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Theoretical explanations are presented for the deviation of the shock front thickness from
linear hydrodynamics, as observed by W. Eisenmenger (1964) in water and several molecular
liquids for large driving pressure differences. Two mechanisms are proposed, which are based on
generalizations of the Maxwell relaxation equation for the friction pressure tensor. One is due
to the spatial inhomogeneity and linked with piezo-electric or piezo-tetradic effects. The other is
caused by nonlinearities which account for shear thickening.

1. Introduction

Within the range of applicability of (linear) hydro-
dynamics, the thickness of a shock front (shock width)
in a fluid is closely related to the damping of sound
waves, which, in turn, is determined by the transport
coefficients of thermo-hydrodynamics, viz.: the vis-
cosity, the bulk viscosity and the thermal conductiv-
ity [1]. The first measurements of the shock width in
liquids which were reliable enough to test the hydro-
dynamic theory, showed satisfactory agreement for
small driving pressure differences but significant de-
vations for larger pressure differences [2]. The shock
width is larger than the corresponding hydrodynamic
value. The transport coefficients seem to increase with
increasing deviations from equilibrium. In this article,
two mechanisms are discussed which can account for
the observed deviations from linear hydrodynamis.
These are effects associated with the spatial inho-
mogeneity of the friction pressure tensor and with
a nonlinear generalization of Maxwell’s relaxation
model, recently invented to describe shear thickening
[4]. Though these ideas have been presented previ-
ously at conferences [3], it has been over thirty years
since the publication of the article by W. Eisenmenger
[2], which still contains the best experimental data
for water and some other molecular liquids. Non-
equilibrium molecular dynamics (NEMD) computer
simulations, performed for a simple Lennard-Jones
model liquid, yielded similar deviations from hydro-
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dynamics [5], yet at high temperatures and for driving
pressure differences orders of magnitude larger than
those used in the experiments.

This article proceeds as follows. In Sect. 2, the
pressure profile in the shock front and the meaning
of the shock width L are stated. The expression for L
derived from linear hydrodynamics is reviewed and
a function H is introduced which characterizes the
relative deviation of L from it. Experimental results
for water and methanol as measured by Eisenmenger
[2] are presented graphically. Section 3 is devoted
to the discussion of two conjectures for the explana-
tion of the observed deviations from hydrodynamics.
Both employ generalizations of the Maxwell relax-
ation equation for the friction pressure tensor. The
first one (Sect. 3.1) is the addition of a term propor-
tional to a second spatial derivative of the pressure
tensor. This leads to a relative deviation H of the
shock width from its hydrodynamic value which is
proportional to the square of the driving pressure dif-
ference. The plot of the data for water and methanol
confirm such a behavior within the experimental un-
certainties. A new characteristic length parameter ¢,
which turns out to be a few hundred to one thausand
times larger than the size of a molecule, can be infered
from this analysis. Some speculations on the origin of
the additional term in the Maxwell relaxation equa-
tion and the meaning of the length ¢ are presented.
A link with piezo-electric or piezo-tetradic effects is
indicated. The second mechanism (Sect. 3.2) is caused
by terms nonlinear in the friction pressure tensor. In
lowest order in the nonlinearity, again it is found that
H is proportional to the square of the driving pressure
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Fig. 1. Pressure profile in the vicinity of the shock front.

difference. Now, however, the proportionality coeffi-
cient has a different meaning. Results from the full
nonlinear theory [4] are also compared with the ex-
perimental data for water. Good agreement is found.
Some concluding remarks are added.

2. Basics and Motivation
2.1. Pressure Profile

The pressure p = p(x) in the vicinity of a plane
shock wave, propagating in the —z-direction, is, in
a co-moving coordinate system where z = 0 corre-
sponds to the center of the shock front, given by [1]:

1 1
p= 5(1’2+P1)+ E(Pz —p)tanh(2z/L). (1)

Here Op = p, — p) is the pressure difference driv-
ing the shock wave, p; and p, are the asymptotic
values of the pressure before and behind the shock
front. The shock width is denoted by L. The pressure
p(x), in units of the average pressure (p; + py)/2, is
depicted schematically in Fig. 1 as function of z in
units of a convenient reference length. The thickness
L decreases with increasing driving pressure dp. More
specifically, the shock width can be written as

L = H Ly Dref (BP)_I 3 (2)

where the product of the reference values for the
length and pressure, Ls and pref, is determined by
linear hydrodynamics. The quantity H = H (8p/pret),
with H = 1 in the hydrodynamic limit, characterizes
the deviation from linear hydrodynamics.

In the experiments, the shock width is inferred from
the pressure rise time ¢, = L/cs in the shock front,

S. Hess - On the Shock Front Thickness in Water and other Molecular Liquids

and cs is the speed of the shock wave, which is prac-
tically equal to the adiabatic sound velocity [2].

2.2. Hydrodynamics

Linear thermo-hydrodynamics [1] yields (2) with
H =1,and

-1
ERY%
Lret Pref = 16aV? (?) s (3)
p S

with the abbreviation

() -2)- o
a_zcg 377 nv o g)] . ()

Here V = p~! is the specific volume and cs the sound
velocity, The shear viscosity, bulk viscosity and heat
conductivity are denoted by 7, v, and A, respectively,
¢y and ¢, are the specific heat at constant volume and
constant pressure.

The decrease of the amplitide Ampl(z) = Ampl(0)
exp(-a z) of a sound wave with frequency w = 27 v,
propagating in x-direction, is characterized by the
inverse length parameter «, which is related to the
quantity a occuring in (3) and (4) by a = w?a. By
order of magnitude, one has a ~ 10~ s’>m~! for
water and the other liquids studied in [2].

2.3. The Experiment

In 1964 W. Eisenmenger published data on the
shock width for liquid water, acetone, methanol,
ethanol, a few other organic substances, as well as
for some mixtures, in the article [2] with the ti-
tle Experimentelle Bestimmung der Stossfrontdicke
aus dem akustischen Frequenzspektrum elektromag-
netisch erzeugter Stosswellen in Fliissigkeiten bei
einem Stossdruckbereich von 10 atm bis 100 atm (Ex-
perimental determination of the shock front thick-
ness from the acoustic frequency spectrum of electro-
magnetically generated shock waves in liquids in the
shock pressure range of 10atm to 100atm; 1 atm
~ 10° Pa). In Figs. 2 and 3, his data are used to plot
the shock front thickness L, in units of the conve-
niently chosen reference length L. = 1 um, versus
the pressure difference dp for water and methanol.
The quantity dp is expressed in units of a reference
pressure prs, Which is determined by the hydrody-
namic value as it follows from (3) and (4) with the
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Fig. 2. The shock front thickness L in water as function of
the presssure difference 8p, L = 1 Um, prs = 70 atm.
Data from Eisenmenger [2].
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Fig. 3. The shock front thickness L in methanol as function
of the presssure difference 0p, Lref = 1 Um, prer = 17 atm.
Data from Eisenmenger [2].

specific choice for L. In particular, one has prr ~
70atm and p.s =~ 17 atm for water and methanol,
respectively. The straight (dashed) lines correspond
to the hydrodynamic result. No adjustable parame-
ters occur in the comparison with the experimental
data. The hydrodynamic limit is approached for small
values of dp, Significant deviations, however, are ob-
served for 8p > prs. The quantity H of (2) is a mea-
sure of this deviation. Notice that the shock width is
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two to four orders of magnitude larger than a molecu-
lar length. Thus a continuum description of the shock
problem is appropriate.

3. Deviations from Hydrodynamics

The density and temperature dependence of the
transport coefficients and of the other thermo-physical
properties within the shock front account for the devi-
ations of the shock width from linear hydrodynamics,
as observed in the strong shock waves of the NEMD
simulations [5] for simple fluids. This explanation
does not work for the relatively weaker shocks em-
ployed in the experiments with the molecular liquids
[2] to be analyzed here.

Additional sources for deviations from hydrody-
namics are modifications of the constitutive relations
between the thermodynamic forces and fluxes, gov-
ering the transport processes. Here emphasis is put
on the friction pressure tensor and the shear viscosity.
Similar modifications for the bulk viscosity and the
heat conductivity, which may well be of importance,
are not treated explicitly.

Consequences of two generalizations of the Max-
well relaxation equation for the friction pressure ten-
sor, associated with spatial inhomogeneities and with
terms nonlinear in the friction pressure, are presented.

3.1. Spatial Inhomogeneity

The friction pressure tensor 7 =P, i.e. the sym-
metric traceless part of the pressure tensor p (nega-
tive stress tensor) is assumed to obey the generalized
Maxwell relaxation equation

2 p—
TMETF+Z2A7I'+‘A'=—277 Vov. 5)

The symbol == indicates the symmetric traceless part
of a tensor. The Maxwell relaxation time 7y is related
to the (newtonian) shear viscosity 7 by n = G 1y,
where G is the high frequency shear modulus. In (5), A
is the Laplacian and ¢ stands for a characteristic length
which is considered as a model parameter. Arguments
for the derivation of this additional term are given
later. When spatial inhomogeneities of the friction
pressure tensor over the length ¢ are small, the term
¢*> Am can be disregarded. Then (5) reduces to the time
honoured standard Maxwell relaxation equation.
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When the rise time t4 = L/cs of the pressure
in the shock front is large compared to the Maxwell
relaxation time 7y, it suffices to analyze the stationary
solution

T =-2n % —(*Ar. (6)

Considering the term involving the length ¢ as a small
perturbation, one obtains, in lowest order in (2,

m=~-2n (1-(A) Vo . 7)

The continuity equation, for a stationary state,
d(pv,)/dx =0, implies

dv, /ox = —p~ " v, (9p/dp)s Ip/ox

1 (8)
=p~'eg' Op/ox.
Notice that 3 = (dp/dp)s. Again in lowest order in
(2, one has

(* Adv, /dx ~ —({/L)* Jv, /o 9)

Thus the viscosity 1 occuring in the expression (4)
which, in turn, determines the shock front thickness
L, can be replaced by the effective viscosity

Neft = 1) (l + ((/L)Z) . (10)

Assuming, for simplicity, that all transport coeffi-
cients are modified in the same manner, the quantity
H, specifying the deviation of L from its hydrody-
namic value, is given by

/ 2 2
:L_SP=1+<—> (6—p) (1)
Lref DPref Lies Pref

In Figs.4 and 5, H = L 8p, in units of Lef pref, 1S
plotted versus (8p/prer) for water and methanol. The
points represent the same data as shown in Figs.2
and 3. Within the experimental uncertainty, H in-
creases in direct proportion to (8p)® in accord with
(11). From the slope of the dashed straight lines one

inferes (7% )" ~ 0.3, ~ 0.08 for H,0 and CH,OH,

respectively. Thus the characteristic length parame-
ter ¢, for water and methanol, is approximately equal
to 0.5 um and 0.3 um. Of course, with all the ap-
proximations made here, these numbers should just
be regarded as an estimate of the order of magnitude
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Fig. 4. Shock front thickness times pressure difference L &p
in water as function of the square of the pressure differ-
ence (8p)%, Leer = 1 um, prer =~ 70 atm. Data from Eisen-
menger [2].
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Fig. 5. Shock front thickness times pressure difference L &p
in methanol as function of the square of the pressure differ-

ence (8p)?, Leer = 1 Um, prr = 17 atm. Data from Eisen-
menger [2].

of (. Nevertheless, one is now faced with the question
“where does a characteristic length come from which
is several hundred to one thousand times larger than
the size of a molecule?”.
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3.1.1 Origin of the length parameter ¢

Various causes can lead to an additional term in
the Maxwell relaxation equation which involve the
Laplacian. These are

1) diffusive processes,

2) energetic effects in analogy to Frank elasticity
of liquid crystals,

3) piezo-electric and piezo-tetradic couplings.

Cause 1), referred to as the “Burnett” contribution in
connection with gases [6], can be ruled out because
the characteristic length involved there is of the or-
der of a mean free path in gases, or of the order of
a molecular size in liquids [7] and, even more im-
portant, because of an opposite sign in front of (2
in (5). Burnett-like terms would imply a decrease of
the shock width with increasing driving pressure dif-
ference rather than the observed increase. The same
remark with regard to the sign applies to cause 2)
unless one makes the rather unlikely assumption that
a spatially inhomogeneous state of the friction pres-
sure tensor is energetically more favourable than a
homogeneous one. Cause 3), favoured here, deserves
some additional explanation. The relaxation equation
for the friction pressure tensor 7 is written in the form

p) - —
™ aﬂ'+ $=—-2n Vo,

(12)
where ES is the derivative of a Landau type poten-
tial function ¢ with respect to . The simple choice
& = (1/2)r : =, e.g. yields = 7 corresponding to
the standard Maxwell model. The above mentioned
piezo-electric and piezo-tetradic couplings mean the
use of the Landau potential

1 1 .
® = %‘n w4+ -aid-d+ -ast:t
2 2 (13)

+C17f1(€l)+C37r:(V-t).

Here the vector d and the third rank tensor t are the
dipolar and the tetradic order parameters associated
with the dipole moment and the tetrahedral coordina-
tion of the molecules. The quantities a; > 0, a3 > 0,
and ¢ 3 are phenomenological coefficients. The lat-
ter ones, which may have either sign, characterize
the coupling between the friction pressure tensor, the
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dipolar and the tetradic order parameters. The poten-
tial (13) implies

5:71’+<| ﬁ+C3V't. (14)
In analogy to (12) with (14), the dipolar order param-
eter obeys the relaxation equation

0
d+a1d—(le~7r=0,

T3 (15)

where the relaxation time 7; is an additional phe-
nomenological coefficient. In a stationary situation,
one obtains

d=&V-7r,
aj

(16)

which underlies the piezo-electric effect. A similar
relation, now involving the ratio (3/a3, is found for
the tetradic order parameter. Insertion of these expres-
sions for d and t into (14) leads to terms involving
second spatial derivatives of the friction pressure ten-
sor which, for the geometry under consideration, are
equivalent to the Laplacian used in (5). Then one has,
apart from factors of the order of 1,

[72 <12 +<__%

: (17
Q) Qa3

Hence the piezo-electric or piezo-tetradic coupling
yields the correct sign irrespective of the sign of (|
and (3. No estimate of the order of magnitude of
the coefficients occuring on the r.h.s. of (17) can be
given. The coefficients «; 3 in the denominator of
(17) could become quite small, and consequently ¢?
rather large, due to collective effects as encountered in
pretransformational phenomena, e.g. in liquid crystals
[8], [9]. Consequences of the piezo couplings for the
sound absorption should be analyzed.

A test of the importance of the piezo effects ex-
pected in the polar liquids could be provided by a
comparison with data for liquids where such effects
do not exist due to the symmetry of the molecules.
Indeed, the only substance of that kind measured by
Eisenmenger [2], viz. liquid CCly, does not show any
deviation from the preditions of linear hydrodynam-
ics. Since the range of driving pressure differences
was rather limited in that case, no definitive conclu-
sions can be drawn, however.
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Fig. 6. The relative deviation from hydrodynamics H ~
L dp as function of the logarithm of the dimensionless ex-

tension rate £ ~ (&p)>. Comparison with the experimental
data for water (Eisenmenger [2]) with curves of the full
nonlinear theory (full curves) and the simple approxima-
tion (dashed).

3.2. Nonlinearity

In general, the relaxation equation for the friction
pressure tensor 7 will also contain terms nonlinear
in 7. Disregarding effects associated with spatial in-
homogeneities, the generalized Maxwell relaxation
equation

TMéﬂ'+...+7'r—\/6B7rf7r
ot (18)

+Cr (3 :mw)=-2n Vo

has been used to study the nonliear flow behavior
for simple shear, planar biaxial and uniaxial flows
[4]. The ellipses ... stand for terms involving prod-
ucts of components of the velocity gradient tensor
with 7 which, however, are disregarded here. De-
pending on the values of the model parameters B
and C, both shear thinning and shear thickening
were found. It should be mentioned that a slightly
different scaling of the variables, e.g. 7w expressed
in units of the high frequency shear modulus, was
used in [4]. Here, the nonlinear relaxation equation is
applied for the appropriate uniaxial extensional or
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compressional flow. As before, the extension rate is
€=0v,/or =~ —p~'cg' (8p/L) ~ —(8p)*. In lowest
order in the nonlinearity (C' = 0) one finds, for a
stationary situation,

_ Lép
Lrefpref

Bpetn [ Op\°
4 Bpretn (_p> 19
pCs Lref Dref

Again, the deviation of H from its value 1 based on
linear hydrodynamics is directly proportional to (8p)>.
Thus the slope of the straight lines in Figs.4 and 5
can be used to determine the coefficient B. For water
one finds B ~ 6 (atm)~!.

In Fig.6 the experimental data of [2] for water,
in particular H ~ L &p plotted versus the logarithm
of the dimensionless extension rate E ~ (8p)?, are
compared with curves of the full nonlinear theory
(full curves) where C/B? = 0.52, 0.53, 0.54. The
agreement seems to be rather good. The data point
of Fig.4 at the largest value of dp, however, is not
included in Figure 6. The dashed curve follows from
the simple approximation C' = 0, which yields (19).

4. Concluding Remarks

Two mechanisms have been presented which can
account for the experimentally observed deviation of
the shock width from its (linear) hydrodynamic value.
For specific cases, the relevant new phenomenolog-
ical coefficients have been inferrred from the data
upon the assumption that one process dominates. To
predict the relative importance of these two contri-
butions, however, independent experimental data or
estimates from model calculations are needed for the
coefficients determining the magnitude of the effects
discussed here. Non-equilibrium molecular dynam-
ics (NEMD) computer simulations of shock waves in
molecular liquids could also be helpful to clarify this
issue.
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