) is - after changes on a
zero measure set - continuous with values in this space, [15]. Obviously, every strong
Lp-solution is a weak solution. For existence of Lp-solutions we have the following
theorem.

Theorem 2.6 (Lp-solutions). Let f ∈ Lp(Q)2 and y0 ∈ W
2−2/p, p
0 (Ω)2 be given with

p ≥ 2. Then the weak solution y of (2.1) in the sense of Definition 2.1 is a strong
solution and satisfies

y ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp),

yt ∈ Lp(0, T ; Lp(Ω)2).

There exists a constant C > 0 such that

‖y‖Lp(W 2,p) + ‖yt‖p + ‖y‖L∞(W 2−2/p, p) ≤ c {|y0|W 2,p + ‖f‖p}

Moreover, the mapping (f, y0) 7→ y is locally Lipschitz continuous, hence the strong
solution y is unique.

If p = 2 this result reduces to Theorem 2.3(i). For the non-Hilbert space case p > 2,
it is proven in [29, 30].

3. The optimal control problem.

3.1. First order necessary optimality conditions. Now we return to our
optimal control problem. We briefly recall the necessary conditions for local optimal-
ity. For the proofs and further discussion see [1, 3, 9, 12, 28] and the references cited
therein.

Definition 3.1 (Locally optimal control). A control ū ∈ Uad is said to be locally
optimal in L2(Q)2, if there exists a constant ρ > 0 such that

J(ȳ, ū) ≤ J(yρ, uρ)
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holds for all uρ ∈ Uad with ‖ū−uρ‖2 ≤ ρ. Here, ȳ and yρ denote the states associated
with ū and uρ, respectively.

In the following, we denote by B′(ȳ)∗ the formal adjoint of B′(ȳ). For ȳ ∈ W (0, T ),
it is a continuous linear operator from L2(0, T ; V ) to L4/3(0, T ; V ′).

Theorem 3.2 (Necessary condition). Let ū be a locally optimal control with asso-
ciated state ȳ = y(ū). Then there exists a unique solution λ̄ ∈ W 4/3(0, T ; V ) of the
adjoint equation

−λ̄t + νAλ̄ + B′(ȳ)∗λ̄ = αQ(ȳ − yQ) + αR ~rot rot ȳ

λ̄(T ) = αT (ȳ(T ) − yT ).
(3.1)

Moreover, the variational inequality

(γū + λ̄, u − ū)L2(Q)2 ≥ 0 ∀u ∈ Uad (3.2)

is satisfied.

Proofs can be found in [9, 10, 28]. The regularity of λ̄ is proven in [13].

In the sequel we need the notation of the normal cone NUad
(ū) of the set of admissible

controls given by

NUad
(ū) =

{

{

z ∈ L2(Q)2 : (z, u − ū)2 ≤ 0 ∀u ∈ Uad

}

if ū ∈ Uad

∅ otherwise.
(3.3)

Then the variational inequality (3.2) can be written equivalently as the inclusion

νū + λ̄ + NUad
(ū) 3 0. (3.4)

The regularity of the adjoint state depending on the regularity of the data is stated
more precisely in the next lemma. It can be proven following the lines of Temam [23],
see also [13, 19]. For convenience, we denote by f the right-hand side of (3.1), and
by λT the initial value αT (ȳ(T ) − yT ).

Theorem 3.3 (Regularity of the adjoint state).

(i) Let λT ∈ H, f ∈ L2(0, T ; V ′), and ȳ ∈ L2(0, T ; V ) ∩ L∞(0, T ; H) be given.
Then there exists a unique weak solution λ of (3.1) satisfying

λ ∈ L2(0, T ; V ),

λt ∈ L4/3(0, T ; V ′).
(3.5)

(ii) Let λT ∈ V , f ∈ L2(Q)2, and ȳ ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ) be given.
Then the unique weak solution λ of (3.1) satisfies

λ ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

λt ∈ L2(0, T ; H).
(3.6)

(iii) Additionally, let λT ∈ H2(Ω)2 ∩ V , f ∈ L∞(0, T ; L2(Ω)2), ft ∈ L2(0, T ; V ′),
ȳt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), and ȳ(0) ∈ H2(Ω)2 ∩ V be given. Then the
weak solution λ of (3.1) satisfies

λ ∈ L∞(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ),

λt ∈ L∞(0, T ; H) ∩ L2(0, T ; V ).
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The mapping (f, λT ) 7→ λ is continuous in the mentioned spaces.

The existence of Lp-solutions of the adjoint equation is topic of the next Theorem.

Theorem 3.4. Let f ∈ Lp(Q)2 and λT ∈ W
2−2/p, p
0 (Ω)2 be given with p ≥ 2. If

ȳ ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp), then the weak solution λ of (3.1) is a strong solution
and satisfies

λ ∈ Lp(0, T ; W 2,p(Ω)2 ∩ Vp),

λt ∈ Lp(0, T ; Lp(Ω)2).

Moreover, the mapping (f, λT ) 7→ λ is continuous, hence the weak solution λ is
unique.

The result in the case p = 2 is equivalent to Theorem 3.3(ii). Following the lines of
[29, 30] one can proof the claim also for p > 2.

Let us introduce the Lagrange function L : W (0, T ) × L2(Q)2 × W 4/3(0, T ) 7→ R for
the optimal control problem as follows:

L(y, u, λ) = J(u, y) − ν (y, λ)V − b(y, y, λ) + (u, λ)2.

This function is twice Fréchet-differentiable with respect to (y, u) ∈ W (0, T )×L2(Q)2,
cf. [28]. The reader can readily verify that the necessary conditions can be expressed
equivalently by

Ly(ȳ, ū, λ̄) h = 0 ∀h ∈ W (0, T ) with h(0) = 0,

and

Lu(ȳ, ū, λ̄)(u − ū) ≥ 0 ∀u ∈ Uad.

Here, Ly, Lu denote the partial Fréchet-derivative of L with respect to y and u.

In the sequel we denote the pair of state and control (y, u) by v for convenience. The
second derivative of the Lagrangian L at y ∈ W (0, T ) with associated adjoint state λ
in the directions v1 = (z1, h1), v2 = (z2, h2) ∈ W (0, T )× L2(Q)2 is given by

Lvv(y, u, λ)[v1, v2] = Lyy(y, u, λ)[z1, z2] + Luu(y, u, λ)[h1, h2] (3.7)

with

Lyy(y, u, λ)[z1, z2] = αT (z1(T ), z2(T ))H + αQ(z1, z2)Q + αR(rot z1, rot z2)Q

− bQ(z1, z2, λ) − bQ(z2, z1, λ)

and

Luu(y, u, λ)[h1, h2] = γ(h1, h2)2.

It satisfies the estimate

|Lyy(y, u, λ)[z1, z2]| ≤ c
(

‖z1‖L∞(H) + ‖z1‖L2(V )

) (

‖z2‖L∞(H) + ‖z2‖L2(V )

)

‖λ‖L2(V )

(3.8)
for all z1, z2 ∈ W (0, T ), confer [28].
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3.2. Second-order sufficient optimality conditions. Let v̄ := (ȳ, ū) be an
admissible reference pair satisfying the first-order necessary optimality conditions.
We assume further that the reference pair v̄ = (ȳ, ū) satisfies the following coercivity
assumption on L′′(v̄, λ̄), in the sequel called second-order sufficient condition:

(SSC)















































There exists δ > 0 such that

Lvv(v̄, λ̄)[(z, h)]2 ≥ δ ‖h‖2
2

holds for all pairs (z, h) ∈ W (0, T ) × L2(Q)2 with z ∈ W (0, T ) being the
weak solution of the linearized equation

zt + Az + B′(ȳ)z = h
z(0) = 0.

Theorem 3.5. Let v̄ = (ȳ, ū) be admissible for the optimal control problem and
suppose that v̄ fulfills the first-order necessary optimality condition with associated
adjoint state λ̄. Assume further that (SSC) is satisfied at v̄. Then there exist α > 0
and ρ > 0 such that

J(v) ≥ J(v̄) + α ‖u− ū‖2
2

holds for all admissible pairs v = (y, u) with ‖u− ū‖∞ ≤ ρ.

For a proof we refer to [28]. There, Theorem 3.5 was proven in a slightly weaker
form: The space of directions in which Lvv has to be positive definite was shrinked
using the concept of strong active control constraints. Sufficiency was achieved in a
Ls-neighborhood of the reference control, whereas the quadratic growth takes place
in the Lq-norm with q ≤ 2 ≤ s ≤ ∞, s = q/(2 − q). The usage of the Ls-norm with
s < ∞ was motivated as follows: if one utilize a L∞-neighborhood of the reference
control then jumps of the optimal control has to be known a-priorily. For general
objective functionals such jumps can not be excluded. It is one goal of the present
article to show that the quadratic functional given by (1.1) results in continuous
optimal controls without jumps.

4. Regularity of extremal controls. In this section, we are going to prove
continuity in space and time of extremal controls, i.e. controls satisfying the first-
order necessary optimality conditions. The key tool in our analysis is the well-known
projection formula

u(x, t) = Proj[ua(x,t),ub(x,t)]

(

−
1

γ
λ̄(x, t)

)

a.e. on Q, (4.1)

which is equivalent to the variational inequality (3.2).

To begin with, we state the assumption imposed on the various ingredients of the
optimal control problem (1.1).

(A1)

{

The bounds ua, ub are of class C(Q̄)2. Their time derivatives ua,t, ub,t exist
as functions in L2(Q)2.

(A2)







y0 ∈ H2(Ω)2 ∩ V .
Either αT = 0 or yT ∈ H2(Ω)2 ∩ V .
Either αQ = 0 or yQ ∈ L∞(0, T ; L2(Ω)2) and yQ,t ∈ L2(0, T ; V ′).
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Assuming this allows us to prove

Theorem 4.1. Let ū ∈ Uad satisfy the first-order necessary conditions of the optimal
control problem (P). Then, ū is continuous in Q̄, i.e. ū ∈ C(Q̄)2.

Proof. For convenience, we denote the right-hand side of the adjoint equation (3.1)
by f , i.e. f := αQ(ȳ − yQ) + αR ~rot rot ȳ.

Since ū ∈ Uad it follows u ∈ L2(Q)2. Then Theorem 2.3(i) yields the regularity of
the associated state y ∈ L2(0, T ; H2(Ω)2) ∩ L∞(0, T ; V ), y(T ) ∈ V . The right-hand
side f of the adjoint equation is therefore at least of class L2(Ω)2. Additionally, the
initial value λ(T ) is in V . By Theorem 3.3(ii) we conclude λ̄ ∈ L2(0, T ; H2(Ω)2) ∩
L∞(0, T ; V ), λ̄t ∈ L2(0, T ; H).

The projection formula (4.1) gives u ∈ L∞(0, T ; L2(Ω)2). With a well-known result of
Stampacchia [14, Thm. II.3.1] we conclude ut ∈ L2(Q)2. Now, we can apply Theorem
2.3(ii) and 2.3(iii) to obtain y ∈ L∞(0, T ; H2(Ω)2), yt ∈ L2(0, T ; V ) ∩ L∞(0, T ; H).
Then the right-hand side of the adjoint equation satisfies f ∈ L∞(0, T ; L2(Ω)2), ft ∈
L2(0, T ; V ′). The initial value λ(T ) is now of class H2. Thus, Theorem 3.3(iii) implies
λ ∈ L∞(0, T ; H2(Ω)2) and λt ∈ L2(0, T ; V ).

Finally, we want to prove λ ∈ C(Q̄)2. To this aim, observe that

λ ∈ Y =

{

w|w ∈ L2(0, T ; H2(Ω)2),
dw

dt
∈ L2(0, T ; V )

}

.

Every function in Y is - up to changes on a zero-measure set - a continuous function
with values in [H2(Ω)2, V ]1/2. And the imbedding of Y in C([0, T ], [H2(Ω)2, V ]1/2)
is linear and continuous, [16, Theorem 1.3.1] . Here, [·, ·]θ denotes the complex in-
terpolation functor, cf. [25]. The interpolation identity [H2(Ω)2, V ]1/2 = H3/2(Ω)2

is proven for instance in [16, 25] . The space H3/2(Ω) is continuously imbedded in
C(Ω̄), cf. [2]. Thus, we got λ ∈ C([0, T ], C(Ω̄)2) = C(Q̄)2.

Now, the projection formula (4.1) together with the assumptions on the box con-
straints in (A1) gives u ∈ C(Q̄)2.

As the proof shows, one can even prove H1-regularity of the extremal controls, if the
bounds are smooth enough.

(A3) The functions ua, ub are of class H1(Q)2.

Using again, Stampacchia’s Theorem, we have the following

Corollary 4.2. Let (A1),(A2), and (A3) be satisfied. Then every extremal solution
ū ∈ Uad is in H1(Q)2.

Note, that this result for bounded optimal control is maximal in the L2-theory. In the
Lp-context it is possible to get ū ∈ W 1,p(Q)2 for p < ∞. The projection mapping is
only bounded in spaces with differentiation order less or equal than 1. Hence without
further assumptions one cannot prove higher regularity than W 1,p of optimal controls.

Since the proof is analogous to the previous one, we only state the result ū ∈ C(Q̄)2

using the Lp-solution theory. For 2 < p < ∞ let the following pre-requisites be
fulfilled.

(A1p) The bounds ua, ub are of class C(Q̄)2.
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(A2p)







y0 ∈ W
2−2/p, p
0 (Ω)2.

Either αT = 0 or yT ∈ W
2−2/p, p
0 (Ω)2.

Either αQ = 0 or yQ ∈ Lp(Q)2.

Corollary 4.3. Let (A1p) and (A2p) be satisfied. Then every extremal solution
ū ∈ Uad is in C(Q̄)2. The associated state ȳ and adjoint λ̄ are at least in W 2,1

p .

5. Local stability analysis. Finally, we are dealing with stability of a lo-
cally optimal reference tripel (ȳ, ū, λ̄) of the original problem (1.1). To be more
specific, consider the perturbed optimal control problem with perturbation vector
z = (zy, z0, zQ, zT , zu) in some function space Z

min J(y, u, z) =
αT

2
|y(·, T ) − yT |

2
2 + (zT , y(T ))Ω +

αQ

2
‖y − yQ‖2

2 + (zQ, y)Q

+
αR

2
‖ roty‖2

2 +
γ

2
‖u‖2

2 − (zu, u)Q (5.1)

subject to the perturbed Navier-Stokes equations

yt − ν∆y + (y · ∇)y + ∇p = u + zy in Q,
div y = 0 in Q,
y(0) = y0 + z0 in Ω,

(5.2)

and the constraint

u ∈ Uad.

Here arises the natural question: How depends the optimal tripel (y, u, λ) on the
perturbation z? This question is answered in the rest of this article.

The plan of this section is as follows: At first, we will introduce the concept of
generalized equations, where we emphasize on an abstract stability result due to
Robinson. Secondly, the optimality system is written as a generalized equation in
function spaces. Finally, we prove stability of optimal controls provided a second-
order sufficient optimality condition holds. Under suitable assumptions, we get even
stability of optimal controls with respect to the L∞-norm.

5.1. Generalized equations. In the sequel, we will apply a result on gener-
alized equations due to Robinson [18]. First, we recall some basic notations. We
consider the generalized equation

0 ∈ F (x) + N(x), (5.3)

where F is a C1-mapping between to Banach spaces X and Z, while N : X 7→ 2Z is
a set-valued mapping with closed graph.

Let x̄ be a solution of (5.3). The generalized equation is said to be strongly regular
at the point x̄, if there are open balls BX (x̄, ρx) and BZ(0, ρz) such that for all
z ∈ BZ(0, ρz) the linearized and perturbed equation

z ∈ F (x̄) + F ′(x̄)(x − x̄) + N(x)

admits a unique solution x = x(z) in BX(x̄, ρx), and the mapping z 7→ x is Lip-
schitz continuous BZ(0, ρz) from to BX(x̄, ρx). The following theorem allows to get
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from stability results for the perturbed linearized equation to similar results for the
perturbed nonlinear problem.

Theorem 5.1. Let x̄ be a solution of (5.3) and assume that (5.3) is strongly regular at
x̄. Then there exist open balls BX(x̄, ρ′x) and BZ(0, ρ′z) such that for all z ∈ BZ(0, ρ′z)
the perturbed equation

z ∈ F (x) + N(x)

has a unique solution in x = x(z) ∈ BX(x̄, ρ′x), and the solution mapping z 7→ x(z) is
Lipschitz continuous from BZ(0, ρ′z) to BX(x̄, ρ′x).

5.2. Perturbed optimal control problem. Let (ȳ, ū, λ̄) satisfy the first-order
necessary optimality conditions, see Theorem 3.2, together with the second-order suf-
ficient optimality conditions (SSC). The optimality system consisting of state equation
(1.2), adjoint equation (3.1) and variational inequality (3.2), can be written in the
condensed form

F (ȳ, ū, λ̄) +
(

0, 0, 0, 0, NUad
(ū)
)T

3 0, (5.4)

where the function F ,

F : H2,1 × L2(Q)2 × H2,1 → L2(Q)2 × V × L2(Q)2 × V × L2(Q)2 (5.5)

is given by

F (y, u, λ) =

















yt + νAy + B(y)

y(0)

−λt + νAλ + B′(y)∗λ

λ(T )

γu + λ

















−

















u

y0

αQ(y − yQ) + αR ~rot rot y

αT (y(T ) − yT )

0

















. (5.6)

We will apply Theorem 5.1 to the generalized equation (5.4). To do so, we have to
show strong regularity of this equation at the reference tripel (ȳ, ū, λ̄). At first, we
investigate the mapping F .

Corollary 5.2. The function F defined by (5.6) is continuously differentiable in
the setting (5.5).

Proof. The components of F are affine linear functions except F1, which contains the
nonlinear part B(y). We derive for y, h ∈ H2,1, v ∈ L2(Q)2

B(y + h)v − B(y)v =

∫ T

0

b(y + h, y + h, v) − b(y, y, v)dt

=

∫ T

0

b(y, h, v) + b(h, y, v) + b(h, h, v)dt.

This gives immediately the directional derivative of B in direction h as B ′(y)h =
∫ T

0
b(y, h, v) + b(h, y, v)dt. We proceed with

‖B(y + h) − B(y) − B′(y)h‖2 = sup
v∈L2(Q)2\{0}

‖v‖−1
2

∫ T

0

b(h, h, v)dt

≤ sup
v∈L2(Q)2\{0}

‖v‖−1
2 c ‖h‖L4(W 1,4)‖h‖4‖v‖2 ≤ c ‖h‖2

H2,1 ,
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which proves Frechét-differentiability of B(y). To prove continuous differentiability
we take y1, y2 ∈ H2,1. Then for any direction h ∈ H2,1 and element v ∈ L2(Q)2 we
obtain

∣

∣(B′(y1)h − B′(y2)h)v
∣

∣ =

∣

∣

∣

∣

∣

∫ T

0

b(y1 − y2, h, v) + b(h, y1 − y2, v)dt

∣

∣

∣

∣

∣

≤ c‖y1 − y2‖H2,1‖h‖H2,1‖v‖2,

which shows that the mapping y 7→ B′(y) is even Lipschitz continuous from H2,1 in
the space L(H2,1, L2(Q)2).
For convenience, we introduce the space of perturbation vectors Z as

Z := L2(Q)2 × V × L2(Q)2 × V × L2(Q)2 (5.7)

equipped with the norm ‖z‖Z = ‖zy‖2 + |z0|V + ‖zQ‖2 + |zT |V + ‖zu‖2.

The optimality system of the perturbed problem (5.1) is equivalent to the generalized
equation

F (y, u, λ) +
(

0, 0, 0, 0, NUad
(u)
)T

3 z, (5.8)

where z = (zy, z0, zQ, zT , zu) ∈ Z. The components one to four of this inclusion are
in fact equations.

The next step in proving strong regularity of (5.4) is the investigation of the linearized
version of the inclusion (5.8)

F (ȳ, ū, λ̄) + F ′(ȳ, ū, λ̄)(y − ȳ, u − ū, λ − λ̄) +
(

0, 0, 0, 0, NUad
(u)
)

3 z.

This generalized equation corresponds to the following system. It consists of the state
equations

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy

y(0) = y0 + z0,

the adjoint equations

−λt + νAλ + B′(ȳ)∗λ = −B′(y − ȳ)∗λ̄ + αQ(y − yQ) + αR ~rot rot y + zQ

λ(T ) = αT (y(T ) − yT ) + zT ,

and the variational inequality

γu + λ + NUad
(u) 3 zu.

This altogether builds up the optimality system of the perturbed linear-quadratic
optimization problem given by

min J (z)(y, u) =
αT

2
|y(T ) − yd|

2
H +

αQ

2
‖y − yQ‖

2
2 +

αR

2
‖ roty‖2

2 +
γ

2
‖u‖2

2

+ (zQ, y)Q + (zT , y(T ))Ω − (zu, u)Q − bQ(y − ȳ, y − ȳ, λ̄) (5.9)

subject to the linearized state equation

yt + νAy + B′(ȳ)y = u + B(ȳ) + zy

y(0) = y0 + z0
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and the control constraint

u ∈ Uad.

The existence of a unique optimal control of the problem (5.9) is an easy consequence
of the coercivity assumption (SSC). Let us denote the Lagrangian associated to (5.9)
by L(z). Then it holds for all y, u, λ

L(z)
vv (y, u, λ) = Lvv(ȳ, ū, λ̄).

Hence, the second-order sufficient condition yields unique solvability of (5.9) as a
linear-quadratic optimization problem with strong convex objective functional. We
denote its unique solution of (5.9) by uz = u(z) with associated state yz and adjoint
state λz . For a more detailed discussion of those aspects we refer to [20], where the
stability analysis is made for the stationary Navier-Stokes system.

5.3. Stability of optimal controls in L2(Q)2. Now, we are ready to prove sta-
bility of optimal controls in the setting given in the last section. To verify strong reg-
ularity we have to prove Lipschitz continuity of the solution mapping z 7→ (yz, uz, λz)
of the perturbed linearized problem (5.9).

Theorem 5.3. Let (SSC) be satisfied for the reference solution v̄ with adjoint state λ̄.
Let additionally y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then the mapping z → (yz, uz, λz)
is Lipschitz continuous from Z to H2,1 × L2(Q)2 × H2,1.

Proof. Let z1, z2 ∈ Z be given. Denote the optimal controls of the perturbed problem
by ui := uzi with associated states yi and adjoints λi, i = 1, 2. Denote the differences
by z = z1 − z2, u := u1 − u2, y = y1 − y2, and λ = λ1 − λ2.

Throughout the proof we abbreviate (·, ·) := (·, ·)Q and 〈·, ·〉 := 〈·, ·〉L2(V ′),L2(V ).

At first, we consider the variational inequality connected with the constraint ui ∈ Uad,

(γui + λi − zu,i, u − ui) ≥ 0 ∀u ∈ Uad.

Testing the inequality for ui, i = 1, 2 with uj , j = 2 − i, and adding them, we find

−(λ, u) + (u, zu) ≥ γ‖u‖2
2. (5.10)

Secondly, we consider the state equation. The difference y is the weak solution of

yt + νAy + B′(ȳ)y = u + zy

y(0) = z0.
(5.11)

We test this equation by λ = λ1 − λ2 to obtain

〈yt, λ〉 + ν(y, λ)L2(V ) + bQ(ȳ, y, λ) + bQ(y, ȳ, λ) = (u, λ) + (zy, λ). (5.12)

And third, we investigate the adjoint equations. The difference λ of the adjoint states
satisfies

−λt + νAλ + B′(ȳ)∗λ = −B′(y)∗λ̄ + αQy + αR ~rot rot y + zQ

λ(T ) = αT y(T ) + zT .
(5.13)
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Testing this equation by y = y1 − y2 yields

− 〈λt, y〉 + ν(λ, y)L2(V ) + bQ(ȳ, y, λ) + bQ(y, ȳ, λ) =

− 2bQ(y, y, λ̄) + αQ‖y‖
2
2 + αR‖ rot y‖2

2 + (zQ, y). (5.14)

By integration by parts we find

−〈λt, y〉 = 〈yt, λ〉 − (λ(T ), y(T ))H + (λ(0), y(0))H

= 〈yt, λ〉 − αT ‖y(T )|2H − (zT , y(T ))H + (λ(0), z0)H

(5.15)

Combining (5.12), (5.14), and (5.15), the equation

(u, λ) + (zy, λ) = αT ‖y(T )|2H + (zT , y(T ))H − (λ(0), z0)H

− 2bQ(y, y, λ̄) + αQ‖y‖
2
2 + αR‖ rot y‖2

2 + (zQ, y) (5.16)

is found.

We introduce the auxiliary function ỹ as the weak solution of (5.11) with u = 0.
Now, the coercivity assumption of Lvv comes into play. The tupel (y − ỹ, u) fits in
the assumptions of (SSC). With Lvv given by (3.7), we derive

δ‖u‖2
2 ≤ Lvv(v̄, λ̄)[(y − ỹ, u)]2

= Luu(v̄, λ̄)[u]2 + Lyy(v̄, λ̄)[y]2 + 2Lyy(v̄, λ̄)[y, ỹ]2 + Lyy(v̄, λ̄)[ỹ]2
(5.17)

The first and second addend we write according to (3.7) as

Luu(v̄, λ̄)[u]2+Lyy(v̄, λ̄)[y]2 = αT |y(T )|2H+αQ‖y‖
2
2+αR‖ rot y‖2

2−2bQ(y, y, λ̄)+γ‖u‖2.

Using (5.16) and inequality (5.10), we continue

Luu(v̄, λ̄)[u]2 + Lyy(v̄, λ̄)[y]2

= (u, λ) + (zy, λ) − (zT , y(T ))H + (λ(0), z0)H − (zQ, y) + γ‖u‖2

= (zu, u) + (zy, λ) − (zT , y(T ))H + (λ(0), z0)H − (zQ, y)

≤ c‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1}+ (zu, u).

(5.18)

Since ỹ is the weak solution of a linearized equation, we can conclude

‖ỹ‖W (0,T ) ≤ c‖ỹ‖H2,1 ≤ c {‖zy‖2 + |z0|V } ≤ c‖z‖Z .

Applying (3.8), we can estimate the third and fourth addend in (5.17) by

2Lyy(v̄, λ̄)[y, ỹ]2 + Lyy(v̄, λ̄)[ỹ]2 ≤ c
{(

‖y‖L∞(H) + ‖y‖L2(V )

)

‖ỹ‖W (0,T ) + ‖ỹ‖2
W (0,T )

}

≤ c
{

‖y‖W (0,T )‖z‖Z + ‖z‖2
Z

}

.

(5.19)

Collecting (5.17)–(5.19), we find

δ‖u‖2
2 ≤ c

(

‖z‖2
Z + ‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1}

)

+ (zu, u). (5.20)

By Theorems 2.3(i) and Lemma 3.3(ii), we estimate the differences of the states and
adjoints as weak solutions of (5.11) and (5.13)

‖y‖H2,1 ≤ c {‖u‖2 + ‖zy‖2 + |z0|V }

‖λ‖H2,1 ≤ c
{

‖y‖L∞(H) + ‖y‖L2(H2) + ‖zQ‖2 + |zT |V
}

,
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which gives immediately

‖y‖H2,1 + ‖λ‖H2,1 ≤ c {‖u‖2 + ‖z‖Z} . (5.21)

Combining (5.20) and (5.21) we get

δ‖u‖2
2 ≤ c‖z‖Z {‖y‖H2,1 + ‖λ‖H2,1 + ‖z‖Z} + (zu, u)

≤ c‖z‖Z {‖u‖2 + ‖z‖Z}

≤ c‖z‖2
Z +

δ

2
‖u‖2

2,

and the claim is proven.
So far, we provided all pre-requisites to prove the L2-stability theorem.

Theorem 5.4. Let (SSC) be satisfied for the reference solution v̄ with adjoint state
λ̄. Let additionally y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then there exists ρ > 0, such
that for all z ∈ Z with ‖z‖Z ≤ ρ, the perturbed optimal control problem (5.1) admits
a unique solution (yz, uz, λz). Moreover, the mapping z 7→ (yz, uz, λz) is Lipschitz
continuous from Z to H2,1 × L2(Q)2 × H2,1.

Proof. Theorem 5.3 yields strong regularity of the equation (5.4) at the point (ȳ, ū, λ̄).
So we can apply Theorem 5.1 which finishes the proof.
If the vector of perturbations z is slightly more regular than stated in (5.7), say

z ∈ Z̃ = L2(Q)2 × V × L2(Q)2 × V × Ls(Q)2

for some 2 < s < ∞ equipped with norm ‖z‖Z̃ = ‖zy‖2+|z0|V +‖zQ‖2+|zT |V +‖zu‖s,
then one can show the following

Theorem 5.5. Let (SSC) be satisfied for the reference solution v̄ with adjoint state
λ̄. Let additionally y0, yT ∈ V , yQ ∈ L2(Q)2 be given. Then there exists ρ > 0, such

that for all z ∈ Z̃ with ‖z‖Z̃ ≤ ρ, the perturbed optimal control problem (5.1) admits
a unique solution (yz, uz, λz). Moreover, the mapping z 7→ (yz, uz, λz) is Lipschitz
continuous from Z̃ to H2,1 × Ls(Q)2 × H2,1.

Proof. The proof is very similar to the proof of Theorem 5.8, see below. It uses the
stability result of the previous Theorem 5.4, the projection formula (4.1), and the
imbedding H2,1 ↪→ Ls(Q)2 for s < ∞.
However, this result is maximal in the following sense. Stability of optimal controls
in C(Q̄)2 can not be achieved using Hilbert space results, since it is not possible to
derive a Lipschitz estimate for the time derivatives of the controls which would be
necessary to employ Theorem 2.3(ii). To this end consider the following example.

Example 5.6. Let λ1, λ2 ∈ C1[0, T ] be given by λ1(t) = sin(nt) + 2 and λ2(t) =
sin(nt)−2. Then it holds λ1(t)−λ2(t) = 4 and d

dt (λ1(t) − λ2(t)) = 0. With ua(t) = 0,
ub(t) = +∞, and γ = 1 we get

Proj[0,+∞)(−λ1(t)) − Proj[0,+∞)(−λ2(t)) = 0 − (2 − sin(nt)) = sin(nt) − 2,

hence,

d

dt

(

Proj[0,+∞)(−λ1(t)) − Proj[0,+∞)(−λ2(t))
)

= n cos(nt) 6= 0,

which proves that we cannot show Lipschitz dependancy of the time derivatives of the
projected adjoint states λi.
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At this point, we have to use Lp-methods to derive a stability result in the C(Q̄)2-
norm.

Remark 5.7. Obviously, this difficulties do not appear for the unconstrained problem
Uad = L2(Q)2, where the variational inequality is equivalent to u = − 1

γ λ. Then, any

extremal control ū is as smooth as the associated adjoint λ̄ and admits almost the
same stability properties, i.e. z 7→ uz is Lipschitz from Z to H2,1.

5.4. L∞-stability of optimal controls. Here, we give the stability result of
optimal controls in norms adequate to the regularity achieved in Section 4. Again, we
are considering the inclusion (5.4) and the linearized and perturbed problem. Now,
we regard F to be a function in the setting

F : W 2,1
p × L∞(Q)2 × W 2,1

p →

Lp(Q)2 × W
2−2/p, p
0 (Ω)2 × Lp(Q)2 × W

2−2/p, p
0 (Ω)2 × L∞(Q)2, (5.22)

Thus, F is continuously differentiable with respect to the spaces given by (5.22).

Accordingly, the perturbation vector z has to be in the smaller space of perturbations
Zp,

Zp := Lp(Q)2 × W
2−2/p, p
0 (Ω)2 × Lp(Q)2 × W

2−2/p, p
0 (Ω)2 × L∞(Q)2

which we endow with the norm

‖z‖Zp = ‖(zy, z0, zQ, zT , zu)‖Zp := ‖zy‖p+|z0|W 2−2/p, p +‖zQ‖p+|zT |W 2−2/p, p +‖zu‖∞.

Finally, we have to modify the definition of the normal cone NUad
in (3.3). Here, this

set has to be a subset of L∞(Q)2,

ÑUad
(ū) :=

{

{

z ∈ L∞(Q)2 : (z, u − ū)2 ≤ 0 ∀u ∈ Uad

}

if ū ∈ Uad

∅ otherwise.
(5.23)

Observe that ÑUad
(u) is a non-empty, closed and convex subset of L∞(Q)2.

Theorem 5.8. Let (SSC) be satisfied for the reference solution v̄ = (ȳ, ū) with

adjoint state λ̄. Moreover, assume that y0, yT ∈ W
2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2 for

some p satisfying 2 < p < ∞, and ua, ub ∈ L∞(Q)2.

Then the mapping solution mapping z → (yz, uz, λz) associated to (5.9) is Lipschitz
continuous from Zp to W 2,1

p × L∞(Q)2 × W 2,1
p .

Proof. To begin with, notice that the assumptions imply ū ∈ Lp(Q)2. Thus ȳ as well
as λ̄ are strong solutions of the respective equations, i.e. ȳ, λ̄ ∈ W 2,1

p , see Theorems
2.6 and 3.4.

Let z1, z2 ∈ Zp be given. Denote the optimal controls of the perturbed problem by
ui := uzi with associated states yi and adjoints λi, i = 1, 2.

At first, Theorem 5.3 yields stability of control, state, and adjoint in L2(Q)2 ×H2,1×
H2,1,

‖u1 − u2‖2 + ‖y1 − y2‖H2,1 + ‖λ1 − λ2‖H2,1 ≤ c ‖z1 − z2‖Z2
.

By imbedding arguments, we have

‖λ1 − λ2‖p ≤ c‖λ1 − λ2‖L∞(V ) ≤ c‖z1 − z2‖Z2
.
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The projection formula (4.1) yields,

‖u1 − u2‖p ≤ c {‖λ1 − λ2‖p + ‖zu,1 − zu,2‖p} ≤ c ‖z1 − z2‖Zp .

By Theorem 2.6 the weak solution y1 − y2 of (5.11) is also a strong solution and
satisfies

‖y1 − y2‖Lp(W 2,p) + ‖y1 − y2‖L∞(W 2−2/p, p) + ‖y1,t − y2,t‖p

≤ c {|z0,1 − z0,2|W 2−2/p, p + ‖zy,1 − zy,2‖p + ‖u1 − u2‖p} ≤ c ‖z1 − z2‖Zp .

A similar estimate is valid also for the adjoint states, cf. Theorem 3.4,

‖λ1 − λ2‖Lp(W 2,p) + ‖λ1 − λ2‖L∞(W 2−2/p, p) + ‖λ1,t − λ2,t‖p

≤ c
{

‖z1 − z2‖Zp + ‖y1 − y2‖Lp(W 2,p) + ‖y1 − y2‖L∞(W 2−2/p, p)

}

≤ c ‖z1 − z2‖Zp .

This actually means that the mapping z 7→ λ is Lipschitz form Zp to W 2,1
p . The space

W 2,1
p is continuously imbedded in L∞(Q)2. Hence, it follows using the projection

formula a last time

‖u1 − u2‖∞ ≤ c
{

‖λ1 − λ2‖L∞(Q)2 + ‖zu,1 − zu,2‖∞
}

≤ c ‖z1 − z2‖Zp .

Thus, we proved strong regularity of the equation (5.4) in the stronger setting (5.22),
and Theorem 5.1 is applicable.

Theorem 5.9. Let (SSC) be satisfied for the reference solution v̄ with adjoint state λ̄.

Additionally, assume that y0, yT ∈ W
2−2/p, p
0 (Ω)2, yQ ∈ Lp(Q)2 for some p satisfying

2 < p < ∞, and ua, ub ∈ L∞(Q)2. Then there exists ρ > 0 such that for all z ∈ Zp

with ‖z‖Zp ≤ ρ, the perturbed optimal control problem (5.1) admits a unique solution
(yz, uz, λz). Moreover, the mapping z 7→ (yz, uz, λz) is Lipschitz continuous from Zp

to W 2,1
p × L∞(Q)2 × W 2,1

p .

Proof. Theorem 5.8 yields strong regularity of the equation (5.4) at the point (ȳ, ū, λ̄).
So we can apply Theorem 5.1 to conclude the claim.

As already mentioned in Remark 5.7, it is not possible to derive stability results for
bounded optimal controls in W 1

p -norms, 1 ≤ p ≤ ∞. So the result of Theorem 5.9
cannot be improved in this direction.
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[27] F. Tröltzsch. Lipschitz stability of solutions of linear-quadratic parabolic control problems with

respect to perturbations. Dyn. Contin. Discrete Impulsive Syst., 7:289–306, 2000.
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