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Abstract
This thesis depicts approaches toward real-time depth sensing. While humans are
very good at estimating distances and hence are able to smoothly control vehicles
and their own movements, machines often lack the ability to sense their environ-
ment in a manner comparable to humans. This discrepancy prevents the automa-
tion of certain job steps. We assume that further enhancement of depth sensing
technologies might change this fact. We examine to what extend time-of-flight
(ToF) cameras are able to provide reliable depth images in real-time. We discuss
current issues with existing real-time imaging methods and technologies in detail
and present several approaches to enhance real-time depth imaging. We focus on
ToF imaging and the utilization of ToF cameras based on the photonic mixer de-
vice (PMD) principle. These cameras provide per pixel distance information in
real-time. However, the measurement contains several error sources. We present
approaches to indicate measurement errors and to determine the reliability of the
data from these sensors. If the reliability is known, combining the data with other
sensors will become possible. We describe such a combination of ToF and stereo
cameras that enables new interactive applications in the field of computer graph-
ics. In addition, we show how the fusion of multiple exposures entails improved
measurements and extended applications.
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Zusammenfassung
Diese Arbeit beschreibt Lösungsstrategien zur Realisierung bildbasierter Tiefen-
messungen in Echtzeit. Während Menschen sehr gut im Schätzen von Entfer-
nungen sind und somit ihre eigenen Bewegungen und auch Fahrzeuge problemlos
steuern können, fehlt Maschinen häufig die Fähigkeit, ihre Umgebung in einer
dem Menschen vergleichbaren Weise wahrzunehmen. Diese Diskrepanz verhin-
dert es, dass bestimmte Arbeitsschritte automatisiert werden können. Wir gehen
davon aus, dass eine Verbesserung der Methoden zur bildbasierten Tiefenmes-
sung einen entscheidenden Schritt darstellt, diese Lücke zu schließen. Wir un-
tersuchen, inwieweit Tiefenbildkameras verlässliche Daten in Echtzeit liefern.
Dabei zeigen wir die Probleme existierender Methoden und Technologien auf und
stellen verschiedene Ansätze vor, wie die bildbasierte Tiefenmessung in Echtzeit
verbessert werden kann. Wir konzentrieren uns auf sogenannte Lichtlaufzeitver-
fahren und damit im Speziellen den Einsatz einer Tiefenbildkamera, die auf dem
Prinzip des Photonen-Misch-Detektors beruht. Derartige Kameras ermöglichen
eine pixelbasierte Distanzmessungen in Echtzeit. Allerdings wird die Messung
durch mehrere Fehlerquellen beeinflusst. Wir präsentieren Ansätze zur Erken-
nung dieser Fehler und damit eine Möglichkeit zur Bestimmung der Zuverläs-
sigkeit der Daten dieser Sensoren. Wenn die Zuverlässigkeit bekannt ist, lassen
sich die Daten mit denen anderer Sensoren kombinieren. Wir beschreiben eine
solche Kombination aus Tiefenbild- und Stereokamera, die neuartige, interaktive
Anwendungen auf dem Gebiet der Computergrafik ermöglicht. Darüber hinaus
zeigen wir, dass die Fusion von Mehrfachbelichtungen sowohl verbesserte Mes-
sungen als auch erweiterte Anwendungsmöglichkeiten mit sich bringt.
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Chapter 1

Introduction
This thesis examines to what extend time-of-flight (ToF) cameras are able to pro-
vide reliable depth images in real-time and how far these images are utilizable in
Computer Graphics (CG) applications. We illustrate how the reliability of such a
camera can be enhanced while maintaining the capability of the sensor to capture
depth images in real-time.

1.1 Historic development toward
machine vision
In early history, machines were invented in order to allow depth estimations in
those situations where the human sensing capabilities are not sufficient. A main
example is maritime navigation which greatly suffered and still suffers from the
sudden appearance of fog making visual navigation impossible. From early ideas
like using a bell to indicate the position of ships to the invention of radar, the key
interest has always been to allow humans to sense depth when their own capabili-
ties are insufficient.

This paradigm has changed as recent real-time depth sensing devices aim on
allowing machines to sense more than just distances. These machines should be
provided with ability to gather the complete three-dimensional (3D) scene infor-
mation including color comparable to how humans sense their environment. In
other words, it is no more the goal to create a tool to enhance human depth sens-
ing but to create machines that sense depth by themselves and further process the
information. This is usually done in order to support human tasks like manufac-
turing or navigation. The form of this support can vary from providing human
operators with precisely the relevant information they need for solving a certain
task to a complete automation of the process. In the latter case, there is no need
for any human operator.

There is another interesting aspect. On one side, many solutions exist nowadays
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Chapter 1 Introduction

to measure distances between large objects like cars or ships in circumstances that
would not allow any human to perceive anything. On the other side, sensors exist
that are able to detect bumps on surfaces in the range of a few microns that a
human could not sense. However, there is no sensor that is a able to sense in
both scales. This diversity is reflected in the research on robotics, where still
many tasks exist that humans can easily do while machines are far from finding
a solution. The robotics research community is somehow close to create a robot
that is “as intelligent as a sheep”1. However in practice today, most robots are
very specialized and hence restricted to a certain task.

One key aspect of this development are missing technologies for real-time depth
sensing in various conditions. This thesis presents approaches that enable the
implementation of such technologies.

1.2 Applications and goals in Computer
Graphics
While the scientific community of machine vision or Computer Vision (CV) fol-
lows the described goal of allowing a computer to sense and understand its envi-
ronment as completely as possible, the general purpose in the realm of CG is to
create images.

These images can be entertaining as in games or movies, informative as in data
visualizations or communicative as in teleconferencing. Applications following
the latter possibility might realize videoconferencing systems like the famous 3D
projection of Princess Leia from the first Star Wars movie. A teleconferencing
system like this can be seen as one ultimate goal in CG. Recent approaches [48]
are getting pretty close to this goal, however only the face of a person is trans-
ferred in this example. While the 3D display technology intuitively appears to be
the more challenging aspect, in the scope of this thesis we focus on the more fun-
damental problem of capturing enough reliable 3D data in order to allow a visual
3D representation like the one [49] used in the system of Jones et al. [48]. Think-
ing further of transferring 3D scene information leads to approaches that extend
television to 3D. These so-called 3DTV applications allow the viewers to freely
choose their point of view. This for example would allow everyone to follow a
football match from the perspective of the goalkeeper or a striker or even the ball
itself.

While 3D movies are entering home theaters, for such an immersive football
experience as described in the last paragraph, methods and technologies to capture
a 3D scene in real-time without intruding the game are still missing. At the time, it
is not possible to capture the complete data in order to redisplay it somewhere else.
Hence, it is necessary to deal with incomplete data and compute missing elements

1Sir Michael Brady at the Queen’s lecture, TU Berlin - 14.12.2011
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1.3 Reliability is the key

in order to provide the intended display experience. Here, the computer graphics
become an issue. Keeping the football example in mind, it is necessary to produce
images from each available perspective. If the perspective can be freely chosen
by the viewer at home, the creation of the images has to be done also at home,
because it is impossible to broadcast the whole space of perspectives. However,
a certain amount of 3D geometric information about the scene is indispensable to
produce reliable images. Therefore, fast imaging methods for depth and color are
necessary in the process of recreating 3D scenes in real-time. This thesis presents
approaches toward this goal and demonstrates among other things an exemplary
application for Augmented Reality (AR).

AR is a technology that combines real world video footage with virtual content.
If the virtual content is to be seamlessly integrated, it will be necessary to know the
geometry of the captured scene. Knowing the geometry enables real world objects
to occlude virtual content. Besides this, it becomes possible to calculate realistic
illuminations for the virtual objects including the cast of shadows onto real world
objects. Shadows and occlusion are one of the most important monocular depth
sensing criteria of the human visual system. Hence, their absence would strongly
disturb the immersion. If the virtual content is meant to be embedded in live video,
it will be further indispensable that the geometry information is available in real-
time. Real-time depth imaging provides this knowledge about the geometry and
we show that the methods developed for this thesis are capable of being used in
AR settings.

1.3 Reliability is the key
Before presenting a broad variation of methods that allow depth sensing in real-
time, we briefly want to discuss the most important point of all these systems:
reliability. We therefore depict examples from various fields of application.

Maritime navigation First, reliability is crucial if the sensor is used in the tra-
ditional form as a tool to replace the human depth sensing abilities. In maritime
navigation, one has to be sure that there is no other ship when navigating through
a narrow passage in the presence of fog. In such a case, a failing sensor can even
harm people.

Automotive applications If we transfer this application to the automotive area,
reliability is still crucial but in case of a driver assistance system, it is not the last
instance. Recent systems usually avoid collisions only if the car is moving with
less than 30km/h2. If the car is driving faster and a sensor detects an issue, the

2http://www.bosch-kraftfahrzeugtechnik.de/media/db_application/
downloads/pdf/safety_1/de_6/Vorausschauendes-Notbremssystem.pdf
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Chapter 1 Introduction

system will first warn the driver and then support his actions, while the respon-
sibility still lies in the hands of the driver. This will change if we think about
autonomous vehicles or robots that do not need any driver or operator. By now, in
general, robots are not allowed to operate in the same area as humans do. This se-
curity principle is standard due to the missing reliability of existing sensors. There
is no absolute evidence that the robot operates correctly and as it might harm peo-
ple nearby, such a setting is not permitted. Note that the reliability of humans
is limited as well, which makes the issue even more complex. In the remainder
of this thesis, we will consistently come back to examples from the automotive
area. On one hand, such examples are comprehensible due to the high occurrence
in every day situations. On the other hand, nowadays depth sensing devices are
already embedded in cars.

Gaming Another more recent field of application for depth sensing is the con-
sumer gaming market. Here, we can observe a trend away from classic input
devices like the gamepad toward more natural interfaces. These interfaces can be
small hand-held devices with inertia and acceleration sensors or even the user can
be the interface itself. Most prominently, Microsoft claims to promise “a gaming
experience that is safe, secure and fun for everyone” with their Kinect sensor3.
At first sight, the reliability of the system in case of a game seams less crucial.
However, due to the permanent and direct interaction between the user and the
device, any kind of error, such as delay, imprecision or interruptions, quickly cre-
ates a great deal of annoyance that potentially discourages and frustrates the user.
Finally, this could avoid acceptance of such a device as a reliable gaming interface.

Following these examples, we argue that reliability is the key for real-time depth
sensing. Hence it is always the goal in developing real-time depth sensors to reach
an as high as possible degree of reliance. This thesis presents approaches toward
this goal for ToF imaging.

In the realm of CG, we see this depth sensing technology as the most promising.
It provides depth and intensity data at very high frame rates. The compact setup
allows the combination with other cameras and sensors which is the second main
aspect of this thesis. Combining several depth imaging principles allows us to even
out the drawbacks of each principle. We demonstrate how systematic errors can be
reduced at low computational costs so that the real-time ability of the ToF imaging
devices is kept. In addition, our solutions are low cost and avoid any special
hardware or elaborate training periods. This makes them quickly applicable in
practice and reproducible. We claim that our approaches are an important step in
the development of real-time depth sensing toward utilizing machines with depth
sensing abilities that are comparable to humans.

3http://www.xbox.com/en-US/kinect(accessed:03.02.2012)
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1.4 Outlook
In order to reconstruct the previously described development from a human tool
to machine vision, the most promising depth sensing methods are described in the
following Chapter 2. As an introduction, we explore how humans sense depth in
order to understand some of the methods as they follow examples from nature.

In the subsequent chapter, we first introduce ToF imaging in general and dis-
cuss the issues that reduce the reliability of such sensors. In addition, we present
related work about reducing the errors of ToF cameras. Existing ToF cameras lack
reliability since they have strong constraints about the environments they are uti-
lized in. These depth sensors have no ability to capture color information which
is necessary for most applications in the field of CG. Their flexibility is further
narrowed as they have a reduced dynamic range.

Chapter 4 describes a proof-of-concept that the reliability of ToF imaging sys-
tem can be enhanced by combining these sensors with stereo depth sensing. We
combine a low resolution ToF depth image camera based on the photonic mixer
device (PMD) principle with two standard cameras in a stereo configuration. We
show that this approach is useful even without accurate calibration. In a graph
cut approach, we use depth information from the low resolution ToF camera to
initialize the domain, and color information for accurate depth discontinuities in
the high resolution depth image. The system is promising as it is low cost, and
naturally extends to the setting of dynamic scenes, providing high frame rates.
This chapter has been published as [36] and [37].

In Chapter 5, a system is presented that implements such a combining approach.
Besides enhancing the reliability of the data, it enables capturing color informa-
tion in real-time. We show some exemplary applications from the realm of AR.
We present a framework for computing depth images at interactive rates. Our
approach is based on combining ToF range data with stereo vision. We use a
per-frame confidence map extracted from the ToF sensor data in two ways for im-
proving the disparity estimation in the stereo part. First, we use the map together
with the ToF range data for initializing and constraining the disparity range. Sec-
ond, the map together with the color image information allows us to segment the
data into depth continuous areas, enabling the use of adaptive windows for the
disparity search. The resulting depth images are more accurate than from either
of the sensors. In an example application, we use the depth map to initialize the
z-buffer so that virtual objects can be occluded by real objects in an AR scenario.
This chapter has been published as [38].

In Chapter 6, the concept of confidence is further evaluated. We present the
adaptation of a method known from computational photography that allows us to
enhance the reliability and the dynamic range of a ToF camera in real-time without
the need of any calibration procedures in advance. This chapter deals with the
problem of automatically choosing the correct exposure (or integration) time for
ToF depth image capturing. We apply methods known from high dynamic range

5



Chapter 1 Introduction

(HDR) imaging to combine depth images taken with differing integration times in
order to produce high quality depth maps. We evaluate the quality of these depth
maps by comparing the performance in reconstruction of planar textured patches
and in the 3D reconstruction of an indoor scene. Our solution is fast enough to
capture the images at interactive frame rates and also flexible to deal with any
amount of exposures. This chapter has been published as [39].

In a concluding chapter, we summarize and discuss the presented approaches
and close the circle to our described development of real-time depth sensing from
a human tool to machine vision.

6



Chapter 2

Depth imaging
This chapter will be an overview about existing approaches to measure distances
between a sensor and solid objects with the aid of a computer. We focus on meth-
ods that provide not only single point distances but complete images. We only
deal with systems that ensure that the measurements are completed in real-time.
This means that the method should allow the capture of dynamic scenes. The
terms real-time and dynamic have to be handled with care. In the scope of com-
puter graphics and thereby this thesis, the universal goal is to produce images for
human inspection. Hence, the necessary dynamic temporal range is limited by the
human visual system. Humans are not able to distinguish between a fast sequence
of static images and real motion. We can exploit this fact – which is the founda-
tion for cinema – and call any imaging system that is able to produce at least 24
images per second a real-time imaging system.

In order to let the reader receive an impression on the complexity of the depth
imaging problem, we first give a brief introduction how humans perceive distance
information. A core contribution of this thesis is the depiction that the combina-
tion of several technologies leads to an improvement of depth sensing devices. We
show that the human visual system is combining several depth imaging method-
ologies, too. After that, we define the difference between imagery and imaging.
Then, we compare imaging methods according to their usability in various appli-
cations before we go into details about the most promising methods.

2.1 Human abilities for real-time depth
sensing
Vision The eyes are the first part of the human visual system. They collect
light and project it onto the retina from where it is further processed to the visual
cortex. The basic information that can be extracted from the incoming light rays
is color information. Visual depth sensing is therefore based on the processing of

7



Chapter 2 Depth imaging

the received color information.
Depth sensing is a learned ability and humans sense depth primarily by vision.

While the two human eyes allow stereopsis – the fusion of both images, then
extracting disparities and hence the reconstruction of the distance of any object
– the imaging quality is surprisingly poor. Helmholtz detached that the technical
properties of the eye are far from what is perceived by humans. He deduced that
many effects come from unconscious inference [119].

In order to reconstruct depth from two stereo images, the human brain, or more
precisely the visual cortex, has to find corresponding features in both retina im-
ages. Due to geometric properties, these features lie on a line through both images
– the so called epipolar line. This epipolar geometry has been used since many
years [21] to reduce the computation costs for stereo algorithms. Rectification
of the two stereo images restricts the search range for corresponding features to
a single line. Quite recently, Schreiber et al. [105] has found that humans move
their eyes in order to reduce the computational load for the brain. In other words,
humans tend to rectify their eyes which reduces the complexity of finding corre-
spondences by one dimension.

Besides Helmholtz’ explanation for human depth sensing, there is the ecolog-
ical approach which has been introduced by Gibson [29]. He claims that human
depth perception is strongly affected by the motion of a person. The optical flow
of feature points gives an impression of the position and direction of movement
of a person. In addition the surrounding environment is geometrically interpreted
based on texture gradients.

Similarly to stereopsis, these two principles of depth perception have both been
used in computer vision to extract depth information from images. First, so-called
structure from motion (SfM) approaches compute the optical flow from a sequence
of images and reconstruct the 3D information of the scene. Second, texture gradi-
ents have also been used to extract longitudinal surfaces from images [3].

Another important aspect for humans to judge the distance of objects correctly
are the so-called monocular depth criteria. These criteria include occlusion, per-
spective, relative size and height, but also atmospheric perspective, expected size,
shadows as well as the already mentioned texture gradients. While we refer to
the book by Goldstein [30] for a complete description of the human depth sensing
abilities, it is worth mentioning that humans estimate distances always according
to intended actions and the effort of these actions which is linked to the distance.
Hence, in contrast to machines, the visual human depth sensing does not only
depend on environmental influences but also on the personal condition.

Sound Sound is an alternative as vision is not given in all situations. Blind
people orientate from the surrounding noise (passive) or even try to use human
echolocation [117] (active).

After Goldstein [30], the human auditive system uses three principles in order
to localize an acoustic source:

8



2.2 Real-time depth imaging methods

1. Head-related transfer function (HRTF)

2. Interaural time difference (ITD)

3. Interaural level difference (ILD)

The HRTF describes how the sound signal is transferred to a spectral stimu-
lus in one ear and allows humans to sense the direction of a sound. Besides this
monoaural stimulus humans use both the difference in time as well as the differ-
ence in intensity between their left and right ear to localize an acoustic source.

Here we can extract technical principles. The acoustic localization uses trian-
gulation as the position is determined from the known geometry of the human
head. In addition, the HRTF can be compared to photometric approaches like
shape from shading (SfS). As the sound is perceived differently depending on its
source position, humans are able to localize the direction.

These principles are applied in several technologies that we describe in the next
section.

2.2 Real-time depth imaging methods
This section introduces several methods for real-time depth imaging. First, the
term depth or range imaging is defined and then several methods are discussed.
We classify the methods by their optical principles. This classification aims to
provide the reader with a general understanding of various depth sensing meth-
ods. This understanding is necessary in order to be able to comprehend the core
contributions of this thesis.

Preliminaries The MacMillan1 thesaurus defines imaging as “the process of
producing an image by using a machine that passes an electronic beam over some-
thing”, while the mathematical definition of an image from Wolfram Mathworld2

is as follows:
“If f : D→ Y is a map (a.k.a. function, transformation, etc.) over a domain D,

then the image of f , also called the range of D under f , is defined as the set of all
values that f can take as its argument varies over D, i.e.,

Range( f ) = f (D) = { f (X) : X ∈ D}.

’Image’ is a synonym for ’range’, but ’image’ is the term preferred in formal
mathematical writing.”

1http://www.macmillandictionary.com/thesaurus/american/imaging
2http://mathworld.wolfram.com/Image.html
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Chapter 2 Depth imaging

These contradicting definitions might lead to some confusion because the term
range imaging is very common in the computer vision community. We further dis-
tinguish between imaging and the term imagery, which indicates a set of images,
while imaging describes the process to produce this set.

Besl [6] defines “a range-imaging sensor [as] any combination of hardware and
software capable of producing a range image of a real-world scene under appropri-
ate operating conditions. A range image is a large collection of distance measure-
ments from a known reference coordinate system to surface points on object(s)
in a scene.” In this thesis, we use this terminology. In addition, we use depth
image and depth map as synonyms for range image. The term distance is used for
distances between two points not images.

Representation Note that Besl also lists a number of synonyms for range image
and illustrates common ways to display those images. A range image is usually
a matrix of numbers just as a conventional digital intensity image. Hence, the
natural representation is a gray-level image where the intensity does not refer to
the irradiance or brightness as in conventional images but to the distance of an
object point to the sensor’s center. Additionally, this data can also be displayed as
a surface plot which might provide a better 3D impression to the viewer. Besides
this, there are contour maps that are mainly used in cartographic applications and
therefore outside the scope of this thesis. Figure 2.2 shows different representa-
tions of the same scene produced by the MATLAB functions imagesc, surf and
contourf. Note that the intensity is always proportionally mapped to the distance,
that is why objects further away are brighter than close ones.

(a) Gray-level intensity (b) Surface plot (c) Contour plot

Figure 2.1: Exemplary representations of a depth image.

Performance measure We follow the classification of Besl in six different op-
tical principles: radar, active triangulation, Moiré, holographic interferometry,
focusing and Fresnel diffraction. Additionally, we include a seventh category
named passive triangulation that includes stereo imaging which has become a
well-studied topic during the last decades and is applied in our approach. In or-
der to compare recent existing approaches that are based on different principles in

10



2.2 Real-time depth imaging methods

terms of performance, we define – as proposed by Besl – the merit of performance

M =
Lr

σr
√

T

where Lr is the depth of field, σr is the root mean squared (RMS) range accuracy
and T is the pixel dwell time – the time required for a single pixel measurement.
This merit allows the comparison of sensors independent from their underlying
principles. In this thesis, we compute the merit for chosen recent systems in order
to give an impression on the development of the methods, while Besl [6] gives a
rather complete overview about existing systems in 1988. Such a complete survey
is not the aim of this thesis, therefore only some relevant systems are described in
the following.

Radar The radar principle is simple: send out a signal and measure the time
until the reflection arrives. This principle is used by animals like bats [32] and
porpoises [56], but also by blind humans [117]. In 1904, Christian Hülsmeyer
demonstrated a first working prototype that detected a ship in over 100 meters
distance [113]. After this initial proof of concept the technology was further de-
veloped until it became extensively used in World War II. Nowadays every ship
and airplane has to be equipped with a radar sensor. Additionally, most new cars
use radar technology to sense distances between the car and surrounding objects.
This enables the car to e.g. support parking or to trigger emergency brakes.

The term radar is generally used for depth sensing methods that emit and re-
ceive any kind of radio waves – radar stands for radio detection and ranging. As
radio waves are transmitted with speed of light, the challenge is to measure the
time between emission and reception as precisely as possible. We call this the
time-of-flight (ToF). This can be realized by modulating the signal. A modula-
tion changes the characteristics of a signal so that information can be embedded
into the signal. If a periodic sinusoidal carrier signal is used, either frequency,
amplitude or phase of this signal can be modulated in order to encode informa-
tion. Measuring these characteristics is simpler and allows time measurements in
a range that is adapted to the application.

In the field of machine vision, there are many approaches using a specialization
of radar called light detection and ranging (LIDAR). In this case, light is emitted
and received by photo receptors. Again, the light has to be modulated as the ToF
is hardly measurable directly. Note that there are recent technologies that allow
such measurements in laboratory environments [84].

There is a dichotomy between scanning and scannerless technologies. In scan-
ning technologies usually a laser beam sweeps over the target and thereby scans
the object. More recently, infrared (IR) light emitting diodes (LED) have been
used to avoid this scanning procedure as it involves movable parts that are prone
to errors from drift or other mechanical issues. Note that the term laser scanner is
also common even if a different optical principle namely triangulation is used.

11
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As one of the first LIDAR devices, in 1977 Nitzan et al. [87] presented a one-
dimensional (1D) scanner that uses a single laser beam and a scanning mirror that
controls the direction of the laser beam. The scanner produces 128× 128 pixel
images at a range of 1 – 5 m while the resolution is about 1 cm. It usually takes up
to 2 hours for one image. The exact time depends on the reflection properties of
the scene as the integration time is adapted per pixel. The system reaches a merit
of MNitzan = 3770.

Nitzan et al. identify that the dominant noise is photon noise due to bad re-
flections. They conclude that the high dynamic range of such systems is the key
problem with ToF sensing. The dynamic range can exceed 100 dB as there is a
large difference between close and bright (or highly reflective) objects and ob-
jects located far away from the sensor as well as dark ones. Nitzal et al. calibrate
the system using “a standard white-mat sample made by spraying 20 thin layers of
barium sulfate on an aluminum substrate” whose reflection properties at the wave-
length of the laser are known. This allows to make assumption on the error of the
system and therefore gives an intention on the reliability of the measurements.

Following Besl [6], there are many possible variations of the radar principle
that depend on the modulation of the emitted signal. Two prominent variants
for LIDAR systems are pulse-code modulation and amplitude modulation. All
the systems Besl described in 1988, suffer from the necessity to scan the scene
and therefore, the maximum possible frame rate is limited. Not until the late
1990ies this limitation vanished, when for both modulation schemes a chip has
been developed that allows a parallelization.

On one hand, we have so called ToF-cameras based on the PMD principle [108,
83, 124]. Here, the reference signal is an amplitude modulated near-infrared (NIR)
light front that illuminates a whole scene. The reflections are captured by a chip
that is able to correlate the received signal with the reference signal per pixel. By
now, this allows a parallel measurement of about 200×200 depth values. The chip
is based on complementary metal-oxide-semiconductor (CMOS) architecture and
is therefore mounted as a regular camera using standard optics resulting in a field-
of-view of 40◦ by 40◦. For the commercially available PMD[vision] CamCube
3.0 camera, the merit of performance is MPMD ≈ 2825000.

Figure 2.2: Nano-shutter camera operation principle (extracted from [35, 92]).

On the other hand, there are ToF cameras using a so-called nano-shutter that
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E

R

O b

dOR

dEO α

β

γ

Figure 2.3: The triangle between object point O, emitter E and receiver R.

has been developed by Iddan and Yahav [47]. It allows to cut a light front so that
the captured intensity directly relates to the distance of the object. This process
is illustrated in Figure 2.2. Only few research has been done about the precision
of this sensor. While Gvili et al. [35] show that the sensor is utilizable in ap-
plications like depth keying, Radmer and Krüger [92] present absolute distance
measurements with an offset of more than 20%.

As already predicted by Nitzan [87] in 1977, the ToF principle is very promis-
ing and so many manufacturer provide commercially available devices. Recently,
Piatti [91] gives an overview and comparison of available devices. The principle
of measuring direct reflections allows very compact form factors that even allow
endoscopic applications [90]. This is the main advantage of this methods against
active triangulation.

Active triangulation Simply said, triangulation is realized by setting up a trian-
gle between object O, receiver R and emitter E. The distance dOR between object
and receiver can be reconstructed, if one side and two angles of the triangle are
known. Usually, the distance between receiver and emitter is known as the base-
line b which forms one side of the triangle. From both the emitter and the receiver
the direction of the signal toward the object has to be known. These directions
hold the adjacent angles α and γ. We derive

dOR =
bsinα

sinβ

where β is the opposing angle to the baseline b as depicted in Figure 2.3. Its value
derives from the fact that all three inner angles of a triangle sum up to 180◦.

We conclude that any depth sensing method based on triangulation needs to
be able to determine three parameters: the baseline, the direction of the received
signal and the direction of the emitted signal.

The classic active triangulation device is a laser scanner. It is built up of a laser
diode the emits a light beam and some receiver that is able to detect the reflection
of the light beam. The baseline is formed by these two units and each of them has
to be able to determine the direction of the signal which is the light ray in this case.
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Figure 2.4: Camera-centered active triangulation geometry from [6].

The laser is therefore either mounted on a sweeping device or more commonly in
front of a tilting mirror in order to scan the scene. As receiver a camera can be
used that is sensitive to the wavelength of the laser beam. This sensitivity allows
a fast detection of the reflection that is necessary to determine the direction.

Figure 2.4 illustrates how the measurement is realized in practice. The 3D
coordinates of a 3D point O = (x,y,z)T can be computed as

O =
b

f cotθ−u
I

where f is the focal length of the camera, θ is the projection angle of the emitted
beam and I is a vector (u,v, f )T containing the pixel coordinates u and v as well
as the focal length.

This process can be further enhanced by emitting a plane of light instead of a
single ray. This produces a deformed line in the receiver image from which the
distance can be calculated.

Such a system allows a very high precision and has been successfully applied
for cultural heritage in the Digital Michelangelo project [67]. Here, the focus lies
on high precision. The acquisition time does not influence the quality as only static
scenes like the David statue have been scanned. Nevertheless, there are efforts to
enhance the acquisition speed of laser scanning devices. The key drawback are the
moving parts that are necessary to sweep the emitted signal and scan the object.
This makes these devices either imprecise or very costly.

14
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At the one end of the spectrum there is the DAVID 3D scanner3. Here, the
sweeping of the laser has to be done manually by a human operator. This makes it
not applicable in industrial applications as the scanning process is not repeatable.
At the other end, we have professional scanning products like the FARO Focus
3D4 that captures 976 000 measurement points per second or the Velodyne HDL-
32E5 with 700 000 3D points per second.

For the Faro Focus 3D, this results in a merit of MFaro = 12349000. However,
even products with such a high merit do not necessarily provide real-time depth
images. The scanning process for the FARO Focus 3D – with an field of view of
360° in horizontal and 300° vertical direction – takes a couple of minutes. If we
assume real-time – as in conventional video – needs at least 24 frames per second
(fps), we would have to reduce the field of view of the laser scanner to less than
2◦ in both (horizontal and vertical) directions.

In order to capture dynamic scenes in 3D the process of triangulation can
be highly parallelized. All existing approaches have already been presented by
Besl [6] in 1988. While active triangulation methods can generally also be called
structured light methods, in recent literature the term structured light is mainly
used for approaches beyond point and line. Besl names five further categories
– Miscellaneous, Coded Binary Patterns, Color Coded Stripes, Intensity Ratio
Sensor and Random Texture.

The last method of random textures has recently become very popular through
the Microsoft Kinect device. This sensor emits a random dot pattern in the NIR
range and captures this scene with a camera. From the deformation of the pattern,
the depth information is reconstructed. The system captures depth images at a
resolution of 640× 480 pixels in a range of 0.5 to 5 m at 30 fps. We follow
the analysis of Khoshelham [57] and assume a precision of 4 cm at the maximal
distance – the error increases quadratically with the distance. This results in a
merit of performance MKinect = 341530.

As there is no official detailed description about this algorithm there are plenty
highly speculative explanations around. Victor Castaneda and Nassir Navab give
a good overview in their lab course slides6, however it is based on assumptions
and unreferenced images from patents. There are three patents [26, 127, 25] by
PrimeSense that explain the principle. The authors have further published two
articles [27, 81] that describe the novelty. The pattern of the projection depends
on the distance. For each distance the pattern has to be determined once in a
preprocessing step. Then the distance is computed by a cross-correlation of image
parts with the predefined distance patterns. The depth resolution in this approach
is limited on one hand by the spatial resolution of the camera that captures the
projection of the pattern and on the other hand by the computation of the cross-

3www.david-laserscanner.com
4www.faro.com/focus/
5http://velodynelidar.com/lidar/hdlproducts/hdl32e.aspx
6http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/
2011-DSensors_LabCourse_Kinect.pdf
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correlation. For the Kinect sensor, this approach has been realized for only three
different distance levels so-called reference planes while the precise distance is
determined by the shift of the speckle pattern as illustrated by Khoshelham [57]
and in Figure 2.5. The unknown distance Zk can be computed by

Zk =
Zo

1+ Zo
f bd

where d is the observed disparity in image space. The reference distance Zo, the
focal length f and the baseline b have to be determined by calibration.

Figure 2.5: Active triangulation and disparity with reference plane from [57].

As a first observation, we can maintain that it is promising to combine several
basic principles like in this case the active triangulation with speckle interferome-
try. We will discuss this aspect further in the remainder of this section.

Passive triangulation Note that so far we have only described active triangu-
lation. If the emitter is replaced by a second receiver, a passive stereo setup is
created. Passive stereo is one of the humans depth sensing methods as described
in Section 2.1. Therefore it is intuitively a very promising method toward a hu-
manoid machine vision. Thus, we briefly discuss stereo imaging in the following,
although it is not included in the survey of Besl [6]. For a complete mathematical
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description we refer to the books of Faugeras [16] as well as Hartley and Zisser-
man [40].

Passive stereo imaging strongly suffers from its high computational load. In
order to calculate the triangulation, corresponding points or features have to be
matched in both images. The offset between the points in the two images is called
disparity. From the disparity the distance can be calculated if the intrinsic and
extrinsic parameters of both receivers – usually cameras – are known. We refer to
the paper of Zhang [128] for a complete description of the camera parameters.

While the problem of finding corresponding points can be reduced to a 1D
problem by rectification of the camera images, it remains ill-posed. Due to occlu-
sions, some parts of the one image are not visible in the other and hence no depth
information can be extracted from the disparity for these parts. This makes the
matching problem difficult as it introduces features that do not have a matching
counterpart.

Most of the existing matching algorithms define a cost function that returns
a probability that two pixels from different camera images refer to the same real-
world object point. These cost functions compute a so called feature that is defined
on a small area around the image point as a single pixel does not hold enough
information. The larger this area the higher the computational load. However, the
reliability grows with the area as long as depth homogeneity is given – this is the
case if the area only covers the same real-world object. The determination of this
coverage is essential for adapting the size of the area. A solution for this problem
is presented in Chapter 5.

Usually, the cost function returns values according to the similarity of the fea-
tures, therefore both cameras should provide similar images in terms of sharpness,
brightness and contrast. To achieve this the field of view should overlap as much
as possible. However, a longer baseline allows more accurate results because the
determination of angles in the triangle is limited by the spatial resolution of the
cameras. Alternatively, it is possible to compute features that are independent of
some of the image properties, however their computation is costly again. This
issue is discussed in detail by Szeliski [110].

A further issue with stereo correspondence is specularity. Specular reflections
are viewpoint dependent, hence specular highlights in the left and right stereo
image occur on slightly different positions. Unfortunately, specular highlights
represent a good feature and look similar in both images. Therefore, there are
approaches to preprocess the images and detect or even remove the specular high-
lights [68].

For a complete overview about stereo algorithms and their performance, we
refer to the Middlebury website7 that provides test data in order to make all the
existing approaches comparable. The website offers a benchmark and gives an
overview about the performance of most of the existing algorithms. A complete
description of their methods is given by Scharstein and Szeliski [100].

7http://vision.middlebury.edu/stereo/
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While already Nitzan et al. [87] claims that the future lies in triangulation and
ToF, we discuss the remaining four optical principles from Besl [6] only very
briefly in the following.

Moiré Two diffraction gratings are used to project two patterns onto a surface.
The relative depth can be extracted from the phase difference of the projected
overlaying patterns. We refer to Bartl et al. [4] for a more recent review of this
method. It allows the detection of surface roughness in the range of microns.

Fresnel diffraction Similar to Moiré this method is used to measure surface
roughness. It is based on the Talbot effect [111] for diffraction gratings which is a
natural consequence of Fresnel diffraction. This effect leads to repeating patterns
of diffracting light at a distance that depends on the wavelength of the light and
the period of the grating [118].

Holographic interferometry This method is also very similar to Moiré, but
here, holographic fringe patterns are used instead of diffraction gratings. This
results in an even smaller depth of field.

As all of the last three methods are based on special optical effects and are
applied in the field of surface analysis, we refer to the book of Kreis [63] for
details. However, as already mentioned in the paragraph on active triangulation,
these concepts are successfully included in recent real-time technologies like the
Microsoft Kinect sensor.

Focusing Knowing the focal length of the camera allows to reconstruct depth
from the amount of how much an object is in focus. While the principle – often
also called depth from focus – has been evaluated by Grossmann [33], Nayar et
al. [85] present a system for real-time depth imaging. While their system reaches
a merit of MFocus = 1357600, it is also a combination with other approaches as
it includes the active projection of a pattern. They use this approach to overcome
the problem of the need for high-frequent textures that every passive stereo system
has. They use a video projector including a lens and hence a focal length. The
projected pattern is in focus only a one certain distance. From the amount of defo-
cus the distance of the object can be obtained. This concept has also influenced a
combining approach by Jones and Lamb [50]. They manipulate a camera by cre-
ating two apertures. These apertures lead to the projection of two stereo images
onto a single image plane. The disparity information has to be extracted from a
single image which introduces new issues e.g. the separation of the images.

18



2.3 Conclusions from depth imaging methods

2.3 Conclusions from depth imaging
methods
The general depth sensing methods presented in the last section are clear in their
general approach. The radar principle allows a broad range of applications. How-
ever it is not trivial to tune a radar setup to the specific conditions where it will be
used. In the last two decades, the invention of PMD allows real-time depth imag-
ing of scenes that are comparable with human sensing capabilities. This leads
to the possibility to capture scenes in a similar way as in standard photography.
However, it is technically challenging to produce depth imagery that is reliable and
contains only a limited amount of noise. The noise and limitations in the produc-
tion lead to systematic errors for PMD based ToF imaging that will be described
in detail in the following chapter.

In contrast, triangulation methods suffer from the necessity of the triangle as
illustrated in Figure 2.3 on page 13 in the last section. This concept will always
lead to missing information about those parts of a scene that are not visible – or not
reachable in case of active illumination – by one of the receivers due to occlusions.
Occlusion handling is therefore necessary for all real-time depth sensing methods
based on triangulation. In addition, occlusion handling is not trivial and therefore
introduces higher computation costs that reduce the speed of acquisition which is
crucial for real-time depth imaging.

As mentioned, it is promising to combine these general concepts as all methods
based on a single concept suffer from systematic errors that come with the concept.
This thesis presents solutions to overcome these problems by combining concepts
from different fields. All these solutions are predicated on the utilization of ToF
cameras based on the PMD principle – also called PMD cameras – that provide
erroneous depth images in real-time. We combine these cameras either with other
hardware but also software concepts that allow an elimination or at least reduction
of the errors.

In the following chapter, we explain the basic working principle in detail and
present a set of assumptions that all lead to various errors in the captured data.
These insights have to be kept in mind when the core contributions of this thesis
toward real-time depth imaging are presented in the remainder.
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Time-of-Flight Imaging
There are several manufacturers that sell PMD based ToF cameras. For a recent
overview, we refer to the already mentioned PhD thesis by Piatti [91] and the cor-
responding Wikipedia article [123]. Since these cameras are commercially avail-
able, they are being used in several research groups. Most commonly, research
projects use the products of PMDTec/ifm electronics1 and MESA Imaging2. Fig-
ure 3.1 displays two exemplary cameras from their product line. While PMDTec
evolved from research at the University of Siegen, MESA Imaging is a spin-off
from the ETH Zurich. They both provide cameras that are based on the PMD
principle and they are the first who put their products on the consumer market.
Another company called Canesta has been bought by Microsoft in the process of
emerging technologies for Project Natal which evolved in the already mentioned
Kinect sensor. Canesta offered also ToF cameras that are based on the same basic
principles but there is no more contact information available.

Note that the term time-of-flight camera is used for all kind of cameras based on
the ToF principle. We differ between amplitude modulation, pulse-code modula-
tion and nano-shutter approaches. The cameras used in the experiments presented
in this thesis are based on the PMD principle which belongs to the amplitude
modulation and works with uncorrelated light from sources like LEDs. This is
explained elaborately in the following section.

When seeing a live demonstration of the depth image produced by the sensors
for the first time, most researchers are impressed. However, they immediately
remark the strong noise in the data. The data is not constant over time for static
scenes. If the depth is intensity or color coded this effect is clearly visible. If the
depth data is rendered in 3D, flat surfaces look more like troubled waters than wall
or table surfaces as illustrated in Figure 3.2. When capturing a human head, the
noise makes it hard to distinguish even prominent features as the nose and eyes.
Images of surfaces textured with a checkerboard pattern disclose that the distance
measurement depends on the reflectivity of the captured objects. We will discuss

1www.pmdtec.com
2www.mesa-imaging.ch

21

www.pmdtec.com
www.mesa-imaging.ch


Chapter 3 Time-of-Flight Imaging

(a) Mesa Imaging SR 4000 (b) PMDTec PMD[vision] CamCube 3.0

Figure 3.1: Two exemplary PMD based ToF cameras.

this behavior – illustrated in Figure 3.7 on page 34 – in Section 3.2.
From the trends in the publications at one of the first workshops about PMD

based ToF imaging3, we assume that all these observations lead to the fact that the
first step in many research groups was thinking about how to reduce this error. The
data is that noisy that existing methods and applications from the field of computer
graphics are not applicable directly. The captured depth data has to be processed
in advance.

In the following, the basic working principle of the ToF cameras based on the
PMD concept is explained in detail. After that, the known error sources are ex-
plained and existing literature that aims on the correction of these errors is revis-
ited and discussed.

3.1 Basic principles
As pointed out in Section 2.2, the ToF imaging principle is basically radar. The
device emits a signal and receives its reflection. For the cameras used in the scope
of this thesis, the emitted signal is an amplitude modulated light signal in the NIR
range. The light is reflected by the objects in a scene and these reflections are
captured by a sensor. The sensor measures not just the amount of incoming light
but also the phase of the signal. As the phase of the emitted signal is known, the
phase shift between emitted and received signal can be measured. Knowing the
frequency of the signal allows to reconstruct the time the signal needed to travel
from the emitter to the object and back to the receiver. When this time-of-flight td

3Dynamic 3D Imaging Workshop in Conjunction with DAGM, September 11th 2007, Heidelberg,
Germany, http://www.zess.uni-siegen.de/pmd-home/dyn3d/workshops/
2007/
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Figure 3.2: Depth data of a wall rendered in 3D.

is known, the distance d can theoretically be calculated as

d =
ctd
2

where c denotes the speed of light. As it is challenging to measure the time-of-
flight td directly, the modulation frequency f is used for a substitution. The phase
delay ϕ can be measured and is directly proportional to the time-of-flight td . With

td =
ϕ

2π f
,

the distance can be computed as

d =
cϕ

4π f
.

Hence, the challenge is simplified to measure the phase delay ϕ of the reflected
signal. This is done on a special chip called PMD. Details about the chip design
is given by Lange [65]. In the following, this measuring procedure is explained in
detail.

In literature, there are several variants describing how to compute the depth in-
formation from the phase delay of the signal. These descriptions range from very
simple but incorrect to highly accurate but barely comprehensible. While Kolb et
al. [61] provide a clear but compact and hence simplified explanation, Frank et
al. [22] give a precise definition that emphasizes the mathematical properties. In
the scope of this thesis, we follow these two references, as we want to provide a
clear and precise explanation that allows the reader to comprehend our approaches
on enhancing the real-time imaging properties of ToF cameras.
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Derivation The emitted reference signal R(t) and the reflected optical signal
S(t) are correlated on the camera’s chip. Both signals have the same modulation
frequency f that leads to the same angular frequency

ω = 2π f .

As described by Frank et al. [22], “on the camera chip the backscattered optical
signal is converted to an electronic signal and immediately correlated with the
original reference signal at several phase shifts”. Kolb et al. give a more intuitive
description saying that the correlation signal is sampled. The sampling is realized
by correlating the reflected signal with N = 4 phase shifted reference signals. In
practice, these phase shifts are defined as

αn =
2πn
N

, n = 0, . . . ,N−1.

The on-chip correlation leads to N raw intensity values

In =
1

t ′1− t ′0

∫ t′1

t′0
R(t−αn)S(t +ϕ)dt

where ϕ is the phase we want to extract. The interval T = t ′1− t ′0 represents the
integration time. This integration time is comparable to the exposure time in con-
ventional photography. The operator of the device has to define it for every mea-
surement which is a crucial step as explained later in this section.

We can now shift the interval in order to simplify the formula and get

In =
1

t1− t0

∫ t1

t0
R(t)S(t +αn +ϕ)dt (3.1)

while T = t ′1− t ′0 = t1− t0. Note that the integration time T is always an integer
multiple of a full period T ′ = 2π/ω.

The integration time T ? set by the operator is four times the integration time
T as the pixel samples only one phase shift during a period. It is technically
possible to do all four samples during a single period but has some drawbacks as
explained by Lange [65] in more detail. In practice the sampling is successive
which increases the overall integration time T ?, but reduces misalignment of the
phase due to motion.

We further assume the emitted signal to be harmonic – which is not true in prac-
tice, however the calculations done by the firmware are based on this assumption.
The thereby emerging error is further discussed in Section 3.2. For an analysis
of the phase reconstruction from anharmonic functions, we refer to the work of
Frank et al. [22] or the diploma thesis of Rapp [94].

In order to extract the phase information from the four raw intensity values In,
we define the emitted reference signal as

R(t) =CR +AR cos(ωt)
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and the reflected optical signal as

S(t +αn + td) =CS +AS cos(ωt +αn +ϕ).

Putting this into the correlation equation 3.1 gives four terms

In =
1

t1− t0

∫ t1

t0
(CR +AR cos(ωt))(CS +AS cos(ωt +αn +ϕ))dt

=
1

t1− t0

∫ t1

t0
CRCS dt

+
1

t1− t0

∫ t1

t0
CS AR cos(ωt)dt

+
1

t1− t0

∫ t1

t0
CR AS cos(ωt +αn +ϕ)dt

+
1

t1− t0

∫ t1

t0
AR AS cos(ωt)cos(ωt +αn +ϕ)dt.

The first term is substituted to

1
t1− t0

∫ t1

t0
CRCS dt =CRCS =C.

The second and third term both become zero as the integration time t1− t0 is much
larger than the inverse of the modulation frequency as pointed out by Rapp [94].
With a further substitution ARAS = A′ we derive

In =C+
A′

t1− t0

∫ t1

t0
cos(ωt)cos(ωt +αn +ϕ)dt.

Now we use the Euler identity to factorize this equation again into four terms

In = C+
A′

t1− t0

∫ t1

t0

1
2
(
eiωt + e−iωt) 1

2
(
eiωteiαneiϕ + e−iωte−iαne−iϕ)dt

= C+
A′

t1− t0

∫ t1

t0

1
4
(
eiωteiωteiαneiϕ

+ e−iωteiωteiαneiϕ

+ eiωte−iωte−iαne−iϕ

+ e−iωte−iωteiαneiϕ)dt.

From the second and third term the e−iωt parts are canceled out. Hence the whole
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equation can be reorganized to

In = C+
A′

t1− t0

∫ t1

t0

1
4
(
e2iωteiαneiϕ + e−2iωte−iαne−iϕ

+ eiαneiϕ + e−iαne−iϕ)dt

= C+
A′

2(t1− t0)

∫ t1

t0

1
2
(
e2iωteiαneiϕd + e−2iωte−iαne−iϕ)dt

+
A′

2(t1− t0)

∫ t1

t0

1
2
(
eiαneiϕ + e−iαne−iϕ)dt.

The Euler identity again gives two integrals

In = C+
A′

2(t1− t0)

∫ t1

t0
cos(2ωt +αn +ϕ)dt

+
A′

2(t1− t0)

∫ t1

t0
cos(αn +ϕ)dt.

The first one becomes zero again because of the integration time being an integer
multiple of the period. Removing this term and computing the remaining second
integral – which is constant – leads to

In = C+
A′

2(t1− t0)
cos(αn +ϕ)(t1− t0)

= C+
A′

2
cos(αn +ϕ).

The last step is to derive the formulas for the phase ϕ in order to be able to com-
pute the distance values as intended. Therefore, we finally substitute A′

2 = A and
compute the raw intensity values for each phase shift αn = 2π

n
N with n = 0,1,2,3.

From

I0 =C+Acos(ϕ) (3.2)

I1 =C+Acos(
π

2
+ϕ)

I2 =C+Acos(π+ϕ)

I3 =C+Acos(
3π

2
+ϕ)

we derive from trigonometric equalities

I0 =C+Acos(ϕ) (3.3)
I1 =C−Asin(ϕ)
I2 =C−Acos(ϕ)
I3 =C+Asin(ϕ).

From these four raw intensity values that are captured by the camera for each
pixel, we can further derive formulas to compute three images: phase, intensity
and amplitude.
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Phase Solving this equation system for the phase ϕ is realized by building the
differences in order to cancel the intensity C

I3− I1 =−2Asin(ϕ)
I2− I0 =−2Acos(ϕ)

and dividing them

I3− I1

I2− I0
=
−2Asin(ϕ)
−2Acos(ϕ)

= tan(ϕ).

This finally holds

ϕ = arctan(
I3− I1

I2− I0
). (3.4)

As mentioned by Rapp [94], it is necessary to take care that the results span the
full unambiguity range [0,2π] as it is done by the arctan2 function in programming
languages like MATLAB.

Intensity Besides the phase, it is possible – and realized in the firmware of most
ToF cameras – to compute an intensity and an amplitude image. The intensity C
is simply computed as the sum of all four raw intensity values makes

I0 + I1 + I2 + I3 = 4C

because the second terms from the equations 3.3 sum up to zero. The final inten-
sity value

C =
1
4
(I0 + I1 + I2 + I3) (3.5)

results in an image that resembles conventional camera images. However it is dis-
torted as the reflection properties in the NIR range differ from them in the visible
spectrum. In terms of image quality these intensity images are not comparable to
existing camera technologies for video or movie production. Besides the missing
color, the intensity images from PMD cameras have a very low spatial resolution
and their image aesthetics suffer from the strong direct illumination of the scene
by the NIR emitters.

Note that the PMD[vision] CamCube 3.0 measures four additional raw intensity
images. These images hold the inverted signal and therefore allow to compute an
image that does not contain any signal information [72]. We refer to the disserta-
tion of Lange [65] for technical details. This enhances the image quality because
the influence of the direct lighting is reduced.

Amplitude Another property of the correlated signal is the amplitude. This
value is important as it is an indicator whether the sensor is saturated or not. It can
be extracted from the differences

I3− I1 =−2Asin(ϕ)
I2− I0 =−2Acos(ϕ)
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by squaring and adding them leading to

(I3− I1)
2 +(I2− I0)

2 = 4A2(sin2(ϕ)+ cos2(ϕ)) = 4A2

as sin2(ϕ)+ cos2(ϕ) = 1. The amplitude is finally defined as

A =

√
(I3− I1)2 +(I2− I0)2

2
. (3.6)

Summary It has been described how and which information can be extracted
from a ToF sensor. The resulting three images form the basic data that is used in
all depth imaging applications utilizing a ToF camera. In the following section,
we discuss the reliability of this data. We reflect assumptions that result in various
errors and discuss their effect on the application of the data in the area of CG.
Besides describing these error sources several approaches to correct the error are
presented.

3.2 Errors and noise
This section provides an overview about the existing and examined systematic
errors of PMD based ToF cameras.

Preliminaries While the term error usually refers to the absolute difference
∆d = |d−d?| between a measured distance d and the true distance d?, we distin-
guish between spatial and temporal errors. ToF cameras do neither provide tem-
porally nor spatially constant measurements. The temporal error is often called
repeatability or repetition error. It can be indicated by capturing static scenes
over a period of several (usually approx. 50) frames and calculating the standard
derivation.

In order to determine the spatial error, it is necessary to define a ground truth.
There is a general concept in order to indicate this error. It needs a specialized
setup and are therefore not easy to implement. Generally, a setup is constructed
where the ground truth for the distance measurement can be defined. On one hand,
this can be done by using a measurement system which has smaller error and a
higher depth resolution – researchers have therefore used a laser scanner [98] or
laser range finders [93]. On the other hand, sensor and target can be placed at
a known distance to the sensor. This method is more widespread as the setup
is inexpensive and easy. Rapp [94] as well as Kahlmann et al. [51] used a high
accuracy distance measurement track line. While Lindner and Kolb [70] do not
mention any special equipment to measure the ground truth in their first work
on calibration, they used a checkerboard pattern and additional high resolution
charge-coupled device (CCD) cameras in their second approach [71]. Schiller,
Beder and Koch [102] also used this setting and in a conjoint approach [76] they

28



3.2 Errors and noise

compare two calibration methods with and without the support of a CCD camera.
Note that the term calibration refers to the process of comparing measurements
with the ground truth [120] and finding a mathematical model that corrects the
measurements as precise as possible. In the remainder of this thesis, general ap-
proaches are presented that are capable of reducing the spatial and temporal error
of ToF cameras. These approaches differ from related work [69, 101] by avoid-
ing the necessity to capture a huge amount of ground truth data. In addition, our
approaches aim on extending the range of application instead of solely increasing
the precision of the measurements.

In most other theses [28, 65, 69, 104] about ToF imaging, the authors depict
existing errors by first describing the error, then explaining the sources and finally
presenting solutions to reduce the error. In this thesis, we look at the underlying
assumptions that lead to the specific error in order to facilitate a deeper under-
standing of their occurrence for the reader. We further discuss the assumptions in
the context of possible applications and try to give practical examples whenever it
is appropriate.

All of these errors occur from the fact that the distance calculation is based on
certain assumptions. However, these assumptions are not valid in practice and lead
to minor and mayor errors. In the following, the errors are presented in coherence
with the underlying assumptions. Note that not all these assumptions are claimed
by the camera developers explicitly. Some of them are just implied from how
cameras work in general.

Assumption: The reference signal is sinusoidal. Unfortunately, it is techni-
cally very difficult to create a completely harmonic optical oscillator. Nevertheless
the firmware of the PMD camera assumes such a completely harmonic reference
signal and computes the depth values as described in the previous Section 3.1. In
practice, the reference signal is not harmonic and hence it contains higher order
frequencies or anharmonics. Anharmonics are the difference (deviation) of the
modulated light signal sent out by the LED arrays from a sinusoidal signal. As
shown in great detail by Rapp [94], this leads to a so called wiggling error. He
calls this behavior wiggling, as the error changes like a wave in dependence of the
object distance.

There are two approaches to reduce this spatial error. The first approach is
to reduce all errors independent from their origin by calibration. Here, a lot of
measurements of known scenes are recorded in order to find a function that maps
measured values to true distance values. There are several variations of this func-
tion in the literature. Lindner et al. [76] give an overview about these complete
approaches.

The second approach is on the reduction of only the wiggling error. It is based
on the measurement of the outgoing reference signal which is assumed to be sinu-
soidal. Therefore a photo diode and an oscillator that work in the Terahertz (THz)
range are necessary. Rapp [94] has compared the outputs of several commercially
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available sensors in 2007. He shows that all signals contain higher frequencies
and hence considering this in the phase reconstruction computation leads to im-
proved accuracy. While Rapp proposes to change the demodulation scheme by
using a higher order Fourier series instead of the assumption of sinusoidal signals,
Lindner et al. [74] claim that the wiggling error can be reduced by combining
the standard sinusoidal demodulation scheme with a rectangular one. Here, the
reference signal is assumed to be rectangular and hence the correlation function
turns out to be triangular. This allows a reconstruction scheme that needs only a
low number of reference images while being fast to compute. Unfortunately, this
approach turns out to be less effective than complete approaches that rely on a cal-
ibration model that has been obtained from a larger number of reference images
like the one presented earlier by Lindner and Kolb [70].

The assumption that the reference signal is harmonic is ambiguous. On one
hand, the absolute distance measurements are less reliable while the computation
cost of reconstructing the depth from the raw phase signal is low. This results
in high frame rates at the cost of precision. In addition, the production costs
would rise if the illumination units are manufactured in a different way that allows
the emission of harmonic reference signals. This trade-off is directly reflected in
the application. PMD cameras are used where fast response times are crucial
like in interaction tasks. Interestingly, the low precision is also no issue in car
safety applications like pedestrian detection. Here, it is not important whether the
pedestrian is 2.5m or 2.7m away. The sensor has just to determine whether there
is a pedestrian or not and whether the emergency brakes have to be activated or
not. However, if the sensor is to be used to control the distance to a heading car,
these 20cm can make the difference.

E

R

BO

b
E

O
b

O
R

dOR

dEO

b

Figure 3.3: Illustration of an object point O and its projection B onto the line b defined by
emitter E and receiver R.

Assumption: Emitter and receiver are at same position. The reconstruction
scheme used by ToF cameras assumes that the signal emitter is located at the same
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position as the receiver. From this, another error due to the near field effect results.
This spatial error origins in the wrong assumption that the path of the light is twice
the distance between sensor and object. If receiver and emitter are not equally
positioned in space, the path is along two edges of the triangle between emitter E,
object O and receiver R as depicted in Figure 3.3. Hence the error depends on the
configuration of this triangle. While the offset b between emitter and receiver is
fixed, the object position varies for each pixel. We define the near field error

δn f = |dEO−dOR|

as the difference between the distances emitter-object dEO and object-receiver
dOR. We can figure out that this error depends on the projection of the objects
position onto the base line b defined by emitter and receiver and the objects dis-
tance to this line d. We call the dropped perpendicular foot B. From trigonometry
we get

d2
EO = d2 +b2

EO

and
d2

OR = d2 +b2
OR,

where bEO and bOR are the line segments between emitter E resp. receiver R
and the dropped perpendicular foot B. See Figure 3.4 for a two-dimensional (2D)
abstraction of this issue. Reconfiguring the difference of these equations leads to

δn f = |
bEO−bOR

dEO +dOR
|.

This discloses that the error is zero for objects placed centrally in front of the sen-
sor and increases for objects placed off the central viewing direction. Figure 3.5
illustrates this effect. Here, a plain wall is captured with a PMD[vision] CamCube
3.0 camera. The standard deviation for each pixel, which gives insight to the re-
peatability of the measurement that implies reliability decreases toward the border
as the near field error δn f increases. Note that according to the definition, the error
decreases for larger distances.

As a setup where receiver and emitter are placed at the same location is im-
practical and only realizable by the use of expensive beam splitters. Figure 3.1
on page 22 depicts that the LED are usually placed around (Swissranger) or be-
side (PMDTec) the sensor. As the receiver contains conventional optics its field
of view is limited. This restriction also limits the range of possible object posi-
tion relative to the sensor and hence reduces the maximal error. In practice, these
sensors provide reliable data for distances larger than about 1m.

Besides this, the PMD[vision] CamCube 3.0 (see Figure 3.1 on the right) al-
lows to place the illumination units off the sensor. In this case, the reconstruction
scheme can be reconfigured and calibrated to the new setting.

Furthermore, the assumption of emitter and receiver at the same position be-
comes even less valid, as both the receiver and especially the emitter are not single
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Figure 3.4: Illustration of three object points O1,O2,O3 and their projections B1,B2,B3
onto the line defined by emitter E and receiver R.

Figure 3.5: Standard deviation for captures of an office wall at 165cm (left), 135cm (mid-
dle) and 70cm (right).

points. Usually LED arrays are utilized because a single LED does not provide
enough power. In addition, the receiver is commonly built on a chip that has a
certain area and does not equal the pinhole camera model the calculations are
based on. In order to overcome these errors, PMD sensors have been simulated by
Keller et al. [55] in order to develop improved sensor designs.

In the medical imaging context, Penne et al. [90] embed a ToF camera into
an endoscope. Here, the illumination unit is placed externally and therefore a
distance calibration is necessary. The authors describe a calibration process that
includes the capture of a uniformly good reflecting object like a sheet of paper in
order to correct the offset between illumination unit and sensor. In addition, some
image processing steps like a bilateral filter are performed in order to reduce the
error by smoothing the resulting images.

These examples show that the near-field error due to the mentioned assumption
of emitter and receiver being at the same location can easily be eliminated in a
simple calibration step.
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3.2 Errors and noise

Assumption: All the sensors pixel gates are equal. As the sensitivity of a
sensors pixel depends on the amount of electrons and positrons in the pixel area,
there are small differences between these elements. Due to charging of each pixel
element there occurs a specific error which is constant in time. This constancy
allows a simple calibration procedure. The error is well known from photography
and occurs in any digital CCD or CMOS sensor. There are usually two main
sources known as dark signal non-uniformity (DSNU) and photo response non-
uniformity (PRNU). While PRNU should not have any influence, the DSNU arises
from a phase delay due to different capacitance of each pixel as explained by
Schmidt [104] in more detail.

Figure 3.6: Black image captured by a PMD[vision] CamCube 3.0 camera.

However, the error can be reduced or eliminated. A simple fixed pattern noise
reduction approach as described by Schmidt [104] as well as Lindner et al. [76]
leads to improved results. Here, the sensor is shut by some opaque object so that
no light falls onto the sensor. This should lead to a zero intensity image in theory.
When recording the raw intensity values for some time and computing an time-
averaged image gives a so called black image that can be subtracted from the raw
intensity values before reconstructing the distance values. Figure 3.6 shows an
exemplary black image.

Assumption: Every captured object point has equal reflection properties.
The distance measuring differs from ground truth in a non-linear behavior from
the amount of incident light. This amount of light depends on the reflectivity of
the scene objects. Figure 3.7 shows a rendering of a captured checkerboard. In
order to get rid of this error, a calibration has to be done. While Frank et al. [23]
argue that the error derives from the fact that the distance measurement error is
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proportional to the amplitude and hence can be reduced by adaptive filtering [22],
Lindner et al. [76] claim that there is no explanation available yet and provide
calibration methods based on experimental data.

We will address this problem again in Chapter 6. We show that the determi-
nation of the reliability of each pixel allows to fuse several images with varying
integration times. This fusion process resolves this issue.

Figure 3.7: Checkerboard patterned surface.

Assumption: The distance is constant inside one pixel. Each pixel does not
measure the distance to a single point but gathers the incoming light reflected
from a small area which is called the solid angle. This area is assumed to be at
the same distance from the object. This is not the case in practice. If the pixel
covers an area including a depth discontinuity, the collected photons have traveled
diverging distances and hence their time-of-flight is different. This means that the
raw intensity values measured on the chip are sampled from several (usually just
two) phase shifted signals.

In practice, this usually results in so called flying pixels. Figure 3.8 displays
this effect on an exemplary office scene. The flying pixels occur between the
monitor and the wall and are highlighted with a surrounding polygon. Keller and
Kolb [54] have simulated this behavior by super-sampling. Their results resemble
the real world data so that the existence of flying pixels can be fully explained by
the violation of the stated assumption.

Note that this problem is specific for range imaging methods that utilize digi-
tal image sensors that do spatial sampling and quantize the information. The key
problem for ToF imaging is that this error is hard to detect. Huhle et al. [45] pro-
pose the usage of additional color information from an external camera to detect
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Figure 3.8: 3D point cloud of a monitor in front of a wall with flying pixels inside the
polygon.

those pixels, while Lindner et al. [73] use a gradient-based resampling approach
to preserve sharp edges. Swadzba et al. [109] propose a method that removes
all pixels that do not have a sufficient number of neighbors at a similar distance.
This approach has been shown to be capable of enhancing the results of a iter-
ative closest point (ICP) algorithm in order to register point clouds. However,
Reynolds et al. [98] have shown recently, that the elimination of flying pixels can
be further improved. They assign each pixel with a confidence value that results
from a supervised learning approach. They capture ground truth images from var-
ious scenes using a laser scanner and train a random forest that holds confidence
values for each feature. As a feature, they define a vector containing local, spatial
and global features extracted from the distance as well as the amplitude and in-
tensity images of the ToF camera. Their experiments show that the distance itself
and the Laplacian of distances are the most important features.

In the remainder of this thesis, we will depict how both the combination with
stereo imaging and the fusion of several exposures reduce the issues with flying
pixels.

Assumption: There is no motion for the time of integration. A similar error
occurs if the captured objects or the camera itself are moving. Then, the prob-
ability that the distances – and the reflectivity – inside the solid angle of a pixel
are constant is strongly decreased. The error occurs mainly around depth discon-
tinuities because here the difference inside the integration time window varies the
most.

Note that this effect is well known from photography. Here, it is called motion
blur. Motion blur makes detection and recognition applications challenging as the
blurred images contain less sharp features and hence less information than focused

35



Chapter 3 Time-of-Flight Imaging

images. In the field of computational photography, there are several approaches
to overcome this problem. Most prominently the fluttered shutter approach by
Raskar et al. [95]. Here, instead of a permanently opened shutter during exposure,
the shutter is opened and closed in a specific pattern that allows the reconstruction
of an less blurred image while keeping the amount of incoming light high enough.

Further motion blur occurs, when the object moves during the capture of the
four raw intensity values from which the depth and amplitude values are esti-
mated. A wrong raw value leads to completely wrong depth estimations. Accord-
ing to Lindner and Kolb [72], the motion artefacts can be reduced by registering
the raw intensity images with optical flow methods before extracting the distance
information. This approach is possible as the raw intensity samples are not taken
during the same period but successively. This approach has been applied in the
setting of the surveillance of a conveyor belt by Hussmann et al. [46]. Here, know-
ing the motion direction allows the compensation of artefacts and hence a reliable
extraction of distance values.

Assumption: There is no other NIR source but the emitter. This assumption
is obviously not valid in the presence of sunlight. The additional light is also re-
ceived by the sensor and may lead to a saturation. As primary methods to increase
the signal to noise ratio (SNR) between received signal and sunlight, optical band-
pass filters are utilized and the LED are run in a burst mode. Additionally, it is
possible to detect whether the received light is part of the emitted signal or not.
Therefore the sensors chip needs two readout cycles that correlate with the ex-
pected incoming signal. As the noise signal is uncorrelated both readout sides
receive an equal amount of noise information that can be rejected. Basically, this
is the same principle as differential signaling [121]. This is implemented by the
suppression of background illumination (SBI) technology in PMDTec cameras as
described by Möller et al. [83].

Assumption: The light signal is reflected directly. As most real world objects
reflect light in different directions, many photons emitted by the illumination unit
find an indirect path back to the sensor. As the path length differs from the direct
way, the phase measurement is wrong in this case. However, the ratio between
direct and indirect lighting is so high that the effects are negligible.

Recently, there is some research about how to exploit these reflections by the
camera culture group at the MIT media lab lead by Raskar. They use the reflec-
tions both to allow a camera to look around the corner [58] and to reconstruct
reflectance properties of objects from a single photograph [84]. This development
is in an very early state and suffers from the already mentioned ratio of direct and
indirect light.

Assumption: The sensor works under all conditions. There is a minor is-
sue, that PMD sensors are influenced by the internal and external temperature.
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Kahlmann et al. [51] present the results of some measurements with a Swissranger
SR-2 camera at different external temperatures. Theses results show a drastic dif-
ferences of roughly 30cm between −10°C and 30°C. This issue becomes crucial
if the camera is utilized in non-standard environments. If the sensor is embedded
into a car close to the engine, temperatures around 80°C are prevalent. Although
the thermal noise is uncorrelated, this problem cannot be solved by the SBI tech-
nology as described above as the temperature affects the illumination unit and
hence changes the reference signal. This leads to the problems that have been
discussed above in the context of anharmonics.

Figure 3.9: Comparison of mean standard deviation of depth values for a static scene.

Further experiments by Kahlmann et al. [51] show that the camera has to be
heated up before exact measurements are possible. In order to illustrate that this
effect is strongly reduced but still remarkable, 500 frames of a static scene have
been captured with a PMD[vision] CamCube 3.0 camera. Once, directly after
switching on the camera and a second time after a heating up period of roughly 20
minutes. In order to depict the temporal error, we compare the standard deviation
of the depth values of 50 successive frames for each pixel. Figure 3.9 displays
the mean value over all pixels for both measurements. It shows that the standard
deviation is slightly reduced but only in a range of some millimeters.

Assumption: The longer the measurement, the higher the precision. One
last issue comes with the effect that the measured distances are not independent
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Figure 3.10: Measured mean distance of the center pixel against the integration time.

from the integration time. While for older camera models Kahlmann et al. [51]
have shown large differences in the measured distances, this effect is reduced in
recent camera models like the PMD[vision] CamCube 3.0. However, the mea-
sured distance is not constant for different integration times. We measured the
distance of the center pixel for a static scene with varying integration time in the
range of 100µs to 6 000µs. We plot the mean distance over 50 frames against the
integration time in Figure 3.10 for several static scenes with different distances
of the center pixel. The ideal measurement should lead to a horizontal line in
the plot. We included error bars for the standard deviation of the mean distances.
They indicate that the variation decreases with increasing integration time.

While the source of this error remains unclear, we provide a solution to over-
come the problem of setting the right integration time. It is based on an idea
from computational photography by Mertens et al. [80] and described in detail in
Chapter 6.

3.3 Conclusion
In the last section, numerous error sources and other issues with ToF cameras
have been described. Several assumptions have been stated that do not hold in
practice. While some of these assumptions do not lead to crucial errors in the
measurements, others lead to significant issues that avoid the application of ToF
cameras in certain fields.
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This makes it indispensable to enhance the data before processing it further or
apply in existing frameworks. This outcome forms the foundation of the key con-
tributions of this thesis. We argue that it is necessary to deal with the drawbacks
of ToF cameras before further processing the data.

One additional drawback that until now has been neglected is the missing color
information from the sensor. There is no high resolution video camera embedded
that allows to capture color and light from the scene as a conventional photo cam-
era does. It is straightforward to attach a high resolution photo camera beside the
ToF camera. The imaging nature of the ToF camera suggest itself to register the
imagery of both cameras with standard methods as it is done for two conventional
cameras in practically all stereo vision setups. We further argue that attaching two
instead of only one photo camera does not increase the burden, however it allows
to capture depth information from stereopsis as well. As described in Chapter 2,
stereo depth imaging has very different properties than ToF imaging. In the next
chapter, we describe a proof-of-concept that combining a ToF camera with a stereo
camera setup is implementable and leads to improved depth imaging results. Note
that the chapter has been previously published in large extent as [36] and [37].
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Chapter 4

Combining
Time-of-Flight and stereo
images
4.1 Introduction

Reliable and fast depth imaging for real world scenes is a difficult problem. A
variety of methods to solve this task has been presented in Chapter 2, however,
each of them has its strengths and weaknesses. In particular, passive methods
rely on feature matching, which is time-consuming and might fail if no features
are present. Active techniques overcome this problem, yet at the price of being
sensitive to the reflection properties of the elements in the scene and typically
higher cost of the devices.

As pointed out in the Chapter 3, a new type of ToF sensor has extended this
spectrum: PMD cameras can be used to measure the phase of a modulated light
source relative to its reflection in the scene. The phase directly relates to the dis-
tance. These devices are low-cost and very fast, but their spatial resolution is low
and they suffer from noise, especially around depth discontinuities as explained in
detail in Section 3.2.

It is interesting to compare this new approach to the dominating low cost depth
approach, namely stereo. For planar patches, Beder et al. [5] find that the PMD ap-
proach is more accurate than stereo. On the other hand, details and discontinuities
in intensity and/or depth decrease the performance of PMD depth measurement,
while they typically increase the performance of stereo. Also, traditional cameras
have a much higher resolution and stereo setups have a larger working range.

A natural conclusion is to combine the PMD approach with standard stereo pho-
tography. Few approaches consider the fusion of PMD generated depth (and pos-
sibly intensity) images with standard photography. Reulke [97] combines a single
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high resolution intensity image with the PMD depth image. Intensity information
is exploited to steer the re-sampling of depth data into a higher resolution depth
image. Kuhnert and Stommel [64] propose combining the PMD approach with an
additional stereo camera. This is identical to our setup. They take the depth image
of the PMD camera and a depth reconstruction from the stereo pair as independent
measures of the depth in the scene. For pixel with low confidence in the computed
disparities (i.e. no significant matching for the windows) they fill in the data gath-
ered with the PMD camera. We are using a similar approach of combining PMD
and stereo depth. The stereo pair is mounted symmetrically to the PMD camera,
with the three centers of projection (roughly) co-linear and parallel image planes
(see Section 4.2 for details). This yields three images, one depth image and two
(color) intensity images. The three images are calibrated based on their intensity
images using standard approaches [41, 128, 129]. Because of the low resolution
and the fact that the PMD sensor rather measures intensity differences than abso-
lute values, this calibration turns out to be not very accurate. However, even the
data based on the inaccurate calibration can be fused.

We are using similarity of intensity values (over windows) from the stereo pair
together with the phase information from the PMD camera, which is new com-
pared with prior approaches. While this idea could be used in any stereo setting,
we are here using a global approach based on graph cuts [62, 89, 44, 112, 126]
for the reconstruction of a depth image. Note that graph cuts have recently been
used for image segmentation with ToF cameras [2, 24] but typically, these ap-
proaches are computationally demanding, yet in our setting we can exploit the
PMD generated depth image for restricting the domain of the volumetric grid. In
Section 4.3, we explain how we use graph cut in our setting. The results of this
procedure allow increasing the resolution of the PMD depth data, while keeping
sharp depth discontinuities based on intensity discontinuities. An important fea-
ture of the setup is that we could record a video sequence, and then recompute
the depth on a per frame basis. This yields a system with dramatically improved
depth reconstruction for dynamic scenes.

4.2 Setup
We run our experiments using a PMD[vision] 19k camera with a resolution of
160× 120 pixels. It is centered between two standard photo cameras. As an
experiment, we have used consumer grade cameras of type Olympus SP-500 UZ.
These cameras could be interchanged by standard firewire cameras in order to
capture a video sequence for reconstructing dynamic scenes. All three cameras
are mounted on an aluminum bar (see Figure 4.1 for an image of the cameras).
The stereo pair has a base line of roughly 50 cm. The cases are mounted so that
their image planes are parallel.

For calibration of this setup, we need to pay special attention to the specifics
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Figure 4.1: All three cameras mounted on an aluminum bar

of the PMD camera. It turns out that intrinsic calibration is not very accurate (the
reprojection error is larger than a pixel) and extrinsic calibration in the classical
sense would not be sufficient: extrinsic calibration usually tries to align the optical
systems of the cameras, but it is unclear if zero phase shift in the PMD sensor
would exactly match the optical center.

Intrinsic calibration Due to manufacturing mechanics, the intrinsic parameters
of a consumer camera given by the producer are very inaccurate. Therefore, cal-
ibration is necessary. We use the algorithm of Zhang [128, 129] for the standard
cameras. The intrinsic calibration of the PMD camera is more difficult, mostly be-
cause of its sensitivity to reflections of the self emitted IR light and low resolution.
Another problem is that the PMD[vision] 19k camera only measures differences
in capacities. Hence, there is no true intensity image available. The intensity
image can be simulated by weighting the amplitudes according to their squared
distances. In order to recognize feature points (e.g. corners on a checkerboard)
automatically, the calibration sheet has to be placed quite directly in front of the
camera. Apart from these details, we follow the ideas of Reulke [97] as well as
Lindner and Kolb [70].

Note that the intrinsic calibration of the PMD camera already yields Euclidean
coordinates for each pixel: the coordinates of the pixel identify a ray by means of
the intrinsic transformation. The pixel contains a distance value, which identifies
a point on the ray. Thus, the intrinsic transformation allows computing a set of
points in R3 from the depth image.

Extrinsic calibration Our main idea is to use well-known techniques to perform
an extrinsic calibration for all three cameras. We decided to use the OpenCV
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calibration methods as well as the Camera Calibration Toolbox for MATLAB that
are based upon the same composition of algorithms [41, 128] and are written by
Bouguet. We have found, however, that the low resolution and relatively high
noise level lead to very inaccurate and alternating calibration results. In addition,
there are two further issues: first, the plane of values with zero phase shift, which
defines the plane with zero depth, is not necessarily coinciding with the image
plane of the camera. Second, the depth measurement is affected by systematic
errors as described in Section 3.2. We model this effect based on experiments by
moving the camera plane along the depth axis so that depth values obtained with
the camera coincide with stereo depth values.

Imaging For taking the intensity/color images, we use the application program-
mers interface provided by Olympus Corporation1. This allows setting similar
parameters for both cameras. In order to get a representative depth image, we
take on the order of 20 images with the PMD camera. The observation that the
data values are unstable reflects the errors described in Section 3.2. Working with
the mean or the median image from several images not only significantly reduces
noise in the depth image of the PMD camera, but also it provides useful informa-
tion on the confidence in the depth values: we use the variation of the depth values
around the median value as a measure of the confidence. In particular, we use the
variance of each depth value as a weight for taking into account the depth values
of the PMD camera as well as for defining the domain for the graph cut algorithm.
This is explained in detail in Section 4.3.

4.3 Algorithm
In the following, we describe the details of the depth computation. We follow
the graph cut reconstruction by Paris et al. [89]. Our goal is to reconstruct the
surface S in the object space (x,y,z) defined parametrically by the function f :
S(u,v, f (u,v)), which can be interpreted as a depth function z = f (x,y). The sur-
face S minimizes the functional

∫∫ (
c(S)+

(
αu(u,v)

∂S
∂u

+αv(u,v))
∂S
∂v

)
dudv

)
(4.1)

containing a consistency term c and two smoothing terms αu and αv. In the
classic stereo graph cut, c is defined by stereo correspondences and, αu and αv
by discontinuities in x and y direction in both images. The data obtained with the
PMD camera allows us to refine the definition of c and α – we will describe our
enhanced definition in the remainder of this section.

1Olympus Camedia SDK 3.4 (2004)
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Defining the volume The graph cut approach works on a discrete volume. The
number of voxels in x and y direction determine the resolution of the resulting
depth map. The number of voxels in z direction defines the quantization of depth
values. In our experiments, we have used grids of dimensions 400×300×100 in
width, height and depth. Note that for scenes with higher dynamics in depth the
number of voxels in depth should be extended.

For all of these voxels, we build a mapping function M : N3 → R3 that maps
a voxel id to its 3D position in the PMD camera coordinate system (x,y,z). For
this mapping, we use the intrinsic values of the PMD camera to find the x and y
positions of the voxel (see previous Section 4.2). All depth steps, from the mini-
mal depth value to the maximum depth of the PMD camera image, are filled with
corresponding z values. We receive the minimal and maximal depth in the scene
from the set of median depth values. In order to reduce the computational costs, a
domain of interest (DOI) is defined inside this volume. The DOI is determined as
follows: First, we find the voxel which is closest to the PMD depth values. Hence,
the DOI contains one voxel in each depth column. If this depth value has a large
variance, voxels before and after (in z-direction) are added to the domain, as well.
Then, these voxels are connected in x and y direction. Therefore, we add vox-
els from the neighboring depth columns until we reach a connected set of voxels.
Thus, the DOI can be interpreted as the voxelization of the variance controlled
blurred PMD image. This is a significant reduction of computation cost for stereo
graph cut algorithms, which usually have to start from the overlap of the viewing
frustums of the left and the right camera.

Constructing a graph After defining the volume and the DOI, a graph is con-
structed according to Paris et al. [89]. This graph is connected to a source node
which is placed in front of our object space (minimal depth) and a sink node be-
hind the object at maximal depth. Basically, graph cut algorithms aim at setting up
the capacities in such a way that the minimal cut describes the demanded surface.
The graph contains two types of edges: consistency edges and smoothing edges.
The consistency edges are inside one voxel and their capacity is determined by
the measure of probability that this voxel belongs to the surface. We compute
this measure as a linear combination between commonly used stereo consistency
terms, here denoted as cstereo, and a consistency value cPMD computed from the
difference of the depths of the voxel and the corresponding PMD depth. The
stereo consistency is either derived from the normalized cross correlation or sum
of squared distances between the corresponding regions in the left and right im-
age. The depth difference d can then be mapped to a consistency value cPMD using
a convex or concave function. However, the convex term cPMD = 1/d2+1 and the
concave term cPMD = max[0,1−d2] were indistinguishable in our experiments.

Computing the smoothing edges capacities is quite similar. The stereo smooth-
ing value αstereo depends upon color discontinuities in both stereo images. For
the PMD smoothing term αPMD, we use depth discontinuities in the PMD median
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image. The terms are combined linearly, as well.
Based on the topology of the graph and edge weights, the minimal cut computed

with standard graph cut algorithms determines the surface. As with other depth
reconstruction approaches based on graph cut, this is the dominating factor in the
computation time, and in our C++ implementation it requires a few minutes at
typical input.

4.4 Results
Figure 4.2 shows our stereo input images. We chose this arrangement of cardboard
boxes in order to clearly see the gradient of depth in our results. Supplementary,
the untextured cardboard is a typical case where classic stereo algorithm may fail,
because there are problems in identifying disparities on large uniform colored
areas in the stereo image pairs.

Figure 4.2: Stereo pair of images.

As mentioned in Section 4.3, the reconstruction of the surface is performed by
finding a minimal cut for the constructed graph. This cut minimizes the functional
given in Equation 4.1. As expected, computation times are greatly reduced by
using a tighter DOI. In addition, if we extend the DOI by a dilation, the results in
Figure 4.3 show that using this larger DOI does not enhance the result. However,
it takes much more time to compute.

In addition to the computational savings, we were interested in whether the ac-
curacy of the reconstructed surface also improves on using PMD depth data or
stereo reconstruction alone. The characteristics of the PMD depth data would typ-
ically lead to either noisy or overly smoothed results, especially when re-sampled
to higher resolution: note that each depth element is measured independently of
its neighbors, resulting in noise with salt and pepper distribution. Removing this
noise results in smoothing. In addition, increasing the resolution of the image also
results in smoothed edges. The stereo information and the smoothing term used
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(a) regular DOI (b) dilated DOI

Figure 4.3: Increasing the DOI leads to blurred results and longer computation time.

in the graph cut algorithm greatly reduce this noise (see Figure 4.4). In all flat sur-
face areas inside the scene, the grainy artefacts are removed. Depth estimation is
enhanced as well: in contrast to the PMD median image, the cardboard boxes are
reconstructed without distortion. Their depth increases smoothly along the sur-
face and stays constant on the vertical axis. Also, depth discontinuities are more
accurately modeled by exploiting the color discontinuities in the higher resolution
intensity images. This improvement can be recognized clearly. In the PMD im-
age at the borders of the book lying in front of the cardboard boxes, we can see
a slightly brighter area at the depth discontinuities – generated from inaccurate
depth values, while in our resulting graph cut image, these effects are removed.

(a) PMD median filtered (b) Graph cut smoothing

Figure 4.4: Salt and pepper noise is reduced and the depth information is enhanced.
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4.5 Discussion
We have shown that the fusion of PMD data with stereo images enhances depth
reconstruction in low-cost sensor systems. Our experiments are based on only
roughly calibrated systems, and therefore, we do not evaluate the results quantita-
tively. Nevertheless, we have found the results to be better than with either system
alone.

This result motivates the next step: setting up a more accurate system. This is
more complicated than for usual camera based systems, as the sensing technology
in the PMD camera appears to be not accurately modeled with a perspective trans-
formation alone. Furthermore, the calibration of consumer grade zoom cameras
has to be explored carefully, as well. An accurate calibration would allow us to
exploit the two types of information for each voxel in a more systematic way. In
addition, an accurate calibration will be necessary, if we want to start an exact
evaluation about the accuracy of our system. We therefore, rebuild the system by
replacing the zoom cameras with professional video cameras and known optics.

In the next chapter which has been previously published as [38], we depict how
using the video cameras for the stereo pair results in a system capable of recording
depth data at high frame rates and for very low cost. The characteristics of such
a system would make it very attractive for a variety of applications, perhaps most
prominently 3DTV as aforementioned in the introduction of this thesis.
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Chapter 5

Real-time depth imaging
by combining
Time-of-Flight and
on-demand stereo

5.1 Introduction
Real-time depth imaging is a building block in many interactive vision systems
and, in particular, is necessary for enabling realistic occlusions in Augmented Re-
ality (AR). Despite the improved speed of general purposes computing as well as
development of new types of sensors, providing depth images in real-time con-
tinues to be a challenging problem. For the purposes of enhancing AR with con-
vincing occlusions current approaches are limited to either reducing quality in the
depth maps [103] or realizing occlusions by compositing [114]. We are demon-
strating a first step toward an affordable and lightweight solution by fusing infor-
mation from a low cost but also low resolution ToF range sensor with standard
correlation-based stereo.

As pointed out in Chapter 2, we can distinguish active and passive approaches
to real-time depth imaging. Active optical techniques involve relighting the scene
and usually require an expensive and heavy setup. In Chapter 3, we depict that
sensors based on theToF principle for sensing depth have become affordable and
fast with the introduction of PMD.It allows depth imaging at interactive rates, but
suffers from comparably low spatial resolution of the sensor and noise in the depth
values, especially for surfaces with low reflectance.

Passive techniques, at least when several frames per second are required, are
based on multiple views of scene captured with two or more cameras. We have
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decided to use a single binocular stereo camera in order to keep the setup sim-
ple and reduce processing costs. From the large number of stereo vision ap-
proaches [100] only local correlation based methods are fast enough for real-time
application [17, 42]. This limits the quality of the resulting depth maps, most
obviously in large featureless areas but also at depth discontinuities, where the
correlation window might compare different objects because of occlusion. In a
more recent work, Hirschmüller and Scharstein [43] show that stereo matching
algorithms that deal with the elimination of radiometric distortion are not capable
of being used in real-time applications with reasonable high video resolution.

We combine the camera systems (ToF and stereo) and fuse the data so that lim-
itations of each of the individual sensors are compensated. Our goal is enhancing
the high resolution color image from one of the stereo camera oculars with depth
information, gathered from the PMD camera as well as from disparity estimation.
The mapping of the PMD depth image into a color image acquired with another
camera (resp. texturing the depth data with the color image) has been analyzed
by Reulke [97] as well as Lindner et al. [71, 73]. Our setup combines the PMD
camera with a binocular stereo camera, similar to [5, 34, 86, 64, 130, 131].

For better explaining our choice of algorithm, we need to briefly touch on the
setup, calibration, and properties of the cameras (Section 5.2). The physical prop-
erties of the PMD camera give rise to the preprocessing of its data, most im-
portantly the estimation of confidence values for each depth value (Section 5.3).
Kuhnert and Stommel [64], as well as Netramai et al. [86] use a similar confidence
map to choose either the depth value acquired with the PMD camera or depth from
stereo – we exploit this depth/confidence map for initializing and steering a local
correlation based stereo algorithm (Section 5.4), in particular by choosing adap-
tive windows for the correlation based on the information in both the color images
and the range image.

The following sections contain illustrations and results from the diploma thesis
of Mischler [82] that is based on ideas of the author of this thesis.

As described in the previous Chapter 4, we combined the ToF data from the
PMD camera with high resolution images from two photo cameras, using graph
cuts to find a globally optimal solution for a depth map of a single perspective.
The use of graph cuts leads to computation times that are insufficient for real-
time video processing. Similarly, Guðmundsson et al. [34], Zhu et al. [130], and
Beder et al. [5] generate depth images by fusing ToF and stereo data. Their ap-
proaches appear to be much faster than using graph cuts, however, they target
single images and provide no information on the computation times. The choices
of stereo algorithm, however, indicate that they are not amenable to real-time pro-
cessing in their current form. In a more recent work that is based on [130], Zhu et
al. [131] state that their fusion process takes about 20seconds.

In contrast to the approach of Koch et al. [60], we explicitly start from the
restrictive setting of real-time applications, which severely restricts the choice of
stereo algorithm, mostly to local correlation with fixed windows. We use the
ToF information particularly to adapt the windows, as fixed windows fail at depth
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Figure 5.1: Both camera systems mounted on an aluminum bar.

discontinuities. We believe our approach yields depth images at interactive rates

• that are are more reliable than the information from the PMD camera without
compromising the interactive frame rate and

• that are more accurate around depth discontinuities than real-time stereo vision
approaches based on fixed window correlation.

We demonstrate our use of the system in an AR scenario for computing accurate
occlusions between virtual and real objects.

5.2 Setup
We mount a compact PMD[vision] 19k ToF camera, capturing a depth range of
about 7.5m at a resolution of 160× 120 pixels, together with PointGrey Bum-
blebee2 stereo camera capturing color video at a resolution of 640× 480, on an
aluminum rack (see Figure 5.1 for an image of the cameras). Both cameras are
aligned to parallel viewing directions.

Calibration Sensor fusion requires registration and accurate calibration. For
both the intrinsic and extrinsic calibration we use the calibration algorithm of
Zhang [128, 129]. The PMD camera, however, yields intensity images that are
too noisy for direct application and they are preprocessed following the ideas of
Reulke [97] as well as Lindner and Kolb [70]. A relevant practical problem for the
extrinsic calibration is the misalignment of optical center and zero depth plane of
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the PMD camera. Interestingly, Guðmundsson et al. [34] perform a stereo calibra-
tion between all pairs of cameras. We have found this to be cumbersome, because
of the combination of noisy amplitude images, the mismatch between optical cen-
ter and depth image for the PMD camera as well as the systematic errors in the
depth measurement. We rather consider only the extrinsic calibration between the
depth image from PMD camera and the systems of the color cameras.

The stereo camera color images are rectified to reduce the correspondence prob-
lem to a single line. Our calibration is accurate enough so that the depth difference
between stereo system and the PMD camera is within the accuracy of the PMD
camera.

5.3 Preprocessing and confidence
estimation
As explained in the last section and in Section 3.2, the quality of the depth values
captured by the PMD camera depends strongly on the surface of the objects in the
scene. Dark and glossy surfaces lead to artifacts as the modulated IR light is not
reflected as expected. Especially when using the depth values for determining oc-
clusions in AR applications, these artifacts become clearly visible. We process the
data prior to using it with the stereo system, trying to improve the data by simply
filtering and assigning confidence values to each depth value. Very low confidence
depth values are replaced by interpolated values with higher confidence.

Filtering Reducing the noise or removing outliers is one obvious part of the
preprocessing. Isolated outliers can be removed at minimal cost using median
filtering. Through experimentation we have found that a small kernel of 3× 3
pixel is sufficient. This appears to be due to the outliers being mostly isolated
pixels. Larger kernels would lead to longer processing times without showing a
significant improvement.

Confidence estimation As explained in the last section, in our setup, the dom-
inant cause for systematically wrong depth estimation are objects that have bad
reflection properties due to their material and color. However, this information is
available in form of an amplitude image of the scene.

The first step in turning the amplitude image into a confidence map is applying a
3×3 median filter, similar to the process for the depth image. Although the result-
ing image is not truly bimodal, applying a simple binary threshold yields a binary
confidence map classifying depth values as either valid or invalid. Note that such
a definition of a confidence value from the amplitude has been applied in many
other approaches [61]. In addition, Frank et al. [22] show that the amplitude value
is an optimal indicator for the confidence of the range data. Figure 5.2 highlights
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(a) Depth image (b) Amplitude image (c) Confidence map

Figure 5.2: Checkerboards are difficult to reconstruct using PMD range sensing, because
of the insufficient amount of light reflected by the black areas. The acquired depth
image (a) clearly holds wrong depth values in these black areas. The amplitude
image (b) can be used to compute a confidence map (c), which is thresholded to
classify depth values as valid (white) or invalid (black).

the problems resulting from low reflectivity at the example of a checkerboard and
shows the resulting classification of valid and invalid depth values (while the 3D
reconstruction from the wrong depth values can be seen in Fig. 5.4(a)).

Interpolation In all regions marked as confident by the binary map, we will
use depth values for initializing disparities. In most cases the depth values in
insufficiently reflecting areas are very distant from the estimated ground truth and
it is better to assume continuity in depth.

As in our case the interpolated depth values will later be corrected using the
stereo information, we opt for a simple approach that is as fast as possible: the
depth image is scanned across horizontal lines. When an invalid segment is en-
countered it is replaced by either a line connecting the two valid depth values at
the boundary of the segment or a line with constant depth values at the bound-
aries of the image (see Figure 5.3). For textured planar surfaces (such as the

Figure 5.3: Scanline interpolation of the PMD data using the confidence map. The red line
is the interpolated depth, the dashed line is the original unreliable PMD depth.
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(a) Original image (b) With interpolation

Figure 5.4: 3D reconstruction of the scene from the depth image (and using the intrinsic
camera geometry). The left image shows the reconstruction from the data in Fig-
ure 5.2(a) and the right image uses linearly interpolated depth values for elements
with low confidence.

checkerboard, see Figure 5.4(b)) this provides a reasonable estimate; if objects of
low reflectance differ in depth from the surrounding they will be assigned wrong
depth values, which will be corrected in the stereo part of the algorithm.

5.4 Algorithm
In our exemplary AR applications with dynamic occlusions we need to enhance
one color image from the stereo camera with depth information. We compute
depth values at the resolution of the PMD camera. The algorithm we suggest is
equally applicable for computing depth at higher resolution or textured surfaces
in other views.

The main steps of assigning depth values to pixels are as follows (see also Fig-
ure 5.5):

1. The pixel coordinates and depth values from the PMD camera are used for
generating a tessellated depth surface (i.e. quad mesh) of the scene from this
viewpoint.

2. The surface is transformed into the view space of the cameras. The inter-
sections of view rays with the surface in this coordinate system define initial
disparity values; the associated confidence values define the possible range.
Thresholding the confidence values yields a set of valid and invalid depth co-
ordinates in the quad mesh.

3. The areas of pixels associated to valid and invalid depth coordinates are thinned
and serve as the initialization of a segmentation of the color image into depth
continuous regions.
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Figure 5.5: Algorithm overview including image processing steps for stereo (A) and
PMD (B), 3D transformation of PMD data (C), stereo depth estimation (D) and
fusion.

4. The segmentation steers adaptive windows for the correlation computation in a
standard stereo algorithm, correcting the invalid depth coordinates of the sur-
face mesh.

In the following, we discuss several details of these steps.

Mesh initialization and projection The intrinsic calibration of the PMD cam-
era allows computing 3D coordinates from pixel location in the image plane and
the corresponding depth value. For convenience, we connect the 3D coordinates
to a piecewise bilinear mesh. The extrinsic calibration between the cameras al-
lows transforming the mesh into the coordinate systems of the stereo camera. The
intrinsic calibration of the stereo cameras (including a rectification) defines a pro-
jective transformation, which yields depth and confidence values per pixel.

The labels define two regions in the color images: a region of valid and a region
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(a) Rectified Left View (b) Stereo operation map

Figure 5.6: Color coded vertices of the surface mesh, where red vertices are invalid and
will be corrected using stereo vision.

of invalid pixels, based on the binary confidence map. Figure 5.6 shows the pro-
jection of the mesh in the left camera. The projection of valid vertices are drawn
as gray squares and invalid pixels are drawn as red squares.

On-demand stereo with adaptive windows Instead of computing a whole dis-
parity map, the use of our stereo part is computing depth values only for vertices
that are marked invalid. Furthermore, the projection of these vertices into the two
rectified stereo views immediately yields an initial disparity guess.

An underlying assumption of correlation based stereo algorithms is that depth
is unambiguous in the correlation window. This is not the case at depth disconti-
nuities where objects may be occluded in only one of the views so that correlation
of pixel colors fails to be a good indicator for correspondence (Figure 5.7(b) illus-
trates this situation).

A solution to this problem is to adapt the correspondence window to the (likely)
object boundaries. Kanade and Okutomi [52] suggest to adapt the size and shape
of the rectangular correlation window to local disparity characteristics. Boykov et
al. generalize this variable window approach [9]. They compute for each pixel
a new window. This window contains all pixels with an intensity close to the
considered pixel. This way, they try to model the boundaries of the objects and
the depth discontinuities. Hirschmüller [42] proposes a similar approach using
multiple supporting windows. Unfortunately, all of these techniques are too costly
to reach interactive rates at video resolution of 640×480 pixels.

Our main observation is that the object boundaries are only relevant if they are
in regions whose depth values are labeled as invalid – otherwise the depth val-
ues have already been gathered based on ToF. Thus, we can use the information
on valid and invalid regions for initializing a segmentation algorithm in the color
images. The segmentation will then define the extent of the correlation windows
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(a) Full left view (b) Right view (detail) and cost function (fixed win-
dow)

(c) Eroded operation map and segmentation (both
detail)

(d) Right view (detail) and cost function (adaptive
window)

Figure 5.7: This figure compares correlation based stereo with fixed windows and with
windows adapted to object boundaries computed from segmenting the color image
into depth continuous regions. The whole scene is shown (a), while we focus on
the group of balls and the webcam in front of the box (b-d). The eroded operation
map is used to initialize the watershed segmentation (c) leading to a mask adapting
the stereo correlation windows. The red circle shows the initial disparity guess and
the green circle the disparity corresponding to minimum cost (b+d).

used in our adaptive window stereo algorithm. Exploiting the confidence informa-
tion makes our approach both much faster and also more robust than only working
with the color images.

From the many potential segmentation algorithms we use the marker-controlled
watershed algorithm [99], which we have found to be robust while being fast
enough for our application scenario. The idea is that valid and invalid regions
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serve as markers for the binary segmentation. Because of errors in the projections
for vertices with incorrect depth (i.e. especially invalid vertices), color pixels are
not necessarily labeled correctly. Consequently, the sets of valid and invalid pixels
are eroded independently, leaving a set of unlabeled pixels in the proximity of
object boundaries (see Figure 5.7(c)). These sets of valid and invalid pixels serve
as the markers that initialize the segmentation as starting points. If objects have
boundaries in the color images, the segmentation will accurately label pixels as
being connected to the valid or invalid pixels. The resulting binary map restricts
the correlation window.

Figure 5.7 shows the influence of this border correction filter: an object is too
dark for the PMD camera, yielding wrong depth values and marked as invalid. A
correlation based stereo algorithm with fixed window finds the wrong correspond-
ing point (5.7(b)). After eroding the sets of invalid and valid pixels, the watershed
algorithm segments the object along its boundary (5.7(c)). Restricting the window
to the segmented object yields the correct correspondence (5.7(d)).

Final 3D mesh Finally, we replace the PMD depth of each invalid pixel with
the computed stereo depth value. The resulting mesh is rendered into the z-buffer
of one of the camera views using the color values from the camera. This allows
using the depth values in interactive applications.

5.5 Results
As pointed out in Section 1.2, occlusion is one of the most fundamental factors in
monoscopic depth perception, AR applications become much more immersive if
occlusion handling is embedded. This is demonstrated in Fig. 5.8. Unlike model
based techniques [10], our approach makes it possible to handle dynamic occlu-
sions like a hand in front of the virtual objects. This is very practicable as most
AR application focus on manual interaction of virtual and real objects.

Similar approaches for occlusion handling in AR exist. While Kanbara et
al. [53] have utilized stereo vision, Fischer et al. [19] also use ToF depth sens-
ing. We have compared the raw output of the PMD camera projected into the
view of the color image and the raw stereo data with the results of our approach
(see Fig. 5.9). A dark object in this scene is assigned incorrect depth values deliv-
ered by the PMD camera and, consequently, is mapped to the background through
the interpolation process (Fig. 5.9(c)). Fig. 5.9(d) shows the depth map obtained
using correlation based stereo with a fixed window as used in other stereo algo-
rithms aiming at interactive frame rates. The images in 5.9(e) and 5.9(f) show the
improved results using our algorithm. Notice the appearance of dark objects while
they are not captured at all by the PMD camera.

Several parameters influence the performance of our system: the frame rates
we obtain are limited by the cameras and the transmission to roughly 11fps for
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(a) no occlusion (b) occlusion

Figure 5.8: Occlusion strongly enhances the depth impression of the scene.

the C++ implementation on our test system, an AMD Athlon 2.0GHz Dual Core
Processor with 1GB RAM. The additional cost of our algorithm depends on the
size of the correlation window and the number of depth values that have to be
corrected using stereo on-demand. Table 5.1 compares several situations, where
we have chosen the thresholds so that approximately 250 resp. 500 depth values
were considered invalid. The computation times clearly show that there is a lin-
earity between time and correlation window size for stereo computation on the
one hand and on the other hand, the ratio between the amount of corrected pixels
and computational timings is linear as well. We therefore expect our system to be
capable for real-time applications with even higher numbers of invalid and hence
corrected pixels using recent hardware.

Acquisition 91 ms
Preprocessing 23 ms
Stereo+PMD Window ≈ 250 px ≈ 500 px

5×5 9.5 ms 20.5 ms
7×7 16 ms 33.3 ms
9×9 25 ms 55 ms
11×11 42 ms 88 ms

Table 5.1: Performance on an AMD Athlon 2.0GHz Dual Core Processor with 1GB RAM.
Window is the size of the correlation window used for stereo. The computation
times are compared for each step while capturing a scene with approx. 250 and
500 corrected pixels.
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(a) Left view (b) Right view

(c) Only PMD (bad pixels interpolated) (d) Only Stereo

(e) Stereo and PMD data (f) plus adaptive windows

Figure 5.9: We compare the depth map acquired with the PMD camera (c) and using cor-
relation based stereo (d) with our results, i.e. correcting low confidence areas of
the PMD range image using stereo on-demand with a fixed window approach (e)
and using adaptive correlation windows based on segmentation (f).

5.6 Discussion
Our system provides a framework for interactive AR applications, where the depth
map is necessary for visual or physical interaction between synthetic and real ob-
jects. Our approach is using low cost, light weight components and exploits the
properties of both sensor types. In particular, we use range data for narrowing the
disparity search and adapting the correlation windows to potential depth disconti-
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(a) occlusion (b) collision (c) painting

Figure 5.10: Exemplary interaction concepts for our system.

nuities.
We demonstrate that the resulting system produces reliable depth information

that can be used for handling occlusions. The depth data can also be used for col-
lision detection and other interactive solutions. Some of the possible interactions
are demonstrated in Figure 5.10. The dynamic and global depth map of the scene
would also allow computing shadows for virtual objects, or using higher quality
rendering techniques for further improving the realism of virtual objects [8].

As an alternative approach, it would be interesting to apply different segmen-
tation algorithms for adapting the stereo windows. Feris et al. [18] use region
growing in a similar situation. Finding the best balance between performance and
accuracy in this step is important future work. In addition, it might be possible
to make use of other information than confidence and color, such as range data
or predictions from preceding frames. Another step in enhancing the algorithm
would be to define a confidence measure for the stereo data and use it for further
controlling the depth reconstruction. This could reduce the error in regions where
both systems fail, for example large dark and homogeneous objects.

Our system can be improved in several aspects. The synchronization of the
PMD[vision] 19k camera as part of the software system results in a maximum
of 11fps – using a hardware solution would allow exploiting the maximum frame
rate of the cameras. The computations necessary for fusing the data and improving
the depth images are easy to distribute to several cores so that exploiting a higher
input frame rate would be easy if the system were coupled with a modern central
processing unit (CPU). As mentioned in Section 5.2, the accuracy is depending
on the PMD range data, and we think that this makes it important to develop
approaches that lead to an increased working range.

In order to increase the working range, the concept of confidence measures can
be exploited to fuse several depth images from the PMD camera alone. Hereby,
the integration time is varied as it is done in HDR imaging approaches. We will
describe our idea and experimental results in the following chapter which has been
previously published as [39].
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Chapter 6

Exposure Fusion for
Time-of-Flight Imaging
6.1 Introduction

As pointed out in the course of this thesis, ToF based depth sensing is utilized
in more and more fields of application, among others simultaneous localization
and mapping (SLAM), motion capturing in gaming and pedestrian detection in
automobiles [79, 125, 88, 61]. All of these applications need the sensor to capture
reliable depth data within a range of several meters.

We described in detail in Chapter 3 how PMD cameras are operated. One im-
portant parameter that has to be defined for each measurement is the integration
time. The integration time indicates how long the sensor is exposed to accumulate
photons from correlation signal samples in order to calculate the desired phase
shift. A deficiency in numbers of photons leads to uncertain results dominated
by noise. On the other hand, too many samples potentially lead to saturation and
photons are no longer counted, which also results in errors. Therefore, setting
the correct integration time is crucial for correctly measuring the distance. Usu-
ally, the operator of the device has to define the integration time for the sensor
manually. May et al. [79] have proposed a control mechanism that adjusts the
integration time during operation. Here, the integration time is set by means of
a feedback controller that assumes that the integration time is optimal when the
mean intensity of the captured image is at a pre-defined ideal value.

Nevertheless, such an auto-exposure mode is only able to find one globally opti-
mal exposure time for one scene. And just as in regular photography, the resulting
image might still have under- and over-exposed regions. As the depth measure-
ment relies on the reflection of an emitted light signal, under- and over-exposed
regions lead to errors in depth estimation, as explained above. In fact, each pixel
has its own optimal integration or exposure time, which unlike traditional photog-
raphy depends on the distance and reflectivity of the captured object itself.
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In this chapter, we adapt recent solutions from computational photography to
this problem. Instead of optimizing for a global integration time, we capture sev-
eral images and search locally in each exposure for regions which provide most
accurate distance data. This poses two challenges: first, the sources of error in the
sensor are different from traditional over- and under-exposure in imaging. Second,
ToF depth sensing is useful mostly in real-time applications meaning the solution
has to be computed in fractions of a second.

We implemented a method for capturing ToF range maps in order to provide
high quality depth data for the full theoretic range of the camera. Our approach is
inspired by HDR imaging, but faces the challenge of dealing with depth instead
of color information. Therefore, we propose new measures for the quality of the
depth data locally in the original images that lead an image fusion process. These
measures are both inspired by a similar approach for color images by Mertens et
al. [80] and founded on research in image quality measures [77, 31]. The ToF cam-
era we use returns amplitude images that refer to the correlation signal strength
that has been captured by the sensor. We use only these images and the distance
data to compute our quality measures. Hence, our solution does not need any
calibration process in order to enhance the reliability of the depth images. We
implemented a real-time solution that exploits the capability of the PMD[vision]
CamCube 3.0 camera to capture four images with varying integration times almost
at once.

In order to demonstrate the superior quality of the fused depth maps, we cap-
tured known planar objects at varying depths and measured the error from the
residuals of a least-square plane fitting in the planar regions of the image. Our
results show that the fused data is more accurate than data from the ideal exposure
time even for a single planar depth region and gives much lower errors if several
planar regions at varying depths are taken into account.

We further apply our fused range maps for point cloud alignment and compare
the results of the 3D reconstruction of indoor environments with them produced
by single exposure depth images.

6.2 Related approaches
To our knowledge, this is the first approach to combine several exposures with
varying integration times of a ToF camera in order to enhance the quality of the
depth maps. In the following, we relate our work to approaches concerning the
integration time in ToF imaging as well as alternative approaches to enhance the
dynamic range of the depth sensing.

Hardware First, the camera manufacturers try to enhance the dynamic range as
much as possible. MESA Imaging, producer of the Swissranger™ cameras has
developed a solution that allows to control the integration time per pixel individu-
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ally [11]. Such an enhanced pixel stops the integration as soon as the capacitance
exceeds a pre-defined threshold. Unfortunately, the power consumption of such
a pixel enhancement is too high in practice and additionally, the used integration
time for each pixel has to be stored and transferred in order to reconstruct a ho-
mogeneous intensity image. This lead MESA Imaging to not implement such a
feature in their products.

There are ambitions to extend the range for ToF imaging by PMDTec as they are
offering a plugin to enable modulation frequencies down to 1MHz. This enhances
the working range theoretically up to 150m. However in practice, the accuracy
would be strongly reduced and the illumination unit has to be amplified as well.
Nevertheless PMDTec promises an extended range of 30m.

As pointed out in Section 3.2 on page 28, there are numerous approaches that
deal with denoising the distance data captured by ToF sensors. While most of
these approaches either use additional sensors [45, 75, 130] or rely on elaborately
generated calibration data [51, 71, 76], our approach can be applied to all ToF
cameras that deliver amplitude and distance data without any preparation of the
sensor. While receiving very good results, Lindner and Kolb [71] use an additional
camera and pre-captured calibration data in order to correct the error resulting
from differently reflecting objects.

Software Similar to our approach, Schuon et al. [106] presented a method based
on super resolution. Here, several noisy depth maps captured from slightly dif-
ferent positions are combined to one high resolution, high quality depth map.
While this approach has been successfully extended and applied to 3D shape scan-
ning [107, 14], it does not provide – in contrast to our approach – the enhanced
depth imaging in real-time.

6.3 Motivation
As already mentioned, our approach is inspired by HDR imaging. Here, several
exposures of the same scene are captured with varying exposure times. This leads
to images with a varying amount of details in different regions of the image. These
images are fused together in order to keep the details visible in all image regions.
We refer to the book of Reinhard et al. [96] for a complete overview in HDR
imaging.

Usually, the different images are aligned to one HDR radiance map which can
not be displayed without specialized devices [15]. It has to be transformed back
to low dynamic range by tone mapping to enable the visualization on a regular
display. This process has been shortened by Mertens et al. [80]. Thereby, the
images are fused directly into a single low dynamic range image that contains all
the details from a collection of differently exposed images. For each image pixel
a weight is calculated and the final result is an affine combination of the images.
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Chapter 6 Exposure Fusion for Time-of-Flight Imaging

The fusion of color images has already been realized by Goshtasby [31]. He
proposes a measure for the entropy of each image pixel and fuses the images based
on this measure in a gradient-ascent approach which is not utilizable in real-time
applications. In contrast to this, Mertens et al. [80] aim on the same outcome of
fusing images with varying exposure times. They propose three quality measures
and merge the images in a fast pyramid based algorithm.

These quality measures are not suitable for range maps in general. We therefore
adapt the quality measures to the characteristics of ToF range images. The mea-
sure should define a confidence value of the depth data as applied in many other
approaches [78, 61]. While Frank et al. [22] show that the amplitude value is an
optimal indicator for the confidence of the range data, Reynolds et al. [98] demon-
strate that a trained random forest outperforms simple amplitude based threshold-
ing mechanisms. Apart from that Foix et al. [20] recently presented an approach
that models the uncertainty only from the depth data. Based on these inconsis-
tencies in the literature we develop and evaluate new measures. We explain our
choices in the next section.

6.4 Algorithm
Fusion process
Our fusion algorithm is similar to the one described by Mertens et al. [80] which
has been successfully used in recent real-time applications [1]. We take several
exposures of a scene and fuse the depth images together. Each exposure is mul-
tiplied per pixel with a weight map Wk where k = 1, . . . ,N indicates the number
of exposures. This weight map is constructed as an affine combination of several
individual quality measures. We define

Wk = MwC
C ×MwW

W ×MwS
S ×MwE

E

with the quality measures M (resp. Contrast, Well-exposedness, Surface and
Entropy) and × denotes a per pixel multiplication. This multiplication leads to
fact that each quality measure is able to limit the influence of an exposure by
setting a pixel to zero. Each quality measure M is weighted with an correspond-
ing exponent w ∈ {0,1}. The weight map is normalized so that the weight of all
exposures k sums up to one for each pixel.

The fusion is realized as a multiresolution blending. Instead of fusing directly
the full resolution depth maps, image pyramids are computed and fused as pro-
posed by Burt and Adelson [12]. The resulting fused depth map R can be recon-
structed from the Laplacian pyramid L{R}. The l-th level is defined by

L{R}l =
N

∑
k=0

G{Wk}l×L{Dk}l ,
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where Dk denotes the depth map from the k-th exposure. Each level l of the pyra-
mid is constructed by a weighted sum of the corresponding levels of a Laplacian
pyramid over all exposures. The weights are obtained from the l-th level of the
Gaussian pyramid of the weight maps. See Figure 6.1 for a schematic overview
about the process. Note that this fusion scheme slightly enhances the quality,
however it can also be replaced by a simpler full resolution blending.

Figure 6.1: Exposure fusion principle: a) Captured depth maps, b) Depth map – Laplacian
pyramids, c) Weight map – Gaussian pyramid, d) Fused pyramid, e) Final depth
map (after [80])

Quality measures
In the following, we describe the definition of new quality measures for the depth
map fusion in detail. Note that these measures are not entirely calculated from the
depth images, but also based on the amplitude images. We enumerate the image
pixel indices as i and j. The distance image D with distance values Di j is normal-
ized to [0,1] by setting a linear mapping. Distances with the theoretical maximal
distance of 7.5m are mapped to 1, while a distance of 0m is mapped to zero. The
amplitude image A with amplitudes Ai j is also normalized with one global value
that is mapped to 1. Note that the amplitude does not have a theoretical maxi-
mum. It is bounded by the technical properties of the chip, hence we bound the
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maximum at a value where the sensor is not yet saturated.

Contrast MC As pointed out in Section 3.2 and illustrated in Figure 3.8 on
page 35, one big issue with ToF depth images are so called flying pixels. Due
to aliasing effects, the distance along depth discontinuities is computed from pho-
tons collected by the sensor from foreground and background. This leads to wrong
distances that do not necessarily lie between the values of fore- and background.
However, the amplitudes – which are also measured per pixel – along the depth
discontinuities do lie between the fore- and background values. Hence, we can
define a quality measure that fosters image regions where the depth discontinu-
ities do not lead to flying pixels. These regions are identified by the contrast in the
amplitude image which leads us to define

MC = ‖∆A‖.

We apply a 3× 3 Laplacian filter to the amplitudes images and use the absolute
values of the filter response which yields an indicator for contrast. In the am-
plitude images a strong contrast occurs usually along depth discontinuities as the
reflectance of the foreground object differs from the object behind. Thid contrast
is assumed to be stronger than the contrast due to differently reflecting textures.
Note that this measure has also been used by Mertens et al. [80] in order to en-
hance the contrast in the resulting image.

Well-exposedness MW For ToF cameras the amplitude image indicates under-
or overexposure, hence the amplitude can be used as a confidence measure. As
already mentioned, we normalize the amplitude images. We determine amplitude
values Amin and Amax for under- and overexposure and map all the values in be-
tween linearly to the interval [0,1]. All values outside this range are mapped to
zero or one respectively. We calculate each pixel Wi j of this quality measure MW
as

Wi j = e
−(Ai j−α)2

2σ2

with α = 0.5 and σ = 0.2. We adapt this quality measure from the so-called
well-exposedness measure from Mertens et al. [80]. They argue that intensities
close to zero indicate underexposure and close to one overexposure respectively.
In our adaption the pixels with an optimal normalized amplitude value of 0.5 get
the highest weighting. Note that the critical part is the determination of Amin and
Amax. They can either be obtained from the camera manufacturer or by capturing
a wall from a fixed distance. Then plot the mean distance and amplitude values
while varying integration time from low to high. The mean distance will change
drastically as soon as the sensor is under- or overexposed. From this boundaries
Amin and Amax can be determined.
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Surface MS Besides these two quality measures that already lead to promising
results, we defined a further one based on the measure of the structural similar-
ity [116] and its adaption to range maps [77]. A measure for the surface roughness
can be defined as

MS = 1− (σ−µ2)

max(σ−µ2)

where σ is the Gaussian filtered version of D2, while µ is a Gaussian filtered
version of D. The difference σ−µ2 correlates with the frequencies in the images.
Its value is high for high frequencies and vice versa. These high frequencies are
an indicator for noise in the depth image as the captured scene is assumed to be
smooth in relation to camera noise. This difference is divided by its maximal
value and subtracted from one so that the measure MS is high in smooth regions.
The smoothness indicates the absence of noise and leads to the assumption that
the depth values are correct.

Entropy ME Similar to the approach from the well-exposedness measure MW ,
Goshtasby [31] describes the idea for image fusion to strengthen image regions
that contain the most information. A measure for the amount of information is
entropy. The entropy measure ME contains an entropy value Ei j for each pixel. It
is calculated for a local histogram around each pixel of the image as

Ei j =−∑ p(Ai j) log2(p(Ai j))

where p contains the histogram counts from a 9×9 neighborhood of each pixel
and each histogram contains 256 bins. The entropy of an image has the property
that it only depends on the image histogram. This leads to a disadvantage of the
entropy. The image information is defined as uncertainty which is maximal for
noisy images.

See Figure 6.2 for a side by side comparison of all quality measures for an
example scene.

Discussion
We further have to define the number of exposures k that we will use for image fu-
sion. Our algorithm works with an independent number of exposures. In our real-
time implementation, we fuse four images because the PMD[vision] CamCube
3.0 provides a capture mode that allows to take four successive frames without
transferring data in between. Due to the short integration times about max. 5–10
ms, these four exposures do not differ significantly even for scenes containing mo-
tion. Furthermore, the computation costs fusing four images still allow interactive
frame rates.

In order to correct the distance values in real-time, the quality measures have
to be computed efficiently. We use a profiler for determining the attended com-
putation time of each measure. See Figure 6.3 for an illustration of the profiling
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Figure 6.2: Comparison of all weights side by side. Each column is one integration time.
Rows are sorted from top to bottom showing MC,MW ,MS and ME .

data measured during live capture and display of the fused depth images. The blue
bars in the front row display the computation time contribution during the capture,
fusion and anything else (e.g. rendering). The red bars are the weighting functions
inside the fusion algorithm. This figure clearly shows that the entropy calculation
is the bottle neck in our implementation. It leads to a decrease in frame rate in the
real-time implementation down to 2–4 fps even if optimized algorithms are used
for the calculation of the logarithm [115] and the number of unnecessary addi-
tions in the summation is minimized. Without calculating the entropy the whole
fusion process is computed in 0.046seconds on standard laptop computer with a
dual core processor running at 2.16GHz and equipped with 2GB of RAM.

We therefore further evaluate our algorithm to identify the impact of each qual-
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Figure 6.3: Results from profiling: blue bars show the distribution for the complete pro-
gram, red bars the distribution inside the fusion algorithm.

ity measure on the accuracy of the depth maps.

6.5 Evaluation
We implement several test environments in order to demonstrate the superior qual-
ity of the fused depth maps over depth maps acquired with a single integration
time.

Reference
First, we need to define the integration times for our test. Therefore, we imple-
mented a proportional-integral-derivative (PID) controller [122] approach follow-
ing the ideas of May et al. [79]. The integration time is set so that the mean
intensity of the captured image is optimal. In the following, we refer to this inte-
gration time as the ideal integration time t ′. In addition, the number of exposures
and the integration times for each exposure have to be defined for our test cases.
We decided to use the following scheme for the first test:

ti = 2i−1−N
2 t ′

where N is the number of exposures and i = 1, . . . ,N indicates the exposures.

Robustness test
As a first comparison between the fused images and images captured with the ideal
integration time, we analyzed the standard deviation of the distance values of a
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(a) PMD[vision] CamCube 3.0 intensity im-
age

(b) Comparison of standard deviations for sin-
gle exposure and fused solution

Figure 6.4: Static scene used in the robustness test.

static scene over a time period of 50 frames. See Figure 6.4 for an intensity image
of the scene (left). We further compare the standard deviations per pixel (right)
– we colorize the pixels depending whether the standard deviation is smaller for
the single integration time exposures (red) or for the fused solution (blue). All
pixels where the standard deviation does not differ more than 5mm are marked
green. This illustrates that the fused values are more stable especially around
depth discontinuities and in textured regions. The mean standard deviation over
all pixels in the fused images over time is reduced significantly from 2.94cm to
2.17cm.

Plane fitting error
In a second test, we place two planar objects (see the checkerboards in Figure 6.5)
at different depths in the scene. We select these two regions of interest (ROI)
manually. Note that the far checkerboard is mounted on the wall. We captured a
series of four exposure with the same scheme as in the stability test case.

As our algorithm enhances directly the depth maps, we have to transform the
distance values of each pixel in both ROIs (near and far) into 3D coordinates. We
use the fixed intrinsic parameters of the PMD[vision] CamCube 3.0 to calculate
the 3D points for each pixel of our fused depth maps as well as to compute a point
cloud from the depth map obtained with by a single exposure.

We then fit a plane into each ROI in 3D coordinates using a principal compo-
nent analysis and check the correct rough orientation of this planes normal. The
perpendicular distance from each point to the plane is minimized. The error is
defined as this distance. We then compare the mean squared error (MSE) for this
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(a) PMD[vision] CamCube 3.0 intensity im-
age

(b) Fused depth map with two ROIs (white:
near, black: far)

Figure 6.5: First plane fitting test scene.

plane fit and the computation time over various weighting combinations. For each
ROI we compute the MSE for the data captured with the optimal global integration
time and for the fusion results using all possible combinations for the weighting
exponents. In addition, we measure the computation time for the fusion process
(see Table 6.1). The first row contains the results for a single exposure with the
optimal integration time determined by the algorithm of May et al. [79]. The sec-
ond rightmost column contains a weighted sum of both MSE. We use the ratio
between the MSE from the single exposure as weight for the sum, so that both
MSE are equal. The rightmost column shows the error in relation to the weighted
sum MSE from the single exposure – values below one indicate an enhancement.

The primary outcome is that the best weighting combination in this setup is a
combination of all presented quality measures (see the last row). Our results show
that the error is reduced by about nearly 38%.

In order to stress the positive effect of our weights we further compare our
solution with a simple approach. We use the normalized amplitude image directly
as weight. This results in a small error for the near plane, however the far plane
fitting leads to an MSE of 0.02346 what is even larger than in the single exposure.
We show the (far) plane fitting results in Figure 6.6.

We illustrate the correlation of error and computation time in Figure 6.7. The
plot displays the time and error for the combinations of the three most important
quality measures – we left out the surface measure MS for clarity, because it has
no effect in the planar regions, however weights correctly around depth discon-
tinuities (see Figure 6.2 on page 70). The contrast measure MC can clearly be
identified as the most effective measure. Adding the well exposedness measure
MW slightly reduces the error. The entropy measure ME further reduces the error,
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MC MW MS ME Timing MSE (near) MSE (far) Sum (MSE) Error
0 0 0 0 0.000 0.000761 0.0223 0.0446 1.000
0 0 0 1 1.248 0.001033 0.0215 0.0518 1.160
0 0 1 0 0.478 0.001689 0.0199 0.0695 1.557
0 0 1 1 1.304 0.001010 0.0168 0.0465 1.041
0 1 0 0 0.452 0.001287 0.0256 0.0634 1.421
0 1 0 1 1.263 0.000786 0.0206 0.0436 0.977
0 1 1 0 0.507 0.001254 0.0190 0.0558 1.251
0 1 1 1 1.317 0.000769 0.0161 0.0386 0.866
1 0 0 0 0.466 0.000414 0.0178 0.0299 0.671
1 0 0 1 1.275 0.000401 0.0175 0.0293 0.657
1 0 1 0 0.504 0.000413 0.0176 0.0297 0.666
1 0 1 1 1.324 0.000400 0.0174 0.0292 0.653
1 1 0 0 0.476 0.000383 0.0171 0.0283 0.634
1 1 0 1 1.296 0.000375 0.0169 0.0279 0.625
1 1 1 0 0.537 0.000383 0.0169 0.0282 0.631
1 1 1 1 1.358 0.000375 0.0168 0.0278 0.623

Table 6.1: Overview about the effect of each weight on accuracy and computation costs.

Figure 6.6: Close up on the far plane: green dots indicate measures from our fused results,
red the single exposure and blue the simple amplitude weighting.

however at the expense of the computation time. Note that these timings are from
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the MATLAB implementation, however they confirm the trend from the profiling
results of the real-time C++ implementation from Figure 6.3. Nevertheless the
entropy is a suitable quality measure if the computation time is irrelevant.

We did the plane fitting test on further example scenes. Figure 6.8 shows two
walls in an indoor environment. The wall on the right is close to the camera and
untextured while the facing wall is textured. Note that the depth variance of the
walls is far below the precision of the camera and we can hence assume planarity.
We again fit a plane as in the previous example. We compare our fusion result
with two simpler approaches. First, we did not apply the multiresolution fusion
scheme, but simply computed the weighted sum for each pixel. Second, instead
of using our derived quality measures, we again use the normalized amplitude
directly as weight. Besides calculating the MSE, we further compare the estimated
angle between the two walls which should be 90◦ (see Table 6.2). We included
the results from the best single exposure of the sequence.

Method MSE (face) MSE (right) Angle
Multiresolution 0.07888 0.067636 91.57
Weighted sum 0.07912 0.067819 91.61
Amplitude 0.07895 0.067769 91.60
Single exposure 0.07893 0.067643 91.48

Table 6.2: Error values from second plane fitting test scene for comparison with simpler
weighting and fusion schemes.

Figure 6.7: Plot of error versus timing for various weighting combinations.
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(a) PMD[vision] CamCube 3.0 intensity im-
age

(b) Fused depth map with two ROI (face and
right)

Figure 6.8: Second plane fitting test scene.

3D reconstruction
A potential area for the usage of ToF data are autonomous robots and the SLAM
algorithm. In order to determine the position of the robot (and hence the camera)
the captured depth maps have to be registered. One way of registering is the
alignment of point clouds. We therefore evaluate our method by performing a
point cloud alignment by means of the well-known ICP algorithm [7, 13]. We
then compare the alignment error and the convergence.

In our experiment, we mount the camera on a professional tripod and capture
a static indoor scene by rotating the tripod stepwise. We use six exposures for
fusion, then rotate the tripod by 10° and capture another series of exposures. For
each position, we compute two point clouds. One directly from a single expo-
sure with an optimal integration time, the second from the fused depth map. This
results in two pairs of point clouds that have to be aligned. We use the ICP imple-
mentation from Kjer and Wilm [59] to determine a rigid transformation. For our
fused solution the algorithm converges equally fast but the final error is smaller
(see Figure 6.9).

Further we compared the resulting transformation with our manually defined
ground truth – a rotation by 10° around the y-axis. We define the rotation error as
the deviation from the identity

e(R,R1) = ||I−RRT
1 ||F ,

where R is the assumed correct rotation and R1 the one we test, while || • ||F de-
notes the Frobenius norm. In contrast to a simpler error measure like the deviation
in the rotation angle, this error also provides a measure for deviations in the other
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axes. Our fused solution results in an error of 0.0956 while the single exposure
solution produces an error of 0.1598. This is an reduction of about 40%.

Figure 6.9: Convergence of the ICP algorithm for single exposure depth maps and our
fused depth maps.

Limitations
Besides the shown positive examples our method is also limited. In some scenar-
ios the fused depth maps are of equal quality as a single exposure. Table 6.2 shows
that our method is not always far better than simpler approaches. This is the case
if all objects have good (Lambertian) reflection properties and their distance is in a
limited range. Our method works best if the distances and reflection properties are
highly varying. However, neither strong noise in certain areas that are further than
the theoretic limit of 7.5m, nor severe over-saturation can be resolved properly. In
addition, it is necessary that none of the input images is completely noisy.

6.6 Conclusion
We have presented and evaluated a new method to enhance the performance of ToF
imaging devices. We developed test methods that do not need any extra hardware
like a laser scanner in order to estimate the quality of our method. Our method
successfully fuses several exposures into a single depth map and is on one hand not
limited in the number of exposures and on the other hand fast enough to perform
in real-time.

Our method not only works for fusing depth maps captured with different inte-
gration times, it also allows the combination of images with other varying param-
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eters like the modulation frequency. We expect our method to achieve even better
results for future ToF cameras with an extended theoretic range.
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Chapter 7

Conclusions
We conclude this thesis with a summary followed by a short discussion about the
possible impact of our approaches and also the limitations of our solutions. In the
end, we briefly sketch possibilities for future work and try to encourage the reader
to work on further improvements in the area of real-time depth imaging.

7.1 Summary
In the last chapters, we presented several approaches toward enhanced real-time
depth sensing. We introduced the two key issues, namely the challenge of pro-
ducing depth images in real-time and the verification that these measurements are
reliable. We discussed which depth sensing methods and technologies are capable
of providing depth images while meeting these demands. We concluded that ToF
imaging is the most promising technology, as it enables the fast capture of reason-
able large scenes. While, spatial resolution of these ToF cameras is meant to be
increased in the next years, the technology suffers from a great many of system-
atic errors. We claim that a combination with other depth imaging systems will
provide solutions that circumvent these systematic errors.

We propose to combine ToF cameras with stereo imaging in order to provide
high resolution color information as well as depth information in a broader range
of applications as a single sensor can provide. A proof of this concept has been
described in Chapter 4, while an alternative and more practical solution has been
demonstrated in Chapter 5. We combine a PMD and a stereo camera and control
the disparity estimation with confidence data from the ToF sensor. We show that
this is a crucial improvement for AR applications and can be seen as a first step
toward the goal of applications like free 3D viewpoint television.

This enhances the range of applications toward a human-like machine vision,
but suffers from a low dynamic range in the depth sensing. While a first, promising
solution has been presented in Chapter 6, where a technique from computational
photography has been successfully adapted to ToF imaging, the problem of the
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low dynamic range remains challenging. However, our solution is flexible enough
to be adapted to the requirements in automotive engineering and can thus form
the foundations for new driver assistance systems or even lead to autonomous
vehicles.

7.2 Discussion
Impact This thesis contains several contributions to the scientific areas of CG
and CV. We demonstrate the combination of depth sensing principles that might
guide applied research toward devices that are utilized in unexplored terrains in-
stead of the laboratory. Our approaches are meant to increase the generality of
depth sensing and hence broaden the range of applications. One interesting ap-
plication would be the embedding of such sensors in vehicles like the mars rover,
where several sensors are attached together. There are no approaches to combine
all these sensors in order to provide the rover with a deeper understanding of its
surrounding. Our solutions show that combining depth sensors can improve the
depth sensing capabilities, however it is not possible to test such a sensor com-
pletely for unknown environments.

Limitations The proposed solutions have only been tested in the laboratory.
There is a big gap between standard testing environments and the real world.
There might always occur unpredictable use cases that have not been tested and
hence the functionality of approaches like ours can not be guaranteed. Besides
this general limitation of devices tested in laboratory only, all our approaches in-
troduce the benefit of reliability with a loss of speed. There is always a trade-off
between precision and performance. While there will be future applications where
our suggestions to improve the depth sensing do not work and the performance of
the system might be reduced, our approaches do at least not decrease the reliability
of the system.

7.3 Outlook
Combination One important aspect of this thesis is the proof that combining
ToF and stereo imaging leads to significant improvements in terms of reliability
of real-time depth imaging. We want to emphasize the importance of not focusing
on a single sensing technology. Triangulation methods, for example, always suf-
fer from the necessity of a baseline, while for ToF imaging it will always remain
challenging to increase the signal to noise ratio while keeping the energy efforts
as low as possible. We see great potential for saving energy also by combining
methods and reducing computation costs. As an example the general combination
of LIDAR and triangulation could lead to a setup where the reference signal of the
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LIDAR system additionally forms a source of structured light that allows to trian-
gulate. Then, the distance information can be extracted by two contrary methods
having different noise characteristics, while the hardware costs are shared.

Integration Another outstanding aspect is the integration of methods from dif-
ferent fields into existing depth sensing technology. We demonstrated the possi-
bility to enhance depth images by the help of an image fusion algorithm known
from computational photography. In research on computational photography, fur-
ther modifications of camera systems like coded aperture [66] show that there are
plenty approaches to extract depth information from images. These findings could
be further used to enhance the data captured by depth sensors like ToF cameras.
In this thesis, a first approach from computational photography has been demon-
strated and we encourage further research in this direction.
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