
Distributed Resource Allocation in Wireless
Networks: A Game-Theoretical Learning

Framework

vorgelegt von

M.Sc. Setareh Maghsudi

aus Teheran

von der Fakultät IV - Elektrotechnik und Informatik

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktorin der Ingenieurwissenschaften

-Dr.-Ing.-

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Thomas Sikora
Berichter: Prof. Giuseppe Caire, Ph.D.
Berichter: Prof. Leandros Tassiulas, Ph.D. (Yale University, USA)
Berichter: PD Dr.-Ing. Slawomir Stanczak

Tag der wissenschaftlichen Aussprache: 23 March 2015

Berlin, 2015

D83





With all my love, to

Maman, Baba, and my little angel, Sobhan





Abstract

Device-to-device (D2D) communications underlaying a cellular infrastructure is regarded

as one of the key technology enablers for future wireless networks. The main advantages

of underlay D2D communications stem from the reuse-, proximity-, and hop gains, which

can be utilized for enhanced coverage, capacity and quality-of-service in mobile networks.

The basic idea consists in enabling suitably-selected nearby device pairs to reuse the

cellular spectrum for direct data transfer, while ensuring that there is no detrimental

impact on traditional cellular transmissions via base stations. Despite its great potential

for performance gains, D2D communications poses some fundamental challenges to system

designers. These challenges, which include D2D discovery, transmission mode selection,

resource allocation and interference management, are exacerbated by the lack of timely

and accurate channel state information for direct D2D links at the level of base stations

and wireless devices. Therefore, in order to avoid a significant increase in the feedback

and signaling overhead, there is a strong need for D2D resource allocation solutions that

(i) are amenable to distributed implementation and (ii) can beneficially exploit some side-

information made available at the level of D2D links through the network assistance. In

addition, such D2D solutions must be capable of dealing with the following characteristics

of mobile networks:

∙ uncertainty, which is caused by the random nature of the wireless environment (in-

cluding channels and users’ behavior), and is further aggravated by the lack of in-

formation at the user level, and

∙ competition between users that attempt to access strictly limited wireless resources.

To address these challenges, the core objective of this thesis is to develop and study a

novel theoretical framework for network-assisted D2D resource allocation that incorporates

game theory and reinforcement learning. We model a distributed D2D wireless network

as a multi-agent system, in which a set of self-interested smart agents with bounded

rationality share limited resources, by taking actions according to some decision making

strategy. Every joint action profile is associated with some reward (or cost) for each agent,

and the agents selfishly compete for access to resources in order to achieve a higher utility.

By incorporating a learning model into a game-theoretical formulation, the agents’ actions
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evolve over time, in general as a function of the past outcomes and the (possibly) observed

side-information. Therefore, for the learning agents which strive for optimality in some

sense in the long run, the distributed resource allocation problem can be rephrased as

a decision making problem, to be solved by developing decision making strategies whose

outcomes are some sort of efficient equilibria. An appropriate decision making strategy is

however not unique, and depends strongly on the basic characteristics of the underlying

networks such as the type of randomness and information availability. We study selected

types of networks in the context of the features mentioned above, and develop decision

making strategies for distributed resource allocation problem.

Chapter 2 deals with a multi-agent decision making problem in an adversarial envi-

ronment. The self-interested agents (players) have no initial information and intend to

efficiently learn the optimal joint action profile through sequential interactions with the

environment. A particular instance of this problem is a joint channel and power-level se-

lection in an interference-limited D2D wireless network. Based on the concept of weighted-

average and follow the leader allocation rules, we propose two selection strategies that not

only yield small regret for all players, but also guarantee that the empirical joint frequen-

cies of the game converge to the set of correlated equilibria. In addition we study the

convergence rate and complexity issues.

In Chapter 3 the focus is on a multi-agent adaptive decision making problem, where

selfish agents learn the optimal joint action profile from successive interactions with the

environment, which, unlike the previous chapter, is assumed to be stochastic. We also as-

sume that some side-information is revealed to the players in the course of the game. An

example of this formulation is a channel selection problem in a D2D interference network

underlaying conventional cellular infrastructures. Using the concept of calibrated forecast-

ing, we propose a selection strategy that yields small regret for all players. Furthermore,

the empirical joint frequencies of the game converge to the set of correlated equilibria.

Finally, we discuss convergence rate and complexity.

Chapter 4 studies the decision making problem in a network with two types of agents,

namely primary and secondary agents. We assume the existence of an authority that

regularizes the network in favor of the primary agents, by assigning restricted resources

to the secondary agents. Secondary agents therefore compete for access to the assigned

limited resources. In wireless networks, an instance of this scenario is a joint channel

allocation and power control problem in a hybrid D2D and cellular network regularized

by a base station, where cellular users have a higher priority in using wireless resources

compared to D2D users. We prove a lower-bound for the cellular aggregate utility in

the downlink, which allows for decoupling the channel allocation and D2D power control

problems. An efficient graph-theoretical approach is proposed to solve the former problem,
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whereas the latter is modeled as a multi-agent learning game, which is shown to be an exact

potential game. We then use Q-learning better-reply dynamics to achieve equilibrium.
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Zusammenfassung

Als eine der wichtigsten Schlüsseltechnologien für die zukünftige Kommunikationstechnik

werden die mit direkter Gerät-zu-Gerät Kommunikation unterlegten zellularen Mobilfun-

knetze (Engl. underly Device-to-Device communications, D2D) angesehen. Sie kann zur

Verbesserung der Leistungsfähigkeit von zellularen Netzwerken beitragen. Die Hauptvor-

teile leiten sich aus der Wiederverwendung- (Engl. reuse-), Nachbarschaft- (Engl. Pro-

ximity) und der Hop- Gewinne ab. Diese können für erhöhte Abdeckung (Engl. covera-

ge), Kapazität (Engl. capacity) und Quality-of-Service (QoS) in Mobilfunknetzen benutzt

werden. Die Grundidee ist es, dass ausgewählte Gerätepaare zelluläre Spektren (Engl.

cellular spectrum) wiederverwenden. Gleichzeitig ist darauf zu achten, dass solche direk-

ten Übertragungen keine negativen Auswirkungen auf die traditionellen Zellnutzer haben.

Trotz des großen Potenzials für Leistungssteigerungen, enthält die D2D Kommunikation

einige Herausforderungen für die Systementwickler; dazu gehören Übertragungsmodus-

Auswahl (Engl. transmission mode selection), Ressourcenallokation (Engl. resource allo-

cation) und Interferenz-Management (Engl. interference management). Diese Herausfor-

derungen verschärfen sich wegen des Mangels an genauen Kanalzustandsinformationen

(Engl. channel state information) für die direkten D2D Verbindungen auf der Ebene der

Basisstationen (Engl. base stations) und der drahtlosen Geräte (Engl. wireless devices).

Um eine deutliche Erhöhung des Signalisierungsaufwandes (Engl. signaling overhead) zu

vermeiden, besteht ein starkes Bedürfnis nach D2D Ressourcenallokationslösungen, die (i)

in einer verteilten Weise implementiert werden können und (ii) einige Nebeninformatio-

nen (Engl. side-information), falls verfügbar, vorteilhaft nutzen können. Darüber hinaus

müssen solche D2D Lösungen in der Lage sein, die folgenden Eigenschaften der Mobilfun-

knetzwerke zu behandeln:

∙ Unsicherheit (Engl. uncertainty), die durch das zufällige Verhalten von Mobilfunk-

kanälen ebenso wie durch das unberechenbare Verhalten von Mobilfunknutzern ver-

ursacht ist und sich im Falle geringer Informationen auf der Ebene der Basisstation

und/oder den Mobilfunknutzern weiterhin verschärft.

∙ Konkurrenz zwischen den Mobilnutzern, die auf stark begrenzte drahtlose Ressour-

cen zuzugreifen versuchen.
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Im Rahmen dieser Arbeit wurde ein neuartiges theoretisches Systemkonzept entwi-

ckelt, das die verteilte Ressourcenallokation (Engl. decentralized resource allocation) un-

ter Berücksichtigung der Unsicherheit betrachtet sowie Spieletheorie (Engl. game theory)

und Verstärkendes Lernen (Engl. reinforcement learning) mit einbezieht. Innerhalb die-

ser Arbeit werden verteilte Mobilfunknetze mittels Multiagentsystemen (Engl. multi-agent

systems) modelliert. Eine Anzahl von eigennützigen Agenten mit eingeschränkter Ratio-

nalität (Engl. bounded rationality) teilen begrenzte Ressourcen nur durch eine Auswahl an

Entscheidungsstrategien (Engl. decision making strategy). Jedes dieser gemeinsame Ent-

scheidungsprofile (Engl. joint action profile) ist verbunden mit Belohnungen (Engl. utili-

ty) oder Kosten (Engl. cost) für die Agenten. Die Agenten kämpfen deshalb für höhere

Utility. Durch die Einbindung von lernenden Algorithmen (Engl. learning algorithms) in

die spieltheoretische Formation, verbessern sich die Entscheidungen der Agenten mit der

Zeit. Generell kann dies als Funktion der Belohnungen aus der bereits vergangenen Zeit

und den möglicherweise zusätzlich erhaltenen Informationen ausgedrückt werden. Die so

lernenden Agenten wollen die optimale langfristige Utility erreichen, zusammen mit ei-

ner Art von effizientem Gleichgewicht (Engl. equilibrium). Deswegen, kann die verteilte

Ressourcenallokation als Entwicklung von Entscheidungsstrategien formuliert werden. Die

dazugehörigen Entscheidungsprofile sind jedoch nicht einzigartig. Sie hängen insbesondere

von den Grundeigenschaften des Netzwerks ab. Diese sind z.B. die verfügbaren Infor-

mationen und/oder die Art der Zufälligkeit. Innerhalb dieser Arbeit werden verschiedene

Netzwerke unter Berücksichtigung der oben gennannten Aspekte untersucht. Entsprechen-

de Entscheidungsprofile werden für unterschiedliche Aspekte entwickelt, um das Problem

der verteilten Ressourcenallokation zu lösen.

Das Kapitel 2 beschäftigt sich mit dem Multiagent Entscheidungsproblem in einer feind-

lichen (Engl. adversarial) Umgebung. Die eigennützigen Agenten werden nicht mit Infor-

mationen versorgt. Sie beabsichtigen jedoch effiziente gemeinsame Entscheidungsprofile

durch sequenziell, iterative Handlungen zu lernen. Ein Beispiel dieses Problems ist die

richtige Auswahl eines gemeinsamen Funkkanals und der Sendeleistung in einem D2D

Interferenznetzwerk. Basierend auf dem gewichteten-Mittelwert (Engl. weighted average)

und folge dem Anführer (Engl. follow the leader) Strategien, entwickeln wir zwei Ent-

scheidungsstrategien. Ziel soll dabei nicht nur eine geringe Ablehnungsquote der Nutzer

sein, sondern auch zu garantieren, dass die empirisch gemeinsamen Frequenzen (Engl.

empirical joint frequencies) zu dem Satz von korrelierten Gleichgewichten (Engl. correla-

ted equilibria) konvergieren. Die Konvergenzrate sowie die Komplexität werden ebenfalls

untersucht.

Im Kapitel 3 ist der Fokus auf das Multiagenten Entscheidungsproblem in einer stochas-

tischen (Engl. stochastic) Umgebung. In diesem erlernen eigenständige Agenten das opti-

x



male gemeinsame Entscheidungsprofil basierend auf fortlaufenden Wechselwirkungen mit

der Umgebung. Dieses Verhalten wird im Gegensatz zum vorherigen Kapitel als stochas-

tisch angenommen. Ferner werden den Agenten einige weitere Informationen offenbart. Ein

Beispiel dieses Problems stellt die Kanalwahl innerhalb eines unterlegten D2D Interferenz-

netzwerkes dar. D2D Nutzern ist es erlaubt das Mobilfunkspektrum erneut zu verwenden,

vorausgesetzt, dass der negative Effekt der D2D Übertragung für den Zellnutzer minimiert

wird. Mittels des Konzepts der kalibrierten Vorhersage (Engl. calibrated forecaster) wird

eine Entscheidungsstrategie vorgeschlagen, die möglichst wenige Nutzer zurückweisen soll.

Außerdem streben so die empirisch gemeinsamen Frequenzen zu dem Satz von korrelier-

ten Gleichgewichten. Insbesondere die Konvergenzrate und die Komplexität werden hier

diskutiert.

Innerhalb des Kapitels 4 wird das Entscheidungsproblem in einem Netzwerk mit zwei

Arten von Agenten, den sogenannten primären und sekundären Agenten, untersucht.

In diesem Zusammenhang wird von einer Autorität ausgegangen, die primäre Agenten

zur Netzwerknutzung favorisiert und beschränkten Zugriff an sekundäre Agenten vergibt.

Dementsprechend konkurrieren sekundäre Agenten untereinander um die beschränkten

Ressourcen. In der Funkkommunikation kann ein solches Szenario beispielsweise in der

gemeinsamen Kanal- und Sendeleistungszuweisung innerhalb eines D2D Interferenznetzes

auftreten. Dort haben Zellnutzer bevorzugten Zugriff auf die Netzressource. Wir definieren

eine untere Grenze der zellularen Gesamt-Utility (Engl. cellular aggregate utility) im Dow-

nlink, die die Entkopplung der Kanalallokation von der D2D Leistungsregelung ermöglicht.

Ein effizienter graphentheoretischer Ansatz wird benutzt, um das Problem der Kanalallo-

kation zu lösen. Das letztgenannte Problem wird mit einem Multiagenten Lernspiel (Engl.

learning game) modelliert. Die Q-learning better-reply Strategie wird anschließend benutzt,

um ein Gleichgewicht zu erreichen.
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Notation

In this work, sets and matrices are presented by calligraphic capital letters (such as 𝒳 ), and

non-italic bold capital letters (such as X), respectively. The cardinality of any particular

set is shown by the same letter as that set, but in italic. For instance, 𝑋 is the cardinality

of a set 𝒳 . As for matrices, the 𝑙-th column of a matrix X is denoted by X𝑙. Moreover,

the entry in the 𝑙-th row and 𝑘-th column of a matrix X is referred to as X[𝑙, 𝑘]. Non-italic

bold lower case and italic lower case letters correspond to the column vectors and scalars,

for instance x and 𝑥, respectively. Superscript 𝑘 stands for player 𝑘. Whenever necessary,

subscripts 𝑡 and 𝑖 are correspondingly used to denote time and action. For example, 𝑔
(𝑘)
𝑡

is interpreted as the instantaneous reward of player 𝑘 at time 𝑡, while 𝑓
(𝑘)
𝑖 is the mean

reward of action 𝑖 to player 𝑘. For any given variable 𝑟, symbols 𝑟 and 𝑟 are used to

represent its estimated and experimental values, respectively.

We note that 𝑓(𝑥) ∈ 𝑜(𝑔(𝑥)) if lim𝑥→∞
𝑔(𝑥)
𝑓(𝑥) = 0. Moreover, 𝑓(𝑥) ∈ 𝑂(𝑔(𝑥)) if there

exists 𝑀 ∈ ℝ
+ and 𝑎 ∈ ℝ so that ∣𝑓(𝑥)∣ ≤𝑀 ∣𝑔(𝑥)∣ for all 𝑥 ≥ 𝑎.
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1. Introduction

Due to the ever-increasing need for mobile services, we expect a massive growth in demand

for wireless access in the years to come. As a result, future mobile networks are expected

to accommodate new communications and networking concepts, including device-to-device

(D2D) communications underlaying cellular networks. The basic idea of underlay D2D

communications is to replace traditional end-to-end connections via access points, base

stations (BS) or relays by direct short-distance communications links between suitably-

selected nearby wireless devices that reuse the cellular spectrum of the base stations. The

major potential advantages of this approach stem from the proximity-, hop-, and reuse

gains that can be translated to enhance the network performance with respect to coverage,

capacity, energy efficiency and quality-of-service (QoS) [DRW+09], [FDM+12], [KA08].

In order to realize D2D communications as an underlay to cellular networks, system

designers face some fundamental challenges. In particular, while some channel state infor-

mation (CSI) for cellular users1 is usually available at the serving BS, acquiring some CSI

for D2D links at the network side is a challenging task since pilot-based measurements for

D2D channels are costly in terms of communication and control overhead, and therefore

highly undesired. As an immediate consequence, the allocation of resources to D2D links

(users) has to be performed in a distributed manner. Thereby, it is of utmost importance

that direct D2D transmissions are coordinated to ensure that there is no detrimental im-

pact on the prioritized cellular transmissions. Such coordination must involve a careful

power-controlled allocation of D2D users to available radio frequency channels, primarily

used by cellular users. This problem, which is in general difficult to solve even in a cen-

tralized manner, is significantly aggravated in D2D settings by the aforementioned need

for distributed solutions [14].

Against this background, it becomes evident that efficient and robust D2D commu-

nications design needs to deal with inherent uncertainty, as well as strong and abrupt

variations under various conditions and different types of randomness in a network. The

uncertainty and variations concern not only information availability but also the network

topology/architecture and the overhead tolerance. In this thesis, we model an under-

1In this thesis, any wireless device that operates in the traditional cellular mode is referred to as a cellular
user. Accordingly, any pair of wireless devices that communicate directly are counted as a D2D user.
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1. Introduction

lay D2D communications network as a distributed multi-agent system. From this point

of view, independent from others, each device pair takes actions to access shared radio

resources, which includes the selection of its frequency channel and/or its transmission

power-level. The actions of each pair, however, not only impact its own transmission per-

formance expressed in terms of some utility, but also influence the utility of others, for

instance as a result of interference. In other words, each joint action profile corresponds

to a utility vector so that for any given agent, each action is associated with a utility

(or cost) that is a function of (possibly random) network characteristics as well as other

agents’ actions. In the absence of a centralized controller and given no prior information,

device pairs are modeled as selfish learning agents that play a strategic game repeatedly.

This gives rise to a distributed decision making problem in a multi-agent system. For the

learning agents that strive for asymptotic optimality, the resource allocation problem can

be rephrased as a problem of developing decision making strategies according to which the

players’ actions evolve sequentially by observing the past outcomes of the game and (prob-

ably) some side-information. The goal is the asymptotic convergence to some equilibrium

that guarantees the satisfaction of (almost) all involved agents in some sense.2 This thesis

provides some solutions to this problem by connecting multiple areas of research, including

wireless communications, game theory, graph theory and reinforcement learning.

1.1. Background and Motivation

In this section, we first describe the analogy between multi-agent systems and distributed

wireless networks. We afterwards classify wireless networks based on some basic features,

and describe why and how game theory is used to address the wireless resource allocation

problem in certain network types. We then clarify its inadequacy for solving the resource

management problem in the absence of prior information. We discuss reinforcement learn-

ing as a theoretical tool to deal with the lack of prior knowledge, and describe how it can

be complemented by game theory to develop distributed resource allocation schemes.3

2We emphasize that although the convergence to equilibrium might be desired from the network’s perspec-
tive, it is not necessarily achieved by all learning models. In fact, the main anti-equilibrium reasoning is
the long time it might take to converge to equilibrium in a dynamic network [FL96]. Another argument
is the difficulty of guiding a set of distributed agents to settle at the most efficient equilibrium in the
games where multiple equilibriums exist. In fact, in games with multiple equilibriums, guiding agents
to expect the same equilibrium (even not the most efficient one) might require some common knowl-
edge, which is in general difficult to acquire. Moreover, in case of cooperation assumption, incentive
compatibility issues arise.

3This part of the thesis should not be considered as a comprehensive survey that is intended to cover
all the existing literatures. Our goal here is to briefly discuss the trend of using game theory and
reinforcement learning to solve the resource allocation problems in wireless networks.
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1.1. Background and Motivation

Figure 1.1.: Network classification based on architecture.

1.1.1. Wireless Networks as Multi-Agent Systems

As it is well-known, in wireless networks users affect each other by sharing limited resources

in different layers of the OSI (open systems interconnection) model. In this context, any

wireless network can be modeled as a multi-agent system, as summarized in Table 1.1.

As the theory of multi-agent systems is wide and also well-developed, a great majority of

Table 1.1.: Analogy between Multi-Agent Systems and Distributed Wireless Networks

Multi-Agent Systems Wireless Networks

Agents Nodes in wireless networks that share wireless resources, e.g.
D2D users

Resources Radio and hardware resources depending on the OSI layer, e.g.
power, frequency channel, relay

Actions Decisions about the amount and type of resources to be used
by the agent

Utility function Any function based on signal, noise and interference, for in-
stance throughput or delay

resource allocation problems can be addressed by some mathematical technique related to

this field, depending on the characteristics of the network under consideration. In order

to clarify this issue, in what follows, we first briefly classify wireless networks with respect

to some basic features, namely architecture, information availability, randomness, and

overheated tolerance.4

Regarding the architecture, networks can be divided into five main categories as briefly

described in the following.

∙ Centralized: In a centralized network, there exists a central controller that governs

the network by making decisions. Other network elements are therefore passive

4It should be emphasized that the classifications are mainly after the author’s taste and from the per-
spective of this thesis; therefore they cannot be claimed as exhaustive and/or unique.
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1. Introduction

during the decision making process, and either accept the controller’s suggestion or

leave the network.

∙ Coordinated: In coordinated networks, there exists no central controller. Moreover,

network nodes5 are not in direct contact with each other; nevertheless, (almost) all

of them are able to communicate with some coordinator. In such networks, every

element actively takes part in decision making that is led by the coordinator.

∙ Connected: In this type of networks at least some of network nodes are able to com-

municate with each other in a pairwise manner. Decisions making therefore might

include some sort of cooperation or information exchange provided that necessary

incentives exist. The availability of a leader or coordinator is not required.

∙ Distributed: In this category, nodes do not communicate in pairs, but they might

be able to hear a common signal. Each node therefore makes its own decisions,

independent of others, possibly by using the information included in the common

signal.

∙ Hybrid: This architecture is a combination of at least two models named before. For

instance, in a partially connected network there might be also a coordinator. The

hybrid type also includes hierarchical and multi-hop networks, where the network

structures are not necessarily identical in all stages or hops.

In addition to the network architecture, an appropriate design of resource allocation

scheme depends on some other factors, one of them being the information availability at

node level. In this regard, networks can be divided into three categories, depicted in Figure

1.2. In this figure, it should be noted that side-information differs from prior-information

in the sense that the former is revealed to nodes during or after each transmission round,

while the latter is available a priori.

The next classification is performed with respect to the randomness. In a wireless

network, the most important random variable is channel quality, which includes both

fading and shadowing effects. Nodes’ behavior is also random in general, which affects

the utility, depending on the applied multiple access protocol or the agreed upon reward

sharing contract. Another source of randomness is the availability of resources. For

example, in a cognitive radio network, channels are available to secondary users only

randomly. In general, random effects are either adversarial or stochastic. While in the

former model random changes do not follow any specific rule, in the latter they can

be attributed to a probability distribution that might be even time-variant. Figure 1.3

summarizes this discussion.
5Throughout, a node is any communicating element of a wireless network, for instance a user device.
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1.1. Background and Motivation

Figure 1.2.: Network classification based on information availability.

Figure 1.3.: Network classification based on randomness.

The final classification is related to the overhead tolerance, i.e. the amount of net-

work resources that can be spent on procedures except for useful data transmission, for

instance achieving an agreement among nodes that demonstrate a conflict of interests.

Unlike network architecture, this aspect does not represent any physical characteristics of

the network but rather reflects some sort of privilege, as clarified in the following example.

Consider a wireless network in which any given node is able to hear a subset of other

nodes. This network is therefore partially connected; nonetheless, local communications

for decision making only take place if for instance some channels (i.e. resources) are re-

served to accommodate such interactions. From this perspective, networks can be divided

into the three following categories:

∙ Large overhead (pairwise communications): Nodes are allowed to exchange data

with each other in a pairwise manner.

∙ Mild overhead (Control channel): There exists at least one control channel that is

5



1. Introduction

Figure 1.4.: Network classification based on overhead tolerance.

commonly used for instance in order to broadcast common signals which might be

informative to all nodes.

∙ None: Nodes do not communicate and also no control channel exists.

1.1.2. Game Theory

Intuitively, the multi-agent model described before suggests game theory as a strong math-

ematical tool to manage wireless resources in a distributed manner. Formally, a game is

defined as 𝔊 :=
{
𝒦, ℐ,{𝑔(𝑘)}

𝑘∈𝒦
}
, where

∙ 𝒦 = {1, ...,𝐾} is the set of players,

∙ ℐ is the set of pure strategy joint action profile of agents, and

∙ 𝑔(𝑘) is the of reward of player 𝑘 ∈ 𝒦.

Based on the network classifications described before, it is relatively straight-forward to

map the resource allocation problem to a game-theoretical scenario. Several examples are

given in the following.

∙ The resource allocation problem in coordinated networks can be solved by using

game-theoretical auctions [NRTV07]. Auction models usually cause mild overhead

as a result of communications among users (bidders) and the coordinator (auction-

eer). Typical auction models include the second price auction, combinatorial auc-

tion and share auction. Examples are [CWWL10], [GXW11] and [HHCP08], among

many others. Moreover, [XSH+12b] and [XSH+12a] use auction theory specifically

for resource allocation in underlay D2D networks. Reference [ZLNW13] provides a

comprehensive survey of auction games in wireless networks.

6



1.1. Background and Motivation

∙ Cooperative game theory [BDT08] is a branch of game theory that is widely used

in order to solve the resource allocation problem in connected networks. Through

pairwise communications, players construct coalitions, and users in each coalition

enforce cooperative behavior so as to maximize the value of the coalition, which

is considered as a utility measure. The players have to agree on some contract in

order to share the utility achieved by the coalition. Coalitional games can be di-

vided into games with and without transferable utility. Moreover, they are either

strategic or of partition form. References [GVJ10], [BF11] and [ZYC12] are some ex-

amples. Application of cooperative games in D2D networks is discussed for instance

in [SNHH14]. In addition, References [SHD+09] and [YFX12] provide comprehensive

study on using cooperative game theory for wireless resource allocation.

∙ In connected networks with self-interested nodes that affect the utility of each other,

non-cooperative game theory [NM44] is utilized to address resource allocation prob-

lems, specially power control. Moreover, models based on exchange economy [JR11],

for instance virtual oligopoly market model, are conventionally used for solving chan-

nel allocation problems, mostly in conjunction with game theory such as Stack-

elberg or Cournot games. In such models users are regarded as buyers that are

willing to purchase bandwidth. Buyers compete with each other while communi-

cating with the seller (or sellers) in order to achieve an agreement on the price of

resources. Therefore, at least a control channel must be reserved to accommodate

the price-demand information flow. Research studies that apply these techniques in-

clude [LTH+07], [MKZ09] and [HJL07], to name just a few. References [WWJ+14]

and [WSH+13] use non-cooperative games specifically for D2D communications,

and [NH07] provides a survey.

It should be noted that the above-mentioned games can be played as a single-shot or

repeated game, finitely or infinitely. Under the assumption that players are fully ratio-

nal, an equilibrium (usually Nash equilibrium) is conventionally considered as the desired

outcome of the game. An important merit of game-theoretical models is the rapid con-

vergence, as in most of the models that include communications among nodes, such as

price-demand market models or combinatorial auctions, a steady state is achieved after

only few iterations [1], [WHL09].

Despite vast area of application, many game-theoretical models suffer from some short-

comings. Most importantly,

∙ Each player requires to know at least its own utility function a priori, which is

sometimes very difficult or even impossible to acquire.

7
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∙ It is a common practice to include some coordinator in the model, although its

existence cannot be guaranteed; even if such entity is available, it is not clear how it

comes to the common knowledge of distributed players. Moreover, in the event that

the model includes no coordinator, at least partial connectivity is required.

∙ Some models necessitate frequent communications among players, which yields ex-

cessive overhead.

∙ The assumption of rationality in non-cooperative games is not always valid. More-

over, in cooperative games, it is difficult to establish the incentive-compatibility of

cooperation model.

∙ Uncertain and time-varying nature of wireless medium and network is not taken into

account.

∙ In a vast majority of models, game parties cannot be anonymous to each other.

Hence, with regards to the classifications described in Section 1.1.1, pure game-theoretical

models do not span all possible scenarios that arise in wireless networks, in particular a

scenario of conflicting users, where players do not have any prior knowledge and also the

overhead should remain low.

1.1.3. Reinforcement Learning

In order to compensate for the lack of information and connectivity, and also to take the

uncertainty into account, one can resort to the learning theory. Learning methods are

conventionally divided into three groups, namely supervised, unsupervised and reinforce-

ment learning. For brevity, in this thesis, by learning we refer only to the last category,

i.e. reinforcement learning, as the other two models are not relevant to this thesis.

In the area of wireless networking, reinforcement learning is mainly concerned with

sequential online decision making in an unknown and uncertain environment with different

possible states. In a typical form of this problem, an agent (the decision maker) repeatedly

selects an action from a finite set of actions in order to receive some a priori unknown

reward. Based on the achieved rewards, system state, and also by using other (possibly)

revealed information, agent’s actions are expected to evolve over time so as to satisfy some

long run optimality condition, conventionally defined in terms of cumulative or average

reward. A typical learning model can be formally defined as 𝔏 :=
{𝒮,ℳ,T, {𝑓𝑚}𝑚∈ℳ ,x

}
,

where

∙ 𝒮 is the set of states,
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1.1. Background and Motivation

∙ ℳ is the set of actions,

∙ T is the state transition matrix,

∙ 𝑓𝑚 is the mean reward process of action 𝑚 ∈ℳ, and

∙ x is the vector of observations.

When addressed by learning models, the online decision making problem is mostly

formulated in one of the two main frameworks, either partially observable Markov decision

processes with unknown rewards and/or state transition matrix [Put94] or multi-armed

bandits [CBL06]. In this thesis we only use the bandit model; as a result, in what follows,

Markov decision processes are mentioned only briefly for the sake of completeness, whereas

bandit models are described in more details.

∙ Markov decision processes (MDPs): A Markov decision process is a discrete time

stochastic control process. At each time step, the process is in some state, and the

decision maker (agent) may choose any action that is available in the current state.

After selecting an action, the agent receives some reward associated to the played

action in that state, and the process randomly moves to a new state according to

some transition matrix. If the state is unknown while making the decision, the

problem is called a partially observable Markov decision process (PO-MDP). In the

absence of prior knowledge about rewards or state transition matrix, the problem is

mostly solved using learning methods.

∙ Multi-armed bandits (MAB): Multi-armed bandit problem was first introduced in

[Rob52] and [Bel56]. In the most basic setting, the problem models an agent that

faces the challenge of sequentially selecting an arm from a set of arms in order to

receive an a priori unknown reward. This problem corresponds to the exploration-

exploitation dilemma, i.e. the conflict between taking actions that yield immediate

rewards and taking actions that would result in reward only in future, for instance

activating an inferior arm only to acquire information. Multi-armed bandit model

benefits from a wide range of variations in the setting, and hence can be considered

as an appropriate model for wireless resource allocation problem under uncertainty

and in the absence of prior knowledge. Some important variations of the bandit

problem are described in the following.

– Bandit models are either stateful or stateless. Stateful models are similar to

MDPs in the sense that the reward of each arm depends on the current state,

which changes over time according to some transition matrix. Therefore they

are also referred to as Markovian bandits [BCB12].

9
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– Stateful bandits are conventionally divided into two groups. In rested bandit

models, at each round, only the state of the played arm changes, while in restless

models, the state of every arm is subject to change [GMS10].

– Based on the random nature of arms’ reward functions, stateless bandit prob-

lems are divided into two classes, namely adversarial and stochastic [ACBFS03],

[BCB12].

– Bandits with side-information is a class of bandit problems where in addition

to the reward, some side-information is revealed to the learning agent at each

round of decision making [WKP05]. In the literature this setting is also called

contextual bandits [BCB12] and covariate bandits [YZ02], [Cla89].

– Mortal bandits or sleeping bandits refer to the bandit problems in which each

arm is only available for a finite number of trials [CKRU08].

In addition to the variants mentioned above, the set of arms can be finite or infi-

nite [WAM08], and arms can be either independent or dependent [PCA07].6 In computer

science and mathematics, multi-armed bandits is considered as a classic theory, giving rise

to a large body of related literature. In essence, numerous solutions are developed for

each type of bandit problems. We describe some important solution concepts briefly in

the following.

∙ Markovian bandit problems are often solved using indexing policies, pioneered by the

Gittins index [Git79]. Roughly speaking, at each round, a real scalar value, referred

to as index, is associated to each arm. The index of any arm is counted as a measure

of the reward that can be achieved by activating that arm in the current state. The

arm with the highest index is played at each round. Before using an indexing policy,

the indexability of the problem has to be verified that is in general not trivial (see for

instance [NM01]). In addition to the Gittins indices, Whittle’s index policy [Whi80]

is well-known and often used. Other works include [Web92] and [KJ87]. A survey

can be found in [GGW11].

∙ In order to solve the stochastic bandit problem, many methods are developed so

far that are based on the upper confidence bound policy, first proposed in the

seminal work of Lai and Robbins [LR85]. In this method, in order to deal with

the exploration-exploitation dilemma, an upper-bound of the mean reward of each

arm is estimated at some fixed confidence level. The arm with the highest esti-

mated bound is then played. Some important works that adopt this basic concept

are [ACBF02], [AO10] and [BCB12], to name a few.

6In the basic setting that we consider in this thesis the set of arms is finite and arms are independent.
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∙ Adversarial bandits are mainly solved by using potential-based or weighted average

approaches [ACBFS03]. In the most basic form of these methods, at each trial, a

mixed strategy is calculated over the set of arms. The selection probability of each

arm is proportional to its average performance in the past, possibly weighted by

a specific potential function (for example the exponential function). Accordingly,

the actions with better past performance are more likely to become activated in the

future, and vice versa. Examples can be found in [CBFH+97] and [CBL06].

As a result of emerging new networking paradigms such as self-organized, cognitive

and distributed systems, decision making by using reinforcement learning finds numerous

applications in wireless networking scenarios. In what follows we provide some examples.

It should be however emphasized that the list provided below might not be exhaustive,

and the application of learning models, in particular PO-MDPs and MABs, is by no means

limited to the following problems.

∙ Distributed channel allocation: Application of bandit theory in distributed channel

allocation has been the topic of numerous research studies. For example, in [GKJ10],

a combinatorial MAB model is used for multi-user channel allocation. Reference

[DL13] provides some solutions for channel selection problem in cognitive radio net-

works, by using a restless MAB model. In [LJP08], the authors propose a Markovian

bandit model for channel selection, where the availability of each channel is a Markov

chain. Moreover, a two-by-two channel allocation problem is considered in [Li09],

and Q-learning is utilized for solving the formulated problem. Dynamic channel

assignment by using Q-learning is addressed also in [NH99]. Reference [HGF13]

studies distributed channel access with limited information, where switching be-

tween channels is costly. Similar examples include [LZ09], [LPT13], [LZ10b], [LZ10a]

and [FYX13].

∙ Relay selection: In [5] and [6], a relay selection problem in two-hop wireless networks

is addressed, where given limited information, every transmitter-receiver pair selects

one of the available relays in order to improve data transmission. The problem is

solved using stochastic and adversarial bandit games. Reference [CJL11], on the

other hand, utilizes a restless MAB model in order to develop a cross-layer approach

for joint relay selection and physical-layer adaptive modulation and coding, which

maximizes the throughput of a cognitive radio network.

∙ Channel/Transmission scheduling: In [JMMM13], the wireless system is modeled as

a network with parallel queues. Each channel can have one of the two states, which

evolve according to a Markov process. Provided with no state information but given
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the queues’ lengths, the scheduler selects one queue at a time. This problem is then

solved by using a PO-MDP model. Similarly, by applying a restless bandit model,

[OMES11] exploits the channel memory for joint estimation and downlink scheduling.

In [CZKD06a] and [CZKD07], the authors use a stochastic bandit formulation to cast

the transmission scheduling in wireless sensor networks as a shortest path problem.

∙ Sensor scheduling: References [KD07] and [CZKD06b] analyze the sensor scheduling

problem, where the number of sites to be surveyed is larger than that of available

sensors. The problem is solved by using PO-MDP or MAB games.

∙ Transmission mode selection: In [9], an underlay D2D network is considered, where

users are allowed to select one of the two transmission modes, namely direct mode

and cellular mode. The problem of selecting the optimal mode is formulated as

a two-armed bandit game with one risky arm and one safe arm. The formulated

problem is solved by means of statistical hypothesis testing.

∙ User selection: Reference [SYJL10] proposes a sender selection scheme by using

restless bandit models, with the goal of maximizing the receiving data rate and

minimizing the energy consumption. Similarly, in [SYJL08], the authors utilize

indexing policies to solve the bandit-theoretical formulation of a sender selection

problem.

∙ Power control: In [VH04a], reinforcement learning is used to solve the power control

problem. More precisely, a Q-learning algorithm is developed to adjust the power to

the system states by means of reward values. In [CZZ13], multi-user Q-learning is

used for power control in a cognitive radio network. Joint relay selection and power

control is formulated as a restless bandit problem in [LMY+13].

∙ Channel sensing: Reinforcement learning has also been utilized for solving channel

sensing problems in cognitive radio networks. For instance, channel sensing using

fuzzy Q-learning is proposed in [PO13]. In [HLF11], a channel sensing problem in

cognitive radio networks is modeled by a PO-MDP, and an approach is proposed

for optimal decision making. Moreover, non-Bayesian channel sensing using bandit

theory is addressed in [LYW+11]. Reference [OKP12] is another example of channel

sensing using bandit models.

∙ In addition to the areas mentioned above, bandit models are also used in social

queries [BPSF13], dynamic pricing [ZTL+11] and reconfigurable antennas [GD14].

However, in most of the research works mentioned above, at least one of the following

questions is left open: i) How to apply and analyze the developed learning model in a

12
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conflicting, reactive environment, and ii) If the developed learning model is applied to a

multi-agent scenario, does it yield a steady state (equilibrium)? In other words, it is not

clear what would be the outcome of a repeated non-cooperative game in which players (or

some of them) play according to the proposed learning models.

1.1.4. Game Theory Meets Reinforcement Learning

In a non-cooperative multi-agent system, the reward of each action not only depends on the

(probably) random environment, but also on the joint action profile of players. Therefore

the learning model is generalized to 𝔏𝔊 :=

{
𝒦, ℐ,𝒮,T,

{
𝑓
(𝑘)
𝑚

}
𝑘∈𝒦,𝑚∈ℳ(𝑘)

,
{
x(𝑘)

}
𝑘∈𝒦

}
,

where

∙ x(𝑘) is the observations vector of player 𝑘 ∈ 𝒦,

∙ ℳ(𝑘) is the set of actions available to player 𝑘 ∈ 𝒦,7 and

∙ 𝑓 (𝑘)𝑚 is the mean reward process of action 𝑚 ∈ℳ(𝑘) for player 𝑘 ∈ 𝒦 [14].

Given no prior information, every agent requires to interact with the random environ-

ment and other agents in order to solve the problems that arise in an unknown reactive

model, for instance the long-term accumulated reward maximization, or average regret

minimization. As a result of competition, which is inherent in non-cooperative multi-

agent systems, learning models that ignore the presence of multiple agents might not yield

satisfactory outcomes; in particular, equilibrium is not guaranteed to be achieved. This is

when game theory and reinforcement learning meet and complement each other. Thereby,

equilibrium arises as an asymptotic outcome of repeated interactions in a random envi-

ronment among learning agents with bounded rationality that aim at achieving long run

optimality in some sense. This problem is currently under intensive investigation, mainly

in computer science and mathematics. For example, [CLRJ13] proposes convergent learn-

ing algorithms especially for potential games. References [KF08] and [FV97] discuss the

relation of calibration with Nash and correlated equilibria, respectively. Convergence to

Nash equilibrium in unknown games is studied in [FY03] and [GL07]. Moreover, the two

seminal books [CBL06] and [FL96] comprehensively explore the problem of learning and

prediction in games from the theoretical point of view.

In the theory of wireless communications there is also some ongoing research on game-

theoretical learning. However, many of the developed solutions are of strictly limited

applicability, as the algorithms are mostly designed for a specific game identified by some

7Throughout the thesis, we assume that all players have access to one action set, i.e. ℳ(𝑘) = ℳ, for all
𝑘 ∈ 𝒦. Note, however, that all results also hold for the case where every player 𝑘 has its own action
set ℳ(𝑘).
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utility function that is independent of users (not user-specific). More precisely, some works

such as [XWW+12], [XWS+13] and [XWW+13], consider a game with some specific (but

unknown to players) utility function, and then establish the convergence for the defined

game. In these works, it is also assumed that any given action pays equal rewards to all

players, which is certainly not realistic in wireless networks.

1.2. Contributions of the Thesis

In this thesis we develop some game-theoretical learning models with the goal of solving a

resource allocation problem in distributed D2D wireless networks. The developed strate-

gies are general in the sense that their convergence characteristics does not depend on

any specific game model, and the reward generating functions of arms are assumed to be

user-specific. Moreover, the strategies are efficient from the users’ point of view and also

require a relatively low overhead. Detailed description of contributions is presented in the

following.

Chapter 2 deals with the problem of efficient resource allocation in dynamic infrastruc-

tureless wireless networks. In a reactive interference-limited scenario, at each transmission

trial, every transmitter selects a frequency channel from some common pool, together with

a power-level. As a result, for all transmitters, not only the fading gain, but also the num-

ber and the power of interfering transmissions vary over time. Due to the absence of

a central controller and time-varying network characteristics, it is highly inefficient for

transmitters to acquire global channel and network knowledge. Therefore, given no in-

formation, each transmitter selfishly intends to maximize its average reward, which is a

function of the channel quality as well as the joint selection profile of all transmitters.

This scenario is modeled as an adversarial multi-player multi-armed bandit game, where

players attempt to minimize their so-called regret, while at the network side desired is to

achieve equilibrium in some sense. Based on this model and in order to solve the resource

allocation problem, we develop two joint power-level and channel selection strategies. We

prove that the gap between the average reward achieved by our approaches and that based

on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint

frequencies of the game converge to the set of correlated equilibria.

The results presented in this chapter are partially published in [5] and [8].

In Chapter 3 we consider the distributed channel selection problem in the context of

D2D communications as an underlay to a cellular network. Underlaid D2D users commu-

nicate directly by utilizing the cellular spectrum but their decisions are not governed by

any central controller. Selfish D2D users that compete for access to the resources form

a distributed system where the transmission performance depends on channel availability
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and quality. This information, however, is difficult to acquire. Moreover, the adverse ef-

fects of D2D users on cellular transmissions should be minimized. This scenario is modeled

as a stochastic multi-player multi-armed bandit game with side-information, for which a

distributed algorithmic solution is proposed. The solution is a combination of no-regret

learning and calibrated forecasting, and can be applied to a broad class of multi-player

stochastic learning problems, in addition to the formulated channel selection problem.

Theoretical analysis shows that the proposed approach not only yields vanishing regret,

but also guarantees that the empirical joint frequencies of the game converge to the set of

correlated equilibria.

The materials of this chapter are partially published in [6], [7] and [10].

Chapter 4 studies a resource allocation problem in a single-cell wireless network with

multiple D2D users sharing the available radio frequency channels with cellular users.

The priority of using limited wireless resources is however given to the cellular users. We

consider a rather realistic scenario where the BS is provided with strictly limited channel

knowledge while D2D and cellular users have no information. We prove a lower-bound

for the cellular aggregate utility in the downlink with fixed BS power, which allows for

decoupling the channel allocation and D2D power control problems. Channel allocation is

performed by using a suboptimal, but efficient, heuristic approach that consists of bipartite

matching and graph partitioning. Depending on the defined criterion (aggregate utility

maximization, fairness, quality of service guarantee), the approach assigns one cellular

user and (possibly) multiple D2D users to each channel. In each channel, every D2D

user therefore gropes for optimality in the sense of utility maximization by adjusting its

transmit power. We model this scenario as a game with unknown rewards, defined on a

discrete strategy set. The game is shown to be an exact potential game, and the set of

Nash equilibria is characterized. We further use a Q-learning better-reply dynamics to

achieve Nash equilibrium.

The results of this chapter are partially published in [12] and [11].

1.3. Further Results

In order to keep the consistency, some parts of the results that are obtained and published

during my Ph.D. studies are not included in this thesis. Below is a brief description.

The research work [9] studies D2D communications underlaying cellular infrastructure.

In such networks, each device pair is provided with two transmission modes: indirect and

direct. Indirect transmission is a two-hop interference-free transmission via a base station.

Despite being interference-free, this transmission type might be inefficient in communica-

tions scenarios where short-distance connections can be established. Moreover, the need
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for centralized resource allocation and deployment of extra hardware may lead to excessive

complexity and unacceptable costs. In such scenarios, direct transmissions can utilize the

proximity- and hop gains to achieve higher rates and lower end-to-end latencies. While

having a potential for huge performance gains, direct D2D communications poses some

fundamental challenges resulting from the absence of a devoted controller such as uncoor-

dinated interference and unavailability of permanent direct channels. Roughly speaking,

in an average sense, indirect transmission pays safe and steady reward, whereas direct

transmission is risky, yielding a stochastic reward. While this random reward can be

larger than the guaranteed reward of indirect transmission, there is also the possibility

that it becomes lower than that, despite the proximity- and hop gains. Transmitters

should therefore choose the most efficient transmission mode in the presence of limited

information. The paper characterizes the reward process for each transmission mode to

model the mode selection problem as a two-armed Levy-bandit game. Accordingly, the

reward of the risky arm (direct mode) is considered to be a pure-jump Levy process, fol-

lowing compound Poisson distribution. Mathematical results from bandit and learning

theories are used to solve the selection problem. Numerical results are also included.

In [13] we consider a distributed channel selection problem for D2D transmission under-

laying conventional cellular networks. Specifically, underlaying devices exploit the (possi-

bly) idle licensed cellular spectrum in order to establish direct communication links, and

transmit using rateless coding under energy constraint. While the quality of each channel

is assumed to be stochastic, the availability is non-stochastic (adversarial). Moreover,

cellular channels are idle only for some finite time. As there might be numerous such

primary channels, acquiring prior information about channel quality and/or availability

yields excessive cost; therefore we assume that D2D devices do not possess any prior infor-

mation. Device pairs face the problem of selecting a suitable channel so that a successful

data delivery under the energy constraint is guaranteed. We model this problem as a

multi-armed bandit game with mortal arms, and provide an algorithmic solution. The

proposed game model and solution are evaluated analytically and numerically.

In [1], a hybrid centralized-decentralized resource allocation scheme for the downlink of

two-hop relay-enhanced transmission is proposed. In the first-hop, centralized joint power

and subcarrier allocation is performed. The second-hop is modeled as a virtual supply-

demand market, and a two-level game is designed that converges to Nash equilibrium.

The proposed scheme reduces the feedback overhead and exploits the resources efficiently,

while taking the fairness into account.

In [2], we consider a delay-constrained application in relay-enhanced cognitive radio

networks, where secondary users interfere with primary users. We assume that the sec-

ondary users utilize rateless coding, and develop a relay selection scheme. The proposed
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scheme provides joint benefits of two well-known relaying strategies, namely relay subset

selection and incremental relaying. Both analytically and numerically, we show that the

scheme not only reduces the feedback overhead significantly, but also minimizes the outage

probability. Moreover, resources are exploited efficiently.

Research study [3] proposes a new transmission protocol for two-hop transmission em-

ploying rateless coding in the first hop and rateless-network coding in the second hop. In

this protocol, device pairs and also relays are partitioned into small clusters; afterwards,

each cluster of device pairs is assigned one relay cluster, to be used in order to improve

the transmission performance. The scheme increases the diversity order (in comparison

to the case where each pair utilizes its own relay with no cooperation), without increasing

the transmission cost (such as delay or energy), provided that the clustering-assignment

form is optimized in the sense of cost minimization. We show that finding the optimal

clustering-assignment can be relaxed to the cascade of two graph-theoretical problems,

namely graph partitioning and weighted matching, which can be solved efficiently. More-

over, we model the delay as cost, and analyze the expected transmission time.

Finally, [4] develops a joint power allocation and relay selection scheme for bidirectional

relay-enhanced transmission utilizing network coding. The power allocation scheme aims

at minimizing the required transmit power while providing the desired quality of service

expressed in terms of outage probability. The relay selection task is formulated as a

weighted matching problem, targeting at either minimizing some cost (wasted power or

delay) or maximizing some utility (goodput). Our approach relies only on statistical

channel knowledge, thereby reducing the feedback and signaling overhead compared to

the approaches that require instantaneous channel knowledge.
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2. Distributed Resource Allocation in

Adversarial Networks

In this chapter our focus is on a multi-agent decision making problem in an adversarial

environment. The self-interested agents are provided with no information and intend to

efficiently learn the optimal joint action profile by successive interactions. A particular

instance of this scenario is the resource allocation problem in an infrastructureless wireless

network, as considered here. In Section 2.1, we briefly summarize some important defini-

tions and results in the area of adversarial bandit theory that are used in our model and

analysis. Afterwards, in Section 2.2, we describe the system model and formulate the joint

power control and channel allocation problem as an adversarial multi-player multi-armed

bandit game. With the aim of efficient resource management and interference mitigation,

we follow an approach suggested in [BM07] to develop two joint power control and channel

selection algorithms. The first strategy, described in Section 2.3, is an adapted version of

exponential-based weighted average allocation rule [ACBFS03], while the other, described

in Section 2.4, is based on follow the leader strategy [KE05]. The developed strategies

not only result in small (that is, with sublinear growth in time) regret for each individual

player, but also guarantee that the empirical joint frequencies of the play converge to

the set of correlated equilibria. Moreover, in Section 2.5, we implement the experimental

regret-testing procedure, which is known to converge to the set of Nash equilibria of the

game [GL07].

Our work extends the state-of-the-art in this area significantly since it differs from the

existing research studies in at least the following crucial aspects:

∙ Unlike many previous works including [GLM04] and [FYX13] that study the single-

agent learning problem, we analyze the multi-agent setting, while taking the selfish-

ness of players into account.

∙ Our model and algorithms do not rely on the assumption that the reward generat-

ing process of every action is time-invariant. In fact, reward functions might vary

arbitrarily; as a result the model captures the dynamic nature of wireless channels

and distributed networks. This is in contrast to a great majority of previous works,
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including [XWW+12], [XWS+13] and [KNJ14], where the reward generating process

of every arm is assumed to be time-invariant.

∙ In contrast to [KNJ12] and [XWW+12], we neither allow pairwise information ex-

change, nor use a control channel. Therefore the overhead is minimized.

∙ Moreover, players do not observe the actions of each other. As a result, the algo-

rithms are incentive-compatible and do not require any cooperation, thereby offering

high applicability. An exemplary application is a power control problem with un-

known power-levels used by other transmitters.

∙ In our system model, channel qualities are taken into account so that channels pay

different rewards to different users; that is, contrary to [XWW+12] and [XWS+13],

the reward generating functions are user-specific. In addition, we impose no limita-

tion on the interference pattern.

∙ The convergence analysis is valid for a wide range of games. This is in contrast

to many previous works where the game should be necessarily potential for the

convergence analysis to hold. Example of such works are [XWW+12], [XWS+13]

and [XWW+13], among many others.

2.1. Adversarial Multi-Player Multi-Armed Bandit Games

2.1.1. Notions of Regret

Multi-player multi-armed bandit problem (MP-MAB, hereafter) is a class of sequential

decision making problems with limited information. In this game, there exists a set of

players 𝒦 = {1, ...,𝐾}. Each player 𝑘 ∈ 𝒦 is assigned 𝑀 actions that are indexed by

integer numbers; the action set therefore yields ℳ = {1, ...,𝑀}. Every player selects an

action at successive trials in order to receive an initially unknown reward that depends not

only on its own actions, but also on those of other players. The action set, the played action

and the reward achieved by each player are regarded as private information. The reward

generating processes of arms are independent. Let ℐ be the set of joint action profile.

Accordingly, i𝑡 =
(
𝑖
(1)
𝑡 , ..., 𝑖

(𝑘)
𝑡 , ..., 𝑖

(𝐾)
𝑡

)
∈ ⊗𝐾

𝑘=1 {1, ...,𝑀} denotes the joint action profile

of players at time 𝑡, with 𝑖
(𝑘)
𝑡 ∈ℳ being the action of player 𝑘. Clearly, i𝑡 =

(
𝑖
(𝑘)
𝑡 , i

(−𝑘)
𝑡

)
,

where i
(−𝑘)
𝑡 ∈ ⊗𝐾−1

𝑘=1 {1, ...,𝑀} is the the joint action profile of all players except for 𝑘,

at time 𝑡. Moreover, let 𝑔
(𝑘)
𝑡 (i𝑡) ∈ [0, 1] be the reward achieved by some player 𝑘 at
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time 𝑡.1 The instantaneous regret of any player 𝑘 is defined as the difference between the

reward of the optimal action,2 and that of the played action. Based on this definition, the

cumulative regret of player 𝑘 is formally defined in the following.

Definition 1 (Cumulative Regret). The cumulative regret of player 𝑘 up to time 𝑛 is

defined as

𝑅(𝑘)
𝑛 = max

𝑖=1,...,𝑀

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
−

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
𝑖
(𝑘)
𝑡 , i

(−𝑘)
𝑡

)
. (2.1)

Each player aims at minimizing its accumulated regret, which is an instance of the

well-known exploitation-exploration dilemma: Find a balance between exploiting actions

that have exhibited well performance in the past (control) on the one hand, and exploring

actions which might lead to a better performance in the future (learning) on the other

hand.

Now, suppose that players use mixed strategies and let 𝒫 denote the set of all possible

probability distributions over 𝑀 actions. This means that, at each trial 𝑡, player 𝑘 selects

a probability distribution p
(𝑘)
𝑡 =

(
𝑝
(𝑘)
1,𝑡 , ..., 𝑝

(𝑘)
𝑖,𝑡 , ..., 𝑝

(𝑘)
𝑀,𝑡

)
over arms, and plays arm 𝑖 with

probability 𝑝
(𝑘)
𝑖,𝑡 . In this case, we resort to the expected regret, also called external regret

[CBL06], defined as follows.

Definition 2 (External Regret). The external cumulative regret of player 𝑘 up to time 𝑛

is defined as

𝑅
(𝑘)
Ext := 𝑅

(𝑘)
Ext(𝑛) = max

𝑖=1,...,𝑀

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
−

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
p
(𝑘)
𝑡 , i

(−𝑘)
𝑡

)

= max
𝑖=1,...,𝑀

𝑛∑
𝑡=1

𝑀∑
𝑗=1

𝑝
(𝑘)
𝑗,𝑡

(
𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
− 𝑔(𝑘)𝑡

(
𝑗, i

(−𝑘)
𝑡

))
,

(2.2)

where 𝑔
(𝑘)
𝑡 (⋅) denotes the expected reward at round 𝑡 by using mixed strategy p(𝑘)

𝑡 , defined

as 𝑔
(𝑘)
𝑡 (⋅) = ∑𝑀

𝑗=1 𝑔
(𝑘)
𝑡 (𝑗, ⋅)𝑝(𝑘)𝑗,𝑡 .

By definition, external regret compares the expected reward of the current mixed strat-

egy with that of the best fixed action in the hindsight, but fails to compare the rewards

achieved by changing actions in a pairwise manner. In order to compare actions in pairs,

internal regret [CBL06] is introduced that is closely related to the concept of equilibrium

in games.

1Note that all results can be also expressed in terms of loss (𝑑), provided that the loss is related to the
gain by 𝑑 = 1− 𝑔, 𝑔 ∈ [0, 1].

2Optimality is defined in the sense of the highest reward.
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Definition 3 (Internal Regret). The internal cumulative regret of player 𝑘 up to time 𝑛

is defined as

𝑅
(𝑘)
Int := 𝑅

(𝑘)
Int(𝑛) = max

𝑖,𝑗=1,...,𝑀
𝑅

(𝑘)
(𝑖→𝑗),𝑛

= max
𝑖,𝑗=1,...,𝑀

𝑛∑
𝑡=1

𝑝
(𝑘)
𝑖,𝑡

(
𝑔
(𝑘)
𝑡

(
𝑗, i

(−𝑘)
𝑡

)
− 𝑔(𝑘)𝑡

(
𝑖, i

(−𝑘)
𝑡

))
.

(2.3)

Notice that on the right-hand side of (2.3), 𝑟
(𝑘)
(𝑖→𝑗),𝑡 = 𝑝

(𝑘)
𝑖,𝑡

(
𝑔
(𝑘)
𝑡 (𝑗, ⋅)− 𝑔(𝑘)𝑡 (𝑖, ⋅)

)
denotes

the expected regret caused by pulling arm 𝑖 instead of arm 𝑗. By comparing (2.2) and

(2.3), the external regret can be bounded above by the internal regret as [SL05]

𝑅
(𝑘)
Ext = max

𝑖=1,...,𝑀

𝑀∑
𝑗=1

𝑅
(𝑘)
(𝑖→𝑗),𝑛 ≤𝑀 max

𝑖,𝑗=1,...,𝑀
𝑅

(𝑘)
(𝑖→𝑗),𝑛 =𝑀𝑅

(𝑘)
Int . (2.4)

Remark 1. Throughout this chapter, vanishing (zero-average) external and internal regret

means that lim𝑛→∞ 1
𝑛𝑅Ext = 0 and lim𝑛→∞ 1

𝑛𝑅Int = 0, respectively. In other words, we

have 𝑅Ext ∈ 𝑜(𝑛) and 𝑅Int ∈ 𝑜(𝑛). Note that by (2.4), 𝑅Int ∈ 𝑜(𝑛) implies 𝑅Ext ∈ 𝑜(𝑛).
We call any strategy with 𝑅Int ∈ 𝑜(𝑛) as ”no-regret strategy”.

2.1.2. Equilibrium

From the view point of each player 𝑘, an MP-MAB is a game with two agents: player 𝑘

itself, and the set of all other 𝐾 − 1 players (referred to as the opponent), whose joint

action profile affects the reward achieved by player 𝑘. We consider here the most general

framework, where the opponent is non-oblivious, i.e. its series of actions depends on the

actions of player 𝑘. It is known that a game against a non-oblivious opponent can be

modeled by adversarial bandit games [BCB12], where similar to other game-theoretical

formulations, desired is to achieve an efficient equilibrium, most importantly Nash and

correlated equilibria [NRTV07], which are defined in Section 1 of Appendix A.3

In the context of game-theoretical bandits, an important result is the following theorem.

Theorem 1 ( [CBL06]). Consider a 𝐾-player bandit game, where each player 𝑘 is provided

with an action set of cardinality 𝑀 . Denote the internal regret of player 𝑘 by 𝑅
(𝑘)
Int, and

the set of correlated equilibria by 𝒞. At time 𝑛, define the empirical joint distribution of

3As a general rule, all standard definitions that are used frequently in this thesis are stated in the
appendix.
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the game as

�̂�𝑛(j) =
1

𝑛

𝑛∑
𝑡=1

1{i𝑡=j}, j =
(
𝑗(1), ..., 𝑗(𝐾)

)
∈

𝐾⊗
𝑘=1

{1, ...,𝑀} , (2.5)

where 1{𝑥} is the indicator function that returns one if 𝑥 holds and zero otherwise. If all
players 𝑘 ∈ {1, ...,𝐾} play according to any strategy so that

lim
𝑛→∞

1

𝑛
𝑅

(𝑘)
Int = 0, (2.6)

then the distance inf𝜋∈𝒞
∑

j ∣�̂�𝑛(j)− 𝜋(j)∣ between the empirical joint distribution of plays
and the set of correlated equilibria converges to 0 almost surely.

Theorem 1 simply states that in an MP-MAB game, if all players play according to a

strategy with vanishing internal regret (no-regret), then the empirical joint distribution

of plays converges to the set of correlated equilibria. Note that the strategies used by

players are not required to be identical. Since a rational player is interested in minimizing

its regret, the assumption that every player plays according to some no-regret strategy is

reasonable.

2.1.3. From Vanishing External Regret to Vanishing Internal Regret

In [SL05], an approach is proposed for converting any selection strategy with vanishing ex-

ternal regret to another version with vanishing internal regret. We describe this approach

briefly in what follows. The player index (𝑘) is omitted for convenience.

Consider some selection strategy 𝜅 that at each time 𝑡 selects one of the 𝑀 actions

according to some probability distribution p𝑡. Let p1 be the uniform distribution. In

order to calculate p𝑡 for 𝑡 > 1, 𝜅 constructs a meta-strategy 𝜅′ with 𝑀(𝑀 − 1) vir-

tual actions (𝑖 → 𝑗), (𝑖, 𝑗 ∈ {1, ...,𝑀} , 𝑖 ∕= 𝑗). Assume that 𝜅′ uses some mixed

strategy w𝑡 over 𝑀(𝑀 − 1) virtual actions, where the probability of the virtual ac-

tion (𝑖 → 𝑗), i.e. 𝑤(𝑖→𝑗),𝑡, depends on its past performance in some way.4 Given w𝑡

and p𝑡−1 = (𝑝1,𝑡−1, ..., 𝑝𝑖,𝑡−1, ..., 𝑝𝑗,𝑡−1, ..., 𝑝𝑀,𝑡−1), 𝜅 defines p(𝑖→𝑗),𝑡−1, which has 0 and

𝑝𝑗,𝑡−1 + 𝑝𝑖,𝑡−1 at the place of 𝑝𝑖,𝑡−1 and 𝑝𝑗,𝑡−1, respectively, and all other elements re-

main unchanged; that is, p(𝑖→𝑗),𝑡−1 = (𝑝1,𝑡−1, ..., 0, ..., 𝑝𝑗,𝑡−1 + 𝑝𝑖,𝑡−1, ..., 𝑝𝑀,𝑡−1). Then

p𝑡 =
∑

(𝑖,𝑗):𝑖∕=𝑗 p(𝑖→𝑗),𝑡𝑤(𝑖→𝑗),𝑡. As a result, 𝜅 has the characteristic that its internal regret

is upper-bounded by the external regret of 𝜅′. Thus, if 𝜅′ exhibits vanishing external

4Note that the gains of virtual actions cannot be calculated explicitly. Later we see that the gain achieved
by any virtual action (𝑖 → 𝑗) is calculated based on the gain achieved by playing true actions 𝑖 and 𝑗.
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2. Distributed Resource Allocation in Adversarial Networks

regret, then 𝜅 results in vanishing internal regret. In Section 2.3 and 2.4, we use this

property in order to design no-regret selection strategies.

2.2. Bandit-Theoretical Model of Infrastructureless Wireless

Networks

2.2.1. System Model

We consider a network consisting of a set 𝒦 = {1, ...,𝐾} of transmitter-receiver pairs.

Each pair is referred to as a D2D user and is denoted either by just 𝑘 or by the pair (𝑘, 𝑘′).
Every user 𝑘 ∈ 𝒦 can access a setℳ′ = {1, ...,𝑀 ′} of mutually orthogonal channels. The

transmission power can be selected from a set ℳ′′ of 𝑀 ′′ quantized power-levels. This

implies that the strategy set includes 𝑀 =𝑀 ′ ×𝑀 ′′ actions, where at time 𝑡 each action

𝑖
(𝑘)
𝑡 =

(
𝑖
′(𝑘)
𝑡 , 𝑖

′′(𝑘)
𝑡

)
consists of one channel index 𝑖

′(𝑘)
𝑡 (which corresponds to some channel

quality), and one power-level 𝑖
′′(𝑘)
𝑡 . Therefore, the joint action profile of users, i𝑡, is to be

understood here as the pair (i′𝑡, i′′𝑡 ), where i′𝑡 =
(
𝑖
′(1)
𝑡 , ..., 𝑖

′(𝐾)
𝑡

)
and i′′𝑡 =

(
𝑖
′′(1)
𝑡 , ..., 𝑖

′′(𝐾)
𝑡

)
.

As each channel might be accessible by multiple users, co-channel interference (collision,

interchangeably) is likely to arise. Since users are allowed to select a new channel and to

adapt their power-levels at each transmission trial, interference pattern in general changes

over time. In addition, the distribution of fading coefficients might be also time-varying so

that acquiring channel and/or network information at the level of autonomous transmitters

would be extremely challenging and inefficient. Therefore, we assume the following.

Assumption (A1). Throughout this chapter, we assume that:

a) Transmitters have no channel knowledge or any other side-information such as the

number of users or their selected actions.

b) Users do not coordinate their actions that can be chosen completely asynchronously by

each user.

Note that as users do not observe the actions of each other, it might be in their interest

to select their actions at the beginning of trials, thereby using the remaining time for data

transmission.

2.2.2. Bandit-Theoretical Problem Formulation

In this chapter, we model the joint channel and power-level selection problem as a 𝐾-

player adversarial bandit game, where player 𝑘 decides for one of the𝑀 actions. For some
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2.2. Bandit-Theoretical Model of Infrastructureless Wireless Networks

joint action profile i =
(
𝑖(1), ..., 𝑖(𝑘), ..., 𝑖(𝐾)

)
, we define the bounded mean reward function

of player 𝑘 to be

𝑓
(𝑘)
𝑡 (i) = log2

(
𝑖′′(𝑘)∣ℎ𝑘𝑘′,𝑡,𝑖′(𝑘) ∣2∑

𝑞∈𝒬(𝑘) 𝑖′′(𝑞)∣ℎ𝑞𝑘′,𝑡,𝑖′(𝑘) ∣2 +𝑁0

)
− 𝛼𝑖′′(𝑘), (2.7)

for some given joint action profile i = (i′, i′′). In (2.7), 𝒬(𝑘) is the set of players that

interfere with user 𝑘 in channel 𝑖′(𝑘). Throughout the chapter, ∣ℎ𝑢𝑣,𝑡,𝑥∣2 ∈ ℝ
+ is used to

denote the average gain of some channel 𝑥 between 𝑢 and 𝑣 at time 𝑡, including path loss

and fast fading effects. 𝑁0 is the variance of zero-mean additive white Gaussian noise

(AWGN), and 𝛼 ≥ 0 is the constant power price factor. The last term in (2.7) is used

to penalize excessive transmission power. According to Section 2.1, let 𝑔
(𝑘)
𝑡 (i𝑡) ∈ [0, 1]

denote the achieved reward of player 𝑘 at time 𝑡, as a function of joint action profile i𝑡.

We consider a game with noisy rewards where 𝑔
(𝑘)
𝑡 (i) = 𝑓

(𝑘)
𝑡 (i) + C(𝑘)(i), with C(𝑘) being

some zero-mean random variable with bounded variance, independent of all other random

variables. As it is well-known, in a non-cooperative game, the primary goal of each selfish

player is to maximize its own accumulated reward. Formally, this can be written as

maximize{(
𝑖
′(𝑘)
𝑡 ,𝑖

′′(𝑘)
𝑡

)}𝑛

𝑡=1

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
i′𝑡, i

′′
𝑡

)
, (2.8)

where 𝑖
′(𝑘)
𝑡 ∈ ℳ′ and 𝑖′′(𝑘)𝑡 ∈ ℳ′′. By Assumption (A1), however, it is clear that the

objective function in (2.8) is not available. For this reason, we argue for a less ambitious

goal, which is known as regret minimization. Formally, each player 𝑘 attempts to achieve

vanishing external regret in the sense that

lim
𝑛→∞

1

𝑛
𝑅

(𝑘)
Ext

= lim
𝑛→∞

1

𝑛

(
max

𝑖=1,...,𝑀

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
−

𝑛∑
𝑡=1

𝑔
(𝑘)
𝑡

(
p
(𝑘)
𝑡 , i

(−𝑘)
𝑡

))
= 0.

(2.9)

In addition to the individual strategy of each user aiming at satisfying (2.9), at the network

level it is desired to achieve some steady state, i.e. equilibrium. Therefore, in the remainder

of this chapter, we develop algorithmic solutions to the resource allocation problem with

a twofold objective in mind: i) external regret of each user should vanish asymptotically

according to (2.9) and ii) the actions of all players should converge to equilibrium.

By (2.4), the external regret of every user is upper-bounded by its internal regret. As a

result, if all users select their actions according to some no-regret strategy, not only (2.9)

is achieved by all of them (see also Remark 1), but also the corresponding game converges
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to equilibrium in some sense, which immediately follows from Theorem 1. In Sections 2.3

and 2.4, we present two internal regret minimizing strategies that are shown to solve the

game by achieving the two objectives mentioned above. Both algorithms can be applied

in a fully decentralized manner by each player, since at each time, they only require the

set of past rewards of the respective player.

Finally, it is worth noting that to our best knowledge, the set of correlated equilibria for

the general time-varying discrete game defined by (2.7) cannot be characterized. However,

in what follows, we characterize the set of equilibria for a relaxed version of this game. In

doing so, we assume that for all 𝑘 ∈ 𝒦, the strategy set ℳ = ℳ′ ×ℳ′′ is a convex and

compact subset of ℝ2. With this assumption in mind, consider a game where each player

has a time-invariant and bounded mean reward function such as

𝑓 (𝑘)(i) = log2

(
𝑖′′(𝑘)∣ℎ𝑘𝑘′,𝑖′(𝑘) ∣2∑

𝑞∈𝒬(𝑘) 𝑖′′(𝑞)∣ℎ𝑞𝑘′,𝑖′(𝑘) ∣2 +𝑁0

)
− 𝛼𝑖′′(𝑘), (2.10)

which implies that the average channel gains are time-invariant. By the following propo-

sition, this game has a unique correlated equilibrium.

Proposition 1. Consider a 𝐾-player game where the mean reward function of each player

𝑘 is defined by (2.10). This game has a unique correlated equilibrium which places proba-

bility one on its unique pure strategy Nash equilibrium.

Proof. See Section 1 of Appendix B.

2.3. No-Regret Bandit Exponential-Based Weighted Average

Strategy

The basic idea of an exponential-based weighted strategy is to assign each action, at ev-

ery trial, some selection probability which is inversely proportional to the exponentially-

weighted accumulated regret (or directly proportional to the exponentially-weighted accu-

mulated reward) caused by that action in the past [HMc01]. Roughly speaking, if playing

an action has resulted in large regret in the past, its future selection probability is small,

and vice versa.

As described in Section 2.1.1, in a bandit formulation, players only observe the reward

of the played action, and not those of others. Therefore the reward of each action 𝑖 is

estimated as [CBL06]

𝑔
(𝑘)
𝑡 (𝑖) =

⎧⎨
⎩

𝑔
(𝑘)
𝑡 (𝑖)

𝑝
(𝑘)
𝑖,𝑡

𝑖 = 𝑖
(𝑘)
𝑡

0 o.w.
, (2.11)
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which is an unbiased estimate of the true reward of action 𝑖; that is, E
{
𝑔(𝑘)(𝑖)

}
= 𝑔(𝑘)(𝑖),

where expectation is with respect to the distribution p𝑡 of the random variable 𝑖
(𝑘)
𝑡 . Es-

timated rewards are afterwards used to calculate regrets. For example, the regret of not

playing action 𝑗 instead of action 𝑖 yields

�̃�
(𝑘)
(𝑖→𝑗),𝑡−1 =

𝑡−1∑
𝑠=1

𝑟
(𝑘)
(𝑖→𝑗),𝑠 =

𝑡−1∑
𝑠=1

𝑝
(𝑘)
𝑖,𝑠

(
𝑔(𝑘)𝑠 (𝑗)− 𝑔(𝑘)𝑠 (𝑖)

)
. (2.12)

Despite exhibiting vanishing external regret, weighted average strategies yield in general

large internal regret; as a result, even if all players play according to such strategies, the

game does not converge to equilibrium. In the following, we utilize the bandit version of

exponentially-weighted average strategy [CBL03], and convert it to an improved version

that yields small internal regret, using the approach of Section 2.1.3. The strategy is called

no-regret bandit exponentially-weighted average strategy (NR-BEWAS), and is described

in Algorithm 1.

From Algorithm 1, NR-BEWAS has two parameters, namely 𝛾𝑡 and 𝜂𝑡. In the event

that the game horizon, 𝑛, is known in advance, these two parameters are constant over

time (𝜂𝑡 = 𝜂 and 𝛾𝑡 = 𝛾), and the regret growth rate can be bounded precisely, mainly

based on the results of [CBL06]. Otherwise, they vary with time. In this case, vanishing

(sublinear in time) internal regret can be guaranteed; nevertheless, this bound might be

loose. This discussion is formally summarized in the following propositions.

Proposition 2. Let 𝜂𝑡 = 𝜂 =
(
log(𝑀)
2𝑀𝑛

) 2
3
and 𝛾𝑡 = 𝛾 =

(
𝑀2 log(𝑀)

4𝑛

) 1
3
. Then Algorithm 1

yields 𝑅
(𝑘)
Int ∈ 𝑂

((
𝑛𝑀2

) 2
3 (2 log (𝑀))

1
3

)
, hence vanishing internal regret.

Proof. See Section 2 of Appendix B.

Proposition 3. Let 𝜂𝑡 =
𝛾3
𝑡

𝑀2 and 𝛾𝑡 = 𝑡−
1
3 . Then Algorithm 1 (NR-BEWAS) yields

vanishing internal regret; that is we have 𝑅
(𝑘)
Int ∈ 𝑜(𝑛).

Proof. See Section 3 of Appendix B.

The following corollaries follow from the above propositions and Theorem 1.

Corollary 1. If all players play according to NR-BEWAS, then the empirical joint fre-

quencies of the game converge to the set of correlated equilibria.

Proof. The proof is a direct consequence of Theorem 1 and Proposition 2 or Proposition

3.
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Algorithm 1 No-Regret Bandit Exponential-Based Weighted Average Strategy (NR-
BEWAS)

1: If the game horizon, 𝑛, is known, define 𝛾𝑡 and 𝜂𝑡 as given in Proposition 2, otherwise as those
given in Proposition 3.

2: Define Φ(u) = 1
𝜂𝑡
log

(∑𝑀
𝑖=1 exp(𝜂𝑡𝑢𝑖)

)
, where u = (𝑢1, ..., 𝑢𝑀 ) ∈ ℝ

𝑀 .

3: Let p
(𝑘)
1 =

(
1
𝑀 , ...,

1
𝑀

)
(uniform distribution).

4: Select an action using p
(𝑘)
1 .

5: Play and observe the reward.
6: for 𝑡 = 2, ..., 𝑛 do

7: Let p
(𝑘)
𝑡−1 =

(
𝑝
(𝑘)
1,𝑡−1, ..., 𝑝

(𝑘)
𝑖,𝑡−1, ..., 𝑝

(𝑘)
𝑗,𝑡−1, ..., 𝑝

(𝑘)
𝑀,𝑡−1

)
be the mixed strategy at time 𝑡 − 1.

Construct p
(𝑘)
(𝑖→𝑗),𝑡−1 as follows: replace 𝑝

(𝑘)
𝑖,𝑡−1 in p

(𝑘)
𝑡−1 by zero, and instead increase

𝑝
(𝑘)
𝑗,𝑡−1 to 𝑝

(𝑘)
𝑗,𝑡−1 + 𝑝

(𝑘)
𝑖,𝑡−1. Other elements remain unchanged. We obtain p

(𝑘)
(𝑖→𝑗),𝑡−1 =(

𝑝
(𝑘)
1,𝑡−1, ..., 0, ..., 𝑝

(𝑘)
𝑗,𝑡−1 + 𝑝

(𝑘)
𝑖,𝑡−1, ..., 𝑝

(𝑘)
𝑀,𝑡−1

)
.

8: Define [CBL06]

𝑤
(𝑘)
(𝑖→𝑗),𝑡 =

exp
(
𝜂𝑡�̃�

(𝑘)
(𝑖→𝑗),𝑡−1

)
∑

(𝑚→𝑙):𝑚 ∕=𝑙 exp
(
𝜂𝑡�̃�

(𝑘)
(𝑚→𝑙),𝑡−1

) , (2.13)

where �̃�
(𝑘)
(𝑖→𝑗),𝑡−1 is calculated by using (2.11) and (2.12).

9: Given 𝑤
(𝑘)
(𝑖→𝑗),𝑡, solve the following fixed point equation to find p

(𝑘)
𝑡 :

p
(𝑘)
𝑡 =

∑
(𝑖→𝑗):𝑖∕=𝑗

p
(𝑘)
(𝑖→𝑗),𝑡𝑤

(𝑘)
(𝑖→𝑗),𝑡. (2.14)

10: Final probability distribution yields

p
(𝑘)
𝑡 = (1− 𝛾𝑡)p(𝑘)

𝑡 +
𝛾𝑡
𝑀
. (2.15)

11: Using the final p
(𝑘)
𝑡 , given by (2.15), select an action.

12: Play and observe the reward.
13: end for
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Corollary 2. Let 𝜖-correlated equilibrium approximate correlated equilibrium in the sense

that
∩

𝜖>0 𝒞𝜖 = 𝒞. Assuming that the game horizon is known and all players play according
to NR-BEWAS, then the minimum required number of trials to achieve 𝜖-correlated equi-

librium yields max𝑘=1,...,𝐾 𝜖
− 3

2𝑂
(
𝑀𝐾

(
𝑀2 log (𝑀) +𝐾2 log(𝐾)

))
, which is proportional

to 𝜖−
3
2 and increases polynomially in the number of actions and players.

Proof. The proof follows from the bound of Proposition 2 and Remark 7.6 of [CBL06].5

2.4. No-Regret Bandit Follow the Perturbed Leader Strategy

Similar to the weighted average strategy presented in the previous section, the strategy

follow the perturbed leader is an approach to solve online decision making problems. In

the basic version of this approach, called follow the leader [Han57], the action with the

minimum regret in the past is selected at each trial. This rule is however deterministic

and thus does not achieve vanishing regret against non-oblivious opponents. Therefore,

in follow the perturbed leader, the player adds a random perturbation to the vector of

accumulated regrets, and the action with the minimum perturbed regret in the past is

selected [CBL06]. In [KE07], a bandit version of this algorithm is constructed, where un-

observed rewards are estimated. The authors show that the developed algorithm exhibits

vanishing external regret. Similar to NR-BEWAS, we here modify the algorithm of [KE07]

to ensure vanishing internal regret, so that the convergence to equilibrium is guaranteed.

The approach is called no-regret bandit follow the perturbed leader strategy (NR-BFPLS),

and is summarized in Algorithm 2.

Algorithm 2 requires the knowledge of the probability assigned to each action by the

follow the perturbed leader strategy at every trial. However, in contrast to NR-BEWAS,

these probabilities are not assigned explicitly; therefore we explain how to calculate these

values.

From (2.16), the selection probability of virtual action (𝑖 → 𝑗) ∈ {1, ...,𝑀(𝑀 − 1)}
is the probability that �̃�(𝑖→𝑗),𝑡−1 plus perturbation 𝑞(𝑖→𝑗),𝑡 is larger than those of other

5Details are omitted to avoid unnecessary restatement of existing analysis.
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Algorithm 2 No-Regret Bandit Follow the Perturbed Leader Strategy (NR-BFPLS)

1: Define 𝜖𝑡 = 𝜖𝑛 =

√
log(𝑛)

3
√
𝑀𝑛

, and 𝛾𝑡 = min(1,𝑀𝜖𝑡). Note that unlike NR-BEWAS, here we know

the game horizon, 𝑛, in advance.

2: Let p
(𝑘)
1 =

(
1
𝑀 , ...,

1
𝑀

)
(uniform distribution).

3: Select an action using p
(𝑘)
1 .

4: Play and observe the reward.
5: for 𝑡 = 2, ..., 𝑛 do

6: Let p
(𝑘)
𝑡−1 =

(
𝑝
(𝑘)
1,𝑡−1, ..., 𝑝

(𝑘)
𝑖,𝑡−1, ..., 𝑝

(𝑘)
𝑗,𝑡−1, ..., 𝑝

(𝑘)
𝑀,𝑡−1

)
be the mixed strategy at time 𝑡 − 1.

Construct p
(𝑘)
(𝑖→𝑗),𝑡−1 as follows: replace 𝑝

(𝑘)
𝑖,𝑡−1 in p

(𝑘)
𝑡−1 by zero, and instead increase

𝑝
(𝑘)
𝑗,𝑡−1 to 𝑝

(𝑘)
𝑗,𝑡−1 + 𝑝

(𝑘)
𝑖,𝑡−1. Other elements remain unchanged. We obtain p

(𝑘)
(𝑖→𝑗),𝑡−1 =(

𝑝
(𝑘)
1,𝑡−1, ..., 0, ..., 𝑝

(𝑘)
𝑗,𝑡−1 + 𝑝

(𝑘)
𝑖,𝑡−1, ..., 𝑝

(𝑘)
𝑀,𝑡−1

)
.

7: Calculate �̃�
(𝑘)
(𝑖→𝑗),𝑡−1 using (2.11) and (2.12).

8: Define 𝜎(𝑖→𝑗),𝑡−1 =

(∑𝑡−1
𝑠=1

1

𝑤
(𝑘)

(𝑖→𝑗),𝑠

) 1
2

, which is the upper-bound of conditional variances of

random variables �̃�
(𝑘)
(𝑖→𝑗),𝑡−1 [KE07].

9: Let �̃�
(𝑘)
(𝑖→𝑗),𝑡−1 = �̃�

(𝑘)
(𝑖→𝑗),𝑡−1 −

√
1 +

√
2/𝑀 𝜎(𝑖→𝑗),𝑡−1

√
log(𝑡) [KE07].

10: Randomly select a perturbation vector q𝑡 with 𝑀(𝑀 − 1) elements from two-sided expo-
nential distribution with width 𝜖𝑡.

11: Consider a selection rule which selects the action (𝑖→ 𝑗) given by

argmax
{
�̃�

(𝑘)
(𝑖→𝑗),𝑡−1 + 𝑞(𝑖→𝑗),𝑡

}
, (𝑖→ 𝑗) ∈ {1, ...,𝑀(𝑀 − 1)} (2.16)

Note that in our setting �̃�(𝑖→𝑗) denotes the estimated regret of not playing action (𝑖→ 𝑗);

hence we find the action with largest �̃�.

12: By using (2.19), calculate the probability 𝑤
(𝑘)
(𝑖→𝑗),𝑡 assigned to each pair (𝑖→ 𝑗).

13: Given 𝑤
(𝑘)
(𝑖→𝑗),𝑡, solve the following fixed point equation to find p

(𝑘)
𝑡 .

p
(𝑘)
𝑡 =

∑
(𝑖→𝑗):𝑖∕=𝑗

p
(𝑘)
(𝑖→𝑗),𝑡𝑤

(𝑘)
(𝑖→𝑗),𝑡. (2.17)

14: Final probability distribution yields

p
(𝑘)
𝑡 = (1− 𝛾𝑡)p(𝑘)

𝑡 +
𝛾𝑡
𝑀
. (2.18)

15: Using the final p
(𝑘)
𝑡 , given by (2.18), select an action.

16: Play and observe the reward.
17: end for

30



2.5. Bandit Experimental Regret-Testing Strategy

actions, i.e.

Pr[𝑖𝑡 = (𝑖→ 𝑗)] = 𝑤
(𝑘)
(𝑖→𝑗),𝑡−1

=Pr[�̃�
(𝑘)
(𝑖→𝑗),𝑡−1 + 𝑞(𝑖→𝑗),𝑡 ≥ �̃�(𝑘)

(𝑖′→𝑗′),𝑡−1 + 𝑞(𝑖′→𝑗′),𝑡 ∀(𝑖→ 𝑗) ∕= (𝑖′ → 𝑗′)]

=

∫ ∞

−∞
Pr[�̃�

(𝑘)
(𝑖→𝑗),𝑡−1 + 𝑞(𝑖→𝑗),𝑡 = 𝑚 ∧ �̃�(𝑘)

(𝑖′→𝑗′),𝑡−1 + 𝑞(𝑖′→𝑗′),𝑡 ≤ 𝑚 ∀(𝑖→ 𝑗) ∕= (𝑖′ → 𝑗′)]𝑑𝑚

=

∫ ∞

−∞
Pr[�̃�

(𝑘)
(𝑖→𝑗),𝑡−1 + 𝑞(𝑖→𝑗),𝑡 = 𝑚]

∏
(𝑖′→𝑗′)∕=(𝑖→𝑗)

Pr[�̃�
(𝑘)
(𝑖′→𝑗′),𝑡−1 + 𝑞(𝑖′→𝑗′),𝑡 ≤ 𝑚]𝑑𝑚.

(2.19)

Since q𝑡 is distributed according to a two-sided exponential distribution with width 𝜖𝑛,

the terms under integral can be calculated easily (see [HP05], for example).

Now we are in a position to show some properties of NR-BFPLS (Algorithm 2).

Proposition 4. Let 𝜖𝑡 = 𝜖 =

√
log(𝑛)

3
√
𝑀𝑛

and 𝛾𝑡 = 𝛾 = min(1,𝑀𝜖𝑡). Then Algorithm 2 yields

vanishing internal regret with 𝑅
(𝑘)
Int ∈ 𝑂

((
2𝑛𝑀2 log (𝑀)

) 1
2

)
.

Proof. By [KE07], we know that if the bandit follow the leader algorithm is applied to

𝑀 actions, then 𝑅
(𝑘)
Ext ∈ 𝑂

(
(𝑛𝑀 log (𝑀))

1
2

)
. Using this, the proof proceeds along similar

lines as the proof of Proposition 2 and is therefore omitted.

Corollary 3. Assume that the game horizon is known and all players play according to

NR-BFPLS. Then the minimum required number of trials to achieve 𝜖-correlated equilib-

rium yields max𝑘=1,...,𝐾 𝜖
−2𝑂

(
𝑀𝐾

(
𝑀2 log (𝑀) +𝐾2 log(𝐾)

))
, which is proportional to

𝜖−2 and increases polynomially in the number of actions and players.

Proof. The proof is a result of the bound of Proposition 4 and Remark 7.6 of [CBL06].

2.5. Bandit Experimental Regret-Testing Strategy

The basic idea behind exhaustive search algorithms for unknown games is that each player

selects its action according to some predefined protocol, and observes its regret. Accord-

ing to such a protocol, each player switches between different (mixed) strategies until an

efficient one is captured. Experimental regret-testing belongs to the large family of exhaus-

tive search algorithms, and is comprehensively discussed in [GL07] and [CBL06] for bandit

games. In this section, we briefly review this approach, and investigate its performance

numerically later in Section 2.6.1.

First the time is divided into periods 𝑗 = 1, 2, ... of length 𝑇 so that for each 𝑗 we have

𝑡 ∈ [(𝑗−1)𝑇 +1, 𝑗𝑇 ]. At the beginning of period 𝑗, any player 𝑘 randomly selects a mixed

31



2. Distributed Resource Allocation in Adversarial Networks

strategy, denoted by p
(𝑘)
𝑗 . Moreover, some random variable U

(𝑗)
𝑘,𝑡 ∈ {1, ...,𝑀} is defined as

follows. For 𝑡 ∈ [(𝑗− 1)𝑇 +1, 𝑗𝑇 ], and for each 𝑖 ∈ℳ, there are exactly 𝑠 values of 𝑡 such

that U
(𝑗)
𝑘,𝑡 = 𝑖, and U

(𝑗)
𝑘,𝑡 = 0 for the remaining 𝑡 = 𝑇 − 𝑠𝑀 trials. At time 𝑡, the action 𝑖

(𝑘)
𝑡

is selected to be [CBL03]

𝑖
(𝑘)
𝑡 :

{
is distributed as p

(𝑘)
𝑗 if U

(𝑗)
𝑘,𝑡 = 0

equals 𝑖 if U
(𝑗)
𝑘,𝑡 = 𝑖

. (2.20)

At the end of period 𝑗, player 𝑘 calculates the experimental regret of playing each action

𝑖 as [CBL03]

𝑟
(𝑘)
𝑖,𝑗 =

1

𝑇 − 𝑠𝑀
𝑗𝑇∑

𝑡=(𝑗−1)𝑇+1

𝑔
(𝑘)
𝑡 (i𝑡)1{

U
(𝑗)
𝑘,𝑡=0

} − 1

𝑠

𝑗𝑇∑
𝑡=(𝑗−1)𝑇+1

𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
1{

U
(𝑗)
𝑘,𝑡=𝑖

}. (2.21)

If the regret is smaller than an acceptable threshold 𝜌, the player continues to play its

current mixed strategy. Otherwise, another mixed strategy is selected. The procedure is

summarized in Algorithm 3. It is known that if the parameters of BERTS (e.g. 𝑇 and 𝜌)

are chosen appropriately, then, in a long run, the played mixed strategy profiles are in an

approximate Nash equilibrium for almost all the time. Details can be found in [CBL06],

and hence are omitted.

Algorithm 3 Bandit Experimental Regret Testing Strategy (BERTS) [CBL06]

1: Set 𝑇 (period length), 𝜌 (acceptable regret threshold), 𝜉 ≪ 1 (exploration parameter), 𝑗 = 1
(period index). Notice that for each period 𝑗 = 1, ..., 𝐽 , we have 𝑡 ∈ [(𝑗 − 1)𝑇 + 1, 𝑗𝑇 ].

2: Select a mixed strategy, p
(𝑘)
𝑗 according to the uniform distribution, from the probability simplex

with 𝑀 dimensions.
3: For each 𝑖 ∈ {1, ...,𝑀} select 𝑠 exploring trials at random. Exploration trials that are dedicated

to different actions should not overlap.
4: for 𝑡 = (𝑗 − 1)𝑇 + 𝑦, where 1 ≤ 𝑦 < 𝑇 do
5: if 𝑡 is an exploring trial dedicated to action 𝑖 then
6: play action 𝑖 and observe the reward.
7: else
8: select an action using p

(𝑘)
𝑗 . Play and observe the reward.

9: end if
10: end for
11: Calculate the experimental regret of period 𝑗, 𝑟

(𝑘)
𝑖,𝑗 , using (2.21);

12: if max
𝑖=1,...,𝑀

𝑟
(𝑘)
𝑖,𝑗 > 𝜌, then

13: 1) set 𝑗 = 𝑗 + 1, 2) go to line 2.
14: else
15: ∙ with probability 𝜉: 1) set 𝑗 = 𝑗 + 1, 2) go to line 2;

∙ with probability 1− 𝜉: 1) let p(𝑘)
𝑗+1 = p

(𝑘)
𝑗 , 2) set 𝑗 = 𝑗 + 1, 3) go to line 3.

16: end if
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2.6. Numerical Analysis

2.6. Numerical Analysis

Numerical analysis consists of two parts. In Section 2.6.1, we consider a simple network,

and clarify the work flow of the developed algorithms. In Section 2.6.2, we consider a

larger network, and study the performance of the proposed game model and algorithmic

solutions in comparison with some other selection strategies.

2.6.1. Part One

Network model

The network consists of two transmitter-receiver pairs (users). There exist two orthogonal

channels, 𝐶1 and 𝐶2, and two power-levels, 𝑃1 and 𝑃2. Hence, the action set of each user

yields ℳ = {1 : (𝐶1, 𝑃1), 2 : (𝐶1, 𝑃2), 3 : (𝐶2, 𝑃1), 4 : (𝐶2, 𝑃2)}. The distribution of chan-

nel gains changes at each trial. We assume that the variance of the mean values of these

distributions is relatively small, which corresponds to low dynamicity.6 Channel matrices

are H1 =

[
[0.50, 0.80] [0.15, 0.20]

[0.01, 0.05] [0.01, 0.09]

]
and H2 =

[
[0.02, 0.05] [0.02, 0.06]

[0.05, 0.15] [0.75, 0.95]

]
, where H𝑥[𝑢, 𝑣]

(𝑥 ∈ {1, 2}), corresponds to the interval from which ∣ℎ𝑢𝑣,𝑥,𝑡∣ is selected at each trial. More-

over, we assume 𝑃1 = 1, 𝑃2 = 5 and 𝛼 = 10−3. Except for their instantaneous rewards, no

other information is revealed to users. This information can be provided by the receiver

feedback to transmitter. With these settings, it is easy to see that ((𝐶1, 𝑃2), (𝐶2, 𝑃2)) is

the unique pure strategy Nash equilibrium of this game.

Results and Discussion

We investigate the performance of three selection strategies, namely NR-BEWAS, NR-

BFPLS and BERTS. The following strategies are also considered as benchmark:

∙ Centralized joint channel and power-level assignment using global statistical channel

knowledge, so that the assignment corresponds to the most efficient pure strategy

equilibrium in the sense of maximum aggregate average reward.

∙ Uniformly random selection.

Figure 2.1 compares the average rewards of NR-BEWAS and NR-BFPLS by those of

random selection and centralized assignment. From the figure it can be concluded that

despite being provided with no information, both NR-BFPLS and NR-BEWAS exhibit

vanishing regret, in the sense that the achieved average reward converges to that of the

6Note that this assumption is made in order to simplify the implementation; as established theoretically,
all proposed algorithms converge to equilibrium for general time-varying distributions.
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Figure 2.1.: Performance of four selection strategies. Both NR-BEWAS and NR-BFPLS
exhibit vanishing regret; that is, their average rewards converge to that of
centralized assignment.

centralized method. The convergence speed of NR-BFPLS is higher than that of NR-

BEWAS.

Figures 2.2 and 2.3 illustrate the evolution of mixed strategies of the two users when

NR-BEWAS is used. Figures 2.4 and 2.5, on the other hand, show the same variable when

actions are selected by following NR-BFPLS. For both cases, the first and second users

respectively converge to (𝐶1, 𝑃2) and (𝐶2, 𝑃2).

The performance of BERTS, however, is not an explicit function of the game duration.

As described before, the procedure continues to search the space of mixed strategies until

a suitable one, which yields a regret less than the selected threshold, is captured. This

strategy is then played for the rest of the game. Theorem 7.8 of [CBL06] specifies the

minimum game duration to guarantee the convergence of BERTS, which is relatively

long even for small number of users and actions. Nevertheless, similar to other search-

based algorithms, there is also the possibility of finding some acceptable strategy at early

stages of the game. As a result, for relatively short games, the performance of BERTS

is rather unpredictable. The other issue is the effect of regret threshold. On the one

hand, larger threshold reduces the search time, since the set of acceptable strategies is

large. On the other hand, large regret threshold might lead to performance loss, since

there is the possibility that the user gets locked at some suboptimal strategy at early

stages, thereby incurring large accumulated regret. It is worth noting that due to its
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Figure 2.2.: Evolution of the mixed strategy of User 1, applying NR-BEWAS. The mixed
strategy of User 1 converges to (0, 1, 0, 0).

simplicity, and despite unpredictable performance, BERTS is an appealing approach in

cases where computational effort should be minimized, and playing Nash equilibrium is

desired. Figure 2.6 summarizes the results of few exemplary performances of BERTS. The

parameters are selected as 𝑇 = 80, 𝐽 = 1500 and 𝜌 = 0.16 (see Section 2.5). Simulation is

performed for six independent rounds. The curve on the left side of Figure 2.6 depicts the

period (1 ≤ 𝑗 ≤ 1500) at which the algorithm finds an acceptable strategy. As expected,

the results exhibit no specific pattern. The four subfigures on the right depict the mixed

strategies selected by BERTS at rounds 1 and 2, together with average rewards. From

this figure, at round 2, acceptable strategies are found earlier than round 1 by both users,

leading to a better average performance. It is also worth noting that for User 2, the

strategy of round 1 is in essence better than that of round 2; nevertheless, it is found too

late. As a result, the average performance of round 2 is superior to that of round 1.

2.6.2. Part Two

In this section we consider a wireless network consisting of 5 users (transmitter-receiver

pairs), that compete for access to three orthogonal channels at two power-levels (hence

six actions). We compare NR-BFPLS and NR-BEWAS with the following selection ap-

proaches.7

7As mentioned before, observing the joint action profile and/or information exchange is not required
for implementing NR-BEWAS, NR-BFPLS and BERTS. Therefore, they cannot be compared with
strategies that include mutual observation and/or communications. A good example of such algorithms
is the widely-used best response dynamics, where the strategy of each player is to play with the best
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Figure 2.3.: Evolution of the mixed strategy of User 2, applying NR-BEWAS. The mixed
strategy of User 2 converges to (0, 0, 0, 1).

∙ Centralized action assignment as described in Section 2.6.1.

∙ Centralized no-collision action selection, where no reward is assigned to users that

access the same channel. Thus, users are encouraged to avoid collisions. This curve

can be considered as an upper-bound for the performance of learning algorithms

that select actions based on collision avoidance, such as [KNJ12].

∙ 𝜖-greedy algorithm, where at each trial, with probability 𝜖 (exploration parameter),

an action is selected uniformly at random, while with probability 1 − 𝜖 the best

action so far is played. The average reward of selected action is updated after each

play [NH99]. For stationary environments, 𝜖 is usually time-variant and converges

to zero in the limit, while in adversarial cases, 𝜖 is preferred to remain fixed. Here

we choose 𝜖 = 0.1.

∙ Greedy approach, where at the beginning of the game, some trials are reserved

for exploration, in which actions are selected at random (exploration period). The

length of this period is a predefined fraction of the entire game duration. Based

on the rewards of exploration period, the best action is selected, and is played for

the rest of the game (exploitation period) [CBL06]. This approach is simple to

implement; however, to our best knowledge, so far exists no analysis on the optimal

length of the exploration period.

response to either the historical [CYC+11] or the predicted [5] joint action profile of opponents. Another
example is the strategy suggested in [KNJ12], which is a combination of learning and auction algorithms
and includes information exchange.
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Figure 2.4.: Evolution of the mixed strategy of User 1, applying NR-BFPLS. The mixed
strategy of User 1 converges to (0, 1, 0, 0).

∙ Uniformly random selection.

The numerical results are depicted in Figure 2.7. From this figure, we can conclude the

following.

∙ The performance of interference avoidance strategies is strongly influenced by chan-

nel matrices and tend to be poor specifically when the number of channels is less than

that of users. The reason is that the sum reward of multiple interfering users with

limited transmission powers might be larger than the maximum achievable reward

of any single user.

∙ The rewards achieved by NR-BFPLS and NR-BEWAS converge to that of centralized

approach. As expected, NR-BFPLS converges faster than NR-BEWAS and we point

out that the convergence speed of both algorithms would be dramatically enhanced if

some side-information were available to players, e.g. if users observed the actions of

each other, or if information exchange were allowed among players. It is also worth

noting that although NR-BFPLS converges faster than NR-BEWAS, calculating

integral (2.19) might be computationally involved, especially for large number of

actions [HP05].

∙ In general, 𝜖-greedy and greedy approaches can be implemented easily with low com-

putational cost; nevertheless, it can be seen that the greedy approaches are inferior

to NR-BEWAS and NR-BFPLS in terms of asymptotic performance. Basically, these

approaches are more suitable for static environments.
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Figure 2.5.: Evolution of the mixed strategy of User 2, applying NR-BFPLS. The mixed
strategy of User 2 converges to (0, 0, 0, 1).

2.7. Conclusion and Remarks

In this chapter we studied the resource allocation problem in multi-user infrastructure-

less wireless networks, by formulating it as an adversarial multi-player multi-armed bandit

game. In this model, given no prior- and/or side-information, players attempt to minimize

some regret, expressed in terms of the loss of reward, by selecting appropriate actions on

a given set of transmit power-levels and orthogonal frequency channels. Based on some

recent mathematical results, we developed two joint channel selection and power control

strategies, namely NR-BEWAS and NR-BFPLS. The analysis showed that the strategies

not only provide vanishing regret for every player, but also guarantee that the empirical

joint frequencies of the game converge to the set of correlated equilibria. The convergence

rate of both strategies is polynomial in the number of actions and players, with NR-BFPLS

converging faster than NR-BEWAS. The computational complexity of NR-BFPLS is how-

ever higher than that of NR-BEWAS, in particular for large number of actions. In addition

to the theory, the proposed approaches were evaluated through extensive numerical anal-

ysis. In accordance to the theory, applying NR-BEWAS or NR-BFPLS in a resource

allocation learning game results in convergence to equilibrium, provided that the game

horizon is large enough. Moreover, given enough time, the average performance of both

strategies is almost as well as that of the centralized strategy given global information. In

addition, they exhibit superior performance compared to conventional learning strategies

such as greedy and 𝜖-greedy. Further, we numerically studied an annealed regret-testing

strategy, namely BERTS. The results showed that the performance of BERTS is rather
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Figure 2.6.: Performance of BERTS. On the left, the two curves depict the period at which
a suitable mixed strategy (MS) is found at each of the 6 rounds. On the right,
these mixed strategies are shown for both users at rounds 1 and 2, together
with average rewards (AR). The horizontal and vertical axes respectively de-
pict the actions’ indices and the selection probabilities.

unpredictable. More precisely, the required time for finding an acceptable mixed strategy

by which the regret is less than a specific threshold cannot be estimated; nevertheless the

algorithm is known to converge to Nash equilibrium, and the required convergence time

can be upper-bounded.
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Figure 2.7.: Performance of NR-BFPLS and NR-BEWAS compared to some other selection
strategies.

40



3. Distributed Resource Allocation in

Stochastic Networks

In this chapter we study a multi-player adaptive decision making problem, where self-

ish players learn the optimal joint action profile from successive interactions with the

environment, which, unlike the previous chapter, is assumed to be stochastic. This

problem appears in many wireless networking scenarios, with a particular instance be-

ing the channel selection in a distributed D2D communications system integrated into

a cellular network, as considered here. In Section 3.1 we present basic elements of

stochastic MP-MAB games and define strong consistency. Section 3.2 briefly reviews

calibrated forecasting [MS10], [KF08], [FV97], which is used in the proposed selection

strategy. In Section 3.3 we model the channel selection problem as a stochastic bandit

game among multiple learning agents that have no prior knowledge, but receive some

side-information during the game. In Section 3.4 we propose a selection strategy that

consists of two main blocks, namely calibrated forecasting and no-regret bandit learn-

ing [YZ02], [CBL06], [SJLS00], [CLRJ13]. Whereas calibrated forecasting is utilized to

predict the joint action profile of selfish rational players, no-regret learning builds a reli-

able estimation of the reward generating functions of arms. We show that the proposed

game model and selection strategy can be applied to both noise-limited (orthogonal chan-

nel access) and interference-limited (non-orthogonal channel access) transmissions. We

prove that the gap between the average utility achieved by our approach and that of the

best fixed strategy converges to zero as the game horizon tends to infinity. Moreover,

by using our strategy, the empirical joint frequencies of the game converge to the set of

correlated equilibria.

Our work generalizes previous studies in a variety of aspects, as listed briefly in the

following.

∙ Some works such as [GLM04] and [FYX13] analyze the single-agent learning problem.

In some others such as [KNJ12], although multi-agent problem is formulated, no

convergence analysis is performed. We, however, propose an algorithmic solution for

a multi-agent learning problem and show that by applying our approach the empirical

joint frequencies of the game converge to the set of correlated equilibria. As any Nash
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equilibrium belongs to the set of correlated equilibria, our solution is more general in

comparison with the approaches that converge to a pure strategy Nash equilibrium,

for example those proposed in [XWW+12], [XWS+13] and [XWW+13].

∙ In our model, we only use the natural assumption that the average reward of any

action (channel) to a given player (user) depends on the nature (time-invariant av-

erage channel gains) and is a function of the users’ joint action profile (interference).

Although we mention the transmission rate as an example of such reward process,

we do not restrict the reward functions to any specific parametric form in our anal-

ysis. As a result, the proposed selection algorithm is applicable to a wide range

of problems. In contrast, in most previous works, including [XWW+12], [XWS+13]

and [XWW+13], some specific utility function is defined, based on which the game is

characterized as an exact potential game. The convergence analysis therefore holds

only for the defined reward function.

∙ In our problem setting, both noise-limited and interference-limited transmission

models are studied, and we do not impose any restriction on the interference pattern.

This is in contrast with [KNJ12], [XWS+13] and [XWW+13], where the interference

is either completely neglected or is limited to the neighboring users. This aspect

of our model is important since in general channel allocation based on interference

avoidance is suboptimal.

∙ In our work, every action pays different rewards to different users, i.e. the re-

ward process of every action is user-specific. In a wireless network, this means

that the variations in both channel availability and quality are taken into account.

This stands in contrast to [XWW+12], where the reward of each specific channel

is assumed to be equal for all users (common utility game), and only the channel

availability is stochastic.

∙ Unlike [KNJ12] and [KNJ14], our algorithm does not require information exchange.

3.1. Stochastic Multi-Player Multi-Armed Bandit Games

As described in Chapter 2, multi-player multi-armed bandit game (MP-MAB) is a class

of sequential decision making problems with limited information. At each trial 𝑡, any

player 𝑘 ∈ 𝒦 = {1, ...,𝐾} selects some action 𝑖 ∈ ℳ = {1, ...,𝑀}. The action of player

𝑘 at time 𝑡 is denoted by 𝑖
(𝑘)
𝑡 . Upon being pulled at time 𝑡, any action 𝑖 ∈ ℳ generates

some random reward 𝑔
(𝑘)
𝑡

(
𝑖, i

(−𝑘)
𝑡

)
:= 𝑔

(𝑘)
𝑖,𝑡

(
i
(−𝑘)
𝑡

)
∈ ℝ

+, which depends not only on the
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action of player 𝑘 itself, but also on the joint action profile of other players at time 𝑡,

i
(−𝑘)
𝑡 . Let 𝑖

∘(𝑘)
𝑡 := argmax𝑖∈{1,...,𝑀} 𝑔

(𝑘)
𝑖,𝑡

(
i
(−𝑘)
𝑡

)
be the optimal action that yields a reward

equal to 𝑔
∘(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
:= 𝑔

(𝑘)

𝑖
∘(𝑘)
𝑡 ,𝑡

(
i
(−𝑘)
𝑡

)
. Ideally, at every time 𝑡, any player 𝑘 selects the

optimal action in the sense of maximum reward, thereby maximizing its accumulated

utility. Therefore, its primary goal can be formulated as

lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

(
𝑔
(𝑘)

𝑖
(𝑘)
𝑡 ,𝑡

(
i
(−𝑘)
𝑡

)
− 𝑔∘(𝑘)𝑡

(
i
(−𝑘)
𝑡

))
= 0, (3.1)

with 𝑛 being the game horizon. However, since players have no prior-information, solving

(3.1) is impossible in general. Consequently, we argue in favor of another strategy where

each player pursues a less ambitious goal: Minimize the asymptotic average regret, where

regret is defined as the difference between the reward that could have been achieved

by selecting the optimal channel in the sense of maximum average reward given the side-

information, and that of the actual selected channel. We formulate this problem as follows.

For any action 𝑖 ∈ {1, ...,𝑀}, let 𝑓
(𝑘)
𝑖 be the time-invariant mean reward process.

Furthermore, assume that for each 𝑖 and i(−𝑘), the achieved reward can be modeled as

𝑔
(𝑘)
𝑖,𝑡

(
i(−𝑘)

)
= 𝑓

(𝑘)
𝑖

(
i(−𝑘)

)
+ C

(𝑘)
𝑖

(
i(−𝑘)

)
, where C

(𝑘)
𝑖 denotes a random error with zero mean

and finite variance, independent from all other random variables. At trial 𝑡, let 𝑖
∗(𝑘)
𝑡 :=

argmax𝑖∈{1,...,𝑀} 𝑓
(𝑘)
𝑖

(
i
(−𝑘)
𝑡

)
that results in 𝑔

∗(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
:= 𝑔

(𝑘)

𝑖
∗(𝑘)
𝑡 ,𝑡

(
i
(−𝑘)
𝑡

)
. Then the goal

of player 𝑘 is to achieve

lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

(
𝑔
(𝑘)

𝑖
(𝑘)
𝑡 ,𝑡

(
i
(−𝑘)
𝑡

)
− 𝑔∗(𝑘)𝑡

(
i
(−𝑘)
𝑡

))
= 0. (3.2)

Now assume that 𝑖
∗(𝑘)
𝑡 yields 𝑓∗(𝑘)

(
i
(−𝑘)
𝑡

)
:= max𝑖∈{1,...,𝑀} 𝑓

(𝑘)
𝑖

(
i
(−𝑘)
𝑡

)
. In [YZ02], it is

shown that (3.2) is equivalent to

lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

(
𝑓
(𝑘)

𝑖
(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
− 𝑓∗(𝑘)

(
i
(−𝑘)
𝑡

))
= 0, (3.3)

provided that 𝑔
(𝑘)
𝑖,𝑡

(
i(−𝑘)

)
is bounded above and away from zero for 𝑖 ∈ {1, ..,𝑀}. Therefore

each player decides which action to take at successive rounds so that asymptotically the

accumulated reward achieved by the played arms is not much less than that of the optimal

arm. Obviously, this problem is an instance of the exploitation-exploration dilemma, in

which a balance should be found between exploiting the arms that have exhibited good

performance in the past (control), and exploring arms that might perform well in the

future (learning). In this chapter we assume that 𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
and 𝑓∗(𝑘)

(
i(−𝑘)

)
obey the

43



3. Distributed Resource Allocation in Stochastic Networks

following assumption [YZ02].

Assumption (A2). ∀ 𝑘 ∈ 𝒦, 𝑖 ∈ℳ and i(−𝑘) ∈ ⊗𝐾−1
𝑘=1 {1, ...,𝑀},

a) 𝑓
(𝑘)
𝑖

(
i(−𝑘)

) ∈ [0, 𝐴] for some 𝐴 > 0,

b) 𝐵 = sup𝑖 supi(−𝑘)

(
𝑓∗(𝑘)

(
i(−𝑘)

)− 𝑓 (𝑘)𝑖

(
i(−𝑘)

))
<∞,

c) E
{
𝑓∗(𝑘)

(
i
(−𝑘)
1

)}
> 0.

The last part of the assumption implies that the expected optimal reward is positive at

least for the first round of the game, where the expectation is with respect to the mixed

strategy. This assumption is later used to avoid any division by zero. We also assume that

the achieved rewards of any particular player are revealed to that player only, whereas

players’ actions are observed by their opponents.

3.1.1. Strong Consistency and Bandit Problems

As described before, at the 𝑛-th play, the set of personal achieved rewards and observed

actions up to time 𝑛 are available to each player. The accumulated mean reward of player

𝑘 up to time 𝑛 is
∑𝑛

𝑡=1 𝑓
(𝑘)

𝑖
(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
, while

∑𝑛
𝑡=1 𝑓

∗(𝑘)
(
i
(−𝑘)
𝑡

)
is the optimal total reward

of player 𝑘, which could have been achieved by pulling arm 𝑖
∗(𝑘)
𝑡 for all trials up to 𝑛.

Since the 𝑘-th player would attain the best performance if it selected the optimal arm at

every trial, it is reasonable to evaluate any selection strategy 𝜅 used by player 𝑘 based on

the following performance metric [YZ02]

𝑆𝜅,𝑛 =

∑𝑛
𝑡=1 𝑓

(𝑘)

𝑖
(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
∑𝑛

𝑡=1 𝑓
∗(𝑘)

(
i
(−𝑘)
𝑡

) ≤ 1, (3.4)

where
∑𝑛

𝑡=1 𝑓
∗(𝑘)

(
i
(−𝑘)
𝑡

)
> 0 by Assumption (A2). Clearly, the closer 𝑆𝜅,𝑛 to 1, the better

the selection strategy. Asymptotically as 𝑛 tends to infinity, the most desired property is

strong consistency [YZ02], defined below.

Definition 4 (Strong Consistency). A selection strategy 𝜅 is strongly consistent if 𝑆𝜅,𝑛 →
1 as 𝑛→∞.

Remark 2 ( [YZ02]). If 1
𝑛

∑𝑛
𝑡=1 𝑓

∗(𝑘)
(
i
(−𝑘)
𝑡

)
is bounded above and away from 0 with

probability 1, then 𝑆𝜅,𝑛 → 1 almost surely implies

lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

(
𝑓
(𝑘)

𝑖
(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
− 𝑓∗(𝑘)

(
i
(−𝑘)
𝑡

))
= 0. (3.5)
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Referring to ”𝑓
(𝑘)

𝑖
(𝑘)
𝑡

(
i
(−𝑘)
𝑡

)
−𝑓∗(𝑘)

(
i
(−𝑘)
𝑡

)
” as the ”regret” at time 𝑡, this implies that strong

consistency is equivalent to achieving per-round vanishing (zero-average) regret.

From the game-theoretical point of view, for each player 𝑘 ∈ {1, ...,𝐾}, an MP-MAB is

a game with two agents: the first agent is player 𝑘 itself, and the second agent is the set

of all other 𝐾 − 1 players, whose joint action profile affects the rewards of player 𝑘. Since

the reward of any player 𝑘 depends on the decisions of other players, the key idea of the

proposed approach is to enable each user to forecast the future actions of its opponents

based on public knowledge and to proceed by best responding to the predicted joint action

profile using some bandit strategy. In Section 3.2, we discuss how reliable forecasting can

be performed. Later in Section 3.4 we describe how players should proceed using this

side-information.

3.2. Calibration and Construction of a Calibrated Forecaster

In this section, we briefly describe basic elements of calibrated forecasting. We then explain

how calibrated forecasting is related to the concept of equilibria in games. Later in Section

3.4 we use these materials in order to develop a convergent channel selection strategy.

3.2.1. Calibration

Following [MS10], consider a random experiment with a finite set of outcomes 𝒟 of car-

dinality 𝐷, and let 𝛿𝑑𝑡 stand for the Dirac probability distribution on some outcome 𝑑 at

time 𝑡. The set of probability distributions over 𝒟 is denoted by 𝒫 ⊆ ℝ
𝐷. Equip 𝒫 with

some norm ∥⋅∥. At time 𝑡, the forecaster outputs a probability distribution p𝑡 over the set

of outcomes.

Definition 5 (Calibrated Forecaster [MS10]). A forecaster is said to be calibrated if ∀ 𝜖 > 0

and ∀ p ∈ 𝒫, almost surely,

lim
𝑛→∞

∥∥∥∥∥ 1𝑛
𝑛∑

𝑡=1

1{∥p𝑡−p∥≤𝜖} (p𝑡 − 𝛿𝑑𝑡)
∥∥∥∥∥ = 0. (3.6)

A relaxed notion of calibration is 𝜖-calibration. Given 𝜖 > 0, an 𝜖-calibrated forecaster

considers some finite covering of 𝒫 by 𝑁𝜖 balls of radius 𝜖. Denoting the centers of these

balls by p(1), ...,p(𝑁𝜖), the forecaster selects only forecasts p𝑡 ∈
{
p(1), ...,p(𝑁𝜖)

}
. Using

this, 𝜖-calibration is defined as follows [MS10].

45



3. Distributed Resource Allocation in Stochastic Networks

Definition 6 (𝜖-Calibrated Forecaster). Define 𝑄𝑡 to be the index in {1, ..., 𝑁𝜖} such that
p𝑡 = p(𝑄𝑡). A forecaster is said to be 𝜖-calibrated if almost surely,

lim sup
𝑛→∞

𝑁𝜖∑
𝑞=1

∥∥∥∥∥ 1𝑛
𝑛∑

𝑡=1

1{𝑄𝑡=𝑞}
(
p(𝑞) − 𝛿𝑑𝑡

)∥∥∥∥∥ ≤ 𝜖. (3.7)

Note that none of the two definitions makes any assumption on the nature of the random

experiment whose outcome is being predicted. The following result can be found in [FV97],

[KF08], and [CBL06].

Theorem 2. Consider a game with 𝐾 players provided with 𝑀 actions. Let 𝒞 stand for
the set of correlated equilibria, and define the joint empirical frequencies of play as (2.5).

For a player 𝑘, let 𝒟 = ℐ− be the set of joint action profiles of opponents. Assume that

each player plays by best responding to a calibrated forecast of the opponents joint action

profile in a sequence of plays; that is, for each player 𝑘 we have

𝑖
(𝑘)
𝑡 = argmax

𝑖∈{1,...,𝑀}

𝐷∑
𝑑=1

𝑝
(𝑘)
𝑑,𝑡 𝑓

(𝑘)
𝑖 (𝑑), (3.8)

where p
(𝑘)
𝑡 =

(
𝑝
(𝑘)
1,𝑡 , ..., 𝑝

(𝑘)
𝐷,𝑡

)
stands for the output of the forecaster, which is a probability

distribution over 𝐷 = 𝑀𝐾−1 possible joint action profiles of the opponents. Accordingly,

each 𝑑 represents a realization of the joint action profile of opponents of player 𝑘, i.e.

i(−𝑘). Then the distance inf𝜋∈𝒞
∑

i ∣�̂�𝑛(i)− 𝜋(i)∣ between the empirical joint distribution
of plays and the set of correlated equilibria converges to 0 almost surely as 𝑛→∞.

3.2.2. Construction of a Calibrated Forecaster

For constructing a calibrated forecaster, an approach is to use doubling-trick [MS10]. In

the first step, an 𝜖-calibrated forecaster is constructed for some 𝜖 > 0. Then, the time is

divided into periods of increasing length, and the procedure of 𝜖-calibration is repeated as

a subroutine over periods, where 𝜖 decreases gradually to zero (that is, 𝑁𝜖-grid becomes

finer at each period). In Algorithm 4, we review this procedure. The proof of calibration

follows from the Blackwell’s approachability theorem. See [MS10] for details and the proof

of calibration.

Theorem 3 ( [MS10]). The forecasting procedure (Algorithm 4) is calibrated. That is, it

satisfies (3.6).
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Algorithm 4 A Calibrated Forecaster [MS10]

1: Define 𝑇𝑗 = 2𝑗 where 𝑇𝑗 is the length of period 𝑗 = 1, 2, ....
2: For any period 𝑗, define a two-player game, where the first player is the forecaster with the

action set 𝒵 =
{
1, ..., 𝑁𝜖𝑗

}
and the second player is the nature with action set 𝒟. With respect

to our model, the first player is some agent 𝑘, while the second player is the set of all other
𝐾 − 1 agents; hence 𝒟 = ℐ− and 𝐷 = 𝑀𝐾−1. Accordingly, any outcome 𝑑 is the realization
of a joint action profile of 𝐾 − 1 players, that is i(−𝑘).

3: For each period 𝑗, let 𝜖𝑗 = 2−𝑗/(𝐷+1).
4: Define the vector-valued regret of the first player as u {𝑞, 𝑑} =

(
0, ...,0,p(𝑞) − 𝛿𝑑,0, ...,0

)
for

each 𝑞 ∈ {
1, ..., 𝑁𝜖𝑗

}
, 𝑑 ∈ 𝒟.

5: Define the target set ℱ as follows:

∙ Write (𝐷𝑁𝜖𝑗 )-dimensional vectors of ℝ𝐷𝑁𝜖𝑗 as 𝑁𝜖𝑗 -dimensional vectors with components

in ℝ
𝐷, i.e. x =

(
x1, ...,x𝑁𝜖𝑗

)
, where x𝑙 ∈ ℝ

𝐷 for all 𝑙 ∈ {
1, ..., 𝑁𝜖𝑗

}
.

∙ ℱ is a subset of the 𝜖𝑗-ball around (0, ...,0) for the calibration norm ∥⋅∥, which is a
closed convex set.

6: Define the sequence of the vector-valued regrets up to time 𝑇 (1 ≤ 𝑇 ≤ 𝑇𝑗) as

u𝑇 =
1

𝑇

𝑇∑
𝑡=1

u {𝑄𝑡, 𝑑𝑡} = 1

𝑇

(
𝑇∑

𝑡=1

1{𝑄𝑡=1}
(
p(1) − 𝛿𝑡

)
, ...,

𝑇∑
𝑡=1

1{𝑄𝑡=𝑁𝜖𝑗}
(
p(𝑁𝜖𝑗

) − 𝛿𝑡
))

.

(3.9)
Now, (3.7) (condition of 𝜖𝑗-calibration) can be restated as the convergence of u𝑇𝑗

to the set ℱ
almost surely. In the following, u(𝑗) := u𝑇𝑗

denotes the final regret of period 𝑗.
7: repeat
8: for 𝑡 = 1→ 𝑇𝑗 do
9: if (𝑗 = 1 ∧ 𝑡 = 1) then
10: Select an action 𝑄𝑡 from 𝒵 according to the uniform distribution over the action set, i.e.

let 𝜓1 =
(

1
𝑁𝜖𝑗
, ..., 1

𝑁𝜖𝑗

)
. Note that 𝜓𝑡 is the mixed strategy at time 𝑡, while 𝜓(𝑗) := 𝜓𝑇𝑗

denotes the final mixed strategy of period 𝑗.
11: else if (𝑗 > 1 ∧ 𝑡 = 1) then
12: Select an action 𝑄𝑡 from 𝒵, according to a probability distribution in a small neigh-

borhood of 𝜓(𝑗−1) (localization of search).
13: else
14: Select an action 𝑄𝑡 from 𝒵 at random according to a distribution 𝜓𝑡 =

(
𝜓𝑡,1, ..., 𝜓𝑡,𝑁𝜖𝑗

)
on

{
1, ..., 𝑁𝜖𝑗

}
such that ∀𝑑 ∈ 𝒟,

(u𝑡−1 −Πℱ (u𝑡−1)) ⋅ (u {𝜓𝑡, 𝑑} −Πℱ (u𝑡−1)) ≤ 0, (3.10)

where Πℱ denotes the projection in 𝑙2-norm onto ℱ and ⋅ denotes the inner product in
ℝ

𝐷𝑁𝜖𝑗 . See [MS10] for details.
15: end if
16: end for
17: Calculate the final regret of the current period, u(𝑗) = u𝑇𝑗

. Also, let 𝜓(𝑗) = 𝜓𝑇𝑗
.

18: if u(𝑗) > 𝜖𝑗 , then
19: ∙ Let 𝑗 = 1 and 𝑡 = 1.
20: else
21: ∙ Let 𝑗 = 𝑗 + 1 and 𝑡 = 1.
22: end if
23: until convergence (𝑗 is large enough so that 𝜖𝑗 ≈ 0)
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3.3. Bandit-Theoretical Model of D2D Channel Selection

Problem

3.3.1. System Model

We study a distributed D2D communications system as an underlay to a single-cell wireless

network with a setℳ of𝑀 licensed orthogonal channels. The D2D system consists of a set

𝒦 of 𝐾 suitably-selected single-antenna transmitter-receiver pairs. Each pair is referred to

as a D2D user, and is denoted either by just 𝑘 or by the pair (𝑘, 𝑘′). In order to eliminate

the adverse effects of D2D transmission on cellular users, any channel is available to D2D

users only if it is not occupied by some cellular user.1 As the D2D data is not forwarded via

the BS, conventional pilot signals cannot be used, and therefore the BS is not in possession

of D2D channel knowledge. D2D users have neither channel (quality and availability) nor

network knowledge. We assume that the BS observes the transmission channels of all

D2D and cellular users. D2D users do not exchange information. However, there exists

a channel through which the BS broadcasts some signals referred to as side-information.

Based on the physical characteristics of the radio propagation medium, the broadcast

signal is assumed to be heard by all D2D users. Note that the broadcast channel is

occupied only until convergence, and therefore the overhead remains low. Throughout the

chapter, ∣ℎ𝑢𝑣,𝑥∣2 ∈ ℝ
+ is used to denote the average gain of some channel 𝑥 between 𝑢 and

𝑣, including path loss and fast fading effects. Note that unlike Chapter 2, the distributions

of all channels are assumed to have time-invariant expected values. The variance of zero-

mean AWGN is denoted by 𝑁0. We assume that all users transmit with fixed average

power 𝑃 . This is also in contrast to Chapter 2, where users choose a transmission power

from a set of power-levels.

3.3.2. Bandit-Theoretical Problem Formulation

At the beginning of each transmission round, every D2D user selects a channel to sense

and informs the BS about its choice. For simplicity, we assume that sensing is perfect.

If the selected channel is free, then the transmission begins. The primarily duration of

transmission is denoted by 𝑇𝑟. At the end of transmission, the BS broadcasts the D2D

indices along with the indices of their selected channels. Consequently, every D2D user

knows which channels are selected by other users. This side-information is then used by

each D2D user to learn the environment as well as the behavior of other users.

Since all D2D users are allowed to select among 𝑀 (probably available) channels, colli-

sion might occur. We consider the following multiple access protocols.

1As we see later, this assumption can be simply relaxed.
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∙ Orthogonal multiple access (noise-limited case): In case of collision, carrier sense

multiple access (CSMA) is implemented [ZTSC07]. Since interference is avoided,

transmissions are corrupted only by AWGN. The mean reward of some D2D user 𝑘

transmitting at some channel 𝑖 ∈ℳ is defined as

𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
=
𝜏
(𝑘)
𝑖

(
i(−𝑘)

)
𝑇𝑟

log2

(
1 +

𝑃
∣∣ℎ𝑘𝑘′,𝑖∣∣2
𝑁0

)
𝜃𝑖, (3.11)

where i(−𝑘) denotes the set of channels selected by all D2D users except for 𝑘.

Moreover, 𝜏
(𝑘)
𝑖 is the expected value of the random useful transmission time of user

𝑘 through channel 𝑖 as a function of i(−𝑘), which depends on the exact applied

CSMA scheme. 𝜃𝑖 is the expected value of a Bernoulli random variable that indicates

whether channel 𝑖 is occupied by some cellular user or not.

∙ Non-orthogonal multiple access (interference-limited case): In case of collision, collid-

ing users transmit simultaneously, giving rise to the interference. The mean reward

is given by

𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
= log2

(
1 +

𝑃
∣∣ℎ𝑘𝑘′,𝑖∣∣2

𝑃
∑

𝑞∈𝒬(𝑘)

∣∣ℎ𝑞𝑘′,𝑖∣∣2 +𝑁0

)
𝜃𝑖, (3.12)

where 𝒬(𝑘) denotes the set of D2D users that share channel 𝑖 with user 𝑘.

Finally, we emphasize that the reward functions can be freely defined as long as the mean

reward remains some time-invariant function of average channel gains and users’ joint

action profile. For instance, consider the case where D2D user 𝑘 is allowed to transmit

simultaneously in the same frequency band with cellular user 𝑐. In this case, the mean

reward function of user 𝑘 should be modified so that it incurs some cost due to disturbing

the cellular user. For example the mean reward function can be defined as

𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
= log2

(
1 +

𝑃
∣∣ℎ𝑘𝑘′,𝑖∣∣2

𝑃
∑

𝑞∈𝒬(𝑘)

∣∣ℎ𝑞𝑘′,𝑖∣∣2 + 𝑃𝑐

∣∣ℎ𝑐𝑘′,𝑖∣∣2 +𝑁0

)
− 𝛼 ∣ℎ𝑘𝑏,𝑖∣2 𝑃, (3.13)

where 𝛼 is a cost factor determined by the BS, denoted by 𝑏, and 𝑃𝑐 is the transmission

power of cellular user 𝑐. Another example is a network where the cellular users require

some quality of service (QoS) guarantee. In this case the reward can be defined to be

some small constant when the QoS is violated, and the D2D transmission rate otherwise.

As we see later, as a result of the learning process, D2D users abandon the joint action

profiles that result in low reward, in order to avoid large regret. Hence the QoS of cellular

users will be satisfied.
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Finally it should be mentioned that the proposed model can be easily generalized to

include the power allocation, as briefly described in the following. Instead of transmitting

with fixed average power 𝑃 , assume that each D2D user selects one of the 𝑀 ′′ quantized
power-levels in order to transmit in one of the 𝑀 ′ orthogonal channels. Thus, every D2D

user is provided with 𝑀 ′×𝑀 ′′ actions, where each action 𝑖 is understood as a pair (𝑖′, 𝑖′′),
i.e. it consists of one channel and one power-level. Correspondingly the mean reward

function is defined as

𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
= log2

(
𝑖′′∣ℎ𝑘𝑘′,𝑖′ ∣2∑

𝑞∈𝒬(𝑘) 𝑖′′(𝑞)∣ℎ𝑞𝑘′,𝑖′ ∣2 +𝑁0

)
𝜃𝑖 − 𝛼𝑖′′, (3.14)

where 𝑖′′(𝑞) is the transmission power of interference 𝑞. The proposed approach can be

also applied to this problem, provided that every user has the incentive to announce its

transmission power-level to the network or to the BS, at each transmission round until

convergence.

By comparing our system model (Section 3.3.1) with MP-MAB (Section 3.1), we ob-

serve that the distributed channel selection problem is in great harmony with MP-MAB

settings. Therefore, we model this problem as an MP-MAB game in which every D2D

user is modeled as a player, while frequency channels are regarded as arms, implying that

choosing a channel corresponds to pulling an arm. Clearly, the reward achieved by any

player2 depends on the selected channel of the user itself and also on those of other users,

according to (3.11) or (3.12). According to this model the goal of each D2D user 𝑘 is to

satisfy (3.3). By Remark 2, (3.3) is equivalent to strong consistency. Therefore in the

following section we develop a strongly consistent channel selection strategy.

3.4. Calibrated Bandit Strategy

As it is clear from (3.11) and (3.12), the performance of each D2D user depends on two

factors: 1) channel quality and availability, and 2) the joint channel selection profile of

all D2D users. Given no initial information, the impacts of these factors on the average

reward are learned over time, and the average reward function is estimated by means of a

regression process. Here we make the following assumption.

Assumption (A3). The regression process is strongly consistent in 𝐿∞ norm for each

𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
; that is, ∥𝑓 (𝑘)𝑖,𝑡

(
i(−𝑘)

)−𝑓 (𝑘)𝑖

(
i(−𝑘)

) ∥∞ → 0, for all 𝑖 ∈ {1, ...,𝑀}, 𝑘 ∈ {1, ...,𝐾}
2Note that we here mentioned only some exemplary reward functions, which can be substituted by any
other time-invariant utility or cost function. As we see later, the proposed approach relies on non-
parametric regression and hence offers high flexibility with respect to the reward function.
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and i(−𝑘) ∈ ⊗𝐾−1
𝑘=1 {1, ...,𝑀}, almost surely as 𝑡 → ∞, where 𝑓 (𝑘)𝑖,𝑡

(
i(−𝑘)

)
denotes the

regression estimate of 𝑓
(𝑘)
𝑖

(
i(−𝑘)

)
at the 𝑡-th trial.

In Section 3.3.2, we modeled the channel selection as a bandit game. In what follows,

we describe our proposed strategy to solve this game and investigate its convergence

characteristics.

3.4.1. Selection Strategy

The game horizon is first divided into periods 𝑗 = 1, 2, ... of increasing length 𝑇 ′
𝑗 . We also

define a sequence 𝑍𝑗 for 𝑗 = 1, 2, ..., so that 𝑇 ′
𝑗 and 𝑍𝑗 satisfy the following assumption.

Assumption (A4). We assume that
{
𝑇 ′
𝑗

}
𝑗=1,2,...

and {𝑍𝑗}𝑗=1,2,... are selected so that

a)
{⌈
𝑇 ′
𝑗𝑍𝑗

⌉}
𝑗=1,2,...

is an increasing sequence of integers,

b) lim𝐽→∞
∑𝐽

𝑗=1

⌈
𝑇 ′
𝑗𝑍𝑗

⌉
→∞,

c) lim𝐽→∞
∑𝐽

𝑗=1⌈𝑇 ′
𝑗𝑍𝑗⌉∑𝐽

𝑗=1 𝑇 ′
𝑗

= 0.

At each period 𝑗,
⌈
𝑇 ′
𝑗𝑍𝑗

⌉
randomly-selected trials are reserved for exploration, and the

rest of the trials are used for exploitation in the following manner.

∙ Exploitation: In an exploitation trial, every player 𝑘 first receives a probability

distribution over all possible joint action profiles of other 𝐾 − 1 players, which is

the output of its forecasting procedure. Based on this information, and by using the

estimated mean reward functions, it selects the action with the highest estimated

mean reward; that is, it acts with the best response to the predicted joint action

profile of its opponents.

∙ Exploration: In an exploration trial, with probability 𝛾 ≪ 1 the best response is

played, whereas with probability 1− 𝛾, an action is selected uniformly at random.

In all trials, after selection, the player’s estimation of the mean reward process of the

selected action is improved based on the achieved reward. Moreover, actions of other

players are observed (here by hearing the broadcast message). This observation is used by

the forecaster, as described in Algorithm 4. The procedure is summarized in Algorithm 5.

Note that for larger period indices (large 𝑗), the fraction of time reserved for explo-

ration is smaller, as depicted in Figure 3.1. Therefore, the strategy belongs to the class

of algorithms that follow the greedy in the limit with infinite exploration (GLIE) prin-

cipal [SJLS00]. Intuitively, this concept states that in a (near-) static environment, the
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Figure 3.1.: Exemplary exploration-exploitation trade-off for few successive periods.

Figure 3.2.: Flowchart diagram of calibrated bandit selection strategy (Algorithm 5)

estimation of arms’ reward functions becomes more reliable with time, and therefore less

exploration is required. Also note that the regression and the forecasting perform two

different tasks; while the former deals with estimating the reward functions, the latter

predicts the joint action profile of opponents, as visualized by Figure 3.2.

3.4.2. Strong Consistency and Convergence

The following results ensure the consistency and declare the convergence characteristics

of the proposed selection strategy.

Lemma 1.
{
𝑇 ′
𝑗

}
𝑗=1,2,...

= 2𝑗 and {𝑍𝑗}𝑗=1,2,... =
𝑗
2𝑗
satisfy Assumption (A4).

Proof. The lemma can be easily verified by direct calculation using theorems concerning

limits of infinite sequences.

Lemma 2. Consider a selection strategy 𝜅 so that each player 𝑘 plays with actions based

on 𝛿𝑑𝑡 , i.e. 𝑖
(𝑘)
𝑡 = 𝜅 (𝛿𝑑𝑡), where 𝛿𝑑𝑡 is the Dirac probability distribution on the true joint

action profile of opponents at time 𝑡. Let 𝜅′ be some strategy identical to 𝜅, except that
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3.4. Calibrated Bandit Strategy

Algorithm 5 Calibrated Bandit Selection Strategy (CBS)

1: Define an increasing sequence of integers, 𝑇 ′
𝑗 = 2𝑗 for 𝑗 = 1, 2, .... Each member 𝑇 ′

𝑗 of this
sequence is the length of period 𝑗, i.e. the number of trials included in it.

2: Define a decreasing sequence of numbers, 𝑍𝑗 =
𝑗
2𝑗 for 𝑗 = 1, 2, ....

3: Set the period 𝑗 = 1 and select the exploration parameter 𝛾 ≪ 1.
4: repeat
5: Select

⌈
𝑇 ′
𝑗𝑍𝑗

⌉
exploration trials belonging to [1 +

∑
𝑗 𝑇

′
𝑗−1,

∑
𝑗 𝑇

′
𝑗 ] uniformly at random.

6: for 𝑡 = 𝑠+
∑

𝑗 𝑇
′
𝑗−1, 1 ≤ 𝑠 < 𝑇 ′

𝑗 , do
7: if 𝑡 is an exploring trial, then
8: with probability 1− 𝛾, select an arm equally at random;

with probability 𝛾,
1. receive the output of the forecaster (Algorithm 4),
2. using this information, select the arm with the highest estimated mean reward.

9: else
10: Receive the input from the forecaster.
11: Using this information, select the arm with the highest estimated mean reward.
12: end if
13: Play the selected arm and observe the reward.
14: Observe the actions of other players and inform the forecaster (forecaster’s input).
15: Improve the estimation of the mean reward function of the played arm.
16: end for
17: 𝑗 = 𝑗 + 1.
18: until convergence (𝑗 is sufficiently large)

p𝑡 is used in the place of 𝛿𝑑𝑡, i.e. 𝑖
(𝑘)
𝑡 = 𝜅 (p𝑡), where p𝑡 is a probability distribution over

all possible joint action profiles of opponents, produced by a calibrated forecaster. Then,

lim𝑛→∞ 𝑆𝜅,𝑛 = 1 implies that lim𝑛→∞ 𝑆𝜅′,𝑛 = 1, where 𝑆𝜅,𝑛 and 𝑆𝜅′,𝑛 are defined by (3.4).

Proof. See Section 1 of Appendix C.

Lemma 2 simply states that if a strategy is strongly consistent given true joint action

profiles, then its consistency is preserved by using the calibrated forecast of the joint action

profiles.

Lemma 3. Asymptotically, the bandit selection strategy (CBS) samples each action 𝑖 ∈
{1, ...,𝑀} and also each joint action profile i = (

𝑖(1), ..., 𝑖(𝐾)
) ∈ ⊗𝐾

𝑘=1 {1, ...,𝑀} infinitely
often.

Proof. See Section 2 of Appendix C.

Theorem 4. Under Assumptions (A2), (A3) and (A4), the proposed selection strategy

(CBS), is strongly consistent.

Proof. See Section 3 of Appendix C.

53



3. Distributed Resource Allocation in Stochastic Networks

Theorem 5. Consider a K-player MAB game where each player is provided with 𝑀 ac-

tions. Let 𝒞 denote the set of correlated equilibria and i = (
𝑖(1), ..., 𝑖(𝐾)

) ∈ ⊗𝐾
𝑘=1 {1, ..,𝑀}.

Define the empirical joint frequencies of play as (2.5). If all players play according to the

CBS, then the distance inf𝜋∈𝒞
∑

i ∣�̂�𝑛(i)− 𝜋(i)∣ between the empirical joint distribution of
plays and the set of correlated equilibria converges to 0 almost surely as 𝑛→∞.
Proof. See Section 4 of Appendix C.

Remark 3. In Section 3.3.2, we mentioned that every player is interested in optimizing

its performance in the sense of regret minimization, and no player intends to ruin the

performance of others. Therefore players are rational and not malicious. By Remark 2

and Theorem 4, CBS yields vanishing regret; Thus the assumption that all players use this

strategy is justified.

3.4.3. Some Notes on Convergence Rate

As it is clear from Algorithm 5 (see also Figure 3.2), for final convergence, the forecasting

and regression procedures must converge to the true joint action profile and the true

reward functions, respectively. In what follows, we discuss the impact of some variables,

including number of actions (𝑀) and users (𝐾), as well as the exploration parameter (𝛾),

on the convergence rate of these procedures.

Theorem 6 ( [MS10]). For the calibrated forecaster given in Algorithm 4 we have

lim sup
𝑛→∞

𝑛
1

𝐷+1√
log(𝑛)

sup
ℬ∈𝔅

∥∥∥∥∥ 1𝑛
𝑛∑

𝑡=1

1p𝑡∈ℬ (p𝑡 − 𝛿𝑑𝑡)
∥∥∥∥∥
1

≤ Γ𝐷, (3.15)

where 𝔅 is the Borel sigma-algebra of 𝒫 and the constant Γ𝐷 depends only on 𝐷.

From the algorithm we know that 𝐷 = 𝑀 (𝐾−1) > 1. Figure 3.3(a) shows how the

convergence rate scales with 𝐷 for Γ𝐷 = 𝐷. As expected, convergence speed decreases

for larger number of users 𝐾 and/or actions 𝑀 , thereby larger 𝐷. Note that the effect of

increasing 𝐾 on 𝐷 is more than that of 𝑀 .

Now, consider the regression process, which is assumed to be non-parametric. Then the

following holds.

Theorem 7 ( [Sto82]). Consider a 𝑝-times differentiable unknown regression function 𝑓

and a 𝑑-dimensional measurement variable. Let 𝑓 denote an estimator of 𝑓 based on a

training sample of size 𝑛, and let
∥∥∥𝑓𝑛 − 𝑓∥∥∥∞

be the 𝐿∞ norm of 𝑓𝑛−𝑓 . Under appropriate
regularity condition, the optimal rate of convergence for

∥∥∥𝑓𝑛 − 𝑓∥∥∥∞
to zero is

(
log(𝑛)

𝑛

)𝜂

where 𝜂 = 𝑝
2𝑝+𝑑 .
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Based on Theorem 7, Algorithm 5 impacts the convergence rate through changing the

sampling rate. For any given action, in the worst-case, samples are gathered only at

exploration trials. Let 𝑅 be the number of periods (game horizon). By the algorithm,

each joint action profile is expected to be played 1−𝛾
𝑀𝐾

∑𝐽
𝑗=1 𝑗 =

1−𝛾
𝑀𝐾 ⋅ 𝐽(𝐽+1)

2 times during

𝐽 periods (see also the proof of Lemma 3). Moreover, suppose that some fixed number

of samples is required to estimate the reward of each joint action profile with sufficient

precision. Therefore, it is clear that increasing 𝑀 and/or 𝐾, as well as increasing 𝛾,

degrades the sampling rate and with it the convergence speed, since larger game horizon

is required for sufficient sampling. Let 𝐵 = 1−𝛾
𝑀𝐾 < 1. Figure 3.3(b) shows the convergence

speed of the regression process as a function of 𝐵.
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Figure 3.3.: Scaling convergence rate with variables and parameters (𝑀 , 𝐾 and 𝛾), 𝐷 =
𝑀 (𝐾−1) > 1 and 𝐵 = 1−𝛾

𝑀𝐾 < 1.

3.4.4. Some Notes on Complexity

As suggested by Algorithm 5 (see also Figure 3.2), the computational burden of the pro-

posed algorithm is due to the calibrated forecasting and regression process. In [MS10], it

is shown that at each period 𝑗, the 2𝜖𝑗 calibrated forecaster has a complexity in the order

of 𝜖
−(𝐷+1)
𝑗 per step. As the most complex part of the forecaster is to calculate 𝜓𝑡, the com-

plexity can be dramatically reduced by approximating 𝜓𝑡 instead of exactly calculating it.

This can be done for instance by using the adaptive multiplicative weight algorithm [FS99].

The complexity of the regression process depends on the exact procedure being used; for

example, for Gaussian regression and support vector machine, the complexity is cubical in

the number of sample points [RW05], [BCDW07]. Note that in our algorithm, there exist

at most 𝑡− 1 samples for each action at each step 𝑡.
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3.5. Numerical Results

This section consists of two parts. First, the algorithm’s work flow is described in a

small network. Afterwards we consider a large network, in which the performance of

the proposed strategy (CBS) is compared with some other resource allocation methods.

Through this section and according to the system model, transmitter-receiver pairs are

predefined. Moreover, for each pair, the average channel gains are time-invariant, i.e. they

remain fixed during the simulation.

3.5.1. Part One

Network model

We consider an underlay D2D network consisting of two transmitter-receiver pairs (two

D2D users), i.e. 𝐾 = 2. There exist two orthogonal channels (𝑀 = 2), whose availability

follows Bernoulli distribution with parameter 1
2 . D2D users are only allowed to use these

channels upon availability, i.e. in case they are not occupied by any cellular user. We

implement the following selection strategies.

∙ Statistical centralized strategy: Given global statistical channel knowledge and by

exhaustive search, a central controller assigns each D2D user some transmission chan-

nel so that the assignment corresponds to the most efficient pure strategy equilibrium

in the sense of maximum aggregate average reward.

∙ Calibrated bandit strategy (CBS): D2D users utilize the proposed selection strategy

(Algorithm 5).

Since 𝑀 = 2, for each D2D user 𝑘 ∈ {1, 2}, we have 𝑝
(𝑘)
1 + 𝑝

(𝑘)
2 = 1, where 𝑝

(𝑘)
𝑖 is

the likelihood of D2D user 𝑘 to take action 𝑖 ∈ {1, 2}, by following the mixed strategy(
𝑝
(𝑘)
1 , 𝑝

(𝑘)
2

)
. This implies that for each player 𝑘, the probability distribution over all

joint action profiles of opponents reduces to the mixed strategy of the other player. We

assume 𝑁𝜖 = 40.3 Therefore, the 𝜖-grid defines 40 possible mixed strategies (quantized

vectors).4 The primal output of the forecaster of each player is a vector of weights including

40 elements, where every element denotes the likelihood of one of the quantized mixed

strategies to be played by the other player. The final output of the forecaster is then

a mixed strategy extracted from the set of quantized mixed strategies according to this

distribution, as described in Algorithm 4.

3In general, smaller 𝑁𝜖 can be used at early periods to reduce the computational burden. We however
consider fixed 𝑁𝜖 in order to highlight the evolution of forecasts.

4Quantized vectors are indexed as 𝑖 = 1, ..., 40. While (𝑝1, 𝑝2) = (0, 1) for 𝑖 = 1, we have (𝑝1, 𝑝2) = (1, 0)
for 𝑖 = 40. That is, 𝑝1 increases with the index of quantized vector, whereas 𝑝2 decreases.
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Figure 3.4.: Average reward of CBS versus centralized strategy; orthogonal access.

Orthogonal Multiple Access

D2D users follow here an orthogonal transmission scheme. The average joint rewards of

players under all possible joint action profiles are summarized in Table 3.1. From this

table, the channel selection game has a pure strategy Nash equilibrium5 that yields the

maximum aggregate reward of the two D2D users, and is achieved when first and second

D2D users transmit in channels 1 and 2, respectively.

Table 3.1.: Reward Matrix for Orthogonal Access (𝑢𝑖:user 𝑖, 𝑐𝑗 :channel 𝑗; 𝑖, 𝑗 ∈ {1, 2})
������𝑢1

𝑢2 𝑐1 𝑐2

𝑐1 0.012,0.000 0.023,0.054

𝑐2 0.016,0.000 0.008,0.027

The average rewards of players are depicted in Figure 3.4. It can be concluded that

for sufficiently large game horizon (large number of periods), the average achieved reward

of our strategy converges to that of equilibrium. Players’ actions are shown in Figure

3.5, at both early and final stages of the game (before and after the convergence), for 10

randomly-selected trials. By comparing this figure with Table 3.1, it follows that the game

converges to equilibrium, which is the joint action (1, 2). The initial forecasters’ outputs

(𝜓, see Algorithm 4) are shown in Figure 3.6(a), for some randomly-selected trial before

5Note that Nash equilibrium is a special case of correlated equilibrium.
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Figure 3.5.: Selected actions of CBS before and after convergence, at 10 random trials;
orthogonal access.

convergence. It is clear that outputs are almost uniformly distributed, i.e. all quantized

mixed strategies are almost equally likely to occur. This conclusion is in agreement with

Figure 3.5, where selected channels before convergence do not follow any specific pattern.

Forecasters’ outputs at some randomly-selected trial after the convergence are depicted in

Figure 3.6(b). In this figure, Forecaster 1 assigns higher weights to the quantized mixed

strategies with 𝑝2 > 𝑝1, while Forecaster 2 emphasizes the strategies with 𝑝1 > 𝑝2. This

means that the first and second players are expected by their opponents to select channels

1 and 2, respectively. The predictions are approved by Figure 3.5, where the first and

second D2D users finally settle at the first and second channels, respectively.
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(a) Before convergence.
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Figure 3.6.: Forecasters’ outputs at some random trial; orthogonal access.
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Non-orthogonal Multiple Access

In case of non-orthogonal multiple access, conflicting D2D users decide whether to transmit

in different channels or in a common channel. In order to clarify this, we perform two

experiments. For the first and second experiments, the average joint reward matrices are

given in Tables 3.2(a) and 3.2(b). From these tables it can be concluded that the most

Table 3.2.: Reward Matrices for Non-Orthogonal Access (𝑢𝑖:user 𝑖, 𝑐𝑗 :channel 𝑗; 𝑖, 𝑗 ∈
{1, 2})

(a) Case 1

������𝑢1

𝑢2 𝑐1 𝑐2

𝑐1 0.024,0.040 0.024,0.021

𝑐2 0.075,0.042 0.063,0.021

(b) Case 2

������𝑢1

𝑢2 𝑐1 𝑐2

𝑐1 0.024,0.001 0.024,0.021

𝑐2 0.075,0.000 0.063,0.021

efficient pure strategy equilibrium points for the first and second games are joint actions

(2, 1) and (2, 2), respectively. This means that in the first case, it is beneficial for players

to transmit in different channels, whereas in the second case, D2D users achieve higher

gains if they both use the second channel.

The average rewards of users are shown in Figures 3.7(a) and 3.7(b), correspondingly,

for the two experiments. Moreover, Figures 3.8(a) and 3.8(b) show the users’ actions for

the first and second experiments. Figures 3.9(a) and 3.9(b) show the forecasters’ outputs,

at a random trial after convergence (the outputs before convergence are similar to Figure

3.6(a)). Descriptions are similar to the orthogonal case, and hence are omitted.

3.5.2. Part Two

We consider a network with ten D2D users (transmitter-receiver pairs, 𝐾 = 10), and five

primary channels (𝑀 = 5). The channels are available according to a Bernoulli random

process with parameter 1
2 , and the performance metric is the aggregate average reward of

D2D users. We compare the following approaches.

∙ Statistical centralized strategy: As described in Section 3.5.1, this approach requires

global statistical channel knowledge and a central controller. Stability is here there-

fore not relevant, as no competition takes place.

∙ Calibrated bandit strategy (CBS): This approach is proposed in this paper. As

explained before, CBS requires no prior knowledge and also no pairwise information

exchange. Convergence to the set of correlated equilibria is proved for the general

reward generating process, provided that the mean reward is time-invariant and

59



3. Distributed Resource Allocation in Stochastic Networks

depends only on the nature (here average channel gains) and the players’ joint action

profile. A broadcast channel is required only until convergence.

∙ Game-theoretical pricing [1]: In this strategy, D2D users are modeled as buyers,

whereas the BS is the seller. Any given channel is sold to only one D2D user,

thereby orthogonal channel access. Information exchange is required among buyers

and the seller. Pure strategy Nash equilibrium can be achieved upon existence.

∙ Bandit with fixed rewards [XWW+12]: In this model, any given channel offers a

fixed transmission rate that is equally shared in case of collision. For comparison,

the fixed reward of any channel is here selected by averaging the achievable rates of

all D2D users through that channel. No prior information or information exchange is

required. Convergence to Nash equilibrium is proved in [XWW+12] and [XWS+13],

for two specific utility functions.

∙ No collision bandit strategy [KNJ12]: This is a bandit strategy where upon collision,

no reward is paid to the colliding users. Information exchange is required. Stability

is not discussed.

∙ 𝜖-greedy Q-learning strategy [BGN11]: At each trial, every player selects the best

action so far with probability 1− 𝜖, and some random action with probability 𝜖. No

forecasting and/or best response dynamics is performed. No information exchange

or prior knowledge is required. Stability is not guaranteed in general, but might

exist for potential games.

∙ Bernoulli bandit strategy [LZK10]: In this model the learning process does not

include channel qualities. More precisely, only the availability and the number of

users willing to transmit through each channel are learned. No prior knowledge or

information exchange is required. Stability is not guaranteed.

∙ Uniformly random strategy: At each trial, an action is selected uniformly at random.

Results are depicted in Figure 3.10, and some important notes are shortly discussed in the

following.

∙ CBS requires some time to converge to the centralized approach in terms of aggregate

average reward of all users. It can be however implemented in a distributed manner

with low overhead.

∙ Greedy Q-learning algorithm exhibits inferior performance in comparison with the

CBS, which is mainly due to the absence of forecasting and best response dynam-
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ics. It should be also noted that for the general utility functions, convergence to

equilibrium is not guaranteed by this algorithm.

∙ As expected, orthogonal multiple access is in general suboptimal. In essence, the

performances of selection strategies that are based on orthogonal access are inferior

to CBS that allows interference.

∙ The performance of no-collision bandit scheme is poor since transmission through a

common channel yields zero reward to all colliding users, which is clearly suboptimal

for selfish users and when 𝑀 < 𝐾.

∙ If the transmission channels are different only with respect to the availability, then

the performance of the Bernoulli bandit strategy is acceptable; nonetheless, in case

the channel quality is also taken into account (as in our model), Bernoulli bandit

strategy performs poor.

3.6. Conclusion and Remarks

We studied a channel selection problem in an underlay distributed D2D communications

system, where spectrum vacancies of the cellular network are utilized by selfish D2D users.

We showed that the channel selection problem boils down to a multi-player multi-armed

stochastic bandit game with side-information, and proposed a selection strategy, called

CBS, based on no-regret learning and calibrated forecasting. Analysis established that

CBS is strongly consistent; that is, for each D2D user, the average accumulated reward

in the long run is equal to that of the optimal strategy. Moreover, we proved that if

applied by all players, CBS guarantees that the game converges to equilibrium in some

sense. In addition, we discussed the convergence rate and complexity issues. As expected

intuitively, the convergence speed reduces with increasing number of players and actions,

while complexity increases. It was also concluded that the convergence rate and complexity

can be controlled by changing the exploration parameter, sampling rate and the applied

regression process. The first part of numerical studies confirmed the analytical results with

respect to the convergence to an efficient equilibrium. In the second part the proposed

approach was compared with some other selection strategies. It was concluded that CBS

performs better than greedy Q-learning, as it applies the forecasting procedure. Moreover,

the approaches that are based on orthogonal channel access or assign zero reward to the

colliding users exhibit inferior performance compared to the CBS.
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(a) Case 1
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Figure 3.7.: Average reward of CBS versus centralized strategy; non-orthogonal access.
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Figure 3.8.: Selected actions of CBS before and after convergence, at 10 random trials;
non-orthogonal access.
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(a) Case 1
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(b) Case 2

Figure 3.9.: Forecasters’ outputs at a random trial after convergence; non-orthogonal
access.
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Figure 3.10.: Performance of calibrated bandit strategy (CBS) compared to some other
selection strategies.
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Allocation

In this chapter we focus on a decision making problem in a network with two types of

agents, namely primary and secondary agents. We assume the existence of an authority

that regularizes the network in favor of primary agents by assigning restricted resources

to secondary agents. The secondary agents therefore compete with each other in order

to access the limited assigned resources. In this context, this chapter studies a resource

allocation problem in a single-cell wireless network with multiple D2D users, sharing the

available radio frequency channels with cellular users. As described in Chapter 1, in

underlay D2D networks, there might be also the possibility of simultaneous D2D and

cellular transmissions, provided that the adverse effects of D2D transmissions (secondary

agents) on cellular users (primary agents) is minimized, and cellular users are given the

priority in using wireless resources. In Section 4.1.1, we introduce the network model

and formulate a joint channel allocation and power control problem. The system model

considered in this work generalizes the state-of-the-art in the following crucial aspects:

∙ In a great majority of previous works, including [YDRT11] and [XSH+12a], the

network model consists of a specific and limited number of cellular and/or D2D

users. In contrast, in our model, arbitrary number of cellular and D2D users coexist

in the network.

∙ Some works such as [BFA11], [FLYW+13] and [JKR+09] study a system with multi-

ple D2D users; however, in every time slot, only one D2D user is allowed to transmit

in any frequency channel, primarily allocated to some cellular user. Contrary to these

works, we allow multiple D2D users to share a given channel with some cellular user.

∙ A large body of existing resource allocation schemes are centralized, i.e., the resource

management is performed by a base station of the cellular infrastructure that is

assumed to be provided with the global channel and network knowledge. To this

category belong [PHK13], [ATN+14], [WCC+11] and [HYXY12], for instance. The

centralized solution, however, yields large overhead, as well as heavy computational

cost to the cellular network. Unlike these studies, in our model we assume that
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the BS is only aware of the statistical channel knowledge of cellular users and the

geographical locations of D2D users. This information can be simply acquired by

using pilot signals for cellular users and the GPS (Global Positioning System) data

of D2D users, yielding considerably lower overhead compared to the full information

case. Moreover, by using our proposed strategy, the resource allocation problem is

solved by the BS only partially, thereby reducing the computational cost.

∙ While in many studies including [WSH+13], [XSH+13], [SNHH14] and [LJYH14], it

is assumed that users are provided with some prior knowledge, in our model D2D

and cellular users do not have any information.

In Section 4.1.2, we prove a lower-bound on the aggregate utility of cellular users. Based

on this lower-bound, and by taking the higher priority of cellular users into account,

we decompose the resource allocation problem into two cascaded problems related to

channel allocation and D2D power control. The former problem, which is investigated in

Section 4.2, is a multi-objective combinatorial optimization problem that is very costly

to solve with respect to the time and computational complexity. Therefore we propose

a suboptimal, but efficient, graph-theoretical heuristic solution that involves maximum-

weighted bipartite matching [Kuh55] and minimum-weighted graph partitioning [Bar81].

The problem can be then solved in a centralized manner by the BS, since the solution

relies only on strictly limited information. The approach also offers high flexibility with

respect to the performance criteria, since quality of service (QoS) or fairness can be taken

into account. The latter problem, in turn, deals with maximizing the aggregate utility

of D2D users by means of power control, desirably in a distributed manner. In Section

4.3, we model the power control problem as a game with incomplete information, which,

in contrast to most previous studies, is defined on a discrete strategy set. We show

that this game is an exact potential game and characterize the set of Nash equilibria.

Furthermore, we use the Q-learning fictitious play strategy [CLRJ13] in order to converge

to Nash equilibrium. Finally, extensive numerical analysis is performed to evaluate the

performance of the proposed approach in practical cases.

4.1. System Model and Problem Formulation

4.1.1. System Model

We consider the downlink of a single-cell network with one BS denoted by 𝑏 and a set

ℒ consisting of 𝐿 cellular users, each denoted by 𝑙. The cell is provided with a set 𝒬 of

𝑄 = 𝐿 orthogonal frequency channels. There exists also a set 𝒦 of 𝐾 predefined D2D

users, where each D2D user consists of a transmitter-receiver pair, and is represented
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either by 𝑘 or by the pair (𝑘, 𝑘′). The BS is able to communicate with multiple cellular

users simultaneously, possibly by using multiple antennas. The data stream intended to

any given cellular user is transmitted with fixed average power 𝑃𝑐. Each D2D user selects

a power-level from the set ℳ = {𝑃1, 𝑃2, ..., 𝑃𝑀} where 1 < 𝑃1 < 𝑃2 < ⋅ ⋅ ⋅ < 𝑃𝑀 . We

assume that 𝑃𝑀 ≪ 𝑃𝑐, since in general the BS has access to larger energy resources in

comparison with user devices. Primarily, each channel 𝑞 ∈ 𝒬 is used i) by the BS in order

to transmit to some set ℒ𝑞 ⊆ ℒ of 𝐿𝑞 cellular users, and ii) by a set 𝒦𝑞 ⊆ 𝒦 of 𝐾𝑞 D2D

users for direct communications. We assume that 𝐿𝑞 = 1 ∀ 𝑞 ∈ 𝒬; that is, each channel is

assigned exactly one cellular user and therefore no vacant channel exists. This assumption

is made in order to protect the cellular users from an excessive interference due to a high

BS power. We use i𝑞 =
(
𝑖(1), ..., 𝑖(𝐾𝑞)

)
to denote the vector of transmission powers of the

D2D users that transmit through channel 𝑞. Similar to the previous chapters, ∣ℎ𝑢𝑣,𝑞∣2 > 0

is the average gain of channel 𝑞 from transmitter 𝑢 to the receiver 𝑣. We assume that

∣ℎ𝑢𝑣,𝑞∣2 = ∣ℎ′𝑢𝑣∣2
∣∣ℎ′′𝑢𝑣,𝑞∣∣2, where 0 < ∣ℎ′𝑢𝑣∣2 ≤ 1 and 0 <

∣∣ℎ′′𝑢𝑣,𝑞∣∣2 ≤ 1 stand for the path loss

and fast fading components, respectively. We assume that the channel gains of any given

link are drawn from some distribution with time-invariant mean value. Moreover, due to

the channel reciprocity, we have ∣ℎ𝑢𝑣,𝑞∣2 = ∣ℎ𝑣𝑢,𝑞∣2. Signal-to-interference ratio (SIR) is

denoted by 𝛾. We consider a high SIR regime where 1 < 𝛾, so that log (1 + 𝛾) ≈ log (𝛾).

When treating interference as noise, log (𝛾) represents the achievable transmission rate of

interference-limited point to point transmission.

The average utility of some cellular user 𝑙 ∈ ℒ𝑞 that occupies channel 𝑞 is defined as

𝑓 (𝑙)(𝑞, i𝑞) = log

(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

1 +
∑

𝑘∈𝒦𝑞
𝑖(𝑘) ∣ℎ𝑘𝑙,𝑞∣2

)
, (4.1)

which corresponds to the achievable transmission rate, as described before.

Since D2D users are also involved in power control in addition to channel allocation,

the average utility of any D2D user 𝑘 ∈ 𝒦𝑞 that shares channel 𝑞 with some cellular user

𝑙 ∈ ℒ𝑞 is defined as

𝑓 (𝑘) (𝑞, i𝑞) = log

(
𝑖(𝑘)

∣∣ℎ𝑘𝑘′,𝑞∣∣2
1 +

∑
𝑗∈𝒦𝑞 ,𝑗 ∕=𝑘 𝑖

(𝑗)
∣∣ℎ𝑗𝑘′,𝑞∣∣2 + 𝑃𝑐

∣∣ℎ𝑏𝑘′,𝑞∣∣2
)
− 𝛼𝑖(𝑘), (4.2)

where 𝛼 is a fixed power price factor to penalize excessive power usage. Therefore, by

definition, the utility of a D2D user corresponds to its transmission rate (see above) minus

a cost that is paid to the cellular user in order to reimburse the adverse effects of spectrum

sharing. The price factor can either be equal for all D2D users (as in (4.2)), or be user

specific; for instance, proportional to the channel gain (or distance) between a D2D user
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and the cellular user transmitting in the same channel [1]. The analysis in this chapter

holds for both cases.

We consider a model with strictly limited information, as described in the following

assumption.

Assumption (A5). Each of the following is assumed throughout this chapter.

a) The BS has the knowledge of i) geographical locations of cellular and D2D users as well

as the path loss exponent, thus ∣ℎ′𝑙𝑘∣2 ∀ 𝑙 ∈ ℒ, 𝑘 ∈ 𝒦, and ii) the average gain of all
channels from every cellular user to the BS, i.e. ∣ℎ𝑏𝑙,𝑞∣2 ∀ 𝑙 ∈ ℒ, 𝑞 ∈ 𝒬.

b) The BS has no information about the fast fading component of cellular to cellular or

D2D to D2D links.

c) Cellular and D2D users have no channel knowledge.

4.1.2. Problem Formulation

Network aggregate utility is conventionally regarded as a measure for evaluating the perfor-

mance of resource management protocols [CNT08], [RW08], [FP14], [CMRWS12]. Based

on this criterion, the problem is to allocate channels and power-levels to the cellular and

D2D users so as to maximize the network aggregate utility. With (4.1) and (4.2) in hand,

this problem can be stated formally as

maximize
ℒ𝑞 ,𝒦𝑞 ,i𝑞

𝑄∑
𝑞=1

⎛
⎝∑

𝑙∈ℒ𝑞

𝑓 (𝑙) (𝑞, i𝑞) +
∑
𝑘∈𝒦𝑞

𝑓 (𝑘) (𝑞, i𝑞)

⎞
⎠ , (4.3)

where ℒ𝑞 ⊆ ℒ, 𝒦𝑞 ⊆ 𝒦 and i𝑞 ∈
⊗𝐾𝑞

𝑘=1 {𝑃1, ..., 𝑃𝑀}. Note that unlike some previous works

such as [XWW+12] and [XWS+13], the utility functions defined here are user-specific, i.e.

any given channel pays different rewards to different users. As a result, the set of D2D and

cellular users allocated to each channel is required to be determined, and not the number

of users.

Such formulation however does not comply with the underlay D2D concept, and suffers

from the following drawbacks that make it difficult or even impossible to deal with: i) The

objective in (4.3) is not available at the BS due to the lack of information (see Assumption

(A5)), ii) The higher priority of cellular users is not taken into account, and iii) The

objective function depends on both channel and power allocations, which are mutually

dependent. Therefore a solution to (4.3) is difficult to obtain and is expected to be not

amenable to distributed implementation. Our goal is therefore to develop a sophisticated

heuristic approach. To this end, we first prove a lower-bound on the aggregate utility
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of cellular users that enables us to decouple the channel allocation and power control

problems.

Proposition 5. For any i𝑞, 𝑃𝑐 and channel gains, we have

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

𝑓 (𝑙) (𝑞, i𝑞) >

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
−

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

∑
𝑘∈𝒦𝑞

𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2 . (4.4)

Proof. See Section 1 of Appendix D.

In words, the lower-bound in (4.4) corresponds to the worst-case scenario where all D2D

users transmit with the maximum available power, and the fast fading components of all

D2D to cellular links equal one, yielding maximum interference. In essence, the bound

does not depend on D2D power allocation and relies only on the available information at

the BS; hence it may serve as a basis for resource management.

Since the cellular users are assumed to have a higher priority and therefore should

be served first, we propose a two-step resource allocation strategy. In the first step, the

objective is to maximize the lower-bound of the aggregate utility of cellular users, given by

(4.4). More precisely, given 𝑃𝑀 , 𝑃𝑐 and imperfect channel knowledge, we aim at assigning

channels to cellular and D2D users so as

maximize
ℒ𝑞 ,𝒦𝑞

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
−

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

∑
𝑘∈𝒦𝑞

𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2 , (4.5)

subject to

𝐿𝑞 = 1, ∀ 𝑞 ∈ 𝒬. (4.6)

This problem is investigated in Section 4.2.

Once the channels are allocated, in the second step we address the power control problem

for D2D users, with the goal of maximizing the aggregate utility of D2D users as formalized

below.

maximize
i𝑞∈

⊗𝐾𝑞
𝑘=1{𝑃1,...,𝑃𝑀}

𝑄∑
𝑞=1

∑
𝑘∈𝒦𝑞

𝑓 (𝑘) (𝑞, i𝑞) . (4.7)

Section 4.3 is devoted to this problem.

Summarizing, the resource allocation problem is decomposed to a channel allocation

problem for all users followed by a power control problem for D2D users. As we see later,

the first problem is solved at the BS using a centralized method, whereas the second

problem is solved by D2D users in a distributed manner. Using such a two-stage scheme,

not only a higher priority of cellular users is taken into account, but also D2D users utilize
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the assigned channels efficiently. Moreover, the limited available information is exploited

with low computational effort.

4.2. Channel Allocation

This section deals with the first step of resource management, i.e. the channel assignment,

with the goal of optimizing the performance of cellular users in terms of (4.5).

4.2.1. The Channel Allocation Scheme

We notice that the first and second terms in (4.5) are respectively proportional to the

sum of desired signals and interferences, over all cellular users. Moreover, while the first

term depends only on cellular users, the second term depends also on D2D users. Roughly

speaking, the problem in (4.5) can be rephrased as maximize𝑥,𝑦 𝑓(𝑥) − 𝑔(𝑥, 𝑦), where 𝑥
and 𝑦 respectively denote the cellular and D2D channel assignments. This problem is a

multi-objective combinatorial optimization problem that is NP-hard and hence notoriously

difficult to solve. Therefore we propose the following suboptimal, but simple and efficient,

heuristic approach: At the beginning maximize the first term of (4.5) (weighted signal

sum), so that the sets ℒ𝑞, 𝑞 ∈ 𝒬, are defined. Afterwards, given ℒ𝑞, allocate D2D users

to the frequency channels in a way that the second term (interference sum) is minimized.

Formally,

maximize
ℒ𝑞

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
, (4.8)

subject to (4.6) and

minimize
𝒦𝑞

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

∑
𝑘∈𝒦𝑞

𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2 . (4.9)

We call (4.8) and (4.9) as assignment and clustering problems, respectively. In what

follows, we show that these problems boil down to two classic graph-theoretical problems

on the induced network graph, namely maximum-weighted bipartite graph matching and

minimum-weighted graph partitioning.

Assignment Problem

In the following, we show that the problem in (4.8) can be formulated as a weighted

bipartite matching problem, defined below.

Definition 7 (Weighted Bipartite Matching). Let 𝐺 = (𝒱, ℰ) be a weighted bipartite graph
where 𝒱 = 𝒱1 ∪ 𝒱2, 𝒱1 ∩ 𝒱2 = ∅ and ℰ ⊆ 𝒱1 × 𝒱2. Each edge 𝑒 ∈ ℰ connecting any two
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vertices 𝑥 ∈ 𝒱1 and 𝑦 ∈ 𝒱2 is associated with some weight 𝑤𝑥𝑦. The weights are gathered

in the 𝑉1 × 𝑉2 graph matrix denoted by W = [𝑤𝑥𝑦].

Matching: A matching is a subset ℳ ⊆ ℰ such that ∀𝑣 ∈ 𝒱 at most one edge in ℳ is

incident upon 𝑣.

Maximum Matching: A matchingℳ such that every other matchingℳ′ satisfies 𝑊ℳ′ ≤
𝑊ℳ, where 𝑊𝒰 denotes the total weight of the selected edges for some matching 𝒰 .
Minimum Matching: A matching ℳ such that every other matching ℳ′ satisfies 𝑊ℳ ≤
𝑊ℳ′.

Based on Definition 7, consider the bipartite graph 𝐺𝐿(𝒱, ℰ), with 𝒱1 = ℒ (the set of

cellular users) and 𝒱2 = 𝒬 (the set of channels). The weight of the edge connecting 𝑙 ∈ ℒ
and 𝑞 ∈ 𝒬, 𝑤𝑙𝑞, is defined as the weighted average gain of channel 𝑞 between the cellular

user 𝑙 and the BS, i.e. log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
. The problem is to assign each cellular user a

channel so that (4.6) and (4.8) are satisfied. Let the assignment be presented by an 𝐿×𝑄
assignment matrix A = [𝑎𝑙𝑞], where

𝑎𝑙𝑞 =

{
1 if 𝑙 ∈ ℒ𝑞

0 otherwise
. (4.10)

Therefore A satisfies the following constraints

∑𝐿
𝑙=1 𝑎𝑙𝑞 ≤ 1 , 𝑞 ∈ {1, 2, ..., 𝑄}, (4.11)

∑𝑄
𝑞=1 𝑎𝑙𝑞 = 1 , 𝑙 ∈ {1, 2, ..., 𝐿}, (4.12)

𝑎𝑙𝑞 ∈ {0, 1} , ∀ 𝑙, 𝑞. (4.13)

While (4.11) implies that each channel serves at most one cellular user, (4.12) means that

each cellular user is served by exactly one channel. Note that equality holds in (4.11) since

we assume 𝑄 = 𝐿 (see Section 4.1.1). The sum of edges’ weights hence yields

𝑄∑
𝑞=1

∑
𝑙∈ℒ
𝑤𝑙𝑞𝑎𝑙𝑞 =

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

𝑤𝑙𝑞. (4.14)

Thus the problem in (4.8) subject to (4.6) is equivalent to maximizing (4.14), subject to

(4.11), (4.12), and (4.13); that is, it corresponds to the maximum matching of 𝐺𝐿.

Clustering Problem

This step consists of allocating channels to D2D users, with the goal of minimizing the

total interference at cellular users, over all channels. In order to address this problem, we
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first define the network graph.

Definition 8 (Network Graph). The network graph for any channel 𝑞 ∈ 𝒬 is an undirected

graph 𝐺𝑁 = (𝒱, ℰ) with 𝒱 = 𝒱1 ∪ 𝒱2, where 𝒱1 and 𝒱2 represent the set of 𝐾 D2D

transmitters and 𝐿 cellular receivers, respectively. The weight of an edge between any pair

of graph vertices (𝑥, 𝑦) is denoted by 𝑤𝑥𝑦, where 𝑤𝑥𝑦 is equal to the average gain of channel

𝑞 between 𝑥 and 𝑦.

However, by Assumption (A5), only limited channel state information is available at the

BS; therefore the network graph cannot be constructed. As a result, we define the estimated

network graph, which can be reproduced by the BS using the available information.

Definition 9 (Estimated Network Graph). Estimated network graph is an undirected

graph 𝐺𝐸 = (𝒱, ℰ) with 𝒱 = 𝒱1 ∪ 𝒱2, where 𝒱1 and 𝒱2 represent the set of 𝐾 D2D

transmitters and 𝐿 cellular receivers, respectively. The weight of an edge between any

D2D transmitter 𝑘 and cellular receiver 𝑙 is defined as 𝑤𝑘𝑙 = 𝑃𝑀 ∣ℎ′𝑘𝑙∣2. The weight of the
edge between any two cellular users and any two D2D users are respectively equal to some

constant 𝐶 > 𝐾𝑃𝑀 and zero.1

Next we show that problem (4.9) can be rephrased as Q-way minimum-weighted graph

partitioning of the estimated network graph 𝐺𝐸 .

Definition 10 (Q-way Weighted Partitioning). Let 𝐺 = (𝒱, ℰ) be a weighted graph where
each edge 𝑒 ∈ ℰ connecting any two vertices 𝑥 and 𝑦 is associated with some weight 𝑤𝑥𝑦.

The weights are gathered in a 𝑉 ×𝑉 matrix denoted byW = [𝑤𝑥𝑦]. The minimum-weighted

Q-way partitioning problem divides the set of vertices into 𝑄 disjoint subsets, in a way that

the sum weights of edges whose incident vertices fall into the same subset is minimized.

Now consider the estimated network graph, 𝐺𝐸 . Then solving (4.9) is equivalent to

finding some (𝐿+𝐾)×𝑄 assignment matrix B = [𝑏𝑗𝑞], where

𝑏𝑗𝑞 =

{
1 if 𝑗 ∈ ℒ𝑞 ∪ 𝒦𝑞

0 otherwise
. (4.15)

Thus each column in B, e.g. B𝑞 =
[
𝑏1𝑞, 𝑏2𝑞, ..., 𝑏(𝐿+𝐾)𝑞

]𝑇
, 𝑞 ∈ {1, 2, ..., 𝑄}, is an indicator

describing cluster 𝑞. Therefore 𝑏𝑗𝑞 satisfies the following constraints

∑𝐿+𝐾
𝑗=1 𝑏𝑗𝑞 = 𝐿𝑞 +𝐾𝑞, 𝑞 ∈ {1, 2, ..., 𝑄}, (4.16)

1Later we see that this definition results in some form of clustering that reduces the cellular to cellular
and also the D2D to cellular interferences. D2D to D2D interference is however neglected, implying
that in the absence of full and precise channel knowledge, the priority is to protect cellular users.
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∑𝑄
𝑞=1 𝑏𝑗𝑞 = 1, 𝑗 ∈ {1, 2, ..., 𝐿+𝐾}, (4.17)

and

𝑏𝑗𝑞 ∈ {0, 1} , ∀ 𝑗, 𝑞. (4.18)

The sum of edges’ weights connecting the users in cluster 𝑞 hence follows as

1

2

∑
𝑗∈ℒ∪𝒦

∑
𝑗′∈ℒ∪𝒦

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞 =
1

2
B𝑇

𝑞 W𝐸B𝑞, (4.19)

where W𝐸 is the weight matrix of 𝐺𝐸 . As a result, the sum of weights of the edges that

are not cut by the Q-way partitioning of 𝐺𝐸 yields

1

2

𝑄∑
𝑞=1

∑
𝑗∈ℒ∪𝒦

∑
𝑗′∈ℒ∪𝒦

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞

=
1

2

𝑄∑
𝑞=1

∑
𝑗∈𝒦

∑
𝑗′∈𝒦

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞 +
1

2

𝑄∑
𝑞=1

∑
𝑗∈ℒ

∑
𝑗′∈ℒ

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞

+2× 1

2

𝑄∑
𝑞=1

∑
𝑗∈ℒ

∑
𝑗′∈𝒦

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞.

(4.20)

The first term on the right-hand side of (4.20) is zero by the definition of 𝐺𝐸 . Also, by the

following proposition, the second term equals zero as well, since every minimum-weighted

partitioning assigns exactly one cellular user to each cluster.

Proposition 6. Any minimum-weighted Q-way partitioning of the estimated network

graph 𝐺𝐸 assigns exactly one cellular user to each cluster, that is 𝐿𝑞 = 1 ∀𝑞 ∈ 𝒬.

Proof. See Section 2 of Appendix D.

By Proposition 6 and comparing (4.19) with (4.20), we have

1

2

𝑄∑
𝑞=1

B𝑇
𝑞 W𝐸B𝑞 =

𝑄∑
𝑞=1

∑
𝑗∈ℒ

∑
𝑗′∈𝒦

𝑤𝑗𝑗′𝑏𝑗𝑞𝑏𝑗′𝑞

=

𝑄∑
𝑞=1

∑
𝑗∈ℒ𝑞

∑
𝑗′∈𝒦𝑞

𝑤𝑗𝑗′ .

(4.21)

By comparing (4.21) with (4.9), and by using the definition of 𝐺𝐸 , it can be concluded

that (4.9) is equivalent to the minimum-weighted Q-way partitioning of 𝐺𝐸 .
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4.2.2. Time and Computational Complexity

In principal, the proposed channel allocation scheme solves two problems, maximum-

weighted matching and minimum-weighted partitioning. The latter problem, however,

can be itself reformulated as a minimum-weighted matching, due to the special character-

istics of the defined estimated network graph. This is described formally in the following

proposition.

Proposition 7. Define a bipartite graph 𝐺′(𝒱, ℰ) where 𝒱1 = 𝒦 and 𝒱2 is produced by 𝐾
times replicating ℒ, i.e. 𝒱2 = ℒ ∪ ℒ... ∪ ℒ︸ ︷︷ ︸

×𝐾

. The weight of any edge connecting some D2D

user 𝑘 ∈ 𝒱1 to each copy 𝑙′ ∈ 𝒱2 of some cellular user 𝑙 ∈ ℒ is 𝑤𝑙𝑘 =W𝐸 [𝑘, 𝑙] = 𝑃𝑀 ∣ℎ′𝑘𝑙∣2,
i.e. equal to the weight of the edge connecting 𝑘 and 𝑙 in the estimated network graph,

𝐺𝐸. Then the minimum-weighted Q-way partitioning of 𝐺𝐸 is equivalent to a minimum-

weighted bipartite matching of 𝐺′.

Proof. See Section 3 of Appendix D.

Based on Proposition 7, it can be concluded that the channel allocation algorithm

solves two (parallel) weighted matching problems. Weighted matching is a classic graph-

theoretical problem for which numerous efficient algorithmic solutions exist. A well-known

solution is the Hungarian algorithm [Kuh55]. For a bipartite graph 𝐺(𝒱, ℰ), the space com-

plexity of the Hungarian algorithm is 𝑂(𝑉 2𝐸) with 𝑉 = max {𝑉1, 𝑉2},2 that is polynomial

in the number of vertices and also in the number of edges. The running time is 𝑂(𝑉 3),

which is therefore polynomial in the number of vertices. In our model, for the first match-

ing we have 𝑉 = 𝐿 and 𝐸 = 𝐿2 by the definition of 𝐺𝐿.
3 For the second matching, on the

other hand, we have 𝑉 = 𝐾𝐿 and 𝐸 = (𝐾𝐿)2, by the definition of 𝐺𝐸 and Proposition 7.

More algorithmic solutions can be found in [Gal86] and [MV80] for instance.

4.2.3. QoS Guarantee and Fairness

Despite being suboptimal, the decoupling approach described in Section 4.2.1 enables us

to solve the channel allocation problem efficiently under a variety of constraints, thereby

offering high flexibility and applicability. Two examples are given below.

∙ QoS requirement for cellular users: By problem (4.5), the goal of channel

allocation is to provide every D2D user with some transmission channel, in a way

that the aggregate utility of cellular users is maximized; as a result, the individual

2In case 𝑉1 ∕= 𝑉2, dummy vertices are added. See [Kuh55] for details.
3The number of edges corresponds to the worst-case, where the bipartite graph is complete, i.e. there
exists an edge between any pair 𝑥 ∈ 𝒱1 and 𝑦 ∈ 𝒱2.
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performances of cellular users are ignored. In many networks, however, cellular users

require some specific QoS that restricts the amount of tolerable interference. Let each

cellular user 𝑙 require some minimum utility, 𝑓
(𝑙)
min, by which its QoS is guaranteed.

After solving problem (4.8), each cellular user is assigned a channel. Assume that it

is feasible to satisfy the required QoS of any cellular user in the assigned channel. As

the nominator of (4.1) is known, the maximum tolerable interference of each cellular

user 𝑙, say 𝐼
(𝑙)
max, can be calculated given 𝑓

(𝑙)
min. We construct a bipartite graph with

𝒱1 = 𝒦 and 𝒱2 = ℒ. The problem is then to assign as many as possible D2D users to

cellular users (thus to channels), so that no interference experienced by any cellular

user exceeds the maximum tolerable value. Formally, the problem is to find an 𝐾×𝐿
assignment matrix X = [𝑥𝑘𝑙] so that

maximize

𝐿∑
𝑙=1

𝐾∑
𝑘=1

𝑥𝑘𝑙, (4.22)

subject to the following constraints

∑
𝑘∈𝒦

𝑤𝑘𝑙 𝑥𝑘𝑙 ≤ 𝐼(𝑙)max, ∀𝑙 ∈ ℒ, (4.23)

𝐿∑
𝑙=1

𝑥𝑘𝑙 ≤ 1, ∀𝑘 ∈ 𝒦, (4.24)

and

𝑥𝑘𝑙 ∈ {0, 1}, ∀𝑙, 𝑘. (4.25)

Note that by the definition of the estimated network graph, 𝑤𝑘𝑙 = 𝑃𝑀 ∣ℎ′𝑘𝑙∣2, i.e. it
is an upper-bound of the interference experienced by cellular user 𝑙 due to D2D user

𝑘. This problem is known as the generalized assignment problem which is NP-hard;

nonetheless, efficient approximate solutions exist. See [CKR06] for an example.

∙ Fairness requirement: The problem is here similar to the partitioning problem de-

scribed in Section 4.2.1, with the additional requirement that the resulted clusters are

balanced, in the sense that the interference experienced by cellular users due to D2D

users are almost equal. Formally, desired is to solve (4.9), subject to (4.16), (4.17)

and (4.18), so that
∑

𝑙∈ℒ1

∑
𝑘∈𝒦1

𝑤𝑘𝑙 ≈
∑

𝑙∈ℒ2

∑
𝑘∈𝒦2

𝑤𝑘𝑙 ≈ ... ≈
∑

𝑙∈ℒ𝑄

∑
𝑘∈𝒦𝑄

𝑤𝑘𝑙.

It should be emphasized that in this context, the burden of D2D communications

is divided (almost) equally among cellular users; this constraint however does not

necessarily mean that all cellular users achieve equal utilities.
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4.3. Power Control

This section deals with the second step of resource assignment, i.e. D2D power control,

with the aim of optimizing the performance of D2D users in terms of (4.7).

4.3.1. Power Control Game

As described in the foregoing section, while performing the channel assignment, the BS

ignores the potential interferences that might arise among D2D users, due to the lack

of information and also their lower priority. Precisely, D2D users are partitioned into

clusters and each cluster is assigned a single channel. Given no information, each D2D

user therefore craves to maximize its own utility, thereby causing interference to the users

with whom it shares a channel. By means of power control, however, interference can

be managed so that the channel assigned to each cluster is utilized efficiently. We model

the power control problem as a game with incomplete information, defined on a discrete

strategy set. We show that the game is potential and characterize the set of Nash equilibria.

Potential games and Nash equilibrium are defined in Section 1 of Appendix A.

As clusters are assigned orthogonal channels, the actions of D2D users inside any given

cluster do not affect the utilities of the users outside that cluster. Therefore the power

allocation problem in any cluster 𝑞 ∈ {1, ..., 𝑄} can be formulated as a game among 𝐾𝑞

D2D users, described formally in the following.

Definition 11 (Cluster Power Allocation Game). The power allocation game of cluster

𝑞 ∈ {1, ..., 𝑄} is a strategic game defined as 𝔊𝑞 =
{
𝒦𝑞, ℐ,

{
𝑓 (𝑘)

}
𝑘∈𝒦𝑞

}
, where 𝒦𝑞 is the set

of D2D users assigned to channel 𝑞, ℐ =
⊗𝐾𝑞

𝑘=1 {𝑃1, 𝑃2, ..., 𝑃𝑀} is the set of joint actions
with realizations i𝑞 =

(
𝑖(1), ..., 𝑖(𝐾𝑞)

)
, and 𝑓 (𝑘) : ℐ → ℝ

+ is the payoff function of player

𝑘 ∈ {1, ...,𝐾𝑞} defined by (4.2).
A crucial difference between the cluster power allocation game and the standard power

control games investigated in other studies including [SBP06] is that the players’ strategy

is here selected from a discrete set, while in the previous contributions the strategy set is

continuous. Consequently, most of the existing results do not hold, and hence we proceed

to the following theorem.

Theorem 8. a) The cluster power allocation game (Definition 11) is an exact potential

game with potential

𝑣(i𝑞) =
∑
𝑘∈𝒦𝑞

log
(
𝑖(𝑘)

)
−

∑
𝑘∈𝒦𝑞

𝛼𝑖(𝑘). (4.26)

b) Denote the set of potential maximizers by 𝒱max. Then, a joint action profile i𝑞 is a

Nash equilibrium if and only if i𝑞 ∈ 𝒱max.
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Proof. See Section 4 of Appendix D.

4.3.2. Q-Learning Better-Reply Dynamics

According to the system model, in the cluster power allocation game (Definition 11), the

utility functions are not known by the players (D2D users) in advance. Therefore they

require interacting with the environment in order to learn the optimal joint action profile

in the sense of aggregate utility maximization, and to achieve equilibrium. We consider

the cluster power allocation game to be a game with noisy payoffs. In such games, for each

joint action profile i𝑞 ∈ ℐ of 𝐾𝑞 players, the utility achieved by player 𝑘 at each interaction

can be written as 𝑔
(𝑘)
𝑡 (i𝑞) = 𝑓 (𝑘) (i𝑞) + C(𝑘) (i𝑞), where C(𝑘) is a random fluctuation with

zero-mean and bounded variance, independent from all other random variables. During

the learning process, each player faces a trade-off between gathering information (learning)

on the one side and using the information to achieve higher utility in future (control) on

the other side. This trade-off is known as the exploration-exploitation dilemma. In order

to deal with this dilemma and also to achieve an efficient equilibrium in a distributed

manner, we use Q-learning better-reply dynamics [CLRJ13]. This strategy consists of

three main steps that are performed recursively: 1) Observe the personal reward and also

the actions of opponents.4 2) Update the Q-values of the played joint action profile, 3)

With a small probability 𝜖≪ 1, select an action uniformly at random, while with a large

probability, 1 − 𝜖, play according to the better-reply dynamics that is described in the

following definition.

Definition 12 (Better-Reply Dynamics [CLRJ13]). Assume that at some trial 𝑡 − 1, a

player 𝑘 plays with action 𝑝𝑘,𝑡−1. Then, at trial 𝑡, with probability 𝜁𝑘, the player selects the

same action as in the previous trial, 𝑡−1, i.e. 𝑖
(𝑘)
𝑡 = 𝑖

(𝑘)
𝑡−1. With probability 1−𝜁𝑘, however,

the player selects an action according to a distribution that puts positive probabilities only

on actions that are better replies to its (finite) memory than 𝑖
(𝑘)
𝑡−1. For instance, it selects

an action according a uniform distribution over all better-replies.

For readers’ convenience, the detailed strategy is described in Algorithm 6 for some

player 𝑘 ∈ 𝒦𝑞.

4When using multi-agent Q-learning algorithms, conventionally it is assumed that every agent observes
the state of the environment and/or the actions of its opponents [VH04b]. In our model, players are
therefore required to announce their transmission powers, for example by broadcasting in a specific time
period, borrowed from the total transmission time. This overhead, however, is much less than that of the
frequent and pairwise information exchange, for which usually a control channel is required [LLK12].
The reason is that after convergence, which is achieved relatively fast, the transmission powers of
players remain fixed. Therefore no more broadcasting is required, and the borrowed time period is
again available for useful data transmission.
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Algorithm 6 Q-Learning Better-Reply Dynamics [CLRJ13]

1: Select arbitrary positive constants 𝑐𝜆 and 𝑐𝜀.
2: Select learning parameters 𝜌𝜆 ∈

[
1
2 , 1

]
.

3: Let p
(𝑘)
𝑡 =

(
𝑝
(𝑘)
1,𝑡 , ..., 𝑝

(𝑘)
𝑀,𝑡

)
be the mixed strategy of player 𝑘 at time 𝑡. Let p

(𝑘)
1 be the uniform

distribution over all actions (power levels).

4: Select an action, 𝑖
(𝑘)
1 , using p

(𝑘)
1 . Play and observe the reward.

5: for 𝑡 = 2, ..., 𝑇 do
6: Let

𝜀𝑡 = 𝑐𝜀𝑡
−1
𝐾𝑞 . (4.27)

7: ∙ With probability 𝜀𝑡, let p
(𝑘)
𝑡 be the uniform distribution over all actions.

∙ With probability 1− 𝜀𝑡, perform the following (better-reply dynamics):

– With probability 𝜁𝑘, let p
(𝑘)
𝑡 be the Dirac probability distribution on 𝑖

(𝑘)
𝑡−1.

– With probability 1 − 𝜁𝑘, let p(𝑘)
𝑡 be the uniform distribution over all actions

that are better replies to the full (finite) memory than 𝑖
(𝑘)
𝑡−1.

8: Using p
(𝑘)
𝑡 , select the action of time 𝑡, 𝑖

(𝑘)
𝑡 , and play.

9: Announce the selected action. Moreover, observe the played joint action profile of

other players, i
(−𝑘)
𝑡 , and also the achieved reward, 𝑔

(𝑘)
𝑡 (i𝑞,𝑡), i𝑞,𝑡 =

(
𝑖
(𝑘)
𝑡 , i

(−𝑘)
𝑞,𝑡

)
=(

𝑖
(1)
𝑡 , ..., 𝑖

(𝑘)
𝑡 , ..., 𝑖

(𝐾𝑞)
𝑡

)
.

10: Update the Q-value of the played joint action profile as

𝑄
(𝑘)
𝑡+1(i𝑞,𝑡) = 𝑄

(𝑘)
𝑡 (i𝑞,𝑡) + 𝜆𝑡

(
𝑔
(𝑘)
𝑡 (i𝑞,𝑡)−𝑄(𝑘)

𝑡 (i𝑞,𝑡)
)
1i𝑞,𝑡 , (4.28)

with
𝜆𝑡 =

(
𝑐𝜆 +#𝑡[i𝑞,𝑡]

)−𝜌𝜆 , (4.29)

where #𝑡[i𝑞,𝑡] denotes the number of trials in which i𝑞,𝑡 is played, and 1i𝑞,𝑡 is the indicator
function.

11: end for
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Theorem 9 ( [CLRJ13]). The Q-learning better-reply dynamics (Algorithm 6) with 𝜀𝑡,

𝜆𝑡 given by (4.27) and (4.29) respectively, converges to a pure Nash equilibrium in games

with noisy unknown rewards that are generic and admit a potential function.

Corollary 4. By using Q-learning better-reply dynamics, the cluster power allocation

game (Definition 11) converges to a Nash equilibrium that maximizes the potential func-

tion.

Proof. The proof directly follows from Theorem 8 and Theorem 9.

Remark 4 (Price of Stability). Note that the equilibrium achieved by Q-learning better-

reply dynamics does not necessarily maximizes the sum utilities of all players (social wel-

fare), although such solution is desired by (4.7). The inefficiency of equilibrium is in fact

the price of the absence of an authority to mandate agents to use a specific transmission

power, and is formally referred to as the ’price of stability’ [GC12].

4.4. Numerical Analysis

We consider an underlay D2D communications system, consisting of twelve D2D users

(𝐾 = 12) and five cellular users (𝐿 = 5), as depicted in Figure 4.1. Note that only the

transmitter sides of D2D users are shown in the figure, as receivers do not cause any

interference to the cellular users and therefore do not impact the channel allocation (see

also the definition of the estimated network graph in Section 4.2.1). The (cellular and

D2D) users’ locations and also the channel gains are selected randomly. According to the

system model (Section 4.1.1), there exist five orthogonal channels (𝑄 = 5). Each D2D

user 𝑘 ∈ 𝒦 selects a transmit power from the set of power-levels, ℳ = {2, 4}. Moreover,

the transmit power of the BS to the cellular users is selected to be 𝑃𝑐 = 7.

4.4.1. Channel Allocation

Table 4.1 includes ∣ℎ𝑏𝑙,𝑞∣2 (cellular-BS average channel gains) for 𝑙, 𝑞 ∈ {1, ..., 5}, which
is assumed to be known by the BS, together with the network topology (Figure 4.1),

according to Assumption (A5) (Section 4.1). Based on this information, and by using the

graph-theoretical channel allocation scheme described in Section 4.2, the BS assigns each

(cellular and D2D) user a channel, as summarized in Table 4.2. Based on Table 4.1 and

Figure 4.1, it can be concluded that by the channel allocation given in Table 4.2, both

(4.8) and (4.9) are satisfied.

As discussed in Section 4.2.3, it is also possible to change the criterion of channel

allocation from maximizing the social welfare to address the QoS guarantee or fairness
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Figure 4.1.: Network model consisting of D2D transmitters (D𝑖, 𝑖 ∈ {1, ..., 12}) and cellular
receivers (C𝑖, 𝑖 ∈ {1, ..., 5}).

Table 4.1.: BS to Cellular Average Channel Gains

�����������User
Channel

1 2 3 4 5

C1 0.04 0.01 0.27 0.12 0.04

C2 0.29 0.06 0.15 0.18 0.26

C3 0.31 0.46 0.24 0.19 0.06

C4 0.12 0.06 0.29 0.34 0.16

C5 0.24 0.08 0.23 0.41 0.07

issues of cellular users. Assume that the required QoS of any cellular user 𝑙 ∈ ℒ is satisfied

if it achieves some minimum utility, say 𝑓
(𝑙)
min = 3.5.5 Given Table 4.1, the maximum

tolerable interference of each cellular user can be simply calculated. Using the proposed

channel allocation scheme, a channel allocation that guarantees the QoS satisfaction of

all cellular users is summarized in Table 4.3. Moreover, the result of channel assignment

based on fairness among cellular users is given in Table 4.4.6

The achieved average rewards of cellular users under all three criteria are shown in Figure

4.2. It can be seen that if the allocation criterion is to achieve the highest utility sum,

then some cellular users might experience no interference, whereas some others might

be strongly disturbed. In case of QoS guarantee, however, users with higher channel

5Note that the QoS requirements of cellular users are not necessarily similar.
6Note that the solutions are approximately-optimal and also might not be unique.
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Table 4.2.: Channel Allocation, Maximum Aggregate Utility for Cellular Users

Channel User

1 C5,D1,D3,D9

2 C3,D2,D6,D7,D12

3 C1

4 C4

5 C2,D4,D5,D8,D10,D11

Table 4.3.: Channel Allocation, QoS Guarantee for Cellular Users

Channel User

1 C5,D3,D9

2 C3,D1,D2,D11,D12

3 C1,D8,D10

4 C4,D4

5 C2,D4

gains experience more interference and vice versa, so that at the end all cellular users are

satisfied, upon feasibility. Moreover, by Table 4.3, in the current setting, all D2D users

can be served without violating the QoS requirement of cellular users; however, it is not

necessarily always the case. In the last criterion, all cellular users experience almost equal

amounts of interference, regardless of their achieved utilities.

For our primary channel allocation criterion, i.e. maximizing the aggregate utility of

cellular users, it is of interest to investigate the performance loss of cellular users, caused

by sharing the spectrum with D2D users. This performance degradation is visualized in

Figure 4.3, where the achievable utilities of cellular users without any interference (no

channel sharing) are shown in comparison with the case where all D2D users are assigned

some channel. It can be seen than by less than 15% performance loss, all D2D users can

be served.

4.4.2. Power Control

From Table 4.2, it can be observed that the minimum-weighted partitioning divides the

D2D and cellular users into five clusters, each allocated a frequency channel. In this

section, we investigate the power control game of the first cluster, i.e. the cluster that

includes three D2D users (D1, D3 and D9), and is assigned channel one. The games of
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Table 4.4.: Channel Allocation, Fairness Among Cellular Users

Channel User

1 C5,D3,D9,D11

2 C3,D2,D12

3 C1,D1,D8

4 C4,D6,D7

5 C2,D4,D5,D10
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Figure 4.2.: Average utility and interference experienced by cellular users under three cri-
teria (S:Sum).

other clusters are similar. The game horizon is 𝑛 = 2×103. Moreover, we assume 𝛼 = 0.1.

The joint rewards of D2D users as a result of different joint action profiles are calculated

by using (4.2), as given in Table 4.5. From this table, the action profile (2, 2, 2), or in other

words, (𝑃2, 𝑃2, 𝑃2), is the Nash equilibrium, which also maximizes the potential function.

Hence the game converges theoretically to this point. Figure 4.4 describes the frequency

in which any given action is played by each D2D user. It can be seen that the equilibrium

point is played almost all the time. Figure 4.5 depicts the average utility of D2D users

versus the equilibrium reward, confirming that in a short time, the average reward of every

player converges to that of equilibrium. This result can be also concluded from Figure

4.4, which shows that the equilibrium is played almost all the time.
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Figure 4.3.: Performance loss of cellular users due to sharing channels with D2D users,
with the allocation criterion being the maximization of the cellular utility
sum.

Table 4.5.: Joint Reward Table

Joint Action Joint Reward Joint Action Joint Reward

(1, 1, 1) (1.30, 1.18, 1.05) (2, 2, 1) (1.40, 1.27, 0.15)

(1, 2, 1) (0.90, 1.68, 0.65) (1, 2, 2) (0.61, 1.27, 1.14)

(2, 1, 1) (1.79, 0.78, 0.64) (2, 1, 2) (1.40, 0.49, 1.14)

(1, 1, 2) (0.90, 0.78, 1.54) (2, 2, 2) (1.10, 0.99, 0.85)

4.4.3. Overall Performance

In order to evaluate the overall performance of the proposed hybrid resource allocation

strategy (HRAS), we compare it with three other strategies that are described below.

∙ Centralized approach that is based on the exhaustive search, given global informa-

tion. In accordance with the concept of underlay D2D networks, the priority is here

given to the cellular users. Formally, the selected joint channel and power allocation

vector maximizes
∑𝐿

𝑙=1 𝑓
(𝑙), and ties are broken in favor of the allocation vector that

yields a higher aggregate D2D utility, i.e. larger
∑𝐾

𝑘=1 𝑓
(𝑘).

∙ Centralized approach that is based on the exhaustive search given global informa-

tion, but without considering the priority for cellular users. Formally, the algo-

rithm searches for the joint channel and power allocation vector that maximizes∑𝐿
𝑙=1 𝑓

(𝑙) +
∑𝐾

𝑘=1 𝑓
(𝑘).

∙ Random resource allocation, where the channel and power-levels are all assigned

using uniform distribution.
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Figure 4.4.: Fraction of trials in which any given action is played by D2D users.
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Figure 4.5.: The utilities achieved by D2D users versus the equilibrium reward.

As applying the exhaustive search to the large network investigated before (Figure 4.1)

yields high computational and time complexity (516 × 212 cases should be searched), we

turn to a smaller network with 𝐿 = 𝑄 = 𝑀 = 2 and 𝐾 = 6. Ten experiments are

performed while channel gains as well as users’ locations are changed randomly. Results

are depicted in Figure 4.6. From this figure, it can be concluded that the utility achieved by

our proposed resource allocation scheme is almost equal to the highest possible aggregate

network utility, when taking the priority of cellular users into account. It is clear that

larger network utility sum can be achieved by neglecting the cellular priority; nevertheless,

such setting does not comply with the concept of underlay D2D communications, since

cellular users might be extremely disturbed. It is also worth mentioning that the number

of possible channel and power allocation vectors grows exponentially in the number of

users (D2D and cellular) and polynomially in the number of actions (channels and power-

levels). As a result, for large networks, centralized resource allocation based on exhaustive
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Figure 4.6.: Overall performance of the hybrid resource allocation strategy (HRAS) com-
pared to some other approaches.

search yields excessive cost in terms of time and computational complexity, and hence

cannot be practiced. Our approach, in contrast, offers polynomial complexity, and hence

is specifically suitable for large networks.

4.5. Conclusion and Remarks

We studied an underlay D2D communications system, where device pairs are primarily

allowed to transmit simultaneously with cellular users through a common channel. A

two-stage hybrid centralized-distributed resource allocation strategy was proposed that

takes the priority of cellular users into account, and relies on strictly limited information.

In the first stage, centralized channel allocation is performed by using a graph-theoretical

method. The method was shown to offer high flexibility in selecting the allocation criteria,

for instance aggregate utility, fairness or QoS guarantee. It was also concluded that

both time and computational complexities are polynomial in the number of users. In the

second stage, power control problem is modeled as a game with incomplete information.

We proved that the game is an exact potential game defined on a discrete strategy set,

and therefore Q-learning fictitious play can be used by the players in order to achieve

an efficient Nash equilibrium in a distributed manner. The set of Nash equilibria was

shown to be equivalent to the set of potential maximizers. Extensive numerical analysis

demonstrated the applicability of the proposed approach, specifically in the context of

large-scale networks. Moreover, the results showed that the number of D2D users that

can be served by cellular resources depends on the QoS requirement of cellular users. If

no QoS requirement exists, serving all D2D users causes a degradation of the cellular
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aggregate utility, which depends on the channel qualities as well as the number of D2D

users. In addition, it was concluded that using Q-learning fictitious play strategy results

in a fast convergence to the most efficient equilibrium point.
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A. Some Auxiliary Definitions and Results

1. Game Theory

Throughout this part, we consider a game 𝔊 consisting of a set 𝒦 of 𝐾 players. The

strategy set is denoted by ℳ with a generic element 𝑖(𝑘) =
(
𝑖
(𝑘)
1 , ..., 𝑖

(𝑘)
𝐿

)
, for player

𝑘 ∈ 𝒦, which implies that the action has 𝐿 components. The set of joint strategy profiles

of players is denoted by ℐ with a generic element i =
(
𝑖(1), ..., 𝑖(𝐾)

) ∈ ⊗𝐾
𝑘=1 {1, ...,𝑀}.

Accordingly, i(−𝑘) ∈ ⊗𝐾−1
𝑘=1 {1, ...,𝑀} stands for the joint action profile of all players

except for player 𝑘. Moreover, 𝑓 (𝑘) (i) is the mean reward function of player 𝑘.

Definition 13 (Pure Strategy Nash Equilibrium). A joint action i =
(
𝑖(1), ..., 𝑖(𝑘), ..., 𝑖(𝐾)

)
is called a pure strategy Nash equilibrium if for all 𝑘 ∈ 𝒦 and all joint action profiles

i′ =
(
𝑖(1), ..., 𝑖′(𝑘), ..., 𝑖(𝐾)

)
,

𝑓 (𝑘) (i) ≥ 𝑓 (𝑘) (
i′
)
. (A.1)

Definition 14 (Mixed Strategy Nash Equilibrium). Let p(𝑘) =
(
𝑝
(𝑘)
1 , ..., 𝑝

(𝑘)
𝑀

)
be a mixed

strategy of player 𝑘. Moreover, let 𝜋 = p(1) × ...× p(𝑘) × ...× p(𝐾) denote the joint mixed

strategy profile. The probability of each joint action profile i =
(
𝑖(1), ..., 𝑖(𝑘), ..., 𝑖(𝐾)

)
yields∏

𝑘∈𝒦 𝑝
(𝑘)

𝑖(𝑘)
. For a player 𝑘 ∈ 𝒦 and for each i, define 𝑓 (𝑘)(𝜋) =

∑
i∈ℐ

(∏
𝑗∈𝒦 𝑝

(𝑗)

𝑖(𝑗)

)
𝑓 (𝑘)(i).

Then 𝜋 is called a mixed strategy Nash equilibrium when for all 𝑘 ∈ 𝒦 and all mixed

strategies p′(𝑘), if 𝜋′ = p(1) × ...× p′(𝑘) × ...× p(𝐾), then

𝑓 (𝑘)(𝜋) ≥ 𝑓 (𝑘)(𝜋′). (A.2)

In words, Nash equilibrium refers to a steady state in which no player can achieve higher

reward by changing its strategy profile unilaterally.

Definition 15 (Correlated Equilibrium). Let 𝜋 be a probability distribution over the set⊗𝐾
𝑘=1 {1, ...,𝑀} of all possible 𝐾-tuples of actions. Also, let 𝜋(i) = 𝜋

(
𝑖(𝑘), i(−𝑘)

)
de-

note the probability vector of the joint action profile i =
(
𝑖(𝑘), i(−𝑘)

)
. Then 𝜋 is called a

correlated equilibrium if for all 𝑘 ∈ 𝒦 and all i′ =
(
𝑖′(𝑘), i(−𝑘)

)
,

∑
i(−𝑘)

𝑓 (𝑘)
(
𝑖(𝑘), i(−𝑘)

)
𝜋

(
𝑖(𝑘), i(−𝑘)

)
≥

∑
i(−𝑘)

𝑓 (𝑘)
(
𝑖′(𝑘), i(−𝑘)

)
𝜋

(
𝑖(𝑘), i(−𝑘)

)
. (A.3)
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Correlated equilibrium can be interpreted as if all players are provided with a private

instruction from a trusted third-party, and 𝐾 − 1 players follow this instruction, then no

player 𝑘 can improve its expected reward by deviating from the recommendation of the

third-party.

Definition 16 (Smooth Game). A game 𝔊 is smooth if, for each 𝑘 ∈ 𝒦, 𝑓 (𝑘)(i) has
continuous partial derivatives with respect to the components of 𝑖(𝑘).

Definition 17 (Strictly Monotone Payoff Gradient). Let ▽𝑓 (𝑘) =
(

∂𝑓 (𝑘)

∂𝑖
(𝑘)
1

, ⋅ ⋅ ⋅ , ∂𝑓 (𝑘)

∂𝑖
(𝑘)
𝐿

)
, and

call
(
▽𝑓 (𝑘)

)
𝑘∈𝒦 the payoff gradient of a smooth game 𝔊. We say that the payoff gradient

is strictly monotone if

𝐾∑
𝑘=1

(
▽𝑓 (𝑘)(i)− ▽𝑓 (𝑘)(j)

)𝑇 (
𝑖(𝑘) − 𝑗(𝑘)

)
< 0 (A.4)

holds ∀ i, j ∈ ℐ with i ∕= j.

Theorem 10 ( [Ui08a]). Consider a smooth game 𝔊 with compact strategy sets. If the

payoff gradient of 𝔊 is strictly monotone then it has a unique correlated equilibrium, which

places probability one on a unique pure strategy Nash equilibrium.

Definition 18 (Exact Potential Game). A game 𝔊 is (exact) potential if there exists a

function 𝑣 : ℐ → ℝ such that

𝑓 (𝑘)
(
𝑖(𝑘), i(−𝑘)

)
− 𝑓 (𝑘)

(
𝑗(𝑘), i(−𝑘)

)
= 𝑣

(
𝑖(𝑘), i(−𝑘)

)
− 𝑣

(
𝑗(𝑘), i(−𝑘)

)
, (A.5)

∀ 𝑖(𝑘), 𝑗(𝑘) ∈ℳ and 𝑘 ∈ 𝒦. Then 𝑣 is called a potential of the game 𝔊.

Now consider some set 𝒬 with cardinality 𝑄. In the following, 𝑣 stands for a function

defined on a discrete set 𝒳 ⊆ ℤ
𝑄, where 𝒳 =

∏𝑄
𝑞=1 x𝑞 and x𝑞 =

{
𝑥𝑞 ∈ ℤ, 𝑥𝑞 ≤ 𝑥𝑞 ≤ 𝑥𝑞

}
.

Moreover ∥x∥ = ∑
𝑞 𝑥𝑞 denotes the 𝑙1-norm of a vector x ⊆ ℤ

𝑄.

Definition 19 (Larger Midpoint Property (LMP)). We say that a function 𝑣 : 𝒳 → ℝ

satisfies the larger midpoint property if, for any x,y ∈ 𝒳 with ∥x− y∥ = 2,

maximum
z∈𝒳 :∥x−z∥=∥y−z∥=1

𝑣(z) ≥ 𝑡𝑣(x) + (1− 𝑡)𝑣(x) (∃ 𝑡 ∈ (0, 1)) , (A.6)

or

maximum
z∈𝒳 :∥x−z∥=∥y−z∥=1

𝑣(z)

{
> min {𝑣(x), 𝑣(y)} if 𝑣(x) ∕= 𝑣(y)
≥ 𝑣(x) = 𝑣(y) o.w.

. (A.7)
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Definition 20 (Separable Concave Function). A function 𝑣 : 𝒳 → ℝ is said to be separable

concave if it can be written as 𝑣(x) =
∑

𝑞∈𝒬 𝑣𝑞(𝑥𝑞), where 𝑣𝑞(𝑥𝑞) ≥ 𝑣𝑞(𝑥𝑞−1)+𝑣𝑞(𝑥𝑞+1)
2 for

all 𝑥𝑞 ∕= 𝑥𝑞, 𝑥𝑞.

Lemma 4 ( [Ui08b]). If 𝑣 : 𝒳 → ℝ is a separable concave function, then (A.6) holds, and

therefore 𝑣 satisfies the larger midpoint property.

Proposition 8 ( [Ui08b]). Let 𝔊 be an exact potential game with a potential function

𝑣 that satisfies the LMP property. Then i ∈ ℐ maximizes 𝑣 if and only if it is a Nash
equilibrium.

2. Multi-Armed Bandits

Lemma 5. Let 𝑅𝑛 and 𝑅Ext be given by (2.1) and (2.2), respectively. Then, for any

𝛿 ∈ (0, 12 ], we have
1

Pr

(
∣𝑅𝑛 −𝑅Ext∣ ≤

√
𝑛

2
log

(
1

𝛿

))
≥ 1− 2𝛿, (A.8)

from which it follows that if 𝑅𝑛 ∈ 𝑜(𝑛), then we have 𝑅Ext ∈ 𝑜(𝑛), with arbitrarily high
probability.2

Proof. By comparing (2.1) and (2.2), it suffices to show that

Pr

(∣∣∣∣∣
𝑛∑

𝑡=1

𝑔𝑡(𝑖𝑡)−
𝑛∑

𝑡=1

𝑔𝑡(p𝑡)

∣∣∣∣∣ ≤
√
𝑛

2
log

(
1

𝛿

))
≥ 1− 2𝛿. (A.9)

To this end, define 𝑆 :=
∑𝑛

𝑡=1 𝑔𝑡(𝑖𝑡), where 𝑔𝑡(𝑖𝑡) ∈ [0, 1], 1 ≤ 𝑡 ≤ 𝑛, are independent

random variables (see also Section 2.1.1). Further note that 𝑆 = E {𝑆} =
∑𝑛

𝑡=1 𝑔𝑡(p𝑡).

Therefore, by Hoeffding’s inequality [CBL06],

Pr

(
∣𝑅𝑛 −𝑅Ext∣ ≥

√
𝑛

2
log

(
1

𝛿

))
=Pr

(∣∣𝑆 − 𝑆∣∣ ≥
√
𝑛

2
log

(
1

𝛿

))

≤2 exp
(
−2𝑛

2 log
(
1
𝛿

)
𝑛

)
= 2𝛿.

(A.10)

1Throughout this section and in order to simplify the notation, the player index (𝑘) is omitted unless
ambiguity arises.

2Here and hereafter, the statement ”𝑋(𝑛) ∈ 𝑜(𝑛) with arbitrarily high probability” for some nonnegative
random sequence 𝑋(𝑛) ∈ ℝ means that the probability of 𝑋(𝑛) /∈ 𝑜(𝑛) can be made arbitrarily small,
provided that some parameter is chosen sufficiently small.
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Hence with Pr
(
∣𝑅𝑛 −𝑅Ext∣ ≤

√
𝑛
2 log

(
1
𝛿

))
= 1 − Pr

(
∣𝑅𝑛 −𝑅Ext∣ ≥

√
𝑛
2 log

(
1
𝛿

))
the

Lemma follows.

Lemma 6. Let 𝑅Ext be given by (2.2). Define �̃�𝑛 = max𝑖=1,...,𝑀
∑𝑛

𝑡=1 𝑔𝑡(𝑖)−
∑𝑛

𝑡=1
¯̃𝑔𝑡 (p𝑡),

where ¯̃𝑔𝑡 (p𝑡) =
∑𝑀

𝑖=1 𝑝𝑖,𝑡𝑔𝑡(𝑖) and 𝑔𝑡(𝑖) is given by (2.11). Then we have

Pr

(∣∣∣�̃�𝑛 −𝑅Ext

∣∣∣ ≤
√
𝑛

2
log

(
1

𝛿

))
≥ 1− 2𝛿. (A.11)

Hence, for sufficiently small 𝛿 > 0, 𝑅Ext ∈ 𝑜(𝑛) implies that �̃�𝑛 ∈ 𝑜(𝑛), with arbitrarily
high probability.

Proof. Similar to the proof of Lemma 5, it follows from (2.2) and the definition of �̃�𝑛 that

it is sufficient to show that for 𝛿 ∈ (0, 12 ],

Pr

(∣∣∣∣∣
𝑛∑

𝑡=1

¯̃𝑔𝑡(p𝑡)−
𝑛∑

𝑡=1

𝑔𝑡(p𝑡)

∣∣∣∣∣ ≤
√
𝑛

2
log

(
1

𝛿

))
≥ 1− 2𝛿. (A.12)

To this end, note that ¯̃𝑔𝑡(p𝑡) ∈ [0, 1], 1 ≤ 𝑡 ≤ 𝑛, are independent random variables. More-

over, since 𝑔𝑡(𝑖) is an unbiased estimate of 𝑔𝑡(𝑖), we have E {∑𝑛
𝑡=1

¯̃𝑔𝑡(p𝑡)} =
∑𝑛

𝑡=1 𝑔𝑡(p𝑡).

Hence, defining 𝑆 := ¯̃𝑔𝑡(p𝑡)− 𝑔𝑡(p𝑡) and proceeding as in the proof of Lemma 5 with the

Hoeffding’s inequality in hand proves the lemma.

Proposition 9. Let 𝑅𝑛 be given by (2.1) and �̃�𝑛 be defined as in Lemma 6. Then

𝑅𝑛 ∈ 𝑜(𝑛) implies that �̃�𝑛 ∈ 𝑜(𝑛).

Proof. Lemma 5 implies that 𝑅𝑛 ∈ 𝑜(𝑛)⇒ 𝑅Ext ∈ 𝑜(𝑛) with arbitrarily high probability,

while by Lemma 6, we have 𝑅Ext ∈ 𝑜(𝑛) ⇒ �̃� ∈ 𝑜(𝑛). Therefore, if 𝑅𝑛 ∈ 𝑜(𝑛), then
�̃�𝑛 ∈ 𝑜(𝑛) with arbitrarily high probability.

Theorem 11 ( [CBL06]). Let Φ(u) = 𝜓
(∑𝑀

𝑖=1 𝜙(𝑢𝑖)
)
. Consider a selection strategy that

at time 𝑡 selects action 𝑖𝑡 according to distribution p𝑡, whose elements 𝑝𝑖,𝑡 are defined as

𝑝𝑖,𝑡 = (1− 𝛾𝑡) 𝜙′ (𝑅𝑖,𝑡−1)∑𝑀
𝑗=1 𝜙

′ (𝑅𝑗,𝑡−1)
+
𝛾𝑡
𝑀
, (A.13)

where 𝑅𝑖,𝑡−1 =
∑𝑡−1

𝑠=1 (𝑔𝑠(𝑖)− 𝑔𝑠(𝑖𝑠)). Assume the followings:
A1.

∑𝑛
𝑡=1

1
𝛾2
𝑡
= 𝑜

(
𝑛2

log(𝑛)

)
.
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A2. For all vectors v𝑡 = (𝑣1,𝑡, ..., 𝑣𝑛,𝑡) with ∣𝑣𝑖,𝑡∣ ≤ 𝑀
𝛾𝑡
, we have

lim
𝑛→∞

1

𝜓(𝜙(𝑛))

𝑛∑
𝑡=1

𝐶(v𝑡) = 0, (A.14)

where 𝐶(v𝑡) = supu∈ℝ𝑀 𝜓′
(∑𝑀

𝑖=1 𝜙(𝑢𝑖)
) ∑𝑀

𝑖=1 𝜙
′′(𝑢𝑖)𝑣2𝑖,𝑡.

A3. For all vectors u𝑡 = (𝑢1,𝑡, ..., 𝑢𝑛,𝑡), with 𝑢𝑖,𝑡 ≤ 𝑡,

lim
𝑛→∞

1

𝜓(𝜙(𝑛))

𝑛∑
𝑡=1

𝛾𝑡

𝑀∑
𝑖=1

▽𝑖Φ(u𝑡) = 0. (A.15)

A4. For all vectors u𝑡 = (𝑢1,𝑡, ..., 𝑢𝑛,𝑡), with 𝑢𝑖,𝑡 ≤ 𝑡,

lim
𝑛→∞

log(𝑛)

𝜓(𝜙(𝑛))

√√√⎷ 𝑛∑
𝑡=1

1

𝛾2𝑡

(
𝑀∑
𝑖=1

▽𝑖Φ(u𝑡)

)2

= 0. (A.16)

Then the selection strategy satisfies

lim
𝑛→∞

1

𝑛

(
max

𝑖=1,...,𝑀

𝑛∑
𝑡=1

𝑔𝑡(𝑖)−
𝑛∑

𝑡=1

𝑔𝑡(𝑖𝑡)

)
= 0, (A.17)

or equivalently, 𝑅𝑛 ∈ 𝑜(𝑛), where 𝑅𝑛 is given by (2.1).
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1. Proof of Proposition 1

In order to prove Proposition 1, we use Theorem 10. As the strategy set is compact, in

order to use this theorem, we show that i) the game is smooth, and ii) the payoff gradient

is strictly monotone.

According to our system model, by changing the channel index, 𝑖′(𝑘), the channel gain

and interference change. Therefore we define 𝑖
(𝑘)
1 :=

∣ℎ
𝑘𝑘′,𝑖′(𝑘) ∣2∑

𝑞∈𝒬(𝑘) 𝑖
′′(𝑞)∣ℎ

𝑞𝑘′,𝑖′(𝑘) ∣2+𝑁0
and 𝑖

(𝑘)
2 :=

𝑖′′(𝑘), from which we have 𝑓 (𝑘)(i) = log2

(
𝑖
(𝑘)
1 𝑖

(𝑘)
2

)
− 𝛼𝑖(𝑘)2 . Thus

∂𝑓 (𝑘)

∂𝑖
(𝑘)
1

=
1

𝜇𝑖
(𝑘)
1

, (B.1)

and
∂𝑓 (𝑘)

∂𝑖
(𝑘)
2

=
1

𝜇𝑖
(𝑘)
2

− 𝛼, (B.2)

with 𝜇 = log(2). Hence by Definition 16, the game is smooth. On the other hand,

(
▽𝑓 (𝑘)(i)− ▽𝑓 (𝑘)(j)

)𝑇 (
𝑖(𝑘) − 𝑗(𝑘)

)
=

1

𝜇

[
1

𝑖
(𝑘)
1

− 1

𝑗
(𝑘)
1

1

𝑖
(𝑘)
2

− 1

𝑗
(𝑘)
2

] [
𝑖
(𝑘)
1 − 𝑗(𝑘)1

𝑖
(𝑘)
2 − 𝑗(𝑘)2

]

=
1

𝜇

(
1

𝑖
(𝑘)
1

− 1

𝑗
(𝑘)
1

) (
𝑖
(𝑘)
1 − 𝑗(𝑘)1

)
+

1

𝜇

(
1

𝑖
(𝑘)
2

− 1

𝑗
(𝑘)
2

) (
𝑖
(𝑘)
2 − 𝑗(𝑘)2

)
,

(B.3)

which is always negative as for any 𝑥, 𝑦 > 0 with 𝑥 ∕= 𝑦, 𝑥 − 𝑦 > 0 yields 1
𝑥 − 1

𝑦 < 0 and

vice versa. Thus
𝐾∑

𝑘=1

▽𝑓 (𝑘) < 0, (B.4)

i.e. the payoff gradient is strictly monotone by Definition 17.
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As a result, by Theorem 10, the game has a unique correlated equilibrium that places

probability one on the unique Nash equilibrium.

2. Proof of Proposition 2

Lemma 7. Consider a bandit exponential-based weighted average strategy (BEWAS) that

uses p𝑡 = (𝑝1,𝑡, ..., 𝑝𝑀,𝑡) to select an action among 𝑀 possible choices, where 𝑝𝑖,𝑡 is calcu-

lated as1

𝑝𝑖,𝑡 = (1− 𝛾)
exp

(
𝜂�̃�𝑖,𝑡−1

)
∑

𝑗=1,...,𝑀 exp
(
𝜂�̃�𝑗,𝑡−1

) +
𝛾

𝑀
, (B.5)

and �̃�𝑖,𝑡−1 denotes the estimated accumulated regret of not playing action 𝑖.
2 Then selecting

𝛾 and 𝜂 as given by Proposition 2 yields 𝑅Ext ∈ 𝑂
(
(𝑛𝑀)

2
3 (log(𝑀))

1
3

)
.

Proof. The proof is a direct corollary of Theorem 6.6 of [CBL06].

Given Lemma 7, we follow the approach of [SL05] for the rest of the proof.

Recall that by Section 2.1.3 and Algorithm 1, the mixed strategy of each player is defined

as

p𝑡 =
∑

(𝑖→𝑗):𝑖∕=𝑗

p(𝑖→𝑗),𝑡𝛿(𝑖→𝑗),𝑡. (B.6)

Hence,

𝑔𝑡(p𝑡) =
∑

(𝑖→𝑗):𝑖∕=𝑗

𝑔𝑡(p(𝑖→𝑗),𝑡)𝛿(𝑖→𝑗),𝑡. (B.7)

Lemma 7 specifies the growth rate of the external regret of BEWAS. On the other hand, as

described in Section 2.1.3, NR-BEWAS applies the BEWAS algorithm for𝑀(𝑀−1) ≤𝑀2

actions. Therefore, (B.7) together with Lemma 7 yields

max
𝑛∑

𝑡=1

𝑔𝑡(p(𝑖→𝑗),𝑡)−
𝑛∑

𝑡=1

𝑔𝑡(p𝑡) ∈ 𝑂
((
𝑀2𝑛

) 2
3 (2 log(𝑀))

1
3

)
, (B.8)

and by the definition of internal regret it holds max𝑖∕=𝑗 𝑅(𝑖→𝑗),𝑛 ∈ 𝑂
((
𝑀2𝑛

) 2
3 (2 log(𝑀))

1
3

)
,

which concludes the proof. Details can be found in [SL05], and hence are omitted.

1Throughout this section and in order to simplify the notation, the player index (𝑘) is omitted unless
ambiguity arises.

2This definition should not be mistaken for the general regret defined in Section 2.1.1.
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3. Proof of Proposition 3

Lemma 8. Consider a BEWAS that uses p𝑡 = (𝑝1,𝑡, ..., 𝑝𝑀,𝑡) to select an action among

𝑀 possible choices, where 𝑝𝑖,𝑡 is calculated as

𝑝𝑖,𝑡 = (1− 𝛾𝑡)
exp

(
𝜂𝑡�̃�𝑖,𝑡−1

)
∑

𝑗=1,...,𝑀 exp
(
𝜂𝑡�̃�𝑗,𝑡−1

) +
𝛾𝑡
𝑀
, (B.9)

and �̃�𝑖,𝑡−1 denotes the estimated accumulated regret of not playing action 𝑖. Then, for

𝛾𝑡 and 𝜂𝑡 as given by Proposition 3, this strategy yields vanishing external regret, i.e.

𝑅Ext ∈ 𝑜(𝑛).

Proof. By Proposition 9, if (A.17) is satisfied for a selection strategy (that is, if 𝑅𝑛 ∈
𝑜(𝑛)), then the growth rate of the external regret caused by the bandit version of that

strategy (which uses the estimated rewards instead of true ones) grows sublinearly in 𝑛,

i.e. �̃�𝑛 ∈ 𝑜(𝑛). Therefore, in order to prove the proposition, we show that our selected

parameters 𝛾𝑡 = 𝑡
− 1

3 and 𝜂𝑡 =
𝛾3
𝑡

𝑀2 satisfy axioms A1-A4 of Theorem 11.3 Note that in our

strategy we have Φ(u) = 1
𝜂𝑡
log

(∑𝑀
𝑖=1 exp(𝜂𝑡𝑢𝑖)

)
.

A1. For 𝛾𝑡 = 𝑡
− 1

3 , we have

𝑛∑
𝑡=1

1

𝛾2𝑡
=

𝑛∑
𝑡=1

𝑡
2
3 = Harmonic Number[𝑛,−2

3
] := H𝑛[

−2
3
]. (B.10)

Then,

lim
𝑛→∞

log(𝑛)

𝑛2

𝑛∑
𝑡=1

𝛾2𝑡 = lim
𝑛→∞

log(𝑛)

𝑛2
H𝑛[

−2
3
] = 0. (B.11)

A2. For 𝜓(𝑥) = 1
𝜂𝑡
log(𝑥) and 𝜙(𝑥) = exp(𝜂𝑡𝑥), we obtain

𝐶(v𝑡) = sup

(
𝜂𝑡

𝑀∑
𝑖=1

𝑣2𝑖,𝑡

)
=
𝜂𝑡𝑀

3

𝛾2𝑡
. (B.12)

Thus,

lim
𝑛→∞

1

𝜓(𝜙(𝑛))

𝑛∑
𝑡=1

𝐶(v𝑡) = lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

𝑡
−1
3

= lim
𝑛→∞

1

𝑛
H𝑛[

1

3
] =0.

(B.13)

3Simple calculus steps are omitted.
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A3. For Φ(u) = 1
𝜂𝑡
log

(∑𝑀
𝑖=1 exp(𝜂𝑡𝑢𝑖)

)
, ▽𝑖Φ(u𝑡) yields

▽𝑖Φ(u𝑡) =
exp(𝜂𝑡𝑢𝑖)∑𝑀
𝑖=1 exp(𝜂𝑡𝑢𝑖)

. (B.14)

Therefore,

lim
𝑛→∞

1

𝜓(𝜙(𝑛))

𝑛∑
𝑡=1

𝛾𝑡

𝑀∑
𝑖=1

▽𝑖Φ(u𝑡)

= lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

𝑡
−1
3

𝑀∑
𝑖=1

exp(𝜂𝑡𝑢𝑖)∑𝑀
𝑖=1 exp(𝜂𝑡𝑢𝑖)

= lim
𝑛→∞

1

𝑛
H𝑛[

1

3
] = 0.

(B.15)

A4. 𝐴4 follows simply by substituting (B.14) in (A.16).

Hence, all axioms A1-A4 are satisfied, and therefore (A.17) holds, which, together with

Proposition 9, completes the proof.

By Lemma 8, the external regret of the BEWAS described before grows sublinearly in

𝑛. Therefore, similar to the proof of Proposition 2, (B.7) yields

max

𝑛∑
𝑡=1

𝑔𝑡(p(𝑖→𝑗),𝑡)−
𝑛∑

𝑡=1

𝑔𝑡(p𝑡) ∈ 𝑜(𝑛), (B.16)

and the definition of internal regret ensures that max𝑖∕=𝑗 𝑅(𝑖→𝑗),𝑛 ∈ 𝑜(𝑛), which concludes

the proof.
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1. Proof of Lemma 2

We follow a root suggested in [CLRJ13]. Suppose that lim𝑛→∞ 𝑆𝜅,𝑛 = 1 holds. In order

to prove lim𝑛→∞ 𝑆𝜅′,𝑛 = 1, it is sufficient to show that after some finite time, the actions

of the player that are selected based on p𝑡 are equal to those based on 𝛿𝑑𝑡 . By (3.6), we

know that with probability 1, there exists an 𝜈 > 0 so that after a time point 𝜃 < ∞,

∣p𝑡 − 𝛿𝑑𝑡 ∣ < 𝜈 holds for all 𝑡 > 𝜃 (see also Theorem 3). At the same time, according to our

system model and by Assumption (A2), the reward functions are bounded, and the action

space and memory are finite. This implies that if ∣p𝑡 − 𝛿𝑑𝑡 ∣ < 𝜈 holds, then the actions of

the player evolve as if it were aware of the true joint action profile of its opponents. Hence

the lemma follows.

2. Proof of Lemma 3

From Algorithm 5, at each period 𝑗,
⌈
𝑇 ′
𝑗𝑍𝑗

⌉
trials are selected for exploration by each

player. At each one of these trials, with probability 1 − 𝛾, an arm 𝑖 is selected equally

at random. Since these processes are independent, the probability that arm 𝑖 is pulled at

some exploration trial yields 1−𝛾
𝑀 . Now, let

{
W
(𝑖)
𝑡

}𝑛

𝑡=1
be a sequence of random variables,

where W
(𝑖)
𝑡 = 1 if arm 𝑖 is played at time 𝑡, and W

(𝑖)
𝑡 = 0 otherwise, and the outcomes

W
(𝑖)
𝑡 are independent over time. In the worst-case, arm 𝑖 never becomes the best re-

sponse, and hence its chance of being played is limited to the exploration trials. As a

result, Pr
(
W
(𝑖)
𝑡 = 1

)
= 1−𝛾

𝑀 , and the sum of probabilities for the event W
(𝑖)
𝑡 = 1 yields∑𝑛

𝑡=1 Pr (W𝑡 = 1) = 1−𝛾
𝑀

∑𝐽
𝑗=1

⌈
𝑇 ′
𝑗 ⋅ 𝑍𝑗

⌉
. By using Assumption (A4) and Lemma 1, we

conclude that lim𝐽→∞
∑𝐽

𝑗=1 Pr (W𝑡 = 1)→∞. Thus, by the second Borel-Cantelli lemma

( [CLRJ13], [Fel68]), it follows that the probability of arm 𝑖 being pulled infinitely often

equals 1. On the other hand, players select their actions independently. Therefore, the

probability of playing each joint action profile is 1−𝛾
𝑀𝐾 . By the same argument, each joint

action profile is also played infinitely often. Hence, the Lemma is proved.
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3. Proof of Theorem 4

Since the proof is identical for all players, we omit the player index, 𝑘, in order to simplify

the notation. For example, the selected action and the joint action profile of opponents

are shown by 𝑖 and i−, respectively. The proof is inspired by [YZ02], where the authors

showed the consistency of an allocation rule for single-player contextual bandit games,

which, similar to our algorithm, is based on the GLIE concept. For brevity, we refer to

the calibrated bandit strategy (CBS) as strategy 𝜒.

In the following, we consider a selection strategy 𝜒′, which is identical to 𝜒, except that

at each time 𝑡 and before taking any action, the player is informed about the true joint

action profile of other 𝐾 − 1 players, that is i−. We prove that 𝜒′ is strongly consistent.

Therefore, from Lemma 2, it follows that 𝜒 is strongly consistent as well.

Let 𝑖𝑡 denote the selected arm at time 𝑡, while �̂�𝑡 stands for the arm with the highest

estimated mean reward at time 𝑡. That is, at time 𝑡 we have 𝑓�̂�𝑡(i
−
𝑡 ) := max𝑖∈{1,...,𝑀} 𝑓𝑖(i−𝑡 ).

Moreover, 𝑖∗𝑡 denotes the arm with the highest true mean reward at time 𝑡 so that 𝑓𝑖∗𝑡 (i
−
𝑡 ) :=

max𝑖∈{1,...,𝑀} 𝑓𝑖(i−𝑡 ). Ties are broken using some deterministic rule.

From Definition 4, 𝑆𝜒′,𝑛 is upper-bounded by 1. Therefore, it is sufficient to prove a

lower-bound on 𝑆𝜒′,𝑛 that converges to 1 as 𝑛→∞. To this end, we rewrite 𝑆𝜒′,𝑛 as [YZ02]

𝑆𝜒′,𝑛 =

∑𝑛
𝑡=1 𝑓�̂�𝑡

(
i−𝑡

)∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) +

∑𝑛
𝑡=1

(
𝑓𝑖𝑡

(
i−𝑡

)− 𝑓�̂�𝑡 (
i−𝑡

))
∑𝑛

𝑡=1 𝑓𝑖∗𝑡
(
i−𝑡

) ≤ 1. (C.1)

By Assumption (A2), it follows from (C.1) that

𝑆𝜒′,𝑛 ≥
∑𝑛

𝑡=1 𝑓�̂�𝑡
(
i−𝑡

)∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) − 1
𝑛

∑𝑛
𝑡=1𝐵1{𝑖𝑡 ∕=�̂�𝑡}

1
𝑛

∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) . (C.2)

The remainder of the proof consists of two parts. In the first part we show that

1
𝑛

∑𝑛
𝑡=1𝐵1{𝑖𝑡 ∕=�̂�𝑡}

1
𝑛

∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) a.s.→ 0, as 𝑛→∞, (C.3)

where a.s. stands for almost surely. In the second part we establish that∑𝑛
𝑡=1 𝑓�̂�𝑡

(
i−𝑡

)∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) a.s.→ 1, as 𝑛→∞. (C.4)

Combining (C.3) and (C.4) with (C.2) and 𝑆𝜒′,𝑛 ≤ 1 proves the strong consistency.

(i) By Assumption (A2),
∑𝑛

𝑡=1 𝑓𝑖∗𝑡
(
i−𝑡

)
is positive. As a result, 1

𝑛

∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

)
converges
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3. Proof of Theorem 4

to E
{
𝑓𝑖∗𝑡

(
i−𝑡

)}
> 0 almost surely. Hence, it suffices to show that 1

𝑛

∑𝑛
𝑡=1𝐵1{𝑖𝑡 ∕=�̂�𝑡} → 0,

almost surely. To show this, we consider the worst-case; that is, we assume that in all

exploration trials, inferior arms are selected (i.e. the best response is never selected by

chance). Therefore

lim
𝑛→∞

1

𝑛

𝑛∑
𝑡=1

𝐵1{𝑖𝑡 ∕=�̂�𝑡} = lim
𝐽→∞

∑𝐽
𝑗=1

⌈
𝑇 ′
𝑗𝑍𝑗

⌉
∑𝐽

𝑗=1 𝑇
′
𝑗

= 0, (C.5)

where the second equality follows from Assumption (A4) and Lemma 1. This proves (C.3).

(ii) First, we note that (C.4) is equivalent to [YZ02]1

∑𝑛
𝑡=1

(
𝑓�̂�𝑡

(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

))
∑𝑛

𝑡=1 𝑓𝑖∗𝑡
(
i−𝑡

) a.s.→ 0, as 𝑛→∞. (C.6)

Moreover, by (C.1), (C.2) and (C.3), we conclude that

∑𝑛
𝑡=1

(
𝑓�̂�𝑡

(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

))
∑𝑛

𝑡=1 𝑓𝑖∗𝑡
(
i−𝑡

) ≤ 0. (C.7)

Clearly,

𝑓�̂�𝑡
(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

)
= 𝑓�̂�𝑡

(
i−𝑡

)− 𝑓�̂�𝑡,𝑡−1

(
i−𝑡

)
+ 𝑓�̂�𝑡,𝑡−1

(
i−𝑡

)
− 𝑓𝑖∗𝑡 ,𝑡−1

(
i−𝑡

)
+ 𝑓𝑖∗𝑡 ,𝑡−1

(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

)
.

(C.8)

On the other hand, for every trial 𝑡, 𝑓�̂�𝑡,𝑡−1

(
i−𝑡

) ≥ 𝑓𝑖∗𝑡 ,𝑡−1

(
i−𝑡

)
holds. Hence we can

write [YZ02]

𝑓�̂�𝑡
(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

)
≥ 𝑓�̂�𝑡

(
i−𝑡

)− 𝑓�̂�𝑡,𝑡−1

(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

)
+ 𝑓𝑖∗𝑡 ,𝑡−1

(
i−𝑡

)
≥ −2 sup

𝑖∈{1,...,𝑀}

∥∥∥𝑓𝑖,𝑡−1

(
i−𝑡

)− 𝑓𝑖 (i−𝑡 )∥∥∥
∞
.

(C.9)

This yields ∑𝑛
𝑡=1

(
𝑓�̂�𝑡

(
i−𝑡

)− 𝑓𝑖∗𝑡 (
i−𝑡

))
∑𝑛

𝑡=1 𝑓𝑖∗𝑡
(
i−𝑡

)
≥

−2
𝑛

∑𝑛
𝑡=1 sup1≤𝑖≤𝑀

∥∥∥𝑓𝑖,𝑡−1

(
i−𝑡

)− 𝑓𝑖 (i−𝑡 )∥∥∥
∞

1
𝑛

∑𝑛
𝑡=1 𝑓𝑖∗𝑡

(
i−𝑡

) .

(C.10)

For brevity, let us rewrite (C.10) in a shorter form as 𝑎 ≥ 𝑏. By Assumption (A3),

1This part of the proof is almost identical to [YZ02]; the difference is that here we use the fact that each
action and also each joint action profile is played infinitely often (Lemma 3) in order to complete the
proof.
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∥𝑓𝑖,𝑛 (i−)− 𝑓𝑖 (i−) ∥∞ → 0 as 𝑛→∞. However, in order to use this assumption, we need

to ensure that not only each arm, but also each joint action profile is played infinitely

many times, as 𝑛 → ∞. This is established in Lemma 3. Therefore, the right-hand side

of (C.10) converges to zero, i.e. 𝑏→ 0 and hence 𝑎 ≥ 0. On the other hand, by (C.7), the

left-hand side is upper-bounded by zero, that is 𝑎 ≤ 0. As a result, (C.6) follows, which

completes the second part of the proof.

4. Proof of Theorem 5

Consider a 𝐾-player MAB game, as described in Section 3.1. By Theorem 1, if each player

plays by best responding to a calibrated forecast of the joint action profile of opponents,

then

inf
𝜋∈𝒞

∑
i

∣�̂�𝑛(i)− 𝜋(i)∣ → 0, (C.11)

as 𝑛 → ∞. We refer to this selection strategy as 𝜒′. In order to prove the Theorem,

we show that CBS (here referred to as 𝜒), in which the true mean rewards of joint ac-

tion profiles are not known and are gradually learned by exploration, exhibits the same

convergence characteristics as 𝜒′.

First, we rearrange the 𝐾-player MAB game to a two-agent game where the first agent

is any player 𝑘 and the second agent is the set of its opponents, i.e. the set of 𝐾−1 players.

For this game, any joint action profile of the two agents can be written as
(
𝑖(𝑘), i(−𝑘)

)
,

where 𝑖 ∈ {1, ...,𝑀} and i(−𝑘) ∈ ⊗𝐾−1
𝑘=1 {1, ...,𝑀}. Let �̂�𝑛

(
𝑖(𝑘), i(−𝑘)

)
denote the fraction

of time until 𝑛 in which some joint action
(
𝑖(𝑘), i(−𝑘)

)
is played. According to selection

strategy 𝜒, �̂�𝑛
(
𝑖(𝑘), i(−𝑘)

)
can be written as

�̂�𝑛

(
𝑖(𝑘), i(−𝑘)

)
= �̂�𝑛,𝑚

(
𝑖(𝑘), i(−𝑘)

)
+ �̂�𝑛,𝑙

(
𝑖(𝑘), i(−𝑘)

)
, (C.12)

where �̂�𝑛,𝑚
(
𝑖(𝑘), i(−𝑘)

)
and �̂�𝑛,𝑙

(
𝑖(𝑘), i(−𝑘)

)
denote the fractions of time in which

(
𝑖(𝑘), i(−𝑘)

)
is played by exploration (i.e. by chance), and by exploitation (i.e. according to the best

response rule given by (3.8)), respectively. According to Algorithm 5, the total number of

exploration trials is given by
∑𝐽

𝑗=1

⌈
𝑇 ′
𝑗𝑍𝑗

⌉
, and by Assumption (A4) we know

lim
𝐽→∞

∑𝐽
𝑗=1

⌈
𝑇 ′
𝑗𝑍𝑗

⌉
∑𝐽

𝑗=1 𝑇
′
𝑗

= 0. (C.13)

This implies that �̂�𝑛,𝑚
(
𝑖(𝑘), i(−𝑘)

)
= 0 holds for 𝑛 → ∞. Therefore, in the limit,
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4. Proof of Theorem 5

�̂�𝑛,𝑚
(
𝑖(𝑘), i(−𝑘)

)
can be neglected when calculating the empirical frequencies of plays, and

�̂�𝑛

(
𝑖(𝑘), i(−𝑘)

)
= �̂�𝑛,𝑙

(
𝑖(𝑘), i(−𝑘)

)
(C.14)

holds asymptotically.

In order to complete the proof, it is sufficient to show that after some finite time, the

player’s actions that are based on 𝑓
(𝑘)
𝑖,𝑡 are equal to those based on 𝑓

(𝑘)
𝑖 . By Assumption

(A2), with probability 1, there exists an 𝜈 > 0 so that for every 𝑖 ∈ {1, ...,𝑀} and

after a time point 𝜃 < ∞, ∥𝑓 (𝑘)𝑖,𝑡

(
i(−𝑘)

) − 𝑓 (𝑘)𝑖

(
i(−𝑘)

) ∥ < 𝜈 holds for all 𝑡 > 𝜃. At

the same time, according to our system model and by Assumption (A2), the reward

functions are bounded, and the action space and memory are finite. This implies that if

∥𝑓 (𝑘)𝑖,𝑡

(
i(−𝑘)

)− 𝑓 (𝑘)𝑖

(
i(−𝑘)

) ∥ < 𝜈 holds, then the player’s actions evolve as if it were aware

of the true mean reward of each joint action profile, which completes the proof.
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D. Additional Proofs of Chapter 4

1. Proof of Proposition 5

According to our system model, 𝑖(𝑘) ≤ 𝑃𝑀 ∀ 𝑘 ∈ 𝒦. Besides, ∣ℎ𝑢𝑣,𝑞∣2 = ∣ℎ′𝑢𝑣∣2
∣∣ℎ′′𝑢𝑣,𝑞∣∣2,

with 0 < ∣ℎ′𝑢𝑣∣2 ≤ 1 and 0 <
∣∣ℎ′′𝑢𝑣,𝑞∣∣2 ≤ 1. Hence,

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log

(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

1 +
∑

𝑘∈𝒦𝑞
𝑖(𝑘) ∣ℎ𝑘𝑙,𝑞∣2

)
≥

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log

(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

1 +
∑

𝑘∈𝒦𝑞
𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2
)
. (D.1)

By basic properties of the logarithmic function, the right-hand side of (D.1) can be written

as
𝑄∑

𝑞=1

∑
𝑙∈ℒ𝑞

log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
−

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log

⎛
⎝1 +

∑
𝑘∈𝒦𝑞

𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2
⎞
⎠

>

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

log
(
𝑃𝑐 ∣ℎ𝑏𝑙,𝑞∣2

)
−

𝑄∑
𝑞=1

∑
𝑙∈ℒ𝑞

∑
𝑘∈𝒦𝑞

𝑃𝑀

∣∣ℎ′𝑘𝑙∣∣2 ,
(D.2)

where the inequality follows from the standard logarithm inequality, 𝑎
1+𝑎 ≤ log(1 + 𝑎) ≤

𝑎, ∀𝑎 > −1 [Lov80]. Therefore the result follows.

2. Proof of Proposition 6

We proceed by contraposition, i.e. we show that if {𝑞 ∈ 𝒬∣𝐿𝑞 ∕= 1} ∕= ∅, then the parti-

tioning is suboptimal.

Letℋ be the set of all possible Q-way partitionings of 𝐿+𝐾 vertices of 𝐺𝐸 . Assume that

there exists some partitioning 𝑐 ∈ ℋ, by which the graph is partitioned into 𝑄𝑎 clusters

with 𝐿𝑞 > 1, 𝑞 ∈ {1, ..., 𝑄𝑎}. As 𝐿 = 𝑄 (see Section 4.1.1), there remain 𝑄𝑏 = 𝑄 − 𝑄𝑎

clusters with 𝐿𝑞 = 0, 𝑞 ∈ {𝑄𝑎 + 1, ..., 𝑄}. In what follows, we show that partitioning 𝑐 is

suboptimal, by constructing another partitioning whose cost is less than that of 𝑐.

Index 𝑄𝑎 and 𝑄𝑏 clusters of partitioning 𝑐 by 1, ..., 𝑄𝑎 and 𝑄𝑎 + 1, ..., 𝑄, respectively.

Moreover, let 𝑇𝑎 and 𝑇𝑏 correspondingly denote the sum of edges’ weights inside all clusters
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with and without cellular users. Thus we have

𝑇𝑎 =

𝑄𝑎∑
𝑞=1

∑
𝑙∈ℒ𝑞

⎛
⎝ ∑

𝑗∈ℒ𝑞

𝑤𝑗𝑙 +
∑
𝑘∈𝒦𝑞

𝑤𝑘𝑙

⎞
⎠ , (D.3)

and 𝑇𝑏 = 0 by Definition 9. Let 𝑇𝑐 denote the total cost of partitioning 𝑐. In order to

establish that partitioning 𝑐 is suboptimal, we show that

𝑇𝑐 = 𝑇𝑎 + 𝑇𝑏 > min
ℋ

𝑄𝑎∑
𝑞=1

∑
𝑙∈ℒ𝑞

⎛
⎝ ∑

𝑗∈ℒ𝑞

𝑤𝑗𝑙 +
∑
𝑘∈𝒦𝑞

𝑤𝑘𝑙

⎞
⎠ . (D.4)

To this end, we construct some partitioning 𝑐′, with 𝑇𝑐′ < 𝑇𝑐. Assume that we change

only one cluster of 𝑐, say cluster 𝑟 ∈ {1, ..., 𝑄𝑎} with 𝐿𝑟 > 1, by removing a cellular user

𝐽 ∈ ℒ𝑟. Since all vertices must be included in the partitioning, 𝐽 is added in some cluster

𝑟′ ∈ {1, ..., 𝑄} − {𝑟}. Therefore, one of the following holds:

∙ 𝑟′ ∈ {1, ..., 𝑄𝑎} − {𝑟}, or

∙ 𝑟′ ∈ {𝑄𝑎 + 1, ..., 𝑄}.

It is clear that the first case results in the original problem. Hence we assume that the

cellular user 𝐽 is included in 𝑟′ ∈ {𝑄𝑎 + 1, ..., 𝑄}, and refer to the new partitioning by 𝑐′.
Then we have

𝑇𝑐′ = 𝑇𝑐 −
∑
𝑗∈ℒ𝑟

𝑤𝑗𝐽 −
∑
𝑘∈𝒦𝑟

𝑤𝑘𝐽 +
∑

𝑘∈𝒦𝑟′

𝑤𝑘𝐽 . (D.5)

Since 0 ≤ 𝑤𝑘𝐽 ≤ 𝑃𝑀 , we have 0 ≤ ∑
𝑘∈𝒦𝑥

𝑤𝑘𝐽 ≤ 𝐾𝑃𝑀 , for any clusters 𝑥. Moreover,

since ℒ𝑟 > 1 and 𝑤𝑗𝐽 = 𝐶 for 𝑗, 𝐽 ∈ ℒ, 𝑗 ∕= 𝐽 , we have ∑
𝑗∈ℒ𝑟

𝑤𝑗𝐽 ≥ 𝐶 (see also Definition

9). Hence the worst-case occurs when: i)
∑

𝑘∈𝒦𝑟
𝑤𝑘𝐽 = 0, which means that in cluster

𝑟, no D2D user causes interference to the cellular user 𝐽 , ii)
∑

𝑘∈𝒦𝑟′
𝑤𝑘𝐽 = 𝐾𝑃𝑀 , that is

cluster 𝑟′ includes all D2D users and they cause the maximum interference to the cellular

user 𝐽 , and iii)
∑

𝑗∈ℒ𝑟
𝑤𝑗𝐽 = 𝐶, i.e. 𝐿𝑟 = 2. As a result,

𝑇𝑐′ ≤ 𝑇𝑐 − 𝐶 +𝐾𝑃𝑀 < 𝑇𝑐, (D.6)

as we assume 𝐶 > 𝐾𝑃𝑀 by Definition 9. Therefore by (D.6) partitioning 𝑐 is suboptimal,

which is the contraposition and hence the proof is complete.
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3. Proof of Proposition 7

By Proposition 6, any optimal partitioning of the estimated network graph 𝐺𝐸 includes

exactly one cellular user in each cluster, that is 𝑤𝑖𝑗 = 0, ∀𝑖, 𝑗 ∈ ℒ𝑞, 𝑞 ∈ 𝒬. Moreover, by

Definition 9, 𝑤𝑖𝑗 = 0 ∀𝑖, 𝑗 ∈ 𝒦. Therefore we define a complete bipartite graph 𝐺 with

𝒱1 = 𝒦 and 𝒱2 = ℒ. The weight of the edge connecting 𝑘 ∈ 𝒦 and 𝑙 ∈ ℒ is equal to

the weight of the corresponding edge in 𝐺𝐸 , i.e. 𝑤𝑘𝑙 = W𝐸 [𝑘, 𝑙]. We then augment 𝒱2,
by 𝐾 times replicating each node 𝑙 ∈ ℒ, resulting in a set ℒ′ = ℒ ∪ ℒ... ∪ ℒ︸ ︷︷ ︸

×𝐾

. Using this

set, a bipartite graph 𝐺′ is constructed, where 𝒱1 = 𝒦 and ℒ2 = ℒ′. The weight of any

edge connecting any 𝑘 ∈ 𝒦 to every copy 𝑙′ ∈ ℒ′ of some 𝑙 is 𝑤𝑘𝑙′ = 𝑤𝑘𝑙. On graph 𝐺′,
a bipartite minimum-weighted matching results in an 𝐾 × (𝐾 × 𝐿) assignment matrix

B = [𝑏𝑘𝑙′ ], so that the sum ∑
𝑘∈𝒦

∑
𝑙∈ℒ′

𝑤𝑘𝑙′𝑏𝑘𝑙′ (D.7)

is minimized. For each 𝑙, let the set of its copies be denoted by 𝒰𝑙. Moreover, the set of

all users 𝑘 ∈ 𝒦 that are assigned to any copy of 𝑙 is denoted by 𝒜𝑙. Therefore (D.7) can

be reformulated as
𝐿∑

𝑙=1

∑
𝑗∈𝒰𝑙

∑
𝑗′∈𝒜𝑙

𝑏𝑗𝑙𝑤𝑗𝑗′𝑏𝑗′𝑙, (D.8)

which is identical to (4.21). Hence the proposition follows.

4. Proof of Theorem 8

The proof consists of two parts. First we show that the power allocation game defined in

Definition 11 is an exact potential game, by deriving a potential function. This will prove

the first part of Theorem 8. Afterwards we establish that the potential function satisfies

the LMP property, and we characterize the set of Nash equilibria using Proposition 8.

This will prove the second part of the theorem.

Part One

By Definition 18, we need to find a function 𝑣 : ℐ → ℝ
+ that satisfies (A.5). With 𝑓 (𝑘)(i)

given by (4.2) we have

𝑓 (𝑘)
(
𝑖(𝑘), i(−𝑘)

𝑞

)
− 𝑓 (𝑘)

(
𝑖
′(𝑘), i(−𝑘)

𝑞

)
= log

(
𝑖(𝑘)

𝑖′(𝑘)

)
− 𝛼

(
𝑖(𝑘) − 𝑖′(𝑘)

)
. (D.9)
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Define

𝑣(i𝑞) =
∑
𝑘∈𝒦𝑞

log
(
𝑖(𝑘)

)
−

∑
𝑘∈𝒦𝑞

𝛼𝑖(𝑘). (D.10)

Then by simple calculus it follows that

𝑣(𝑘)
(
𝑖(𝑘), i(−𝑘)

𝑞

)
− 𝑣(𝑘)

(
𝑖
′(𝑘), i(−𝑘)

𝑞

)
= log

(
𝑖(𝑘)

𝑖′(𝑘)

)
− 𝛼

(
𝑖(𝑘) − 𝑖′(𝑘)

)
. (D.11)

Therefore, according to Definition 18 and by comparing (D.11) with (D.9), the power

allocation game is an exact potential game with a potential function defined in (D.10).

Part Two

Lemma 9. The potential function given by (D.10) is separable concave.

Proof. Clearly, the potential function can be written as 𝑣 (i𝑞) =
∑

𝑘∈𝒦𝑞
𝑣(𝑘)

(
𝑖(𝑘)

)
with

𝑣(𝑘)
(
𝑖(𝑘)

)
= log

(
𝑖(𝑘)

)
− 𝛼𝑖(𝑘). (D.12)

Thus, by the assumption 𝑖(𝑘) > 1 (see Section 4.1.1), we have

𝑣(𝑘)
(
𝑖(𝑘) + 1

)
+ 𝑣(𝑘)

(
𝑖(𝑘) − 1

)
2

=
log

((
𝑖(𝑘)

)2 − 1
)
− 2𝛼𝑖(𝑘)

2

≤
log

((
𝑖(𝑘)

)2)− 2𝛼𝑖(𝑘)

2
= log

(
𝑖(𝑘)

)
− 𝛼𝑖(𝑘).

(D.13)

Therefore, by Definition 20, the function is separable concave.

Lemma 10. The potential function given by (D.10) satisfies the larger midpoint property.

Proof. The proof directly follows from Lemma 4 and Lemma 9.

Therefore, since the potential function satisfies the LMP property, the second part of

Theorem 8 follows directly from Proposition 8.
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