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d(Fn) = Fp,
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Abstract. We show that 1, 2 and 3 are the only Fibonacci numbers whose Euler functions
are also Fibonacci numbers.
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1 Introduction

The Fibonacci sequence (£ )n>0 is givenby Fo = 0, F1 = land Fy42 = Fr41+Fy
for all n > 0. For a positive integer m we let ¢ (m) be the Euler function of m. We
prove the following result:

Theorem 1. The only positive integers n such that ¢(F,) = Fy, for some positive
integerm aren = 1,2,3 or 4.

Recall that if we put @ = (1 4+ +/3)/2 and 8 = (1 — +/5)/2, then

_an_an

F, =
n a—p

This is sometimes called the Binet formula. We also put (Ly),>0 for the companion
Lucas sequence of the Fibonacci sequence given by Lo = 2, L1 = land L,45 =
Ly41 + Ly for all n > 0. The Binet formula for the Lucas numbers is

forn =0,1,... .

L,=a"+ 8" forn=0,1,....
There are many relations between the Fibonacci and the Lucas numbers, such as
L2 —5F2 = 4(—1)", (1)
or Iy, = F,L,, as well as several others which we will mention when they will

be needed. We refer the reader to Chapter 5 in [6], or to Ron Knott’s web-site on
Fibonacci numbers [5] for such formulae.
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376 Florian Luca and Florin Nicolae

2 A Bird’s-eye View to the Proof of Theorem 1

We start with a computation showing that there are no other solutions than the obvious
ones up to n < 256. Thus, we may assume that n > 256. Next we show that any
potential solution is very large, at least as large as 3 - 10°°. Let k be the number of
distinct prime factors of Fj,. Then 25! | ¢(F,) = Fy,. Since the power of 2 in
a Fibonacci number is small, it follows that k is small. Since F;,, does not have too
many prime factors, we get that n — m is small. This implies that gcd(Fy, Fy,) is
also small. Next we bound iteratively the prime factors of F;. As a byproduct of this
calculation, we get a lower bound for & in terms of . Since all odd prime factors of
F,, are congruent to 1 modulo 4 when 7 is odd, this lower bound on k& compared with
the fact that 48—1 | F,, are sufficient to get a contradiction when n is odd. Hence it
suffices to deal with the case when n is even. Writing n = 2*1p’ with n’ odd, one
proves that 2M | n — m, therefore the power of 2 in n is small. Next, we bound
£ = n — m. The bound on ¢ together with a recent calculation of McIntosh and
Roettger [10] dealing with a conjecture of Ward about the exponent of apparition of
a prime in the Fibonacci sequence shows that if one writes n = UV, where U and
V are coprime, all primes dividing U divide m, and no prime dividing V' divides m,
then U < £. Thus, U is small. Next, we use sieve methods to show that the minimal
prime factor p; of V' is also small. McIntosh and Roettger’s calculation together with
the Primitive Divisor Theorem now implies that n’ = p;, therefore n is a power of 2
times a small prime, and the upper bounds for n are lower than the lower bounds for
n obtained previously, which finishes the proof. The entire proof is computer aided
and several small calculations are involved at each step.

3 Proof of Theorem 1

We shall assume that n > 2 and we shall write
Fl’l = ‘111 “ee p;:k s
where p; < --- < pyj are distinct primes and oy, . .., o are positive integers. Since
F,, > 1, it follows that m < n.
3.1 The Small Values of n

A MATHEMATICA code confirmed that the only solutions of the equation

¢(Fn) = Fn 2)

in positive integers m < n < 256 have n € {1, 2, 3,4}. From now on, we assume
that n > 256. We next show that 4 | Fy,,. Assuming that this is not so, we would get
that 4 } ¢(Fy). Thus, F, € {1,2,4, p¥,2pY} with some prime p = 3 (mod 4) and
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¢(Fn) = Fu 377

some positive integer y. Since n > 257, it follows that F,, € {p¥,2p"}. Results from
[2] and [3] show that y > 1 is impossible in this range for n. Let us now assume that
y = 1. If F,, = p, then

Fn=9¢F) =¢(p)=p—1=F,—1,

whichleadsto 1 = F, — F,, > F,, — F,,—1 = F,—» > F>55, which is a contradiction.
If F,, = 2p, then

Fp = ¢(Fn) =¢Q2p) =p—1=Fn—-2)/2,

therefore2 = F,,—2F,,. If m = n—1,wethenget2 = F,—-2F,_1 = F,_»—F,—1 =
—F,—3 < 0, which is impossible, while if m <n — 2, we then get2 = F;, —2F,, >
F, —2F,_» = F,—1 — Fy—» = F,_3 > F,54, which is again impossible. Hence,
4 | Fy,. In particular, 6 | m. It follows from the results from [7] that ¢ (Fy,) > Fp(n).

Thus
n

e¥ loglogn + 2.50637/loglogn’
where the second inequality above is inequality (3.42) on page 72 in [13]. Here, y is
Euler’s constant. Since e? < 1.782, and the inequality

m=¢n) =

. > 50
1.7821oglogn + 2.50637/ loglogn

holds for all n > 256, we get that m > 50. Put £ = n — m. Since m is even, we have
that 8™ > 0, therefore

Fp  o"—pg" >a”—1
Fm_am_ﬂm am

1
=at— — >at—10710, 3)
am

where we used the fact that =% < 3.55319 x 10711 < 10710, We distinguish the
following cases.
Case 1. gcd(n,6) = 1.
In this case £ > 1, therefore inequality (3) gives

F,

2 >a—-1071 > 1.61803.

Fm
For each positive integer s, let z(s) be the smallest positive integer ¢ such that s | F;.
It is known that this exists and s | F}, if and only if z(s) | n. This is also referred to
as the order of apparition of n in the Fibonacci sequence. Since n is coprime to 6, it
follows that Fj, is divisible only by primes p such that gcd(z(p), 6) = 1. Among the
first 1000 primes, there are precisely 212 of them with this property. They are

P1=1{5,13,37,73,...,7873,7901}.
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378 Florian Luca and Florin Nicolae

In our case, the following holds:

k

I\! F,
]_[ 1—— ) =-2>161803.
F,

i=1 pi m

Writing g; for the jth prime number in &1, we checked with MATHEMATICA that the

smallest s such that
S

1 —1
]"[(1--) > 1.61803

j=1 4

iss = 99. Thus, k > 99. Since n is odd and every prime factor p of F;, is also
odd, reducing relation (1) modulo p, we get L,21 = —4 (mod p) for all p = p; and
i=1,...,k. Thus, p; =1 (mod 4) foralli =1,... k. Hence, 4% | ]_[f;l(pi—l) |
¢(Fy) = Fp, therefore 225 | Fp,. So, z(22%) | m. Since z(2%) = 3 - 2572 for all
s > 3, we get that 3 - 22k—2 | m. In particular,

n>3.2272>3.219 5 3.10%, (4)

Case 2. 2||n and ged(n, 3) = 1.
In this case, since m is also even, we have that £ = n — m is even. Hence, £ > 2,
and

F,
F—” > a2 —1071% > 2.61803.

m
If p is any prime factor of F, then, as in Case 1 above, we get that z(p) is coprime
to 3 and is not a multiple of 4. There are 1235 primes p among the first 3000 of them
with this property. They are

Py ={5,11,13,29,...,27397,27431},

and

1\ ! Fy,
]_[ 1—— =2.3756... <2.61803 < -~
q Fn

qeP;
This shows that k > 1235. Since p; is odd for all i = 1,...,k, we get that 2% |
@ (F,) = Fy,, therefore z(2X) | m. Thus,

n>m>3.2k72>13.291234 5 g 1371 5)

Case 3. 3 | n and ged(n,2) = 1.
In this case, since 3 | m, we get that £ > 3, therefore

F,
F—” > a3 —1071° > 4.23606.

m
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All prime factors p of F, have z(p) odd. There are 1005 primes among the first 3000
of them with this property. They are

P53 =1{2.5.13,17,...,27397,27437}.

Since

! F,
IT(1-- < 4.12239 < 423606 < ——,

qEPs3 m

we get that k > 1006. Since p; is odd foralli = 2, ...k, we getthat 251 | ¢(Fy,) |
Fy, therefore z(25—1) | m. Thus,

n>m>3.2k73>3.21003 5 (302 (6)

Case 4. 4 | n and ged(n, 3) = 1.
Write n = 4ng. Since n > 256, it follows that no > 64. Note that

F4n0 = F2noL2no = FnoLnoLZno-

Since L2 —5F2 = &4, and Ly, = L2 =2, it follows that the three numbers
Fuy. Lny, and Loy, have disjoint sets of odd prime factors. The sequence (Lg)s>0
is periodic modulo 8 with period 12. Listing its first twelve members, one sees that
L is never a multiple of 8. Thus, there exist two distinct odd primes g1 | Ly, and
q2 | Lang- A result of McDaniel [9] says that if s > 48, then F has a prime factor
p =1 (mod 4). Let us give a quick proof of this fact. If s has a prime factor r > 5,
then F, | Fs and every prime factor p of F, is odd (because F, is even only when
3 | r). Reducing equation (1) with » = r modulo p, we get L% = —4 (mod p), so
p = 1 (mod 4). Thus, it remains to deal with the case when s = 22 - 3% for some
nonnegative integers a@ and b. Since 4481 | Fga, 769 | Fog, 17 | Fo, and 4481, 769,
and 17 are all primes congruent to 1 modulo 4, it follows easily that the largest s such
that Fy has no prime factor p = 1 (mod 4) is

Fag = 2°-32.7.23.47-1103.

Since ng > 64 > 48, it follows that F;, has a prime factor g3 = 1 (mod 4). Now
419293 | Fy, therefore 16 | (q1 — 1)(g2 — 1)(¢3 — 1) | ¢(F») | Fm, showing that
z(16) | m. Thus, 12 | m. Since we now know that both n and m are multiples of 4,
we get that £ > 4. Hence,

F,
F—" >at - 10710 > 6.8541.

m

The prime factors p of Fj have z(p) coprime to 3. There are 1856 such primes p
among the first 3000, and they are

Py =1{3,5,7,11,...,27431,27449}.
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Since

1\ ! F,
]_[ < 5.30404 < 6.8541 < -,
q Fn

qeP3
we get that k > 1857. Since 2% | ¢(F,) = F,, we deduce that z(2%) | m. Thus,
n>m>3.2k"2>3.2185 57,1058, (7)
Case 5. 6 | n.

In this case, £ > 6, therefore

F,
F—" >a®— 10710 > 17.9442.

m

If g; stands for the ith prime, then we checked that the smallest s such that
s 1 -1
I (1 - —) > 17.9442
i=1 4
is s = 2624. Thus, k > 2624. We now get that 2k—1 | ¢(Fy) = Fp, therefore
n>m>z(2k 1) =3.2k3 > 3.22021 5 5. 10789, (8)

To summarize, from inequalities (4), (5), (6), (7) and (8), we have thatn > 3 - 10°°.

3.2 Bounding £ in Terms of n

We saw in the preceding section that k& > 99. We start by bounding k from above.
Since n is large, McDaniel’s result shows that F}, has at least one prime factor p = 1
(mod 4). Since at least k — 1 of the prime factors of F; are odd, and at least one of
them is congruent to 1 modulo 4, we get that 2K | ¢(F,,) = Fy,. Thus, 3 - 252 | m.
We now get that

n>m> 3-2k_2,
therefore | log 3
k <k(n) =22 4o 087
log2 log2

Let g; be the jth prime number. Inequality (3.13) on page 69 in [13] shows that in
our range we have

G < q(n) := k(n)(logk(n) + loglog k(n)).

Now clearly

Fn _11(1_ L)~ -1 1
F_n = lj[ (1 Pi) = _1_[ (1 p) ~ e¥logq(n) (1 + 1/(2(105261(”))2))’

Brought to you by | Technische Universitat Berlin
Authenticated
Download Date | 10/1/18 10:34 AM



¢(Fn):Fm 381

where the last inequality is inequality (3.29) on page 70 in [13]. That inequality is
valid only for g(n) > 286, which is fulfilled for us since n > 3 - 10°°. Therefore,
k(n) > 197 and g(n) > 1368 > 286. We thus get that

e”logq(n)+e—>—"=a p > 2
2logg(n) F, o™ —pm a™
In the above inequality, we used the fact that m is even, and therefore 8" > 0. Thus,

e’ (logg(m)(1 +8) > "™,

where
1 eV

8= .
20ogq(n)? " amlogq(n)
Since g(n) > 1368, m > 50 and eV < 0.562, we get that § < 0.0096. Thus,

_ log(e?(1 +9)) , loglogq(n)
m .
log o log o

n —

We now take a closer look at ¢(n). We show that
q(n) < (k(n) —2 + log3/log2)'4.
For this, it suffices that the inequality
k(n)(logk(n) + loglogk(n)) < (k(n) —2 + log3/log2)!*

holds in our range for n. We checked with MATHEMATICA that the last inequality
above is fulfilled whenever k(n) > 90, which is true in our range for n. Since k(n) —
2 +log3/log2 = logn/log2, we deduce by taking logarithms above that

logg(n) < 1.4log(logn/log?2),
leading to

loglogg(n) <log1.4 + log(loglogn —loglog?2)

loglog?2
=logl.4 4 logloglogn + log|( 1 — ——————
loglogn
loglog2
< logloglogn + log 1.4 — ﬂ7
loglogn

where in the above chain of inequalities we used the fact that the inequality log(1 +
Xx) < x holds for all real numbers x > —1, x #% 0. We thus get that

loglog2) = loglogl
n—m < —— (log(e? - 1.0096) + log 1.4 — —=°% ogloglogn
loga loglogn log
loglog1
<2.075 4 2e080en
loga

where we used the fact that n > 3 - 10°2. We record this for future use as follows.
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382 Florian Luca and Florin Nicolae

Lemma 2. Ifn > 4, thenn > 3-10°° and

loglogl
n—m <2075+ —8 08081
log o

3.3 Bounding the Primes p; fori =1,...,k
Here, we follow a similar plan of attack as the proof of Theorem 3 in [12]. Write
Fy = p1-+- pr A, where 4 = p‘lxl_l-upz"_l. )

Clearly, A | ¢(Fy), therefore A | Fyy,. Since also A | Fy,, we getthat A | gcd(Fy,, Fi).
Now gcd(Fu, Fn) = Focanym) | Fn—m, because ged(n,m) | n — m. Since the
inequality Fy < a*~! holds for all positive integers s, it follows that

A< Fpm <o 1 <0 10gl0gn, (10)

where the last inequality follows from Lemma 2. We next bound the primes p; for

i=1,..., k. We write
k
[1(1-1) -2 b
1=1 Fn Fy’

Di
therefore
k
1_1—[(1_L)=1_ﬂ= Fn_Fm > Fn_Fn—l — Fn—2.

i=1
Using the inequality

1—(1—=x1) -+ (1=X5) < X1 +-+-+x5 validforallx; €[0,1], i = 1,...,s, (11)

we get
k k
Fy— 1 1 k
n—2 1—]_[(1——)52—<—,
Fy - Di — pi D1
i=1 i=1
therefore F
p1<k( 1 )<3k, (12)
Fn—2

where we used the fact that F, < 3F,_». (This last inequality is equivalent to Fj,_1 +
Fo_» <3F,_5,0r F_1 < 2F,_5,0r Fpy_p + Fy_3 < 2F,_5, 0or Fp_3 < F,_»,
which is certainly true in our range for n.) We now show by induction on the index
i €{l,...,k}, thatif we put

i
ui =[] p
j=1
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then _
u; < (2> (log logn)k)(y_l)/z. (13)

For i = 1, this becomes
p1 < 203973 (loglog n)k

which is implied by estimate (12) and the fact that for n > 3 - 10°° we have the
estimate 2a3-%7° loglogn > 43 > 3. We now assume thati € {I,...,k — 1} and that
the estimate (13) is fulfilled, and we shall prove estimate (13) for i replaced by i + 1.
We have

k
1—[ (l—i)= Pl"'pi ﬂ= Pl"'Pi .O{m_ﬁm
j=itl pj (pr1=D-(pi=1 Fn (p1=D-(pi=1) oa"—p"’

which we rewrite as

B Yy p1-- P o= g
-1 (1 p,-) oD i) g
_a"((pr=D--(pi = D" — p1--- pi)
(pr—1) - (pi — D™ — p")
+ﬂ’”(mmpi—ﬂ""”(m—1)--~(pi—1))
(p1 =1 (pi — D(a™ — ")

= X+Y7;
where

y oo @ pr =)o (pi = D™ — py -+ pi)
(pr=1)-(pi = D(a" = ") ’
y .o B prpi = B (pr = D (pi — 1)
(p1 =1 (pi — D" —p")
Since m is even and | 8| < 1, we see easily that Y > 0. Furthermore, since n —m > 0,

B = —a~!, and no power of & with positive integer exponent is a rational number, it
follows that XY # 0. Thus, ¥ > 0. Let us suppose first that X < 0. Then

1 2p1---pi
1— 1—— Y
[1 ( p,-)< S @ (pr— 1) (pi — D@ — B")
2F, 2
o (Fu) (@™ — pmy(a" — %) 5F2°
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384 Florian Luca and Florin Nicolae

Since the left hand side of the above inequality is a positive rational number whose
denominator divides p;+1--- pr | Fp, it follows that this number is at least as large

as 1/ Fy,. Hence,

1 2
R— < -,
F, 5F2
giving
5, 2

Since the inequalities «*72 < Fy < o’ 1 hold for all s > 2, we get

a2m—4 S Fnz/l < %Fn S %an—l’

therefore loe(2/5
om <34 08CH)
log o
Using Lemma 2, we have
loglogl
m>n—2075— —2 2988
logax
Combining these inequalities, we get
log(2/5 2loglogl 2loglogl
n <7154 28Q/5) | Zlogloglogn 5,5 2logloglogn
log o log o log o

which is impossible in our range for n. Hence, the only chance is that X > 0. Since

also Y > 0, we get that
k

11— T1 (1—i)>X.

j=i+1 Pj

Now note that

(pr =D (pi = D" = pr---pi)((p1 = D)+ (pi = DB"™" — p1--- pi)

is a nonzero integer (by Galois theory since B is the conjugate of «), therefore its
absolute value is > 1. Since the absolute value of the second factor is certainly <
2p; -+ p; and the first factor is positive (because X > 0), we get that

_ 1
(pr—=1)-(pi = D" ™ = py---pj > —.
2p1-+ pi
Hence,
k m m m
- 1 (1——)>X> s S - i’" ,
j=i+1 pj 2(p1---pi)? @™ = p") - 2ui(e™ — ") 2ui Fy
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which combined with inequality (11) leads to

k k
%<1— H (l—i)< Z i< k .
2ul. F, =it Dj j=it1 bj Pi+1
Thus,
F,
1y < 2ku? (2.
Pi+1 i (Fm)
However,
ﬂ < gn—mH+1 _ (3075 loglogn,
Fmn

by Lemma 2. Hence,
pi+1 < 22395k loglog n)u?,

and multiplying both sides of the above inequality by u; we get
Uit < (2a3'075k10glogn)ul-3.
Using the induction hypothesis (13), we get
Uit < (2a3'075kloglogn)1+3(3i_1)/2 = 203975k loglogn)(3i+l_1)/2,

which is precisely inequality (13) with i replaced by i + 1. This finishes the induction
proof and shows that estimate (13) holds indeed for alli = 1, ..., k. In particular,

1o pre = ug < 22>k log logn)(3k_1)/2,

which together with formula (9) and estimate (10) gives

Fon=p1-prA< (2043'075k10g10gn)1+(3k_1)/2 = 22>k log logn)(3k+1)/2.

2

Since F,, > o=, we get

3k +1
(n—2)loga < % log(2e:3%75k log log n).

Assume first that k < 20397 loglog n. We then get that

(n—2)loga < (320‘3075 loglogn 4 1y 10g(203:%7% loglog n),

which implies that n < 10'®. This is false because n > 3 - 10°°. Thus, k >
203975 Jog log n, therefore we get

(n—2)loga < (3k + 1) logk.
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‘We also have that

logn Lo log3 - logn

k <k(n) =< 0.42.
log2 log2 log2
Hence
* 4] (n—2)logu ,
log(logn/log?2 + 0.42)
so that

-2)1
k> K(n) := log (n = 2)loga —-1]).
log 3 log(logn/log?2 + 0.42)

3.4 The Case When n is Odd

Assume that n is odd. Then every odd prime factor p; of F, is congruent to 1 modulo
4. Thus, 45=1 | ¢(F,) = Fp, therefore z(22¥=2) | m. So

n>m> 2(22](—2) =3 '22k—4’

leading to
1 3
k< L(n) =24 220/3)
2log?2
Since also k > K(n), we get that
-2)1 1 3
o (1= Dloge |\, log(/3)
log3 log(logn/log2 + 0.42) 2log?2

This inequality gives n < 5 - 108, which is impossible since n > 3 - 10°°. This shows
that the case n > 4 and odd is impossible, therefore n has to be even. Returning now
to estimates (5), (7), and (8), we also get that n > 8 - 10371,

3.5 Bounding ¢

We write n = 2411/, where n’ is odd and A; > 1. We start by bounding 1. Clearly,
A1 > 1.If Ay > 2, then

Fyuy =Ly Lyx-1.
The numbers L,; are all odd for j = 1,...,A; — 1, and since L, = L;i_, +2
holds for all i > 2, it follows easily that L,; = £2 (mod L,;) foralll < j < i.
This shows that gcd(L,i, L,;) = 1 forall 1 < j < i. In particular, F,x, is divisible
by at least A; — 1 distinct primes which are all odd. So, 2*1=1 | ¢(F,) = F,,. Thus,
assuming that A; > 3, we get that 3 - 2A1-3 | m. Hence, 241-3 divides both m and n,
so it also divides n — m. This argument combined with Lemma 2 shows that,
8logloglogn

M <8(n—m) < 16.6 +
log o
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and the last inequality above is true for A1 < 3 as well. In particular, if n’ = 1, we

then get that

n =M < 16,64 Sicgloglogn

’

log o

leading to n < 18, which is false. Thus n’ > 1, therefore n has odd prime factors.
We deduce more. Write m = 2*1m’, where m’ is odd. We have already seen that
w1 >k —2 > K(n) — 2. We now show that £; > A;. Assume that this is not so.
Then @y < A1, therefore 2#! | n — m. Hence,

- log(n —m) 10g(2 075 + logloglogn/ log a)
- log2 log?2

where the last inequality follows from Lemma 2. We therefore get the inequality

log(2 075 + logloglogn/ log a)
log?2

Kn)—

leading to n < 258, which is impossible. Thus, (1 > A;. We next rework a bit the
relation ¢ (Fy,) = Fy, to deduce a certain inequality relating £ to the prime factors of

F,,. Write
Fu
— = = 1+ —.
s 110 55)
P|Fy
Note that . , .
F, - -1 1
= * p >a =af(1-=).
Fm am_ﬂm am an
Thus,
Lloga +log|1—— ) < lo ﬂ =Zlo 1+ —
g g g o g 1
PIFy
: (14)
p—1

where in the last inequality above we used the fact that log(1+x) < x holds for x > 0.
Next, we note that since the inequality log(1 — x) > —2x holds for all x € (0,1/2),

we have that
1 2 —10
log 1_0[_” >—N>—10 .

Lloga — 10710 < —+Sn
g %: — S,

Thus,
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388 Florian Luca and Florin Nicolae

where we put

Sy =Y (%—ﬁ)

D|Fy P
We next bound S(n). Clearly,

! ! |
St < 2 ( —1_p+1)+2 2 p(p—1)

piE s p=101
<
1 )
< — — —— ) +0.05.
p<100

We distinguish three cases.

Case 1. 2||n and ged(n, 3) = 1.
Here, the prime factors of F}, belong to &> and the only such below 100 are

5,11,13,29,37,59,71,73, 89, 97.

It now follows that
S(n) < 0.168.

Hence,
1

¢loga —0.168 — 10710 < —
p+1

D|Fn

Since £ > 2, and

Lloga —0.168 — 10710 _ 2loga —0.168 — 10710

> 0.82,

Lloga 2log o

we get that

0.820loger < »  —— p+1 (15)
Pl Fn
Case 2. 4 | n and ged(n, 3) = 1.
In this case, if p | Fy, then p € $4. There are 16 primes below 100 in #4, and
using them we get the upper bound

1 1
Sn) < — — ——— ] +0.05 < 0.463.
) Z;(p—l p+1)
PEP4
p<100

Since also 4 | m, we get that £ > 4. Hence,

Cloga —0.463— 10710 < 3~ ——

|np+l
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and since £ > 4, and

lloga — 0.463 — 10710 _ 4logar —0.463 — 10~10

> (.75,
Lloga - 4log
we get that
0.75¢logx < 16
ga <y — T (16)
P Fn
Case 3. 6 | n.
In this case,
1 1
NORSY (— - —) < 1.15,
e p—1 p+1
and £ > 6. Thus,
1
Lloga —1.15—10710 < oy
p|Fy 4
and since
Lloga —1.15—10710 logar — 1.15— 10710
oguo 5—-10 - 6loga 5-10 - 0.6,
Lloga 6loga
we get that
0.60loga < _ 17
ga <y S (17)
DPIFy
From (15), (16) and (17), we get that
0.6¢loger < »  ——.
1
yaras 4 +
‘We now write
u
= 1_[ ]”.Ai
1 ki
i=1
where 2 = ry < --- < ry are prime numbers and A1, ..., A, are positive integers. We

organize the prime factors of F;, according to their order of apparition in the Fibonacci
sequence. Clearly, for each p | Fj, we have that z(p) = d for some divisor d of
n. Furthermore, d > 2, since F; = F» = 1. If p is a prime with z(p) = d, then
p = %1 (mod d), except when p = d = 5. Let @; = {p : z(p) = d} and let
Ly = #Q4. Then

d-D' <[] p<Fa<e?
PE@y
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therefore
(d—-1loga dloga

<
log(d — 1) log d
for all d > 3. Indeed, the last inequality above follows for d > 4 because the

function ¢/ log ¢ is increasing for ¢ > 3, while for d = 3 it follows because {3 = 1 <
3(log &)/ log 3. Now note that

Kd < (18)

I?|an+1 dlnpecldp+1
d>2
Since all primes p € @4 satisfy p = £1 (mod d) for all d # 5, we get easily that

1 1
0a:= ) 157 2 dl

£<|Lq/2]+1

- 2 1+/dloga/(210gd)+1 v
=4 : 7

- 21 ed loga n
—lo el,
=q % 2logd

for d # 5. Since the inequality

ed loga

d
2logd ¢=

holds for all d > 5, we deduce that the inequality

2logd
<
Qa 7
holds for all > 6. The same inequality also holds for d € {3, 4, 5} since
1 2log3 I  2log4 I 2log5
= — = - d = = .
03 3573 Q4 1< 1 an, 0s <
Hence,
1 logd
Pe 2. Q<2 ——.
PIFy 4 d|n dln
d>2

Let us put log* x = max{logx, 1}. We next show that the function defined on the
set of positive integers and given by f(a) = 2log*a fora > 1 and f(1) = 1is
submultiplicative; i.e.,

f(ab) < f(a) f(b) holds for all positive integers a, b.
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The above inequality is clear if one of a and b is 1. If both a, b are > 3, then
f(ab) = 2log(ab) =2loga + 2logh < 4logalogh = f(a) f(b),

because both 2loga and 21og b exceed 2. Finally, assume that one of a and b is 2.
Say @ = 2 and b > 2. Then the desired inequality is

f(ab) =2log(2h) =2log2 + 2logh < 4logh,

which is obviously true. Using the submultiplicativity of the function f', we have

0.6610ga<2%5“(1+2 )

dln rin B>1

The contribution of the prime r = 2 in the last product above is

1_‘_2+210g4+210g8+
2 4 8 2 4

=2—log2+4log2 =2+ 3log2 < 4.08.

2 3
—log2 + (log2) (l+——|——+--')

The contribution of an odd prime number r in the above product is

1+210gr 1+2+3+ <1+2rlogr
r roor2 (r—12%"

Since 0.6/4.08 > 0.14, we get that

2rlogr
0.14¢loger < [ ] (1 + m) : (19)
rin
r>2

Taking logarithms and using again the fact that log(1 + x) < x holds for all positive
real numbers x, we get

2rl 2rl
log £ +log(0.14log ) < Zlog (1 r ogr) Z rlogr
r>2

2 —_1)2°
- ) (r—1)
r>2

Separating the prime 3 and using the fact that r/(r — 1)2 < 1.6/r for r > 5, we get
that

3log3 1
log € + log(0.14log ) < o8 +3.2 Z ogr' (20)
2 r
rln
r>5
We are now finally ready to bound £. Assume that £ > 10%. Let w be the number
of prime factors of £ and let ¢g; < g2 < --- be the increasing sequence of all prime
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numbers. All prime factors r > 5 of n either divide gcd(n, m), therefore £, or divide
n but not m. Thus,

log r log g log r
< —= — =51+ 5. 21
DS ) ot S s @1
rin 5<¢=<quw+2 rin
r>5 rim

In what follows, we bound S and S, separately. To bound S, note that in order to
maximize S; as a function of £, we may assume that £ is not a multiple of 6. By the
Stirling formula, we then have

6£z(a)+2)!>(&) :
e

leading to
(w 4+ 2)(log(w + 2) — 1) < log(6%).

Hence, 2(w + 2)(log(w + 2) — 1) < 21log(6£). Assume first that
2(w + 2)(log(w +2) — 1) < (0 + 2)(log(w + 2) + loglog(w + 2)).

Then
log(w 4+ 2) < 2 4 loglog(w + 2),

leading to w < 21. In this case,

S1

IA

1
3 084 _ 5 s6.
5<q<83

Assume next that @ > 21. Then
21log(6€) > 2(w+2)(log(w+2)—1) > (w+2)(log(w+2)+loglog(w+2)) > gew+2,

where the last inequality is inequality (3.13) on page 69 in [13] (valid for all ® > 6,
which is our case). Since £ > 108, we have that 2log(6£) > 40 > 32, so formula
(3.23) on page 70 in [13] shows that

S, < Z logg - Z 10}{;1‘

5<9<qw+2 5<g<2log(6%)
log2 log3 1
<log(2log(6f)) - — — — — 133+ ————
0g(21og(66)) — — 3 T log2l0g(60)

< loglog(6£) — 1.07 < loglog(6£) — 0.44,

where the last inequality is valid for £ > 108, Since loglog(6£) — 0.44 > 2.56 holds
for £ > 108, it follows that in both cases we have

S1 < loglog(6£) — 0.44. (22)

Brought to you by | Technische Universitat Berlin
Authenticated
Download Date | 10/1/18 10:34 AM



¢(Fn) = Fu 393

We now bound S». For this, observe that if 5 | n, then 10 | n. Hence, 11 | 55 =
Fio | Fy. Thus, 10 | ¢(F,) = Fy, leading to 5 | Fy,, so 5 | m. This shows that the
smallest prime that can participate in S, is > 7 (recall that 6 | m). Let t > 3, and let
d; be the set of primes in the interval [2¢, 2/ +1] which divide n but not m. Let n; be
the number of elements in ;. Assume that n; > 1 for some ¢. Let p be a prime in
d;. Then n has at least 2"¢ -1 squarefree divisors d, such that each one of them is a
multiple of p, and such that furthermore each one of them is divisible only by primes
q € J;. For each one of these divisors d, since 2d | n, we have that L; | Fp4 | Fy,.
Since d is odd and d > 7, we get, by the Primitive Divisor Theorem (see [4]), that
L4 has a primitive prime factor p;. Clearly, p; = 41 (mod d), so, in particular,
paq 1s odd. Reducing relation (1) modulo p;, we get that —5F§ = —4 (mod py),
therefore (5/pg) = 1. So, (pg/5) = 1 by the Quadratic Reciprocity Law. It now
follows that z(py) = d | pg — 1, showing that p | d | pg — 1 | ¢(Fy). Since the
primitive prime factors p, are distinct as d runs over the divisors of n composed only
of primes ¢ € J;, it follows that the exponent of p in ¢(Fy,) is at least 2”1, On the
other hand, since p } m, it follows that this exponent is at most the exponent of p in
F;(p). Now z(p) | p + n, where n € {£1}, because t > 3. Hence, writing a, for the
exponent of p in F,(,), we get that

P | Fzp) | Fptn = Fpamy2Lp+m/2-
Relation (1) shows that gcd(F(,4y)/2. L(p+7)/2) | 2. Since p is odd, we get that
P | Fiptny/2: or P | Liptn)/2-
In the first case, we have that

P < Fiprnyz <a?7V72,

therefore 1 Y
—1)logax ogo
ap<(p )loga _(p+ Dloger 23)
2logp 2log p
In the second case, we arrive at the same conclusion in the following way. If n = —1,

then since Ly < a®11 for all s > 1, we have

leading again to estimate (23). When n = 1 and (p + 1)/2 is odd, then

P < Lips1yz = aPHD/2 4 po+D/2 (0 4D/2,

leading again to estimate (23). Finally, assume that n = 1 and (p + 1)/2 is even. If
Lipt1y2 # p%. then
QP2 4 g

Lp+1)/2
2 2
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leading again to (23). It remains to deal with the case L(,41)/2 = p®?. Since p > 7,
it follows easily that L(,41)/2 > p. Hence, ap > 1, and therefore L, 1)z is a
perfect power of exponent > 1, and this is impossible by the main result from [3].
Thus, we have showed that estimate (23) holds for all p > 7. We thus get that

+ Dlogw 2t oo
_@ g g

2n;—1 < < ,
=9 = " log p 2l0g(2+1 — 1)

(24)

where for the last inequality we used the fact that p < 2/*1 — | together with the
fact that the function (s + 1)/(2logs) is increasing for s > 7. We now show that
ny <t —2. Indeed, if not, then n; > t — 1, which together with inequality (24) leads
to
-2 _ 2t oga
2log(2t+1 — 1)’

therefore
log(2't! — 1) < 4loga,

which is false for # > 3. Hence, n; <t — 2 holds for all #+ > 3. Since the function
log s /s is decreasing for s > 3, we get that

log 7 (t —2)log(2") log7 t(t—2)
S, < — log?2 .

One computes easily that

1t —2)
Z 2t =1

>3
therefore

log7
S, < % +log2. (25)
Estimates (20), (21), (22) and (25) lead to

log € < 3.21loglog(6%)

3log3 log7
+( (;g —10g(0.1410ga)+3.2(%+10g2—0.44)),

therefore
log? < 3.21oglog(6£) + 6.05.

The above inequality leads to £ < 4 - 10°.
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3.6 Bounding £ Even Better

Now let us write

n=U"-V, where U = 1_[ ri'l", and V = l_[ rik".

1<i<u 1<i<u
rilm ri{m

Let i be such that r; | U. Putr := r; and A := A;. We have already seen that r* | £
if i = 1 because r; = 2. So, assume that r is odd. Suppose first that ¥ > 5. Then
L,s divides Fy, for§ = 1,2,...,A. Each of L,s has a primitive prime factor which
is congruent to 1 modulo 8. Thus ¢(F,) is divisible by r112+=+4 = pAG+1D/2,
Since r < 1014, a calculation of McIntosh and Roettger (see [1] and [10]) shows that
r|| Fz(ry in this range confirming thus a conjecture of Wall [14]. Thus, rAA+1/2-1
divides m. If A > 2, then A(A + 1)/2 — 1 > A, showing that r* | gcd(n, m). This is
also obviously true if A = 1 as well. Hence, if » > 3, then r* | ged(n, m) | £. Assume
now that » = 3. Then L,s divides Fj and has a primitive prime factor congruent to 1
modulo r® for all § > 2. It now follows that 3*A+1/2=1 djvides ¢ (F,,), therefore if
A > 2, then 32(A+1D/2-2 djvides m. Now A(A + 1)/2 —2 > A holds for all A > 3.
This shows that 3* | £ if A > 3. This is also true if A = 1. If A = 2 and there exists
another odd prime ¢ > 3 dividing n, then also L3, divides F;, and L3, has a primitive
prime divisor which is congruent to 1 modulo 3. Since 19 | Lg | Fy, we get that 33
divides ¢(Fy,) = F, therefore 9 | m. Thus 3* | £ unless A = 2 and n’ = 9. In this
last case we have n = 241.9 < 3¢ < 12. 109, contradicting the fact thatn > 8- 10371,
Thus, in all cases U | £. Furthermore, since n > 8 - 10371 and £ < 4-10°, we get that
V > 1. We now look at V. Assume that V' has w primes init withw > 1. Let p; > 7
be the smallest prime factor of V. Then V has 2¥~! odd divisors d all divisible by
p1. Since Ly | F;, for all such divisors d, and since for each one of these divisors d
the number L; has a primitive divisor p; = 1 (mod d), we get that the power of p;
in ¢ (Fy) is at least 2¥ 1. Since p; { m, it follows that 2! < a,,, where a,, is the
exponent of py in F;(p,). It was shown in the preceding section that the inequality
ap, < (p1+1)(loga)/(2log p1) < (p1+1)/(4log p1) holds for all p; > 7 because
loga < 1/2. This is also true for p; = 7 because a7 = 1 < (7 + 1)/(4log7). We
thus get that 2% < (p; + 1)/(21log p1), therefore

log(p1 + 1) —log(2log p1)
w < .
log2

We now return to inequality (19) and use the observation that the function r log r/ (r —
1)2 is decreasing for r > 7, to get that

2rlogr 2p1 log p (log(p1+1)—log(2log p1))/ log2
s ([](1 250 (1 2 |
LU e (- 1)

r>2
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We can now give a better bound on £. The product of the first 8 primes is > 9-10° > £,
and the function (r log r)/(r—1)? is decreasing for r > 3. Furthermore, the maximum
of the function

(p1—1)?

as p1 > 7 runs over primes is < 1.8. Thus,

(1 2p1 log p1 ) (log(p1+1)—log(2log p1))/ log2

2rlogr
0.14¢loge =[] (1 + m) -1.8 < 51.68,
3=<¢=<17

leading to £ < 766. The product of the first five primes exceeds 766, so that

2rlogr
0.14¢loge =[] (1+(r_1)2)-1.8<16.82,
3=q=<7

yielding £ < 248. Thus, U < £ < 248.

We can now see the light at the end of the tunnel. Namely, we shall show that
p1 < 10'%. Assume that we have proved that. Suppose that 7 is divisible by pi1q,
where ¢ is some other prime factor (which might be p; itself). Since p; > 7, it
follows that both L, and L, , have primitive prime factors which are both congruent
to 1 modulo py. This shows that p? | ¢(Fy), so p? | Fp,. By Mclntosh’s calculation,
we get that p; | m, which is impossible. Thus, n’ = p;, therefore n = 2’{1p1 <
€pr < 248 - 1014, contradicting the fact thatn > § - 10371, Thus, it remains to bound

P1.

3.7 Bounding p;

Returning to inequality (14), we have

1 1
Cloga —1071% < floga + log [ 1 — — <Z—
a p—1
P|Fy
1 1
< — + _—
<2 5T o1
plFy plFy
12847

Since U | £, a calculation with MATHEMATICA shows that the inequality

1
21 —10710 — — >0.314
oguo 0 Z _1_03 5¢
plFy
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holds for all even £ < 248. Thus,

1
0.3145¢ < e

—1
P|Fy P
ptFy

We now assume that p; > 10# and we shall get a contradiction. Note that the above

sum is
X =2 2 Qaa

di|U d2|V
PtFu d>>1

where, as in Section 3.5, we have

Qa = Z —
Pead

Since p = &1 (mod d),andd > p; > 10, it follows p/(p—1) < 0.3145/0.3144
forall p | F, but p } Fy. Thus we get that

0.3144¢ < > Z - (26)

d\|\U d2|V
dr>1
Let d = d1d>. We saw that the inequality {; = #Q,; < dloga/logd holds for
all our d (see inequality (18)). Our primes p € @, have the property that p = +1
(mod d). By the large sieve inequality of Montgomery and Vaughan [11], we have
that if we write w(¢;a, b) for the number of primes p = a (mod b) which do not
exceed ¢, then the inequality

2t
T by = O osb)

holds uniformly for a < b < t, with coprime a and b. The calculation from page 12
in [8], shows that

1 4 4loglogd
O e
T elegd T 4@
3d<p<d?

For the remaining primes in @, but not in (3d, d?) we have that

Z 1< 1 N 1 n 1 n 1 n 1 +£d
p d-1 d+1 2d—-1 2d+1 3d-1 d?
PEQq

d,d?
PEGLA) 10 loga

<3 T diogd
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We thus get that
4loglogd 1 10 log o
1
Qa < o(d) ( (logd)loglogd + 121loglogd + (logd)loglogd
5.02loglogd
P(d)

Since di | U, we get that d; < 248. Since d» > 1, we get that d, > p; > 1014,
Hence, d1d> < d21'2 holds uniformly in d; and d», therefore

5.021og(1.21ogd>)
¢(d1)¢(d>)

Let (V') be the number of divisors d, of V. Of them, t(V/p1) are multiples of p;,
and for each one of these, L4, has a primitive prime factor pg, which in particular is
congruent to 1 modulo p;. Hence, the exponent of p; in ¢ (Fy) is at least t(V/ p1).
Since py + m, we get that

Qa4 <

2log p1
leading to
1
(V) < 20V py) < LLE Doz
log p1
Now
14 1 1 \*"
BLANSS y T i —) < (1 ; )
d(V) 1_[( p—1 p1—1
plV
1 (p1+1)loga/log pi
< (1 + 1) < 1.02,
P1—

where the last inequality holds because p; > 10'4. Thus, the inequality

1 ( Vv ) 1 1.02
N7 =—F
¢d2) ~ \@(V)) d2 — d>
holds for all divisors d, of V. We therefore get that

04 < (5.02-1.02) log(1.21og d>) - 5.131og(1.21og d»)
4= dr(dy) da¢(d1)

The function log(1.2log s)/s is decreasing for s > 10'#, showing that the inequality

0, < 5.131log(1.21log p1) 1
4= .
P1 ¢(dr)
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holds for all divisors d of n which do not divide U. Thus,

Z 1 - 5.137(V)log(1.21og p1) 1
e P i@y
ptFuy

- 5.13(p1 + 1)(log @) log(1.2log p1)

h(t),
p1log p1

where

MO =Y s < g = .

di|lt di|¢

Thus, comparing the last bound above with inequality (26), we get

p1log p1 - 5.13 . logu
(p1 + Dlog(1.21og p1) 0.3144

The above inequality implies that p; < 9-10'! < 1014, which is the desired contra-
diction. Theorem 1 is therefore proved.
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