
Computing Flow-Inducing Network Tolls

Tobias Harks∗ Guido Schäfer† Martin Sieg∗

∗ Institut für Mathematik, Technische Universität Berlin, Germany
{harks,msieg}@math.tu-berlin.de

† Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
g.schaefer@cwi.nl

Abstract
We consider the problem of computing tolls in non-atomic network routing games such

that a predetermined flow is realized as Nash flow. It is a well-known fact that marginal cost
tolls give rise to a Nash flow that minimizes the total travel time. In this paper, we study the
problem of computing such tolls such that an additional toll-dependent objective function is
optimized. We consider a broad class of objective functions, including convex and min-max
functions, and show that such tolls can be computed in polynomial time. We also consider
the problem of computing tolls such that the number of tolled arcs is minimized. We prove
that this problem is NP-hard and APX-hard, even for very restricted single-commodity
networks, and give first approximation results. Finally, we empirically evaluate the perfor-
mance of our approximation algorithm on a set of real-world test instances.

1 Introduction

It is a well known fact that selfish behavior results in outcomes that are inefficient in general.
A prime example is the rush-hour phenomenon observed in urban road traffic. Since every
traffic participant solely aims at minimizing her individual travel time, the overall outcome is
less efficient, e.g., in terms of the total average travel time, as if everybody would have been
routed according to a centrally coordinated routing scheme. With the increasing number of
traffic participants, the regulation of traffic becomes an increasingly important issue. One of the
most promising means to regulate traffic is to impose tolls on roads. The basic idea is to impose
tolls that guarantee that the selfish outcome corresponds to a predetermined routing scheme,
e.g., one that minimizes the total average travel time. In this paper, we consider the problem of
computing such tolls that additionally optimize a toll-dependent objective function.

A potential example scenario that fits into our framework is that a central authority (e.g.,
the state) aims for installing a toll-system to regulate traffic, thereby minimizing the total tolls
charged to the participants. Alternatively, the goal might be to minimize the total installation
cost of the facilities (toll-booths) needed to collect the tolls. Yet another application is that of
a navigational systems provider that wishes to dynamically reroute some of his customers (e.g.,
due to some emerging congestion) according to a specific, centrally computed routing scheme.
Nowdays, modern navigation devices feature bidirectional data communication and the provider
can thus effectuate this routing scheme by sending appropriate “tolls” to the devices of the
respective customers. These tolls are then used to update the estimated travel time data stored
on the devices. Hereby, the transmission cost is proportional to the total amount of data sent
to the customers. A natural objective is thus to compute tolls such that the sum of the tolls is
minimized.

1

Network Routing Games. A standard way to model the selfish behavior of the traffic par-
ticipants is by means of a non-atomic network routing game. We are given a directed network
G = (V,A) and k commodities (s1, t1), . . . ,(sk, tk) ∈ V ×V . Let n and m refer to the number of
vertices and arcs in G, respectively. Additionally, we are given a demand ri > 0 for every com-
modity i ∈ [k] which specifies the amount of flow that has to be routed from the origin si to the
destination ti. Let Pi be the set of all (simple) directed si, ti-paths in G and define P =∪i∈[k]Pi.
It is convenient to express a flow as a function f : P → R+ that assigns to every path P ∈P a
non-negative flow-value fP that is routed along P. A flow f is feasible (with respect to r) if for
every commodity i ∈ [k], a total of ri units of flow are routed from si to ti, i.e., for every i ∈ [k],
∑P∈Pi

fP = ri. For a given flow f , we define the flow on an arc a ∈ A as fa = ∑P3a fP. Every arc
a∈ A has a latency function `a : R+ →R+ associated with it. For each a∈ A the latency function
`a is assumed to be nonnegative, nondecreasing and differentiable. If not indicated otherwise,
we also assume that `a is a standard latency function (cf. [19]), i.e., `a is defined on [0,∞) and
x`a(x) is a convex function of x. The latency `P(f) of a path P with respect to a flow f is defined
as the sum of the latencies of the arcs in the path, i.e., `P(f) = ∑a∈A `a(fa). The triple (G,r, `) is
called an instance.

The total cost of a flow f is defined as C(f) = ∑P∈P fP`P(f) or, equivalently, C(f) =
∑a∈A fa`a(fa). A feasible flow of minimum total cost is called optimal and denoted by f ∗. A
feasible flow f is a Nash flow iff

∀i ∈ [k], ∀P ∈Pi, fP > 0, ∀P′ ∈Pi : `P(f)≤ `P′(f). (1)

That is, for every commodity the latency of every path that carries some positive amount of flow
is minimum; in particular, this implies that all si, ti-paths to which f assigns a positive amount of
flow have equal latency. Under the assumption that all latency functions are standard, the cost of
a Nash flow is unique, i.e., if f1 and f2 are Nash flows for the same instance then C(f1) = C(f2)
(see e.g. [20]). The price of anarchy is defined as the worst-case ratio (over all instances) of the
cost of a Nash flow and the cost of an optimal flow, i.e., C(f ∗)/C(f). It is well-known (see [20])
that the price of anarchy is unbounded for general standard latency functions.

Network Toll Problems. An efficient means to reduce the price of anarchy in network routing
games is by deploying network tolls. Intuitively, every (non-atomic) player that traverses arc
a ∈ A incurs, besides the latency `a(fa), an additional (non-negative) toll cost. We represent the
tolls of a given network by a non-negative vector τ = (τa)a∈A, where τa specifies the toll that is
imposed on arc a∈A. We assume that players are heterogeneous. That is, we are given a positive
parameter γi for every commodity i ∈ [k] and the total cost of a path P ∈Pi with respect to a
feasible flow f is defined as `P(f)+ γiτ(P), where τ(P) := ∑a∈P τa. The parameter γi therefore
specifies how the players of commodity i value latency relative to cost. We say that players are
homogeneous if γi = 1 for all i ∈ [k].

A question that arises is whether we can efficiently compute non-negative network tolls
τ = (τa)a∈A such that a predetermined feasible flow f can be realized as Nash flow, i.e.,

∀i ∈ [k], ∀P ∈Pi, fP > 0, ∀P′ ∈Pi : `P(f)+ γiτ(P)≤ `P′(f)+ γiτ(P′). (2)

We call such tolls f -inducing. The problem of computing tolls that induce an optimal flow f ∗ is
of particular interest and we call such tolls opt-inducing.

It is well known (see, e.g., Smith [21]) that if latency functions are standard, opt-inducing
tolls are guaranteed to exist for homogeneous players: f ∗ is an optimal flow iff f ∗ is a Nash flow
with respect to the marginal latency functions `∗a(x) = `a(x) + x · `′a(x). Thus, we can simply
define the marginal cost tolls as

τa = f ∗a · `′a(f ∗a) for every arc a ∈ A. (3)

2

Note that since we assume that all latency functions are non-decreasing, τa ≥ 0.
Although marginal cost tolls assure that opt-inducing network tolls always exist, there might

be a wide variety of such tolls.
In this paper, we are interested in computing f -inducing network tolls, such that an addi-

tional (toll-dependent) objective function z(τ) is minimized (or maximized). There are several
natural objective functions that one may want to consider. Here we mainly concentrate on the
following fundamental objective functions:

1. Min-Convex Toll Problem (MCT): The goal is to compute f -inducing network tolls τ =
(τa)a∈A such that a convex objective function z(τ) is minimized.

2. Min-Max Toll Problem (MMT): The goal is to compute f -inducing network tolls τ =
(τa)a∈A such that the maximum toll on any arc is minimized, i.e., z(τ) = maxa∈A τa.

3. Min-Toll-Booth Problem (MTB): The goal is to compute f -inducing network tolls τ =
(τa)a∈A such that the sum of the weights of arcs with positive tolls is minimized. Formally,
for a given toll vector τ define Z(τ) := {a ∈ A : τa > 0} as the support of τ . The task
then is to compute f -inducing network tolls τ such that z(τ) := ∑a∈Z(τ) wa is minimized,
where (wa)a∈A are some given weights.

We remark that the min-convex toll problem subsumes several natural objective functions.
For example, in the min-revenue toll problem the goal is to compute opt-inducing network tolls
such that the total collected revenue ∑a∈A f ∗a τa is minimized (see also [9, 10]). Another example
is the min-total toll problem, where the goal is to compute tolls such that the sum of all tolls
∑a∈A τa is minimized.

Our Results. In this paper, we study different variants of the network toll problems defined
above. In particular, our main contributions are as follows:

1. We prove that a very restricted special case of the min-toll-booth problem for single-
commodity instances is polynomial time equivalent to the minimum L-length bounded
cut problem (definitions will be given in Section 2). This result enables us to prove that
the min-toll-booth problem is NP-hard and APX-hard, even for very restricted single-
commodity instances. While constant approximation algorithms may still be obtainable
in the single-commodity case, we rule out there existence for the multi-commodity min-
toll-booth problem. Via a reduction from the directed multicut problem, we show that the
min-toll-booth problem cannot be approximated within a factor of 2Ω(log1−ε n) for every
ε > 0.

2. We derive a very simple approximation algorithm for the min-toll-booth problem. The al-
gorithm achieves an (instance-dependent) approximation factor that depends on the largest
toll in an optimal solution, which might thus be difficult to quantify. However, this is the
first approximation algorithm for the general problem and our experiments show that it
performs quite well on real-world instances.

3. We present experimental findings on real-world instances for some special cases of the
min-convex toll problem and the min-toll-booth problem. The experiments show that
our approximation algorithms perform much better in practice than their worst-case ap-
proximation guarantees suggest. For most of the test instances, our algorithms compute
solutions whose cost is at most a factor 4 worse than that of an optimal solution.

3

Related Work. Pigou [18] already suggested in 1920 that in order to obtain a system optimal
traffic pattern vehicles should be charged taxes equal to the difference between marginal social
and marginal private cost (marginal cost pricing). The theoretical foundation of marginal cost
pricing has been further explored by many researchers, see for example Knight [16], Beckmann
et al. [3] and Smith [21].

There is a large body of work in the transportation literature (see, among others, Bergen-
dorff et al. [5], Hearn and Ramana [14], Larsson and Patriksson [17]) that characterized the set
of feasible arc tolls supporting a system optimal flow as a user equilibrium by a non-empty poly-
hedron expressed in terms of a linear inequality and equality system. These works, however, did
not derive a compact representation of this polyhedron for heterogeneous users.

Hearn and Ramana [14] also proposed secondary optimization problems, where the objective
is to minimize (maximize) a toll dependent function over the respective toll polyhedron. In
particular, they were the first to study the min-toll-booth problem. Dial [9, 10] proposed efficient
algorithms for finding tolls that minimize the total revenue.

Much recent work addressed the setting of heterogeneous users, where different users may
have different trade-offs for delay versus toll. In this setting, one can exploit linear-programming
duality to obtain tolls that induce an optimal flow, even for multi-commodity flows, see Cole et
al. [8], Fleischer et al. [11] and Swamy [22].

Fleischer et al. [11] give a description of f -inducing tolls via linear programming techniques
and derive sufficient and necessary conditions for their existence. They encode the Nash flow
conditions in (1) by means of the complementary slackness conditions of a linear program and
its dual. Independently, Karakostas et al. [15] proved existence of opt-inducing tolls for hetero-
geneous users and elastic demands.

2 Path-Raising Problem

Given a network routing game instance I = (G,r, `), parameters (γi)i∈[k] and a feasible flow f
for I, we can characterize the set of all feasible f -inducing network tolls for heterogeneous
players by using the Nash flow characterization in (2). That is, a toll vector τ is f -inducing iff
for every commodity i ∈ [k], every si, ti-path P carrying a positive amount of flow fP > 0 is a
shortest path with respect to the cost function `+γiτ . This observation gives rise to the following
optimization problem: Suppose we are given a directed network G = (V,A) with non-negative
arc-costs (ca)a∈A, k commodities (si, ti)i∈[k], parameters (γi)i∈[k], and a set P̄i of designated
(simple) si, ti-paths for every commodity i ∈ [k]. The path-raising problem (PR) is to compute
non-negative arc-offsets α = (αa)a∈A minimizing a given objective function z(α) such that for
every commodity i ∈ [k], all paths in P̄i are shortest paths (among the paths in Pi) with respect
to the cost function c+ γiα . More formally, we want to solve the following program:

min z(α) subject to α ∈L , (4)

where L is the set of feasible arc-offsets defined as

L := {α ∈ Rm
≥0 : c(P)+ γiα(P)≤ c(P′)+ γiα(P′) ∀P ∈ P̄i, ∀P′ ∈Pi, ∀i ∈ [k]}. (5)

This program generalizes all toll problems introduced in Section 1: For a given instance
I = (G,r, `), parameters (γi)i∈[k] and a feasible flow f for I, define ca := `a(fa) and let P̄i :=
{P ∈Pi : fP > 0} be the set of all paths of commodity i ∈ [k] that carry positive flow. Clearly,
the computed arc-offsets (αa)a∈A correspond to the network tolls (τa)a∈A associated with the
arcs.

4

Compact Formulation. We next develop a compact formulation of the set L of feasible arc-
offsets for the path-raising problem.

For every i ∈ [k], we define

Āi := {a ∈ A : a ∈ P for some P ∈ P̄i}.

We prove that the set L of feasible arc-offsets defined in (5) can be described by the following
system of linear constraints:

F := {α ∈ Rm
≥0 : δi,v ≤ δi,u + cuv + γiαuv ∀uv ∈ A\ Āi, ∀i ∈ [k]

δi,v = δi,u + cuv + γiαuv ∀uv ∈ Āi, ∀i ∈ [k]
δi,u free ∀u ∈V, ∀i ∈ [k]}.

(6)

Proposition 1. The descriptions of feasible arc-offsets given in (5) and (6) are equivalent. In
particular, F is a compact formulation of the path-raising problem.

Proof. Suppose α = (αa)a∈A ∈L . Fix an arbitrary commodity i ∈ [k]. Let δi,u be the shortest-
path distance in G from si to u ∈ V with respect to the cost function c + γiα . Note that these
distances must exist since G does not contain any negative cost cycles and γiαa ≥ 0 for all a∈ A.
One can easily verify that α ∈F with (δi,u)i∈[k],u∈V being the corresponding labels.

Conversely, suppose α ∈F and let (δi,u)i∈[k],u∈V be the corresponding labels. Note that these
labels remain feasible with respect to α if we add the same constant to all labels of commodity
i. We can thus adjust these labels such that δi,si

= 0 for every i ∈ [k]. Fix an arbitrary commodity
i ∈ [k]. The constraints of commodity i now imply that (δi,u)u∈V define shortest-path distances
from si to every vertex u ∈ V and that all arcs of the paths in P̄i are tight. That is, all paths in
P̄i are shortest paths with respect to c+ γiα and thus α ∈L .

The number of constraints and variables needed to define F is polynomially bounded in
the size of the input instance and thus F is a compact description of the set of all feasible
arc-offsets.

Cole et al. [8] give a similar description of F for single-commodity instances. Fleischer
et al. [11] give a compact description of F for multi-commodity instances by relying on linear
programming duality. They also proved that the set F is nonempty for flows f minimizing a
function w : R|A|→ R+, which is nondecreasing in each of its arguments. Thus, it follows that
opt-enforcing flows exist.

Polynomial-Time Solvability. We conclude that the path-raising problem can be solved in
polynomial time whenever the objective function z is convex, e.g., by using the ellipsoid method
[13]. Moreover, efficient combinatorial algorithms exist if the objective function is linear: By
dualizing the (then) linear program (4), one obtains a multi-commodity min-cost flow problem
for which efficient combinatorial algorithms exist (see [1]). Also min-max (or max-min) objec-
tive functions can be solved efficiently by using a standard approach to formulate the respective
problem as a linear program.

Since the toll problems introduced in Section 1 can be formulated as path raising problems,
the above theorem immediately gives rise to the following corollary.

Corollary 1. The min-convex toll problem and the min-max toll problem can be solved in poly-
nomial time.

5

3 Min-Support Path-Raising Problem

In the previous section, we have shown that the set of feasible arc-offsets for the path-raising
problem can be described by a compact system of linear inequalities. We next consider a variant
of this problem where we want to minimize the sum of the weights of the arcs with positive arc-
offset. More formally, we are given a directed network G = (V,A) with non-negative arc-costs
(ca)a∈A and non-negative arc-weights (wa)a∈A, k commodities (si, ti)i∈[k], parameters (γi)i∈[k] and
a set P̄i of designated (simple) si, ti-paths for every commodity i ∈ [k]. The min-support path-
raising problem (MSPR) is to compute non-negative arc-offsets α = (αa)a∈A such that for every
commodity i∈ [k], all paths in P̄i are shortest paths with respect to the cost function c+γiα and
such that ∑a∈Z(α) wa is minimized, where Z(α) := {a ∈ A : αa > 0} is the support of α . Note
that the min-toll-booth problem is a special case of the min-support path-raising problem.

Hardness and Inapproximability. We consider the single-commodity case first. Let s and t
be the origin and destination of the commodity, respectively. We use P to denote the set of
directed s, t-paths. Moreover, let P̄ ⊆P be the subset of directed s, t-paths in G that we would
like to make shortest paths. Throughout this section, we assume that γ = 1.

As we will prove below, the min-support path-raising problem is hard even for the very
restricted case when P̄ consists of a single arc ā ∈ A from s to t, i.e., P̄ := {ā}. We call this
restricted variant the single-arc min-support path-raising problem. Intuitively, the goal is to raise
the cost of all paths P ∈P \{ā} with c(P) < c(ā) to at least c(ā), thereby minimizing the sum
of the weights of the arcs in the support. We will show that this problem is equivalent to the
minimum L-length bounded cut problem.

An instance of the minimum L-length bounded cut problem is given by a directed graph
G = (V,A) with non-negative arc-lengths (`a)a∈A, non-negative arc-capacities (ua)a∈A, an origin
s, a destination t, and a length bound L ≥ 0. Let P refer to the set of all (simple) directed
s, t-paths in G. Moreover, define P(L) ⊆ P as the set of directed s, t-paths whose length is
at most L, i.e., P(L) := {P ∈ P : `(P) ≤ L}. We call a subset C ⊆ A an L-length bounded
cut if there is no s, t-path of total length at most L left in the graph induced by the arc set A\C
or, equivalently, for every P ∈P(L) we have C∩P 6= /0. The capacity of a cut C is defined as
u(C) := ∑a∈C ua. The minimum L-length bounded cut problem is to find an L-length bounded
cut of minimum capacity.

Theorem 1. Every instance of the minimum L-length bounded cut problem can be reduced to
an instance of the single-arc min-support path-raising problem, and vice versa. Moreover, these
reductions preserve the objective function values.

Proof. Suppose we are given an instance Î = (Ĝ, `,u,(s, t),L) of the minimum L-length bounded
cut problem. We derive an instance I = (G,c,w,(s, t),γ = 1,{ā}) of the min-support path-raising
problem as follows: We first identify G = Ĝ, c = `, w = u and then augment G by adding a single
arc ā from s to t with cā = L + ε and wā = 1. Here ε > 0 is chosen sufficiently small such that
{P ∈P : c(P) < L+ε}= P(L). Consider a feasible L-length bounded cut C for Î. By defining
αa = M for a sufficiently large M if a ∈C and αa = 0 otherwise, we obtain feasible arc-offsets
α for I. Moreover, u(C) = ∑a∈Z(α) wa. Suppose α = (αa)a∈A are feasible arc-offsets for I. The
support Z(α) of α defines a feasible L-length bounded cut C satisfying ∑a∈Z(α) wa = u(C).

The reverse transformation is defined analogously: Let I = (G,c,w,(s, t),γ = 1,{ā}) be
an instance of the single-arc min-support path-raising problem. We construct an instance Î =
(Ĝ, `,u,(s, t),L) of the minimum L-length bounded cut problem as follows: We first identify
Ĝ = G, ` = c, u = w and then remove arc ā from Ĝ. We also define L = c(ā)−ε for a sufficiently

6

small ε . Now it is easy to verify that a solution α = (αa)a∈A is feasible for I iff Z(α) defines a
feasible L-length bounded cut C for Î. Moreover, ∑a∈Z(α) wa = u(C).

The decision problem of the minimum L-length bounded cut problem is to determine
whether for a given integer k there is a length bounded cut of capacity at most k. Baier et al.
[2] proved that this problem is NP-hard for series parallel graphs. Moreover, the authors show
that for any L ∈ {4, . . . ,bn1−εc} and arbitrary small 0 < ε < 1, the minimum L-length bounded
cut problem is NP-hard to approximate within a factor of 1.1377. Given the equivalence be-
tween the minimum L-length bounded cut problem and the single-arc min-support path-raising
problem (Theorem 1), we conclude:

Corollary 2. The single-arc min-support path-raising problem is NP-hard to approximate
within a factor of 1.1377 for instances with unit arc-weights. Moreover, the decision prob-
lem of the single-arc min-support path-raising problem is NP-hard for series-parallel graphs
with arbitrary arc-costs and arbitrary arc-weights.

We next show that the multicut problem can be reduced to the multi-commodity min-support
path-raising problem. Via this reduction, we are able to show that no algorithm can achieve an
approximation factor better than 2Ω(log1−ε n) for arbitrary ε > 0.

An instance of the directed multicut problem is given by a directed graph G = (V,A) and k
commodities (si, ti)i∈[k]. A multicut C ⊆ A is a subset of arcs, such that by removing C from G
there is no si, ti-path left for all i ∈ [k], or equivalently C∩P 6= /0 holds for each path P ∈ Pi
and each commodity i ∈ [k]. The minimum directed multicut problem is to find a multicut of
minimum cardinality.

Theorem 2. Every instance of the directed multicut problem can be reduced to an instance of
the multi-commodity min-support path-raising problem such that the objective function value is
preserved.

Proof. Consider an arbitrary instance Î = (Ĝ,(si, ti)i∈[k]) of the directed multicut problem. We
construct an instance I = (G,c,w,(si, ti)i∈[k],γ = 1,(Āi)i∈[k]) of the multi-commodity min-support

path-raising problem as follows: We first augment G = Ĝ by adding for each commodity i ∈ [k]
an auxiliary arc āi from si to ti. For each original arc we set ca = 0 and for the auxiliary arcs we
set cā = 1. Further we set w = 1 and Āi = {āi}.

Let C be a directed multicut for Î. Since C hits each si, ti-path, we obtain feasible arc-offsets
α for I by setting αa = 1 for every arc a∈C and αa = 0 otherwise. Clearly w(Z(α)) = |C| holds.

Conversely, let α∗ be optimal arc offsets for I. Since we added to G the auxiliary arcs āi, we
possibly generated additional si, ti-paths. By construction cāi

= 1 holds, therefore the cost of the
additional paths is at least one because they must contain at least one auxiliary arc. Accordingly,
α∗ satisfies α∗

āi
= 0 for each i ∈ [k]. If a path P ∈Pi contains none of the auxiliary arcs ā j, then

c(P) = 0 holds and P is also contained in Ĝ. Since α is feasible for I, there must exist some
a∈ P with αa > 0. Thus, the support Z(α∗) defines a multicut C for Ĝ with |C|= w(Z(α∗)).

Chuzhoy and Khanna [7] showed that the directed multicut problem cannot be approximated
within a factor of 2Ω(log1−ε n) for any constant ε > 0, even for directed acyclic graphs, unless
NP⊆ ZPP. Given the result in Theorem 2, we conclude that the hardness result carries over to
the multi-commodity min-support path-raising problem.

Corollary 3. The multi-commodity min-support path-raising problem cannot be approximated
within a factor of 2Ω(log1−ε n) for any constant ε > 0 for instances with unit-arc weights, unless
NP⊆ ZPP.

7

Approximation Algorithms. Using the results of the previous section, we can formulate the
min-support path-raising problem as a mixed integer program:

min ∑
a∈A

wa · za subject to α ∈ F

za ·M ≥ αa ∀a ∈ A
za ∈ {0,1} ∀a ∈ A.

(7)

A subtle point in this formulation is the choice of the parameter M. Consider an optimal solution
α to a given instance of the min-support path-raising problem and let M(α) be the maximum
arc-offset in α . Clearly, choosing M = M(α) is sufficient since this enforces that za = 1 if
αa > 0 and za = 0 otherwise. Ideally, we would like to choose M as small as possible, i.e., as the
minimum of M(α) over all possible optimal solutions α . However, despite some efforts, we are
not able to bound the value of M(α) in general. Our negative result (Theorem 3) implies that in
general M cannot be smaller than 2Ω(log1−ε n).

We present a very simple LP rounding approach (LPR) for the min-support path-raising
problem. The idea is to simply return an optimal solution α∗ = (α∗

a)a∈A of the following linear
program:

min
1
M ∑

a∈A
αawa subject to α ∈F . (8)

Note that α∗ can be computed efficiently.

Theorem 3. LPR is an M/λ -approximation algorithm for the multi-commodity min-support
path-raising problem, where λ := mina∈Z(α∗) α∗

a is the minimum positive arc-offset of an arc in
the computed solution α∗.

Proof. Consider the LP relaxation of the mixed integer program in (7). Note that for fixed arc-
offsets α = (αa)a∈A it is clear how to choose (za)a∈A in order to minimize the objective function,
namely za := αa/M for every arc a ∈ A. Thus, the LP relaxation of (7) is equal to the linear
program in (8).

Let Z∗ be the support of an optimal solution to the mixed integer program (7). Clearly,
1
M ∑a∈A α∗

a wa ≤ w(Z∗). Exploiting that for every arc a ∈ A with α∗
a > 0, α∗

a/λ ≥ 1, we obtain

w(Z(α∗)) = ∑
a∈Z(α∗)

wa ≤ ∑
a∈A

α∗
a

λ
wa =

M
λ
· 1

M ∑
a∈A

α
∗
a wa ≤

M
λ
·w(Z∗).

It is not hard to see that the arc-offsets of an optimal solution for (8) are integral if all arc-
costs are integral.

Corollary 4. Suppose all arc-costs are integral. Then, LPR is an M-approximation algorithm
for the multi-commodity min-support path-raising problem.

Although we are not able to quantify M in general, the above approximation algorithm turns
out to perform quite well on real-world instances, as described in the next section.

4 Experimental Results

In this section, we present our experimental findings on real-world instances. We considered
network toll problems that fall into the class of problems defined in Section 1. More specifically,
we want to compute opt-inducing tolls such that the following objectives are met:

8

• Min-Revenue Toll Problem (MRT): A special case of the min-convex toll problem with
objective function z(τ) = ∑a∈A f ∗a τa, where f ∗ denotes an optimal flow. That is, the goal
is to minimize the total tolls charged to the players.

• Min-Total Toll Problem (MTT): A special case of the min-convex toll problem with objec-
tive function z(τ) = ∑a∈A τa.

• Min-Num-Toll-Both Problem (MNTB): A special case of the min-toll-booth problem,
where all arcs have unit weight. That is, the goal is to compute feasible tolls such that
the number of arcs with positive tolls is minimized.

Our focus in the empirical evaluation is twofold: on the one hand side we study the structural
differences of toll vectors optimizing the above different objectives on real-world instances.
One would expect that optimal solutions (with respect to MRT, MTT, MNTB) do not differ
significantly if the set F of feasible tolls is small. It turns out, however, that on most of our test
instances, the quality of optimal solutions with respect to different objectives exhibits significant
varieties.

On the other hand, we are particularly interested in the quality of the LP rounding algorithm
(LPR) for the min-num-toll-both problem on real-world instances. While the provable worst-
case performance guarantee of LPR is quite weak (it depends on instance related parameters M
and λ in Theorem 3, the actual (instance-dependent) approximation ratio achieved on real-world
instances might be significantly better. Indeed, it turned out that for all instances for which we
could assess the value of an optimal solution for MNTB, the worst approximation ratio that we
observed was below 4. The average approximatio ratio of LPR was even below 1.5.

Network nodes arcs commodities

Anaheim 416 914 1406
Berlin – Friedrichshain 224 523 506

Mitte 398 871 1260
Prenzlauer Berg 352 749 1406
Tiergarten 361 766 644

Sioux Falls 24 76 528

Table 1: Assortment of TNTP data sets.

Data Sets. We used data sets from the Transportation Network Test Problems (TNTP)1, a
database originally set up to provide realistic data for the traffic assignment problem. The data
sets are only for academic research purposes and consist of several networks for different cities.
Also a trip file is given, specifying the commodities and demands. We selected the instances
listed in Table 4, see the appendix. The network file specifies parameters such as the length, free
flow travel time and the capacity of every arc. These parameters are used to determine the link
performance function. We used non-linear link performance functions, proposed by the Bureau
of Public Roads (BPR) [6]: `a(x) := free flow time ·

(
1+bias ·

(x
capacity

)4)
.

We solved the underlying traffic assignment problem with up to 0.01% precision using a
variant (CMCF) of the Frank-Wolfe algorithm [12].

1http://www.bgu.ac.il/ bargera/tntp

9

0

1

2

3

4

0 200 400 600 800

Anaheim

ρ

0

1

2

3

4

0 100 200 300 400

Friedrichshain

ρ

0

1

2

3

4

0 200 400 600 800

Mitte

ρ

0

1

2

3

4

0 200 400 600 800

Prenzlauer Berg

ρ

0

1

2

3

4

0 100 200 300 400

Tiergarten

ρ

0

1

2

3

4

0 50 100 150 200 250

Sioux Falls

ρ

Figure 1: Approximation ratio of LPR for single-commodity instances and |Z(α)|-objective.

Toll Solutions and Performance Measures. We compare four different toll solution concepts
in our empirical studies, one of which are the marginal cost tolls (MC) as defined in (3), while
the other three refer to optimal solutions of the respective optimization problems (MRT, MTT,
MNTB):

The computations have been carried out with CPLEX as solver running on a DualCore 64bit-
Opteron CPU with 2.6Ghz and 16GB RAM. We computed the respective tolls using CPLEX
11.0, except for the multi-commodity MNTB instances, for these we used the algebraic mod-
elling language AMPL linked to CPLEX 10.0 as solver.

Results for Single-Commodity Instances. For the single-commodity case, we used the fol-
lowing procedure; we split the original trip file into several single commodity instances. For
example the Sioux Falls instance has 528 commodities, which we separately used as single-
commodity instances. We multiplied for each commodity the demand with a factor of 100, since
the original demand would result in an all-or-nothing assignment on the shortest path. For each
instance, we solved the traffic assignment problem and used CPLEX as the solver for those so-
lutions where the optimal routing consisted of at least two flow carrying paths. The resulting
solutions for MC, MRT, LPR, MNTB with respect to the three objective functions ∑a∈A f ∗a αa,
∑a∈A αa and |Z(α)| are listed in Table 2, see the appendix. All entries are taken as the average
over all instances. We also tracked the average approximation factors (denoted by ρMRT, ρMTT
and ρMNTB) for all toll solutions with respect to the respective optimal solution.

Remarkably, the four different solution concepts exhibit significant differences with respect
to the considered objectives. While MC and MRT exhibit large average approximation factors
with respect to ∑a∈A αa and |Z(α)|, the performance guarantee of LPR does not exceed 1.4 for
all three objectives.

From an approximation-theoretic point of view, the most interesting question is, how well
the considered solution concepts perform (in particular our rounding scheme LPR) with respect

10

to the MNTB objective. Recall that the corresponding minimization problem is NP-hard and
APX-hard, see Corollary 2.

In Figure 1, the distribution of the approximation ratio of our rounding scheme LPR is il-
lustrated. For every network, the instances are ordered in decreasing order of the achieved
approximation factor. The worst-case approximation factor for all instances stays below 4. Most
notably, in more than 90% of all cases the approximation factor of LPR is even below 2.

Multi-Commodity Instances. Due to space limitations, we moved the results for multi-
commodity instances to the appendix.

References
[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network flows: theory, algorithms, and applications.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1993.

[2] G. Baier, T. Erlebach, A. Hall, E. Köhler, H. Schilling, and M. Skutella. Length-bounded cuts
and flows. In In Proc. 33rd International Colloquium on Automata, Languages and Programming
(ICALP), pages 679–690, 2006.

[3] M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics and Transportation.
Yale University Press, 1956.

[4] J.F. Benders. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik, 4(1):238–252, 1962.

[5] P. Bergendorff, D. Hearn, and M. Ramana. Congestion Toll Pricing of Traffic Networks. In
D.W. Hearn P. M. Pardalos and W.W. Hager, editors, Network Optimization, volume 450 of LNCS,
pages 51–71. Springer-Verlag, Berlin, 1997.

[6] Bureau of Public Roads. Traffic assignment manual. U.S. Department of Commerce, Urban Plan-
ning Division, Washington, DC, 1964.

[7] J. Chuzhoy and S. Khanna. Polynomial flow-cut gaps and hardness of directed cut problems. In
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 179–188.
ACM New York, NY, USA, 2007.

[8] R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous selfish users.
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 521–530,
2003.

[9] R. B. Dial. Minimal-revenue congestion pricing part i: A fast algorithm for the single-origin case.
Transportation Research Part B: Methodological, 33(3):189 – 202, 1999.

[10] R. B. Dial. Minimal-revenue congestion pricing part ii: An efficient algorithm for the general case.
Transportation Research Part B: Methodological, 34(8):645 – 665, 2000.

[11] L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users in multicommodity
networks and generalized congestion games. In FOCS ’04: Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science, pages 277–285, 2004.

[12] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-
terly, 3:95–110, 1956.

[13] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in combina-
torial optimization. Combinatorica, 1(2):169–197, 1981.

[14] D. Hearn and M. Ramana. Solving congestion toll pricing models. In P. Marcotte and S. Nguyen,
editors, Equilibrium and Advanced Transportation Modeling, pages 109–124. Kluwer Academic
Publishers, 1998.

11

[15] G. Karakostas and S. G. Kolliopoulos. Edge pricing of multicommodity networks for heterogeneous
selfish users. In FOCS ’04: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, pages 268–276, 2004.

[16] F. H. Knight. Some fallacies in the interpretation of social cost. The Quarterly Journal of Eco-
nomics, 38(4):582–606, 1924.

[17] T. Larsson and M. Patriksson. Side constrained traffic equilibrium models—analysis, computation
and applications. Transportation Research, 33B:233–264, 1999.

[18] A. C. Pigou. The Economics of Welfare. Macmillan, 1920.

[19] T. Roughgarden. Selfish Routing. PhD thesis, Cornell University, 2002.

[20] T. Roughgarden and É. Tardos. How bad is selfish routing? Journal of the ACM (JACM), 49(2):236–
259, 2002.

[21] M. J. Smith. The marginal cost taxation of a transportation network. Transportation Research Part
B: Methodological, 13(3):237–242, September 1979.

[22] C. Swamy. The effectiveness of Stackelberg strategies and tolls for network congestion games. In
Proc. of the 18th ACM-SIAM Symp. on Discrete Algorithms, pages 1133–1142, 2007.

12

A Results for Single-Commodity Instances

Marginal Cost Tolls (MC)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρMTB
Anaheim 3144048.5 1778.1072 75.7 1031.7926 50.0 13.5786
Friedrichshain 481307.5 4.3605 273.9 3.7018 26.6 6.6193
Mitte 962331.9 33.3132 414.6 31.0113 26.2 11.6327
Prenzlauer Berg 667645.9 10306.3146 247.9 5185.7609 26.4 10.1413
Tiergarten 335826.2 3730.1557 216.8 1913.5795 34.9 11.0141
Sioux Falls 3439785.3 4.6048 173.4 4.0697 22.1 4.1886

Minimum Revenue Tolls (MRT)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρMTB
Anaheim 21768.2 1.0 123.6 566063.86053 37.8 10.9773
Friedrichshain 82596.2 1.0 1507.4 133.3584 39.9 11.7170
Mitte 22236.4 1.0 1511.3 12724.9912 40.1 19.6010
Prenzlauer Berg 48326.0 1.0 1426.0 3965186.1138 39.1 16.9198
Tiergarten 99172.6 1.0 1903.1 8671408.3594 41.6 13.9845
Sioux Falls 334282.6 1.0 60.4 4.5380 10.5 2.3211

Minimum Total Tolls (LPR)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρMTB
Anaheim 21940.8 1.0101 3.7 1.0 6.3 1.1562
Friedrichshain 82596.2 1.0000 69.8 1.0 7.1 1.3867
Mitte 22236.4 1.0000 24.5 1.0 3.6 1.298
Prenzlauer Berg 48335.8 1.0006 41.3 1.0 4.4 1.3120
Tiergarten 99175.2 1.0001 73.3 1.0 6.3 1.3689
Sioux Falls 334282.6 1.0000 27.4 1.0 6.6 1.0680

Minimum Number of Toll-Booths Tolls (MNTB)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρMTB
Anaheim 22466.7 1.0228 26.6 3.3722 5.6 1.0
Friedrichshain 83615.7 1.0075 134.7 1.7963 5.3 1.0
Mitte 22425.3 1.0029 46.4 1.1157 2.8 1.0
Prenzlauer Berg 48414.2 1.0015 86.1 1.8164 3.5 1.0
Tiergarten 99949.8 1.0084 124.8 1.5363 4.6 1.0
Sioux Falls 334852.3 1.0040 36.4 1.4142 6.4 1.0

Table 2: Results on single-commodity instances with respect to the three different objectives; all
entries represent the average over the number of trials (commodities) per instance.

13

B Multi-Commodity Instances

While all linear programs for the single-commodity case have been solved up to optimality, see
Table 4, the mixed integer program (7) for MNTB for multi-commodity instances turned out to
be very hard to solve. Our first approach for MNTB has been to put a limit on running time of 24
hours for the multi-commodity instances. In each instance we provided the LPR-solution as an
initial solution for the mixed integer program. Yet, CPLEX was neither able to prove optimality
for these instances nor to deliver good lower bounds. We therefore adapted Bender’s algorithm
[4] to the min-support path-raising problemas described below.

B.1 Lower Bounds by Bender Cuts

Suppose we fix in the mixed integer program (7) the binary variables z to some value z̄∈ {0,1}m.
Then we have to decide if it is possible to find feasible arc-offsets α = (αa)a∈A such that αa > 0
implies z̄a = 1, i.e. to decide whether the following purely linear program is feasible:

min 0 ·α subject to α ∈ F
z̄a ·M ≥ αa ∀a ∈ A (9)

Since (9) is clearly bounded, Strong Duality implies that the primal problem (9) is infeasible
iff the dual linear program to (9) is unbounded.

Lemma 1. Given fixed values z̄a ∈ {0,1} for all a ∈ A, the linear program (9) is feasible if and
only if the following linear program (10) is bounded.

max −∑
a∈A

(
M · z̄a ·ga + ca ∑

i∈[k]
f i
a
)

subject to ∑
a∈δ+(v)

f i
a− ∑

a∈δ−(v)
f i
a = 0 ∀v ∈V,∀i ∈ [k]

∑
i∈[k]

f i
a−ga ≤ 0 ∀a ∈ A

f i
a ≥ 0 ∀a ∈ A\ Āi,∀i ∈ [k]

f i
a ∈ R ∀a ∈ Āi,∀i ∈ [k]

ga ≥ 0 ∀a ∈ A

(10)

Note that the feasible region of (10) does not depend on the concrete values of z̄. Sup-
pose (10) is unbounded, then we can can find an extreme ray r that leads to unboundedness,
more precisely denote by r(f i

a) the value of the variable f i
a respectively by r(ga) the value of

ga. Therefore, we can restate (7) with the constraints that none of the rays in (10) leads to
unboundedness. This yields the integer program (11), where each ray corresponds to a cut.

min ∑
a∈A

waza

subject to ∑
a∈A

(
M · r(ga) · za + ca ∑

i∈[k]
r(f i

a)
)
≥ 0 ∀ rays r

za ∈ {0,1} ∀a ∈ A

(11)

In general there are exponentially many rays, but we may be lucky that we only need to
generate a subset of these, in order to obtain an optimal solution. Benders’ algorithm for the
min-toll-booth problem works essentially like this: Starting with no cuts at all, in each iteration
we solve the integer program (11) and obtain a solution vector z. According to z we solve the
linear program (10). In case (10) is bounded, we return z as solution, otherwise we obtain a ray
and generate a cut for the next iteration. In each iteration, the value ∑a∈A za is a lower bound

14

instance cuts lower bound
Anaheim 53 24
Friedrichshain 213 23*
Mitte 62 19
Prenzlauer Berg 65 19
Tiergarten 139 17
Sioux Falls 1779 31

Table 3: Achieved lower bounds with Benders’ algorithm. Friedrichshain has been solved up to
optimality.

for the optimal solution. Since there are only finitely many rays, the procedure terminates in the
worst case after enumerating all of them.

The obtained lower bounds as also the number of generated cuts for each instance are listed
in Table 3. The Friedrichshain instance has been solved up to optimality. Remarkably, there
were just 213 iterations needed to obtain the optimal solution of 23 toll booths. t

For the larger instances Anaheim, Mitte and Prenzlauer Berg about 60 cuts have been gener-
ated. The obtained lower bounds are 24 resp. 19. To reduce the number of cuts needed, it would
be helpful to provide the obtained cuts by combinatorial means in order to exploit the underlying
network structure of the problem. It would be an interesting direction of future research, to give
a combinatorial characterization of the generated cuts.

B.2 Results for Multi-Commodity Instances

In Table 4 we compare the toll solutions for multi-commodity instances. The entry ρ∗MTB refers
to the approximation ratio with respect to the obtained lower bounds in Table 3. In terms of
approximation.theory, this factor is larger than the true value, yet it indicates that LPR performs
quite well compared to MRT and MC as solution concept. Despite the above mentioned compu-
tational deficiencies, the picture regarding the performance of the considered toll solutions does
not change when moving from single- to multi-commodity instances. LPR’s worst-case perfor-
mance factor with respect to MRT is bounded by 1.5. For MNTB it is proveably bounded by 2.5,
though the true value is most likely smaller. Thus, regardless of which performance measure is
targeted, LPR delivers a close to optimal performance on all multi-commodity instances consid-
ered in this paper. Conversely, MC and MRT exhibit significantly larger approximation factors
with respect to the objectives ∑a∈A αa and |Z(α)|. In contrast to the single-commodity case, MC
performs quite well with respect to the minimum revenue objective; the approximation factor
stays below 8.

15

Marginal Cost Tolls (MC)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρ∗MTB
Anaheim 444338.61 7.8050 57.74 3.0294 749 31.2083
Friedrichshain 188451.99 1.2200 294.21 1.1715 156 6.7826
Mitte 141011.62 1.5666 245.15 1.4098 269 14.1579
Prenzlauer Berg 256800.84 2.0045 352.42 1.7143 251 13.2105
Tiergarten 77082.92 2.0881 129.96 1.4556 277 16.2941
Sioux Falls 14457124.56 6.9996 1280.03 6.6720 76 2.4516

Minimum Revenue Tolls (MRT)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρ∗MTB
Anaheim 56930.19 1 1115.75 61.6868 266 11.0833
Friedrichshain 154477.87 1 5888.718 23.4489 156 6.7826
Mitte 90012.20 1 18514.88 106.4747 272 14.3158
Prenzlauer Berg 128113.88 1 15780.84 76.7663 252 13.2632
Tiergarten 36915.27 1 18049.11 202.1630 251 14.7647
Sioux Falls 2065417.12 1 197.46 1.0292 39 1.2581

Minimum Total Tolls (LPR)
instance ∑a f ∗a αa ρMRT ∑a αa ρMTT |Z(α)| ρ∗MTB
Anaheim 82275.39 1.4452 19.06 1 123 5.125
Friedrichshain 165449.86 1.0710 251.13 1 41 1.7826
Mitte 96639.32 1.0736 173.89 1 46 2.4211
Prenzlauer Berg 151950.43 1.1861 205.57 1 47 2.4737
Tiergarten 49756.32 1.3479 89.28 1 39 2.2941
Sioux Falls 2077467.65 1.0058 191.85 1 39 1.2581

Table 4: Results on multi-commodity instances with respect to the three different objectives;
values are rounded.

16

