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Abstract

The Riemann problem is a fundamental concept in the development of nu-

merical methods for the macroscopic flow equations. It allows the resolution

of discontinuities in the solution, such as shock waves, and provides a power-

ful tool for the construction of numerical flux functions. A natural extension

of the Riemann problem involves two phases, a liquid and a vapour phase

which undergo phase change at the material boundary. For this problem, we

aim at a comparison with the macroscopic solution from molecular dynamics

simulations. In this work, as a first step, the macroscopic solution of two

important Riemann problem scenarios, the supercritical shock tube and the

expansion into vacuum, were compared to microscopic solutions produced by

molecular dynamics simulations. High fidelity equations of state were used

to accurately approximate the material behaviour of the model fluid. The

results of both scenarios compare almost perfect with each other. During
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the vacuum expansion, the fluid obtained a state of non-equilibrium, where

the microscopic and macroscopic solutions start to diverge. A limiting case

was shown, where liquid droplets appeared in the expansion fan, which was

approximated by the macroscopic solution, assuming an undercooled vapour.

Keywords:

Riemann Problem, Real Gas, Supercritical fluid, Vacuum Riemann

Problem, Finite Volume, Molecular Dynamics Simulation

1. Introduction

The Riemann problem poses an initial value problem for a conservation

equation with piecewise constant initial data. In the numerical approxima-

tion of the compressible flow equations by finite volume (FV) schemes, it is

one of the basic building blocks. Because the FV schemes approximate the

integral conservation equations, they allow for discontinuities between the

grid cells. In his pioneering work, Godunov [1] proposed to use the solution

of the Riemann problem to determine the flux between the grid cells. Taking

into account the information about the waves generated by a discontinuity

establishes the robustness of such FV schemes, e.g., at shock waves or in

under-resolved regions of compressible fluid flows. Later, several approxima-

tions of the solution of the Riemann problem have been developed, which

preserve the advantageous properties of the Godunov scheme while reduc-

ing the computational effort. A comprehensive presentation of the Riemann

problem and its approximations is given by Toro in his book [2].

The solution of the Riemann problem in gas dynamics is well-known under

certain convexity constraints for the underlying equation of state (EOS).
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Here, the solution consists of four constant states that are separated by three

waves. The outer waves are shock waves or rarefaction waves, associated with

the characteristic wave speeds v− c and v+ c. The characteristic field of flow

transport v is linearly degenerate and exhibits a contact discontinuity, with

a constant pressure and velocity across it. Menikoff and Plohr [3] describe

wave structures that may occur if the standard convexity conditions are not

satisfied. Beside the classical waves, shock wave, rarefaction wave and contact

discontinuity, anomalous entities such as splitted waves or composite waves

may form. Near a phase transition, an additional wave that corresponds to the

phase interface appears in the wave structure of the Riemann problem. This is

possible because the hyperbolicity of the Euler equations breaks down in the

spinodal region of the state space and imaginary eigenvalues occur. To avoid

such non-physical states in the macroscopic solution, information from the

local thermodynamic behavior is needed and has to be incorporated into the

macroscopic solution of the Riemann problem. Some additional information

about local thermodynamic processes has to be formulated. One approach is

based on a so-called kinetic relation that controls the mass transfer across

the phase interface (see, e.g. LeFloch [4]). But the situation is not fully clear

up to now and even more unclear is the numerical modelling.

In the last decades, molecular dynamics simulations became more pow-

erful due to advanced algorithms and increasing computer efficiency. They

resolve matter down to the atomistic scale by treating every molecule individ-

ually as a mechanical object. A central role is being played by the force field

that describes the intermolecular interactions, like dispersion or repulsion

due to Pauli exclusion. Once assigned to the molecules, these interactions
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not only determine their individual trajectories under given boundary condi-

tions, but also contain, for a molecular ensemble, the entire set of thermody-

namic properties in a consistent manner. MD has a sound physical basis and

is thus a versatile approach that can be applied to a wide range of problems,

like adsorption, diffusion or evaporation. However, a drawback is the asso-

ciated computational effort. Newton’s equations of motion must be solved

numerically with a time step on the order of femtoseconds and the spatial

resolution is on the Ångström scale so that studying macroscopic processes

is challenging.

The objective of our research activities is to compare the macroscopic

modelling and the microscopic thermodynamic behavior. Hence, we compare

molecular dynamics (MD) simulations for Riemann problem scenarios with

macroscopic solutions. The most interesting situations are those, of course,

in which phase transitions occur and the macroscopic solutions depend on

the local thermodynamic modelling. To allow for a full correspondence of

the macro- and microscale solutions, the present MD simulations were based

on the Lennard-Jones model fluid with a truncated and shifted potential

(LJTS). For this model fluid, two highly accurate equations of states for the

macroscopic simulations are available: the empirical EOS by Thol et al. [5]

and the semi-empirical EOS by Heier et al. [6], which have similar mathemat-

ical properties as the van der Waals EOS. This gives the chance to directly

compare two topics. First, the macroscopic and the microscopic Riemann

problem solutions directly and then the molecular dynamics Riemann prob-

lem solution with results by a finite volume method on some appropriate

grid. We start here with a validation of this approach and consider Riemann
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problems in the supercritical regime without phase transition. The expansion

of a fluid into vacuum leads to simple simulation conditions for MD. Hence,

this is our second class of benchmark problems. Here, we see the following: if

the initial conditions are such that due to the strong pressure drop in the rar-

efaction fan, liquid droplets appear in MD simulations, then the macroscopic

simulations become more difficult to obtain due to instabilities. We assume

that we have to change the modelling of the macroscopic Riemann problem

solution and have to take phase transition in our numerical flux calculation

into account.

We restrict ourselves in this first paper to the description of the methods

and the validation of this approach. The interesting topic of the approxi-

mation of phase transition in macroscopic simulations is only touched. Our

research activities are embedded in the DFG collaborative research center

SFB-TRR 75 ”Droplets under extreme ambient conditions”. Hence, we have

the possibility to continue this research in the coming years, especially look-

ing at situations, in which phase transitions do occur. MD results for these

situations will be documented and compared with macroscopic simulations

that have to take phase transitions appropriately into account.

The structure of the paper is as follows. In Section 2, the continuum

equations, the EOS and the Riemann problem are introduced. The numerical

methods are discussed in Section 3. Results for a supercritical shock tube

Riemann problem and several vacuum Riemann problem scenarios are given

in Section 4, followed by a conclusion in Section 5.
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2. Theory

2.1. Equations of the Continuum System

The compressible Euler equations in one spatial dimension are written in

conservation form as

Ut + F (U)x = 0 , (1)

with

U =


ρ

ρv

ρe

 , F =


ρv

ρv2 + p

v (ρe+ p)

 . (2)

The variables are density ρ, velocity v and specific total energy e = ε+ 1
2
v2,

which is composed of the internal part ε and the kinetic part 1
2
v2. In addition

to the conservative state vector U, the primitive variables can be written as

a state vector W = (ρ, v, p)>, where p denotes the thermodynamic pressure.

An EOS is required as a closure relation between the variables pressure,

density and internal energy

ε = ε (ρ, p) ; p = p (ρ, ε) . (3)

In this study, we consider the Lennard-Jones model fluid with a truncated

and shifted potential (LJTS). Two highly accurate EOS are available in this

case: The empirical EOS by Thol et al. [5] and the semi-empirical EOS by

Heier et al. [6]. Both equations are fundamental EOS in terms of the reduced

Helmholtz free energy α. It can be decomposed into the contribution of a

monatomic ideal gas, α0 and a residual part, αr. Note that the superscript 0

always refers to a state described by the ideal gas law of a monatomic gas.

The Helmholtz free energy is given as a function of reduced density δ = ρ/ρc
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and inverse reduced temperature τ = Tc/T , where the subscript c indicates

the critical point,

a (ρ, T )

RT
= α(δ, τ) = α0(δ, τ) + αr(δ, τ). (4)

Using derivatives of Eq. (4), any thermodynamic quantity of interest can be

obtained directly. An overview of the necessary relations is provided in [7, 8].

Since these fundamental EOS are given in terms of density and temperature,

the closure condition for the Euler equations, Eq. (3), is not available in

a closed form. For that purpose, a Newton-Raphson method was used to

calculate the temperature iteratively for a given density and internal energy,

provided by the CFD method. With known density and temperature, all

other thermodynamic quantities can be calculated.

The EOS used in this study apply two different approaches expressing

the residual part αr. Thol et al. [5] provided a multiparameter EOS using the

framework of Span [9]. Here, the residual Helmholtz energy was described

by a sum of polynomial, exponential and Gaussian terms. The coefficients

were determined by a fitting procedure on the basis of reference data from

molecular dynamics simulations. This model is referred to as LJTS EOS in

this study. It is in excellent agreement with reference data, but the evaluation

of Eq. (4) is computationally costly. Furthermore, the occurrence of multiple

Van-der-Waals loops in the two-phase region may cause difficulties for root

finding algorithms. The PeTS EOS by Heier et al. [6] considers a framework

based on perturbation theory [10]. The residual Helmholtz energy was split

into the contribution of the reference potential and the contribution due to

perturbation. Compared to the LJTS EOS, its evaluation is computationally

cheaper and the presence of a single Van-der-Waals loop simplifies the usage
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of root finding algorithms. However, the PeTS EOS is somewhat less accu-

rate. Both EOS provide formulations [7, 8] to calculate the thermodynamic

properties pressure p, internal energy ε and speed of sound c.

To handle the transition to vacuum, the asymptotic limits of the Helmholtz

energy for vanishing reduced density and reduced temperature, δ → 0 and

τ → +∞, have to be considered. In this case, the residual Helmholtz energy

of both EOS approaches zero

lim
δ→0

τ→+∞

αr = 0, (5)

and only the perfect gas contribution remains. Both EOS use the same for-

mulation for this perfect gas contribution α0 corresponding to a monatomic

gas with an isobaric heat capacity c0p/kB = 2.5, where kB is the Boltzman

constant. The perfect gas contribution reads as

α0 (δ, τ) = lnδ + 1.5 lnτ + c1τ + c2. (6)

The coefficients c1, c2 were specified by Thol et al. [5] and Heier et al. [6] such

that the perfect gas contributions to enthalpy and entropy vanish h00 = s00 = 0

at the reference state (T0, p0) = (0.8, 0.001),

c1 = −2.5

τ0
and c2 = 1.5− ln δ0 − 1.5 ln τ0. (7)

The asymptotic limits for pressure and internal energy are

lim
δ→0

τ→+∞

p = lim
δ→0

τ→+∞

ρRT (1 + δαr
δ) = 0, (8)

lim
δ→0

τ→+∞

ε = lim
δ→0

τ→+∞

RT
(
τ
(
α0
τ + αr

τ

))
= RTcc1. (9)
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The speed of sound c is defined by

c2 =

(
∂p

∂ρ

)
s

=

(
∂p

∂ρ

)
T

−
(
∂p

∂T

)
ρ

(
∂s

∂ρ

)
T

(
∂s

∂T

)−1
ρ

. (10)

This formulation also falls back to the classical speed of sound of a perfect

gas, which becomes zero for a vanishing temperature

lim
δ→0

τ→+∞

c2 = lim
δ→0

τ→+∞

5

3
RT = 0. (11)

2.2. Riemann Problem

The Euler equations (1) are a hyperbolic system of conservation laws with

the real eigenvalues of the Jacobian of the flux

λ1 = v − c, λ2 = v, λ3 = v + c. (12)

The initial value problem for the one-dimensional Euler equations, consisting

of constant initial states, separated by a discontinuity at x = 0, poses the

Riemann problem

U (x, t = 0) =

UL for x < 0

UR for x > 0.

(13)

Its solution is self-similar with respect to x/t and consists of four constant

states UL,U
∗
L,U

∗
R,UR, separated by elementary waves. The outer waves are

either shock or rarefaction waves and the intermediate wave is a contact

discontinuity. Each of the three wave types is attached to an eigenvalue of

the system of equations. A typical situation is shown in the diagram in Fig.

1. The shock and rarefaction waves are non-linear waves and associated with

λ1,3, while the contact discontinuity is associated with λ2. The latter is a
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linearly degenerate discontinuity in mechanical equilibrium, i.e. the velocity

and pressure are equal on both sides. Consequently, there is no macroscopic

mass flux across the contact discontinuity so that it can be considered as a

material interface. The shock wave is a non-linear discontinuity where the

Rankine-Hugoniot conditions apply. The rarefaction wave is a continuous

solution where the so-called generalized Riemann invariants remain constant.

As a consequence, the solution in a rarefaction wave is isentropic.

For the perfect gas, a solution has been proposed by Godunov [1] using

a fixed point iteration. An extension to real gas EOS that remain smooth

and convex has been introduced by Colella and Glaz [11] and further devel-

oped by Kamm [12]. The general approach is to find iteratively the velocity

equilibrium across the contact discontinuity as a function of the unique pres-

sure of the inner states via the Newton or the Secant method. Using this

pressure, the inner states U∗L and U∗R are calculated by applying the rela-

tions across the outer waves, i.e., the Rankine Hugoniot conditions or the

isentropic relations.

A special type of the Riemann problem is the shock tube problem, which

is of elementary importance in gas dynamics. It describes two states in a

tube that are separated by a membrane. A dense state under higher pressure

is adjacent to a dilute state under low pressure. Both states are initially at

rest. At time t = 0, the membrane is removed and different waves propagate

through the domain: A shock wave travels into the dilute fluid and a rarefac-

tion wave travels into the dense fluid with the wave propagation speeds SL

and SR, respectively. Between these waves, two constant states appear that
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are separated by the contact discontinuity that travels with the speed S∗.

The corresponding solution is shown in Fig. 1.

x

t

URUL

U∗
RU∗

L
SL

SR

S∗

Figure 1: Solution structure for the shock tube problem where the high pressure is ini-

tially on the left and the low pressure on the right. Three waves divide four

constant states: UL, U∗
L, U∗

R, UR.

Another special type of Riemann problem is the vacuum Riemann prob-

lem. In contrast to the shock tube problem, one of the states is a vacuum, i.e.

U = (0, 0, 0)>. Because the Euler equations are not valid in the vacuum, this

scenario has to be considered as a free boundary problem, where the moving

boundary represents the expansion front of the continuum phase into vac-

uum. A self-similar exact solution can be found for the perfect gas as shown

by Halter and Martensen [13] and further discussed in Refs. [14, 15, 2].

If the vacuum is considered on the right side, the solution contains a

single (left) rarefaction wave, cf. Fig. 2. The right wave vanishes and the

contact discontinuity attaches the right boundary of the rarefaction wave.

Integration of the generalized Riemann invariant across the rarefaction wave

to the vacuum state yields a front speed of the expansion wave that is fully
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determined by the initial continuum state on the left

S∗L = vL +
2cL
γ0 − 1

, (14)

where γ0 = c0p/c
0
V is the isentropic coefficient of a monatomic ideal gas and c0p,

c0V are the heat capacities at constant pressure and volume of a monatomic

ideal gas, respectively. Note that the wave speed S∗L describes the propagation

speed of the outer most right wave of the left rarefaction wave, that lies

adjacent to the star state, cf. Fig. 2. The solution reads as

W(x, t) =


WL if x

t
≤ vL − cL

Wfan = (ρfan, vfan, pfan)> if vL − cL < x
t
< S∗L

WR if x
t
≥ S∗L,

(15)

with

ρfan = ρL

(
2

γ0 + 1
+

γ0 − 1

(γ0 + 1) cL

(
vL −

x

t

)) 2
γ0−1

, (16)

vfan =
2

γ0 + 1

(
cL +

γ0 − 1

2
vL +

x

t

)
, (17)

pfan = pL

(
2

γ0 + 1
+

γ0 − 1

(γ0 + 1) cL

(
vL −

x

t

)) 2γ0

γ0−1

. (18)

Figure 2 shows the solution structure of the vacuum Riemann problem.

The expansion of the continuum to the vacuum may be described as a

free surface problem. For many physical problems, non-equilibrium effects

have to be taken into account to model the physical phenomena correctly. In

this case, a gas kinetic description has to be adopted. For our purpose here,

the gas vacuum problem is an example for a single rarefaction wave, that can

also be handled by molecular dynamics in an appropriate way.
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x

t

UR = (0, 0, 0)>UL

S∗L

Figure 2: Solution structure of the vacuum Riemann problem, where the vacuum is lo-

cated on the right. The left state is connected to the vacuum by a rarefaction

wave, the contact discontinuity attaches the boundary of the rarefaction wave

adjacent to the vacuum.

3. Numerical Methods

3.1. Fluid-Solver FLEXI

The conservation equations of the fluid equations are solved by a discon-

tinuous Galerkin spectral element method (DGSEM), which is implemented

as open source code FLEXI 1. The numerical method is described by Hin-

denlang et al. [16] in detail. Hence, we only survey the basic building blocks

to get some impression of the numerical method used. As usual in the dis-

continuous Galerkin approach, the solution and the fluxes are approximated

by polynomials in each grid element allowing discontinuities between the el-

ements. In DGSEM, the polynomial basis is a nodal one with Lagrangian

polynomials defined by the Gauss points. We project the physical grid cell

1https://www.flexi-project.org/
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to a reference element and derive the weak formulation of the conservation

equations in this reference element. The resulting volume and surface inte-

grals are approximated by Gauss quadratures. As for Finite Volume schemes,

numerical flux functions are needed for the coupling to the neighboring ele-

ments. If discontinuities appear in the solution, such as shock waves or mate-

rial boundaries, the method is supplemented with a shock capturing method

[17, 18], in which in elements with oscillations a total variation diminishing

finite volume method on sub-cells is activated. The indicator of Persson and

Peraire [19] is used to detect oscillations. The structure of the DGSEM is

kept - the local finite volume scheme on sub-cells may be interpreted as the

alternative to evaluate the volume integral. The time integration method is

explicit with high order Runge-Kutta schemes as proposed in [20].

3.2. Numerical Flux Calculation

The numerical flux solver for the vacuum Riemann problem is a little bit

subtle not to produce negative internal energies and a break-up of the simu-

lation. We apply here the Suliciu relaxation Riemann solver [21, 22] for the

isentropic Euler equations which handles the vacuum state very well. The

extension to the complete equations of gas dynamics has been described by

Bouchut [23], based on a relaxation system for the Euler equations using a va-

riety of supplementary variables such as pressure, speed of sound and entropy

amongst others. If the underlying EOS is convex, an approximate Riemann

solver can be constructed to solve the relaxation system and, by extension,

the original Euler equations. To use a general EOS, the original method has
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been modified for this study by defining a local isentropic coefficient via

γloc =
p

ρε
+ 1. (19)

In case of a perfect gas, the local isentropic coefficient recovers the exact one:

γloc = γ0 = c0p/c0V = p/ρε + 1. As shown in [23], the Suliciu solver preserves

positivity of ρ and ε and guarantees the inequalities of entropy as well as

the maximum principle of entropy. We applied the numerical flux in flux

difference form as proposed by Shen et al. [24]

F =
1

2
(FL + FR)−1

2
(|SL| (U∗L −UL) + |S∗| (U∗R −U∗L) + |SR| (UR −U∗R)) ,

(20)

in which the vacuum state can be directly inserted and the relaxation speeds

remain bounded.

3.3. Molecular Dynamics Simulations

MD simulations were carried out with the open source code ls1 mardyn

[25] that numerically solves Newton’s equation of motion for large particle

ensembles. Molecular interactions were assumed to be pairwise additive and

evaluated explicitly within a specified cutoff radius rc. In the present study,

the LJTS fluid was simulated, being fully consistent with the EOS by Thol

et al. [5] and Heier et al. [6]. This model has only two state-independent

parameters for a given molecular species, i.e. for size σ and dispersive energy

ε, and is very well suited to describe the thermodynamic properties of simple

fluids, like the noble gases and methane [26, 27]. It was selected since it of-

fers additional advantages. First, the cutoff radius rc = 2.5σ is comparatively

small, driving down computational costs. Second, long-range corrections can
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be omitted entirely because of the truncated potential definition. This is par-

ticularly convenient for inhomogeneous systems, where long range correction

techniques are not straightforward.

4. Results

4.1. Supercritical Shocktube Problem

A shock tube scenario was defined for the LJTS fluid in the supercritical

regime. The initial states were chosen such that one state lies in the liquid-like

region and the other in the vapour-like region. A high temperature ensures

that the solution remains in the supercritical regime. The initial data under

consideration were

(ρ, v, T )> =

(0.6, 0.0, 3.0)> if x < x0

(0.2, 0.0, 3.0)> if x ≥ x0.

(21)

For both equations of state used in this study, the initial pressures are calcu-

lated from the density and temperature to avoid errors by conversion com-

paring with the MD simulations , hence they differ in their values. E.g., for

the LJTS EOS, the initial left pressure was p = 3.99 and for the PeTS EOS

it was p = 3.80 while the right pressure was p = 0.657 and p = 0.648, re-

spectively. This caused a shift in the solution for the pressure but achieved

an improvement of the comparison of temperatures between MD and CFD

data.

All physical properties were non-dimensionalized in terms of reference

length σref = 1 Å, reference energy εref/kB = 1 K and reference mass

mref = 1 u. Consequently, the time reference is tref = σref
√
mref/εref . In these
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reduced units, the critical point of the LJTS fluid is given by ρc = 0.319 and

Tc = 1.086. The spatial domain was chosen as [0, 4000] and the initial discon-

tinuity was located at the midpoint x0 = 2000. The problem was simulated

until tend = 300.91. For the CFD code FLEXI , the one-dimensional domain

was discretized into 100 elements and a polynomial degree of N = 3 was cho-

sen that should result in a fourth order approximation. Discontinuities were

detected with the Persson indicator [19] with threshold Indupper = −3. In this

case, the grid element was handled by switching to the local TVD finite vol-

ume scheme on the subgrid. The DG was applied again for Indlower = −5. For

time integration we used the explicit low storage fourth order Runge-Kutta

scheme with five stages [20]. The stability criterion was chosen as CFL = 0.9.

In addition to the numerical simulation, an exact solution of the Riemann

problem was calculated by the solution procedure of Kamm [12].

For the corresponding MD simulation, two homogeneous phases with a

cuboid geometry were equilibrated at a temperature T = 3.0, one with the

higher density ρ1 = 0.6 and one with the lower density ρ2 = 0.2. They

were merged such that physical contact between the phases was established

through two planar interfaces, yielding a symmetric system, cf. Fig. 3. A few

individual particles overlapping across at the interface were discarded. Peri-

odic boundary conditions were established in all directions to mimic infinite

extended interfaces and to avoid boundary effects in x direction.

For symmetry reasons, the origin of the spatial coordinate x was de-

fined to coincide with the geometric center of the system so that only the

right half of the system was considered in the following. Initially, the phases

had an equal thickness of ∆x = 2000 and the initial interface position was
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Figure 3: Snapshot of the shock tube scenario in a diagonal view to give an impression of

the system on particle scale, and a plan view to clarify the system dimensions.

The system was symmetric around x = 0. Particles of the higher and lower

density phase ρ1 = 0.6 and ρ2 = 0.2 were colored in red and green, respectively.

located at x0 = 2000. The cross-sectional area was comparatively large

Ayz = ∆y∆z = 1002 to obtain good statistics while investigating a rapid

process. Consequently, the system consisted of a large number of particles

N = 3.2 · 107. Starting the simulation from the initial configuration, all in-

dividual particle trajectories were followed without any interventions, i.e.,

thermostating was avoided. Newton’s equations of motion were solved nu-

merically, employing the Leapfrog integrator that achieves a good energy

conservation. Maintaining these conditions, the MD simulation results are

directly comparable to the solution of the Riemann problem. To follow the

temporal evolution of spatially resolved quantities, one-dimensional sampling
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was conducted to obtain density, temperature and hydrodynamic velocity

profiles. For this purpose, the system was divided into bins with a thickness

of δ = 0.25 and a volume of ∆V = δAyz = 2500. The local density ρ in a bin

was calculated by

ρ =
N

∆V
, (22)

where N is the number of particles in the bin. The velocity vector of the j-th

particle is named vj and has the three components vx,j, vy,j and vz,j into x- ,

y- , and z-direction, respectively. The hydrodynamic velocity in x-direction

v̂x was obtained from the arithmetic mean of the velocity component vx of

all particles in the bin

v̂x =
1

N

N∑
j=1

vx,j. (23)

The temperature was sampled for the three spatial directions individually

Tx, Ty and Tz because it cannot unconditionally be treated as a single scalar

quantity under strong non-equilibrium conditions. The temperature is a mea-

sure for the kinetic energy of thermal motion only. Therefore, when accumu-

lating the kinetic energy of the particle collective in a bin, the contribution

due to hydrodynamic velocity has to be subtracted, yielding for the temper-

ature in x- direction

kBTx =
m

3N

N∑
j=1

(vx,j − v̂x)2. (24)

For the other two spatial directions, a vanishing hydrodynamic velocity can

be assumed v̂y = v̂z = 0, hence,

kBTy =
m

3N

N∑
j=1

v2y,j, (25)
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applies, where Tz is analogous. Since Ty and Tz were identical in the present

scenario, they were summarized to a mean quantity

Tyz = (Ty + Tz)/2. (26)

Quantities were averaged over a period of 5000 time steps, where a single time

step ∆t corresponds to a physical time of 2 fs for a fluid like Argon. This

was a compromise for the sampling period being long enough to obtain good

statistics, but short enough to ensure that the rapid changing profiles did not

get blurred. The simulation was terminated when the system’s reaction on

the discontinuity was propagated to the system boundary, which was already

the case after 2 · 105 time steps.

The results are shown in Fig. 4 for density, temperature, velocity and

pressure. Each quantity was compared to MD simulation data, except for

the pressure, which was not sampled in the MD simulations. The numerical

results indicate that all properties are in excellent agreement with each other.

The wave phenomena and the constant states in between are clearly iden-

tified: A shock wave propagates to the right, a rarefaction wave propagates

to the left and a contact discontinuity is located in between. The approx-

imate CFD solution adds some numerical diffusion, which smears out the

shock and contact discontinuity compared to the exact solution. However,

diffusion is also visible in the MD data, where viscous and diffusive effects

are fully resolved. The shock capturing method was, as expected, only active

around the shock wave, as indicated by the grey rectangle. Here, the method

switches locally to a second order FV method with TVD reconstruction of

the gradients on the sub-cells within the coarse DG grid element. Outside of

this region, the solution was produced by the high order DG method.
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Figure 4: Results for the supercritical shocktube problem. The plot shows the results

of the MD simulations, the exact solution of the corresponding macroscopic

Riemann problem and the approximate solution by the DGSEM scheme using

the Suliciu relaxation solver. The Riemann problem was solved resting either

on the LJTS EOS or the PeTS EOS. The shock capturing was active in the

region indicated by the grey rectangle.

Visible differences were observed for velocity and pressure in the com-

parison of the different EOS that were underlying to the CFD simulations.

At the rarefaction wave, the PeTS EOS produces a slightly shifted position,

whereas the LJTS EOS lies directly on the MD data. This effect can be at-
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tributed to an underestimation of the speed of sound by the PeTS EOS in

the high density region as well as the different pressures of the initial datum.

Similarly, the PeTS EOS underestimates the pressure in the high density re-

gion. Note that the pressure difference of the initial liquid states stems from

the choice of initial values. To find the best basis for the comparison with

MD simulation data, the temperature was chosen to be equal in the initial

datum which caused the different plateaus in pressure.

Our conclusion with respect to this comparison of the numerical results

is as follows. By using these corresponding thermodynamic relations of the

LJTS EOS and the LJTS flow assumption in the MD simulations, we are

able to get the same results by CFD and MD.

4.2. Vacuum Expansion Problem

As a first step to more subtle cases, we choose the so called vacuum

Riemann problem, in which one state is the vacuum. The solution consists

of a rarefaction wave to the vacuum with the attached contact discontinuity.

The vacuum Riemann problem can be handled well by MD simulations. For

the continuum equations, the transition to vacuum is a limit to the range of

the validity of the equations and the approximation needs a flux calculation

that keeps density and internal energy non-negative.

The vacuum expansion problem was considered for the LJTS fluid again

and with the continuum phase on the left and the vacuum on the right.

We investigate in the following four cases with a common temperature of

TL = 3.0. The strength of the rarefaction wave was prescribed by a varying

density. The baseline test case VP1 had an initial density ρL = 0.05. The

other cases had the densities: ρL = 0.01 (VP2), ρL = 0.1 (VP3) and ρL = 0.2
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(VP4). The full initial data of the vacuum Riemann initial were

(ρ, v, T )> (x, 0) =

(ρL, 0.0, TL)> if x < x0

(0.0, 0.0, 0.0)> if x ≥ x0.

(27)

The computational domain was chosen to be x ∈ [0, 4000] and the initial

discontinuity was located at x0 = 2000. In DG method we switched for

these problems to the second order FV method with TVD limited gradient

reconstruction, which is used as shock-capturing in sub-cells, to guarantee

the positivity near the vacuum. The approximate Suliciu relaxation solver

was used for the numerical flux function and time integration was done via

an Euler explicit time integration with CFL = 0.1. At the vacuum domain

boundary, the boundary values were extrapolated from the flow region as

in a supersonic case. The domain was discretized into 400 elements. Both

the LJTS and PeTS EOS, were alternatively used to obtain approximate

solutions of the Riemann problem. Additionally, the exact solution for a

perfect gas with γ0 = 1.667 was computed, which corresponds to the perfect

gas contribution of the LJTS model fluid.

For the MD simulations, exactly the same system geometry was used.

Moreover, the simulation procedure and the sampling were conducted in the

same way as described for the shock tube scenario with the left values of the

density: ρL = 0.05, 0.01, 0.10, 0.2 and the replacement of the lower density

phase by free space ρR = 0 (vacuum). To maintain instant vacuum conditions,

all particles that reached the system boundary at x = 4000 were discarded,

i.e. they left the computational domain.
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4.2.1. Time Evolution of VP1

Solutions of the time evolution of density, velocity and temperature for

testcase VP1 at three times t = 91.18, t = 182.37 and t = 273.55 are shown

in Fig. 5. The structure of the exact solution is reproduced by our CFD
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Figure 5: Results for the vacuum Riemann problem VP1 at time instances t = 91.18,

t = 182.37 and t = 273.55. The plot shows the approximate CFD solutions

resting either on the LJTS or the PeTS EOS, an exact solution of the Riemann

problem for the perfect gas law with γ0 = 1.667 and MD simulation results.
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approximation as well as by MD simulation. The solution is determined by

the rarefaction wave, which expands the gas isentropically to the vacuum.

Note that the contact wave coincides with the tail of the rarefaction wave and

is therefore not visible. At all time instances, depicted in Fig. 5, the agreement

between all methods is excellent as long as the density is large enough. The

LJTS and PeTS EOS show almost perfect agreement with each other for

every variable, which is attributed to the identical perfect gas contribution

that dominates the fluid behavior at low density.

The MD data were used to calculate the local Knudsen number to indicate

the continuum breakdown. The Knudsen number is the ratio of the mean free

path λ and a characteristic length L of the problem:

Kn =
λ

L
. (28)

In the present case, the choice of the characteristic length is not as clear.

Therefore, we consider the local Knudsen number introduced by Boyd et al.

[28]. It relies on the gradient of a physical state variable W̃, usually the

density W̃ = ρ or temperature W̃ = T , and reads as

KnW̃ = λ
|∇W̃|
W̃

. (29)

An approximation of the mean free path λ was given for a monatomic perfect

gas in Bird [29] as

λ =
1√

2πρσ2
, (30)

where σ is the molecular diameter and ρ the number density. Following Burt

and Boyd [30], a flow can be considered to be a continuum if KnW̃ < 0.02.

To calculate the local Knudsen number, the MD data were smoothed using
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a moving average with a window size of 100. We considered the density-

based local Knudsen number Knρ and the temperature-based local Knud-

sen number KnT . The value Knρ,T < 0.02 for the density-based and the

temperature-based Knudsen number is plotted as a line parallel to the x

axes in the density and temperature plots, respectively. Both definitions of

the local Knudsen number lead to similar values that indicate the location,

at which the continuum assumption starts to fail.

Notable differences of the results for the different methods occur beyond

the cut-off Knudsen number only. The density of all the methods approach

zero. But the locations differ. The expansion to the vacuum by the DG scheme

is the fastest one, followed by the MD results. The expansion of the exact

perfect gas solution is the slowest one. This behavior is manifested also in

the velocity plots that show strong deviations in the low density region. All

results have the same gradient, but the front speeds differ. Such an artefact

has also been observed by Bouchut [23]. The largest deviation was found

for the temperature. While the exact perfect gas solution tends to a zero

temperature, the DG scheme and the MD method do not. For the MD simu-

lation the expected temperature is zero, as the number of particles strongly

decrease towards the vacuum, which also decreases the interaction probabil-

ity between particles. Consequently, a stronger deviation from the Maxwell

distribution of the particles appears and the definition of a continuum tem-

perature breaks down into an oscillatory behavior. Figure 5 also shows the

temperatures that were calculated from the thermal motion of the particles

in each spatial direction individually, cf. Eqs. (24) for Tx and (26) for Tyz.
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Differences between both temperatures are visible which clearly indicate that

a continuum temperature can not longer be defined.

4.2.2. Convergence for VP1

Because of the subtle behavior of the temperature approximation in the

low density region, a convergence study for the DG scheme has been per-

formed for the VP1 problem. VP1 was simulated based on the Suliciu nu-

merical flux and the EOS of perfect gas with γ0 = 1.667 on different grids

ranging from 100 elements to 6400 elements. The left panel of Fig. 6 shows

results for the temperature profile. Even with the EOS of perfect gas, a simi-

lar increase in temperature can be observed, but the temperature approaches

zero as the mesh spacing is reduced. The convergence rate of the local maxi-

mum of the temperature in the higher Knudsen region is plotted in the right

panel of Fig. 6. For an increasing number of elements, convergence is attained

with a low rate of approximately 0.6. The temperature increase obtained by

the Suliciu flux is caused by different slopes of pressure and density. Consid-

ering the perfect gas law, the temperature was calculated by

T =
p

ρkB
. (31)

Near the vacuum, for very small values of density and pressure, the slopes

of density and pressure are not identical. Beyond some threshold, the den-

sity gradient is smaller than the pressure gradient which, following Eq. (31),

caused the non-physical temperature increase. Refining the grid this artefact

disappears. This also appears in the simulations resting on the LJTS EOS

and the PeTS EOS. In the high Knudsen regime, both EOS fall back to a

perfect gas formulation. However, the implementation for both EOS still eval-
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uates Eq. (4) with a remaining contribution of the residual Helmholtz energy

instead of Eq. (31). Consequently, the peak for the increasing temperature is

reproduced differently than for the classical perfect gas law.
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Figure 6: CFD convergence for the vacuum Riemann problem VP1 at the time instance

t = 45.59. The approximate solutions were obtained for the perfect gas with

γ0 = 1.667. Three grids are shown, constituted by 100, 800 and 6400 elements.

The data are compared to the exact solution.

Fig. 7 shows a comparison between the temperature profiles of two MD

simulations with a different number of particles. The coarser simulation pro-

duced more scattering, but both simulations agree very well for small Knud-

sen numbers. In the high Knudsen number regime, the fine grid simulation

shows a similar increase of temperature as the coarse grid simulation. Fur-

thermore, the position of the local minimum is identical. Our explanation of

this non-physical increase of the temperature is that non-equilibrium states

affects again the averaging procedure for the mean temperature.
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Figure 7: MD simulation of the vacuum Riemann problem VP1 at time t = 45.59 for two

different numbers of particles.

4.2.3. Results for VP2 and VP3

For the next two vacuum Riemann problems only results at time t =

273.55 are shown. VP2 has the initial density ρL = 0.01. The results are

shown in Fig. 8, VP3 hast the initial density ρL = 0.1. The results are shown

in Fig. 9. The qualitative behavior is similar to the results for VP1. In the

case of VP2 with the smaller density, the noise in the MD data increased,

which is caused by the smaller number of particles per volume.

4.2.4. Results for VP4

The vacuum Riemann problem VP4 has a larger density of ρ = 0.2. For

this case, the expansion is much stronger than in the previous cases and leads

to a sooner crossing of the isentropic expansion and the vapour binodal curve.

Figure 10 shows the loci of constant entropy for all vacuum Riemann prob-
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Figure 8: Results for the vacuum Riemann problem VP2 at time t = 273.55. Shown is

the CFD solution based on the LJTS EOS, the exact solution for the perfect

gas EOS with γ = 1.667 and the MD simulation results.
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Figure 9: Results for the vacuum Riemann problem VP3 at time t = 273.55. Shown is

the CFD solution based on the LJTS EOS, the exact solution for the perfect

gas EOS with γ = 1.667 and the MD simulation results.

lems in state space. Eventually, most of the curves cross the vapour binodal,

but only for the largest density droplets appeared. The results for density,

velocity and temperature are presented in Fig. 11 at time t = 300.91. Sim-

ilar to the other scenarios, the results of the different methods are in very

good agreement. The LJTS and PeTS EOS allow a robust simulation in this

regime, in which small droplets in the expansion fan occur by accounting for
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Figure 10: Isentropic expansion curves in state space for the vacuum Riemann problems

VP1-VP4.

a undercooled vapour. Due to the fact that the phase change is not explicitly

included into the simulation and the equation of state, the CFD simulations

break down if the initial density is further increased. In the MD simulations,

the droplets grew in size. In this case the strong isentropic expansion moves

into the region of the LJTS fluid, where both fail to provide macroscopic

physical states. This is the region, in which the underlying pressure function

becomes non-convex and the speeds of sound become imaginary. In these

cases, a phase transition model has to be introduced and the multiphase Rie-

mann problem changes its structure taking into account the phase transition

line.
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Figure 11: Results for the vacuum Riemann problem VP4 at time t = 300.91. Shown is

the CFD solution based on the LJTS EOS, the exact solution for the perfect

gas EOS with γ = 1.667 and the MD simulation results.

5. Conclusion

We compared the macroscopic Riemann solution and approximate solu-

tions, obtained by a CFD solver, with microscopic solutions, obtained by

molecular dynamic simulations. We picked up two Riemann problem scenar-

ios. The numerical results can be directly compared because both methods

are based on a Lennard-Jones model fluid with truncated and shifted po-

tential. The MD simulations use this potential, for the CFD simulation the

corresponding accurate equations of state were used, proposed in Thol et al.

[5] and in Heier et al. [6]. The CFD simulations were based on a hybrid

DG/FV method with the Suliciu relaxation solver as numerical flux func-

tion. The two scenarios under investigation were a super-critical shock tube

problem and a strong expansion of a gas into vacuum. The agreement be-

tween the macroscopic and microscopic solutions is nearly perfect. In the

super-critical regime, the underlying EOS were able to reproduce liquid-like

and vapour-like states and their transition from one to the other regime.
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In the second problem, the vacuum Riemann problem, the EOS ap-

proaches the regime of a perfect gas. Hence, the exact solution for perfect gas

law coincides very well with the results. Four test cases with varying initial

densities have been considered. The agreement with the microscopic solu-

tions was very good. Beyond the critical Knudsen number, the microscopic

solution developed non-equilibrium states, where a continuum temperature

is not well-defined any more. Hence, in the low density region, the macro-

scopic and microscopic solutions differed. By increasing the strength of the

expansion in the vacuum Riemann problem, condensation starts and small

liquid droplets appeared in the expansion fan simulated by molecular dy-

namics. The real gas EOS could reproduce the solution as long as this effect

could be approximated as undercooled vapour phase. A further increase of

the strength of the expansion wave lead to a failure and a break down of

the continuum simulations. Hence, for stronger rarefaction waves, the phase

transition has to be explicitly modelled in the numerical approach.

These results strongly motivate the use of MD simulations as comparison

in the cases with phase transitions. The MD results may establish thermo-

dynamic consistent solutions for benchmark problems that can be used as

benchmarks for macroscopic multiphase flow approximations. As mentioned

in the introduction, our research activities are embedded in the DFG col-

laborative research center SFB-TRR 75 ”Droplets under extreme ambient

conditions” and we are able to continue this research in the forthcoming

years. MD results for these situations with phase transitions will be well

documented.
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