
Concepts for Efficient, Adaptive and
Robust Deep Learning from Distributed

Data

vorgelegt von
M.Sc.

FELIX SATTLER

an der Fakultät IV - Elektrotechnik und Informatik -
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Henning Sprekeler
1. Gutachter: Prof. Dr. Klaus-Robert Müller
2. Gutachter: Prof. Dr. Thomas Wiegand
3. Gutachter: Prof. Dr. Harold Vincent Poor

Tag der wissenschaftlichen Aussprache: 30. September 2021

Berlin, 2021

iii

Abstract
Concepts for Efficient, Adaptive and Robust Deep Learning from Distributed

Data

by Felix SATTLER

Due to their great performance and scalability properties, deep neural networks have
become ubiquitous building blocks of many applications. With the rise of mobile
and IoT devices, these models now are also being increasingly deployed and trained
in distributed settings, where data is heterogeneous and separated by limited com-
munication channels and privacy constraints. These distributed "on-device" training
approaches, have many advantages over traditional cloud-based training such as
better privacy-preservation, increased security and device autonomy. However, these
advantages come at the cost of more challenging training conditions, due to hardware
and network constraints of the training environment, statistical heterogeneity of the
data, as well as robustness and privacy requirements among others. In this thesis, we
present methodologies and algorithmic concepts to address these challenges jointly,
by means of heterogeneity-aware and communication-efficient training, robust and
adaptive multitask optimization and certainty-weighted aggregation methods. Our
proposed solutions reduce communication-overhead in distributed training by up to
four orders of magnitude, facilitate personalization and adversarial robustness via
automatic device clustering and advance the state of the art in federated training per-
formance in the presence of unlabeled auxiliary data. Our proposed methodologies
enable widespread adoption of distributed training solutions, as has been demon-
strated through their application to a variety of real-world problems in subsequent
work.

v

Deutsche Zusammenfassung
Tiefe neuronale Netze haben in den vergangenen Jahren beachtliche Durchbrüche

erzielt und weite Teile des maschinellen Lernens revolutioniert. Durch ihre Leistungs-
fähigkeit und Skalierbarkeit sind diese Modelle essentieller Bestandteil vieler Anwen-
dungen geworden. Im Zuge der zunehmenden Verbreitung von Smartphones und
intelligenten Geräten kommen tiefe neuronale Netze nun auch vermehrt in Szenarien
zur Anwendung, in denen Trainingsdaten verteilt vorliegen und durch statistische
Heterogenität gekennzeichnet sind. Aufgrund von Anforderungen an Privatsphäre,
Sicherheit und Autonomie ist es in diesen Szenarien oft nicht möglich, die Trainings-
daten an einem zentralen Punkt zu sammeln. Um Daten in dieser Situtation dennoch
verwertbar zu machen, muss stattdessen auf verteilte Trainingsprotokolle zurück
gegriffen werden, welche die Daten lokal auf jedem Erzeugergerät prozessieren und
lediglich abstrakte akkumulierte Trainingsinformationen austauschen. Das verteilte
Training birgt jedoch eine Reihe neuer Herausforderungen, welche sich unter an-
derem aus den Hardware- und Netzwerkbeschränkungen der Trainingsumgebung,
der statistischen Heterogenität der Daten, sowie den Robustheits- und Privatsphäre-
anforderungen ergeben. Die vorliegende Arbeit beschreibt Methoden und Konzepte,
welche diese Herausforderungen ganzheitlich addressieren. Die vorgestellten Al-
gorithmen ermöglichen unter anderem eine Reduktion des Datenaustausches im
verteilten Training um vier Größenordnungen, erlauben es Geräte automatisiert
anhand der Ähnlichkeit ihrer Datenverteilungen zu gruppieren und steigern die
Trainingsproduktivität durch adaptive Gewichtung der einzelnen Lerner im Ag-
gregationsprozess. Auf diese Weise werden verteilte Trainingsmethoden auch in
der Gegenwart starker Resourcenbeschränkungen zugänglich gemacht, sowie die
Personalisierung und Robustheit der gelernten Modelle und des Trainingsprozesses
verbessert. Wie durch ihre Verwendung in verschiedenen realen Probleme demon-
striert wird, eröffnen die vorgestellten Methoden neue Möglichkeiten bezüglich der
Anwendung des verteilten Lernens.

vii

Acknowledgements
I would like to express my gratitude to the people who helped me make this

dissertation a reality.
First and foremost I would like to acknowledge my supervisor Prof. Dr. Klaus-

Robert Müller for his continued support and encouragement. Prof. Müller always
had an open ear, provided me with critical advice and his faith in my ideas helped
me push through times of frustration. His miraculous ability to pinpoint holes in any
scientific assertion often resulted in extra work for me, which however always paid
off in the end.

I also want to thank Dr. Wojciech Samek, Head of the Artificial Intelligence
Department at HHI, for being the best mentor, boss and co-author anyone could
imagine. Dr. Samek was highly supportive of me from the beginning, endowed
me with trust and opened doors by organizing tutorials and special sessions at
conferences.

I owe thanks to Prof. Dr. Thomas Wiegand, executive director at HHI, for provid-
ing a fantastic research environment and being a driver of motivation during intense
project work.

My deep gratitude also goes to Simon Wiedemann, who supervised me during
my time as a student research assistant at HHI and initially introduced me to the
topic of distributed deep learning. Simon was a great partner in scientific discussions,
pointed me at lots of interesting literature and stimulated my imagination far beyond
the content of this thesis. Most importantly however, I want to thank Simon for his
incredibly positive, cheerful and uplifting attitude at the lab in general and towards
me in particular. His optimism and entrepreneurial mindset have had a lasting
impression on me.

I also want to thank my colleagues and collaborators at HHI for all the interesting
discussions and good fun we had both during and after work. In no particular order:
David Neumann, Karsten Müller, Arturo Marban, Tim Korjakow, Haley Hoech, Leyla
Arras, Ahmed Osman, Roman Rischke, Sören Becker, Vignesh Srinivasan, Patrick
Wagner, Luis Oala and Jackie Ma. Thank you for making our research group not only
my intellectual home.

I am also indebted to Gabriela Thiele for taking care of all my administrative
needs and always going the extra mile to make my time at HHI as comfortable as
possible.

Finally, my immeasurable gratitude goes to Anna, who supported me with her
love, admirable patience, and encouragement throughout the entire process of work-
ing on my dissertation. When I look at her, holding our newborn son, I am excited
for the future and there is nothing that could make me happier.

ix

Contents

Abstract iii

Deutsche Zusammenfassung v

Acknowledgements vii

Contents xi

List of Figures xv

List of Tables xviii

List of Algorithms xix

List of Abbreviations xix

1 Introduction 1
1.1 Structure of the Thesis . 2
1.2 Own Contributions . 3
1.3 List of Publications . 5

2 Deep Learning from Decentralized Data 7
2.1 Settings . 9

2.1.1 Federated Learning . 9
2.1.2 Peer-to-Peer Learning . 11
2.1.3 Distributed Training in the Data Center 12

2.2 Challenges . 13
2.3 Algorithmic Frameworks . 15

2.3.1 Distributed SGD . 16
2.3.2 Federated Averaging . 16
2.3.3 Federated Distillation . 18

2.4 Simulating Distributed Learning Environments 19
2.5 Summary . 21

3 Communication-Efficient Distributed Training 23
3.1 Communication in Distributed Training 23
3.2 On the Accumulation of Gradient Information 25
3.3 Sparse k-nary Compression . 27
3.4 Convergence Analysis . 29
3.5 Experiments . 31

3.5.1 Networks and Data Sets . 31
3.5.2 Results . 31

3.6 Summary & Limitations . 32

x

4 Communication-Efficient Federated Learning 35
4.1 Limitations of Existing Compression Methods 35

4.1.1 Downstream Compression . 35
4.1.2 Partial Participation . 36
4.1.3 Robustness to non-iid Data . 37

4.2 Applying Sparse k-nary compression to Federated Learning 39
4.2.1 Extending to Downstream Compression 39
4.2.2 Weight Update Caching for Partial Client Participation 40

4.3 Experiments . 42
4.3.1 Heterogeneous Client Data . 43
4.3.2 Robustness to other Parameters of the Learning Environment . 43
4.3.3 Communication-Efficiency . 45

4.4 Summary & Limitations . 46

5 Communication-Efficient Federated Distillation 49
5.1 Federated Distillation Frameworks . 49
5.2 Investigating the Communication Properties of Federated Distillation . 50

5.2.1 Distillation Data Set Size . 51
5.2.2 Soft-Label Quantization . 52
5.2.3 Efficient Encoding . 53
5.2.4 Efficient Downstream Communication 55

5.3 Compressed Federated Distillation . 57
5.4 Experiments . 58

5.4.1 Image Classification Results . 61
5.4.2 Language Model Results . 62

5.5 Summary & Limitations . 62

6 Clustered Federated Learning 65
6.1 Generalizing the Federated Learning Assumption 65
6.2 Clustering based on Gradient Signals 67

6.2.1 Cosine Similarity based Bi-Partitioning 67
6.2.2 Distinguishing Congruent and Incongruent Clients 71
6.2.3 Algorithm . 73

6.3 Related Work . 74
6.4 Implementation Considerations . 76

6.4.1 Weight-Updates as generalized Gradients 76
6.4.2 Preserving Privacy . 77
6.4.3 Varying Client Populations and Parameter Trees 77

6.5 Practical Considerations . 78
6.6 Evaluating Clustered Federated Learning in Heterogeneous Settings . 82
6.7 Adversarial Robustness of Clustered Federated Learning 83

6.7.1 Evaluating Clustered Federated Learning in Adversarial Settings 84
6.8 Summary & Limitations . 86

7 Federated Learning with Auxiliary Data 89
7.1 Exploiting Auxiliary Data in Federated Learning 89

7.1.1 Problem Setting . 90
7.1.2 Federated Ensemble Distillation 90
7.1.3 Self-supervised Pre-training . 91
7.1.4 Weighted Ensemble Distillation 91
7.1.5 Privacy Analysis . 94

xi

7.2 Algorithm . 95
7.3 Related Work . 97
7.4 Experiments . 97

7.4.1 Setup . 97
7.4.2 Evaluating FEDAUX on common Federated Learning Bench-

marks . 99
7.4.3 Evaluating FEDAUX on NLP Benchmarks 100
7.4.4 Privacy Analysis of FEDAUX . 101
7.4.5 Evaluating the dependence on Auxiliary Data 101
7.4.6 FEDAUX in Hardware-Constrained Settings 102

7.5 Discussion and Qualitative Comparison with Baselines 102
7.6 Summary & Limitations . 104

8 Conclusion 107
8.1 Thesis Summary . 107
8.2 Limitations and Outlook . 108
8.3 Impact . 109
8.4 Concluding . 109

A Communication-Efficient Distributed Training 111
A.1 Proof of Theorem 1 . 111
A.2 Encoding and Decoding . 112
A.3 Convergence Proofs . 112

B Clustered Federated Learning 115
B.1 Proving the Separation Theorem . 115

C Federated Learning with Auxiliary Data 123
C.1 Proof of Theorem 4 . 123
C.2 Details on the implementation of different scoring mechanisms 124
C.3 Additional Results and Detailed Training Curves 125
C.4 Details on generating Imagenet subsets 125
C.5 Details on the Implementation and Results of the NLP Benchmarks . . 127
C.6 Hyperparameter Evaluation . 128
C.7 Empirical Privacy Evaluation . 128

Bibliography 131

xiii

List of Figures

2.1 Comparison between the two paradigms for machine learning from
distributed data. 8

2.2 Communication at the training stages of different Distributed ML
pipelines. 9

2.3 The flow of data and computations in Federated Averaging and Feder-
ated Distillation. 15

2.4 Procedural comparison between the algorithmic frameworks of Dis-
tributed SGD, Federated Averaging and Federated Distillation. 16

2.5 Illustration of the sharding (top) and Dirichlet data splitting strategies
(bottom) used throughout the manuscript, exemplary for a Federated
Learning setting with 10 Clients and 10 different classes. 20

3.1 Sources of noise in SGD (illustration). 25
3.2 Validation Error for ResNet32 trained on CIFAR at different levels of

temporal and gradient sparsity. 26
3.3 Step-by-step explanation of techniques used in Sparse Binary Com-

pression. 27
3.4 Validation error vs number of transferred bits (log-log) for ResNet50

trained on ImageNet using different methods for compressed commu-
nication. 32

4.1 The effect of data heterogeneity on the performance of different effi-
cient Federated Learning methods. 36

4.2 Accuracy achieved by VGG11* when trained on CIFAR in a distributed
setting with 5 clients for 16000 iterations at different levels of upload
and download sparsity. 39

4.3 Robustness of different compression methods to heterogeneity of client
data and varying batch-sizes. 43

4.4 Robustness of different compression methods to varying client popula-
tion sizes and varying client data set sizes sizes. 44

4.5 Convergence speed of Federated Learning with compressed communi-
cation in terms of training iterations (top) and uploaded bits (bottom)
on three different benchmarks. 46

4.6 Summary of the advantageous properties of the STC algorithm. 47

5.1 Effect of distillation data set size and different active selection strategies
on the Federated Distillation performance. 51

5.2 Effect of distillation data set size and quantization strength on training
performance in Federated Distillation. 53

5.3 Evolution of the soft-label entropy when training ResNet-8 on the
CIFAR-10 data set, at different levels of data-heterogeneity. 54

5.4 Effect of different levels of upstream and downstream quantization on
the performance of CFD. 57

xiv

5.5 Illustration of our proposed Compressed Federated Distillation method. 59
5.6 Model performance as a function of communicated bits for our pro-

posed CFD method and baselines methods FA and FD. 61

6.1 Two toy cases in which the Federated Learning Assumption is violated. 66
6.2 Optimization path of Federated Learning with four clients, belonging

to two different clusters with incongruent data distributions and cosine
similarity between their respective gradient updates. 69

6.3 Clustering quality as a function of the number of data generating
distributions K and the relative approximation noise γ. 71

6.4 Schematic overview over the CFL Algorithm. By recursively bi-partitioning
the client population into sub-groups of maximum dissimilarity, CFL
produces a hierarchy of models of increasing specificity. 72

6.5 Example of a parameter tree created by Clustered Federated Learning. 78
6.6 Separation gap g(α) as a function of the number of data points on every

client and the the number of communication rounds for the label-swap
problem on MNIST and CIFAR. 80

6.7 Experimental verification of the norm criteria (6.29) and (6.28) 81
6.8 CFL applied to the "permuted labels problem" on CIFAR with 20 clients

and 4 different permutations. 82
6.9 Development of the cluster candidate dissimilarity αcross for four dif-

ferent adversarial scenarios and three different data sets. 86
6.10 Development of the cluster candidate dissimilarity αcross for four dif-

ferent adversarial scenarios and three different data sets. 87

7.1 Illustration of the training procedure of FEDAUX. 90
7.2 Weighted Ensemble Distillation illustrated in a toy example on the Iris

data set. 91
7.3 Left: Toy example with 3 clients holding data sampled from multivari-

ate Gaussian distributions D1, D2 and D3. All clients solve optimiza-
tion problem J by contrasting their local data with the public negative
data, to obtain scoring models s1, s2, s3 respectively. As can be seen
in the plots to the right, our proposed scoring method approximates
the robust weights proposed in (Mansour, Mohri, and Rostamizadeh,
2008) as it holds si(x)/ ∑j sj(x) ≈ Di(x)/ ∑j Dj(x) on the support of
the data distributions. 92

7.4 Comparison of validation performance for Federated Distillation of
ResNet-8 on the CIFAR-10 data set when different scoring techniques
are used to obtain the certainty weights si(x) used during ensemble
distillation. Certainty scores obtained via two-class logistic regression
achieve the best performance and can readily be augmented with a
differentially private mechanism. 94

7.5 Evaluation on different neural networks and client population sizes n. 98
7.6 Evaluating FEDAUX on NLP Benchmarks. 98
7.7 Performance of FEDAUX for different combinations of the privacy

parameters ε, δ and λ . 99
7.8 Linear evaluation of FEDAUX. 102

B.1 Possible configuration in d = 2 with K = 3 different data generating
distributions and their corresponding gradients v1, v2 and v3. 116

xv

B.2 Configuration for which the angle between v + X and v + Y is maxi-
mized (red in the plot) . 117

B.3 Possible configuration in d = 2. The largest and 2nd largest angle
between neighboring vectors (red) separate the two optimal clusters.
The largest angle between neighboring vectors is never greater than π. 121

C.1 Detailed training curves for ResNet-8 trained on CIFAR-10, n = 80
Clients, C = 40%. 126

C.2 Detailed training curves for MobileNetv2 trained on CIFAR-10, n =
100 Clients, C = 40%. 126

C.3 Shufflenet trained on CIFAR-10, n = 100 Clients, C = 40%. 126
C.4 Detailed training curves for mixed models trained on CIFAR-10. 20

each train ResNet8, MobileNetv2 and Shufflenet respectively. 126
C.5 Results of our hyperparameter optimization for ResNet8. 20 Clients

are trained for 50 communication rounds, at a participation rate of
C = 40%. 129

C.6 Data points x from the auxiliary data set which were assigned the high-
est scores si(x) and their nearest neighbors in the data of 4 randomly
selected clients Di. 130

xvii

List of Tables

2.1 Characteristics of different Distributed ML pipelines. 10
2.2 Overview of the different challenges in Distributed ML and the chap-

ters in this thesis which address them. 14
2.3 The parameters used to simulate distributed learning environments in

this thesis. 19

3.1 Final accuracy/perplexity achieved on the test split and average com-
pression rate for different compression schemes in a distributed train-
ing setting with four clients on different models and data sets. 30

4.1 Qualitative comparison between different methods for communication-
efficient distributed deep learning. 38

4.2 Bits required for upload and download to achieve a certain target
accuracy on different learning tasks in an iid learning environment. . . 45

5.1 Effect of the client model initialization on the maximum accuracy
achieved in Federated Distillation. 55

5.2 Upstream and downstream communication in MB, necessary to achieve
accuracy targets in Federated Learning on the CIFAR-10 data set. . . . 60

6.1 Qualitative comparison between methods for Federated Multi-Task
Learning. 75

6.2 Accuracy achieved by conventional Federated Learning and CFL in the
four investigated scenarios. Best performing methods are highlighted
in bold face. 85

7.1 Maximum accuracy achieved by FEDAUX and other baseline FL meth-
ods after T = 100 communication rounds, at different participation
rates C and levels of data heterogeneity α. 100

7.2 Maximum accuracy achieved by FEDAUX and other baseline FL meth-
ods after 100 communication rounds, when different sets of unlabeled
auxiliary data are used for pre-training and/ or distillation. 100

7.3 One-shot performance of different FL methods. 101
7.4 Qualitative Comparison of the computational complexity, communica-

tion overhead and privacy loss after T communication rounds as well
as implicit assumptions made by different Federated Learning methods.103

C.1 Results on data sets with higher number of classes. Training ResNet-
8 on CIFAR-100. Accuracy achieved after T = 100 communication
rounds by different Federated Distillation methods. 127

C.2 Auxiliary data sets used in this study and their defining Wordnet IDs
and data sets sizes. 127

C.3 NLP Benchmarks of different FL methods. Maximum accuracy achieved
after T = 20 communication rounds at participation-rate C = 100%. . . 128

xviii

C.4 Best performing hyperparameter combinations for each method when
training ResNet8 with n = 20 clients for 50 communication rounds at
a participation rate of C = 40%. 128

xix

List of Algorithms

1 Distributed SGD . 16
2 Federated Averaging . 16
3 Federated Distillation . 16
4 Sparse k-nary Compression for Efficient Distributed Training 28
5 Sparse Binary Compression . 28
6 Sparse Ternary Compression . 28
7 Sparse k-nary Compression for Efficient Federated Learning 41
8 Compressed Federated Distillation . 58
9 Optimal Bipartition . 74
10 Federated Learning . 74
11 Clustered Federated Learning . 74
12 Clustered Federated Learning with Privacy Preservation and Weight-

Updates . 79
13 Assigning new Clients to a Cluster . 79
14 FEDAUX Preparation Phase . 96
15 FEDAUX Training Phase. 96
16 Golomb Position Encoding . 113
17 Golomb Position Decoding . 113

xxi

List of Abbreviations

CABAC Context Adaptive Binary Arithmetic Coding
CFD the Compressed Federated Distillation algorithm (Sattler et al.,

2021a)
CFL the Clustered Federated Learning algorithm (Sattler, Müller, and

Samek, 2020)
DGC the Deep Gradient Compression algorithm (Lin et al., 2018)
DNN Deep Neural Network
DSGD the Distributed Stochastic Gradient Descent algorithm
FD Federated Distillation
FEDAUX the Federated Learning with Auxiliary Data algorithm (Sattler

et al., 2021b)
FEDAVG the Federated Averaging algorithm (McMahan et al., 2017)
FEDBE the Federated Distillation with Bayesian Ensembles algorithm

(Chen and Chao, 2020)
FEDDF the Federated Distillation for robust model Fusion algorithm (Lin

et al., 2020b)
FEDMD the Federated Learning via Model Distillation algorithm (Li and

Wang, 2019)
FEDPROX the Federated Averaging algorithm with PROXimal loss term (Li

et al., 2020a)
FL Federated Learning
iid independent and identically distributed
IoT Internet of Things
KDE Kernel Density Estimation
LSTM the Long Short-Term Memory model
ML Machine Learning
MPEG the Motion Picture Experts Group
NN Neural Network
QSGD the Quantized Stochastic Gradient Descent algorithm (Alistarh

et al., 2017)
SBC the Sparse Binary Compression algorithm (Sattler et al., 2019)
SGD the Stochastic Gradient Descent algorithm
signSGD the sign-compressed Stochastic Gradient Descent algorithm

(Bernstein et al., 2018)
STC the Sparse Ternary Compression algorithm (Sattler et al., 2020b)
SVD Singular Value Decomposition
TernGrad the Ternary Gradient Compression algorithm (Wen et al., 2017)

xxiii

F Für Anna und Elias. F

1

Chapter 1

Introduction

As Internet of Things (IoT) applications raise in popularity and smartphones have
become ubiquitous companions in our everyday lifes, the number of intelligent
devices in the world has rapidly grown over the last couple of years. Many of these
devices are equipped with various sensors and increasingly potent hardware that
allow them to collect and process data at unprecedented scales (Taylor, Baron, and
Schmidt, 2015).

In a concurrent development, deep learning has revolutionized the ways that
patterns and actionable insights can be extracted from data resources with ground-
breaking successes in areas such as computer vision, natural language processing or
voice recognition among many others (LeCun, Bengio, and Hinton, 2015; Karpathy
and Fei-Fei, 2015; Bosse et al., 2018; Karpathy et al., 2014; Sutskever, Vinyals, and Le,
2014; Samek, Wiegand, and Müller, 2018). Deep learning scales well with growing
amounts of data and it’s astounding successes in recent times can be at least partly at-
tributed to the availability of large and diverse data sets for training. It is self-evident,
that there lays huge potential in harnessing the rich data provided by mobile and
IoT devices for the training and improving of deep learning models (McMahan et al.,
2017).

At the same time however, we see that data privacy has become a growing
concern for many users. Multiple cases of data leakage and misuse in recent times
have demonstrated that the centralized processing of data comes at a high risk for the
end users privacy (McLeod and Dolezel, 2018). As IoT and mobile devices usually
collect data in private environments, often even without explicit awareness of the
users, these concerns hold particularly strong. In many situations it is therefore not an
option to share locally generated data, such as private pictures or text massages, with
a centralized data silo in the "cloud" to conduct training of a deep learning model.
This leaves us facing the following dilemma: How are we going to make use of the
rich combined data of millions of mobile and IoT devices for training deep learning
models if this data can not be stored at a centralized location?

Distributed training frameworks, such as Federated Learning (McMahan et al.,
2017) or peer-to-peer learning (Bellet et al., 2018), resolve this issue by allowing
multiple parties to jointly train deep learning models on their combined data, without
any of the participants having to reveal their data to a centralized entity. This form
of privacy-preserving collaborative learning is achieved by processing data locally,
on-device, and only communicating abstract training information, such as gradients,
higher order model updates or soft-label predictions, to a centralized cloud server or
other devices directly.

By repeatedly alternating between local training and aggregation of the local
client contributions, knowledge diffuses indirectly between the participants and
powerful models can be trained that capture patterns on the combined data of all

2 Chapter 1. Introduction

clients, without this data ever having to leave any of the local devices, ensuring
improved privacy, security and attribution of ownership.

Although distributed training systems have the potential to make entirely new
realms of data accessible for use in data science pipelines, their practical implemen-
tations face many challenges that arise from the often limited and heterogeneous
hardware of the participating devices, the statistical heterogeneity in their data as
well as the distributed nature of the optimization process itself. Distributed training
applications for instance may suffer from constrained communication channels, inter-
mittent connections, device failures as well as malicious participants, which actively
try to disturb the joint training effort.

In this thesis, we present methodologies and algorithmic concepts to address these
challenges jointly, by means of heterogeneity-aware and communication-efficient
training, robust and adaptive multitask optimization and certainty-weighted ag-
gregation methods. Our proposed solutions reduce communication-overhead in
distributed training by up to four orders of magnitude, facilitate personalization and
adversarial robustness via automatic device clustering and advance the state of the
art in federated training performance in the presence of unlabeled auxiliary data.

1.1 Structure of the Thesis

Over the course of this work, we will explore different distributed training scenarios
and provide algorithmic and methodological solutions to the challenges that may
arise in them. The chapters of this thesis are organized as follows:

Chapter 2 provides an overview of the most important distributed training settings
and briefly reviews the dominant algorithmic paradigms for the training of deep
neural network classifiers from distributed sources of data. Both opportunities
and challenges of distributed training are highlighted and recommendations on
simulating distributed training environments are provided.

Chapter 3 explores communication-efficient distributed training in the data center.
The communication protocol of sparse k-nary compression is introduced, which pro-
vides a novel way of compressing gradient information, by combining sparsification
and quantization techniques with efficient encoding and communication delay.

Chapter 4 extends the sparse k-nary compression protocol, introduced in Chapter 3, to
the unique challenges of the Federated Learning environment, namely heterogeneous
data, partial device participation and bidirectional communication. Theoretical con-
siderations are accompanied by extensive experiments on a wide range of Federated
Learning settings.

Chapter 5 investigates communication-efficiency in the context of Federated Distil-
lation. The effects of active distillation-data curation, soft-label quantization and
delta-coding techniques on communication and training performance are explored
through experiments with large-scale convolutional neural networks and transformer
models in heterogeneous Federated Learning environments.

Chapter 6 presents a new way of treating structured data heterogeneity in Federated
Learning. Clustered Federated Learning is described as a versatile extension of the
conventional Federated Learning framework, which automatically groups clients into
clusters of jointly trainable data distributions. Formal clustering criteria are rigorously
derived and practical implementation considerations addressed. Clustered Federated

1.2. Own Contributions 3

Learning is evaluated in a variety of different Federated Learning settings, including
adversarial settings where some clients try to disturb the training process.

Chapter 7 explores Federated Learning in the presence of unlabeled auxiliary data.
Certainty-weighted ensemble distillation is described as an extension of conventional
Federated Distillation methods for training settings with heterogeneous data. An
(ε, δ)-differentially private mechanism to obfuscate the certainty-scores, quantify
and limit the privacy loss is presented. Extensive experiments are performed to
investigate the influence of different auxiliary data sets and privacy parameters on
the performance of our method.

Chapter 8 concludes this thesis with a summary and provides an overview over
applications of the concepts and methodologies introduced in this thesis in the
sciences as well as an outlook to future work.

1.2 Own Contributions

Conceptual and Technical Contributions:

• Efficient communication protocols for distributed training in the data-center,
Federated Learning as well as Federated Distillation are proposed that reduce
both upstream and downstream communication by up to four orders of magni-
tude, while being robust to a wide variety of training conditions (Sattler et al.,
2019; Sattler et al., 2020b; Neumann et al., 2019; Sattler et al., 2021a).

• The combination of multiple techniques for communication reduction in dis-
tributed training is investigated. Connections between the previously separately
treated techniques of communication delay and error accumulation are revealed
(Sattler et al., 2019).

• An important practical limitation of conventional Federated Learning, namely
structured heterogeneity in the client data distributions, is highlighted (Sattler,
Müller, and Samek, 2020).

• The distributed training principle of Clustered Federated Learning (CFL) is
proposed (Sattler, Müller, and Samek, 2020), generalizing Federated Learning
to settings where the local data distributions exhibit a clustering structure.

• The Clustered Federated Learning framework is investigated w.r.t. several
practical concerns, including varying client populations and training with
formal privacy guarantees. Tools are proposed that allow CFL to seamlessly
adapt to these conditions and constraints (Sattler, Müller, and Samek, 2020).

• Clustered Federated Learning in the presence of malicious or byzantine clients
is investigated. It is demonstrated that CFL inherently provides some degree of
robustness to these types of adversarial settings (Sattler et al., 2020a).

• FedAUX, a novel certainty-weighted Federated Distillation technique is pro-
posed, which substantially improves performance of Federated Distillation on
heterogeneous client data, addressing a long-standing problem in FL research
(Sattler et al., 2021b).

4 Chapter 1. Introduction

Theoretical Contributions:

• A convergence analysis of distributed training algorithms with sparse and
quantized parameter updates is provided (Sattler et al., 2020b).

• A computationally efficient and privacy preserving tool, based on the cosine
similarity between the clients’ gradient updates, is derived, that provably allows
to infer the similarity in the data of different members of the client population,
thus making it possible to detect clustering structures in local clients data
distributions (Sattler, Müller, and Samek, 2020).

• An efficient splitting criterion is derived, which ensures that Clustered Feder-
ated Learning only separates the client population if benefits can be expected,
making Clustered Federated Learning a flexible general purpose framework
for Federated Learning (Sattler, Müller, and Samek, 2020).

• An (ε, δ)-differentially private mechanism to quantify and constrain the pri-
vacy loss associated with transmitting certainty scores in weighted Federated
Distillation is proposed (Sattler et al., 2021b).

• Certainty-weighted Federated Distillation is analyzed from the perspective of
domain adaptation. It is shown that the certainty scores, which are used to
weight the client predictions in FedAUX, approximate a robust aggregation
rule, proposed in domain adaptation litterature (Sattler et al., 2021b).

Experimental Contributions:

• A thorough analysis of the communication and convergence properties of
different Federated Learning methods, as well as their relation to one another,
is performed at varying levels of data heterogeneity (Sattler et al., 2019; Sattler
et al., 2020b; Sattler et al., 2021a).

• The communication-efficiency and robustness of sparse k-nary compression
and Compressed Federated Distillation to a wide variety of Federated Learning
settings is demonstrated in extensive experiments on large-scale convolutional
neural networks and transformer models.

• Shortcomings of existing efficient Federated Learning protocols are documented
in extensive experiments (Sattler et al., 2019; Sattler et al., 2020b; Sattler et al.,
2021a).

• The Clustered Federated Learning framework is evaluated on large-scale deep
neural networks. Distinctive performance improvements over conventional
Federated Learning, when client data exhibits a clustering structure, are demon-
strated (Sattler, Müller, and Samek, 2020).

• Federated Learning in the presence of unlabeled auxiliary data is investigated.
A wide range of (out-of-distribution) auxiliary data sets are investigated with re-
spect to their suitability for self-supervised pre-training. Drastical performance
improvements across different baseline methods are observed when initializing
distributed training with pre-trained models obtained in this way (Sattler et al.,
2021b).

• The convergence properties of certainty-weighted Federated Distillation are ex-
perimentally investigated in hardware-constraint settings (Sattler et al., 2021b).

1.3. List of Publications 5

Contributions not included in this Thesis:

• The investigation of the compression properties of context-adaptive binary
arithmetic coding (CABAC) when applied to trained deep neural network rep-
resentations as well as differential model updates communicated in Federated
Learning (Neumann et al., 2019).

1.3 List of Publications

The following list contains all contributions made by the author to the area of deep
learning from distributed data. As is common practice in this scientific field, some of
the materials presented in this thesis have been pre-published as journal articles or
presented at scientific conferences. The work presented in [1-7] and [9] is included in
large parts into this thesis. I would like to thank my co-authors for allowing me to
use parts of text from previous publications.

Journal articles

[1] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek
(2020b). “Robust and Communication-Efficient Federated Learning From Non-i.i.d.
Data”. In: IEEE Transactions on Neural Networks and Learning Systems 31.9, pp. 3400–
3413. DOI: 10.1109/TNNLS.2019.2944481. URL: https://doi.org/10.1109/TNNLS.
2019.2944481

[2] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek (2020). “Clustered Feder-
ated Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy
Constraints”. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–13.
DOI: 10.1109/TNNLS.2020.3015958. URL: https://doi.org/10.1109/TNNLS.2020.
3015958

[3] Felix Sattler, Thomas Wiegand, and Wojciech Samek (2020). “Trends and Advance-
ments in Deep Neural Network Communication”. In: ITU Journal: ICT Discoveries 3.1,
pp. 53–63

[4] Felix Sattler, Arturo Marban, Roman Rischke, and Wojciech Samek (2021a). “CFD:
Communication-Efficient Federated Distillation via Soft-Label Quantization and
Delta Coding”. In: IEEE Transactions on Network Science and Engineering, pp. 1–1. ISSN:
2327-4697. DOI: 10.1109/TNSE.2021.3081748. URL: https://dx.doi.org/10.1109/
TNSE.2021.3081748

Peer-reviewed contributions to conferences

[5] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek (2019).
“Sparse Binary Compression: Towards Distributed Deep Learning with minimal
Communication”. In: Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN.2019.8852172. URL: http://dx.
doi.org/10.1109/IJCNN.2019.8852172

[6] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek (2019). “Clustered Feder-
ated Learning”. In: Proceedings of the NeurIPS’19 Workshop on Federated Learning for
Data Privacy and Confidentiality, pp. 1–5

https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNSE.2021.3081748
https://dx.doi.org/10.1109/TNSE.2021.3081748
https://dx.doi.org/10.1109/TNSE.2021.3081748
https://doi.org/10.1109/IJCNN.2019.8852172
http://dx.doi.org/10.1109/IJCNN.2019.8852172
http://dx.doi.org/10.1109/IJCNN.2019.8852172

6 Chapter 1. Introduction

[7] Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek (2020a).
“On the Byzantine Robustness of Clustered Federated Learning”. In: Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8861–8865. DOI: 10.1109/ICASSP40776.2020.9054676. URL: http://dx.doi.
org/10.1109/ICASSP40776.2020.9054676

[8] David Neumann, Felix Sattler, Heiner Kirchhoffer, Simon Wiedemann, Karsten
Müller, Heiko Schwarz, Thomas Wiegand, Detlev Marpe, and Wojciech Samek (2019).
“DeepCABAC: Plug&Play Compression of Neural Network Weights and Weight
Updates”. In: Proceedings of the IEEE International Conference on Image Processing (ICIP),
pp. 21–25. DOI: 10.1109/ICIP40778.2020.9190821. URL: https://dx.doi.org/10.
1109/ICIP40778.2020.9190821

Preprints

[9] Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek (2021b). “FedAUX:
Leveraging Unlabeled Auxiliary Data in Federated Learning”. In: CoRR abs/2102.02514.
URL: https://arxiv.org/abs/2102.02514

https://doi.org/10.1109/ICASSP40776.2020.9054676
http://dx.doi.org/10.1109/ICASSP40776.2020.9054676
http://dx.doi.org/10.1109/ICASSP40776.2020.9054676
https://doi.org/10.1109/ICIP40778.2020.9190821
https://dx.doi.org/10.1109/ICIP40778.2020.9190821
https://dx.doi.org/10.1109/ICIP40778.2020.9190821
https://arxiv.org/abs/2102.02514

7

Chapter 2

Deep Learning from Decentralized
Data

This Chapter is partly based on

• Felix Sattler, Thomas Wiegand, and Wojciech Samek (2020). “Trends and Ad-
vancements in Deep Neural Network Communication”. In: ITU Journal: ICT
Discoveries 3.1, pp. 53–63

Neural networks have achieved impressive successes in a wide variety of areas of
computational intelligence such as computer vision (Hinton et al., 2012; Xu et al.,
2015; Karpathy and Fei-Fei, 2015), natural language processing (Bahdanau, Cho,
and Bengio, 2015; Kim et al., 2016; Sutskever, Vinyals, and Le, 2014) and speech
recognition (Graves and Schmidhuber, 2005) among many others and, as a result,
have become a core building block of many applications. As mobile and Internet
of things (IoT) devices become ubiquitous parts of our daily lives, neural networks
are also being applied in more and more distributed settings. These distributed
devices are getting equipped with ever more potent sensors and storage capacities
and collect vast amounts of personalized data, which is highly valuable for processing
in machine learning pipelines.

When it comes to the processing of data from distributed sources, machine learn-
ing in the cloud ("Cloud ML") has been the go-to paradigm in the previous decade
(Hwang, 2017). In Cloud ML, local user data is communicated from the often hard-
ware constrained mobile or IoT devices ("clients") to a computationally potent cen-
tralized server where it is then processed in a machine learning pipeline. The result
of the processing operation (e.g. a trained model or a prediction) may then be sent
back to the local device.

From a communication perspective, training schemes which follow the Cloud ML
paradigm make use of centralized intelligence and

"Bring the data to the model."

While the Cloud ML paradigm is convenient for the clients from a computational
perspective, as it moves all the workload for processing the data to the computation-
ally potent server, it also has multiple severe drawbacks and limitations, which all
arise from the fact that user data is processed at a centralized location:

Privacy: Data collected by mobile or IoT devices is often of private nature and thus
bound to the local device. Medical data, text messages, private pictures or footage
from surveillance cameras are examples of data which often cannot be processed
in the cloud. New data protection legislations like the European GDPR (Voigt and

8 Chapter 2. Deep Learning from Decentralized Data

ClientClientClientClient
Clients

Cloud ML

ServerClients

Distributed ML

Server

- perform inference
- performs inference

- organizes
- orchestrates- perform training

- performs training

- collects data

communication communication

- Training State

- Prediction

- Data

FIGURE 2.1: Comparison between the two paradigms for machine learning from
distributed data. In Cloud ML, data from users is collected and processed by a
centralized service provider. In Distributed ML, data never leaves the user device. To
perform collaborative training, model parametrizations (or equivalent information)

are communicated and data is processed locally.

Bussche, 2017) or the Cyber Security Law of the People’s Republic of China (Creemers,
2016) enforce strong regulations on data privacy.

Ownership: Attributing and claiming ownership is a difficult task if personal
data is transfered to a central location. Cloud ML leaves users in the dark about what
happens with their data or requires cumbersome rights management from the cloud
service provider.

Security: With all data being stored at one central location, Cloud ML exposes a
single point of failure. Multiple cases of data leakage in recent times1 have demon-
strated that the centralized processing of data comes with an unpredictable security
risk for the users.

Efficiency: Transferring large records of data to a central compute node often is
more expensive in terms of time and energy than the actual processing of the data. For
instance, single records of medical image data can already be hundreds of Megabytes
in size (Varma, 2012). If the local data is large and/or the communication channels
are limited, moving data to the cloud might thus become inefficient or unfeasible.

Autonomy: Many distributed devices need to act fully autonomously and are
not allowed to depend on slow and unreliable connections to a cloud server. For
instance, in a self-driving car, intelligence responsible for making mission-critical
driving decisions needs to be available at all times and thus has to be present on the
device.

As awareness for these issues increases and mobile and IoT devices are getting
equipped with ever more potent hardware, a new paradigm, termed "Distributed
ML", arises with the goal to keep data on device and

"Bring the model to the data."

Multi-party machine learning workflows that follow this paradigm all have one
principle in common: In order to avoid the shortcomings of Cloud ML and achieve
data locality, they process data on-device and only communicate abstract training
information, such as trained neural network models, differential model updates,
model gradients or model predictions.

In this chapter, we will provide an overview on machine learning workflows
which follow the Distributed ML paradigm, discuss characteristics of the different

1A comprehensive list of documented breaches can be found at https://en.wikipedia.org/wiki/
List_of_data_breaches. Retrieved June 2021.

https://en.wikipedia.org/wiki/List_of_data_breaches
https://en.wikipedia.org/wiki/List_of_data_breaches

2.1. Settings 9

Distributed Training

C

Federated Learning

C C

S

C SClient Server Training Data Training State

C

C C

C

C

C

C
C

C

C

Peer-to-Peer Learning

C

FIGURE 2.2: Communication at the training stages of different Distributed ML
pipelines. From left to right: (1) Federated Learning allows multiple clients to jointly
train a neural network on their combined data, without any of the local clients
having to compromise the privacy of their data. This is achieved by alternating
between local optimization and aggregation of model updates at a centralized server.
(2) In scenarios where it is undesirable to have a centralized entity coordinating the
collaborative training process, peer-to-peer learning offers a potential solution. In
peer-to-peer learning the clients directly exchange parameter updates with their
neighbors according to some predefined connection topology. (3) In the data center
setting, training speed can be drastically increased by splitting the workload among
multiple training devices via distributed training. This however requires frequent
communication and synchronization of training states between the worker nodes.

setting and briefly review the most popular algorithmic frameworks. Figure 2.1 offers
a high level comparison between the two concepts of Cloud ML and Distributed ML.

2.1 Settings

In this section we will review the two most important settings of Distributed ML,
namely Federated Learning and peer-to-peer learning. We will also give a short
review of distributed training in the data center, as it shares many constraints and
challenges with the other two settings and many methods for the compression of
neural network representations have been proposed in this domain. All three settings
differ with respect to their communication topology, frequency of communication and
network constraints. Figure 2.2 illustrates the flow of information in these different
settings and Table 2.1 summarizes important characteristics in further detail.

2.1.1 Federated Learning

Federated learning (McMahan et al., 2017; Li, Wen, and He, 2019; Kairouz et al., 2019)
is a distributed training setting, which allows multiple parties ("clients") to jointly
train machine learning models on their combined data, under the orchestration of a
central server.

In Federated Learning, training is performed locally and only parameters, pa-
rameter updates or other relevant training information are shared with the central
server. Since private data never leaves the local devices, Federated Learning pro-
vides strong ownership and security guarantees as well as a basic level of privacy
to the participants. Privacy guarantees can be made rigorous by applying crypto-
graphic techniques like homomorphic encryption to the communicated information

10 Chapter 2. Deep Learning from Decentralized Data

TABLE 2.1: Characteristics of different Distributed ML pipelines.

Distributed Training in
the Data Center

Federated Learning Peer-to-Peer Learning

Setting high performance com-
puting on a cluster,
clients are potent worker
nodes with dedicated
hardware

privacy preserving train-
ing on geographically
distributed data, clients
are mobile/ IoT devices
("cross device FL") or
institutions/ distributed
data centers ("cross silo
FL")

privacy preserving train-
ing on geographically dis-
tributed data, updates
are exchanged directly
between clients without
central coordination

Orchestration the entire training proce-
dure is controlled by a
central entity

the joint training effort is
orchestrated by a central
server, but training is hap-
pening locally

no central orchestration,
clients train locally, com-
municate and synchro-
nize directly with each
other, organized via a pre-
defined protocol

Data Distribu-
tion

can be chosen deliber-
ately, homogeneous and
well-behaved

————— data is generated locally and thus may
exhibit a high degree of heterogeneity —————

Scale typically 2− 10000 clients up to 109 clients in the
cross-device case, 2− 100
clients in the cross-silo
case

up to 109 clients

Communication
Frequency

high medium/ low high

Communication
Redundancy

high medium high

Communication
Objects

model gradients models/ model updates/
model predictions

gradients/ models/
model updates/ model
predictions

Communication
Flow

all clients →→→ all clients
(all-reduce)

some clients↔↔↔ server all clients→→→ some clients

Communication
Channels

dedicated hardwired net-
works offer high band-
width and low latency

—————– communication over wireless channels
is slow, unreliable and expensive —————–

(Bonawitz et al., 2017) or by concealing it with differentially private mechanisms
(Dwork and Roth, 2014; Geyer, Klein, and Nabi, 2017).

Federated Learning applications can be roughly organized into two categories:
In cross-device Federated Learning, clients are embodied by hardware constrained
mobile or IoT devices. Cross-device Federated Learning settings often are massive in
scale. For perspective, consider the example of Google’s smart keyboard "Gboard"
for which some features are trained with Federated Learning, leveraging a fleet of up
to 1.5 Million mobile Android devices (Hard et al., 2018). The limited hardware and
communication channels of the participating clients introduce additional challenges
in cross-device Federated Learning. For instance, mobile devices may only be capable
of participating if they are charging, connected to an unmetered network, and idle.
Cross-silo Federated Learning on the other hand enables privacy-preserving collabo-
rative training between different institutions or data centers. Cross-silo applications
have been proposed in a range of different domains including healthcare informatics

2.1. Settings 11

(Xu et al., 2021), pharmaceuticals discovery, electronic health records mining2, medi-
cal data segmentation (Courtiol et al., 2019), and smart manufacturing3. Scale and
hardware constraints are less of an issue in this setting.

Both in cross-device and in cross-silo Federated Learning applications the training
data on a given client is generated based on the specific environment or usage pattern
of the mobile device, sensor or local data silo. Therefore the distribution of data
among the clients will usually be “non-iid” meaning that any particular client’s local
data set will not be representative of the whole distribution. The amount of local
data will also typically be unbalanced among clients, since different users may make
use of their device or a specific application to a different extent. Many scenarios are
imaginable in which the total number of clients participating in the optimization
is much larger than the average number of training data examples per client. The
intrinsic heterogeneity of client data in Federated Learning introduces new challenges
when it comes to designing (efficient) training algorithms.

Another characteristic of Federated Learning is the massive communication over-
head that arises from keeping clients synchronized. Naively adapting parallel train-
ing procedures like distributed stochastic gradient descent to the federated domain,
results in massive communication overhead as each participating client has to down-
load and upload a full model gradient during every training iteration. As every such
gradient is of the same size as the full model, which can be in the range of gigabytes
for modern architectures with millions of parameters, this can quickly overwhelm
mobile connections which are often slow, expensive and unreliable.

Federated Learning typically assumes a star-shape communication topology,
where all clients directly communicate with the server. In some situations it might
however be beneficial to consider also hierarchical communication topologies where
the devices are organized at multiple levels. This communication topology naturally
arises, for instance, in massively distributed IoT settings, where geographically
proximal devices are connected to the same edge server.

2.1.2 Peer-to-Peer Learning

Training with one centralized server might be undesirable in some scenarios, because
it introduces a single point of failure and requires the clients to trust a centralized
entity (at least to a certain degree). Fully decentralized peer-to-peer learning (Vanhae-
sebrouck, Bellet, and Tommasi, 2017; Bellet et al., 2018; Lalitha et al., 2019) overcomes
these issues, as it allows clients to directly communicate with one another. In this sce-
nario it is usually assumed that the connectivity structure between the clients is given
by a connected graph. Given a certain connectivity structure between the clients,
peer-to-peer learning is typically realized via a gossip communication protocol, where
in each communication round all clients perform one or multiple steps of stochastic
gradient descent and then average their locally updated models with those from all
their peers. Communication in peer-to-peer learning may thus be high frequent and
involve a large number of clients. As clients typically are embodied by mobile or
IoT devices which collect local data, peer-to-peer learning shares many properties
and constraints of Federated Learning when it comes to the distribution of client
data, local processing power and communication bandwidth. In particular, the issues
related to non-iid data and slow communication channels discussed above apply
in a similar fashion. A unique characteristic of peer-to-peer learning is that there is
no central entity which orchestrates the training process. Making decisions about

2https://featurecloud.eu/about/our-vision/. Retrieved June 2021.
3http://musketeer.eu/project/. Retrieved June 2021.

https://featurecloud.eu/about/our-vision/
http://musketeer.eu/project/

12 Chapter 2. Deep Learning from Decentralized Data

training related meta parameters may thus require additional consensus mechanisms,
which could be realized e.g. via blockchain technology (Chen et al., 2018c). The lack
of a single orchestrator also makes it more difficult to handle faulty or malicious
clients or to incentivise participation via reward mechanisms. Due to these additional
requirements practical application of peer-to-peer learning is currently sparse. Popu-
larity of these methods however could quickly increase once smart-contracts become
widely available and accessible.

2.1.3 Distributed Training in the Data Center

Training modern neural network architectures with millions of parameters on huge
data sets such as ImageNet can take prohibitively long time, even on the latest
high-end hardware. In distributed training in the data center, the computation of
stochastic mini-batch gradients is parallelized over multiple machines in order to
reduce training time. In order to keep the worker nodes synchronized during this
process, they need to communicate their locally communicated gradient updates
after every iteration, which results in very high-frequent communication of neural
network parameterizations. This communication is time consuming for large neural
network architectures and limits the benefits of parallelization according to Amdahl’s
law (Lewis, 1994). As a result, a large body of research has been devoted to the
development of gradient compression techniques, which come with different trade-
offs with respect to achievable compression rate, computational overhead of encoding
and decoding and suitability for different model aggregation schemes. We will review
the most popular techniques in the next chapter. When communication constraints
are properly addressed, distributed training applications can scale to up to tens of
thousands of workers (Jia et al., 2018) and allow training of multi-billion parameter
models in acceptable time (Brown et al., 2020). In contrast to Federated Learning and
peer-to-peer learning, in the data center the full data set is accessible to all clients
during training. Consequently, the distribution of data among workers can be chosen
deliberately and will typically be homogeneous and well-behaved.

The most typical connectivity structure in distributed training in the data center, is
an all-to-all connection topology where all computing devices are directly connected
via hard-wire. An all-to-all connection allows for efficient model update aggregation
via all-reduce operations (Dean and Ghemawat, 2008) and can be easily combined
with compression methods as communication is uni-directional.

In this thesis we will cover deep learning from distributed sources of data in the above
settings, with a strong focus on Federated Learning and a minor focus on distributed
training in the data center. As there is non-trivial overlap between Federated Learning
and peer-to-peer learning, many of our proposed methodologies can be generalized
to the latter setting. For instance, while not explicitly investigated in this thesis, we
believe that the communication-efficient Federated Learning schemes we describe in
Chapter 4 and 5 as well as the heterogeneity-robust weighted ensemble distillation
method described in Chapter 7 could straight-forwardly be extended to peer-to-
peer training applications. We believe that investigations along these lines are an
interesting direction of future research.

2.2. Challenges 13

2.2 Challenges

While distributed training schemes offer a wide range of advantages over conven-
tional Cloud ML solutions, they also come with a unique set of challenges. Despite
recent progresses made, many unresolved issues still remain. Some of the most
pressing challenges for Distributed ML include:

Data Heterogeneity: As the training data present on the individual clients is
collected locally, based on the specific environment and usage pattern, both the size
and the distribution of the local data sets will typically vary heavily between different
devices. This data generation paradigm violates frequently-used independent and
identically distributed ("iid") assumptions in distributed optimization, renders almost
all convergence results for distributed learning algorithms inapplicable and has dra-
matic effects on the practical performance of efficient distributed training algorithms
as we will demonstrate in the following chapters.

Systems Heterogeneity: Computational and communication capabilities of the
devices in distributed training applications may differ due to variability in hardware
(CPU, memory), network connectivity (4G, 5G, wifi), and power (battery level).
Distributed training methods have to be able to tolerate heterogeneous hardware,
variable execution times and device failures. Systems heterogeneity requirements
may also force clients to train model architectures which differ with respect to size
and capacity, which poses additional challenges to model aggregation.

Scale: As we have outlined above, distributed training environments often con-
stitute of multiple millions of geographically scattered participants (Bonawitz et al.,
2019). Furthermore, as the quality of the collaboratively learned model is determined
by the combined available data of all clients, collaborative learning environments
will have a natural tendency to grow. This introduces new challenges with respect to
device management and optimization.

Limited Resources: Mobile and embedded devices often are not connected to a
power grid. Instead their capacity to run computations is limited by a finite battery.
Although many research efforts have gone into reducing the complexity of models
through neural architecture search (Wu et al., 2019), designing energy-efficient neural
network representations (Wiedemann, Müller, and Samek, 2020), or tailoring energy-
efficient hardware components (Chen et al., 2016b), the energy efficiency of on-device
training is still a big challenge. Consequentially, optimizing large models like deep
neural networks with primitives like stochastic gradient descent (SGD) is notoriously
expensive, which makes it necessary to keep the number of optimization steps on
every client as small as possible. Mobile and embedded devices also typically have
only very limited memory. As the memory footprint of SGD grows linearly with the
batch size, this might force the devices to train on very small batch sizes.

Privacy: Distributed ML applications promise to preserve the privacy of the local
data sets. However, multiple recent works have demonstrated that in adversarial
settings information about the training data can be leaked via the parameter updates
(Hitaj, Ateniese, and Perez-Cruz, 2017). A combination of cryptographic techniques
such as Secure Multi-Party Computation (Goldreich, 1998) and Trusted Execution
Environments (Subramanyan et al., 2017), as well a quantifiable privacy guarantees
provided by differential privacy (Dwork and Roth, 2014) can help to overcome these
issues. However it is still unclear how these techniques can be effectively combined
with methods for compressed communication and what optimal trade-offs can be
made between performance of the jointly trained model and privacy guarantees for
the participants.

14 Chapter 2. Deep Learning from Decentralized Data

TABLE 2.2: Overview of the different challenges in Distributed ML and the chapters
in this thesis which address them.

Challenge Chapter Challenge Chapter

3 4 5 6 7 3 4 5 6 7
Data Heterogeneity 3 3 3 3 Robustness 3 3

Systems Heterogeneity 3 3 3 Personalization 3

Scale 3 3 Synchronization 3 3

Limited Resources 3 3 3 3 Partial Participation 3 3 3 3 3

Privacy 3 3 Communication 3 3 3

Robustness: Since privacy guarantees conceal information about the participat-
ing clients and their data, there is also an inherent trade-off between privacy and
robustness, which needs to be taken into account. For instance, it has been shown
that it is possible for an adversary to introduce hidden functionality into the jointly
trained model (Bagdasaryan et al., 2020) or disturb the training process (Chen, Su,
and Xu, 2017) by communicating adversarially crafted parameter updates. Detecting
these malicious behaviors becomes much more difficult under privacy constraints.
Methods for distributed training will have to jointly address the issues of efficiency,
privacy and robustness.

Personalization: As distributed training applications generally face heteroge-
neous and unbalanced data available to devices, it may be challenging to ensure good
performance across different devices when training a single global model. This often
makes it necessary to optimize different models for different client sub-populations
or even for each individual client. Inferring relations between the client data in a
robust way is a challenging task, especially if other constraints, like privacy, need to
be taken into account.

Synchronization: In most distributed learning schemes, communication takes
place at regular time intervals such that the state of the system can always be uniquely
determined (Chen et al., 2016a). This simplifies theoretical analysis and improves
stability of training. However synchronous schemes may also suffer from delayed
computation in the presence of slow workers (stragglers). Asynchronous training
avoids delays when the time required by workers to compute parameter updates
varies heavily. The absence of a central state however makes convergence analysis far
more challenging (although convergence guarantees can still be given (De Sa et al.,
2015)) and de-synchronization of the workers may cause model updates to become
"stale" (Zhang et al., 2016), resulting in a slow down of convergence, especially during
the final stages of training.

Partial participation and Device failures: If the number of clients in a distributed
learning system is large, full participation of all clients in every training round may
lead to diminishing returns in terms of performance improvements on the one hand,
and overwhelming cost for model aggregation and synchronization on the other hand.
Consequentially it is often more efficient to select only a subset of the total client
population for training in every round. This partial participation however makes
it more challenging to keep clients synchronized. Furthermore, both in Federated
Learning and peer-to-peer learning it can generally not be guaranteed that all clients
selected to participate in one particular communication round will report back results.
Devices might loose their connection, run out of battery or seize to contribute to the
collaborative training for other reasons. These device failures need to be accounted
for.

2.3. Algorithmic Frameworks 15

 Server

Client 1 Client 2 Client n

train

 Server

Client 1

train

predict

distill

aggregate

1.)

2.)

3.)

aggregate

Client 2 Client n

Federated Averaging Federated Distillation

1.)

2.)

3.)

4.)

5.)

4.) 6.)

....

........

FIGURE 2.3: The flow of data and computations in Federated Averaging and Fed-
erated Distillation. In Federated Averaging, the model parameters θ are used to
transfer the training information between clients and the server. In Federated Dis-
tillation, soft-label predictions Ypub on a common public data set Xpub are used to

convey the same information.

Communication: A major issue in Distributed ML application is the massive
communication overhead that arises from frequently sending around model updates
between geographically distributed devices. Client state information, such as model
parameters or gradients are of the same size as the fully trained model, which can be
in the range of gigabytes for modern architectures with millions of parameters. As
communication channels are slow, unreliable and expensive, both the frequency of
communication and the size of individual updates need to be reduced drastically to
make distributed training feasible. Communicating via a parameter server as is done
in Federated Learning introduces additional challenges to communication-efficient
distributed training, as now both the training information that is uploaded to the
server and the aggregated information that is download from the server need to be
compressed in order to reduce communication time and energy consumption.

In this thesis we will jointly address the above challenges. Our proposed algo-
rithmic frameworks and training methodologies will focus in particular on issues of
communication-efficiency, data heterogeneity, robustness and personalization, but
we will also address privacy concerns and evaluate all of our proposed methods in
large-scale settings with partial participation. An overview of the contributions made
in the different chapters of this thesis is given in Table 2.2.

2.3 Algorithmic Frameworks

To solve distributed training problems, a number of algorithmic frameworks have
been proposed, which differ with respect to their communication properties. In
this section we will review the most popular approaches, namely Distributed SGD,
Federated Averaging and Federated Distillation. Figure 2.3 gives an overview of these
frameworks and compares them w.r.t. to the flow of computation and communication.
In the following we will denote the total number of communication rounds by T,
the total number of clients by M and the data of each client i by Di. A high-level
procedural comparison between the different frameworks introduced in this section
is given in Figure 2.4.

16 Chapter 2. Deep Learning from Decentralized Data

Algorithm 1 Distributed
SGD

for t = 1, .., T do

for i ∈ {1, .., M} do

client Ci does:

sample Di
b ⊂ Di

gi ← ∇θ l(θ, Db)

end for

all-reduce on all clients:

g← 1
M ∑i=1,..,M gi

θ ← θ − ηg

end for

Algorithm 2 Federated
Averaging

for t = 1, .., T do

for i ∈It ⊆{1, .., M} do

client Ci does:

θi ← SGDE(θ, Di)

end for

server S does:

θ ← 1
|It | ∑i∈It θi

end for

Algorithm 3 Federated
Distillation (on server)

for t = 1, .., T do

for i ∈It ⊆{1, .., M} do

client Ci does:

θi ← SGDE(θ, Di)

Ypub
i ← fθi (Xpub)

end for

server S does:

Ypub ← 1
|It | ∑i∈It Ypub

i

θ ← SGDD(θ, Xpub, Ypub)

end for

FIGURE 2.4: Procedural comparison between the algorithmic frameworks of Dis-
tributed SGD, Federated Averaging and Federated Distillation.

2.3.1 Distributed SGD

A popular technique to reduce the training time for large-scale deep neural networks
in the data center is to introduce data-parallelism in the computation, by distributing
the training data and computation workload evenly among multiple worker nodes
(e.g. GPUs) (Chilimbi et al., 2014; Xing et al., 2015; Moritz et al., 2016; Zinkevich
et al., 2010). Instead of evaluating a the mini-batch gradient g on a single node, the
computation is parallelized according to

∑
i=1,..,M

gi = ∑
i=1,..,M

∑
(x,y)∈Di

b

∇θ l(x, y, θ) = ∑
(x,y)∈∪i=1,..,MDi

b

∇θ l(x, y, θ) = g. (2.1)

After the computation is completed, the clients either send their locally computed
gradients to a aggregator node ("server"), or directly exchange and average gradients
among each each other via an all-reduce operation. The aggregated gradient is then
used to update the master-model by taking a descent step with step-size η to obtain
the next iterate on all worker nodes. While this approach, called Distributed Stochastic
Gradient Descent (DSGD), is mathematically equivalent to centralized training, easy
to implement and can introduce a high level of parallelism into the computation, the
delay caused by communicating the gradient information can become a significant
bottleneck and slow down the whole distributed learning-system. The problem
can become particularly severe if the computation-to-communication ratio is low,
for instance when training large-scale recurrent neural networks and transformer
models on fast compute nodes. If the training nodes are connected via low-capacity
connections, the communication time can dwarf the computation time of forward-
and backward-pass and any speed gain from increased parallelism is destroyed. The
procedure is summarized in Algorithm 1.

2.3.2 Federated Averaging

The Federated Averaging method (McMahan et al., 2017) was introduced as the
algorithmic response to the communication constraints of the Federated Learning
setting, namely massive scale, intermittent connections and low-bandwidth channels.

2.3. Algorithmic Frameworks 17

To reduce both the frequency of communication and the total communication load,
in Federated Averaging the training is conducted in multiple communication rounds
following a three step protocol, which consists of the following steps:

1. In the beginning of each communication round t ≤ T, the central server selects
a fraction C ≤ 1 of the total client population It ⊆ {1, .., M} and broadcasts to
them a common model initialization θ.

2. Starting from that common initialization, the selected clients individually per-
form a number E steps of stochastic gradient descent, optimizing over their
local data Di, to improve their local models resulting in an updated model θi on
every client.

3. The updated models θi are then communicated back to the server, where they
are aggregated (e.g., by an averaging operation) to create a global model θ,
which is used as initialization point for the next communication round.

By sub-sampling from the client population and delaying the synchronization of
clients for multiple steps of local training, both the total amount of communication
and the communication frequency for each client can be reduced by a factor of
EC−1. However, every communication round of Federated Averaging still involves
the upstream and downstream communication of a complete parametrization of
the jointly trained model θ between all participating clients and the server. For
large neural networks (like for instance the popular ResNet) which contain multiple
millions to billions of individual parameters, the amount of communication may
still be prohibitive. As generally both theoretical (Kidger and Lyons, 2020; Chong,
2020) and empirical (Huang et al., 2019) evidence suggests that the performance of
neural network models correlates positively with their size, we can not hope that
faster mobile networks will remedy this issue in the foreseeable future.

Although a wide variety of methods to reduce the communication overhead in
Federated Averaging have been proposed, including approaches that use neural
network pruning (LeCun, Denker, and Solla, 1990), message sparsification (Aji and
Heafield, 2017; Lin et al., 2018) and other lossy (Courbariaux, Bengio, and David,
2015; Li, Zhang, and Liu, 2016; Konecný et al., 2016; Xu et al., 2020) and loss-less com-
pression techniques (Neumann et al., 2019; Wiedemann et al., 2020), the fundamental
issue of scaling to larger models persists.

Moreover, as we will demonstrate in Chapter 4 the performance of Federated
Averaging (and many other communication-efficient distributed training algorithms)
suffers severely if client data is statistically heterogeneous, as can be expected in
Federated Learning applications. To rectify this issue, in this thesis we will pro-
pose a novel communication-efficient Federated Learning method, which as we will
demonstrate is highly robust to non-iid data.

Federated Averaging also assumes that one single model can be trained on the
data of all clients. This assumption however is frequently violated in real Federated
Learning applications, especially given the fact that in Federated Learning clients,
can hold arbitrary non-iid data, which can not be audited by the centralized server
due to privacy constraints. We can imagine for instance scenarios where different
preferences of the users lead to a divergent conditional distribution of client data.
To address these types of limitations, in Chapter 6 we will introduce a method that
automatically separates clients into groups of jointly trainable distribution.

The training procedure of vanilla Federated Averaging is summarized in Algo-
rithm 2.

18 Chapter 2. Deep Learning from Decentralized Data

2.3.3 Federated Distillation

The recently proposed Federated Distillation (Jeong et al., 2018; Lin et al., 2020b; Ita-
hara et al., 2020) takes an entirely different approach to communicating the knowledge
obtained during the local training. Instead of communicating the parameterization of
the locally trained model θi to the server, in Federated Distillation the knowledge is
communicated in the form of soft-label predictions on records of a public distillation
data set Xpub according to

Ypub
i = { fθi(x)|x ∈ Xpub} (2.2)

where fθi is the locally trained (neural network) model parameterized by θi. Studies
have shown that the public distillation data Xpub needs to only roughly follow a
similar distribution as the privacy-sensitive client data (Lin et al., 2020b; Sattler et al.,
2021b). Hence, a wide variety of data sets may be suitable to pose as distillation data.
For instance, in many federated computer vision problems, extremely large image
corpora like ImageNet (Deng et al., 2009) are publicly available. Likewise, for natural
language processing problems, public text corpora like WiKiText (Merity et al., 2017)
can be found. While this public data is typically unfit for training a task-specific
model due to missing label information, it can still be useful in Federated Distillation
pipelines.

Different variations of Federated Distillation have been proposed that vary w.r.t.
their communication properties. We will consider the following version of the Fed-
erated Distillation protocol for which each communication round consists of the
following five steps:

1. At the beginning of every Federated Distillation round, a subset of the client
population is selected for participation and synchronizes with the server by
downloading aggregated soft-labels, Ypub, on the public data set.

2. The participating clients update their local models by performing model dis-
tillation using the downloaded soft-label information. All stochasticity in the
distillation process is controlled via random seeds to ensure that all clients end
up with the same distilled model θ.

3. The participating clients improve the distilled model by training on their private
local data, resulting in improved models θi on every client.

4. Using the locally trained model θi, the clients compute soft-labels Ypub
i on the

public data and send them to the server.

5. The server aggregates the soft-labels for the next communication round.

Variations of this protocol have been proposed in (Jeong et al., 2018; Li and Wang,
2019) and (Itahara et al., 2020). A slightly modified version of this procedure, where
distillation is performed on the server instead of the clients is given in Algorithm 3.

As demonstrated in recent studies (Jeong et al., 2018; Lin et al., 2020b; Itahara et al.,
2020), Federated Distillation has several advantages over Federated Averaging: First,
as model information is aggregated by means of distillation, Federated Distillation
allows the participating clients to train different model architectures. This gives addi-
tional flexibility in settings where clients have heterogeneous hardware constraints.
Federated Distillation also benefits from increased robustness, as adversarial or ma-
licious clients can not directly influence the parametrization of the jointly trained
model (only indirectly via their soft-labels). Furthermore, Federated Distillation has

2.4. Simulating Distributed Learning Environments 19

TABLE 2.3: The parameters used to simulate distributed learning environments in
this thesis.

Parameter Number of Clients Participation Rate Data Heterogeneity Balancedness
Symbol M C A, α G
Range [4, 400] [0.1, 1.0] [1, .., 100], resp. [0.01, 100.0] [0.9, 1.0]

favorable privacy properties, as in contrast to parameter averaging-based Federated
Learning algorithms, it is not directly vulnerable to model inversion attacks (Hitaj,
Ateniese, and Perez-Cruz, 2017; Geiping et al., 2020). The most significant advantage,
however, arises from the fact that Federated Distillation has a completely different
communication profile than Federated Averaging. While the upstream and down-
stream communication in every round of Federated Averaging scales with the size of
the jointly trained neural network as

b ∈ O(|θ|)) (2.3)

in Federated Distillation, communication scales with the product of the distillation
data set size |Xpub| and the number of different classes dim(Y) as

b ∈ O(|Xpub|dim(Y)). (2.4)

This can put FD at an advantage in applications where large neural networks are
trained, as is the case for instance in natural language processing and computer vision
tasks. Nevertheless, communication in Federated Distillation can still be prohibitive,
especially if large distillation data sets are used. To address this issue, in Chapter 5 we
will investigate how to further reduce the communication in Federated Distillation
by quantizing the soft-label predictions Ypub

i and reducing the size of the public
distillation data set Xpub.

Federated Distillation also opens up new ways of treating data heterogeneity
in Federated Learning. In Chapter 7 we introduce a novel weighted Federated
Distillation technique, which weights client predictions on the distillation data set
according to the data-specific certainty of each individual client. As we will demon-
strate, this leads to improved model fusion and drastically improves performance in
heterogeneous environments.

2.4 Simulating Distributed Learning Environments

Distributed Learning environments can come in all kinds of different shapes and
forms. To systematically evaluate the algorithms and training methodologies that
we will introduce in this thesis, we simulate a broad range of artificial distributed
environments, by varying the following parameters:

Client population size M: We simulate client populations that consist of up to 400
different clients. This number is sufficient to cover most distributed training scenarios
in the data center and cross-silo Federated Learning settings and can approximate
most of the dynamics of large-scale cross-device Federated Learning.

Participation rate C: To account for the effects of irregularly available devices,
device failures and stragglers, we randomly select a fraction C of the total client
population for participation in every round. We vary the participation rate between
10% and 100% to simulate different degrees of client availability.

20 Chapter 2. Deep Learning from Decentralized Data

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

= 10.0

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

= 1.0

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

= 0.1

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

= 0.01

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

A = 10

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

A = 5

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

A = 2

1 2 3 4 5 6 7 8 9 10
Clients

0
1
2
3
4
5
6
7
8
9

La
be

ls

A = 1

FIGURE 2.5: Illustration of the sharding (top) and Dirichlet data splitting strategies
(bottom) used throughout the manuscript, exemplary for a Federated Learning
setting with 10 Clients and 10 different classes. Marker size indicates the number of
samples held by one client for each particular class. Lower values of A and α lead
to more heterogeneous distributions of client data. Figure adapted from (Lin et al.,

2020b).

Balancedness of client data G: In practical distributed training environments,
the local data sets of different clients may vary heavily in size. To simulate different
degrees of unbalancedness we split the data among the clients in a way such that the
i-th out of M clients is assigned a fraction

ρ(G, i) = 0.1 + 0.9
Gi

∑n
j=1 Gj (2.5)

of the total data. Lower values of G lead to a more heterogeneous concentration of
data. We vary G between 0.9 and 1.0 in our experiments.

Heterogeneity of client data A, α: To simulate the statistically heterogeneous
data distributions, which are characteristic for federated and peer-to-peer learning
problems, in this thesis we use two different data splitting strategies, which are
described below.

Sharding strategy: This strategy was first proposed in (McMahan et al., 2017).
We first sort the entire data by label, divide it into single-label shards of equal size,
and assign each of the clients an equal number of shards in such a way that it
holds an equal number of data points from exactly A different classes. If an exactly
symmetrical distribution of data is not possible because the base data set contains
an uneven distribution of classes, we allow a minimum number of shards to contain
more than one label. For values of A that are lower than the total number of classes c,
this splitting strategy results in a pathological non-IID partition of the data, while for
A = c the data from different clients will be perfectly balanced.

Dirichlet splitting strategy: This strategy was first proposed in (Hsu, Qi, and Brown,
2019) and allows us to smoothly adapt the level of heterogeneity in the client data via
the concentration parameter α. To generate the data split, we sample c vectors

p1, .., pc ∼ Dir(α), (2.6)

2.5. Summary 21

where c is the number of classes, from the symmetric M-categorical Dirichlet dis-
tribution. For all pi ∈ RM

≥0 it then holds ‖pi‖1 = 1. The vectors are stacked into a
matrix

P = [p1, .., pc] ∈ RM,c (2.7)

which is standardized, by repeatedly normalizing the columns and rows. This process
converges quickly and is stopped after 1000 iterations. Let nj be the amount of data
points belonging to class j in the training data set. Each client i is then assigned Pi,jnj
(non-overlapping) data points from all classes j = 1, .., c.

Both data splitting strategies are illustrated in Figure 2.5 exemplary for a dis-
tributed training setting with M = 10 clients and c = 10 different classes. In all our
experiments performed throughout this thesis, the data splitting process is controlled
by a random seed, to ensure that the different baseline methods are all trained on the
same split of data. Table 2.3 gives an overview on the parameters used to simulate
distributed learning environments in this thesis.

2.5 Summary

We currently witness a convergence between the areas of machine learning, the
Internet of Things and communication technology, which not only leads to the
generation of tremendous amounts of highly valuable user data, but also opens
up new ways to process this data in a privacy-preserving and decentralized manner.
The roll-out of data-intensive 5G and 6G networks (Ding et al., 2017; You et al., 2021)
and the steadily improving hardware capabilities of mobile and IoT devices will
further accelerate this development, and increase popularity of machine learning
from distributed sources of data.

In this chapter we gave a brief overview over the most important distributed
training settings and introduced the dominant algorithmic paradigms that have been
proposed. We discussed the main advantages that distributed training workflows
have over centralized Cloud ML solutions and enumerated the main challenges that
currently hinder their wide-spread adoption in real-world applications.

Among other issues, we identified excessive communication cost as one of the
major roadblocks for training deep neural networks in a decentralized manner. In
the next three chapters, we will address the issue of communication-efficiency for
different distributed training scenarios and propose communication-efficient variants
of the protocols described in this chapter.

23

Chapter 3

Communication-Efficient
Distributed Training

The training of large-scale deep neural networks can be very time consuming and
often requires large amounts of computational resources. As we have learned in
the previous chapter, a very popular technique to accelerate the training process, is
to harness data paralellism and distribute the load of computing mini-batch gradi-
ents over multiple workers via the distributed stochastic gradient descent (DSGD)
algorithm. However, in order to keep the distributed training process synchronized,
DSGD requires all workers to exchange their locally computed gradient updates
during every iteration. Every such update is of the same size as the full model, which
can be in the range of gigabytes for modern architectures with millions of parameters
(He et al., 2016; Huang et al., 2017). Over the course of multiple hundred thousands
of training iterations on big data sets the total communication for every client can
easily grow to more than a petabyte. Since communication is also high-frequent in
this setting, bandwidth can be a significant bottleneck, leading to diminishing re-
turns from increased paralellization and ultimately making distributed deep learning
unproductive.

To address this issue, substantial research has gone into the effort of reducing
the amount of communication necessary between the clients via lossy gradient com-
pression schemes. In this chapter, we will introduce a novel compression framework
that allows for a drastic reduction of communication cost for distributed training by
combining multiple powerful compression techniques.

This Chapter is based on

• Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek
(2019). “Sparse Binary Compression: Towards Distributed Deep Learning
with minimal Communication”. In: Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN.2019.
8852172. URL: http://dx.doi.org/10.1109/IJCNN.2019.8852172 ©2019
IEEE

3.1 Communication in Distributed Training

For the synchronous distributed training scheme described in Algorithm 1, the total
amount of bits communicated by every worker node during training is given by

b ∈ O(Niter × ν︸ ︷︷ ︸
=T

× |θ| × (H(∆θ) + η)︸ ︷︷ ︸
update size

) (3.1)

https://doi.org/10.1109/IJCNN.2019.8852172
https://doi.org/10.1109/IJCNN.2019.8852172
http://dx.doi.org/10.1109/IJCNN.2019.8852172

24 Chapter 3. Communication-Efficient Distributed Training

where Niter is the total number of training iterations (forward-backward passes), ν is
the communication frequency, |θ| is the size of the model, H(∆θ) is the entropy of
the parameter updates exchanged during upload and download respectively, and η
is the inefficiency of the encoding, i.e. the difference between the true update size
and the minimal update size (which is given by the entropy). If we assume the size
of the model and number of training iterations to be fixed (e.g. because we want to
achieve a certain accuracy on a given task), this leaves us with three options to reduce
communication: We can a) reduce the communication frequency ν, b) reduce the
entropy of the weight updates H(∆θup/down) via lossy compression schemes and/or
c) use more efficient encodings to communicate the weight updates, thus reducing η.
A wide variety of compression methods have been proposed to reduce the amount of
communication during the training process. Using equation (3.1) as a reference, we
can organize the existing research body on communication-efficient distributed deep
learning into three different groups:

Communication delay methods reduce the communication frequency ν. The
most prominent member of this family of algorithms is the Federated Averaging
algorithm (McMahan et al., 2017) introduced in the previous chapter, where instead
of communicating after every iteration, the workers perform multiple local iterations
of SGD to compute a weight update. The authors empirically observe on different
convolutional and recurrent neural network architectures that communication can be
delayed for up to 100 iterations without significantly affecting the convergence speed
as long as the data is distributed among the clients in an iid manner (as is usually the
case in data center applications). The amount of communication can be reduced even
further with longer delay periods, however this comes at the cost of an increased
number of gradient evaluations. In a follow-up work (Konecný et al., 2016) combine
this communication delay with random sparsification and probabilistic quantization.
They restrict the clients to learn random sparse weight updates or force random
sparsity on them afterwards ("structured" vs "sketched" updates) and combine this
sparsification with probabilistic quantization. Their method however significantly
slows down convergence speed in terms of SGD iterations.

Sparsification methods reduce the entropy H(∆θ) of the updates by restricting
changes to only a small subset of the parameters. Strom (Strom, 2015) presents
an approach (later modified by (Tsuzuku, Imachi, and Akiba, 2018)) in which only
gradients with a magnitude greater than a certain predefined threshold are sent to
the server. All other gradients are accumulated in a residual. This method is shown
to achieve upstream compression rates of up to 3 orders of magnitude on an acoustic
modeling task. In practice however, it is hard to choose appropriate values for the
threshold, as it may vary a lot for different architectures and even different layers. To
overcome this issue Aji et al. (Aji and Heafield, 2017) instead fix the sparsity rate and
only communicate the fraction p entries with the biggest magnitude of each gradient,
while also collecting all other gradients in a residual. At a sparsity rate of p = 0.001
their method only slightly degrades the convergence speed and final accuracy of the
trained model. Lin et al. (Lin et al., 2018) present minor modifications to the work of
Aji et al. which even close this small performance gap.

Dense quantization methods reduce the entropy H(∆θ) of the weight updates
by restricting the update elements to a reduced set of values. Bernstein et al. propose
signSGD (Bernstein et al., 2018), a biased compression method with theoretical conver-
gence guarantees on iid data that quantizes every gradient update to it’s binary sign,
thus reducing the bit size per update by a factor of ×32. signSGD also incorporates
download compression by aggregating the binary updates from all clients by means
of a majority vote. Other authors propose to stochastically quantize the gradients

3.2. On the Accumulation of Gradient Information 25

during upload in an unbiased way (TernGrad (Wen et al., 2017), QSGD (Alistarh
et al., 2017), ATOMO (Wang et al., 2018)). These methods are theoretically appealing,
as they inherit the convergence properties of regular DSGD under relatively mild
assumptions. However their empirical performance and compression rates do not
match those of sparsification methods.

3.2 On the Accumulation of Gradient Information

Communication delay and accumulating sparsification methods as described above
already achieve impressive compression rates, however the phenomenon underlying
their successes is still only poorly understood.

We present a new information-theoretic perspective that is based on the observa-
tion that both of these approaches achieve compression by accumulating gradient
information locally before sending it to the server. In the case of communication
delay all gradients are accumulated uniformly for a fixed amount of iterations, while
in the case of sparsification methods they are accumulated non-uniformly until they
exceed some fixed or adaptive threshold. In both cases the rate of compression is
proportional to the number of steps that the updates are being delayed on average.

Consider now the optimization path ∆θ1, .., ∆θT taken by SGD on the loss-surface
between some initialization point θ0 and the model θT = θ0 + ∑T

t=1 ∆θt trained for T
iterations. Following this path, we can model the changes occurring to any individual
weight in the network w as a noisy stochastic process via

∆θt = st + nt, t = 1, .., T (3.2)

where st denotes the deterministic signal (i.e. the true direction of the minimum),
while nt denotes the noise, induced by mini-batch sampling in SGD ("batch noise")
and the stochasticity of the learning process itself ("optimization noise", see Fig. 3.1 for
an illustration). Motivated by the central limit theorem and empirical investigations
by (Bernstein et al., 2018) we can make the simplifying assumption (a) that this noise
nt is normally distributed at every time-step nt ∼ N (0, σ2) with the variance being
constant in time V(nt) = σ2 for all t = 1, .., T. Since the optimization process has
the tendency to damp noise as investigated for instance in (LeCun et al., 2012) it is
also reasonable to assume (b) that the noise is (negatively) self-correlated. The noise
process is then given by n1 = N1, nt = βnt−1 + Nt, with Nt normally distributed and

6 4 2 0 2 4 6
dim 1

4

3

2

1

0

1

2

3

di
m

 2

Optimization Noise
Full Gradient
Optimal Path

6 4 2 0 2 4 6
dim 1

4

3

2

1

0

1

2

3

di
m

 2

Batch Noise
Batch Gradient
Full Gradient

FIGURE 3.1: Sources of noise in SGD (illustration): Left: Optimization noise, caused
by Gradient Descent overshooting. Bouncing between the walls of the ravine results
in negatively correlated noise. Right: Batch noise, caused by the batch loss being

only a noisy approximation of the full empirical loss. ©2019 IEEE

26 Chapter 3. Communication-Efficient Distributed Training

x
1

x
5

x
25

x
12

5

x
62

5

x
25

00

x
10

00
0

Gradient Sparsity

x 10000

x 2500

x 625

x 125

x 25

x 5

x 1
Co

m
m

un
ica

tio
n

De
la

y

Validation Error
Gradient
Dropping
Federated
Averaging
SBC

0.07

0.08

0.11

0.20

0.43

FIGURE 3.2: Validation Error for ResNet32 trained on CIFAR at different levels
of temporal and gradient sparsity (the error is color-coded, brighter means lower
error). The prior approaches of Gradient Dropping and Federated Averaging can be

embedded in a two-dimensional compression framework. ©2019 IEEE

all Nt uncorrelated, β ∈ (−1, 0). Given these assumptions it is straight-forward to
bound the variance of the accumulated parameter updates.

Theorem 1. Under assumptions (a) and (b), the variance of the accumulated noise can be
bounded by

V(
T

∑
t=1

nt) ≤ σ2(T(1 + β) + 1). (3.3)

The proof is given in Appendix A.1. Theorem 1 directly leads us to a lower bound
on the signal-to-noise ratio of the accumulated weight-updates:

Corollary 1. Under assumptions (a) and (b), accumulation increases the signal-to-noise
ratio from s̄/σ to

SNR(
T

∑
t=1

∆wt) :=
E[∑T

t=1 st + nt]√
V[∑T

t=1 st + nt]
(3.4)

≥ ∑T
t=1 st√

σ2(T(1 + β) + 1)
∈ O(

√
T√

1 + β

s̄
σ
) (3.5)

with s̄ = 1
T ∑T

t=1 st being the signal-average over time.

This means that a weight-update will be more informative the longer the accumu-
lation period and the stronger the noise correlates temporally. Convergence speed
will not be compromised for as long as the information content of the accumulated
update is equal to the cumulative information content of the individual updates
(c.f. Fig. 3.1 (c)). This line of reasoning helps to shed light on both the successes of
communication delay and gradient sparsification.

In fact, it implies that both of these approaches are actually very similar in the
way they affect the information flow from client to server on the individual weight
level.

We find that this intuition is also verified empirically. Figure 3.2 shows valida-
tion errors for ResNet32 model trained on CIFAR for 60000 iterations at different

3.3. Sparse k-nary Compression 27

delay
communication
×100 - ×1000

(a)

weight
update ∆W

∆W

sparsify
×100 - ×1000

(b)

binarize
×3

(c)

encode
×1.3 - ×1.9

(e)

accumulate error
(d)

0100..
1101..
0010..
0110..
0001..
1110..
0101..

Federated Averaging [19] Gradient Dropping [1]

Client 0

Client 1

Client 2

Average

FIGURE 3.3: Step-by-step explanation of techniques used in Sparse Binary Compres-
sion: (a) Illustrated is the traversal of the parameter space with regular DSGD (left)
and Federated Averaging (right). With this form of communication delay, a bigger
region of the loss surface can be traversed, in the same number of communication
rounds. That way compression gains of up to ×1000 are possible. After a number
of iterations, the clients communicate their locally computed weight updates. (b)
Before communication, the weight update is first sparsified, by dropping all but
the fraction p weight updates with the highest magnitude. This achieves up to
×1000 compression gain. (c) Then the sparse weight update is binarized for an
additional compression gain of approximately ×3. (d) Finally, we optimally encode
the positions of the non-zero elements, using Golomb encoding. This reduces the
bit size of the compressed weight update by up to another ×2 compared to naive

encoding. ©2019 IEEE

levels of communication delay and gradient sparsity. We observe multiple things:
a) The validation error remains more or less constant along the off-diagonals of the
matrix where the total sparsity (i.e. the product of communication delay and gradient
sparsity) is constant. b) The existing methods of Federated Averaging (McMahan
et al., 2017) (purple) and Gradient Dropping/ DGC (Aji and Heafield, 2017; Lin
et al., 2018)(yellow) are lines in the two-dimensional space of possible compression
methods. c) There exists a roughly triangular area of approximately constant error,
optimal compression methods lie along the hypotenuse of this triangle. These results
indicate, that communication delay and sparsification with error accumulation affect
the convergence in a roughly multiplicative way and that there seems to exist a fixed
information budged in DSGD, necessary to maintain unhindered convergence.

3.3 Sparse k-nary Compression

Inspired by our findings in the previous section, we propose Sparse k-nary Com-
pression (c.f. Fig. 3.3), to drastically reduce the number of communicated bits in
distributed training. SBC makes use of multiple compression techniques simultane-
ously to reduce all multiplicative components of the total communication (3.1).

Communication Delay, Fig. 3.3 (a): We use communication delay, proposed by
(McMahan et al., 2017), to introduce temporal sparsity into DSGD. Instead of commu-
nicating gradients after every local iteration, we allow the clients to compute more
informative updates by performing multiple iterations of SGD. These generalized
weight updates are given by

∆θi = SGDn(θi, Di)− θi (3.6)

where SGDn(θi, Di) refers to the set of weights obtained by performing n iterations of
stochastic gradient descent on θi, while sampling mini-batches from the i-th client’s

28 Chapter 3. Communication-Efficient Distributed Training

training data Di. For n = 1 we obtain regular DSGD.
Sparsification, Fig. 3.3 (b): Inspired by the works of (Lin et al., 2018; Strom, 2015;

Shokri and Shmatikov, 2015) and (Aji and Heafield, 2017) we use the magnitude of
an individual weight within a weight update as a heuristic for it’s importance. Before
communication, we set all but the fraction p biggest and fraction p smallest elements
of the weight update to zero.

Quantization, Fig. 3.3 (c): The remaining non-zero elements are quantized to
further reduce the entropy of each weight update. We experiment with two different
quantization strategies:

For our binarization strategy ("Sparse Binary Compression", SBC, Alg. 5), we
compute the mean of all remaining positive and all remaining negative elements
independently. If the positive mean µ+ is bigger than the absolute negative mean µ−,
we set all negative values to zero and all positive values to the positive mean and
vice versa. For our ternarization strategy ("Sparse Ternary Compression", STC, Alg.
6), we compute the mean µ of the absolute values of all remaining non-zero elements
and then set the value of each non-zero element x to µ× sign(x).

Binarizing or ternarizing the non-zero elements of the sparsified weight update to
their mean further reduces the entropy of the weight updates by a factor of around×3.
We can get away with quantizing the non-zero weight-update elements because they
are relatively homogeneous in value and because we accumulate our compression
errors.

Algorithm 4 Sparse k-nary Compression
for Efficient Distributed Training

input: initial parameters θ
outout: improved parameters θ
init: all clients Ci are initialized with the
same parameters θi ← θ, the initial global
weight update and the residuals are set to
zero ∆θ,Ri ← 0

for t = 1, .., T do
for i ∈ It ⊆ {1, .., M} in parallel do

Client Ci does:
msg← downloadS→Ci (msg)
∆θ ← golomb_decode(msg)

θi ← θi + ∆θ
∆θi ← Ri + SGDn(θi, Di)− θi
∆θ∗i ← sparse_compression(∆θi, p)
Ri ← ∆θi − ∆θ∗i

msgi ← golomb_encode(∆θ∗i)
uploadCi→S(msgi)

end for
Server S does:
gatherCi→S(∆θ∗i), i ∈ It

∆θ ← 1
|It | ∑i∈It ∆θ∗i

θ ← θ + ∆θ
broadcastS→Ci (∆θ), i = 1, .., M

end for
return θ

Algorithm 5 Sparse Binary Compres-
sion

input: flattened tensor T ∈ Rn, sparsity
p
output: sparse binary tensor T∗

k← max(bnpc , 1)
V+ ← topk(T); V− ← topk(−T)
µ+ ← mean(V+); µ− ← mean(V−)
if µ+ ≥ µ− then

T∗ ← µ+ × (T ≥ min(V+)
else

T∗ ← −µ− × (T ≤ −min(V−)
end if
return T∗

Algorithm 6 Sparse Ternary Compres-
sion

input: flattened tensor T ∈ Rn, sparsity
p
output: sparse ternary tensor T∗

k← max(bnpc , 1)
V ← topk(|T|)
µ← mean(V)
T∗ ← µ× (|T| ≥ min(V))� sign(T)
return T∗

3.4. Convergence Analysis 29

Applying sparsification and quantization to an uncompressed weight-update ∆θi
results in a compressed update

∆θ̃i = sparse_compression(∆θi) (3.7)

Residual Accumulation, Fig. 3.3 (d): It is well established (Lin et al., 2018; Strom,
2015; Aji and Heafield, 2017; Seide et al., 2014; Stich, Cordonnier, and Jaggi, 2018)
that the convergence in sparsified DSGD can be greatly accelerated by accumulating
the error that arises from only sending sparse approximations of the weight updates.
In Section 3.2 we showed that under simplifying assumptions on the SGD noise
distribution residual accumulation reduces the SNR of accumulated weight-updates,
thus making them more informative. After every communication round τ, the
residual is updated via

Rτ =
τ

∑
t=1

(∆θ(t) − ∆θ̃(t)) = R(τ−1) + ∆θ(τ) − ∆θ̃(τ). (3.8)

Optimal Position Encoding, Fig. 3.3 (e): To communicate a set of sparse bi-
nary/ternary tensors produced by sparse k-nary compression, we only need to
transfer the positions of the non-zero elements in the flattened tensors, along with one
mean value (µ+, µ− or µ) per tensor and one sign-bit in the ternary case. Instead of
communicating the absolute non-zero positions it is favorable to only communicate
the distances between all non-zero elements. It is possible to show that for big values
of |θ| and k = p|θ|, the distances are approximately geometrically distributed with
success probability equal to the sparsity rate p. Therefore, we can optimally encode
the distances using the Golomb code (Golomb, 1966). Golomb encoding reduces the
average number of position bits to

b̄pos = b∗ +
1

1− (1− p)2b∗ , (3.9)

with b∗ = 1 + blog2(
log(φ−1)
log(1−p))c and φ =

√
5+1
2 being the golden ratio. For a sparsity

rate of i.e. p = 0.01, we get b̄pos = 8.38, which translates to ×1.9 compression,
compared to a naive distance encoding with 16 fixed bits. While the overhead
for encoding and decoding makes it unproductive to use Golomb encoding in the
situation of (Strom, 2015), this overhead becomes negligible in our situation due to
the infrequency of weight update exchange resulting from communication delay.

Our proposed method is described in Algorithms 4, 5 and 6. Algorithm 4 describes
how compression and residual accumulation can be introduced into DSGD, while
Algorithms 5, 6 describe our sparse ternary and binary compression operators. The
algorithms for Golomb encoding and decoding are given in Appendix A.2.

3.4 Convergence Analysis

Using a theoretical framework developed by Stich et al. (Stich, Cordonnier, and Jaggi,
2018) we can prove the convergence of sparse k-nary compression in a simplified
setting with ν = 1 and M = 1 (no communication delay, only one client) under
standard assumptions on the loss function. The proof relies on bounding the impact
of the perturbation caused by the compression operator. This is formalized in the
following definition:

30 Chapter 3. Communication-Efficient Distributed Training

TABLE 3.1: Final accuracy/perplexity achieved on the test split and average com-
pression rate for different compression schemes in a distributed training setting with

four clients on different models and data sets.

Compression Method −→ Baseline DGC 1 FedAvg 2 SBC (1) SBC (2) SBC (3)

LeNet5-Caffe
@MNIST

Accuracy 0.9946 0.994 0.994 0.994 0.994 0.991
Compression ×1 ×718 ×500 ×2071 ×3166 ×24935

ResNet18
@CIFAR10

Accuracy 0.946 0.9383 0.9279 0.9422 0.9435 0.9219
Compression ×1 ×768 ×1000 ×2369 ×3491 ×31664

ResNet34
@CIFAR100

Accuracy 0.773 0.767 0.7316 0.767 0.7655 0.701
Compression ×1 ×718 ×1000 ×2370 ×3166 ×31664

ResNet50
@ImageNet

Accuracy 0.737 0.739 0.724 0.735 0.737 0.728
Compression ×1 ×601 ×1000 ×2569 ×3531 ×37208

WordLSTM
@PTB

Perplexity 76.02 75.98 76.37 77.73 78.19 77.57
Compression ×1 ×719 ×1000 ×2371 ×3165 ×31658

WordLSTM*
@WIKI

Perplexity 101.5 102.318 131.51 103.95 103.95 104.62
Compression ×1 ×719 ×1000 ×2371 ×3165 ×31657

Definition 1. (Stich, Cordonnier, and Jaggi, 2018) An operator comp : Rd → Rd is
called an α-contraction if it is satisfies the contraction property

E‖x− comp(x)‖2 ≤ α‖x‖2, ∀x ∈ Rd (3.10)

for a parameter 0 ≤ α < 1.

We can show that our sparse k-nary compression operators indeed are a α-
contraction:

Lemma 2. Sparse Ternary Compression with sparsity parameter p as defined in Algorithm 6
is a α-contraction, with

α =
‖toppd(x)‖2

1

pd‖x‖2
2

< 1 (3.11)

The proof can be found in Appendix A.3. It then directly follows from Theorem 2.4.
in Stich et al. (Stich, Cordonnier, and Jaggi, 2018) that for any L-smooth, ξ-strongly
convex objective function l with bounded gradients E‖∇θ l‖2 ≤ U2 the averaged
updates

θT =
1
T ∑

t=1,..,T
θ(t) (3.12)

obtained from the update rule

R(0) = 0 (3.13)

θ(t+1) = θ(t) − sparse_compression(R(t) + η∇θ l(θ(t)), p), (3.14)

R(t+1) = R(t) + η∇θ l(θ(t))− sparse_compression(R(t) + η∇θ l(θ(t)), p) (3.15)

converge according to

E[l(θT)]− l∗ ≤ O(G2

ξT
) +O(U2L

p2ξT2) +O(
U2

p3ξT3) (3.16)

3.5. Experiments 31

This means that for T ∈ O(p−1(L
ξ)

1/2) STC converges at rateO(U2

ξT), which is (asymp-
totically) the same as for regular SGD.

3.5 Experiments

3.5.1 Networks and Data Sets

We evaluate our method on commonly used convolutional and recurrent neural
networks with millions of parameters, which we train on well-studied data sets that
contain up to multiple millions of samples. We simulate distributed training on four
worker nodes for different image classification and language modeling benchmarks.

Image Classification: We run experiments for LeNet5-Caffe3 on MNIST (Le-
Cun, 1998), ResNet18 and ResNet34 (He et al., 2016) on CIFAR-10 and CIFAR-100
(Krizhevsky, Nair, and Hinton, 2014) and ResNet50 on ILSVRC12 (ImageNet) (Deng
et al., 2009). We split the training data homogeneously among the worker nodes,
according to the sharding strategy introduced in the previous chapter, with A = 10.
All models are trained using momentum SGD, except for LeNet5-Caffe, which is
trained using the Adam optimizer (Kingma and Ba, 2015). Learning rate, weight
intitiallization and data augmentation are as in the respective papers.

Language Modeling: We experiment with multilayer sequence-to-sequence LSTM
models as described in (Zaremba, Sutskever, and Vinyals, 2014) on the Penn Treebank
(PTB) (Marcus, Marcinkiewicz, and Santorini, 1993) and Wikitext-2 corpora for next-
word prediction. The PTB data set consists of a sequence 923000 training, and 82000
validation words, while the Wikitext-2 data set contains 2088628 train and 245569 test
words. On both data sets we train a two-layer LSTM model with 650 and 200 hidden
units respectively ("WordLSTM" / "WordLSTM*") with tied weights between encoder
and decoder as described in (Inan, Khosravi, and Socher, 2017). The training data is
split into consecutive subsequences of equal length, out of which we assign one to
every client.

While the models we use in our experiments do not fully achieve state-of-the-art
results on the respective tasks and data sets, they are still sufficient for the purpose
of evaluating our compression method and demonstrate, that our method works
well with common regularization techniques such as batch normalization (Ioffe and
Szegedy, 2015) and dropout (Srivastava et al., 2014).

3.5.2 Results

We experiment with three configurations of our method: SBC (1) uses no communica-
tion delay and a gradient sparsity of 0.1%, SBC (2) uses 10 iterations of communication
delay and 1% gradient sparsity and SBC (3) uses 100 iterations of communication
delay and 1% gradient sparsity. All three methods use the binartization mechanism
described in Algorithm 5. The experiments with SBC (1) serve the purpose of enabling
us to directly compare our 0-value-bit quantization to the 32-value-bit Deep Gradient
Compression (Lin et al., 2018)).

Table 3.1 lists compression rates and final validation accuracies achieved by
different compression methods, when applied to the training of neural networks on
5 different data sets. The number of iterations (forward-backward-passes) is held
constant for all methods. On all benchmarks, our methods perform comparable to the
baseline in terms of achieved accuracy, while communicating significantly less bits.

3A modified version of LeNet5 from (LeCun et al., 1998).

32 Chapter 3. Communication-Efficient Distributed Training

0 20 40 60 80
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Validation Accuracy vs # Epochs

Baseline
Federated Averaging
Gradient Dropping
Sparse Binary Compression (1)
Sparse Binary Compression (2)
Sparse Binary Compression (3)

109 1010 1011 1012 1013 1014 1015

Bits

100

2 × 10 1

3 × 10 1

4 × 10 1

6 × 10 1

Er
ro

r

Validation Error vs # transferred Bits (log-log)
Baseline
Federated Averaging
Gradient Dropping
Sparse Binary Compression (1)
Sparse Binary Compression (2)
Sparse Binary Compression (3)

FIGURE 3.4: Left: Top-1 validation error vs number of transferred bits (log-log) for
ResNet50 trained on ImageNet using different methods for compressed communi-
cation. Sparse Binary Compression converges similarly fast as the uncompressed
baseline in terms of SGD iterations, while communicating four orders of magnitude less
bits. Right: Convergence speed of different methods for compressed communication
for ResNet50 trained on ImageNet. Epochs 30 and 60 at which the learning rate is

reduced are marked in the plot. ©2019 IEEE

Figure 3.4 (left) shows convergence speed in terms of iterations for ResNet50
trained on ImageNet. The convergence speed is only marginally affected, by SBC. In
the first 30 epochs SBC (3) even achieves the highest accuracy, using about ×37000
less bits than the baseline. In total, SBC (3) reduces the upstream communication on
this benchmark from 125 terabytes to 3.35 gigabytes for every participating client (c.f.
Fig. 3.4 (right)). After the learning rate is lowered in epochs 30 and 60 progress slows
down for SBC (3) relative to the methods which do not use communication delay. In
direct comparison SBC (1) performs very similar to Gradient Dropping, while using
about ×4 less bits (that is ×2569 less bits than the baseline).

3.6 Summary & Limitations

In this chapter we demonstrated that the gradient information communicated when
training deep neural networks with SGD is highly redundant. We exploited this
fact by combining 3 powerful compression strategies and were able to achieve com-
pression gains of up to four orders of magnitude with only a negligible decrease
in accuracy. More fundamentally, we presented theoretical and empirical evidence
suggesting that the formerly treated as separate compression methods of communica-
tion delay and gradient sparsification with error accumulation in fact can be viewed
as two very similar forms of gradient delay that affect the convergence speed in a
roughly multiplicative way. Based on this insight we proposed a framework that is
able to reap the benefits from both compression approaches and can smoothly adapt
to communication-constraints in the learning environment, such as network band-
width and latency, (SGD-) computation time, as well as temporal inhomogeneities
therein.

While our proposed method reliably reduces the amount of communication in
distributed neural network training it does so at the cost of additional computational
and memory overhead for sparsification, quantization, Golomb encoding and residual
bookkeeping. As both the total training time and total energy consumption are
determined not only by communication, but also by compute complexity and memory

3.6. Summary & Limitations 33

access, the hyperparameters of our method should to be adjusted to the constraints
of the specific hardware setup and model architecture in order to ensure maximum
throughput and efficiency.

Lessons Learned

• Weight-updates computed by local learners become more informative,
the longer the accumulation period and the stronger the temporal corre-
lation of the optimization noise.

• The popular communication reduction techniques of sparsification with
error accumulation and communication delay affect the information flow
from clients to server in a similar way on the individual parameter-level.

• A combination of both techniques with quantization and optimal encod-
ing not only improves flexibility in dealing with network constraints, but
also yields pareto-superior trade-offs at the communication-performance-
frontier.

35

Chapter 4

Communication-Efficient
Federated Learning

In Chapter 3 we introduced the sparse k-nary compression framework and demon-
strated that a combination of communication delay, sparsification and quantization
of the gradient information can drastically reduce communication overhead in high-
performance parallel training applications in the data center. In this chapter, we will
extend these ideas to the Federated Learning setting, where communication con-
straints are even more severe due to the geographical distribution of client devices,
their often limited and intermittent access to expensive and low-bandwidth wireless
communication network infrastructure as well as their limited energy budget.

While conceptually similar to distributed training in the data-center, Federated
Learning comes with a set of additional constraints, which make communication
reduction more challenging. These include the heterogeneous distribution of client
data, the bi-directional flow of communication between clients and the server as well
as the partial participation of client devices and the resulting difficulties in keeping
devices synchronized in a communication-efficient way. To apply sparse k-nary
compression to the federated setting we will need to address all of these issues.

This Chapter is based on

• Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek
(2020b). “Robust and Communication-Efficient Federated Learning From Non-
i.i.d. Data”. In: IEEE Transactions on Neural Networks and Learning Systems 31.9,
pp. 3400–3413. DOI: 10.1109/TNNLS.2019.2944481. URL: https://doi.org/
10.1109/TNNLS.2019.2944481

4.1 Limitations of Existing Compression Methods

In this section, we will elaborate on the unique constraints of the Federated Learning
environment, which make it challenging to directly apply compression methods that
were designed for efficient parallel training in the data center.

4.1.1 Downstream Compression

In distributed training applications in the data center, worker devices are usually
hard-wired, physically proximal and low in number. This makes it possible for
them to synchronize directly with one-another for instance by means of an all-reduce
operation. In Federated Learning, where client populations may contain millions
of individual devices, potentially distributed on a global scale, this is not possible.
Instead the training process needs to be orchestrated by a central server, which

https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481

36 Chapter 4. Communication-Efficient Federated Learning

Method

0.25
0.50
0.75

Ac
cu

ra
cy

VGG11*, IID, (A = 10)

Method

0.25
0.50
0.75

Ac
cu

ra
cy

VGG11*, NON-IID, (A = 2)

Method

0.25
0.50
0.75

Ac
cu

ra
cy

VGG11*, NON-IID, (A = 1)

Method0.6

0.8

Ac
cu

ra
cy

Logistic, IID, (A = 10)

Method0.6

0.8

Ac
cu

ra
cy

Logistic, NON-IID, (A = 2)

Method0.6

0.8

Ac
cu

ra
cy

Logistic, NON-IID, (A = 1)

no compression sparse top-k p=0.01 signSGD FedAvg n=100

FIGURE 4.1: The effect of data heterogeneity on the performance of different efficient
Federated Learning methods. Final accuracy achieved after 100 communication
rounds when using different compression methods during the training of VGG11*
on CIFAR-10 and Logistic Regression on MNIST in a distributed setting with 10
clients for iid and non-iid data. In the non-iid cases, every client only holds examples
from exactly two respectively one of the 10 classes in the data set. All compression
methods suffer from degraded convergence speed in the non-iid situation, but sparse

top-k is affected by far the least.

aggregates the clients’ model updates and keeps the devices synchronized. As a
result, communication is bi-directional, with local parameter updates being uploaded
to the server and aggregated parameters being communicated back to the clients.

Compression methods, which have been proposed primarily with the intention to
speed up parallel training in the data center, thus often can not directly be applied to
Federated Learning or loose compression power on the downstream. Sparsification
methods for instance will primarily compress the upstream communication, as the
sparsity patterns on the updates from different clients will generally differ. If the
number of participating clients is greater than the inverse sparsity rate, which can
easily be the case in Federated Learning, the aggregated downstream update can
become dense, resulting in a loss of compressibility. The same holds true for quanti-
zation methods, as the average of quantized parameter updates in general has much
higher entropy than the individual updates.

Out of all the communication-efficient methods described in Section 3.1 of the pre-
vious chapter, only Federated Averaging and signSGD compress both the upstream
and downstream communication.

4.1.2 Partial Participation

The large number of clients in most Federated Learning applications usually makes it
impossible for all clients to participate in every round of Federated Learning. This
makes it more challenging to apply the efficient quantization and sparsification
techniques introduced in the previous chapter to Federated Learning for two reasons.
First of all, many of these techniques rely on accumulating quantization errors in a
residual. If however clients miss out on a large number of communication rounds,
their local residuals may become stale, meaning that the contained gradient signal is
no longer useful for the training process and instead will slow down convergence.
Secondly, even when no error accumulation is used, partial participation makes it
difficult to keep devices synchronized for distributed training algorithms that rely
on communicating differential model updates such as gradients or weight-updates
from the server to the clients. Assume that an initial model θ(0) is improved over

4.1. Limitations of Existing Compression Methods 37

T communication rounds by subsequently adding differential update information
according to

θ(T) = θ(0) + ∑
t=1,..,T

∆θ(t). (4.1)

If a client only participates in a subset of these T communication rounds, it will miss
out on all other differential updates leading to a de-synchronization from all other
clients, which will harm the convergence.

4.1.3 Robustness to non-iid Data

The related work on efficient distributed deep learning almost exclusively considers
iid data distributions among the clients, i.e. they assume unbiasedness of the local
gradients with respect to the full-batch gradient according to

Ex∼pi [∇θ l(x, θ)] = ∇θ R(θ) ∀i = 1, .., n (4.2)

where pi is the distribution of data on the i-th client and R(θ) is the empirical risk
function over the combined training data.

While this assumption is reasonable for parallel training where the distribution
of data among the clients is chosen by the practitioner, it is typically not valid in the
Federated Learning setting where the individual client’s gradients will be biased
towards the local data set according to

Ex∼pi [∇θ l(x, θ)] = ∇θ Ri(θ) 6= ∇θ R(θ) ∀i = 1, .., n. (4.3)

As it violates assumption (4.2), a non-iid distribution of the local data renders
existing convergence guarantees as formulated in (Wen et al., 2017; Alistarh et al.,
2017; Bernstein et al., 2018; Wang et al., 2018) inapplicable and has dramatic effects on
the practical performance of communication-efficient distributed training algorithms,
as we will demonstrate in the following experiments.

We run preliminary experiments with VGG11*, a simplified version of the well-
studied 11-layer VGG11 network (Simonyan and Zisserman, 2015), where all dropout
and batch normalization layers are removed and the number of convolutional filters
and size of all fully-connected layers is reduced by a factor of 2, which we train on
the CIFAR-10 (Krizhevsky, Nair, and Hinton, 2014) data set in a Federated Learning
setup using 10 clients. To split the training data among the clients, we make use of
the sharding strategy introduced in Chapter 2. We also perform experiments with a
simple logistic regression classifier, which we train on the MNIST data set (LeCun,
1998) under the same setup of the Federated Learning environment. Both models
are trained using momentum SGD. To make the results comparable, all compression
methods use the same learning rate and batch size.

Figure 4.1 shows the final accuracy achieved after a fixed number of gradient eval-
uations for the two models when trained using different methods for communication-
efficient Federated Learning. We observe that while all compression methods achieve
comparable accuracy on iid data, closely matching the uncompressed baseline, they
suffer considerably in the non-iid training settings. As this trend can be observed also
for the logistic regression model we can conclude that the underlying phenomenon is
not unique to deep neural networks and also carries over to convex objectives. We
will now analyze these results in detail for the different compression methods.

38 Chapter 4. Communication-Efficient Federated Learning

TABLE 4.1: Qualitative comparison between different methods for communication-
efficient distributed deep learning. None of the existing compression methods

satisfies all requirements of the Federated Learning environment.

Method Downstream
Compression

Robust to
non-iid Data

Compression
Rate

TernGrad (Wen et al., 2017), QSGD (Alistarh
et al., 2017), ATOMO (Wang et al., 2018)

7 3 ≤ ×32

signSGD (Bernstein et al., 2018) 3 7 ×32

sparse top-k (Lin et al., 2018; Tsuzuku,
Imachi, and Akiba, 2018; Strom, 2015)

7 3 ≥ ×100

FedAVG (McMahan et al., 2017) 3 7 ≥ ×10

Sparse k-nary Compression 3 3 ≥ ×100

3 = satisfies property, 7 = does not satisfy property

Federated Averaging: Most noticeably, Federated Averaging (McMahan et al.,
2017), although specifically proposed for the Federated Learning setting, suffers
considerably from non-iid data. This observation is consistent with Zhao et al. (Zhao
et al., 2018) who demonstrated that model accuracy can drop by up to 55% in non-iid
learning environments as compared to iid ones. They attribute the loss in accuracy
to the increased weight divergence between the clients and propose to side-step the
problem by assigning a shared public iid set of labeled data to all clients. While this
approach can indeed create more accurate models it also has multiple shortcomings,
the most crucial one being that we generally can not assume the availability of such
a public data set with label information. If a public data set were to exist one could
use it to pre-train a model at the server, which is not consistent with the assumptions
typically made in Federated Learning. Furthermore, if all clients share (part of) the
same public data set, overfitting to this shared data can become a serious issue. This
effect will be particularly severe in highly distributed settings where the number of
data points on every client is small. Lastly, even when sharing a relatively large data
set between the clients, the original accuracy achieved in the iid situation can not be
fully restored. For these reasons, we believe that the data sharing strategy proposed
by (Zhao et al., 2018) is an insufficient workaround to the fundamental problem of
Federated Averaging having convergence issues on non-iid data.

SignSGD: The quantization method signSGD (Bernstein et al., 2018) suffers from
even worse stability issues in the non-iid learning environment. The method com-
pletely fails to converge on the CIFAR benchmark and even for the convex logistic
regression objective the training plateaus at a substantially degraded accuracy.

Top-k Sparsification: Out of all existing compression methods, top-k sparsifica-
tion suffers least from non-iid data. For VGG11 on CIFAR the training still converges
reliably, even if every client only holds data from exactly one class and for the logistic
regression classifier trained on MNIST the convergence does not slow down at all. We
hypothesize that this robustness to non-iid data is due to mainly two reasons: First
of all, the frequent communication of weight updates between the clients prevents
them from diverging too far from one another and hence top-k sparsification does
not suffer from weight divergence (Zhao et al., 2018) as it is the case for Federated
Averaging. Second, sparsification does not destabilize the training nearly as much as
signSGD does since the noise in the stochastic gradients is not amplified by quantiza-
tion. Although top-k sparsification shows promising performance on non-iid data,
it’s utility is limited in the Federated Learning setting as it only directly compresses

4.2. Applying Sparse k-nary compression to Federated Learning 39

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001
Sp

ar
sit

y
Up

85.4 83.7 83.8 83.7 83.4 83.6

84.6 82.6 81.6 81.0 81.5 81.6

84.2 83.9 82.0 82.5 81.4 80.3

84.3 84.3 83.5 82.9 81.5 81.8

84.5 84.3 84.7 83.6 82.7 81.9

84.1 83.6 84.0 84.3 82.9 83.3
IID Data (A = 10)

0.60

0.65

0.70

0.75

0.80

0.85

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001

Sp
ar

sit
y

Up

85.3 84.0 83.8 83.3 83.8 83.5

84.8 83.5 81.1 80.3 79.4 80.1

84.1 84.0 81.8 81.1 77.8 77.1

82.8 83.2 82.8 81.7 79.7 76.9

79.4 79.4 79.1 78.6 77.6 76.9

73.2 73.7 73.8 72.9 72.5 70.5
Non-IID Data (A = 2)

0.60

0.65

0.70

0.75

0.80

0.85

FIGURE 4.2: Accuracy achieved by VGG11* when trained on CIFAR in a distributed
setting with 5 clients for 16000 iterations at different levels of upload and download
sparsity. Sparsifying the updates for downstream communication reduces the final

accuracy by at most 3% when compared to using only upload sparsity.

the upstream communication.
Table 4.1 summarizes our findings: None of the existing compression methods

supports both download compression and properly works with non-iid data.

4.2 Applying Sparse k-nary compression to Federated Learn-
ing

Top-k sparsification shows the most promising performance in distributed learning
environments with non-iid client data. We will use this observation as a starting point
to construct an efficient communication protocol for Federated Learning. To extend
the communication-efficient sparse k-nary compression protocol to the Federated
Learning setting we have to solve three open problems, which prevent the direct
application of the method to this new setting:

• First, we will remove the communication delay component by setting ν = 1 as
it slows down convergence on heterogeneous data.

• Second, we will incorporate downstream compression into the method to allow
for efficient communication from server to clients.

• Third, we will implement a caching mechanism to keep the clients synchronized
in case of partial client participation.

4.2.1 Extending to Downstream Compression

Existing compression frameworks which were proposed for distributed training (Lin
et al., 2018; Aji and Heafield, 2017; Alistarh et al., 2017; Wen et al., 2017) only compress
the communication from clients to server, which is sufficient for applications where
aggregation can be achieved via an all-reduce operation. However in the Federated
Learning setting, where the clients have to download the aggregated weight-updates
from the server this approach is not feasible, as it will lead to a communication
bottleneck.

To illustrate this point, let STCk : Rn → Rn, ∆θ 7→ ∆̃θ be the compression operator
that maps a (flattened) weight update ∆θ to a sparsified and ternarized weight update
∆̃θ according to Algorithm 6. For local weight updates ∆θ

(t)
i the update rule for STC

40 Chapter 4. Communication-Efficient Federated Learning

can then be written as

∆θ(t+1) =
1
n

n

∑
i=1

STCk(∆θ
(t+1)
i +R(t)

i)︸ ︷︷ ︸
∆̃θi

(t+1)

, (4.4)

R(t+1)
i = R(t)

i + ∆θ
(t+1)
i − ∆̃θi

(t+1), (4.5)

starting with an empty residual R(0)
i = 0 ∈ Rn on all clients. While the updates

˜
∆θ

(t+1)
i that are sent from clients to server are always sparse, the number of non-

zero elements in the update ∆θ(t+1) that is sent downstream grows linearly with the
amount of participating clients in the worst case. If the participation rate exceeds the
inverse sparsity 1/p, the update ∆θ(t+1) essentially becomes dense.

To resolve this issue, we propose to apply the same compression mechanism that
is used on the clients also at the server side to compress the downstream communication.
This modifies the update-rule to

˜∆θ(t+1) = STCk(
1
n

n

∑
i=1

STCk(∆θ
(t+1)
i +R(t)

i)︸ ︷︷ ︸
∆̃θi

(t+1)

+R(t)) (4.6)

with a client-side and a server-side residual update

R(t+1)
i = R(t)

i + ∆θ
(t+1)
i − ∆̃θi

(t+1) (4.7)

R(t+1) = R(t) + ∆θ(t+1) − ∆̃θ
(t+1). (4.8)

We can express this new update rule for both upload and download compression
(4.6) as a special case of pure upload compression (4.4) with generalized filter masks:
Let Mi, i = 1, .., n be the sparsifying filter masks used by the respective clients during
the upload and M be the one used during the download by the server. Then we could

arrive at the same sparse update ∆̃θ
(t+1) if all clients use filter masks M̃i = Mi �M,

where � is the Hadamard product. We thus predict that training models using this
new update rule should behave similar to regular upstream-only sparsification, but
with a slightly increased sparsity rate. We experimentally verify this prediction:

Figure 4.2 shows the accuracies achieved by VGG11 on CIFAR10, when trained in
a Federated Learning environment with 5 clients for 10000 iterations at different rates
of upload and download compression. As we can see, for as long as download and
upload sparsity are of the same order, sparsifying the download is not very harmful
to the convergence and decreases the accuracy by at most two percent in both the iid
and the non-iid case.

4.2.2 Weight Update Caching for Partial Client Participation

To solve the synchronization problem described in section 4.1.2 and reduce the
workload for the clients we propose to use a caching mechanism on the server.

Assume the last τ communication rounds have produced the updates {∆̃θ
(t)|t =

T − 1, .., T − τ}. The server can cache all partial sums of these updates up until

a certain point {P(s) = ∑s
t=1 ∆̃θ

(T−t)|s = 1, .., τ} together with the global model

θ(T) = θ(T−τ−1) + ∑τ
t=1 ∆̃θ

(T−t). Every client that wants to participate in the next
communication round then has to first synchronize itself with the server by either

4.2. Applying Sparse k-nary compression to Federated Learning 41

downloading P(s) or θ(T), depending on how many previous communication rounds
it has skipped. For general sparse updates the bound on the entropy

H(P(τ)) ≤ τH(P(1)) = τH(∆̃θ
(T−1)

) (4.9)

can be attained. This means that the size of the download will grow linearly with
the amount of rounds a client has skipped training. The average number of skipped
rounds is equal to the inverse participation fraction 1/C. This is usually tolerable as
the down-link typically is cheaper and has far higher bandwidth than the up-link
as already noted in (McMahan et al., 2017) and (Wen et al., 2017). We note that all
compression methods, that communicate only parameter updates instead of full
models suffer from the same problem. This is also the case for signSGD, although
here the size of the downstream update only grows logarithmically with the delay
period according to

H(P(τ)
signSGD) ≤ log2(2τ + 1). (4.10)

Partial client participation also has effects on the convergence speed of federated
training, both with delayed and sparsified updates. We will investigate these effects
in detail in Section 4.3.2.

Algorithm 7 Sparse k-nary Compression for Efficient Federated Learning
input: initial parameters θ
output: improved parameters θ
init: all clients Ci, i = 1, .., M are initialized with the same parameters θi ← θ, the residuals
are initialized to zero ∆θ,Ri,R ← 0.

for t = 1, .., T do
for i ∈ It ⊆ {1, .., M} in parallel do

Client Ci does:
msg← downloadS→Ci (msg)
∆θ ← golomb_decode(msg)
θi ← θi + ∆θ
∆θi ← Ri + SGD(θi, Di, b)− θi # Local Training
∆̃θi ← sparse_compression(∆θi, pup) # Compression
Ri ← ∆θi − ∆̃θi # Update Residual
msgi ← golomb_encode(∆̃θi) # Encoding
uploadCi→S(msgi)

end for
Server S does:
gatherCi→S(msgi), i ∈ It

∆̃θi ← golomb_decode(msgi), i ∈ It

∆θ ← R+ 1
|It | ∑i∈It ∆̃θi # Aggregation and Residual Update

∆̃θ ← sparse_compression(∆θ, pdown) # Compression
R ← ∆θ − ∆̃θ
θ ← θ + ∆̃θ # Server Model Update
msg← golomb_encode(∆̃θ)
broadcastS→Ci (msg), i = 1, .., M

end for
return θ

42 Chapter 4. Communication-Efficient Federated Learning

4.3 Experiments

We evaluate our proposed communication protocol on four different learning tasks
and compare it’s performance to Federated Averaging and signSGD in a wide a
variety of different Federated Learning environments.

Models and data sets: To cover a broad spectrum of learning problems we evalu-
ate on differently sized convolutional and recurrent neural networks for the relevant
Federated Learning tasks of image classification and speech recognition:

VGG11* on CIFAR: We train a modified version of the popular 11-layer VGG11
network (Simonyan and Zisserman, 2015) on the CIFAR (Krizhevsky, Nair, and
Hinton, 2014) data set. We simplify the VGG11 architecture by reducing the number
of convolutional filters to [32, 64, 128, 128, 128, 128, 128, 128] in the respective
convolutional layers and reducing the size of the hidden fully-connected layers to 128.
We also remove all dropout layers and batch-normalization layers as regularization is
no longer required. Batch-normalization has been observed to perform very poorly
with both small batch sizes and non-iid data (Ioffe, 2017) and we don’t want this effect
to obscure the investigated behavior. The resulting VGG11* network still achieves
85.46% accuracy on the validation set after 20000 iterations of training with a constant
learning rate of 0.16 and contains 865482 parameters.

CNN on KWS: We train the four-layer convolutional neural network from (Konecný
et al., 2016) on the speech commands data set (Warden, 2018). The speech commands
data set consists of 51,088 different speech samples of specific keywords. There are 30
different keywords in total and every speech sample is of 1 second duration. Like
(Zhao et al., 2018) we restrict us to the subset of 10 most common keywords. For
every speech command we extract the mel spectrogram from the short time fourier
transform, which results in a 32x32 feature map. The CNN architecture achieves
89.12% accuracy after 10000 training iterations and has 876938 parameters in total.

LSTM on Fashion-MNIST: We also train a LSTM network with 2 hidden layers
of size 128 on the Fashion-MNIST data set (Xiao, Rasul, and Vollgraf, 2017). The
Fashion-MNIST data set contains 60000 train and 10000 validation greyscale images
of 10 different fashion items. Every 28x28 image is treated as a sequence of 28 features
of dimensionality 28 and fed as such in the the many-to-one LSTM network. After
20000 training iterations with a learning rate of 0.04 the LSTM model achieves 90.21%
accuracy on the validation set. The model contains 216330 parameters.

Compression Methods: We compare our proposed Sparse Ternary Compres-
sion method (STC) at a sparsity rate of p = 1/400 with Federated Averaging at an
"equivalent" delay period of n = 400 iterations and signSGD with a coordinate-wise
step-size of δ = 0.0002. At a sparsity rate of p = 1/400 STC compresses updates
both during upload and download by roughly a factor of ×1050. A delay period of
n = 400 iterations for Federated Averaging results in a slightly smaller compression
rate of ×400. During our experiments, we keep all training related hyperparameters
constant for the different compression methods. To be able to compare the different
methods in a fair way, all methods are given the same budged of training iterations in
the following experiments (one communication round of Federated Averaging uses
up n iterations, where n is the number of local iterations).

Base Configuration: The Federated Learning environment described in Algo-
rithm 7 can be fully characterized by five parameters: For the base configuration we
set the number of clients to 100, the participation ratio to 10% and the local batch size
to 20 and assign every client an equally sized subset of the training data containing
samples from 10 different classes. In the following experiments, if not explicitly
signified otherwise, all hyperparameters will default to this base configuration.

4.3. Experiments 43

1 2 3 5 10
Classes per Client A

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
C = 1.0, M = 10

1 2 3 5 10
Classes per Client A

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

C = 0.1, M = 100

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

A = 2, M = 100, C = 0.1

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

A = 10, M = 100, C = 0.1

FedAvg FedAvg + m. STC STC + m. signSGD signSGD + m.

FIGURE 4.3: Maximum accuracy achieved by the different compression methods
when training VGG11* on CIFAR for 20000 iterations in varying Federated Learning
environments. Left: Robustness of different compression methods to heterogeneity
of client data. STC distinctively outperforms Federated Averaging on non-iid data.
Right: Robustness of different compression methods to varying batch-sizes. The
learning environment is configured as described in Table 2.3. Dashed lines signify

that a momentum of m = 0.9 was used.

4.3.1 Heterogeneous Client Data

Our preliminary experiments in Section 4.1 have already demonstrated that the
convergence behavior of both Federated Averaging and signSGD is very sensitive to
the degree of iid-ness of the local client data, whereas sparse communication seems
to be more robust. We will now investigate this behavior in some more detail. Figure
4.3 (panel 1, 2) shows the maximum achieved generalization accuracy after a fixed
number of iterations for VGG11* trained on CIFAR at different levels of non-iid-ness.
Both at full (panel 1) and partial (panel 2) client participation, STC outperforms
Federated Averaging across all levels of iid-ness. The most distinct difference can be
observed in the non-iid regime, where the individual clients hold less than 5 different
classes. Here STC (without momentum) outperforms both Federated Averaging and
signSGD by a wide margin. In the extreme case where every client only holds data
from exactly one class STC still achieves 79.5% and 53.2% accuracy at full and partial
client participation respectively, while both Federated Averaging and signSGD fail to
converge at all.

4.3.2 Robustness to other Parameters of the Learning Environment

We will now proceed to investigate the effects of other parameters of the learning
environment on the convergence behavior of the different compression methods.
Figures 4.3 (panel 3, 4) and 4.4 show the maximum achieved accuracy after training
VGG11* on CIFAR for 20000 iterations in different Federated Learning environments.

Local Batch Size: The memory capacity of mobile and IoT devices is typically
very limited. As the memory footprint of SGD is proportional to the batch size
used during training, clients might be restricted to train on small mini-batches only.
Figure 4.3 (panel 3, 4) shows the influence of the local batch size on the performance
of different communication-efficient Federated Learning techniques exemplary for
VGG11* trained on CIFAR. First of all, we notice that using momentum significantly
slows down the convergence speed of both STC and Federated Averaging at batch
sizes smaller than 20 independent of the distribution of data among the clients. As we
can see, even if the training data is distributed among the clients in an iid manner (Fig.
4.3 panel 4) and all clients participate in every training iteration, Federated Averaging

44 Chapter 4. Communication-Efficient Federated Learning

5/5 5/1
0
5/2

0
5/5

0
5/1

00
5/2

00
5/4

00

Clients CM / M

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

A = 2, G = 1.0

5/5 5/1
0
5/2

0
5/5

0
5/1

00
5/2

00
5/4

00

Clients CM / M

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

A = 10, G = 1.0

0.90 0.95 1.00
Balancedness G

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

A = 2, C = 0.1, M = 100

0.90 0.95 1.00
Balancedness G

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

A = 10, C = 0.1, M = 100

FedAvg FedAvg + m. STC STC + m. signSGD signSGD + m.

FIGURE 4.4: Left: Robustness of different compression methods to varying client
population sizes. The relative client participation fraction is varied between 100%
(5/5) and 5% (5/100). Right: Robustness of different compression methods to
varying client data set sizes. The training data is split among the client at different
degrees of unbalancedness with γ varying between 0.9 and 1.0. Validation accuracy

achieved by VGG11* on CIFAR after 20000 iterations

suffers considerably from small batch sizes. STC on the other hand demonstrates to
be far more robust to this type of constraint. At an extreme batch size of 1 the model
trained with STC still achieves an accuracy of 63.8% while the Federated Averaging
model only reaches 39.2% after 20000 training iterations.

Client Participation Fraction: Figure 4.4 (panel 1, 2) shows the convergence speed
of VGG11* trained on CIFAR10 in a Federated Learning environment with different
degrees of client participation. To isolate the effects of reduced participation, we
keep the absolute number of participating clients and the local batch sizes at constant
values of 5 and 40 respectively throughout all experiments and vary only the total
number of clients (and thus the relative participation C). As we can see, reducing the
participation rate has negative effects on both Federated Averaging and STC. The
causes for these negative effects however are different: In Federated Averaging the
participation rate is proportional to the effective amount of data that the training is
conducted on in any individual communication round. If a non-representative subset
of clients is selected to participate in a particular communication round of Federated
Averaging, this can steer the optimization process away from the minimum and might
even cause catastrophic forgetting (Goodfellow et al., 2013) of previously learned
concepts. On the other hand, partial participation reduces the convergence speed
of STC by causing the clients residuals to go out sync and increasing the gradient
staleness (Lin et al., 2018). The more rounds a client has to wait before it is selected
to participate during training again, the more outdated it’s accumulated gradients
become. We can observe this behavior for STC most strongly in the non-iid situation
(Fig. 4.4 panel 1), where the accuracy steadily decreases with the participation rate.
However even in the extreme case where only 5 out of 400 clients participate in every
round of training STC still achieves a higher accuracy than Federated Averaging and
signSGD. If the clients hold iid data (Fig. 4.4 panel 2), STC suffers much less from
a reduced participation rate than Federated Averaging. If only 5 out of 400 clients
participate in every round, STC (without momentum) still manages to achieve an
accuracy of 68.2% while Federated Averaging stagnates at 42.3% accuracy. signSGD is
affected the least by reduced participation which is unsurprising as only the absolute
number of participating clients would have a direct influence on it’s performance.
Similar behavior can be observed on all other benchmarks, the results can be found
in Figure A3 in the appendix. It is noteworthy that in Federated Learning it is usually

4.3. Experiments 45

TABLE 4.2: Bits required for upload and download to achieve a certain target
accuracy on different learning tasks in an iid learning environment. A value of
"n.a." in the table signifies that the method has not achieved the target accuracy
within the iteration budget. The learning environment is configured as follows:

M = 100, C = 0.1, A = 10, G = 1.0. The batch-size is set to 20.

CIFAR, Acc. = 0.84 KWS, Acc. = 0.9 F-MNIST, Acc. = 0.89

Method up down up down up down

Baseline 36696.2 36696.2 5191.3 5191.3 2422.8 2422.8

signSGD 1579.5 6937.6 925.1 4063.6 123.3 541.6

FedAvg (n = 25) 3572.7 3572.7 301.6 301.6 174.7 174.7

FedAvg (n = 100) 1606.3 1606.3 617.3 617.3 83.9 83.9

FedAvg (n = 400) n.a. n.a. 350.7 350.7 86.5 86.5

STC (p = 1/25) 118.4 1184.3 43.5 435.7 8.8 88.4

STC (p = 1/100) 202.2 2022.1 31.0 310.2 12.1 121.2

STC (p = 1/400) 183.9 1839.7 14.8 148.1 7.9 79.1

possible for the server to exercise some control over the rate of client participation.
For instance, it is typically possible to increase the participation ratio at the cost of a
longer waiting time for all clients to finish.

Unbalancedness: Up until now, all experiments were performed with a balanced
split of data in which every client was assigned the same amount of data points. In
practice however, the data sets on different clients will typically vary heavily in size.
To simulate different degrees of unbalancedness we vary the parameter G between 0.9
and 1.0, which controls the concentration of data as described in Chapter 2. To amplify
the effects of unbalanced client data, we also set the client participation to a low value
of only 5 out of 200 clients. Figure 4.4 (panel 3, 4) shows the final accuracy achieved
after 20000 iterations for different values of G. Interestingly, the unbalancedness of
the data does not seem to have a significant effect on the performance of either of the
compression methods. Even if the data is highly concentrated on a few clients (as
is the case for G = 0.9) all methods converge reliably and for Federated Averaging
the accuracy even slightly goes down with increased balancedness. Apparently the
rare participation of large clients can balance out several communication rounds with
much smaller clients.

4.3.3 Communication-Efficiency

Finally, we compare the different compression methods with respect to the number
of iterations and communicated bits they require to achieve a certain target accuracy
on a Federated Learning task. As we saw in the previous section, both Federated
Averaging and signSGD perform considerably worse if clients hold non-iid data or
use small batch sizes. To still have a meaningful comparison we therefore choose to
evaluate this time on an iid environment where every client holds 10 different classes
and uses a moderate batch size of 20 during training. This setup favors Federated
Averaging and signSGD to the maximum degree possible. All other parameters of
the learning environment are set to the base configuration. We train until the target
accuracy is achieved or a maximum amount of iterations is exceeded and measure
the amount of communicated bits both for upload and download. Figure 4.5 shows
the results for VGG11* trained on CIFAR, CNN trained on KWS and the LSTM model

46 Chapter 4. Communication-Efficient Federated Learning

103 104 105

Iterations

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

VGG11* @ CIFAR

102 103 104 105

Bits Upload

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

VGG11* @ CIFAR

102 103 104

Iterations

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS

100 101 102 103 104

Bits Upload

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS

102 103 104

Iterations

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LSTM @ F-MNIST

100 101 102 103

Bits Upload

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LSTM @ F-MNIST

no comp.
signSGD

STC, p = 1/25
FedAvg, n = 25

STC, p = 1/100
FedAvg, n = 100

STC, p = 1/400
FedAvg, n = 400

FIGURE 4.5: Convergence speed of Federated Learning with compressed commu-
nication in terms of training iterations (top) and uploaded bits (bottom) on three
different benchmarks (left to right) in an iid Federated Learning environment with
100 clients and 10% participation fraction. For better readability the validation error
curves are average-smoothed with a step-size of 5. On all benchmarks STC requires

the least amount of bits to converge to the target accuracy.

trained on Fashion-MNIST. We can see that even if all clients hold iid data STC still
manages to achieve the desired target accuracy within a smallest communication
budget out of all methods. STC also converges faster in terms of training iterations
than the versions of Federated Averaging with comparable compression rate. We
see that both for Federated Averaging and STC we face a trade-off between the
number of training iterations ("computation") and the number of communicated bits
("communication"). On all investigated benchmarks however STC is pareto-superior
to Federated Averaging in the sense that for any fixed iteration complexity it achieves
a lower (upload) communication complexity.

Table 4.2 shows the amount of upstream- and downstream-communication re-
quired to achieve the target accuracy for the different methods in megabytes. On the
CIFAR learning task STC at a sparsity rate of p = 0.0025 only communicates 183.9
MB worth of data, which is a reduction in communication by a factor of ×199.5 as
compared to the baseline with requires 36696 MB and Federated Averaging (n = 100)
which still requires 1606 MB. Federated Averaging with a delay period of 1000 steps
does not achieve the target accuracy within the given iteration budget.

4.4 Summary & Limitations

Federated Learning for mobile and IoT applications is a challenging task, as generally
little to no control can be exerted over the properties of the learning environment.

In this chapter we demonstrated, that the convergence behavior of current meth-
ods for communication-efficient Federated Learning is very sensitive to these prop-
erties. On a variety of different data sets and model architectures we observed that
the convergence speed of Federated Averaging drastically decreases in learning en-
vironments where the clients either hold non-iid subsets of data, are forced to train

4.4. Summary & Limitations 47

Classes : 1
Clients: 10/10
 Batch-Size: 20

Classes: 10
Clients: 10/10

Batch Size : 1

Classes: 10
Clients : 5/400
 Batch-Size: 40

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

VGG11* @ CIFAR, 20000 Iterations

FedAvg
STC

 Up Down
Classes: 10, Clients: 10/100

 Batch-Size: 20

0

500

1000

1500

Co
m

m
un

ica
tio

n
[M

B]

1 2 3 4

Target Acc.: 0.84

FIGURE 4.6: Summary of the advantageous properties of the STC algorithm. Left:
Accuracy achieved by VGG11* on CIFAR after 20000 iterations of Federated Training
with Federated Averaging and Sparse Ternary Compression for three different
configurations of the learning environment. Right: Upstream and downstream
communication necessary to achieve a validation accuracy of 84% with Federated
Averaging and STC on the CIFAR benchmark under iid data and a moderate batch-

size.

on small mini-batches or where only a small fraction of clients participates in every
communication round. We demonstrated that the sparse k-nary compression proto-
col, introduced in the previous chapter, is far more robust to the above mentioned
peculiarities of the learning environment than the very popular Federated Averag-
ing method. Moreover, sparse k-nary compression converges faster than Federated
Averaging both with respect to the amount of training iterations and the amount of
communicated bits, even if the clients hold iid data and use moderate batch sizes
during training.

Our approach can be understood as an alternative paradigm for communication-
efficient federated optimization which relies on high-frequent low-volume instead of
low-frequent high-volume communication. As such it is particularly well suited for
Federated Learning environments which are characterized by low latency and low
bandwidth channels between clients and server.

It must be noted however, that the downstream compression rate, achieved with
sparse k-nary compression, scales inversely with the amount of communication
rounds that are skipped by any client on average. Consequently our method can not
provide significant reduction in downstream communication in situations where the
client population is very large and only few clients participate in each round.

Furthermore, communication in sparse k-nary compression still fundamentally
scales with the model size. Thus for very large-scale models, like transformer net-
works, communication overhead can still be prohibitive. In the next chapter, we will
introduce an efficient Federated Learning algorithm, for which communication is
independent of the model size, enabling Federated Learning of even larger models in
highly communication-constrained applications.

48 Chapter 4. Communication-Efficient Federated Learning

Lessons Learned

• If the training data is distributed among the clients in a non-iid way,
sparse communication protocols such as STC distinctively outperform
Federated Averaging across all Federated Learning environments.

• The same holds true if clients are forced to train on small mini-batches
(e.g. because of memory constraints). In these situations STC outper-
forms Federated Averaging even if the client’s data is iid.

• STC achieves preferable performance over Federated Averaging if the
client participation rate is low, as it converges more stable and quickly in
both the iid and non-iid regime.

• On the other hand, a low client participation rate also leads to less effi-
cient downstream compression for STC.

• STC is generally most useful in situations where the communication is
bandwidth-constrained or costly (metered network, limited battery), as
it does achieve a certain target accuracy within the minimum amount of
communicated bits even on iid data (cf. Fig. 4.5, Tab. 4.2).

• Federated Averaging in return should be used if the communication is
latency-constrained or if the client participation is expected to be very
low.

49

Chapter 5

Communication-Efficient
Federated Distillation

In the previous chapter, we learned that the communication bottleneck induced by
frequently exchanging training information between the participating clients over
limited bandwidth channels, is one of the most challenging obstacles in Federated
Learning. The main reason for this is that the communication of both local gradients
and model updates, which are the basic unit of information for gradient descent
based distributed training methods like distributed SGD and Federated Averaging,
is communication intensive and requires O(|θ|) bits of information, where |θ| is the
model size.

While different algorithmic approaches to tackle this problem have been proposed
in the literature under the umbrella of efficient Federated Learning, the fundamental
issue of scaling to larger models remains. As we have learned in Chapter 2, the re-
cently proposed framework of Federated Distillation (Jeong et al., 2018; Li and Wang,
2019; Itahara et al., 2020; Lin et al., 2020b; Chen and Chao, 2020) has fundamentally
different communication properties. As client knowledge in Federated Distillation is
aggregated not by means of parameter averaging, but instead by distillation from
the aggregated student predictions, communication will scale with the size of the
distillation data set instead of the model size. This can be advantageous, especially if
very large models are being trained. In this chapter, we will closely examine Feder-
ated Distillation with respect to its communication properties and introduce a set of
improvements, which further reduce communication in both the upstream and the
downstream, without negatively affecting the training performance.

This chapter is based on

• Felix Sattler, Arturo Marban, Roman Rischke, and Wojciech Samek (2021a).
“CFD: Communication-Efficient Federated Distillation via Soft-Label Quantiza-
tion and Delta Coding”. In: IEEE Transactions on Network Science and Engineering,
pp. 1–1. ISSN: 2327-4697. DOI: 10.1109/TNSE.2021.3081748. URL: https:
//dx.doi.org/10.1109/TNSE.2021.3081748

5.1 Federated Distillation Frameworks

Albeit their novelty, Federated Distillation techniques have been used in several
existing works already. In the following we present a comprehensive overview on
these existing techniques. Most relevant for the studied multi-round protocol for
diverse models in this chapter is the protocol proposed by Itahara et al. (Itahara
et al., 2020), which is based on ideas from Jeong et al. (Jeong et al., 2018) and mostly
follows the steps described in section 2.3.3 with the sole exception that client models

https://doi.org/10.1109/TNSE.2021.3081748
https://dx.doi.org/10.1109/TNSE.2021.3081748
https://dx.doi.org/10.1109/TNSE.2021.3081748

50 Chapter 5. Communication-Efficient Federated Distillation

are required to participate in every round and are not kept synchronized during local
distillation by means of random seeds.

The similar protocol by Jeong et al. (Jeong et al., 2018) and Seo et al. (Seo et al.,
2020) is instead based on locally accumulated logits per label, which are aggregated
by the server. Furthermore, instead of exploiting these global logits for refining the
local models by direct distillation, they are used for regularizing the local training
in the next round. Similarly, Bistritz et al. (Bistritz, Mann, and Bambos, 2020) use
distillation on an unlabelled public data set for regularizing on-device learning in
a peer-to-peer network. Guha et al. (Guha, Talwalkar, and Smith, 2019) propose a
one-shot distillation method for convex models, where the server distills the locally
optimized client models in a single round based on an unlabelled data set.

The recently proposed FedMD by Li and Wang (Li and Wang, 2019) and Cronus
by Chang et al. (Chang et al., 2019) also address knowledge distillation in Federated
Learning through aggregated logits for a public data set. In FedMD, the clients
train in each round first on the public data set and then on the private data set for
personalization and communicate afterwards their model output on the public data
set to the server, where the aggregation of the uploaded logits for the next round is
performed. For the initial pretraining in FedMD the public data set is required to be
labelled, whereas in the communication rounds after initialization the aggregated
logits from the clients serve as soft-labels for the public data set. In Cronus, however,
each client uses the local data set and the soft-labelled public data set jointly for local
training.

Lin et al. (Lin et al., 2020b) apply ensemble distillation on top of Federated
Averaging to refine the global server model resulting in fewer communication rounds
compared to benchmark Federated Averaging methods. Although leveraging the
power of ensemble distillation for robust model fusion and data augmentation, their
method, called FedDF, is based on the classical Federated Averaging protocol with all
the mentioned consequences w.r.t. the communication-efficiency.

Chen and Chao (Chen and Chao, 2020) introduce FedBE, where the server creates
Bayesian model ensembles based on the uploaded client models, instead of directly
averaging the client models as in FedAvg, and uses an unlabelled data set to distill
one global student model from a Bayesian model ensemble created from the teacher
models. This global model is transferred back to the clients as initialization for the next
round of local training. Like FedDF, this approach however is more closely related to
classical Federated Averaging than to Federated Distillation, from a communication
perspective, since all clients have to train the same model architecture and the model
parameters are communicated up- and downstream.

5.2 Investigating the Communication Properties of Federated
Distillation

In this section we investigate the communication properties of Federated Distillation.
In each round of Federated Distillation, clients will send a set of soft-label predictions

Ypub
i = { fθi(x)|x ∈ Xpub} (5.1)

to the server, and receive back aggregated soft-labels. The total amount of communi-
cation necessary to transfer this information in each round is given by the product
of the distillation data set size and the average amount of bits required to store the

5.2. Investigating the Communication Properties of Federated Distillation 51

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

Distill Data

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

= 100.0

random
certainty
entropy
margin
fixed

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

Distill Data

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

= 0.1

random
certainty
entropy
margin
fixed

FIGURE 5.1: Effect of distillation data set size and different active selection strategies
on the Federated Distillation performance.

value of one soft-label

btotal = |Xpub| × (H(Yi) + η). (5.2)

Hereby |Xpub| is the size of the distillation data set, H(Yi) is the entropy of the soft-
labels, and η indicates the coding inefficiency. In conventional Federated Distillation
as proposed in (Jeong et al., 2018; Itahara et al., 2020), the soft-label information is
stored at 32-bit floating-point precision, and thus, we have

btotal = |Xpub| × dim(Y)× 32 bit. (5.3)

Following eq. (5.2), a reduction of the communication overhead can be achieved by
either

• reducing the size of the distillation data set,

• reducing the entropy of the soft-labels, or

• improving the efficiency of the coding technique.

In this section, we will look at all three of these determining factors and investigate
their relative impact on the Federated Learning performance.

In the preliminary experiments performed in this section, we consider Federated
Learning settings with 20 clients among which we split the training data according to
the Dirichlet strategy described in Chapter 2. More details on the experiment setup
can be found in Section 5.4.

5.2.1 Distillation Data Set Size

As the communication overhead in Federated Distillation is directly proportional to
the number of data points used for distillation, restricting the size of the distillation
data is the most straight-forward way to reduce communication. It is commonly
known however, that in machine learning (and deep learning in particular), the
size of the training data set has strong impact on the generalization capacity of any
trained classifier (Vapnik, 2013). The machine learning discipline of active learning
has developed techniques to systematically select samples from a larger pool of data
for training with the goal to achieve better performance with fewer samples of data.
Here, we adapt four popular active learning techniques to the setting of Federated
Distillation and compare their performance when used to select distillation data sets

52 Chapter 5. Communication-Efficient Federated Distillation

of different sizes. Let

topn[x 7→ Ψ(x)] : D → D (5.4)

be the operator that maps a data set to one of its subsets of size n, by selecting the top
n elements according to the criterion x 7→ Ψ(x). Then, we can define the “entropy”,
“certainty”, and “margin” selection strategies as follows:

Dentropy
n = topn[x 7→ H(fθ(x))](Xpub) (5.5)

Dcertainty
n = topn[x 7→ −max(fθ(x))](Xpub) (5.6)

Dmargin
n = topn[x 7→ max2(fθ(x))−max(fθ(x))](Xpub) (5.7)

Hereby, H(p) = −∑i pi log(pi) denotes the entropy, max(p) represents the maximum
value in the vector of probabilities p, and max2(p) = max(p \ {arg max(p)}) denotes
the second-largest element of p. For instance Dcertainty

n selects those n data points
from Xpub for which the maximum likelihood prediction max(fθ(x)) is assigned the
lowest certainty. We also consider the selection strategy of picking n data-points at
random in each round.

In each communication round of Federated Distillation, we select a subset of n
data points for distillation, according to one of the above strategies based on the
model θ, which was used in the previous round. The results of this experiment
are shown in Figure 5.1. As we can see, the performance of Federated Distillation
strongly depends on the size of the distillation data set. On the other hand, the effect
of using active learning strategies to systematically select data points is rather low.
While in the iid regime (α = 100.0) the active learning strategies slightly improve
the Federated Distillation performance, the situation is rather unclear in the non-
iid regime (α = 0.1). From these results, we conclude that in most situations, the
performance gains obtained by using active learning strategies do not justify the
additional computational overhead incurred by these techniques (i.e., evaluating
fθ(x) on the entire accessible distillation data). Thus, in the remainder of this chapter,
we will restrict our analysis to randomly selected distillation data sets of fixed size.

5.2.2 Soft-Label Quantization

Quantization is a popular technique to reduce communication and has been success-
fully applied in Federated Averaging to reduce the size of the parameter updates
(Konecný et al., 2016; Sattler et al., 2019; Xu et al., 2020). Quantization techniques,
however, so far have not been applied to Federated Distillation. Here we consider
constrained uniform quantization to reduce the entropy of the communicated soft-
labels. Let p ∈ Y be a vector of soft-label probabilities. Then, we obtain the quantized
soft-label q via constrained uniform quantization (Widrow, Kollar, and Liu, 1996) as
follows

q = Qb(p) = arg min
qi∈{ l

2b−1
,l∈0,..,2b−1}

∑i qi=1

‖q− p‖1 (5.8)

The optimization problem above can be solved in log-linear time. In case the
optimization problem in (5.8) does not have a unique solution, we randomly break
the tie. As can be easily seen, for b = 1, the quantization operator Qb is equivalent to

5.2. Investigating the Communication Properties of Federated Distillation 53

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

Distill Data

1

2

4

8

16
Qu

an
tiz

at
io

n
Bi

ts

65.8 78.2 85.4 91.3 92.4 94.1 95.9 96.3 96.9 97.7

77.0 77.5 88.1 93.9 95.7 96.9 97.6 98.0 98.3 98.4

78.8 87.2 91.4 95.9 96.0 97.2 97.8 98.2 98.1 98.4

74.5 89.7 90.6 95.7 96.4 97.3 97.8 98.2 98.2 98.4

79.5 84.7 91.0 94.4 96.4 97.3 97.5 98.2 98.3 98.5

LeNet on MNIST, = 0.1

0.7

0.8

0.9

10
0

20
0

40
0

80
0

16
00

32
00

64
00

12
80

0
25

60
0

51
20

0

Distill Data

1

2

4

8

16

Qu
an

tiz
at

io
n

Bi
ts

30.5 38.4 43.3 47.2 51.5 55.4 58.1 63.2 67.5 70.9

31.7 40.7 46.2 50.9 54.6 58.1 61.5 64.3 68.6 71.3

33.8 41.6 47.9 52.3 56.6 59.6 62.6 66.3 69.4 71.9

34.8 42.1 47.8 51.6 55.8 59.9 63.8 66.2 69.9 71.2

36.0 42.6 46.5 52.0 55.2 60.2 62.9 66.5 68.9 71.5

ResNet8 on CIFAR-10, = 100.0

0.4

0.5

0.6

0.7

FIGURE 5.2: Effect of distillation data set size and quantization strength on training
performance in Federated Distillation.

the maximum vote:

Q1(p)i =

{
1 if i = arg max(p)
0 else

(5.9)

Constrained uniform quantization as defined above reduces the number of bits
required to communicate any vector of probabilities from 32-bits×dim(Y) to b-bits×
dim(Y).

Figure 5.2 shows the effect of different distillation data set sizes and quantization
levels on the model accuracy after a fixed number of communication rounds. From
this data, we notice two interesting trends. Firstly, we observe that, while reducing
the number of quantization bits by half has the same effect on the communication
overhead as reducing the size of the distillation data by the same amount, the former
strategy has a much lower impact on the training performance. This result holds
across different levels of quantization and distillation data set sizes. Second, as the
size of the distillation data set increases, the harmful effects of quantization vanish.
For instance, in the MNIST data set (Figure 5.2, left plot), the experimental findings
suggest that for n ≥ 6400 distillation data points, the model performance remains
strong for any quantization level (with a small accuracy degradation at the highest
compression levels). Similar effects can be observed when training ResNet-8 the
CIFAR-10 data set (Figure 5.2, right plot), where in some cases higher compression
rates even lead to slight improvements in accuracy. Moreover, notice that in both data
sets, when the maximum number of distillation samples are available (n = 51200), the
strongest compression level (i.e., 1-bit quantization) only incurs less then 1% accuracy
degradation on both data sets.

These results indicate that as a means for reducing communication, quantization
should be strictly preferred over distillation data set reduction, especially if one has
access to a large distillation data set. In the following, we will concentrate our analysis
on 1-bit quantization using the compression operator Q1.

5.2.3 Efficient Encoding

In this section we investigate efficient lossless coding techniques to minimize the
size of the compressed soft-label representations. As shown in eq. (5.9), applying the
compression operator Q1 to a vector of probabilities p results in a one-hot vector of
size dim(Y). As this one-hot vector can also be represented by an integer number
between 1 and dim(Y), a straight-forward encoding process would comprise of

54 Chapter 5. Communication-Efficient Federated Distillation

0 20 40
Communication Round

1

2

3

En
tro

py

Soft-Label Entropy

= 1.0
= 100.0
= 0.1

0 20 40
Communication Round

0.5

1.0

1.5

2.0

2.5

En
tro

py

Diff. Soft-Label Entropy
= 1.0
= 100.0
= 0.1

0.0
1

0.0
2

0.0
4

0.0
8

0.1
6

0.3
2

0.6
4

1.2
8

2.5
6

5.1
2
10

.24
20

.48

Data Heterogeneity

0

20000

40000

60000

80000

Co
m

m
un

ica
tio

n
[b

it]

Communication vs Accuracy

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

FIGURE 5.3: Panels 1 and 2: Evolution of the soft-label entropy when training
ResNet-8 on the CIFAR-10 data set, at different levels of data-heterogeneity. When
communicating compressed soft-labels directly (panel 1), the entropy stays constant
over the course of training. In contrast, when using differential soft-labels (panel 2),
the entropy steadily decreases. Panel 3: Upstream communication (vertical bars) and
model accuracy (red curve), at different levels of data heterogeneity α, for ResNet-8
trained on CIFAR-10. Communication varies by more than an order of magnitude
between the most homogeneous (α = 163.84) and the most heterogeneous (α = 0.01)

setting.

communicating

Ỹi = {Q1(fθi(x))|x ∈ Xpub} (5.10)

as an array of |Xpub| integer values, using up |Xpub| × log2(dim(Y)) bits of data in
total.

This however is only an upper bound on the true entropy H(Ỹi), which highly
depends on the distribution of max predictions in Ỹi. Figure 5.3, panel 1, shows the
development of H(Ỹi) over the course of 50 communication rounds for a Federated
Learning problem with 20 clients training ResNet-8 on CIFAR-10 at different levels
of data heterogeneity. As we can see, the true entropy is well below the theoretical
maximum of log2(dim(Y)) = log2(10) and decreases with increasing heterogeneity
α, down to around H(Ỹi) ≈ 1 at α = 0.1. This behaviour is expected, as the labels
in the client training data, and consequently also their predictions Ỹi, get more
concentrated with increasing heterogeneity in the data. Additional knowledge about
the distribution of Ỹi can be used to further reduce the entropy. Since Federated
Distillation is empirically known to converge (Lin et al., 2020b; Li and Wang, 2019),
we can further expect there to be a growing overlap between the predictions made by
a client in the current round T and those made in the previous round T − 1.

High agreement between consecutive data points in a stream of data is a phe-
nomenon commonly encountered in communication. The effect for instance can
also be found in video data (Wiegand et al., 2003; Wiegand and Girod, 2001), where
consecutive frames are often highly correlated. The canonical technique to exploit
this pattern is differential coding (resp. delta coding or predictive coding) (Sayood,
2017), which relies on only communicating "new" information in order to achieve
higher compression rates.

We apply loss-less delta coding to the quantized predictions of two consecutive
rounds Ỹt and Ỹt−1 by setting

(Ŷt)l =

{
(Ỹt)l if (Ỹt)l 6= (Ỹt−1)l

0 else
∀l (5.11)

5.2. Investigating the Communication Properties of Federated Distillation 55

TABLE 5.1: Effect of the client model initialization on the maximum accuracy
achieved in Federated Distillation after 50 communication rounds. Displayed are the
mean and standard deviation of the accuracy computed from 3 experiments, with a
client participation rate of 20%. Our proposed dual-distillation approach closes the
gap between random model initialization and the (infeasible) initialization from the

previous model state.

α Init Previous Init Random Dual Distill

100.0 98.1%±0.0 96.7%±0.1 97.8%±0.0
MNIST 1.0 97.9%±0.1 96.4%±0.1 97.5%±0.1

0.1 92.6%±1.4 90.1%±1.5 92.7%±1.2

100.0 70.2%±0.4 68.5%±0.1 74.9%±0.2
CIFAR10 1.0 68.2%±0.6 66.0%±0.6 72.4%±0.7

0.1 51.1%±3.5 48.2%±2.3 56.1%±3.0

and measuring the entropy (in slight abuse of notation this assumes an arbitrary but
fixed ordering of the set Ỹ and the same distillation data set Xpub to be used in all
rounds). It should be noted, that all of the information contained in Ỹt can be retained
from Ŷt by comparing with the previous message Ŷt−1. This only requires minor
additional bookkeeping by the central server, which is typically assumed to have
access to strong computational resources.

Figure 5.3, panel 2, shows the development of the entropy of the differential
updates H(Ŷi). As we can see, the differential soft-label entropy behaves exactly
as predicted and H(Ŷi) is lower than H(Ỹi) from the first round on and smoothly
decreases over the course of training. We note that, curiously, the development of
the differential soft-label entropy over time can be very accurately predicted via the
functional relation H(Ŷt) ≈ ct−d for some constants c, d. We were able to replicate
this behaviour across different model architectures and Federated Learning settings,
hinting at an interesting underlying mathematical relationship, which could be the
subject of future studies.

Figure 5.3, panel 3, explores in more detail the influence of data heterogeneity on
the amount of communication. It displays the upstream communication in the first
three rounds of Federated Distillation with quantization and differential soft-label
encoding. The resulting model accuracy is also given (indicated by the red curve). As
we can see, the amount of communication monotonically decreases when lowering
the value of α (thus increasing the data heterogeneity), with more than an order of
magnitude difference between the most homogeneous ("iid") setting at α = 163.84
and the most heterogeneous setting at α = 0.01.

5.2.4 Efficient Downstream Communication

So far we have only considered the upstream communication from the clients to the
server. While in most Federated Learning settings with mobile and IoT devices, the
uplink channel is more constrained than the downlink channel, it is still desirable to
reduce the downstream communication as much as possible.

As we have learned in the previous chapter, compressing the down-link in Feder-
ated Learning however is challenging, as clients may run out of sync if they are not
initialized with the same model in every round (the importance of a common model
initialization has been famously demonstrated in (McMahan et al., 2017)). If the
participation rate is below 100% and clients do not participate in every round, state

56 Chapter 5. Communication-Efficient Federated Distillation

information (like the model state θ) becomes stale. To keep the client models synchro-
nized under these conditions, clients need to either download the latest master-model
θ from the server in every round (resulting in high downstream communication) or
alternatively randomly re-initialize their local models in every round using a common
random seed (resulting in performance degradation).

To illustrate this point, Table 5.1 shows the maximum accuracy achieved after
50 communication rounds of Federated Distillation with three different client ini-
tialization schemes and three different neural networks at varying levels of data
heterogeneity. As we can see, initializing the client models randomly before distilla-
tion (“Init Random”) achieves worse performance than using the distilled model from
the previous round (“Init Prev.”) as the initialization point. To close the performance
gap, we propose a novel dual distillation technique, which avoids de-synchronization
of client models at arbitrary participation rates.

Let It be the set of clients participating in one particular communication round t
and

Ypub =
1
|It| ∑i∈It

Ỹpub
i (5.12)

be the corresponding set of aggregated soft-labels. In dual distillation, instead of
directly sending the aggregated soft-labels to the clients, the server first performs a
distillation step of it’s own

θt
S ← train(θt−1

S , Xpub, Ypub) (5.13)

using the model θt−1
S , which was distilled in the previous round, as initialization

point. This way the training information stored in θt−1
S is not lost. Then, the server

computes soft-labels using the newly distilled model,

Ypub
S = { fθS(x)|x ∈ Xpub} (5.14)

and sends them to the clients. Starting from a random initialization, the participating
clients then distill from the server predictions to mimic the server model

θ ← train(θ0, Xpub, Ypub
S) (5.15)

This way the clients are indirectly initialized with all the accumulated training infor-
mation stored in θS, before going into the next round of local training.

This allows us now to communicate soft-labels in upstream and downstream and
appreciate the resulting communication savings in both directions, without loss of
accuracy (cf. Table 5.1). To further reduce the amount of downstream communication,
we can also quantize the server soft-labels Ypub

S before communication, using the
same constrained compression operator Qbdown that we used in the upstream. We
emphasize that dual distillation is only necessary if client participation is below 100%.
Furthermore in Federated Learning the server is typically assumed to have much
stronger computational resources than the clients, thus the workload of training an
additional server model can mostly be neglected.

Figure 5.4 shows the effects of different levels of upstream and downstream
quantization on the training performance of LeNet trained on MNIST, using Federated
Distillation after 20 communication rounds. As we can see in the iid setting with
α = 100.0, downstream quantization appears to have a slightly stronger effect on the
model performance than upstream quantization, with a maximum accuracy drop of

5.3. Compressed Federated Distillation 57

1 2 4 8 16 32
Quantization Bits Downstream

1

2

4

8

16

32
Qu

an
tiz

at
io

n
Bi

ts
 U

ps
tre

am

97.6 98.4 98.5 98.2 98.5 98.4

97.5 98.1 98.5 98.3 98.4 98.5

97.6 98.1 98.5 98.4 98.4 98.5

97.3 98.4 98.4 98.6 98.6 98.5

97.6 98.3 98.4 98.5 98.5 98.4

97.3 98.2 98.3 98.6 98.5 98.6
= 100.0

97.4

97.6

97.8

98.0

98.2

98.4

98.6

1 2 4 8 16 32
Quantization Bits Downstream

1

2

4

8

16

32

Qu
an

tiz
at

io
n

Bi
ts

 U
ps

tre
am

94.3 90.6 93.6 91.1 93.0 94.4

94.7 93.6 93.0 93.0 92.4 95.8

94.1 92.5 91.4 92.7 92.6 94.5

94.0 91.3 93.3 93.2 94.5 94.0

93.4 91.0 94.8 93.8 93.1 93.6

94.2 94.5 94.5 91.6 93.3 93.1
= 0.1

91

92

93

94

95

FIGURE 5.4: Effect of different levels of upstream and downstream quantization on
the performance of CFD. LeNet trained on MNIST, at homogeneous (α = 100.0) and
heterogeneous (α = 0.1) distributions of data. Displayed is the maximum accuracy

achieved after 20 communication rounds.

1% at the highest quantization level, i.e., bdown = 1. In contrast, in the non-iid setting
with α = 0.1, it is more difficult to observe such a trend. Here, the strongest levels of
upstream and downstream compression outperform the uncompressed FD. Thus, it
appears that using quantization in both directions, upstream and downstream, is a
promising technique for reducing communication.

5.3 Compressed Federated Distillation

In this section, we combine the insights of the previous section and propose Com-
pressed Federated Distillation (CFD). CFD extends the conventional Federated Distil-
lation framework by the following five techniques:

1. Distill data curation (Alg. 8 - 1): We select a fixed random subset Xpub of the
available distillation data for training. This subset is not varied over the course
of training.

2. Upstream quantization (Alg. 8 - 14): We reduce the bit-width of the client
soft-labels by applying the constrained quantization operator Q (eq. (5.8)).

3. Delta coding (Alg. 8 - 14): The quantized soft-labels are encoded using an
efficient arithmetic entropy coding technique, like CABAC (Marpe, Schwarz,
and Wiegand, 2003). Additionally, we use delta coding (eq. (5.11)), to further
reduce the entropy of the quantized soft-label information Ỹi.

4. Dual distillation (Alg. 8 - 19, 20): In every round, we distill a server model
θS from the aggregated soft-labels. This server model accumulates training
information from all previous communication rounds. The clients are then
trained to match the predictions of this server model. This avoids loss of
information in settings where clients do not participate in every round.

5. Downstream quantization (Alg. 8 - 21): We apply constrained quantization Q
also to the predictions of the server model before sending them down to the
clients. The clients then, starting from a random initialization, are trained to
mimic the predictions of the server model.

The training procedure is illustrated in Figure 5.5 and formally described in Algorithm
8.

The performance of our algorithm in every round t is determined from the distilled
model θS on the validation data set.

58 Chapter 5. Communication-Efficient Federated Distillation

Algorithm 8 Compressed Federated Distillation
init: Set upstream and downstream precision bup and bdown. Every client, Ci, holds a
different local data set, Di = (Xi, Yi), as well as the common public data set, Xpub, with
size |Xpub| = n.

for t = 1, .., T do
for i ∈ It ⊆ {1, .., M} in parallel do

Client Ci does:
θ ← random_init() # Initialize
if t > 1 then

downloadS→Ci (Ỹ
pub
S)

θ ← train(θ, Xpub, Ỹpub
S) # Distillation

end if
θi ← train(θ, Xi, Yi) # Local Training
Ypub

i ← fθi (Xpub) # Compute Soft-Labels

Ỹpub
i ← Qbup(Y

pub
i) # Compress Soft-Labels

uploadCi→S(Ỹ
pub
i) # Upload

end for
Server S does:
Ypub ← 1

|It | ∑i∈It Ỹpub
i # Aggregate

θS ← train(θS, Xpub, Ypub) # Server Distillation
Ypub

S ← fθS(Xpub) # Compute Soft-Labels

Ỹpub
S ← Qbdown

(Ypub
S) # Compress Soft-Labels

end for
return θS

5.4 Experiments

In this section we empirically evaluate our proposed Compressed Federated Distilla-
tion method and compare its performance against the natural baselines of Federated
Averaging (McMahan et al., 2017) and Federated Distillation (Itahara et al., 2020). The
experimental setup is given as follows:

Data sets and models: We evaluate CFD on both federated image and text classi-
fication problems with large scale convolutional and transformer neural networks,
respectively. For our image classification problems we experiment with the following
combinations of client- and/ distillation data: (MNIST / EMNIST (Cohen et al., 2017))
and (CIFAR-10 / STL-10 (Coates, Ng, and Lee, 2011)). In both cases the distribution
of the distillation data deviates from the one of the client data, as it would in realistic
Federated Learning scenarios (MNIST contains handwritten digits, EMNIST contains
handwritten characters, CIFAR-10 and STL-10 both contain different types of natural
images). For our text classification problems we use disjoint splits of the SST2 (Socher
et al., 2013) and AG-News (Zhang, Zhao, and LeCun, 2015a) data sets for client train-
ing, distillation, and validation, respectively. We train LeNet- (LeCun et al., 1989),
VGG-type (Simonyan and Zisserman, 2015), AlexNet-type (Krizhevsky, Sutskever,
and Hinton, 2012) and ResNet-type (He et al., 2016) architectures with and without
batch-normalization layers. The Alexnet, ResNet-18 and VGG-16 models used in
our experiments contain 23.2M, 11.1M, and 15.2M parameters respectively. For our
text classification experiments we fine-tune DistilBERT (Sanh et al., 2019), a popular
transformer model with ∼66M parameters.

Federated Learning environment and data partitioning: For image classification
problems, we consider Federated Learning settings with 20 clients. In all experiments,

5.4. Experiments 59

Client 1

train

predict

distill2.)

3.)

4.)

quantize

encode

4.1.)

4.2.)

 Server

aggregate6.)

quantize

encode

6.1.)

6.2.)

Compressed Federated Distillation

Client 2

Client n

1.)

5.)

distill

predict

6.3.)

6.4.)

FIGURE 5.5: Illustration of our proposed Compressed Federated Distillation method.
CFD employs distill data curation (see Sec. 5.2.1), soft-label quantization (4.2., see
Sec 5.2.2) and delta-coding (4.3., see Sec. 5.2.3) to minimize the communication from
the clients to the server. Furthermore, CFD uses dual distillation (6.1., 6.2., see Sec.
5.2.4) to keep clients synchronized in situations when full client participation in
every round can not be ensured. On top of that CFD also uses quantization (6.3., see
Sec. 5.2.4) and delta-coding (6.4.) in the downstream, to reduce the communication

from the server to the clients.

we split the training data evenly among the clients according to the Dirichlet strategy
described in Chapter 2, which allows us to smoothly adapt the level of non-iid-ness
in the client data using the Dirichlet parameter α. We experiment with values for α
varying between 100.0 and 0.01. A value of α = 100.0 results in almost identical label
distributions, while setting α = 0.01 results in a split, where the vast majority of data
on every client stems from one single class (see Figure 2.5 for an illustration). For
image classifiers, we vary the clients’ participation rate (in every round) between 40%
and 100%, and train for 50 communication rounds. For language models, we set the
number of clients to 10 and the participation rate to 100%, and train for a total of 10
communication rounds. As a standard convention in FL, the validation data follow
the clients’ training data distribution (and not the distillation data distribution).

Optimization details: For the sake of simplicity, in all image classification tasks,
we use the popular Adam (Kingma and Ba, 2015) optimizer with a fixed learning rate
of 0.001 across all baselines and for both, the distillation and training on local private
data. While a dedicated selection of optimizer and optimization hyperparameters
might improve performance, our goal here is to give a fair comparison between the
different Federated Learning algorithms. For language models, we perform one
epoch of distillation with Adam, using a learning rate of 1× 10−5 and no weight
decay. The clients’ models are trained over one epoch with SGD in both scenarios,
Federated Distillation and Federated Averaging, by setting the learning rate and
momentum to 0.001 and 0.9, respectively.

Baselines: We compare the performance of our method, Compressed Federated
Distillation (CFD), with respect to the two natural baselines: Federated Averaging
(FA) (McMahan et al., 2017) and Federated Distillation (FD) (Itahara et al., 2020).
For CFD, we test two configurations: For CFD-1-32 we only quantize the upstream
communication by setting bup = 1 and bdown = 32. For CFD-1-1 we quantize both
the upstream and downstream communication and set bup = 1 and bdown = 1. We
also investigate the effects of using delta coding (as described in section 5.2.3). CFD
methods that use delta coding are indicated by CFD∆.

60 Chapter 5. Communication-Efficient Federated Distillation

TABLE 5.2: Upstream and downstream communication in [MB], necessary to achieve
accuracy targets in Federated Learning on the CIFAR-10 data set, across different
neural network models and levels of data heterogeneity (α = 100.0, 1.0, and 0.1). The
Federated Learning setting consists of 20 clients and a participation rate of 40%. For
the distillation based methods, 80000 data points from the STL-10 data set are used
as distillation data. A value of “n.a.” signifies that the method did not achieve the
target accuracy within 50 communication rounds. The number of communication
rounds, necessary to achieve the target accuracy is given in parenthesis. Minimum

communication per training scenario is highlighted in bold face.

Model/ Target α Up/ FA FD CFD-1-32 CFD∆-1-32 CFD-1-1 CFD∆-1-1
Data set Acc. Down Communication [MB]

ResNet-18 0.71 100.0 up 760.3 (17) 44.8 (14) 0.56 (17) 0.40 (17) 1.36 (41) 0.82 (41)
CIFAR-10 down 760.3 (17) 44.8 (14) 54.4 (17) 54.4 (17) 1.36 (41) 0.39 (41)

0.68 1.0 up 1028.7 (23) 48.0 (15) 0.37 (13) 0.28 (13) 0.64 (22) 0.43 (22)
down 1028.7 (23) 48.0 (15) 41.6 (13) 41.6 (13) 0.72 (22) 0.34 (22)

0.45 0.1 up 1520.7 (34) 16.0 (5) 0.09 (7) 0.08 (7) 0.52 (41) 0.40 (41)
down 1520.7 (34) 16.0 (5) 22.4 (7) 22.4 (7) 0.99 (41) 0.92 (41)

VGG-16 0.8 100.0 up 671.1 (11) 32.0 (10) 0.40 (12) 0.29 (12) 0.76 (23) 0.47 (23)
CIFAR-10 down 671.1 (11) 32.0 (10) 38.4 (12) 38.4 (12) 0.76 (23) 0.24 (23)

0.78 1.0 up 1281.3 (21) 28.8 (9) 0.38 (13) 0.28 (13) 0.56 (19) 0.37 (19)
down 1281.3 (21) 28.8 (9) 41.6 (13) 41.6 (13) 0.62 (19) 0.27 (19)

0.48 0.1 up 2928.6 (48) 25.6 (8) 0.11 (9) 0.09 (9) 0.43 (34) 0.35 (34)
down 2928.6 (48) 25.6 (8) 28.8 (9) 28.8 (9) 0.77 (34) 0.75 (34)

AlexNet 0.68 100.0 up n.a. 89.6 (28) 0.94 (29) 0.74 (29) n.a. n.a.
CIFAR-10 down n.a. 89.6 (28) 92.80 (29) 92.8 (29) n.a. n.a.

0.64 1.0 up n.a. 38.4 (12) 0.61 (21) 0.49 (21) 0.76 (26) 0.62 (26)
down n.a. 38.4 (12) 67.2 (21) 67.2 (21) 0.84 (26) 0.42 (26)

0.44 0.1 up n.a. 6.40 (2) 0.09 (6) 0.08 (6) 0.11 (7) 0.10 (7)
down n.a. 6.40 (2) 19.20 (6) 19.20 (6) 0.17 (7) 0.15 (7)

DistillBert 0.88 100.0 up 267.8 (1) 0.269 (1) 0.004 (1) 0.006 (1) 0.029 (7) 0.044 (7)
SST down 267.8 (1) 0.269 (1) 0.269 (1) 0.26 (1) 0.029 (7) 0.044 (7)

0.88 1.0 up 803.4 (3) 0.53 (2) 0.008 (2) 0.012 (2) 0.038 (10) 0.057 (10)
down 803.4 (3) 0.539 (2) 0.539 (2) 0.539 (2) 0.042 (10) 0.063 (10)

DistillBert 0.91 100.0 up 535.64 (2) 1.92 (2) 0.030 (2) 0.035 (2) 0.030 (2) 0.035 (2)
AG-News down 535.64 (2) 1.92 (2) 1.92 (2) 1.92 (2) 0.030 (2) 0.035 (2)

0.91 1.0 up 1071.28 (4) 4.80 (5) 0.142 (10) 0.168 (10) 0.101 (7) 0.119 (7)
down 1071.28 (4) 4.80 (5) 9.60 (10) 9.60 (10) 0.105 (7) 0.121 (7)

Evaluation Metrics: As is custom in communication-efficient Federated Learn-
ing literature (Konecný et al., 2016; Caldas et al., 2018a; Sattler et al., 2020b), we report
cumulative communication of the different FL methods. Given this general metric,
other quantities of interest like wall-clock time or energy consumption can be approx-
imated for any given hardware setup and/ or communication infrastructure. For the
Baseline FD and our methods, CFD and CFD∆, we measure only the communication
of soft-labels Ypub and explicitly ignore the communication cost of transferring the
unlabeled public data set Xpub to the participating clients. While clients technically
need to download this data once before training, it is not subject to the same con-
straints as the Federated Learning process. In communication-sensitive applications,
Xpub could already be stored on the devices long before the federated training process
starts, and thus, the timing of its communication is much less critical. Other work
(Lin et al., 2020b) also demonstrates that Xpub can be automatically generated on the

5.4. Experiments 61

10 1 100 101 102 103

Upstream Communication [MB]

0.4

0.6

0.8

Ac
cu

ra
cy

Vgg16, = 100.0

10 1 100 101 102 103

Upstream Communication [MB]

0.2

0.4

0.6

Ac
cu

ra
cy

Alexnet, = 100.0

10 1 100 101 102 103

Upstream Communication [MB]

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Resnet18, = 1.0

10 1 100 101 102 103

Upstream Communication [MB]

0.5

0.6

0.7

Ac
cu

ra
cy

Resnet18, = 100.0

10 1 101 103

Upstream Communication [MB]

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Resnet18, = 0.1

10 1 100 101 102 103

Upstream Communication [MB]

0.2

0.4

0.6

Ac
cu

ra
cy

Alexnet, = 1.0

10 1 101 103

Upstream Communication [MB]

0.2

0.4

Ac
cu

ra
cy

Alexnet, = 0.1

10 1 101 103

Upstream Communication [MB]

0.2

0.4

Ac
cu

ra
cy

Vgg16, = 0.1

10 1 100 101 102 103

Upstream Communication [MB]

0.4

0.6

0.8

Ac
cu

ra
cy

Vgg16, = 1.0

FA FD CFD-1-32 CFD -1-32 CFD-1-1 CFD -1-1

FIGURE 5.6: Model performance as a function of communicated bits for our pro-
posed CFD method and baselines methods FA and FD in Federated Learning on
the CIFAR-10 data set, across different neural network models and levels of data
heterogeneity. The Federated Learning setting consists of 20 clients with a 40%
participation rate. For the distillation based methods, 80000 data points from the

STL-10 data set were used.

clients using Generative Adversarial Networks.

5.4.1 Image Classification Results

We first investigate the communication properties of CFD on image classification
benchmarks. Table 5.2 shows the amount of upstream and downstream bits, as
well as the number of communication rounds, required to achieve fixed accuracy
targets for Alexnet, ResNet-18, and VGG-16 on CIFAR-10, at different levels of data
heterogeneity between the clients. The corresponding training curves are given in
Figure 5.6. As we can see, CFD is drastically more communication-efficient than the
baselines FA and FD in all tested scenarios. For instance, for VGG-16 and α = 100.0,
CFD∆-1-1 achieves a target accuracy of 80% by cumulatively communicating only
0.47 MB on average, from the clients to the server, and only 0.24 MB on average,
from the server to the clients. This is particularly remarkable, as one single transfer
of the parameters of VGG-16 already takes up 61.01 MB. To achieve the same 80%
accuracy target, FA requires 671.16 MB of cumulative communication in both the
upstream and the downstream, translating to more than three orders of magnitude in
communication savings for CFD. When directly comparing with FD, which requires
32.00 MB, CFD still reduces the communication by about two orders of magnitude.
Similar results can be observed for the two other tested neural networks, ResNet-
18 and Alexnet. On Alexnet, FA even underperforms CFD w.r.t. to the maximum
achieved accuracy and misses the accuracy target of 68%.

62 Chapter 5. Communication-Efficient Federated Distillation

The communication savings are even larger in the non-iid settings with α = 0.1,
where FA is known to perform poorly (Sattler et al., 2020b). For instance, when
training ResNet-18 at α = 0.1, FA requires 1520.70 MB to achieve the accuracy target
of 45%. In contrast, CFD∆-1-32 requires only 0.08 MB to achieve the same accuracy,
corresponding to a reduction in communication by a factor of ×19943.

In all investigated settings, CFD∆ methods that use delta coding are more efficient
than those that do not. For instance, for VGG-16 and α = 1.0, delta coding can bring
down the cumulative upstream-communication required to achieve 78% accuracy
from 0.38 MB to 0.28 MB for CFD-1-32. On the same benchmark, delta coding also
reduces the cumulative upstream-communication from 0.56 MB to 0.37 MB for CFD-
1-1.

As can be seen in Figure 5.6, the heavily compressed CFD can keep up with
the uncompressed baselines FD and FA w.r.t. maximum achieved accuracy on most
benchmarks.

5.4.2 Language Model Results

We fine-tune, DistilBERT, a popular large-scale transformer model, on the SST2 and
AG-News data sets. In these experiments, we consider a Federated Learning set-
ting with 10 clients, 100% participation rate, and total of 10 communication rounds.
Table 5.2 shows the upstream and downstream communication cost (in MB) necessary
to achieve certain accuracy targets across different levels of data heterogeneity, as
well as the required number of communication rounds. As we can see, similar as
on the image classification problems, CFD requires several orders of magnitude less
communication than FA and FD in both the upstream and downstream to achieve
fixed performance targets. For instance, when compared to FA, CFD achieves commu-
nication savings of up to ×66955 on the SST2 data set and ×17855 on the AG-News
data set, with negligible accuracy degradation. In some situations, this comes at the
cost of an increased number of total communication rounds. We also notice that
in this particular set of experiments, delta-coding (see CFD∆-1-1 and CFD∆-1-32),
slightly increases the communication overhead when compared to regular CFD. This
effect is probably caused by the small number of classes in the data sets (i.e., SST2
contains 2 classes, while AG-News contains 4 classes), which limits the benefits of
delta-coding.

5.5 Summary & Limitations

In this chapter we explored the communication properties of Federated Distillation
and demonstrated that drastic compression gains can be achieved via soft-label
quantization and delta coding. For instance, on language modeling tasks, we demon-
strated that our proposed Compressed Federated Distillation method can reduce
the cumulative communication necessary to achieve fixed performance targets from
1071.28 MB to 0.101 MB when compared to the very popular Federated Averaging
algorithm. This corresponds to a reduction in communication by over four orders
of magnitude. Similar compression rates were obtained in our investigated image
classification problems on popular convolutional neural networks.

It is important to note however, that the favorable communication properties
of all Federated Distillation methods, come at the cost of additional computational
overhead caused by the local distillation. This additional computational overhead
might be prohibitive in Federated Learning environments where clients have limited

5.5. Summary & Limitations 63

computational resources, or where the number of clients is high and/or the number
of data points per client is low. Furthermore, it needs to be re-emphasized that
Federated Distillation additionally requires the server and the clients to have access to
an unlabeled set of distillation data. Transferring this data to the clients will typically
incur additional communication overhead (although it can be done before training
when devices are idle). Related approaches (Lin et al., 2020b), which demonstrate that
the distillation data can be automatically generated on the clients using Generative
Adversarial Networks should be further investigated in this context.

Due to these reasons it needs to be carefully considered for every application,
which of the two paradigms - Federated Averaging or Federated Distillation - is more
suitable for the problem at hand.

In the next chapter we will venture away from the challenges and intricacies
of communication efficient training and take a broader look at Federated Learning,
challenging some of it’s core assumptions and in doing so, open up new ways to treat
data heterogeneity.

Lessons Learned

• Communication in Federated Distillation scales proportional to the size
of the distillation data set and is independent of the model size, which
can be advantageous if large neural network models are trained.

• Reducing the size of the distillation data set beyond a certain threshold
has significant negative impact on the training performance.

• Soft-label information communicated in Federated Distillation can be
heavily compressed by means of constrained quantization, at only a
marginal loss of training performance.

• The differential soft-label entropy monotonically decreases as the jointly
trained model converges toward a stationary solution. This can be ex-
ploited using delta-coding techniques to further reduce communication.

65

Chapter 6

Clustered Federated Learning

Federated Learning not only needs to be efficient, it should also provide maximum
utility to the participants in order to incentivise participation. This however can be
challenging to achieve under the constraints of the conventional Federated Learning
framework, where only one single model is trained from the combined data of
all participants. In many situations it may instead be beneficial to train different
models for different sub-groups of the client population, which can optimally adapt
to structured variations in the local data of each individual. In this chapter we will
challenge the single-model assumption typically made in Federated Learning, and
instead consider these more general Federated Learning settings, where client data
exhibits a clustering structure. By treating Federated Learning as a multi-task learning
problem we will open up new possibilities for model personalization and improve
robustness of the training process to faulty and malicious clients.

This chapter is based on

• Felix Sattler, Klaus-Robert Müller, and Wojciech Samek (2020). “Clustered
Federated Learning: Model-Agnostic Distributed Multitask Optimization Un-
der Privacy Constraints”. In: IEEE Transactions on Neural Networks and Learn-
ing Systems, pp. 1–13. DOI: 10.1109/TNNLS.2020.3015958. URL: https:
//doi.org/10.1109/TNNLS.2020.3015958

• Felix Sattler, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek
(2020a). “On the Byzantine Robustness of Clustered Federated Learning”. In:
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 8861–8865. DOI: 10.1109/ICASSP40776.2020.9054676.
URL: http://dx.doi.org/10.1109/ICASSP40776.2020.9054676 ©2020 IEEE

6.1 Generalizing the Federated Learning Assumption

Federated Learning generally assumes that a single model can be trained from the
combined data of all participants of a distributed training task. Given a model
fθ : X → Y parametrized by θ ∈ Θ and a loss function l : Y × Y → R≥0 we can
formally state the conventional Federated Learning assumption as follows:

Assumption 1. ("Federated Learning"): There exists a parameter configuration θ∗ ∈ Θ,
that (locally) minimizes the risk on all clients’ data generating distributions at the same time:

Ri(θ
∗) ≤ min

θ
‖θ−θ∗‖<ε

Ri(θ), i = 1, .., M (6.1)

https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/ICASSP40776.2020.9054676
http://dx.doi.org/10.1109/ICASSP40776.2020.9054676

66 Chapter 6. Clustered Federated Learning

Federated Learning assumes that
a single model can fit all clients'
data distributions at the same time.

-1

1

1

-1

Federated Learning Assumption:

1(x|y = 1) 1(x|y = 1) 2(x|y = + 1) 2(x|y = 1)

-1

-1

1

1

A Linear Classifier can not
correctly separate data of
the orange and the blue cluster
at the same time.

!!

!

Faillure Mode (a):
Limited Model Complexity

No classifier can correctly
separate data of all clients
at the same time if their
conditional distributions diverge.

!
!

!-1
1

1
-1

Faillure Mode (b):
Divergent Conditionals

FIGURE 6.1: Two toy cases in which the Federated Learning Assumption is violated.
Blue points belong to clients which follow ϕ1 while orange points belong to clients
which follow ϕ2. Left: Federated Learning assumes that a single model can fit all
clients’ data distributions at the same time. Middle: Federated XOR-problem. An
insufficiently complex model is not capable of fitting all clients’ data distributions
at the same time. Right: If different clients’ conditional distributions diverge, no
single model can fit all distributions at the same time. In all cases however the data

of clients belonging to the same cluster can be easily separated.

for some ε > 0. Hereby

Ri(θ) =
∫

l(fθ(x), y)dϕi(x, y) (6.2)

is the risk function associated with distribution ϕi.

It is easy to see that this assumption is not always satisfied. Concretely it is
violated if either (a) the model fθ is not expressive enough to fit all distributions at the
same time or (b) clients have disagreeing conditional distributions ϕi(y|x) 6= ϕj(y|x).
Simple counter examples for both cases are presented in Figure 6.1.

In the following we will call a set of clients and their data generating distributions
ϕ congruent (with respect to f and l) if they satisfy Assumption 1 and incongruent if
they don’t.

We argue that Assumption 1 is frequently violated in real Federated Learning
applications, especially given the fact that in Federated Learning clients (a) can hold
arbitrary non-iid data, which can not be audited by the centralized server due to
privacy constraints and (b) typically run on limited hardware which puts restrictions
on the model complexity. For illustration consider the following practical scenarios:

Varying Preferences: Assume a scenario where every client holds a local data set
of images of human faces and the goal is to train an ’attractiveness’ classifier on
the joint data of all clients. Naturally, different clients will have varying opinions
about the attractiveness of certain individuals, which corresponds to disagreeing
conditional distributions on all clients’ data. Assume for instance that one half of the
client population thinks that people wearing glasses are attractive, while the other
half thinks that those people are unattractive. In this situation one single model will
never be able to accurately predict attractiveness of glasses-wearing people for all
clients at the same time (cf. also Figure 6.1 right).

Limited Model Complexity: Assume a number of clients are trying to jointly train a
language model for next-word prediction on private text messages. In this scenario
the statistics of a client’s text messages will likely vary a lot based on demographic
factors, interests, etc. For instance, text messages composed by teenagers will typically

6.2. Clustering based on Gradient Signals 67

exhibit different statistics than those composed by elderly people. An insufficiently
expressive model will not be able to fit the data of all clients at the same time (cf. also
Figure 6.1 middle).

Presence of Adversaries: A special case of incongruence is given, if a subset of the
client population behaves in an adversarial manner. In this scenario the adversaries
could deliberately alter their local data distribution in order to encode arbitrary
behavior into the jointly trained model, thus affecting the model decisions on all other
clients and causing potential harm (Sattler et al., 2020a).

The goal in Federated Multi-Task Learning is to provide every client with a model
that optimally fits it’s local data distribution. In all of the above described situations
the ordinary Federated Learning framework, in which all clients are treated equally
and only one single global model is learned, is not capable of achieving this goal.

In order to incorporate the above presented problems with incongruent data gen-
erating distributions, we suggest to generalize the conventional Federated Learning
Assumption:

Assumption 2. ("Clustered Federated Learning"): There exists a partitioning C =

{c1, .., cK},
⋃̇K

k=1ck = {1, .., M} of the client population, such that every subset of clients
c ∈ C satisfies the conventional Federated Learning Assumption.

In this chapter we present Clustered Federated Learning, a novel algorithmic
framework that is able to deal with Federated Multi-Task learning problems that
satisfy Assumtion 2. By identifying the hidden clustering structure, Clustered Fed-
erated Learning allows clients with similar data to profit from one another, while
minimizing the harmful interference between clients with dissimilar data.

We additionally refer the reader to Table 6.1, which gives a detailed compari-
son between our proposed method and related methods for Federated Multi-Task
learning.

6.2 Clustering based on Gradient Signals

In this section, we address the question of how to solve distributed learning problems
that satisfy Assumption 2 (which generalizes the Federated Learning Assumption
1). This will require us to identify the correct partitioning C, which at first glance
seems like a daunting task, as under the Federated Learning paradigm the server
doesn’t have access to the clients’ data, their data generating distributions or any
meta information thereof.

6.2.1 Cosine Similarity based Bi-Partitioning

An easier task than trying to directly infer the entire clustering structure C, is to find
a correct bi-partitioning in the sense of the following definition:

Definition 2. Let M ≥ K ≥ 2 and

I : {1, .., M} → {1, .., K}, i 7→ I(i) (6.3)

be the mapping that assigns a client i to it’s data generating distribution ϕI(i). Then
we call a bi-partitioning c1∪̇c2 = {1, .., M} with c1 6= ∅ and c2 6= ∅ correct if and only
if

I(i) 6= I(j) ∀i ∈ c1, j ∈ c2. (6.4)

68 Chapter 6. Clustered Federated Learning

In other words, we call a bi-partitioning correct, if clients with the same data
generating distribution end up in the same cluster. It is easy to see, that the cluster-
ing C = {c1, .., ck} can be obtained after exactly K − 1 correct bi-partitions. In the
following we will demonstrate that there exists an explicit criterion based on which a
correct bi-partitioning can be inferred. To see this, let us first look at the following
simplified Federated Learning setting with M clients, in which the data on every
client was sampled from one of two data generating distributions ϕ1, ϕ2 such that

Di ∼ ϕI(i)(x, y). (6.5)

Every client is associated with an empirical risk function

ri(θ) = ∑
(x,y)∈Di

lθ(f (x), y) (6.6)

which approximates the true risk arbitrarily well if the number of data points on
every client is sufficiently large

ri(θ) ≈ RI(i)(θ). (6.7)

For demonstration purposes let us first assume equality in (6.7). Then the Federated
Learning objective becomes

F(θ) :=
M

∑
i=1

|Di|
|D| ri(θ) = a1R1(θ) + a2R2(θ) (6.8)

with a1 = ∑i,I(i)=1 |Di|/|D| and a2 = ∑i,I(i)=2 |Di|/|D| and D =
⋃

i=1,..,M Di. Under
standard assumptions it has been shown (Li et al., 2020b; Sahu et al., 2018) that the
Federated Learning optimization protocol described in Algorithm 2 converges to a
stationary point θ∗ of the Federated Learning objective. In this point it holds that

0 = ∇F(θ∗) = a1∇R1(θ
∗) + a2∇R2(θ

∗) (6.9)

Now we are in one of two situations. Either it holds that ∇R1(θ
∗) = ∇R2(θ∗) = 0,

in which case we have simultaneously minimized the risk of all clients. This means
ϕ1 and ϕ2 are congruent and we have solved the distributed learning problem. Or,
otherwise, it has to hold

∇R1(θ
∗) = − a2

a1
∇R2(θ

∗) 6= 0 (6.10)

and ϕ1 and ϕ2 are incongruent. In this situation the cosine similarity between the
gradient updates of any two clients is given by

αi,j := α(∇ri(θ
∗),∇rj(θ

∗)) :=
〈∇ri(θ

∗),∇rj(θ
∗)〉

‖∇ri(θ∗)‖‖∇rj(θ∗)‖

=
〈∇RI(i)(θ

∗),∇RI(j)(θ
∗)〉

‖∇RI(i)(θ∗)‖‖∇RI(j)(θ∗)‖

=

{
1 if I(i) = I(j)
−1 if I(i) 6= I(j)

(6.11)

6.2. Clustering based on Gradient Signals 69

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
dim 0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

di
m

 1

*

Optimization Path

Grad. Cluster 1
Grad. Cluster 2
FL Path

0 1 2 3 4 5 6 7
Communication

Round

1.0

0.5

0.0

0.5

1.0

Co
sin

e
Si

m
ila

rit
y

Update Similarity
Intra-Cluster1
Similarity
Intra-Cluster2
Similarity
Cross-Cluster
Similarity

FIGURE 6.2: Optimization path of Federated Learning with four clients, belonging
to two different clusters with incongruent data distributions and cosine similarity
between their respective gradient updates. Federated Learning converges to a sta-
tionary solution of the FL objective θ∗ where the gradients of the two clients are
of positive norm and point into opposite directions (6.11). While the cosine simi-
larity between gradient updates from the same cluster stays more or less constant
throughout the federated training process, the cosine similarity between the gradient

updates from different clusters quickly decreases.

Consequently, a correct bi-partitioning is given by

c1 = {i|αi,0 = 1}, c2 = {i|αi,0 = −1}. (6.12)

This consideration provides us with the insight that, in a stationary solution of the
Federated Learning objective θ∗, we can distinguish clients based on their hidden data
generating distribution by inspecting the cosine similarity between their gradient updates.
For a visual illustration of the result we refer to Figure 6.2.

If we drop the equality assumption in (6.7) and allow for an arbitrary number of
data generating distributions K, we obtain the following generalized version of result
(6.11):

Theorem 3 (Separation Theorem). Let D1, .., DM be the local training data of M different
clients, each data set sampled from one of K different data generating distributions ϕ1, .., ϕK,
such that Di ∼ ϕI(i)(x, y). Let the empirical risk on every client approximate the true risk at
every stationary solution of the Federated Learning objective θ∗ s.t.

‖∇RI(i)(θ
∗)‖ > ‖∇RI(i)(θ

∗)−∇ri(θ
∗)‖ (6.13)

and define

γi :=
‖∇RI(i)(θ

∗)−∇ri(θ
∗)‖

‖∇RI(i)(θ∗)‖
∈ [0, 1) (6.14)

Then there exists a bi-partitioning c∗1∪̇c∗2 = {1, .., M} of the client population such that the
maximum similarity between the updates from any two clients from different clusters can be

70 Chapter 6. Clustered Federated Learning

bounded from above according to

αmax
cross := min

c1∪̇c2={1,..,M}
max

i∈c1,j∈c2
α(∇ri(θ

∗),∇rj(θ
∗))

= max
i∈c∗1 ,j∈c∗2

α(∇ri(θ
∗),∇rj(θ

∗))

≤
{

cos(π
K−1)Hi,j + sin(π

K−1)
√

1− H2
i,j if H ≥ cos(π

K−1)

1 else

(6.15)

with

Hi,j = −γiγj +
√

1− γ2
i

√
1− γ2

j ∈ (−1, 1]. (6.16)

At the same time the similarity between updates from clients which share the same data
generating distribution can be bounded from below by

αmin
intra := min

i,j
I(i)=I(j)

α(∇θri(θ
∗),∇θrj(θ

∗)) ≥ min
i,j

I(i)=I(j)

Hi,j. (6.17)

The proof of Theorem 3 can be found in Appendix B.1.

Remark 1. In the case with two data generating distributions (K = 2) the result simplifies
to

αmax
cross = max

i∈c∗1 ,j∈c∗2
α(∇θri(θ

∗),∇θrj(θ
∗)) ≤ max

i∈c∗1 ,j∈c∗2
−Hi,j (6.18)

for a certain partitioning, respective

αmin
intra = min

i,j
I(i)=I(j)

α(∇θri(θ
∗),∇θrj(θ

∗)) ≥ min
i,j

I(i)=I(j)

Hi,j (6.19)

for two clients from the same cluster. If additionally γi = 0 for all i = 1, .., M then Hi,j = 1
and we retain result (6.11).

From Theorem 3 we can directly deduce a correct separation rule:

Corollary 2. If in Theorem 3 K and γi, i = 1, .., M are in such a way that

αmin
intra > αmax

cross (6.20)

then the partitioning

c1, c2 ← arg min
c1∪̇c2=c

(max
i∈c1,j∈c2

αi,j). (6.21)

is always correct in the sense of Definition 2.

Proof. Set

c1, c2 ← arg min
c1∪̇c2=c

(max
i∈c1,j∈c2

αi,j) (6.22)

and let i ∈ c1, j ∈ c2 then

αi,j ≤ αmax
cross < αmin

intra = min
i,j

I(i)=I(j)

αi,j (6.23)

6.2. Clustering based on Gradient Signals 71

0.03 0.08 0.19 0.49 1.24 3.13 7.91 20.00
gamma

5

10

15

20

25

30

K

Correct
Clustering
 with P 1

Correct
Clustering
 with P 0

Correct
Clustering

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 6.3: Clustering quality as a function of the number of data generating
distributions K and the relative approximation noise γ. For all values of K and γ in
the green area, CFL will always correctly separate the clients (by Theorem 3). For
all values of K and γ in the blue area we find empirically that CFL will correctly

separate the clients with probability close to 1.

and hence i and j can not have the same data generating distribution.

This consideration leads us to the notion of the separation gap:

Definition 3 (Separation Gap). Given a cosine-similarity matrix α and a mapping
from client to data generating distribution I we define the notion of a separation gap

g(α) := αmin
intra − αmax

cross (6.24)
= min

i,j
I(i)=I(j)

αi,j − min
c1∪̇c2=c

(max
i∈c1,j∈c2

αi,j) (6.25)

Remark 2. By Corollary 2 the bi-partitioning (6.21) will be correct in the sense of Definition
2 if the separation gap g(α) is greater than zero.

Theorem 3 gives an estimate for the similarities in the absolute worst-case. In
practice αmin

intra typically will be much larger and αmax
cross typically will be much smaller,

especially if the parameter dimension d := dim(Θ) is large. For instance, if we set
d = 102 (which is still many orders of magnitude smaller than typical modern neural
networks), M = 3K, and assume∇RI(i)(θ

∗) and∇RI(i)(θ
∗)−∇ri(θ

∗) to be normally
distributed for all i = 1, .., M then experimentally we find (Figure 6.3) that

P["Correct Clustering"] ≥ P[g(α) > 0] ≈ 1 (6.26)

even for large values of K > 10 and

γmax := max
i=1,..,M

γi > 1. (6.27)

This suggests that using the cosine similarity criterion (6.21) we can readily find a
correct bi-partitioning c1, c2 even if the number of data generating distributions is
high and the empirical risk on every client’s data is only a very loose approximation
of the true risk.

6.2.2 Distinguishing Congruent and Incongruent Clients

In order to appropriately generalize the classical Federated Learning setting, we
need to make sure to only split up clients with incongruent data distributions. In
the classical congruent non-iid Federated Learning setting described in (McMahan

72 Chapter 6. Clustered Federated Learning

�
∗

∇ ()�� �
∗Request

Gradients

��,�

Compute
Similarities

Clients

Recursive
Refinement

Split

Federated Learning Splitting

Cluster 1 Cluster 2

Stat.
Solution

FIGURE 6.4: Schematic overview over the CFL Algorithm. By recursively bi-
partitioning the client population into sub-groups of maximum dissimilarity, CFL

produces a hierarchy of models of increasing specificity.

et al., 2017) where one single model can be learned, performance will typically
degrade if clients with varying distributions are separated into different clusters due
to the restricted knowledge transfer between clients in different clusters. Luckily
we have a criterion at hand to distinguish the two cases. To realize this we have
to inspect the gradients computed by the clients at a stationary point θ∗. When
client distributions are incongruent, the stationary solution of the Federated Learning
objective by definition can not be stationary for the individual clients. Hence the norm
of the clients’ gradients has to be strictly greater than zero. If conversely the client
distributions are congruent, federated optimization will be able to jointly optimize
all clients’ local risk functions and hence the norm of the clients’ gradients will tend
towards zero as we are approaching the stationary point. Based on this observation
we can formulate the following criteria which allow us to make the decision whether
to split or not: Splitting should only take place if it holds that both (a) we are close to
a stationary point of the FL objective

0 ≤ ‖ ∑
i=1,..,M

Di

|D|∇θri(θ
∗)‖ < ε1 (6.28)

and (b) the individual clients are far from a stationary point of their local empirical
risk

max
i=1,..,M

‖∇θri(θ
∗)‖ > ε2 > 0 (6.29)

We will also experimentally verify the clustering criteria (6.28) and (6.29) and give
recommendations for the selection of the hyperparameters ε1 and ε2 in section 6.5.

In practice we have another viable option to distinguish the congruent from
the incongruent case. As splitting is only performed after Federated Learning has
converged to a stationary point θ∗, the conventional Federated Learning solution is
always computed as part of Clustered Federated Learning. This means that if after
splitting up the clients a degradation in model performance is observed, it is always
possible to fall back to the Federated Learning solution. In this sense Clustered
Federated Learning will always improve the Federated Learning performance (or
perform equally well at worst).

6.2. Clustering based on Gradient Signals 73

6.2.3 Algorithm

Clustered Federated Learning recursively bi-partitions the client population in a
top-down way: Starting from an initial set of clients c = {1, .., M} and a parameter
initialization θ0, CFL performs Federated Learning according to Algorithm 10, in
order to obtain a stationary solution θ∗ of the FL objective. After Federated Learning
has converged, the stopping criterion

0 ≤ max
i∈c
‖∇θri(θ

∗)‖ < ε2 (6.30)

is evaluated. If criterion (6.30) is satisfied, we know that all clients are sufficiently
close to a stationary solution of their local risk and consequently CFL terminates,
returning the FL solution θ∗. If on the other hand, criterion (6.30) is violated, this
means that the clients are incongruent and the server computes the pairwise cosine
similarities α between the clients’ latest transmitted updates according to equation
(6.11). Next, the server separates the clients into two clusters in such a way that the
maximum similarity between clients from different clusters is minimized

c1, c2 ← arg min
c1∪̇c2=c

(max
i∈c1,j∈c2

αi,j). (6.31)

This optimal bi-partitioning problem at the core of CFL can be solved inO(M3) using
Algorithm 9. Since in Federated Learning it is assumed that the server has far greater
computational power than the clients, the overhead of clustering will typically be
negligible.

As derived in section 6.2.1, a correct bi-partitioning can always be ensured if it
holds that

αmin
intra > αmax

cross.

While the optimal cross-cluster similarity αmax
cross can be easily computed in practice,

computation of the intra cluster similarity requires knowledge of the clustering
structure and hence αmin

intra can only be estimated using Theorem 3 according to

αmin
intra ≥ min

i,j
I(i)=I(j)

−γiγj +
√

1− γ2
i

√
1− γ2

j (6.32)

≥ 1− 2γ2
max. (6.33)

Consequently we know that the bi-partitioning will be correct if

γmax <

√
1− αmax

cross
2

. (6.34)

independent of the number of data generating distributions K. This criterion allows
us to reject bi-partitionings, based on our assumptions on the approximation noise
γmax (which is an interpretable hyperparameter).

If criterion (6.34) is satisfied, CFL is recursively re-applied to each of the two sepa-
rate groups starting from the stationary solution θ∗. Splitting recursively continues on
until (after at most K− 1 recursions) none of the sub-clusters violate the stopping crite-
rion anymore, at which point all groups of mutually congruent clients C = {c1, .., cK}
have been identified, and the Clustered Federated Learning problem characterized
by Assumption 2 is solved. The communication burden of CFL thus increases at most

74 Chapter 6. Clustered Federated Learning

linearly with the number of splits and only after the Federated Learning solution is
reached. The entire recursive procedure is presented in Algorithm 11. A schematic
illustration is given in Figure 6.4.

6.3 Related Work

Federated Learning (McMahan et al., 2017; Konecný et al., 2016; Caldas et al., 2018b;
Li, Wen, and He, 2019; Yang et al., 2019; Bonawitz et al., 2019) is currently the
dominant framework for distributed training of machine learning models under
communication- and privacy constraints. Federated Learning assumes the clients to
be congruent, i.e. that one central model can fit all client’s distributions at the same
time. Different authors have investigated the convergence properties of Federated
Learning in congruent iid and non-iid scenarios: (Lin et al., 2020a; Sattler et al., 2019;
Sattler et al., 2020b) and (Zhao et al., 2018) perform an empirical investigation, (Li
et al., 2020b), (Jiang and Agrawal, 2018), (Yu, Yang, and Zhu, 2019) and (Sahu et al.,
2018) prove convergence guarantees. As outlined above conventional Federated
Learning is not able to deal with the challenges of incongruent data distributions.

Algorithm 9 Optimal Bi-
partition

input: Similarity Matrix
α ∈ [−1, 1]M,M

outout: bi-partitioning
c1, c2 satisfying (6.21)

s← argsort(−α[:]) ∈NM2

C ← {{i}|i = 1, .., M}
for i = 1, .., M2 do

i1 ← si div M
i2 ← si mod M
ctmp ← {}
for c ∈ C do

if i1 ∈ c or i2 ∈ c then
ctmp ← ctmp ∪ c
C ← C \ c

end if
end for
C ← C ∪ {ctmp}
if |C| = 2 then

return C
end if

end for

Algorithm 10 Federated Learning
input: initial parameters θ, set of clients c, ε1 > 0
output: stationary solution θ∗

repeat
for i ∈ c in parallel do

θi ← θ
∆θi ← SGD(θi, Di)− θi

end for
θ ← θ + ∑i∈c

|Di |
|Dc |∆θi

until ‖∑i∈c
|Di |
|Dc |∆θi‖ < ε1

return θ∗

Algorithm 11 Clustered Federated Learning

input: initial parameters θ, set of clients c, γmax ∈ [0, 1],
ε2 > 0
output: stationary solutions θ∗i and cluster assignments c

θ∗ ← FederatedLearning(θ, c)

αi,j ←
〈∇ri(θ

∗),∇rj(θ
∗)〉

‖∇ri(θ∗)‖‖∇rj(θ∗)‖ , i, j ∈ c

c1, c2 ← arg minc1∪̇c2=c(maxi∈c1,j∈c2 αi,j)
αmax

cross ← maxi∈c1,j∈c2 αi,j

if maxi∈c ‖∇ri(θ
∗)‖ ≥ ε2 and

√
1−αmax

cross
2 > γmax then

θ∗i , i ∈ c1 ← ClusteredFederatedLearning(θ∗, c1)
θ∗i , i ∈ c2 ← ClusteredFederatedLearning(θ∗, c2)

else
θ∗i ← θ∗, i ∈ c

end if
return θ∗i , i ∈ c

6.3. Related Work 75

TABLE 6.1: Qualitative comparison between methods for Federated Multi-Task
Learning.

Desideratum (Smith et al.,
2017b)

(Ghosh et al.,
2019) CFL

Works with arbitrary non-convex objective
functions.

7 7 3

Does not require changes to the FedAvg pro-
tocol to be made.

7 3 3

No major computational overhead for the
clients.

- 3 3

Cluster number need not be known a priori. 3 7 3

Theoretical guarantees on the clustering
quality.

- 3 3

Can be implemented with formal privacy
guarantees.

? ? 3

Only performs clustering if necessary. 7 7 3

Can handle varying client populations. ? ? 3

3 = satisfies property, 7 = does not satisfy property, ? = not investigated, - = does not apply

Other distributed training frameworks (Koloskova et al., 2020; Stich, Cordonnier, and
Jaggi, 2018; Smith et al., 2017a) are facing the same issues.

The natural framework for dealing with incongruent data is Multi-Task Learning
(Caruana, 1997; Jacob, Vert, and Bach, 2009; Kumar and III, 2012). An overview over
recent techniques for multi-task learning in deep neural networks can be found in
(Ruder, 2017). However all of these techniques are applied in a centralized setting
in which all data resides at one location and the server has full control over and
knowledge about the optimization process. Smith et al. (Smith et al., 2017b) present
MOCHA, which extends the multi-task learning approach to the Federated Learning
setting, by explicitly modeling client similarity via a correlation matrix. However
their method relies on alternating bi-convex optimization and is thus only applicable
to convex objective functions and limited in it’s ability to scale to massive client
populations. Corinzia et al. (Corinzia and Buhmann, 2019) model the connectivity
structure between clients and server as a Bayesian network and perform variational
inference during learning. Although their method can handle non-convex models, it
is expensive to generalize to large federated networks as the client models are refined
sequentially.

Finally, Ghosh et al. (Ghosh et al., 2019) propose a clustering approach, similar
to the one presented in this chapter. However their method differs from ours in
the following key aspects: Most significantly they use l2-distance instead of cosine
similarity to determine the distribution similarity of the clients. This approach has
the severe limitation that it only works if the client’s risk functions are convex and
the minima of different clusters are well separated. Their method also is not able to
distinguish congruent from incongruent settings. This means that the method will
incorrectly split up clients in the conventional congruent non-iid setting described in
(McMahan et al., 2017). Furthermore, their approach is not adaptive in the sense that
the decision whether to cluster or not is made already after the first communication
round. In contrast, our method can be applied to arbitrary Federated Learning
problems with non-convex objective functions. We also note that we have provided
theoretical considerations that allow a systematic understanding of the novel CFL

76 Chapter 6. Clustered Federated Learning

framework. For a detailed qualitative comparison between Federated Multi-Task
learning methods, we refer to Table 6.1.

6.4 Implementation Considerations

In this section we consider practical implementation details of our method. Concretely
we will demonstrate that CFL can be implemented without making modifications
to the Federated Learning communication protocol and without compromising the
privacy of the participating clients. We will also demonstrate that our method is
flexible enough to handle client populations that vary over time.

6.4.1 Weight-Updates as generalized Gradients

Theorem 3 makes a statement about the cosine similarity between gradients of the
empirical risk function. In Federated Learning however, due to constraints on the
communication budged of the client devices, instead commonly weight-updates

∆θ = SGD(θ0, D)− θ0 (6.35)

obtained from performing multiple epochs of local training, are computed and com-
municated (McMahan et al., 2017). In order to deviate as little as possible from the
classical Federated Learning algorithm it would hence be desirable to generalize
result 3 to weight-updates. It is commonly conjectured (see e.g. (Lin et al., 2018))
that accumulated mini-batch gradients approximate the full-batch gradient of the
objective function. Indeed, for a sufficiently smooth loss function and low learning
rate, a weight update computed over one epoch approximates the direction of the
true gradient by Taylor expansion: Given a split⋃

τ=0,..,nb−1

Dτ = D (6.36)

of a clients’ data D into nb disjoint batches we have after one epoch of SGD

∆θ = SGD(θ0, D)− θ0

= −
nb−1

∑
τ=0

η∇θr(θτ, Dτ)

≈ −
nb−1

∑
τ=0

η∇θr(θ0, Dτ) = −η∇θr(θ0, D).

(6.37)

with

θτ = θτ−1 − η∇θr(θτ−1, Dτ−1), τ > 0. (6.38)

In the remainder of this work we will compute cosine similarities between weight-
updates instead of gradients according to

αi,j :=
〈∆θi, ∆θj〉
‖∆θi‖‖∆θj‖

, i, j ∈ c (6.39)

6.4. Implementation Considerations 77

Our experiments in section 6.5 will demonstrate that computing cosine similarities
based on weight-updates in practice surprisingly achieves even better separations than
computing cosine similarities based on gradients.

6.4.2 Preserving Privacy

Every machine learning model carries information about the data it has been trained
on. For example the bias term in the last layer of a neural network will typically carry
information about the label distribution of the training data. Different authors have
demonstrated that information about a client’s input data ("x") can be inferred from
the weight-updates it sends to the server via model inversion attacks (Bhowmick
et al., 2018; Hitaj, Ateniese, and Perez-Cruz, 2017; Fredrikson, Jha, and Ristenpart,
2015; Carlini et al., 2018; Melis et al., 2019). In privacy sensitive situations it might
be necessary to prevent this type of information leakage from clients to server with
mechanisms like the ones presented in (Bonawitz et al., 2017). Luckily, Clustered
Federated Learning can be easily augmented with an encryption mechanism that
achieves this end. As both the cosine similarity between two clients’ weight-updates
and the norms of these updates are invariant to orthonormal transformations P (such
as permutation of the indices),

〈∆θi, ∆θj〉
‖∆θi‖‖∆θj‖

=
〈P∆θi, P∆θj〉
‖P∆θi‖‖P∆θj‖

(6.40)

a simple remedy is for all clients to apply such a transformation operator to their
updates before communicating them to the server. After the server has averaged the
updates from all clients and broadcasted the average back to the clients they simply
apply the inverse operation

1
|c|∑i∈c

∆θi = P−1(
1
|c|∑i∈c

P∆θi) (6.41)

and the Federated Learning protocol can resume unchanged. Other multi-task learn-
ing approaches require direct access to the client’s data and hence can not be used
together with encryption, which means that CFL has a distinct advantage in privacy
sensitive situations.

6.4.3 Varying Client Populations and Parameter Trees

Up until now we always made the assumption that all clients participate from the
beginning of training. Clustered Federated Learning however is flexible enough to
handle client populations that vary over time.

In order to incorporate this functionality, the server, while running CFL, needs to
build a parameter tree T = (V, E) with the following properties:

• The tree contains a node v ∈ V for every (intermediate) cluster cv computed by
CFL

• Both cv and the corresponding stationary solution θ∗v obtained by running the
Federated Learning Algorithm 10 on cluster cv are cached at node v

• At the root of the tree vroot resides the Federated Learning solution over the
entire client population with cvroot = {1, .., M}.

78 Chapter 6. Clustered Federated Learning

Federated
Learning

1st Split

2nd Split

Most
General
Model

Most
Specific
Model

Federated
Learning

Federated
Learning

Client Clusters Weight Updates Stationary Solutions

FIGURE 6.5: Example of a parameter tree created by Clustered Federated Learning.
At the root node resides the conventional Federated Learning model, obtained by
converging to a stationary point θ∗ of the FL objective over all clients {1, .., M}. In
the next layer, the client population has been split up into two groups, according
to their cosine similarities and every subgroup has again converged to a stationary
point θ∗0 respective θ∗1 . Branching continues recursively until no stationary solution
satisfies the splitting criteria. In order to quickly assign new clients to a leaf model,
at each edge e of the tree the server caches the pre-split weight-updates ∆e of all
clients belonging to the two different sub-branches. This way the new client can be

moved down the tree along the path of highest similarity.

• If the cluster cvchild was created by bi-partitioning the cluster cvparent in CFL then
the nodes vparent and vchild are connected via a directed edge e ∈ E

• At every edge e(vparent → vchild) the pre-split weight-updates of the children
clients

∆e = {SGD(θ∗vparent
, Di)− θv∗parent

|i ∈ cvchild} (6.42)

are cached

An exemplary parameter tree is shown in Figure 6.5. When a new client joins the
training it can get assigned to a leaf cluster by iteratively traversing the parameter
tree from the root to a leaf, always moving to the branch which contains the more
similar client updates according to Algorithm 13.

Another feature of building a parameter tree is that it allows the server to provide
every client with multiple models at varying specificity. On the path from root to leaf,
the models get more specialized with the most general model being the FL model at
the root. Depending on application and context, a CFL client could switch between
models of different generality. Furthermore a parameter tree allows us to ensemble
multiple models of different specificity together. We believe that investigations along
those lines are a promising direction of future research.

Putting all pieces from the previous sections together, we arrive at a protocol for
general privacy-preserving CFL which is described in Algorithm 12

6.5 Practical Considerations

In section 6.2.1 we showed that the cosine similarity criterion does distinguish differ-
ent incongruent clients under three conditions: (a) Federated Learning has converged

6.5. Practical Considerations 79

to a stationary point θ∗, (b) every client holds enough data s.t. the empirical risk ap-
proximates the true risk, (c) cosine similarity is computed between the full gradients
of the empirical risk. In this section we will demonstrate that in practical problems
none of these conditions have to be fully satisfied. Instead, we will find that CFL is
able to correctly infer the clustering structure even if clients only hold small data sets
and are trained to an approximately stationary solution of the Federated Learning
objective. Furthermore we will see that cosine similarity can be computed between
weight-updates instead of full gradients, which even improves performance.

In the experiments of this section we consider the following Federated Learning
setup: All experiments are performed on either the MNIST (LeCun, 1998) or CIFAR-
10 (Krizhevsky, Nair, and Hinton, 2014) data set using M = 20 clients, each of which
belonging to one of K = 4 clusters. Every client is assigned an equally sized random
subset of the total training data. To simulate an incongruent clustering structure,
every clients’ data is then modified by randomly swapping out two labels, depending
on which cluster a client belongs to. For example, in all clients belonging to the first
cluster, data points labeled as "1" could be relabeled as "7" and vice versa, in all clients
belonging to the second cluster "3" and "5" could be switched out in the same way,

Algorithm 12 Clustered Federated Learning with
Privacy Preservation and Weight-Updates

input: initial parameters θ0, splitting parameters
ε1, ε2 > 0, empirical risk approximation error bound
γmax ∈ [0, 1), number of local iterations/ epochs n
outout: improved parameters on every client θi
init: set initial clusters C = {{1, .., M}}, set initial
models θi ← θ0 ∀i = 1, .., m, set initial update ∆θc ←
0 ∀c ∈ C, clients exchange random seed to create
permutation operator P (optional, otherwise set P to
be the identity mapping)

while not converged do
for i = 1, .., M in parallel do

Client i does:
θi ← θi + P−1∆θc(i)
∆θi ← P(SGD(θi, Di)− θi)

end for
Server does:
Ctmp ← C
for c ∈ C do

∆θc ← 1
|c| ∑i∈c ∆θi

if ‖∆θc‖ < ε1 and maxi∈c ‖∆θi‖ > ε2 then

αi,j ←
〈∆θi ,∆θj〉
‖∆θi‖‖∆θj‖

c1, c2 ← arg minc1∪̇c2=c(maxi∈c1,j∈c2 αi,j)
αmax

cross ← maxi∈c1,j∈c2 αi,j

if αcross < αthresh
cross then

Ctmp ← (Ctmp \ c) ∪ c1 ∪ c2
end if

end if
end for
C ← Ctmp

end while
return θ

Algorithm 13 Assigning new
Clients to a Cluster

Input: new client with data
Dnew, parameter tree T =
(V, E)
v← vroot
Output: Cluster assignment cv
and stationary cluster model θ∗v

while |Children(v)| > 0 do
v0, v1 ← Children(v)
∆θnew ←

SGD(θ∗v , Dnew)− θ∗v
α0 ←

max∆θ∈∆(v→v1)
α(∆θnew, ∆θ)

α1 ←
max∆θ∈∆(v→v2)

α(∆θnew, ∆θ)

if α0 > α1 then
v← v0

else
v← v1

end if
end while
return cv, θ∗v

80 Chapter 6. Clustered Federated Learning

100 200
Data

0.5

0.0

0.5
g(

)

MNIST

0 1000 2000
Data

0.5

0.0

0.5

g(
)

CIFAR-10

0 20 40
Communication Round

0.50

0.25

0.00

0.25

0.50

g(
)

MNIST

0 20 40
Communication Round

0.25

0.00

0.25

0.50

0.75

g(
)

CIFAR-10

Weight-Update Gradient

FIGURE 6.6: Panels 1, 2: Separation gap g(α) as a function of the number of data
points on every client for the label-swap problem on MNIST and CIFAR. From
Corollary 2 we know that CFL will always find a correct bi-partitioning if g(α) > 0.
On MNIST this is already satisfied if clients hold as little as 20 data points if weight-
updates are used for the computation of the similarity α. Panels 3, 4: Separation
gap g(α) as a function of the number of communication rounds for the label-swap
problem on MNIST and CIFAR. The separation quality monotonically increases with
the number of communication rounds of Federated Learning. Correct separation
in both cases is already achieved after around 10 communication rounds if α is

computed using weight-updates.

and so on. This relabeling ensures that both ϕ(x) and ϕ(y) are approximately the
same across all clients, but the conditionals ϕ(y|x) diverge between different clusters.
We will refer to this as "label-swap augmentation" in the following. In all experiments
we train multi-layer convolutional neural networks and adopt a standard Federated
Learning strategy with 3 local epochs of training. We report the separation gap
(Definition 3)

g(α) := αmin
intra − αmax

cross (6.43)

which according to Corollary 2 tells us whether CFL will correctly bi-partition the
clients:

g(α) > 0⇒ "Correct Clustering" (6.44)

Number of Data points: We start out by investigating the effects of data set size
on the cosine similarity. We randomly subsample from each client’s training data
to vary the number of data points on every client between 10 and 200 for MNIST
and 100 and 2400 for CIFAR. For every different local data set size we run Federated
Learning for 50 communication rounds, after which training progress has come
mostly to halt and we can expect to be close to a stationary point. After round 50,
we compute the pairwise cosine similarities between the weight-updates and the
separation gap g(α). The results are shown in Figure 6.6 (panel 1,2). As expected,
g(α) grows monotonically with increasing data set size. On the MNIST problem as
little as 20 data points on every client are sufficient to achieve correct bi-partitioning
in the sense of Definition 2. On the more difficult CIFAR problem a higher number of
around 500 data points is necessary to achieve correct bi-partitioning.

Proximity to Stationary Solution: Next, we investigate the importance of prox-
imity to a stationary point θ∗ for the clustering. Under the same setting as in the
previous experiment we reduce the number of data points on every client to 100 for
MNIST and to 1500 for CIFAR and compute the pairwise cosine similarities and the
separation gap after each of the first 50 communication rounds. The results are shown
in Figure 6.6 (panel 3, 4). Again, we see that the separation quality monotonically

6.5. Practical Considerations 81

0 250 500 750 1000
Communication Round

0.0

0.2

0.4

No
rm

Incongruent Distributions

0 250 500 750 1000
Communication Round

0.0

0.2

0.4

0.6

0.8

No
rm

Congruent Distributions

|
i = 1, . . , M

Di
|D| ri(*)| max

i = 1, . . , M
| ri(*)|

FIGURE 6.7: Experimental verification of the norm criteria (6.29) and (6.28). Dis-
played is the development of gradient norms over the course of 1000 communication
rounds of Federated Learning with two clients holding data from incongruent (left)
and congruent distributions (right). In both cases Federated Learning converges to
a stationary point of F(θ) and the average update norm (6.28) goes to zero. In the
congruent case the maximum norm of the client updates (6.29) decreases along with
the server update norm, while in contrast in the incongruent case it stagnates and

even increases.

increases with the number of communication rounds. On MNIST and CIFAR as little
as 10 communication rounds are necessary to obtain a correct clustering.

Weight-Updates instead of Gradients: In both the above experiments we com-
puted the cosine similarities α based on either the full gradients

αi,j =
〈∇θri(θ),∇θrj(θ)〉
‖∇θri(θ)‖‖∇θrj(θ)‖

("Gradient") (6.45)

or federated weight-updates

αi,j =
〈∆θi, ∆θj〉
‖∆θi‖‖∆θj‖

("Weight-Update") (6.46)

over 3 epochs. Interestingly, weight-updates seem to provide even better separation
g(α) with fewer data points and at a greater distance to a stationary solution. This
comes in very handy as it allows us to leave the Federated Learning communication
protocol unchanged. In all following experiments we will compute cosine similarities
based on weight-updates instead of gradients.

Distinguishing Congruent and Incongruent Clients: Next, we will experimen-
tally verify the validity of the clustering criteria (6.28) and (6.29) in a Federated
Learning experiment on MNIST with two clients holding data from incongruent and
congruent distributions. In the congruent case client one holds all training digits
"0" to "4" and client two holds all training digits "5" to "9". In the incongruent case,
both clients hold a random subset of the training data, but the distributions are
modified according to the "label swap" rule described above. Figure 6.7 shows the
development of the average update norm (equation (6.28)) and the maximum client
norm (equation (6.29)) over the course of 1000 communication rounds. As predicted
by the theory, in the congruent case the maximum client norm converges to zero,
while in the incongruent case it stagnates and even increases over time. In both cases
the average update norm tends to zero, indicating convergence to a stationary point
(see Figure 6.7).

The considerations in this section lead us to the following recommendations
regarding the selection of the hyperparameters ε1 and ε2:

82 Chapter 6. Clustered Federated Learning

0 25 50 75 100 125 150 175 200
Communication Round

0.00

0.25

0.50

0.75

1.00

g(
)

1

3

0 25 50 75 100 125 150 175 200
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

Te
st

 A
cc

ur
ac

y

Federated
Learning

1st Split CFL 2nd Split CFL 3rd Split CFL

2

4

0

1

2

3

FIGURE 6.8: CFL applied to the "permuted labels problem" on CIFAR with 20 clients
and 4 different permutations. Accuracy of the trained models on their corresponding
validation sets as well as separation gaps g(α) for all clusters over the course of
training. After an initial 50 communication rounds a large separation gap has
developed and a first split separates out the purple group of clients, which leads to
an immediate drastic increase of accuracy for these clients. In communication rounds
100 and 150 this step is repeated until all clients with incongruent distributions have
been separated. After the third split, the model accuracy for all clients has more
than doubled and the separation gaps in all clusters have dropped to below zero

which indicates that the clustering is finalized.

• As the quality of the clustering improves with proximity to a stationary solution
(cf. Fig. 6.6, panel 3, 4), the value for ε1 should be set as small as the run-time
restrictions allow. A good rule of thumb is to set it to around a tenth of the
maximum average update norm ε1 ≈ maxt ‖∆θt

c‖/10.

• The value of ε2 should be set in accordance with the number of available clients
and/ or prior knowledge on the heterogeneity of the client data. The smaller
the value of ε2, the more likely it is that the client population will be separated
by CFL. In our experiments, we obtained good results by setting ε2 ∈ [ε1, 10ε1].

6.6 Evaluating Clustered Federated Learning in Heterogeneous
Settings

In this section, we apply CFL as described in Algorithm 12 to different Federated
Learning setups, which are inspired by our motivating examples in the introduction.
In all experiments, the clients perform 3 epochs of local training at a batch-size of 100
in every communication round.

Image Classification on CIFAR-10: We split the CIFAR-10 training data randomly
and evenly among M = 20 clients, which we group into K = 4 different clusters. All
clients belonging to the same cluster apply the same random permutation Pc(i) to
their labels such that their modified training and test data is given by

D̂i = {(x, PI(i)(y))|(x, y) ∈ Di} (6.47)

6.7. Adversarial Robustness of Clustered Federated Learning 83

respective

ˆDtest
i = {(x, PI(i)(y))|(x, y) ∈ Dtest}. (6.48)

The clients then jointly train a 5-layer convolutional neural network on the modified
data using CFL with 3 epochs of local training at a batch-size of 100. Figure 6.8 (top)
shows the joint training progression: In the first 50 communication rounds, all clients
train one single model together, following the conventional Federated Learning
protocol. After these initial 50 rounds, training has converged to a stationary point
of the Federated Learning objective and the client test accuracies stagnate at around
20%. Conventional Federated Learning would be finalized at this point. At the
same time, we observe (Figure 6.8, bottom) that a distinct gap g(α) = αmin

intra − αmax
cross

has developed (1), indicating an underlying clustering structure. In communication
round 50 the client population is therefore split up for the first time, which leads
to an immediate 25% increase in validation accuracy for all clients belonging to the
"purple" cluster which was separated out (2). Splitting is repeated in communication
rounds 100 and 150 until all clusters have been separated and g(α) has dropped to
below zero in all clusters (3), which indicates that clustering is finalized. At this point
the accuracy of all clients has more than doubled the one achieved by the Federated
Learning solution and is now at close to 60% (4). This underlines that after standard
FL, our novel CFL can detect the necessity for subsequent splitting and clustering
which enables arriving at significantly higher performance. In addition, the cluster
structure found can potentially be illuminating as it provides interesting insight about
the composition of the complex underlying data distribution.

6.7 Adversarial Robustness of Clustered Federated Learning

Numerous studies have shown that regular Federated Learning fails to converge
in the presence of faulty and malicious clients (Blanchard, Guerraoui, Stainer, et
al., 2017; Mhamdi, Guerraoui, and Rouault, 2018). Generally, one single bad client
can compromise the performance of the entire jointly trained model, and negate
the training efforts of all other clients. To mitigate this problem, different robust
Federated Learning strategies have been proposed in the literature. However, these
existing strategies require modifications to the federated communication protocol to
be made and are often computationally expensive.

In this section we will explore the application of CFL to these byzantine settings,
where a subset of the client population behaves in an explicitly harmful manner. It is
easy to see, that these settings can be subsumed under Assumption 2 by declaring
one particular cluster of clients cbenign ∈ C as the "benign" clients and all other clients,
which are incongruent to this cluster as "adversarial": C = {cbenign} ∪ Cadv.

CFL for the Byzantine Setting: In principle, the above described Algorithm for
CFL does not need to be modified for the byzantine setting. However, as we assume
in the byzantine setting that the majority of clients belongs to one single benign
cluster and all other clients are considered adversarial, we can save computation
effort by excluding all clients from training, which do not belong to the largest cluster,
thus adapting the separation rule from

Ctmp ← (Ctmp \ c) ∪ c1 ∪ c2 ("regular CFL") (6.49)

84 Chapter 6. Clustered Federated Learning

to

Ctmp ← (Ctmp \ c) ∪ {arg max
c∈{c1,c2}

|c|} ("adversarially robust CFL"). (6.50)

for the byzantine setting.
Adversarial Federated Learning settings can be roughly organized into two

groups: In byzantine settings it is assumed that a subset of the client population
behaves in an arbitrary and potentially random manner. Clients may divert the
training process by modifying their local data, or the communicated parameter up-
dates, but are not able to adapt their attack based on received training state. This
setting has been extensively studied and a variety of robust aggregation rules have
been proposed which rely on gradient similarity (Blanchard, Guerraoui, Stainer,
et al., 2017; Mhamdi, Guerraoui, and Rouault, 2018), geometric median aggregation
(Chen, Su, and Xu, 2017), redundant communication (Chen et al., 2018b) or adaptive
model quality estimation (Muñoz-González, Co, and Lupu, 2019). While some of
these proposed methods offer convergence guarantees in the byzantine setting, they
are also expensive in terms of computation or communication and often require
modifications to the federated communication protocol. A more difficult problem
setting is that of Federated Learning poisoning. In this setting, (possibly multiple)
clients try to introduce a hidden back-door functionality into the jointly trained model
(Muñoz-González et al., 2017; Fung, Yoon, and Beschastnikh, 2018; Bagdasaryan et al.,
2020; Bhagoji et al., 2019). As the adversaries in this setting are allowed to adapt
their attacks based on the model updates they receive from the server, they are much
harder to detect and to this day no efficient defense strategies have been proposed.
We will thus only focus on byzantine settings in this study.

6.7.1 Evaluating Clustered Federated Learning in Adversarial Settings

We adopt the experimental setup from (Muñoz-González, Co, and Lupu, 2019) to
investigate the robustness of Clustered Federated Learning against byzantine and ad-
versarial clients. We perform experiments on the well-known MNIST, Fashion-MNIST
and CIFAR-10 data sets on which we train convolutional deep neural networks using
SGD with a batch-size of 100. We consider a Federated Learning setting with 100
participating clients among which we split the training data randomly and evenly. In
each experiment we declare 30% of the client population to be faulty/ malicious. We
consider three different scenarios:

1.) In the Byzantine scenario, the malicious clients draw their weight-updates ∆θ
from a centered Gaussian distribution with isotropic covariance matrix and standard
deviation 1 (instead of computing them using stochastic gradient descent). This
scenario simulates an undirected attack against the collaborative training procedure.

2.) In the Label-Flip scenario, all the labels of the training data for the malicious
clients are set to zero. This scenario simulates a directed attack, with the goal to
disproportionally bias the jointly trained model towards one specific class.

3.) In the Noisy scenario, the training data on the faulty clients is modified by
adding independent uniform noise x̂ = x + U (−10, 10) to all pixels and channels.
This scenario simulates unstructured noisy distortions of the training data.

4.) In the Clean scenario, no adversaries are present. A good robust training
algorithm should not harm the convergence in this setting where all clients are
benign.

6.7. Adversarial Robustness of Clustered Federated Learning 85

TABLE 6.2: Accuracy achieved by conventional Federated Learning and CFL in the
four investigated scenarios. Best performing methods are highlighted in bold face.

Byzantine Noisy Label-Flip Clean

MNIST FL 9.8% 96.9% 91.3% 97.5
CFL 93.19% 97.4% 97.4% 97.4%

Fashion-
MNIST

FL 9.6% 77.12% 60.6% 79.9
CFL 78.0% 79.7% 79.7% 80.2

CIFAR FL 10.0% 70.4% 40.1 76.0
CFL 61.7% 74.6% 74.7% 75.3%

In each scenario, we perform Clustered Federated Learning according to Algo-
rithm 12 over the entire client population and set the threshold for the necessary
cosine dissimilarity between different clusters to αthresh

cross = 0.02.
Our goal is to investigate whether CFL as defined in Algorithm 12 is able to

detect the faulty and malicious clients in the above scenarios and remove them
from the main cluster. Figure 6.10 shows the development of αcross over the first 200
communication rounds for 70 benign and 30 malicious clients on our three data sets
and three different scenarios. Every time the value of αcross falls below αthresh

cross = 0.02
the clients are separated into two different groups according to the rule defined in
(6.34). These events are marked in the plot as follows: Whenever adversarial clients
are separated from the main cluster of benign clients this is marked green in the plot
and the number of adversarial clients that were separated in this particular round.
Whenever benign clients are removed from the main cluster this is marked red in the
plot.

As we can see, on all data sets and different adversarial scenarios it takes less
than 40 communication rounds for all malicious clients to be removed from training.
In the noisy and label-flip scenario the adversarial clients all share the same data
generating distribution which causes them to be separated out all at once by CFL. In
the byzantine scenario, where the adversarial clients communicate Gaussian random
updates, every adversary forms it’s own cluster and hence it takes several clustering
rounds to filter out all adversaries. In the clean scenario the cross-cluster similarity
αcross never falls below the similarity threshold. Consequently the client population is
never separated and CFL does not harm the convergence in this situation.

On the noisy and label-flip problem on CIFAR the cross cluster similarity falls
below the threshold αthresh

cross after around 170 communication rounds, which causes
benign clients to be separated from the main cluster (marked red). While this has
no immediate negative effect on the model accuracy, it should of course be avoided
in practice. A possible remedy could be to lower the value of αthresh

cross as the training
progresses.

In every performed experiment however all of the malicious clients are separated
out first and fully. The final accuracy achieved by FL and CFL after 200 rounds of
communication is shown in Table 6.2 and the training curves are given in Figure
6.9. As we can see CFL achieves significantly higher accuracy than regular FL in
the adversarial scenarios, closely matching the clean baseline, with the accuracy
difference being the largest in the byzantine setting where conventional FL diverges.

86 Chapter 6. Clustered Federated Learning

0 100 200
Comm. Round

0.2

0.4

0.6

Ac
cu

ra
cy

CIFAR10CIFAR10

CFL
FL

0 100 200
Comm. Round

0.2

0.4

0.6

CIFAR10CIFAR10

CFL
FL

0 100 200
Comm. Round

0.2

0.4

0.6

CIFAR10CIFAR10

CFL
FL

0 100 200
Comm. Round

0.2

0.4

0.6

CIFAR10CIFAR10

CFL
FL

0 100 200

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FASHIONMNISTFASHIONMNIST

CFL
FL

0 100 200

0.2

0.4

0.6

0.8
FASHIONMNISTFASHIONMNIST

CFL
FL

0 100 200

0.2

0.4

0.6

0.8
FASHIONMNISTFASHIONMNIST

CFL
FL

0 100 200

0.2

0.4

0.6

0.8
FASHIONMNISTFASHIONMNIST

CFL
FL

0 100 200

0.25

0.50

0.75

Ac
cu

ra
cy

MNISTMNIST
Byzantine

CFL
FL

0 100 200

0.25

0.50

0.75

1.00 MNISTMNIST
Noisy

CFL
FL

0 100 200

0.25

0.50

0.75

1.00 MNISTMNIST
Label-Flip

CFL
FL

0 100 200

0.4

0.6

0.8

1.0 MNISTMNIST
Clean

CFL
FL

FIGURE 6.9: Development of the cluster candidate dissimilarity αcross for four differ-
ent adversarial scenarios and three different data sets.

6.8 Summary & Limitations

In this chapter we presented Clustered Federated Learning, a framework for Feder-
ated Multi-Task Learning that can improve any existing Federated Learning frame-
work by enabling the participating clients to learn more specialized models. Clus-
tered Federated Learning makes use of our theoretical finding, that at any stationary
solution of the Federated Learning objective the cosine similarity between the weight-
updates of different clients is highly indicative of the similarity of their data distribu-
tions. This crucial insight allows us to provide strong mathematical guarantees on
the clustering quality under mild assumptions on the clients and their data, even for
arbitrary non-convex objectives.

We demonstrated that CFL can be implemented in a privacy preserving way and
without having to modify the FL communication protocol. Moreover, CFL is able to
distinguish situations in which a single model can be learned from the clients’ data
from those in which this is not possible and only separates clients in the latter case.
Our experiments on convolutional and recurrent deep neural networks show that
CFL can achieve drastic improvements over the Federated Learning baseline in terms
of classification accuracy / perplexity in situations where the clients’ data exhibits a
clustering structure.

We also investigated the application of CFL to byzantine scenarios which can be
viewed as a special case of divergent client data distribution where one particular
distribution is declared to be the benign distribution and all other distributions are
considered adversarial. In experiments on three different data sets and with three
different types of adversarial scenarios we find that CFL (without any modifications)
is capable of filtering out adversarial clients within relatively few communication
rounds. This demonstrates that CFL can offer significant advantages over regular
Federated Learning even in situations where clients do not form an obvious clustering
structure.

6.8. Summary & Limitations 87

0 100 200
0.00

0.25

0.50

0.75
FASHIONMNIST

0 100 200

0.0

0.5

1.0 FASHIONMNIST

0 100 200
Comm. Round

0.000

0.025

0.050

0.075

0.100

cr
os

s

CIFAR10

0 100 200
0.00

0.25

0.50

0.75
FASHIONMNIST

0 100 200
0.0

0.1

0.2

0.3

cr
os

s

FASHIONMNIST

0 100 200
0.5

0.0

0.5

1.0 MNIST
Label-Flip

0 100 200
0.0

0.1

0.2

cr
os

s

MNIST
Byzantine

0 100 200
Comm. Round

0.0

0.2

0.4

0.6
CIFAR10

0 100 200
Comm. Round

0.5

0.0

0.5
CIFAR10

0 100 200
0.00

0.25

0.50

0.75
MNIST

Clean

0 100 200
0.00

0.25

0.50

0.75
MNIST

Noisy

0 100 200
Comm. Round

0.0

0.2

0.4

0.6 CIFAR10

FIGURE 6.10: Development of the cluster candidate dissimilarity αcross for four
different adversarial scenarios and three different data sets. Whenever the value of
αcross dips below αthresh

cross = 0.02 the main cluster is separated into two according to
equation (6.50). A correct clustering is displayed in greed and incorrect clustering
is displayed in red. If the clustering is correct the number of correctly separated
clients is shown in the plot. On all three data sets and adversarial scenarios all 30
adversaries are separated out within at most 34 communication rounds. ©2020 IEEE

A challenging setting, which we have not considered in this study is that of
multi-modal data heterogeneity, which may arise for instance when client data is
heterogeneous and some clients behave adversarially. Future research should also
address more complex sources of heterogeneity, such as concept drift, where the
underlying data-generation process changes overtime. Another extension, which
could be worth exploring, is the use of ensemble techniques for re-combining several
specialized cluster models obtained by CFL into a mixture of experts.

Finally, we note that our work also exposes a new privacy issue in Federated
Learning as it demonstrates that information about client data similarity can be
inferred from their weight updates. We argue that the privacy loss inflicted is tolerable
in most situations as, without additional knowledge, the mere knowledge of client
similarity doesn’t reveal anything about the clients’ data. Nevertheless this fact
should be considered, when implementing Federated Learning for privacy sensitive
applications.

88 Chapter 6. Clustered Federated Learning

Lessons Learned

• At any stationary solution of the Federated Learning objective, the co-
sine similarity between the weight-updates of different clients is highly
indicative of the similarity of their data distributions.

• Based on this criterion, a top-down clustering algorithm can be derived,
which organizes clients into groups of similar data.

• Client similarity can be computed in a privacy preserving way by ap-
plying a random orthonormal transformation to the parameter updates
prior to communication.

• The mean and maximum client update norm can act as stopping criteria
for the recursive refinement of client clusters.

• The hierarchical clustering approach provides clients with models of
varying degree of personalization.

• Adversarial clients in Federated Learning can be viewed as a special case
of deviating client data distributions and are handled automatically by
the above described clustering process.

89

Chapter 7

Federated Learning with Auxiliary
Data

While the client data in Federated Learning is typically assumed to be private, in
most real-world applications the server additionally has access to unlabeled auxiliary
data, which roughly matches the distribution of the client data. For instance, for
many federated computer vision and natural language processing problems, such
auxiliary data can be given in the form of public data bases such as ImageNet (Deng
et al., 2009) or WikiText (Merity et al., 2017). These data bases contain millions to
billions of data samples but are typically lacking the necessary label information to
be useful for training task-specific models. Such auxiliary sources of unlabeled data
are exploited in Federated Distillation, where predictions on the unlabeled data are
used to transfer the client knowledge and improve model fusion. In this chapter, we
explore this core assumption made by all Federated Distillation algorithms and aim
to derive maximum utility from the available unlabeled auxiliary data.

Concretely we will demonstrate that a wide range of (out-of-distribution) auxiliary
data sets are suitable for self-supervised pre-training which can drastically improve
FL performance across different baselines. Exploiting auxiliary data in the model
fusion step, we will also propose a novel certainty-weighted Federated Distillation
technique, that improves performance of FD on non-iid data substantially, addressing
a long-standing problem in FL research.

As we will see, these performance improvements, which almost fully close the
performance gap between centralized and distributed training, are possible a) under
the same assumptions made in the FD literature, b) with only negligible additional
computational overhead for the resource-constrained clients and c) with small quan-
tifiable excess privacy loss.

This chapter is based on

• Felix Sattler, Tim Korjakow, Roman Rischke, and Wojciech Samek (2021b).
“FedAUX: Leveraging Unlabeled Auxiliary Data in Federated Learning”. In:
CoRR abs/2102.02514. URL: https://arxiv.org/abs/2102.02514

7.1 Exploiting Auxiliary Data in Federated Learning

In this section, we describe our method for efficient Federated Learning in the pres-
ence of unlabeled auxiliary data (FEDAUX). An illustration of our proposed approach
is given in Figure 7.1. We first describe FEDAUX for the homogeneous setting were all
clients hold the same model prototype. The detailed algorithm for the more general
model-heterogeneous setting can be found in Section 7.2. An exhaustive qualitative
comparison between FEDAUX and baseline methods is given in Section 7.5.

https://arxiv.org/abs/2102.02514

90 Chapter 7. Federated Learning with Auxiliary Data

 All Clients Participating Clients
 Server Participating Clients All Clients Server

Feature
Extractor

Auxiliary
Data

(Unlabeled)

Feature
Extractor
(frozen)

Logistic
Scoring
Head

Neg.
Data

Local
Data

Local
Data

P1:
Unsupervised

Pretraining

P2: Train
Scoring
Model

T1: Train
Classifier

P3: Sanitize Scoring
Model and Compute

Scores

Logistic
Scoring

Head (san.)

Distill
Data

Scores
(san.)

Preparation Phase Training Phase (repeat for T rounds)

Distill
Data

Feature
Extractor
(frozen)

Feature
Extractor

Classific.
Head

Distill
Data

Soft-
Labels

T2: Compute
Soft-labels

Feature
Extractor

Classific.
Head

Scores
(san.)

T3: Weighted
Ensemble
Distillation

Feature
Extractor

(is trained)

Classific.
Head

train

train

train traineval eval

......

subset

subset

FIGURE 7.1: Illustration of the training procedure of FEDAUX. Preparation phase:
P1) The unlabeled auxiliary data is used to pre-train a feature extractor (e.g. using
contrastive representation learning). P2) The feature-extractor is sent to the clients,
where it is used to initialize the client models. Based on extracted features, a logistic
scoring head is trained to distinguish local client data from a subset of the auxiliary
data. P3) The trained scoring head is sanitized using a (ε, δ)-differentially private
mechanism and then used to compute certainty scores on the distillation data.
Training Phase: T1) In each communication round, a subset of the client population
is selected for training. Each selected client downloads a model initialization from
the server, and then updates the full model fi (feature extractor & scoring head)
using their private local data. T2) The locally trained classifier and scoring models
fi and si are sent to the server, where they are combined into a weighted ensemble.
T3) Using the unlabeled auxiliary data and the weighted ensemble as a teacher, the
server distills a student model which is used as the initialization point for the next

round of federated training.

7.1.1 Problem Setting

We assume the conventional FL setting where a population of n clients is holding
potentially non-iid subsets of private labeled data D1, .., Dn, from a training data
distribution (

⋃
i≤n Di) ∼ ϕ(X ,Y). We further make the assumption that the server

and the clients both have access to a public collection of unlabeled auxiliary data
from a deviating distribution Daux ∼ ψ(X). The latter assumption is common to all
studies on FD.

One round of federated training is then performed as follows: A subset St of
the client population is selected by the server and downloads a model initialization.
Starting from this model initialization, each client then proceeds to train a model fi
on it’s local private data Di by taking multiple steps of stochastic gradient descent.
We assume that these local models can be decomposed into a feature extractor hi and
a classification head gi according to fi = gi ◦ hi. Finally, the updated models fi, i ∈ St
are sent back to the server, where they are aggregated to form a new server model
f , which is used as the initialization point for the next round of FL. The goal of FL
is to obtain a server model f , which optimally generalizes to new samples from the
training data distribution ϕ, within a minimum number of communication rounds
t ≤ T.

7.1.2 Federated Ensemble Distillation

As we have learned in Chapters 2 and 5, Federated Ensemble Distillation is a novel
method for aggregating the knowledge of FL clients. Instead of aggregating the

7.1. Exploiting Auxiliary Data in Federated Learning 91

Client 1
Prediction/ Weight

Client 2
Prediction/ Weight

Client 3
Prediction/ Weight

Accuracy = 0.33

Mean
Prediction

Accuracy = 0.88

Weighted
Mean Prediction

FIGURE 7.2: Weighted Ensemble Distillation illustrated in a toy example on the Iris
data set (data points have been projected to their two principal components). Three
Federated Learning clients hold disjoint non-iid subsets of the training data. Panels
1-3: Predictions made by linear classifiers trained on the data of each client. Labels
and predictions are color-coded, client certainty (measured via Gaussian KDE) is
visualized via the alpha-channel. The mean of client predictions (panel 4) only
poorly captures the distribution of training data. In contrast, the certainty-weighted

mean of client predictions (panel 5) achieves much higher accuracy.

parameters of the client models (e.g. via an averaging operation), a student model is
trained on the combined predictions of the clients on some public auxiliary data. Let
x ∈ Daux be a batch of data from the auxiliary distillation data set. Then one iteration
of student distillation is performed as

θt,j+1 ← θt,j − η
∂DKL(A({ fi(x)|i ∈ St}), σ(f (x, θt,j)))

∂θt,j . (7.1)

Hereby, DKL denotes the Kullback-Leibler divergence, η > 0 is the learning rate, σ
is the softmax-function and A is a mechanism to aggregate the soft-labels. Existing
work (Lin et al., 2020b) aggregates the client predictions by taking the mean according
to

Amean({ fi(x)|i ∈ St}) = σ

(
∑i∈St

fi(x)
|St|

)
, (7.2)

and has demonstrated that Federated Ensemble Distillation can outperform parame-
ter averaging based techniques.

7.1.3 Self-supervised Pre-training

Self-supervised representation learning can leverage large records of unlabeled data to
create models which extract meaningful features. For the two types of data considered
in this study - image and sequence data - strong self-supervised training algorithms
are known in the form of contrastive representation learning (Chen et al., 2020b; Wang
and Isola, 2020) and next-token prediction (Devlin et al., 2019; Radford et al., 2019).
As part of the FEDAUX preparation phase (cf. Fig. 7.1, P1) we propose to perform
self-supervised training on the auxiliary data Daux at the server. We emphasize that
this step makes no assumptions on the similarity between the local training data and
the auxiliary data. This results in a parametrization for the feature extractor h0. Since
the training is performed at the server, using publicly available data, this step inflicts
neither computational overhead nor privacy loss on the resource-constrained clients.

7.1.4 Weighted Ensemble Distillation

Different studies have shown that both the training speed, stability and maximum
achievable accuracy in existing FL algorithms deteriorate if the training data is

92 Chapter 7. Federated Learning with Auxiliary Data

Negative Data
Client 1

Client 2
Client 3

s1(x)/ sj(x)

0.2

0.8

s2(x)/ sj(x)

0.2

0.8

s3(x)/ sj(x)

0.2

0.8

D1(x)/ Dj(x)

0.2

0.8

D2(x)/ Dj(x)

0.2

0.8

D3(x)/ Dj(x)

0.2

0.8

FIGURE 7.3: Left: Toy example with 3 clients holding data sampled from multivariate
Gaussian distributions D1, D2 and D3. All clients solve optimization problem J
by contrasting their local data with the public negative data, to obtain scoring
models s1, s2, s3 respectively. As can be seen in the plots to the right, our proposed
scoring method approximates the robust weights proposed in (Mansour, Mohri, and
Rostamizadeh, 2008) as it holds si(x)/ ∑j sj(x) ≈ Di(x)/ ∑j Dj(x) on the support of

the data distributions.

distributed in a heterogeneous "non-iid" way among the clients (Zhao et al., 2018;
Sattler et al., 2020b; Li et al., 2020b). Federated Ensemble Distillation makes no
exception to this rule (Lin et al., 2020b).

The underlying problem of combining hypotheses derived from different source
domains has been explored in multiple-source domain adaptation theory (Mansour,
Mohri, and Rostamizadeh, 2008; Hoffman, Mohri, and Zhang, 2018), which shows
that standard convex combinations of the hypotheses of the clients as done in (Lin et
al., 2020b) may perform poorly on the target domain. Instead, a distribution-weighted
combination of the local hypotheses fi, obtained on data distributions Di, according
to

f̄ (x) = ∑
i

Di(x)
∑j Dj(x)

fi(x) (7.3)

is shown to be robust (Mansour, Mohri, and Rostamizadeh, 2008; Hoffman, Mohri,
and Zhang, 2018). A simple toy example, displayed in Figure 7.2, further illustrates
this point: Displayed as scatter points are elements of the Iris data set, projected
to their two main PCA components. The training data is distributed among three
clients in a non-iid fashion, with the label of each data point being indicated by the
marker color in the plot. Overlayed in the background are the predictions of linear
classifier models that were trained on the local data of each client. As we can see,
the models which were trained on the data of clients 1 and 3, uniformly predict that
all inputs belong to the "red" and "blue" class respectively. The predictive power
of these models and consequently their value as teachers for model distillation is
thus very limited. This is also visualized in panel 4, where the mean prediction of
the teacher models is displayed. We can however improve the teacher ensemble
quite significantly, if we weight each teachers predictions at every location x by it’s
certainty s(x) (approximated via Gaussian KDE), illustrated via the alpha channel in
panels 1-3. As we can see in panel 5, weighing the ensemble predictions raises the
accuracy from 33% to 88% in this particular toy example.

7.1. Exploiting Auxiliary Data in Federated Learning 93

Based on these insights, we propose to modify the aggregation rule of FD (7.2) to
a certainty-weighted average:

As({(fi(x), si(x))|i ∈ St}) = σ

(
∑i∈St

si(x) fi(x)
∑j∈St

sj(x)

)
(7.4)

The question remains, how to calculate the certainty scores si(x) in a privacy preserv-
ing way and for arbitrary high-dimensional data, where simple methods, such as
Gaussian KDE used in our toy example, fall victim to the curse of dimensionality. To
this end, we propose the following methodology:

We split the available auxiliary data randomly into two disjoint subsets,

D− ∪ Ddistill = Daux, (7.5)

the "negative" data and the "distillation" data. Using the pre-trained model h0 (→ sec.
7.1.3) as a feature extractor, on each client, we then train a logistic regression classifier
to separate the local data Di from the negatives D−, by optimizing the following
regularized empirical risk minimization problem

w∗i = arg min
w

J(w, h0, Di, D−) (7.6)

with

J(w, h0, Di, D−) =a ∑
x∈Di∪D−

l(tx〈w, h̃0(x)〉) + λR(w). (7.7)

Hereby tx = 2(1x∈Di)− 1 ∈ [−1, 1] defines the binary labels of the separation task, a =
(|Di|+ |D−|)−1 is a normalizing factor and h̃0(x) = h0(x)(maxx∈Di∪D− ‖h0(x)‖)−1

are the normalized features. We choose l(z) = log(1 + exp(z)) to be the logistic
loss and R(w) = 1

2‖w‖2
2 to be the `2-regularizer. Since J is λ-strongly convex in w,

problem (7.6) is uniquely solvable. This step is performed only once on every client,
during the preparation phase (cf. Fig. 7.1, P2) and the computational overhead for
the clients of solving (7.6) is negligible in comparison to the cost of multiple rounds
of training the (deep) model fi.

Given the solution of the regularized ERM w∗i , the certainty scores on the distilla-
tion data Ddistill can be obtained via

si(x) = (1 + exp(−〈w∗i , h̃0(x)〉))−1 + ξ. (7.8)

A small additive ξ > 0 ensures numerical stability when taking the weighted mean
in (7.4). We always set ξ = 1e− 8.

While the scores si(x) can be estimated using a number of different techniques
like density estimation, uncertainty quantification (Oala et al., 2020; Abdar et al.,
2021) or outlier detection (Ruff et al., 2018; Ruff et al., 2021), we will now present
three distinct motivations for using the logistic regression-based approach described
above:

First of all, as illustrated using the toy example given in Figure 7.3, the scores
obtained via our proposed logistic regression based approach (7.8) give a good
approximation to the distribution weights suggested by domain adaptation theory
(Mansour, Mohri, and Rostamizadeh, 2008). As we can see in the panels to the right,

94 Chapter 7. Federated Learning with Auxiliary Data

Logistic
Regression

Two-Class
SVM

One-Class
SVM

Isolation
Forest

Kernel
Density

Estimation

Random
Scoring

Uniform
Scoring

(FedDF+P)
Scoring Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

=0.01, n=10, C=1.0, Daux=STL10

FIGURE 7.4: Comparison of validation performance for Federated Distillation of
ResNet-8 on the CIFAR-10 data set when different scoring techniques are used
to obtain the certainty weights si(x) used during ensemble distillation. Certainty
scores obtained via two-class logistic regression achieve the best performance and

can readily be augmented with a differentially private mechanism.

it approximately holds

si(x)
∑j sj(x)

≈ Di(x)
∑j Dj(x)

∀ x ∈ X , i = 1, .., n (7.9)

on the support of the data distributions Di.
Secondly, scores obtained via logistic regression yield strong empirical perfor-

mance on highly complex image data. Figure 7.4 shows the maximum accuracy
achieved after 10 communication rounds, by different weighted Federated Ensemble
Distillation methods in a Federated Learning scenario with 10 clients and highly
heterogeneous data (α = 0.01, further details on the data splitting strategy are given
in Section 7.4). As we can see, the contrastive logistic scoring approach described
above distinctively outperforms the uniform scoring approach used in (Lin et al.,
2020b) and also yields better results than other generative and discriminative scoring
methods, like Gaussian KDE, Isolation Forests or One- and Two-Class SVMs. Details
on the implementation of these scoring methods are given in Appendix C.2.

Finally, as we will see in the next section, the logistic scoring mechanism can
readily be augmented with differential privacy and provides high utility even under
strong formal privacy constraints.

7.1.5 Privacy Analysis

Sharing the certainty scores {si(x)|x ∈ Ddistill} with the central server intuitively
causes privacy loss for the clients. After all, a high score si(x) indicates, that the
public data point x ∈ Ddistill is similar to the private data Di of client i (in the sense
of (7.6)). To protect the privacy of the clients, quantify and limit the privacy loss, we
propose to use data-level differential privacy (cf. Fig. 7.1, P3). Following the classic
definition of (Dwork and Roth, 2014), a randomized mechanism is called differentially
private, if it’s output on any input data base d is indistinguishable from output on
any neighboring database d′ which differs from d in one element.

Definition 4. A randomized mechanism M : D → R satisfies (ε, δ)-differential
privacy if for any two adjacent inputs d and d′ that differ in only one element and for

7.2. Algorithm 95

any subset of outputs S ⊆ R, it holds that

P[M(d) ∈ S] ≤ exp(ε)P[M(d′) ∈ S] + δ. (7.10)

Differential privacy of a mechanismM can be achieved, by limiting it’s sensitivity

∆(M) = max
d1,d2∈D

‖M(d1)−M(d2)‖ (7.11)

and then applying a randomized noise mechanism. We adapt a theorem from (Chaud-
huri, Monteleoni, and Sarwate, 2011) to establish the sensitivity of (7.6):

Theorem 4. If R(·) is differentiable and 1-strongly convex and l is differentiable with
|l′(z)| ≤ 1 ∀z, then the `2-sensitivity ∆2(M) of the mechanism

M : Di 7→ arg min
w

J(f , h0, Di, D−) (7.12)

is at most 2(λ(|Di|+ |D−|))−1.

The proof can be found in Appendix C.1. As we can see the sensitivity scales
inversely with the size of the total data |Di|+ |D−|. From Theorem 4 and application
of the Gaussian mechanism (Dwork and Roth, 2014) it follows that the randomized
mechanism

Msan : Di 7→ arg min
f

J(f , h0, Di, D−) + N (7.13)

with N ∼ N (0, Iσ2) and σ2 = 8 ln(1.25δ−1)
ε2λ2(|Di |+|Daux |)2 is (ε, δ)-differentially private.

The post-processing property of DP ensures that the release of any number of
scores computed using the output of mechanismMsan is still (ε, δ)-private. Note, that
in this work we restrict ourselves to the privacy analysis of the scoring mechanism.
The differentially private training of deep classifiers fi is a challenge in it’s own right
and has been addressed e.g. in (Abadi et al., 2016). Following the basic composition
theorem (Dwork and Roth, 2014), the total privacy cost of running FEDAUX is the
sum of the privacy loss of the scoring mechanism Msan and the privacy loss of
communicating the updated models fi (the latter is the same for all FL algorithms).

7.2 Algorithm

The training procedure of FEDAUX can be divided into a preparation phase, which
is given in Algorithm 14 and a training phase, which is given in Algorithm 15. We
describe the general setting where clients may hold different model prototypes P
from a set of prototypes P . This general setting simplifies to the setting described in
Section 7.1 if |P| = 1.

Preparation Phase (Alg. 14): In the preparation phase, the server uses the un-
labeled auxiliary data Daux, to pre-train the feature extractor hP for each model
prototype P using self-supervised training. Suitable methods for self-supervised pre-
training are contrastive representation learning (Chen et al., 2020b), or self-supervised
language modeling/ next-token prediction (Devlin et al., 2019). The pre-trained
feature extractors hP

0 are then communicated to the clients and used to initialize part
of the local classifier f = g ◦ h. The server also communicates the negative data
D− to the clients (in practice we can instead communicate the extracted features
{|hP

0 (x)|x ∈ D−} of the raw data D− to save communication). Each client then

96 Chapter 7. Federated Learning with Auxiliary Data

optimizes the logistic similarity objective J (7.6) and sanitizes the output by adding
properly scaled Gaussian noise. Finally, the sanitized scoring model w∗i is communi-
cated to the server, where it is used to compute certainty scores si on the distillation
data (the certainty scores can also be computed on the clients, however this results in
additional communication of distillation data and scores).

Training Phase (Alg. 15): The training phase is carried out in T communication
rounds. In every round t ≤ T, the server randomly selects a subset St of the overall
client population and transmits to them the latest server models θR[i], which match
their model prototype P (in round t = 1 only the pre-trained feature extractor hP

0 is
transmitted). Each selected client updates it’s local model by performing multiple
steps of stochastic gradient descent (or it’s variants) on it’s local training data. This
results in an updated parameterization θi on every client, which is communicated to
the server. After all participating clients have finished their local training, the server
gathers the updated parameters θi. For each model prototype P the corresponding
parameters are then aggregated by weighted averaging. Using the model averages as
a starting point, for each prototype the server then distills a new model, based on the
client’s certainty-weighted predictions.

Algorithm 14 FEDAUX Preparation
Phase

init: Split D− ∪ Ddistill ← Daux
init: HashMap R that maps client i to
model prototype P

Server does:
for each model prototype P ∈ P do

hP
0 ← train_self_supervised(hP, Daux)

end for
for each client i ∈ {1, .., n} in parallel do

Client i does:
P← R[i]
σ2 ← 8 ln(1.25δ−1)

ε2λ2(|Di |+|D− |)2

w∗i ← arg minw J(w, hP
0 , Di, D−) +

N (0, Iσ2)
γi ← maxx∈Di∪D− ‖hP

0 (x)‖
end for
Server does:
for i = 1, .., n do

create HashMap
si ←
{x 7→ (1 + exp(−〈w∗i , γ−1

i hP
0 (x)〉))−1 +

ξ for x ∈ Ddistill}
end for

Algorithm 15 FEDAUX Training Phase.
init: Training requires feature extractors
hP

0 and scores si from Alg. 14. Choose
learning rate η and set ξ = 10−8.
init: HashMap R that maps client i to
model prototype P
init: Inverse HashMap R̃ that maps model
prototype P to set of clients (s.t. i ∈
R̃[R[i]] ∀i)
init: Initialize model prototype weights θP

with feature extractor weights hP from Alg.
14

for communication round t = 1, .., T do
select subset of clients St ⊆ {1, .., n}
for selected clients i ∈ St in parallel do

Client i does:
θi ← train(θ0 ← θR[i], Di)

end for
Server does:
for each model prototype P ∈ P do

θP ← ∑i∈St∩R̃[P]
|Di |

∑l∈St∩R̃[P] |Dl | θi

for mini-batch x ∈ Ddistill do

ỹ← σ

(
∑i∈St si [x] fi(x,θi)

∑i∈St si [x]

)
θP ← θP − η

∂DKL(ỹ,σ(f (x,θP)))
∂θP

end for
end for

end for

7.3. Related Work 97

7.3 Related Work

Federated Ensemble Distillation: In contrast to centralized model distillation (Hin-
ton, Vinyals, and Dean, 2015), where training and distillation data usually coincide,
Federated Distillation makes no restrictions on the auxiliary distillation data and
recent work even suggests that useful distillation data can be generated from the
teacher models themselves (Nayak et al., 2019). Among existing Federated Distilla-
tion techniques, our work is mostly in line with (Lin et al., 2020b; Chen and Chao,
2020) in that it aims to improve overall training performance in FL. Both FEDDF
(Lin et al., 2020b) and FEDBE (Chen and Chao, 2020) combine parameter averaging
as done in FedAVG (McMahan et al., 2017) with ensemble distillation to improve
FL performance. While FEDDF combines client predictions by means of an equally
weighted model ensemble, FEDBE forms a Bayesian ensemble from the client models
for better robustness to heterogeneous data. Taking FEDDF as a starting point, our
proposed FEDAUX algorithm additionally leverages the auxiliary distillation data
set for unsupervised pre-training and weights the client predictions in the distillation
step according to their prediction certainty to better cope with settings where the
client’s data generating distributions are statistically heterogeneous.

Weighted Ensembles: Re-weighting the predictions of individual classifiers in
an ensemble is a classical technique which has been studied since the ’90s with
the works of (Hashem and Schmeiser, 1993; Perrone and Cooper, 1993; Sollich
and Krogh, 1995). A weighted ensemble of models combines the output of the
individual models by means of a weighted average in order to improve the overall
generalization performance. The weights allow to indicate the percentage of trust
or expected performance for each individual model. See (Sharkey, 1996; Opitz and
Maclin, 1999) for an overview of ensemble methods. Instead of giving each client
a static weight in the aggregation step of distillation, we weight the clients on an
instance base as in (Jiménez, 1998), i.e., each clients prediction is weighted using a
data-dependent certainty score. Weighted combinations of weak classifiers are also
commonly leveraged in centralized settings in the context of of mixture of experts and
boosting methods (Yuksel, Wilson, and Gader, 2012; Masoudnia and Ebrahimpour,
2014; Schapire, 1999).

Unlabeled Data in Federated Learning: To the best of our knowledge, there
do not exist any prior studies on the use of unlabeled auxiliary data in FL outside
of Federated Distillation methods. Federated semi-supervised learning techniques
(Zhang et al., 2020b; Jeong et al., 2020) assume that clients hold both labeled and
unlabeled private data from the local training distribution. In contrast, we assume
that the server has access to public unlabeled data that may differ in distribution from
the local client data. Federated self-supervised representation learning (Zhang et al.,
2020a) aims to train a feature extractor on private unlabeled client data. In contrast,
we leverage self-supervised representation learning at the server to find a suitable
model initialization.

7.4 Experiments

7.4.1 Setup

Datasets and Models: We evaluate FEDAUX and state-of-the-art FL methods on
both federated image and text classification problems with large scale convolutional
and transformer models respectively. For our image classification problems we train
ResNet- (He et al., 2016), MobileNet- (Sandler et al., 2018) and ShuffleNet- (Zhang

98 Chapter 7. Federated Learning with Auxiliary Data

10 1 101

Data Heterogeneity

0.4

0.6

0.8
Ac

cu
ra

cy

ResNet8 n=80

10 1 101

Data Heterogeneity

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

MobileNetv2 n=100

10 1 101

Data Heterogeneity

0.4

0.6

0.8

Ac
cu

ra
cy

ShuffleNet n=100

10 1 101

Data Heterogeneity

0.4

0.6

0.8

Ac
cu

ra
cy

Mixed n=60

FedAVG FedDF FedDF+P FedAUX

FIGURE 7.5: Evaluation on different neural networks and client population sizes
n. Accuracy achieved after T = 100 communication rounds by different Federated
Distillation methods at different levels of data heterogeneity α. STL-10 is used as
auxiliary data set. In the "Mixed" setting one third of the client population each
trains on ResNet8, MobileNetv2 and Shufflenet respectively. Black dashed line

indicates centralized training performance.

0 10 20
Communication Round

0.0

0.2

0.4

Ac
cu

ra
cy

AMAZON, = 0.01

FedAVG+P
FedDF+P
FedAUX

0 10 20
Communication Round

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

AMAZON, = 1.0

FedAVG+P
FedDF+P
FedAUX

0 10 20
Communication Round

0.2

0.4

0.6

0.8
Ac

cu
ra

cy
AG_NEWS, = 0.01

FedAVG+P
FedDF+P
FedAUX

0 10 20
Communication Round

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

AG_NEWS, = 1.0

FedAVG+P
FedDF+P
FedAUX

FIGURE 7.6: Evaluating FEDAUX on NLP Benchmarks. Performance of FEDAUX
for different combinations of local data sets and heterogeneity levels α. 10 clients
training TinyBERT at α = 0.01 and C = 100%. Bookcorpus is used as auxiliary data

set. Black dashed line indicates centralized training performance.

et al., 2018) type models on CIFAR-10 and CIFAR-100 and use STL-10, CIFAR-100
and SVHN as well as different subsets of ImageNet (Mammals, Birds, Dogs, Devices,
Invertebrates, Structures)1 as auxiliary data. In our experiments, we always use 80%
of the auxiliary data as distillation data Ddistill and 20% as negative data D−. For our
text classification problems we train Tiny-Bert (Jiao et al., 2020) on the AG-NEWS
(Zhang, Zhao, and LeCun, 2015b) and Multilingual Amazon Reviews Corpus (Keung
et al., 2020) and use BookCorpus (Zhu et al., 2015) as auxiliary data.

Federated Learning Environment and Data Partitioning: We consider Federated
Learning problems with up to n = 100 participating clients. In all experiments, we
split the training data evenly among the clients according to a dirichlet distribution
following the procedure outlined in Chapter 2. This allows us to smoothly adapt the
level of non-iid-ness in the client data using the Dirichlet parameter α. We experiment
with values for α varying between 100.0 and 0.01. A value of α = 100.0 results in an
almost identical label distribution, while setting α = 0.01 results in a split, where the
vast majority of data on every client stems from one single class.

Pre-training strategy: For our image classification problems, we use contrastive
representation learning as described in (Chen et al., 2020b) for pre-training. We use
the default set of data augmentations proposed in the paper and train with the Adam
optimizer, learning rate set to 10−3 and a batch-size of 512. For our text classification
problems, we pre-train using self-supervised next-word prediction.

1The methodology for generating these subsets is described in Appendix C.4

7.4. Experiments 99

10 2 10 1

0.64

0.66

0.68

0.70
Ac

cu
ra

cy
= 1.0

10 2 10 1
0.650

0.675

0.700

0.725

0.750

Ac
cu

ra
cy

= 0.1

10 2 10 1

0.5

0.6

0.7

Ac
cu

ra
cy

= 0.01

10 2 10 1
0.2

0.4

0.6

Ac
cu

ra
cy

= 0.001

No DP = 0.0001 = 1e 05 = 1e 06 = 1e 07

FIGURE 7.7: Performance of FEDAUX for different combinations of the privacy
parameters ε, δ and λ. 40 clients training Resnet-8 for T = 10 rounds on CIFAR-10 at

α = 0.01 and C = 40%. STL-10 is used as auxiliary data set.

Training the Scoring model and Privacy Setting: We set the default privacy
parameters to λ = 0.1, ε = 0.1 and δ = 1e− 5 respectively and solve (7.6) by running
L-BFGS (Liu and Nocedal, 1989) until convergence (≤ 1000 steps).

Baselines: We compare the performance of FEDAUX to state-of-the-art FL meth-
ods: FEDAVG (McMahan et al., 2017), FEDPROX (Li et al., 2020a), Federated Ensemble
Distillation (FEDDF) (Lin et al., 2020b) and FEDBE (Chen and Chao, 2020). To clearly
discern the performance benefits of the two components of FEDAUX (unsupervised
pre-training and weighted ensemble distillation), we also report performance metrics
on versions of these methods where the auxiliary data was used to pre-train the
feature extractor h ("FEDAVG+P", "FEDPROX+P", "FEDDF+P" resp. "FEDBE+P").
For FEDBE we set the sample size to 10 as suggested in the paper. For FEDPROX we
always tune the proximal parameter µ.

Optimization: On all image classification task, we use the very popular Adam
optimizer (Kingma and Ba, 2015), with a fixed learning rate of η = 10−3 and a batch-
size of 32 for local training. Distillation is performed for one epoch for all methods
using Adam at a batch-size of 128 and fixed learning rate of 5e− 5. More detailed
hyperparameter analysis in Appendix C.6 shows that this choice of optimization
parameters is approximately optimal for all of the methods. If not stated otherwise,
the number of local epochs E is set to 1.

7.4.2 Evaluating FEDAUX on common Federated Learning Benchmarks

We start out by evaluating the performance of FEDAUX on classic benchmarks for
federated image classification. Figure 7.5 shows the maximum accuracy achieved by
different Federated Distillation methods after T = 100 communication rounds at dif-
ferent levels of data heterogeneity. As we can see, FEDAUX distinctively outperforms
FEDDF on the entire range of data heterogeneity levels α on all benchmarks. For
instance, when training ResNet8 with n = 80 clients at α = 0.01, FEDAUX raises the
maximum achieved accuracy from 18.2% to 78.1% (under the same set of assumptions).
The two components of FEDAUX, unsupervised pre-training and weighted ensemble
distillation, both contribute independently to the performance improvement, as can
be seen when comparing with FEDDF+P, which only uses unsupervised pre-training.
Weighted ensemble distillation as done in FEDAUX leads to greater or equal per-
formance than equally weighted distillation (FEDDF+P) across all levels of data
heterogeneity. The same overall picture can be observed in the "Mixed" setting where
clients train different model architectures. Detailed training curves are given in the
Appendix C.3.

100 Chapter 7. Federated Learning with Auxiliary Data

TABLE 7.1: Maximum accuracy achieved by FEDAUX and other baseline FL meth-
ods after T = 100 communication rounds, at different participation rates C and
levels of data heterogeneity α. 20 Clients training ResNet-8 on CIFAR-10. Auxiliary
data used is STL10. The maximum accuracy per setting is highlighted in bold face.

α = 0.01 α = 100.0
Method C = 0.2 C = 0.4 C = 0.8 C = 0.2 C = 0.4 C = 0.8

FEDAVG 19.9±0.7 23.6±2.0 28.9±2.0 81.3±0.1 82.2±0.0 82.3±0.1
FEDPROX 28.4±2.5 34.0±1.9 42.0±1.0 81.4±0.1 82.3±0.2 82.0±0.3
FEDDF 25.0±0.8 27.8±0.8 30.6±0.3 80.8±0.1 81.4±0.3 81.5±0.3
FEDBE 20.9±0.6 25.7±1.4 29.1±0.1 81.4±0.7 82.0±0.1 82.2±0.2
FEDAVG+P 30.4±7.9 32.1±2.0 38.4±0.5 89.0±0.1 89.5±0.1 89.6±0.1
FEDPROX+P 42.8±2.7 43.1±0.2 49.0±0.7 88.9±0.0 89.1±0.1 89.4±0.0
FEDDF+P 28.8±3.0 39.3±3.6 48.1±1.1 88.8±0.0 88.9±0.1 88.9±0.1
FEDBE+P 30.2±2.2 29.8±0.8 37.7±0.0 89.1±0.1 89.5±0.2 89.5±0.0
FEDAUX 54.2±0.3 71.2±2.1 78.5±0.0 88.9±0.0 89.0±0.0 89.0±0.1

TABLE 7.2: Maximum accuracy achieved by FEDAUX and other baseline FL meth-
ods after 100 communication rounds, when different sets of unlabeled auxiliary
data are used for pre-training and/ or distillation. 40 Clients training ResNet-8 on
CIFAR-10 at C = 40%. The maximum accuracy per setting is highlighted in bold

face.

Auxiliary Data
α Method STL-10 CIFAR-100 SVHN Invertebr. Birds Devices Dogs Structures

0.01 FEDDF 27.9±3.2 29.5±6.2 28.1±3.9 28.5±3.6 30.1±2.0 26.3±0.2 28.9±5.1 30.2±7.0
FEDDF+P 43.0±5.2 41.6±1.1 29.6±3.4 38.8±6.5 41.4±5.9 35.9±4.9 41.1±7.3 36.7±7.1
FEDAUX 76.8±0.9 71.5±2.5 43.7±1.5 68.2±0.7 65.7±3.1 71.5±0.1 71.8±3.8 64.1±3.3

100.00 FEDDF 79.3±0.7 79.9±0.1 80.9±0.1 80.2±0.1 80.2±0.4 79.4±0.3 79.7±0.4 80.1±0.2
FEDDF+P 88.3±0.0 86.7±0.0 81.7±0.2 87.4±0.1 87.6±0.0 87.7±0.1 88.4±0.0 87.4±0.1
FEDAUX 88.5±0.0 86.7±0.1 81.6±0.0 87.8±0.1 87.8±0.1 87.8±0.0 88.6±0.0 87.3±0.1

Table 7.1 compares the performance of FEDAUX and baseline methods at different
client participation rates C. We can see that FEDAUX benefits from higher partic-
ipation rates. In all scenarios, methods which are initialized using the pre-trained
feature-extractor h0 distinctively outperform their randomly initialized counterparts.
In the iid setting at α = 100.0 FEDAUX is mostly en par with the (improved) pa-
rameter averaging based methods FEDAVG+P and FEDPROX+P, with a maximum
performance gap of 0.8%. At α = 0.01 on the other hand FEDAUX outperforms all
other methods with a margin of up to 29%.

7.4.3 Evaluating FEDAUX on NLP Benchmarks

Figure 7.6 shows learning curves for federated training of TinyBERT on the Amazon
and AG-News data sets at two different levels of data heterogeneity α. We observe,
that FEDAUX significantly outperforms FEDDF+P as well as FEDAVG+P in the
heterogeneous setting (α = 0.01) and reaches 95% of its final accuracy after one
communication round on both data sets, indicating suitability for one-shot learning.
On more homogeneous data (α = 1.0) FEDAUX performs mostly en par with pre-
trained versions of FEDAVG and FEDDF, with a maximal performance gap of 1.1 %
accuracy on the test set. We note, that effects of data heterogeneity are less severe as
in this setting as both the AG News and the Amazon data set only have four and five
labels respectively and an α of 1.0 already leads to a distribution where each clients

7.4. Experiments 101

TABLE 7.3: One-shot performance of different FL methods. Maximum accuracy
achieved after T = 1 communication rounds at participation-rate C = 100%. Each
client trains for E = 40 local epochs. The maximum accuracy per setting is high-

lighted in bold face.

MobileNetv2, n = 100 Shufflenet, n = 100
Method α = 0.01 α = 0.04 α = 0.16 α = 10.24 α = 0.01 α = 0.04 α = 0.16 α = 10.24

FEDAVG 10.3±0.0 13.6±2.3 23.6±0.0 30.5±0.9 12.1±0.8 17.4±0.4 28.2±0.8 37.8±0.7
FEDPROX 11.6±0.8 14.3±1.4 23.7±0.3 30.5±0.5 12.9±1.7 18.9±0.2 29.4±0.3 38.9±0.5
FEDDF 16.8±4.2 29.5±3.8 37.7±1.1 40.4±0.5 16.0±5.1 27.3±0.1 38.7±0.2 45.5±0.5
FEDAVG+P 24.3±1.1 44.0±4.4 57.6±3.7 69.9±0.0 25.5±1.4 44.2±0.1 62.9±1.6 71.9±0.1
FEDPROX+P 27.2±2.2 43.4±3.6 56.9±3.9 70.0±0.1 28.4±0.2 47.1±1.5 63.3±1.2 71.9±0.1
FEDDF+P 46.7±5.6 61.1±1.3 67.6±0.5 71.2±0.1 40.4±2.7 59.4±0.8 68.8±0.2 72.7±0.0
FEDAUX 64.8±0.0 65.5±1.0 68.2±0.2 71.3±0.1 66.9±0.6 68.6±0.4 70.8±0.3 72.9±0.1

owns a subset of the private data set containing all possible labels. Further details on
our implementation can be found the Appendix C.5.

7.4.4 Privacy Analysis of FEDAUX

Figure 7.7 examines the dependence of FEDAUX’ training performance of the privacy
parameters ε, δ and the regularization parameter λ. As we can see, performance
comparable to non-private scoring is achievable at conservative privacy parameters
ε, δ. For instance, at λ = 0.01 setting ε = 0.04 and δ = 10−6 reduces the accuracy
from 74.6% to 70.8%. At higher values of λ, better privacy guarantees have an even
less harmful effect, at the cost however of an overall degradation in performance.
Throughout this empirical study, we have set the default privacy parameters to
λ = 0.1, ε = 0.1 and δ = 1e− 5. We also perform an empirical privacy analysis in the
Appendix C.7, which provides additional intuitive understanding and confidence in
the privacy properties of our method.

7.4.5 Evaluating the dependence on Auxiliary Data

Next, we investigate the influence of the auxiliary data set Daux on unsupervised
pre-training, distillation and weighted distillation respectively. We use CIFAR-10
as training data set and consider 8 different auxiliary data sets, which differ w.r.t
their similarity to this client training data - from more similar (STL-10, CIFAR-100)
to less similar (Devices, SVHN)2. Table 7.2 shows the maximum achieved accuracy
after T = 100 rounds when each of these data sets is used as auxiliary data. As we
can see, performance always improves when auxiliary data is used for unsupervised
pre-training. Even for the highly dissimilar SVHN data set (which contains images
of house numbers) performance of FEDDF+P improves by 1% over FEDDF in both
the iid and non-iid regime. For other data sets like Dogs, Birds or Invertebrates
performance improves by up to 14%, although they overlap with only one single
class of the CIFAR-10 data set. The out-performance of FEDAUX on such a wide
variety of highly dissimilar data sets suggest that beneficial auxiliary data should be
available in the majority of practical FL problems and also has positive implications
from the perspective of privacy. Interestingly, performance of FEDDF seems to only
weakly correlate with the performance of FEDDF+P and FEDAUX as a function of
the auxiliary data set. This suggests, that the properties, which make a data set useful

2The CIFAR-10 data set contains images from the classes airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truc.

102 Chapter 7. Federated Learning with Auxiliary Data

0 100
Communication Round

0.3

0.5

0.7

Ac
cu

ra
cy

= 0.01

0 100
Communication Round

0.3

0.5

0.7

Ac
cu

ra
cy

= 0.04

0 100
Communication Round

0.3

0.5

0.7

Ac
cu

ra
cy

= 0.16

0 100
Communication Round

0.3

0.5

0.7

Ac
cu

ra
cy

= 0.64

0 100
Communication Round

0.3

0.5

0.7

Ac
cu

ra
cy

= 10.24

FedDF FedDF+P FedAVG FedAVG+P FedAUX

FIGURE 7.8: Linear evaluation of FEDAUX. Training curves for different Federated
Learning methods at different levels of data heterogeneity α when only the classi-
fication head g is updated in the training phase. A total of n = 80 clients training

ResNet8 on CIFAR-10 at C = 40%, using STL-10 as auxiliary data set.

for distillation are not the same ones that make it useful for pre-training and weighted
distillation. Investigating this relationship further is an interesting direction of future
research.

7.4.6 FEDAUX in Hardware-Constrained Settings

Linear Evaluation: In settings where the FL clients are hardware-constrained mobile
or IoT devices, local training of entire deep neural networks like ResNet8 might be
infeasible. We therefore also consider the evaluation of different FL methods, when
only the linear classification head g is updated during the training phase. Figure 7.8
shows training curves in this setting when clients hold data from the CIFAR-10 data
set. We see that in this setting performance of FEDAUX is high, independent of the
data heterogeneity levels α, suggesting that in the absence of non-convex training
dynamics our proposed scoring method actually yields robust weighted ensembles
in the sense of (Mansour, Mohri, and Rostamizadeh, 2008). We note, that FEDAUX
also trains much more smoothly, than all other baseline methods.

One-Shot Evaluation: In many FL applications, the number of times a client can
participate in the federated training is restricted by communication, energy and/ or
privacy constraints (Guha, Talwalkar, and Smith, 2019; Papernot et al., 2018). To
study these types of settings, we investigate the performance of FEDAUX and other
FL methods in federated one-shot learning where we set T = 1 and C = 100%. Table
7.3 compares performance in this setting for n = 100 clients training MobileNetv2
resp. ShuffleNet. FEDAUX outperforms the baseline methods in this setting at all
levels of data heterogeneity α.

7.5 Discussion and Qualitative Comparison with Baselines

The experiments performed in the previous section demonstrate that FEDAUX out-
performs state-of-the-art Federated Learning methods by wide margins, in particular
if the training data is distributed in a heterogeneous way among the clients. In Table
7.4 we additionally provide a qualitative comparison between FEDAUX and the
baseline methods FEDAVG and FEDDF. We can note the following:

Client workload: Compared with FEDAVG and FEDDF, FEDAUX additionally
requires the clients to once solve the λ-strongly convex ERM (7.6). For this problem
linearly convergent algorithms are known (Liu and Nocedal, 1989) and thus the

7.5. Discussion and Qualitative Comparison with Baselines 103

TABLE 7.4: Qualitative Comparison of the computational complexity, communica-
tion overhead and privacy loss after T communication rounds as well as implicit

assumptions made by different Federated Learning methods.

FEDAVG FEDDF, FEDBE FEDAUX (prepa-
ration phase)

FEDAUX (train-
ing phase)

Operations
(Clients)

Local Training
(×T)

Local Training
(×T)

Solve λ-strongly
convex ERM (7.6)

Local Training
(×T)

Operations
(Server)

Model Averaging
(×T)

Model Averaging,
Distillation (×T)

Self-Supervised
Pre-training of h0,
Computation of
certainty scores si

Model Averaging,
Distillation (×T)

Communication
Clients→ Server

Model Parameters
fi (×T)

Model Parameters
fi (×T)

Scoring Models
w∗i

Model Parameters
fi (×T)

Communication
Server→ Clients

Model Parameters
f (×T)

Model Parameters
f (×T)

Negative Data
D−, Feature
Extractor h0

Model Parameters
f (×T)

Privacy Loss Privacy loss of
communicating fi
(×T)

Privacy loss of
communicating fi
(×T)

(ε, δ)-DP Privacy loss of
communicating fi
(×T)

Assumptions No Assumptions Auxiliary Data Auxiliary Data Auxiliary Data

computational overhead is negligible compared with the complexity of multiple
rounds of locally training deep neural networks.

Server workload: FEDAUX also adds computational load to the server for self-
supervised pre-training and computation of the certainty scores si. As the server
is typically assumed to have massively stronger computational resources than the
clients, this can be neglected.

Communication Client→ Server: Once, in the preparation phase of FEDAUX,
the scoring models w∗i need to be communicated from the clients to the server. The
overhead of communicating these H-dimensional vectors, where H is the feature
dimension, is negligible compared to the communication of the full models fi.

Communication Server→ Clients: FEDAUX also requires the communication
of the negative data D− and the feature extractor h0 from the server to the clients.
The overhead of sending h0 is lower than sending the full model f , and thus the
total downstream communication is increased by less than a factor of (T + 1)/T.
The overhead of sending D− is small (in our experiments |D−| = 0.2|Daux|) and
can be further reduced by sending extracted features {|hP

0 (x)|x ∈ D−} instead of
the full data. For instance, in our experiments with ResNet-8 and CIFAR-100 we
have |D−| = 12000 and hP

0 (x) ∈ R512, resulting in a total communication overhead
of 12000× 512× 4B = 24.58MB for D−. For comparison the total communication
overhead of once sending the parameters of ResNet-8 (needs to be done T times) is
19.79MB.

Privacy Loss: Communicating the scoring models w∗i incurs additional pri-
vacy loss for the clients. Using our proposed sanitation mechanism this process
is made (ε, δ)-differentially private. Our experiments in section 7.4.4 demonstrate
that FEDAUX can achieve drastic performance improvements, even under conser-
vative privacy constraints. All empirical results reported are obtained with (ε, δ)
differential privacy at ε = 0.1 and δ = 10−5.

Assumptions: Finally, FEDAUX makes the additional assumption that unlabeled

104 Chapter 7. Federated Learning with Auxiliary Data

auxiliary data is available to the server. This assumption is made by all Federated
Distillation methods including FEDDF.

In conclusion, FEDAUX requires comparable resources as state-of-the-art Feder-
ated Distillation methods and has similar privacy properties, while at the same time
achieving significantly better performance.

7.6 Summary & Limitations

In this chapter, we have explored Federated Learning in the presence of unlabeled
auxiliary data, an assumption made in the quickly growing area of Federated Dis-
tillation. By leveraging auxiliary data for unsupervised pre-training and certainty
weighted ensemble distillation we were able to demonstrate that this assumption
is rather strong and can lead to drastically improved performance of FL algorithms.
As we have seen, these performance improvements can be obtained even if the dis-
tribution of the auxiliary data is highly divergent from the client data distribution
and are maintained when the certainty scores are obfuscated using a strong differ-
ential privacy mechanism. Additionally, our detailed qualitative comparison with
baseline methods revealed that FEDAUX incurs only marginal excess computation
and communication overhead.

On a more fundamental note, the dramatic performance improvements observed
in FEDAUX call into question the common practice of comparing FD based methods
(which assume auxiliary data) with parameter averaging based methods (which do
not make this assumption) (Lin et al., 2020b; Chen and Chao, 2020) and thus have
implications for the future evaluation of FD methods in general.

We also highlight, that while FEDAUX obfuscates the certainty scores, provided by
each client, using a differentially private noise mechanism, the local model parameters
might still reveal details about the private local training data (as they also do with all
baseline methods considered in this chapter). A straight-forward extension to our
proposed approach which could rectify this issue is to make use of differentially pri-
vate local training algorithms as described in (Abadi et al., 2016; Mohassel and Zhang,
2017). Finally we note that, while showing very strong empirical performance, the
logistic certainty scoring approach presented in this chapter is motivated mainly by
heuristic arguments as well as it’s amenability to differentially private augmentation.
A deeper principled analysis of the weighted ensemble distillation framework pre-
sented in this chapter could lead to even better scoring methods, further improving
model fusion performance in the presence of heterogeneous data.

7.6. Summary & Limitations 105

Lessons Learned

• The unlabeled auxiliary data necessary to perform Federated Distillation
can be used for unsupervised pre-training at the server, which improves
performance, without inflicting any computational overhead or privacy
loss on the resource-constrained clients.

• Domain adaptation theory (Mansour, Mohri, and Rostamizadeh, 2008)
has shown that standard convex combinations of the hypotheses of dif-
ferent learners yield sub-optimal generalization to the target domain, if
there is a discrepancy between the individual training data distributions.

• By weighing classifiers during model distillation according to their indi-
vidual data-specific certainty, this issue can be overcome and Federated
Distillation can be made more robust against such heterogeneous distri-
butions of client data.

• Meaningful certainty weights can be obtained in an efficient and privacy-
preserving way, by contrasting local client data from auxiliary data in
feature space, using a differentially private logistic scoring mechanism.

• Effective weighted ensemble distillation can be achieved with minimal
additional workload, communication overhead or privacy loss for the
often resource-constrained clients.

107

Chapter 8

Conclusion

We conclude this thesis with a summary of the presented methods and results, provide
an overview over possible future research directions and unanswered questions, and
give examples of successive work profiting from the methods presented in this thesis.

8.1 Thesis Summary

In this thesis, we have provided practical solutions to several challenges associated
with the distributed training of machine learning models. Our proposed training
algorithms and methodologies jointly address issues of communication-efficiency,
data and model heterogeneity, personalisation, robustness and privacy, among others.

For three distributed training settings, namely parallel training in the data center,
parameter averaging based Federated Learning and Federated Distillation, we have
provided communication-efficient optimization frameworks, that are robust to a
wide variety of learning environments and constraints. We demonstrated, that our
proposed compression methodologies can reduce communication in these settings by
several orders of magnitude, without negatively affecting the training performance.
This opens up numerous new possibilities for application of distributed training in
resource constraint IoT settings and will help the widespread adoption of Federated
Learning solutions.

With Clustered Federated Learning, we have developed an entirely new frame-
work for treating data heterogeneity in Federated Learning. We have provided simple
to implement and computationally efficient tools, based on the cosine similarity be-
tween the local client updates, that provably allow us to detect the hidden clustering
structure in a large population of heterogeneous clients, making it possible to au-
tomatically separate clients into clusters of jointly trainable data distribution. In
extensive studies we demonstrated that CFL can lead to improved training perfor-
mance in a variety of practical use cases and offers robustness to byzantine scenarios,
where some clients may behave in an adversarial way.

Finally, we explored Federated Learning in the presence of unlabeled auxiliary
data, an assumption made in the quickly growing area of Federated Distillation.
By leveraging auxiliary data for unsupervised pre-training and weighted ensemble
distillation we were able to demonstrate that this assumption can lead to drastically
improved performance of FL algorithms, for a wide variety of highly dissimilar
auxiliary data sets, in many cases fully closing the performance gap to centralized
training. Our results constitute a new state-of-the-art in general-purpose federated
training of deep machine learning classifiers. At the same time they reveal the limited
merit in comparing Federated Distillation based methods with parameter averaging
based methods, which do not assume availability of auxiliary data. These results
thus have implications for the future evaluation of Federated Distillation methods in
general.

108 Chapter 8. Conclusion

8.2 Limitations and Outlook

While the contributions made in this thesis address a number of important challenges
in distributed learning in general and Federated Learning in particular, many open
problems still remain.

For instance, while our proposed communication-efficient training schemes offer
a basic level of privacy by processing data on-device, they do not provide formal
privacy guarantees to protect against sophisticated data reconstruction attacks as
described for instance in (Hitaj, Ateniese, and Perez-Cruz, 2017). A natural extension
of these techniques would therefore constitute of combining them with privacy
mechanisms like differential privacy that offer formal guarantees. Recent work (Li
et al., 2019) hints at the fact that, if combined correctly, communication-efficiency and
privacy can be two sides of the same coin, mutually strengthening each other. This is
also in line with intuition, which tells us that limiting the efflux of information from a
client to the server should also put restrictions on the privacy loss.

Also often overlooked, when investigating distributed learning in well defined
lab conditions, are a number of practical concerns that arise when executing these
techniques in real-world production settings, where both the data and the behavior
of the participating clients can be arbitrarily ill-behaved. With Clustered Federated
Learning we have provided a first preliminary system which is able to treat many
of these unexpected failure modes. However issues may still arise in settings were
heterogeneity is multi-modal, for instance when client data is heterogeneous and some
clients behave adversarially. Future research also needs to address more complex
sources of heterogeneity, such as concept drift, where the underlying data-generation
process changes overtime. Furthermore, there is a great need for cheap and simple
tools to diagnose heterogeneity in distributed systems a priori. Such tools could be of
great value in helping to calibrate distributed learning algorithms to the particular
training conditions.

Another interesting direction of future research is the application of our proposed
robust multi-task learning techniques to Federated Distillation settings. As we have
demonstrated in this thesis, Federated Distillation techniques have a variety of bene-
ficial properties, with respect to communication-efficiency, training-performance and
adversarial robustness. We therefore believe that these methods are here to stay and
will influence and shape distributed training efforts for years to come. Currently these
methods still require access to unlabeled auxiliary data, which can not be guaranteed
in all Federated Learning applications, however techniques have been introduced
that enable the generation of synthetic distillation data directly from the teacher
models (Nayak et al., 2019).

Furthermore, since the training data is often completely unknown to anyone
using models obtained via Federated Learning, these models typically will need to
be thoroughly inspected before being deployed in production. In particular, harmful
effects from model poisoning (Fang et al., 2020) and backdoor attacks (Bagdasaryan
et al., 2020) need to be accounted for. Preliminary defense mechanisms via activation
clustering (Chen et al., 2018a) or adversarial training (Zhao et al., 2019) have been
proposed, but future work should also explore the use of explainability techniques
(Samek et al., 2021; Montavon, Samek, and Müller, 2018) for post-hoc analysis of
Federated Learning models in order to improve trustworthiness and robustness.

Lastly, we believe that many of the techniques introduced in this thesis in the
context of Federated Learning do not necessarily require a central server and could
easily be extended to fully distributed peer-to-peer learning settings.

8.3. Impact 109

8.3 Impact

The techniques proposed in this work are already being used to tackle real-world prob-
lems in diverse areas such as healthcare, acoustics and IoT. For instance (Nelus, Glitza,
and Martin, 2021) use unsupervised Clustered Federated Learning for estimation
of source-dominated microphone clusters in acoustic sensor networks. The authors
demonstrate that the privacy-aware CFL approach has a significant performance-
enhancing effect on a multi-sensor gender recognition task.

The technique is also applied in the medical domain, where (Qayyum et al.,
2021) utilize CFL for automatic, multi-modal COVID-19 diagnosis at the edge based
on healthcare data. Their CFL-based approach achieves results comparable to the
central baseline where the specialized models are trained with central data (each on a
different type of COVID-19 imagery), and obtains improvements of 16% resp. 11% in
overall F1-Scores over the multi-modal model trained in the conventional Federated
Learning setup on X-ray and ultrasound data sets.

Other authors have extended the CFL framework to make it more efficient and
adaptive to more complicated client interactions. For instance, (Duan et al., 2020)
propose to reduce the computational complexity of computing the cosine similarity
matrix in CFL by using a low-rank SVD approximation. Aspects of communication-
efficiency in the context of Clustered Federated Learning are considered in (Shlezinger,
Rini, and Eldar, 2020) and hierarchical clients relationships are modeled in (Briggs,
Fan, and Andras, 2020).

Efficient Federated Learning techniques as proposed in this work (Sattler et al.,
2019; Sattler et al., 2020b; Sattler et al., 2021a) are of significant interest to both the
research community and practitioners which are trying to build smart distributed
IoT applications. Compression techniques such as sparsification, quantization and
efficient encoding which we have joitly analyzed in this work are now enabling
wireless edge intelligence in IoT applications (Mills, Hu, and Min, 2019; Amiri
and Gündüz, 2020b; Amiri and Gündüz, 2020a; Chen et al., 2020a). Some of the
compression techniques introduced in this thesis have also been further refined in
subsequent work (Shi et al., 2019; Ren, Yu, and Ding, 2020) to adapt to specific
network topologies, hardware setups and communication protocols.

Finally, our proposed communication-efficient training methodologies have also
influenced recent standardization efforts of the motion picture experts group (MPEG),
resulting in test data, evaluation frameworks and results for neural network com-
pression and Federated Learning use cases (ISO/IEC JTC1/SC29/WG11 MPEG2020/
m52375, 2020.).

8.4 Concluding

Distributed training methods like Federated Learning were introduced as a response
to the desire to harness vast records of distributed data for the training of powerful
large-scale deep learning models, without harming the privacy of the involved data
donors. When the foundational groundwork for this thesis was laid, Federated
Learning was a young and nascent field, with it’s landmark paper (McMahan et al.,
2017) being published only in 2017. Since then, great progress has been made and the
field has gained tremendous interest by the research community and practitioners
alike. Major technology companies have already deployed distributed training
workflows in production, and a number of startups were founded with the objective of

110 Chapter 8. Conclusion

using distributed machine learning to address privacy and data collection challenges
in various industries.

With the methods introduced in this thesis, we have demonstrated that distributed
training workflows are viable even in hardware- and network-constrained conditions,
can be robust and adaptive to a wide range of heterogeneous and adversarial training
conditions and do need to suffer only marginal performance loss when compared
to centralized training. We hope that these methods will facilitate the wide-spread
adoption of distributed training workflows and help to demonstrate that data protec-
tion and privacy do not have to stand in the way of resourceful data analytics and
machine learning.

111

Appendix A

Communication-Efficient
Distributed Training

A.1 Proof of Theorem 1

The theorem assumes that (a) the noise nt is normally distributed at every time-step
nt ∼ N (0, σ2) with the variance being constant in timeV(nt) = σ2 for all t = 1, .., T.
The theorem further assumes that (b) the noise is (negatively) self-correlated, with
the noise process given by n1 = N1, nt = αnt−1 + Nt, with Nt normally distributed
and all Nt uncorrelated, α ∈ (−1, 0).

Under these two assumptions, the theorem states that the variance of the accumu-
lated noise can be bounded by

V(
T

∑
t=1

nt) ≤ σ2(T(1 + α) + 1). (A.1)

Proof. Since

nt = αnt−1 + Nt = α(αnt−2 + Nt−1) + Nt

= α2nt−2 + αNt−1 + Nt

= ατnt−τ +
τ−1

∑
i=0

αiNt−i

(A.2)

it holds that

cov(nt−τ, nt) = cov(nt−τ, ατnt−τ +
τ−1

∑
i=0

αiNt−i)

= ατσ2 +
τ−1

∑
i=0

αi cov(nt−τ, Nt−i)︸ ︷︷ ︸
=0

= ατσ2
(A.3)

112 Appendix A. Communication-Efficient Distributed Training

With equation (A.3) it follows that

V(
T

∑
t=1

nt) =
T

∑
t1=1

T

∑
t2=1

cov(nt1 , nt2) (A.4)

=
T

∑
t=1

cov(nt, nt)︸ ︷︷ ︸
Tσ2

+2
T−1

∑
t=1

cov(nt, nt+1)︸ ︷︷ ︸
α(T−1)σ2

+ (A.5)

2
T−2

∑
t=1

cov(nt, nt+2)︸ ︷︷ ︸
α2(T−2)σ2

+.. + 2 cov(n1, nT)︸ ︷︷ ︸
αT−1(1)σ2

(A.6)

For negatively correlated noise α ∈ (−1, 0) we can bound this term by

V(
T

∑
t=1

nt) = σ2(T + 2
T−1

∑
τ=1

ατ(T − τ)) (A.7)

= σ2(T + 2
αT+1 − α2T + αT − α

(α− 1)2) (A.8)

= σ2(T + 2
(α− α2)

(α− 1)2︸ ︷︷ ︸
≤ 1

2 α

T + 2
αT+1 − α

(α− 1)2︸ ︷︷ ︸
≤ 1

2

) (A.9)

≤ σ2(T(1 + α) + 1) (A.10)

A.2 Encoding and Decoding

To communicate the sparse ternary weight updates from clients to server and back
from server to client we only need to transmit the positions of the non-zero elements
in every tensor, along with exactly one bit to signify the sign (µ or −µ). As the
distances between the non-zero elements of the weight updates ∆̃θ are approximately
geometrically distributed for large layer sizes, we can efficiently encode them in an
optimal way using the Golomb encoding. The encoding scheme is given in Algorithm
16, while the decoding scheme is given in Algorithm 17.

A.3 Convergence Proofs

We remember the definition of an α-contraction (Stich, Cordonnier, and Jaggi, 2018)
which states that an operator comp : Rd → Rd is called an a α-contraction if it is
satisfies the contraction property

E‖x− comp(x)‖2 ≤ α‖x‖2, ∀x ∈ Rd (A.11)

for a parameter 0 ≤ α < 1 To prove the convergence of the communication-efficient
sparse ternary compression method we only need to prove that the sparse ternary

A.3. Convergence Proofs 113

compression operator satisfies the above property, with

α =
‖toppd(x)‖2

1

pd‖x‖2
2

< 1 (A.12)

The convergence result then follows from (Stich, Cordonnier, and Jaggi, 2018).

Proof. Let k = max(bnpc , 1) W.l.o.g. let x = [v, w] ∈ Rd, with v ∈ Rk, w ∈ Rd−k and
mini |vi| ≥ maxj |wj|. Let us further denote µ = 1

k ∑k
i=1 |vi|. Then

E‖STCk(x)− x‖2 =
k

∑
i=1

(|vi| − µ)2 +
d

∑
j=k+1

w2
j−k (A.13)

=
k

∑
i=1

v2
i +

d

∑
j=k+1

w2
j−k − kµ2 (A.14)

= ‖x‖2
2 − kµ2 (A.15)

= (1− k̃
d
)‖x‖2

2 < ‖x‖2
2 (A.16)

with

k̃ = kµ2 d
‖x‖2

2
(A.17)

Algorithm 16 Golomb Position Encoding

input: sparse tensor ∆W∗, sparsity p
output: binary message msg

I ← ∆W∗[:] 6=0

b∗ ← 1 + blog2(
log(φ−1)
log(1−p))c

for i = 1, .., |I| do
d← Ii − Ii−1
q← (d− 1) div 2b

∗

r ← (d− 1) mod 2b
∗

msg.add(1, .., 1︸ ︷︷ ︸
q times

, 0, binaryb∗(r))

end for
return msg

Algorithm 17 Golomb Position Decod-
ing

input: binary message msg, bitsize b∗,
mean value µ
output: sparse tensor ∆W∗

init: ∆W∗ ← 0 ∈ Rn

i← 0; q← 0; j← 0
while i < size(msg) do

if msg[i] = 0 then
j ← j + q2b∗ +
intb∗(msg[i + 1], .., msg[i + b∗]) + 1
∆W∗j ← µ

q← 0; i← i + b∗ + 1
else

q← q + 1; i← i + 1
end if

end while
return ∆W∗

115

Appendix B

Clustered Federated Learning

B.1 Proving the Separation Theorem

The Separation Theorem makes a statement about the cosine similarities between
the gradients of the empirical risk functions ∇θri(θ

∗) and ∇θrj(θ
∗), which are noisy

approximations of the true risk gradients ∇θ RI(i)(θ
∗), respective ∇θ RI(j)(θ

∗). To
simplify the notation let us first re-define

vl = ∇θ Rl(θ
∗), l = 1, .., K (B.1)

and

Xi = ∇θri(θ
∗)−∇θ RI(i)(θ

∗), i = 1, .., M (B.2)

Figure B.1 shows a possible configuration in d = 2 with K = 3 different data gener-
ating distributions and their corresponding gradients v1, v2 and v3. The empirical
risk gradients Xi + vi(i), i = 1, .., M are shown as dashed lines. The maximum angles
between gradients from the same data generating distribution are shown green, blue
and purple in the plot. Among these, the green angle is the largest one ^max

intra. The
plot also shows the optimal bi-partitioning into clusters 1 and 2 and the minimum
angle between the gradient updates from any two clients in different clusters ^min

cross is
displayed in red. As long as

^max
intra < ^min

cross (B.3)

or equivalently

αmin
intra = cos(^max

intra) > cos(^min
cross) = αmax

cross (B.4)

the clustering will always be correct.
The proof of the Theorem can be organized into three separate steps:

• In Lemma 5, we bound the cosine similarity between two noisy approximations
of the same vector αmin

intra from below

• In Lemma 6, we bound the cosine similarity between two noisy approximations
of two different vectors from above

• In Lemma 7, we show that every set of vectors that sums to zero can be separated
into two groups such that the cosine similarity between any two vectors from
separate groups can be bounded from above

• Lemma 6 and 7 together will allow us to bound the cross cluster similarity αmax
cross

from above

116 Appendix B. Clustered Federated Learning

3 2 1 0 1 2 3

3

2

1

0

1

2

3

v1

v2

v3

max
intra

min
cross

Cluster 1

Cluster 2

FIGURE B.1: Possible configuration in d = 2 with K = 3 different data generating
distributions and their corresponding gradients v1, v2 and v3. The empirical risk
gradients Xi + vi(i), i = 1, .., M are shown as dashed lines. The maximum angles
between gradients from the same data generating distribution are shown green, blue
and purple in the plot. Among these, the green angle is the largest one ^max

intra. The
vectors are optimally bi-partitioned into clusters 1 and 2 and the minimum angle
between the gradient updates from any two clients in different clusters ^min

cross is
displayed in red.

Lemma 5. Let v, X, Y ∈ Rd with ‖X‖ < ‖v‖ and ‖Y‖ < ‖v‖ then

α(v + X, v + Y) ≥ −‖X‖‖Y‖‖v‖2 +

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y‖

2

‖v‖2 . (B.5)

Proof. We are interested in vectors X and Y which maximize the angle between v + X
and v + Y. Since

α(v + X, v + Y) = cos(^(v + X, v + Y)) (B.6)

and cos is monotonically decreasing on [0, π] such X and Y will minimize the cosine
similarity α. As ‖X‖ < ‖v‖ and ‖Y‖ < ‖v‖ the angle will be maximized if and only
if v, X and Y share a common 2-dimensional hyperplane, X is perpendicular to v + X
and Y is perpendicular to v + Y and X and Y point into opposite directions (Figure
B.2). It then holds by the trigonometric property of the sine that

sin(^(v, v + X)) =
‖X‖
‖v‖ (B.7)

and

sin(^(v, v + Y)) =
‖Y‖
‖v‖ (B.8)

B.1. Proving the Separation Theorem 117

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

v

XY

v + X
v + Y

FIGURE B.2: We are interested in a configuration for which the angle between v + X
and v + Y is maximized (red in the plot). As ‖X‖ < ‖v‖ and ‖Y‖ < ‖v‖ this is
exactly the case if the line {β(v + X)|β ∈ R} is tangential to the circle with center v
and radius ‖X‖ and the line {β(v + Y)|β ∈ R} is tangential to the circle with center

v and radius ‖Y‖.

and hence

cos(^(v + X, v + Y)) = cos(^(v + X) +^(v + Y)) (B.9)

≥ cos(sin−1(
‖X‖
‖v‖) + sin−1(

‖Y‖
‖v‖)). (B.10)

Since

cos(sin−1(x) + sin−1(y)) = −xy +
√

1− x2
√

1− y2 (B.11)

the result follows after re-arranging terms.

Lemma 6. Let v, w, X, Y ∈ Rd with ‖X‖ < ‖v‖, ‖Y‖ < ‖w‖ and define

h(v, w, X, Y) := −‖X‖‖Y‖‖v‖2 +

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y‖

2

‖v‖2 (B.12)

If

〈v, w〉
‖v‖‖w‖ ≤ h(v, w, X, Y) (B.13)

then it holds

α(v + X, w + Y) ≤α(v, w)h(v, w, X, Y) (B.14)

+
√

1− α(v, w)2
√

1− h(v, w, X, Y)2 (B.15)

Proof. Analogously to the argument in Figure B.2, the angle between v+ X and w+Y
is minimized, when v, w, X and Y share a common 2-dimensional hyperplane, X is

118 Appendix B. Clustered Federated Learning

orthogonal to v + X, Y is orthogonal to w + Y, and X and Y point towards each other.
The minimum possible angle is then given by

^(v + X, w + Y) = ^(v, w)−^(v, v + X)−^(w, w + Y) (B.16)
≥ max(0, (B.17)

cos−1(
〈v, w〉
‖v‖‖w‖) (B.18)

− sin−1(
‖X‖
‖v‖)+ (B.19)

− sin−1(
‖Y‖
‖v‖)) (B.20)

which can be simplified to

^(v + X, w + Y) ≥ max(0, cos−1(
〈v, w〉
‖v‖‖w‖) (B.21)

− cos−1(−‖X‖‖Y‖‖v‖2 +

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y‖

2

‖v‖2)) (B.22)

Under condition (B.13) then second term in the maximum is greater than zero and
we get

cos(^(v + X, v + Y)) (B.23)

≤ cos(cos−1(
〈v, w〉
‖v‖‖w‖) (B.24)

− cos−1(−‖X‖‖Y‖‖v‖2 +

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y‖

2

‖v‖2)) (B.25)

≤ cos(cos−1(α(v, w))− cos−1(h(v, w, X, Y))) (B.26)

Since

cos(cos−1(x)− cos−1(y)) = xy +
√

1− x2
√

1− y2 (B.27)

the result follows after re-arranging terms.

Lemma 7. Let v1, .., vK ∈ Rd, d ≥ 2, γ1, .., γK ∈ R>0 and

K

∑
i=1

γivi = 0 ∈ Rd (B.28)

then there exists a bi-partitioning of the vectors c1 ∪ c2 = {1, .., K} such that

max
i∈c1,j∈c2

α(vi, vj) ≤ cos(
π

K− 1
) (B.29)

Proof. Lemma 7 can be equivalently stated as follows:

B.1. Proving the Separation Theorem 119

Let v1, .., vK ∈ Rd, d ≥ 2, γ1, .., γK ∈ R>0 and

K

∑
i=1

γivi = 0 ∈ Rd (B.30)

then there exists a bi-partitioning of the vectors c1 ∪ c2 = {1, .., K} such that

min
i∈c1,j∈c2

^(vi, vj) ≥
π

K− 1
(B.31)

As the angle between two vectors is invariant under multiplication with positive
scalars γ > 0 we can assume w.l.o.g that γi = 1 i = 1, .., K.

Let us first consider the case where d = 2. Let e1 ∈ R2 be the first standard basis
vector and assume w.l.o.g that the vectors v1, .., vK are sorted w.r.t. their angular
distance to e1 (they are arranged circular as shows in Figure B.3). As all vectors lie in
the 2d plane, we know that the sum of the angles between all neighboring vectors
has to be equal to 2π.

K

∑
i=1

^(vi, v(i+1) mod K) = 2π (B.32)

Now let

i∗1 = arg max
i∈{1,..,K}

^(vi, v(i+1) mod K) (B.33)

and

i∗2 = arg max
i∈{1,..,K}\i∗1

^(vi, v(i+1) mod K) (B.34)

be the indices of the largest and second largest angles between neighboring vectors
and define the following clusters:

c1 = {i mod K|i∗1 < i ≤ i∗2 + K[i∗2 < i∗1]} (B.35)
c2 = {i mod K|i∗2 < i ≤ i∗1 + K[i∗2 > i∗1]}} (B.36)

where [x] = 1 if x is true and [x] = 0 is x is false. Then by construction the second
largest angle ^(vi∗2 , v(i∗2+1) mod K) minimizes the angle between any two vectors from
the two different clusters c1, c2 (see Figure B.3 for an illustration):

min
i∈c1,j∈c2

^(vi, vj) = ^(vi∗2 , v(i∗2+1) mod K) (B.37)

Hence in d = 2 we can always find a partitioning c1, c2 s.t. the minimum angle
between any two vectors from different clusters is greater or equal to the 2nd largest
angle between neighboring vectors. This means the worst case configuration of
vectors is one where the 2nd largest angle between neighboring vectors is minimized.
As the sum of all K angles between neighboring vectors is constant according to
(B.32), this is exactly the case when the largest angle between neighboring vectors is
maximized and all other K− 1 angles are equal.

Assume now that the angle between two neighboring vectors is greater than π.
That would mean that there exists a separating line l which passes through the origin
and all vectors v1, .., vK lie on one side of that line. This however is impossible since

120 Appendix B. Clustered Federated Learning

∑K
l=1 vl = 0. This means that the largest angle between neighboring vectors can not

be greater than π. Hence in the worst-case scenario

^(vi∗2 , v(i∗2+1) mod K) ≥
2π − π

K− 1
=

π

K− 1
. (B.38)

This concludes the proof for d = 2.
Now consider he case where d > 2. Let c1, c2 be a clustering which maximizes the

minimum angular distance between any two clients from different clusters. Let

i∗, j∗ = arg min
i∈c1,j∈c2

^(vi, vj) (B.39)

then vi∗ and vj∗ are the two vectors with minimal angular distance. Let A = [vi∗ , vj∗] ∈
Rd,2 and consider now the projection matrix

P = A(AT A)−1AT (B.40)

which projects all d-dimensional vectors onto the plane spanned by vi∗ and vj∗ . Then
be linearity of the projection we have

0 = P0 = P(
K

∑
i=1

vi) =
K

∑
i=1

P(vi) (B.41)

Hence the projected vectors also satisfy the condition of the Lemma. As

^(Pvi∗ , Pvj∗) = ^(vi∗ , vj∗) (B.42)

and

^(Pvi, Pvj) ≥ ^(vi, vj) (B.43)

for all i, j /∈ {i∗, j∗} the clustering c1, c2 is still optimal after projecting and we have
found a 2d configuration of vectors satisfying the assumptions of Lemma 7 with the
same minimal cross-cluster angle. In other words, we have reduced the d > 2 case
to the d = 2 case, for which we have already proven the result. This concludes the
proof.

Theorem 8 (Separation Theorem). Let D1, .., DM be the local training data of M different
clients, each dataset sampled from one of K different data generating distributions ϕ1, .., ϕK,
such that Di ∼ ϕI(i)(x, y). Let the empirical risk on every client approximate the true risk at
every stationary solution of the Federated Learning objective θ∗ s.t.

‖∇RI(i)(θ
∗)‖ > ‖∇RI(i)(θ

∗)−∇ri(θ
∗)‖ (B.44)

and define

γi :=
‖∇RI(i)(θ

∗)−∇ri(θ
∗)‖

‖∇RI(i)(θ∗)‖
∈ [0, 1) (B.45)

Then there exists a bi-partitioning c∗1 ∪ c∗2 = {1, .., M} of the client population such that that
the maximum similarity between the updates from any two clients from different clusters can

B.1. Proving the Separation Theorem 121

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

v1

v2

v5
v4
v3

v6

v0

1

2

Cluster 1

Cluster 2
Line l

FIGURE B.3: Possible configuration in d = 2. The largest and 2nd largest angle
between neighboring vectors (red) separate the two optimal clusters. The largest

angle between neighboring vectors is never greater than π.

be bounded from above according to

αmax
cross := min

c1∪c2={1,..,M}
max

i∈c1,j∈c2
α(∇ri(θ

∗),∇rj(θ
∗)) (B.46)

= max
i∈c∗1 ,j∈c∗2

α(∇ri(θ
∗),∇rj(θ

∗)) (B.47)

≤
{

cos(π
K−1)Hi,j + sin(π

K−1)
√

1− H2
i,j if H ≥ cos(π

K−1)

1 else
(B.48)

with

Hi,j = −γiγj +
√

1− γ2
i

√
1− γ2

j ∈ (−1, 1]. (B.49)

At the same time the similarity between updates from clients which share the same data
generating distribution can be bounded from below by

αmin
intra := min

i,j
I(i)=I(j)

α(∇θri(θ
∗),∇θrj(θ

∗)) ≥ min
i,j

I(i)=I(j)

Hi,j. (B.50)

Proof. For the first result, we know that in every stationary solution of the Federated
Learning objective θ∗ it holds

K

∑
l=1

γi∇θ Rl(θ
∗) = 0 (B.51)

and hence by Lemma 7 there exists a bi-partitioning ĉ1 ∪ ĉ2 = {1, .., K} such that

max
l∈ĉ1,j∈ĉ2

α(∇θ Rl(θ
∗),∇θ Rj(θ

∗)) ≤ cos(
π

K− 1
) (B.52)

122 Appendix B. Clustered Federated Learning

Let

c1 = {i|I(i) ∈ ĉ1, i = 1, .., M} (B.53)

and

c2 = {i|I(i) ∈ ĉ2, i = 1, .., M} (B.54)

and set for some i ∈ c1 and j ∈ c2:

v = ∇θ RI(i)(θ
∗) (B.55)

X = ∇θri(θ
∗)−∇θ RI(i)(θ

∗) (B.56)

w = ∇θ RI(j)(θ
∗) (B.57)

Y = ∇θrj(θ
∗)−∇θ RI(j)(θ

∗) (B.58)

Then α(v, w) ≤ cos(π
K−1) and the result follows directly from Lemma 6.

The second result follows directly from Lemma 5 by setting

v = ∇θ RI(i)(θ
∗) (B.59)

X = ∇θri(θ
∗)−∇θ RI(i)(θ

∗) (B.60)

Y = ∇θrj(θ
∗)−∇θ RI(i)(θ

∗) (B.61)

123

Appendix C

Federated Learning with Auxiliary
Data

C.1 Proof of Theorem 4

The Theorem states that if R(·) is differentiable and 1-strongly convex and l is differ-
entiable with |l′(z)| ≤ 1 ∀z, then the `2-sensitivity ∆2(M) of the mechanism

M : Di 7→ arg min
w

J(w, h0, Di, D−) (C.1)

is at most 2(λ(|Di|+ |D−|))−1.

Proof. The proof is an adaptation of the result shown in (Chaudhuri, Monteleoni, and
Sarwate, 2011). We have

J(w, h0, Di, D−) =a ∑
x∈Di∪D−

l(tx〈w, h̃0(x)〉) + λR(w) (C.2)

with tx = 2(1x∈Di)− 1 ∈ [−1, 1], a = (|Di|+ |D−|)−1 and

h̃0(x) = h0(x)(max
x∈D−∪Di

‖h0(x)‖)−1. (C.3)

Let Di = {x1, .., xN} and D′i = {x1, .., x′N} be two local data sets that differ in only
one element. For arbitrary D− and h0 define

w∗ = arg min
w

J(w, h0, Di, D−), (C.4)

v∗ = arg min
w

J(w, h0, D′i , D−), (C.5)

n(w) = J(w, h0, Di, D−) (C.6)

and

m(w) = J(w, h0, Di, D−)− J(w, h0, D′i , D−) (C.7)

Since

m(w) = a(l(tx〈w, h0(xN)〉)− l(tx〈w, h0(x′N)〉)) (C.8)

124 Appendix C. Federated Learning with Auxiliary Data

we have

∇m(w) = a(txl′(tx〈w, h0(xN)〉)h0(xN)
T− (C.9)

txl′(tx〈w, h0(x′N)〉)h0(x′N)
T) (C.10)

which can be bounded in norm

‖∇m(w)‖ = a(‖h0(xN)− h0(x′N)‖) (C.11)
≤ a(‖h0(xN)‖+ ‖h0(x′N)‖) (C.12)
≤ 2a (C.13)

as tx ∈ [−1, 1], |l′(x)| ≤ 1 and

‖h̃0(x)‖ = ‖h0(x)(max
x∈Di∪D−

h0(x))−1‖ ≤ 1. (C.14)

Furthermore, since n(w) is λ-strongly convex it follows by Shalev-Schwartz in-
equality

(∇n(w∗)−∇n(v∗))T(w∗ − v∗) ≥ λ‖w∗ − v∗‖2. (C.15)

Combining this result with Cauchy-Schwartz inequality and

∇m(v∗) = ∇n(v∗)−∇n(w∗) (C.16)

yields

‖w∗ − v∗‖‖∇m(v∗)‖ ≥ (w∗ − v∗)T∇m(v∗) (C.17)

= (w∗ − v∗)T(∇n(v∗)−∇n(w∗)) (C.18)

≥ λ‖w∗ − v∗‖2 (C.19)

Thus

‖w∗ − v∗‖ ≤ ‖∇m(v∗)‖
λ

≤ 2a
λ

(C.20)

which concludes the proof.

C.2 Details on the implementation of different scoring mech-
anisms

The alternative scoring mechanisms used to obtain the results presented in Figure 7.4
are implemented as follows:

• Two-class SVM: To obtain the two-class SVM scoring model, we optimize a
Support Vector Machine with RBF kernel in the ERM objective (7.6), instead
of a Logistic Regression. We set the kernel bandwidth to γ = 1/(dσ2), where
d is the dimension of the features extracted by h0 and σ2 is the variance in the
extracted features {h0(x)|x ∈ Di ∪ D−}. The scores are then obtained by using
a Platt calibration (Platt et al., 1999) with a 5-fold cross-validation.

• One-class SVM: We train a one-class Support Vector Machine with RBF kernel
on only the extracted features of the local data {h0(x)|x ∈ Di} after standard

C.3. Additional Results and Detailed Training Curves 125

scaling. Like for the two-class SVM, we set the kernel bandwidth to γ =
1/(dσ2). The scores are obtained by transforming the anomaly scores provided
by the one-class SVM using a sigmoid function.

• Isolation Forest: We train an Isolation Forest F on the extracted features of the
local data {h0(x)|x ∈ Di} with the number of estimators set to n = 100. Scores
are obtained by min-max normalizing the anomaly scores (the lower, the more
abnormal), which we obtain by evaluating the distillation data Ddistill using the
trained Isolation Forest F.

• Kernel Density Estimation: We perform a Gaussian KDE on the extracted
features of the local data {h0(x)|x ∈ Di}. We set the kernel bandwith to γ = 0.5
and use the evaluation of the computed probability density in the points of the
local dataset as scores. All evaluations are then min-max normalized to fall into
the range of [0, 1].

• Random Scoring: Scores are drawn randomly from a uniform distribution

si(x) ∼ U ([0, 1]). (C.21)

• Equal Scoring: Scores are assigned as

si(x) =
1
2

. (C.22)

C.3 Additional Results and Detailed Training Curves

In this sections we give detailed training curves for the results shown in Figure 7.5.
As can be seen, in the highly non-iid setting at α ∈ {0.01, 0.04}, all methods exhibit
convergence issues. This behavior is well known in FL and is described for instance
in (Zhao et al., 2018; Sattler et al., 2020b). Notably, the performance of FEDAUX after
one single communication round exceeds the maximum achieved performance of
all other methods over the entire course of training. At higher values of α ≥ 0.16 all
methods train smoothly and validation performance asymptotically increases over
the curse of training. FEDAUX dominates all baseline methods at all communication
rounds in the heterogeneous settings. In the mostly iid-setting at α = 10.24 FEDAUX
is en par with the pre-trained version of FEDDF.

Table C.1 compares performance of FEDAUX to baseline methods on the CIFAR-
100 data set. Again FEDAUX outperforms FEDAVG and FEDDF across all level of
data heterogeneity α and shows superior performance to the improved FEDDF+P
when data is highly heterogeneous at α = {0.01, 0.04}. Interestingly in this setting
FEDDF+P manages to slightly outperform FEDAUX at medium data heterogeneity
levels α = {0.16, 0.64}. This indicates that our proposed differentially private cer-
tainty scoring method may insufficiently approximate the true client certainty in this
setting. We leave potential improvements of this mechanism for future work.

C.4 Details on generating Imagenet subsets

To simulate the effects of a wide variety of auxiliary data sets on the training perfor-
mance of FEDAUX, we generate different structured subsets of the ImageNet data
base (resized to 32× 32× 3). Each subset is defined via a top-level Wordnet ID which

126 Appendix C. Federated Learning with Auxiliary Data

0 100
Communication

Round

0.25

0.50

0.75

Ac
cu

ra
cy

= 0.01

0 100
Communication

Round

0.25

0.50

0.75

= 0.04

0 100
Communication

Round

0.25

0.50

0.75

= 0.16

0 100
Communication

Round

0.25

0.50

0.75

= 0.64

0 100
Communication

Round

0.25

0.50

0.75

= 2.56

0 100
Communication

Round

0.25

0.50

0.75

= 10.24

FedAVG FedDF FedDF+P FedAUX

FIGURE C.1: Detailed training curves for ResNet-8 trained on CIFAR-10, n = 80
Clients, C = 40%.

0 100
Communication

Round

0.25

0.50

0.75

Ac
cu

ra
cy

= 0.01

0 100
Communication

Round

0.25

0.50

0.75

= 0.04

0 100
Communication

Round

0.25

0.50

0.75

= 0.16

0 100
Communication

Round

0.25

0.50

0.75

= 0.64

0 100
Communication

Round

0.25

0.50

0.75

= 2.56

0 100
Communication

Round

0.25

0.50

0.75

= 10.24

FedAVG FedDF FedDF+P FedAUX

FIGURE C.2: Detailed training curves for MobileNetv2 trained on CIFAR-10, n = 100
Clients, C = 40%.

0 100
Communication

Round

0.25

0.50

0.75

Ac
cu

ra
cy

= 0.01

0 100
Communication

Round

0.25

0.50

0.75

= 0.04

0 100
Communication

Round

0.25

0.50

0.75

= 0.16

0 100
Communication

Round

0.25

0.50

0.75

= 0.64

0 100
Communication

Round

0.25

0.50

0.75

= 2.56

0 100
Communication

Round

0.25

0.50

0.75

= 10.24

FedAVG FedDF FedDF+P FedAUX

FIGURE C.3: Shufflenet trained on CIFAR-10, n = 100 Clients, C = 40%.

0 100
Communication

Round

0.25

0.50

0.75

Ac
cu

ra
cy

= 0.01

0 100
Communication

Round

0.25

0.50

0.75

= 0.04

0 100
Communication

Round

0.25

0.50

0.75

= 0.16

0 100
Communication

Round

0.25

0.50

0.75

= 0.64

0 100
Communication

Round

0.25

0.50

0.75

= 2.56

0 100
Communication

Round

0.25

0.50

0.75

= 10.24

FedAVG FedDF FedDF+P FedAUX

FIGURE C.4: Detailed training curves for mixed models trained on CIFAR-10. 20
each train ResNet8, MobileNetv2 and Shufflenet respectively.

is shown in Table C.2. To obtain the images from the subset, we select all leaf-node
IDs of the respective top-level IDs via the Imagenet API

http://www.image-net.org/api/text/wordnet.structure.hyponym?wnid=
<top-levelID>&full=1

and then take only those classes from the full Imagenet data set, which match these
leaf-node IDs. Table C.2 also shows the number of samples contained in every subset

http://www.image-net.org/api/text/wordnet.structure.hyponym?wnid=<top-level ID>&full=1
http://www.image-net.org/api/text/wordnet.structure.hyponym?wnid=<top-level ID>&full=1

C.5. Details on the Implementation and Results of the NLP Benchmarks 127

TABLE C.1: Results on data sets with higher number of classes. Training ResNet-8
on CIFAR-100. Accuracy achieved after T = 100 communication rounds by different
Federated Distillation methods at different levels of data heterogeneity α. STL-10 is

used as auxiliary data set.

α
0.01 0.04 0.16 0.64 2.56 10.24

FedAVG 24.1 36.3 47.2 50.7 52.2 52.2
FedDF 11.4 24.4 45.0 49.5 52.5 51.2
FedDF+P 18.2 42.0 58.0 60.8 61.6 62.0
FedAUX 34.1 47.4 56.4 60.7 62.5 62.5

TABLE C.2: Auxiliary data sets used in this study and their defining Wordnet IDs
and data sets sizes.

Data set Wordnet ID Dataset Size

Imagenet Devices n03183080 165747
Imagenet Birds n01503061 76541
Imagenet Animals n00015388 510530
Imagenet Dogs n02084071 147873
Imagenet Invertebrates n01905661 79300
Imagenet Structures n04341686 74400

that was generated this way.

C.5 Details on the Implementation and Results of the NLP
Benchmarks

As mentioned in section 4.3 Evaluating FEDAUX on NLP Benchmarks we used Tiny-
BERT as a model for our NLP experiments. TinyBERT was pre-trained on Bookcor-
pus1 which led us to select the same data set as a public data set in order to follow the
methodology outlined in section 7.1.3. As private data sets we chose the AG News
data set2 (Zhang, Zhao, and LeCun, 2015b), a topic classification data set, and the
english texts from the Multilingual Amazon Reviews Corpus3 (Keung et al., 2020),
which we use for predicting how many stars a review gets. The pre-trained weights
and the tokenizer for TinyBERT are available at the corresponding repository4. All
experiments were conducted using ε = 0.1 and δ = 10−5 as differential privacy pa-
rameters, 1 epoch for local training and distillation, ten clients and 100% participation
rate as well as 160000 disjoint data points, which were sampled from BookCorpus, for
the public and distillation data sets respectively. Furthermore the ADAM optimizer
with a learning rate of 10−5 was used for both local training and distillation. The
regularization strength of the logistic regression classifier was set to 0.01. The batch
size for Di, D− and Ddistill was 32. Detailed results for figure 7.6 are depicted in table
C.3.

1https://huggingface.co/datasets/bookcorpus
2https://huggingface.co/datasets/ag_news
3https://huggingface.co/datasets/amazon_reviews_multi
4https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D

https://huggingface.co/datasets/bookcorpus
https://huggingface.co/datasets/ag_news
https://huggingface.co/data sets/amazon_reviews_multi
https://huggingface.co/huawei-noah/TinyBERT_General_4L_312D

128 Appendix C. Federated Learning with Auxiliary Data

TABLE C.3: NLP Benchmarks of different FL methods. Maximum accuracy achieved
after T = 20 communication rounds at participation-rate C = 100%.

AG News Amazon
Method α = 0.01 α = 1.0 α = 0.01 α = 1.0

FEDAVG+P 78.80±4.40 92.17±1.98 41.70±0.58 55.17±0.40
FEDDF+P 78.05±7.64 90.83±0.25 38.04±0.84 54.63±0.66
FEDAUX 85.04±1.21 91.00±0.30 49.11±0.22 54.86±0.61

TABLE C.4: Best performing hyperparameter combinations for each method when
training ResNet8 with n = 20 clients for 50 communication rounds at a participation

rate of C = 40%. Methods sorted by top accuracy.

Method Alpha Local LR Distill LR λ FedProx Accuracy

FedPROX+P 100 0.001 - 0.0001 0.8946
FedAUX 0.001 1e-05 - 0.8941
FedDF+P 0.001 1e-05 - 0.8936
FedAVG+P 0.001 - - 0.8924
FedBE 0.001 1e-05 - 0.8246
FedPROX 0.001 - 0.001 0.8232
FedAVG 0.001 - - 0.8228
FedDF 0.001 1e-05 - 0.8210

FedAUX 0.01 0.001 0.0001 - 0.7501
FedPROX+P 0.01 - 0.01 0.6122
FedDF+P 0.001 0.001 - 0.4786
FedPROX 0.001 - 0.01 0.4145
FedAVG+P 0.001 - - 0.3929
FedDF 0.001 0.001 - 0.3481
FedBE 0.001 0.001 - 0.3196
FedAVG 0.0001 - - 0.2770

C.6 Hyperparameter Evaluation

In this section we provide a detailed hyperparameter analysis for our proposed
method and the baseline methods used in this study. For all methods we use the
very popular Adam optimizer for both local training and distillation. We vary
the learning rate in {1e − 2, 1e − 3, 1e − 4, 1e − 5} for local training an distillation.
For FedPROX, we vary the parameter λprox, controlling the proximal term in the
training objective in {1e− 2, 1e− 3, 1e− 4, 1e− 5}. Figure C.5 compares the maximum
achieved accuracy after 50 communication rounds for the different methods and
hyperparameter settings, for a FL setting with 20 clients training ResNet-8 on CIFAR-
10 at a participation-rate of 40%. The auxiliary data set we use is STL-10.

For each method and each level of data heterogeneity, table C.4 shows the accuracy
of the best performing combination of hyperparameters. As we can see FEDAUX
matches the performance of the best performing methods in the iid setting with
α = 100.0 and outperforms all other methods distinctively in the non-iid setting with
α = 0.01.

C.7 Empirical Privacy Evaluation

Our proposed method is provably differentially private and achieves state-of-the-
art performance, even at very conservative privacy levels. If not explicitly stated
otherwise, all results presented in this study were achieved with (ε, δ)-differentially

C.7. Empirical Privacy Evaluation 129

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAUX, = 100.0

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAUX, = 0.01

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDF, = 100.0

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDF, = 0.01
Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDF+P, = 100.0

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedDF+P, = 0.01
Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedBE, = 100.0

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.010.0010.00011e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedBE, = 0.01
Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedBE+P, = 100.0

Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedBE+P, = 0.01
Distill lr = 0.01
Distill lr = 0.001
Distill lr = 0.0001
Distill lr = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG, = 100.0

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG, = 0.01

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG+P, = 100.0

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedAVG+P, = 0.01

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedPROX, = 100.0

prox = 0.01
prox = 0.001
prox = 0.0001
prox = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedPROX, = 0.01
prox = 0.01
prox = 0.001
prox = 0.0001
prox = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedPROX+P, = 100.0

prox = 0.01
prox = 0.001
prox = 0.0001
prox = 1e-05

0.01 0.001 0.0001 1e-05
Local lr

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

FedPROX+P, = 0.01
prox = 0.01
prox = 0.001
prox = 0.0001
prox = 1e-05

FIGURE C.5: Results of our hyperparameter optimization for ResNet8. 20 Clients
are trained for 50 communication rounds, at a participation rate of C = 40%. Both

local training and distillation is performed for 1 epoch.

private certainty scores at conservative privacy parameters δ = 10−5 and ε = 0.1. In
this section, we additionally evaluate the privacy properties of the certainty scores
empirically. Figure C.6 shows, for four different clients, the 5 images x from the
distillation data set Ddistill , which were assigned the highest certainty score si(x) by
the client’s scoring model w∗i (left column). Displayed next to the images are their 4
nearest neighbors x′ in feature space which maximize the cosine-similarity

sim(x, x′) =
〈h0(x), h0(x′)〉
‖h0(x)‖‖h0(x′)‖ . (C.23)

In this example the clients hold non-iid subsets of CIFAR-10 (α = 0.01) and the
"Imagenet Dogs" (c.f. Appendix C.4) data set is used as auxiliary data. Using weighted
ensemble distillation in this setting improves training performance from 48.46% to
75.59%. As we can see, while certainty scores are able to inform the distillation
process and allow FEDAUX to outperform baseline methods on heterogeneous data,
they reveal only fuzzy, indirect information about the local training data. For instance,
client 1, which in this example is mainly holding data from the airplane class, assigns
the highest scores to pictures in the auxiliary data set that show dogs in cars or in
front of blue skies. From this it could be concluded that a majority of the clients
training data contains man-made objects in front of blue backgrounds, but direct
exposure of single data points is improbable.

130 Appendix C. Federated Learning with Auxiliary Data

Score: 0.9756 1-NN in loc. data 2-NN in loc. data 3-NN in loc. data 4-NN in loc. data

Score: 0.9662

Score: 0.9640

Score: 0.9248

Score: 0.8860

(a) Client 1: Images x from the distill data set with
the highest scores si(x) and their nearest neigh-
bors in feature space in the local data set Di.

Score: 0.9562 1-NN in loc. data 2-NN in loc. data 3-NN in loc. data 4-NN in loc. data

Score: 0.9375

Score: 0.9295

Score: 0.9142

Score: 0.9005

(b) Client 2: Images x from the distill data set with
the highest scores si(x) and their nearest neigh-
bors in feature space in the local data set Di.

Score: 0.9525 1-NN in loc. data 2-NN in loc. data 3-NN in loc. data 4-NN in loc. data

Score: 0.9180

Score: 0.9167

Score: 0.8994

Score: 0.8877

(c) Client 3: Images x from the distill data set with
the highest scores si(x) and their nearest neigh-
bors in feature space in the local data set Di.

Score: 0.9867 1-NN in loc. data 2-NN in loc. data 3-NN in loc. data 4-NN in loc. data

Score: 0.9571

Score: 0.9253

Score: 0.8883

Score: 0.8562

(d) Client 4: Images x from the distill data set with
the highest scores si(x) and their nearest neigh-
bors in feature space in the local data set Di.

FIGURE C.6: Data points x from the auxiliary data set which were assigned the
highest scores si(x) and their nearest neighbors in the data of 4 randomly selected
clients Di. Clients hold non-iid subsets from the CIFAR-10 data set (α = 0.01).
Auxiliary data used is ImageNet Dogs (cf. Appendix C.4). No differential privacy is

used.

Note that there exist also many FL scenarios in which the server is assumed to be
trustworthy, and only the final trained model which is released to the public needs
to be privately sanitized. In these settings, direct inspection of certainty scores by
outside adversaries is not possible and thus privacy loss through certainty scores is
even less critical. Future work could also explore the use encryption-based techniques
for secure weighted aggregation of client predictions.

131

Bibliography

Abadi, Martin et al. (2016). “Deep learning with differential privacy”. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS),
pp. 308–318.

Abdar, Moloud et al. (2021). “A review of uncertainty quantification in deep learning:
Techniques, applications and challenges”. In: Information Fusion.

Aji, Alham Fikri and Kenneth Heafield (2017). “Sparse Communication for Dis-
tributed Gradient Descent”. In: Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017. Association for Computational Linguistics, pp. 440–445. DOI: 10.
18653/v1/d17-1045. URL: https://doi.org/10.18653/v1/d17-1045.

Alistarh, Dan et al. (2017). “QSGD: Communication-efficient SGD via gradient quan-
tization and encoding”. In: Advances in Neural Information Processing Systems,
pp. 1709–1720.

Amiri, Mohammad Mohammadi and Deniz Gündüz (2020a). “Federated learning
over wireless fading channels”. In: IEEE Transactions on Wireless Communications
19.5, pp. 3546–3557.

— (2020b). “Machine learning at the wireless edge: Distributed stochastic gradient
descent over-the-air”. In: IEEE Transactions on Signal Processing 68, pp. 2155–2169.

Bagdasaryan, Eugene et al. (2020). “How To Backdoor Federated Learning”. In: The
23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020,
26-28 August 2020, Online [Palermo, Sicily, Italy]. Vol. 108. Proceedings of Machine
Learning Research. PMLR, pp. 2938–2948. URL: http://proceedings.mlr.press/
v108/bagdasaryan20a.html.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine
Translation by Jointly Learning to Align and Translate”. In: 3rd International Con-
ference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. URL: http://arxiv.org/abs/1409.0473.

Bellet, Aurélien et al. (2018). “Personalized and Private Peer-to-Peer Machine Learn-
ing”. In: International Conference on Artificial Intelligence and Statistics, AISTATS 2018,
9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands, Spain. Vol. 84. Proceedings
of Machine Learning Research. PMLR, pp. 473–481. URL: http://proceedings.
mlr.press/v84/bellet18a.html.

Bernstein, Jeremy et al. (2018). “SIGNSGD: Compressed Optimisation for Non-Convex
Problems”. In: Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Vol. 80.
Proceedings of Machine Learning Research. PMLR, pp. 559–568. URL: http :
//proceedings.mlr.press/v80/bernstein18a.html.

Bhagoji, Arjun Nitin et al. (2019). “Analyzing Federated Learning through an Adver-
sarial Lens”. In: Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA. Vol. 97. Proceedings of
Machine Learning Research. PMLR, pp. 634–643. URL: http://proceedings.mlr.
press/v97/bhagoji19a.html.

https://doi.org/10.18653/v1/d17-1045
https://doi.org/10.18653/v1/d17-1045
https://doi.org/10.18653/v1/d17-1045
http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://proceedings.mlr.press/v108/bagdasaryan20a.html
http://arxiv.org/abs/1409.0473
http://proceedings.mlr.press/v84/bellet18a.html
http://proceedings.mlr.press/v84/bellet18a.html
http://proceedings.mlr.press/v80/bernstein18a.html
http://proceedings.mlr.press/v80/bernstein18a.html
http://proceedings.mlr.press/v97/bhagoji19a.html
http://proceedings.mlr.press/v97/bhagoji19a.html

132 Bibliography

Bhowmick, Abhishek et al. (2018). “Protection against reconstruction and its applica-
tions in private federated learning”. In: arXiv preprint arXiv:1812.00984.

Bistritz, Ilai, Ariana J. Mann, and Nicholas Bambos (2020). “Distributed Distillation for
On-Device Learning”. In: 34th Conference on Neural Information Processing Systems
(NeurIPS).

Blanchard, Peva, Rachid Guerraoui, Julien Stainer, et al. (2017). “Machine learning
with adversaries: Byzantine tolerant gradient descent”. In: Advances in Neural
Information Processing Systems, pp. 119–129.

Bonawitz, Keith et al. (2017). “Practical secure aggregation for privacy-preserving ma-
chine learning”. In: 2017 ACM SIGSAC Conference on Computer and Communications
Security, pp. 1175–1191.

Bonawitz, Keith et al. (2019). “Towards Federated Learning at Scale: System Design”.
In: Proceedings of Machine Learning and Systems 2019, MLSys 2019, Stanford, CA,
USA, March 31 - April 2, 2019. mlsys.org. URL: https://proceedings.mlsys.org/
book/271.pdf.

Bosse, Sebastian et al. (2018). “Deep Neural Networks for No-Reference and Full-
Reference Image Quality Assessment”. In: IEEE Transactions on Image Processing
27.1, pp. 206–219.

Briggs, Christopher, Zhong Fan, and Peter Andras (2020). “Federated learning with
hierarchical clustering of local updates to improve training on non-IID data”. In:
2020 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–9.

Brown, Tom B. et al. (2020). “Language Models are Few-Shot Learners”. In: Advances
in Neural Information Processing Systems (NeurIPS). Vol. 33.

Caldas, Sebastian et al. (2018a). “Expanding the Reach of Federated Learning by
Reducing Client Resource Requirements”. In: CoRR abs/1812.07210. arXiv: 1812.
07210. URL: http://arxiv.org/abs/1812.07210.

Caldas, Sebastian et al. (2018b). “Leaf: A benchmark for federated settings”. In: arXiv
preprint arXiv:1812.01097.

Carlini, Nicholas et al. (2018). “The secret sharer: Measuring unintended neural
network memorization & extracting secrets”. In: arXiv preprint arXiv:1802.08232.

Caruana, Rich (1997). “Multitask learning”. In: Machine learning 28.1, pp. 41–75.
Chang, Hongyan et al. (2019). “Cronus: Robust and heterogeneous collaborative

learning with black-box knowledge transfer”. In: arXiv preprint arXiv:1912.11279.
Chaudhuri, Kamalika, Claire Monteleoni, and Anand D. Sarwate (2011). “Differen-

tially Private Empirical Risk Minimization”. In: J. Mach. Learn. Res. 12, pp. 1069–
1109.

Chen, Bryant et al. (2018a). “Detecting backdoor attacks on deep neural networks by
activation clustering”. In: arXiv preprint arXiv:1811.03728.

Chen, Hong-You and Wei-Lun Chao (2020). “FedDistill: Making bayesian model
ensemble applicable to federated learning”. In: arXiv preprint arXiv:2009.01974.

Chen, Jianmin et al. (2016a). “Revisiting distributed synchronous SGD”. In: arXiv
preprint arXiv:1604.00981.

Chen, Lingjiao et al. (2018b). “DRACO: Byzantine-resilient Distributed Training
via Redundant Gradients”. In: Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15,
2018. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 902–911.
URL: http://proceedings.mlr.press/v80/chen18l.html.

Chen, Mingzhe et al. (2020a). “Convergence Time Minimization of Federated Learning
over Wireless Networks”. In: ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pp. 1–6. DOI: 10.1109/ICC40277.2020.9148815.

https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/271.pdf
https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/1812.07210
http://arxiv.org/abs/1812.07210
http://proceedings.mlr.press/v80/chen18l.html
https://doi.org/10.1109/ICC40277.2020.9148815

Bibliography 133

Chen, Ting et al. (2020b). “A Simple Framework for Contrastive Learning of Visual
Representations”. In: Proceedings of the 37th International Conference on Machine
Learning (ICML), pp. 1597–1607.

Chen, Xuhui et al. (2018c). “When machine learning meets blockchain: A decentral-
ized, privacy-preserving and secure design”. In: 2018 IEEE International Conference
on Big Data (Big Data). IEEE, pp. 1178–1187.

Chen, Yudong, Lili Su, and Jiaming Xu (2017). “Distributed statistical machine learn-
ing in adversarial settings: Byzantine gradient descent”. In: Proceedings of the ACM
on Measurement and Analysis of Computing Systems 1.2, p. 44.

Chen, Yunji et al. (2016b). “DianNao family: energy-efficient hardware accelerators
for machine learning”. In: Communications of the ACM 59.11, pp. 105–112.

Chilimbi, Trishul M et al. (2014). “Project Adam: Building an Efficient and Scalable
Deep Learning Training System.” In: OSDI. Vol. 14, pp. 571–582.

Chong, Kai Fong Ernest (2020). “A closer look at the approximation capabilities of
neural networks”. In: 8th International Conference on Learning Representations (ICLR).
OpenReview.net. URL: https://openreview.net/forum?id=rkevSgrtPr.

Coates, Adam, Andrew Ng, and Honglak Lee (2011). “An analysis of single-layer
networks in unsupervised feature learning”. In: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), pp. 215–223.

Cohen, Gregory et al. (2017). “EMNIST: an extension of MNIST to handwritten letters”.
In: arXiv preprint arXiv:1702.05373.

Corinzia, Luca and Joachim M Buhmann (2019). “Variational Federated Multi-Task
Learning”. In: arXiv preprint arXiv:1906.06268.

Courbariaux, Matthieu, Yoshua Bengio, and Jean-Pierre David (2015). “BinaryCon-
nect: Training Deep Neural Networks with binary weights during propagations”.
In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 28, pp. 3123–
3131.

Courtiol, Pierre et al. (2019). “Deep learning-based classification of mesothelioma
improves prediction of patient outcome”. In: Nature medicine 25.10, pp. 1519–1525.

Creemers, R (2016). “Cybersecurity Law of the People’s Republic of China (Third
Reading Draft)”. In: China Copyright and Media.

De Sa, Christopher et al. (2015). “Taming the wild: A unified analysis of hogwild!-style
algorithms”. In: Advances in neural information processing systems 28, p. 2656.

Dean, Jeffrey and Sanjay Ghemawat (2008). “MapReduce: simplified data processing
on large clusters”. In: Communications of the ACM 51.1, pp. 107–113.

Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In:
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 248–255.

Devlin, Jacob et al. (2019). “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, (NAACL-HLT). Vol. 1, pp. 4171–4186.

Ding, Zhiguo et al. (2017). “Application of Non-Orthogonal Multiple Access in LTE
and 5G Networks”. In: IEEE Communications Magazine 55.2, pp. 185–191. DOI:
10.1109/MCOM.2017.1500657CM.

Duan, Moming et al. (2020). “FedGroup: Ternary Cosine Similarity-based Clustered
Federated Learning Framework toward High Accuracy in Heterogeneity Data”.
In: arXiv preprint arXiv:2010.06870.

Dwork, Cynthia and Aaron Roth (2014). “The Algorithmic Foundations of Differential
Privacy”. In: Found. Trends Theor. Comput. Sci. 9.3-4, pp. 211–407.

https://openreview.net/forum?id=rkevSgrtPr
https://doi.org/10.1109/MCOM.2017.1500657CM

134 Bibliography

Fang, Minghong et al. (2020). “Local model poisoning attacks to Byzantine-robust
federated learning”. In: 29th {USENIX} Security Symposium ({USENIX} Security
20), pp. 1605–1622.

Fredrikson, Matt, Somesh Jha, and Thomas Ristenpart (2015). “Model inversion
attacks that exploit confidence information and basic countermeasures”. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, pp. 1322–1333.

Fung, Clement, Chris JM Yoon, and Ivan Beschastnikh (2018). “Mitigating sybils in
federated learning poisoning”. In: arXiv preprint arXiv:1808.04866.

Geiping, Jonas et al. (2020). “Inverting Gradients - How easy is it to break privacy
in federated learning?” In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual. URL: https://proceedings.neurips.cc/paper/
2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html.

Geyer, Robin C, Tassilo Klein, and Moin Nabi (2017). “Differentially private federated
learning: A client level perspective”. In: arXiv preprint arXiv:1712.07557.

Ghosh, Avishek et al. (2019). “Robust Federated Learning in a Heterogeneous Envi-
ronment”. In: arXiv preprint arXiv:1906.06629.

Goldreich, Oded (1998). “Secure multi-party computation”. In: Manuscript. Preliminary
version 78.

Golomb, Solomon (1966). “Run-length encodings (Corresp.)” In: IEEE transactions on
information theory 12.3, pp. 399–401.

Goodfellow, Ian J et al. (2013). “An empirical investigation of catastrophic forgetting
in gradient-based neural networks”. In: arXiv preprint arXiv:1312.6211.

Graves, Alex and Jürgen Schmidhuber (2005). “Framewise phoneme classification
with bidirectional LSTM and other neural network architectures”. In: Neural
Networks 18.5-6, pp. 602–610.

Guha, Neel, Ameet Talwalkar, and Virginia Smith (2019). “One-Shot Federated Learn-
ing”. In: arXiv preprint arXiv:1902.11175.

Hard, Andrew et al. (2018). “Federated Learning for Mobile Keyboard Prediction”.
In: URL: https://arxiv.org/abs/1811.03604.

Hashem, Sherif and Bruce Schmeiser (1993). “Approximating a function and its
derivatives using MSE-optimal linear combinations of trained feedforward neural
networks”. In: Proceedings of the World Congress on Neural Networks. Vol. 1, pp. 617–
620.

He, Kaiming et al. (2016). “Deep Residual Learning for Image Recognition”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778.

Hinton, Geoffrey, Oriol Vinyals, and Jeffrey Dean (2015). “Distilling the Knowledge in
a Neural Network”. In: NIPS Deep Learning and Representation Learning Workshop.
URL: http://arxiv.org/abs/1503.02531.

Hinton, Geoffrey et al. (2012). “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups”. In: IEEE Signal Processing
Magazine 29.6, pp. 82–97.

Hitaj, Briland, Giuseppe Ateniese, and Fernando Perez-Cruz (2017). “Deep mod-
els under the GAN: information leakage from collaborative deep learning”. In:
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, pp. 603–618.

Hoffman, Judy, Mehryar Mohri, and Ningshan Zhang (2018). “Algorithms and Theory
for Multiple-Source Adaptation”. In: Advances in Neural Information Processing
Systems (NeurIPS). Vol. 31, pp. 8256–8266.

https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c4ede56bbd98819ae6112b20ac6bf145-Abstract.html
https://arxiv.org/abs/1811.03604
http://arxiv.org/abs/1503.02531

Bibliography 135

Hsu, Tzu-Ming Harry, Hang Qi, and Matthew Brown (2019). “Measuring the effects
of non-identical data distribution for federated visual classification”. In: arXiv
preprint arXiv:1909.06335.

Huang, Gao et al. (2017). “Densely connected convolutional networks”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. Vol. 1. 2, p. 3.

Huang, Yanping et al. (2019). “GPipe: Efficient Training of Giant Neural Networks
using Pipeline Parallelism”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 32, pp. 103–112.

Hwang, Kai (2017). Cloud computing for machine learning and cognitive applications. MIT
Press.

Inan, Hakan, Khashayar Khosravi, and Richard Socher (2017). “Tying Word Vectors
and Word Classifiers: A Loss Framework for Language Modeling”. In: 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net. URL: https://openreview.
net/forum?id=r1aPbsFle.

Ioffe, Sergey (2017). “Batch renormalization: Towards reducing minibatch dependence
in batch-normalized models”. In: Advances in Neural Information Processing Systems,
pp. 1945–1953.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning, pp. 448–456.

Itahara, Sohei et al. (2020). “Distillation-Based Semi-Supervised Federated Learning
for Communication-Efficient Collaborative Training with Non-IID Private Data”.
In: arXiv preprint arXiv:2008.06180.

Jacob, Laurent, Jean-philippe Vert, and Francis R Bach (2009). “Clustered multi-task
learning: A convex formulation”. In: Advances in neural information processing
systems, pp. 745–752.

Jeong, Eunjeong et al. (2018). “Communication-efficient on-device machine learning:
Federated distillation and augmentation under non-iid private data”. In: arXiv
preprint arXiv:1811.11479.

Jeong, Wonyong et al. (2020). “Federated semi-supervised learning with inter-client
consistency”. In: arXiv preprint arXiv:2006.12097.

Jia, Xianyan et al. (2018). “Highly scalable deep learning training system with mixed-
precision: Training imagenet in four minutes”. In: arXiv preprint arXiv:1807.11205.

Jiang, Peng and Gagan Agrawal (2018). “A linear speedup analysis of distributed
deep learning with sparse and quantized communication”. In: Advances in Neural
Information Processing Systems, pp. 2525–2536.

Jiao, Xiaoqi et al. (2020). “TinyBERT: Distilling BERT for Natural Language Under-
standing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: Findings (EMNLP), pp. 4163–4174.

Jiménez, Daniel (1998). “Dynamically weighted ensemble neural networks for clas-
sification”. In: IEEE International Joint Conference on Neural Networks Proceedings.
IEEE World Congress on Computational Intelligence. Vol. 1, pp. 753–756.

Kairouz, Peter et al. (2019). “Advances and open problems in federated learning”. In:
arXiv preprint arXiv:1912.04977.

Karpathy, Andrej and Li Fei-Fei (2015). “Deep visual-semantic alignments for gener-
ating image descriptions”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3128–3137.

Karpathy, Andrej et al. (2014). “Large-scale video classification with convolutional
neural networks”. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp. 1725–1732.

https://openreview.net/forum?id=r1aPbsFle
https://openreview.net/forum?id=r1aPbsFle

136 Bibliography

Keung, Phillip et al. (2020). “The Multilingual Amazon Reviews Corpus”. In: Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 4563–4568.

Kidger, Patrick and Terry J. Lyons (2020). “Universal Approximation with Deep
Narrow Networks”. In: Conference on Learning Theory (COLT). Vol. 125. Proceedings
of Machine Learning Research, pp. 2306–2327.

Kim, Yoon et al. (2016). “Character-Aware Neural Language Models”. In: Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA. AAAI Press, pp. 2741–2749. URL: http://www.aaai.org/ocs/
index.php/AAAI/AAAI16/paper/view/12489.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: 3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. URL: http://arxiv.
org/abs/1412.6980.

Koloskova, Anastasia et al. (2020). “Decentralized Deep Learning with Arbitrary
Communication Compression”. In: 8th International Conference on Learning Rep-
resentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.
URL: https://openreview.net/forum?id=SkgGCkrKvH.

Konecný, Jakub et al. (2016). “Federated Learning: Strategies for Improving Com-
munication Efficiency”. In: CoRR abs/1610.05492. arXiv: 1610.05492. URL: http:
//arxiv.org/abs/1610.05492.

Krizhevsky, Alex, Vinod Nair, and Geoffrey Hinton (2014). “The CIFAR-10 dataset”.
In: online: http://www. cs. toronto. edu/kriz/cifar. html.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classifica-
tion with deep convolutional neural networks”. In: Advances in neural information
processing systems, pp. 1097–1105.

Kumar, Abhishek and Hal Daumé III (2012). “Learning Task Grouping and Overlap in
Multi-task Learning”. In: Proceedings of the 29th International Conference on Machine
Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012. icml.cc /
Omnipress. URL: http://icml.cc/2012/papers/690.pdf.

Lalitha, Anusha et al. (2019). “Peer-to-peer federated learning on graphs”. In: arXiv
preprint arXiv:1901.11173.

LeCun, Yann (1998). “The MNIST database of handwritten digits”. In: http://yann.
lecun. com/exdb/mnist/.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: Nature
521.7553, pp. 436–444.

LeCun, Yann, John S. Denker, and Sara A. Solla (1990). “Optimal Brain Damage”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 2, pp. 598–605.

LeCun, Yann et al. (1989). “Handwritten digit recognition with a back-propagation
network”. In: Advances in Neural Information Processing Systems (NeurIPS). Vol. 2,
pp. 396–404.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Yann A et al. (2012). “Efficient backprop”. In: Neural networks: Tricks of the
trade. Springer, pp. 9–48.

Lewis, Theodore Gyle (1994). Foundations of parallel programming - a machine-independent
approach. IEEE. ISBN: 978-0-8186-5692-7.

Li, Daliang and Junpu Wang (2019). “FedMD: Heterogenous federated learning via
model distillation”. In: arXiv preprint arXiv:1910.03581.

Li, Fengfu, Bo Zhang, and Bin Liu (2016). “Ternary Weight Networks”. In: arXiv
preprint arXiv:1605.04711.

http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12489
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=SkgGCkrKvH
https://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
http://arxiv.org/abs/1610.05492
http://icml.cc/2012/papers/690.pdf

Bibliography 137

Li, Qinbin, Zeyi Wen, and Bingsheng He (2019). “Federated Learning Systems: Vision,
Hype and Reality for Data Privacy and Protection”. In: CoRR abs/1907.09693.
arXiv: 1907.09693. URL: http://arxiv.org/abs/1907.09693.

Li, Tian et al. (2019). “Privacy for Free: Communication-Efficient Learning with
Differential Privacy Using Sketches”. In: CoRR abs/1911.00972. arXiv: 1911.00972.
URL: http://arxiv.org/abs/1911.00972.

Li, Tian et al. (2020a). “Federated Optimization in Heterogeneous Networks”. In:
Proceedings of Machine Learning and Systems (MLSys).

Li, Xiang et al. (2020b). “On the convergence of FedAvg on non-iid data”. In: Pro-
ceedings of 8th International Conference on Learning Representations (ICLR). OpenRe-
view.net.

Lin, Tao et al. (2020a). “Don’t Use Large Mini-batches, Use Local SGD”. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net. URL: https://openreview.net/forum?id=
B1eyO1BFPr.

Lin, Tao et al. (2020b). “Ensemble Distillation for Robust Model Fusion in Feder-
ated Learning”. In: Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual. URL: https://proceedings.neurips.cc/paper/2020/hash/
18df51b97ccd68128e994804f3eccc87-Abstract.html.

Lin, Yujun et al. (2018). “Deep Gradient Compression: Reducing the Communication
Bandwidth for Distributed Training”. In: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net. URL: https://openreview.net/forum?id=
SkhQHMW0W.

Liu, Dong C. and Jorge Nocedal (1989). “On the limited memory BFGS method for
large scale optimization”. In: Math. Program. 45.1-3, pp. 503–528.

Mansour, Yishay, Mehryar Mohri, and Afshin Rostamizadeh (2008). “Domain Adap-
tation with Multiple Sources”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 21, pp. 1041–1048.

Marcus, Mitchell P, Mary Ann Marcinkiewicz, and Beatrice Santorini (1993). “Build-
ing a large annotated corpus of English: The Penn Treebank”. In: Computational
linguistics 19.2, pp. 313–330.

Marpe, Detlev, Heiko Schwarz, and Thomas Wiegand (2003). “Context-based adap-
tive binary arithmetic coding in the H. 264/AVC video compression standard”.
In: IEEE Trans. Circuits Syst. Video Technol. 13.7, pp. 620–636.

Masoudnia, Saeed and Reza Ebrahimpour (2014). “Mixture of experts: A literature
survey”. In: Artif. Intell. Rev. 42.2, pp. 275–293.

McLeod, Alexander and Diane Dolezel (2018). “Cyber-analytics: Modeling factors
associated with healthcare data breaches”. In: Decision Support Systems 108, pp. 57–
68.

McMahan, Brendan et al. (2017). “Communication-Efficient Learning of Deep Net-
works from Decentralized Data”. In: Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics (AISTATS), pp. 1273–1282.

Melis, Luca et al. (2019). “Exploiting Unintended Feature Leakage in Collaborative
Learning”. In: 2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, pp. 691–706. DOI: 10.1109/SP.2019.00029. URL:
https://doi.org/10.1109/SP.2019.00029.

Merity, Stephen et al. (2017). “Pointer Sentinel Mixture Models”. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

https://arxiv.org/abs/1907.09693
http://arxiv.org/abs/1907.09693
https://arxiv.org/abs/1911.00972
http://arxiv.org/abs/1911.00972
https://openreview.net/forum?id=B1eyO1BFPr
https://openreview.net/forum?id=B1eyO1BFPr
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/18df51b97ccd68128e994804f3eccc87-Abstract.html
https://openreview.net/forum?id=SkhQHMW0W
https://openreview.net/forum?id=SkhQHMW0W
https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/SP.2019.00029

138 Bibliography

Conference Track Proceedings. OpenReview.net. URL: https://openreview.net/
forum?id=Byj72udxe.

Mhamdi, El Mahdi El, Rachid Guerraoui, and Sébastien Rouault (2018). “The Hidden
Vulnerability of Distributed Learning in Byzantium”. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stock-
holm, Sweden, July 10-15, 2018. Vol. 80. Proceedings of Machine Learning Research.
PMLR, pp. 3518–3527. URL: http://proceedings.mlr.press/v80/mhamdi18a.
html.

Mills, Jed, Jia Hu, and Geyong Min (2019). “Communication-efficient federated learn-
ing for wireless edge intelligence in IoT”. In: IEEE Internet of Things Journal 7.7,
pp. 5986–5994.

Mohassel, Payman and Yupeng Zhang (2017). “Secureml: A system for scalable
privacy-preserving machine learning”. In: 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, pp. 19–38.

Montavon, Grégoire, Wojciech Samek, and Klaus-Robert Müller (2018). “Methods
for interpreting and understanding deep neural networks”. In: Digital Signal
Processing 73, pp. 1–15. ISSN: 1051-2004. DOI: https://doi.org/10.1016/j.dsp.
2017.10.011. URL: https://www.sciencedirect.com/science/article/pii/
S1051200417302385.

Moritz, Philipp et al. (2016). “SparkNet: Training Deep Networks in Spark”. In: 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings. URL: http://arxiv.org/abs/
1511.06051.

Muñoz-González, Luis, Kenneth T Co, and Emil C Lupu (2019). “Byzantine-Robust
Federated Machine Learning through Adaptive Model Averaging”. In: arXiv
preprint arXiv:1909.05125.

Muñoz-González, Luis et al. (2017). “Towards poisoning of deep learning algorithms
with back-gradient optimization”. In: Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security. ACM, pp. 27–38.

Nayak, Gaurav Kumar et al. (2019). “Zero-Shot Knowledge Distillation in Deep
Networks”. In: Proceedings of the 36th International Conference on Machine Learning,
(ICML), pp. 4743–4751.

Nelus, Alexandru, Rene Glitza, and Rainer Martin (2021). “Estimation of Microphone
Clusters in Acoustic Sensor Networks using Unsupervised Federated Learning”.
In: arXiv preprint arXiv:2102.03109.

Neumann, David et al. (2019). “DeepCABAC: Plug&Play Compression of Neural
Network Weights and Weight Updates”. In: Proceedings of the IEEE International
Conference on Image Processing (ICIP), pp. 21–25. DOI: 10.1109/ICIP40778.2020.
9190821. URL: https://dx.doi.org/10.1109/ICIP40778.2020.9190821.

Oala, Luis et al. (2020). “Interval Neural Networks: Uncertainty Scores”. In: arXiv
preprint arXiv:2003.11566.

Opitz, David W. and Richard Maclin (1999). “Popular Ensemble Methods: An Empiri-
cal Study”. In: J. Artif. Intell. Res. 11, pp. 169–198.

Papernot, Nicolas et al. (2018). “Scalable Private Learning with PATE”. In: Proceed-
ings of the 6th International Conference on Learning Representations (ICLR). OpenRe-
view.net.

Perrone, Michael P. and Leon N Cooper (1993). “When networks disagree: Ensemble
methods for hybrid neural networks”. In: Neural Networks for Speech and Image
Processing. Chapman and Hall.

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://proceedings.mlr.press/v80/mhamdi18a.html
http://proceedings.mlr.press/v80/mhamdi18a.html
https://doi.org/https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/https://doi.org/10.1016/j.dsp.2017.10.011
https://www.sciencedirect.com/science/article/pii/S1051200417302385
https://www.sciencedirect.com/science/article/pii/S1051200417302385
http://arxiv.org/abs/1511.06051
http://arxiv.org/abs/1511.06051
https://doi.org/10.1109/ICIP40778.2020.9190821
https://doi.org/10.1109/ICIP40778.2020.9190821
https://dx.doi.org/10.1109/ICIP40778.2020.9190821

Bibliography 139

Platt, John et al. (1999). “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods”. In: Advances in large margin
classifiers 10.3, pp. 61–74.

Qayyum, Adnan et al. (2021). “Collaborative Federated Learning For Healthcare:
Multi-Modal COVID-19 Diagnosis at the Edge”. In: arXiv preprint arXiv:2101.07511.

Radford, Alec et al. (2019). “Language models are unsupervised multitask learners”.
In: OpenAI blog 1.8, p. 9.

Ren, Jinke, Guanding Yu, and Guangyao Ding (2020). “Accelerating DNN training
in wireless federated edge learning systems”. In: IEEE Journal on Selected Areas in
Communications 39.1, pp. 219–232.

Ruder, Sebastian (2017). “An overview of multi-task learning in deep neural net-
works”. In: arXiv preprint arXiv:1706.05098.

Ruff, Lukas et al. (2018). “Deep one-class classification”. In: International conference on
machine learning. PMLR, pp. 4393–4402.

Ruff, Lukas et al. (2021). “A unifying review of deep and shallow anomaly detection”.
In: Proceedings of the IEEE.

Sahu, Anit Kumar et al. (2018). “On the convergence of federated optimization in
heterogeneous networks”. In: arXiv preprint arXiv:1812.06127.

Samek, Wojciech, Thomas Wiegand, and Klaus-Robert Müller (2018). “Explainable
Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning
Models”. In: ITU Journal: ICT Discoveries - Special Issue 1 - The Impact of Artificial
Intelligence (AI) on Communication Networks and Services 1.1, pp. 39–48.

Samek, Wojciech et al. (2021). “Explaining Deep Neural Networks and Beyond: A
Review of Methods and Applications”. In: Proceedings of the IEEE 109.3, pp. 247–
278. DOI: 10.1109/JPROC.2021.3060483.

Sandler, Mark et al. (2018). “MobileNetV2: Inverted Residuals and Linear Bottlenecks”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4510–4520.

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: Smaller, faster,
cheaper and lighter”. In: arXiv preprint arXiv:1910.01108.

Sattler, Felix, Klaus-Robert Müller, and Wojciech Samek (2019). “Clustered Federated
Learning”. In: Proceedings of the NeurIPS’19 Workshop on Federated Learning for Data
Privacy and Confidentiality, pp. 1–5.

Sattler, Felix, Klaus-Robert Müller, and Wojciech Samek (2020). “Clustered Federated
Learning: Model-Agnostic Distributed Multitask Optimization Under Privacy
Constraints”. In: IEEE Transactions on Neural Networks and Learning Systems, pp. 1–
13. DOI: 10.1109/TNNLS.2020.3015958. URL: https://doi.org/10.1109/TNNLS.
2020.3015958.

Sattler, Felix, Thomas Wiegand, and Wojciech Samek (2020). “Trends and Advance-
ments in Deep Neural Network Communication”. In: ITU Journal: ICT Discoveries
3.1, pp. 53–63.

Sattler, Felix et al. (2019). “Sparse Binary Compression: Towards Distributed Deep
Learning with minimal Communication”. In: Proceedings of the IEEE International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. DOI: 10.1109/IJCNN.2019.
8852172. URL: http://dx.doi.org/10.1109/IJCNN.2019.8852172.

Sattler, Felix et al. (2020a). “On the Byzantine Robustness of Clustered Federated
Learning”. In: Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 8861–8865. DOI: 10.1109/ICASSP40776.2020.
9054676. URL: http://dx.doi.org/10.1109/ICASSP40776.2020.9054676.

Sattler, Felix et al. (2020b). “Robust and Communication-Efficient Federated Learning
From Non-i.i.d. Data”. In: IEEE Transactions on Neural Networks and Learning

https://doi.org/10.1109/JPROC.2021.3060483
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/TNNLS.2020.3015958
https://doi.org/10.1109/IJCNN.2019.8852172
https://doi.org/10.1109/IJCNN.2019.8852172
http://dx.doi.org/10.1109/IJCNN.2019.8852172
https://doi.org/10.1109/ICASSP40776.2020.9054676
https://doi.org/10.1109/ICASSP40776.2020.9054676
http://dx.doi.org/10.1109/ICASSP40776.2020.9054676

140 Bibliography

Systems 31.9, pp. 3400–3413. DOI: 10.1109/TNNLS.2019.2944481. URL: https:
//doi.org/10.1109/TNNLS.2019.2944481.

Sattler, Felix et al. (2021a). “CFD: Communication-Efficient Federated Distillation
via Soft-Label Quantization and Delta Coding”. In: IEEE Transactions on Network
Science and Engineering, pp. 1–1. ISSN: 2327-4697. DOI: 10 . 1109 / TNSE . 2021 .
3081748. URL: https://dx.doi.org/10.1109/TNSE.2021.3081748.

Sattler, Felix et al. (2021b). “FedAUX: Leveraging Unlabeled Auxiliary Data in Feder-
ated Learning”. In: CoRR abs/2102.02514. URL: https://arxiv.org/abs/2102.
02514.

Sayood, Khalid (2017). Introduction to data compression. 5th. Morgan Kaufmann.
Schapire, Robert E. (1999). “A Brief Introduction to Boosting”. In: Proceedings of the

16th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1401–1406.
Seide, Frank et al. (2014). “1-bit stochastic gradient descent and its application to

data-parallel distributed training of speech dnns”. In: Fifteenth Annual Conference
of the International Speech Communication Association.

Seo, Hyowoon et al. (2020). “Federated Knowledge Distillation”. In: arXiv preprint
arXiv:2011.02367.

Sharkey, Amanda J. C. (1996). “On Combining Artificial Neural Nets”. In: Connect.
Sci. 8.3, pp. 299–314.

Shi, Shaohuai et al. (2019). “A distributed synchronous SGD algorithm with global
Top-k sparsification for low bandwidth networks”. In: 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, pp. 2238–2247.

Shlezinger, Nir, Stefano Rini, and Yonina C Eldar (2020). “The Communication-Aware
Clustered Federated Learning Problem”. In: 2020 IEEE International Symposium on
Information Theory (ISIT). IEEE, pp. 2610–2615.

Shokri, Reza and Vitaly Shmatikov (2015). “Privacy-preserving deep learning”. In:
Proceedings of the 22nd ACM SIGSAC conference on computer and communications
security. ACM, pp. 1310–1321.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. URL: http://arxiv.org/abs/1409.1556.

Smith, Virginia et al. (2017a). “CoCoA: A General Framework for Communication-
Efficient Distributed Optimization”. In: J. Mach. Learn. Res. 18, 230:1–230:49. URL:
http://jmlr.org/papers/v18/16-512.html.

Smith, Virginia et al. (2017b). “Federated multi-task learning”. In: Advances in Neural
Information Processing Systems, pp. 4424–4434.

Socher, Richard et al. (2013). “Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank”. In: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1631–1642.

Sollich, Peter and Anders Krogh (1995). “Learning with ensembles: How overfitting
can be useful”. In: Advances in Neural Information Processing Systems (NeurIPS).
Vol. 8, pp. 190–196.

Srivastava, Nitish et al. (2014). “Dropout: A simple way to prevent neural networks
from overfitting”. In: The Journal of Machine Learning Research 15.1, pp. 1929–1958.

Stich, Sebastian U, Jean-Baptiste Cordonnier, and Martin Jaggi (2018). “Sparsified SGD
with memory”. In: Advances in Neural Information Processing Systems, pp. 4447–
4458.

Strom, Nikko (2015). “Scalable distributed DNN training using commodity GPU
cloud computing”. In: INTERSPEECH 2015, 16th Annual Conference of the In-
ternational Speech Communication Association, Dresden, Germany, September 6-10,

https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNNLS.2019.2944481
https://doi.org/10.1109/TNSE.2021.3081748
https://doi.org/10.1109/TNSE.2021.3081748
https://dx.doi.org/10.1109/TNSE.2021.3081748
https://arxiv.org/abs/2102.02514
https://arxiv.org/abs/2102.02514
http://arxiv.org/abs/1409.1556
http://jmlr.org/papers/v18/16-512.html

Bibliography 141

2015. ISCA, pp. 1488–1492. URL: http : / / www . isca - speech . org / archive /
interspeech_2015/i15_1488.html.

Subramanyan, Pramod et al. (2017). “A formal foundation for secure remote execution
of enclaves”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, pp. 2435–2450.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learning
with Neural Networks”. In: Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada, pp. 3104–3112. URL: https://proceedings.neurips.
cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html.

Taylor, Robin, David Baron, and Daniel Schmidt (2015). “The world in 2025-predictions
for the next ten years”. In: 10th International Microsystems, Packaging, Assembly and
Circuits Technology Conference (IMPACT), pp. 192–195.

Tsuzuku, Yusuke, Hiroto Imachi, and Takuya Akiba (2018). “Variance-based Gradient
Compression for Efficient Distributed Deep Learning”. In: 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Workshop Track Proceedings. OpenReview.net. URL: https://openreview.
net/forum?id=Sy6hd7kvM.

Vanhaesebrouck, Paul, Aurélien Bellet, and Marc Tommasi (2017). “Decentralized
Collaborative Learning of Personalized Models over Networks”. In: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS
2017, 20-22 April 2017, Fort Lauderdale, FL, USA. Vol. 54. Proceedings of Machine
Learning Research. PMLR, pp. 509–517. URL: http://proceedings.mlr.press/
v54/vanhaesebrouck17a.html.

Vapnik, Vladimir (2013). The nature of statistical learning theory. Springer science &
business media.

Varma, Dandu Ravi (2012). “Managing DICOM images: Tips and tricks for the radiol-
ogist”. In: The Indian journal of radiology & imaging 22.1, p. 4.

Voigt, Paul and Axel Von dem Bussche (2017). “The eu general data protection
regulation (gdpr)”. In: A Practical Guide, 1st Ed.

Wang, Hongyi et al. (2018). “ATOMO: Communication-efficient Learning via Atomic
Sparsification”. In: Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pp. 9872–9883. URL: https://proceedings.neurips.
cc/paper/2018/hash/33b3214d792caf311e1f00fd22b392c5-Abstract.html.

Wang, Tongzhou and Phillip Isola (2020). “Understanding contrastive representation
learning through alignment and uniformity on the hypersphere”. In: International
Conference on Machine Learning. PMLR, pp. 9929–9939.

Warden, Pete (2018). “Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition”. In: arXiv preprint arXiv:1804.03209.

Wen, Wei et al. (2017). “TernGrad: Ternary Gradients to Reduce Communication in
Distributed Deep Learning”. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 1509–1519. URL: https://proceedings.neurips.
cc/paper/2017/hash/89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html.

Widrow, Bernard, Istvan Kollar, and Ming-Chang Liu (1996). “Statistical theory
of quantization”. In: IEEE Transactions on instrumentation and measurement 45.2,
pp. 353–361.

Wiedemann, Simon, Klaus-Robert Müller, and Wojciech Samek (2020). “Compact
and Computationally Efficient Representation of Deep Neural Networks”. In:

http://www.isca-speech.org/archive/interspeech_2015/i15_1488.html
http://www.isca-speech.org/archive/interspeech_2015/i15_1488.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://openreview.net/forum?id=Sy6hd7kvM
https://openreview.net/forum?id=Sy6hd7kvM
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
http://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://proceedings.neurips.cc/paper/2018/hash/33b3214d792caf311e1f00fd22b392c5-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/33b3214d792caf311e1f00fd22b392c5-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/89fcd07f20b6785b92134bd6c1d0fa42-Abstract.html

142 Bibliography

IEEE Transactions on Neural Networks and Learning Systems 31.3, pp. 772–785. DOI:
10.1109/TNNLS.2019.2910073.

Wiedemann, Simon et al. (2020). “DeepCABAC: A Universal Compression Algorithm
for Deep Neural Networks”. In: IEEE Journal of Selected Topics in Signal Processing
14.3, pp. 1–15. DOI: 10.1109/JSTSP.2020.2969554. URL: http://dx.doi.org/10.
1109/JSTSP.2020.2969554.

Wiegand, T. et al. (2003). “Overview of the H.264/AVC video coding standard”. In:
IEEE Transactions on Circuits and Systems for Video Technology 13.7, pp. 560–576. DOI:
10.1109/TCSVT.2003.815165.

Wiegand, Thomas and Bernd Girod (2001). Multi-frame motion-compensated prediction
for video transmission. Vol. 636. Springer Science & Business Media.

Wu, Bichen et al. (2019). “Fbnet: Hardware-aware efficient convnet design via dif-
ferentiable neural architecture search”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 10734–10742.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-mnist: a novel im-
age dataset for benchmarking machine learning algorithms”. In: arXiv preprint
arXiv:1708.07747.

Xing, Eric P et al. (2015). “Petuum: A new platform for distributed machine learning
on big data”. In: IEEE Transactions on Big Data 1.2, pp. 49–67.

Xu, Jie et al. (2021). “Federated learning for healthcare informatics”. In: Journal of
Healthcare Informatics Research 5.1, pp. 1–19.

Xu, Jinjin et al. (2020). “Ternary Compression for Communication-Efficient Federated
Learning”. In: arXiv preprint arXiv:2003.03564.

Xu, Kelvin et al. (2015). “Show, attend and tell: Neural image caption generation with
visual attention”. In: International Conference on Machine Learning, pp. 2048–2057.

Yang, Qiang et al. (2019). “Federated machine learning: Concept and applications”.
In: ACM Transactions on Intelligent Systems and Technology (TIST) 10.2, p. 12.

You, Xiaohu et al. (2021). “Towards 6G wireless communication networks: Vision,
enabling technologies, and new paradigm shifts”. In: Science China Information
Sciences 64.1, pp. 1–74.

Yu, Hao, Sen Yang, and Shenghuo Zhu (2019). “Parallel restarted SGD with faster
convergence and less communication: Demystifying why model averaging works
for deep learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33, pp. 5693–5700.

Yuksel, Seniha Esen, Joseph N. Wilson, and Paul D. Gader (2012). “Twenty Years of
Mixture of Experts”. In: IEEE Trans. Neural Networks Learn. Syst. 23.8, pp. 1177–
1193.

Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals (2014). “Recurrent neural net-
work regularization”. In: arXiv preprint arXiv:1409.2329.

Zhang, Fengda et al. (2020a). “Federated Unsupervised Representation Learning”. In:
arXiv preprint arXiv:2010.08982.

Zhang, Wei et al. (2016). “Staleness-Aware Async-SGD for Distributed Deep Learn-
ing”. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016. IJCAI/AAAI Press,
pp. 2350–2356. URL: http://www.ijcai.org/Abstract/16/335.

Zhang, Xiang, Junbo Jake Zhao, and Yann LeCun (2015a). “Character-level Con-
volutional Networks for Text Classification”. In: Advances in Neural Information
Processing Systems (NeurIPS). Vol. 28, pp. 649–657.

— (2015b). “Character-level Convolutional Networks for Text Classification”. In:
Advances in Neural Information Processing Systems (NeurIPS). Vol. 28, pp. 649–657.

https://doi.org/10.1109/TNNLS.2019.2910073
https://doi.org/10.1109/JSTSP.2020.2969554
http://dx.doi.org/10.1109/JSTSP.2020.2969554
http://dx.doi.org/10.1109/JSTSP.2020.2969554
https://doi.org/10.1109/TCSVT.2003.815165
http://www.ijcai.org/Abstract/16/335

Bibliography 143

Zhang, Xiangyu et al. (2018). “ShuffleNet: An extremely efficient convolutional neural
network for mobile devices”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6848–6856.

Zhang, Zhengming et al. (2020b). “Benchmarking semi-supervised federated learn-
ing”. In: arXiv preprint arXiv:2008.11364.

Zhao, Ying et al. (2019). “PDGAN: a novel poisoning defense method in federated
learning using generative adversarial network”. In: International Conference on
Algorithms and Architectures for Parallel Processing. Springer, pp. 595–609.

Zhao, Yue et al. (2018). “Federated learning with non-iid data”. In: arXiv preprint
arXiv:1806.00582.

Zhu, Yukun et al. (2015). “Aligning Books and Movies: Towards Story-Like Visual
Explanations by Watching Movies and Reading Books”. In: Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV), pp. 19–27.

Zinkevich, Martin et al. (2010). “Parallelized stochastic gradient descent”. In: Advances
in neural information processing systems, pp. 2595–2603.

	Title Page
	Abstract
	Deutsche Zusammenfassung
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Structure of the Thesis
	Own Contributions
	List of Publications

	Deep Learning from Decentralized Data
	Settings
	Federated Learning
	Peer-to-Peer Learning
	Distributed Training in the Data Center

	Challenges
	Algorithmic Frameworks
	Distributed SGD
	Federated Averaging
	Federated Distillation

	Simulating Distributed Learning Environments
	Summary

	Communication-Efficient Distributed Training
	Communication in Distributed Training
	On the Accumulation of Gradient Information
	Sparse k-nary Compression
	Convergence Analysis
	Experiments
	Networks and Data Sets
	Results

	Summary & Limitations

	Communication-Efficient Federated Learning
	Limitations of Existing Compression Methods
	Downstream Compression
	Partial Participation
	Robustness to non-iid Data

	Applying Sparse k-nary compression to Federated Learning
	Extending to Downstream Compression
	Weight Update Caching for Partial Client Participation

	Experiments
	Heterogeneous Client Data
	Robustness to other Parameters of the Learning Environment
	Communication-Efficiency

	Summary & Limitations

	Communication-Efficient Federated Distillation
	Federated Distillation Frameworks
	Investigating the Communication Properties of Federated Distillation
	Distillation Data Set Size
	Soft-Label Quantization
	Efficient Encoding
	Efficient Downstream Communication

	Compressed Federated Distillation
	Experiments
	Image Classification Results
	Language Model Results

	Summary & Limitations

	Clustered Federated Learning
	Generalizing the Federated Learning Assumption
	Clustering based on Gradient Signals
	Cosine Similarity based Bi-Partitioning
	Distinguishing Congruent and Incongruent Clients
	Algorithm

	Related Work
	Implementation Considerations
	Weight-Updates as generalized Gradients
	Preserving Privacy
	Varying Client Populations and Parameter Trees

	Practical Considerations
	Evaluating Clustered Federated Learning in Heterogeneous Settings
	Adversarial Robustness of Clustered Federated Learning
	Evaluating Clustered Federated Learning in Adversarial Settings

	Summary & Limitations

	Federated Learning with Auxiliary Data
	Exploiting Auxiliary Data in Federated Learning
	Problem Setting
	Federated Ensemble Distillation
	Self-supervised Pre-training
	Weighted Ensemble Distillation
	Privacy Analysis

	Algorithm
	Related Work
	Experiments
	Setup
	Evaluating FedAUX on common Federated Learning Benchmarks
	Evaluating FedAUX on NLP Benchmarks
	Privacy Analysis of FedAUX
	Evaluating the dependence on Auxiliary Data
	FedAUX in Hardware-Constrained Settings

	Discussion and Qualitative Comparison with Baselines
	Summary & Limitations

	Conclusion
	Thesis Summary
	Limitations and Outlook
	Impact
	Concluding

	Communication-Efficient Distributed Training
	Proof of Theorem 1
	Encoding and Decoding
	Convergence Proofs

	Clustered Federated Learning
	Proving the Separation Theorem

	Federated Learning with Auxiliary Data
	Proof of Theorem 4
	Details on the implementation of different scoring mechanisms
	Additional Results and Detailed Training Curves
	Details on generating Imagenet subsets
	Details on the Implementation and Results of the NLP Benchmarks
	Hyperparameter Evaluation
	Empirical Privacy Evaluation

	Bibliography

