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Abstract. We show that 1, 2 and 3 are the only Fibonacci numbers whose Euler functions
are also Fibonacci numbers.
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1 Introduction

The Fibonacci sequence .Fn/n�0 is given byF0 D 0, F1 D 1 andFnC2 D FnC1CFn
for all n � 0. For a positive integer m we let �.m/ be the Euler function of m. We
prove the following result:

Theorem 1. The only positive integers n such that �.Fn/ D Fm for some positive
integer m are n D 1; 2; 3 or 4.

Recall that if we put ˛ D .1C
p
5/=2 and ˇ D .1 �

p
5/=2, then

Fn D
˛n � ˇn

˛ � ˇ
for n D 0; 1; : : : :

This is sometimes called the Binet formula. We also put .Ln/n�0 for the companion
Lucas sequence of the Fibonacci sequence given by L0 D 2, L1 D 1 and LnC2 D
LnC1 C Ln for all n � 0. The Binet formula for the Lucas numbers is

Ln D ˛
n
C ˇn for n D 0; 1; : : : :

There are many relations between the Fibonacci and the Lucas numbers, such as

L2n � 5F
2
n D 4.�1/

n; (1)

or F2n D FnLn, as well as several others which we will mention when they will
be needed. We refer the reader to Chapter 5 in [6], or to Ron Knott’s web-site on
Fibonacci numbers [5] for such formulae.

During the preparation of this paper, the first author was supported in part by Grant SEP-CONACyT 46755.

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 10/1/18 10:34 AM



376 Florian Luca and Florin Nicolae

2 A Bird’s-eye View to the Proof of Theorem 1

We start with a computation showing that there are no other solutions than the obvious
ones up to n � 256. Thus, we may assume that n > 256. Next we show that any
potential solution is very large, at least as large as 3 � 1059. Let k be the number of
distinct prime factors of Fn. Then 2k�1 j �.Fn/ D Fm. Since the power of 2 in
a Fibonacci number is small, it follows that k is small. Since Fn does not have too
many prime factors, we get that n � m is small. This implies that gcd.Fn; Fm/ is
also small. Next we bound iteratively the prime factors of Fn. As a byproduct of this
calculation, we get a lower bound for k in terms of n. Since all odd prime factors of
Fn are congruent to 1 modulo 4 when n is odd, this lower bound on k compared with
the fact that 4k�1 j Fm are sufficient to get a contradiction when n is odd. Hence it
suffices to deal with the case when n is even. Writing n D 2�1n0 with n0 odd, one
proves that 2�1 j n � m, therefore the power of 2 in n is small. Next, we bound
` D n � m. The bound on ` together with a recent calculation of McIntosh and
Roettger [10] dealing with a conjecture of Ward about the exponent of apparition of
a prime in the Fibonacci sequence shows that if one writes n D UV , where U and
V are coprime, all primes dividing U divide m, and no prime dividing V divides m,
then U � `. Thus, U is small. Next, we use sieve methods to show that the minimal
prime factor p1 of V is also small. McIntosh and Roettger’s calculation together with
the Primitive Divisor Theorem now implies that n0 D p1, therefore n is a power of 2
times a small prime, and the upper bounds for n are lower than the lower bounds for
n obtained previously, which finishes the proof. The entire proof is computer aided
and several small calculations are involved at each step.

3 Proof of Theorem 1

We shall assume that n > 2 and we shall write

Fn D p
˛1
1 � � �p

˛k
k
;

where p1 < � � � < pk are distinct primes and ˛1; : : : ; ˛k are positive integers. Since
Fn > 1, it follows that m < n.

3.1 The Small Values of n

A MATHEMATICA code confirmed that the only solutions of the equation

�.Fn/ D Fm (2)

in positive integers m � n � 256 have n 2 ¹1; 2; 3; 4º. From now on, we assume
that n > 256. We next show that 4 j Fm. Assuming that this is not so, we would get
that 4 − �.Fn/. Thus, Fn 2 ¹1; 2; 4; p
 ; 2p
º with some prime p � 3 .mod 4/ and
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�.Fn/ D Fm 377

some positive integer 
 . Since n � 257, it follows that Fn 2 ¹p
 ; 2p
º. Results from
[2] and [3] show that 
 > 1 is impossible in this range for n. Let us now assume that

 D 1. If Fn D p, then

Fm D �.Fn/ D �.p/ D p � 1 D Fn � 1;

which leads to 1 D Fn�Fm � Fn�Fn�1 D Fn�2 � F255, which is a contradiction.
If Fn D 2p, then

Fm D �.Fn/ D �.2p/ D p � 1 D .Fn � 2/=2;

therefore 2 D Fn�2Fm. Ifm D n�1, we then get 2 D Fn�2Fn�1 D Fn�2�Fn�1 D
�Fn�3 < 0, which is impossible, while if m � n � 2, we then get 2 D Fn � 2Fm �
Fn � 2Fn�2 D Fn�1 � Fn�2 D Fn�3 � F254, which is again impossible. Hence,
4 j Fm. In particular, 6 j m. It follows from the results from [7] that �.Fn/ � F�.n/.
Thus

m � �.n/ �
n

e
 log lognC 2:50637= log logn
;

where the second inequality above is inequality (3.42) on page 72 in [13]. Here, 
 is
Euler’s constant. Since e
 < 1:782, and the inequality

n

1:782 log lognC 2:50637= log logn
> 50

holds for all n � 256, we get that m � 50. Put ` D n �m. Since m is even, we have
that ˇm > 0, therefore

Fn

Fm
D

˛n � ˇn

˛m � ˇm
>
˛n � 1

˛m
D ˛` �

1

˛m
> ˛` � 10�10; (3)

where we used the fact that ˛�50 < 3:55319 � 10�11 < 10�10. We distinguish the
following cases.

Case 1. gcd.n; 6/ D 1.
In this case ` � 1, therefore inequality (3) gives

Fn

Fm
> ˛ � 10�10 > 1:61803:

For each positive integer s, let z.s/ be the smallest positive integer t such that s j Ft .
It is known that this exists and s j Fn if and only if z.s/ j n. This is also referred to
as the order of apparition of n in the Fibonacci sequence. Since n is coprime to 6, it
follows that Fn is divisible only by primes p such that gcd.z.p/; 6/ D 1. Among the
first 1000 primes, there are precisely 212 of them with this property. They are

P1 D ¹5; 13; 37; 73; : : : ; 7873; 7901º:
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In our case, the following holds:

kY
iD1

�
1 �

1

pi

��1
D
Fn

Fm
> 1:61803:

Writing qj for the j th prime number in P1, we checked with MATHEMATICA that the
smallest s such that

sY
jD1

�
1 �

1

qj

��1
> 1:61803

is s D 99. Thus, k � 99. Since n is odd and every prime factor p of Fn is also
odd, reducing relation (1) modulo p, we get L2n � �4 .mod p/ for all p D pi and
i D 1; : : : ; k. Thus, pi � 1 .mod 4/ for all i D 1; : : : ; k. Hence, 4k j

Qk
iD1.pi�1/ j

�.Fn/ D Fm, therefore 22k j Fm. So, z.22k/ j m. Since z.2s/ D 3 � 2s�2 for all
s � 3, we get that 3 � 22k�2 j m. In particular,

n � 3 � 22k�2 � 3 � 2196 > 3 � 1059: (4)

Case 2. 2kn and gcd.n; 3/ D 1.
In this case, since m is also even, we have that ` D n � m is even. Hence, ` � 2,

and
Fn

Fm
> ˛2 � 10�10 > 2:61803:

If p is any prime factor of Fn, then, as in Case 1 above, we get that z.p/ is coprime
to 3 and is not a multiple of 4. There are 1235 primes p among the first 3000 of them
with this property. They are

P2 D ¹5; 11; 13; 29; : : : ; 27397; 27431º;

and Y
q2P2

�
1 �

1

q

��1
D 2:3756 : : : < 2:61803 <

Fn

Fm
:

This shows that k > 1235. Since pi is odd for all i D 1; : : : ; k, we get that 2k j
�.Fn/ D Fm, therefore z.2k/ j m. Thus,

n > m � 3 � 2k�2 � 3 � 21234 > 8 � 10371: (5)

Case 3. 3 j n and gcd.n; 2/ D 1.
In this case, since 3 j m, we get that ` � 3, therefore

Fn

Fm
> ˛3 � 10�10 > 4:23606:
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�.Fn/ D Fm 379

All prime factors p of Fn have z.p/ odd. There are 1005 primes among the first 3000
of them with this property. They are

P3 D ¹2; 5; 13; 17; : : : ; 27397; 27437º:

Since Y
q2P3

�
1 �

1

q

��1
< 4:12239 < 4:23606 <

Fn

Fm
;

we get that k � 1006. Since pi is odd for all i D 2; : : : ; k, we get that 2k�1 j �.Fn/ j
Fm, therefore z.2k�1/ j m. Thus,

n > m � 3 � 2k�3 � 3 � 21003 > 2 � 10302: (6)

Case 4. 4 j n and gcd.n; 3/ D 1.
Write n D 4n0. Since n > 256, it follows that n0 > 64. Note that

F4n0 D F2n0L2n0 D Fn0Ln0L2n0 :

Since L2n0 � 5F
2
n0
D ˙4, and L2n0 D L2n0 ˙ 2, it follows that the three numbers

Fn0 , Ln0 , and L2n0 have disjoint sets of odd prime factors. The sequence .Ls/s�0
is periodic modulo 8 with period 12. Listing its first twelve members, one sees that
Ls is never a multiple of 8. Thus, there exist two distinct odd primes q1 j Ln0 and
q2 j L2n0 . A result of McDaniel [9] says that if s > 48, then Fs has a prime factor
p � 1 .mod 4/. Let us give a quick proof of this fact. If s has a prime factor r � 5,
then Fr j Fs and every prime factor p of Fr is odd (because Fr is even only when
3 j r). Reducing equation (1) with n D r modulo p, we get L2r � �4 .mod p/, so
p � 1 .mod 4/. Thus, it remains to deal with the case when s D 2a � 3b for some
nonnegative integers a and b. Since 4481 j F64, 769 j F96, 17 j F9, and 4481, 769,
and 17 are all primes congruent to 1 modulo 4, it follows easily that the largest s such
that Fs has no prime factor p � 1 .mod 4/ is

F48 D 2
6
� 32 � 7 � 23 � 47 � 1103:

Since n0 > 64 > 48, it follows that Fn0 has a prime factor q3 � 1 .mod 4/. Now
q1q2q3 j Fn, therefore 16 j .q1 � 1/.q2 � 1/.q3 � 1/ j �.Fn/ j Fm, showing that
z.16/ j m. Thus, 12 j m. Since we now know that both n and m are multiples of 4,
we get that ` � 4. Hence,

Fn

Fm
> ˛4 � 10�10 > 6:8541:

The prime factors p of Fn have z.p/ coprime to 3. There are 1856 such primes p
among the first 3000, and they are

P4 D ¹3; 5; 7; 11; : : : ; 27431; 27449º:
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Since Y
q2P3

�
1 �

1

q

��1
< 5:30404 < 6:8541 <

Fn

Fm
;

we get that k � 1857. Since 2k j �.Fn/ D Fm, we deduce that z.2k/ j m. Thus,

n > m � 3 � 2k�2 � 3 � 21855 > 7 � 10558: (7)

Case 5. 6 j n.
In this case, ` � 6, therefore

Fn

Fm
> ˛6 � 10�10 > 17:9442:

If qi stands for the i th prime, then we checked that the smallest s such that

sY
iD1

�
1 �

1

qi

��1
> 17:9442

is s D 2624. Thus, k � 2624. We now get that 2k�1 j �.Fn/ D Fm, therefore

n > m � z.2k�1/ D 3 � 2k�3 � 3 � 22621 > 2 � 10789: (8)

To summarize, from inequalities (4), (5), (6), (7) and (8), we have that n > 3 � 1059.

3.2 Bounding ` in Terms of n

We saw in the preceding section that k � 99. We start by bounding k from above.
Since n is large, McDaniel’s result shows that Fn has at least one prime factor p � 1
.mod 4/. Since at least k � 1 of the prime factors of Fn are odd, and at least one of
them is congruent to 1 modulo 4, we get that 2k j �.Fn/ D Fm. Thus, 3 � 2k�2 j m.
We now get that

n > m � 3 � 2k�2;

therefore
k < k.n/ WD

logn
log 2

C 2 �
log 3
log 2

:

Let qj be the j th prime number. Inequality (3.13) on page 69 in [13] shows that in
our range we have

qk < q.n/ WD k.n/.log k.n/C log log k.n//:

Now clearly

Fm

Fn
D

kY
iD1

�
1 �

1

pi

�
�

Y
2�p�q.n/

�
1 �

1

p

�
>

1

e
 log q.n/
�
1C 1=.2.log q.n//2/

� ;
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where the last inequality is inequality (3.29) on page 70 in [13]. That inequality is
valid only for q.n/ � 286, which is fulfilled for us since n � 3 � 1059. Therefore,
k.n/ � 197 and q.n/ > 1368 > 286. We thus get that

e
 log q.n/C
e


2 log q.n/
>
Fn

Fm
D

˛n � ˇn

˛m � ˇm
>
˛n � 1

˛m
:

In the above inequality, we used the fact that m is even, and therefore ˇm > 0. Thus,

e
 .log q.n//.1C ı/ > ˛n�m;

where

ı WD
1

2.log q.n//2
C

e�


˛m log q.n/
:

Since q.n/ > 1368, m � 50 and e�
 < 0:562, we get that ı < 0:0096. Thus,

n �m <
log.e
 .1C ı//

log˛
C

log log q.n/
log˛

:

We now take a closer look at q.n/. We show that

q.n/ < .k.n/ � 2C log 3= log 2/1:4:

For this, it suffices that the inequality

k.n/.log k.n/C log log k.n// < .k.n/ � 2C log 3= log 2/1:4

holds in our range for n. We checked with MATHEMATICA that the last inequality
above is fulfilled whenever k.n/ > 90, which is true in our range for n. Since k.n/ �
2C log 3= log 2 D logn= log 2, we deduce by taking logarithms above that

log q.n/ � 1:4 log.logn= log 2/;

leading to

log log q.n/ � log 1:4C log.log logn � log log 2/

D log 1:4C log log lognC log
�
1 �

log log 2
log logn

�
< log log lognC log 1:4 �

log log 2
log logn

;

where in the above chain of inequalities we used the fact that the inequality log.1C
x/ < x holds for all real numbers x > �1, x ¤ 0. We thus get that

n �m <
1

log˛

�
log.e
 � 1:0096/C log 1:4 �

log log 2
log logn

�
C

log log logn
log˛

< 2:075C
log log logn

log˛
;

where we used the fact that n > 3 � 1059. We record this for future use as follows.
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Lemma 2. If n > 4, then n > 3 � 1059 and

n �m < 2:075C
log log logn

log˛
:

3.3 Bounding the Primes pi for i D 1; : : : ; k

Here, we follow a similar plan of attack as the proof of Theorem 3 in [12]. Write

Fn D p1 � � �pkA; where A D p˛1�11 � � �p
˛k�1
k

: (9)

Clearly,A j �.Fn/, thereforeA j Fm. Since alsoA j Fn, we get thatA j gcd.Fn; Fm/.
Now gcd.Fn; Fm/ D Fgcd.n;m/ j Fn�m, because gcd.n;m/ j n � m. Since the
inequality Fs � ˛s�1 holds for all positive integers s, it follows that

A � Fn�m � ˛
n�m�1 < ˛1:075 log logn; (10)

where the last inequality follows from Lemma 2. We next bound the primes pi for
i D 1; : : : ; k. We write

kY
1D1

�
1 �

1

pi

�
D
�.Fn/

Fn
D
Fm

Fn
;

therefore

1 �

kY
iD1

�
1 �

1

pi

�
D 1 �

Fm

Fn
D
Fn � Fm

Fn
�
Fn � Fn�1

Fn
D
Fn�2

Fn
:

Using the inequality

1�.1�x1/ � � � .1�xs/ � x1C� � �Cxs valid for all xi 2 Œ0; 1�; i D 1; : : : ; s; (11)

we get

Fn�2

Fn
� 1 �

kY
iD1

�
1 �

1

pi

�
�

kX
iD1

1

pi
<
k

p1
;

therefore

p1 < k

�
Fn

Fn�2

�
< 3k; (12)

where we used the fact that Fn < 3Fn�2. (This last inequality is equivalent to Fn�1C
Fn�2 < 3Fn�2, or Fn�1 < 2Fn�2, or Fn�2 C Fn�3 < 2Fn�2, or Fn�3 < Fn�2,
which is certainly true in our range for n.) We now show by induction on the index
i 2 ¹1; : : : ; kº, that if we put

ui WD

iY
jD1

pj ;
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�.Fn/ D Fm 383

then
ui < .2˛

3:075.log logn/k/.3
i�1/=2: (13)

For i D 1, this becomes
p1 < 2˛

3:075.log logn/k

which is implied by estimate (12) and the fact that for n > 3 � 1059 we have the
estimate 2˛3:075 log logn > 43 > 3. We now assume that i 2 ¹1; : : : ; k � 1º and that
the estimate (13) is fulfilled, and we shall prove estimate (13) for i replaced by i C 1.
We have

kY
jDiC1

�
1 �

1

pj

�
D

p1 � � �pi

.p1 � 1/ � � � .pi � 1/
�
Fm

Fn
D

p1 � � �pi

.p1 � 1/ � � � .pi � 1/
�
˛m � ˇm

˛n � ˇn
;

which we rewrite as

1 �

kY
jDiC1

�
1 �

1

pj

�
D 1 �

p1 � � �pi

.p1 � 1/ � � � .pi � 1/
�
˛m � ˇm

˛n � ˇn

D
˛m..p1 � 1/ � � � .pi � 1/˛

n�m � p1 � � �pi /

.p1 � 1/ � � � .pi � 1/.˛n � ˇn/

C
ˇm.p1 � � �pi � ˇ

n�m.p1 � 1/ � � � .pi � 1//

.p1 � 1/ � � � .pi � 1/.˛n � ˇn/

DW X C Y I

where

X WD
˛m..p1 � 1/ � � � .pi � 1/˛

n�m � p1 � � �pi /

.p1 � 1/ � � � .pi � 1/.˛n � ˇn/
;

Y WD
ˇm.p1 � � �pi � ˇ

n�m.p1 � 1/ � � � .pi � 1//

.p1 � 1/ � � � .pi � 1/.˛n � ˇn/
:

Sincem is even and jˇj < 1, we see easily that Y � 0. Furthermore, since n�m > 0,
ˇ D �˛�1, and no power of ˛ with positive integer exponent is a rational number, it
follows that XY ¤ 0. Thus, Y > 0. Let us suppose first that X < 0. Then

1 �

kY
jDiC1

�
1 �

1

pi

�
< Y <

2p1 � � �pi

˛m.p1 � 1/ � � � .pi � 1/.˛n � ˇn/

<
2Fn

�.Fn/.˛m � ˇm/.˛n � ˇn/
D

2

5F 2m
:
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Since the left hand side of the above inequality is a positive rational number whose
denominator divides piC1 � � �pk j Fn, it follows that this number is at least as large
as 1=Fn. Hence,

1

Fn
<

2

5F 2m
;

giving

F 2m <
2

5
Fn:

Since the inequalities ˛s�2 � Fs � ˛s�1 hold for all s � 2, we get

˛2m�4 � F 2m <
2

5
Fn �

2

5
˛n�1;

therefore

2m < 3C
log.2=5/

log˛
C n:

Using Lemma 2, we have

m > n � 2:075 �
log log logn

log˛
:

Combining these inequalities, we get

n < 7:15C
log.2=5/

log˛
C
2 log log logn

log˛
< 5:25C

2 log log logn
log˛

;

which is impossible in our range for n. Hence, the only chance is that X > 0. Since
also Y > 0, we get that

1 �

kY
jDiC1

�
1 �

1

pj

�
> X:

Now note that

..p1 � 1/ � � � .pi � 1/˛
n�m
� p1 � � �pi /..p1 � 1/ � � � .pi � 1/ˇ

n�m
� p1 � � �pi /

is a nonzero integer (by Galois theory since ˇ is the conjugate of ˛), therefore its
absolute value is � 1. Since the absolute value of the second factor is certainly <
2p1 � � �pi and the first factor is positive (because X > 0), we get that

.p1 � 1/ � � � .pi � 1/˛
n�m
� p1 � � �pi >

1

2p1 � � �pi
:

Hence,

1 �

kY
jDiC1

�
1 �

1

pj

�
> X >

˛m

2.p1 � � �pi /2.˛n � ˇn/
>

˛m � ˇm

2u2i .˛
n � ˇn/

D
Fm

2u2i Fn
;
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which combined with inequality (11) leads to

Fm

2u2i Fn
< 1 �

kY
jDiC1

�
1 �

1

pj

�
<

kX
jDiC1

1

pj
<

k

piC1
:

Thus,

piC1 < 2ku
2
i

�
Fn

Fm

�
:

However,
Fn

Fm
< ˛n�mC1 < ˛3:075 log logn;

by Lemma 2. Hence,
piC1 < .2˛

3:075k log logn/u2i ;

and multiplying both sides of the above inequality by ui we get

uiC1 < .2˛
3:075k log logn/u3i :

Using the induction hypothesis (13), we get

uiC1 < .2˛
3:075k log logn/1C3.3

i�1/=2
D .2˛3:075k log logn/.3

iC1�1/=2;

which is precisely inequality (13) with i replaced by iC1. This finishes the induction
proof and shows that estimate (13) holds indeed for all i D 1; : : : ; k. In particular,

p1 � � �pk D uk < .2˛
3:075k log logn/.3

k�1/=2;

which together with formula (9) and estimate (10) gives

Fn D p1 � � �pkA < .2˛
3:075k log logn/1C.3

k�1/=2
D .2˛3:075k log logn/.3

kC1/=2:

Since Fn > ˛n�2, we get

.n � 2/ log˛ <
.3k C 1/

2
log.2˛3:075k log logn/:

Assume first that k � 2˛3:075 log logn. We then get that

.n � 2/ log˛ < .32˛
3:075 log logn

C 1/ log.2˛3:075 log logn/;

which implies that n < 1016. This is false because n > 3 � 1059. Thus, k >

2˛3:075 log logn, therefore we get

.n � 2/ log˛ < .3k C 1/ log k:
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We also have that

k � k.n/ �
logn
log 2

C 2 �
log 3
log 2

<
logn
log 2

C 0:42:

Hence

3k C 1 >
.n � 2/ log˛

log.logn= log 2C 0:42/
;

so that

k > K.n/ WD
1

log 3
log

�
.n � 2/ log˛

log.logn= log 2C 0:42/
� 1

�
:

3.4 The Case When n is Odd

Assume that n is odd. Then every odd prime factor pi of Fn is congruent to 1modulo
4. Thus, 4k�1 j �.Fn/ D Fm, therefore z.22k�2/ j m. So

n > m � z.22k�2/ D 3 � 22k�4;

leading to

k � L.n/ WD 2C
log.n=3/
2 log 2

:

Since also k > K.n/, we get that

1

log 3
log

�
.n � 2/ log˛

log.logn= log 2C 0:42/
� 1

�
< 2C

log.n=3/
2 log 2

:

This inequality gives n < 5 � 106, which is impossible since n > 3 � 1059. This shows
that the case n > 4 and odd is impossible, therefore n has to be even. Returning now
to estimates (5), (7), and (8), we also get that n > 8 � 10371.

3.5 Bounding `

We write n D 2�1n0, where n0 is odd and �1 � 1. We start by bounding �1. Clearly,
�1 � 1. If �1 � 2, then

F2�1 D L2 � � �L2�1�1 :

The numbers L2j are all odd for j D 1; : : : ; �1 � 1, and since L2i D L2
2i�1
˙ 2

holds for all i � 2, it follows easily that L2i � ˙2 .mod L2j / for all 1 � j < i .
This shows that gcd.L2i ; L2j / D 1 for all 1 � j < i . In particular, F2�1 is divisible
by at least �1 � 1 distinct primes which are all odd. So, 2�1�1 j �.Fn/ D Fm. Thus,
assuming that �1 � 3, we get that 3 � 2�1�3 j m. Hence, 2�1�3 divides both m and n,
so it also divides n �m. This argument combined with Lemma 2 shows that,

2�1 � 8.n �m/ < 16:6C
8 log log logn

log˛
;
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and the last inequality above is true for �1 < 3 as well. In particular, if n0 D 1, we
then get that

n D 2�1 � 16:6C
8 log log logn

log˛
;

leading to n < 18, which is false. Thus n0 > 1, therefore n has odd prime factors.
We deduce more. Write m D 2�1m0, where m0 is odd. We have already seen that
�1 � k � 2 � K.n/ � 2. We now show that �1 > �1. Assume that this is not so.
Then �1 � �1, therefore 2�1 j n �m. Hence,

�1 �
log.n �m/

log 2
<

log.2:075C log log logn= log˛/
log 2

;

where the last inequality follows from Lemma 2. We therefore get the inequality

K.n/ � 2 <
log.2:075C log log logn= log˛/

log 2
;

leading to n < 258, which is impossible. Thus, �1 > �1. We next rework a bit the
relation �.Fn/ D Fm to deduce a certain inequality relating ` to the prime factors of
Fn. Write

Fn

Fm
D

Fn

�.Fn/
D

Y
pjFn

�
1C

1

p � 1

�
:

Note that
Fn

Fm
D

˛n � ˇn

˛m � ˇm
>
˛n � 1

˛m
D ˛`

�
1 �

1

˛n

�
:

Thus,

` log˛ C log
�
1 �

1

˛n

�
< log

�
Fn

Fm

�
D

X
pjFn

log
�
1C

1

p � 1

�

<
X
pjFn

1

p � 1
; (14)

where in the last inequality above we used the fact that log.1Cx/ < x holds for x > 0.
Next, we note that since the inequality log.1 � x/ > �2x holds for all x 2 .0; 1=2/,
we have that

log
�
1 �

1

˛n

�
> �

2

˛100
> �10�10:

Thus,

` log˛ � 10�10 <
X
pjFn

1

p C 1
C S.n/;
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where we put

S.n/ WD
X
pjFn

�
1

p � 1
�

1

p C 1

�
:

We next bound S.n/. Clearly,

S.n/ <
X
pjFn
p<100

�
1

p � 1
�

1

p C 1

�
C 2

X
p�101

1

p.p � 1/

<
X
pjFn
p<100

�
1

p � 1
�

1

p C 1

�
C 0:05:

We distinguish three cases.
Case 1. 2kn and gcd.n; 3/ D 1.

Here, the prime factors of Fn belong to P2 and the only such below 100 are

5; 11; 13; 29; 37; 59; 71; 73; 89; 97:

It now follows that
S.n/ < 0:168:

Hence,

` log˛ � 0:168 � 10�10 <
X
pjFn

1

p C 1
:

Since ` � 2, and

` log˛ � 0:168 � 10�10

` log˛
�
2 log˛ � 0:168 � 10�10

2 log˛
> 0:82;

we get that

0:82` log˛ <
X
pjFn

1

p C 1
: (15)

Case 2. 4 j n and gcd.n; 3/ D 1.
In this case, if p j Fn, then p 2 P4. There are 16 primes below 100 in P4, and

using them we get the upper bound

S.n/ <
X
p2P4
p<100

�
1

p � 1
�

1

p C 1

�
C 0:05 < 0:463:

Since also 4 j m, we get that ` � 4. Hence,

` log˛ � 0:463 � 10�10 <
X
pjFn

1

p C 1
;
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and since ` � 4, and

` log˛ � 0:463 � 10�10

` log˛
�
4 log˛ � 0:463 � 10�10

4 log˛
> 0:75;

we get that

0:75` log˛ <
X
pjFn

1

p C 1
: (16)

Case 3. 6 j n.
In this case,

S.n/ <
X
p�2

�
1

p � 1
�

1

p C 1

�
< 1:15;

and ` � 6. Thus,

` log˛ � 1:15 � 10�10 <
X
pjFn

1

p C 1
;

and since

` log˛ � 1:15 � 10�10

` log˛
�
6 log˛ � 1:15 � 10�10

6 log˛
> 0:6;

we get that

0:6` log˛ <
X
pjFn

1

p C 1
: (17)

From (15), (16) and (17), we get that

0:6` log˛ <
X
pjFn

1

p C 1
:

We now write

n D

uY
iD1

r
�i
i ;

where 2 D r1 < � � � < ru are prime numbers and �1; : : : ; �u are positive integers. We
organize the prime factors of Fn according to their order of apparition in the Fibonacci
sequence. Clearly, for each p j Fn, we have that z.p/ D d for some divisor d of
n. Furthermore, d > 2, since F1 D F2 D 1. If p is a prime with z.p/ D d , then
p � ˙1 .mod d/, except when p D d D 5. Let Qd D ¹p W z.p/ D dº and let
`d D #Qd . Then

.d � 1/`d �
Y
p2Qd

p � Fd < ˛
d�1;
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therefore

`d <
.d � 1/ log˛
log.d � 1/

<
d log˛
log d

(18)

for all d � 3. Indeed, the last inequality above follows for d � 4 because the
function t= log t is increasing for t � 3, while for d D 3 it follows because `3 D 1 <
3.log˛/= log 3. Now note thatX

pjFn

1

p C 1
D

X
d jn
d>2

X
p2Qd

1

p C 1
:

Since all primes p 2 Qd satisfy p � ˙1 .mod d/ for all d ¤ 5, we get easily that

Qd WD
X
p2Qd

1

p C 1
� 2

X
`�b`d=2cC1

1

d`

�
2

d

 
1C

Z d log˛=.2 logd/C1

1

d`

`

!

�
2

d
log

�
ed log˛
2 log d

C e

�
;

for d ¤ 5. Since the inequality

ed log˛
2 log d

C e < d

holds for all d � 5, we deduce that the inequality

Qd <
2 log d
d

holds for all d � 6. The same inequality also holds for d 2 ¹3; 4; 5º since

Q3 D
1

3
<
2 log 3
3

; Q4 D
1

4
<
2 log 4
4

; and Q5 D
1

6
<
2 log 5
5

:

Hence, X
pjFn

1

p C 1
D

X
d jn
d>2

Qd < 2
X
d jn

log d
d

:

Let us put log� x D max¹log x; 1º. We next show that the function defined on the
set of positive integers and given by f .a/ D 2 log� a for a > 1 and f .1/ D 1 is
submultiplicative; i.e.,

f .ab/ � f .a/f .b/ holds for all positive integers a; b:
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The above inequality is clear if one of a and b is 1. If both a, b are � 3, then

f .ab/ D 2 log.ab/ D 2 log aC 2 log b < 4 log a log b D f .a/f .b/;

because both 2 log a and 2 log b exceed 2. Finally, assume that one of a and b is 2.
Say a D 2 and b � 2. Then the desired inequality is

f .ab/ D 2 log.2b/ D 2 log 2C 2 log b < 4 log b;

which is obviously true. Using the submultiplicativity of the function f , we have

0:6` log˛ <
X
d jn

f .d/

d
�

Y
rjn

�
1C

X
ˇ�1

f .rˇ /

rˇ

�
:

The contribution of the prime r D 2 in the last product above is

1C
2

2
C
2 log 4
4
C
2 log 8
8
C � � � D 2 � log 2C .log 2/

�
1C

2

2
C
3

4
C � � �

�
D 2 � log 2C 4 log 2 D 2C 3 log 2 < 4:08:

The contribution of an odd prime number r in the above product is

1C
2 log r
r

�
1C

2

r
C
3

r2
C � � �

�
< 1C

2r log r
.r � 1/2

:

Since 0:6=4:08 > 0:14, we get that

0:14` log˛ <
Y
rjn
r>2

�
1C

2r log r
.r � 1/2

�
: (19)

Taking logarithms and using again the fact that log.1C x/ < x holds for all positive
real numbers x, we get

log `C log.0:14 log˛/ <
X
rjn
r>2

log
�
1C

2r log r
.r � 1/2

�
<
X
rjn
r>2

2r log r
.r � 1/2

:

Separating the prime 3 and using the fact that r=.r � 1/2 < 1:6=r for r � 5, we get
that

log `C log.0:14 log˛/ <
3 log 3
2
C 3:2

X
rjn
r�5

log r
r
: (20)

We are now finally ready to bound `. Assume that ` > 108. Let ! be the number
of prime factors of ` and let q1 < q2 < � � � be the increasing sequence of all prime
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numbers. All prime factors r � 5 of n either divide gcd.n;m/, therefore `, or divide
n but not m. Thus,X

rjn
r�5

log r
r
�

X
5�q�q!C2

log q
q
C

X
rjn
r−m

log r
r
WD S1 C S2: (21)

In what follows, we bound S1 and S2 separately. To bound S1, note that in order to
maximize S1 as a function of `, we may assume that ` is not a multiple of 6. By the
Stirling formula, we then have

6` � .! C 2/Š >

�
! C 2

e

�!C2
;

leading to
.! C 2/.log.! C 2/ � 1/ < log.6`/:

Hence, 2.! C 2/.log.! C 2/ � 1/ < 2 log.6`/. Assume first that

2.! C 2/.log.! C 2/ � 1/ < .! C 2/.log.! C 2/C log log.! C 2//:

Then
log.! C 2/ < 2C log log.! C 2/;

leading to ! � 21. In this case,

S1 �
X

5�q�83

log q
q

< 2:56:

Assume next that ! > 21. Then

2 log.6`/ > 2.!C2/.log.!C2/�1/ � .!C2/.log.!C2/Clog log.!C2// > q!C2;

where the last inequality is inequality (3.13) on page 69 in [13] (valid for all ! � 6,
which is our case). Since ` > 108, we have that 2 log.6`/ > 40 > 32, so formula
(3.23) on page 70 in [13] shows that

S1 <
X

5�q�q!C2

log q
q

<
X

5�q�2 log.6`/

log r
r

< log.2 log.6`// �
log 2
2
�

log 3
3
� 1:33C

1

log.2 log.6`//

< log log.6`/ � 1:07 < log log.6`/ � 0:44;

where the last inequality is valid for ` > 108. Since log log.6`/ � 0:44 > 2:56 holds
for ` > 108, it follows that in both cases we have

S1 � log log.6`/ � 0:44: (22)
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We now bound S2. For this, observe that if 5 j n, then 10 j n. Hence, 11 j 55 D
F10 j Fn. Thus, 10 j �.Fn/ D Fm, leading to 5 j Fm, so 5 j m. This shows that the
smallest prime that can participate in S2 is � 7 (recall that 6 j m). Let t � 3, and let
It be the set of primes in the interval Œ2t ; 2tC1� which divide n but not m. Let nt be
the number of elements in It . Assume that nt � 1 for some t . Let p be a prime in
It . Then n has at least 2nt�1 squarefree divisors d , such that each one of them is a
multiple of p, and such that furthermore each one of them is divisible only by primes
q 2 It . For each one of these divisors d , since 2d j n, we have that Ld j F2d j Fn.
Since d is odd and d > 7, we get, by the Primitive Divisor Theorem (see [4]), that
Ld has a primitive prime factor pd . Clearly, pd � ˙1 .mod d/, so, in particular,
pd is odd. Reducing relation (1) modulo pd , we get that �5F 2

d
� �4 .mod pd /,

therefore .5=pd / D 1. So, .pd=5/ D 1 by the Quadratic Reciprocity Law. It now
follows that z.pd / D d j pd � 1, showing that p j d j pd � 1 j �.Fn/. Since the
primitive prime factors pd are distinct as d runs over the divisors of n composed only
of primes q 2 It , it follows that the exponent of p in �.Fn/ is at least 2nt�1. On the
other hand, since p − m, it follows that this exponent is at most the exponent of p in
Fz.p/. Now z.p/ j pC �, where � 2 ¹˙1º, because t � 3. Hence, writing ap for the
exponent of p in Fz.p/, we get that

pap j Fz.p/ j FpC� D F.pC�/=2L.pC�/=2:

Relation (1) shows that gcd.F.pC�/=2; L.pC�/=2/ j 2. Since p is odd, we get that

pap j F.pC�/=2; or pap j L.pC�/=2:

In the first case, we have that

pap � F.pC1/=2 < ˛
.p�1/=2;

therefore

ap <
.p � 1/ log˛
2 logp

<
.p C 1/ log˛
2 logp

: (23)

In the second case, we arrive at the same conclusion in the following way. If � D �1,
then since Ls < ˛sC1 for all s � 1, we have

pap � L.p�1/=2 < ˛
.pC1/=2;

leading again to estimate (23). When � D 1 and .p C 1/=2 is odd, then

pap � L.pC1/=2 D ˛
.pC1/=2

C ˇ.pC1/=2 < ˛.pC1/=2;

leading again to estimate (23). Finally, assume that � D 1 and .p C 1/=2 is even. If
L.pC1/=2 ¤ p

ap , then

pap �
L.pC1/=2

2
<
˛.pC1/=2 C 1

2
< ˛.pC1/=2;
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leading again to (23). It remains to deal with the case L.pC1/=2 D pap . Since p > 7,
it follows easily that L.pC1/=2 > p. Hence, ap > 1, and therefore L.pC1/=2 is a
perfect power of exponent > 1, and this is impossible by the main result from [3].
Thus, we have showed that estimate (23) holds for all p > 7. We thus get that

2nt�1 � ap �
.p C 1/ log˛
2 logp

<
2tC1 log˛

2 log.2tC1 � 1/
; (24)

where for the last inequality we used the fact that p � 2tC1 � 1 together with the
fact that the function .s C 1/=.2 log s/ is increasing for s � 7. We now show that
nt � t � 2. Indeed, if not, then nt � t � 1, which together with inequality (24) leads
to

2t�2 <
2tC1 log˛

2 log.2tC1 � 1/
;

therefore

log.2tC1 � 1/ < 4 log˛;

which is false for t � 3. Hence, nt � t � 2 holds for all t � 3. Since the function
log s=s is decreasing for s � 3, we get that

S2 �
log 7
7
C

X
t�3

.t � 2/ log.2t /
2t

<
log 7
7
C .log 2/

X
t�3

t .t � 2/

2t
:

One computes easily that X
t�3

t .t � 2/

2t
D 1;

therefore

S2 <
log 7
7
C log 2: (25)

Estimates (20), (21), (22) and (25) lead to

log ` < 3:2 log log.6`/

C

�
3 log 3
2
� log.0:14 log˛/C 3:2

�
log 7
7
C log 2 � 0:44

��
;

therefore

log ` < 3:2 log log.6`/C 6:05:

The above inequality leads to ` < 4 � 106.
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3.6 Bounding ` Even Better

Now let us write

n D U � V; where U D
Y
1�i�u
ri jm

r
�i
i ; and V D

Y
1�i�u
ri−m

r
�i
i :

Let i be such that ri j U . Put r WD ri and � WD �i . We have already seen that r� j `
if i D 1 because r1 D 2. So, assume that r is odd. Suppose first that r � 5. Then
Lrı divides Fn for ı D 1; 2; : : : ; �. Each of Lrı has a primitive prime factor which
is congruent to 1 modulo rı . Thus �.Fn/ is divisible by r1C2C���C� D r�.�C1/=2.
Since r < 1014, a calculation of McIntosh and Roettger (see [1] and [10]) shows that
rkFz.r/ in this range confirming thus a conjecture of Wall [14]. Thus, r�.�C1/=2�1

divides m. If � � 2, then �.�C 1/=2 � 1 � �, showing that r� j gcd.n;m/. This is
also obviously true if � D 1 as well. Hence, if r > 3, then r� j gcd.n;m/ j `. Assume
now that r D 3. Then Lrı divides Fn and has a primitive prime factor congruent to 1
modulo rı for all ı � 2. It now follows that 3�.�C1/=2�1 divides �.Fn/, therefore if
� � 2, then 3�.�C1/=2�2 divides m. Now �.�C 1/=2 � 2 � � holds for all � � 3.
This shows that 3� j ` if � � 3. This is also true if � D 1. If � D 2 and there exists
another odd prime q > 3 dividing n, then alsoL3q divides Fn andL3q has a primitive
prime divisor which is congruent to 1 modulo 3. Since 19 j L9 j Fn, we get that 33

divides �.Fn/ D Fm, therefore 9 j m. Thus 3� j ` unless � D 2 and n0 D 9. In this
last case we have n D 2�1 �9 < 3` < 12 �106, contradicting the fact that n > 8 �10371.
Thus, in all cases U j `. Furthermore, since n > 8 � 10371 and ` < 4 � 106, we get that
V > 1. We now look at V . Assume that V has w primes in it with w � 1. Let p1 � 7
be the smallest prime factor of V . Then V has 2w�1 odd divisors d all divisible by
p1. Since Ld j Fn for all such divisors d , and since for each one of these divisors d
the number Ld has a primitive divisor pd � 1 .mod d/, we get that the power of p1
in �.Fn/ is at least 2w�1. Since p1 − m, it follows that 2w�1 � ap1 , where ap1 is the
exponent of p1 in Fz.p1/. It was shown in the preceding section that the inequality
ap1 � .p1C1/.log˛/=.2 logp1/ < .p1C1/=.4 logp1/ holds for all p1 > 7 because
log˛ < 1=2. This is also true for p1 D 7 because a7 D 1 < .7C 1/=.4 log 7/. We
thus get that 2w < .p1 C 1/=.2 logp1/, therefore

w <
log.p1 C 1/ � log.2 logp1/

log 2
:

We now return to inequality (19) and use the observation that the function r log r=.r�
1/2 is decreasing for r � 7, to get that

0:14` log˛ �
�Y
rj`
r>2

�
1C

2r log r
.r � 1/2

���
1C

2p1 logp1
.p1 � 1/2

�.log.p1C1/�log.2 logp1//= log2

:
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We can now give a better bound on `. The product of the first 8 primes is> 9�106 > `,
and the function .r log r/=.r�1/2 is decreasing for r � 3. Furthermore, the maximum
of the function �

1C
2p1 logp1
.p1 � 1/2

�.log.p1C1/�log.2 logp1//= log2

as p1 � 7 runs over primes is < 1:8. Thus,

0:14` log˛ �
Y

3�q�17

�
1C

2r log r
.r � 1/2

�
� 1:8 � 51:68;

leading to ` � 766. The product of the first five primes exceeds 766, so that

0:14` log˛ �
Y

3�q�7

�
1C

2r log r
.r � 1/2

�
� 1:8 < 16:82;

yielding ` � 248. Thus, U � ` � 248.
We can now see the light at the end of the tunnel. Namely, we shall show that

p1 < 1014. Assume that we have proved that. Suppose that n is divisible by p1q,
where q is some other prime factor (which might be p1 itself). Since p1 � 7, it
follows that bothLp1 andLp1q have primitive prime factors which are both congruent
to 1 modulo p1. This shows that p21 j �.Fn/, so p21 j Fm. By McIntosh’s calculation,
we get that p1 j m, which is impossible. Thus, n0 D p1, therefore n D 2�1p1 �

`p1 < 248 � 10
14, contradicting the fact that n > 8 � 10371. Thus, it remains to bound

p1.

3.7 Bounding p1

Returning to inequality (14), we have

` log˛ � 10�10 < ` log˛ C log
�
1 �

1

˛n

�
<
X
pjFn

1

p � 1

�

X
pjFU

1

p � 1
C

X
pjFn
p−FU

1

p � 1
:

Since U j `, a calculation with MATHEMATICA shows that the inequality

` log˛ � 10�10 �
X
pjFU

1

p � 1
� 0:3145`
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holds for all even ` � 248. Thus,

0:3145` �
X
pjFn
p−FU

1

p � 1
:

We now assume that p1 > 1014 and we shall get a contradiction. Note that the above
sum is X

pjFn
p−FU

1

p � 1
D

X
d1jU

X
d2jV
d2>1

Qd1d2 ;

where, as in Section 3.5, we have

Qd D
X
p2Qd

1

p � 1
:

Since p � ˙1 .mod d/, and d � p1 > 1014, it follows p=.p�1/ < 0:3145=0:3144
for all p j Fn but p − FU . Thus we get that

0:3144` �
X
d1jU

X
d2jV
d2>1

1

p
: (26)

Let d D d1d2. We saw that the inequality `d D #Qd < d log˛= log d holds for
all our d (see inequality (18)). Our primes p 2 Qd have the property that p � ˙1
.mod d/. By the large sieve inequality of Montgomery and Vaughan [11], we have
that if we write �.t I a; b/ for the number of primes p � a .mod b/ which do not
exceed t , then the inequality

�.t I a; b/ �
2t

�.b/ log.t=b/

holds uniformly for a � b < t , with coprime a and b. The calculation from page 12
in [8], shows that X

p2Qd
3d<p<d2

1

p
<

4

�.d/ log d
C
4 log log d
�.d/

:

For the remaining primes in Qd but not in .3d; d2/ we have thatX
p2Qd

p 62.3d;d2/

1

p
<

1

d � 1
C

1

d C 1
C

1

2d � 1
C

1

2d C 1
C

1

3d � 1
C
`d

d2

<
10

3�.d/
C

log˛
d log d

:
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We thus get that

Qd <
4 log log d
�.d/

�
1C

1

.log d/ log log d
C

10

12 log log d
C

log˛
.log d/ log log d

�
<
5:02 log log d

�.d/
:

Since d1 j U , we get that d1 � 248. Since d2 > 1, we get that d2 � p1 > 1014.
Hence, d1d2 < d1:22 holds uniformly in d1 and d2, therefore

Qd <
5:02 log.1:2 log d2/

�.d1/�.d2/
:

Let �.V / be the number of divisors d2 of V . Of them, �.V=p1/ are multiples of p1,
and for each one of these, Ld2 has a primitive prime factor pd2 which in particular is
congruent to 1 modulo p1. Hence, the exponent of p1 in �.Fn/ is at least �.V=p1/.
Since p1 − m, we get that

�.V=p1/ � ap1 �
.p1 C 1/ log˛
2 logp1

;

leading to

�.V / � 2�.V=p1/ �
.p1 C 1/ log˛

logp1
:

Now

V

�.V /
�

Y
pjV

�
1C

1

p � 1

�
�

�
1C

1

p1 � 1

��.V /

�

�
1C

1

p1 � 1

�.p1C1/ log˛= logp1
< 1:02;

where the last inequality holds because p1 > 1014. Thus, the inequality

1

�.d2/
�

�
V

�.V /

�
1

d2
�
1:02

d2

holds for all divisors d2 of V . We therefore get that

Qd �
.5:02 � 1:02/ log.1:2 log d2/

d2�.d1/
<
5:13 log.1:2 log d2/

d2�.d1/
:

The function log.1:2 log s/=s is decreasing for s > 1014, showing that the inequality

Qd �
5:13 log.1:2 logp1/

p1
�

1

�.d1/
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holds for all divisors d of n which do not divide U . Thus,X
pjFn
p−FU

1

p
�
5:13�.V / log.1:2 logp1/

p1

X
d1j`

1

�.d1/

<
5:13.p1 C 1/.log˛/ log.1:2 logp1/

p1 logp1
h.`/;

where

h.`/ D
X
d1j`

1

�.d1/
�

X
d1j`

�.d1/ D `:

Thus, comparing the last bound above with inequality (26), we get

p1 logp1
.p1 C 1/ log.1:2 logp1/

<
5:13 � log˛
0:3144

:

The above inequality implies that p1 < 9 � 1011 < 1014, which is the desired contra-
diction. Theorem 1 is therefore proved.
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[14] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525–532.

Received September 19, 2008; accepted April 6, 2009.

Author information
Florian Luca, Instituto de Matemáticas UNAM, Ap. Postal 61-3 (Xangari) C.P. 58089,
Morelia, Michoacán, Mexico.
E-mail: fluca@matmor.unam.mx

Florin Nicolae, Institut für Mathematik, Technische Universität Berlin, MA 8-1, Straße des
17. Juni 136, 10623 Berlin, Germany and Institute of Mathematics of the Romanian
Academy, P. O. BOX 1-764, RO-014700 Bucharest, Romania.
E-mail: nicolae@math.tu-berlin.de

Brought to you by | Technische Universität Berlin
Authenticated

Download Date | 10/1/18 10:34 AM


