$$
\phi\left(F_{n}\right)=F_{m}
$$

Florian Luca and Florin Nicolae

Abstract

We show that 1, 2 and 3 are the only Fibonacci numbers whose Euler functions are also Fibonacci numbers.

Keywords. Fibonacci numbers, Euler function.
AMS classification. 11B39, 11N36.

1 Introduction

The Fibonacci sequence $\left(F_{n}\right)_{n \geq 0}$ is given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. For a positive integer m we let $\phi(m)$ be the Euler function of m. We prove the following result:

Theorem 1. The only positive integers n such that $\phi\left(F_{n}\right)=F_{m}$ for some positive integer m are $n=1,2,3$ or 4 .

Recall that if we put $\alpha=(1+\sqrt{5}) / 2$ and $\beta=(1-\sqrt{5}) / 2$, then

$$
F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { for } n=0,1, \ldots
$$

This is sometimes called the Binet formula. We also put $\left(L_{n}\right)_{n \geq 0}$ for the companion Lucas sequence of the Fibonacci sequence given by $L_{0}=2, L_{1}=1$ and $L_{n+2}=$ $L_{n+1}+L_{n}$ for all $n \geq 0$. The Binet formula for the Lucas numbers is

$$
L_{n}=\alpha^{n}+\beta^{n} \quad \text { for } n=0,1, \ldots
$$

There are many relations between the Fibonacci and the Lucas numbers, such as

$$
\begin{equation*}
L_{n}^{2}-5 F_{n}^{2}=4(-1)^{n} \tag{1}
\end{equation*}
$$

or $F_{2 n}=F_{n} L_{n}$, as well as several others which we will mention when they will be needed. We refer the reader to Chapter 5 in [6], or to Ron Knott's web-site on Fibonacci numbers [5] for such formulae.

[^0]
2 A Bird's-eye View to the Proof of Theorem 1

We start with a computation showing that there are no other solutions than the obvious ones up to $n \leq 256$. Thus, we may assume that $n>256$. Next we show that any potential solution is very large, at least as large as $3 \cdot 10^{59}$. Let k be the number of distinct prime factors of F_{n}. Then $2^{k-1} \mid \phi\left(F_{n}\right)=F_{m}$. Since the power of 2 in a Fibonacci number is small, it follows that k is small. Since F_{n} does not have too many prime factors, we get that $n-m$ is small. This implies that $\operatorname{gcd}\left(F_{n}, F_{m}\right)$ is also small. Next we bound iteratively the prime factors of F_{n}. As a byproduct of this calculation, we get a lower bound for k in terms of n. Since all odd prime factors of F_{n} are congruent to 1 modulo 4 when n is odd, this lower bound on k compared with the fact that $4^{k-1} \mid F_{m}$ are sufficient to get a contradiction when n is odd. Hence it suffices to deal with the case when n is even. Writing $n=2^{\lambda_{1}} n^{\prime}$ with n^{\prime} odd, one proves that $2^{\lambda_{1}} \mid n-m$, therefore the power of 2 in n is small. Next, we bound $\ell=n-m$. The bound on ℓ together with a recent calculation of McIntosh and Roettger [10] dealing with a conjecture of Ward about the exponent of apparition of a prime in the Fibonacci sequence shows that if one writes $n=U V$, where U and V are coprime, all primes dividing U divide m, and no prime dividing V divides m, then $U \leq \ell$. Thus, U is small. Next, we use sieve methods to show that the minimal prime factor p_{1} of V is also small. McIntosh and Roettger's calculation together with the Primitive Divisor Theorem now implies that $n^{\prime}=p_{1}$, therefore n is a power of 2 times a small prime, and the upper bounds for n are lower than the lower bounds for n obtained previously, which finishes the proof. The entire proof is computer aided and several small calculations are involved at each step.

3 Proof of Theorem 1

We shall assume that $n>2$ and we shall write

$$
F_{n}=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}
$$

where $p_{1}<\cdots<p_{k}$ are distinct primes and $\alpha_{1}, \ldots, \alpha_{k}$ are positive integers. Since $F_{n}>1$, it follows that $m<n$.

3.1 The Small Values of n

A Mathematica code confirmed that the only solutions of the equation

$$
\begin{equation*}
\phi\left(F_{n}\right)=F_{m} \tag{2}
\end{equation*}
$$

in positive integers $m \leq n \leq 256$ have $n \in\{1,2,3,4\}$. From now on, we assume that $n>256$. We next show that $4 \mid F_{m}$. Assuming that this is not so, we would get that $4 \nmid \phi\left(F_{n}\right)$. Thus, $F_{n} \in\left\{1,2,4, p^{\gamma}, 2 p^{\gamma}\right\}$ with some prime $p \equiv 3(\bmod 4)$ and
some positive integer γ. Since $n \geq 257$, it follows that $F_{n} \in\left\{p^{\gamma}, 2 p^{\gamma}\right\}$. Results from [2] and [3] show that $\gamma>1$ is impossible in this range for n. Let us now assume that $\gamma=1$. If $F_{n}=p$, then

$$
F_{m}=\phi\left(F_{n}\right)=\phi(p)=p-1=F_{n}-1,
$$

which leads to $1=F_{n}-F_{m} \geq F_{n}-F_{n-1}=F_{n-2} \geq F_{255}$, which is a contradiction. If $F_{n}=2 p$, then

$$
F_{m}=\phi\left(F_{n}\right)=\phi(2 p)=p-1=\left(F_{n}-2\right) / 2,
$$

therefore $2=F_{n}-2 F_{m}$. If $m=n-1$, we then get $2=F_{n}-2 F_{n-1}=F_{n-2}-F_{n-1}=$ $-F_{n-3}<0$, which is impossible, while if $m \leq n-2$, we then get $2=F_{n}-2 F_{m} \geq$ $F_{n}-2 F_{n-2}=F_{n-1}-F_{n-2}=F_{n-3} \geq F_{254}$, which is again impossible. Hence, $4 \mid F_{m}$. In particular, 6|m. It follows from the results from [7] that $\phi\left(F_{n}\right) \geq F_{\phi(n)}$. Thus

$$
m \geq \phi(n) \geq \frac{n}{e^{\gamma} \log \log n+2.50637 / \log \log n}
$$

where the second inequality above is inequality (3.42) on page 72 in [13]. Here, γ is Euler's constant. Since $e^{\gamma}<1.782$, and the inequality

$$
\frac{n}{1.782 \log \log n+2.50637 / \log \log n}>50
$$

holds for all $n \geq 256$, we get that $m \geq 50$. Put $\ell=n-m$. Since m is even, we have that $\beta^{m}>0$, therefore

$$
\begin{equation*}
\frac{F_{n}}{F_{m}}=\frac{\alpha^{n}-\beta^{n}}{\alpha^{m}-\beta^{m}}>\frac{\alpha^{n}-1}{\alpha^{m}}=\alpha^{\ell}-\frac{1}{\alpha^{m}}>\alpha^{\ell}-10^{-10} \tag{3}
\end{equation*}
$$

where we used the fact that $\alpha^{-50}<3.55319 \times 10^{-11}<10^{-10}$. We distinguish the following cases.
Case 1. $\operatorname{gcd}(n, 6)=1$.
In this case $\ell \geq 1$, therefore inequality (3) gives

$$
\frac{F_{n}}{F_{m}}>\alpha-10^{-10}>1.61803
$$

For each positive integer s, let $z(s)$ be the smallest positive integer t such that $s \mid F_{t}$. It is known that this exists and $s \mid F_{n}$ if and only if $z(s) \mid n$. This is also referred to as the order of apparition of n in the Fibonacci sequence. Since n is coprime to 6 , it follows that F_{n} is divisible only by primes p such that $\operatorname{gcd}(z(p), 6)=1$. Among the first 1000 primes, there are precisely 212 of them with this property. They are

$$
\mathcal{P}_{1}=\{5,13,37,73, \ldots, 7873,7901\}
$$

In our case, the following holds:

$$
\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)^{-1}=\frac{F_{n}}{F_{m}}>1.61803
$$

Writing q_{j} for the j th prime number in \mathcal{P}_{1}, we checked with Mathematica that the smallest s such that

$$
\prod_{j=1}^{s}\left(1-\frac{1}{q_{j}}\right)^{-1}>1.61803
$$

is $s=99$. Thus, $k \geq 99$. Since n is odd and every prime factor p of F_{n} is also odd, reducing relation (1) modulo p, we get $L_{n}^{2} \equiv-4(\bmod p)$ for all $p=p_{i}$ and $i=1, \ldots, k$. Thus, $p_{i} \equiv 1(\bmod 4)$ for all $i=1, \ldots, k$. Hence, $4^{k}\left|\prod_{i=1}^{k}\left(p_{i}-1\right)\right|$ $\phi\left(F_{n}\right)=F_{m}$, therefore $2^{2 k} \mid F_{m}$. So, $z\left(2^{2 k}\right) \mid m$. Since $z\left(2^{s}\right)=3 \cdot 2^{s-2}$ for all $s \geq 3$, we get that $3 \cdot 2^{2 k-2} \mid m$. In particular,

$$
\begin{equation*}
n \geq 3 \cdot 2^{2 k-2} \geq 3 \cdot 2^{196}>3 \cdot 10^{59} \tag{4}
\end{equation*}
$$

Case 2. $2 \| n$ and $\operatorname{gcd}(n, 3)=1$.
In this case, since m is also even, we have that $\ell=n-m$ is even. Hence, $\ell \geq 2$, and

$$
\frac{F_{n}}{F_{m}}>\alpha^{2}-10^{-10}>2.61803
$$

If p is any prime factor of F_{n}, then, as in Case 1 above, we get that $z(p)$ is coprime to 3 and is not a multiple of 4 . There are 1235 primes p among the first 3000 of them with this property. They are

$$
\mathcal{P}_{2}=\{5,11,13,29, \ldots, 27397,27431\}
$$

and

$$
\prod_{q \in \mathcal{P}_{2}}\left(1-\frac{1}{q}\right)^{-1}=2.3756 \ldots<2.61803<\frac{F_{n}}{F_{m}}
$$

This shows that $k>1235$. Since p_{i} is odd for all $i=1, \ldots, k$, we get that $2^{k} \mid$ $\phi\left(F_{n}\right)=F_{m}$, therefore $z\left(2^{k}\right) \mid m$. Thus,

$$
\begin{equation*}
n>m \geq 3 \cdot 2^{k-2} \geq 3 \cdot 2^{1234}>8 \cdot 10^{371} \tag{5}
\end{equation*}
$$

Case 3. $3 \mid n$ and $\operatorname{gcd}(n, 2)=1$.
In this case, since $3 \mid m$, we get that $\ell \geq 3$, therefore

$$
\frac{F_{n}}{F_{m}}>\alpha^{3}-10^{-10}>4.23606
$$

All prime factors p of F_{n} have $z(p)$ odd. There are 1005 primes among the first 3000 of them with this property. They are

$$
\mathscr{P}_{3}=\{2,5,13,17, \ldots, 27397,27437\}
$$

Since

$$
\prod_{q \in \mathcal{P}_{3}}\left(1-\frac{1}{q}\right)^{-1}<4.12239<4.23606<\frac{F_{n}}{F_{m}}
$$

we get that $k \geq 1006$. Since p_{i} is odd for all $i=2, \ldots, k$, we get that $2^{k-1}\left|\phi\left(F_{n}\right)\right|$ F_{m}, therefore $z\left(2^{k-1}\right) \mid m$. Thus,

$$
\begin{equation*}
n>m \geq 3 \cdot 2^{k-3} \geq 3 \cdot 2^{1003}>2 \cdot 10^{302} \tag{6}
\end{equation*}
$$

Case 4. $4 \mid n$ and $\operatorname{gcd}(n, 3)=1$.
Write $n=4 n_{0}$. Since $n>256$, it follows that $n_{0}>64$. Note that

$$
F_{4 n_{0}}=F_{2 n_{0}} L_{2 n_{0}}=F_{n_{0}} L_{n_{0}} L_{2 n_{0}}
$$

Since $L_{n_{0}}^{2}-5 F_{n_{0}}^{2}= \pm 4$, and $L_{2 n_{0}}=L_{n_{0}}^{2} \pm 2$, it follows that the three numbers $F_{n_{0}}, L_{n_{0}}$, and $L_{2 n_{0}}$ have disjoint sets of odd prime factors. The sequence $\left(L_{s}\right)_{s \geq 0}$ is periodic modulo 8 with period 12. Listing its first twelve members, one sees that L_{s} is never a multiple of 8 . Thus, there exist two distinct odd primes $q_{1} \mid L_{n_{0}}$ and $q_{2} \mid L_{2 n_{0}}$. A result of McDaniel [9] says that if $s>48$, then F_{s} has a prime factor $p \equiv 1(\bmod 4)$. Let us give a quick proof of this fact. If s has a prime factor $r \geq 5$, then $F_{r} \mid F_{s}$ and every prime factor p of F_{r} is odd (because F_{r} is even only when $3 \mid r)$. Reducing equation (1) with $n=r$ modulo p, we get $L_{r}^{2} \equiv-4(\bmod p)$, so $p \equiv 1(\bmod 4)$. Thus, it remains to deal with the case when $s=2^{a} \cdot 3^{b}$ for some nonnegative integers a and b. Since $4481\left|F_{64}, 769\right| F_{96}, 17 \mid F_{9}$, and 4481, 769, and 17 are all primes congruent to 1 modulo 4 , it follows easily that the largest s such that F_{S} has no prime factor $p \equiv 1(\bmod 4)$ is

$$
F_{48}=2^{6} \cdot 3^{2} \cdot 7 \cdot 23 \cdot 47 \cdot 1103
$$

Since $n_{0}>64>48$, it follows that $F_{n_{0}}$ has a prime factor $q_{3} \equiv 1(\bmod 4)$. Now $q_{1} q_{2} q_{3} \mid F_{n}$, therefore $16\left|\left(q_{1}-1\right)\left(q_{2}-1\right)\left(q_{3}-1\right)\right| \phi\left(F_{n}\right) \mid F_{m}$, showing that $z(16) \mid m$. Thus, $12 \mid m$. Since we now know that both n and m are multiples of 4, we get that $\ell \geq 4$. Hence,

$$
\frac{F_{n}}{F_{m}}>\alpha^{4}-10^{-10}>6.8541
$$

The prime factors p of F_{n} have $z(p)$ coprime to 3 . There are 1856 such primes p among the first 3000 , and they are

$$
\mathcal{P}_{4}=\{3,5,7,11, \ldots, 27431,27449\}
$$

Since

$$
\prod_{q \in \mathcal{P}_{3}}\left(1-\frac{1}{q}\right)^{-1}<5.30404<6.8541<\frac{F_{n}}{F_{m}}
$$

we get that $k \geq 1857$. Since $2^{k} \mid \phi\left(F_{n}\right)=F_{m}$, we deduce that $z\left(2^{k}\right) \mid m$. Thus,

$$
\begin{equation*}
n>m \geq 3 \cdot 2^{k-2} \geq 3 \cdot 2^{1855}>7 \cdot 10^{558} \tag{7}
\end{equation*}
$$

Case 5. $6 \mid n$.
In this case, $\ell \geq 6$, therefore

$$
\frac{F_{n}}{F_{m}}>\alpha^{6}-10^{-10}>17.9442
$$

If q_{i} stands for the i th prime, then we checked that the smallest s such that

$$
\prod_{i=1}^{s}\left(1-\frac{1}{q_{i}}\right)^{-1}>17.9442
$$

is $s=2624$. Thus, $k \geq 2624$. We now get that $2^{k-1} \mid \phi\left(F_{n}\right)=F_{m}$, therefore

$$
\begin{equation*}
n>m \geq z\left(2^{k-1}\right)=3 \cdot 2^{k-3} \geq 3 \cdot 2^{2621}>2 \cdot 10^{789} \tag{8}
\end{equation*}
$$

To summarize, from inequalities (4), (5), (6), (7) and (8), we have that $n>3 \cdot 10^{59}$.

3.2 Bounding ℓ in Terms of n

We saw in the preceding section that $k \geq 99$. We start by bounding k from above. Since n is large, McDaniel's result shows that F_{n} has at least one prime factor $p \equiv 1$ $(\bmod 4)$. Since at least $k-1$ of the prime factors of F_{n} are odd, and at least one of them is congruent to 1 modulo 4 , we get that $2^{k} \mid \phi\left(F_{n}\right)=F_{m}$. Thus, $3 \cdot 2^{k-2} \mid m$. We now get that

$$
n>m \geq 3 \cdot 2^{k-2}
$$

therefore

$$
k<k(n):=\frac{\log n}{\log 2}+2-\frac{\log 3}{\log 2}
$$

Let q_{j} be the j th prime number. Inequality (3.13) on page 69 in [13] shows that in our range we have

$$
q_{k}<q(n):=k(n)(\log k(n)+\log \log k(n))
$$

Now clearly

$$
\frac{F_{m}}{F_{n}}=\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \geq \prod_{2 \leq p \leq q(n)}\left(1-\frac{1}{p}\right)>\frac{1}{e^{\gamma} \log q(n)\left(1+1 /\left(2(\log q(n))^{2}\right)\right)}
$$

where the last inequality is inequality (3.29) on page 70 in [13]. That inequality is valid only for $q(n) \geq 286$, which is fulfilled for us since $n \geq 3 \cdot 10^{59}$. Therefore, $k(n) \geq 197$ and $q(n)>1368>286$. We thus get that

$$
e^{\gamma} \log q(n)+\frac{e^{\gamma}}{2 \log q(n)}>\frac{F_{n}}{F_{m}}=\frac{\alpha^{n}-\beta^{n}}{\alpha^{m}-\beta^{m}}>\frac{\alpha^{n}-1}{\alpha^{m}}
$$

In the above inequality, we used the fact that m is even, and therefore $\beta^{m}>0$. Thus,

$$
e^{\gamma}(\log q(n))(1+\delta)>\alpha^{n-m}
$$

where

$$
\delta:=\frac{1}{2(\log q(n))^{2}}+\frac{e^{-\gamma}}{\alpha^{m} \log q(n)}
$$

Since $q(n)>1368, m \geq 50$ and $e^{-\gamma}<0.562$, we get that $\delta<0.0096$. Thus,

$$
n-m<\frac{\log \left(e^{\gamma}(1+\delta)\right)}{\log \alpha}+\frac{\log \log q(n)}{\log \alpha}
$$

We now take a closer look at $q(n)$. We show that

$$
q(n)<(k(n)-2+\log 3 / \log 2)^{1.4}
$$

For this, it suffices that the inequality

$$
k(n)(\log k(n)+\log \log k(n))<(k(n)-2+\log 3 / \log 2)^{1.4}
$$

holds in our range for n. We checked with Mathematica that the last inequality above is fulfilled whenever $k(n)>90$, which is true in our range for n. Since $k(n)-$ $2+\log 3 / \log 2=\log n / \log 2$, we deduce by taking logarithms above that

$$
\log q(n) \leq 1.4 \log (\log n / \log 2)
$$

leading to

$$
\begin{aligned}
\log \log q(n) & \leq \log 1.4+\log (\log \log n-\log \log 2) \\
& =\log 1.4+\log \log \log n+\log \left(1-\frac{\log \log 2}{\log \log n}\right) \\
& <\log \log \log n+\log 1.4-\frac{\log \log 2}{\log \log n},
\end{aligned}
$$

where in the above chain of inequalities we used the fact that the inequality $\log (1+$ $x)<x$ holds for all real numbers $x>-1, x \neq 0$. We thus get that

$$
\begin{aligned}
n-m & <\frac{1}{\log \alpha}\left(\log \left(e^{\gamma} \cdot 1.0096\right)+\log 1.4-\frac{\log \log 2}{\log \log n}\right)+\frac{\log \log \log n}{\log \alpha} \\
& <2.075+\frac{\log \log \log n}{\log \alpha}
\end{aligned}
$$

where we used the fact that $n>3 \cdot 10^{59}$. We record this for future use as follows.

Lemma 2. If $n>4$, then $n>3 \cdot 10^{59}$ and

$$
n-m<2.075+\frac{\log \log \log n}{\log \alpha}
$$

3.3 Bounding the Primes $\boldsymbol{p}_{\boldsymbol{i}}$ for $\boldsymbol{i}=1, \ldots, k$

Here, we follow a similar plan of attack as the proof of Theorem 3 in [12]. Write

$$
\begin{equation*}
F_{n}=p_{1} \cdots p_{k} A, \quad \text { where } A=p_{1}^{\alpha_{1}-1} \cdots p_{k}^{\alpha_{k}-1} \tag{9}
\end{equation*}
$$

Clearly, $A \mid \phi\left(F_{n}\right)$, therefore $A \mid F_{m}$. Since also $A \mid F_{n}$, we get that $A \mid \operatorname{gcd}\left(F_{n}, F_{m}\right)$. Now $\operatorname{gcd}\left(F_{n}, F_{m}\right)=F_{\operatorname{gcd}(n, m)} \mid F_{n-m}$, because $\operatorname{gcd}(n, m) \mid n-m$. Since the inequality $F_{s} \leq \alpha^{s-1}$ holds for all positive integers s, it follows that

$$
\begin{equation*}
A \leq F_{n-m} \leq \alpha^{n-m-1}<\alpha^{1.075} \log \log n, \tag{10}
\end{equation*}
$$

where the last inequality follows from Lemma 2 . We next bound the primes p_{i} for $i=1, \ldots, k$. We write

$$
\prod_{1=1}^{k}\left(1-\frac{1}{p_{i}}\right)=\frac{\phi\left(F_{n}\right)}{F_{n}}=\frac{F_{m}}{F_{n}}
$$

therefore

$$
1-\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right)=1-\frac{F_{m}}{F_{n}}=\frac{F_{n}-F_{m}}{F_{n}} \geq \frac{F_{n}-F_{n-1}}{F_{n}}=\frac{F_{n-2}}{F_{n}}
$$

Using the inequality

$$
\begin{equation*}
1-\left(1-x_{1}\right) \cdots\left(1-x_{s}\right) \leq x_{1}+\cdots+x_{s} \quad \text { valid for all } x_{i} \in[0,1], i=1, \ldots, s \tag{11}
\end{equation*}
$$

we get

$$
\frac{F_{n-2}}{F_{n}} \leq 1-\prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \leq \sum_{i=1}^{k} \frac{1}{p_{i}}<\frac{k}{p_{1}}
$$

therefore

$$
\begin{equation*}
p_{1}<k\left(\frac{F_{n}}{F_{n-2}}\right)<3 k \tag{12}
\end{equation*}
$$

where we used the fact that $F_{n}<3 F_{n-2}$. (This last inequality is equivalent to $F_{n-1}+$ $F_{n-2}<3 F_{n-2}$, or $F_{n-1}<2 F_{n-2}$, or $F_{n-2}+F_{n-3}<2 F_{n-2}$, or $F_{n-3}<F_{n-2}$, which is certainly true in our range for n.) We now show by induction on the index $i \in\{1, \ldots, k\}$, that if we put

$$
u_{i}:=\prod_{j=1}^{i} p_{j}
$$

then

$$
\begin{equation*}
u_{i}<\left(2 \alpha^{3.075}(\log \log n) k\right)^{\left(3^{i}-1\right) / 2} \tag{13}
\end{equation*}
$$

For $i=1$, this becomes

$$
p_{1}<2 \alpha^{3.075}(\log \log n) k
$$

which is implied by estimate (12) and the fact that for $n>3 \cdot 10^{59}$ we have the estimate $2 \alpha^{3.075} \log \log n>43>3$. We now assume that $i \in\{1, \ldots, k-1\}$ and that the estimate (13) is fulfilled, and we shall prove estimate (13) for i replaced by $i+1$. We have

$$
\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{j}}\right)=\frac{p_{1} \cdots p_{i}}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)} \cdot \frac{F_{m}}{F_{n}}=\frac{p_{1} \cdots p_{i}}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)} \cdot \frac{\alpha^{m}-\beta^{m}}{\alpha^{n}-\beta^{n}}
$$

which we rewrite as

$$
\begin{aligned}
1-\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{j}}\right)= & 1-\frac{p_{1} \cdots p_{i}}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)} \cdot \frac{\alpha^{m}-\beta^{m}}{\alpha^{n}-\beta^{n}} \\
= & \frac{\alpha^{m}\left(\left(p_{1}-1\right) \cdots\left(p_{i}-1\right) \alpha^{n-m}-p_{1} \cdots p_{i}\right)}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\left(\alpha^{n}-\beta^{n}\right)} \\
& \quad+\frac{\beta^{m}\left(p_{1} \cdots p_{i}-\beta^{n-m}\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\right)}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\left(\alpha^{n}-\beta^{n}\right)} \\
= & : X+Y
\end{aligned}
$$

where

$$
\begin{aligned}
& X:=\frac{\alpha^{m}\left(\left(p_{1}-1\right) \cdots\left(p_{i}-1\right) \alpha^{n-m}-p_{1} \cdots p_{i}\right)}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\left(\alpha^{n}-\beta^{n}\right)} \\
& Y:=\frac{\beta^{m}\left(p_{1} \cdots p_{i}-\beta^{n-m}\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\right)}{\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\left(\alpha^{n}-\beta^{n}\right)} .
\end{aligned}
$$

Since m is even and $|\beta|<1$, we see easily that $Y \geq 0$. Furthermore, since $n-m>0$, $\beta=-\alpha^{-1}$, and no power of α with positive integer exponent is a rational number, it follows that $X Y \neq 0$. Thus, $Y>0$. Let us suppose first that $X<0$. Then

$$
\begin{aligned}
1-\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{i}}\right) & <Y<\frac{2 p_{1} \cdots p_{i}}{\alpha^{m}\left(p_{1}-1\right) \cdots\left(p_{i}-1\right)\left(\alpha^{n}-\beta^{n}\right)} \\
& <\frac{2 F_{n}}{\phi\left(F_{n}\right)\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{n}-\beta^{n}\right)}=\frac{2}{5 F_{m}^{2}}
\end{aligned}
$$

Since the left hand side of the above inequality is a positive rational number whose denominator divides $p_{i+1} \cdots p_{k} \mid F_{n}$, it follows that this number is at least as large as $1 / F_{n}$. Hence,

$$
\frac{1}{F_{n}}<\frac{2}{5 F_{m}^{2}}
$$

giving

$$
F_{m}^{2}<\frac{2}{5} F_{n}
$$

Since the inequalities $\alpha^{s-2} \leq F_{s} \leq \alpha^{s-1}$ hold for all $s \geq 2$, we get

$$
\alpha^{2 m-4} \leq F_{m}^{2}<\frac{2}{5} F_{n} \leq \frac{2}{5} \alpha^{n-1}
$$

therefore

$$
2 m<3+\frac{\log (2 / 5)}{\log \alpha}+n
$$

Using Lemma 2, we have

$$
m>n-2.075-\frac{\log \log \log n}{\log \alpha}
$$

Combining these inequalities, we get

$$
n<7.15+\frac{\log (2 / 5)}{\log \alpha}+\frac{2 \log \log \log n}{\log \alpha}<5.25+\frac{2 \log \log \log n}{\log \alpha}
$$

which is impossible in our range for n. Hence, the only chance is that $X>0$. Since also $Y>0$, we get that

$$
1-\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{j}}\right)>X
$$

Now note that

$$
\left(\left(p_{1}-1\right) \cdots\left(p_{i}-1\right) \alpha^{n-m}-p_{1} \cdots p_{i}\right)\left(\left(p_{1}-1\right) \cdots\left(p_{i}-1\right) \beta^{n-m}-p_{1} \cdots p_{i}\right)
$$

is a nonzero integer (by Galois theory since β is the conjugate of α), therefore its absolute value is ≥ 1. Since the absolute value of the second factor is certainly $<$ $2 p_{1} \cdots p_{i}$ and the first factor is positive (because $X>0$), we get that

$$
\left(p_{1}-1\right) \cdots\left(p_{i}-1\right) \alpha^{n-m}-p_{1} \cdots p_{i}>\frac{1}{2 p_{1} \cdots p_{i}}
$$

Hence,

$$
1-\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{j}}\right)>X>\frac{\alpha^{m}}{2\left(p_{1} \cdots p_{i}\right)^{2}\left(\alpha^{n}-\beta^{n}\right)}>\frac{\alpha^{m}-\beta^{m}}{2 u_{i}^{2}\left(\alpha^{n}-\beta^{n}\right)}=\frac{F_{m}}{2 u_{i}^{2} F_{n}}
$$

which combined with inequality (11) leads to

$$
\frac{F_{m}}{2 u_{i}^{2} F_{n}}<1-\prod_{j=i+1}^{k}\left(1-\frac{1}{p_{j}}\right)<\sum_{j=i+1}^{k} \frac{1}{p_{j}}<\frac{k}{p_{i+1}}
$$

Thus,

$$
p_{i+1}<2 k u_{i}^{2}\left(\frac{F_{n}}{F_{m}}\right)
$$

However,

$$
\frac{F_{n}}{F_{m}}<\alpha^{n-m+1}<\alpha^{3.075} \log \log n
$$

by Lemma 2. Hence,

$$
p_{i+1}<\left(2 \alpha^{3.075} k \log \log n\right) u_{i}^{2}
$$

and multiplying both sides of the above inequality by u_{i} we get

$$
u_{i+1}<\left(2 \alpha^{3.075} k \log \log n\right) u_{i}^{3} .
$$

Using the induction hypothesis (13), we get

$$
u_{i+1}<\left(2 \alpha^{3.075} k \log \log n\right)^{1+3\left(3^{i}-1\right) / 2}=\left(2 \alpha^{3.075} k \log \log n\right)^{\left(3^{i+1}-1\right) / 2}
$$

which is precisely inequality (13) with i replaced by $i+1$. This finishes the induction proof and shows that estimate (13) holds indeed for all $i=1, \ldots, k$. In particular,

$$
p_{1} \cdots p_{k}=u_{k}<\left(2 \alpha^{3.075} k \log \log n\right)^{\left(3^{k}-1\right) / 2}
$$

which together with formula (9) and estimate (10) gives

$$
F_{n}=p_{1} \cdots p_{k} A<\left(2 \alpha^{3.075} k \log \log n\right)^{1+\left(3^{k}-1\right) / 2}=\left(2 \alpha^{3.075} k \log \log n\right)^{\left(3^{k}+1\right) / 2}
$$

Since $F_{n}>\alpha^{n-2}$, we get

$$
(n-2) \log \alpha<\frac{\left(3^{k}+1\right)}{2} \log \left(2 \alpha^{3.075} k \log \log n\right)
$$

Assume first that $k \leq 2 \alpha^{3.075} \log \log n$. We then get that

$$
(n-2) \log \alpha<\left(3^{2 \alpha^{3.075} \log \log n}+1\right) \log \left(2 \alpha^{3.075} \log \log n\right)
$$

which implies that $n<10^{16}$. This is false because $n>3 \cdot 10^{59}$. Thus, $k>$ $2 \alpha^{3.075} \log \log n$, therefore we get

$$
(n-2) \log \alpha<\left(3^{k}+1\right) \log k
$$

We also have that

$$
k \leq k(n) \leq \frac{\log n}{\log 2}+2-\frac{\log 3}{\log 2}<\frac{\log n}{\log 2}+0.42
$$

Hence

$$
3^{k}+1>\frac{(n-2) \log \alpha}{\log (\log n / \log 2+0.42)}
$$

so that

$$
k>K(n):=\frac{1}{\log 3} \log \left(\frac{(n-2) \log \alpha}{\log (\log n / \log 2+0.42)}-1\right) .
$$

3.4 The Case When n is Odd

Assume that n is odd. Then every odd prime factor p_{i} of F_{n} is congruent to 1 modulo 4. Thus, $4^{k-1} \mid \phi\left(F_{n}\right)=F_{m}$, therefore $z\left(2^{2 k-2}\right) \mid m$. So

$$
n>m \geq z\left(2^{2 k-2}\right)=3 \cdot 2^{2 k-4}
$$

leading to

$$
k \leq L(n):=2+\frac{\log (n / 3)}{2 \log 2}
$$

Since also $k>K(n)$, we get that

$$
\frac{1}{\log 3} \log \left(\frac{(n-2) \log \alpha}{\log (\log n / \log 2+0.42)}-1\right)<2+\frac{\log (n / 3)}{2 \log 2}
$$

This inequality gives $n<5 \cdot 10^{6}$, which is impossible since $n>3 \cdot 10^{59}$. This shows that the case $n>4$ and odd is impossible, therefore n has to be even. Returning now to estimates (5), (7), and (8), we also get that $n>8 \cdot 10^{371}$.

3.5 Bounding ℓ

We write $n=2^{\lambda_{1}} n^{\prime}$, where n^{\prime} is odd and $\lambda_{1} \geq 1$. We start by bounding λ_{1}. Clearly, $\lambda_{1} \geq 1$. If $\lambda_{1} \geq 2$, then

$$
F_{2^{\lambda_{1}}}=L_{2} \cdots L_{2^{\lambda_{1}-1}}
$$

The numbers $L_{2^{j}}$ are all odd for $j=1, \ldots, \lambda_{1}-1$, and since $L_{2^{i}}=L_{2^{i-1}}^{2} \pm 2$ holds for all $i \geq 2$, it follows easily that $L_{2^{i}} \equiv \pm 2\left(\bmod L_{2^{j}}\right)$ for all $1 \leq j<i$. This shows that $\operatorname{gcd}\left(L_{2^{i}}, L_{2^{j}}\right)=1$ for all $1 \leq j<i$. In particular, $F_{2^{\lambda_{1}}}$ is divisible by at least $\lambda_{1}-1$ distinct primes which are all odd. So, $2^{\lambda_{1}-1} \mid \phi\left(F_{n}\right)=F_{m}$. Thus, assuming that $\lambda_{1} \geq 3$, we get that $3 \cdot 2^{\lambda_{1}-3} \mid m$. Hence, $2^{\lambda_{1}-3}$ divides both m and n, so it also divides $n-m$. This argument combined with Lemma 2 shows that,

$$
2^{\lambda_{1}} \leq 8(n-m)<16.6+\frac{8 \log \log \log n}{\log \alpha}
$$

and the last inequality above is true for $\lambda_{1}<3$ as well. In particular, if $n^{\prime}=1$, we then get that

$$
n=2^{\lambda_{1}} \leq 16.6+\frac{8 \log \log \log n}{\log \alpha}
$$

leading to $n<18$, which is false. Thus $n^{\prime}>1$, therefore n has odd prime factors. We deduce more. Write $m=2^{\mu_{1}} m^{\prime}$, where m^{\prime} is odd. We have already seen that $\mu_{1} \geq k-2 \geq K(n)-2$. We now show that $\mu_{1}>\lambda_{1}$. Assume that this is not so. Then $\mu_{1} \leq \lambda_{1}$, therefore $2^{\mu_{1}} \mid n-m$. Hence,

$$
\mu_{1} \leq \frac{\log (n-m)}{\log 2}<\frac{\log (2.075+\log \log \log n / \log \alpha)}{\log 2}
$$

where the last inequality follows from Lemma 2 . We therefore get the inequality

$$
K(n)-2<\frac{\log (2.075+\log \log \log n / \log \alpha)}{\log 2}
$$

leading to $n<258$, which is impossible. Thus, $\mu_{1}>\lambda_{1}$. We next rework a bit the relation $\phi\left(F_{n}\right)=F_{m}$ to deduce a certain inequality relating ℓ to the prime factors of F_{n}. Write

$$
\frac{F_{n}}{F_{m}}=\frac{F_{n}}{\phi\left(F_{n}\right)}=\prod_{p \mid F_{n}}\left(1+\frac{1}{p-1}\right) .
$$

Note that

$$
\frac{F_{n}}{F_{m}}=\frac{\alpha^{n}-\beta^{n}}{\alpha^{m}-\beta^{m}}>\frac{\alpha^{n}-1}{\alpha^{m}}=\alpha^{\ell}\left(1-\frac{1}{\alpha^{n}}\right)
$$

Thus,

$$
\begin{align*}
\ell \log \alpha+\log \left(1-\frac{1}{\alpha^{n}}\right) & <\log \left(\frac{F_{n}}{F_{m}}\right)=\sum_{p \mid F_{n}} \log \left(1+\frac{1}{p-1}\right) \\
& <\sum_{p \mid F_{n}} \frac{1}{p-1} \tag{14}
\end{align*}
$$

where in the last inequality above we used the fact that $\log (1+x)<x$ holds for $x>0$. Next, we note that since the inequality $\log (1-x)>-2 x$ holds for all $x \in(0,1 / 2)$, we have that

$$
\log \left(1-\frac{1}{\alpha^{n}}\right)>-\frac{2}{\alpha^{100}}>-10^{-10}
$$

Thus,

$$
\ell \log \alpha-10^{-10}<\sum_{p \mid F_{n}} \frac{1}{p+1}+S(n)
$$

where we put

$$
S(n):=\sum_{p \mid F_{n}}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)
$$

We next bound $S(n)$. Clearly,

$$
\begin{aligned}
S(n) & <\sum_{\substack{p \mid F_{n} \\
p<100}}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)+2 \sum_{p \geq 101} \frac{1}{p(p-1)} \\
& <\sum_{\substack{p \mid F_{n} \\
p<100}}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)+0.05 .
\end{aligned}
$$

We distinguish three cases.
Case 1. $2 \| n$ and $\operatorname{gcd}(n, 3)=1$.
Here, the prime factors of F_{n} belong to \mathscr{P}_{2} and the only such below 100 are

$$
5,11,13,29,37,59,71,73,89,97
$$

It now follows that

$$
S(n)<0.168
$$

Hence,

$$
\ell \log \alpha-0.168-10^{-10}<\sum_{p \mid F_{n}} \frac{1}{p+1}
$$

Since $\ell \geq 2$, and

$$
\frac{\ell \log \alpha-0.168-10^{-10}}{\ell \log \alpha} \geq \frac{2 \log \alpha-0.168-10^{-10}}{2 \log \alpha}>0.82
$$

we get that

$$
\begin{equation*}
0.82 \ell \log \alpha<\sum_{p \mid F_{n}} \frac{1}{p+1} \tag{15}
\end{equation*}
$$

Case 2. $4 \mid n$ and $\operatorname{gcd}(n, 3)=1$.
In this case, if $p \mid F_{n}$, then $p \in \mathcal{P}_{4}$. There are 16 primes below 100 in \mathcal{P}_{4}, and using them we get the upper bound

$$
S(n)<\sum_{\substack{p \in \mathcal{P}_{4} \\ p<100}}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)+0.05<0.463
$$

Since also $4 \mid m$, we get that $\ell \geq 4$. Hence,

$$
\ell \log \alpha-0.463-10^{-10}<\sum_{p \mid F_{n}} \frac{1}{p+1}
$$

and since $\ell \geq 4$, and

$$
\frac{\ell \log \alpha-0.463-10^{-10}}{\ell \log \alpha} \geq \frac{4 \log \alpha-0.463-10^{-10}}{4 \log \alpha}>0.75
$$

we get that

$$
\begin{equation*}
0.75 \ell \log \alpha<\sum_{p \mid F_{n}} \frac{1}{p+1} \tag{16}
\end{equation*}
$$

Case 3. $6 \mid n$.
In this case,

$$
S(n)<\sum_{p \geq 2}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)<1.15
$$

and $\ell \geq 6$. Thus,

$$
\ell \log \alpha-1.15-10^{-10}<\sum_{p \mid F_{n}} \frac{1}{p+1}
$$

and since

$$
\frac{\ell \log \alpha-1.15-10^{-10}}{\ell \log \alpha} \geq \frac{6 \log \alpha-1.15-10^{-10}}{6 \log \alpha}>0.6
$$

we get that

$$
\begin{equation*}
0.6 \ell \log \alpha<\sum_{p \mid F_{n}} \frac{1}{p+1} \tag{17}
\end{equation*}
$$

From (15), (16) and (17), we get that

$$
0.6 \ell \log \alpha<\sum_{p \mid F_{n}} \frac{1}{p+1}
$$

We now write

$$
n=\prod_{i=1}^{u} r_{i}^{\lambda_{i}}
$$

where $2=r_{1}<\cdots<r_{u}$ are prime numbers and $\lambda_{1}, \ldots, \lambda_{u}$ are positive integers. We organize the prime factors of F_{n} according to their order of apparition in the Fibonacci sequence. Clearly, for each $p \mid F_{n}$, we have that $z(p)=d$ for some divisor d of n. Furthermore, $d>2$, since $F_{1}=F_{2}=1$. If p is a prime with $z(p)=d$, then $p \equiv \pm 1(\bmod d)$, except when $p=d=5$. Let $\mathcal{Q}_{d}=\{p: z(p)=d\}$ and let $\ell_{d}=\# Q_{d}$. Then

$$
(d-1)^{\ell_{d}} \leq \prod_{p \in \mathcal{Q}_{d}} p \leq F_{d}<\alpha^{d-1}
$$

therefore

$$
\begin{equation*}
\ell_{d}<\frac{(d-1) \log \alpha}{\log (d-1)}<\frac{d \log \alpha}{\log d} \tag{18}
\end{equation*}
$$

for all $d \geq 3$. Indeed, the last inequality above follows for $d \geq 4$ because the function $t / \log t$ is increasing for $t \geq 3$, while for $d=3$ it follows because $\ell_{3}=1<$ $3(\log \alpha) / \log 3$. Now note that

$$
\sum_{p \mid F_{n}} \frac{1}{p+1}=\sum_{\substack{d \mid n \\ d>2}} \sum_{p \in \mathcal{Q}_{d}} \frac{1}{p+1}
$$

Since all primes $p \in \mathcal{Q}_{d}$ satisfy $p \equiv \pm 1(\bmod d)$ for all $d \neq 5$, we get easily that

$$
\begin{aligned}
Q_{d} & :=\sum_{p \in Q_{d}} \frac{1}{p+1} \leq 2 \sum_{\ell \leq\left\lfloor\ell_{d} / 2\right\rfloor+1} \frac{1}{d \ell} \\
& \leq \frac{2}{d}\left(1+\int_{1}^{d \log \alpha /(2 \log d)+1} \frac{d \ell}{\ell}\right) \\
& \leq \frac{2}{d} \log \left(\frac{e d \log \alpha}{2 \log d}+e\right),
\end{aligned}
$$

for $d \neq 5$. Since the inequality

$$
\frac{e d \log \alpha}{2 \log d}+e<d
$$

holds for all $d \geq 5$, we deduce that the inequality

$$
Q_{d}<\frac{2 \log d}{d}
$$

holds for all $d \geq 6$. The same inequality also holds for $d \in\{3,4,5\}$ since

$$
Q_{3}=\frac{1}{3}<\frac{2 \log 3}{3}, \quad Q_{4}=\frac{1}{4}<\frac{2 \log 4}{4}, \quad \text { and } \quad Q_{5}=\frac{1}{6}<\frac{2 \log 5}{5}
$$

Hence,

$$
\sum_{p \mid F_{n}} \frac{1}{p+1}=\sum_{\substack{d \mid n \\ d>2}} Q_{d}<2 \sum_{d \mid n} \frac{\log d}{d}
$$

Let us put $\log ^{*} x=\max \{\log x, 1\}$. We next show that the function defined on the set of positive integers and given by $f(a)=2 \log ^{*} a$ for $a>1$ and $f(1)=1$ is submultiplicative; i.e.,

$$
f(a b) \leq f(a) f(b) \quad \text { holds for all positive integers } a, b
$$

The above inequality is clear if one of a and b is 1 . If both a, b are ≥ 3, then

$$
f(a b)=2 \log (a b)=2 \log a+2 \log b<4 \log a \log b=f(a) f(b)
$$

because both $2 \log a$ and $2 \log b$ exceed 2 . Finally, assume that one of a and b is 2 . Say $a=2$ and $b \geq 2$. Then the desired inequality is

$$
f(a b)=2 \log (2 b)=2 \log 2+2 \log b<4 \log b,
$$

which is obviously true. Using the submultiplicativity of the function f, we have

$$
0.6 \ell \log \alpha<\sum_{d \mid n} \frac{f(d)}{d} \leq \prod_{r \mid n}\left(1+\sum_{\beta \geq 1} \frac{f\left(r^{\beta}\right)}{r^{\beta}}\right)
$$

The contribution of the prime $r=2$ in the last product above is

$$
\begin{aligned}
1+\frac{2}{2}+\frac{2 \log 4}{4}+\frac{2 \log 8}{8}+\cdots & =2-\log 2+(\log 2)\left(1+\frac{2}{2}+\frac{3}{4}+\cdots\right) \\
& =2-\log 2+4 \log 2=2+3 \log 2<4.08
\end{aligned}
$$

The contribution of an odd prime number r in the above product is

$$
1+\frac{2 \log r}{r}\left(1+\frac{2}{r}+\frac{3}{r^{2}}+\cdots\right)<1+\frac{2 r \log r}{(r-1)^{2}}
$$

Since $0.6 / 4.08>0.14$, we get that

$$
\begin{equation*}
0.14 \ell \log \alpha<\prod_{\substack{r \mid n \\ r>2}}\left(1+\frac{2 r \log r}{(r-1)^{2}}\right) \tag{19}
\end{equation*}
$$

Taking logarithms and using again the fact that $\log (1+x)<x$ holds for all positive real numbers x, we get

$$
\log \ell+\log (0.14 \log \alpha)<\sum_{\substack{r \mid n \\ r>2}} \log \left(1+\frac{2 r \log r}{(r-1)^{2}}\right)<\sum_{\substack{r \mid n \\ r>2}} \frac{2 r \log r}{(r-1)^{2}}
$$

Separating the prime 3 and using the fact that $r /(r-1)^{2}<1.6 / r$ for $r \geq 5$, we get that

$$
\begin{equation*}
\log \ell+\log (0.14 \log \alpha)<\frac{3 \log 3}{2}+3.2 \sum_{\substack{r \mid n \\ r \geq 5}} \frac{\log r}{r} \tag{20}
\end{equation*}
$$

We are now finally ready to bound ℓ. Assume that $\ell>10^{8}$. Let ω be the number of prime factors of ℓ and let $q_{1}<q_{2}<\cdots$ be the increasing sequence of all prime
numbers. All prime factors $r \geq 5$ of n either divide $\operatorname{gcd}(n, m)$, therefore ℓ, or divide n but not m. Thus,

$$
\begin{equation*}
\sum_{\substack{r \mid n \\ r \geq 5}} \frac{\log r}{r} \leq \sum_{5 \leq q \leq q_{\omega+2}} \frac{\log q}{q}+\sum_{\substack{r \mid n \\ r \nmid m}} \frac{\log r}{r}:=S_{1}+S_{2} \tag{21}
\end{equation*}
$$

In what follows, we bound S_{1} and S_{2} separately. To bound S_{1}, note that in order to maximize S_{1} as a function of ℓ, we may assume that ℓ is not a multiple of 6 . By the Stirling formula, we then have

$$
6 \ell \geq(\omega+2)!>\left(\frac{\omega+2}{e}\right)^{\omega+2}
$$

leading to

$$
(\omega+2)(\log (\omega+2)-1)<\log (6 \ell)
$$

Hence, $2(\omega+2)(\log (\omega+2)-1)<2 \log (6 \ell)$. Assume first that

$$
2(\omega+2)(\log (\omega+2)-1)<(\omega+2)(\log (\omega+2)+\log \log (\omega+2))
$$

Then

$$
\log (\omega+2)<2+\log \log (\omega+2)
$$

leading to $\omega \leq 21$. In this case,

$$
S_{1} \leq \sum_{5 \leq q \leq 83} \frac{\log q}{q}<2.56
$$

Assume next that $\omega>21$. Then
$2 \log (6 \ell)>2(\omega+2)(\log (\omega+2)-1) \geq(\omega+2)(\log (\omega+2)+\log \log (\omega+2))>q_{\omega+2}$, where the last inequality is inequality (3.13) on page 69 in [13] (valid for all $\omega \geq 6$, which is our case). Since $\ell>10^{8}$, we have that $2 \log (6 \ell)>40>32$, so formula (3.23) on page 70 in [13] shows that

$$
\begin{aligned}
S_{1} & <\sum_{5 \leq q \leq q_{\omega+2}} \frac{\log q}{q}<\sum_{5 \leq q \leq 2 \log (6 \ell)} \frac{\log r}{r} \\
& <\log (2 \log (6 \ell))-\frac{\log 2}{2}-\frac{\log 3}{3}-1.33+\frac{1}{\log (2 \log (6 \ell))} \\
& <\log \log (6 \ell)-1.07<\log \log (6 \ell)-0.44,
\end{aligned}
$$

where the last inequality is valid for $\ell>10^{8}$. Since $\log \log (6 \ell)-0.44>2.56$ holds for $\ell>10^{8}$, it follows that in both cases we have

$$
\begin{equation*}
S_{1} \leq \log \log (6 \ell)-0.44 \tag{22}
\end{equation*}
$$

We now bound S_{2}. For this, observe that if $5 \mid n$, then $10 \mid n$. Hence, $11 \mid 55=$ $F_{10} \mid F_{n}$. Thus, $10 \mid \phi\left(F_{n}\right)=F_{m}$, leading to $5 \mid F_{m}$, so $5 \mid m$. This shows that the smallest prime that can participate in S_{2} is ≥ 7 (recall that $6 \mid m$). Let $t \geq 3$, and let ℓ_{t} be the set of primes in the interval [$2^{t}, 2^{t+1}$] which divide n but not m. Let n_{t} be the number of elements in \mathscr{l}_{t}. Assume that $n_{t} \geq 1$ for some t. Let p be a prime in ℓ_{t}. Then n has at least $2^{n_{t}-1}$ squarefree divisors d, such that each one of them is a multiple of p, and such that furthermore each one of them is divisible only by primes $q \in \ell_{t}$. For each one of these divisors d, since $2 d \mid n$, we have that $L_{d}\left|F_{2 d}\right| F_{n}$. Since d is odd and $d>7$, we get, by the Primitive Divisor Theorem (see [4]), that L_{d} has a primitive prime factor p_{d}. Clearly, $p_{d} \equiv \pm 1(\bmod d)$, so, in particular, p_{d} is odd. Reducing relation (1) modulo p_{d}, we get that $-5 F_{d}^{2} \equiv-4\left(\bmod p_{d}\right)$, therefore $\left(5 / p_{d}\right)=1$. So, $\left(p_{d} / 5\right)=1$ by the Quadratic Reciprocity Law. It now follows that $z\left(p_{d}\right)=d \mid p_{d}-1$, showing that $p|d| p_{d}-1 \mid \phi\left(F_{n}\right)$. Since the primitive prime factors p_{d} are distinct as d runs over the divisors of n composed only of primes $q \in \mathscr{l}_{t}$, it follows that the exponent of p in $\phi\left(F_{n}\right)$ is at least $2^{n_{t}-1}$. On the other hand, since $p \nmid m$, it follows that this exponent is at most the exponent of p in $F_{z(p)}$. Now $z(p) \mid p+\eta$, where $\eta \in\{ \pm 1\}$, because $t \geq 3$. Hence, writing a_{p} for the exponent of p in $F_{z(p)}$, we get that

$$
p^{a_{p}}\left|F_{z(p)}\right| F_{p+\eta}=F_{(p+\eta) / 2} L_{(p+\eta) / 2}
$$

Relation (1) shows that $\operatorname{gcd}\left(F_{(p+\eta) / 2}, L_{(p+\eta) / 2}\right) \mid 2$. Since p is odd, we get that

$$
p^{a_{p}} \mid F_{(p+\eta) / 2}, \quad \text { or } \quad p^{a_{p}} \mid L_{(p+\eta) / 2}
$$

In the first case, we have that

$$
p^{a_{p}} \leq F_{(p+1) / 2}<\alpha^{(p-1) / 2}
$$

therefore

$$
\begin{equation*}
a_{p}<\frac{(p-1) \log \alpha}{2 \log p}<\frac{(p+1) \log \alpha}{2 \log p} \tag{23}
\end{equation*}
$$

In the second case, we arrive at the same conclusion in the following way. If $\eta=-1$, then since $L_{s}<\alpha^{s+1}$ for all $s \geq 1$, we have

$$
p^{a_{p}} \leq L_{(p-1) / 2}<\alpha^{(p+1) / 2}
$$

leading again to estimate (23). When $\eta=1$ and $(p+1) / 2$ is odd, then

$$
p^{a_{p}} \leq L_{(p+1) / 2}=\alpha^{(p+1) / 2}+\beta^{(p+1) / 2}<\alpha^{(p+1) / 2}
$$

leading again to estimate (23). Finally, assume that $\eta=1$ and $(p+1) / 2$ is even. If $L_{(p+1) / 2} \neq p^{a_{p}}$, then

$$
p^{a_{p}} \leq \frac{L_{(p+1) / 2}}{2}<\frac{\alpha^{(p+1) / 2}+1}{2}<\alpha^{(p+1) / 2}
$$

leading again to (23). It remains to deal with the case $L_{(p+1) / 2}=p^{a_{p}}$. Since $p>7$, it follows easily that $L_{(p+1) / 2}>p$. Hence, $a_{p}>1$, and therefore $L_{(p+1) / 2}$ is a perfect power of exponent >1, and this is impossible by the main result from [3]. Thus, we have showed that estimate (23) holds for all $p>7$. We thus get that

$$
\begin{equation*}
2^{n_{t}-1} \leq a_{p} \leq \frac{(p+1) \log \alpha}{2 \log p}<\frac{2^{t+1} \log \alpha}{2 \log \left(2^{t+1}-1\right)} \tag{24}
\end{equation*}
$$

where for the last inequality we used the fact that $p \leq 2^{t+1}-1$ together with the fact that the function $(s+1) /(2 \log s)$ is increasing for $s \geq 7$. We now show that $n_{t} \leq t-2$. Indeed, if not, then $n_{t} \geq t-1$, which together with inequality (24) leads to

$$
2^{t-2}<\frac{2^{t+1} \log \alpha}{2 \log \left(2^{t+1}-1\right)}
$$

therefore

$$
\log \left(2^{t+1}-1\right)<4 \log \alpha
$$

which is false for $t \geq 3$. Hence, $n_{t} \leq t-2$ holds for all $t \geq 3$. Since the function $\log s / s$ is decreasing for $s \geq 3$, we get that

$$
S_{2} \leq \frac{\log 7}{7}+\sum_{t \geq 3} \frac{(t-2) \log \left(2^{t}\right)}{2^{t}}<\frac{\log 7}{7}+(\log 2) \sum_{t \geq 3} \frac{t(t-2)}{2^{t}}
$$

One computes easily that

$$
\sum_{t \geq 3} \frac{t(t-2)}{2^{t}}=1
$$

therefore

$$
\begin{equation*}
S_{2}<\frac{\log 7}{7}+\log 2 \tag{25}
\end{equation*}
$$

Estimates (20), (21), (22) and (25) lead to

$$
\begin{aligned}
& \log \ell<3.2 \log \log (6 \ell) \\
& \quad+\left(\frac{3 \log 3}{2}-\log (0.14 \log \alpha)+3.2\left(\frac{\log 7}{7}+\log 2-0.44\right)\right)
\end{aligned}
$$

therefore

$$
\log \ell<3.2 \log \log (6 \ell)+6.05
$$

The above inequality leads to $\ell<4 \cdot 10^{6}$.

3.6 Bounding ℓ Even Better

Now let us write

$$
n=U \cdot V, \quad \text { where } \quad U=\prod_{\substack{1 \leq i \leq u \\ r_{i} \mid m}} r_{i}^{\lambda_{i}}, \quad \text { and } \quad V=\prod_{\substack{1 \leq i \leq u \\ r_{i} \nmid m}} r_{i}^{\lambda_{i}}
$$

Let i be such that $r_{i} \mid U$. Put $r:=r_{i}$ and $\lambda:=\lambda_{i}$. We have already seen that $r^{\lambda} \mid \ell$ if $i=1$ because $r_{1}=2$. So, assume that r is odd. Suppose first that $r \geq 5$. Then $L_{r^{\delta}}$ divides F_{n} for $\delta=1,2, \ldots, \lambda$. Each of $L_{r} \delta$ has a primitive prime factor which is congruent to 1 modulo r^{δ}. Thus $\phi\left(F_{n}\right)$ is divisible by $r^{1+2+\cdots+\lambda}=r^{\lambda(\lambda+1) / 2}$. Since $r<10^{14}$, a calculation of McIntosh and Roettger (see [1] and [10]) shows that $r \| F_{z(r)}$ in this range confirming thus a conjecture of Wall [14]. Thus, $r^{\lambda(\lambda+1) / 2-1}$ divides m. If $\lambda \geq 2$, then $\lambda(\lambda+1) / 2-1 \geq \lambda$, showing that $r^{\lambda} \mid \operatorname{gcd}(n, m)$. This is also obviously true if $\lambda=1$ as well. Hence, if $r>3$, then $r^{\lambda}|\operatorname{gcd}(n, m)| \ell$. Assume now that $r=3$. Then $L_{r} \delta$ divides F_{n} and has a primitive prime factor congruent to 1 modulo r^{δ} for all $\delta \geq 2$. It now follows that $3^{\lambda(\lambda+1) / 2-1}$ divides $\phi\left(F_{n}\right)$, therefore if $\lambda \geq 2$, then $3^{\lambda(\lambda+1) / 2-2}$ divides m. Now $\lambda(\lambda+1) / 2-2 \geq \lambda$ holds for all $\lambda \geq 3$. This shows that $3^{\lambda} \mid \ell$ if $\lambda \geq 3$. This is also true if $\lambda=1$. If $\lambda=2$ and there exists another odd prime $q>3$ dividing n, then also $L_{3 q}$ divides F_{n} and $L_{3 q}$ has a primitive prime divisor which is congruent to 1 modulo 3 . Since $19\left|L_{9}\right| F_{n}$, we get that 3^{3} divides $\phi\left(F_{n}\right)=F_{m}$, therefore $9 \mid m$. Thus $3^{\lambda} \mid \ell$ unless $\lambda=2$ and $n^{\prime}=9$. In this last case we have $n=2^{\lambda_{1}} \cdot 9<3 \ell<12 \cdot 10^{6}$, contradicting the fact that $n>8 \cdot 10^{371}$. Thus, in all cases $U \mid \ell$. Furthermore, since $n>8 \cdot 10^{371}$ and $\ell<4 \cdot 10^{6}$, we get that $V>1$. We now look at V. Assume that V has w primes in it with $w \geq 1$. Let $p_{1} \geq 7$ be the smallest prime factor of V. Then V has 2^{w-1} odd divisors d all divisible by p_{1}. Since $L_{d} \mid F_{n}$ for all such divisors d, and since for each one of these divisors d the number L_{d} has a primitive divisor $p_{d} \equiv 1(\bmod d)$, we get that the power of p_{1} in $\phi\left(F_{n}\right)$ is at least 2^{w-1}. Since $p_{1} \nmid m$, it follows that $2^{w-1} \leq a_{p_{1}}$, where $a_{p_{1}}$ is the exponent of p_{1} in $F_{z\left(p_{1}\right)}$. It was shown in the preceding section that the inequality $a_{p_{1}} \leq\left(p_{1}+1\right)(\log \alpha) /\left(2 \log p_{1}\right)<\left(p_{1}+1\right) /\left(4 \log p_{1}\right)$ holds for all $p_{1}>7$ because $\log \alpha<1 / 2$. This is also true for $p_{1}=7$ because $a_{7}=1<(7+1) /(4 \log 7)$. We thus get that $2^{w}<\left(p_{1}+1\right) /\left(2 \log p_{1}\right)$, therefore

$$
w<\frac{\log \left(p_{1}+1\right)-\log \left(2 \log p_{1}\right)}{\log 2}
$$

We now return to inequality (19) and use the observation that the function $r \log r /(r-$
$1)^{2}$ is decreasing for $r \geq 7$, to get that
$0.14 \ell \log \alpha \leq\left(\prod_{\substack{r \mid \ell \\ r>2}}\left(1+\frac{2 r \log r}{(r-1)^{2}}\right)\right)\left(1+\frac{2 p_{1} \log p_{1}}{\left(p_{1}-1\right)^{2}}\right)^{\left(\log \left(p_{1}+1\right)-\log \left(2 \log p_{1}\right)\right) / \log 2}$.

We can now give a better bound on ℓ. The product of the first 8 primes is $>9 \cdot 10^{6}>\ell$, and the function $(r \log r) /(r-1)^{2}$ is decreasing for $r \geq 3$. Furthermore, the maximum of the function

$$
\left(1+\frac{2 p_{1} \log p_{1}}{\left(p_{1}-1\right)^{2}}\right)^{\left(\log \left(p_{1}+1\right)-\log \left(2 \log p_{1}\right)\right) / \log 2}
$$

as $p_{1} \geq 7$ runs over primes is <1.8. Thus,

$$
0.14 \ell \log \alpha \leq \prod_{3 \leq q \leq 17}\left(1+\frac{2 r \log r}{(r-1)^{2}}\right) \cdot 1.8 \leq 51.68
$$

leading to $\ell \leq 766$. The product of the first five primes exceeds 766 , so that

$$
0.14 \ell \log \alpha \leq \prod_{3 \leq q \leq 7}\left(1+\frac{2 r \log r}{(r-1)^{2}}\right) \cdot 1.8<16.82
$$

yielding $\ell \leq 248$. Thus, $U \leq \ell \leq 248$.
We can now see the light at the end of the tunnel. Namely, we shall show that $p_{1}<10^{14}$. Assume that we have proved that. Suppose that n is divisible by $p_{1} q$, where q is some other prime factor (which might be p_{1} itself). Since $p_{1} \geq 7$, it follows that both $L_{p_{1}}$ and $L_{p_{1} q}$ have primitive prime factors which are both congruent to 1 modulo p_{1}. This shows that $p_{1}^{2} \mid \phi\left(F_{n}\right)$, so $p_{1}^{2} \mid F_{m}$. By McIntosh's calculation, we get that $p_{1} \mid m$, which is impossible. Thus, $n^{\prime}=p_{1}$, therefore $n=2^{\lambda_{1}} p_{1} \leq$ $\ell p_{1}<248 \cdot 10^{14}$, contradicting the fact that $n>8 \cdot 10^{371}$. Thus, it remains to bound p_{1}.

3.7 Bounding \boldsymbol{p}_{1}

Returning to inequality (14), we have

$$
\begin{aligned}
\ell \log \alpha-10^{-10}<\ell \log \alpha+\log \left(1-\frac{1}{\alpha^{n}}\right) & <\sum_{p \mid F_{n}} \frac{1}{p-1} \\
& \leq \sum_{p \mid F_{U}} \frac{1}{p-1}+\sum_{\substack{p \mid F_{n} \\
p \nmid F_{U}}} \frac{1}{p-1}
\end{aligned}
$$

Since $U \mid \ell$, a calculation with Mathematica shows that the inequality

$$
\ell \log \alpha-10^{-10}-\sum_{p \mid F_{U}} \frac{1}{p-1} \geq 0.3145 \ell
$$

holds for all even $\ell \leq 248$. Thus,

$$
0.3145 \ell \leq \sum_{\substack{p \mid F_{n} \\ p \nmid F_{U}}} \frac{1}{p-1}
$$

We now assume that $p_{1}>10^{14}$ and we shall get a contradiction. Note that the above sum is

$$
\sum_{\substack{p \mid F_{n} \\ p \nmid F_{U}}} \frac{1}{p-1}=\sum_{d_{1} \mid U} \sum_{\substack{d_{2} \mid V \\ d_{2}>1}} Q_{d_{1} d_{2}}
$$

where, as in Section 3.5, we have

$$
Q_{d}=\sum_{p \in Q_{d}} \frac{1}{p-1}
$$

Since $p \equiv \pm 1(\bmod d)$, and $d \geq p_{1}>10^{14}$, it follows $p /(p-1)<0.3145 / 0.3144$ for all $p \mid F_{n}$ but $p \nmid F_{U}$. Thus we get that

$$
\begin{equation*}
0.3144 \ell \leq \sum_{d_{1} \mid U} \sum_{\substack{d_{2} \mid V \\ d_{2}>1}} \frac{1}{p} \tag{26}
\end{equation*}
$$

Let $d=d_{1} d_{2}$. We saw that the inequality $\ell_{d}=\# Q_{d}<d \log \alpha / \log d$ holds for all our d (see inequality (18)). Our primes $p \in \mathcal{Q}_{d}$ have the property that $p \equiv \pm 1$ $(\bmod d)$. By the large sieve inequality of Montgomery and Vaughan [11], we have that if we write $\pi(t ; a, b)$ for the number of primes $p \equiv a(\bmod b)$ which do not exceed t, then the inequality

$$
\pi(t ; a, b) \leq \frac{2 t}{\phi(b) \log (t / b)}
$$

holds uniformly for $a \leq b<t$, with coprime a and b. The calculation from page 12 in [8], shows that

$$
\sum_{\substack{p \in \mathcal{Q}_{d} \\ 3 d<p<d^{2}}} \frac{1}{p}<\frac{4}{\phi(d) \log d}+\frac{4 \log \log d}{\phi(d)}
$$

For the remaining primes in \mathcal{Q}_{d} but not in $\left(3 d, d^{2}\right)$ we have that

$$
\begin{aligned}
\sum_{\substack{p \in \mathcal{Q}_{d} \\
p \notin\left(3 d, d^{2}\right)}} \frac{1}{p} & <\frac{1}{d-1}+\frac{1}{d+1}+\frac{1}{2 d-1}+\frac{1}{2 d+1}+\frac{1}{3 d-1}+\frac{\ell_{d}}{d^{2}} \\
& <\frac{10}{3 \phi(d)}+\frac{\log \alpha}{d \log d}
\end{aligned}
$$

We thus get that

$$
\begin{aligned}
Q_{d} & <\frac{4 \log \log d}{\phi(d)}\left(1+\frac{1}{(\log d) \log \log d}+\frac{10}{12 \log \log d}+\frac{\log \alpha}{(\log d) \log \log d}\right) \\
& <\frac{5.02 \log \log d}{\phi(d)} .
\end{aligned}
$$

Since $d_{1} \mid U$, we get that $d_{1} \leq 248$. Since $d_{2}>1$, we get that $d_{2} \geq p_{1}>10^{14}$. Hence, $d_{1} d_{2}<d_{2}^{1.2}$ holds uniformly in d_{1} and d_{2}, therefore

$$
Q_{d}<\frac{5.02 \log \left(1.2 \log d_{2}\right)}{\phi\left(d_{1}\right) \phi\left(d_{2}\right)}
$$

Let $\tau(V)$ be the number of divisors d_{2} of V. Of them, $\tau\left(V / p_{1}\right)$ are multiples of p_{1}, and for each one of these, $L_{d_{2}}$ has a primitive prime factor $p_{d_{2}}$ which in particular is congruent to 1 modulo p_{1}. Hence, the exponent of p_{1} in $\phi\left(F_{n}\right)$ is at least $\tau\left(V / p_{1}\right)$. Since $p_{1} \nmid m$, we get that

$$
\tau\left(V / p_{1}\right) \leq a_{p_{1}} \leq \frac{\left(p_{1}+1\right) \log \alpha}{2 \log p_{1}}
$$

leading to

$$
\tau(V) \leq 2 \tau\left(V / p_{1}\right) \leq \frac{\left(p_{1}+1\right) \log \alpha}{\log p_{1}}
$$

Now

$$
\begin{aligned}
\frac{V}{\phi(V)} & \leq \prod_{p \mid V}\left(1+\frac{1}{p-1}\right) \leq\left(1+\frac{1}{p_{1}-1}\right)^{\tau(V)} \\
& \leq\left(1+\frac{1}{p_{1}-1}\right)^{\left(p_{1}+1\right) \log \alpha / \log p_{1}}<1.02
\end{aligned}
$$

where the last inequality holds because $p_{1}>10^{14}$. Thus, the inequality

$$
\frac{1}{\phi\left(d_{2}\right)} \leq\left(\frac{V}{\phi(V)}\right) \frac{1}{d_{2}} \leq \frac{1.02}{d_{2}}
$$

holds for all divisors d_{2} of V. We therefore get that

$$
Q_{d} \leq \frac{(5.02 \cdot 1.02) \log \left(1.2 \log d_{2}\right)}{d_{2} \phi\left(d_{1}\right)}<\frac{5.13 \log \left(1.2 \log d_{2}\right)}{d_{2} \phi\left(d_{1}\right)}
$$

The function $\log (1.2 \log s) / s$ is decreasing for $s>10^{14}$, showing that the inequality

$$
Q_{d} \leq \frac{5.13 \log \left(1.2 \log p_{1}\right)}{p_{1}} \cdot \frac{1}{\phi\left(d_{1}\right)}
$$

holds for all divisors d of n which do not divide U. Thus,

$$
\begin{aligned}
\sum_{\substack{p \mid F_{n} \\
p \nmid F_{U}}} \frac{1}{p} & \leq \frac{5.13 \tau(V) \log \left(1.2 \log p_{1}\right)}{p_{1}} \sum_{d_{1} \mid \ell} \frac{1}{\phi\left(d_{1}\right)} \\
& <\frac{5.13\left(p_{1}+1\right)(\log \alpha) \log \left(1.2 \log p_{1}\right)}{p_{1} \log p_{1}} h(\ell)
\end{aligned}
$$

where

$$
h(\ell)=\sum_{d_{1} \mid \ell} \frac{1}{\phi\left(d_{1}\right)} \leq \sum_{d_{1} \mid \ell} \phi\left(d_{1}\right)=\ell
$$

Thus, comparing the last bound above with inequality (26), we get

$$
\frac{p_{1} \log p_{1}}{\left(p_{1}+1\right) \log \left(1.2 \log p_{1}\right)}<\frac{5.13 \cdot \log \alpha}{0.3144}
$$

The above inequality implies that $p_{1}<9 \cdot 10^{11}<10^{14}$, which is the desired contradiction. Theorem 1 is therefore proved.

References

[1] V. Andrejić, On Fibonacci powers, Univ. Beograd Publ. Elektrotehn. Fak. Sec. Mat. 17 (2006), 38-44.
[2] Y. Bugeaud, M. Mignotte and S. Siksek, Sur les nombres de Fibonacci de la forme $q^{k} y^{p}$, C. R. Acad. Sci. Paris 339 (2004), 327-330.
[3] Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Annals of Mathematics 163 (2006), 969-1018.
[4] R.D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^{n} \pm \beta^{n}$, Ann. Math. (2) 15 (1913), 30-70.
[5] R. Knott, Fibonacci Numbers and the Golden Section, http://www.mcs.surrey.ac. uk/Personal/R.Knott/Fibonacci/.
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, New York, 2001.
[7] F. Luca, Euler indicators of Lucas sequences, Bull. Mat. Soc. Mat. Roumaine $\mathbf{4 0}$ (1997), no. 88, 151-163.
[8] F. Luca, Fibonacci numbers with the Lehmer property, Bull. Polish Acad. Sci. Math. 55 (2007), 7-15.
[9] W. McDaniel, On Fibonacci and Pell Numbers of the Form $k x^{2}$, The Fibonacci Quart. 40 (2002), 41-42.
[10] R. J. McIntosh and E. L. Roettger, A search for Fibonacci-Wiefrich and Wolsenholme primes, Math. Comp. 76 (2007), no. 260, 2087-2094.
[11] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119134.
[12] C. Pomerance, On composite n for which $\phi(n) \mid n-1$, II, Pacific J. Math. 69 (1977), 177-186.
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. of Math. 6 (1962), 64-Ű94.
[14] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960), 525-532.

Received September 19, 2008; accepted April 6, 2009.

Author information

Florian Luca, Instituto de Matemáticas UNAM, Ap. Postal 61-3 (Xangari) C.P. 58089, Morelia, Michoacán, Mexico.
E-mail: fluca@matmor.unam.mx
Florin Nicolae, Institut für Mathematik, Technische Universität Berlin, MA 8-1, Straße des 17. Juni 136, 10623 Berlin, Germany and Institute of Mathematics of the Romanian Academy, P. O. BOX 1-764, RO-014700 Bucharest, Romania.
E-mail: nicolae@math.tu-berlin.de

[^0]: During the preparation of this paper, the first author was supported in part by Grant SEP-CONACyT 46755.

