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Abstract
A weakly nonlocal and nonlinear theory of heat conduction in rigid bodies is
proposed. The constitutive equations generalize these of Fourier, Maxwell-Cattaneo
and Guyer-Krumhansl. The proposed model uses the fundaments and the technique of
extended irreversible thermodynamics. The main conclusion is that the presence of
nonlocal terms in the transport equation for the heat flux implies a modification of the
entropy flux; the latter is no longer given by its classical expression, i.e. the heat flux
divided by the temperature, but contains extra contributions which are nonlinear in
the heat flux and its gradient. These results arise as compatibility conditions with the
second law of thermodynamics. A nonequilibrium temperature depending on the heat
flux and generalizing the local equilibrium temperature is also emerging naturally
from the formalism.

1. Introduction

Memory effects are playing an important role in recent researches on heat waves and
hyperbolic heat transport [1-3] in solids. The simplest way to take such effects into
account is to use the Maxwell-Cattaneo equation

rq + q = -AVr (1)

wherein q is the heat flux, T the local equilibrium temperature, r the relaxation time
of the heat flux and the thermal conductivity, an upper dot stands for derivation with
respect to time; the classical Fourier law is recovered in the limit r —» 0. When
combined with the energy balance equation, expression (1) leads a hyperbolic
differential equation for the temperature predicting that thermal waves propagate with
a finite velocity.
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Nonlocal and nonlinear heat transport 177

This problem is presently a subject of vivid interest and solutions of the hyper-
bolic temperature equation have been discussed in a wide diversity of situations
[1-4].
From the thermodynamic point of view, it turns out that equation (1) requires a
modification of the entropy, in such a way that instead of the local equilibrium
entropy seq(u), a generalized entropy depending both on u and q must be used, it has
been shown [5-11] that this generalized entropy will take the form

s(u, q) = seq(u) - 2 q * q>

wherein s and seq are measured per unit volume. In the limit r — > 0, this expression
reduces to the local equilibrium entropy.

Such a generalized entropy has been the basis of the development of a new
thermodynamic theory called Extended Irreversible Thermodynamics (EIT) [e.g. 9].
In this formalism, the thermodynamic fluxes, like the heat flux, the flux of matter and
the flux of momentum, i.e. the viscous stress tensor, are elevated to the rank of
independent variables, on the same footing as the classical variables, like energy,
mass and momentum. In addition, the existence of a nonequilibrium entropy
depending on the whole set of variables, and whose rate of production is non-negative
is taken for granted. In the framework of EIT, Fourier and Stokes-Newton's laws are
generalized in the form of time-rate evolution equations of the Maxwell-Cattaneo
type. Such equations are nonlocal in time, as they imply memory effects, but local in
space. The analysis of systems subject to important spatial gradients, or characterized
by short wavelengths, has fostered the interest in formulating thermohydrodynamic
constitutive equations containing nonlocal spatial terms; of particular interest are
systems of small dimensions comparable to the mean free path, as microelectronic
devices, and ballistic propagation of phonons at low temperature.

Nonlocal effects can be introduced in several ways [2, 3, 12-16]. The simplest one
would be, for instance to generalize (2) as

rq + q = _AVr + l\ [V2q + 2V (V · q)] , (3)

wherein the coefficient l\ has the dimension of length.

An equation of this form was derived by Guyer and Krumhansl [17] from the Boltz-
mann equation for phonons in the relaxation time approximation. This equation is
useful to describe the so-called phonon-hydrodynamic regime. More general
equations have recently been proposed to describe the ballistic propagation of
phonons at high frequencies [18].

In view of (3), a natural question 'is whether the nonlocal terms imply some
modifications in the expressions of the entropy and the entropy flux. We will show
that space non-locality does not influence the entropy, but that it contributes to the
entropy flux Js. Indeed, instead of the classical result 3s = r-1q, the entropy flux
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178 G. Lebon et al.

will, in presence of non-locality, take the form

J* = 0-»q + ll(XT2rl(Vq) · q + 12
2(×Ô2Ã1(^ · q)q + ^AT*2)" · (Vq),

(4)

where /i,/2,/3 are phenomenological coefficients, 0 is the temperature, defined by
0-1 = ds/du and therefore, depending generally on the heat flux. Expression (4) is
revealing as it shows explicitly the relation between the transport equation (3) and the
entropy flux: any modification of the transport equation will directly influence the
entropy flux and vice-versa.
The question about the form of the entropy flux has been discussed many times in
non-equilibrium thermodynamics. M ller [19] proposed that the entropy flux is not
just q/T but that it may have nonclassical contributions, different of course from the
classical contribution — (ìæ·/Ô)Éæ· related to the transport of matter of component é, ì,
is the chemical potential and J/ the mass flux of component i. In M ller' s view [24],
the entropy flux should be given by J = Ë~é (Ã, r)q where Ë is the so-called coldness
which depends not only on the temperature but also on its time derivative. However,
this idea was contested by Meixner [20] and was abandoned later on by M ller
himself. Other examples of nonclassical expressions of the entropy flux are these
proposed by Grad [21] in the framework of the thirteen-moment approximation,
namely

'.q. (5)

(Pv is the viscous pressure tensor), and the information theoretical expression [22, 23]

7i -Q (6)

where 70 (a scalar) and 71 (a vector) are Lagrange multipliers related to the
constraints on the mean value of the internal energy u and the heat flux q, Q is the
flux of the heat flux, a second order tensor. Since 70 = 1/0, rather than 1/Ã, with T
the local equilibrium temperature, expression (6) is more general than (5). The latter
may be obtained from the former provided one assumes that Q is proportional to Pv

and that the temperature è reduces to the (local) equilibrium value T.
Nevertheless, some authors [23] have proposed to keep for 3s the classical form
T"1 q, by taking this relation as an imposed constraint on the system in an informa-
tion theoretical approach. Of course, this is in principle possible, but if one ignores
the spatial correlations in the entropy flux then they will appear in the expression for
the entropy.

In Section 2, we establish a generalized nonlinear transport equation for the heat flux
vector q in undeformable solids; this expression contains as particular cases, the
Fourier, Cattaneo and Guyer-Krumhansl equations. Restrictions on the possible forms
of the evolution equation are placed by the second law of thermodynamics and are
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Nonlocal and nonlinear heat transport 179

described in Section 3; in addition, general expressions of the temperature, entropy
and entropy flux compatible with the transport equations and the laws of
thermodynamics are derived. To clearly emphasize the correlation between thesheat
transport equation and the entropy flux, simplified situations are discussed in Section
4 and final conclusions are drawn in Section 5.

2. A nonlinear and nonlocal heat transport equation
We consider the problem of unsteady heat conduction in a rigid body. According to
Extended Irreversible Thermodynamics [9], the state space is formed by the internal
energy, «, taken here per unit volume and the heat flux vector q. As a preliminary, it
should be stressed that in the present formalism, the gradients of the basic variables u
and q will not be considered as independent variables obeying evolution rate
equations. Instead, non-locality is introduced in the constitutive equations; however
we will restrict our analysis to a weakly nonlocal theory with constitutive equations
involving gradients of the first order with respect to the variables, as it embraces still
sufficient generality; it is also our opinion that a more general and formal description
would obscure the physical content. For simplicity, we will also address our attention
to isotropic systems.
We start with establishing the evolution equations for the basic variables u and q.
Concerning the internal energy, its evolution in the course of time and space is
governed by the first law of thermodynamics

= -qjjSij + r, (7)

a comma stands for derivation with respect to space, r is the source of energy per unit
volume, oy is Kronecker's symbol, Cartesian coordinates as well as Einstein's
summation convention on repeated indices will be used throughout the paper. Later
on, for simplicity, the source term in (7) will be ignored. By analogy with (7), the
evolution equation for qi will be written in the form

wherein Ö?- is the flux of heat flux (a second-rank tensor), and ó? the corresponding
source term (a vectorial quantity). The quantities Ö? as well as ó? will be expressed
by means of constitutive equations: it is assumed that Ö?. and of may depend non-
linearly on u and qt but that they are linear function of their gradients (weak non-
locality). Admissible expressions for Ö and ó? are therefore

B(u,
Ì

erf = -a(u, f)qi - b(u, q2)^ + Fj(u, qk)q^
(ut qk) + Gi(u,
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wherein q2 stands for ##,·, the minus sign in front of a,b,.Li,'lL2> and Z/3 has been
introduced for convenience. Substitution of (9) and (10) in the evolution relation (8)
leads to

dA OLi dL2

ujqjj - aqt - bu^ + Ffai + qtjffj + Gtfjj. (11)

In expression (11), we have omitted third order terms like £qkj4ij involving the
products of q and the gradients of the variables; in addition, the term (dA/dqj)qjyi has
been incorporated in the term Fj-qj9i and therefore does not appear explicitly. To
recover earlier familiar results, we introduce the following notation

while Fj,Hj and Gj are supposed to be linear in qj and uj:

FJ = ai(u)qj + a2(u)uj, Hj = ßi(u)qj + ß2(u)uj, Gj = 71 (M)^· + 72 (u)uj.
(13)

Equation (1 1) reads then:

i

ti + ß2(u)qijuj + ^(u^ju^ + LI (ufatj (14)
+ I*(u)qja + L'^ujujqu

wherein ft (it) and 71 (u) stand for ft(w) + B(ii) and 71 (M) +Ä(M) respectively, and
the dependence of the various coefficients r, «,Li, . . . with respect to q has been
neglected as they would contribute to third order terms in q3, q2uti, q2qijj, . . . Relation
(14) is rather general because it contains as particular cases the laws of Guyer and
Krumhansl [17], Cattaneo [24] and Fourier. Indeed by letting in (14) the quantities

/, ßf and 7,(z = 1, 2, 3c) tend to zero and assuming that T,LI,LQ and L$ are constant,
one recovers a.'Guyer-Krumhansl type equation, namely

qi = -K(u)U>i - -qi + Liqijj + Lnqjji + LS ·̂. (15)

If in addition Li,Z^ and L3 vanish, one rediscovers Cattaneo 's equation while in the
approximation r = 0 (but finite), one recovers Fourier's law.
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Nonlocal and nonlinear heat transport 181

3. Restrictions placed by the second law of thermodynamics
We assume the existence of a non-equilibrium entropy s per unit volume satisfying a
balance equation of the form

s = -/?,. + ó* (ó* >0), (16)

7f is the entropy flux and 0s the rate of entropy production per unit volume; according
to the second law of thermodynamics, 0s is a positive definite quantity. In (16), both s
and 7f have to be expressed by means of constitutive equations which, in all
generality may be written as

s = s(u\ qj\ uj; qM}, /f (M; 3/5 uj\ qM). (17)

The dependence of s and 7f on the gradients of u and qi is introduced in view of the
(weakly) nonlocal description. After substitution of (17) in (16), one obtains for ó5

the following expression:

ds . ds . a/? a/f 3s .
= -5- U + —ö + ̂ - W i + -âÃ-ö,ß +

0/ dJ ^ Ë
 ( }

*· ~ °·

To derive the restrictions imposed by 0s > 0, we follow the procedure proposed by
Liu and M ller [25]; these authors introduce the constraints introduced by the
evolution equations for u and qi by means of Lagrange multipliers so that (18) takes
the form

0s , ,

- A(M& - &0u«f/ - 71Ö../Ö - 72^/,jW,i - Aifjy (19)

- L2^,y7 - ßâö,éú - L'luJ<liJ - L2Ui<ljJ " L3< JUJ ^ °»

ËÌ and Ë are Lagrange multipliers (Ëá = scalar, At = ri/z component of vector Ë to
be identified at the end of the procedure. The consequences resulting from inequality
(19) are established in the Appendix. The^main results can be summarized as follows:
i) s is independent of M>Z and qj so that one may write

ô / N 9s . ds 1 , ^.ds(u, qt] =—du + ̂ -dft. (20)uu

As usual, we shall identify ds/du with the nqn-equilibrium temperature
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182 G. Lebon et al

while ds/dqi is assumed to be linear in qf. as higher order termS'in q3 are omitted in
the present analysis, one will simply take

=/(«)*, (22)

where f(u] is an undetermined function of u.
ii) the Lagrange multipliers are identified as

(23)

iii) the entropy production takes the quadratic form

/
0s = --qiqi - Li/ö,ßö,,· ~ LJqjjqtjL - Lsfyijqj > °- (24)

Expression (24) can also be given the form

0s = -iqiqt - (I*

(25)

where q5?™ and qs**w represent the symmetric and skew-symmetric parts of qtj.
Positiveness of (25) implies that

< 0, La/ < 0, (A + L3)/ < 0, (Li - Ze)/ < 0, (26)ô

iv) an expression of the entropy flux compatible with the general results is

. (27)

with T(u) the local equilibrium temperature.
v) The various coefficients appearing in the evolution equation (14) of qv are not
independent but satisfy the following relations:

= A/, W = 72/, L3f = a2/, (28)

where /' stands for df/du.

Supplementary information is provided from the equality of the mixed derivatives of
the Gibbs equation

(29)
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Nonlocal and nonlinear heat transport 183

Indeed, after integration of

=f'qi (30)dqt

it is found that

(31)

where T(u) is the local equilibrium temperature as it corresponds to a vanishing value
of the heat flux.

Moreover, convexity of entropy at fixed internal energy implies that d2s/dqt dqi < 0
from which follows that / < 0. Therefore, in view of the inequalities (26), one has

ô > 0,Li > 0,L2 > Ï,Á > L3 > 0, (32)

in agreement with earlier results of EIT and Guyer and Krumhansl's theory.

As a consequence of the above results, it is clear that there exists a strong correlation
between the form of the evolution equation and the expressions of entropy and
entropy flux.

4. Particular situations

It is our purpose to show that the above rather general results encompass well-known
classical particular results. To this end, let us express the evolution equation (14) in
terms of the temperature è instead of u. One has

*'· (33)

The expression of d9~l/du is directly obtained from (A. 10) by taking into account
the result (A. 15):

+(7./)V. (34)

Coupling this result with relation (30), it is found that

0T1 = Kfui + (7i/)' q2Uj +fqj<to, (35)

from which follows that

1 /'
KUJ = -Jffi. eJ + J W-''' (36)
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184 G. Lebon et al.

wherein as before we have omitted the third order term in q2uj. Defining the heat
conductivity ë by

and recalling that the results a\ = —â\ and 271 =/'// are compatible with the
second law (see (A.22) and (A.23)), the evolution equation (14) for qi reads as

qi = --0,/ - -qi + <
+ 271L3K jiv + (4 + 27114)11, iqjj + (L; + 2jlLl)ujqiJ

this equation contains seven coefficients, namely ô, ë, áú, 71, LI, £2,1/3, to be
determined either by microscopic theories or by experimental measurements. At
this point, it is interesting to consider the following two particular cases.
i)/is a constant (f1 = 0).
By virtue of (28) and (A. 18), the coefficients <*2> /%> 71 and 72 vanish and, according
to (A. 19), è reduces to the local equilibrium temperature. Under these simplifica-
tions, the expressions of the entropy flux (27) and the heat transport equation (38)
take respectively the following forms, if in addition Li,Z/2 and Z/3 are assumed
constant:

Jl = T~l
 qi + (Liqjq^i + LzqiQj + Ifl^iy), (39)

By omitting in (40) the nonlinear contribution and putting L\—L^=L^ one
recovers Guyer-KrumhansFs equation, namely

(41)

with the typical factor 2 in front of the term qj^. The entropy flux corresponding to
Guyer-Krumhansl's model is therefore

(42)

where q?m is the symmetric part of tensor q^. It is clear from (42) that Guyer-
Krumhansl equation is not compatible with the classical expression T"1 #, of the
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Nonlocal and nonlinear heat transport 185

entropy flux. Note that on dimensional grounds one may write rL, = /?(i = 1,2,3)
and therefore expressions (39)-(42) may be written in the form (3) and (4).
ii) LI = L2 = L3 = 0
By virtue of (28), one has 0.2 = i = 72 = 0 and the evolution equation (38) is now
given by

& = -- es -~qi + <*i (Wti - qtjqj) + 71 (2öö,ß + qtqjj) , (43)

while the entropy flux is

J5i = Ô"1 qt. (44)
This result provides a supplementary confirmation that the expression of the entropy
flux is correlated to the presence of non-local terms of order two in the evolution
equation for #,·.
A last remark is in form and concerns the comparison of the present results with
Grad's theory, as expressed by equation (5).
Apparently, the form (5) of the entropy flux in Grad's theory is completely different
from expressions (4) or (27) including the gradient of the heat flux. We will see here
that in fact they are equivalent. Indeed, in the linear approximation, the evolution
equations for the heat flux #,· and the viscous pressure tensor PZ are (e.g. [14])

wherein Vg is the velocity gradient tensor and ç the dynamic shear viscosity; by
writing (45) and (46), it is assumed that the pressure tensor is traceless. Since in our
problem, there is no global displacement of matter (zero velocity) and assuming that
PV. = 0, expression (46) becomes simply

. (47)

Introducing (47) in (46) and in (5), one obtains respectively

q. = _ ö _ Ã . + T2to (4g)

(49)

which are similar to the expressions derived in Section 3. Expression (48) allows us to
express LI in terms of the relaxation time, namely LI =^^TZ. Furthermore,
according to the kinetic theory, one has ô/ë = 2m/5kp so that the coefficient
r"1 /XT2 appearing in the entropy flux can be written as Sr/25pT which is precisely
the value of the coefficient of the non-classical term in (49).
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186 G. Lebon et al.

On the other hand, it follows from the information theory [14, 28, 29] that the
coefficients 70 and 71 in expression (6) are given by 70 = T~l and 71 = — ̂ ^q with
p the mass density. Comparing (6) with (42), it is seen that they are compatible by
taking

(50)

5. Conclusions
Our objective was to formulate a general nonlinear and nonlocal heat transport
equation well adapted to short-wave length and high frequencies processes. For
simplicity, we have considered the problem of heat conduction in a rigid body;
coupling between thermal and viscous effects will be examined in a future
publication. Non-locality is introduced in the evolution equation of the heat flux q
under the form of terms in V2q, nonlinear contributions in q · Vq and Vw · Vq are
also taken into account. Expression (14) or (38) of the evolution equation generalizes
that proposed by Guy er and Krumhansl some years ago; however these authors
considered only the linear problem so that the present work can be viewed as a
nonlinear extension of Guyer and Krumhansl formalism. It is also worth noting that
the evolution equations (14) and (38) are obtained on completely different bases than
Guyer and Krumhansl relation: the former are based on macroscopic thermodynamics
while the latter is derived from Boltzmann equation.
An important conclusion drawn from the present study is that the expression of the
entropy flux is directly correlated to that of the evolution equation and vice versa.
This means that it would be not correct to make use of Guyer and KrumhansFs
equation and to keep the classical form T~l q of the entropy flux. Indeed, it is shown
that when non-locality is introduced, the entropy flux must contain additional terms
in q · Vq whose coefficients are, apart a factor/, the same as these of the non-local
contributions to the evolution equation. The factor/, a negative quantity, depends
generally on the internal energy, or the temperature, and is related to the heat
conductivity ë and the relaxation time rbyf = — r/A02. It is worth stressing that it is
the same coefficient/ which appears in the ÅÃÃ expression of the entropy which is of
the form

where seq(u) is the local equilibrium entropy depending only on the internal energy.
A last remark concerns the temperature È. The latter is generally depending on the
heat flux and can be cast in the form

where Ô is the local equilibrium temperature; it is clear that è reduces to its local
equilibrium value only for/ = constant.
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Appendix

Consequences resulting from the second law of thermodynamics
To examine the restrictions placed by inequality as (= s + //,/) > 0, we apply an
elegant technique proposed by I-Shih-Liu and M ller [31] which consists in
introducing the constraints imposed by the energy conservation law and the evolution
equation of the heat flux via Lagrange multipliers. To be explicit, we shall formulate
the second law of thermodynamics under the form

ds . ds . dJI dJf ds . ds . dJf dJ?
~̧ á- -3Ã .' Ë~ / Å" , 0 — , "o-· ,du dqt du dqj du}i dqtj duj

- Au(u + qjjSij] - Ai \ai + ê u, +~qi- <*i qj qjyi - iWi

- L'l UJ 1iJ ~ L2 U,i 1k,k ~ I^Ujqj > 0, (A.I)

wherein use is made of expression (18) of 0s and of evolution equations (7) and (14)
for u and q\ respectively, Au and AI are the corresponding Lagrange multipliers.
Rearranging the various terms in inequality (A.I), one obtains

ds . dJ?

(A.2)
'S \ V '

- 4- OiiAiqj 4- \qtAj 4- 7i#fcAfc<$i/ J ß/,/

/ r\ j§ % ÷

+ ( -Q-1- + LI Aj6ki + ÉíÁßäñ + LsAkSij J qj>ki

Aiqt > 0.ô
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This inequality is linear in «,ö,ý,,,ö,; and ut , it is therefore inferred that
positiveness of (A.2) demands that

ds ds ds*— = AU,

As the remaining inequality is linear in i*,,· and <#,&, one has in addition

(A.4)

dJ?i- = -LiAj6ki - LiA jk - L3Ak6ij, (A.5)

%)#,!> ï.

and finally one is left with

1 fdJ? ÷
—Auqjj q\Ai + I l + OL\AI<IJ + \qiA.j + ^fiqk^-k^ij ]%' i ̂  0. (A.6)

ô \^ß/ '

Since ds/du is defined as the inverse of the temperature ^^(w, #2) and recalling that
ds/dqi is assumed to be linear in q^ the Lagrange multipliers can be identified
respectively as

Au = e~\ Ai=f(u)qi. (A.7)

A rather general expression for /f compatible with the result (A.5) is simply

(A.8)

wherein 0(w,^2) is, at this stage, an undefined function of u and q2. Making use of
(A.7) and (A.8), inequality (A.6) reads as

(A.9)
- -qtqi - Lrfqjjqjj - L^fqjjq^ - Lsfqtj^ > 0.

Since the term between brackets is linear in qij, positivity of (A.9) demands that

so that (A.9) reduces to

--qiqt - Lifqjtfjj - L2fqjjqi)i - Ls/iMfoi ^ 0» (A. 12)
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Nonlocal and nonlinear heat transport 189

with, as direct consequence, that

ß < 0, L2f < 0, (Li + L3)/ < 0, (Li - L3)/ < Ï, (Á.13)

It remains to examine the consequences resulting from the compatibility of (A.8) with
(A.4). The derivation of (A.8) with respect to u is given by

- Lif'<u<ij,i -
and comparison with (A.4) leads to

Using for è~é the result (31), it is found from (A. 10) that a general expression for ö is

ö = T1 (u) + Q/' - 7i/)<72. (A.17)

From the mixed derivatives of (A. 10) with respect to u and q2, one obtains

d2e~l d

Since in virtue of (A. 15), d<f)/du is independent of q2, direct integration of (A. 18)
yields

wherein C is an integration constant. To determine C, recall that for / = 0, the
entropy s(u) is only depending on u as it results from (20) and (22). Consequently
è~~é(= ds/du) will only be a function of u and finally C = 0. A new integration of
(A.19) leads to

è-é=ºé/<? + Ô~é(ç), (Á.20)

wherein Ô is defined as the local equilibrium temperature as it corresponds to q = 0.
Supplementary consequences of the result (A.19) are the following. Substituting in
(A. 10), 9~l by the result (A.19), it is directly seen that
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and therefore, from (A. 11),

( ·22)

and from (A. 17)

71= \f. (A·23)
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