
C: 40
M: 2
Y: 10
K: 0

C: 76
M: 47
Y: 30
K: 5

ISBN 978-3-7375-5175-5

C: 40
M: 2
Y: 10
K: 0

C: 76
M: 47
Y: 30
K: 5

Comparative
Assessment of Cloud

Compute Services using
Run-Time Meta-Data

Michael Menzel

M
ic

ha
el

 M
en

ze
l:

Co
m

pa
ra

tiv
e

As
se

ss
m

en
t o

f C
lo

ud
 C

om
pu

te
 S

er
vi

ce
s u

si
ng

 R
un

-T
im

e
M

et
a-

D
at

a

Comparative Assessment
of Cloud Compute Services
using Run-Time Meta-Data

A Framework for Performance Measurements
and Virtual Machine Image Introspections

vorgelegt von
Dipl. Wirt.-Inf. Michael Menzel

geb. in Mainz

von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr.-Ing. -

genehmigte Dissertation

Promotionsausschuss:
Vorsitzender: Prof. Dr. Uwe Nestmann
Gutachter: Prof. Dr. Stefan Tai
Gutachter: Prof. Dr. Alexander Mädche
Gutachter: Prof. Dr. Odej Kao

Tag der wissenschaftlichen Aussprache: 21.04.2015

Berlin 2015

ii

Credits

As most projects in life, a dissertation stands on the shoulders of giants. Foremost,
it is the result of collaborations, ongoing discussions, and inspirations from many ac-
quaintances, companions, and friends. A particularly inspiring giant that supervised the
present work is Prof. Stefan Tai whom I like to thank for his patient advises, engage-
ment, and steady support of this project. Furthermore, I am deeply thankful I had the
luck to spend time with the most intriguing colleagues1. The way all of them engage in
discussions and strive for the best is remarkable.

Companionships between like-minded researchers develop unaffected by distance or
time zones. I am thankful to have met Rajiv Ranjan and Shrikumar Venugopal at
the University of New South Wales. Rajiv accompanied and contributed to some of
my publications in the research community. He has been a valuable counterpart in
discussions. The arrangements never allowed me to discuss my research topics with
Shrikumar as intensively as I would’ve liked to, but his few hints unfolded as crucial
advises.

The support I have received from my friends, especially from Sebastian Roth and
Jeanette Homenu-Roth & Tobias Roth, will never be forgotten. Last but even more no-
tably, I am grateful for my parents Sylvia and Wolfgang, and siblings Julia Konstanze
and Laura-Sophia, who never doubted I was able to complete this dissertation.

Above all, it is nearly impossible to express how outermost thankful I am for the un-
ending support from one special person. Knowing her for so many years, there exists
no word to describe how gratified and lucky I must be to share life with such a patient,
understanding, and loving person as is my true love, Anna-Karolina Braun. She contin-
ually encouraged me to pursue a PhD and to engage in a project which is as demanding
and fulfilling as is this dissertation. Thank you!

Mannheim, April 2015 Michael Menzel

1In alphabetic order: Alexander Lenk, Bugra Derre, Christian Janiesch, Christian Zirpins, David Bermbach,
Erik Wittern, Frank Pallas, Gregory Katsaros, Jens Nimis, Jörn Kuhlenkamp, Markus Klems, Nelly
Schuster, Raffael Stein, Robin Fischer, Steffen Müller, Tilmann Kopp, Ulrich Scholten

iii

Abstract

The available amount of meta-data about compute service offerings which proofs reli-
able, timely, and comparable is unsatisfactory. For example, the meta-data published by
compute service providers regarding performance attributes of their offers is typically
restricted to hardware figures and, thus, not necessarily sufficient for comparisons or
planning tasks, such as a thorough software system capacity planning. A similar prob-
lem of meta-data scarcity affects the reuse of Virtual Machine (VM) images available
in repositories from compute service providers. The contents of the VM images are not
described by any available meta-data, yet.

The present work contributes a framework of compute service assessment and com-
parison methods to the research community. The methods enables compute cloud
consumers to assess and compare compute services regarding diverse characteristics.
As the purpose of the methods is to serve consumers, the general scheme is an ex-
ploitation of the client-side remote access to VMs in order to gain meta-data at run-
time. Therefore, an archetypical run-time assessment automation model is provided.
The information extracted at run-time can furthermore be attached to compute ser-
vices as meta-data through a generic and extensible meta-data model. Furthermore,
a Multi-Attribute Decision-Making (MADM)-based scoring method is introduced by
the framework which enables consumers to compare compute services regarding mul-
tiple characteristics with a single score. Besides, a stopping rule approach is able to
enforce cost budgets during sequential compute service assessments. Additionally, in
a search for a highest scoring compute service the rule uses priorly available meta-data
to skip presumably low scoring services.

The framework is employed in two specific instantiations to assess compute services
in regards of performance and VM image contents. In particular, this work features
an instantiation of the framework which assesses compute services using performance
measurements. Therefore, a method is presented that incorporates a procedure built
upon the framework’s automation model. The method uses the procedure to measure
compute services by injecting benchmarking scripts into VMs via remote interfaces
from client-side. Aside from the procedure, the method features a definition language
for configuring batches of performance measurements with repetitions and scheduled
runs. Resulting performance meta-data can be captured with an extension of the frame-
work’s meta-data model. For the comparison of performance meta-data gained with the
benchmarking method, the framework’s MADM-based method is adapted. The adapted

v

method enables compute cloud consumers to compare compute services according to a
score derived from a custom set of performance attributes. In the quest of containing
costs from benchmarking various compute services, the framework’s stopping rule is
configured to consider information about compute service hardware figures available
beforehand. In regards of VM image repositories of compute services, the proposed
framework is instantiated to generate a procedure to introspect the contents of VM im-
ages from the client-side. An extension of the framework’s meta-data model is able to
capture results from VM image introspections.

The feasibility of the methods is confirmed by software prototypes presented in this
work. The prototypes, furthermore, serve as a basis to conduct an evaluation of the pro-
posed methods and models. Several experiments proof the validity of the approaches.
Further examinations in the course of an evaluation address aspects such as the promp-
titude of the assessment approaches and the computational complexity to combine mul-
tiple meta-data attributes into a score. Besides, the methods are compared to the state
of the art to expose advantages and shortcomings.

vi

Zusammenfassung

Die Menge verfügbarer Meta-Daten über Compute Service-Angebote erweist sich hin-
sichtlich Zuverlässigkeit, Aktualität und Vergleichbarkeit ungenügend. Zum Beispiel
beschränken sich die von Compute Service-Anbietern veröffentlichten Meta-Daten über
Leistungsattribute ihrer Angebote typischerweise auf Hardwarekennzahlen und sind da-
her nicht verwendbar für Vergleiche oder auch Planungsaufgaben wie bspw. eine Ka-
pazitätsplanung für ein Softwaresystem. Ähnlich sind auch Meta-Daten über Abbilder
von virtuellen Maschinen (VM) in den Sammlungen der Compute Service-Anbieter
spärlich.

Die dargelegte Arbeit stellt der Forschergemeinschaft ein Rahmenwerk mit Bewertungs-
und Vergleichsmethoden für Compute Services bereit. Die Methoden erlauben Compu-
te Cloud-Konsumenten Compute Service hinsichtlich verschiedener Charakteristiken
zu bewerten und zu vergleichen. Da die Methoden Cloud-Konsumenten dienen, basiert
das generelle Vorgehen auf der Nutzung von Client-seitigen Remote-Verbindungen zu
virtuellen Maschinen, um Meta-Daten zur Laufzeit zu gewinnen. Hierfür wird ein ar-
chetypisches Automatisierungsmodell bereitgestellt. Die zur Laufzeit extrahierten In-
formationen können Compute Services anhand eines generischen und erweiterbaren
Meta-Datenmodells zugeordnet werden. Aus̈erdem wird durch das Rahmenwerk basie-
rend auf Ansätzen der multi-attributiven Entscheidungsfindung (MADM) eine Metho-
de eingeführt, die es Konsumenten ermöglicht Compute Services hinsichtlich mehrerer
Charakteristiken anhand eines Scores zu vergleichen. Weiter kann ein Stoppregelansatz
Kostenbudgets während sukzessiver Compute Service-Bewertungen durchsetzen. Die
Regel schlies̈t bei der Suche nach einem Compute Service mit höchstem Score anhand
von vorab verfügbaren Meta-Daten voraussichtlich schlecht abschneidende Services
aus.

Das Rahmenwerk wird in zwei spezifischen Instanzen eingesetzt, um Compute Services
bezüglich ihrer Leistung und Inhalten von VM-Abbildern zu bewerten. Eine Instanz
des Rahmenwerks erlaubt Bewertungen von Compute Services anhand derer Leistung.
In diesem Zuge wird eine Methode präsentiert, die eine auf dem Automatisierungs-
modell des Rahmenwerks basierenden Prozedur einsetzt, um Compute Services mit
Benchmarking-Skripten zu messen, die über Remote-Schnittstellen von der Client-
seite ausgeführt werden. Neben der Prozedur bietet die Methode eine Definitionss-
prache für Stapelverarbeitung sowie die Wiederholung und Terminierung von Leis-
tungsmessungen. Ergebnisse aus Messungen können durch eine Erweiterung des Meta-
Datenmodells aus dem Framework festgehalten werden. Zum Vergleich der Ergebnisse,

vii

wird die MADM-basierte Scoring-Methode des Frameworks adaptiert. Die angepasste
Scoring-Methode erlaubt Compute Cloud-Konsumenten Vergleiche anhand eines Sco-
res aus definierten Leistungsattributen. Zur Limitierung der durch das Benchmarking
von verschiedenen Compute Services entstehenden Kosten wird die Stoppregel des
Rahmenwerks in solcherart konfiguriert, dass vorab bekannte Hardwarekennzahlen ein-
bezogen werden. In Hinblick auf von Compute Services angebotene VM-Abbilder zeigt
eine Instanz des Rahmenwerks eine Prozedur zum Erfassen von VM-Inhalten von der
Client-seite. Eine Erweiterung des Meta-Datenmodells des Rahmenwerks erlaubt das
Festhalten der Ergebnisse.

Die Umsetzbarkeit der Methoden wird durch Softwareprototypen belegt, die in der dar-
gelegten Arbeit vorgestellt werden. Die Prototypen dienen zudem als Grundlage, um die
Methoden und Modell zu evaluieren. Eine Reihe von Experimenten zeigt die Validität
der Ansätze. Weitere Untersuchungen adressieren die Promptheit der Bewertungsan-
sätze, sowie die Komplexität der Berechnungen bei der Kombination mehrerer Meta-
Datenattribute in einen Score. Darüber hinaus werden die Methoden mit dem Stand der
Kunst verglichen, um Vor- und Nachteile herauszustellen.

viii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Comparative Assessments . 4

1.2.1. Performance of Compute Services 4
1.2.2. Virtual Machine Images . 8

1.3. Research Questions . 10
1.4. Research Methodology . 12
1.5. Contributions . 15
1.6. Published Material . 17
1.7. Thesis Organization . 20

I. Foundations 21

2. Background 23
2.1. Cloud Compute Services . 23

2.1.1. Definition of Cloud Computing 23
2.1.2. Virtualization . 27
2.1.3. Consumption of Cloud Compute Services 28

2.2. Compute Service Meta-Data . 32
2.2.1. Performance of Compute Services 32
2.2.2. VM Images . 39

2.3. Formal Decision-Making . 43
2.3.1. Multi-Criteria Decision-Making (MCDM) 43
2.3.2. The Analytic Hierarchy Process (AHP) 44

2.4. Theory of Optimal Stopping . 48
2.4.1. Stopping Problems . 48
2.4.2. Stopping Rules . 48

3. State of the Art and Related Work 53
3.1. Compute Service Meta-Data Management 53
3.2. Comparative Assessments of Compute Services 55

3.2.1. Assessments of Compute Services 56
3.2.2. Comparisons of Compute Services 57

ix

Contents

3.3. Compute Service Performance Measurements and Comparisons 59
3.3.1. Compute Service Performance Benchmarking 59
3.3.2. Automation and Repetition of Performance Benchmarks 61

3.4. Virtual Machine Image Introspections and Comparisons 66
3.4.1. VM Image Meta-Data Attachment 66
3.4.2. Introspection of VM Image Meta-Data 67

II. Conceptual Framework 69

4. Framework for Comparative Assessments of Cloud Compute Ser-
vices 71
4.1. Introduction & Overview . 71

4.1.1. Relations Between Models & Methods 73
4.1.2. Extensibility of the Framework 74

4.2. Meta-Data Model . 75
4.3. Run-time Assessment Automation Model 76
4.4. Scoring Method . 78

4.4.1. MADM for Value Aggregation 78
4.4.2. Evaluations with the (MC2)2 79
4.4.3. Local Scoring . 86
4.4.4. Global Scoring . 87

4.5. Cost Budgeting Stopping Rule . 89
4.5.1. Cost Calculation . 89
4.5.2. Compute Service Scores & Ordering 90
4.5.3. Stopping Rules . 93

4.6. Software Prototype implementing the Scoring Method 98
4.7. Evaluation of the MADM-based Scoring Method 102

4.7.1. Case Study with the Industry 103
4.7.2. Computational Complexity . 105

III. Instantiation 113

5. Assessments of Compute Service Performance at Run-time 115
5.1. Automated Performance Benchmarking of Compute Services 117

5.1.1. Automated Performance Benchmarking Procedure 118
5.1.2. Repetitions and Benchmarking Result Aggregation 120
5.1.3. Data Model for Roadmap Scheduling and Measurement Results 124
5.1.4. Process Model for Using the Automated Benchmarking Proce-

dure . 126
5.1.5. Costs, Timeliness & Target Audience 129

x

Contents

5.2. Compute Service Performance Scoring 131
5.2.1. Scoring for Performance Meta-Data 131
5.2.2. Aggregation Scheme Requirements 131
5.2.3. Weighted Compute Service Performance Scores 132

5.3. Performance Benchmarking with the Cost Budgeting Stopping Rule . . 135
5.3.1. Cost Calculation . 135
5.3.2. Performance Scores as Observation of Compute Services 136
5.3.3. Compute Service Order and Prior Information 136
5.3.4. Configuration of the Stopping Rule 137

5.4. Software Prototype for Automated Compute Service Performance Bench-
marking with Stopping Rule . 138
5.4.1. LibIntelliCloudBench Library 138
5.4.2. Web Application . 140

5.5. Evaluation of the Automated Performance Benchmarking Method . . . 142
5.5.1. Validation of the Automated Performance Benchmarking Ap-

proach . 142
5.5.2. Comparison to the State of the Art 145
5.5.3. Results of the Promptitude Measurements 146
5.5.4. Statistics for AWS EC2 Compute Services 148

5.6. Evaluation of the Performance Benchmarking Stopping Rule 151
5.6.1. Validation of the Performance Benchmarking Stopping Rule . . 151
5.6.2. Comparison to Standard Stopping Rules 153

6. Assessments of Virtual Machine Image Contents at Run-time 159
6.1. Virtual Machine Image Meta-Data Model 160
6.2. Introspection of Virtual Machine Images 162

6.2.1. Automated VM Image Introspection Procedure 162
6.2.2. Discoverer Component . 163
6.2.3. Crawler Component . 164

6.3. Search and Comparison of Virtual Machine Images 167
6.4. Software Prototype for Virtual Machine Image Introspection 168

6.4.1. Crawler Script . 168
6.4.2. Web Application . 169

6.5. Evaluation of the VM Image Introspection Method 170
6.5.1. Validation of the VM Image Introspection Approach 170
6.5.2. Results of the Promptitude Measurements 171
6.5.3. Statistics for AWS EC2 Compute Services 172

IV. Finale 175

7. Conclusions, Discussion & Outlook 177
7.1. Conclusions . 177

xi

Contents

7.2. Discussion & Outlook . 181

Appendix 185

A. Performance Meta-Data on Compute Service Websites 187

B. Implementation Details & Code Examples 189
B.1. Example of AotearoaLib Programming Interface 189
B.2. Excluded Micro-benchmarks in LibIntelliCloudBench 191

C. Original Interview Form for a MADM Software Prototype 193

xii

1. Introduction

This chapter defines the context of the research presented in this work. After a moti-
vation, the problems of assessing compute services in regards of performance and VM
images are explained. The chapter continues with the definition of research questions
and the followed research methodology. Then, the contributions provided by this work
are presented. Finally, the chapter discusses published material and ends with an expla-
nation of how this thesis is organized.

1.1. Motivation

Organizations have widely adopted Information Technology (IT) to support and auto-
mate business operations [1]. Some organizations even base whole business models on
IT systems, profiting from saving cost over manual work [2–4]. Nevertheless, running
an own infrastructure to operate IT systems generates costs for organizations. From the
capital expenditures (CAPEX) for real estates, hardware and software to operational ex-
penditures (OPEX) for electricity and human resources, various expenditures aggregate
into the total costs of a company’s own IT infrastructure [5].

Unlike own IT infrastructures, cloud computing abandons large upfront investments
and allows IT infrastructures to be outsourced and consumed as cloud infrastructure
services in virtually infinite amounts [6, 7]. There are various cloud infrastructure
services to build an IT infrastructure, of which compute services are very prominent to
serve for computational tasks [8].

When leasing a compute service, a consumer is granted remote access to computer
hardware resembled by a Virtual Machine (VM) for the duration of the leasing. With
multi-cloud libraries like jClouds [9] multiple compute services can be accessed in a
similar manner.

While multi-cloud libraries facilitate consumers with access to various compute ser-
vices, the differences between services are manifold. Compute services are distinguish-
able in numerous aspects, such as pricing, contract duration, or service quality [10].
Such characteristics can be expressed as data attributes which are attached or linked to
a compute service. Data attached to and describing a compute service is referred to as
meta-data.

1

1. Introduction

The notion of meta-data is to describe characteristics and properties of an entity. The
preceding term meta originates from ancient greek and means "add" or "with" which
refers to the concepts of "in addition" or "linked to". Meta can, however, also refer to
an abstract or higher level view of a concept - also called a meta-level. In regards of
meta-data, the prefix defines particular data linked to an entity to describe its - higher
level - attributes.

In case of compute services, such high level attributes describe characteristics of the
service to make it comparable with competing services. To assess meta-data for gaining
insights and for comparing compute services, consumers may access provider websites,
read contracts, inquire other consumers, or observe a service in action.

There are numerous aspects to consider in an examination and comparison of compute
services. In this regard, providers and other sources typically lack in providing con-
sumers with detailed and reliable meta-data concerning the various aspects (c.f. section
2.2 and chapter 3) [10–12]. Therefore, a consumer is obliged to assess additional meta-
data about compute services by own means. As this work gives consumers a novel
approach for single-handed assessments of compute services, the framework presented
in this work is employed to assess compute services in regards of two particular aspects:
(1) performance, and (2) VM images.

To allow a comparison of compute services regarding performance meta-data, a con-
sumer is confronted with a non-trivial measurement and evaluation task. Heterogeneous
hardware and virtualization software used in compute services introduce variations in
performance outcomes [13–16]. In order to acquire reliable data, measurement meth-
ods and metrics that can quantify the performance to be expected from a compute ser-
vice are needed. The act of measuring a compute service’s performance, referred to as
benchmarking, implies the execution of computational tasks on a compute service VM
at run-time. The sheer number of necessary measurement repetitions, due to perfor-
mance variations in conjunction with observing multiple compute services, calls for an
automation of the measurement process.

Even with suitable performance metrics and measurement methods, a comparison of
compute services remains multi-dimensional. To enable a simple, one-dimensional
comparison of compute services, an aggregated score must be obtained. Hence, a
method to combine multiple performance attributes into a one-dimensional, represen-
tative total value of a compute service is required. Generally, multi-attribute decision-
making is capable of mapping compute services with multiple performance attributes
to a single comparable score (on a ratio scale) [17–19]. Yet, an adoption to support
compute service consumers with applying these methods for performance attributes of
compute services is needed.

2

1.1. Motivation

Aside from performance meta-data of compute services, the use of compute services
involves the assembly of a software stack from a VM image which is managed and
published by the provider [20–22]. Using VM images available from repositories, con-
sumers can build a custom software stack. While simple VM images ask consumers to
start with an operating system only, comprehensive repositories offer a wide range of
VM images with whole pre-configured software stacks. Thereby, every consumer can
profit from the expertise captured in prepared VM images, or rely on his own experience
and build a custom software stack on a simple VM image.

Nonetheless, to capture the diversity in VM image repositories, and to distinguish and
understand the contents of VM images, compute services fail to provide sufficient meta-
data (see chapter 3) [11, 12]. A plausible approach to assess meta-data about VM image
contents is to introspect contents at run-time [23, 24].

Available meta-data about compute services is scarce and not necessarily reliable. There-
fore, approaches that empower consumers in their undertaking to assess compute ser-
vices single-handedly is imminent. This work introduces a framework which gives
consumers means to assess and compare compute services based on meta-data gained
at run-time.

In particular, an automation model is presented that describes how compute services
can be assessed in an automated manner through remote interfaces. Furthermore, the
present work includes a method to compare compute services regarding meta-data at-
tributes using a MADM method. In addition, means to approach a mitigation of leasing
costs in an assessment of multiple compute service are developed by using a stopping
rule.

The generic concepts are employed in two particular instantiations of the framework
in order to assess specific characteristics of compute services. Specifically, instantia-
tions to assess compute services in regards of performance and VM image contents are
established in this work.

3

1. Introduction

1.2. Comparative Assessments

The first section has argued about the amount of and the absence of reliable meta-
data about compute service. Consequently, the necessity of methods to assess and
compare compute services in terms of meta-data has been identified. In this section, the
intricacies of assessing and comparing compute services are discussed exemplarily for
two aspects: (1) performance, and (2) VM images. These two aspects are reflected in
the research questions and later in this work treated with instantiations of the proposed
assessment framework.

The following subsection will elaborate on the problems occurring in comparative as-
sessments of performance and VM image contents in more detail. First, the intricacies
of comparative assessments of compute services in terms of performance are explored.
Finally, the tasks to be solved to capture contents of VM images in meta-data are dis-
cussed.

1.2.1. Performance of Compute Services

Compute service consumers can choose from a range of offerings available on the mar-
ket. As a result, compute services compete for consumers with price differentiation and
by offering various feature sets [25]. Due to compute services’ purpose to serve for
computational tasks, compute service consumers typically consider the factors price,
available performance attributes, and hardware figures, i.e., processor cores, and mem-
ory and hard disk space [10]. Commonly, consumers consider given hardware figures
and resulting performance attributes in IT infrastructure capacity planning processes
[26, 27].

In the following, a sample of cases that benefit from detailed compute service perfor-
mance meta-data can be found:

• Capacity planning which incorporates testing and predicting a compute service’s
performance in terms of system requirements.

• Comparison of compute services according to multiple performance attributes.

• Monitoring of a compute service’s performance attributes over time to detect
service quality variations.

Nonetheless, providers regularly only describe hardware figures included in compute
services, but do not provide comparable performance attributes [10]. Since hardware
is heterogeneous between cloud providers and even within data centers, the actual per-
formance of a compute service is not coherent with its hardware figures [13–16]. For
example, compute services with 1 CPU core of competing providers may not show an
identical processing time for a certain computational task. Hence, methods to assess

4

1.2. Comparative Assessments

performance metrics at run-time are necessary to determine a comparable performance
value.

Moreover, performance measurements of compute services may show variations over
time. A computational task, hence, requires varying processing times when executed
at different points in time [28]. Particularly, compute services have been found to show
variations as hardware is frequently shared between rented systems [29, 30]. Thus,
performance attributes must signify variations or include attributes with variation met-
rics.

To gain detailed performance meta-data, the field of system performance analysis has
introduced performance benchmarking methods to measure performance attributes em-
ploying metrics with fixed benchmark scales [26, 31]. Existing work has succeeded in
applying standard performance benchmarks to compute services [32–34]. Furthermore,
existing approaches incorporate an identification of variations through repetitions [13,
29, 35]. Figure 1.1 depicts a consumer’s view and actions involved when measuring
performance meta-data of multiple, competing compute services at run-time.

Other Compute ServicesCurrent Compute Service

Compute Service 1 Compute Service NCompute Service i

vs.vs. vs.

...

Customer

Performance

Measurement

Process

Virtual Machine Virtual Machine Virtual Machine

Performance Measurement Process:

1 Sign up for Compute Service
2 Lease Virtual Machine
3 Measure performance remotely
4 Pay for Leasing

Performance

Measurement

Process

Performance

Measurement

Process

Figure 1.1.: A Consumer Measuring Compute Service Performance Meta-Data

By employing diverse performance benchmarks, a compute service can be measured
in multiple dimensions [36, 37]. Nevertheless, determining the best service from com-
paring a mix of benchmarks is not trivial. Given performance attributes in diverse
benchmarking metrics, a best service can easily be determined if it has the highest
value for every attribute. Chances are, however, that different services have a highest
value for certain attributes. Moreover, benchmarks can be of unequal importance to a
consumer.

Thus, multi-dimensional benchmarking results should be represented in an aggregated
and weighted score which considers a consumer’s preferences. Existing work provides
means to compare cloud providers and compute services according to a wide range of

5

1. Introduction

weighted attributes – e.g., security, availability or cost – using diverse methods from
Multi-Attribute Decision-Making [38–40].

Specifically, methods like the Analytic Hierarchy Process are able to weight multi-
ple attribute values and calculate an aggregated, one-dimensional utility value on a
ratio scale [17, 41]. Although methods from Multi-Attribute Decision-Making [19] can
weight and map multiple attributes of an alternative to a score, the attributes to consider
have to be defined beforehand. Yet, a method to evaluate services according to diverse,
weighted performance attributes is absent.

Moreover, employing performance benchmarks requires to lease compute services for
the period of a measurement at run-time (see figure 1.1), thereby generating costs [42–
44]. When observing multiple compute services, the total costs are the sum of the
leasing costs for all services for the duration to conduct measurements.

For services and products in electronic markets, costs to assess information are com-
monly reduced by platforms of intermediary third-parties, i.e., information providers
or brokers [45]. Such third-party information platforms allow to split costs between
consumers and persist collected information [46]. However, there could be a set of
compute service consumers that requires very specific performance meta-data that may
not be available from third-party platforms. For example, a consumer might desire to
get hold of specific floating point benchmarking results for a certain set of compute
services to evaluate the suitability for a software that involves intensive floating point
computations. Hence, a development of tools to assess performance of compute ser-
vices according to custom benchmarks is imminent.

Alternatively, costs can be reduced by only assessing information for a small, relevant
subset of compute services [47–49]. While smaller sets of compute services mean less
costs, an intricate trade-off must be made to avoid sacrificing too many measurement
results and, thereby, fidelity by the virtue of ignored services and saved costs.

Stopping rules developed in the field of stopping problems are capable of making trade-
offs between the continuation and ending of a process according to a stopping rule. To
apply a stopping rule approach, a specific rule must be found that expresses the trade-
off to be made after each step of a process. For performance measurements, a stopping
rule is needed which evaluates the trade-off between result fidelity and costs of contin-
uing the measurements. Existing meta-data about compute services, such as hardware
figures, can be an indicator of which performance can be expected in pending measure-
ments.

In conclusion, due to a lack of meta-data, making compute services comparable accord-
ing to performance attributes requires run-time measurements. For measuring multiple
performance attributes of compute services, available standard benchmarks can be ap-
plied. Besides, approaches exist which help to observe variations through repeated
measurements. However, means to aggregate measurement results into a single score

6

1.2. Comparative Assessments

while considering a consumer’s preferences respecting benchmarks must be developed.
Thereby, consumers are facilitated with means to compare services according to multi-
ple attributes. In addition, in a performance benchmarking process, consumers are able
to trade expenditures for the lease of compute services with the fidelity of the results by
adjusting the number of compute services considered. Since the trade-off is not trivial,
consumers need support in determining when to stop driving further measurements.

7

1. Introduction

1.2.2. Virtual Machine Images

Aside from the performance attributes of a compute service, also the array of VM im-
ages available for a compute service are of interest to a consumer. Compute service
consumers are served with Virtual Machines resembling computers with hardware re-
sources, i.e., processors, memory, hard disks, and network interfaces. By using virtu-
alization technology, multiple VMs can be run on computer hardware using a Virtual
Machine Monitor (VMM), also referred to as a hypervisor [6, 50]. A VM is persisted
as a VM image that contains a copy of the (virtual) hard disk and, optionally, a hard-
ware configuration, e.g., including the number of CPU cores and amount of memory
demanded by the VM. Using a VM image, multiple VMs can be instantiated with spe-
cific hardware configurations and access to copies of the virtual hard disk, hence, with
the same data and software available.

The amount of data and pre-configured software on a VM image’s hard disk varies
depending on what a VM is needed for. For example, a VM image may contain only an
operating system if VMs from the image shall be very customizable or only need the
operating system as a basis. In contrast, a VM image that contains an operating system
and a pre-configured software stack gives a basis to deploy software with few efforts for
installation and configuration procedures. The latter, more comprehensive VM image
category is referred to as virtual appliance.

In compute services, VM images are offered and maintained in repositories. VM im-
ages in a repository comply with a certain format and are not necessarily compatible
with more than a single compute service. Depending on the repository policy pursued
by a compute service provider, a repository is either open to the public or is accessi-
ble to consumers only. Furthermore, actors adding and maintaining VM images in the
repository can be any consumer or the provider only.

The contents of VM images and, in particular, of cloud appliances created from other
consumers is typically not included in existing meta-data, nor can it be assessed from
the VM image as a file alone. Instead, a consumer needs to instantiate and inspect a VM
image at run-time to discover its contents, such as contained data and software like the
operating system or installed system libraries. Potentially, the use of VM introspection
allows for automated access to a VM image’s content at run-time [23, 24]. In addi-
tion, the field of Operating System Configuration Management (OSCM) is promising
in terms of its capabilities to detect installed software packages and libraries automati-
cally when access is granted to a running VM [51, 52].

In the following, a list of example use cases is provided that illustrates how a compute
service consumer benefits from VM image meta-data:

• Search for a VM image with certain software and libraries from the repository
while benefiting from a provider’s or a community’s experience.

8

1.2. Comparative Assessments

• Highlighting differences between similar VM images and versions of one VM
image.

• Documentation of a VM image to rebuild an image with a similar software con-
figuration at a different compute service.

Nevertheless, repositories of VM images can comprise large numbers entries1 render-
ing a manual introspection of all images unfeasible due to time and cost constraints.
Besides, virtual appliances may contain a plethora of system libraries and software
packages and, thus, demand a long time for an introspection. Therefore, an automation
of the introspection process is necessary to free consumers from manual introspection
efforts.

In conclusion, to gain insights about available VM images and, in particular, virtual
appliances, contents could be introspected at run-time. To document the available con-
tents, the field of configuration management offers promising approaches to detect and
document installed software packages. However, depending on the amount of software
packages in a VM image a consumer faces tremendous manual efforts in an introspec-
tion. Also, the sheer number of available VM images indicates that consumers may
want to repeat the introspection process for various images. Altogether, the expected
effort of VM image introspection for various compute services and repositories de-
mands an automation of the process.

1Amazon EC2 comprises over 24.000 images in the US-EAST-1 region on 7th January 2014

9

1. Introduction

1.3. Research Questions

This thesis researches the problem of assessing compute services to gain meta-data, par-
ticularly with relation to performance attributes and VM image contents. The problem
leads to the principal question that asks for methods or procedures to gain and interpret
meta-data on performance attributes and VM image contents as a consumer.

The principal research question to be addressed by this work is:

How can cloud compute services be assessed
at run-time regarding meta-data?

Since answering the principal research question is not trivial, the question is sub-
divided into multiple more specific research questions RQ1-RQ3. Implicitly, this also
allows for a detailed evaluation of the principal research question through its sub-
questions.

The research questions posed in this work shall be divided according to the two meta-
data aspects of compute services: performance and VM image contents. In a first step,
the following question addressing performance meta-data shall be researched:

RQ1. How can multiple compute services be made comparable regarding
meta-data?

For comparing compute services regarding performance meta-data as requested by
RQ1, approaches to measure performance are required. To gain a single-dimensional
metric that reflects the performance value of a compute service in regards of a con-
sumer’s preferences, MADM seems a suitable basis to calculate a weighted perfor-
mance value. The following sub-questions shall be answered in this research work:

RQ1a. How can compute services be assessed at run-time in an automated
manner?

RQ1b. Can MADM support the aggregation of multiple meta-data at-
tributes into a subjective value for a compute service?

RQ1c. How is the computational complexity of using MADM to compare
compute services regarding meta-data?

Given that compute services can be measured and compared regarding meta-data, ap-
proaches to reduce costs during assessments shall be researched. Run-time assessments
need access to a VM, the system under test [31], and entail leasing costs from compute
services. This research focuses on a budgeting of the costs occurring from run-time
assessments, leading to the following research question:

10

1.3. Research Questions

RQ2. How can costs for run-time assessments of multiple compute services
be budgeted?

Apart from research questions of general nature regarding run-time assessments of
meta-data, this work explores two particular characteristics of compute services, i.e.
performance and VM image contents. Both characteristics provide a task to instantiate
and evaluate the framework introduced by this work. The instantiations of the frame-
work furthermore represent units to examine the research questions in experiments and
practical scenarios.

As one particular compute service characteristic, the present work researches the run-
time assessment of compute service performance. Within the scope of compute service
performance, results of measurements should be captured as meta-data. Besides, an
automation of the performance measurement process needs to be explored. Therefore,
the following research question shall guide the exploration of assessments of compute
services in regards of performance:

RQ3. How can performance be assessed at run-time from multiple compute
services in an automated manner?

The present work also explores the assessment of VM image meta-data. The possibility
to document contents of a VM image as meta-data is of distinguished concern. The
feasibility of automation regarding an assessment of VM images at run-time are to
be researched in this work. Consequently, the following research question shall be
explored:

RQ4. How can Virtual Machine image contents be assessed at run-time
from multiple compute services in an automated manner?

11

1. Introduction

1.4. Research Methodology

The research conducted in this work follows a high-level process of three major steps:
observation, development, and evaluation. Initially, in an observation phase, experi-
ments with cloud compute services and a study of literature have led to the motivation
of this work. After a clear understanding of the problem has been developed, research
questions and a research methodology could be defined. With this in mind, models
and methods were developed to address the questions. The development of models and
methods was carried out in iterations of conceptual development, implementation, and
test phases. Ultimately, final versions of the models and methods were validated and
evaluated to test the results against the research questions. Figure 1.2 depicts the pro-
cess followed in the research methodology that evolved over the course of this work.

Observation Experience

Development

Evaluation

Methods

Experiments

Literature

Models Implementation

Analysis

Figure 1.2.: Overview of Research Process

To test the validity and quality of the approaches proposed in this work, an analyti-
cal evaluation and experiments with the help of instantiations as software prototypes
are conducted. For the validation and evaluation of the proposed methods and their
instantiations, research strategies from the field of software engineering research are
applied [53]. In addition, the quality of proposed methods is evaluated in analytical
examinations.

In software engineering research, a specific set of research strategies exists [53]. Each
strategy is defined by three components: (1) research question type, (2) research result
type, and (3) validation type. A research question asks either for a method (for devel-
opment or analysis), an analysis, a generalization, or a feasibility test. The research
result corresponding to a question represents a procedure, a model, notation or tool,
specific solution, judgement, or a report. And the validation may be manifested with an
analysis, through experiences, in examples, or in evaluations.

12

1.4. Research Methodology

Instantiation EvaluationImplementationMethod/ModelResearch Questions

RQ1a.

MADM-Based
Comparison

Method

Run-time
Assessment

Automation Model
+

Meta-Data Model

AHP-based
Scoring

Prototype

Cost Budgeting
Stopping

Rule

Validation w/
multiple Compute

Services

Analysis of
Fidelity and Cost

Budgeting

Analysis of
Computational

Complexity

Case Study w/
Industry

Stopping Rule
Benchmarking

Prototype

extends

RQ1b.

RQ1c.

RQ2.

RQ4.
Automated
VM Image

Introspection

Validation w/
various VM

Images

Promptitude
Measure

VM Image
Introspection

Prototype

RQ3.
Automated

Performance
Benchmarking

Stopping Rule for
Performance

Benchmarking

Figure 1.3.: Overview of Research Paths

This work follows diverse paths to validate the presented methods in the light of the
research questions. Figure 1.3 illustrates an overview of the research paths taken to
answer all research questions. On each path, a research question leads to a validation
or evaluation of a proposed method.

In terms of software engineering research strategies, the research questions RQ1 and
RQ2 point at a method for the analysis of compute service performance meta-data.
Besides, RQ3 and RQ4 can be interpreted to demand a method of analysis concerning
with the documentation of performance and VM image meta-data. All of the presented
conceptual methods are implemented directly or indirectly as software prototypes and
validated in examples and partly in case studies, some of which were conducted with the
industry (c.f. figure 1.3). While the MADM-based comparison method is implemented
directly as a software prototype, the run-time assessment automation model, the meta-
data model, and cost budgeting stopping rule are indirectly implemented as software
prototypes for concrete instantiations of the methods. The instantiations for the run-
time assessment model are using the model as a blueprint to assess compute services
in terms of performance and VM image contents. The software prototypes stopping
rule benchmarking prototype and VM introspection prototype are an implementations
of the instantiations automated performance benchmarking and automated VM image
introspection respectively.

Figure 1.3 also highlights relations between the prototypes. While the implementation
of the subjective evaluation method in an AHP-based scoring prototype is evaluated
in a case study, both other implementations are validated by example. Moreover, im-
plementations are used to explore practical qualities in the application of the methods.
In particular, the actual computational complexity and promptitude of the methods is

13

1. Introduction

tested with the implementations in empirical experiments. Experiments are conducted
with all prototypes, namely the stopping rule benchmarking prototype, the AHP-based
scoring prototype, and the VM introspection prototype (cf. figure 1.3).

14

1.5. Contributions

1.5. Contributions

This work pursues the goal of giving means to assess cloud compute services at run-
time to gain meta-data. In this regard, several contributions are made that support such
assessments, also under a cost aspect, and enable a comparison of compute services.
The contributions are two-fold in their kind: conceptual work and implemented proto-
types. The following subsections first present the conceptual contributions and then the
contributed software prototypes.

Contributed Conceptual Methods

In the following, a list of conceptual contributions to conduct assessments at run-time
and compare compute services:

Meta-data model As part of the framework a meta-data model is introduced which
is capable of attaching meta-data to compute services in a central, queriable
database. The meta-data model is furthermore extended in two distinct instantia-
tions to capture performance attributes of compute services and contents of VM
images available in the repositories of a compute service. The extended meta-
data model for performance attributes captures measured benchmarking results
and variations from multiple iterations. Also, compute services in diverse hard-
ware configurations can be reflected in the model. The extended meta-data model
to capture VM image contents provides a generalization of information available
from diverse software package managers that manage software configurations on
various operating systems.

Automation of compute service assessments The conceptual method presented
in this work comprises an archetypical automation model to assess compute ser-
vices in an automated manner. In particular, performance benchmarking driven
with a procedure built upon the automation model is able to attain results repeat-
edly over time and in diverse frequencies. Besides, a second instantiation of the
model allows consumers to introspect VM images of a compute service provider
in an automated manner. During an introspection, meta-data about an image’s
contents, specifically about installed software and libraries, is extracted.

Calculation of a comparable compute service score This work introduces a
method to aggregate meta-data attributes into a one-dimensional, weighted score
that represents a compute service. An AHP-based evaluation normalizes and ag-
gregates multiple meta-data attributes into a single value on an absolute scale.
In an aggregation, the diverse considered attributes are weighted according to a
consumer’s preferences.

15

1. Introduction

Stopping rule with cost budget Using the stopping rule, a consumer is enabled to
set a cost budget on the leasing costs for assessments of compute services. The
stopping rule calculates after each assessment the probability to still find a higher
scoring compute service according to a AHP-based score.

Contributed Software Prototypes

The second kind of contributions contained in this work are software prototypes. All
prototypes are instantiations of conceptional methods presented in this work. The fol-
lowing list summarizes the software prototypes contributed by this work:

Compute service comparison web application Implementation of a web appli-
cation that facilitates compute service consumers with weighted, aggregated scores
for compute services. The prototype supports diverse criteria catalogs as tem-
plates, particularly with performance attributes, but also catalogs with a wide
range of criteria to compare compute services according to aspects like security,
prices, support quality, etc.

Compute service benchmarking web application Implementation of a system
to drive performance benchmarks on compute services. The system allows users
to measure multiple compute services with various benchmarks and, optionally,
employ a stopping rule to trade measurement costs with fidelity of benchmark-
ing results. Benchmarking runs can be scheduled and, thereby, a repetition of
measurements is possible.

Virtual Machine image crawler Implementation of a software prototype to describe
and capture meta-data of Amazon machine images with Ubuntu Linux operating
systems. In particular, the system focuses on documenting the software con-
figurations of images and allows consumers to access a database of VM image
meta-data via a web application.

16

1.6. Published Material

1.6. Published Material

There is preliminary work that has been published in the research community through
peer-reviewed papers at conferences and in journals. Following, a list of publications
which incorporate related concepts referenced in this document:

[1] M. Menzel, M. Schönherr, J. Nimis, and S. Tai. “(MC2)2: A Generic Decision-
Making Framework and its Application to Cloud Computing”. In: Proceedings
of the International Conference on Cloud Computing and Virtualization (CCV
2010). GSTF. Singapore: GSTF, 2010.

[2] M. Menzel, M. Schönherr, and S. Tai. “(MC2)2: Criteria, Requirements and a
Software Prototype for Cloud Infrastructure Decisions”. In: Software: Practice
and Experience (2011).

[3] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann. “What Are You Paying
for? Performance Benchmarking for Infrastructure-as-a-Service Offerings”. In:
Proceedings of the 2011 IEEE International Conference on Cloud Computing
(CLOUD). IEEE. Washington, D.C., USA: IEEE, 2011, pp. 484–491.

[4] S. Haak and M. Menzel. “Autonomic Benchmarking for Cloud Infrastructures:
An Economic Optimization Model”. In: Proceedings of the 1st ACM/IEEE
workshop on Autonomic computing in economics. ACM. Karlsruhe, Germany:
ACM, 2011, pp. 27–32.

[5] M. Menzel, M. Klems, H. A. Le, and S. Tai. “A Configuration Crawler for Vir-
tual Appliances in Compute Clouds”. In: Proceedings of the 1st International
Conference on Cloud Engineering (IC2E). IEEE. San Francisco, USA: IEEE,
2013, pp. 201–209.

[6] M. Menzel and R. Ranjan. “CloudGenius: Decision Support for Web Server
Cloud Migration”. In: Proceedings of the 21st International Conference on
World Wide Web. ACM. Lyon, France: ACM, 2012, pp. 979–988.

[7] M. Menzel, R. Ranjan, L. Wang, S. U. Khan, and J. Chen. “CloudGenius: A
Hybrid Decision Support Method for Automating the Migration of Web Appli-
cation Clusters to Public Clouds”. In: Computers, IEEE Transactions on (2014).

Figure 1.4 sets all published material into context with the aspects of performance and
VM image meta-data of the framework presented in part II. Parts of the publications
build the foundation for compute service evaluations and decision-making. The publi-
cations [1] and [2] present a framework to build multi-criteria decision making meth-
ods. The (MC2)2 framework helps to define a scoring function applicable to compute
services. With the scoring function, an aggregated, weighted value can be calculated
given measured performance attributes of a compute service. The framework and scor-
ing functions have already shown their applicability in strategic cloud infrastructure
decisions [2].

17

1. Introduction

Performance Meta-Data
Virtual Machine Image

Meta-Data

Find VMs
Introspect

VMs

[4] “CloudGenius: Decision Support for Web Server

Cloud Migration”.

[6] “(MC2)2: A Generic Decision-Making

Framework and its Application to Cloud

Computing”.

[7] “(MC2)2: Criteria, Requirements and

a Software Prototype for Cloud

Infrastructure Decisions”.

[1] “Autonomic Benchmarking for Cloud

Infrastructures: An Economic Optimization

Model”.

[3] “A Configuration Crawler for Virtual

Appliances in Compute Clouds”.

[2] “What Are You Paying for? Performance

Benchmarking for Infrastructure-as-a-Service

Offerings”.

Implementation

Automated Performance
Benchmarking

Multi-Attribute
Comparison

[5] “CloudGenius: A Hybrid Decision Support

Method for Automating the Migration of Web

Application Clusters to Public Clouds”.

Extension of

Figure 1.4.: Published Material Overview

Moreover, there is preliminary work regarding performance benchmarking of compute
services. [3] analyses which standard benchmarks apply for compute services and es-
tablishes a novel measurement method. Unlike existing methods, benchmarking is con-
ducted over a time span in diverse frequencies. Using the method, experiments have
shown that the performance of a compute service can vary. A second finding of the
experiments is that performance benchmarks of compute services are costly.

To counter costs, [4] proposes a stopping rule that aims at budgeting the costs and
minimize the number of observed services when benchmarking their performance. The
goal is to find a service with a best performance score within a given cost budget for
benchmarking.

Apart from performance measurements, [5] describes a method to crawl software con-
figurations of VM images. The method instantiates VM images of compute services,
determines the operating system and collects the list of software and system libraries
available.

[6] introduces CloudGenius, a cloud migration support framework which makes use of
the previously mentioned assessment and scoring methods in the case of web server mi-
grations. CloudGenius supports a selection of a compute service and VM image as tar-
get platform in a migration. The framework comprises the notion of scoring functions, a
process model, a data model, and links to meta-data assessment methods. For scorings

18

1.6. Published Material

of compute services, CloudGenius benefits from the (MC2)2 framework published in
[1]. Besides, the work refers to [3, 5] for suitable methods to measure performance and
introspect VM images.

The CloudGenius framework has been extended to give decision support in the realm of
web application migrations to the public cloud [7]. The extended version incorporates
a genetic algorithm implemented with the MapReduce programming model to evalu-
ate large numbers of web server cluster setups on compute services using the (MC2)2

framework. The work also discusses the use of (MC2)2 evaluation functions for scor-
ing purposes and fitness functions.

19

1. Introduction

1.7. Thesis Organization

The rest of the thesis is organized as follows: foundations in part I facilitate the reader
with definitions and background, and shed light on related work and the state of the
art.

In part II the conceptual framework and methods contributed by this work are presented.
Chapter 4 gives an overview of the framework and how methods relate to another. Fur-
thermore, methods to assess compute services in an automated manner, capture meta-
data attributes and link the to compute services, compare compute services using a
scoring, and a stopping rule are presented and explained in detail. An implementation
of the scoring method is presented and provides the basis for an evaluation with the
industry and in experiments in respect of computational complexity.

Part III presents instantiations of the framework’s models and methods to assess partic-
ular characteristics of compute services. First, chapter 5 instantiates parts of the frame-
work to benchmark compute services regarding performance in an automated manner.
The instantiation also adapts the scoring method for compute service comparisons ac-
cording to performance attributes. Furthermore, with the use of the framework’s stop-
ping rule a cost budget can be enforced in compute service benchmarking tasks. A
software prototype asserts the feasibility of automated compute service performance
benchmarking and the application of the stopping rule. Besides, several experiments
are conducted to evaluate the compute service performance benchmarking method.

In chapter 6 the framework’s models and methods are instantiated to assess compute
services in regards of VM image contents. A method to introspect VM images re-
garding contents, such as software libraries, in an automated manner is presented. An
implementation of the method shows the feasibility and is employed in experiments to
evaluate the method.

Finally, part IV complete this document with a conclusion, discussion and outlook.

20

Part I.

Foundations

21

2. Background

Chapter 2 introduces the reader to basic concepts relevant throughout the present work.
First, cloud computing and, in particular, cloud infrastructure services including com-
pute services are introduced. Following, meta-data of compute services is explored.
Then, methods of formal decision-making and comparisons are presented. Finally, the
theory of optimal stopping is explained in detail.

2.1. Cloud Compute Services

Cloud computing provides new models to offer and consume hardware infrastructure
and software. The following sections define the notion of cloud computing with a
focus on compute services, a particular cloud infrastructure service. In this respect,
virtualization technology is explained as it provides a basis to cloud compute services
and affects the behavior of compute services. The final sections specifically shed light
on the consumption and constituent parts of compute services.

2.1.1. Definition of Cloud Computing

A definition of cloud computing has been approached in many publications and by di-
verse authors, in research, industry, and standardization organizations [6, 7, 54, 55].
Amongst the multitude of definitions, two particular instances cover the essential fac-
tors this work is based on. The National Institute of Technology (NIST) has published
a definition of cloud computing that spans multiple dimensions:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics,
three service models, and four deployment models. [7]

23

2. Background

The definition of the NIST is coherent with the definition of Baun et al. [6] which
channels important aspects and influences this work as well. In contrast to NIST, Baun
et al. expects resources utilized in cloud computing to be based on virtualization (see
section 2.1.2). Although using virtualization as a basis is not strictly common for all
services [56], most infrastructure services are employing virtualization technology [57,
58].

By using virtualized computing and storage resources and modern Web
technologies, cloud computing provides scalable, network-centric, abstracted
IT infrastructures, platforms, and applications as on-demand services. These
services are billed on a usage basis. [6]

The NIST definition explicitly refers to a list of characteristics and models that describe
the aspects of cloud computing in more detail. The definition of Baun et al. observes
similar cloud characteristics and explains details in addition to the definition. In the
light of both definitions, the subsequent subsections describe characteristics and models
related to cloud computing.

Characteristics of Cloud Computing

The NIST definition of cloud computing incorporates five characteristics that describe
the concept of cloud computing in more detail. The definition of the characteristics
focuses on a description for the role of a consumer who actively interacts with cloud
services and is interested in meta-data of cloud services. Consequently, the explana-
tions of the characteristics in this work will adapt the role of consumers. In contrast, a
customer who purchases cloud services is only involved in the business transactions to
attain access to the services of a provider.

A consumer can provision resources from a cloud provider unilaterally, when needed
and without further interaction (on-demand self-service). Furthermore, through broad
network access capabilities become available over the network (with standard mech-
anisms) by using thin and thick client platforms. Cloud computing channels a multi-
tenant model for pooled computing resources which leads to a concealing of the re-
sources location (resource pooling). Besides, in cloud computing capabilities scale
with demand, often automatically (rapid elasticity). For consumers, the elastic behav-
ior memes an availability of unlimited resources. The usage of resources is monitored,
controlled and can be reported. Hence, a metering of consumer’s utilization of capabil-
ities is available (measured service).

The list of advantages and disadvantages induced by cloud computing’s characteristics
is respectable. An implication caused by the fact that notion of cloud computing em-
braces measured services is a pay-per-use billing model realized by cloud providers [6].

24

2.1. Cloud Compute Services

In turn, a pay-per-use billing model allows companies to avoid high capital expenditures
(CAPEX) that were occurring in a purchase of on-premise IT infrastructure. Thereby,
CAPEX are transmuted into operational expenditures (OPEX) which increase prallel to
the company’s growth. In addition, with economies of scale, the cloud promises to save
costs and to be more reliable than typical on-premise infrastructures [55].

Service Models of Cloud Computing

The capabilities served by cloud providers following the cloud computing model can
be divided into three service models. Commonly, offered cloud services can be divided
into the three models: Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS) [8]. While SaaS offers software and PaaS execution
platforms as services, IaaS offers hardware infrastructures as service. Lenk et al. [8]
developed a more precise representation of service models depicted as a cloud stack in
figure 2.1 which includes a classification of a range of cloud services. The cloud stack
representation also sorts the three models into layers since services can be based on
layers beneath.

The cloud stack comprises the IaaS layer that utilizes physical hardware to provide
infrastructure services, e.g., compute services, storage services and network services.
Furthermore, the PaaS layer is built ontop the IaaS layer, and the SaaS layer is con-
stituted from any of the aforementioned layers. Although, the stack implicates that
services are built ontop of each other, this is not necessarily the case in every PaaS and
SaaS implementation [56, 59, 60].

Deployment Models of Cloud Computing

There are multiple deployment models of cloud computing distinguishable by whom
operates and consumes services. A private cloud is consumed by a single organization
which may also be the owner and operator. Often, a third-party operates the private
cloud which may also be located off-premise. A billing can be absent in private clouds
while services are still measured and other characteristics remain valid. A federation of
multiple private clouds is referred to as a community cloud.

The public cloud deployment model offers cloud services to the public. Commonly,
consumers are billed by a company that operates and owns the cloud infrastructure. A
mix of the private and hybrid cloud deployment model is referred to as hybrid cloud.
A hybrid model results in a composition of public and private (or community) cloud
services, allowing consumers to use public and private cloud services with the same
technologies.

25

2. Background

Figure 2.1.: Service Models and Layers in the Cloud Stack [8]

26

2.1. Cloud Compute Services

2.1.2. Virtualization

Virtualization technology is the basis of cloud infrastructure services and its notions of
dividing hardware into virtual machines is a fundamental background for the present
work. Particularly, the environment and effects created by virtualization software are
considerable factors in the assessment of compute services, which is a cloud infrastruc-
ture service.

The notion of virtualization is to build an abstraction layer ontop of physical hardware.
Through virtualization a creation of a virtual resemblance of a system, hardware or soft-
ware, becomes possible. For cloud computing, and most of all for cloud infrastructure
services, hardware virtualization is a fundamental prerequisite. A virtualized hardware
resembles a set of hardware, most commonly a whole physical machine with its pro-
cessors, memory, hard disks and network devices. Virtualized physical machines are
refered to as Virtual Machines (VMs). A Virtual Machine Monitor (VMM) or hypervi-
sor manages multiple VMs on a host system. VMs share resources of the host system
and can be started or stopped by the hypervisor. The basis for a VM is a Virtual Ma-
chine (VM) image. By instantiating a VM image a new VM can be created or started.
Images include a resource configuration that describes which hardware is required to
instantiate a VM. Besides, a VM image contains initial data on the virtual hard disks
and virtual memory.

How a hypervisor is installed on a host system depends on the hypervisor implementa-
tion. A hypervisor might be installed with it’s own operating system on the bare hard-
ware or on a pre-installed operating system. Multiple vendors offer hypervisor prod-
ucts, e.g., VMware vSphere [61], Citrix Xen Hypervisor [50], Red Hat Entperise Vir-
tualization [62]. Figure 2.2 depicts the structure of a Xen hypervisor example setup.

As shown in figure 2.2, with virtualization software hardware is shared between many
tenants. The use of the same hardware resources by multiple tenants leads to a poten-
tially more economical utilization of the physical system. Traditionally, a single tenant
uses a hardware resources constantly to a small extent or only occasionally to a full ex-
tent depending on the workload patterns. Then, the hardware is under-utilized, at least
at times. By sharing the hardware resources, the costs to operate a physical system can
be split between the tenants.

Nevertheless, virtualization comes with several side-effects which potentially affect the
performance of VM provisioned by a compute service [30]. A more detailed discussion
of such effects is conducted in section 2.2.1 by exploring the consumer-view of compute
service performance.

Cloud computing and in particular cloud infrastructure services became possible when
all requirements were fulfilled in order to attain a full automation of software deploy-
ments in large scales. Virtualization technology closed the gap that hindered hardware
resources to be managed via remote interfaces, instantly and fully automated. Remote

27

2. Background

Figure 2.2.: Example Structure of a Xen Hypervisor [50]

interfaces of hypervisors allow to orchestrate large amounts of virtual machines in large
data centers. The wrapping of these management calls in web service interfaces, offered
to consumers and billed per use, completes the concept of cloud compute services and
of most cloud infrastructure service.

2.1.3. Consumption of Cloud Compute Services

On the IaaS level, compute services provide virtual computer hardware with processors,
memory and hard disks operated in a data center and make them available remotely to
circle of consumers, depending on the deployment model. For realization of a compute
service, typically, virtualization technologies are employed to divide physical machines
into Virtual Machine segments and to homogenize varying physical hardware [55, 63].
Prominent compute services are Amazon Web Services Elastic Compute Cloud [57],
Rackspace Public Cloud [58], and GoGrid Cloud Servers [64].

Consumers of a compute service can instantiate VM images that package at least a basic
operating system or can even encapsulate a whole software stack. Virtual Machine
(VM) images available for a compute service differ in the included operating system
and software packages (see section 2.1.3). The typical process of deployment, assumed
an account with a compute service provider is available, follows a three-step process:

1. Choose a VM image

2. Choose a compute service hardware configuration

3. Create one or multiple VM instances from the VM image

28

2.1. Cloud Compute Services

Steps (1) and (2) do not have a particular order and step 3 can appear in arbitrary
frequency, e.g., triggered by an automatic scaling logic, depending in which context the
compute service is used. As a result of the process a consumer receives access to the
VM instances via remote interfaces like Secure Shell (SSH) remote terminals.

Virtual Machine Images in Public Compute Services

VM images are an essential part of compute services as every instantiation of a VM
always involves an assignment of an image. To know about VM image contents is
fundamental for consumers to successfully use compute services. VM images differ
in contained operating system and software installed. Depending on the software con-
tained a VM image, a consumer must install missing software or remove unnecessary
items.

To understand which contents of VM images can and should be assessed, it is nec-
essary to observe the structure and availability of VM images in compute services.
Generally, the provisioning of VM images, that contain software and libraries, varies
between compute clouds. Repositories differ regarding the dimensions of openness and
VM image complexity. VM image complexity ranges from simple images compris-
ing only an operating system to complex full software stack images, called virtual or
cloud appliances. A cloud appliance is a VM image that has been optimally config-
ured for a particular purpose, e.g., a database server appliance or an application server
appliance.

Specific images with different configurations and software versions can lead to im-
mensely large repositories. However, images from one repository of a certain provider
cannot necessarily be instantiated at a different provider. Although many providers
base their compute service on the same virtualization technologies, interoperability is
not yet granted.

The management of a repository lies typically with the cloud provider, but contributions
of new images can either be made by the cloud provider only or an open community.
Figure 2.4 depicts an enhanced gantt chart of VM image repository contents and a clas-
sification of three compute cloud providers, namely GoGrid, Rackspace, and Amazon.
In general, three types of repositories are distinguishable: (1) centralized packaging
and management of bare operating system images (e.g., Rackspace [58]), (2) central-
ized packaging of a wide range of VM images, from bare operating system to complex
software stacks (e.g., GoGrid [64]), and (3) decentralized packaging that involves users
and communities (e.g., Amazon EC2 [57]).

VM image repositories of providers not only contain freely available images. Commer-
cial software vendors, including IBM, SAP, and Oracle, package VM images and either
release them for free or with commercial licenses. For example, Amazon’s Applica-
tion Programming Interface (API) comprises fee and license payment services for VMs

29

2. Background

Figure 2.3.: Software on VM Images and Appliances

Figure 2.4.: Overview of VM Image Repository Contents

which are charged by hour or paid on a subscription basis. In parallel, commercial VM
images of Amazon’s repository are published on Amazon’s AWS Marketplace [65].

Apart from cloud provider’s API access to VM images, community websites publish
lists of images. The images are often created by the community and available for mul-
tiple public cloud services. For example, the Cloud Market [66] is a VM image ag-
gregator that holds and maintains a database of 85,3651 VM images compatible with
Amazon’s EC2 compute service. Similarly, bitnami [67] provides a wide range of
prepackaged software on VM images as an intermediary seller.

Compute Service Configurations

Compute service offerings differ in various attributes. Besides, service providers com-
monly offer multiple compute services differing in attributes of the Virtual Machine and
service levels. A compute service is offered in a configuration with a certain amount
of hardware resources, e.g., CPU cores, amount of memory, and hard disk space, for a
price per time unit – typically full hours [68–71].

1checked 8th Sept. 2013

30

2.1. Cloud Compute Services

The pricing for compute service configurations differ. Configurations made available
to consumers are predetermined in offered service variants by providers. In contrast,
there are also providers which allow consumers to configure the hardware resources of
a compute service. Depending on the pricing model, one time fees and other additional
costs may appear.

Compute services of one provider are distinguishable by hardware configuration, coined
as compute service type, since only the amount of hardware resources changes. Providers,
including Amazon [72] and Rackspace [58], offer compute services in predefined con-
figurations distinguishable by multiple dimensions such as processor cores, amount of
memory, and hard drive size. In contrast, some compute services, e.g., 1&1 Dynamic
Cloud Servers [73], facilitate consumers with a custom hardware configuration along
those multiple dimensions. Accuracy and variations choosable within the dimensions
vary.

Detailed information about available predefined hardware configurations is commonly
available together with price tables on the websites of providers. For configurable com-
pute services, the amount of hardware resources can be defined upon instantiation of a
VM. Depending on the compute service, a VM image may restrict the configuration of
the hardware resources. For example, Amazon EC2 offers VM images that only work
with 64-bit and 32-bit processors.

Compute Service Access

How compute services are offered is similar for most compute service providers. Com-
pute services can typically be accessed via web frontends and web service interfaces,
using a web browser or client software handed out by the provider respectively. Us-
ing the interfaces, a consumer can start, configure and stop VM instances or save an
instance as a VM image, depending on the capabilities of the service.

Furthermore, since VMs are potentially accessible from anybody via the internet, con-
sumers typically need credentials to access a running VM. For example, when a
provider uses the SSH protocol for remote connections to VMs a username and pass-
word or a SSH certificate is required. Alternatively, some providers employ a Virtual
Private Network (VPN) for security and establish remote connections to VMs via re-
mote console software. Figure 2.5 gives an overview of the diverse access channels for
using the service or accessing VMs.

The jClouds java library [9] aggregates cloud service APIs of multiple providers into a
uniform interface for consumers. Additionally, interface specifications like OCCI [74,
75] and CIMI [76] aim at fostering a unified access to compute services.

31

2. Background

Compute Service

VPN

Virtual Machine

Virtual Machine

Customer

SSH with certificate

Web Service API
Client

Software

HTTP

Web Frontend
Web

Browser

HTTP

VPN+SSH

Figure 2.5.: Exemplary Access Channels to a Compute Service

2.2. Compute Service Meta-Data

Meta-data is essential to distinguish and compare compute services of one or multiple
providers. This section explores the extent of meta-data available for compute services
from providers and third-parties, particularly in respect of performance and VM image
contents. Besides, generally available methods to assess compute services in regards of
performance and software contents are presented.

2.2.1. Performance of Compute Services

Performance is a property of compute services that is of particular interest to con-
sumers. The time to complete computational tasks depends on the performance utiliz-
able from a service. Available meta-data indicates what performance can be expected
of a compute service. To gain more details about a computer system’s performance,
benchmarking is an approach for further analyses. Since the performance may vary
over time, repetitions give means to capture variations with metrics, such as statistical
variance or standard deviation.

In the following, first the extent of available meta-data about compute services’ perfor-
mance characteristics is examined. Then, methods to assess a computer systems perfor-
mance are presented and the general applicability to compute services is discussed.

32

2.2. Compute Service Meta-Data

Available Compute Service Performance Meta-Data

For compute services, available meta-data is scarce in a sense of making profound
performance predictions. The information provided in public sources, such as from the
APIs of compute service providers and on their websites, only gives an overview of the
hardware dimensions. A summary of hardware and performance meta-data attributes
published by AWS EC2, Rackspace Cloud Servers, and GoGrid Cloud Servers is given
in table 2.1. The screenshots in figures A.1, A.2, A.3, and A.4 in chapter A of the
appendix give an impression of how performance meta-data is published on provider
websites.

Attribute EC2 Rackspace GoGrid

Amount CPU Cores ✓ ✓ ✓
CPU Performance Indicator ✓ × ×
CPU Architecture ✓ × ×
CPU Hardware ✓ × ×
Amount Memory ✓ ✓ ✓
Memory Performance Indicator × × ×
Disk Volumes ✓ ✓ ✓
Disk Performance Indicator × × ×
Network Bandwidth × ✓ ✓

Table 2.1.: Meta-data Attributes available on Provider Websites

Publicly available meta-data of compute services, whether hardware configuration or
performance, is generally rather scarce [10]. Commonly, compute services indicate
three hardware specifics: (1) number of processors (or cores) and their architecture, (2)
amount of memory, (3) amount of hard disk space. While (2) and (3) are commonly
described in bits or bytes metric, (1) is defined by a number and frequently with an
architecture identifier, such as 32bit or 64bit. Figure 2.6 illustrates the structure of
hardware configuration meta-data typically available for compute services.

Figure 2.6.: Structure of Compute Service Hardware Configuration Meta-Data [10]

A further specification of the performance characteristics of the physical hardware (re-

33

2. Background

garding (1)-(3)) is absent at the examined providers or, if available, diverse and rather
vague. For example, the read or write performance of the memory is not published,
and hard disk performance is clustered in non-SSD and SSD hard drives. Regarding
processor performance, some providers state the clock speed precisely, others use pro-
cessor cores or compute cycles to specify the performance. In parallel, some providers
introduce own metrics to describe the processor performance. For instance, Amazon
defines the metric Elastic Compute Unit (ECU) and Media Temple introduces a Grid
Performance Unit (GPU).

Performance Analysis of Compute Services

The analysis of a system’s performance is essential to better understand its quality.
In the use, design and administration of a system, the quantification of performance
attributes of a system according to metrics can be a fundamental factor. Considering
performance attributes helps to select a system according to its performance, determine
or modify its design or detect discrepancies in its behavior. The general goal is to
maximize the performance of a system in a performance-cost trade-off.

To conduct a performance analysis, several performance evaluation strategies can be
followed [31, 77]. Figure 2.7 depicts an overview of four classes of different strategies.
Every strategy has its benefits and disadvantages. While using a model of the system is
typically cheap to build (emulation and simulation), the real system provides results that
reflect the actual performance behavior (in-situ and benchmarking). Also, exploring a
system’s performance behavior under real workloads is most accurate (in-situ and em-
ulation) while modeled workloads give a general evaluation of a system (benchmarking
and simulation) [31].

Compute service consumers are facing a specific situation in regards of performance
analysis. A need to measure the actual performance of a compute service is due to
system design tasks, but also in order to single-handedly monitor the quality provided
by a compute service. However, in his task to measure a compute service’s perfor-
mance behavior, a consumer is restricted to remote access to the system. A restricted
access to the target system creates requirements regarding the form of the performance
measurement.

The following subsections examine how a performance analysis can be conducted by
compute service consumers. In addition, the peculiarities of virtualized systems are
discussed in regards of compute service benchmarking. Also, the nature of metrics used
to represent benchmarks is explained. Finally, repetitions of performance benchmarks
in the light of non-deterministic systems are discussed and an overview of existing
performance benchmarking software is provided.

34

2.2. Compute Service Meta-Data

modeled

workload

real

workload

real

system

modeled

system

BenchmarkingIn-Situ

Emulation Simulation

Figure 2.7.: Classification of Performance Evaluations [77]

Performance Benchmarking by Compute Service Consumers From a consumer-
side, the access to a compute service in a performance analysis is restricted to the API
offered by the provider and remote access to VMs. The physical hardware and virtu-
alization layer are inaccessible to the consumer. Consequently, a performance analysis
deals with a black box system and must focus on strategies applicable in the given
situation.

An in-situ evaluation is possible by developing a real system running ontop a VM of a
compute service and monitoring its behavior in production or testing stage. The results,
however, remain very specific to the system. In contrast, performance benchmarking
can be applied to compute services without necessarily developing a system. Existing
benchmarking software provides systems that generate modeled workload on a VM of
a compute service. The results provide general insights into a system’s performance
behavior and can be compared between systems. However, benchmarking results miss
the accuracy and specificity of an in-situ evaluation with a production system.

Moreover, software systems are often operated in a complex environment. Depending
on the environment, a system is confronted with diverse tasks to be dealt with, such as
cronjobs, network requests, or operating system maintenance. Therefore, a system can
show a non-deterministic performance level. A benchmark that is repeated on a system
at different points in time can show a variation in the results [28].

Particulary in virtualized systems, a non-deterministic performance degradation for

35

2. Background

processor, memory, and I/O of VMs can be observed [30, 78]. Despite a hardware
support for virtualization software, processor performance degrades up to 5%, memory
up to 97%, and for I/O up to 28% according to results by Huber et al. [30] using the
Passmark benchmark.

Even though virtualization software aims at an isolation between VMs, the influence
of shared hardware usage is still recognizable [79]. Repeated performance benchmark-
ing of compute services has shown that specifically processing power varies between
different VMs of the same service and over time [80]. With AWS EC2’s m1.small com-
pute service the available average processor performance is halved in one-third of the
available VMs due to two distinct processor types. Therefore, a repetition of perfor-
mance benchmarks is necessary to gain a clearer overview of the actual performance
and variations to be expected by a service.

This work seizes the insights from performance measurements exposing the behavior
of virtualized compute services and includes benchmarking repetitions. In this regard,
it is necessary to define metrics and aggregate benchmarking results from multiple runs.
The following paragraphs address these aspects.

Metrics in Performance Benchmarking A metric is the unit in which a bench-
mark result can be expressed. The metric defines in which context a value must be
interpreted and indicates that values of an identical metric feature a comparability. The
features available in a comparison depend on the scale of a metric. While a nominal
scale does not enable to compare values, an ordinal scale allows for rankings. Besides,
interval scales and ratio scales facilitate comparisons in numeric terms. Interval scales
support to compare values and identify a difference. With ratio scales, values can even
be compared in relation expressed as a ratio.

Commonly, benchmarks are expressed in metrics correlating with elapsed time or num-
ber of completed cycles. Depending on the benchmark metric, a lower or higher value
is more favorable to a system engineer and consumer. Generally, three metric types can
be distinguished for benchmarks [31].

• Higher is Better (HiB). The higher the value expressed in such a benchmark
metric, the better is the perceived value. E.g., computation cycles, throughput.

• Lower is Better (LiB). The lower the value expressed in such a benchmark metric,
the better is the perceived value. E.g., computation time, latency.

• Nominal is Better (NiB). The closer the value expressed in such a benchmark
metric resides to a defined optimum, the better is the perceived value. The defined
optimum can be an arbitrary value between the maximum and minimum of a
scale. E.g., utilization.

36

2.2. Compute Service Meta-Data

Aside from the performance metric, also the variations over multiple measurements
must be considered. While in deterministic systems variations may be neglectable or
absent, in non-deterministic systems, as in virtualized systems, variations are present.
It is necessary to also assess variations, such as standard deviation or coefficient of
variation, which are typically expressed in LiB metrics.

Repetitions in Performance Benchmarking The performance of hardware re-
flected in a benchmark is typically subject to variations over time [28, 31]. Other soft-
ware running on a system and the external environment can have an influence on the
performance achieved in a benchmarking. Systems showing non-deterministic varia-
tions cannot be captured in a single benchmark run.

Therefore, benchmarking needs to be repeated multiple times to gain meaningful statis-
tics. An aggregation of multiple benchmarking runs requires the use of an aggregation
function to acquire a summarized, single result for comparisons.

From a pessimistic perspective, the minimum function can be an adequate performance
result aggregation. Conversely, with an optimistic view, the maximum function pro-
vides an eligible performance result aggregation. Moreover, mathematics and statistics
offer more aggregation functions like mean, mode or median which aim at reflecting a
central tendency. In addition, percentiles help to incorporate the variability of bench-
marking results. Any of the aggregation functions can be applied to set of measured
benchmarking results to determine a summarized value.

The following sub-sections present exemplary mean and median aggregation functions
from mathematics and statistics.

Median The median is defined for a sample {x1, x2, ..., xn} as follows:

x =


xn+1

2
n odd

1
2 (xn

2
+ xn

2 +1) n even

Arithemtic Mean The arithmetic mean is defined for a sample {x1, x2, ..., xn} as
follows:

x = 1/n

n
i=1

xi

37

2. Background

Geometric Mean The geometric mean is defined for a sample {x1, x2, ..., xn} as
follows:

x = (

n
i=1

xi)
1/n

Harmonic Mean The harmonic mean is defined for a sample {x1, x2, ..., xn} as
follows:

x =
n

1/x1 + 1/x2 + ...+ 1/xn

Performance Benchmarking Software This work capitalizes on the abundance
of benchmarks and related benchmarking software publicly available to automate com-
pute service performance measurements. First of all, the structure of available bench-
marking software and several common software packages shall be explored in the fol-
lowing. Finally, the Phoronix benchmarking software is presented that serves as a basis
for later software prototypes in this work.

To measure performance aspects of a system in practice, a plethora of benchmarking
software is publicly available and contains implementations of all sorts of benchmarks.
Benchmarking software is typically packaged for execution on a wide range of systems.
Therefore, benchmarking software exists in multiple versions and implementations for
diverse hardware and operating system variants. Apart from that, software for bench-
marks specific to certain system types exist as well, e.g., benchmarks for Unix systems
only. Then, implementations are only provided for a certain system type.

Several benchmarking software have become more common as tools for measurements
and comparisons than others [36, 37]. A list of examples of popular benchmarking
software is given in table 2.2.

Name Metric

Whetstone [81, 82] Mio. Whetstone Instructions Per Sec. (MWIPS)
LINPACK [83] Mio. Floating Point Oper.s Per Sec. (MFLOPS)
Dhrystone [84] Program Iteration Completions Per Sec.
CPU2006 [85, 86] Run-time Seconds

Table 2.2.: Sample of Common Performance Benchmarks

38

2.2. Compute Service Meta-Data

A large number of benchmarking software executes only a single benchmark task, a
micro-benchmark, in a measurement run to gain a benchmark score. In contrast, bench-
marking software that comprises a set of benchmark tasks is referred to as a bench-
marking suite. Benchmarking suites commonly cover varying performance aspects and
benchmark tasks are executed sequentially [87–90]. The sum of the executed bench-
mark tasks, sometimes weighted, equals the final benchmark score a system achieved.
A benchmarking suite provides more diverse metrics to compare systems and allows
for simpler execution of benchmarks. Since executing benchmarking software pack-
ages would need multiple steps, a benchmarking suite bundles diverse benchmarking
software packages in a manner that allows a single execution step.

There is existing software that enables bundling of benchmarking software into suites
[91, 92]. For example, Phoronix [91] offers a large set of existing benchmarking soft-
ware 2 that can be composited to suites and executed on any computer with a PHP
interpreter.

To use Phoronix, a bundle of PHP scripts need to be installed on the target system to
be benchmarked. Using the scripts, a set of benchmarks can be bundled into a suite.
Aside from custom assembled suits, predefined suits are available to execute multiple
benchmarks sequentially on the target system. Any benchmarking software needed
for benchmarking is automatically downloaded from Phoronix’s repositories during the
process. Results are exported as XML files.

In a global parameter, Phoronix can be advised to repeat each benchmark a specific
number of times or until a maximum standard deviation is underpassed. The Phoronix
software aggregates results from multiple runs in an average (arithmetic mean), maxi-
mum and minimum score.

2.2.2. VM Images

Compute services offer sets of VM images to consumers in order to simplify the build-
ing process of software to be run on their service. In general, VM images differentiate
according to a range of attributes, from time of creation and access permissions to con-
tained software and required disk volume.

In the following, first the extent of available meta-data about VM images is explored.
Finally, the field of software management and its relation to VM images is described.

2available on open-benchmarking.com, accessed 2014-01-15.

39

2. Background

Available VM Image Meta-Data

Compute service providers usually offer mechanisms to annotate VM images with
meta-data and make this information accessible via APIs or on their websites. Infor-
mation, however, is restricted to few meta-data that describes the status of an image.
Table 2.3 shows the different meta-data attributes examined in the APIs of the compute
services AWS EC2, Rackspace Cloud Servers and GoGrid Cloud Servers.

Attribute EC2 Rackspace GoGrid

ID ✓ ✓ ✓
Name ✓ ✓ ✓
Timestamp Created × ✓ ✓
Timestamp Updated × ✓ ✓
Status Accessibility (Public, Non-Public) ✓ × ✓
Status Availablity (Active, Saving, Deleting) ✓ ✓ ✓
Status Progress (Modification Progress) × ✓ ×
Operating System × × ✓
Price ✓ × ✓
Geo Location ✓ × ×
File Location ✓ × ✓
Owner ✓ × ✓
Architecture ✓ × ×
Category/Type × × ✓
Description Text ✓ × ✓
Hypervisor ✓ × ×
Disk Volumes ✓ × ×

Table 2.3.: Meta-data Attributes accessible via Compute Service APIs

An open-source software called OpenStack [93] that provides the basis to operate in-
frastructures in the private cloud deployment model offers extended support of meta-
data for VM images. In addition to the meta-data available at compute service providers,
OpenStack allows to associate key-value pairs to any VM image [94]. The meta-data is
stored at the VM image service and can be accessed via web service interfaces [95].

Software Management

As VM image contain data and software, a primary concern is to configure software
based on the initial state provided by an image. Initially, existing software must be de-
tected within a VM of an image to establish a basis for further configurations. The state
of software provided by a VM image can either be repeatedly detected when needed or

40

2.2. Compute Service Meta-Data

persistently stored as meta-data of the image. Based on the current state of an image, an
extended software configuration can be built and stored as a new VM image if needed.
The process of software configuration may be conducted manually or with methods and
tools which help to automate the configuration.

In this regard, the field of configuration management [51, 52] establishes and researches
a wide range of concepts, methods, and tools to manage and detect software configura-
tions.

To install software packages on a computer system, diverse methods and tools exist. In-
stallation bundlers (e.g., InstallShield [96], DPKG [97]) envelop software packages in a
self-contained bundle that can install and uninstall the software package. Besides, pack-
age management systems (short: package managers) that access maintained reposito-
ries with software packages are able to install and uninstall packages [98]. Furthermore,
package managers can resolve dependencies between packages and automatically in-
stall required dependent packages. Prominent package manager implementations are
APT based on DPKG [97, 99], YaST [100], and RPM [101].

In conjunction with installation and package manager tools, Operating System Con-
figuration Management (OSCM) software builds whole software stacks orchestrating
software installations on computers to be remotely managed by the software [102, 103].
Depending on the implementation, scripts or declarations describe what actions need
to be executed on an operating system to build the stack [104–106]. Package managers
and installation bundles help with remotely managing computers by installing software
packages constituting a software stack.

OSCM-Managed Computers

OSCM System

OSCM
Manager

Computer 2

Computer N

OSCM Client

OSCM Client

...

Software Package Repository

Scripts & Files Repository download

download

manage

manage

Computer 1

Figure 2.8.: Typical OSCM System Architecture

41

2. Background

Figure 2.8 depicts the typical architecture of OSCM systems. A manager component
takes over the part of orchestrating the configuration tasks applied to the managed com-
puters. Initially, on every managed computer, a client software needs to be installed.
The installation process is typically carried out via remote protocols (e.g., SSH, telnet)
by the manager component. By employing repositories, the manager component can let
clients remotely download and install software, execute scripts and programs, or insert
and replace files with system parameters or data.

In an initial phase of a software stack build, already installed software needs to be
detected to avoid conflicts and skip unnecessary steps. Therefore, existing OSCM im-
plementations include a detection component which can document existing software
packages and operating system attributes by accessing system tools and package man-
agers. The snippet in listing 2.1 provides an example of a system libraries detection
result documented with Ohai on an Ubuntu Linux system. The Ohai tooling is part of
the Chef Configuration management system, a OSCM implementation from Opscode
[107].

1 . . .
" py thon2 . 7 " : {

3 " v e r s i o n " : "2.7.1 −5 ubuntu2 " ,
" d e s c r i p t i o n " : "An i n t e r a c t i v e high−l e v e l o b j e c t−

5 o r i e n t e d l a n g u a g e (v e r s i o n 2 . 7) "
} ,

7 " py thon2 .7−minimal " : {
" v e r s i o n " : "2.7.1 −5 ubuntu2 " ,

9 " d e s c r i p t i o n " : "A minimal s u b s e t o f t h e Python
l a n g u a g e (v e r s i o n 2 . 7) "

11 } ,
" r e a d l i n e−common " : {

13 " v e r s i o n " : "6.2−0 ubuntu1 " ,
" d e s c r i p t i o n " : "GNU r e a d l i n e and h i s t o r y l i b r a r i e s ,

15 common f i l e s "
} ,

17 " r s y n c " : {
" v e r s i o n " : "3.0.7 −2 ubuntu3 " ,

19 " d e s c r i p t i o n " : " f a s t r emote f i l e copy program
(l i k e r c p) "

21 } ,
. . .

Listing 2.1: Opscode Chef Ohai Output from a Ubuntu 11.04 Natty System

42

2.3. Formal Decision-Making

2.3. Formal Decision-Making

Decisions have to be made on various levels and situations, from political or strategic
business decisions to what to wear on a particular day. One way to settle for a choice
is to stress mathematics and numbers. The field of formal decision-making provides
methods that allow to evaluate options with mathematical tools. Methods of this field
are described as MCDM methods. All methods in this field allow to define preferences
and constraints regarding multiple criteria and find a pareto-optimal solution.

One strength of a subset of MCDM methods is scoring, which is the ability to express
the quality of decision options in a value. With a scoring, options can be compared on
a scale and differences can be denominated in percentages. In this work, scoring plays
an important role to allow compute service consumers to compare services. Therefore,
this section is primarily occupied with MCDM methods from a scoring perspective.

The following subsections give an overview of the field of Multi-Criteria Decision-
Making and present one method from that field. The presented method, the Analytic
Hierarchy Process, will be part of the framework contributed by this work. Conse-
quently, an overview and classification of existing methods is given. The comparison
of methods substantiates the motivation to settle for AHP as the method of choice in
the framework presented in chapter 4.

2.3.1. Multi-Criteria Decision-Making (MCDM)

The field of Multi-Criteria Decision-Making (MCDM) engages with the wish to find
an optimal solution to a decision problem regarding multiple criteria. Methods of that
field help to map the quality of alternative solutions to a value, expose pareto-optimal
solutions and determine preferred or non-dominated solutions.

Multi-Attribute Decision-Making vs. Multi-Objective Decision-Making

MCDM can be separated into two groups of decision problems: (1) Multi-Attribute
Decision-Making (MADM), and (2) Multi-Objective Decision-Making. While (1) is
concerned with predetermined, discrete solutions, (2) faces competing objective func-
tions and constraints that determine viable solutions. In MADM, an evaluation of large
sets of discrete solutions, also called search spaces, regarding a decision-maker’s pref-
erences can imply high computational efforts. An approach to tackling large search
spaces is translating a multi-attribute decision into a multi-objective decision to find a
solution and pick a close, discrete solution.

43

2. Background

Other than multi-attribute-oriented approaches, in multi-objective decision-making, meth-
ods find an optimal solution by searching an infinite solution space along multiple di-
mensions. A search considers constraints set to a dimension or relations between di-
mensions. An optimal solution is either a viable global pareto maximum or minimum.
A pareto solution is not a guaranteed optimal discrete solution, since even discrete so-
lutions close to a global (pareto) optimum must not necessarily be a globally optimal
discrete solution. In multi-objective decision-making the plurality of methods originate
from various decision problems and algorithms.

Multi-Attribute Decision-Making Methods

Multi-Criteria Decision-Making (MCDM) methods can be categorized by the point in
time when a decision-maker specifies his preferences, i.e., a priori, interactively, or a
posteriori [108]. In Multi-Attribute Decision-Making preferences are always required
a priori [19].

Furthermore, the applicability of a MADM method can be determined by the available
information. Figure 2.9 depicts a taxonomy for MADM methods including a range
of exemplary methods. The amount of information and knowledge about relations be-
tween data, e.g., by an ordinal scale, increases the precision of a method. At the same
time, a method must be able to deal with many information and involve knowledge
about scales in its evaluation. Multiple methods are able to cope with information about
multiple attributes and map values on a cardinal scales (see Figure 2.9). The Analytic
Hierarchy Process is the only method that also allows hierarchical relations between
attributes. Also, it is able to normalize attribute values and result values on a [0, 1] ratio
scale.

2.3.2. The Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP) is a method to make decision based on multiple
criteria [109, 110]. The Analytic Network Process (ANP) is a generalization of the
simpler AHP and extends criteria hierarchies to complex criteria networks. Both crite-
ria hierarchies and criteria networks intend to model the real world situation of criteria
influences more realistic than single dimension value functions. However, the ANP re-
quires very complex criteria network definitions and value computations. In most cases,
a simple network definition reflecting the special case of a hierarchy is sufficient.

Criteria weights can be determined by pairwise comparisons what is a fundamental
concept in the AHP. Also, pairwise comparisons help to normalize attribute values of
alternatives to a [0, 1] ratio scale. Using a super matrix filled with weights of a criteria
hierarchy and the results of all pairwise attribute comparisons the AHP can compute
a value on a ratio scale for each alternative. The structure of the super matrix and the

44

2.3. Formal Decision-Making

Figure 2.9.: Taxonomy of Multi-Attribute Decision-Making Methods [19]

numeric operation to gain the scores is explained in the following subsections. Also,
the sections introduce extended concepts of the AHP by elaborating on indices and the
concepts of synthesizing modes in rank reversals.

Criteria Hierarchies

A criteria hierarchy models a complex structure of alternatives, criteria, and goals. In
the AHP criteria hierarchies allow to group criteria. The number of levels in a hierar-
chy is not limited. On the top level one or more goals head the hierarchy. Goals can
be diverging or yield towards the same direction. The AHP proposes four merits for
goals: benefits, opportunities, costs, risks (BOCR) [111]. Criteria grouped under goals
may have metrics that point in a positive or negative direction. For positive metrics a
higher value is better, for negative metrics a lower value is better. Figure 2.10 shows an
example of a goal hierarchy with the two competing goals features (positive) and costs
(negative).

A hierarchy structure and its multiple levels influence how weights of criteria are de-
termined. The gravity of a criterion relies on the weights of related goals in upper
hierarchy levels. The calculation of the final value incorporates all weights of the hier-
archy.

45

2. Background

Alternatives

Level 1

Goals

Cloud A Cloud B Cloud C

Reliability
Customer
Rating

Experience Investment Monthly

CostsFeatures

Figure 2.10.: Example of a AHP Hierarchy

Figure 2.11.: Pairwise Comparison Matrix [112]

Pairwise Comparisons

The AHP uses pairwise comparisons of elements within a hierarchy level to insert cri-
teria values into [0, 1] ratio scales and to calculate weights. A pairwise comparison
can be done for n alternatives Ai by creating a comparison matrix as shown in Fig-
ure 2.11. Alternatives must be compared only regarding criteria in the lowest level of
the hierarchy. Criteria weights are derived from comparisons for each group on every
level.

A pairwise comparison of alternative Ai in row i and alternative Aj in column j re-
garding a criterion results in a comparison value ωi,j that expresses the ratio ωi/ωj of
Ai’s value in contrast to Aj . After all pairwise comparisons have been computed, on
the matrix’s diagonal all values will be 1 and under the diagonal are the inverses of the
values above the diagonal. The normalized comparison result vector ω can be obtained
by calculating the eigenvector with Aω = nω.

To calculate local weights on one level in the hierarchy the comparison matrix is applied
similarly. The matrix holds columns and rows for the affected criteria c1 to cn. Again,

46

2.3. Formal Decision-Making

in each cell the two weights are compared with their values with ωi/ωj . The normalized
local weights result from the eigenvector with Aω = nω.

Calculation of Rankings and Scores

In the AHP pairwise comparison and normalization of weights and values is the pre-
requisite to map alternatives to a final value per goal. The ranking and scores of all
alternatives regarding a goal are calculated in two steps. First, global weights ωg must
be calculated for all criteria on the lowest level (leaf criteria). A global weight ωg is
computed by multiplying local weights along the path of the hierarchy, from goal to a
lowest level criterion. Global weights will still remain normalized but reflect the actual
weight of a leaf criterion. A final value can be calculated by multiplying the global
weights and the normalized values of leaf criteria and summing up the resulting values.
For n leaf criteria, this step can be formally expressed as

n
i=1 ωivi,Aj

for alternative
Aj . The ranking of all alternatives results from ordering by score.

Using Indices

Indices are an extended variant of applying the AHP to gain a score for alternatives.
They allow the combination of scores from parallel AHP results. This is in particular
of interest when considering multiple goals. AHP suggests indices based on the four
merits benefits, opportunities, costs, and risks (BOCR) [111]. This also addresses the
need to differentiate between positive and negative criteria. The four merits imply four
parallel AHP computations with criteria hierarchies. Then all four scores are put into a
relation by a function. A simple index for BOCR suggested by Saaty is idx1 = B+O

C+R .
A normalization of indices is optional but will map the alternative index values to a
ratio scale.

Normalization and Idealization

In case an additional alternative or criterion is added into a decision ex post, rank re-
versal can occur when using the typical normalization mode. To avoid this behavior,
the AHP also offers an idealization mode. While the usually used normalization mode
makes pairwise comparisons which result in vectors with a sum of 1, the idealization
mode discards this notion and sets the value for the best element to 1. Other alternatives
are assigned a value relative to the value of the best element. The best element is called
the ideal element.

In idealization mode, rank reversal is avoided when the original ideal element keeps its
original value 1. The values of new elements that are rated better than the original ideal
element can achieve a value >1.

47

2. Background

2.4. Theory of Optimal Stopping

As the assessment of many compute services is costly, a mechanism to reduce the num-
ber of compute services is beneficial. The notion of stopping in a sequential traversal
of the compute service set according to rules is an approach to achieve a cost reduc-
tion and budgeting followed in this work. The theory of optimal stopping has already
developed rules that determine a stop under consideration of predefined criteria. There-
fore, the concepts and existing stopping rules from this field shall be examined in the
following.

The theory of optimal stopping is concerned with problems incorporating a solving
algorithm with an infinite or finite number of steps [48, 113]. The intricate question
to be solved is finding a stopping rule that determines to stop at a certain time and
maximizes utility (or minimizes costs).

2.4.1. Stopping Problems

A stopping problem is described by a sequence of independent, random variablesX1, X2, . . . , Xn

whose joint distribution F (·) is assumed known [113, 114]. Then, a sequence of utility
functions

u0, u1(x1), u2(x1, x2), . . . , u∞(x1, x2, . . .)

map a valued utility to the observations

X1 = x1, X2 = x2, . . . , Xn = xn

which are one-dimensional. After each observation, one can either decide to stop or
keep on gathering information.

A stopping problem is classified as a finite horizon problem with a finite number n of
observable random variables. Finite horizon problems are a special case of infinite hori-
zon problems and, thus, allow for different stopping rules. A stop is always guaranteed
in a finite horizon problem since only a finite number of observations can be made.

2.4.2. Stopping Rules

A stopping rule (1) always leads to a stop and (2) returns an optimal or acceptable
solution in respect of the utility (or costs). The goal of a stopping rule is to lead to
a stop to maximize utility, given that every further observation of a random variable
Xn+1 may discover a better solution but induces costs.

48

2.4. Theory of Optimal Stopping

The following subsections present two famous examples in which a decision-maker
faces problems similar to benchmarking a set of compute services. Similarly to bench-
marking, any formerly discovered information and option can be recalled. The given
examples help to understand Stopping Theory-approaches and the definition of appro-
priate stopping rules in the context of an information search – as adapted for bench-
marking resp. meta-data assessment in this work. Finally, several standard stopping
rules are presented which target stopping problems where the distribution function of
the random variables X1, X2, . . . , Xn is unknown.

Secretary Search Example

The search of a secretary is a classic example for stopping rules [115, 116]. Let Xi

be the i-th applicant and X1, . . . , Xn be the random variables for n applicants. After
every Xn the employer has to decide for Xn or continue with Xn+1.

For a finite horizon of n jobs, a viable solution to the stopping problem is then to reject
k applicants and accept a later applicant with a value higher than any applicant before.
The number k can be calculated as follows [116]

k = n/e

This leads to a stopping rule where approximately 37% of the jobs should be skipped
and then the first job with a value higher than all observed jobs should be accepted.

Job Search & House Selling Example

When a prospective employee is searching and applying for a new job, job offers can
be ranked without ties and the search process implies costs for every additional offer
[117]. Job offers can be evaluated by the job seeker according to his preferences and
are received on a daily basis. Let Xi be the job offer received on day i and X1, . . . , Xn

be the random variables for n days. The costs to receive an offer per day are c > 0, and
after every Xn the job seeker can accept Xn while Xn+1 may result in a higher offer,
not known in advance.

The utility of n offers is:

u0 = 0

un(x1, . . . , xn) = xn − n · c for n = 1, 2, . . .

u∞(x1, x2, . . .) = −∞

49

2. Background

Similarly, in a house selling situation, a best offer has to be found while costs for the
search rise daily for additional living costs and expenditures to host open house events
[114]. For a house selling, let Xi be the offer on day i and X1, . . . , Xn be the random
variables for n days. The costs per day are c > 0, and after every Xn the seller can
settle for the highest Xi while Xn+1 might promise a higher offer.

The utility of n offers is similar to a job search, however, the chance to recall any past
offer allows to draw a maximum:

u0 = 0

un(x1, . . . , xn) = max(x1, . . . , xn)− n · c for n = 1, 2, . . .

u∞(x1, x2, . . .) = −∞

To gain the highest utility, a stopping rule needs to determine an optimal or acceptable
u(X1, . . . , Xn) that serves a seller a high Xi for his real estate. For both cases, the
expected value can support a stopping rule since the distribution is known.

Standard Stopping Rules

There are various stopping rule approaches in the cases of a known or unknown dis-
tribution function [118–120]. In the following, stopping rules for the case of unknown
distribution function are presented. Particularly, stopping rules with a reservation wage,
a number of cut off observations, a predetermined candidates count, a successive non-
candidates count, and the odds algorithm.

Reservation Wage

A viable stopping rule is to stop when a constant value w, referred to as the reservation
wage, is surpassed. A simple example is the rule un ≥ w with a predetermined w,
which means stop if the value of un is bigger (or equal) the constant value w (reserva-
tion wage) [117].

The reservation wage w can be determined as optimal if the distribution F (·) is known
[121]. Then, in a job search in a sample of size N , the reservation wage w must be
found such that the following statement holds:

c =

 N

w

(x− w)dF (x)

Cut Off Rule

A simpler stopping rule is the "cut off rule" [120]. This stopping rule halts with the first
observed absolute highest value after m observations have been made. The rule does
not consider occurring costs for additional observations.

50

2.4. Theory of Optimal Stopping

The chances that the highest value is under the first m is m
N (for a sample size of N).

Then, the stopping rule will stop at N as no absolute highest value can be found after
m. In contrast, if between position m and the position of the absolute highest value
max(x1, . . . , xN) exists an intermediate highest value, this rule will fail in finding the
absolute highest value max(x1, . . . , xN).

Generally, m should be a number not too large, in order diminish chances that the high-
est values is under the first m observations. At the same time, m must be large enough
to possibly include some higher results, so the stopping rule ends with an absolute
highest number max(x1, . . . , xN).

Candidate Count Rule

Unlike the cut off rule, the candidate count rule [120] does not ignore any observations.
Every observation which increases max(x1, . . . , xn) is a candidate and increases the
count. The parameter m determines after which candidate count a stopping is initiated.
The m-th candidate stops the search and is the the highest value result. If an m-th
candidate is not observed, the rule stops after the last observation and the last candidate
is the highest value.

Successive Non-candidate Rule

The successive non-candidate rule [120] sets the space between two candidates into
its focus. The stopping rule halts after a certain observation sequence. The sequence
requires that after candidate i further m non-candidates must be observed. Then the
rule stops the search with the i + 1-th candidate. If no such sequence occurs, the rule
stops after the last observation and the last candidate is the highest value.

Odds Algorithm

For the odds algorithm [119], the probability for each observation to discover the best
value must be determined. For each observation of random variable xi, the variable Ii
indicates whether the observed value is a best value candidate (I = 1) or not (I = 0).
A best value candidate is at hand when max(x1, . . . , xn) increases. The probability
that variable Ii indicates a best value candidate is expressed by pi.

The odds algorithm defines qi = 1−pi and ri = pi

qi
which are incorporated in the stop-

ping rule decision. A stopping index s is calculated with the sumsQk = qNqN−1 · · · qk
and Rk = rN + rN−1 + · · · + rk. The index s is determined by the first k which lets
Rk ≥ 1 surpass 1. The stopping rule stops at the first I = 1 after index s has been
passed. The chance of finding the highest value is RsQs.

51

3. State of the Art and Related
Work

Before the contributions of this work are presented, this chapter gives an overview of
meta-data publicly available for compute services. In addition, the state of the art and
related work to assess and maintain meta-data is surveyed.

The first section is concerned with management of compute service meta-data. Partic-
ularly, how compute service meta-data can be stored and made available to consumers.
Then, the field of research addressing comparative assessments of compute services is
explored. In this regard, works that introduce methods to assess compute service in
respect of one specific or numerous attributes are presented. Furthermore, methods to
compare compute service according to a single or multiple attributes are presented.

The final two sections are concerned with methods available to assess compute services
in regards of two particular aspects: (1) performance, (2) VM images. Due to the com-
prehensive amount of work in the field of compute service performance benchmarking
methods, the works most related to this work are highlighted in the former section.
Also, approaches to automatically repeat benchmarking processes are explored. Fi-
nally, the latter section lays out existing work with approaches to enrich VM images
with meta-data and to introspect VMs.

3.1. Compute Service Meta-Data Management

Meta-data is used to describe data and assets and has become more extensive over
time [122, 123]. In additions, systems to store and manage the abundance of meta-
data are becoming more important, but at the same time more complex, too [122].
For example, the quality of a service in terms of latency and throughput is essential
to media file streaming systems and to store observed qualities, a meta-data storage
becomes necessary [124].

In the realm of web services, meta-data has been used to describe properties and qual-
ities. The Universal Description, Discovery and Integration (UDDI) specification and
related description languages, such as web service description language (WSDL) and

53

3. State of the Art and Related Work

web service policy (WS-Policy) as part of WS-* specifications, provide means to de-
scribe web services on a technical level or in respect of custom attributes [125, 126].

In a more extensive description approach, semantic technologies attach meta-data to
web services by building a whole ontologies [127, 128]. The semantic web community,
however, thrives for searchable web services and matching algorithms, while the focus
of this work is the assessment and comparison of cloud compute services which provide
web service interfaces.

Moreover, the use of a web services frequently comes with an agreement between the
provider and consumer. One particular aspect is the service level agreement in which
both parties agree on qualities, such as response time and availability, of a service. To
enforce an adherence to the agreement, web services are monitored in regards of Qual-
ity of Service (QoS) attributes and tested for objective violations with approaches the
likes of WS-Agreement [129] and the web service level agreement (WSLA) framework
[130].

Similarly, approaches to enforce service level agreements have been proposed for cloud
compute services [131–135]. All of the approaches commonly collect QoS attributes
of compute services, such as latency, performance, and bandwidth, and implicate the
existence of a data model and meta-data storage without describing it.

Moreover, approaches which use semantic technologies to describe compute services
exist. Sundareswaran et al. [136] propose a list of 10 meta-data attributes used in a
compute service ontology and in a selection method. The approach lacks insights on
the management and storage of the meta-data kept in ontologies.

Unlike the aforementioned approaches which miss to describe details of a necessary
compute service meta-data management and storage, Rodero-Merino et al. [137] in-
troduce a file based storage for compute service attributes. The approach proposes an
extension to the Open Virtualization Format (OVF) to describe compute services with
one section of the document (KPISection) containing attributes of a compute service
freely defined by the provider. The provider is obliged to update the section and con-
taining attribute values frequently.

Similarly, [138] extend WSDL documents to describe compute service attributes and
state. Based on the attributes, the approach supports a simple selection of compute
service VMs for clusters of machines. By using WSDL or OVF meta-data is distributed
to many decentralized files which has the disadvantage of increased effort for browsing
and searching for compute services.

In contrast, CloudHarmony [139] offers an extensive central database of performance
meta-data and a web application that can be used to browse through performance-
related meta-data of diverse compute services. Thereby, CloudHarmony has introduced
a performance meta-data management system for compute services. Although Cloud-
Harmony collects the meta-data with own measurement methods, the system offers no

54

3.2. Comparative Assessments of Compute Services

integration with measurement instruments available to consumers. Therefore, the use of
CloudHarmony is limited to a database of performance meta-data of compute services.
Figure 3.1 depicts a screenshot of the performance meta-data database made available
through the CloudHarmony website.

Figure 3.1.: Screenshot of CloudHarmony Performance Meta-Data Service

Generally, the amount of meta-data management systems specifically for compute ser-
vice meta-data is scarce. CloudHarmony offers a first approach, but does not publish
the data model nor is it integrated with assessment tools that can be used by consumers.
Exactly these shortcomings shall be addressed in this work.

3.2. Comparative Assessments of Compute
Services

Assessments are conducted in many contexts to map complex concepts to numbers,
thereby building a foundation for comparisons. For example, the SERVQUAL frame-
work [140] proposes an empirical assessment method to establish a service’s quality
score according to consumer perceptions. Similar assessment frameworks have been
developed manifold for diverse aspects of services [141–143].

Nonetheless, real world services and e-services differ from compute services in many
aspects which renders existing assessment frameworks too unspecific. Unlike other ser-
vices, compute services are defined by attributes, such as the performance the rented
machines offer, available remote interfaces, and software that can be deployed on the

55

3. State of the Art and Related Work

service (c.f. section 2.1). An assessment would need to take these attributes into ac-
count.

The following subsections explore assessment and comparison methods which are par-
ticularly applicable to compute services and consider primarily attributes thereof. First,
existing methods to assess compute services at run- and non-run-time are presented.
Then, a survey of existing approaches to compare cloud and specifically compute ser-
vices is carried out.

3.2.1. Assessments of Compute Services

Compute services possess a range of attributes (c.f. sections 2.1 and 2.2) whereof only
parts can be determined without the actual use of a compute service. For example,
Habib et al. [144] propose a trust management system which uses diverse resources,
such as audit certificates and questionnaires, to assess the trustworthiness of a cloud
provider. In addition, many other works are concerned with trustworthiness of compute
clouds and propose systems to establish trust between providers and consumers [145–
147]. Klems et al. [148] incorporate an assessment of compute service price models
in order to calculate costs for a given system. Similarly, many other researchers have
examined approaches to measure and predict costs [149, 150] and only a subset can be
mentioned in this work. All of the aforementioned approaches focus on an evaluation
of compute services regarding a specific attribute and draw data from publicly available
resources, often primarily meta-data attributes published by the provider.

In the field of migration planning, compute cloud offerings are assessed and eventually
compared to identify a preferable fit as a migration target. Frey et al. [151] therefore
introduce Cloud Environment Constraints (CEC) which test the suitability of a compute
service according to diverse characteristics. The assessment and modeling of character-
istics are, however, left to the consumer. Other approaches from the field include cost,
risk, and security assessments, and evaluate the expected availability of the system dur-
ing a migration [152–154]. Nonetheless, none of the approaches gives comprehensive
support for the assessment process itself, but rather for the decision based on already
assessed data.

All of the aforementioned approaches compile or consider meta-data from properties
observable at any time. But, none of the approaches takes attributes of compute services
into account which are observable at run-time. In contrast, Ristenpart et al. [155] intro-
duce a method to assess compute services at run-time in respect of cross-VM security
and vulnerabilities. Nevertheless, the method lacks a support for reuses of the run-time
assessment scheme for other purposes which is a goal of the framework introduced in
this work.

Many assessment methods focus on the aspect of compute service performance which is
measured at run-time, too. An overview of the plethora of works proposing approaches

56

3.2. Comparative Assessments of Compute Services

to measure compute service performance is provided in section 3.3.1. Similarly, section
3.4 presents methods which allow consumers to introspect VM images of a compute
service at run-time.

3.2.2. Comparisons of Compute Services

The comparison of competing compute services is a major purpose for meta-data. A
range of existing work has proposed methods to compare compute services, but also
other cloud services.

Rheman et al. [156] furthermore compare multiple MADM methods in an evaluation of
compute services according to meta-data about performance, hardware and costs. The
comparison comprises the methods Promethée, TOPSIS, Electre, AHP, min-max/max-
min, and compromise programming. The meta-data for a test set of thirteen compute
services is drawn from the CloudHarmony website. The meta-data set includes cost,
memory (in GB), a benchmark for harddrives and network (IOP), and values for mem-
ory and processor performance using the CloudHarmony Compute Scoring (CCS) met-
ric translated into Amazon’s ECU (referred to as CCU) [157, 158]. The survey shows
the applicability of MCDM methods and, specifically, of the AHP for compute ser-
vice selection. However, Rehman et al. miss to derive a method that provides means
to create custom scoring functions with a consumer-defined selection of criteria and
weights.

A literature survey conducted by Rehman et al. [40] presents existing multi-criteria
cloud service selection methods. The methods examined in the survey focus on the
problems of a provider selection and a service selection. Table 3.1 summarizes the
results of the literature survey.

In the following, several of the methods examined in the surveys by Rehman et al. are
highlighted and an overview of methods not covered by the survey is given. The work
of Han et al. [160] included in the survey presents a recommender method for cloud
providers. For each provider, network QoS attributes are assessed for offered soft-
ware and platform services. In addition, infrastructure services are considered in per-
formance measurements conducted on VMs with three types of benchmarks (floating
point, fixed point, and memory). The measured benchmarking results are normalized
against a reference value measured on a "native" physical machine. A final ranking of
cloud providers is determined from a weighted sum of the averaged network QoS and
the averaged performance measurements.

Similarly, Li et al. [32, 159] propose CloudCmp, a comparison method that incor-
porates compute and storage services, and network qualities in an evaluation of cloud
providers. For each of the merits several measurable metrics and measurement methods
are defined. CloudCmp provides an approach with the intention to bring measuremnt

57

3. State of the Art and Related Work

Work Theme Approach

Gocinski et al. [138] State of the art in cloud
computing, Cloud service
discovery and selection

Overview and comparison
between cloud, grid and
cluster computing

Li A. et al. [32, 159] Cloud service comparison,
application performance
prediction and cost estima-
tion

Cloud benchmarks and
testing of application prior
before cloud deployment

Han et al. [160] Cloud service recom-
mender system

Network QoS and VM per-
formance of available ser-
vices are proposed as selec-
tion criteria

Zeng et al. [38] Cloud service selection Maximum gain and mini-
mum cost optimization

Godse and Malik [161] Cloud service selection MCDM, Analytic Hierar-
chy Process (AHP)

Table 3.1.: Literature Survey of Cloud-Related Multi-Criteria Selection Methods [40]

methods and comparisons closer together, but misses to link both tightly. Besides, an
aggregation of the results to a single score of a provider is missing.

Zeng et al. [38] present simple additive weighting functions to calculate a value repre-
senting the gain and cost of selecting a certain compute service. The additive weighting
functions are then used in a selection algorithm. The algorithm selects the cloud ser-
vice with the highest value according to the used additive weight function and tests its
availability. In case of an unsuccesful initiation of a cloud service the algorithm accepts
a degradation and continues with the next service in the list. Generally, the approach
remains vague in regards of a definition of a "cloud service" and its applicability in
decisions. It claims to be applicable to any sort of cloud service, but lacks providing
criteria, measurement instruments, or an implementation.

Garg et al. [162] propose SMICloud, a framework and index score to assess and com-
pare cloud services in regards of diverse criteria. The work describes the notion of
a global index score to make compute services comparable and drive competition be-
tween providers. Nonetheless, the framework lacks comprehensive support for cus-
tomization and is not suited for comparisons according to specific attributes and related
weights.

A comprehensive approach for comparing diverse cloud deployment models (c.f. sec-
tion 2.1.1) in respect of diverse workload categories, such as database or web servers,
has been proposed with the Multi-Attribute Decision Methodology for Adaption of

58

3.3. Compute Service Performance Measurements and Comparisons

Clouds (MADMAC) by Saripalli and Pingali [39]. The approach introduces an addi-
tive weighting method that can be used with a catalog of attributes to select from.

The extensiveness of existing work shows the importance of comparisons between
cloud services and particularly compute services. Many approaches thrive for a gen-
eral comparison of services according to a wide range of different attributes. Other
approaches excel with very specific metrics involved in a comparison. However, none
of the aforementioned approaches provides extensive support to generate a score which
unifies various attributes of compute services, such as performance or security. Particu-
larly, the problem of combining attribute values in diverse metrics into a single score is
not addressed. Besides, all approaches lack a concept to integrate measurement meth-
ods and a comparison method.

Therefore, the present works aims at supporting cloud consumers with a tool to generate
custom scores to compare compute services in respect of a certain attribute assessed in
diverse measurements and described in various metrics. Moreover, this work integrates
measurement tools and comparisons by introducing a meta-data model.

3.3. Compute Service Performance Measurements
and Comparisons

As performance is one of the prominent features of compute services, there is a large
amount of research works that propose methods of measurement. Due to the inherent
hardware changes of compute service data centers and multi-tenant usage of machines,
repetitions of measurements can give more extensive insights in respect of variations.
Therefore, approaches to automate and repeat compute service performance measure-
ments become necessary.

The following subsections first survey existing approaches to measure the performance
of a compute service with benchmarking. Finally, research works coping with the ne-
cessity to automate and repeat benchmarking runs in order to capture variations are
discussed.

3.3.1. Compute Service Performance Benchmarking

In a virtualized environment as is a compute service, the actual performance of a pro-
vided VM cannot be deduced from hardware figures as with physical systems [30].
Consequently, a measurement of an independent and comparable performance bench-
mark is necessary to see a compute service in relation to other computer systems’ per-
formances.

59

3. State of the Art and Related Work

Benchmarking compute services is not an undiscovered territory. Existing work has
already succeeded with applying benchmarking to analyze compute services. In par-
ticular, Gillam et al. [33] have applied benchmarking to several compute services and
conducted a comprehensive study of existing benchmarking software for compute ser-
vices. Walker [34] and Jackson et al. [163] have benchmarked the high-performance
computing capabilities of Amazon EC2, but do not introduce a reusable method.

All of the existing work focuses on providing first measurement results and none has
yet continued to cover the aspects of customizability, automation, and reusability. None
of the approaches allows a consumer to define a set of performance attributes to be
benchmarked and a support of a variety of compute services is absent. In order to use
the approaches, still extensive manual interaction and systems setups are necessary.
These shortcomings are primary goals of the present work.

Moreover, several further approaches should be mentioned which describe a method
for benchmarking that is either specifically targeted at or at least applicable to compute
services. Binning et al. [43] propose a cloud benchmark that measures cloud services
in terms of the metrics scalability, cost, peak-load handling, and fault tolerance. The
approach focuses on web applications, similar to the application described by the TPC-
W benchmark [164, 165]. Additionally, different consistency settings on the database
layer of a web application are incorporated in the approach. Nevertheless, the proposed
benchmarking approach does not address aspects such as performance variations, server
locations, or scheduling of benchmarking runs.

Sobel et al. [166] developed CloudStone, a benchmarking method that measures per-
formance on the application layer. Benchmarking results are gathered in a cost-per-
user-per-month metric and reflect the varying costs occuring per served user on differ-
ent Amazon EC2 hardware configurations and with different software configurations.
From the results, also the maximum number of users can be implicated. The approach,
however, only reflects the overall transaction performance of one specific application.
Making predictions about the general performance offered by a compute service is not
possible. The method requires a setup of several application servers and a database
server.

CloudHarmony [139] publishes a comprehensive database of performance meta-data
on the web. Furthermore, CloudHarmony has introduced benchmarking sets compris-
ing multiple benchmarks to cover diverse performance dimensions of compute services.
Moreover, a metric named CloudHarmony Compute Scoring (CCS) has been defined
based on a benchmarking set that seeks to become a standard for compute service com-
parisons.

Nonetheless, CloudHarmony does not allow users to request or trigger certain perfor-
mance measurements. Also, the details of the employed measurement methods are
neither available in the public domain nor have they been discussed in the research

60

3.3. Compute Service Performance Measurements and Comparisons

community. In addition, an integration with measurement tools available to compute
service consumers is missing.

Apart from compute service benchmarking, there is existing work that focuses on mea-
suring the effects of server consolidation and, in particular, the performance of VMs and
the underlying physical host. For a compute service consumer, the access to the physi-
cal host or the hypervisor is typically denied. Nevertheless, an overview of the existing
work exploiting access to the physical host or hypervisor shall be given for the sake of
completeness as they provide insights on benchmarking of virtualized environments.

Matthews et al. [14], Jin et al. [16], and Iyer et al. [15] have developed benchmarks and
methods to test the effects of shared resource sharing between VMs. The benchmark
intends to measure the quality of a performance isolation and degradation of VMs when
one or more VMs are under heavy workload.

Makhija et al. [167] propose VMmark, a benchmark that determines the capacity of
a physical host running a VMware hypervisor by using multiple sets of six different,
separated virtual machines that stress the system resources with workloads regarding
diverse dimensions including CPU load, RAM load and I/O load, i.e., storage and net-
work traffic. The final score considers the number of virtual machine sets, each con-
sisting of a mail, java, standby, web, database, and file server, and the benchmarking
results of each virtual machine in all sets.

Similarly, Casazza et al. [168] define vConsolidate, a benchmark that also aims at mea-
suring performance of different workloads on a consolidated server. Mei et al. [169]
propose another approach that focuses on network traffic as the constraining dimension
in server consolidation and uses web server workload only.

3.3.2. Automation and Repetition of Performance
Benchmarks

The physical hardware in data centers of a compute service is not necessarily homoge-
neous and performance outcomes can vary over time [80]. Due to overheads induced by
the virtualization software, individual measurements can only give an approximation.
The observable performance varies depending on the workload occupying the physi-
cal hardware shared between VM instances (c.f. section 2.2.1). Generally, workloads
processed in parallel by multiple VMs on a physical system can induce a performance
degradation [30].

The provided information represented by hardware figures and from indivial bench-
marking results is not able to capture potential performance variations. Therefore, it
is necessary to detect the performance variation interval in a set of measurements over

61

3. State of the Art and Related Work

time. In this regard, none of the aforementioned compute service benchmarking ap-
proaches allows to automatically execute benchmarking software and repeat measure-
ments. There exist, however, several research works that cope with repetitions and
measurements of performance variations.

Kalibera et al. [28, 170, 171] have introduced the concept of regression benchmarking
to determine a precise representative performance grade for a system. The concept
assumes a system to be found in a random initial state that leads to a non-deterministic
behavior and influences performance outcomes. The proposed regression approach
introduces an impact factor to capture the variations in repetitions of benchmark runs
with multiple samples each. The impact factor is used to detect an initial state of a
system and serves as a corrective factor between benchmarking samples of various
runs. Furthermore, the impact factor together with cost estimations help to determine
the required number of repetitions to presumably obtain precise and reliable results.

Figure 3.2.: Performance Variations on Google’s AppEngine (Python) [13]

Moreover, Iosup et al. [13] benchmarked and recorded variations in the performance
of various cloud services from Amazon and Google, including AWS EC2 and Google
AppEngine. The statistics collected with more than 10,000 samples each month in
2009 proof that a variability is present. For AWS EC2 the deployment latency of VM
instances and for Google AppEngine the execution time of a python Fibonacci compu-
tation script was measured. Figure 3.2 illustrates the observed performance variations
of Google’s AppEngine. In addition, Iosup et al. conducted a detailed performance
analysis of VM clusters on AWS EC2 and GoGrid Cloud [44].

Similarly, Schad et al. [29] benchmarked Amazon EC2 over several weeks and present
collected performance results and observed variations. For the representation of the

62

3.3. Compute Service Performance Measurements and Comparisons

variations, Schad et al. employ the coefficient of variation as indicator. The perfor-
mance meta-data is measured with Ubench for memory and CPU resources, and Bon-
nie++ for hard disk resources. Besides, the instance startup time is recorded with a
custom approach.

Although approaches to measure performance variations exist, in all of the aforemen-
tioned approaches an automation of the benchmarking process itself is absent. Never-
theless, several works propose automation for the detection of performance changes.

Kalibera et al. present an approach and generic architecture for automated benchmarks,
referred to as regression benchmarking [35]. Regression benchmarking benefits from
an automation due to its natural need to repeat measurements in the course of detecting
performance changes. The original approach has evolved to BEEN [172], an architec-
ture and system to automate benchmarking of distributed systems. BEEN offers a web
interface from which benchmarking runs can be triggered. The results of a run are au-
tomatically stored to a database for later evaluations. Also, benchmarking software is
automatically transferred to the hosts under test from a central repository. The system
architecture is depicted in figure 3.3.

Figure 3.3.: Architecture of the BEEN system [172]

An adaption of the approach from Kalibera et al. has been employed to automate
benchmarking runs to detect performance changes of software developed with the mono
open-source development framework [173–176]. The daily builds of the development
framework have been tested with the regression benchmarking approach for the last few

63

3. State of the Art and Related Work

years. Thereby, factors that influence the performance could be detected in every new
build of the framework.

Regression benchmarking has further been transferred for middleware benchmarking
by Bulej et al. [177]. The approach extends the former approaches by benchmarking
middleware in the environment of a simulated bookstore web application. An adoption
for cloud compute services has not been developed or published, yet.

In the realm of cloud services and particularly compute services, the research commu-
nity has not yet provided applicable approaches. Nonetheless, a promising software
named Phoromatic1 aims to fill the void for remote benchmarking management sys-
tems [178]. The system allows to register existing systems and schedule automated
benchmarking runs using micro-benchmarks from the Phoronix test suite [91]. The
Phoromatic software is only available as online service. Figure 3.4 depicts the user
interface of the Phoromatic online service.

Figure 3.4.: Screenshot of the Phoromatic Online Service

Before benchmarking schedules can be defined, a set of target systems – machines to
be measured – must be registered with the service. Phoromatic cannot automatically
instantiate virtual machines at a compute service. Therefore, virtual machines must be
created manually and a registration of the machines as target systems can be achieved
via shell commands and a validation code. Phoromatic requires the Phoronix test suite
to be installed on a target system in order to permit a registration.

1in beta status, as of 2014-04-01.

64

3.3. Compute Service Performance Measurements and Comparisons

Once a set of target systems is registered, multiple benchmarking schedules can be
defined with a schedule time and weekdays as well as the set of systems to include
in the benchmarking (c.f. figure 3.5). Besides, a set of benchmarks can be assigned
to a schedule. Each benchmarking schedule is run on every selected weekday at the
defined time for all target systems. During a scheduled run, all assigned benchmarks
are executed on the system and the results are automatically uploaded to Phoromatic.

Figure 3.5.: Screenshot of Schedule Definition in Phoromatic

Phoromatic is yet the most complete software available to run scheduled and partially
automated benchmarks on virtual machines at cloud compute service. Nonetheless, the
online service lacks support for automated measurements of compute services. Specif-
ically, a user is required to create and register virtual machines manually rather than an
automated instantiation of machines at diverse compute services. Moreover, a defini-
tion of schedules by time and weekdays is too coarse to analyze performance variations
of compute services.

A more detailed evaluation of the Phoromatic service in comparison to the novel ap-
proach presented in this work is given in section 5.5.2. The comparison uncovers the
disadvantages and shortcomings of Phoromatic in light of five experiments that stress
its automation features.

65

3. State of the Art and Related Work

3.4. Virtual Machine Image Introspections and
Comparisons

Like with performance meta-data, a compute service consumer might be interested
in VM image meta-data. Particularly, meta-data about image contents is beneficial,
as it allows to find images and virtual appliances that align with functional software
requirements.

In the following sections, existing work to maintain and assess VM image meta-data
is described. First, approaches which aim at packaging meta-data with VM images are
explored. Finally, works that follow the concept of run-time introspections of VM to
gain meta-data are presented.

3.4.1. VM Image Meta-Data Attachment

Meta-data about contents of VM images, such as installed software and libraries, is
rather scarce. Meta-data attributes, such as name and description, are typically used to
describe the operating system and software stack contained in a VM image as unstruc-
tured text. Frequently, exact information cannot be covered in these attributes due to
length and size restrictions. Additionally, raw text attributes are non-structured and can
hardly be parsed for specific information, neither by machines nor humans.

One approach is to enrich VM images with meta-data through annotations on a file
basis. The Reservoir model proposes an extension to the open virtualization format
(OVF) which introduces meta-data annotations to the file format [179].

Similarly, Matthews et al. [180] propose to extend OVF with contract meta-data for
various use cases. The extension aligns with OVF’s XML nature and introduces diverse
aspects that can be defined as meta-data of a VM image, such as network policies or
reliability requirements.

Dastjerdi et al. [181] consider VM appliance meta-data in a semantic match-making
algorithm. Meta-data on virtual appliances is stored as virtual units in an appliance
management service using semantic technologies. However, the approach does not
define a catalog of meta-data attributes in addition to information already available from
the compute service providers. Also, the approach requires providers or contributors to
manually maintain the meta-data.

Another approach that embraces semantic technologies is proposed by Reimer et al.
[182] who have recognized a sprawl of virtual machine images. An image is converted
to the Mirage image format along a process which incorporates meta-data extraction.
The extraction generates VM image content meta-data that is observed with the Unix

66

3.4. Virtual Machine Image Introspections and Comparisons

command stat. To store the image, the Mirage Library can be employed [183]. How-
ever, the content meta-data of an image is described by checksums of files only, tying
the approach to detection of identical files only. Besides, the approach requires the
adoption of a certain format for VM images.

In summary, available meta-data and approaches to collect and maintain meta-data fail
to incorporate information about VM image contents. An approach to automatically
extract meta-data about contents of a VM image is yet absent and therefore a primary
goal of this work.

3.4.2. Introspection of VM Image Meta-Data

The concept of introspection describes the process of accessing and monitoring the
internal execution environment of a computer system. The notion of introspecting
VMs originates from work addressing security concerns in virtualization technology.
Garfinkel et al. have developed an approach to detect intrusions using introspections
through the Virtual Machine Monitor (VMM) of a VM. During an introspection, the
running processes, the memory contents, and the I/O flags of a machine are tested for
intrusions. Additionally, Pfoh et al. [24] propose a formal definition of VM introspec-
tions in the context of security applications.

As part of an assessment of VM image contents the detection of installed libraries and
software is mandatory for a comprehensive meta description. Existing OSCM systems,
such as Opscode Chef or Puppet [104–106], are able to detect the fund of libraries and
software in a system using available package managers [51, 52]. Thereby, OSCM can
list contents of a VM, once granted remote access. Yet, no system exists that is capable
to pair and automate this approach with compute services to extract meta-data about
VM image contents.

In relation to OSCM systems, Filepp et al. [184] developed a virtual appliance con-
figuration approach that installs missing software on VMs and finds a virtual appliance
which requires lowest effort. The approach uses a repository of appliance configura-
tions that has been build based on the Galapagos system [185]. However, the approach
is restricted in its flexibility and only detects few well-known enterprise software pack-
ages [186].

Moreover, Wilson and Matthew [187] create virtual appliances from multiple software
packages with OSCM technologies, but neglect keeping the configuration of appliances
in a meta-data database. Liu [188] shows how configuration meta-data allows an auto-
mated operating system configuration of appliances, but aims at configuration settings
only and misses support for virtual appliances of compute services.

67

3. State of the Art and Related Work

OSCM is a promising technology which is capable to capture the set of available li-
braries and software of a system. Yet, it has never been adapted or employed to de-
scribe contents of VM images and persist the results as meta-data about VM images of
compute services. This work seeks to fill the void by adapting OSCM systems to assess
compute services in terms of VM image meta-data.

68

Part II.

Conceptual Framework

69

4. Framework for Comparative
Assessments of Cloud Compute
Services

This chapter presents the methods and models which are part of the framework in-
troduced by this work. In particular, this chapter provides an overview of the frame-
work and sheds light on the aspect of interactions and relations between methods in the
framework. In addition, the extensibility of the framework is discussed in this chap-
ter.

Moreover, the models and method are explained in detail. First, a meta-data model
is introduced that enables consumers to attach various meta-data to compute services.
Then, an automation model is presented that provides consumers with an archetype
of an automated procedure for run-time assessments of compute service. The frame-
work additionally incorporates a method that is capable of assigning scores to compute
services based on available meta-data. The scoring method is furthermore used to facil-
itate consumers with a stopping rule. In subsequent assessments of compute services,
the stopping rule enforces a cost budget and leads to an early stop with the goal to save
costs.

Finally, a software prototype implementing the scoring method is presented and used in
an evaluation. The evaluation employs the prototype in a case study with the industry
and to explore its computational complexity in practical experiments. The results show
that the scoring method is applicable in practice and provides trustworthy scores.

This chapter incorporates an evaluation of the scoring method only. Other parts of the
framework are evaluated in the context of instantiations in chapters 5 and 6.

4.1. Introduction & Overview

Meta-data captures characteristics and details of a compute service and allows con-
sumers to understand and compare the services they are provided with. In chapter 3,
the current state of the art to assess and compare compute services as well as sources

71

4. Framework for Comparative Assessments of Cloud Compute Services

and the available amounts of meta-data have been explored. To close the void of assess-
ment methods for compute services that empower the consumer, this work introduces
a framework of methods and models that enable consumers to single-handedly assess
and compare compute services according to meta-data.

The framework facilitates compute service consumers with methods and models to cap-
ture assessed meta-data, enforce cost budgets in assessments, and assign scores in route
of a comparison of compute services. The methods serve consumers in assessing com-
pute services in respect of diverse characteristics convertible into meta-data. Particu-
larly two characteristics are explored in detail in this work. Chapter 5 explains the use
of the framework for assessments in terms of performance characteristics, and chapter
6 in terms of VM image contents. Both instantiations are built upon a subset of models
and methods contained in the framework. Figure 4.1 depicts an overview of the models
and methods constituting the framework.

Conceptual Framework

Performance
Assessment

Virtual Machine
Image

Assessment
...

MADM-based Scoring Method

Cost Budget Stopping Rule

Meta-Data Model

Run-time Assessment Automation Model

Figure 4.1.: Overview of the Conceptual Framework

As shown in figure 4.1, the framework comprises several generic methods and mod-
els:

• Cost Budget Stopping Rule

• MADM-based Scoring Method

• Run-time Assessment Automation Model

• Meta-Data Model

At the core of the framework is the Meta-Data Model which provides the basic struc-
ture to attach meta-data to compute services. Any instantiation of the data model can

72

4.1. Introduction & Overview

extend the basic structure to fit meta-data about certain characteristics. The Run-time
Assessment Automation Model incorporated in the framework gives a basic layout and
procedure to assess compute services at run-time in an automated manner and store re-
sults using the meta-data model. Given structured meta-data, the MADM-based Scoring
Method incorporated in the framework can assign a score to compute services, thereby
making compute services comparable by a single number. Moreover, a Cost Budget
Stopping Rule reuses the scoring method to calculate utilities for compute services and
suggest a stop in a sequential assessment. The stopping rule aims at reducing costs by
leading to an early stop during assessments of multiple services and enforces a cost
budget.

Adapting the generic models and methods, instantiations can be build that target an
assessment of a specific characteristic of compute services. In this work, two instantia-
tions of the models and methods are presented. Both instantiations adapt subsets of the
framework’s models and methods to assess meta-data regarding performance and VM
images respectively.

Nonetheless, the framework leaves space for further instantiations to assess compute
service in regards of other characteristics based on the generic models and methods.
Besides, new instantiations may develop new methods that can be reapplied in course
of assessments regarding further characteristics. The framework’s extensibility is dis-
cussed in section 4.1.2.

4.1.1. Relations Between Models & Methods

The models and methods are in relation to one-another and can only be used in such.
Figure 4.1 reflects the relation between the models and methods. Specifically, the cost
budget stopping rule bases on the scoring method to determine a stop. Furthermore, the
scoring method draws information from the data model and aggregates it into a single
score using MADM.

The instantiations to assess compute services in regards of performance and VM images
use the meta-data model and intersecting subsets of the framework’s methods. Both
instantiations assess compute services at run-time and share the notion of a multi-cloud
interface gateway to interact with diverse compute services and providers.

Apart from that, both instantiations shed light on different characteristics of a compute
service and, thereby, complement one another. By instantiating the framework’s meth-
ods, a consumer is able to acquire meta-data single-handedly. Performance attributes
and descriptions of VM image contents are attached to a compute service in joinable
data models. Thereby, new meta-data about a compute service becomes available in
a single database. Consequently, compute services can be compared according to an
extensive amount of trustworthy meta-data.

73

4. Framework for Comparative Assessments of Cloud Compute Services

4.1.2. Extensibility of the Framework

Although the framework is complete in its current state, it is generally open to be ex-
tended in regards of methods and models. Further methods and models may be included
in future versions of the framework. Similarly, methods and models may be advanced
in alignment with a changing cloud environment. New methods and models may arise
as requirement for an assessment of more compute service characteristics and find its
way into the framework as generic concepts.

The assessment of other compute service characteristics would be based on the frame-
work’s models and methods. Thereby, the amount of available meta-data about a com-
pute service can be extended to further fund decisions. Additional characteristics must
not necessarily be assessed at run-time as is the case for performance and VM images.
An added characteristic, such as credibility or support quality provided by a compute
service, may be assessed from online resources and interviews.

74

4.2. Meta-Data Model

4.2. Meta-Data Model

The meta-data model introduced by this framework serves as an abstract basis to cap-
ture all sort of meta-data about compute services. Using the basic meta-data structure,
specific data models extending the basic model can be developed to attach meta-data
attributes to compute services. Figure 4.2 depicts a Unified Modeling Language (UML)
diagram of the meta-data model provided by the framework.

Provider: String
HardwareConfigShort: String
CPUCores: Integer
RAMSpace: Integer
HardDiskSpace: Integer
Arch: String
Location: String

Compute Service

Name: String
User

AccessKey: String
SecretKey: String

Credentials

Name: String
Value: Double

Attribute

*

1

1

1

*

1

Figure 4.2.: Basic Meta-Data Model

The basic data model to capture meta-data of compute services comprises four enti-
ties: (1) User, (2) Credentials, (3) Compute Service, and (4) Attribute. The user entity
represents the consumer who has multiple credentials necessary to access compute ser-
vices. A compute service are linked to a certain provider and possesses several natural
configuration attributes by which it can be distinguished from other compute service
configuration. Additionally, attributes can be attached to compute services which con-
sist of a name-value tuple.

75

4. Framework for Comparative Assessments of Cloud Compute Services

4.3. Run-time Assessment Automation Model

With compute service APIs in place, automation of assessments is an obvious goal to
reduce manual effort. Particularly assessments at run-time follow the notion of measur-
ing characteristics of a compute service from within a VM and via its APIs. A compute
service consumer is capable of accessing a VM via remote protocols and conduct im-
mediate observations and measurements, which is in contrast to black box settings with
no insights at all [189, 190]. Typically, the APIs provided by compute services demand
only small effort to setup a VM for run-time assessments.

In contrast, non-run-time assessments cannot rely on exploiting VM operations to as-
sess a compute service and are rather conducted fully manually. The focus of this
framework, however, are assessments at run-time following the model for automation
presented in this section. The methods and models introduced in this framework tar-
get and support automated assessments of compute services at run-time based on the
following model.

The automation model describes the general archetypical procedure to conduct assess-
ments of diverse compute services at run-time. A method and a system implemented
according to the model needs to comprise components that provide a user interface, co-
ordinate assessment tasks, and grant access to compute services. Besides, repositories
to persist user parameters and assessment results are required. Figure 4.3 depicts the
general automation model using compute services’ APIs.

Compute Service 1

Virtual MachineAutomated Assessment
Coordinator

Results Store

Multi-Cloud
Interface

Virtual Machine

Compute Service N

Virtual Machine
Virtual Machine

...

inject
assessment tasks

upload results

User
Interface

read/write

User Parameters

read/write

Figure 4.3.: Overview of the Model for Automated Assessments at Run-Time

Furthermore, based on the depicted model a procedure needs to be followed in an as-
sessment. Firstly, the user interface gives means to define parameters, such as target
compute services, before an assessment. Given the parameters, the coordinator ac-
cesses a set of compute services to inject assessment tasks. The coordinator must in-

76

4.3. Run-time Assessment Automation Model

stantiate a VM with a preselected image and execute the task in the machine. Each task
gathers insights from within a VM at run-time and uploads the results to a repository.
The repository implements the meta-data model described in section 4.2 to capture the
assessment results. A user can eventually access the results via the user interface.

The major goal, which the model and the linked procedure pursue, is automation with
a minimum degree of human interaction and a maximum degree of configurability.
To characterize the pursued level of automation in more detail, a classification shall
be given according to the ten classes defined by Endsley [191–193]. The levels of
automation as defined by Endsley are depicted in figure 4.4.

Figure 4.4.: Levels of Automation [191]

According to Endsley’s classification, the general automation scheme achieves the au-
tomation level Batch Processing. A user’s part is to generate the implementation of an
automated assessment procedure for a particular compute service characteristics. Be-
sides, a user can set the parameters and, thereby, select the target compute services
and details of the assessment procedure. The implemented assessment procedure will
then automatically assess the selected compute services and, hence, implement the as-
sessment tasks. Moreover, a user monitors the task implementation and retrieves the
meta-data resulting from the assessment.

Moreover, prospective assessments using this framework are expected to develop a cus-
tom, concrete implementation of an automated assessment at run-time. Therefore, the
task executed during the assessment must be defined and developed to be compatible
with VM of the target compute services. Specifically, this requires to prepare the task
to be executable within the environment of a VM, and to package and upload results
to the repository. The data model implemented by the repository must be capable to
persist the uploaded data.

77

4. Framework for Comparative Assessments of Cloud Compute Services

4.4. Scoring Method

In this section, the method to assign scores to compute services based on available
meta-data using MADM is presented. Initially, the potential of MADM to aggregate
multiple values into a single representative value is explored. Then, the Multi-Criteria
Comparison Method for Cloud Computing framework is introduced that provides the
basis to create custom evaluation functions that enable consumers to apply MADM to
numeric meta-data. Finally, the concepts of local and global scoring are explained in
regards of compute service comparisons.

4.4.1. MADM for Value Aggregation

Methods from the field of MADM are able to aggregate values in diverse metrics to a
single value while considering weights. Commonly, MADM methods support decisions
with multiple discrete alternatives by providing comparable single-dimensional values.
However, the methods are generic to cover a wide range of decision problems and need
an adaptation to the specific scenario. An adaptation incorporates the definition of the
alternatives to be compared and the criteria to be considered.

For the comparison of compute service meta-data, the diverse attributes are to be de-
fined as criteria. Given an MADM equipped with meta-data attributes as criteria, an
evaluation function can be generated that expects weights and compute service alterna-
tives as inputs.

The present work introduces the Multi-Criteria Comparison Method for Cloud Com-
puting ((MC2)2) which uses the Analytic Hierarchy Process (AHP) to create an evalu-
ation function used in a meta-data-based scoring mechanism. Thereby, two scores can
be created: (1) a local score that reflects the meta-data-based value of a compute ser-
vice to a consumer relative to other alternative compute services given as inputs, and
(2) a global score which compares the value of a compute service to a fixed reference
compute service. The framework optionally accepts requirement definitions to filter out
ineligible compute services that exceed certain constraints.

The use of the AHP is primarily justified with its capability to normalize values and
produce score values on a ration scale. The normalization makes the AHP accept values
in any HiB or LiB metric. Besides, the normalization is the key to assign scores to a
ratio scale. Thereby, scores can be compared in relation to one-another and statements,
such as "x is 2 times better than y" can be made. These features are absent in other
MADM methods, e.g., Simple Additive Weighting or Median Ranking Method.

The following subsections present the (MC2)2 and the evaluation function that consid-
ers meta-data attributes as criteria. Also, the local and global scoring mechanisms are
presented.

78

4.4. Scoring Method

4.4.2. Evaluations with the (MC2)2

The Multi-Criteria Comparison Method for Cloud Computing ((MC2)2) presented in
this subsection proposes a generic, linear process that ultimately leads to an evaluation
function. The process incorporates several steps from a definition of the scenario, al-
ternatives, and criteria to an evaluation and ranking of alternatives. The information
gathered within the process is the basis to develop an evaluation function f(·) as a cus-
tomized instance of a MADM method. The (MC2)2 can be used to develop evaluation
functions of different natures, such as weighted sum and weighted product evaluation
functions.

The process to gain an evaluation function f(·) suggests a step-by-step order to gather
the needed parameters. First, a scenario and, thereby, a number of alternatives are de-
fined. Next, relevant criteria and requirements are identified. A multi-criteria decision-
making method is then chosen and subsequently configured. The configuration incor-
porates defining the criteria and requirements as parameters of the selected decision-
making method. The result is a custom evaluation function that can be used to evaluate
the alternatives under consideration.

Figure 4.5.: The Process within the (MC2)2

Figure 4.5 depicts the process steps, each of which is described in further detail in the
following subsections.

79

4. Framework for Comparative Assessments of Cloud Compute Services

Define Scenario

A scenario specifies the particular situation under consideration. Therefore, a scenario
description incorporates the business and IT context, the environment, the goals, and
the constraints. Thereby, the description of the scenario sets the scope and objectives
for the evaluation method to be created. Comprehensive expertise and experience is
required to define the scenario, and sufficient effort should be spent to facilitate the
subsequent steps.

Define Alternatives

When using (MC2)2, at least two alternatives must be defined for a given scenario.
The process of defining alternatives requires a research of the available options and
associated attributes. The alternatives are typically given by the decision scenario.

Every alternative aims at being a solution to the scenario’s goals. An attribute is a
characteristic or property, preferably common to all alternatives, that can be assigned
a value. Every pair of alternatives differs in the value of at least one attribute. Oth-
erwise, the two alternatives are identical or an additional attribute to differentiate the
alternatives should be introduced.

Identifying attributes of an alternative involves expertise, creativity, and experience,
often from multiple stakeholders. The attribute identification process can also be sup-
ported with external information sources, such as literature, databases, or documenta-
tions [194]. It is possible to perform this search process systematically by first searching
for a set of important attributes and then assigning values to each attribute, for each al-
ternative. At the end, each alternative is defined by the values assigned to its set of
attributes.

Define Criteria

Despite attributes providing a data source for an evaluation, in MADM methods a set
of criteria must be defined. The definition of criteria selects attributes to be considered
in the evaluation function and describes relations and dependencies between attributes.
For example, criteria can be structured in hierarchies or networks to model the real
world more precisely. Therefore, one of the fundamental steps within (MC2)2 is the
definition of criteria. Having completed this step, requirements can be derived from the
criteria.

The set of attributes determined during the definition of alternatives serve as a source
to derive the set of criteria. Criteria add information to attributes that are necessary for
a use in MADM methods. A criterion consists of a topic (or question) to be examined

80

4.4. Scoring Method

and has a type, either qualitative or quantitative, and a direction, either positive or
negative.

In case of a quantitative criterion, a scale of measurement has to be defined. Qualita-
tive criteria do not necessarily rely on a scale as they are not measurable. Not every
MADM method is capable of considering qualitative criteria and require transforming
qualitative criteria into quantitative criteria.

Furthermore, criteria influence the value of an alternative either positively or negatively.
In particular, a criterion can be positive for an alternative the higher the value (higher is
better) or the lower the value (lower is better). According to Saaty [195], criteria should
be clustered into four merits: benefits, opportunities, costs, and risks. While criteria of
the types benefits and opportunities are positive, criteria of the types costs and risks are
negative. Nevertheless, other criteria type categories can be introduced as well. Table
1 shows four example criteria in the realm of performance meta-data where criterion
#1 is a quantitative criterion with nominal scale, #2 is a quantitative criterion with ratio
scale, and #3 is a qualitative criterion.

Question Type Possible Values

1 How high is the per-
formance of the sys-
tem?

quantitative, nominal
scale

low, medium, high

2 How many FLOPS
can be achieved?

quantitative, ratio
scale

0$-∞$

3 How do you like
the system’s perfor-
mance?

qualitative —

Table 4.1.: Example Criteria for Performance Characteristics

To strive towards a precise evaluation of the alternatives, an extensive set of criteria
must be defined. Pardee and Kirkwood [196] give three objectives to be pursued during
the finding of attributes and corresponding criteria.

1. Completeness and Exhaustiveness

2. Mutually exclusive items only

3. Restrict to criteria of highest degree of importance

After all criteria have been identified and defined regarding their type and direction,
they can be set into relation. Depending on the MADM, the criteria can be organized
as a set, in a hierarchy or in a network.

81

4. Framework for Comparative Assessments of Cloud Compute Services

Value Type Req. Type Boolean Expression

Numerical Exclusive Max γ < vr

Numerical Inclusive Max γ ≤ vr
Numerical Exclusive Min γ > vr

Numerical Inclusive Min γ ≥ vr
Non-numerical Equals γ = sr

Non-numerical OneOf γ ∈ S = {sr1, . . . , srn}

Table 4.2.: Common Requirement Types

Define Requirements

In order to remove ineligible alternatives, requirements can be defined to filter out al-
ternatives which are not feasible within the constraints of the given scenario. A require-
ment of a scenario is expressed as a constraint that demands a certain value, or defines a
minimum or maximum boundary for a value. The definition of a requirement can refer
to a criterion or requires the definition of a new criterion outside the criteria set. Table
4.2 lists available requirement types to define constraints.

Requirements can be defined for a value γ of the alternatives regarding a criterion as a
numerical boundary vr or a non-numerical boundary sr. Numerical boundaries can be
exclusive (<, >) or inclusive (≤, ≥). Non-numerical boundaries can be a single value
sr or a set of boundary values S. Instead of the equal operator = which tests for absolute
identical string values, more sophisticated operators that weaken the requirement are
thinkable, such as a substring test or regular expressions.

The procedure of filtering can be performed for minimum constraints with a conjunc-
tive satisficing method and respectively for maximum constraints with a disjunctive
satisficing method [19].

Choose Multi-Criteria Decision-Making Method

A range of MADM methods are eligible upon which a custom evaluation function can
be constituted. An overview and comparison of different MADM methods can be found
in [197][19]. The method has to be chosen according to the preferences of a decision-
maker. For comparisons between alternatives, the evaluation function should produce
score values, and not just pair-wise ratios or unvalued ranking. Therefore, the (MC2)2

recommends the use of weighted sum MADM methods like the AHP. Unlike weighted
product functions that only reflect pair-wise ratios of alternatives, weighted sum func-
tions allow for score values that reflect the absolute quality of an alternative. A score

82

4.4. Scoring Method

has the advantage of result conservation without the need to reapply the evaluation
function.

The (MC2)2 suggests the Analytic Hierarchy Process (AHP) [195][198] as a favorable
weighted sum MADM method, due to its ability to incorporate complex criteria hierar-
chies in an evaluation. Criteria hierarchies enable a more realistic modelling of criteria
dependencies. Moreover, AHP employs pair-wise comparisons for normalization and
to support the use of qualitative criteria. The use of pair-wise comparisons for normal-
ization succeeds to assign values to both, quantitative and qualitative criteria on a ratio
scale. However, qualitative criteria values are derived from subjective ratings.

Configure Multi-Criteria Decision-Making Method

Before an evaluation function can be build and the evaluation results can be calcu-
lated using the function, it is necessary to configure the selected MADM method. This
typically means setting parameters, such as calculation schemes, criteria, and normal-
ization processes. Whether a configuration is needed or not depends on the MADM of
choice.

For example, in the AHP the criteria hierarchy and the index to aggregate multiple hi-
erarchies must be defined. The structure of a criteria hierarchy defined for the AHP
entails effects on the ability to weight criteria against one-another and on the computa-
tional complexity. Generally, two distinct criteria hierarchy structures are followed: (1)
a simple single-level hierarchy, and (2) a hierarchy with criteria groups. Figures 4.6a
and 4.6b illustrate the two typical and simple criteria hierarchies.

In a single-level criteria hierarchy, all criteria are grouped into two goals according to
their metric: (1) positive goal for higher is better (HIB) metrics, and (2) negative goal
for lower is better (LIB) metrics. The HIB goal subsumes all criteria that increase the
compute service’s score the higher the values of the criteria. Oppositely, the LIB goal
subsumes all criteria with negative effects. Finally, the evaluation with AHP uses the
index HIB

LIB to relate both goals to another and to determine the final score value. The
structure of the proposed simple criteria hierarchy is illustrated in figure 4.6a.

A grouped criteria hierarchy introduces an additional level of goals which groups cri-
teria by meta-data characteristic. Thereby, the user can express a preference towards a
certain characteristic by assigning a higher weight to the corresponding goal. Again, a
HIB
LIB index determines the final score value. The structure of a grouped criteria hierar-
chy is depicted in figure 4.6b.

Generally, additional levels introduced into the hierarchy through groups change the
effort for weighting and how a decision-maker can influence weights of criteria. The
local weight of a single criterion (within a group) is multiplied with the weight of the
group (and the weight of all other grouping nodes on the shortest path to the root).

83

4. Framework for Comparative Assessments of Cloud Compute Services

Criteria

Goal

Criterion 1 Criterion i

HIB

Criterion j Criterion n

LIB

... ...

(a) Simple Single-level Criteria Hierarchy

Level 1

Criteria

Goal HIB LIB

Group 1 Group 2 Group i Group j Group n

...

= Criterion

... ...

(b) Criteria Hierarchy with Criteria Groups

Figure 4.6.: Typical Criteria Hierarchies

Therefore, to assign a specific weight, the global weight must be respected and weights
of groups altered if necessary.

Moreover, by grouping criteria, the effort for pair-wise comparisons in the weighting
process can be diminished. Depending on the number of criteria n and the number
of introduced groups g, the number of pair-wise comparisons required for n criteria
exceeds the number of pair-wise comparisons of n criteria divided into g groups. For a
single level hierarchy the number of pair-wise comparisons for weighting are


n
2


. In g

groups the n criteria implicate
g

i=1


ni

2


+

g
2


pair-wise comparisons (with

g
i=1 ni =

n).

Apart from grouping, other approaches for reduction of comparisons exist [199]. All
approaches seek to reduce pair-wise comparisons by asking the decision-maker for a
minimal set of preferences to derive criteria weights from. For example, a bubblesort-
based mechanism asks a decision-maker to reorder a list of criteria according to im-
portance. All of the alternative approaches replace the default weighting process using
pair-wise comparisons and are not necessarily beneficial regarding weighting efforts.

A reduction of the effort originating from pair-wise comparisons can be achieved by
deliberately selecting the criteria a decision-maker is particularly interested in. Most
criteria remain equally (un-)important and, hence, a weighting in pair-wise comparisons
is not necessary. Unweighted criteria will be considered equally important per default
by the AHP.

84

4.4. Scoring Method

Resulting Evaluation Function

Figure 4.7.: Schema of a Resulting Evaluation Function

A schematic representation of the resulting evaluation function is depicted in figure
4.7. Given requirements are used to filter out alternatives that cannot fulfill one of the
requirements. Following, all remaining alternatives are evaluated by the given criteria
with the MADM of choice. To rank the alternatives, the alternatives can be sorted by
their evaluation results. The alternative ranked as #1 is the preferable choice according
to its overall value.

In case a weighted sum MADM method like the AHP is chosen, an evaluation function
f(aj ,W,Aaj , R) →→ vaj ∈ (0, 1) is generated with the (MC2)2. Function f(·) is for-
mulated in Equation 4.1. The function returns vaj

, which is the sum of the weighted
values of all attributes α of an alternative aj . The attributes are matching the corre-
sponding set of criteria that was defined for the evaluation function. If the given re-
quirements R are satisfied then vaj

∈ (0, 1), otherwise the function returns vaj
= 0.

f(aj ,W,Aaj
, R) =


|Aaj

|
i=0

wiχ(αi,aj) ∀r ∈ R : r = true

0 else

→→ vaj
∈ (0, 1)

(4.1)

The function f(·) has the parameters aj , which is the j-th alternative to evaluate, and
set Asj of attributes, where αi,sj ∈ Asj is the i-th attribute of sj . In addition, the set of
weightsW must be given as parameter, wherewi ∈W is the weight of the i-th attribute.
For W the constraint sumWwi = 1 must be satisfied to maintain the normalization.

85

4. Framework for Comparative Assessments of Cloud Compute Services

The value of an attribute is determined with the function χ(·), for example, χ(αi,sj) for
the i-th attribute of sj . Furthermore, an optional set R can be given which contains all
requirements that need to be satisfied. Table 4.3 lists all parameters of the evaluation
function.

Parameter Description

aj ∈ S The j-th alternative to be evaluated by the function f(·)
αi,sj ∈ Asj The i-th attribute of compute service sj
wi ∈W The weight of the i-th attribute
χ(αi,sj) The function to gain the value of the i-th attribute
r ∈ R A requirement that needs to be satisfied

Table 4.3.: List of Symbols in the Evaluation Function f(·)

An evaluation function f(·) resulting from (MC2)2 is reusable with custom alternatives
and associated attributes, weights, and requirements in decisions within the defined
scenario’s context.

Apply Resulting Evaluation Function

The resulting custom evaluation function is able to filter out ineligible alternatives and
to calculate scores. Based on the scores, substantiated, rational decisions can be made
by comparing and ranking alternatives. The evaluation function can be applied to any
set of alternatives, associated attributes and requirements which must be given as pa-
rameters.

4.4.3. Local Scoring

For the comparison of a set of compute services, an evaluation function created with
the (MC2)2 generates a local scoring. The function would accept the proposed crite-
ria hierarchy and the meta-data as parameters. Each compute service’s local score is
expressed relative to the other scores on a (0,1) scale, and all scores sum up to a value
of 1. The use of normalization also for indices that combine multiple goal scores is
assumed.

The function also allows to select different criteria and adjust weights. After a re-
computation using the altered evaluation function, updated scores can be gained for the
set of compute services. Also, when adding another compute service to the set, the
evaluation function needs to be reapplied and the scoring will change.

86

4.4. Scoring Method

The locality of this evaluation function is due to the scale which is specific to a set of
compute services. The sum of all scores in the compute service set will always be 1 for
a local scoring. The local scoring immediately reflects the percentage of suitability –
in regards of defined criteria and weights – for each compute service. However, results
can only be interpreted in the context of the particular set of compute services the scale
has been created for. A comparison of local scores from different compute service sets
is not valid.

4.4.4. Global Scoring

A score determined for a compute service in a local scoring is normalized in relation
to other alternative compute services. Consequently, the scale introduced in a local
scoring is only applicable to this specific set of compute services. In its original mode,
AHP calculates scores on a (0,1) scale per goal where the sum of the scores is 1. When
an additional compute service is added, the scores would change to retain the sum of
1.

To avoid the change of scores, AHP can be applied in an ideal mode synthesization
method for the calculation of idealized scores. After a first local scoring with AHP, the
best compute service can be chosen as ideal compute service and will be scored with a
value of 1. Thereby, an idealized scale forms around the ideal compute service serving
as the reference score. In ideal mode, any compute services introduced later are scored
relative to the ideal compute service. In case the added compute service has a higher
score than the reference score, it exceeds the value of 1 to reflect a correct ratio.

Figure 4.8 illustrates a normalized and an idealized scale of three compute services. In
this figure, compute service 2 serves as the ideal reference in the idealized scale.

!"#$$%

!"&'(%

!")&&%

!"#$%&'()*+,-.+/0"#'12+

3"$456)+/)#7'0)+8+ 3"$456)+/)#7'0)+9+ 3"$456)+/)#7'0)+:+

(a) Example of Normalized Scale

!"#$%&

'"(((&

("%)$&

(&

("#&

'&

'"#&

!&

!"#&

*&

!"#$%&'()'*+,-'(.(!"#$%&'()'*+,-'(/(!"#$%&'()'*+,-'(0(

!
"
#
$
1
*'
2
(&
"
(!
"
#
$
%
&'
()
'
*+
,-
'
(/
(

32'14,5'2(678()-"*,9:(

(b) Example of Idealized Scale

Figure 4.8.: Example of Normalized vs. Idealized Scale

The ideal mode of AHP can furthermore be used to compare compute services to a
reference compute service in a global scoring. Therefore, one certain compute service

87

4. Framework for Comparative Assessments of Cloud Compute Services

is declared as a reference or benchmark. Every compute service’s global score is calcu-
lated by the evaluation function used with two compute services as parameters: (1) the
compute service to be scored, (2) the reference compute service.

Every calculated score is to be seen in context of the reference compute service and ex-
pressed as multiples of the reference score. Moreover, a global score is only comparable
to global scores calculated with the identical set of criteria and weights.

88

4.5. Cost Budgeting Stopping Rule

4.5. Cost Budgeting Stopping Rule

In a search of a high scoring compute service with subsequent assessments costs can be
saved by ending the process early. Particularly when it seems unlikely that one of the
outstanding assessments identifies a compute service with a more favorable score. The
stopping rule presented in this section bases its stopping decision on costs, a compute
service score from the scoring method (c.f. section 4.4), and a cost budget. First,
the cost calculation needed in a stopping decision is explained. Then, the setting of
a stopping rule for compute service assessments is defined. Finally, suitable standard
stopping rules are presented before a novel bespoke stopping rule adapted specifically
to compute service assessments is introduced that considers cost budgets and exploits a
preliminary order.

4.5.1. Cost Calculation

To enforce a cost budget, the stopping rule must be aware how much costs accrue
with every additional assessment of a compute service. The costs generated by an
assessment comprise the bill for using the compute service and the effort to carry out the
assessment task. Besides, costs for the preparation and planning of the assessment, as
well as for necessary resources occupied or purchased for the assessment project need
to be considered. The following cost factors have a considerable effect as operational
expenditures in the course of compute service assessments:

• Staff

• Resource usage for Assessment Implementation

• Compute service usage

• Network traffic

Additionally, capital expenditures may occur as requirement to conduct a compute ser-
vice assessment, such as licenses for assessment and evaluation software.

The overall costs can be divided into expenditures for the project and operational ex-
penditures per compute service. For the stopping rule to work, costs must be broken
down per compute service. Therefore, the project expenditures must be divided by the
total number of compute services, whereas compute service costs can be assigned di-
rectly. Since project expenditures are assigned to each compute service with the same
amount, these can be left out. Ultimately, the total costs for assessing one specific
compute service i must be defined as ci.

Nevertheless, a perfect calculation of the per compute service assessment costs can be
forfeit in exchange for simplicity. Although the fidelity of the stopping rule may suffer,

89

4. Framework for Comparative Assessments of Cloud Compute Services

a simple cost calculation remains a valid option in case costs cannot be determined
precisely for all of the cost factors. Possible simplifications are (1) identical costs ci
for every compute service i and (2) inclusion of a subset of operational cost items. For
the latter, the compute service usage is a factor immediately observable after a first
compute service has been assessed.

4.5.2. Compute Service Scores & Ordering

One important aspect of in a sequential assessment using a stopping rule is the distri-
bution of expected scores among the compute services under consideration. As none or
only little meta-data is available beforehand beforehand, a distribution of scores among
the compute services is unclear.

As costs for assessing compute services can exceed targeted budgets, only a fraction
of the finite compute service set, called the sample, is actually traversed. Hence, it is
impossible to assess perfect information in the search for a compute service. Conse-
quently, the sample of traversed services includes the absolute highest scoring compute
service only by chance.

For this reason, a deliberate choice of compute services to be included in the sample can
increase the chance to include highest scoring compute services in the search. The sam-
ple can be influenced by defining a strict order for the sequential assessment process.
An approximation of the ideal order can be achieved by preferring compute services
that potentially score higher according to priorly available information.

Although the available meta-data regarding a compute service is scarce without a single-
handed assessment, providers and other public sources provide numbers and descrip-
tions that may allow to anticipate a scoring order. When no prior knowledge about
meta-data is available, a random ordering must be assumed. Implicitly, however, the
chances to include the highest performing compute service in the sample decrease.

Generally, there are two situations that lead to different sequential assessment orders:

• Manual order according to prior information and use of custom probability dis-
tributions

• Random order and use of single probability distribution

The following subsections will give insights on the two situations and describe the
effects of an anticipated order and probability distribution.

90

4.5. Cost Budgeting Stopping Rule

Manual Order According to Prior Information

With prior information about meta-data attributes of any of the compute services, the set
of services can be transmuted into an ordered list. Such information can be drawn from
sources, such as the SLAs published on the providers’ websites, results of assessments
in the past, or experiences from other consumers. Composing an ordered list involves
picking services and adding them to the list in a descending order, starting from the
highest guessed score. The guessing of a score must be aligned with the defined evalu-
ation function, particularly under consideration of the criteria and weights incorporated
in the evaluation function.

The guessed score for Si resembles the µ of the custom distribution function for Si.
Additionally, with a σ the confidence of the guessed value can be expressed. The
guessed scores interpreted as µ and confidence values σ leads to different distribution
functions Fi(·) for all Si.

Figure 4.9 depicts the observed distribution of scores for an example list with N com-
pute services that was ordered according to prior information. The distribution of the
scores is not strictly descending in this example. Since prior information is commonly
incomplete and imprecise, the fidelity of an approximated order is commonly unpre-
dictable.

Figure 4.9.: Distribution of Expected Scores Among Ordered Compute Services

Nevertheless, an approximated order has advantages over a random order. Although
the fidelity is unpredictable, chances are that the order outperforms a random order in
various regards. Costs may reduce due to an earlier stop of the sequential assessment

91

4. Framework for Comparative Assessments of Cloud Compute Services

process. Besides, the chances increase that the actual highest scoring compute service
is in the traversed sample.

Random Order

In absence of any prior information, the scores can be expected to be distributed ran-
domly among all compute services. The actual value si of a variable Si is observed with
an assessment of the compute service and determined as score value by applying the
evaluation function f(·). The randomly distributed variables S1, . . . ,Sn are described
by a distribution function F (·). Generally, the actual distribution function F (·) is typ-
ically not know for compute services but can be approached by standard distributions,
such as a Gaussian or Poission distribution. The distribution of the score values among
the traversed compute service sample influences the behavior of the stopping rule.

Assumed the random distribution is a well known distribution function, such as a Gaus-
sian or Poisson distribution, the reservation wage stopping rule is able to determine the
stopping index in advance (c.f. section 2.4.2). The costs accruing in the use of other
stopping rules are unforeseeable. The number of traversed compute services is un-
known in advance for a random order and random distribution. An example of observed
score values for N compute randomly ordered services is depicted in figure 4.10.

Figure 4.10.: Random Distribution of Expected Scores Among Unordered Compute
Services

The example shows the observed random score values of a sample of N compute ser-
vices. Every service is represented by one score value which is the result of applying
an evaluation function to aggregate the assessed meta-data attributes.

92

4.5. Cost Budgeting Stopping Rule

It shall be noted that in absence of a distribution function F (·) some common stopping
rules cannot calculate a halt. For example, the optimal reservation wage cannot be
calculated without knowing the distribution F (·) together with µ and σ.

4.5.3. Stopping Rules

A stopping rule for the assessment of compute services faces a finite horizon prob-
lem and will always lead to a stop. When sequentially assessing different compute
services, a sequence of n random variables S1, . . . ,Sn is mapped to the observations
s1, . . . , sn:

S1 = s1, . . . ,Sn = sn

The observed si are a number representing a compute service. Potentially, the number
of is calculated with an evaluation function f(·) from the scoring method which is
applied to the available multi-dimensional meta-data. Thereby, the compute services
are represented by number comparable on a ratio scale which is required by the stopping
rule. Furthermore, for every assessment of a compute service corresponding to Si costs
of ci occur. In addition, for the traversed sample of observations, highest utility can be
recalled with a sequence of utility functions ui(·):

u0, u1(s1), u2(s1, s2), . . . , un(s1, s2, . . . , sn)

with ui = max si being the utility of the highest performing provider according to
scoring function f(·) after conducting n service benchmarks. The utility is on a scale
defined by f(·) and, hence, not comparable to the costs occuring in the assessment. The
following equation shows the expression seeked to be maximized by a stopping rule for
costs ci increasing with each additional step:

maxun −
n
i

ci

Depending on the scale of the scoring function f(·), the absolute utility may change
over time. The scoring function can be configured with a local and global scoring
mode. The global scoring variant requires to define the first assessed compute service
as the reference with score = 1. In the global scoring variant, the absolute utility and
scores are maintained. The local scoring variant implicates that all measured compute
services are re-scored relative to one another with every additional assessment result.
Thereby, the utility and scores can change over iterations.

93

4. Framework for Comparative Assessments of Cloud Compute Services

Standard Stopping Rules

The stopping problem is similar to the class of house selling problems with recall [114].
The observed result of any previously traversed, hence assessed compute service in
a sample can be recalled. The distribution of the scoring outcomes retrieved in an
assessment are typically unknown. Thus, the problem can be categorized as a finite
horizon problem with no information. However, an order can often be derived from
previous assessments or publicly available meta-data.

For standard stopping rules, similar problems, such as the house selling or job search
problem [114, 117, 121], optimize the utility in relation to the occured costs. Given
the utility un can be mapped to a cost metric, well-known standard stopping rules for
the class of house selling problems with recall could be applied [114, 117]. Besides, a
distribution function for the random variables needs to be defined.

However, with the scoring function f(·), the utility and costs remain on different scales
and cannot outweigh one another. Generally, mapping assessment results to a monetary
value requires a specific mapping function which needs to be identified first. For every
decision-maker a assessment result has a different value and a mapping to a monetary
value seems an unfeasible task. Additionally, the random distribution of the variables
Si is not clear and rather non-deterministic.

Therefore, only standard stopping rules focusing on un and without the need for a
distribution function are considered as applicable stopping rules. The standard stopping
rules presented in the following are the reservation wage rule, cut off rule, candidate
count rule, successive non-candidate rule, and the odds algorithm. Nonetheless, it shall
be noted that standard stopping rules lack a support for a cost budget.

Reservation Wage Rule

For the reservation wage, a certain expected outcome must be defined based on the
global scoring. To define a reservation wage, a certain compute service or comparable
system could be used as a reference. Then all scores are determined in relation to the
initial score of the reference system. The rule will stop with the first compute service
which scores at least as high as the reference score.

The rule is very well suited to find a compute service which satisfies specified require-
ments. However, for finding the highest scoring compute service, the rule is highly
depending on the reference system. A very low scoring reference system may lead
to an early stop and the highest scoring compute service is not observed. In contrast,
an extremely high scoring reference system will lead to an observation of all compute
services and result in maximum costs.

Cut Off Rule

94

4.5. Cost Budgeting Stopping Rule

The cut off rule is generally applicable to a wide range of stopping problems. In this
case, the parameter m determines how many compute service score observations are
skipped before the first upcoming candidate is accepted. A candidate increases un with
a new highest score Sn.

If the set of compute services to traverse is ordered according to prior information, the
highest scoring compute service may be included in the first m observations. Then,
the cut off rule would not find another candidate after m observations and generate
maximum costs.

Candidate Count Rule

Given the candidate count parameterm, the stopping rule ignores the firstm candidates
and stops at the m + 1-th candidate. A candidate is an observation that increases un
with its score Sn being the absolute highest so far.

The candidate count-based rule may struggle with compute service sets that are or-
dered according to prior information. The probability that the highest ranked compute
service is observed under the first candidates depends on the correctness of the order.
If the decision-maker provided an order with few errors, the rule traverses all compute
services before it stops and thereby generates maximum costs.

Successive Non-Candidate Rule

The successive non-candidate rule seeks for the sequential pattern of at least m non-
candidates in between two candidates. The latter candidate leads to the stop and is the
final result of the compute service search.

The rule expects candidates to have a certain distance and to be distributed over the set
of compute services. In a compute service set ordered according to prior information,
the candidates are more likely to be found in the beginning of the observations. There-
fore, the rule can lead to a maximum expenditure in an assessment when the distance
m turns out to be defined as too large.

Odds Algorithm

For the odds algorithm, a definition of a probability that Si is a candidate must be
defined for all i ∈ [1, N]. But even with prior information an estimation of the proba-
bilities is impossible.

Generally, however, the probability to discover a candidate with the new highest value
can be described as pi = 1/i. Thereby, the discovery of a candidate in the next observa-
tion is as likely as any of the previous observation to be the candidate. The probability
1/i declines with every further observations which reflects that it becomes less likely
that a new candidate is found with fewer observations left.

Other probability setups can thought of as well. For example, pi = 1/2 for all i which
expresses that every additional observation has a 50:50-chance to become a candidate.

95

4. Framework for Comparative Assessments of Cloud Compute Services

Similarly, pi = 1/N is thinkable which defines an identical likelihood for all obser-
vations to be a candidate. Then, however, the odds algorithm will observe all Si and
generate maximum costs.

Stopping Rule for Compute Services Assessments

All of the existing standard stopping rules are unable to explicitly consider cost budgets.
Also, part of the standard stopping rules expect the score outcomes to be described by
distributions (e.g., uniform, Gaussian). Most importantly, all existing stopping rules
ignore priorly available information that indicates an anticipated order of compute ser-
vices. And, the score outcomes need to be mapped to a currency in order to compensate
costs. Therefore, the present work introduces a heuristic-based stopping rule that ex-
ploits ordered compute service sets and treats scores and costs in a distinguished man-
ner. In addition, the stopping rule considers a predefined cost budget and determines a
duly end of the assessment process.

Based on the assumption that the order of the compute service set is correct, the first
assessed compute service would achieve the maximum score and the score decreases
with every later observed service. Therefore, the principal of the stopping rule is to
continue the assessment process while the observed score values increase. Thereby, the
order of the set is proved incorrect and, thus, the assessment must continue to seize the
opportunity of finding a service with a new maximum score.

For the trend analysis of the score, a function χ is needed that detects an increase in the
overall utility in step n. Function χn returns 0 if observation sn increases the utility by
adding a new maximum score:

χn =


1 un(sn, . . . , sn) ≤ un−1(s1, . . . , sn−1)

0 else

To relax the stopping decision according to the utility increment detection and to al-
low for a configuration of the stopping rule, the increment detection function χ is used
in a sliding window of size ω. The sliding window comprises the last ω observations
sn−ω, . . . , sn. The function λn reflects the number of missing utility increments (or
consecutive assessed scores lower than the current maximum) within the sliding win-
dow:

λn =

n
i=n−ω

χi

The parameter ϵ can be declared to enforce a maximum allowed lambda.

96

4.5. Cost Budgeting Stopping Rule

Using the defined cost budget cmax, a sliding window size of ω, and the permitted
number of outstanding consecutive score increments ϵ, the stopping rule ϕ can be de-
fined as a sequence of binary decision functions. Given the observations s1, . . . , sn, it
is denoted as:

ϕ = (ϕ0(ϵ), ϕ1(ϵ, s1), . . . , ϕn(ϵ, s1, . . . , sn))

with

ϕn(ϵ, s1, . . . , sn) =


1 ¬(λn ≤ ϵ ∧

n
i ci ≤ cmax)

0 else

where value of 1 leads to a stopping after n observations and a value of 0 to a contin-
uation of the assessment. A halt is triggered by the stopping rule when either the costs
surpass the cost budget cmax or the number of missing utility increments within the
sliding window surpasses ϵ. The probability of stopping after n observations thus is
defined as:

ψn(S1, . . . ,Sn) =

n−1
j=1

(1− ϕj(S1, . . . ,Sj))

 · ϕn(S1, . . . ,Sn)
To serve the reader with a more readable representation, the formal definition of the
stopping rule is transformed into an algorithm. In the following, a pseudo code repre-
sentation of the stopping rule algorithm is presented:

Require: ω ← window size, ϵ← min. number of increments
Require: T ← compute services set, C ← assessment costs
Require: λ← 0, increment← false, window ← queue[ω]

for Si ∈ S(window), ci ∈ C do
si ← f(Si)
if si ≥ max{si ∈ window} then
λ← λ+ 1

else
λ← λ− 1

end if
if ¬(λ ≤ ϵ ∧

n
i ci ≤ cmax) then

BREAK
end if
window.push(si)

end for

97

4. Framework for Comparative Assessments of Cloud Compute Services

4.6. Software Prototype implementing the Scoring
Method

The Hoopla software prototype aims at providing the necessary basis for compar-
isons of compute service meta-data. The prototype is an instantiation of the (MC2)2

framework which is used for comparisons in the presented compute service assessment
framework.

The implementation of Hoopla is divided into one component providing a library that
implements the AHP and into a web application which wraps the library and extends it
with a graphical user interface to support the comparison process.

Both, the library called AotearoaLib, following the name Aotearoa of an early (MC2)2

implementation, and the web application Hoopla are presented in the following subsec-
tions. First, the library is presented that gives the decision-making basis and, then, the
web application is introduced.

AotearoaLib Library

The AotearoaLib library has been created to serve as a basis for later instantiations of
concepts in the framework that incorporate decision-making and evaluation. The library
is reused in a prototype to instantiate the stopping rule for automated benchmarking
which is presented in section 5.4.

AotearoaLib implements the AHP to support criteria hierarchies, pair-wise compar-
isons, quantitative and qualitative criteria, and diverse index calculations. The library
is implemented in Java and provides a programming interface to drive Decisions. Also,
Decisions can be transmuted into DecisionTemplates for later reuse. Every Decision
consists of two ordered lists that contain multiple Alternatives and at least one Goal.
Each Goal spans a tree of criteria where a Goal has multiple Criterion children, again
in an ordered list. Also, every Criterion can have multiple Criterion children. The de-
scribed entities in the data model of the programming interface and their relations are
depicted as a UML class diagram in figure 4.11.

The programming interface furthermore includes the AnalyticHierarchyProcess class
that implements the evaluation logic of the AHP. A new process is started with provid-
ing a Decision object in the constructor. The class discloses the method evaluate which
expects a list of evaluation matrices as parameters. The matrices represent the results of
pairwise comparisons between the alternatives regarding the leaf criteria under a goal
of the criteria hierarchy. The matrices list must be give in the order of the goals and leaf
criteria in the ordered tree of Criterion objects. Additionally, the comparison matrices
must follow the order of the alternatives in the Decision object.

98

4.6. Software Prototype implementing the Scoring Method

Name
Decision

Name
Weight

Alternative

Name
CriterionType
LocalWeight

Criterion

Name
GoalType
LocalWeight

Goal

*

1

*1

Name

Decision
Template

*

1

2..*
1

2..*
1

Figure 4.11.: The AotearoaLib Data Model

Moreover, matrices can be defined to set the weights of the criteria. Alternatively, the
weights can be defined in the data model. The entities Alternative, Goals, and Criterion
possess an attribute weight (or localWeight) that exposes this functionality.

To allow the use of matrices without manually creating multi-dimensional arrays, the
library employs the JAMA package [200] that provides constructs from linear algebra
as Java classes. The matrices are not only used as an input parameter for evaluation
matrices, but also internally in value normalization using matrix multiplications and to
compute the AHP evaluation results in parallel threads.

The implementation of the AHP returns four result maps each mapping alternatives
to normalized values. The four result maps comprise the calculated values of all al-
ternatives regarding the positive goals, the negative goals, the additive index, and the
multiplicative index.

A code example showing the general usage of the AotearoaLib programming interface
is given in section B.1 in the Appendix.

Web Application

The Hoopla additionally provides a web application that comes with a graphical user
interface. While the AotearoaLib library allows developers to evaluate alternatives and

99

4. Framework for Comparative Assessments of Cloud Compute Services

apply the AHP, the web application exploits its user interface to guide decision-makers
through a structured decision process.

An early-stage prototype was developed under the name Aotearoa. The premature ver-
sion helped to collect requirements from users and evolve the Aotearoa prototype to
the Hoopla web application over multiple iterations. After conducting interviews with
the industry, the requirements became clear and the Hoopla was developed that extends
Aotearoa with support for templates. From the interviews a first template for cloud in-
frastructure decisions has evolved, which is due to the decision-makers involved in the
interviews.

The Hoopla has been developed on the Google AppEngine Platform [201] using the
Google Web Toolkit (GWT) [202] to enable a rich graphical user interface. For com-
plex and custom components, smartGWT [203] provides a a library of complex com-
ponents. With the help of smartGWT, a complex criteria hierarchy input component
was developed which allows to define and select criteria and sort them in a hierar-
chy. The frontend serves a user with a graphical user interface and guides through the
decision-making process based on (MC2)2. The backend incorporates the aotearoaLib
to manage data in a data model and to compute evaluation results using the AHP im-
plementation. To persist the data model, the AppEngine datastore service is used. To
allow for user accounts in the system, the AppEngine user service is used. Figure 4.12
illustrates the architecture of the AppEngine-based Hoopla web application.

AppEngine Platform

Hoopla Web Application

GWT Frontend Backend (aotearoaLib)

(MC
2

)
2

 Process

AHP Implementation

Decision
Data Model

GAE Datastore
Service

GAE User
Service

User

Figure 4.12.: The Hoopla Architecture

The web application reflects the process of (MC2)2 in its graphical user interface by
following a 7-step process. A user first starts a new Decision by assigning a name and
description. Then, alternatives are defined in a subsequent step. In step 3, the goals and
criteria hierarchy can be created with a custom input component. For each goal and
criteria pairing derived from the hierarchy a user can specify the importance according
to his preferences in step 4. A slider input component supports a [-10, 10]-Likert scale

100

4.6. Software Prototype implementing the Scoring Method

to simplify the preference definition. Optionally, requirements can be set in step 5. Step
6 is the last step that requires a user to input data. The attribute values regarding the
defined criteria must be given for all alternatives, before the AHP implementation has
enough data to compute values. The final step 7 presents the results for the different
indices and shows the calculated weights of the criteria hierarchy. Figure 4.13 depicts
a screenshot of the graphical user interface offered by the Hoopla web application.

Figure 4.13.: Screenshot of the Hoopla Web Application

The Hoopla web application is publicly accessible via the URL http://hooplaride.
appspot.com. Only a google or facebook account is needed to login. The source
code of the Hoopla is publicly available and maintained as a Github repository under
https://github.com/mugglmenzel/Hoopla.

In addition to the web application, also as standalone version of the web application
has been developed for portable usage. Therefore, the Google AppEngine environment
is imitated for the use on a desktop computer. Unix and Windows scripts automate the
execution and deployment of the Hoopla on a local AppEngine environment. Thereby,
the portable version can be setup and started on most desktop computers with a simple
double-click.

101

http://hooplaride.appspot.com
http://hooplaride.appspot.com
https://github.com/mugglmenzel/Hoopla

4. Framework for Comparative Assessments of Cloud Compute Services

4.7. Evaluation of the MADM-based Scoring
Method

The MADM-based scoring method is the basis for comparisons of compute services
according to meta-data attributes. The proposed method calculates a scoring value
with an AHP-based aggregation of meta-data attributes to address research question
RQ1b:

RQ1b. Can MADM support the aggregation of multiple meta-data at-
tributes into a subjective value for a compute service?

The implemented software prototype (c.f. section 4.6) asserts the feasibility of the scor-
ing method concept. Furthermore, the scoring method approach has been evaluated
with decision-makers from the industry in a case study. Interviews with the decision-
makers give insights in the applicability of the approach, particularly in terms of per-
ceived effort and trust. The software prototype and the case study have already been
published and discussed with peers in the research community [204].

In a comparison of meta-data attributes of multiple compute services, the approach
induces a certain computational complexity to determine the score of each compute
service. In research question RQ1c, the computational complexity is demanded to be
examined:

RQ1c. How is the computational complexity of using MADM to compare
compute services regarding meta-data?

The evaluation of the scoring method includes an analysis of the computational com-
plexity. Specifically, a formal definition using the big O notation and experiments with
the software prototype shall lead to a response to RQ1c. Peers in the research commu-
nity have already involved in a discussion about the computational complexity of the
presented AHP-based scoring method and its applicability in practice [205].

This section is divided into two subsections: the first subsection presents the results
from interviews conducted with decision-makers in the industry. In the final subsection,
an analysis of the computational complexity of the scoring method is driven and find-
ings from experiments to verify the analytic examinations are presented. Particularly,
the computational complexity is defined using the big O notation and then examined in
experiments concerning the influence of variable factors, such as the number of com-
pute services, criteria, and criteria grouping. Also, insights in the time complexities in
practical scenarios with performance meta-data are given.

102

4.7. Evaluation of the MADM-based Scoring Method

4.7.1. Case Study with the Industry

To evaluate the suitability of the scoring method for decision-makers, interviews with
actual users were to be conducted. Initially, suitable and available participants for a
case study needed to be contacted. A research project in collaboration with Telekom
Laboratories offered a platform to engage participants from the industry. One of the
project’s goals was the development of a scoring method in the cloud context.

After a web application (c.f. section 4.6) had been developed as a software prototype,
participants were needed which would use the prototype in practice. The web appli-
cation supports the definition of alternatives, goals & criteria hierarchies, and allows
users to weight goals and criteria with Likert-scale sliders in pair-wise comparisons.
From the given parameters, the AHP is followed by the software. With manually pro-
vided attribute values, a scoring is calculated and presented to the decision-maker. The
partner Telekom Laboratories invited suitable decision-makers from T-Systems, an in-
ternational IT and communications technology provider, for participation. The web
application was announced as prospective new software to support consulting projects
with customers.

The selection process for the study aimed for experts in favor of quantity. Consequently,
the case study was conducted with two consultants from T-Systems who have many
years of experience with consulting customers regarding IT infrastructure. Both par-
ticipants invested several man-hours per week over several months to test the software
prototype and participate in the study.

The participants have used the MADM web application to develop a scoring in an in-
frastructure decision with the alternatives on-premise data center and T-Systems infras-
tructure services. The case study resembles a frequent decision faced by the participants
in consultancy projects with customers of T-Systems. The two participants developed
a goals & criteria hierarchy and applied a weighting. Also, attribute values originating
from active projects were fed to the web application to gain a scoring.

After the participants had finished testing the tool over several weeks, a qualitative
survey was conducted to gain insights in the perceived quality of the approach. A
structured feedback form (c.f. chapter C in the appendix) prepared to conduct the survey
was discarded in favor of in-depth individual interviews [206]. The individual semi-
structured and open interviews were carried out via telephone in 1-2 hour discussions.
The topics of the semi-structured interviews are based on the structured feedback form.
Particularly, the participants were asked for open feedback in the following resorts:

Transparency How transparent and comprehensible is the scoring process?

Effort/Speed How much time is consumed to arrive at a scoring?

Trust How much do you trust the correctness of the presented score?

103

4. Framework for Comparative Assessments of Cloud Compute Services

Both participants were confronted with the resorts and the according question. In their
response, they were free to describe their experiences with the tool and particularly
pros and cons. Also, a comparison to the currently active decision-making or scoring
process was a suggested part of the feedback.

The responses in the individual interviews after a case study with participants from
the industry have been captured as written protocols. The following list represents an
aggregation of the feedback provided by the case study participants:

Transparency Albeit the feature being yet absent in the software prototype, the ap-
proach promises to allow a precise documentation of a decision. The participants
emphasized the possibility to recall the weight factors determined by a decision-
maker to be an important characteristic. It allows to argument the reason of a
scoring outcome and to drive a sensitivity analysis in iterations. However, the
weights defined by the decision-maker should be presented in a comprehensible
form. The general transparency is perceived higher than in a decision without
tool support. The possibility to compare scores on a ratio scale has comforted the
participants in their decision-making.

Effort/Speed The overall effort of scoring several alternatives is acceptable from the
perspective of the participants. Over the case study, the participants learned that
the criteria hierarchy heavily influences the later effort for a weighting of the cri-
teria. The number of criteria and grouping in the hierarchy are factors to consider,
when it comes to a reduction of the weighting effort. Also, filling out all attribute
values manually can become unbearable. The participants see a need to integrate
data sources to feed attribute values automatically into the system.

Trust The participants explained that since the approach has a scientific background
and has been discussed in diverse works in the mathematical field, a trust in the
correctness of the score is given. The participants expect a decision-maker to trust
the criteria hierarchy (and set of criteria) if both have been prepared by experts.

Over the in-depth interview, the participants stated that the approach is applicable to
find a scoring for alternatives and to support funded decisions. They expect the ap-
proach to be used in addition to the current decision-making in industry projects. Pri-
marily, the approach supports the currently made decisions with a number-oriented
perspective. A Web application software prototype helps to explore past scorings and,
thereby, allows a decision-maker to use the tool for documentation purposes.

In summary, research question RQ1b has partly been explored with decision-makers
from the industry in a case study. Although the case study focuses on IT infrastructure
decisions, insights in respect of the applicability of the MADM-based approach could
be gained. The overall results from in-depth interviews with industry experts indicate
that the approach provides a support to carry out a structured and funded scoring of
alternatives and facilitates comparisons. Given the participants are trusted industry

104

4.7. Evaluation of the MADM-based Scoring Method

experts, the statements and results of the case study are significant and representative
to fund the practical applicability of MADM-based scorings.

A scoring of compute services has not been part of the case study. However, the general
applicability of the scoring using a Web application interface has been shown. A scor-
ing of compute service according to meta-data attributes is structured similarly. The set
of criteria is predetermined by the set of available meta-data attributes, and the alter-
natives are defined by the set of available compute services. The following subsection,
which examines the computational complexity of the approach, applies the approach
particularly to compute services. Consequently, the complexity examination is proof
that a scoring can be applied to compute services, too.

4.7.2. Computational Complexity

In the light of RQ1c, the computational complexity has been explored using the Java
library developed for MADM scoring (c.f. section 4.6). The library implements the
AHP in a multi-threaded manner and exposes a data model to define custom scoring
functions. In the implementation, the row/column sum and the Saaty normalization
methods were employed with an enforced 5-digit precision. To accommodate the data
models and temporary results, a Java heap space of 4GB RAM was granted.

Using the library, several experiments aim to verify the defined O(·) and seek to give
insights into the behavior of the scoring method for complex scoring applications. Ev-
ery experiment has been repeated 20 times to ensure stable results. Final values are
represented by the average of the aggregated 20 measurements. For the computational
complexity experiments, diverse decision models have been defined. An overview of
the decision models is given in table 4.4.

The first decisions model, referred to as DM-GS, aims to explore the behavior for a
growing number of compute service alternatives in a scoring. The model comprises a
flat, one-level criteria hierarchy (one criteria group) with a fixed number of 100 criteria.
All criteria are weighted equally and the attribute values of the compute services are
generated synthetically from random values ∈ (0, 1000] to resemble benchmarks. The
number of compute service alternatives is variable.

The second decision model, referred to as DM-GC, aims at exploring the time com-
plexity behavior for a growing number of criteria. The decision model comprises a
fixed set of 100 virtual compute services. The attribute values are again generated ran-
domly from values ∈ (0, 1000] to resemble benchmarks. The criteria hierarchy has a
flat, single level structure and the number of criteria is variable.

The DM-VG decision model focuses on the structure of the criteria hierarchy and the
impact on the computational complexity. Unlike the decicions models DM-GS and
DM-GC, a fixed number of 1000 criteria and 100 compute services are defined in the

105

4. Framework for Comparative Assessments of Cloud Compute Services

decision model. The attribute values are generated synthetically with random values
∈ (0, 1000]. The criteria hierarchy structure changes over the experiments.

Decision Model # of Criteria # of Compute Services # of Criteria Groups

DM-GS 100 variable 1
DM-GC variable 100 1
DM-VG 1000 100 variable

Table 4.4.: Decision Models used for Experiments

The first set of experiments explores the computational complexity in regards of the
compute service set and attributes set involved in the scoring. A second set of experi-
ments researches the computational complexity concerning the grouping of criteria in
a criteria hierarchy. Finally, results from experiments testing the time consumption
to compute a scoring for realistic numbers of compute services and attributes are pre-
sented.

General Computational Complexity

The computational complexity of the MADM-based scoring method is related to the
number of scored services in S, number of requirements in R, as well as the number of
criteria (with linked attributes) in A. According to the big O notation, the O(·) of the
AHP-based scoring method can be described as following:

O


|S| ∗ |R|  

requirements check

+


|A|
2


  

weights normalization

+ |A| ∗

|S|
2


  

value normalization

+ |A| ∗ |S|  
score calculation



The O(·) resembles the theoretical upper bound, whereas in practice, depending on
the implementation, the computational complexity can be lower than the O function.
Specifically, as only a range of subsets of attributes must be normalized. When at-
tributes are grouped within the hierarchy, only attributes under the same parent criterion
or goal need to be compared.

Using the software library, the general computational complexity could be explored
in experiments based on the decision models DM-GS and DM-GC. For the decision
model DM-GS, the number of compute service alternatives is increased by additional
100 virtual compute services in each iteration. In contrast, the decision model DM-
GC fixes the number of compute service alternatives to 100 and increases the number
of criteria. In each iteration, 100 additional criteria and linked attribute values are
introduced to the criteria hierarchy. A requirements check is discarded in both models
as it is optional in a scoring and would diminish the number of compute services.

106

4.7. Evaluation of the MADM-based Scoring Method

A plot of the growing computation time for the decision model DM-GS with the row/-
sum method is depicted in figure 4.14, and with the Saaty normalization method in
figure 4.15. The graph plots the computation times to create the decision model and
to compute the scoring of the compute services. On the horizontal axis, the number
of compute services in the decision model is shown. The left vertical axis represents
the milliseconds of computation time, the right vertical axis the computational steps
calculated with O(·). The black line in the graph shows the expected computational
complexity function O(·).

0	

10,000,000	

20,000,000	

30,000,000	

40,000,000	

50,000,000	

60,000,000	

0	

50	

100	

150	

200	

250	

100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Co
m
pu

ta
(o

n	

St
ep

s	

m
s	

#	
 of	
 Compute	
 Services	

Decision	
 Model	
 Crea:on	
 (ms)	
 Scoring	
 (ms)	
 Predicted	
 O	

Figure 4.14.: Computational Complexity with 100 Criteria and Growing Number of
Services (Row/Sum Method)

Similarly, figures 4.16 and 4.17 depict the experiment results plots for the DM-GC
with row/sum and Saaty normalization methods. The metric on the horizontal axis is
the number of criteria, on the vertical axes milliseconds and computation steps, re-
spectively. The black line indicates the predicted complexity by means of the O(·)
function.

The results show that a growing number of compute services and criteria affects the
computational complexity of the scoring method. Also, the size of the compute ser-
vices set has a bigger influence than the size of the criteria set. The results gained
with experiments based on the decision models DM-GC and DM-GS confirm the prior
complexity predictions manifested in O(·).

107

4. Framework for Comparative Assessments of Cloud Compute Services

0	

10,000,000	

20,000,000	

30,000,000	

40,000,000	

50,000,000	

60,000,000	

0	

20,000	

40,000	

60,000	

80,000	

100,000	

120,000	

140,000	

100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Co
m
pu

ta
(o

n	

St
ep

s	

m
s	

#	
 of	
 Compute	
 Services	

Decision	
 Model	
 Crea:on	
 (ms)	
 Scoring	
 (ms)	
 Predicted	
 O	

Figure 4.15.: Computational Complexity with 100 Criteria and Growing Number of
Services (Saaty Method)

0	

1,000,000	

2,000,000	

3,000,000	

4,000,000	

5,000,000	

6,000,000	

0	

20	

40	

60	

80	

100	

120	

100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Co
m
pu

ta
(o

n	

St
ep

s	

m
s	

#	
 of	
 Criteria	

Decision	
 Model	
 Crea:on	
 (ms)	
 Scoring	
 (ms)	
 Predicted	
 O	

Figure 4.16.: Computational Complexity with 100 Compute Services and Growing
Number of Criteria (Row/Sum Method)

Effect of Criteria Grouping

Apart from the set of compute services and the set of attributes that affect the compu-
tational complexity, the structure of the criteria hierarchy may have an influence on the
computational complexity, too.

108

4.7. Evaluation of the MADM-based Scoring Method

0	

1,000,000	

2,000,000	

3,000,000	

4,000,000	

5,000,000	

6,000,000	

0	

200	

400	

600	

800	

1,000	

1,200	

100	
 200	
 300	
 400	
 500	
 600	
 700	
 800	
 900	
 1000	

Co
m
pu

ta
(o

n	

St
ep

s	

m
s	

#	
 of	
 Criteria	

Decision	
 Model	
 Crea:on	
 (ms)	
 Scoring	
 (ms)	
 Predicted	
 O	

Figure 4.17.: Computational Complexity with 100 Compute Services and Growing
Number of Criteria (Saaty Method)

A closer analysis of the pair-wise comparisons involved in a score calculation reveals
the influence of the criteria hierarchy and particularly grouping of criteria. While a
single-group hierarchy implicates

|A|
2


pair-wise comparisons during a normalization,

a hierarchy with g groups leads to pair-wise comparisons described by the following
expression:

g
i=1


|Ai|
2


+


g

2


with

g
i=0

Ai = A

With g criteria groups, the O(·) needs to be adjusted to the following:

O


|S| ∗ |R|  

requirements check

+(

g
i=1


|Ai|
2


+


g

2


)  

weights normalization

+ |A| ∗

|S|
2


  

value normalization

+ |A| ∗ |S|  
score calculation



To explore the effect of criteria groups, experiments were conducted that stress the soft-
ware library with different hierarchy structures. A static number of compute services
and attributes in the experiments permits to observe only the effect of criteria groups.

For the experiments, the decision model DM-VG provides the basis with a set of 100
compute services and 1000 criteria. The row/sum method is used for normalizations.
The experiments distinguish in their focus on the criteria hierarchy structure from the

109

4. Framework for Comparative Assessments of Cloud Compute Services

earlier experiments. Particularly, the effect of grouping criteria in subsets of diverse
sizes under a goal in the criteria hierarchy is explored.

In each iteration, the number of criteria groups and, thereby, the number of criteria
within a group is altered. Thereby, the number of pair-wise comparisons to normalize
the attribute values linked to criteria in a group is affected.

Figure 4.18 depicts the results from the experiments. The horizontal axes reflect the
growing number of criteria within a group and the total number of criteria groups in the
hierarchy, respectively. The metrics used on the vertical axes are milliseconds for the
measured computation times and computation steps for the predicted O.

10
00
	

50
0	

33
4	

25
0	

20
0	

16
7	

14
3	

12
5	

11
2	

10
0	

50
	

34
	

25
	

20
	

17
	

15
	

13
	

12
	

10
	

5	
 4	
 3	
 2	
 2	
 2	
 2	
 2	
 1	

0	

200,000	

400,000	

600,000	

800,000	

1,000,000	

1,200,000	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10
	

20
	

30
	

40
	

50
	

60
	

70
	

80
	

90
	

10
0	

20
0	

30
0	

40
0	

50
0	

60
0	

70
0	

80
0	

90
0	

10
00
	

#	
 of	
 Criteria	
 Groups	

Co
m
pu

ta
0o

n	

St
ep

s	

m
s	

#	
 of	
 Criteria	
 per	
 Group	

Decision	
 Model	
 Crea:on	
 (ms)	
 Scoring	
 (ms)	
 Predicted	
 O	

Figure 4.18.: Computational Complexity with 100 Compute Services, 1000 Criteria
and Growing Group Size

The experiment results shed light on the effect of criteria groups. As the results show, a
sweet spot exists for the criteria group sizing. Also, the most extreme settings with one
group for all criteria or a single group per criterion have a maximum negative effect on
the computational complexity.

Computation Times in Practice

Aside the experiments concerning the computational complexity, an experiment to ac-
quire computation times for realistic scenarios has been carried out. Using the decision
model DM-GC as a basis, this experiment measures the computation times for varying
number of criteria and compute services. The relevant scenarios selected for the mea-
surements are combinations of compute services and criteria sets with 5, 10, and 20
items. The numbers align with the sizes of CloudHarmony Summary Benchmark sets

110

4.7. Evaluation of the MADM-based Scoring Method

[139] and the OpenBenchmarking.org test suites [207] and, thus, resemble exemplary
but realistic scenarios of performance meta-data comparisons.

As observed in first test runs of the experiment, high variations occur due to small
computation times of under 1 ms and overhead from java classes used in the software
library. Therefore, the number of repetitions has been increased to 10,000 to guarantee
reliable results.

Table 4.5 lists the observed computation times for realistic criteria and compute ser-
vice set sizes. In addition, table 4.6 lists the results for the Saaty normalization method
instead of the row/sum method. The computation times comprise the creation of the
decision model and the evaluation using the AHP implementation in the software li-
brary.

Criteria/Compute Services 5 10 20 30

5 0.46 ms 0.51 ms 0.53 ms 0.80 ms
10 0.99 ms 0.97 ms 1.14 ms 1.26 ms
20 1.58 ms 1.76 ms 2.25 ms 2.13 ms
30 1.74 ms 1.91 ms 2.21 ms 2.61 ms

Table 4.5.: Computation Times in 4 Realistic Scenarios (Row/Sum Method)

Criteria/Compute Services 5 10 20 30

5 0.43 ms 0.49 ms 0.58 ms 0.83 ms
10 0.83 ms 0.92 ms 1.13 ms 1.47 ms
20 1.47 ms 1.64 ms 1.97 ms 2.63 ms
30 1.53 ms 1.86 ms 2.49 ms 3.60 ms

Table 4.6.: Computation Times in 4 Realistic Scenarios (Saaty Method)

As the results in tables 4.5 and 4.6 reveal, the computation times in realistic scenarios
with 5-30 compute services and criteria are rather neglectable. Even with the more
complex Saaty normalization method, times do not exceed 3.6 ms for realistic scenar-
ios. In a comparison of compute services according to diverse meta-data attributes, a
scoring can be gained almost instantaneously.

111

Part III.

Instantiation

113

5. Assessments of Compute
Service Performance at
Run-time

In this chapter, an approach for assessing and comparing cloud compute services ac-
cording to performance is introduced. The approach describes how performance bench-
marks can be applied to capture performance attributes of diverse compute services.

Moreover, the scoring method is employed with the Analytic Hierarchy Process to ag-
gregate multiple performance attributes into a score to compare compute services. The
scoring method is further used to build a utility function in a stopping rule. Thereby,
measurements can be conducted under a cost budget in a stopping rule approach. Figure
5.1 summarizes the models and methods used from the framework.

MADM-based Scoring Method

Cost Budget Stopping Rule

Meta-Data Model

Run-time Assessment Automation Model

Figure 5.1.: The Framework’s Models & Methods used for Performance Assessment

The diverse contributions regarding run-time assessments of compute services’ perfor-
mance presented in this chapter are the following:

Automated Performance Benchmarking

115

5. Assessments of Compute Service Performance at Run-time

The concept of automated performance benchmarking of compute services with rep-
etitions and scheduling orients on the framework’s automation model and extends the
framework’s meta-data model for its purposes. Particularly, an extension of the com-
pute service assessment framework’s meta-data model is introduced to attach perfor-
mance meta-data, gained from benchmarks, to compute services. To realize an automa-
tion of performance benchmarks, the automation model of the framework is extended
and adapted to execute benchmarking software as assessment task. Furthermore, user
parameters defined in the Roadmap Definition Language provide means to define repe-
titions and to schedule start times for automated performance measurement runs.

Scoring & Comparisons

Assessed performance attributes allow for comparisons between competing compute
services. Using the benchmarking results from the extended meta-data model, compute
services can be compared in multiple dimensions of benchmarks, e.g., concerning the
result of a LINPACK or a Whetstone benchmark. A single-dimensional value on a ratio
scale comforts comparisons and a sorting of compute services according to the entirety
of benchmarking results captured. The framework’s scoring method using MADM,
specifically the AHP, is employed to realize a mapping of multiple benchmarking re-
sults to a comparable, single-dimensional score.

Stopping Rule
Besides, costs accrue by leasing compute service resources over the time span of a per-
formance benchmarking. For performance measurements, the framework’s stopping
rule is configured to enforce a cost budget and exploit priorly known hardware figures
of compute services.

This chapter is structured as follows: first, a method to automate, schedule and repeat
compute service performance benchmarking is introduced in section 5.1. Then, section
5.2 explains how the framework’s scoring method can be employed using the meta-
data gained from the measurement method. Besides, an adaption of the framework’s
stopping rule with cost budget is presented in section 5.3.

Finally, a software prototype implementing the automated performance measurement
method and the stopping rules is introduced in section 5.4 to proof the feasibility of
the concepts. Using the software prototype, evaluations of the automated performance
benchmarking method and the stopping rule are carried out in sections 5.5 and 5.6. Ex-
periments validate the capabilities of the automated performance benchmarking method
and explore its promptitude. An evaluation of the stopping rule proofs its ability to en-
force a cost budget and shows its advantages over standard stopping rules.

116

5.1. Automated Performance Benchmarking of Compute Services

5.1. Automated Performance Benchmarking of
Compute Services

The assessment of a compute service’s performance can be achieved in distinct ways.
The performance of a system can be analyzed in a simulation and emulation, or can
be measured in-situ and with benchmarking (c.f. section 2.2.1). For compute services,
generating a system model appears an unnecessary act generating overhead since the
real system, the compute service, can be accessed via APIs with small effort.

In regards of workloads, compute services can be monitored and measured under real
workloads (in-situ) or with synthetic workloads with benchmarking. To gain in-situ
results, a software application with a monitoring component would be needed that is
stressed with workloads from users or a workload generator. A benchmarking approach
generates a synthetic workload with small software programs without preparation ef-
forts. Measurements with benchmarking, hence, can be conducted with less effort and
are the approach pursued in this work.

The basis for an assessment of performance attributes of compute services is the novel
automated performance benchmarking method presented in this section. For that mat-
ter, particularly the aspect of heterogeneity in compute service performance quality is
of interest. To address that aspect, scheduling of performance measurements in regards
of time frames and frequency is incorporated in the method.

Automated Performance
Benchmarking Procedure

Process Model

Meta-Data Model

Roadmap Definition

Language

Compute Services
Compute Services

Figure 5.2.: Overview of the Automated Performance Benchmarking Method

As part of the method, a procedure to execute automated measurements is presented
which builds upon the automation model of the assessment framework (c.f. section

117

5. Assessments of Compute Service Performance at Run-time

4.3). Furthermore, a Roadmap Definition Language is introduced to describe perfor-
mance measurement schedules and repetitions. Besides, an extension of the meta-data
model to persist measurement results and roadmap definitions is described. Moreover,
a process model that leads consumers through the planning and execution of assessment
with the method is introduced.

From the process model a consumer defines parameters expressed in a roadmap defi-
nition in the data model and hands it to the automated benchmarking procedure. The
procedure considers the parameter and conducts benchmarking runs of the selected
compute services accordingly. The results are then persisted in the data model and be-
come available to the consumer. Figure 5.2 depicts the parts of the method and their
interactions.

This section is structured as follows. First, the procedure, which bases on the frame-
work’s automation model, is explained. Then, with the procedure in mind the aspects of
repetition and result aggregation are discussed and the Roadmap Definition Language
is introduced. Following, the extended meta-data model is presented which, aside from
benchmarking results, can hold definitions in the priorly introduced Roadmap Defini-
tion Language. The process model then guides a consumer in his interactions with the
procedure and data model within the method. Finally, diverse aspects of the approach,
such as costs and limitations, are discussed.

5.1.1. Automated Performance Benchmarking Procedure

While performance benchmarks have already been adapted for compute services (c.f.
chapter 3), a method to automate and aggregate compute service measurements over
time is novel. An automation of performance measurements calls for a procedure that
incorporates an execution of benchmarks on compute services without user interaction.
This subsection presents a procedure that builds upon the blueprint automation model
contained in the framework presented in section 4.3.

The original procedure blueprint must be extended to meet a range of requirements
to fit the context of automated compute service measurements. For measuring multi-
ple compute service targets regarding diverse characteristics with various schedules, a
way to parameterize the measurement procedure must be in place. Initially, the set of
compute services and benchmarks to consider for measurements need to be defined.
Furthermore, to level out heterogeneity in a compute service’s hardware and average
multiple measurements, a schedule of multiple measurement phases must be definable.
As past measurements verified, only a range of measurements over multiple time spans
can guarantee enough data to gain meaningful results.

Multiple components are involved in the procedure of measuring compute services with
performance benchmarks. Figure 5.3 illustrates the components involved in the proce-
dure of the automated performance measurement approach.

118

5.1. Automated Performance Benchmarking of Compute Services

Compute Service 1

Virtual Machine
Automated Benchmarking

Coordinator

User Roadmaps &

Results Store

Multi-Cloud
Interface

Benchmark Repository

Virtual Machine

Compute Service N

Virtual Machine
Virtual Machine

...

download benchmarks

inject script

upload results

Scheduler

User
Interface

read/write

Executor

Figure 5.3.: Overview of the Automated Performance Measurement Procedure

The main component for automated measurements, the Automatic Benchmarking Co-
ordinator, coordinates benchmarks according to user preferences using a multi-cloud
interface. With an included Scheduler component, performance benchmarks can be
repeated over time given scheduling rules. Executable benchmarking software is main-
tained in a Benchmark Repository that is accessible publicly and, therefore, also from
any compute service.

In order to define parameters, a user interface allows to define roadmaps, which sched-
ules measurements of a selection of compute services with a set of benchmarking soft-
ware. Roadmaps as well as results can be stored and retrieved from the User Roadmaps
& Results Store.

Given the roadmaps defined by a user, the main component coordinates a measurement
triggered by the scheduler. Then, by using the Multi-Cloud Interface component, a vir-
tual machine at each selected compute service is instantiated. Access to the machine
via remote protocols like SSH enables an injection of scripts that download and exe-
cute the set of benchmarking software. Finally, the results of a benchmarking run are
uploaded to the Results Store.

The data model to store user preferences and results in the User Roadmaps & Results
Store is introduced in section 5.1.3. The process model, which describes the interaction
of the user and the components in detail, is presented in section 5.1.4.

119

5. Assessments of Compute Service Performance at Run-time

5.1.2. Repetitions and Benchmarking Result Aggregation

The procedure introduced in the previous section provides means to automatically con-
duct performance measurements and, thereby, assess compute service performance
meta-data. Such measurements can even be collected over long time spans using
roadmaps. With repetitions of a measurement, the confidence that the measured value
is accurate can be assured. In compute services, a variability between multiple mea-
surements is expected due to a non-deterministic behavior caused by environmental
influences, such hardware upgrades or varying simultaneous workload from multiple
consumers [13, 80]. One particular influence is the fact that a VM provided by the
service shares physical resources with other consumer’s VMs . Although the virtual-
ization layer aims to allocate resources to certain VMs, an interference can often not be
eliminated [30].

The influences can change over time, depending on the resource usage of other con-
sumers. During periods of high demand, resources may see a high utilization by con-
sumers. For example, web servers on compute services may be accessed more fre-
quently in the evening, or servers hosting online shops are facing high workloads in the
month before holidays.

The following subsections address the need to repeat performance measurements over
time and present functions to aggregate multiple measurements. First, the roadmap def-
inition language is introduced to allow consumers a definition of benchmarking sched-
ules. Furthermore, the aspects of variability, repetitions and the aggregation of multiple
benchmarking results are discussed.

Roadmap Definition Language

The present approach introduces roadmaps to capture external influences over time.
While measurements can be spread and repeated over months or years, variations in
performance benchmarking results can also occur within short time spans. Therefore,
the approach supports a definition of repetitions on different levels of a roadmap. Figure
5.4 illustrates the levels of a roadmap that allow for repetitions.

While the two upper levels aim to cover repetitions over years, months and days, the
lower level aims at subsequential repetitions within minutes or seconds. The illustrated
structure reflects the components of a roadmap. Within the approach, a roadmap is
an entity that contains all information to define repetitions of performance measure-
ments.

To define a roadmap, multiple roadmap entries can be defined in a scheduling language
called roadmap definition language. The language includes concepts to define repeti-
tions on all levels, and to reference previously defined benchmarking sets

120

5.1. Automated Performance Benchmarking of Compute Services

Benchmark 1

Execution

Benchmark n

Execution

Roadmap Entry 1 Execution

Roadmap 1 Execution

Roadmap Entry n Execution

Benchmark 1

Execution

Benchmark n

Execution

Repetitions

...

... ...

Legend:

Figure 5.4.: Available Levels to Induce Repetitions

The syntax of the roadmap definition language is a derivation of the format used in
the Unix cron job scheduler. The grammar of the roadmap definition language can be
expressed in Backus-Naur-Form as follows:

121

5. Assessments of Compute Service Performance at Run-time

⟨roadmap entry⟩ |= ⟨time⟩ ⟨days⟩ ⟨months⟩ ⟨repeat⟩ ⟨identifiers⟩ ⟨metrics⟩

⟨time⟩ |= ⟨minutes⟩ ⟨hours⟩
⟨days⟩ |= ⟨days of month⟩ ⟨days of week⟩

⟨months⟩ |= ∗ | ∗/⟨month⟩ | ⟨month⟩
⟨repeat⟩ |= ⟨repeat entry⟩ ⟨repeat benchmarks⟩

⟨identifiers⟩ |= ⟨benchmark set⟩ ⟨CS set⟩
⟨metrics⟩ |= ⟨aggregation function⟩ ⟨variation metric⟩

⟨minutes⟩ |= ∗ | ∗/⟨minute⟩ | ⟨minute⟩
⟨hours⟩ |= ∗ | ∗/⟨hour⟩ | ⟨hour⟩

⟨days of month⟩ |= ∗ | ∗/⟨day of month⟩ | ⟨day of month⟩
⟨days of week⟩ |= ∗ | ∗/⟨day of week⟩ | ⟨day of week⟩
⟨benchmark set⟩ |= benchmark set identifier

⟨CS set⟩ |= compute service set identifier

⟨aggregation function⟩ |= harmonic | geometric | max | min
⟨variation metric⟩ |= standard deviation | Coefficient of Variation

⟨minute⟩ |= 0 . . . 59
⟨hour⟩ |= 0 . . . 23

⟨day of month⟩ |= 1 . . . 31
⟨day of week⟩ |= 0 . . . 6 | Mon . . . Sun

⟨month⟩ |= 1 . . . 12
⟨repeat entry⟩ |= 0 . . . 99

⟨repeat benchmarks⟩ |= 0 . . . 99

Like the cron syntax, the roadmap definition language incorporates the use of wildcards
(*) to facilitate scheduled repetitions. Every roadmap entry can have a fixed number or a
wildcard for the minutes, hours, day of month (or day of week), and months parameter.
A fixed number leads to an execution at that specific point. For example, when setting
the first parameters as "1 1 1 1 1" the scheduler will run the benchmarks on 01:01h
at 1st January if it is a Tuesday. With wildcards, the execution is processed for every
value of that parameter. For example, when setting the first parameters as "* * * * *"
the scheduler will run the benchmarks every minute of every hour at every day of every
month at any weekday.

122

5.1. Automated Performance Benchmarking of Compute Services

Additionally, the number of repetitions for benchmark execution and entry execution
can be defined. The number of benchmark repetitions defines how often each bench-
mark in a benchmark set is repeated during the execution. The number of entry rep-
etitions determines how many consecutive executions of the roadmap entry are trig-
gered.

Variability, Repetitions and Aggregation

To gain representative data using roadmaps, the defined number of repetitions needs to
be sufficing. At the same time, the more measurements are made the higher the resource
costs and efforts. This leads to the questions how many measurements must be made at
least.

The variability of a system’s performance behavior can be expressed by the variance of
a measured sample, represented by s2. If the distribution of the performance variability
is known beforehand, the number of necessary measurements to guarantee a certain
accuracy can be determined. Given a system’s performance variability with mean µ
and variance s2 in a normal distribution, the minimal sample size n can be calculated
in regards of the required confidence [31].

The demanded accuracy must be defined as r in percent, e.g., 5%. Additionally, an
allowed chance of error α must be defined as the confidence level 100(1−α). Given α,
the confidence interval is determined by the allowed chance of error in the left part of
equation 5.1. The z-score of a 100(1−α) confidence level can be found by referring to
z-score tables. Given the required r, the according confidence interval can be calculated
using the right part of equation 5.1.

x± z100(1−α)
s√
n
= x(1± r

100
) (5.1)

Equation 5.1 is the basis to determine the minimal size of a sample n. To achieve a
certain accuracy r and chance of error α, equation 5.1 can be transformed into equation
5.2.

n = (
100sz100(1−α)

rx
)2 (5.2)

Without prior knowledge of a system’s performance variability, the minimal size of the
sample can only be determined iteratively. Then, benchmarking may continue until
the results undercut a certain boundary of the sample standard deviation (s), e.g., 0.03.
A s-boundary has the advantage that it can be formulated in the same metric as the
mean.

123

5. Assessments of Compute Service Performance at Run-time

Aside from s boundaries, limits can also be expressed for the Coefficient of Variation
(CV). The CV is dimensionless and allows to express a boundary independently from
the metric used in a measurement. Equation 5.3 defines the CV regarding the mean µ
and standard deviation σ (or s for samples).

CV =
σ

µ
(5.3)

Independently from requirements in terms of accuracy, there should always be a fixed
maximum of repetitions to restrain effort and resource costs. If the variability of the
results pertain, further benchmarking will not improve the accuracy and measurements
can be stopped. The variability of the system must be accepted and captured using the
standard deviation s or the CV.

The set of benchmark results originating from multiple repetitions, however, needs to
be converted into a single value. As results from repetitions are all expressed in the
identical metric, an aggregated value can be drawn from averaging functions. For that,
the geometric and harmonic means, amongst others, can be applied.

5.1.3. Data Model for Roadmap Scheduling and
Measurement Results

In order to retain gathered benchmarking results and to define benchmarking tasks, the
framework’s meta-data model is refined to the needs. The data model defines which
data is relevant to the automated benchmarking procedure. Also, it describes the struc-
ture to guarantee a uniform access to data for the components involved in the automated
benchmarking procedure. A UML class diagram representation of the data model is de-
picted in figure 5.5.

To embrace the definition of benchmarking tasks, the data model incorporates entities
of the type Roadmap and the related type Roadmap Entry. A roadmap comprises a set
of roadmap entries and is owned by a User. Every entry consists of a Benchmark Set
and a Compute Service Set which are combined with a Schedule.

Benchmark and compute service sets can be referenced with an identifier. The identifier
simplifies the process of defining roadmap entries via the user interface component.
Using the identifiers, a roadmap entry can be composed from a compute service set and
a benchmark set identifier, and a schedule expressed in a text format (see section 5.1.4).
Consequently, a roadmap entry defines at which time certain compute services must be
measured with benchmarking software.

A set of benchmarks is described by an identifier and comprises a list of benchmarking
software represented by Benchmark entities. Each benchmark entity has a name and
a metric. Similarly, a set of compute services has an identifier and incorporates a list

124

5.1. Automated Performance Benchmarking of Compute Services

Provider: String
HardwareConfigShort: String
CPUCores: Integer
RAMSpace: Integer
HardDiskSpace: Integer
Arch: String
Location: String

Compute Service

Identifier: String
Compute Service Set

Identifier: String
Benchmark Set

Name: String
Metric: String

Benchmark

Value: Double
Deviation: Double

Benchmarking Result

Roadmap Entry

Roadmap

*

1

*

1

1

1

*

1

*

1

1

1

1

1

1

1

Timestamp: Date
Roadmap Entry Run

*

1

Schedule
Month: Integer
DayOfWeek: Integer
DayOfMonth: Integer
Hour: Integer
Minute: Integer

*

1

Name: String
User

*

1

AccessKey: String
SecretKey: String

Credentials
*

1

1

1

Figure 5.5.: Data Model of the Automated Performance Benchmarking Method

of compute services. A Compute Service is defined by a hardware configuration, a
location, and optionally a short name as a label for the hardware configuration. Besides,
a user can attach Credentials to each compute service which is required for automated
access through the multi-cloud interface component.

Aside from benchmarking task definitions, the data model is capable of capturing
benchmarking results. Roadmap entries will lead to the execution of benchmarking
software on compute services which produces a measured values. For every combina-
tion of a benchmarking software executed on a compute service, a value needs to be
retained.

In addition, it must be possible to relate a measured values to a roadmap entry. There-
fore, upon execution of a roadmap entry, a Roadmap Entry Run entity with a timestamp
can be added to the data model. For every recorded run, measured values can be stored
as Benchmarking Result entities. The results are each in relation to a roadmap entry run,
thus, allowing to relate results to a timestamp and roadmap of a user. This enables the
access and an aggregation of the performance meta-data gained from the benchmarking
process.

125

5. Assessments of Compute Service Performance at Run-time

5.1.4. Process Model for Using the Automated
Benchmarking Procedure

For using the performance measurement procedure, an extended view that involves a
consumer describes preparation steps and sets them in context of the automated mea-
surements. Aside from steps performed by a compute service consumer, a system im-
plementing the procedure is involved. A representation of the process model in BPMN
[208] is depicted in figure 5.6.

Figure 5.6.: User Involvement in an Automated Benchmarking Process

The process model reflects the two participating parties in an automated performance
measurement of compute services: (1) a user with the intend to gain performance re-
sults, (2) an implementation of the measurement procedure. On the user-side, steps
incorporate parametrizing the system to have it measure compute services with the
benchmarks of interest to the user. In conjunction, on the system side, an implementa-
tion of the procedure executes measurements according to the user’s parameters. The
following subsections describe the steps involved in the measurement process in more
detail.

Requirements and Targets Definition

Initially, the goals of a performance measurement need to be defined. Requirements for
compute services, such as only compute services in Europe or only 64-Bit platforms,
help to determine the set of compute services later on. In parallel, requirements for
benchmarks, such as floating point metric or memory random write metric, help to
determine suitable benchmarks. Additionally, rules regarding the frequency and period
of measurements need to be clarified, e.g., every 4 weeks or Monday to Friday at 12am
and 4pm. The rules are the basis to define a roadmap to schedule measurements.

126

5.1. Automated Performance Benchmarking of Compute Services

Compute Service Set

Given a list of supported compute services a subset needs to be filtered out which ad-
heres to the requirements defined priorly. Apart from the requirements, costs play a
significant role in the definition of the compute service set. Every measurement implies
cost for the use of the particular compute services differing in prices. Hence, the size
of the set should fit the budget available for measurements.

Besides, the compute services included in the set can be selected by numerous criteria,
depending on the preferences and goals of the consumer. Criteria like required mini-
mum hardware configurations and locations of the hardware used in a compute service.
In the end, a set of compute services from various providers must be defined. Every
compute service is defined by a provider, a provider-specific identifier, and a provider-
specific location. For example, a compute service could be defined by "Amazon EC2",
"m2.xlarge", and "us-east-1". A user can be supported in the definition with lists of
valid values.

To grant access to compute services, a user must give his consumer credentials to the
system. Typically, a SSH key is needed to remotely access machines. Besides, an
authentication token (typically a pair of an access key and a secret key) is required to
access the API of a provider for a user. Using the API, the benchmarking approach can
instantiate new VMs for measurements or access existing machines.

Benchmark Set

In parallel to the compute service set, the set of benchmarks to conduct on the compute
services needs to be defined. The set should respect the requirements formulated in the
first step. Again, since benchmarks are not executed in parallel on a single machine, the
cost for the use of the compute service increases with every benchmark. Depending on
the pricing precision – by second, hour or day –, the number of benchmark executions
fitting in a segment varies. In case of significant deviations between benchmarking
rounds, the duration of a benchmarking execution, and hence the cost, becomes unpre-
dictable.

Roadmap Definition

In order to observe performance attributes over a certain time span, a roadmap needs
to be be defined. A roadmap represents a manual schedule of benchmarking runs with
periodical repetitions. In order to define a roadmap, the planned repetitions must be ex-
pressed in the roadmap definition language (c.f. section 5.1.2). The formulated sched-
ule statements set the frequency of repetitions for the execution of a set of benchmarks

127

5. Assessments of Compute Service Performance at Run-time

on a set of compute services. Also, the number of repetitions of a benchmark set and
each benchmark can be defined.

To decrease the length of a statement, a priorly defined set of benchmarks and set of
compute services can be referenced via identifiers. The benchmark set and compute
service set identifiers declare which benchmarks to run on which compute services.
The sets have been defined in the previous steps.

To express complex schedules, multiple entries for the same benchmark and compute
service set can be created. In addition, the use of extended wildcards (i.e., */[expression])
allows to define repetitions explicitly. For example, when setting the first parameters
to "*/5 * * * *" an execution for every five minutes is scheduled. Following more
examples of roadmap entries with valid syntax:

• */15 * * * * benchmark-set-1 compute-service-set-7

• 0 12 * * * benchmark-set-3 compute-service-set-2

Roadmap Scheduling

The scheduler considers roadmap entries made available in the user roadmaps database
(cf. figure 5.3). Based on the database entries, the scheduler derives a schedule order
and when to trigger a benchmarking run. The scheduling timeline is divided into one
minute segments, which is the smallest unit possible in the roadmap definition lan-
guage. Every minute, the schedule queue is consulted to find out if roadmap entries are
scheduled for execution. If the next entry is to be executed in the current minute, the
execution of a roadmap entry takes place.

Roadmap Execution

In the execution phase, a roadmap entry is handed over from the scheduler to the ex-
ecutor component. The executor initiates an automated benchmarking process which
executes a benchmarking suite on a Virtual Machine. Once the benchmarking suite
finished its measurements, the executor component terminates the process.

From a roadmap entry, the compute service set identifier leads to the compute services
considered by the executor. For every compute service, a VM is instantiated via the
multi-cloud interface. Using given SSH keypairs, the machine can be accessed and
prepared by the executor.

Once a connection to the instantiated VM has been established, a benchmarking suite
can be compiled using the benchmark set identifier. Therefore, the benchmarks in-
cluded in the defined benchmark set are downloaded from the benchmark repository
and compiled into a benchmarking suite.

128

5.1. Automated Performance Benchmarking of Compute Services

The benchmarking suite can then be executed as a single program to conduct measure-
ments. After the benchmarking suite has finished, the measurement results need to be
uploaded to the user roadmap & results store. Ultimately, the executor is signaled the
termination of the benchmarking and ends the process. Therefore, the VM is stopped
via the multi-cloud interface.

Depending on the implementation, multiple compute services are measured in parallel
or subsequently. Roadmap entries scheduled at the same time should be processed in
parallel.

Result Evaluation

Ultimately, the user can access collected performance meta-data from the benchmark-
ing process via the results store. The user interface can provide raw data downloads
and include graphical visualizations for the benchmarking results, such as histogram
charts or tables. Using the collected meta-data, a user can conduct further analysis or
incorporate the benchmark results in decisions.

5.1.5. Costs, Timeliness & Target Audience

The costs for the benchmarking primarily accrue from leasing machines from the com-
pute services. The Amazon Web Services (AWS) EC2 compute services, for example,
charge between $0.01 and $7 per hour per VM. Depending on the number of bench-
marking scripts, one or multiple hours are needed to assess the performance. In the
worst case of five repetitions, a duration of three hours per benchmarking run, and the
most expensive EC2 compute service, costs can sum up to $105 for benchmarking a
single compute service. When defining a roadmap, the number of repetitions should
be aligned with the available cost budget as costs may run out of hand, specifically, for
expensive compute services.

As the example with EC2’s most expensive compute service shows, permanently bench-
marking all available compute services with a range of benchmarking scripts and an
ensuring number of repetitions can exceed even biggest cost budgets. The approach is
primarily suitable to benchmark a few compute services regarding specific character-
istics employing well-selected benchmarking scripts. A wider use is only achievable
by pooling the cost budgets of various compute service consumers and benchmark all
services in a joint effort.

It is important to note that the approach can, furthermore, only provide representative
and timely results to a certain level. This is due to two major factors: (1) the approach
can only benchmark a sample, and (2) compute services are constantly changing. Even
with many repetitions or parallel executions, only a subset of the physical machines and

129

5. Assessments of Compute Service Performance at Run-time

VMs of a compute service are benchmarked. Therefore, the benchmarking results are
only representative for the sample of VMs observed at the time of the benchmarking.
Moreover, as cloud providers purchase new hardware to maintain and expand their data
centers, every future benchmarking result may show different results. The frequency
and dimensions of hardware upgrades are different between providers and cannot be
predicted.

Nevertheless, scheduled benchmarking runs help to identify a trend in the long-term
(months or years) influenced by a provider’s hardware purchases. In contrast, repeti-
tions can only determine the gravity of performance variations due to heterogeneous
physical machines in a provider’s data centers. Again, the heterogeneity expressed in
metrics, such as the standard deviation, is only valid for the examined sample.

All in all, the representativeness and timeliness of a compute service benchmarking
approach are limited. Nonetheless, consumers can benefit from the results of smaller
samples and determine a minimum and average performance capacity available for a
system under development. As several experiments show (c.f. section 5.5.4), variations
in benchmarking results of compute services are existent but limited in their gravity.
Hence, measured performance attributes can support predictions and are valuable in
planning tasks, such as capacity planning. Moreover, benchmarking results from sam-
ples of different compute services give consumers a basis for more precise comparisons
than using the scarce performance meta-data published by cloud providers.

130

5.2. Compute Service Performance Scoring

5.2. Compute Service Performance Scoring

Performance benchmarking results are commonly expressed as comparable numbers.
Therefore, the MADM-based scoring method offered by the framework can adapted
for performance scorings. Thereby, compute services become comparable according to
scorings based on performance meta-data.

In this section, a MADM-based scoring method is introduced that uses the AHP to map
multiple benchmarking results to a single score. First, the advantages and reasons for
a single-dimensional value are explored. Then, the (MC2)2 framework is presented
that provides a process to define a specific evaluation function that enables as scor-
ing. Finally, two scoring mechanisms for compute service performance meta-data are
presented.

5.2.1. Scoring for Performance Meta-Data

When assessing performance meta-data of compute services with various benchmarks,
the outcome is an array of performance attributes. A comparison of compute services
based on an array of performance attributes is rather cumbersome. A consumer might
set a focus on some of her preferred attributes. But then a range of assessed meta-data
is ignored in a comparison.

Furthermore, a comparison according to an array of assessed performance attributes
while pertaining distinct preferences for attributes is complex. A consumer needs to
look at pairs of compute services and compare them according to each attribute. While
doing so, he would need to remember which attributes are more important. For few
attributes and compute services, a manual comparison seems legit. However, the prob-
lem becomes intricate when a consumer tries to identify a favorite from large arrays of
attributes and numerous compute services. Then, a mathematical scheme that aggre-
gates the performance attributes into a single-dimensional value is able to decrease the
complexity of comparisons for a consumer.

5.2.2. Aggregation Scheme Requirements

The major challenge for an aggregation scheme is to map multiple performance at-
tributes to a single value while guaranteeing an identical influence from every attribute.
Otherwise, the single-dimensional value reflects one attribute more than others. As per-
formance attributes are measured on distinguished scales, attributes with large numbers
would influence the aggregated value stronger than attributes with small values. Be-
sides, some attributes are more favorable the higher the number, such as operations per

131

5. Assessments of Compute Service Performance at Run-time

second, and others are less favorable the higher the number, such as seconds. There-
fore, the direction of an attribute’s scale, which is either positive or negative, must be
considered.

The effects of mixed scales become clear with an example. When mapping two perfor-
mance attributes declared as Whetstone (HIB) and Dhrystone (LIB) benchmark results
(cf. section 2.2.1) to a single-dimensional value by summing up both benchmark val-
ues to a total, the scales must be equal to gain comparable results. Let two compute
services be considered in this example. In a comparison, the sum of the performance
attribute values would be 2,000,120 (Whetstone: 2 Mio. MWIPS, Dhrystone: 120 sec.)
and 1,900,030 (Whetstone: 1.9 Mio. MWIPS, Dhrystone: 30 sec.).

Consequently, the first compute service shows a higher total values. Now, let the Dhry-
stone benchmark be slightly more important to a consumer. Then, the better single-
dimensional value contradicts the expected outcome. Actually, the second compute
service shows a better result for the Dhrystone which is not reflected in the overall
score. The contrarily directed scales with very different values lead to irritating state-
ments with a simple sum function.

Therefore, an aggregation scheme is needed that can map an array of mixed perfor-
mance metrics to a single-dimensional metric, while normalizing unequal and contrary
scales. In addition, the preferences of a consumer regarding the assessed performance
attributes must be considered as well.

5.2.3. Weighted Compute Service Performance Scores

The (MC2)2 provides the basis to generate an evaluation function for scoring mech-
anisms. To facilitate comparisons of compute service configurations regarding perfor-
mance meta-data, the (MC2)2 incorporated in the assessment framework can be used
to generate an evaluation function. For that purpose, it is necessary to follow the steps
and gather the input parameters to configure the evaluation function. As suggested in
the (MC2)2, the AHP is used as a MADM method that supports normalization of dis-
tinct metrics into a single score. The advantage of the AHP is to support hierarchies
which gives more flexibility in the definition of criteria relations and, thereby, a more
precise weighting.

The scenario to be defined in the (MC2)2 is the comparison of compute service con-
figurations according to assessed performance meta-data. Clearly, the compute service
configurations are the alternatives to compare. Moreover, performance meta-data must
be defined as attributes and serve as the basis for criteria. The AHP requires to struc-
ture criteria in a hierarchy. Thereby, the configuration of the evaluation function is
completed. Consequently, for generating an evaluation function with (MC2)2 criteria
must be defined in a hierarchy as the solely left task.

132

5.2. Compute Service Performance Scoring

To apply the evaluation function, compute service configurations together with associ-
ated performance attributes, weights, and requirements must be provided as parameters
(c.f. 4.1). The performance meta-data, particularly the benchmarking results, are as-
signed to the function as attributes. In addition, weights need to be defined which are
determined in pair-wise comparisons of criteria. Besides, requirements derived from
the criteria can optionally be defined and are an instrument left to a decision-maker in
compute service comparisons.

The following subsections describe the configuration of a (MC2)2 evaluation function
for the purpose of compute service scoring. In this regard, the use of performance
attributes as criteria, the structure of the criteria hierarchy and the determination of
weights are explored. Moreover, two distinct scoring mechanisms, local and global
scoring, using different forms of evaluation functions are presented.

Attributes, Criteria Hierarchy and Weights

The benchmarking results of a compute service serve as attributes and the regarded
compute services are mapped to alternatives. While defining alternatives and a scenario
in the (MC2)2 is trivial, it is demanding to specify and structure the set of criteria. The
performance attributes of compute services that are linked to benchmarking results (c.f.
5.1) can be transformed into criteria for a comparison of compute services. In the
transformation of a benchmark result to a criterion, both, the benchmark result value
and the observed variance factor, can be included as criteria. The criteria derived from
the benchmarking results should maintain the original metrics which are commonly
describing a ratio scale.

Apart from the definition of criteria, finding an adequate criteria hierarchy depends
on the set of considered performance meta-data respectively benchmarks. This work
proposes two schemes to structure criteria in hierarchies: (1) a simple single-level hier-
archy, and (2) a hierarchy that groups benchmarks by resource type.

The structure of a criteria hierarchy should be aligned to the number of criteria. With
many criteria it is reasonable to introduce groups and assign weights to the groups.
For fewer criteria, a simple single-level hierarchy is sufficient and facilitates maximum
influence on the importance of criteria through immediate pair-wise comparisons for
weighting.

Local & Global Scoring

The resulting evaluation function for scoring is used with AHP and, thus, can be em-
ployed in two distinct modes: (1) local scoring, (2) global scoring. While a local scoring

133

5. Assessments of Compute Service Performance at Run-time

Criteria

Goal

Benchmark 1 Benchmark i

HIB

Benchmark j Benchmark n

LIB

... ...

(a) Simple Criteria Hierarchy of Performance Criteria

Level 1

Criteria

Goal HIB LIB

CPU MEM IO CPU MEM IO

...

= Benchmark

(b) Criteria Hierarchy with Resource Type Groups

mode gives means to compare multiple compute services on a [0,1] scale, a global scor-
ing mode chooses a reference compute service. Thereby, a global scoring mode sup-
ports portable results as any compute service is measured against the reference score.
In contrast, the local score is very good to show how much a certain compute service
dominates other compute services in regards of their scores.

For the global mode to be used for portable and globally comparable scores, the criteria
hierarchy of performance benchmarks and assigned weights need to be fixed. In other
words, a very specific evaluation function needs to be defined that comprises a fixed
set of benchmarks in a hierarchy and fixed weights. The capability to conduct portable
global comparisons and hence traded with a lack of customizability.

For comparisons of compute services according to performance, both modes are em-
ployable depending on the situation. The global scoring mode requires a benchmarking
set and scoring standard and thereby enables consumers to exchange and compare re-
sults. In contrast, the local scoring mode helps a consumer to retain easily interpretable
scores of a set of compute services that he measured single-handedly with a custom set
of benchmarks.

134

5.3. Performance Benchmarking with the Cost Budgeting Stopping Rule

5.3. Performance Benchmarking with the Cost
Budgeting Stopping Rule

In the search for a highest performing compute service, the costs of benchmarking
a large set of compute services with many benchmarks can grow to overburdening
amounts. Incorporating both, the priorly introduced automated benchmarking method
and the scoring method, the presented stopping rule considers cost budgets in the bench-
marking process. By employing the automated benchmarking method, a continuous
process sequentially assesses the performance of compute services. After each assessed
compute service, the stopping rule uses the scoring mechanism to compute the chance
of finding a better performing compute service. At the same time, the costs of continu-
ing the performance meta-data assessment need to be considered.

As compute service provider publish performance meta-data to a certain extent, prior
knowledge can be used in the process. Although the published data is not sufficient for
decisions and system engineering tasks, it indicates a rough preliminary order regarding
the performance score of the compute services.

The following subsections propose a cost calculation scheme applicable with the au-
tomated benchmark method and describe the influence of prior knowledge about per-
formance meta-data. Furthermore, the use of the scoring method for observations in
the context of the stopping rule is explained. Also, the influence of the distribution of
performance scores among the compute services is discussed. Finally, the use of the
framework’s stopping rule for performance assessments of multiple compute services
is explained.

5.3.1. Cost Calculation

Costs caused by the benchmarking of a compute service mainly relate to efforts in plan-
ning, executing and evaluating benchmarks. The following cost factors have a consid-
erable effect as operational expenditures in the course of performance assessments:

• Staff

• Resource usage for Automated Benchmarking Coordinator and Databases

• Compute service usage

• Network traffic

Additionally, capital expenditures may occur as requirement to conduct a performance
assessment, such as licenses for benchmarking and evaluation software.

135

5. Assessments of Compute Service Performance at Run-time

The aggregated sum of all expected costs adds up to the total costs for benchmarking a
single compute service ci > 0 (referred to as per compute service benchmarking costs).
Typically, each service raises different costs ci due to different compute service pricing
models. In a simpler but less precise variant ci can be identical.

5.3.2. Performance Scores as Observation of Compute
Services

An employed stopping rule needs to come to a Boolean decision regarding the contin-
uation of the benchmarking process. A stopping decision is commonly made based on
all priorly and the currently observed value. For a benchmarking process, it is necessary
to define which values are observable and how these can be employed as an indicator
for a stopping rule.

In the beginning of a benchmarking process, every compute service is represented by
a random variable Si before it has been observed. During an observation, the compute
service is benchmarked regarding multiple benchmarks to assess a range of perfor-
mance attribute values.

With multiple performance attributes, such as multiple benchmarking results, diverse
compute services might indicate a best performance in the multitude of attributes.
Therefore, the local scoring evaluation function f(·) that maps multi-dimensional per-
formance attribute values to a single score value is used as the representation (or ob-
served value) of a compute service (c.f. section 5.2).

According to the scoring method, a score is determined in either of two possible modes:
(1) idealized, (2) normalized. The idealized variant requires to define a certain compute
service as the reference with score = 1. The normalized variant implicates that all
measured compute services are scored relative to one another. Thereby, the scores
can change with every additional assessment result in the process. Therefore, for the
stopping rule the idealized is favorable with the first compute service representing the
reference score. Thereby, also the recalculation of scores in every step is avoided.

Given the scores, a rank of the highest performing compute service can be determined.
The score enables a stopping rule to identify the absolute highest performing compute
service within the set of priorly observed compute services at any stage of a assessment
process. Given the scores Si of all benchmarking results, the currently highest observed
utility is un.

5.3.3. Compute Service Order and Prior Information

As the stopping rule provided by the framework benefits from a custom order, scores
and ranking must be anticipated given the available information from public sources.

136

5.3. Performance Benchmarking with the Cost Budgeting Stopping Rule

Although the sources with performance meta-data about compute services are yet scarce,
several sources, such as blogs, benchmark databases, and provider websites, disclose
hardware figures which can be used to derive a ranking of the compute services set (c.f.
section 2.2.1). Higher hardware figures in terms of numbers, such as CPU cores or
amount of memory, indicate a ranking.

Which hardware figures a considered for an anticipated ranking depends on the evalua-
tion function and the criteria incorporated in the scoring. Only hardware figures related
to incorporated criteria are of interest. Besides, the weights in the evaluation function
determine which hardware figures are more important. The set of compute services
must then be ordered by the rough hardware figures, in descending order of expected
scores.

5.3.4. Configuration of the Stopping Rule

The stopping rule provided by the framework can be employed to urge an early stop in
sequential benchmarking process without any major modifications. The set of compute
services and the costs for benchmarking need be defined as stopping rule parameters.

Besides, the parameters for a cost budget of cmax, a sliding window of ω, and score
increment control constant ϵ remain available. Thereby, the stopping rule benchmarks
a set of compute services subsequently while monitoring score increments within the
sliding window and enforcing the cost budget.

As mentioned before, the utility gained from each additional benchmarking step is de-
fined through the scoring function f(·), which is based on the benchmarking results.
The goal is to maximize the utility un under consideration of the sum of all costs ci and
the cost budget.

The following equation shows the expression that the stopping rule seeks to maxi-
mize:

maxun −
n
i

ci

137

5. Assessments of Compute Service Performance at Run-time

5.4. Software Prototype for Automated Compute
Service Performance Benchmarking with
Stopping Rule

The Balloon Race implements the concept of automated, scheduled compute service
performance meta-data assessment with a stopping rule. The Balloon Race incorporates
the AoetaroaLib to implement a stopping rule that is enabled when a cost budget was
defined. The Ballon Race exposes a reusable library called LibIntelliCloudBench and
a web application wrapping the library together with a user interface.

5.4.1. LibIntelliCloudBench Library

The LibIntelliCloudBench library contains the logic to automatically start a VM in-
stance, to inject and execute benchmarking software, and to download the results. For
instantiating and connecting to VMs, the library uses jClouds, a multi-cloud interface
library [9]. The jClouds library maintains a support for various cloud providers and
offers a unified interface to manage and connect to VMs on different compute services.
Furthermore, jClouds provides a database of available compute services, geographical
regions and compute service (hardware) configurations which is reused in LibIntelli-
CloudBench.

The Phoronix benchmarking software is employed to bundle and execute sets of micro-
benchmarks on a VM. The Phoronix benchmarking software (version 5.2.0) is bun-
dled with the LibIntelliCloudBench library and the benchmarking scripts are hosted in
a repository managed by the publishers of the Phoronix software. Alternatively, the
benchmarking scripts and custom scripts can be placed in an online storage (e.g., an
AWS S3 bucket). Any VM downloads only the necessary benchmarking scripts from
the repository.

The set of available micro-benchmarks is slimmed down to scripts that are known to
succeed on remote server machines. Particularly, micro-benchmarks for measuring
graphics and battery performance are excluded from the set. A detailed list is given in
section B.2 in the appendix.

Moreover, the stopping rule approach is implemented and included in the LibIntelli-
CloudBench library supporting cost budgets and sliding window sizes ∈ [0, 7]. Which
stopping rule to use can be specified via the API of the library. By default, a non-
stopping rule is selected which traverses all compute services specified in the set for
benchmarking. An overview of the library’s architecture is depicted in figure 5.8.

The library exposes a programming interface in Java that allows to trigger benchmark-
ing executions. The use of the CloudBenchService demands a minimal configuration

138

5.4. Software Prototype for Automated Compute Service Performance Benchmarking with Stopping Rule

LibIntelliCloudBench

Compute Service

Virtual Machine

jClouds Library

S3 Bucket with Phoronix

Benchmarking Scripts

Virtual Machine

download

inject script

fetch results

Sopping Rule Executor
Component

AoteroaLib

MySQL Database for

Results

Figure 5.8.: Architecture of LibIntelliCloudBench

via the CloudBenchServiceConfig class before an execution. A CloudBenchService-
Config comprises a StoppingRuleConfig, where the sliding window size and cost budget
can be defined, and a set of ComputeServices from the jClouds library and Benchmarks.
After a successful execution, the CloudBenchService allows to recall a CloudBenchSer-
viceResult. A result is defined by the ComputeService, the Benchmark, and the Result-
Data. The ResultData is extracted from the XML files produced by the Phoronix micro-
benchmarks and converted into a Java data structure. For every Benchmark and Com-
puteService combination, multiple corresponding ResultData items can exist. Each
item represents the extracted result value and metric measured in a benchmarking run.
A simplified representation of a UML class diagram of the programming interface is
illustrated in figure 5.9.

CloudBenchService
Config

CostBudget
SlidingWindow

StoppingRuleConfig

Identifier
Provider
GeoLocation
HardwareConfigShort

ComputeService

Identifier

Benchmark

1

1

*

1

*

1

CloudBenchService

CloudBenchService
Result

1

1

1

1

1

1

*

1

Metric
Value

ResultData

*

1

Figure 5.9.: Data Model LibIntelliCloudBench

The class diagram shows the two major attributes: (1) the configuration, and (2) the
set of results. To initiate a benchmarking process, the configuration options need to be
given and then the startBenchmarking() method must be called. Eventually, the process
finishes and signals it with an optional callback that can be set in the configuration. By
now, the results data structure has been filled from the XML files that were generated

139

5. Assessments of Compute Service Performance at Run-time

by the Phoronix micro-benchmarks on the VMs.

The source code of the library is available as part of a Github repository under https:
//github.com/mugglmenzel/intellicloudbench.

5.4.2. Web Application

The Balloon Race web application has been developed with the intention to provide
an interface to automated benchmarking for non-programmers. Therefore, the Balloon
Race is realized as a web application with a graphical user interface using the Vaadin
framework [209]. The Vaadin framework provides components for a graphical user
interface similar to and compatible with GWT [202] and smartGWT [203].

Moreover, the LibIntelliCloudBench is integrated into the Balloon Race web applica-
tion to execute benchmarking processes. The library takes compute service and bench-
marking script sets as configuration parameters, and accepts an optional stopping rule
definition. In a stopping rule definition, the sliding window size and a cost budget can
be defined.

The Balloon Race has been implemented for the Google AppEngine [201] and for Tom-
cat application servers [210] with a MySQL database [211]. Figure 5.10 depicts the
architecture for the Tomcat version of Balloon Race.

Balloon Race

Backend

LibIntelliCloudBench

Frontend

Compute Service 1

Virtual Machine

MySQL Database for

User Roadmaps &

Results

jClouds Library

S3 Bucket with Phoronix

Benchmarking Scripts

Virtual Machine

Compute Service N

Virtual Machine
Virtual Machine

...

download

inject script

fetch results

Cron4J Scheduler

Vaadin GUI Stopping Rule Executor
Component

User
AoteroaLib

Figure 5.10.: Architecture of the Ballon Race Web Application

In the graphical user interface, a user is guided through three steps, from compute
service selection via benchmark selection to stopping rule configuration. The listed
compute service configurations are drawn from the jClouds library and differentiated by
provider, geographical location, and hardware configuration. A user can select multiple
compute services and provide the credentials for the diverse providers, in the first step.

140

https://github.com/mugglmenzel/intellicloudbench
https://github.com/mugglmenzel/intellicloudbench

5.4. Software Prototype for Automated Compute Service Performance Benchmarking with Stopping Rule

In the second step, the list of micro-benchmarks matches the ones available from the
employed Phoronix software. The last configuration step allows to define a cost budget
and define the sliding window for the stopping rule. By setting no cost budget and
sliding window, the stopping rule can be omitted. Figure 5.11 depicts a screenshot of
the web application.

Figure 5.11.: Screenshot of the Ballon Race Web Application

In regards of the roadmap definition language, the prototype spares a graphical inter-
face to define roadmaps, but provides a programming interface. Definitions are stored
in the database and translated into scheduled jobs with the cron4j library [212]. A defi-
nition takes a set of compute services and benchmarking scripts, and a cron scheduling
string with repetitions parameter as defined by the roadmap definition language. The
definition is stored in the database with the sets and the cron scheduling string includ-
ing the repetitions parameter. When a scheduled job is triggered by cron4j, it reads the
compute services and benchmarking scripts sets from the database and uses them as
parameters for a new benchmarking execution. On every boot of the web application
all roadmap entries in the database are scheduled as cron4j jobs. New roadmap entries
are scheduled upon creation.

The source code of the Balloon Race is available as a Github repository under https:
//github.com/mugglmenzel/BalloonRace.

141

https://github.com/mugglmenzel/BalloonRace
https://github.com/mugglmenzel/BalloonRace

5. Assessments of Compute Service Performance at Run-time

5.5. Evaluation of the Automated Performance
Benchmarking Method

To evaluate the proposed automated performance benchmarking method, this section
explores the validity and quality of the approach, particularly in the light of research
question RQ1a:

RQ1a. How can compute services be assessed at run-time in an automated
manner?

More specifically, research questionRQ3 is explored in this section to answerRQ1a in
regards of performance assessments. Thereby, not only the applicability of the frame-
work is proofed but also the feasibility of run-time assessments of compute services in
general.

RQ3. How can performance be assessed at run-time from multiple compute
services in an automated manner?

The effective implementation of a software prototype (c.f. section 5.4) serves as proof
of the feasibility of the concept. The software prototype and the concept of the method
have already been reviewed by and discussed by peers in the research community [80].
The results published in the research community showed the validity of the approach
according to a performance benchmarking of several compute service over time. The
following sections structure the results from the validation according to experiments
with the software prototype. Moreover, this work adds a comparison with existing ap-
proaches and examines the promptitude of the approach using the software prototype.

First, the procedure to validate the approach in five experiments and the observed vali-
dation results are presented. Then, a comparison of the proposed approach to existing
approaches is established. Next, the promptitude of the prototype is explored and the
results from the observed overhead measurements are presented. In the final section,
the findings from a range of measurements are presented that indicate variations in
performance outcomes of compute services.

5.5.1. Validation of the Automated Performance
Benchmarking Approach

The proposed automated performance benchmarking approach shall be validated by
example using the software prototype. Therefore, the approach is tested in five use case
experiments that stress the claims and capabilities of the approach.

First, the experiments and the experiment setup are described and a hypothesis is for-
mulated. Finally, results are presented and a conclusion is drawn.

142

5.5. Evaluation of the Automated Performance Benchmarking Method

Experiments & Hypothesis

The set of experiments increase in complexity with each step. Specifically, the sub-
sequent experiments vary in respect of the number of micro-benchmarks and compute
services involved. Thereby, the prototype is stressed in regards of its basic support of
various micro-benchmarks and of multiple compute services.

Repetitions are a considerable aspect of the proposed approach that enables to measure
the performance of a compute services in the long term together with variations. A
further experiment tests the capabilities to repeat micro-benchmarks. Additionally, the
scheduling feature of the approach is covered in a specific use case with a performance
benchmarking task scheduled in the future.

EXP-A. Basic Experiment The basic experiment test the applicability of the proto-
type for running a single micro-benchmark on a single compute service.

EXP-B. Multiple Benchmarks Experiment An extended experiment involves mul-
tiple, distinct micro-benchmarking results to be measured from a single compute
service.

EXP-C. Multiple Compute Services Experiment An experiment in which mul-
tiple micro-benchmarking scripts must be executed against multiple, distinct com-
pute services.

EXP-D. Repetitions Experiment The experiment tests the capability to repeat micro-
benchmarks.

EXP-E. Scheduling Experiment In order to test the ability to schedule performance
benchmarking tasks, an experiment comprising a measurement of one micro-
benchmark on a single compute service three hours later is setup.

The overarching validation test constitutes from all four experiments and tests the fol-
lowing two hypothesis in the light of the research question RQ1a.

H0 The approach respectively the software prototype does not provide support for au-
tomated performance benchmarking of compute services or only limited support
and, thus, fails in one or more experiments.

H1 The approach respectively the software prototype provides support for automated
performance benchmarking of compute services and, thus, succeeds in all exper-
iments.

The null hypothesis H0 holds the default position that the proposed approach cannot
proof the claim of enabling automated performance benchmarking of compute services.
In contrast, the hypothesis H1 is proofed if the prototype succeeds in the experiments
altogether. Given the experiment results, a first evaluation in terms of RQ3 and RQ1a
can be stated using H0 and H1.

143

5. Assessments of Compute Service Performance at Run-time

To research the hypothesis H1, the software prototype has been tested in experiments.
Therefore, in each experiment a small program was implemented that uses the soft-
ware prototype. To realize the experiments, the small programs employ the software
prototype with distinct configuration parameters, namely the set of selected micro-
benchmarking scripts, the compute services set, and the repetition and scheduling pa-
rameters.

For experiment EXP-A, the compute service AWS EC2 t1.micro in region us-east-1 was
selected and the micro-benchmarking script Sudokut. In experiment EXP-B, the scripts
Crafty and Sudokut were selected for the AWS compute service t1.micro in region
us-east-1. Experiment EXP-C extends EXP-B by adding the Rackspace Standard1 in
London to the set of selected compute services.

The experiments EXP-D and EXP-E address the repetition and scheduling parameters
of a roadmap. All experiments EXP-A to EXP-C used a default repetition count of
three. In experiment EXP-D, the experiment EXP-A was conducted with a repetition
count of five. For the scheduling task in experiment EXP-E, the roadmap definition
language was used to execute experiment EXP-A every full hour, which succeeded
three times in a row.

Results & Conclusion

From the experiments, several observations could be made and conclusions can be
drawn. One aspect revealed by the experiments is the level of automation provided
by the prototype. The experiments EXP-A to EXP-E were conducted by configuring
the software prototype using programs in experiment setups. From there on the exe-
cution continued in an automated manner. Implicitly, the observed level of automation
can be described as batch processing according to Endsley [193].

Furthermore, the experiments aim at confirming hypothesisH1. The experiments EXP-
A to EXP-E conducted with the software prototype show that the prototype and, hence,
the approach fulfills its claims in respect of hypothesis H1. All experiments were com-
pleted with positive results, implicating an automation and support for repetitions and
scheduling are present. To guarantee reliable results, the experiments with the software
prototype were each repeated multiple times, at least three times each.

The confirmation of hypothesis H1 implies an answer to research question RQ3 can be
given. The software prototype shows a viable solution to assess the performance of a
compute service at run-time in an automated manner. Thereby, indirectly RQ1a is ad-
dressed which questions the feasibility of an automation of assessments. The existence
of a solution to automated assessments of compute services’ performance proofs also
the existence of automated assessments in general.

144

5.5. Evaluation of the Automated Performance Benchmarking Method

5.5.2. Comparison to the State of the Art

For a further evaluation of the approach, existing approaches are examined regarding
the experiments A-D. Together with the results from the experiments with the proposed
approach a funded comparison can be made.

The approaches selected for the comparison are the state of the art available for auto-
matically benchmarking the performance of compute services (c.f. chapter 3). Namely,
the BEEN architecture from Kalibera et al. and the online service Phoromatic [178] are
considerable alternatives to compare against. Other approaches that succeeded in mea-
suring compute service performance do not provide an automation, focus on a certain
compute service (or a small set), and miss a publicly available implementation.

Unfortunately, the BEEN architecture does not offer an implementation for compute
services, nor does it describe how to apply the method for the measurement of compute
service performance. Therefore, the Phoromatic implementation is the only subject
available for a comparison between the proposed approach and the state of the art.

For a comparison, the set of experiments EXP-A to EXP-E serve as the basis. By testing
the state of the art according to the experiment set, a comparison with the proposed ap-
proach can be carried out. As described in the validation in section 5.5.1, the proposed
approach succeeded in completing all experiments EXP-A to EXP-E successfully in
multiple observations.

In the test series with the Phoromatic approach the experiments EXP-A to EXP-C com-
pleted successfully with limitations and experiments EXP-D and EXP-E did not suc-
ceed. The results are summarized in comparison to the proposed approach in table
5.1.

Approach Exp-A Exp-B Exp-C Exp-D Exp-E

Proposed Approach ✓ ✓ ✓ ✓ ✓
Phoromatic ✓1 ✓ ✓ × ✓2

Table 5.1.: Decision Models used for Experiments

Phoromatic does allow to automatically install and execute performance micro-benchmarking
scripts on remote systems of diverse compute service providers. However, the Phoronix
test suite software must be installed manually on the target system and registered with
www.phoromatic.com. Besides, the VMs at the compute services must be instan-
tiated manually, too.

1Requires a manual VM instantiation and preparations.
2Restricted to weekdays-time schedules.

145

www.phoromatic.com

5. Assessments of Compute Service Performance at Run-time

A support for scheduled execution is available, but restricted to weekday and time se-
lection. Thereby, a daily execution of performance measurements is achieved. More
complex scheduling definitions, such as monthly or hourly schedules, are not avail-
able.

Also, parameters for defining repetitions and scheduled runs of certain micro-benchmarking
script executions is absent. Repetitions can partially be achieved by creating many
scheduled executions with identical or similar starting times.

5.5.3. Results of the Promptitude Measurements

To gain further insights, in the experiments EXP-A to EXP-C the duration to complete
the steps involved in a performance measurement were recorded. Additionally, for
EXP-E the observable delay and punctuality of the cron4j-based implementation were
measured. With insights in the promptitude of the software prototype, an evaluation of
the practical applicability of the approach is pursued.

By injecting a time logging mechanism, the practical promptitude of gaining perfor-
mance benchmarking results from the software prototype could be measured. There-
fore, the durations to complete the sequential steps involved in a benchmarking run are
captured by logging a timestamp before and after each of the steps.

The promptitude constitutes from the duration of the four steps instantiate VMs, de-
ploy software, download benchmarking scripts, run benchmarking scripts, and upload
results. The first three steps can be summarized as preparation overhead, while the
latter two steps are involved with the bulk of measuring the performance of a compute
service.

Figure 5.12 depicts the results from the promptitude measurements for all experiments
EXP-A to EXP-C as stacked bars. For experiment EXP-C which benchmarks multiple
compute services, the total duration equals the maximum duration of benchmarking the
whole compute services set as measurements are conducted in parallel.

The results show that the preparation overhead affects the total time to conduct the
benchmarking with less than 220 seconds in all experiments. Particularly, the overhead
accounted for 45.56% of the total time in experiment EXP-A, 17.92% in EXP-B, and
21.59% in EXP-C. The overhead constitutes from instantiating VMs and deploying
necessary software and libraries. The duration to complete the preparation overhead
was exhibited as rather stable over all experiment repetitions. However, in experiment
EXP-C the duration and, thus, the overhead increased due to the VM instantiation delay
of the compute service Rackspace Standard1.

As the experiments reveal, the duration of the subsequent steps for downloading and
executing benchmarking scripts, and uploading measurement results is immediately
linked to the number of selected scripts involved. During the experiments, a variation

146

5.5. Evaluation of the Automated Performance Benchmarking Method

0	

200,000	

400,000	

600,000	

800,000	

1,000,000	

1,200,000	

EXP-­‐A	
 EXP-­‐B	
 EXP-­‐C	

M
ill
is
ec
on

ds
	
 Upload	
 Results	

Run	
 Benchm.	
 Scripts	

Download	
 Benchm.	
 Scripts	

Deploy	
 SoFware	

InstanHate	
 VMs	

Figure 5.12.: Measured Durations in Experiments EXP-A to EXP-C

in the number of selected micro-benchmarks resulted in diverse total times. Similarly,
experiments with multiple compute services confirm that the duration of the bench-
marking step depends heavily on the performance of the compute service under test
(c.f. section 5.5.4).

As experiment EXP-C shows, the deployment of the benchmarking software and setup
of the host VM depends mainly on the performance of the VM. The setup on the
Rackspace Standard1 compute service took half the time of the worse performing AWS
t1.micro compute service.

In contrast, the network bandwidth between the system orchestrating the performance
measurement process and the host VM at the compute service is neglectable at to-
day’s standards already. The necessary basic software is about 800 kilobyte large.
The benchmarking scripts, however, can be many megabytes large (e.g., Crafty is 45
megabytes) and network bandwidth of the compute service can become a source of
delay during the download benachmarking scripts step.

For experiment EXP-E, an average delay of 9 milliseconds and a maximum delay of
24 milliseconds could be observed over 100 scheduled test executions. The delay is
induced by the scheduling business logic, which is based on the cron4j library [212],
and occurs before the measurement process itself is triggered.

147

5. Assessments of Compute Service Performance at Run-time

5.5.4. Statistics for AWS EC2 Compute Services

In addition to the validity and promptitude analysis, the software prototype has been
used to gain performance meta-data for AWS EC2 compute services over several months.
Particularly, statistics about the compute services m1.small, m1.medium, and m1.large
were assessed with repeated performance measurements. For the measurements, mul-
tiple micro-benchmarking scripts from the Phoronix test suite were used.

With the software prototype’s support for repetitions, the measurements could be con-
ducted over several months to explore potential performance variations. The results for
the the m1.small, m1.medium, and m1.large compute services concerning the lower-
is-better processor micro-benchmarks "Crafty", "dcraw", and "Sudokut" are depicted
in figure 5.13. Figure 5.14 depicts the results for the higher-is-better processor micro-
benchmarks "John The Ripper", "OpenSSL", "Opstone Singular Value Decomposition
(SVD)", and "Opstone Sparse-Vector Scalar Product (SVSP)". The figures also include
error indicators that reflect the standard deviation of the results gained from multiple
runs over month.

0.00	

100.00	

200.00	

300.00	

400.00	

500.00	

600.00	

Cra-y	
 dcraw	
 Sudokut	

M
ill
is
ec
on

ds
	
 (L
iB
)	

AWS	
 Small	

AWS	
 Medium	

AWS	
 Large	

Figure 5.13.: Assessed Performance Meta-Data for EC2 Compute Services (LiB)

The results confirm a difference in available computation capacity for the compute ser-
vices m1.small, m1.medium, and m1.large, in this particular order. Between m1.small
and m1.medium, the difference can be as much as double the performance or half the
computation time for tasks, respectively. Besides, as indicated by the standard devia-
tion, the gravity of performance variations differs between the compute services. The
m1.small compute service configuration proofs to show the most stable performance
outcomes over the multiple iterations. Depending on the micro-benchmark, the varia-
tions of the m1.small and m1.large compute services expressed as standard deviation

148

5.5. Evaluation of the Automated Performance Benchmarking Method

0	

100	

200	

300	

400	

500	

600	

700	

800	

John	
 The	
 Ripper	
 OpenSSL	
 Opstone	

Singular	
 Value	

DecomposiBon	

Opstone	
 Sparse-­‐
Vector	
 Scalar	

Product	

Be
nc
hm

ar
k	

M
et
ric

	
 (H
iB
)	

AWS	
 Small	

AWS	
 Medium	

AWS	
 Large	

Figure 5.14.: Assessed Performance Meta-Data for EC2 Compute Services (HiB)

can be up to 16% (m1.small) respectively 14% (m1.large).

A further analysis of the available processor hardware disclosed by the employed Ubuntu
operating system provided additional information to identify a possible reason for per-
formance variations. For that the software prototype has been extended with a custom
script that executes an additional command on the host system to retrieve and upload
the CPU information. Table 5.2 lists the odds of observing a certain processor type of
the EC2 compute services m1.small, m1.medium, and m1.large. The results are based
on run-time inspections of 462 m1.small, 72 m1.medium, and 186 m1.large VM instan-
tiations. Besides, the processor scores published by "Passmark" [213, 214] originating
from processor hardware tests are included in the table.

Processor Type Passmark m1.small m1.medium m1.large

AMD Opteron 2218 HE 1471 32.9% - -
AMD Opteron 2374 HE 4642 - - 0.54%
Intel Xeon E5345 2882 - 12.5% -
Intel Xeon E5410 3448 - 87.5% -
Intel Xeon E5430 4008 67.1% - 99.46%

Table 5.2.: Frequency of Processor Types per EC2 Compute Service

As the numbers in table 5.2 indicate, the processor types assigned by the compute
services when instantiating a VM are inconstant. While the m1.large provides a "Intel
Xeon E5430" processor type in more than 99% of the cases, the m1.small may return an
"AMD Opteron 2218 HE" instead in almost every third VM instantiation. In addition,

149

5. Assessments of Compute Service Performance at Run-time

the m1.medium compute service alternates between the "Intel Xeon E5345" and "Intel
Xeon E5410" processor types.

All in all, the "Passmark" scores and the benchmarking results assert that different
processor types mean different performance outcomes. This is particularly interesting
as EC2’s m1.small compute service assigns very different processor types and charge
the same price. An indicator for alternating processor types or variable performance
cannot be found on AWS’s website or in any white papers.

The results from AWS EC2 confirm the importance of a novel approach for single-
handed assessments of compute service performance. As with AWS, the performance
figures published by compute service providers may not be trusted. The actual perfor-
mance outcomes can vary over time or simply differ tremendously from the officially
announced numbers.

150

5.6. Evaluation of the Performance Benchmarking Stopping Rule

5.6. Evaluation of the Performance Benchmarking
Stopping Rule

A primary feature of the stopping rule presented in this work is to consider a cost budget
in a sequential performance measurement process with multiple compute services. Be-
sides, the rule aims at saving time and cost when an approximate order of the compute
service set by performance outcome is given.

The stopping rule has been developed to address research question RQ2:

RQ2. How can costs for run-time assessments of multiple compute services
be budgeted?

The concept of the stopping rule has been presented to and discussed in the research
community [215]. The implementation of the stopping rule in a software prototype (c.f.
section 5.4) asserts the feasibility and conceptual validity of the approach. Furthermore,
the suitability of the proposed stopping rule in compute service benchmarking scenarios
is tested in a validation by example which focuses primarily on the cost budget support.
Besides, a comparison with standard stopping rules allows for a detailed evaluation of
the stopping rule’s limitations and shortcomings.

The first subsection presents the validation procedure that inspects the stopping rule’s
cost budget feature. Then, a comparison with standard stopping rules is conducted.
Finally, the results and findings from the validation and comparison are presented.

5.6.1. Validation of the Performance Benchmarking Stopping
Rule

A common requirement for stopping rules is to always lead to a stop (eventual stop-
ping). In the case of compute service benchmarking, the stopping rule is always applied
to a finite number of services. The heuristic of the proposed stopping rule only contin-
ues if the set of compute services is not completely traversed. After a full traversal of the
finite compute service sample set, the stopping rule will stop the performance bench-
marking procedure and the requirement of eventual stopping is thereby satisfied.

Aside from eventual stopping, the stopping rule claims support for cost budgets. There-
fore, the ability to stop within a cost budget is tested in an experiment. For the exper-
iment, a sufficiently large compute service set must be defined that exceeds the cost
budget according to a rough estimate. The stopping rule is employed in a sequential
benchmarking of the compute services with respect to a single micro-benchmark.

The outcome of the experiment is tested against the following hypotheses in the light
of research question RQ2:

151

5. Assessments of Compute Service Performance at Run-time

H0 The stopping rule respectively the software prototype exceeds a given cost budget.

H1 The stopping rule respectively the software prototype stops before a given cost
budget is violated.

While the null hypothesisH0 assumes the stopping rule to fail in applying a cost budget,
the hypothesis H1 is proofed when a cost budget is enforced successfully. To test the
hypothesis, an experiment with the software implementation of the stopping rule is
conducted.

For the experiment, the software prototype implementing the stopping rule has been al-
tered to not stop based on calculated utility values from the performance measurements.
The performance results are collected to maintain the task and context, but ignored by
the rule. Thereby, the prototype assured that the process of performance measurements
proceeds until the stopping rule intervenes only due to the given cost budget. Besides,
to reduce the time for the execution of the experiments, the stopping rule didn’t wait for
the compute service instances to finish the performance measurements. Instances were
started subsequently until the stopping rule terminates due to the cost budget.

0%	

20%	

40%	

60%	

80%	

100%	

120%	

0.10	
 €	
 0.25	
 €	
 0.50	
 €	

Available	
 Cost	
 Budget	

Micro	

Micro+Small	

Figure 5.15.: Observed Cost Budget Consumption (in Percent)

Two different compute service sets based on the instance types offered from Amazon
Web Services have been defined for the experiments. The first set, referred to as "Mi-
cro", comprises only micro instances (instance type t1.micro) with a price of $0.02 per
hour. The second set, referred to as "Micro+Small", includes an iterating mix of micro
and small instances (instance type m1.small) with $0.02 and $0.06 per hour. A total of
100 instances were included in the compute service sets which leads to maximal costs
of $2 respectively $4 for the mixed compute service set.

152

5.6. Evaluation of the Performance Benchmarking Stopping Rule

The proposed stopping rule’s cost budget feature was tested for cost budgets of $0.1,
$0.25, and $0.5 with the aforementioned compute service sets. In all six possible com-
binations of compute services and budgets, the proposed stopping rule did not permit
a violation of the cost budget. Depending on the compute service set and the hourly
costs, the available budget was consumed to a certain degree. How much of the budget
was consumed is in direct relation to the granularity of the hourly costs. Figure 5.15
depicts the cost budget consumption for the two sets "Micro" and "Micro+Small" in
percent.

The results confirm the hypothesis H1 at least for the 6 explored experiments. Thereby,
the results give a foundation to state that the proposed stopping rule serves as an answer
to research question RQ2. The proposed stopping rule shows that costs can be budgeted
in the course of measuring the performance of multiple compute services.

5.6.2. Comparison to Standard Stopping Rules

The stopping rule proposed in this work incorporates a heuristic that exploits an ap-
proximate ordering of the compute services. To evaluate the quality of the heuristic,
a comparison with existing standard stopping rules is conducted. The comparison is
capable of identifying the existence of a potential advantage of the proposed stopping
rule (PSR) over the standard stopping rules cut off rule (COR), candidate count rule
(CCR), successive non-candidate rule (SNCR), and odds algorithm (OA).

For the comparison, the standard stopping rules and the proposed heuristic-based stop-
ping rule are compared in several scenarios. The scenarios differentiate in the order of
n incorporated compute services, with n = 10. Theoretically, n! = 3628800 possible
orders could be explored to compare the rules.

For an in-depth examination of the stopping rules, four particular orders are selected:
perfect order, perfect order with one switched pair, perfect order with two switched
pairs, and reversed perfect order. Particularly, the first three orders are expected to re-
semble very common cases when prior information, such as hardware figures, is avail-
able. In each of the order scenario, the observations the stopping rules are going to
make are predetermined for the sake of repeatable experiments. The exact performance
score values of the predetermined ten observations are defined by the order scenarios.

In each of the scenarios, the proposed stopping rules and the standard stopping rules are
compared according to the factors best compute service found, rank of best candidate,
and stopping index. The first factor indicates whether a stopping rule succeeded in find-
ing the highest scoring compute service in the set. In case it was not found, the second
factor reflects the global rank of the best candidate that was identified by the stopping
rule. The last factor aims at exposing how much cost the stopping rule generates due to
the number of measured compute services.

153

5. Assessments of Compute Service Performance at Run-time

The stopping rules are tested with every possible parameter value, e.g., cut off obser-
vations, candidate count, or non-candidate count. Unlike the other stopping rules, the
OA has no value-oriented parameters, but a formula must be defined for parameter pi.
Therefore, the OA is constantly used with the parameter pi = 1

i . In the comparison,
the parameters setups achieving the best results are presented for each stopping rule.
The results of an arbitrary parameter setup are presented if all parameters setups of a
stopping rule return the same results.

Scenario 1: Perfect Order

In the perfect order scenario, the situation that prior information proofs correct is cre-
ated. The observed score values are decreasing with every additional measurement
result of a compute service. This scenario is presumed to occur frequently when avail-
able hardware figures of compute services indicate the perfect order. The observed
scores in descending order are depicted in figure 5.16.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rf
or
m
an

ce
	
 S
co
re
	

Index	

Perfect	
 Order	

Figure 5.16.: Perfect Order

Based on the perfectly ordered score observations, the stopping rules halt at different
indices in the benchmarking process. The best stopping outcomes have been achieved
with m = 1 for all rules. Table 5.3 contains the results for all stopping rules in the best
parameter setup.

The results show that particularly the proposed stopping rule (PSR) outperforms all
other stopping rules clearly. In a perfect order scenario, all other stopping rules traverse
the whole compute service set. Albeit the index of the highest scoring compute service
is 1, all stopping rules (except the proposed rule) incur maximal costs in their search.

154

5.6. Evaluation of the Performance Benchmarking Stopping Rule

Stopping Rule Best Found Rank Best Stopping Index

PSR-1 ✓ 1 2
PSR-2 ✓ 1 3
COR-1 ✓ 1 10
CCR-1 ✓ 1 10
SNCR-1 ✓ 1 10
OA ✓ 1 10

Table 5.3.: Results for Scenario 1

Scenario 2: Perfect Order with One Switched Pair

A further presumably realistic scenario is a perfect order with a single modification.
To impose a slight error, one pair of compute services switch position in the sequential
order. Thereby, the case of misleading hardware or performance figures is explored for
a certain scenario of a single error. The order and compute service scores are depicted
in figure 5.17. The compute services with index 2 and 3 have changed positions.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rf
or
m
an

ce
	
 S
co
re
	

Index	

Perfect	
 Order	
 -­‐	
 1	
 Switch	

Figure 5.17.: Perfect Order with One Switched Pair

The application of the stopping rules to the almost perfectly ordered compute service set
shows unequal performances. The best performances have been achieved with m = 1
for all rules. The results from the experiments are listed in table 5.4.

The results show that the proposed stopping rule (PSR) outperforms all other stopping
rules in scenario 2. Even with a slight error in the perfect order, all other stopping rules
observe all compute services and generate more costs than the proposed rule.

155

5. Assessments of Compute Service Performance at Run-time

Stopping Rule Best Found Rank Best Stopping Index

PSR-1 ✓ 1 2
PSR-2 ✓ 1 5
COR-1 ✓ 1 10
CCR-1 ✓ 1 10
SNCR-1 ✓ 1 10
OA ✓ 1 10

Table 5.4.: Results for Scenario 2

Scenario 3: Perfect Order with Two Switched Pairs

In scenario 3, the error rate in the perfect order is further increased. Therefore, an
additional pair switch is imposed. Thereby, the case of imperfect information about the
performance score of 4 compute services due to misleading hardware or performance
figures is created. Figure 5.18 presents the order that includes two switched compute
service pairs and is derived from the perfect order. The indices 1 and 2, and 3 and 4
have switched positions in comparison to the perfect order.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rf
or
m
an

ce
	
 S
co
re
	

Index	

Perfect	
 Order	
 -­‐	
 2	
 Switches	
 	

Figure 5.18.: Perfect Order with Two Switched Pairs

The stopping rules have been applied with all possible values form (except for the OA).
The best results were achieved with m = 1. Table 5.5 lists the finding for all stopping
rules. For detailed explanations the table includes the results for m ∈ 1, 2 for most
rules.

For two errors in the perfect order, two stopping rules, namely COR-1 and CCR-1, are
able to outperform the proposed rule. Instead of 3 observations, COR-1 and CCR-1
only need 2 observations to stop and find the best scoring compute service. Neverthe-
less, when increasing m to 2, the proposed stopping rule outperforms all other rules.

156

5.6. Evaluation of the Performance Benchmarking Stopping Rule

Stopping Rule Best Found Rank Best Stopping Index

PSR-1 ✓ 1 3
PSR-2 ✓ 1 6
COR-1 ✓ 1 2
COR-2 ✓ 1 10
CCR-1 ✓ 1 2
CCR-2 ✓ 1 10
SNCR-1 ✓ 1 10
OA ✓ 1 10

Table 5.5.: Results for Scenario 3

Scenario 4: Reversed Perfect Order

To give a contrasting scenario, the compute service set of the perfect order is reversed.
Thereby, a stopping rule needs to measure all compute services to discover the absolute
highest scoring service. Although the order is obviously the reversed copy of scenario
1, the reversed order is depicted in figure 5.19 nonetheless.

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	

Pe
rf
or
m
an

ce
	
 S
co
re
	

Index	

Reversed	
 Order	

Figure 5.19.: Reversed Perfect Order

For the comparison, the same stopping rule setups with m ∈ 1, 2 are used to show their
performances in the contrasting reversed perfect order. The findings with regards to the
performance of the stopping rules are listed in table 5.6.

As the results show, only the proposed stopping rule and the rule SNCR-1 are able to
determine the absolute highest scoring compute service in the set. All other rules halt
before the 10th index and miss the highest scoring service. The cut off and candidate
count rules succeed withm ≥ 9, the odds algorithm would need a different pi definition
to succeed.

157

5. Assessments of Compute Service Performance at Run-time

Stopping Rule Best Found Rank Best Stopping Index

PSR-1 ✓ 1 10
PSR-2 ✓ 1 10
COR-1 × 9 2
COR-2 × 8 3
CCR-1 × 9 2
CCR-2 × 8 3
SNCR-1 ✓ 1 10
SNCR-2 ✓ 1 10
OA × 3 8

Table 5.6.: Results for Scenario 3

The reversed order scenario shows that the proposed rule not only succeeds in perfect
order, but also in a very imperfect order. Other rules need a scenario-specific configu-
ration of the m variable.

158

6. Assessments of Virtual Machine
Image Contents at Run-time

One essential aspect of compute services is the use of prepared VM images and virtual
appliances. Both provide an operating system and an optional software stack that is
available upon instantiation of a VM. While bare VM images typically provide only
the operating system, virtual appliances come with a full configured software stack.
The latter reduces the development time for the majority of system setups on VMs.

Meta-data that describes the contents of available VM images is however yet absent.
The assessment of available VM images and virtual appliances requires an approach
that can describe and document the contents as meta-data attached to VM images.

In this chapter, a method for assessing VM image meta-data is presented. The method
is capable of automatically instantiating VMs of VM images to gain immediate access.
Thereby, VMs can be introspected regarding installed software packages at runtime.
Using the assessed data, a database of VM image meta-data can be build that serves as
a basis for a range of applications, such as VM duplication or search.

The method presented in this chapter instantiates the abstract concepts of the compute
service assessment framework introduced in chapter 4. An overview of the concepts
reused from the framework is depicted in figure 6.1. The framework’s meta-data model
is extended to accommodate VM image meta-data. Moreover, the run-time assessment
automation model is adapted to provide a procedure for automated VM image intro-
spections.

A stopping rule similar to the rule presented in section 5 could be introduced for VM
image assessments as well. However, a dynamically determined, premature stopping
of the VM image assessment process appears unreasonable. Meta-data of VM images
is typically immutable and thus can be permanently stored and retrieved when needed.
Instead of that, the present method offers a parameter to adjust the number of VM
images to inspect and thereby gives means for a cost budgeting.

First, a data model to describe VM image meta-data is introduced. Then, the procedure
to automatically introspect VM images is presented and the involved components are
explained in detail. Finally, means to compare VM images within and across compute
service providers are provided.

159

6. Assessments of Virtual Machine Image Contents at Run-time

MADM-based Scoring Method

Cost Budget Stopping Rule

Meta-Data Model

Run-time Assessment Automation Model

Figure 6.1.: The Framework’s Models & Methods used for VM Image Assessment

6.1. Virtual Machine Image Meta-Data Model

As a basis for future applications, the following data model shall provide a structured
and queriable source of information about assessed VM image meta-data. The data
model depicted in figure 6.2 extends the framework’s basis meta-data model which
considers a superset of meta-data available through compute cloud APIs (c.f. table
2.3). The present model adds a structure to accommodate meta-data gained from using
the introspection method .

ImageId: String
Name: String
Description: Srtring
Repository: String
Architecture: String
OperatingSystem: String
GeoLocation: String
FilePath: String
Category: String
Hypervisor: String
TimestampCreated: Date
TimestampUpdated: Date

VirtualMachineImage

Name: String
Version: String
AttributeMap: Map<String,String>

Software

Name: String
Version: String
AttributeMap: Map<String,String>

ProgrammingLanguage

*1

*

1

OwnerId: String
Name: String
Role: String

Owner *1

Provider

ProviderId: String
Name: String

*

1

Figure 6.2.: The VM Image Meta-Data Model

The data model describes VM images as VirtualMachineImages which belong to a
provider (Provider) and have an owner (Owner). Aside from directly associated at-
tributes, VirtualMachineImages consist of software packages (Software) and support
programming languages ProgrammingLanguage.

The Software and ProgrammingLanguage entities allow to hold information on the soft-
ware stack and configuration retrieved via an introspection. Both, Software and Pro-

160

6.1. Virtual Machine Image Meta-Data Model

grammingLanguage, contain an AttributeMap attribute that allows to store arbitrary
additional information as key-value pairs. Also, all data is typed as String to support all
sorts of data formats as attributes like "Version" can be a number "3.0" or a non-numeric
text "3.0-milestone".

161

6. Assessments of Virtual Machine Image Contents at Run-time

6.2. Introspection of Virtual Machine Images

The following sections describe the components of the method for an automated meta-
data assessment of compute services regarding available VM images and, in particular,
virtual appliances with complex configurations. Particularly, a procedure for an auto-
mated introspection of VM image contents is introduced.

First, the procedure is presented to give an overview of the introduced components and
their interactions. Then, the components to discover VM images in repositories and to
introspect VM image contents are explained in detail.

6.2.1. Automated VM Image Introspection Procedure

Compute service providers maintain repositories of VM images. Depending on the
provisioning model of the repository, the user community can publish VM images in
the repository as well. The number of VM images in a repository can grow extensively
large. Therefore, an assessment of VM image meta-data requires an automation. On of
the goals of the procedure for automated VM image introspections is to minimize user
interaction in order to execute in batches. In addition, the procedure must be capable
of accessing diverse repositories from distinct compute service providers. Generally,
the presented procedure is based on the blueprint automation model of the framework
introduced in chapter 4.

To give means for a parameterization of a VM image introspection, the present pro-
cedure provides a user interface that allows to define the repositories and VM images
to be considered. Besides, the meta-data to be assessed can be defined as a parameter,
too.

The procedure incorporates multiple components that carry out different tasks in a VM
image introspection. Figure 6.3 illustrates the components involved in the VM image
introspection procedure.

An introspection of multiple VM images is coordinated by the main component Auto-
matic Introspection Coordinator. It considers user preferences from the User Prefer-
ences Store that can be defined via the User Interface component. The user interface
allows to define VM image repositories together with required credentials for remote
access to a repository. Furthermore, lists of VM images (using an identifier) and filters
can be specified that determine which images are considered in a meta-data assess-
ment.

In the initial phase of a meta-data assessment, the Discoverer component accesses the
VM image repository and and detects the set of included VM images. The set can then
be matched with the user’s preferences, such as blacklists, whitelists, or filters.

162

6.2. Introspection of Virtual Machine Images

Compute Service Provider 1

Automatic Introspection
Coordinator

User Parameters &

Results Store

Multi-Cloud
Interface VM Image Repository

Virtual Machine

Compute Service Provider N

Virtual Machine

...

introspect

upload results

User
Interface

read/write

Discoverer

instantiate

Crawler

Figure 6.3.: Overview of the Automated VM Image Introspection Procedure

Based on the final set of VM images to be introspected, the Crawler component instan-
tiates the images for an introspection using the Multi-Cloud Interface. Then, it accesses
the running VMs and starts the introspection. Eventually, the results of an introspection
are uploaded from within the VM to the Results Store which implements the VM image
meta-data model.

6.2.2. Discoverer Component

The goal of the Discoverer component is to specify a list from available VM images in
repositories and by adhering to requirements formulated by the user. Figure 6.4 depicts
an overview of the process that leads to a final discovery list.

The Discoverer takes a list of Repositories and Lists & Filters as inputs from the User
Parameters Store. A repository is a uniquely identified location where VM image meta-
data of a compute service provider can be accessed. For example, Amazon EC2 offers
an API that allows fetching a list of all AMIs from EC2 repositories in different regions.
The Discoverer outputs a Discovery list for each repository, i.e. a list of identifiers of
VM images that have been found in the repository and match the filter criteria.

Filters are provider-specific or even repository-specific, since different compute clouds
likely provide differently named and detailed meta-data. There are two types of nega-
tive filters: (1) user-defined K.O. criteria, and (2) user-defined block-lists. K.O. criteria
remove unwanted VM images from the discovery list, such as images with commercial

163

6. Assessments of Virtual Machine Image Contents at Run-time

DISCOVERER

Repository

list

Lists &

Filters

Fetch virtual

appliance meta-data

Match lists & filters
Discovery

list

Temporary

discovery

list

Figure 6.4.: Process of the Discoverer

software licenses. Then the identifiers in the block-list are matched with the discover
list. Each match is removed from the discovery list, for example, identifiers of im-
ages that have already been introspected. Users can also define a positive filter as a
requirement that needs to be fulfilled, for example, a specific operating system.

Since the discovery list can be long, the user might want to narrow down the list. Two
approaches can be suggested to reduce the size of the Discovery list. The user either
selects the desired images by their identifier (or description), or the user strips down the
list to the desired coverage, either an absolute number of VM images or a fraction of
the original Discovery list.

Additionally, a stated cost budget restrains the total number of introspections to a max-
imum amount of costs. The cost calculation needs to align with the actual costs gener-
ated at the Cloud provider with cost models differing in means of preciseness or billing
subjects causing different costs per introspection, e.g., Amazon bills by the hour. While
the cost budget would not be exceeded by an additional virtual machine instantiation
the crawler proceeds with processing the discovery list.

6.2.3. Crawler Component

The Crawler component collects meta-data from the VM images in the Discovery list
represented by repository-specific identifiers. Each specified VM image is introspected
in the process and the results are uploaded to the Results Store. The name Crawler
originates from the process of introspecting a large amount of VM images referred to
as crawling. Besides, as VM image content is typically immutable, a crawling engine is
able to eventually have collected all VM image meta-data in a database. However, the
amount that is considered in a single assessment run can vary according to the user’s
requirements. Figure 6.5 gives an overview of the crawling process.

164

6.2. Introspection of Virtual Machine Images

CRAWLER

Split

function
Split the list

List

partition
List

partition
Partition of

the list

Launch VM instance

Start Crawler

instance
Start Crawler

instance
Start Crawler

instance

Install configuration

management agent

Collect and download

meta-data

VM image

meta-data

Results Store

Discovery

list

Figure 6.5.: Process of the Crawler

The Discovery list is processed in parallel by multiple Crawler instances. If the user
provides a split function, the Discovery list can be segmented into multiple partitions.
Each partition is processed by a separate Crawler instance. A Crawler instance can be
a separate thread or process on the same server, or a separate (virtual) server.

Each Crawler instance runs the following sequential process for each VM image in a
Discover list partition:

1. Launch an instance of the VM image (if possible)

2. Upload and install a configuration management agent on the running instance

3. Execute the agent with parameters, collect the requested meta-data and download
the meta-data to a central database

The initial step employs the Multi-Cloud Interface to a compute service in order to
launch an instance of a VM image. Typically, VM images can only be instantiated

165

6. Assessments of Virtual Machine Image Contents at Run-time

using the corresponding provider’s compute services. If the instantiation of the VM
image fails, the process stops and meta-data for that image cannot be assessed.

The second step requires remote access to the running VM and a channel to upload
agent software. For Linux operating system instances, the agent software bundle can
be uploaded with ssh. An installer script installs the agent software according to the
detected operating system (i.e., Linux distribution). Of course, existing agents of con-
figuration management software packages can be used in this step, e.g., Puppet’s facter
[216] or Chef Ohai [107].

In the third step, the agent is executed and collects meta-data from package manager, by
executing programs that return information about the system, and by inspecting known
directories. The User Parameters Store is consulted to determine which meta-data to
collect. All collected data is uploaded by the agent to the Results Store.

166

6.3. Search and Comparison of Virtual Machine Images

6.3. Search and Comparison of Virtual Machine
Images

Being in possession of a database of VM images meta-data gives the chance for a range
of applications, such as software usage statistics and analysis of software dependency
and software complexity trends. One particular aspect is the search of a VM image with
specific preconfigured content and the comparison of VM images.

Unlike performance meta-data of compute services, the contents of VM images are
described non-numerically. Therefore, a comparison on a numerical scale that allows
statements, such as "x is two times better than y" is not feasible. A text-based compar-
ison can only apply a matchmaking algorithm that employs string-based tests.

In a search, the available requirement types are restricted to non-numerical text-oriented
requirements, as listed in table 6.1. Using a conjunctive and disjunctive satisficing
method [19], alternatives can be filtered by the given requirements.

Req. Type Boolean Expression

Equals γ = sr

OneOf γ ∈ S = {sr1, . . . , srn}

Table 6.1.: Non-Numerical Requirement Types

For VM image meta-data, the set of contained software packages and programming
languages (c.f. section 6.1) can be used in requirement definitions. A suitable VM im-
age can thereby be searched by the contents that have been assessed with the presented
introspection method.

Moreover, comparisons of VM images can be based on assessed contents as well. A
comparison can be conducted in a matchmaking of VM images. Therefore, the meta-
data attributes of two VM images are matched, including the set of software pack-
ages and programming languages. Consequently, the number of meta-data matches
and misses indicates the similarity of the images.

167

6. Assessments of Virtual Machine Image Contents at Run-time

6.4. Software Prototype for Virtual Machine Image
Introspection

The method to assess VM image contents has been implemented as a software proto-
type called Crawler. The software prototype constitutes from two components: (1) the
Crawler script, and (2) the Crawler web application. While the script introspects VM
images to assess their contents, the web application provides a graphical user interface
to browse the contents meta-data of images.

6.4.1. Crawler Script

The Discoverer and Crawler components of the VM image assessment method (c.f.
) are realized in a ruby script. The script is capable of accessesing Amazon machine
images (AMIs) from AWS EC2 using Opscode Chef Ohai for the collection of meta-
data. AWS credentials are expected to be given in a configuration file loaded upon
initialization. Also, filters can be defined that set requirements on the region, owner,
price (free or priced) of an AMI. A blacklist can be defined, too.

The Crawler script uses the AWS SDK for ruby to attain the list of available AMIs
from EC2. After the list has been filtered and matched with the given blacklist, each
AMI is instantiated. Once instantiated, a VM is connected to via SSH. The script then
downloads Chef Ohai to the VM and collects information about installed software and
libraries from Ohai. Finally, the collected information is exported in JSON format to a
S3 bucket and the VM is stopped. Figure 6.6 depicts the components involved in the
ruby Crawler script.

AWS EC2

Crawler Ruby Script

S3 Bucket

with JSON Result Files

AWS EC2
Interface VM Image Repository

Virtual Machine

introspect

upload results

Discoverer

instantiate

Crawler

Figure 6.6.: Architecture of the Crawler Script

The source code of the Crawler script is published in a Github repository under https:
//github.com/mugglmenzel/ami-crawler.

168

https://github.com/mugglmenzel/ami-crawler
https://github.com/mugglmenzel/ami-crawler

6.4. Software Prototype for Virtual Machine Image Introspection

6.4.2. Web Application

In addition to the ruby script, a web application providing a graphical user interface to
browse collected meta-data was developed. The web application runs on the Google
AppEngine [201] and graphical user interface was developed with GWT [202] and
smartGWT [203].

Moreover, the web application is able to extract JSON files from an S3 bucket that have
been generated by the Crawler script and import them into a database. An AppEngine
cron triggers the import of existing JSON files from S3 once every 24h.

With the web application, the database is browsable in a sortable list and images become
searchable by installed software libraries and keywords. A superset of software libraries
is maintained by the application and presented for selection during a search. Figure 6.7
shows a screenshot of the web application.

Figure 6.7.: Screenshot of the Crawler Web Application

The source code of the Crawler web application is released to the public in a Github
repository under https://github.com/mugglmenzel/Crawler.

169

https://github.com/mugglmenzel/Crawler

6. Assessments of Virtual Machine Image Contents at Run-time

6.5. Evaluation of the VM Image Introspection
Method

The proposed VM image introspection method provides an automated approach to as-
sess contents of images by introspecting a running VM. In respect of RQ4, an evalua-
tion has to test the applicability of the proposed method:

RQ4. How can Virtual Machine image contents be assessed at run-time
from multiple compute services in an automated manner?

The instantiation of the VM image introspection method in a software prototype (c.f.
section 6.4) proofs the approach’s feasibility. The method and the software prototype
has been subject to discussions with peers in the research community [217]. This work
presents the validation of the method conducted by employing the software prototype
in an example with diverse VM images. Besides, the promptitude of automated VM
image introspections is measured.

In the following, the first section explains how the validation with an introspection of
various VM images takes place. Then, the findings of the promptitude experiments
with the software prototype are presented. The final section provides statistics derived
from meta-data about the AWS EC2 compute service collected with the software pro-
totype.

6.5.1. Validation of the VM Image Introspection Approach

The validation aims at verifying the feasibility and applicability of the approach. In
particular, an experiment which seeks to introspect the contents of diverse VM images
in the repository of the compute service AWS EC2. The experiment is conducted to
research the following hypotheses in the light of RQ4:

H0 The introspection approach respectively the software prototype fails to collect meta-
data about contents of a VM image.

H1 The introspection approach respectively the software prototype collects meta-data
about contents of a VM image.

While the null hypothesis H0 holds true if the introspection approach fails, the hy-
pothesis H1 is proofed when meta-data describing the contents of a VM image were
assessed successfully. To test the hypothesis, an experiment with the software imple-
mentation of the introspection approach is conducted. In the experiment an exemplary
introspection seeks to proof the applicability of the software prototype (see section 6.4)
by introspecting a range of VM images from the compute service AWS EC2.

170

6.5. Evaluation of the VM Image Introspection Method

In preparation of the experiment, the software prototype has been fed with a unknown
AMIs list of four different EC2 Ubuntu Linux images from Bitnami [67]. Namely,
the prepared VM images from Bitnami are a Wordpress blog software machine (ami-
14c5277c), a LAMP stack machine (ami-f85fa990), a JBoss application server machine
(ami-c79588ae), and a Gitlab versioning software machine (ami-1203fe7a). Using the
AMIs list, the software prototype was executed in three repeated runs per image which
is to assure repeatable results.

The software prototype uses the Chef Ohai client to collect system meta-data and in-
stalled libraries and software. Upon completion, the prototype exports the introspected
VM image content meta-data into JSON files on the cloud storage service AWS S3.

To verify the correctness of the detected VM image contents, the exported JSON files
were compared to the actually installed list of VM images retrieved with the following
shell command:

sudo dpkg --get-selections

For all of the tested VM images, the comparison proofed the approach is capable of
collecting VM image content meta-data. The exported JSON files were identical in ev-
ery of the repeated runs. Therefore, hypothesis H1 is proofed and a positive statement
in the light of the research question RQ4 can be made. Using the proposed approach
implemented in the software prototype, the contents of diverse VM images could be
assessed at run-time. Besides, an evidence of the feasibility of RQ4 proofs also the ex-
istence of automated assessments in general. Thereby, RQ1a is addressed in parallel.

The experiment is based on the software prototype using a prior configuration with a list
of AMIs. Given the configuration, the execution ofthe introspection task was executed
in an automated manner. Therefore, the level of automation achieved by the method
and software prototype is classified as batch processing according to Endsley [193].

6.5.2. Results of the Promptitude Measurements

Apart from a validation of the approach, promptitude measurements give insights in
the applicability in a practical context. In order to record the promptitude of an intro-
spection, the validation experiments with four different VM images have been extended
with a time measurement. Additionally, the introspection has been tested for two dif-
ferent compute service configurations, namely the AWS EC2 instance types t1.micro
and m1.small.

In the experiments, the duration of the whole introspection process was measured in two
stages: (1) VM image instantiation, and (2) introspection. Thereby, the whole duration
of the VM image contents assessement process results from the sum of the measured

171

6. Assessments of Virtual Machine Image Contents at Run-time

durations in both stages. As in the validation, the four EC2 AMIs from Bitnami [67]
with Wordpress, LAMP, JBoss, and Gitlab are used. To ensure reliable results, the
experiments were repeated three times.

Figures 6.8a and 6.8b depict the promptitude measurement results for the t1.micro and
m1.small instance types, respectively. The graph shows that the instantiation is respon-
sible for a small share of the total duration. In average, the instantiation required 22,443
ms for micro instances and 21,280 ms for small instances.

The introspection stage induces the major delay in the total promptitude (∼87% micro
instances, ∼86% small instances). The measurement results show that an introspection
of micro instances took 152,767 ms and of small instances 134,133 ms in average. The
available compute power has a direct influence on the promptitude of the introspection
stage. Observations with system monitors discovered that system processes after the
start of the system can induce a delay.

0	

50,000	

100,000	

150,000	

200,000	

250,000	

300,000	

ami-­‐14c5277c	
 ami-­‐f85fa990	
 ami-­‐c79588ae	
 ami-­‐1203fe7a	

M
ill
is
ec
on

ds
	

Measured	
 Promp1tude	
 (with	
 t1.micro)	

Instan7a7on	
 Introspec7on	

(a) Promptitude Results for Micro In-
stances

0	

50,000	

100,000	

150,000	

200,000	

250,000	

ami-­‐14c5277c	
 ami-­‐f85fa990	
 ami-­‐c79588ae	
 ami-­‐1203fe7a	

M
ill
is
ec
on

ds
	

Measured	
 Promp1tude	
 (with	
 m1.small)	

Instan7a7on	
 Introspec7on	

(b) Promptitude Results for Small Instances

From the recorded measurements, a variation in the promptitude was observed for dif-
ferent compute services. As depicted in figures 6.9a and 6.9b, the standard deviation
is variable for micro and small instances. For micro instances, a maximum standard
deviation of 167,036 ms (∼72%) and minimum of 13,952 ms (∼20%) for the intro-
spection stage can be observed. For small instances, the maximum standard deviation
of the introspection stage is 85,278 ms (∼54%) and the minimum standard deviation is
15,980 ms (∼19%).

All in all, the promptitude show variations which differ in gravity between compute
service. Overall, the measured promptitude for a VM image content assessment process
never exceeded 401 seconds in total in all experiments.

6.5.3. Statistics for AWS EC2 Compute Services

Apart from assessing the contents of few selected VM images, the method can also be
employed to gain statistics about whole repositories. As an extension to the hitherto
evaluation of the introspection approach, a wide range of VM images provided in the

172

6.5. Evaluation of the VM Image Introspection Method

0	

50,000	

100,000	

150,000	

200,000	

ami-­‐14c5277c	
 ami-­‐f85fa990	
 ami-­‐c79588ae	
 ami-­‐1203fe7a	

M
ill
is
ec
on

ds
	

Standard	
 Devia1on	
 (with	
 t1.micro)	

Instan7a7on	
 Introspec7on	

(a) Promptitude Standard Deviation for Mi-
cro Instances (in ms)

0	

20,000	

40,000	

60,000	

80,000	

100,000	

ami-­‐14c5277c	
 ami-­‐f85fa990	
 ami-­‐c79588ae	
 ami-­‐1203fe7a	

M
ill
is
ec
on

ds
	

Standard	
 Devia1on	
 (with	
 m1.small)	

Instan8a8on	
 Introspec8on	

(b) Promptitude Standard Deviation for
Small Instances (in ms)

Ubuntu package name Installation count

perl 863
python 710
ruby1.8 399
python2.6 247
python2.7 263

openssh-server 869
vim-tiny 843
vim 502
subversion 23
git-core 8

Table 6.2.: Software Package Count (Canonical and Alestic.com)

EC2 repositories by Alestic.com and Canonical have been assessed. Both, Alestic.com
and Canonical, prepare AMIs with varying Ubuntu Linux operating systems and offer
them to the community of EC2 users for free.

To gain statistics, 869 of 981 AMIs from Alestic.com and Canonical were assessed
with the software prototype implementing the introspection method. The other 112
AMIs could not be assessed due to problems over establishing a SSH connection (with
users root, ubuntu, ec2-user).

Based on the assessed VM image contents, the frequency of certain software in Ubuntu
Linux images on EC2 can be determined. Table 6.2 presents the frequency statistics for
software packages in EC2 Ubuntu AMIs from Alestic.com and Canonical. The upper
part of the table shows the installation count of the top five programming language
packages, and the bottom part the installation count of the top five software packages.

Apart from observed software frequencies, further statistics could be generated from the
meta-data assessment results. One particularity of the explored compute service EC2
is the separation of the global VM image repository into sub-repositories in diverse

173

6. Assessments of Virtual Machine Image Contents at Run-time

Figure 6.10.: Number of AMIs per Amazon EC2 Region

regions. To gain an understanding how the regions compare, the number of AMIs in
the diverse regions has been determined via the EC2 API. The results are illustrated in
a pie chart in figure 6.10.

Moreover, AMIs available in EC2 (aggregated over all regions) could be grouped by the
meta-data attributes operating system, processor architecture, and commercial license.
The results from the grouping by meta-data attribute are presented as bar charts in
figure 6.11. The numbers show clearly that Linux is the predominant operating system
in available AMIs. Also, most AMIs are based on a i386 32-bit processor architecture.
Interestingly, the larger share of AMIs is provided for free. However, software in the
AMIs may still require a license (referred to as bring your own license).

(a) Operating System (b) Processor Architecture (c) Commercial License

Figure 6.11.: Meta-Data Attributes of AMIs in All Regions

174

Part IV.

Finale

175

7. Conclusions, Discussion &
Outlook

This final chapter completes the present work with a retrospection and final thoughts.
First, the findings, research outcomes and contributions of this work are summarized
and conclusions are drawn. Finally, the contributions of the present work are discussed
and an outlook with open research questions is given, which leaves further explorations
to future work.

7.1. Conclusions

This work started with the observation that compute service offerings lack compre-
hensive meta-data to support detailed comparisons and engineering decisions. The
meta-data published by compute service providers is scarce and not necessarily reli-
able, particularly to describe performance characteristics and contents of VM image
repositories. Both aspects have been of eminent interest in this work.

In regards of performance, the amount of meta-data is specifically limited when a cloud
consumer needs to identify suitable compute services providing the necessary capacity
for a software system. Also, tools are missing when a consumer seeks to monitor
vicissitudes of the provided performance characteristics of a service.

The current state of the art lacks an automated approach to measure the performance of
a compute service according to schedules and over time. Approaches which offer au-
tomation aspects and thereby are able to repeat and schedule benchmarking runs have
not yet been adapted to target compute services. In contrast, approaches to benchmark
compute services lack an automation, and need to be manually adapted to diverse com-
pute services.

Moreover, in the realm of assessing VM image meta-data from compute services, exist-
ing approaches expect full image file access and do not gain meta-data about contents.
The research community has already explored machine introspections for security pur-
poses which, however, does not incorporate support for meta-data collection or access
through remote interfaces of compute services.

177

7. Conclusions, Discussion & Outlook

The identification of a scarcity in reliable compute service meta-data lead to the follow-
ing research question:

How can cloud compute services be assessed
at run-time regarding meta-data?

The principal research question is split into several subordinated questions which this
work aims to answer and evaluate. In this regard, a framework of methods and models
to assess compute service meta-data in an automated manner has been proposed. The
methods of the framework leverage client-side remote access and collect meta-data
from within VMs at run-time. In addition, the framework features support for com-
parisons of compute services based on a scoring. Thereby, compute cloud consumers
are enabled to single-handedly assess and compare meta-data attributes of compute ser-
vices.

The framework is furthermore instantiated to treat specifically two aspects of compute
services, namely performance and VM image contents. Consequently, compute cloud
consumers are provided with concrete methods to assess and compare compute services
according to both aspects.

In the following, a summary of this work’s contributions is given and conclusions are
drawn.

Automated Compute Service Assessments
As part of the framework a blueprint model for the automation of assessments is pro-
posed. The model describes necessary steps assess compute services at run-time and a
scheme for the communication with compute services via remote protocols. Based on
the automation model two instantiations are presented that enable consumers to assess
compute services in an automated manner regarding two specific characteristics: (1)
performance, (2) VM image contents.

To gain performance meta-data of compute services, the model is reused in a method to
measure performance of compute services at run-time. A proposed performance mea-
surement method supports a scheduling and repetition of measurement tasks to observe
the performance behavior of compute services over time. Exploiting remote access of-
fered by compute services, the approach executes benchmarking scripts from the client-
side to conduct measurements. Collected performance benchmarking results are struc-
tured and attached to compute services as meta-data using the framework’s meta-data
model. An implementation of a software prototype shows the feasibility of the method
and serves as the basis for further evaluations. The aspects of automation, scheduling
and repetition of compute service performance benchmarking has been validated and
compared to the state of the art. Besides, an examination of the promptitude of the soft-
ware prototype showed that the induced overhead to prepare VMs for benchmarking at
run-time never surpasses 220 seconds and, thereby, confirms the applicability in prac-
tice. The scheduling component of the prototype sustains an average impreciseness of
9 milliseconds in execution delay (with a maximum of 24 milliseconds).

178

7.1. Conclusions

The second instantiation of the automation model enables consumers to automatically
assess the contents of VM images provided in repositories of compute services. Partic-
ularly, the approach introspects the software libraries and packages included in a VM
image from a client at run-time. A VM image is instantiated as VM on the correspond-
ing compute service and accessed via remote protocols. With an established remote
connection in place, information from package managers and other operating system
tools is extracted from the running VM. The list of detected software contents is at-
tached to a VM image and stored as meta-data in a central database. An evaluation
with a software prototype proofed the feasibility of the concept and revealed that an in-
trospection of AWS EC2 VM images never surpasses 401 seconds according to a range
of experiments.

Compute Service Scoring & Comparisons
Based on the meta-data gained from automated assessments, a further method of the
framework introduces a scoring and, thereby, enables consumers to compare com-
pute services according to a single value. The method combines multiple meta-data
attributes into a single score value. The calculation is based on a weighted criteria hi-
erarchy linked to the performance attributes and uses the Analytic Hierarchy Process.
The resulting scores are normalized and mapped to a ratio scale for comparisons. An
instantiation for performance assessments of compute services adapt the method for
comparisons according to performance attributes. A software prototype implement-
ing the performance assessment instantiation proofs the feasibility and served as basis
for a case study with the industry. In addition, the computational complexity of the
method has been examined for growing numbers of compute services and performance
attributes to be considered. While doing so, the influence of the structure of criteria
hierarchies on the computational complexity has been explored. The findings indicate
that with a growing number of attributes, grouping should be considered to decrease
the computational complexity. In realistic scenarios with no more than 30 performance
attributes and compute services, the software prototype is able to calculate the weighted
and normalized score values with 5-digit precision within 3.6 milliseconds.

Cost Budgeting Stopping Rule
To counter costs accruing from assessments of compute services, the framework in-
corporates a stopping rule approach. The stopping rule binds the maximum number
of observable compute services to a given cost budget. In an instantiation for perfor-
mance measurements, the framework’s stopping rule is configured to support sequential
observations of compute services with performance benchmarks. An implementation
of the instantiations stopping rule asserts the feasibility of the approach. Moreover,
experiments proof that the rule guarantees to stop the execution of performance bench-
marking runs before a certain cost budget is spent. Apart from the budget, the stopping
rule pursues minimizing costs when a prior order of the compute services regarding
performance scores is provided. According to a comparison with other stopping rules
in the course of the evaluation, the rule outperforms or equals the spendings of standard
stopping rules when the set of compute services is in perfect or near perfect order.

179

7. Conclusions, Discussion & Outlook

Overall, the framework gives answers to the posed research questions and contributes
a framework of evaluated models and methods to the research community. The intro-
duced methods give means to assess and compare compute services regarding diverse
characteristics. Instantiations apply the framework’s methods and models to assess
compute services in terms of performance and VM image contents.

An implementation of the methods in multiple software prototypes proofed the correct-
ness and feasibility of the concepts and applicability in practice. The experiment results
from the software prototypes served as the basis for an evaluation of the research ques-
tions. Existent limitations are subject to a discussion and might be addressed by future
work – which is the matter of the next section.

180

7.2. Discussion & Outlook

7.2. Discussion & Outlook

The present work contributes a yet applicable framework of compute service assess-
ment models and methods to the research community. Despite the fact that the findings
of an evaluation indicate a validity and applicability of the methods, limitations are due
to be discussed. Besides, there is certainly plenty of room for improvements, exten-
sions and a dissemination of the results. In the following, the limitations and aspects of
future work are discussed for each of the methods incorporated in the framework and
particularly their instantiations.

Automated Compute Service Assessments
The automation model is strictly bound to compute services with accessible remote
interfaces integrated into an implementation. The assumption made is that the remote
interfaces support a completely automated management of VMs and the establishement
of remote sessions to them. If any of the steps requires manual interaction on the client
side, a full batch execution cannot be realized and the level of automation is lowered.

The instantiations of the automation model raise further discussable points. It must
be mentioned that the measurement of performance attributes of a compute service
using benchmarking scripts at run-time is tied to two aspects: (1) exploitation of re-
mote access interfaces to VMs and (2) benchmarking based on synthetic workloads.
As benchmarking only captures performance characteristics regarding synthetic work-
loads, other measurement approaches might be more suitable for different performance
analysis scenarios. For example, an in-situ method can gain insights with the actual
software in place and non-synthetic workloads.

However, an in-situ measurement requires a deployment of the software system and
users to generate the workload. For an automation of the measurement, the deployment
of the software system needs to be automated in the process, too. Besides, when actual
users generate the in-situ workload, a measurement cannot be initiated ad-hoc, but is
carried out over the long-term. Otherwise, a workload generator needs to be prepared
for this purpose, such as Rain [218].

In case both issues are addressed, namely the introduction of an automated software
deployment and a workload generator, in-situ measurements may well be integrated
into the proposed performance measurement method. Nevertheless, such an integration
is subject to future work.

In contrast, measurements with a simulation or emulation method are contrary to the
proposed method. Both, simulation and emulation, void the access to the real system,
but require to build an imitation of the system. Typically, the details of a system under
test, being a compute service, are typically hidden from a consumer and treated as a
business secret by the provider. Therefore, building an imitation of the compute service
that resembles the behavior is a rather implausible undertaking.

181

7. Conclusions, Discussion & Outlook

Moreover, an examination of the software prototype’s promptitude demonstrated that
performance benchmarking requires minutes or hours of time per run. For popular use
cases, such as capacity planning for a software system, first performance meta-data
being available within hours is acceptable. In other use cases, a more responsive or
even real time performance monitoring may be of interest. With the proposed run-
time benchmarking approach, real time performance meta-data seems not achievable.
Nonetheless, a reduction of the overhead and measures to increase the promptitude are
subject to future work. Furthermore, a use of the approach in a server-side setting driven
by compute service providers is a yet unexplored alternative.

A further aspect of compute services reveals a limitation of the approach. The com-
puter hardware and resource allocation algorithms may change in quick iterations over
time. The hardware purchased by cloud providers to expand and maintain data cen-
ters advances together with technological progress. A benchmarking approach from a
consumer perspective (with client-side access) faces a black box and can only capture
performance characteristics at a certain point in time. An exact and timely representa-
tion of a compute service’s performance specification may rather be achieved by more
costly monitoring approaches, used on the client or server-side.

Despite CloudHarmony [139] having built a first database of performance meta-data,
one future effort is to build databases that host large amounts of compute service per-
formance meta-data. With the methods and software prototypes presented in this work,
the measurements can be conducted by many cloud consumers in a joint effort. We plan
to establish the software prototype as a widely used web application which enables any
compute cloud consumer to conduct performance measurements. The possibility to
configure repetitions and schedule executions of performance benchmarks gives con-
sumers further power and insights how the compute services’ performances vary and
evolve over time. The meta-data creates the need for applications that can aggregate
and illustrate results from multiple repetitions and allow users to browse through per-
formance meta-data histograms.

As with the automated performance benchmarking method, the automated VM image
introspection method leverages the run-time and operates from a client-side. A certain
overhead induces a delay which affects the promptitude of VM introspections. The aim-
ing for real time results from introspections using the proposed method seems unlikely
in this case as well.

A comprehensive database of meta-data about VM image contents of diverse compute
services is a future task that implicates extensive costs. To counter the costs, a joint
effort from the community of cloud consumers is needed. Fortunately, each VM image
is typically immutable and needs to be introspected only once. We plan to manifest
the software prototype as a public web application that is used by many compute cloud
consumer to introspect VM images.

182

7.2. Discussion & Outlook

The future of VM image repositories is yet blurry. The number of engaged institutions
creating VM images for community-driven repositories, such as with AWS EC2, indi-
cate an immense growth in the coming years. Aside from that, AWS has launched a
marketplace for commercial VM images which could add to the growth rate in the fu-
ture. The assessment of all VM images in a timely manner could become a Sisyphean
task in the future. However, the proposed approach allows compute cloud consumers
to focus on few VM images they have identified as particularly interesting. On the
contrary, compute cloud providers can integrate the introspection method within their
compute services on the server-side to take over the task for their consumers.

Compute Service Scoring & Comparisons
The scoring method proofed as applicable in practice according to a case study and
interviews with the industry. As stated by users of the software prototype, MADM
provides a suitable approach for comparisons of alternatives. A further validation of
the prototype confirms that performance attributes of compute services can be mapped
to a single score. The computational complexity, however, is growing exponentially.
Nonetheless, computation times are acceptable with typical numbers of compute ser-
vices and performance attributes and never exceeded 3.6 milliseconds in realistic sce-
narios. While the AHP allows for very precise comparisons on a ratio scale, simpler
approaches, such as lexicographic methods that focus on one or few high priority crite-
ria, may be sufficient as well.

A major task for the future is to establish standard scorings with fixed sets of per-
formance attributes, provided hierarchies and predetermined weights. Thereby, inex-
perienced decision-makers and consumers can start with a common standard scoring.
Nonetheless, an obvious merit of the AHP approach is that given the database of per-
formance meta-data, every consumer can compare compute services with a custom
configuration of selected attributes, weights and hierarchy structure.

Cost Budgeting Stopping Rule
The presented stopping rule is specifically adapted the situation that prior information is
available. Only then the stopping rule is surely successful and can outperform standard
stopping rules. Nevertheless, as the experiments with common scenarios indicate, the
proposed stopping rule can outperform or equalize standard stopping rules in many
cases.

Moreover, the rule ensures a cost budget is never exceeded within the sequential assess-
ment process. However, the proposed stopping rule does not utilize the given budget to
a full extent. Bin packing algorithms promise an approach to optimally use the given
cost budget. Moreover, the presented stopping rule lacks a support for a time budget.

Apart from a time budget, a parallelization of the yet sequential assessment process
is a promising approach to overcome time budgets. Observations, however, are then
made in parallel and, thus, potentially in random order. A stopping rule would need to

183

7. Conclusions, Discussion & Outlook

cope with randomly made observations of a pre-ordered compute service set, and still
enforce a cost budget.

Final Remarks
Overall, this work provides a yet applicable and complete solution in regards of the
initially observed problem and posed research questions. The methods of the proposed
framework have been discussed with peers in the research community and throughout
this document. Although the methods and prototypes arrived at a complete state in
regards of the addressed problems, they leave room for enhancements, extensions, and
competing approaches.

Specific extensions can be made in the realm of additional compute service aspects
yet to be assessed. Further instantiations of the framework can provide consumers
with means to assess and compare compute services regarding an extended range of
attributes.

Hopefully, this work engages other researchers to devote energy into the development
of meta-data-related approaches to further enrich and simplify the evaluation, choice,
comparison, and consumption of cloud compute services for consumers.

184

Appendix

185

A. Performance Meta-Data on
Compute Service Websites

The websites have been accessed on March 23, 2014.

Figure A.1.: AWS EC2 Performance Meta-Data

Figure A.2.: GoGrid Performance Meta-Data

187

A. Performance Meta-Data on Compute Service Websites

Figure A.3.: Rackspace Performance Meta-Data

Figure A.4.: Joyent Cloud Performance Meta-Data

188

B. Implementation Details & Code
Examples

B.1. Example of AotearoaLib Programming
Interface

Dec i s ion < A l t e r n a t i v e > d e c i s i o n =
2 new Dec i s ion < A l t e r n a t i v e > () ;

d e c i s i o n . setName (" Compute S e r v i c e P r o v i d e r S e l e c t i o n ") ;
4

Goal g1 = new Goal (" C o s t s ") ;
6 g1 . s e tGoa lType (GoalType . NEGATIVE) ;

Goal g2 = new Goal (" Pe r fo rmance ") ;
8

/ / C o s t s
10 C r i t e r i o n c11 = new C r i t e r i o n (" Hour ly C o s t s ") ;

C r i t e r i o n c12 = new C r i t e r i o n (" I n i t i a l C o s t s ") ;
12 g1 . a d d C h i l d (c11) ;

g1 . a d d C h i l d (c12) ;
14

/ / Per formance
16 C r i t e r i o n c21 = new C r i t e r i o n ("LINPACK") ;

C r i t e r i o n c22 = new C r i t e r i o n ("WHETSTONE") ;
18 g2 . a d d C h i l d (c21) ;

g2 . a d d C h i l d (c22) ;
20

/ / d e f i n i n g A l t e r n a t i v e s
22 A l t e r n a t i v e a1 = new A l t e r n a t i v e () ;

a1 . setName (" Amazon Web S e r v i c e s EC2") ;
24 A l t e r n a t i v e a2 = new A l t e r n a t i v e () ;

a2 . setName (" Rackspace Cloud ") ;
26 A l t e r n a t i v e a3 = new A l t e r n a t i v e () ;

a3 . setName (" Ter remark vCloud ") ;
28

d e c i s i o n . addGoal (g1) ;
30 d e c i s i o n . addGoal (g2) ;

32 d e c i s i o n . a d d A l t e r n a t i v e (a1) ;
d e c i s i o n . a d d A l t e r n a t i v e (a2) ;

34 d e c i s i o n . a d d A l t e r n a t i v e (a3) ;

36

A n a l y t i c H i e r a r c h y P r o c e s s ahp =
38 new A n a l y t i c H i e r a r c h y P r o c e s s (d e c i s i o n) ;

189

B. Implementation Details & Code Examples

40 d e c i s i o n . g e t I m p o r t a n c e G o a l s (GoalType . NEGATIVE) . add (
new G o a l I m p o r t a n c e (0 , 1 , 3D, n u l l)) ;

42 d e c i s i o n . g e t I m p o r t a n c e G o a l s (GoalType . POSITIVE) . add (
new G o a l I m p o r t a n c e (0 , 2 , 3D, n u l l)) ;

44

double [] [] c r i t 1 = { { 1 , 1 } , { 1 , 1 } } ;
46 Ma t r ix c c r i t 1 = new Ma t r ix (c r i t 1) ;

ahp . s e t C h i l d r e n C r i t e r i a W e i g h t s (g1 , c c r i t 1 , 1 5) ;
48

double [] [] c r i t 2 = { { 1 , 2 } , { 0 . 5 , 1 } } ;
50 Ma t r ix c c r i t 2 = new Ma t r ix (c r i t 2) ;

ahp . s e t C h i l d r e n C r i t e r i a W e i g h t s (g2 , c c r i t 2 , 1 5) ;
52

54 L i s t < E v a l u a t i o n > e v a l s = new A r r a y L i s t < E v a l u a t i o n > () ;
/ / C o s t s Goal E v a l u a t i o n

56 E v a l u a t i o n ev = new E v a l u a t i o n () ;
/ / Hour ly C o s t s

58 double c r i t 1 1 [] [] = {
{ 1 , 2D / 3D, 4D / 5D } ,

60 { 3D / 2D, 1 , 6D / 5D } ,
{ 5D / 4D, 5D / 6D, 1 } } ;

62 Ma t r ix c r i t 11M = new Ma t r ix (c r i t 1 1) ;
ev . g e t E v a l u a t i o n s () . add (c r i t 11M) ;

64

/ / I n i t i a l C o s t s
66 double c r i t 1 2 [] [] = {

{ 1 , 6 , 1D / 3D } ,
68 { 1D / 6D, 1 , 1D / 8D } ,

{ 3 , 8 , 1 } } ;
70 Ma t r ix c r i t 12M = new Ma t r ix (c r i t 1 2) ;

ev . g e t E v a l u a t i o n s () . add (c r i t 12M) ;
72

e v a l s . add (ev) ;
74

/ / Per formance Goal E v a l u a t i o n
76 ev = new E v a l u a t i o n () ;

78 / / LINPACK
double c r i t 2 1 [] [] = {

80 { 1 , 4 , 8 } ,
{ 1D / 4D, 1 , 1D / 2D } ,

82 { 1D / 8D, 1D / 2D, 1 } } ;
Ma t r i x c r i t 21M = new Ma t r ix (c r i t 2 1) ;

84 ev . g e t E v a l u a t i o n s () . add (c r i t 21M) ;

86 / / WHETSTONE
double c r i t 2 2 [] [] = {

88 { 1 , 1 , 1 } ,
{ 1 , 1 , 1 } ,

90 { 1 , 1 , 1 } } ;
Ma t r i x c r i t 22M = new Ma t r ix (c r i t 2 2) ;

92 ev . g e t E v a l u a t i o n s () . add (c r i t 22M) ;

94 e v a l s . add (ev) ;

96 E v a l u a t i o n R e s u l t r e s u l t s = ahp . e v a l u a t e F u l l (e v a l s) ;

98

System . o u t . p r i n t l n (" M u l t i p l i c a t i v e : "
100 + r e s u l t s . g e t R e s u l t M u l t i p l i c a t i v e I n d e x M a p ()) ;

System . o u t . p r i n t l n (" A d d i t i v e : "
102 + r e s u l t s . g e t R e s u l t A d d i t i v e I n d e x M a p ()) ;

System . o u t . p r i n t l n (" P o s i t i v e : "

190

B.2. Excluded Micro-benchmarks in LibIntelliCloudBench

104 + r e s u l t s . g e t R e s u l t P o s i t i v e G o a l s M a p ()) ;
System . o u t . p r i n t l n (" N e g a t i v e : "

106 + r e s u l t s . g e t R e s u l t N e g a t i v e G o a l s M a p ()) ;

B.2. Excluded Micro-benchmarks in
LibIntelliCloudBench

The LibIntelliCloudBench library excludes all micro-benchmarks of the category "Graph-
ics" from the Phoronix test suite. Additionally, the blacklist comprises the following
benchmarks named by their Phoronix internal identifier:

• aio-stress-1.1.0

• battery-power-usage-1.0.0

• bork-1.0.0

• bullet-1.1.0

• compilebench-1.0.0

• encode-ogg-1.4.0

• encode-wavpack-1.2.0

• espeak-1.3.0

• etqw-demo-iqc-1.0.0

• ffte-1.0.1

• gcrypt-1.0.0

• gnupg-1.3.1

• hdparm-read-1.0.0

• idle-1.1.0

• idle-power-usage-1.0.0

• interbench-1.0.1

• java-scimark2-1.1.1

• jgfxbat-1.1.0

191

B. Implementation Details & Code Examples

• juliagpu-1.2.0

• luxmark-1.0.0

• mandelbulbgpu-1.2.0

• mandelgpu-1.2.0

• mencoder-1.3.0

• nexuiz-iqc-1.0.0

• npb-1.1.1

• pgbench-1.4.0

• pyopencl-1.0.0

• smallpt-gpu-1.2.0

• scimark2-1.1.1

• sqlite-1.8.0

• stresscpu2-1.0.1

• sunflow-1.1.0

• systester-1.0.0

• tachyon-1.1.0

• tscp-1.0.0

• ttsiod-renderer-1.3.0

• xplane9-iqc-1.0.0

192

C. Original Interview Form for a
MADM Software Prototype

On the following pages, the structured interview originally developed for the decision-
makers of the industry partner T-Systems. Due to time restrictions, the original feed-
back form was not filled out by the decision-makers. Instead an unstructured interview
was conducted.

193

„Aotearoa“	
 Software	
 Prototype	
 Feedback	
 Form	

	

Please	
 fill	
 out	
 this	
 form	
 to	
 give	
 feedback	
 regarding	
 your	
 personal	
 process	
 of	
 defining	
 a	
 Decision	

Template.	
 The	
 form	
 uses	
 the	
 method	
 of	
 semi-­‐structured	
 interviews	
 and	
 consists	
 of	
 several	

questions	
 that	
 allow	
 to	
 record	
 all	
 issues	
 you	
 faced	
 during	
 your	
 definition	
 process	
 (of	
 the	

Decision	
 Template).	
 In	
 particular,	
 two	
 types	
 of	
 questions	
 are	
 employed	
 to	
 capture	
 your	
 personal	

experiences:	
 rating	
 questions	
 that	
 ask	
 for	
 a	
 rating	
 from	
 1	
 to	
 9,	
 and	
 free	
 text	
 questions	
 that	
 offer	

to	
 write	
 down	
 all	
 experiences	
 (no	
 limitations).	

	

Role	
 of	
 participant	
 in	
 the	
 decision-­‐making	
 process:	

Transparency	

How	
 is	
 your	
 experienced	
 level	
 of	
 transparency	
 in	
 the	
 decision-­‐making	
 process	
 by	
 using	
 the	

prototype	
 (1:	
 intransparent	
 –	
 9:	
 transparent):	

 [1-­‐9]	

	

Experiences	
 and	
 issues	
 regarding	
 the	
 transparency	
 in	
 the	
 decision-­‐making	
 process	
 (How	
 is	
 the	

perceived	
 transparency	
 in	
 the	
 decision-­‐making	
 process	
 when	
 using	
 the	
 prototype?):	

Speed	

Please	
 estimate	
 the	
 time	
 needed	
 to	
 finish	
 the	
 decision-­‐making	
 process	
 (without	
 re-­‐evaluation):	

 minutes	

Experiences	
 and	
 issues	
 regarding	
 the	
 speed	
 of	
 the	
 decision-­‐making	
 process	
 (How	
 is	
 the	

perceived	
 time	
 spent	
 in	
 the	
 decision-­‐making	
 process	
 when	
 using	
 the	
 prototype?):	

Trust	
 and	
 Correctness	

How	
 much	
 do	
 you	
 trust	
 in	
 the	
 correctness	
 of	
 the	
 results	
 of	
 the	
 decision-­‐making	
 process	
 when	

using	
 the	
 prototype	
 (1:	
 untrusting	
 –	
 9:	
 trusting):	

 [1-­‐9]	

Experiences	
 and	
 issues	
 regarding	
 the	
 correctness	
 of	
 the	
 decision-­‐making	
 process	
 (How	
 is	
 the	

perceived	
 correctness	
 in	
 the	
 decision-­‐making	
 process	
 when	
 using	
 the	
 prototype?):	

How	
 would	
 you	
 compare	
 the	
 Aotearoa	
 decision-­‐making	
 process	
 to	
 the	
 regular,	
 original	

process	
 in	
 your	
 organization?	
 	

Which	
 decision-­‐making	
 process	
 is	
 more	
 transparent?:	

 [original	
 or	
 Aotearoa]	

How	
 much	
 more	
 transparent	
 would	
 you	
 rate	
 the	
 more	
 transparent	
 decision-­‐making	
 process	
 (1:	

equally	
 fast	
 –	
 9:	
 much	
 more	
 transparent)?:	

 [1-­‐9]	

	

Which	
 decision-­‐making	
 process	
 is	
 faster?:	

 [original	
 or	
 Aotearoa]	

How	
 much	
 faster	
 would	
 you	
 rate	
 the	
 faster	
 decision-­‐making	
 process	
 (1:	
 equally	
 fast	
 –	
 9:	
 much	

faster)?:	

 [1-­‐9]	

	

Which	
 decision-­‐making	
 process	
 results	
 do	
 you	
 trust	
 more	
 regarding	
 correctness?:	

 [original	
 or	
 Aotearoa]	

How	
 much	
 more	
 trustful	
 would	
 you	
 rate	
 the	
 more	
 trustful	
 decision-­‐making	
 process	
 (1:	
 equally	

trustful	
 –	
 9:	
 much	
 more	
 trustful)?:	

 [1-­‐9]	

	

What	
 is	
 your	
 personal	
 level	
 of	
 experiences	
 with	
 the	
 original	
 decision-­‐making	
 process	
 (1:	

beginner	
 –	
 9:	
 expert)?:	

 [1-­‐9]	

(Comment:	
 You	
 can	
 use	
 indicators	
 such	
 as	
 frequency	
 of	
 involvement	
 in	
 the	
 original	
 process,	
 or	

last	
 time	
 being	
 involved)	
 	

	

	

	

	

	

	

Usability	

Usability	
 of	
 Aotearoa	
 prototype’s	
 user	
 inteface	
 (
 1:	
 bad	
 –	
 9:	
 good):	

 [1-­‐9]	

	

Comments	
 about	
 the	
 prototype’s	
 usability	
 (improvements,	
 missing	
 support?):	

Reuse	

Did	
 you	
 have	
 to	
 modify	
 the	
 template	
 you	
 created	
 with	
 the	
 Decision	
 template	
 form	
 in	
 the	
 first	

place?:	

 [yes,	
 no]	

How	
 would	
 you	
 rate	
 the	
 effort	
 to	
 modify	
 the	
 template	
 to	
 your	
 actual	
 needs	
 (1:	
 no	
 effort	
 –	
 9:	

immense	
 effort)?:	

 [1-­‐9]	

	

Were	
 you	
 able	
 to	
 reuse	
 a	
 template	
 for	
 multiple	
 decisions?:	

 [yes,	
 no]	

How	
 would	
 you	
 rate	
 the	
 effort	
 to	
 modify	
 the	
 template	
 to	
 new	
 needs	
 in	
 subsequent	
 decisions	
 (1:	

no	
 effort	
 –	
 9:	
 immense	
 effort)?:	

 [1-­‐9]	

Experiences	
 and	
 issues	
 regarding	
 the	
 reusability	
 of	
 decision	
 templates:	

Any	
 additional	
 comments	
 related	
 to	
 the	
 whole	
 decision-­‐making	
 support	
 tool	
 prototype	

Aotearoa:	

List of Figures

1.1. A Consumer Measuring Compute Service Performance Meta-Data . . . 5
1.2. Overview of Research Process . 12
1.3. Overview of Research Paths . 13
1.4. Published Material Overview . 18

2.1. Service Models and Layers in the Cloud Stack [8] 26
2.2. Example Structure of a Xen Hypervisor [50] 28
2.3. Software on VM Images and Appliances 30
2.4. Overview of VM Image Repository Contents 30
2.5. Exemplary Access Channels to a Compute Service 32
2.6. Structure of Compute Service Hardware Configuration Meta-Data [10] . 33
2.7. Classification of Performance Evaluations [77] 35
2.8. Typical OSCM System Architecture 41
2.9. Taxonomy of Multi-Attribute Decision-Making Methods [19] 45
2.10. Example of a AHP Hierarchy . 46
2.11. Pairwise Comparison Matrix [112] . 46

3.1. Screenshot of CloudHarmony Performance Meta-Data Service 55
3.2. Performance Variations on Google’s AppEngine (Python) [13] 62
3.3. Architecture of the BEEN system [172] 63
3.4. Screenshot of the Phoromatic Online Service 64
3.5. Screenshot of Schedule Definition in Phoromatic 65

4.1. Overview of the Conceptual Framework 72
4.2. Basic Meta-Data Model . 75
4.3. Overview of the Model for Automated Assessments at Run-Time 76
4.4. Levels of Automation [191] . 77
4.5. The Process within the (MC2)2 . 79
4.6. Typical Criteria Hierarchies . 84
4.7. Schema of a Resulting Evaluation Function 85
4.8. Example of Normalized vs. Idealized Scale 87
4.9. Distribution of Expected Scores Among Ordered Compute Services . . 91
4.10. Random Distribution of Expected Scores Among Unordered Compute

Services . 92
4.11. The AotearoaLib Data Model . 99

197

List of Figures

4.12. The Hoopla Architecture . 100
4.13. Screenshot of the Hoopla Web Application 101
4.14. Computational Complexity with 100 Criteria and Growing Number of

Services (Row/Sum Method) . 107
4.15. Computational Complexity with 100 Criteria and Growing Number of

Services (Saaty Method) . 108
4.16. Computational Complexity with 100 Compute Services and Growing

Number of Criteria (Row/Sum Method) 108
4.17. Computational Complexity with 100 Compute Services and Growing

Number of Criteria (Saaty Method) . 109
4.18. Computational Complexity with 100 Compute Services, 1000 Criteria

and Growing Group Size . 110

5.1. The Framework’s Models & Methods used for Performance Assessment 115
5.2. Overview of the Automated Performance Benchmarking Method 117
5.3. Overview of the Automated Performance Measurement Procedure . . . 119
5.4. Available Levels to Induce Repetitions 121
5.5. Data Model of the Automated Performance Benchmarking Method . . . 125
5.6. User Involvement in an Automated Benchmarking Process 126
5.8. Architecture of LibIntelliCloudBench 139
5.9. Data Model LibIntelliCloudBench . 139
5.10. Architecture of the Ballon Race Web Application 140
5.11. Screenshot of the Ballon Race Web Application 141
5.12. Measured Durations in Experiments EXP-A to EXP-C 147
5.13. Assessed Performance Meta-Data for EC2 Compute Services (LiB) . . 148
5.14. Assessed Performance Meta-Data for EC2 Compute Services (HiB) . . 149
5.15. Observed Cost Budget Consumption (in Percent) 152
5.16. Perfect Order . 154
5.17. Perfect Order with One Switched Pair 155
5.18. Perfect Order with Two Switched Pairs 156
5.19. Reversed Perfect Order . 157

6.1. The Framework’s Models & Methods used for VM Image Assessment . 160
6.2. The VM Image Meta-Data Model . 160
6.3. Overview of the Automated VM Image Introspection Procedure 163
6.4. Process of the Discoverer . 164
6.5. Process of the Crawler . 165
6.6. Architecture of the Crawler Script . 168
6.7. Screenshot of the Crawler Web Application 169
6.10. Number of AMIs per Amazon EC2 Region 174
6.11. Meta-Data Attributes of AMIs in All Regions 174

A.1. AWS EC2 Performance Meta-Data . 187

198

List of Figures

A.2. GoGrid Performance Meta-Data . 187
A.3. Rackspace Performance Meta-Data . 188
A.4. Joyent Cloud Performance Meta-Data 188

199

List of Tables

2.1. Meta-data Attributes available on Provider Websites 33
2.2. Sample of Common Performance Benchmarks 38
2.3. Meta-data Attributes accessible via Compute Service APIs 40

3.1. Literature Survey of Cloud-Related Multi-Criteria Selection Methods
[40] . 58

4.1. Example Criteria for Performance Characteristics 81
4.2. Common Requirement Types . 82
4.3. List of Symbols in the Evaluation Function f(·) 86
4.4. Decision Models used for Experiments 106
4.5. Computation Times in 4 Realistic Scenarios (Row/Sum Method) 111
4.6. Computation Times in 4 Realistic Scenarios (Saaty Method) 111

5.1. Decision Models used for Experiments 145
5.2. Frequency of Processor Types per EC2 Compute Service 149
5.3. Results for Scenario 1 . 155
5.4. Results for Scenario 2 . 156
5.5. Results for Scenario 3 . 157
5.6. Results for Scenario 3 . 158

6.1. Non-Numerical Requirement Types 167
6.2. Software Package Count (Canonical and Alestic.com) 173

201

Acronyms

AHP Analytic Hierarchy Process

ANP Analytic Network Process

API Application Programming Interface

AWS Amazon Web Services

CCS CloudHarmony Compute Scoring

CV Coefficient of Variation

IaaS Infrastructure-as-a-Service

IT Information Technology

MADM Multi-Attribute Decision-Making

(MC2)2 Multi-Criteria Comparison Method for Cloud Computing

MCDM Multi-Criteria Decision-Making

OSCM Operating System Configuration Management

PaaS Platform-as-a-Service

QoS Quality of Service

SaaS Software-as-a-Service

SSH Secure Shell

UML Unified Modeling Language

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

203

Literature

[1] J. Y. Thong. “An integrated model of information systems adoption in small
businesses”. In: Journal of management information systems 15.4 (1999),
pp. 187–214.

[2] D. Amor. The e-business (R) evolution: Living and Working in an Intercon-
nected World. Prentice Hall PTR Upper Saddle River, NJ., 2000.

[3] D. Menasce. “Scaling for e-business”. In: Modeling, Analysis and Simulation
of Computer and Telecommunication Systems, 2000. Proceedings. 8th Interna-
tional Symposium on. IEEE, 2000, pp. 511–513.

[4] R. Kalakota and M. Robinson. E-business 2.0: Roadmap for Success. Addison-
Wesley Professional, 2001.

[5] C. D. Patel and A. J. Shah. Cost model for planning, development and opera-
tion of a data center. Tech. rep. Internet Systems and Storage Laboratory, HP
Laboratories Palo Alto, 2005.

[6] C. Baun, J. Nimis, M. Kunze, and S. Tai. Cloud computing: Web-based dynamic
IT services. Springer, 2011.

[7] P. Mell and T. Grance. The NIST Definition of Cloud Computing, Recommenda-
tions of the National Institute of Standards and Technology. Tech. rep. National
Institute of Standards and Technology, 2011.

[8] A. Lenk, M. Klems, J. Nimis, S. Tai, and T. Sandholm. “What’s inside the
Cloud? An architectural map of the Cloud landscape”. In: Proceedings of the
2009 ICSE Workshop on Software Engineering Challenges of Cloud Comput-
ing. IEEE Computer Society. IEEE, 2009, pp. 23–31.

[9] The Apache Software Foundation. jClouds Java Library. 2013. URL: http:
//www.jclouds.org (visited on Sept. 8, 2013).

[10] R. Prodan and S. Ostermann. “A survey and taxonomy of infrastructure as
a service and web hosting cloud providers”. In: Grid Computing, 2009 10th
IEEE/ACM International Conference on. IEEE, 2009, pp. 17–25.

[11] M. A. Vouk. “Cloud computing–issues, research and implementations”. In:
Journal of Computing and Information Technology 16.4 (2004), pp. 235–246.

205

http://www.jclouds.org
http://www.jclouds.org

Literature

[12] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and L. M. Vaquero.
“Service specification in cloud environments based on extensions to open stan-
dards”. In: Proceedings of the Fourth International ICST Conference on COM-
munication System softWAre and middlewaRE. COMSWARE ’09. Dublin, Ire-
land: ACM, 2009, 19:1–19:12.

[13] A. Iosup, N. Yigitbasi, and D. Epema. “On the Performance Variability of Pro-
duction Cloud Services”. In: Cluster, Cloud and Grid Computing (CCGrid),
2011 11th IEEE/ACM International Symposium on. IEEE, 2011, pp. 104–113.

[14] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos, G. Hamil-
ton, M. McCabe, and J. Owens. “Quantifying the performance isolation prop-
erties of virtualization systems”. In: Proceedings of the 2007 Workshop on Ex-
perimental Computer Science. ACM. New York, NY, USA: ACM, 2007, p. 6.

[15] R. Iyer, R. Illikkal, O. Tickoo, L. Zhao, P. Apparao, and D. Newell. “VM3:
Measuring, modeling and managing VM shared resources”. In: Computer Net-
works 53.17 (2009), pp. 2873–2887.

[16] H. Jin, W. Cao, P. Yuan, and X. Xie. “VSCBenchmark: Benchmark for Dy-
namic Server Performance of Virtualization Technology”. In: Proceedings of
the 1st International Forum on Next-generation Multicore/Manycore Technolo-
gies. IFMT ’08. Cairo, Egypt: ACM, 2008, 5:1–5:8.

[17] G. W. Torrance, W. Furlong, D. Feeny, and M. Boyle. “Multi-attribute prefer-
ence functions”. In: Pharmacoeconomics 7.6 (1995), pp. 503–520.

[18] T. L. Saaty and L. G. Vargas. “How to Make a Decision”. In: Models, Methods,
Concepts & Applications of the Analytic Hierarchy Process. Springer, 2012,
pp. 1–21.

[19] K Yoon and C. L. Hwang. Multiple Attribute Decision Making: An Introduction.
Sage Publications, 1995.

[20] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. “Managing Security of
Virtual Machine Images in a Cloud Environment”. In: Proceedings of the 2009
ACM Workshop on Cloud Computing Security. CCSW ’09. Chicago, Illinois,
USA: ACM, 2009, pp. 91–96.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. “The Eucalyptus Open-Source Cloud-Computing System”. In:
Cluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM Interna-
tional Symposium on. IEEE, 2009, pp. 124–131.

[22] B. Sotomayor, R. S. Montero, I. Llorente, and I. Foster. “Virtual Infrastructure
Management in Private and Hybrid Clouds”. In: Internet Computing, IEEE 13.5
(2009), pp. 14–22.

206

Literature

[23] T. Garfinkel, M. Rosenblum, et al. “A Virtual Machine Introspection Based
Architecture for Intrusion Detection.” In: Proceedings of the Network and
Distributed System Security Symposium. Vol. 3. The Internet Society, 2003,
pp. 191–206.

[24] J. Pfoh, C. Schneider, and C. Eckert. “A formal model for virtual machine in-
trospection”. In: Proceedings of the 1st ACM workshop on Virtual machine se-
curity. ACM. New York, NY, USA: ACM, 2009, pp. 1–10.

[25] H. Miller and J. Veiga. “Cloud Computing: Will Commodity Services Benefit
Users Long Term?” In: IT Professional 11.6 (2009), pp. 57–59.

[26] D. A. Menasce and V. A. Almeida. Capacity Planning for Web Services: met-
rics, models, and methods. Prentice Hall Upper Saddle River, 2002.

[27] D. A. Menasce, V. A. Almeida, L. W. Dowdy, and L. Dowdy. Performance
by design: computer capacity planning by example. Prentice Hall Professional,
2004.

[28] T. Kalibera, L. Bulej, and P. Tuma. “Benchmark precision and random ini-
tial state”. In: in Proceedings of the 2005 International Symposium on Per-
formance Evaluation of Computer and Telecommunications Systems (SPECTS
2005. SCS, 2005, pp. 853–862.

[29] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. “Runtime measurements in the
cloud: observing, analyzing, and reducing variance”. In: Proceedings of the
VLDB Endowment 3 (1-2 2010), pp. 460–471.

[30] N. Huber, M. von Quast, M. Hauck, and S. Kounev. “Evaluating and Model-
ing Virtualization Performance Overhead for Cloud Environments”. In: Pro-
ceedings of the 1st International Conference on Cloud Computing and Services
Science (CLOSER 2011). Vol. 1. SciTePress, 2011, pp. 7–9.

[31] R. Jain. The art of computer systems performance analysis. Vol. 182. John Wi-
ley & Sons Chichester, 1991.

[32] A. Li, X. Yang, S. Kandula, and M. Zhang. “CloudCmp: comparing public
cloud providers”. In: Proceedings of the 10th annual conference on Internet
measurement. ACM. ACM, 2010, pp. 1–14.

[33] L. Gillam, B. Li, J. OLoughlin, and A. Tomar. “Fair Benchmarking for Cloud
Computing systems”. In: Journal of Cloud Computing: Advances, Systems and
Applications 2.1 (2013), p. 6.

[34] E. Walker. “Benchmarking amazon EC2 for high-performance scientific com-
puting”. In: USENIX Login 33.5 (2008), pp. 18–23.

[35] T. Kalibera, L. Bulej, and P. Tuma. “Generic Environment for Full Automation
of Benchmarking.” In: SOQUA/TECOS 58 (2004), pp. 125–132.

[36] R. P. Weicker. “An overview of common benchmarks”. In: Computer 23.12
(1990), pp. 65–75.

207

Literature

[37] R. P. Weicker. “A detailed look at some popular benchmarks”. In: Parallel Com-
puting 17.10 (1991), pp. 1153–1172.

[38] W. Zeng, Y. Zhao, and J. Zeng. “Cloud service and service selection algorithm
research”. In: Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation - GEC ’09 (2009), p. 1045.

[39] P. Saripalli and G. Pingali. “MADMAC: Multiple Attribute Decision Method-
ology for Adoption of Clouds”. In: Cloud Computing (CLOUD), 2011 IEEE
International Conference on. IEEE, 2011, pp. 316–323.

[40] Z. U. Rehman, F. K. Hussain, and O. K. Hussain. “Towards Multi-criteria Cloud
Service Selection”. In: Proceedings of the 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing. IEEE,
June 2011, pp. 44–48.

[41] T. Saaty. “Making and validating complex decisions with the AHP/ANP”. In:
Journal of Systems Science and Systems Engineering 14.1 (2005), pp. 1–36.

[42] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good. “The Cost of Doing
Science on the Cloud: The Montage Example”. In: Proceedings of the 2008
ACM/IEEE Conference on Supercomputing. SC ’08. Austin, Texas: IEEE Press,
2008, 50:1–50:12.

[43] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing. “How is the Weather To-
morrow?: Towards a Benchmark for the Cloud”. In: Proceedings of the Second
International Workshop on Testing Database Systems. DBTest ’09. Providence,
Rhode Island: ACM, 2009, 9:1–9:6.

[44] A. Iosup, S. Ostermann, M. Yigitbasi, R. Prodan, T. Fahringer, and D. H. J.
Epema. “Performance Analysis of Cloud Computing Services for Many-Tasks
Scientific Computing”. In: Parallel and Distributed Systems, IEEE Transac-
tions on 22.6 (2011), pp. 931–945.

[45] Y. Bakos. “The Emerging Role of Electronic Marketplaces on the Internet”. In:
Commun. ACM 41.8 (Aug. 1998), pp. 35–42.

[46] J. Y. Bakos. “Reducing buyer search costs: implications for electronic market-
places”. In: Management science 43.12 (1997), pp. 1676–1692.

[47] S. Moorthy, B. T. Ratchford, and D. Talukdar. “Consumer Information Search
Revisited: Theory and Empirical Analysis”. English. In: Journal of Consumer
Research 23.4 (1997), pp. 263–277.

[48] J. J. McCall. “The economics of information and optimal stopping rules”. In:
The Journal of Business 38.3 (1965), pp. 300–317.

[49] G. J. Stigler. “The economics of information”. In: The journal of political econ-
omy 69.3 (1961), pp. 213–225.

208

Literature

[50] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. “Xen and the art of virtualization”. In: ACM SIGOPS
Operating Systems Review 37.5 (2003), pp. 164–177.

[51] J. Estublier. “Software Configuration Management: A Roadmap”. In: Proceed-
ings of the Conference on The Future of Software Engineering. ICSE ’00. Lim-
erick, Ireland: ACM, 2000, pp. 279–289.

[52] W. F. Tichy. “Tools for software configuration management”. In: Proceedings
of the International Workshop on Software Version and Configuration Control
(SCM). Vol. 30. Berichte des German Chapter of the ACM. Teubner, 1988,
pp. 1–20.

[53] M. Shaw. “What makes good research in software engineering?” In: Interna-
tional Journal on Software Tools for Technology Transfer 4.1 (2002), pp. 1–
7.

[54] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. “A break in the
clouds: towards a cloud definition”. In: ACM SIGCOMM Computer Communi-
cation Review 39.1 (2008), pp. 50–55.

[55] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. “A View of Cloud Computing”. In:
Communications of the ACM 53.4 (2010), pp. 50–58.

[56] L. Barroso, J. Dean, and U. Holzle. “Web search for a planet: The Google clus-
ter architecture”. In: Micro, IEEE 23.2 (2003), pp. 22–28.

[57] Amazon Web Services, Inc. Elastic Compute Cloud (EC2). 2014. URL: http:
//aws.amazon.com/ec2/ (visited on Jan. 17, 2014).

[58] Rackspace, Inc. The Rackspace Public Cloud. 2013-07-21. 2013. URL: http:
//www.rackspace.com/cloud/ (visited on July 21, 2013).

[59] R. Woollen. “The Internal Design of Salesforce.Com’s Multi-tenant Architec-
ture”. In: Proceedings of the 1st ACM Symposium on Cloud Computing. SoCC
’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 161–161.

[60] Highscalability.com. YouTube Architecture. 2014. URL: http : / /
highscalability . com / youtube - architecture (visited on
Jan. 17, 2014).

[61] VMware, Inc. VMware vSphere Hypervisor. 2013. URL: http : / / www .
vmware.com/products/vsphere-hypervisor (visited on Sept. 6,
2013).

[62] Red Hat, Inc. Red Hat Enterprise Virtualization. Accessed September-2013.
2013. URL: http : / / www . redhat . com / products / cloud -
computing/virtualization/ (visited on Sept. 8, 2013).

[63] M. Rosenblum and T. Garfinkel. “Virtual machine monitors: Current technol-
ogy and future trends”. In: Computer 38.5 (2005), pp. 39–47.

209

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud/
http://highscalability.com/youtube-architecture
http://highscalability.com/youtube-architecture
http://www.vmware.com/products/vsphere-hypervisor
http://www.vmware.com/products/vsphere-hypervisor
http://www.redhat.com/products/cloud-computing/virtualization/
http://www.redhat.com/products/cloud-computing/virtualization/

Literature

[64] GoGrid, LLC. Cloud Servers. 2014. URL: http://www.gogrid.com/
products/cloud-servers (visited on Jan. 15, 2014).

[65] Amazon Web Services, Inc. AWS Marketplace. Sept. 2013. URL: https://
aws.amazon.com/marketplace (visited on Sept. 8, 2013).

[66] The Cloud Market. The Cloud Market. 2013. URL: http : / /
thecloudmarket.com/ (visited on Sept. 8, 2013).

[67] BitNami. BitNami.com. 2013. URL: http://bitnami.com/ (visited on
Sept. 8, 2013).

[68] R. L. Grossman. “The case for cloud computing”. In: IT professional 11.2
(2009), pp. 23–27.

[69] Amazon Web Services, Inc. How AWS pricing works. 2012. URL: http://
media.amazonwebservices.com/AWS_Pricing_Overview.pdf
(visited on Apr. 21, 2012).

[70] Rackspace, Inc. Rackspace Cloud Server Pricing. 2013. URL: http://www.
rackspace.com/cloud/servers/pricing/ (visited on July 21,
2013).

[71] Microsoft. Cloud Services Pricing Details. 2013. URL: http : / / www .
windowsazure . com / en - us / pricing / details / cloud -
services/ (visited on Nov. 25, 2013).

[72] Amazon Web Services, Inc. Amazon Web Services. Sept. 2013. URL: http:
//aws.amazon.com (visited on Sept. 8, 2013).

[73] 1&1. Dynamic Cloud Servers. 2014. URL: http://hosting.1und1.
com/dynamic-cloud-server (visited on Jan. 15, 2014).

[74] T. Metsch, A. Edmonds, R. Nyren, and A. Papaspyrou. Open Cloud Computing
Interface–Core. Open Grid Forum, Open Cloud Computing Interface (OCCI)
Working Group. 2011. URL: http://ogf.org/documents/GFD.183.
pdf (visited on Nov. 21, 2013).

[75] T. Metsch and A. Edmonds. Open Cloud Computing Interface–Infrastructure.
Open Grid Forum, Open Cloud Computing Interface (OCCI) Working Group.
2011. URL: http://ogf.org/documents/GFD.184.pdf (visited on
Nov. 21, 2013).

[76] D. Davis and G. Pilz. Cloud Infrastructure Management Interface (CIMI)
Model and RESTful HTTP-based Protocol. Tech. rep. Technical Report, Dis-
tributed Management Work Force (DMTF), 2012.

[77] F. Desprez, G. Fox, E. Jeannot, K. Keahey, et al. Supporting Experimental
Computer Science. Anglais. Rapport de recherche RR-8035. INRIA, July 2012,
p. 29.

210

http://www.gogrid.com/products/cloud-servers
http://www.gogrid.com/products/cloud-servers
https://aws.amazon.com/marketplace
https://aws.amazon.com/marketplace
http://thecloudmarket.com/
http://thecloudmarket.com/
http://bitnami.com/
http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
http://www.rackspace.com/cloud/servers/pricing/
http://www.rackspace.com/cloud/servers/pricing/
http://www.windowsazure.com/en-us/pricing/details/cloud-services/
http://www.windowsazure.com/en-us/pricing/details/cloud-services/
http://www.windowsazure.com/en-us/pricing/details/cloud-services/
http://aws.amazon.com
http://aws.amazon.com
http://hosting.1und1.com/dynamic-cloud-server
http://hosting.1und1.com/dynamic-cloud-server
http://ogf.org/documents/GFD.183.pdf
http://ogf.org/documents/GFD.183.pdf
http://ogf.org/documents/GFD.184.pdf

Literature

[78] M. Hauck, J. Happe, and R. Reussner. “Towards Performance Prediction for
Cloud Computing Environments based on Goal-oriented Measurements.” In:
CLOSER. 2011, pp. 616–622.

[79] R. Krebs, C. Momm, and S. Kounev. “Metrics and techniques for quantifying
performance isolation in cloud environments”. In: Science of Computer Pro-
gramming 90, Part B.0 (2014). Special Issue on Component-Based Software
Engineering and Software Architecture, pp. 116 –134.

[80] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offermann. “What Are You Paying
for? Performance Benchmarking for Infrastructure-as-a-Service Offerings”. In:
Proceedings of the 2011 IEEE International Conference on Cloud Computing
(CLOUD). IEEE. Washington, D.C., USA: IEEE, 2011, pp. 484–491.

[81] B. Randall and L. J. Russell. Algol-60 Implementation. Orlando, FL, USA: Aca-
demic Press, Inc., 1964.

[82] H. J. Curnow and B. A. Wichmann. “A synthetic benchmark”. In: The Com-
puter Journal 19.1 (1976), pp. 43–49.

[83] J. Dongarra. “The LINPACK Benchmark: An explanation”. In: Supercom-
puting. Ed. by E. Houstis, T. Papatheodorou, and C. Polychronopoulos.
Vol. 297. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
1988, pp. 456–474.

[84] R. P. Weicker. “Dhrystone: A Synthetic Systems Programming Benchmark”.
In: Commun. ACM 27.10 (Oct. 1984), pp. 1013–1030.

[85] J. L. Henning. “SPEC CPU2006 Benchmark Descriptions”. In: SIGARCH
Comput. Archit. News 34.4 (Sept. 2006), pp. 1–17.

[86] K. M. Dixit. “The SPEC benchmarks”. In: Parallel Computing 17.10–
11 (1991). <ce:title>Benchmarking of high performance supercomput-
ers</ce:title>, pp. 1195 –1209.

[87] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and R. Brown.
“MiBench: A free, commercially representative embedded benchmark suite”.
In: Workload Characterization, 2001. WWC-4. 2001 IEEE International Work-
shop on. IEEE, 2001, pp. 3–14.

[88] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and B. Parady.
“SPEComp: A New Benchmark Suite for Measuring Parallel Computer Perfor-
mance”. English. In: OpenMP Shared Memory Parallel Programming. Ed. by
R. Eigenmann and M. Voss. Vol. 2104. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, pp. 1–10.

[89] C. Bienia, S. Kumar, J. P. Singh, and K. Li. “The PARSEC Benchmark Suite:
Characterization and Architectural Implications”. In: Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Tech-
niques. PACT ’08. Toronto, Ontario, Canada: ACM, 2008, pp. 72–81.

211

Literature

[90] W. Gentzsch, D. Girou, A. Kennedy, H. Lederer, J. Reetz, M. Riedel, A. Schott,
A. Vanni, M. Vazquez, and J. Wolfrat. “DEISA—Distributed European Infras-
tructure for Supercomputing Applications”. English. In: Journal of Grid Com-
puting 9.2 (2011), pp. 259–277.

[91] P. Media. Phoronix Test Suite. 2014. URL: http :/ / www .phoronix -
test-suite.com/ (visited on Jan. 15, 2014).

[92] I. Team. Inqusitor. 2014. URL: http://www.inquisitor.ru/about/
(visited on Jan. 15, 2014).

[93] The OpenStack Foundation. OpenStack Cloud Software. 2014. URL: https:
//www.openstack.org/ (visited on Mar. 20, 2014).

[94] The OpenStack Project. OpenStack Manuals - Image metadata. 2014. URL:
http://docs.openstack.org/image-guide/content/image-
metadata.html (visited on Mar. 20, 2014).

[95] The OpenStack Project. OpenStack Manuals - Requesting Detailed Metadata
on Public VM Images. 2014. URL: http://docs.openstack.org/
api/openstack-image-service/1.1/content/requesting-
detailed-metadata-on-public-vm-images.html (visited on
Mar. 20, 2014).

[96] B. Baker. The Official InstallShield for Windows Installer Developer’s Guide.
M & T Books, 2001.

[97] I. Murdock. “Overview of the Debian GNU/Linux System”. In: Linux Journal
1994.6es (Oct. 1994).

[98] A. van der Hoek and A. L. Wolf. “Software release management for
component-based software”. In: Software: Practice and Experience 33.1
(2003), pp. 77–98.

[99] Software in the Public Interest, Inc. Advanced Package Tool (APT). 2014. URL:
https://wiki.debian.org/Apt (visited on Jan. 15, 2014).

[100] Novell. YaST - Yet another Setup Tool. 2014. URL: http://en.opensuse.
org/YaST (visited on Jan. 15, 2014).

[101] M. Ewing and E. Troan. “The RPM packaging system”. In: Proceedings of the
First Conference on Freely Redistributable Software, Cambridge, MA, USA.
1996.

[102] M. Burgess. “Cfengine: a site configuration engine”. In: USENIX Computing
systems. Vol. 8. USENIX Association, 1995, pp. 309–337.

[103] M. Burgess and R. Ralston. “Distributed resource administration using
cfengine”. In: Software: Practice and Experience 27.9 (1997), pp. 1083–1101.

[104] D. Ressman and J. Valdés. “Use of CFengine for Automated, Multi-Platform
Software and Patch Distribution”. In: LISA. USENIX Association, 2000,
pp. 207–218.

212

http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
http://www.inquisitor.ru/about/
https://www.openstack.org/
https://www.openstack.org/
http://docs.openstack.org/image-guide/content/image-metadata.html
http://docs.openstack.org/image-guide/content/image-metadata.html
http://docs.openstack.org/api/openstack-image-service/1.1/content/requesting-detailed-metadata-on-public-vm-images.html
http://docs.openstack.org/api/openstack-image-service/1.1/content/requesting-detailed-metadata-on-public-vm-images.html
http://docs.openstack.org/api/openstack-image-service/1.1/content/requesting-detailed-metadata-on-public-vm-images.html
https://wiki.debian.org/Apt
http://en.opensuse.org/YaST
http://en.opensuse.org/YaST

Literature

[105] I. Opscode. Chef Software. 2014. URL: http://www.getchef.com/
chef/ (visited on Jan. 15, 2014).

[106] Puppet Labs, Inc. Puppet. 2014. URL: http://puppetlabs.com/ (visited
on Jan. 15, 2014).

[107] Opscode, Inc. Chef Ohai Software. 2014. URL: http://docs.opscode.
com/ohai.html (visited on Jan. 15, 2014).

[108] C. L. Hwang, A. S. M. Masud, et al. Multiple objective decision making-
methods and applications. Vol. 164. Springer, 1979.

[109] T. L. Saaty. What is the analytic hierarchy process? Springer, 1988.

[110] T. L. Saaty. “How to make a decision: The analytic hierarchy process”. In:
European Journal of Operational Research 48.1 (Sept. 1990), pp. 9–26.

[111] T. L. Saaty. “Fundamentals of the analytic network process—multiple networks
with benefits, costs, opportunities and risks”. In: journal of systems science and
systems engineering 13.3 (2004), pp. 348–379.

[112] T. L. Saaty. “Relative measurement and its generalization in decision making
why pairwise comparisons are central in mathematics for the measurement of
intangible factors the analytic hierarchy/network process”. English. In: RAC-
SAM - Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales.
Serie A. Matematicas 102.2 (2008), pp. 251–318.

[113] Y. Chow and H. Robbins. “On optimal stopping rules”. In: Probability Theory
and Related Fields 2.1 (1963), pp. 33–49.

[114] T. S. Ferguson. Optimal Stopping and Applications. 2012. URL: http://
www.math.ucla.edu/~tom/Stopping/Contents.html (visited on
Jan. 14, 2014).

[115] J. P. Gilbert and F. Mosteller. “Recognizing the maximum of a sequence”. In:
Selected Papers of Frederick Mosteller. Springer, 2006, pp. 355–398.

[116] T. S. Ferguson. “Who solved the secretary problem?” In: Statistical science 4.3
(1989), pp. 282–289.

[117] S. A. Lippman and J. McCall. “The economics of job search: A survey”. In:
Economic inquiry 14.2 (1976), pp. 155–189.

[118] W. E. Stein, D. A. Seale, and A. Rapoport. “Analysis of heuristic solutions to
the best choice problem”. In: European Journal of Operational Research 151.1
(2003), pp. 140 –152.

[119] F. T. Bruss. “Sum the Odds to One and Stop”. English. In: The Annals of Prob-
ability 28.3 (2000), pp. 1384–1391.

[120] D. A. Seale and A. Rapoport. “Sequential Decision Making with Relative
Ranks: An Experimental Investigation of the "Secretary Problem"”. In: Orga-
nizational Behavior and Human Decision Processes 69.3 (1997), pp. 221 –236.

213

http://www.getchef.com/chef/
http://www.getchef.com/chef/
http://puppetlabs.com/
http://docs.opscode.com/ohai.html
http://docs.opscode.com/ohai.html
http://www.math.ucla.edu/~tom/Stopping/Contents.html
http://www.math.ucla.edu/~tom/Stopping/Contents.html

Literature

[121] J. J. McCall. “Economics of information and job search”. In: The Quarterly
Journal of Economics (1970), pp. 113–126.

[122] A. Sen. “Metadata Management: Past, Present and Future”. In: Decis. Support
Syst. 37.1 (Apr. 2004), pp. 151–173.

[123] A. Tannenbaum. Metadata Solutions: Using Metamodels, Repositories, Xml,
and Enterprise Portals to Generate Information on Demand. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[124] E. Madja, A. Hafid, R. Dssouli, G. v.Bochmann, and J. Gecsei. “Meta-data
modelling for quality of service (QoS) management in the World Wide Web
(WWW)”. In: Multimedia Modeling, 1998. MMM ’98. Proceedings. 1998.
1998, pp. 223–230.

[125] A. ShaikhAli, O. Rana, R. Al-Ali, and D. Walker. “UDDIe: an extended reg-
istry for Web services”. In: Applications and the Internet Workshops, 2003.
Proceedings. 2003 Symposium on. 2003, pp. 85–89.

[126] M. Papazoglou. Web services: principles and technology. Pearson Education,
2008.

[127] K. Sivashanmugam, K. Verma, A. P. Sheth, and J. A. Miller. “Adding Seman-
tics to Web Services Standards.” In: International Conference on Web Services.
2003, pp. 395–401.

[128] S. A. McIlraith, T. C. Son, and H. Zeng. “Semantic Web Services”. In: IEEE
Intelligent Systems 16.2 (2001), pp. 46–53.

[129] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J.
Pruyne, J. Rofrano, S. Tuecke, and M. Xu. “Web services agreement specifica-
tion (WS-Agreement)”. In: Open Grid Forum. Vol. 128. 2007.

[130] A. Keller and H. Ludwig. “The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services”. English. In: Journal of Network
and Systems Management 11.1 (2003), pp. 57–81.

[131] P. Patel, A. H. Ranabahu, and A. P. Sheth. “Service level agreement in cloud
computing”. In: Cloud Workshops at OOPSLA’09 (2009).

[132] R. Buyya, R. Ranjan, and R. Calheiros. “InterCloud: Utility-Oriented Federa-
tion of Cloud Computing Environments for Scaling of Application Services”.
English. In: Algorithms and Architectures for Parallel Processing. Ed. by C.-H.
Hsu, L. Yang, J. Park, and S.-S. Yeo. Vol. 6081. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, pp. 13–31.

[133] M. Wang, X. Wu, W. Zhang, F. Ding, J. Zhou, and G. Pei. “A Conceptual
Platform of SLA in Cloud Computing”. In: Dependable, Autonomic and Se-
cure Computing (DASC), 2011 IEEE Ninth International Conference on. 2011,
pp. 1131–1135.

214

Literature

[134] S. Venticinque, R. Aversa, B. Di Martino, M. Rak, and D. Petcu. “A Cloud
Agency for SLA Negotiation and Management”. English. In: Euro-Par 2010
Parallel Processing Workshops. Ed. by M. Guarracino, F. Vivien, J. Träff, M.
Cannatoro, M. Danelutto, A. Hast, F. Perla, A. Knüpfer, B. Di Martino, and
M. Alexander. Vol. 6586. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, pp. 587–594.

[135] M. Alhamad, T. Dillon, and E. Chang. “Conceptual SLA framework for cloud
computing”. In: Digital Ecosystems and Technologies (DEST), 2010 4th IEEE
International Conference on. 2010, pp. 606–610.

[136] S. Sundareswaran, A. Squicciarini, and D. Lin. “A Brokerage-Based Approach
for Cloud Service Selection”. In: Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on. 2012, pp. 558–565.

[137] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galán, J. Fontán, R. S. Montero,
and I. M. Llorente. “From infrastructure delivery to service management in
clouds”. In: Future Generation Computer Systems 26.8 (2010), pp. 1226 –1240.

[138] A. Goscinski and M. Brock. “Toward dynamic and attribute based publication,
discovery and selection for cloud computing”. In: Future Generation Computer
Systems 26.7 (2010), pp. 947 –970.

[139] CloudHarmony.com. CloudHarmony Web Application. 2011. URL: http://
cloudharmony.com/ (visited on Feb. 4, 2011).

[140] A Parasuraman, V. A. Zeithaml, and L. L. Berry. “Servqual”. In: Journal of
retailing 64.1 (1988), pp. 12–40.

[141] J. Santos. “EâĂŘservice quality: a model of virtual service quality dimensions”.
In: Managing Service Quality: An International Journal 13.3 (2003), pp. 233–
246.

[142] P. Saripalli and B. Walters. “Quirc: A quantitative impact and risk assessment
framework for cloud security”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on. IEEE. 2010, pp. 280–288.

[143] E. Cristobal, C. Flavián, and M. Guinalíu. “Perceived eâĂŘservice quality
(PeSQ)”. In: Managing Service Quality: An International Journal 17.3 (2007),
pp. 317–340.

[144] S. Habib, S. Ries, and M. Muhlhauser. “Towards a Trust Management System
for Cloud Computing”. In: Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2011 IEEE 10th International Conference on. 2011,
pp. 933–939.

[145] J. Abawajy. “Determining Service Trustworthiness in Intercloud Computing
Environments”. In: Pervasive Systems, Algorithms, and Networks (ISPAN),
2009 10th International Symposium on. 2009, pp. 784–788.

215

http://cloudharmony.com/
http://cloudharmony.com/

Literature

[146] K. Khan and Q. Malluhi. “Establishing Trust in Cloud Computing”. In: IT Pro-
fessional 12.5 (2010), pp. 20–27.

[147] S. Pearson, Y. Shen, and M. Mowbray. “A Privacy Manager for Cloud Comput-
ing”. English. In: Cloud Computing. Ed. by M. Jaatun, G. Zhao, and C. Rong.
Vol. 5931. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pp. 90–106.

[148] M. Klems, J. Nimis, and S. Tai. “Do Clouds Compute? A Framework for Esti-
mating the Value of Cloud Computing”. English. In: Designing E-Business Sys-
tems. Markets, Services, and Networks. Ed. by C. Weinhardt, S. Luckner, and
J. Stößer. Vol. 22. Lecture Notes in Business Information Processing. Springer
Berlin Heidelberg, 2009, pp. 110–123.

[149] X. Li, Y. Li, T. Liu, J. Qiu, and F. Wang. “The Method and Tool of Cost Anal-
ysis for Cloud Computing”. In: Cloud Computing, 2009. CLOUD ’09. IEEE
International Conference on. 2009, pp. 93–100.

[150] Y. Chen and R. Sion. “To Cloud or Not to Cloud?: Musings on Costs and Vi-
ability”. In: Proceedings of the 2Nd ACM Symposium on Cloud Computing.
SOCC ’11. Cascais, Portugal: ACM, 2011, 29:1–29:7.

[151] S. Frey, W. Hasselbring, and B. Schnoor. “Automatic conformance checking for
migrating software systems to cloud infrastructures and platforms”. In: Journal
of Software: Evolution and Process 25.10 (2013), pp. 1089–1115.

[152] A. Khajeh-Hosseini, I. Sommerville, J. Bogaerts, and P. Teregowda. “Decision
Support Tools for Cloud Migration in the Enterprise”. In: Cloud Computing
(CLOUD), 2011 IEEE International Conference on. 2011, pp. 541–548.

[153] B. Johnson and Y. Qu. “A Holistic Model for Making Cloud Migration Deci-
sion: A Consideration of Security, Architecture and Business Economics”. In:
Parallel and Distributed Processing with Applications (ISPA), 2012 IEEE 10th
International Symposium on. 2012, pp. 435–441.

[154] M. Hajjat, X. Sun, Y.-W. E. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and M.
Tawarmalani. “Cloudward Bound: Planning for Beneficial Migration of Enter-
prise Applications to the Cloud”. In: Proceedings of the ACM SIGCOMM 2010
Conference. SIGCOMM ’10. New Delhi, India: ACM, 2010, pp. 243–254.

[155] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. “Hey, You, Get off of My
Cloud: Exploring Information Leakage in Third-party Compute Clouds”. In:
Proceedings of the 16th ACM Conference on Computer and Communications
Security. CCS ’09. Chicago, Illinois, USA: ACM, 2009, pp. 199–212.

[156] Z. ur Rehman, O. Hussain, and F. Hussain. “Iaas Cloud Selection using MCDM
Methods”. In: e-Business Engineering (ICEBE), 2012 IEEE Ninth International
Conference on. IEEE, 2012, pp. 246–251.

216

Literature

[157] Jason Read, CloudHarmony.com. What is an ECU? CPU Benchmarking in the
Cloud. 2014. URL: http://blog.cloudharmony.com/2010/05/
what-is-ecu-cpu-benchmarking-in-cloud.html (visited on
Mar. 17, 2014).

[158] Jason Read, CloudHarmony.com. Cloud Server Performance Benchmarking.
2014. URL: http://blog.cloudharmony.com/2010/03/cloud-
server- performance- benchmarking.html (visited on Mar. 17,
2014).

[159] A. Li, X. Yang, S. Kandula, and M. Zhang. “CloudCmp: shopping for a cloud
made easy”. In: USENIX HotCloud (2010).

[160] S.-M. Han, M. M. Hassan, C.-W. Yoon, and E.-N. Huh. “Efficient Service Rec-
ommendation System for Cloud Computing Market”. In: Proceedings of the
2Nd International Conference on Interaction Sciences: Information Technol-
ogy, Culture and Human. ICIS ’09. Seoul, Korea: ACM, 2009, pp. 839–845.

[161] M. Godse and S. Mulik. “An Approach for Selecting Software-as-a-Service
(SaaS) Product”. In: Cloud Computing (CLOUD), 2009 IEEE International
Conference on. IEEE, 2009, pp. 155–158.

[162] S. Garg, S. Versteeg, and R. Buyya. “SMICloud: A Framework for Comparing
and Ranking Cloud Services”. In: Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on. 2011, pp. 210–218.

[163] K. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.
Wasserman, and N. Wright. “Performance Analysis of High Performance Com-
puting Applications on the Amazon Web Services Cloud”. In: 2nd IEEE In-
ternational Conference on Cloud Computing Technology and Science. IEEE.
2010, pp. 159–168.

[164] D. Menascé. “TPC-W: A benchmark for e-commerce”. In: IEEE Internet Com-
puting 6.3 (2002), pp. 83–87.

[165] Transaction Processing Performance Council (TPC). TPC-W Benchmark. 2011.
URL: http://www.tpc.org/tpcw/ (visited on Jan. 20, 2011).

[166] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, S. Patil,
A. Fox, and D. Patterson. “Cloudstone: Multi-platform, multi-language bench-
mark and measurement tools for web 2.0”. In: Proc. of CCA. Citeseer. 2008.

[167] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost, and J. Anderson.
“VMmark: A scalable benchmark for virtualized systems”. In: VMware Inc,
CA, Tech. Rep. VMware-TR-2006-002, September (2006).

[168] J. Casazza, M. Greenfield, and K. Shi. “Redefining server performance charac-
terization for virtualization benchmarking”. In: Intel Technology Journal 10.3
(2006), pp. 243–251.

217

http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/05/what-is-ecu-cpu-benchmarking-in-cloud.html
http://blog.cloudharmony.com/2010/03/cloud-server-performance-benchmarking.html
http://blog.cloudharmony.com/2010/03/cloud-server-performance-benchmarking.html
http://www.tpc.org/tpcw/

Literature

[169] Y. Mei, L. Liu, X. Pu, and S. Sivathanu. “Performance Measurements and Anal-
ysis of Network I/O Applications in Virtualized Cloud”. In: Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on. i/o trhoughput for VMs
on same physical host. IEEE, 2010, pp. 59 –66.

[170] T. Kalibera and R. Jones. “Rigorous Benchmarking in Reasonable Time”. In:
Proceedings of the 2013 International Symposium on Memory Management.
ISMM ’13. Seattle, Washington, USA: ACM, 2013, pp. 63–74.

[171] T. Kalibera and R. Jones. “Rigorous Benchmarking in Reasonable Time”. In:
SIGPLAN Not. 48.11 (June 2013), pp. 63–74.

[172] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. Tomecek,
P. Tuma, and J. Urban. “Automated Benchmarking and Analysis Tool”. In:
Proceedings of the 1st International Conference on Performance Evaluation
Methodolgies and Tools. valuetools ’06. Pisa, Italy: ACM, 2006, pp. 1–10.

[173] The Mono Project. Mono Cross Platform Open-Source .NET Development
Framework. 2014. URL: http://www.mono-project.com/ (visited
on Mar. 20, 2014).

[174] T. Kalibera and P. Tuma. “Precise Regression Benchmarking with Random Ef-
fects: Improving Mono Benchmark Results”. In: Formal Methods and Stochas-
tic Models for Performance Evaluation. Ed. by Horvóth, András and Telek,
Miklós. Vol. 4054. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2006, pp. 63–77.

[175] T. Kalibera, L. Bulej, and P. Tuma. “Automated detection of performance re-
gressions: the mono experience”. In: Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2005. 13th IEEE International
Symposium on. IEEE, 2005, pp. 183–190.

[176] T. Kalibera, L. Bulej, and P. Tuma. “Quality Assurance in Performance: Eval-
uating Mono Benchmark Results”. In: Quality of Software Architectures and
Software Quality. Ed. by R. Reussner, J. Mayer, J. Stafford, S. Overhage,
S. Becker, and P. Schroeder. Vol. 3712. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2005, pp. 271–288.

[177] L. Bulej, T. Kalibera, and P. Tuma. “Repeated results analysis for middleware
regression benchmarking”. In: Performance Evaluation 60.1âĂŽÄì4 (2005).
Performance Modeling and Evaluation of High-Performance Parallel and Dis-
tributed Systems, pp. 345 –358.

[178] P. Media. Phoromatic Web Application (Beta). 2014. URL: http://www.
phoromatic.com/ (visited on Jan. 15, 2014).

[179] B. Rochwerger, D. Breitgand, E. Levy, a. Galis, et al. “The Reservoir model and
architecture for open federated cloud computing”. In: IBM Journal of Research
and Development 53.4 (July 2009), 4:1–4:11.

218

http://www.mono-project.com/
http://www.phoromatic.com/
http://www.phoromatic.com/

Literature

[180] J. Matthews, T. Garfinkel, C. Hoff, and J. Wheeler. “Virtual Machine Contracts
for Datacenter and Cloud Computing Environments”. In: Proceedings of the
1st Workshop on Automated Control for Datacenters and Clouds. ACDC ’09.
Barcelona, Spain: ACM, 2009, pp. 25–30.

[181] A. Dastjerdi, S. Tabatabaei, and R. Buyya. “An Effective Architecture for
Automated Appliance Management System Applying Ontology-Based Cloud
Discovery”. In: Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on. IEEE, 2010, pp. 104–112.

[182] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and V. Bala.
“Opening black boxes: using semantic information to combat virtual machine
image sprawl”. In: Proceedings of the fourth ACM SIGPLAN/SIGOPS inter-
national conference on Virtual execution environments. VEE ’08. Seattle, WA,
USA: ACM, 2008, pp. 111–120.

[183] G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang. “Virtual Machine
Images As Structured Data: The Mirage Image Library”. In: Proceedings of the
3rd USENIX Conference on Hot Topics in Cloud Computing. HotCloud’11.
Portland, OR: USENIX Association, 2011, pp. 22–22.

[184] R. Filepp, L. Shwartz, C. Ward, R. Kearney, K. Cheng, C. Young, and Y.
Ghosheh. “Image selection as a service for cloud computing environments”.
In: Service-Oriented Computing and Applications (SOCA), 2010 IEEE Inter-
national Conference on. IEEE, 2010, pp. 1 –8.

[185] K. Magoutis, M. Devarakonda, N. Joukov, and N. G. Vogl. “Galapagos: Model-
driven discovery of end-to-end application-storage relationships in distributed
systems”. In: IBM Journal of Research and Development 52.4.5 (2008), pp. 367
–377.

[186] IBM. Tivoli Application Dependency Discovery Manager. 2012. URL: http:
//www- 01.ibm.com/software/tivoli/products/taddm/
(visited on May 26, 2012).

[187] M. S. Wilson. “Constructing and managing appliances for cloud deployments
from repositories of reusable components”. In: Proceedings of the 2009 confer-
ence on Hot topics in cloud computing. HotCloud’09. San Diego, California:
USENIX Association, 2009, pp. 1–5.

[188] H. Liu. “Rapid application configuration in Amazon cloud using configurable
virtual appliances”. In: Proceedings of the 2011 ACM Symposium on Applied
Computing. SAC ’11. TaiChung, Taiwan: ACM, 2011, pp. 147–154.

[189] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. “Information and control in
gray-box systems”. In: ACM SIGOPS Operating Systems Review. Vol. 35. 5.
New York, NY, USA: ACM, 2001, pp. 43–56.

219

http://www-01.ibm.com/software/tivoli/products/taddm/
http://www-01.ibm.com/software/tivoli/products/taddm/

Literature

[190] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. “Sandpiper: Black-box
and gray-box resource management for virtual machines”. In: Computer Net-
works 53.17 (2009), pp. 2923–2938.

[191] M. R. Endsley. “Level of automation effects on performance, situation aware-
ness and workload in a dynamic control task”. In: Ergonomics 42.3 (1999).
PMID: 10048306, pp. 462–492.

[192] R Parasuraman, T. B. Sheridan, and C. D. Wickens. “A model for types and lev-
els of human interaction with automation.” In: IEEE transactions on systems,
man, and cybernetics. Part A, Systems and humans : a publication of the IEEE
Systems, Man, and Cybernetics Society 30.3 (May 2000), pp. 286–97.

[193] M. R. Endsley. “Level of Automation: Integrating Humans and Automated Sys-
tems”. In: Proceedings of the Human Factors and Ergonomics Society Annual
Meeting 41.1 (1997), pp. 200–204.

[194] R. L. Keeney and H Raiffa. Decisions with multiple objectives. Cambridge
Books. Cambridge University Press, 1993.

[195] T. Saaty. Theory and Applications of the Analytic Network Process - Decision
Making with Benefits, Opportunities, Costs, and Risks. Ed. by T. Saaty. RWS
Publications, USA, 2005, p. 352.

[196] F. Pardee, T. Kirkwood, K. MacCrimmon, J. Miller, C. Phillips, J. Ranftl, K.
Smith, and D. Whitcomb. “Measurement and evaluation of transportation sys-
tem effectiveness”. In: RAND Memorandum. RAND Corporation, USA, 1969.

[197] D. Baker, D. Bridges, R. Hunter, G. Johnson, J. Krupa, J. Murphy, and K.
Sorenson. “Guidebook to decision-making methods”. In: Washington DC: US
Department of Energy. WSRC-IM-2002-00002 (2001).

[198] T. Saaty. “Decision making—the analytic hierarchy and network processes
(AHP/ANP)”. In: Journal of systems science and systems engineering 13.1
(2004), pp. 1–35.

[199] J. Karlsson, S. Olsson, and K. Ryan. “Improved practical support for large-scale
requirements prioritising”. English. In: Requirements Engineering 2.1 (1997),
pp. 51–60.

[200] J. Hicklin, C. Moler, P. Webb, R. F. Boisvert, B. Miller, R. Pozo, and K. Rem-
ington. JAMA : A Java Matrix Package. 2014. URL: http://math.nist.
gov/javanumerics/jama/ (visited on Mar. 27, 2014).

[201] Google, Inc. Google AppEngine. 2014. URL: https : / / appengine .
google.com/ (visited on Mar. 27, 2014).

[202] Google, Inc. Google Web Toolkit. 2014. URL: http://www.gwtproject.
org (visited on Mar. 27, 2014).

[203] Isomorphic Software. SmartGWT. 2014. URL: https://code.google.
com/p/smartgwt/ (visited on Mar. 27, 2014).

220

http://math.nist.gov/javanumerics/jama/
http://math.nist.gov/javanumerics/jama/
https://appengine.google.com/
https://appengine.google.com/
http://www.gwtproject.org
http://www.gwtproject.org
https://code.google.com/p/smartgwt/
https://code.google.com/p/smartgwt/

Literature

[204] M. Menzel, M. Schönherr, and S. Tai. “(MC2)2: Criteria, Requirements and a
Software Prototype for Cloud Infrastructure Decisions”. In: Software: Practice
and Experience (2011).

[205] M. Menzel and R. Ranjan. “CloudGenius: Decision Support for Web Server
Cloud Migration”. In: Proceedings of the 21st International Conference on
World Wide Web. ACM. Lyon, France: ACM, 2012, pp. 979–988.

[206] S. Hove and B. Anda. “Experiences from conducting semi-structured inter-
views in empirical software engineering research”. In: Software Metrics, 2005.
11th IEEE International Symposium. IEEE, 2005, 10 pp.–23.

[207] P. Media. OpenBenchmarking.org. 2014. URL: http : / / www .
openbenchmarking.org (visited on Mar. 27, 2014).

[208] Object Management Group. Business Process Model and Notation (BPMN)
Specification, Version 2.0. 2011. URL: http://www.omg.org/spec/
BPMN/2.0/ (visited on Sept. 12, 2013).

[209] Vaadin Ltd. Vaadin Java Framework. 2014. URL: https://vaadin.com
(visited on Mar. 27, 2014).

[210] The Apache Software Foundation. Apache Tomcat. 2014. URL: http : / /
tomcat.apache.org/ (visited on Mar. 27, 2014).

[211] Oracle Corporation. MySQL Database System. 2014. URL: http://www.
mysql.com/ (visited on Mar. 27, 2014).

[212] Sauron Software. cron4j. 2014. URL: http://www.sauronsoftware.
it/projects/cron4j/ (visited on Mar. 27, 2014).

[213] PassMark Software. CPU List. 2014. URL: http://www.cpubenchmark.
net/ (visited on Mar. 27, 2014).

[214] PassMark Software. PassMark Software - PC Benchmark and Test Software.
2011. URL: http://www.passmark.com/ (visited on Feb. 4, 2011).

[215] S. Haak and M. Menzel. “Autonomic Benchmarking for Cloud Infrastructures:
An Economic Optimization Model”. In: Proceedings of the 1st ACM/IEEE
workshop on Autonomic computing in economics. ACM. Karlsruhe, Germany:
ACM, 2011, pp. 27–32.

[216] Puppet Labs, Inc. Puppet Facter. 2014. URL: http : / / projects .
puppetlabs.com/projects/facter (visited on Jan. 15, 2014).

[217] M. Menzel, M. Klems, H. A. Le, and S. Tai. “A Configuration Crawler for Vir-
tual Appliances in Compute Clouds”. In: Proceedings of the 1st International
Conference on Cloud Engineering (IC2E). IEEE. San Francisco, USA: IEEE,
2013, pp. 201–209.

221

http://www.openbenchmarking.org
http://www.openbenchmarking.org
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
https://vaadin.com
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.mysql.com/
http://www.mysql.com/
http://www.sauronsoftware.it/projects/cron4j/
http://www.sauronsoftware.it/projects/cron4j/
http://www.cpubenchmark.net/
http://www.cpubenchmark.net/
http://www.passmark.com/
http://projects.puppetlabs.com/projects/facter
http://projects.puppetlabs.com/projects/facter

Literature

[218] A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox, and D. A. Patterson. “Rain: A
workload generation toolkit for cloud computing applications”. In: Electrical
Engineering and Computer Sciences University of California at Berkeley, White
paper UCB/EECS-2010-14 (2010).

222

C: 40
M: 2
Y: 10
K: 0

C: 76
M: 47
Y: 30
K: 5

ISBN 978-3-7375-5175-5

C: 40
M: 2
Y: 10
K: 0

C: 76
M: 47
Y: 30
K: 5

Comparative
Assessment of Cloud

Compute Services using
Run-Time Meta-Data

Michael Menzel
M

ic
ha

el
 M

en
ze

l:
Co

m
pa

ra
tiv

e
As

se
ss

m
en

t o
f C

lo
ud

 C
om

pu
te

 S
er

vi
ce

s u
si

ng
 R

un
-T

im
e

M
et

a-
D

at
a

	Titlepage
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Motivation
	Comparative Assessments
	Performance of Compute Services
	Virtual Machine Images

	Research Questions
	Research Methodology
	Contributions
	Published Material
	Thesis Organization

	Foundations
	Background
	Cloud Compute Services
	Definition of Cloud Computing
	Virtualization
	Consumption of Cloud Compute Services

	Compute Service Meta-Data
	Performance of Compute Services
	VM Images

	Formal Decision-Making
	Multi-Criteria Decision-Making (MCDM)
	The Analytic Hierarchy Process (AHP)

	Theory of Optimal Stopping
	Stopping Problems
	Stopping Rules

	State of the Art and Related Work
	Compute Service Meta-Data Management
	Comparative Assessments of Compute Services
	Assessments of Compute Services
	Comparisons of Compute Services

	Compute Service Performance Measurements and Comparisons
	Compute Service Performance Benchmarking
	Automation and Repetition of Performance Benchmarks

	Virtual Machine Image Introspections and Comparisons
	VM Image Meta-Data Attachment
	Introspection of VM Image Meta-Data

	Conceptual Framework
	Framework for Comparative Assessments of Cloud Compute Services
	Introduction & Overview
	Relations Between Models & Methods
	Extensibility of the Framework

	Meta-Data Model
	Run-time Assessment Automation Model
	Scoring Method
	MADM for Value Aggregation
	Evaluations with the (MC2)2
	Local Scoring
	Global Scoring

	Cost Budgeting Stopping Rule
	Cost Calculation
	Compute Service Scores & Ordering
	Stopping Rules

	Software Prototype implementing the Scoring Method
	Evaluation of the MADM-based Scoring Method
	Case Study with the Industry
	Computational Complexity

	Instantiation
	Assessments of Compute Service Performance at Run-time
	Automated Performance Benchmarking of Compute Services
	Automated Performance Benchmarking Procedure
	Repetitions and Benchmarking Result Aggregation
	Data Model for Roadmap Scheduling and Measurement Results
	Process Model for Using the Automated Benchmarking Procedure
	Costs, Timeliness & Target Audience

	Compute Service Performance Scoring
	Scoring for Performance Meta-Data
	Aggregation Scheme Requirements
	Weighted Compute Service Performance Scores

	Performance Benchmarking with the Cost Budgeting Stopping Rule
	Cost Calculation
	Performance Scores as Observation of Compute Services
	Compute Service Order and Prior Information
	Configuration of the Stopping Rule

	Software Prototype for Automated Compute Service Performance Benchmarking with Stopping Rule
	LibIntelliCloudBench Library
	Web Application

	Evaluation of the Automated Performance Benchmarking Method
	Validation of the Automated Performance Benchmarking Approach
	Comparison to the State of the Art
	Results of the Promptitude Measurements
	Statistics for AWS EC2 Compute Services

	Evaluation of the Performance Benchmarking Stopping Rule
	Validation of the Performance Benchmarking Stopping Rule
	Comparison to Standard Stopping Rules

	Assessments of Virtual Machine Image Contents at Run-time
	Virtual Machine Image Meta-Data Model
	Introspection of Virtual Machine Images
	Automated VM Image Introspection Procedure
	Discoverer Component
	Crawler Component

	Search and Comparison of Virtual Machine Images
	Software Prototype for Virtual Machine Image Introspection
	Crawler Script
	Web Application

	Evaluation of the VM Image Introspection Method
	Validation of the VM Image Introspection Approach
	Results of the Promptitude Measurements
	Statistics for AWS EC2 Compute Services

	Finale
	Conclusions, Discussion & Outlook
	Conclusions
	Discussion & Outlook

	Appendix
	Performance Meta-Data on Compute Service Websites
	Implementation Details & Code Examples
	Example of AotearoaLib Programming Interface
	Excluded Micro-benchmarks in LibIntelliCloudBench

	Original Interview Form for a MADM Software Prototype

