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Abstract
The chimera state is a fascinating phenomenon of coexisting synchronized and
desynchronized behaviour that was discovered in networks of nonlocally cou-
pled identical phase oscillators over ten years ago. Since then, chimeras have
been found in numerous theoretical and experimental studies and more recently
in models of neuronal dynamics as well. In this work, we consider a generic
model for a saddle-node bifurcation on a limit cycle representative of neural
excitability type I. We obtain chimera states with multiple coherent regions
(clustered chimeras/multi-chimeras) depending on the distance from the excit-
ability threshold, the range of nonlocal coupling and the coupling strength. A
detailed stability diagram for these chimera states and other interesting coex-
isting patterns (like traveling waves) is presented.
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1. Introduction

About ten years ago, a peculiar synchronization phenomenon was reported: in a system of
nonlocally coupled oscillators, a state was discovered where synchronous and asynchronous
oscillators coexist, even though the oscillators are identical and the interaction symmetric and
translationally invariant [1]. This phenomenon was named ‘chimera’ after the monstrous fire-
breathing creature of Greek mythology composed of parts of three different animals: a lion, a
snake and a goat [2]. From the perspective of nonlinear dynamics, this surprising breaking of
symmetry is observed through the coexistence of incongruent states of spatial coherence and
disorder.

Potential real-world examples for chimera states should exhibit coexistence of coherence
and decoherence. These may include electric-power grids, which rely on synchronized
generators to avoid blackouts in power transmission [3]. Also, certain patterns of intense heart-
tissue contraction known as ‘spiral waves’ in certain types of heart attacks [4] have been
observed in simulations of chimera states [5–7]. Forms of the chimera state may also be
connected to large-scale synchronization patterns of neurons relating to unihemispheric sleep as
will be discussed below. For a comprehensive review refer to [9] and references therein.

Chimera states were first reported by Kuramoto and Battogtokh in a model of densely and
uniformly distributed oscillators, described by the complex Ginzburg–Landau equation in one
spatial dimension, with nonlocal coupling of exponential form [1]. This seminal work was
followed by the work of Abrams and Strogatz [2], who observed this phenomenon in a 1-
dimensional ring continuum of phase oscillators assuming nonlocal coupling with a cosine
kernel and coined the word ‘chimera’ for it. The same authors also found chimera states in
networks of identical, symmetrically coupled Kuramoto phase oscillators [10] by considering
two subnetworks with all-to-all coupling both within and between subnetworks, assuming
strong coupling within each subnetwork and weaker coupling between them. This coupling
scenario was also employed by C. G. Laing who demonstrated the presence of chimeras in
coupled Stuart–Landau oscillators [11]. More recently, the same coupling scheme was used in a
system of pendulum-like elements represented by phase oscillators with a second derivative
term, where chimera states were also investigated [12]. Furthermore, Stuart–Landau oscillators
have also been investigated related to amplitude-mediated chimera [13] and for symmetry-
breaking coupling. The latter leads to a combination of chimeras and oscillation suppression,
termed chimera death [14]. Chimeras have also been observed in many other systems, including
coupled chaotic logistic maps and Rössler models [15, 16]. Together with numerical
simulations, theoretical studies of chimera states have been recently provided, such as general
bifurcation analysis for chimeras with one and multiple incoherent domains in the system of
nonlocally coupled phase oscillators [17].

The first experimental evidence of chimera states was found in populations of coupled
chemical oscillators as well as in optical coupled-map lattices realized by liquid-crystal light
modulators [18, 19]. Recently, Martens and coauthors [20] showed that chimeras emerge
naturally from a competition between two antagonistic synchronization patterns in a mechanical
experiment involving two subpopulations of identical metronomes coupled in a hierarchical
network. Furthermore, chimeras were experimentally realized using electrochemical oscillators
[21] as well as electronic nonlinear delay oscillators [22].

The importance of chimera states is also very relevant to brain dynamics, since it is
believed that they could potentially explain the so-called ‘bumps’ of neuronal activity (proposed
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in mechanisms of visual orientation tuning, the rat head direction system, and working memory
[23]) as well as the phenomenon of unihemispheric sleep [8] observed in dolphins and other
animals which sleep with one eye open, suggesting that one hemisphere of the brain is
synchronous while the other is asynchronous. For this reason, it is particularly interesting that
such states were recently observed in leaky integrate-and-fire neurons with excitatory coupling
[24], as well as in networks of FitzHugh–Nagumo [25] and Hindmarsh–Rose [26] oscillators.

Excitability is an important feature of neuronal dynamics [27] as it determines the
mechanism of the generation of action potentials (spikes) through which neurons communicate.
There are two types of excitability: type I yields a response of finite amplitude and infinite
period through a global bifurcation, and type II gives rise to zero-amplitude and finite period
spikes via a Hopf bifurcation. Type-II excitability is often modeled by the FitzHugh–Nagumo
system for which ‘multi-chimera’ (or ‘clustered chimera’ [28]) states, which consist of multiple
coherent regions, were recently found slightly above the excitability threshold [25]. The
Hindmarsh–Rose model, which is representative for both type-I and type-II excitability,
exhibits very complex behaviour including spiking, regular and chaotic bursting for which
chimera states and other collective dynamics were identified [26].

In this work, we will focus on a generic model for type-I excitability and we will focus on
the fundamental dynamics by performing a systematic analysis as far as chimera states are
concerned. The system under consideration is representative for a global bifurcation, namely a
saddle-node bifurcation on a limit cycle also known as saddle-node infinite period (SNIPER)
bifurcation, which is also known as saddle-node bifurcation on an invariant circle (SNIC). It is
defined by the following equations [29–32]:

= − − + −

= − − − −

( )
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x x x y y x b
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where the state variables are x(t) and y(t), and b is the bifurcation parameter. In polar
coordinates θ=x r cos and θ=y r sin , the above equations read:

θ θ
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( )r r r
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For <b 1, there are three fixed points: an unstable focus at the origin and a pair consisting of a

saddle-point and a stable node on the unit circle with coordinates + −b b( , 1 )2 and

− −b b( , 1 )2 , respectively. The latter two collide for bc = 1 at =x y( *, *) (1, 0) and a limit

cycle with constant radius ρ = + =x y 1c
2 2 is born. Above but close to the bifurcation, the

frequency f of this limit cycle obeys a characteristic square-root scaling law ∼ −f b 12 .
In the following, we choose >b bc so that the system operates in the oscillatory regime.

The system oscillates with constant amplitude ρ = 1 and the period T0 is given by π −b2 12 .
In figure 1 the numerical solution of x and y is shown for one period. For b = 1.05 (figure 1(a)),
the dense region (the so-called ‘ghost’) where the system slows down marks the collision point

of the saddle and the node, i.e. =x y( *, *) (1, 0). For this parameter value, the system
remembers the collision point because it is close to the critical value bc. The phase velocity
converges to a constant value as soon as b becomes large enough (figure 1(b)).
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The rest of this paper is organized as follows. In section 2, we introduce the coupling
topology and describe the main features of the observed dynamics. In section 3, we scan the
parameter plane spanned by the bifurcation parameter and coupling range. Section 4 focuses on
coexistence of chimeras and other patterns and in section 5, we address the role of the coupling
strength. Finally, we conclude with a summary in section 6.

2. The model

We consider N nonlocally coupled SNIPER oscillators given by equation (1) arranged on a ring:
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where = …k N1, 2, , , σ > 0 is the coupling strength, and ∈R N[1, 2] is the number of
nearest neighbors of each oscillator on either side. The limit cases R = 1 and =R N 2
correspond to nearest-neighbour and all-to-all coupling, respectively. It is convenient to scale
this parameter by the system size, which defines a coupling radius = ∈r R N N[1 , 0.5]. The
coefficients blm, where ∈l m x y, { , }, are given by the elements of the rotational matrix:
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, (4)
xx xy

yx yy

where ϕ π π∈ −[ , ]. The matrix B allows for direct xx( )- and yy( )-coupling as well as cross
coupling between x and y as in [25, 26].

The linear coupling in equation (3) is motivated by the electrical synapses (gap junctions)
linking real neurons. Neuronal networks have a considerably higher amount of strong short-
range connections rather than long-ranged links [33–36]. This property is implemented in our
model by means of R-nearest-neighbour coupling in both directions. Recently, chimera states
have also been reported for global coupling involving a mean–field via a nonlinear or linear
coupling function as well as time delays [13, 37–39]. Using a phase-reduction technique [25],

Figure 1. SNIPER model in the oscillatory regime: numerical solution of equation (1)
for two different values of the bifurcation parameter b.
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the coupling phase ϕ parameterizing the matrix B can be related to the so-called phase lag
parameter, which is as essential for the existence of chimera states as is the nonlocal
coupling [1, 2, 40]. Moreover, the introduction of ϕ reduces the dimensionality of the parameter
space.

Figure 2(a) shows a snapshot of the variables xk at a fixed time, providing evidence of
a classical chimera state: one group of neighbouring oscillators on the ring is spatially coherent
(blue dots) while the remaining elements form a a second, spatially incoherent group
(black dots). These two domains of coherent and incoherent oscillators can be distinguished
from each other through the mean phase velocity of each oscillator ω π Δ= M T2k k ,
where Mk is the number of periods of the kth oscillator during a sufficiently long time interval
ΔT [25].

Figure 2(b) shows the characteristic profile for the mean phase velocities ωk corresponding
to the chimera state of figure 2(a). The oscillators in the coherent domain (blue) rotate along the
unit circle at a constant speed ωcoh, whereas the incoherent oscillators (black) have different
mean phase velocities ωincoh with an extremum (in this case maximum) value denoted by ωincoh

ext .
If the difference defined as

Δω ω ω= − , (5)incoh
ext

coh

is sufficiently larger than a certain threshold value, we can ensure the existence of a chimera
state. Note that for the particular chimera state of figure 2(a), it holds that ω ω>incoh

ext
coh.

Figure 2(c) shows the corresponding space-time plot for the variables xk. For weak coupling,
which is the case here, the period of the oscillators converges to the period T0 of the uncoupled
system. Investigations of space-time plots for extended simulation times reveal that the (in)
coherent domains are stationary, i.e. there is no ‘drift’ on the ring. Finally, figure 2(d) shows the
state of each oscillator at a certain time t in phase space (the blue dots mark the coherent
oscillators while the black dots mark the incoherent ones).

Figure 2.Chimera state of nonlocally coupled SNIPER oscillators given by equation (3):
(a) snapshot of states xk and (b) corresponding mean phase velocities ωk. (c) Space-time
plot, where time t is scaled by the period T0 of the uncoupled oscillator. (d) Snapshot in
the x y( , )k k -phase space (blue dots: coherent, black dots: incoherent oscillators).
Parameters: b = 9, σ = 0.1, ϕ π= −2 0.1, R = 350, and N = 1000. For an animation
see figure A1.
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In the following sections, we will systematically investigate the effect of the bifurcation
parameter b as well as the coupling parameters R and σ on the chimera state. We will compare
our results with findings of previous studies on chimera states in neuronal networks and shed
light on new dynamical features.

For the numerical integration of equation (3) we used the Euler method with step size
dt = 0.01.4 The initial conditions for xk and yk are randomly distributed on the unit circle and we
discard transients of 1000 time units. For the mean phase velocities ωk, we average over a time
interval Δ =T 10 000.

3. Impact of the bifurcation parameter and coupling range on the dynamics

A stability diagram for the chimera states is displayed in figure 3 where the dependence of the
modulus of Δω (equation (5)) is plotted with respect to the bifurcation parameter b and the
coupling radius =r R N .

Starting from the values b = 9, r = 0.43 and a certain set of initial conditions as described
above, we perform a continuation in the direction of smaller r-values down to r = 0.06 and
calculate Δω for each coupling radius. Subsequently, for values of ∈r [0.04, 0.46] we perform
a continuation in b-direction from b = 9 down to b = 0.1 starting again at r = 0.43. The coupling
strength is fixed at a constant value σ = 0.1.

From figure 3 it is clear that Δω| | has a non-monotonous behaviour in the (b,r)-plane. Each
‘bump’ in the 3D surface corresponds to a different type of chimera state associated to a
different number of (in)coherent domains, marked in the square brackets/braces. Some of these
states are explicitly shown below in figure 4 for certain combinations of b and r.

For large values of the bifurcation parameter (red-coloured ‘bumps’ in figure 3 and
figure 4(a’)) a classical chimera state with one group of (in)coherent oscillators exists. By
decreasing r, which physically means removing more and more long-range connections, the
number of clustered (in)coherent oscillators increases. In the red-colored ‘bumps’ of figure 3
these so-called ‘multi-chimera’ states exhibit the characteristic feature that ω ω>incoh

ext
coh (i.e.

Figure 3. Stability diagram in the (b,r)-plane: modulus of the difference Δω| | between
the mean phase velocities of the coherent and incoherent oscillators (equation (5)) as a
function of the bifurcation parameter b and the coupling radius r. The numbers in the
brackets and braces denote the number of the (in)coherent domains of the corresponding
chimera state. Brackets and braces refer to the ‘normal’ and ‘flipped’ ω-profile,
respectively. Parameters: σ = 0.1, ϕ π= −2 0.1, and N = 1000.

4 We have also verified our results using higher order integration methods with adaptive time step.
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Δω > 0), shown in the corresponding mean phase velocity profiles in figure 4(b’)–(d’). We
denote these chimera states, for which Δω > 0, by the number of their (in)coherent domains in
square brackets [1], [2], [4], and [6].

For lower values of b (blue-coloured ‘bumps’ in figure 3 and figure 4(a–e)), we exclusively
find multi-chimera states. As in the case of larger b, the number of clustered (in)coherent
oscillators increases with decreasing coupling radius r. However, there is a significant
difference: the mean phase velocities of the incoherent oscillators is smaller than the velocity of
the coherent ones, i.e. Δω < 0. Hence, there exists a critical value of the bifurcation parameter
(found to be around b = 4), where Δω changes its sign, resulting in a ‘flip’ in the mean phase
velocity profile. The chimera states with a ‘flipped’ ω-profile are denoted by the number of (in)
coherent domains in braces {4}, {6}, {8}, {10}, ..., {24}.

The characteristic form of the average phase velocities profile has been used as a criterion
to distinguish chimera states in the systems of coupled oscillators. The most often observed in a
variety of systems is the case when the coherent oscillators perform smaller average phase
frequencies, and incoherent oscillators are faster. However, the opposite situation is also
possible, when the coherent oscillators perform faster oscillations than the incoherent ones. In
the system of nonlocally delay coupled phase oscillators, two types of chimera states were
distinguished depending on whether the effective frequencies of the incoherent oscillators are
larger or smaller than the frequencies of the coherent ones [41, 42]. The regions of stability for
these two types of chimera states depend on the time delay and strength of the coupling.
Moreover, both types of chimera states can coexist.

Figure 4. Clustered chimera states of figure 3: snapshots of the states xk at different
points in the (b,r)-plane. Red and blue dots correspond to ‘normal’ and ‘flipped’ ω-
profiles (black dots), respectively. (a) r = 0.35, b = 2 (for an animation see figure A2),
(b) r = 0.24, b = 2, (c) r = 0.18, b = 2, (d) r = 0.14, b = 2, (e) r = 0.06, b = 2, (a’)
r = 0.35, b = 8, (b’) r = 0.18, b = 8, (c’) r = 0.08, b = 7, (d’) r = 0.06, b = 7. Other
parameters: σ = 0.1, ϕ π= −2 0.1, N = 1000.
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The ‘flipped’ phase velocities profile was also observed in systems which do not consider
time delay in the coupling; however, it has not been explained so far. The Kuramoto model with
repulsive coupling allows for multi-chimera states for which the phase velocity profiles show
larger average frequencies for oscillators that belong to the coherent domain [43]. Similar
behaviour is also observed for chimera states with one incoherent domain in the complex
Ginzburg–Landau equation with nonlocal coupling [13]. In that system, however, chimera
states with multiple incoherent domains possess the usually observed mean phase velocity
profiles.

Hence, the flip of the phase velocities cannot be explained only by the influence of
time delay or strong coupling. This feature was observed in experiments as well; in networks
of electrochemical oscillators with nonlocal coupling, the frequencies of the oscillators from
the coherent domain of a chimera state are larger than the frequencies of the incoherent
ones [21].

In our system, we observe direct dependence of the form of the mean phase velocity profile
on the parameter b defining the frequency of the local uncoupled unit.

4. Multistability of patterns: coexisting chimeras and traveling waves

The coexistence of different multi-chimeras, traveling waves, and completely synchronized
states in the phase space has been observed in many other systems of nonlocal coupled
oscillators [25, 26, 44]. Depending on the initial conditions the stationary state can vary
significantly. Such multistable solutions are also possible in system (3) as demonstrated in
figure 5.

A schematic representation of the identified multi-chimeras in the (b,r)-plane is shown in
figure 5(a) . Note that only the r-range for which chimera states are observed is shown. Each
region has a different colour associated to a different chimera type as described in the previous
section. The black regions correspond to intermittent states, which are mainly desynchronized.
Along the white lines, figure 5(b) and (c) display the results of a continuation in b (dashed line)
and r (solid line), respectively. The continuation is performed as down sweep in b (or r) and
then repeated in the opposite direction. In both cases we find a region where different types of
chimera states coexist.

In particular, for intermediate values of the bifurcation parameter b, there is coexistence of
a [2]- and {6}-chimera state marked by the shaded (light blue) area of figure 5(b). This area of
coexisting chimera states, moreover, marks the transition between the ‘flipped’ (Δω < 0) and
‘normal’ (Δω > 0) mean phase velocity profile. This transition occurs at a different and, in
particular, lower value of b when the continuation is performed in the direction of decreasing b
(black dots) than when performed in the opposite direction (red squares), i.e. our system
exhibits, apart from multistability, hysteresis phenomena as well.

Coexisting chimera states may also be found by varying parameter r, as shown in
figure 5(c): Depending on the choice of initial conditions, one may observe either a [1]- or a [2]-
chimera state (shaded, light-blue area) both with Δω > 0. In both increasing (red dots) and
decreasing r (black dots) directions, there are deviations from the piecewise linear behaviour of
Δω r( ) which correspond to desynchronized states.

The observed multi-chimera states may also coexist with completely synchronized states
and traveling waves. One example of such a point in parameter space is marked by the white

8

New J. Phys. 16 (2014) 123039 A Vüllings et al



star in figure 5(a) and the corresponding space-time pattern is shown in figure 5(d). This is a
traveling wave solution of wave number 2 coexisting with a {4}-chimera state. The time in the
vertical axis is scaled by the period T0 of the uncoupled oscillator. Multistability between
traveling waves and breathing states have also recently been reported for chaotic systems with
nonlocal coupling [44].

5. Role of the coupling strength

In order to complete our study on the effect of the system parameters on the dynamics of
chimera states, we will investigate the role of the coupling strength σ in this section.

Again, we perform a parameter continuation and focus on the behaviour of Δω as σ
increases for different multi-chimera states. Our findings show that even at large σ the
corresponding multi-chimera state is preserved. However, we observe that, for certain values of
the bifurcation parameter b and the coupling radius r, the coupling strength may induce a spatial
motion of the domains of the (in)coherent oscillators.

Figure 6 shows the results for the [2]-chimera state associated with the orange regime of
figure 5(a). With increasing coupling strength, each oscillator becomes more and more
influenced by the dynamics of the remaining oscillators. Therefore, the trajectories of the

Figure 5. Coexisting chimera states and traveling waves: (a) projection to the
(b,r)-plane of figure 3. (b) Up and down sweep in b-direction as marked by the dashed
white line in figure 5(a) for fixed r = 0.25. [2]- and {6}-chimera states coexist in
the shaded (light-blue) area. (c) Up and down sweep in r-direction as marked by the
solid white line in figure 5(a) for fixed b = 6. [1]- and [2]-chimera states coexist in the
shaded (light-blue) area. (d) Traveling wave solution, which coexists with the {4}
-chimera, for r and b marked by the white star in figure 5(a). The time is scaled by the
period T0 of an uncoupled oscillator. Other parameters: σ = 0.1, ϕ π= −2 0.1, and
N = 1000.
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incoherent oscillators, in particular, begin to deviate significantly from the unit circle as shown
in the right plot of figure 6(a) for σ = 1.3.

The corresponding mean phase velocity profiles ωk of the [2]-chimera state can be seen in
figure 6(b). For larger σ (right plot) the total number of coherent oscillators increases while the
number of incoherent oscillators decreases. Figure 6(c) shows that the difference between the
mean phase velocity of the coherent and incoherent oscillators Δω linearly increases with the
coupling strength, apart for a narrow range of σ ≈ 1 where Δω deviates. In this regime, the
corresponding space-time plots of the [2]-chimera state reveal that the (in)coherent domains can
start to move spatially with time (see left inset of figure 6(c)). Note that breathing chimera states
coexist with stationary ones due to multistability similar to the coexisting {4}-chimera state and
travelling wave shown in figure 5. We observed stationary chimera states for σ ≈ 1 (dark green
open dots in figure 6(c)). Beyond this regime of moving patterns, our continuation returns to the
[2]-chimera state which is stationary (see right inset of figure 6(c)).

Figure 6. Impact of the coupling strength on the [2]-chimera state: (a) snapshots in the
x y( , )k k -plane for different coupling strengths σ. (b) Corresponding mean phase
velocities ωk and (c) Δω as a function of the coupling strength (red points: continuation,
dark green open dots: different initial conditions). The insets are a space-time plot for a
fixed σ and the coherent parts are marked in blue (left inset: σ = 1.0, right inset:
σ = 2.0). Other parameters: b = 6, ϕ π= −2 0.1, R = 190, and N = 1000.
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In general, chimera states can be stationary or can perform two types of motion in space, in
which the coherent and incoherent domains change their spatial position in time. The first one is
a chaotic motion of the position of the chimera observed in nonlocally coupled phase
oscillators. Such a motion shows a sensitive dependence on the initial conditions and is a finite-
size effect that vanishes in the thermodynamic limit. It can be described as a Brownian motion
and depends on the coupling radius, the phase lag parameter, and the shape of the coupling
function [40]. The second type is a periodic motion of the coherent and incoherent domains of
the chimera state, called a ‘breathing chimera’. Breathing chimeras were first observed in the
system of two oscillator populations in which each oscillator is coupled equally to all the others
in its group and less strongly to those in the other group [10], and recently in the nonlocal
complex Ginzburg–Landau equation with strong coupling limit [13].

Based on our numerical simulations, we conclude that in principle, breathing chimeras
exist for nonlocally coupled SNIPER models for some coupling parameters, but the exact
parameter range needs to be determined in future studies.

6. Conclusions

In this work, we have verified the occurrence of clustered chimera states in a generic model for
a saddle-node bifurcation on a limit cycle representative for neural excitability type-I. This,
along with recent reports on multi-chimera states in nonlocally coupled FitzHugh–Nagumo [25]
and Hindmarsh–Rose [26] oscillators provide strong evidence that this kind of symmetry
breaking is very relevant for applications in neuroscience.

In particular, we presented a detailed exploration of the parameter space where chimera
states occur, and investigate the dependence on the proximity to the excitability threshold
and the range of the nonlocal coupling. We identified chimera states for which the mean
phase velocity has a ‘flipped’ profile. A similar result was also reported in a recent study of
Kuramoto oscillators with repulsive coupling [43]. Findings of coexisting chimera states
and traveling waves in the parameter space establish the existence of multistability in our
model. Finally, it was shown that for increasing coupling strength the domains of coherent
oscillators become bigger and at the same time spatial motion of the incoherent oscillators is
observed.
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